Sample records for tropical cyclone yasi

  1. Analyzing the impact of severe tropical cyclone Yasi on public health infrastructure and the management of noncommunicable diseases.

    PubMed

    Ryan, Benjamin J; Franklin, Richard C; Burkle, Frederick M; Watt, Kerrianne; Aitken, Peter; Smith, Erin C; Leggat, Peter

    2015-02-01

    Traditionally, post disaster response activities have focused on immediate trauma and communicable diseases. In developed countries such as Australia, the post disaster risk for communicable disease is low. However, a "disease transition" is now recognized at the population level where noncommunicable diseases (NCDs) are increasingly documented as a post disaster issue. This potentially places an extra burden on health care resources and may have implications for disaster-management systems. With increasing likelihood of major disasters for all sectors of global society, there is a need to ensure that health systems, including public health infrastructure (PHI), can respond properly. Problem There is limited peer-reviewed literature on the impact of disasters on NCDs. Research is required to better determine both the impact of NCDs post disaster and their impact on PHI and disaster-management systems. A literature review was used to collect and analyze data on the impact of the index case event, Australia's Severe Tropical Cyclone Yasi (STC Yasi), on PHI and the management of NCDs. The findings were compared with data from other world cyclone events. The databases searched were MEDLINE, CINAHL, Google Scholar, and Google. The date range for the STC Yasi search was January 26, 2011 through May 2, 2013. No time limits were applied to the search from other cyclone events. The variables compared were tropical cyclones and their impacts on PHI and NCDs. The outcome of interest was to identify if there were trends across similar world events and to determine if this could be extrapolated for future crises. This research showed a tropical cyclone (including a hurricane and typhoon) can impact PHI, for instance, equipment (oxygen, syringes, and medications), services (treatment and care), and clean water availability/access that would impact both the treatment and management of NCDs. The comparison between STC Yasi and worldwide tropical cyclones found the challenges faced were linked closely. These relate to communication, equipment and services, evacuation, medication, planning, and water supplies. This research demonstrated that a negative trend pattern existed between the impact of STC Yasi and other similar world cyclone events on PHI and the management of NCDs. This research provides an insight for disaster planners to address concerns of people with NCDs. While further research is needed, this study provides an understanding of areas for improvement, specifically enhancing protective PHI and the development of strategies for maintaining treatment and alternative care options, such as maintaining safe water for dialysis patients.

  2. Emergency Department Presentations following Tropical Cyclone Yasi.

    PubMed

    Aitken, Peter; Franklin, Richard Charles; Lawlor, Jenine; Mitchell, Rob; Watt, Kerrianne; Furyk, Jeremy; Small, Niall; Lovegrove, Leone; Leggat, Peter

    2015-01-01

    Emergency departments see an increase in cases during cyclones. The aim of this study is to describe patient presentations to the Emergency Department (ED) of a tertiary level hospital (Townsville) following a tropical cyclone (Yasi). Specific areas of focus include changes in: patient demographics (age and gender), triage categories, and classification of diseases. Data were extracted from the Townsville Hospitals ED information system (EDIS) for three periods in 2009, 2010 and 2011 to coincide with formation of Cyclone Yasi (31 January 2011) to six days after Yasi crossed the coast line (8 February 2012). The analysis explored the changes in ICD10-AM 4-character classification and presented at the Chapter level. There was a marked increase in the number of patients attending the ED during Yasi, particularly those aged over 65 years with a maximum daily attendance of 372 patients on 4 Feb 2011. The most marked increases were in: Triage categories--4 and 5; and ICD categories--diseases of the skin and subcutaneous tissue (L00-L99), and factors influencing health care status (Z00-Z99). The most common diagnostic presentation across all years was injury (S00-T98). There was an increase in presentations to the ED of TTH, which peaked in the first 24-48 hours following the cyclone and returned to normal over a five-day period. The changes in presentations were mostly an amplification of normal attendance patterns with some altered areas of activity. Injury patterns are similar to overseas experience.

  3. NASA Sees Large Tropical Cyclone Yasi Headed Toward Queensland, Australia

    NASA Image and Video Library

    2017-12-08

    NASA image acquired January 30, 2011 at 23:20 UTC. Satellite: Terra Click here to see the most recent image captured Feb. 1: www.flickr.com/photos/gsfc/5407540724/ Tropical Storm Anthony made landfall in Queensland, Australia this past weekend, and now the residents are watching a larger, more powerful cyclone headed their way. NASA's Terra satellite captured a visible image of the large Tropical Cyclone Yasi late yesterday as it makes its way west through the Coral Sea toward Queensland. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument that flies aboard NASA's Terra satellite captured an image of Cyclone Yasi on Jan. 30 at 23:20 UTC (6:20 p.m. EST/09:20 a.m., Monday, January 31 in Australia/Brisbane local time). Although the image did not reveal a visible eye, the storm appears to be well-formed and also appears to be strengthening. Warnings and watches are already in effect throughout the Coral Sea. The Solomon Islands currently have a Tropical Cyclone warning for the provinces of Temotu, Rennell & Bellona, Makira and Guadalcanal. The Australian Bureau of Meteorology has already posted a Tropical Cyclone Watch from Cooktown to Yeppoon and inland to between Georgetown and Moranbah in Queensland, Australia. The Australian Bureau of Meteorology expects damaging winds to develop in coastal and island communities between Cooktown and Yeppoon Wednesday morning, and inland areas on Wednesday afternoon. Updates from the Australian Bureau of Meteorology can be monitored at the Bureau's website at www.bom.gov.au. On January 31 at 1500 UTC (10 a.m. EST/ 1:00 a.m. Tuesday February 1, 2011 in Australia/Brisbane local time), Tropical Cyclone Yasi had maximum sustained winds near 90 knots (103 mph/166 kmh). Yasi is a Category Two Cyclone on the Saffir-Simpson Scale. It was centered about 875 miles E of Cairns, Australia, near 13.4 South latitude and 160.4 East longitude. It was moving west near 19 knots (22 mph/35 kmh). Cyclone-force winds extend out to 30 miles (48 km) from the center. Animated infrared satellite imagery, such as that from the Atmospheric Infrared Sounder (AIRS) that flies on NASA's Aqua satellite, showed deep convective (thunderstorm) bands wrapping tighter into the low level circulation center. Wrapping bands of thunderstorms indicate strengthening. Yasi is forecast to move west then southwestward into an area of low vertical wind shear (strong wind shear can weaken a storm). Forecasters at the Joint Typhoon Warning Center (JTWC) expect Yasi to continue strengthening over the next 36 hours. JTWC forecasts a landfall just south of Cairns as a large 100-plus knot (115 mph/185 kmh)n system by Wednesday. Residents along the Queensland coast should now be making preparations now for the storm's arrival. Rob Gutro NASA's Goddard Space Flight Center Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team Click here to see more images from MODIS NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  4. Impacts and recovery from severe tropical cyclone Yasi on the Great Barrier Reef.

    PubMed

    Beeden, Roger; Maynard, Jeffrey; Puotinen, Marjetta; Marshall, Paul; Dryden, Jen; Goldberg, Jeremy; Williams, Gareth

    2015-01-01

    Full recovery of coral reefs from tropical cyclone (TC) damage can take decades, making cyclones a major driver of habitat condition where they occur regularly. Since 1985, 44 TCs generated gale force winds (≥17 metres/second) within the Great Barrier Reef Marine Park (GBRMP). Of the hurricane strength TCs (≥H1-Saffir Simpson scale; ≥ category 3 Australian scale), TC Yasi (February, 2011) was the largest. In the weeks after TC Yasi crossed the GBRMP, participating researchers, managers and rangers assessed the extent and severity of reef damage via 841 Reef Health and Impact Surveys at 70 reefs. Records were scaled into five damage levels representing increasingly widespread colony-level damage (1, 2, 3) and reef structural damage (4, 5). Average damage severity was significantly affected by direction (north vs south of the cyclone track), reef shelf position (mid-shelf vs outer-shelf) and habitat type. More outer-shelf reefs suffered structural damage than mid-shelf reefs within 150 km of the track. Structural damage spanned a greater latitudinal range for mid-shelf reefs than outer-shelf reefs (400 vs 300 km). Structural damage was patchily distributed at all distances, but more so as distance from the track increased. Damage extended much further from the track than during other recent intense cyclones that had smaller circulation sizes. Just over 15% (3,834 km2) of the total reef area of the GBRMP is estimated to have sustained some level of coral damage, with ~4% (949 km2) sustaining a degree of structural damage. TC Yasi likely caused the greatest loss of coral cover on the GBR in a 24-hour period since 1985. Severely impacted reefs have started to recover; coral cover increased an average of 4% between 2011 and 2013 at re-surveyed reefs. The in situ assessment of impacts described here is the largest in scale ever conducted on the Great Barrier Reef following a reef health disturbance.

  5. Impacts and Recovery from Severe Tropical Cyclone Yasi on the Great Barrier Reef

    PubMed Central

    Beeden, Roger; Maynard, Jeffrey; Puotinen, Marjetta; Marshall, Paul; Dryden, Jen; Goldberg, Jeremy; Williams, Gareth

    2015-01-01

    Full recovery of coral reefs from tropical cyclone (TC) damage can take decades, making cyclones a major driver of habitat condition where they occur regularly. Since 1985, 44 TCs generated gale force winds (≥17 metres/second) within the Great Barrier Reef Marine Park (GBRMP). Of the hurricane strength TCs (≥H1—Saffir Simpson scale; ≥ category 3 Australian scale), TC Yasi (February, 2011) was the largest. In the weeks after TC Yasi crossed the GBRMP, participating researchers, managers and rangers assessed the extent and severity of reef damage via 841 Reef Health and Impact Surveys at 70 reefs. Records were scaled into five damage levels representing increasingly widespread colony-level damage (1, 2, 3) and reef structural damage (4, 5). Average damage severity was significantly affected by direction (north vs south of the cyclone track), reef shelf position (mid-shelf vs outer-shelf) and habitat type. More outer-shelf reefs suffered structural damage than mid-shelf reefs within 150 km of the track. Structural damage spanned a greater latitudinal range for mid-shelf reefs than outer-shelf reefs (400 vs 300 km). Structural damage was patchily distributed at all distances, but more so as distance from the track increased. Damage extended much further from the track than during other recent intense cyclones that had smaller circulation sizes. Just over 15% (3,834 km2) of the total reef area of the GBRMP is estimated to have sustained some level of coral damage, with ~4% (949 km2) sustaining a degree of structural damage. TC Yasi likely caused the greatest loss of coral cover on the GBR in a 24-hour period since 1985. Severely impacted reefs have started to recover; coral cover increased an average of 4% between 2011 and 2013 at re-surveyed reefs. The in situ assessment of impacts described here is the largest in scale ever conducted on the Great Barrier Reef following a reef health disturbance. PMID:25874718

  6. The evacuation of cairns hospitals due to severe tropical cyclone Yasi.

    PubMed

    Little, Mark; Stone, Theona; Stone, Richard; Burns, Jan; Reeves, Jim; Cullen, Paul; Humble, Ian; Finn, Emmeline; Aitken, Peter; Elcock, Mark; Gillard, Noel

    2012-09-01

    On February 2, 2011, Tropical Cyclone Yasi, the largest cyclone to cross the Australian coast and a system the size of Hurricane Katrina, threatened the city of Cairns. As a result, the Cairns Base Hospital (CBH) and Cairns Private Hospital (CPH) were both evacuated, the hospitals were closed, and an alternate emergency medical center was established in a sports stadium 15 km from the Cairns central business district. This article describes the events around the evacuation of 356 patients, staff, and relatives to Brisbane (approximately 1,700 km away by road), closure of the hospitals, and the provision of a temporary emergency medical center for 28 hours during the height of the cyclone. Our experience highlights the need for adequate and exercised hospital evacuation plans; the need for clear command and control with identified decision-makers; early decision-making on when to evacuate; having good communication systems with redundancy; ensuring that patients are adequately identified and tracked and have their medications and notes; ensuring adequate staff, medications, and oxygen for holding patients; and planning in detail the alternate medical facility safety and its role, function, and equipment. © 2012 by the Society for Academic Emergency Medicine.

  7. The Importance of Coral Larval Recruitment for the Recovery of Reefs Impacted by Cyclone Yasi in the Central Great Barrier Reef

    PubMed Central

    Lukoschek, Vimoksalehi; Cross, Peter; Torda, Gergely; Zimmerman, Rachel; Willis, Bette L.

    2013-01-01

    Cyclone Yasi, one of the most severe tropical storms on record, crossed the central Great Barrier Reef (GBR) in February 2011, bringing wind speeds of up to 285 km hr−1 and wave heights of at least 10 m, and causing massive destruction to exposed reefs in the Palm Island Group. Following the cyclone, mean (± S.E.) hard coral cover ranged from just 2.1 (0.2) % to 5.3 (0.4) % on exposed reefs and no reproductively mature colonies of any species of Acropora remained. Although no fragments of Acropora were found at impacted exposed sites following the cyclone, small juvenile colonies of Acropora (<10 cm diameter) were present, suggesting that their small size and compact morphologies enabled them to survive the cyclone. By contrast, sheltered reefs appeared to be unaffected by the cyclone. Mean (± S.E.) hard coral cover ranged from 18.2 (2.4) % to 30.0 (1.0) % and a large proportion of colonies of Acropora were reproductively mature. Macroalgae accounted for 8 to 16% of benthic cover at exposed sites impacted by cyclone Yasi but were absent at sheltered sites. Mean (± S.E.) recruitment of acroporids to settlement tiles declined from 25.3 (4.8) recruits tile−1 in the pre-cyclone spawning event (2010) to 15.4 (2.2) recruits tile−1 in the first post-cyclone spawning event (2011). Yet, post-cyclone recruitment did not differ between exposed (15.2±2.1 S.E.) and sheltered sites (15.6±2.2 S.E.), despite the loss of reproductive colonies at the exposed sites, indicating larval input from external sources. Spatial variation in impacts, the survival of small colonies, and larval replenishment to impacted reefs suggest that populations of Acropora have the potential to recover from this severe disturbance, provided that the Palm Islands are not impacted by acute disturbances or suffer additional chronic stressors in the near future. PMID:23755223

  8. The importance of coral larval recruitment for the recovery of reefs impacted by cyclone Yasi in the central Great Barrier Reef.

    PubMed

    Lukoschek, Vimoksalehi; Cross, Peter; Torda, Gergely; Zimmerman, Rachel; Willis, Bette L

    2013-01-01

    Cyclone Yasi, one of the most severe tropical storms on record, crossed the central Great Barrier Reef (GBR) in February 2011, bringing wind speeds of up to 285 km hr⁻¹ and wave heights of at least 10 m, and causing massive destruction to exposed reefs in the Palm Island Group. Following the cyclone, mean (± S.E.) hard coral cover ranged from just 2.1 (0.2) % to 5.3 (0.4) % on exposed reefs and no reproductively mature colonies of any species of Acropora remained. Although no fragments of Acropora were found at impacted exposed sites following the cyclone, small juvenile colonies of Acropora (<10 cm diameter) were present, suggesting that their small size and compact morphologies enabled them to survive the cyclone. By contrast, sheltered reefs appeared to be unaffected by the cyclone. Mean (± S.E.) hard coral cover ranged from 18.2 (2.4) % to 30.0 (1.0) % and a large proportion of colonies of Acropora were reproductively mature. Macroalgae accounted for 8 to 16% of benthic cover at exposed sites impacted by cyclone Yasi but were absent at sheltered sites. Mean (± S.E.) recruitment of acroporids to settlement tiles declined from 25.3 (4.8) recruits tile⁻¹ in the pre-cyclone spawning event (2010) to 15.4 (2.2) recruits tile⁻¹ in the first post-cyclone spawning event (2011). Yet, post-cyclone recruitment did not differ between exposed (15.2±2.1 S.E.) and sheltered sites (15.6±2.2 S.E.), despite the loss of reproductive colonies at the exposed sites, indicating larval input from external sources. Spatial variation in impacts, the survival of small colonies, and larval replenishment to impacted reefs suggest that populations of Acropora have the potential to recover from this severe disturbance, provided that the Palm Islands are not impacted by acute disturbances or suffer additional chronic stressors in the near future.

  9. Factors affecting the simulated trajectory and intensification of Tropical Cyclone Yasi (2011)

    NASA Astrophysics Data System (ADS)

    Parker, Chelsea L.; Lynch, Amanda H.; Mooney, Priscilla A.

    2017-09-01

    This study investigates the sensitivity of the simulated trajectory, intensification, and forward speed of Tropical Cyclone Yasi to initial conditions, physical parameterizations, and sea surface temperatures. Yasi was a category 5 storm that made landfall in Queensland, Australia in February 2011. A series of simulations were performed using WRF-ARW v3.4.1 driven by ERA-Interim data at the lateral boundaries. To assess these simulations, a new simple skill score is devised to summarize the deviation from observed conditions at landfall. The results demonstrate the sensitivity to initial condition resolution and the need for a new initialization dataset. Ensemble testing of physics parameterizations revealed strong sensitivity to cumulus schemes, with a trade-off between trajectory and intensity accuracy. The Tiedtke scheme produces an accurate trajectory evolution and landfall location. The Kain Fritch scheme is associated with larger errors in trajectory due to a less active shallow convection over the ocean, leading to warmer temperatures at the 700 mb level and a stronger, more poleward steering flow. However, the Kain Fritsch scheme produces more accurate intensities and translation speeds. Tiedtke-derived intensities were weaker due to suppression of deep convection by active shallow convection. Accurate representation of the sea surface temperature through correcting a newly discovered SST lag in reanalysis data or increasing resolution of SST data can improve the simulation. Higher resolution increases relative vorticity and intensity. However, the sea surface boundary had a more pronounced effect on the simulation with the Tiedtke scheme due to its moisture convergence trigger and active shallow convection over the tropical ocean.

  10. The influence of sea surface temperature on the intensity and associated storm surge of tropical cyclone Yasi: a sensitivity study

    NASA Astrophysics Data System (ADS)

    Lavender, Sally L.; Hoeke, Ron K.; Abbs, Deborah J.

    2018-03-01

    Tropical cyclones (TCs) result in widespread damage associated with strong winds, heavy rainfall and storm surge. TC Yasi was one of the most powerful TCs to impact the Queensland coast since records began. Prior to Yasi, the SSTs in the Coral Sea were higher than average by 1-2 °C, primarily due to the 2010/2011 La Niña event. In this study, a conceptually simple idealised sensitivity analysis is performed using a high-resolution regional model to gain insight into the influence of SST on the track, size, intensity and associated rainfall of TC Yasi. A set of nine simulations with uniform SST anomalies of between -4 and 4 °C applied to the observed SSTs are analysed. The resulting surface winds and pressure are used to force a barotropic storm surge model to examine the influence of SST on the associated storm surge of TC Yasi. An increase in SST results in an increase in intensity, precipitation and integrated kinetic energy of the storm; however, there is little influence on track prior to landfall. In addition to an increase in precipitation, there is a change in the spatial distribution of precipitation as the SST increases. Decreases in SSTs result in an increase in the radius of maximum winds due to an increase in the asymmetry of the storm, although the radius of gale-force winds decreases. These changes in the TC characteristics also lead to changes in the associated storm surge. Generally, cooler (warmer) SSTs lead to reduced (enhanced) maximum storm surges. However, the increase in surge reaches a maximum with an increase in SST of 2 °C. Any further increase in SST does not affect the maximum surge but the total area and duration of the simulated surge increases with increasing upper ocean temperatures. A large decrease in maximum storm surge height occurs when a negative SST anomaly is applied, suggesting if TC Yasi had occurred during non-La Niña conditions the associated storm surge may have been greatly diminished, with a decrease in storm surge height of over 3 m when the SST is reduced by 2 °C. In summary, increases in SST lead to an increase in the potential destructiveness of TCs with regard to intensity, precipitation and storm surge, although this relationship is not linear.

  11. Rate of prescription of antidepressant and anxiolytic drugs after Cyclone Yasi in North Queensland.

    PubMed

    Usher, Kim; Brown, Lawrence H; Buettner, Petra; Glass, Beverley; Boon, Helen; West, Caryn; Grasso, Joseph; Chamberlain-Salaun, Jennifer; Woods, Cindy

    2012-12-01

    The need to manage psychological symptoms after disasters can result in an increase in the prescription of psychotropic drugs, including antidepressants and anxiolytics. Therefore, an increase in the prescription of antidepressants and anxiolytics could be an indicator of general psychological distress in the community. The purpose of this study was to determine if there was a change in the rate of prescription of antidepressant and anxiolytic drugs following Cyclone Yasi. A quantitative evaluation of new prescriptions of antidepressants and anxiolytics was conducted. The total number of new prescriptions for these drugs was calculated for the period six months after the cyclone and compared with the same six month period in the preceding year. Two control drugs were also included to rule out changes in the general rate of drug prescription in the affected communities. After Cyclone Yasi, there was an increase in the prescription of antidepressant drugs across all age and gender groups in the affected communities except for males 14-54 years of age. The prescription of anxiolytic drugs decreased immediately after the cyclone, but increased by the end of the six-month post-cyclone period. Control drug prescription did not change. There was a quantifiable increase in the prescription of antidepressant drugs following Cyclone Yasi that may indicate an increase in psychosocial distress in the community.

  12. Renal services disaster planning: lessons learnt from the 2011 Queensland floods and North Queensland cyclone experiences.

    PubMed

    Johnson, David W; Hayes, Bronwyn; Gray, Nicholas A; Hawley, Carmel; Hole, Janet; Mantha, Murty

    2013-01-01

    In 2011, Queensland dialysis services experienced two unprecedented natural disasters within weeks of each other. Floods in south-east Queensland and Tropical Cyclone Yasi in North Queensland caused widespread flooding, property damage and affected the provision of dialysis services, leading to Australia's largest evacuation of dialysis patients. This paper details the responses to the disasters and examines what worked and what lessons were learnt. Recommendations are made for dialysis units in relation to disaster preparedness, response and recovery. © 2012 The Authors. Nephrology © 2012 Asian Pacific Society of Nephrology.

  13. “Out of our control”: Living through Cyclone Yasi

    PubMed Central

    Woods, Cindy; West, Caryn; Buettner, Petra; Usher, Kim

    2014-01-01

    The aim of this study was to explore the experiences of people who lived through Cyclone Yasi on 3 February 2011. Data from two open-ended questions (Q1: n=344; and Q2: n=339) within a survey completed by 433 residents of cyclone-affected areas between Cairns and Townsville, Australia, were analysed using a qualitative, thematic approach. Experiences were portrayed in three main themes: (1) living in the mode of existential threat describes survivors’ sense of panic and feeling at the mercy of nature as they feared for their life; (2) unforgettable memories describe feelings of emotional helplessness and the unimaginable chaos that the cyclone wrought; and (3) centrality of others shows how community support and closeness helped alleviate losses and uncertainty. A critical finding from this study was the negative role of the media in escalating fears for life prior to and during the cyclone, highlighting the need for government, community leaders, and health professionals to have a media plan in place to ensure that disaster warnings are taken seriously without inciting unnecessary panic. Although survivors experienced extreme vulnerability and a threat to life, the disaster also brought communities closer together and connected family, friends, and neighbours through the caring, support, and help they offered each other. This highlights the central role of others during the recovery process and underlines the importance of promoting and facilitating social support to aid recovery post disaster. PMID:24434053

  14. Disease outbreaks, bleaching and a cyclone drive changes in coral assemblages on an inshore reef of the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Haapkylä, J.; Melbourne-Thomas, J.; Flavell, M.; Willis, B. L.

    2013-09-01

    Coral disease is a major threat to the resilience of coral reefs; thus, understanding linkages between disease outbreaks and disturbances predicted to increase with climate change is becoming increasingly important. Coral disease surveys conducted twice yearly between 2008 and 2011 at a turbid inshore reef in the central Great Barrier Reef spanned two disturbance events, a coral bleaching event in 2009 and a severe cyclone (cyclone `Yasi') in 2011. Surveys of coral cover, community structure and disease prevalence throughout this 4-yr study provide a unique opportunity to explore cumulative impacts of disturbance events and disease for inshore coral assemblages. The principal coral disease at the study site was atramentous necrosis (AtN), and it primarily affected the key inshore, reef-building coral Montipora aequituberculata. Other diseases detected were growth anomalies, white syndrome and brown band syndrome. Diseases affected eight coral genera, although Montipora was, by far, the genus mostly affected. The prevalence of AtN followed a clear seasonal pattern, with disease outbreaks occurring only in wet seasons. Mean prevalence of AtN on Montipora spp. (63.8 % ± 3.03) was three- to tenfold greater in the wet season of 2009, which coincided with the 2009 bleaching event, than in other years. Persistent wet season outbreaks of AtN combined with the impacts of bleaching and cyclone events resulted in a 50-80 % proportional decline in total coral cover. The greatest losses of branching and tabular acroporids occurred following the low-salinity-induced bleaching event of 2009, and the greatest losses of laminar montiporids occurred following AtN outbreaks in 2009 and in 2011 following cyclone Yasi. The shift to a less diverse coral assemblage and the concomitant loss of structural complexity are likely to have long-term consequences for associated vertebrate and invertebrate communities on Magnetic Island reefs.

  15. Seagrasses in tropical Australia, productive and abundant for decades decimated overnight.

    PubMed

    Pollard, Peter C; Greenway, Margaret

    2013-03-01

    Seagrass ecosystems provide unique coastal habitats critical to the life cycle of many species. Seagrasses are a major store of organic carbon. While seagrasses are globally threatened and in decline, in Cairns Harbour, Queensland, on the tropical east coast of Australia, they have flourished. We assessed seagrass distribution in Cairns Harbour between 1953 and 2012 from historical aerial photographs, Google map satellite images, existing reports and our own surveys of their distribution. Seasonal seagrass physiology was assessed through gross primary production, respiration and photosynthetic characteristics of three seagrass species, Cymodocea serrulata, Thalassia hemprichii and Zostera muelleri. At the higher water temperatures of summer, respiration rates increased in all three species, as did their maximum rates of photosynthesis. All three seagrasses achieved maximum rates of photosynthesis at low tide and when they were exposed. For nearly six decades there was little change in seagrass distribution in Cairns Harbour. This was most likely because the seagrasses were able to achieve sufficient light for growth during intertidal and low tide periods. With historical data of seagrass distribution and measures of species production and respiration, could seagrass survival in a changing climate be predicted? Based on physiology, our results predicted the continued maintenance of the Cairns Harbour seagrasses, although one species was more susceptible to thermal disturbance. However, in 2011 an unforeseen episodic disturbance - Tropical Cyclone Yasi - and associated floods lead to the complete and catastrophic loss of all the seagrasses in Cairns Harbour.

  16. Contributions of Tropical Cyclones to the North Atlantic Climatological Rainfall as Observed from Satellites

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The tropical cyclone rainfall climatology study that was performed for the North Pacific was extended to the North Atlantic. Similar to the North Pacific tropical cyclone study, mean monthly rainfall within 444 km of the center of the North Atlantic tropical cyclones (i.e., that reached storm stage and greater) was estimated from passive microwave satellite observations during, an eleven year period. These satellite-observed rainfall estimates were used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the North Atlantic total rainfall during, June-November when tropical cyclones were most abundant. The main results from this study indicate: 1) that tropical cyclones contribute, respectively, 4%, 3%, and 4% to the western, eastern, and entire North Atlantic; 2) similar to that observed in the North Pacific, the maximum in North Atlantic tropical cyclone rainfall is approximately 5 - 10 deg poleward (depending on longitude) of the maximum non-tropical cyclone rainfall; 3) tropical cyclones contribute regionally a maximum of 30% of the total rainfall 'northeast of Puerto Rico, within a region near 15 deg N 55 deg W, and off the west coast of Africa; 4) there is no lag between the months with maximum tropical cyclone rainfall and non-tropical cyclone rainfall in the western North Atlantic, while in the eastern North Atlantic, maximum tropical cyclone rainfall precedes maximum non-tropical cyclone rainfall; 5) like the North Pacific, North Atlantic tropical cyclones Of hurricane intensity generate the greatest amount of rainfall in the higher latitudes; and 6) warm ENSO events inhibit tropical cyclone rainfall.

  17. Contribution of Tropical Cyclones to the North Pacific Climatological Rainfall as Observed from Satellites

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.

    1997-01-01

    Tropical cyclone monthly rainfall amounts are estimated from passive microwave satellite observations for an eleven year period. These satellite-derived rainfall amounts are used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the North Pacific Ocean total rainfall during June-November when tropical cyclones are most important. To estimate these tropical cyclone rainfall amounts, mean monthly rain rates are derived from passive microwave satellite observations within 444 km radius of the center of those North Pacific tropical cyclones that reached storm stage and greater. These rain rate observations are converted to monthly rainfall amounts and then compared to those for non-tropical cyclone systems. The main results of this study indicate that: 1) tropical cyclones contribute 7% of the rainfall to the entire domain of the North Pacific during the tropical cyclone season and 12%, 3%, and 4% when the study area is limited to, respectively, the western, central, and eastern third of the ocean; 2) the maxima in tropical cyclone rainfall are poleward (5 deg to 10 deg latitude depending on longitude) of the maxima in non-tropical cyclone rainfall; 3) tropical cyclones contribute a maximum of 30% northeast of the Philippine Islands and 40% of the lower Baja California coast; 4) in the western North Pacific, the tropical cyclone rainfall lags the total rainfall by approximately two months and shows seasonal latitudinal variation following the ITCZ; and 5) in general, tropical cyclone rainfall is enhanced during the El Nino years by warm SSTs in the eastern North Pacific and by the monsoon trough in the western and central North Pacific.

  18. Contribution of Tropical Cyclones to the North Pacific Climatological Rainfall as Observed from Satellites.

    NASA Astrophysics Data System (ADS)

    Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.

    2000-10-01

    Tropical cyclone monthly rainfall amounts are estimated from passive microwave satellite observations for an 11-yr period. These satellite-derived rainfall amounts are used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and interannual distribution of the North Pacific Ocean total rainfall during June-November when tropical cyclones are most important.To estimate these tropical cyclone rainfall amounts, mean monthly rain rates are derived from passive microwave satellite observations within 444-km radius of the center of those North Pacific tropical cyclones that reached storm stage and greater. These rain-rate observations are converted to monthly rainfall amounts and then compared with those for nontropical cyclone systems.The main results of this study indicate that 1) tropical cyclones contribute 7% of the rainfall to the entire domain of the North Pacific during the tropical cyclone season and 12%, 3%, and 4% when the study area is limited to, respectively, the western, central, and eastern third of the ocean; 2) the maximum tropical cyclone rainfall is poleward (5°-10° latitude depending on longitude) of the maximum nontropical cyclone rainfall; 3) tropical cyclones contribute a maximum of 30% northeast of the Philippine Islands and 40% off the lower Baja California coast; 4) in the western North Pacific, the tropical cyclone rainfall lags the total rainfall by approximately two months and shows seasonal latitudinal variation following the Intertropical Convergence Zone; and 5) in general, tropical cyclone rainfall is enhanced during the El Niño years by warm SSTs in the eastern North Pacific and by the monsoon trough in the western and central North Pacific.

  19. Effect of Nock-Ten Tropical Cyclone on Atmospheric Condition and Distribution of Rainfall in Gorontalo, Ternate, and Sorong Regions

    NASA Astrophysics Data System (ADS)

    Lumbangaol, A.; Serhalawan, Y. R.; Endarwin

    2017-12-01

    Nock-Ten Tropical Cyclone is an atmospheric phenomenon that has claimed many lives in the Philippines. This super-typhoon cyclone grows in the Western Pacific Ocean, North of Papua. With the area directly contiguous to the trajectory of Nock-Ten Tropical Cyclone growth, it is necessary to study about the growth activity of this tropical cyclones in Indonesia, especially in 3 different areas, namely Gorontalo, Ternate, and Sorong. This study was able to determine the impact of Nock-Ten Tropical Cyclone on atmospheric dynamics and rainfall growth distribution based on the stages of tropical cyclone development. The data used in this study include Himawari-8 IR channel satellite data to see the development stage and movement track of Tropical Cyclone Nock-Ten, rainfall data from TRMM 3B42RT satellite product to know the rain distribution in Gorontalo, Ternate, and Sorong, and reanalysis data from ECMWF such as wind direction and speed, vertical velocity, and relative vorticity to determine atmospheric conditions at the time of development of the Nock-Ten Tropical Cyclone. The results of data analysis processed using GrADS application showed the development stage of Nock-Ten Tropical Cyclone has effect of changes in atmospheric dynamics condition and wind direction pattern. In addition, tropical cyclones also contribute to very light to moderate scale intensity during the cycle period of tropical cyclone development in all three regions.

  20. The Variation of Tropical Cyclone Rainfall within the North Atlantic and Pacific as Observed from Satellites

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward; Pierce, Harold; Adler, Robert

    1999-01-01

    Tropical cyclone monthly rainfall amounts are estimated from passive microwave satellite observations in the North Atlantic and in three equal geographical regions of the North Pacific (i.e., Western, Central, and Eastern North Pacific). These satellite-derived rainfall amounts are used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the 1987-1989, 1991-1998 North Atlantic and Pacific rainfall during June-November when tropical cyclones are most abundant. To estimate these tropical cyclone rainfall amounts, mean monthly rain rates are derived from the Defence Meteorological Satellite Program (DMSP) Special Sensor Microwave/ Radiometer (SSM/I) observations within 444 km radius of the center of those North Atlantic and Pacific tropical cyclones that reached storm stage and greater. These rain rate observations are then multiplied by the number of hours in a given month. Mean monthly rainfall amounts are also constructed for all the other North Atlantic and Pacific raining systems during this eleven year period for the purpose of estimating the geographical distribution and intensity of rainfall contributed by non-tropical cyclone systems. Further, the combination of the non-tropical cyclone and tropical cyclone (i.e., total) rainfall is constructed to delineate the fractional amount that tropical cyclones contributed to the total North Pacific rainfall.

  1. Ocean barrier layers' effect on tropical cyclone intensification.

    PubMed

    Balaguru, Karthik; Chang, Ping; Saravanan, R; Leung, L Ruby; Xu, Zhao; Li, Mingkui; Hsieh, Jen-Shan

    2012-09-04

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are "quasi-permanent" features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.

  2. Tropical cyclone rainfall area controlled by relative sea surface temperature

    PubMed Central

    Lin, Yanluan; Zhao, Ming; Zhang, Minghua

    2015-01-01

    Tropical cyclone rainfall rates have been projected to increase in a warmer climate. The area coverage of tropical cyclones influences their impact on human lives, yet little is known about how tropical cyclone rainfall area will change in the future. Here, using satellite data and global atmospheric model simulations, we show that tropical cyclone rainfall area is controlled primarily by its environmental sea surface temperature (SST) relative to the tropical mean SST (that is, the relative SST), while rainfall rate increases with increasing absolute SST. Our result is consistent with previous numerical simulations that indicated tight relationships between tropical cyclone size and mid-tropospheric relative humidity. Global statistics of tropical cyclone rainfall area are not expected to change markedly under a warmer climate provided that SST change is relatively uniform, implying that increases in total rainfall will be confined to similar size domains with higher rainfall rates. PMID:25761457

  3. A statistical analysis of the association between tropical cyclone intensity change and tornado frequency

    NASA Astrophysics Data System (ADS)

    Moore, Todd W.

    2016-07-01

    Tropical cyclones often produce tornadoes that have the potential to compound the injury and fatality counts and the economic losses associated with tropical cyclones. These tornadoes do not occur uniformly through time or across space. Multiple statistical methods were used in this study to analyze the association between tropical cyclone intensity change and tornado frequency. Results indicate that there is an association between the two and that tropical cyclones tend to produce more tornadoes when they are weakening, but the association is weak. Tropical cyclones can also produce a substantial number of tornadoes when they are relatively stable or strengthening.

  4. Ocean Barrier Layers’ Effect on Tropical Cyclone Intensification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaguru, Karthik; Chang, P.; Saravanan, R.

    2012-09-04

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are 'quasi-permanent' features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropicalmore » cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.« less

  5. Contribution of Tropical Cyclones to the Interannual Variability of Baiu Precipitation

    NASA Astrophysics Data System (ADS)

    Yamaura, T.; Tomita, T.

    2011-12-01

    This work examines the contribution of tropical cyclones to the interannual variability of Baiu precipitation with the large-scale interannual variations in the tropics, that is, the El Niño/Southern Oscillation (ENSO) and the Tropospheric Biennial Oscillation (TBO) in the Asian monsoon. The data used are the Global Precipitation Climatology Project, the Japanese 25-year Reanalysis Project/Japan Meteorological Agency Climate Data Assimilation System, and the Joint Typhoon Warning Center. The diagnosed months and the time period are June and July, and 30 years from 1979 to 2008. When the negative precipitation anomalies appear in the entire Baiu front with the cold ENSO phase, the number of tropical cyclones increases around the northern part of the Philippines, and a larger-scale anomalous cyclone is formed there. Tropical cyclones contribute to strengthening the anomalous cyclone. Anomalous convective activity in the anomalous cyclone excites Rossby waves that propagate northward within the low-level jet and form an anomalous anticyclone around Japan. The anomalous anticyclone decreases the Baiu precipitation. On the other hand, the number of tropical cyclones decreases, and an anomalous anticyclone is set around the northern part of the Philippines, when the positive precipitation anomalies are observed in the Baiu front with the warm ENSO phase. The contribution of tropical cyclones is insignificant in this phase. The warm and cold TBO phases are judged from sea surface temperature (SST) anomalies in the equatorial central Pacific that is different from the region for ENSO. In the cold TBO phase with the negative SST anomalies, there appear the negative precipitation anomalies around Kyushu and the positive ones to the southeast of Japan. Concurrently, an anomalous cyclone appears, and the accumulated cyclone energy estimated from the tropical cyclones increases to the southeast of Japan. Tropical cyclones contribute to forming the anomalous cyclone, which shifts the axis of monsoon southwesterlies southward. Thus, the negative precipitation anomalies and the positive ones appear in Kyushu and to the southeast of Japan. In the opposite TBO phase, an anomalous anticyclone is set to the southeast of Japan and suppresses tropical cyclones there. The contribution of tropical cyclones is small in this case. As such, local tropical cyclones contribute to the interannual variation of the Baiu precipitation with larger atmospheric circulations in the western North Pacific.

  6. Impacts of different grades of tropical cyclones on infectious diarrhea in Guangdong, 2005-2011.

    PubMed

    Kang, Ruihua; Xun, Huanmiao; Zhang, Ying; Wang, Wei; Wang, Xin; Jiang, Baofa; Ma, Wei

    2015-01-01

    Guangdong province is one of the most vulnerable provinces to tropical cyclones in China. Most prior studies concentrated on the relationship between tropical cyclones and injuries and mortality. This study aimed to explore the impacts of different grades of tropical cyclones on infectious diarrhea incidence in Guangdong province, from 2005 to 2011. Mann-Whitney U test was firstly used to examine if infectious diarrhea were sensitive to tropical cyclone. Then unidirectional 1:1 case-crossover design was performed to quantitatively evaluate the relationship between daily number of infectious diarrhea and tropical cyclone from 2005 to 2011 in Guangdong, China. Principal component analysis (PCA) was applied to eliminate multicollinearity. Multivariate logistic regression model was used to estimate the hazard ratios (HRs) and the 95% confidence intervals (CI). There were no significant relationships between tropical cyclone and bacillary dysentery, amebic dysentery, typhoid, and paratyphoid cases. Infectious diarrhea other than cholera, dysentery, typhoid and paratyphoid significantly increased after tropical cyclones. The strongest effect were shown on lag 1 day (HRs = 1.95, 95%CI = 1.22, 3.12) and no lagged effect was detected for tropical depression, tropical storm, severe tropical storm and typhoon, with the largest HRs (95%CI) of 2.16 (95%CI = 1.69, 2.76), 2.43 (95%CI = 1.65, 3.58) and 2.21 (95%CI = 1.65, 2.69), respectively. Among children below 5 years old, the impacts of all grades of tropical cyclones were strongest at lag 0 day. And HRs were 2.67 (95%CI = 1.10, 6.48), 2.49 (95%CI = 1.80, 3.44), 4.89 (95%CI = 2.37, 7.37) and 3.18 (95%CI = 2.10, 4.81), respectively. All grades of tropical cyclones could increase risk of other infectious diarrhea. Severe tropical storm has the strongest influence on other infectious diarrhea. The impacts of tropical cyclones on children under 5 years old were higher than total population.

  7. Impacts of Different Grades of Tropical Cyclones on Infectious Diarrhea in Guangdong, 2005-2011

    PubMed Central

    Zhang, Ying; Wang, Wei; Wang, Xin; Jiang, Baofa; Ma, Wei

    2015-01-01

    Objective Guangdong province is one of the most vulnerable provinces to tropical cyclones in China. Most prior studies concentrated on the relationship between tropical cyclones and injuries and mortality. This study aimed to explore the impacts of different grades of tropical cyclones on infectious diarrhea incidence in Guangdong province, from 2005 to 2011. Methods Mann-Whitney U test was firstly used to examine if infectious diarrhea were sensitive to tropical cyclone. Then unidirectional 1:1 case-crossover design was performed to quantitatively evaluate the relationship between daily number of infectious diarrhea and tropical cyclone from 2005 to 2011 in Guangdong, China. Principal component analysis (PCA) was applied to eliminate multicollinearity. Multivariate logistic regression model was used to estimate the hazard ratios (HRs) and the 95% confidence intervals (CI). Results There were no significant relationships between tropical cyclone and bacillary dysentery, amebic dysentery, typhoid, and paratyphoid cases. Infectious diarrhea other than cholera, dysentery, typhoid and paratyphoid significantly increased after tropical cyclones. The strongest effect were shown on lag 1 day (HRs = 1.95, 95%CI = 1.22, 3.12) and no lagged effect was detected for tropical depression, tropical storm, severe tropical storm and typhoon, with the largest HRs (95%CI) of 2.16 (95%CI = 1.69, 2.76), 2.43 (95%CI = 1.65, 3.58) and 2.21 (95%CI = 1.65, 2.69), respectively. Among children below 5 years old, the impacts of all grades of tropical cyclones were strongest at lag 0 day. And HRs were 2.67 (95%CI = 1.10, 6.48), 2.49 (95%CI = 1.80, 3.44), 4.89 (95%CI = 2.37, 7.37) and 3.18 (95%CI = 2.10, 4.81), respectively. Conclusion All grades of tropical cyclones could increase risk of other infectious diarrhea. Severe tropical storm has the strongest influence on other infectious diarrhea. The impacts of tropical cyclones on children under 5 years old were higher than total population. PMID:26106882

  8. Statistical Aspects of the North Atlantic Basin Tropical Cyclones: Trends, Natural Variability, and Global Warming

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2007-01-01

    Statistical aspects of the North Atlantic basin tropical cyclones for the interval 1945- 2005 are examined, including the variation of the yearly frequency of occurrence for various subgroups of storms (all tropical cyclones, hurricanes, major hurricanes, U.S. landfalling hurricanes, and category 4/5 hurricanes); the yearly variation of the mean latitude and longitude (genesis location) of all tropical cyclones and hurricanes; and the yearly variation of the mean peak wind speeds, lowest pressures, and durations for all tropical cyclones, hurricanes, and major hurricanes. Also examined is the relationship between inferred trends found in the North Atlantic basin tropical cyclonic activity and natural variability and global warming, the latter described using surface air temperatures from the Armagh Observatory Armagh, Northern Ireland. Lastly, a simple statistical technique is employed to ascertain the expected level of North Atlantic basin tropical cyclonic activity for the upcoming 2007 season.

  9. Testing coral-based tropical cyclone reconstructions: An example from Puerto Rico

    USGS Publications Warehouse

    Kilbourne, K. Halimeda; Moyer, Ryan P.; Quinn, Terrence M.; Grottoli, Andrea G.

    2011-01-01

    Complimenting modern records of tropical cyclone activity with longer historical and paleoclimatological records would increase our understanding of natural tropical cyclone variability on decadal to centennial time scales. Tropical cyclones produce large amounts of precipitation with significantly lower δ18O values than normal precipitation, and hence may be geochemically identifiable as negative δ18O anomalies in marine carbonate δ18O records. This study investigates the usefulness of coral skeletal δ18O as a means of reconstructing past tropical cyclone events. Isotopic modeling of rainfall mixing with seawater shows that detecting an isotopic signal from a tropical cyclone in a coral requires a salinity of ~ 33 psu at the time of coral growth, but this threshold is dependent on the isotopic composition of both fresh and saline end-members. A comparison between coral δ18O and historical records of tropical cyclone activity, river discharge, and precipitation from multiple sites in Puerto Rico shows that tropical cyclones are not distinguishable in the coral record from normal rainfall using this approach at these sites.

  10. Is the poleward migration of tropical cyclone maximum intensity associated with a poleward migration of tropical cyclone genesis?

    NASA Astrophysics Data System (ADS)

    Daloz, Anne Sophie; Camargo, Suzana J.

    2018-01-01

    A recent study showed that the global average latitude where tropical cyclones achieve their lifetime-maximum intensity has been migrating poleward at a rate of about one-half degree of latitude per decade over the last 30 years in each hemisphere. However, it does not answer a critical question: is the poleward migration of tropical cyclone lifetime-maximum intensity associated with a poleward migration of tropical cyclone genesis? In this study we will examine this question. First we analyze changes in the environmental variables associated with tropical cyclone genesis, namely entropy deficit, potential intensity, vertical wind shear, vorticity, skin temperature and specific humidity at 500 hPa in reanalysis datasets between 1980 and 2013. Then, a selection of these variables is combined into two tropical cyclone genesis indices that empirically relate tropical cyclone genesis to large-scale variables. We find a shift toward greater (smaller) average potential number of genesis at higher (lower) latitudes over most regions of the Pacific Ocean, which is consistent with a migration of tropical cyclone genesis towards higher latitudes. We then examine the global best track archive and find coherent and significant poleward shifts in mean genesis position over the Pacific Ocean basins.

  11. Changes in Tropical Cyclone Intensity Over the Past 30 Years: A Global and Dynamic Perspective

    NASA Technical Reports Server (NTRS)

    Wu, Liguang; Wang, Bin; Braun, Scott A.

    2006-01-01

    The hurricane season of 2005 was the busiest on record and Hurricane Katrina (2005) is believed to be the costliest hurricane in U. S. history. There are growing concerns regarding whether this increased tropical cyclone activity is a result of global warming, as suggested by Emanuel(2005) and Webster et al. (2005), or just a natural oscillation (Goldenberg et al. 2001). This study examines the changes in tropical cyclone intensity to see what were really responsible for the changes in tropical cyclone activity over the past 30 years. Since the tropical sea surface temperature (SST) warming also leads to the response of atmospheric circulation, which is not solely determined by the local SST warming, this study suggests that it is better to take the tropical cyclone activities in the North Atlantic (NA), western North Pacific (WNP) and eastern North Pacific (ENP) basins as a whole when searching for the influence of the global-scale SST warming on tropical cyclone intensity. Over the past 30 years, as the tropical SST increased by about 0.5 C, the linear trends indicate 6%, 16% and 15% increases in the overall average intensity and lifetime and the annual frequency. Our analysis shows that the increased annual destructiveness of tropical cyclones reported by Emanuel(2005) resulted mainly from the increases in the average lifetime and annual frequency in the NA basin and from the increases in the average intensity and lifetime in the WNP basin, while the annual destructiveness in the ENP basin generally decreased over the past 30 years. The changes in the proportion of intense tropical cyclones reported by Webster et a1 (2005) were due mainly to the fact that increasing tropical cyclones took the tracks that favor for the development of intense tropical cyclones in the NA and WNP basins over the past 30 years. The dynamic influence associated with the tropical SST warming can lead to the impact of global warming on tropical cyclone intensity that may be very different from our current assessments, which were mainly based on the thermodynamic theory of tropical cyclone intensity.

  12. Detection of centers of tropical cyclones using Communication, Ocean, and Meteorological Satellite data

    NASA Astrophysics Data System (ADS)

    Lee, Juhyun; Im, Jungho; Park, Seohui; Yoo, Cheolhee

    2017-04-01

    Tropical cyclones are one of major natural disasters, which results in huge damages to human and society. Analyzing behaviors and characteristics of tropical cyclones is essential for mitigating the damages by tropical cyclones. In particular, it is important to keep track of the centers of tropical cyclones. Cyclone center and track information (called Best Track) provided by Joint Typhoon Warning Center (JTWC) are widely used for the reference data of tropical cyclone centers. However, JTWC uses multiple resources including numerical modeling, geostationary satellite data, and in situ measurements to determine the best track in a subjective way and makes it available to the public 6 months later after an event occurred. Thus, the best track data cannot be operationally used to identify the centers of tropical cyclones in real time. In this study, we proposed an automated approach for identifying the centers of tropical cyclones using only Communication, Ocean, and Meteorological Satellite (COMS) Meteorological Imager (MI) sensor derived data. It contains 5 bands—VIS (0.67µm), SWIR (3.7µm), WV (6.7µm), IR1 (10.8µm), and IR2 (12.0µm). We used IR1 band images to extract brightness temperatures of cloud tops over Western North Pacific between 2011 and 2012. The Angle deviation between brightness temperature-based gradient direction in a moving window and the reference angle toward the center of the window was extracted. Then, a spatial analysis index called circular variance was adopted to identify the centers of tropical cyclones based on the angle deviation. Finally, the locations of the minimum circular variance indexes were identified as the centers of tropical cyclones. While the proposed method has comparable performance for detecting cyclone centers in case of organized cloud convections when compared with the best track data, it identified the cyclone centers distant ( 2 degrees) from the best track centers for unorganized convections.

  13. Hurricanes and Climate: The U.S. CLIVAR Working Group on Hurricanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, Kevin J. E.; Camargo, Suzana J.; Vecchi, Gabriel A.

    While a quantitative climate theory of tropical cyclone formation remains elusive, considerable progress has been made recently in our ability to simulate tropical cyclone climatologies and to understand the relationship between climate and tropical cyclone formation. Climate models are now able to simulate a realistic rate of global tropical cyclone formation, although simulation of the Atlantic tropical cyclone climatology remains challenging unless horizontal resolutions finer than 50 km are employed. This article summarizes published research from the idealized experiments of the Hurricane Working Group of U.S. Climate and Ocean: Variability, Predictability and Change (CLIVAR). This work, combined with results frommore » other model simulations, has strengthened relationships between tropical cyclone formation rates and climate variables such as midtropospheric vertical velocity, with decreased climatological vertical velocities leading to decreased tropical cyclone formation. Systematic differences are shown between experiments in which only sea surface temperature is increased compared with experiments where only atmospheric carbon dioxide is increased. Experiments where only carbon dioxide is increased are more likely to demonstrate a decrease in tropical cyclone numbers, similar to the decreases simulated by many climate models for a future, warmer climate. Experiments where the two effects are combined also show decreases in numbers, but these tend to be less for models that demonstrate a strong tropical cyclone response to increased sea surface temperatures. Lastly, further experiments are proposed that may improve our understanding of the relationship between climate and tropical cyclone formation, including experiments with two-way interaction between the ocean and the atmosphere and variations in atmospheric aerosols.« less

  14. Hurricanes and Climate: The U.S. CLIVAR Working Group on Hurricanes

    DOE PAGES

    Walsh, Kevin J. E.; Camargo, Suzana J.; Vecchi, Gabriel A.; ...

    2015-06-01

    While a quantitative climate theory of tropical cyclone formation remains elusive, considerable progress has been made recently in our ability to simulate tropical cyclone climatologies and to understand the relationship between climate and tropical cyclone formation. Climate models are now able to simulate a realistic rate of global tropical cyclone formation, although simulation of the Atlantic tropical cyclone climatology remains challenging unless horizontal resolutions finer than 50 km are employed. This article summarizes published research from the idealized experiments of the Hurricane Working Group of U.S. Climate and Ocean: Variability, Predictability and Change (CLIVAR). This work, combined with results frommore » other model simulations, has strengthened relationships between tropical cyclone formation rates and climate variables such as midtropospheric vertical velocity, with decreased climatological vertical velocities leading to decreased tropical cyclone formation. Systematic differences are shown between experiments in which only sea surface temperature is increased compared with experiments where only atmospheric carbon dioxide is increased. Experiments where only carbon dioxide is increased are more likely to demonstrate a decrease in tropical cyclone numbers, similar to the decreases simulated by many climate models for a future, warmer climate. Experiments where the two effects are combined also show decreases in numbers, but these tend to be less for models that demonstrate a strong tropical cyclone response to increased sea surface temperatures. Lastly, further experiments are proposed that may improve our understanding of the relationship between climate and tropical cyclone formation, including experiments with two-way interaction between the ocean and the atmosphere and variations in atmospheric aerosols.« less

  15. Ocean barrier layers’ effect on tropical cyclone intensification

    PubMed Central

    Balaguru, Karthik; Chang, Ping; Saravanan, R.; Leung, L. Ruby; Xu, Zhao; Li, Mingkui; Hsieh, Jen-Shan

    2012-01-01

    Improving a tropical cyclone’s forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone’s path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are “quasi-permanent” features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity. PMID:22891298

  16. A global slowdown of tropical-cyclone translation speed.

    PubMed

    Kossin, James P

    2018-06-01

    As the Earth's atmosphere warms, the atmospheric circulation changes. These changes vary by region and time of year, but there is evidence that anthropogenic warming causes a general weakening of summertime tropical circulation 1-8 . Because tropical cyclones are carried along within their ambient environmental wind, there is a plausible a priori expectation that the translation speed of tropical cyclones has slowed with warming. In addition to circulation changes, anthropogenic warming causes increases in atmospheric water-vapour capacity, which are generally expected to increase precipitation rates 9 . Rain rates near the centres of tropical cyclones are also expected to increase with increasing global temperatures 10-12 . The amount of tropical-cyclone-related rainfall that any given local area will experience is proportional to the rain rates and inversely proportional to the translation speeds of tropical cyclones. Here I show that tropical-cyclone translation speed has decreased globally by 10 per cent over the period 1949-2016, which is very likely to have compounded, and possibly dominated, any increases in local rainfall totals that may have occurred as a result of increased tropical-cyclone rain rates. The magnitude of the slowdown varies substantially by region and by latitude, but is generally consistent with expected changes in atmospheric circulation forced by anthropogenic emissions. Of particular importance is the slowdown of 30 per cent and 20 per cent over land areas affected by western North Pacific and North Atlantic tropical cyclones, respectively, and the slowdown of 19 per cent over land areas in the Australian region. The unprecedented rainfall totals associated with the 'stall' of Hurricane Harvey 13-15 over Texas in 2017 provide a notable example of the relationship between regional rainfall amounts and tropical-cyclone translation speed. Any systematic past or future change in the translation speed of tropical cyclones, particularly over land, is therefore highly relevant when considering potential changes in local rainfall totals.

  17. Sea turtle species vary in their susceptibility to tropical cyclones.

    PubMed

    Pike, David A; Stiner, John C

    2007-08-01

    Severe climatic events affect all species, but there is little quantitative knowledge of how sympatric species react to such situations. We compared the reproductive seasonality of sea turtles that nest sympatrically with their vulnerability to tropical cyclones (in this study, "tropical cyclone" refers to tropical storms and hurricanes), which are increasing in severity due to changes in global climate. Storm surges significantly decreased reproductive output by lowering the number of nests that hatched and the number of hatchlings that emerged from nests, but the severity of this effect varied by species. Leatherback turtles (Dermochelys coriacea) began nesting earliest and most offspring hatched before the tropical cyclone season arrived, resulting in little negative effect. Loggerhead turtles (Caretta caretta) nested intermediately, and only nests laid late in the season were inundated with seawater during storm surges. Green turtles (Chelonia mydas) nested last, and their entire nesting season occurred during the tropical cyclone season; this resulted in a majority (79%) of green turtle nests incubating in September, when tropical cyclones are most likely to occur. Since this timing overlaps considerably with the tropical cyclone season, the developing eggs and nests are extremely vulnerable to storm surges. Increases in the severity of tropical cyclones may cause green turtle nesting success to worsen in the future. However, published literature suggests that loggerhead turtles are nesting earlier in the season and shortening their nesting seasons in response to increasing sea surface temperatures caused by global climate change. This may cause loggerhead reproductive success to improve in the future because more nests will hatch before the onset of tropical cyclones. Our data clearly indicate that sympatric species using the same resources are affected differently by tropical cyclones due to slight variations in the seasonal timing of nesting, a key life history process.

  18. Persistent northward North Atlantic tropical cyclone track migration over the past five centuries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldini, Lisa M.; Baldini, James U. L.; McElwaine, Jim N.

    Accurately predicting future tropical cyclone risk requires understanding the fundamental controls on tropical cyclone dynamics. Here we present an annually-resolved 450-year reconstruction of western Caribbean tropical cyclone activity developed using a new coupled carbon and oxygen isotope ratio technique in an exceptionally well-dated stalagmite from Belize. Western Caribbean tropical cyclone activity peaked at 1650 A.D., coincident with maximum Little Ice Age cooling, and decreased gradually until the end of the record in 1983. Considered with other reconstructions, the new record suggests that the mean track of Cape Verde tropical cyclones shifted gradually north-eastward from the western Caribbean toward the Northmore » American east coast over the last 450 years. Since ~1870 A.D., these shifts were largely driven by anthropogenic greenhouse gas and sulphate aerosol emissions. In conclusion, our results strongly suggest that future emission scenarios will result in more frequent tropical cyclone impacts on the financial and population centres of the northeastern United States.« less

  19. Persistent northward North Atlantic tropical cyclone track migration over the past five centuries

    NASA Astrophysics Data System (ADS)

    Baldini, Lisa M.; Baldini, James U. L.; McElwaine, Jim N.; Frappier, Amy Benoit; Asmerom, Yemane; Liu, Kam-Biu; Prufer, Keith M.; Ridley, Harriet E.; Polyak, Victor; Kennett, Douglas J.; MacPherson, Colin G.; Aquino, Valorie V.; Awe, Jaime; Breitenbach, Sebastian F. M.

    2016-11-01

    Accurately predicting future tropical cyclone risk requires understanding the fundamental controls on tropical cyclone dynamics. Here we present an annually-resolved 450-year reconstruction of western Caribbean tropical cyclone activity developed using a new coupled carbon and oxygen isotope ratio technique in an exceptionally well-dated stalagmite from Belize. Western Caribbean tropical cyclone activity peaked at 1650 A.D., coincident with maximum Little Ice Age cooling, and decreased gradually until the end of the record in 1983. Considered with other reconstructions, the new record suggests that the mean track of Cape Verde tropical cyclones shifted gradually north-eastward from the western Caribbean toward the North American east coast over the last 450 years. Since ~1870 A.D., these shifts were largely driven by anthropogenic greenhouse gas and sulphate aerosol emissions. Our results strongly suggest that future emission scenarios will result in more frequent tropical cyclone impacts on the financial and population centres of the northeastern United States.

  20. Persistent northward North Atlantic tropical cyclone track migration over the past five centuries

    DOE PAGES

    Baldini, Lisa M.; Baldini, James U. L.; McElwaine, Jim N.; ...

    2016-11-23

    Accurately predicting future tropical cyclone risk requires understanding the fundamental controls on tropical cyclone dynamics. Here we present an annually-resolved 450-year reconstruction of western Caribbean tropical cyclone activity developed using a new coupled carbon and oxygen isotope ratio technique in an exceptionally well-dated stalagmite from Belize. Western Caribbean tropical cyclone activity peaked at 1650 A.D., coincident with maximum Little Ice Age cooling, and decreased gradually until the end of the record in 1983. Considered with other reconstructions, the new record suggests that the mean track of Cape Verde tropical cyclones shifted gradually north-eastward from the western Caribbean toward the Northmore » American east coast over the last 450 years. Since ~1870 A.D., these shifts were largely driven by anthropogenic greenhouse gas and sulphate aerosol emissions. In conclusion, our results strongly suggest that future emission scenarios will result in more frequent tropical cyclone impacts on the financial and population centres of the northeastern United States.« less

  1. A satellite observational and numerical study of precipitation characteristics in western North Atlantic tropical cyclones

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward B.; Chang, Simon W.; Pierce, Harold F.

    1994-01-01

    Special Sensor Microwave/Imager (SSM/I) observations were used to examine the spatial and temporal changes of the precipitation characteristics of tropical cyclones. SSM/I observations were also combined with the results of a tropical cyclone numerical model to examine the role of inner-core diabatic heating in subsequent intensity changes of tropical cyclones. Included in the SSM/I observations were rainfall characteristics of 18 named western North Atlantic tropical cyclones between 1987 and 1989. The SSM/I rain-rate algorithm that employed the 85-GHz channel provided an analysis of the rain-rate distribution in greater detail. However, the SSM/I algorithm underestimated the rain rates when compared to in situ techniques but appeared to be comparable to the rain rates obtained from other satellite-borne passive microwave radiometers. The analysis of SSM/I observations found that more intense systems had higher rain rates, more latent heat release, and a greater contribution from heavier rain to the total tropical cyclone rainfall. In addition, regions with the heaviest rain rates were found near the center of the most intense tropical cyclones. Observational analysis from SSM/I also revealed that the greatest rain rates in the inner-core regions were found in the right half of fast-moving cyclones, while the heaviest rain rates in slow-moving tropical cyclones were found in the forward half. The combination of SSM/I observations and an interpretation of numerical model simulations revealed that the correlation between changes in the inner core diabetic heating and the subsequent intensity became greater as the tropical cyclones became more intense.

  2. Attributing Tropical Cyclogenesis to Equatorial Waves in the Western North Pacific

    NASA Technical Reports Server (NTRS)

    Schreck, Carl J., III; Molinari, John; Mohr, Karen I.

    2009-01-01

    The direct influences of equatorial waves on the genesis of tropical cyclones are evaluated. Tropical cyclogenesis is attributed to an equatorial wave when the filtered rainfall anomaly exceeds a threshold value at the genesis location. For an attribution threshold of 3 mm/day, 51% of warm season western North Pacific tropical cyclones are attributed to tropical depression (TD)-type disturbances, 29% to equatorial Rossby waves, 26% to mixed Rossby-Gravity waves, 23% to Kelvin waves, 13% to the Madden-Julian oscillation (MJO), and 19% are not attributed to any equatorial wave. The fraction of tropical cyclones attributed to TD-type disturbances is consistent with previous findings. Past studies have also demonstrated that the MJO significantly modulates tropical cyclogenesis, but fewer storms are attributed to the MJO than any other wave type. This disparity arises from the difference between attribution and modulation. The MJO produces broad regions of favorable conditions for cyclogenesis, but the MJO alone might not determine when and where a storm will develop within these regions. Tropical cyclones contribute less than 17% of the power in any portion of the equatorial wave spectrum because tropical cyclones are relatively uncommon equatorward of 15deg latitude. In regions where they are active, however, tropical cyclones can contribute more than 20% of the warm season rainfall and up to 50% of the total variance. Tropical cyclone-related anomalies can significantly contaminate wave-filtered precipitation at the location of genesis. To mitigate this effect, the tropical cyclone-related rainfall anomalies were removed before filtering in this study.

  3. Hurricanes and Climate: the U.S. CLIVAR Working Group on Hurricanes

    NASA Technical Reports Server (NTRS)

    Walsh, Kevin; Camargo, Suzana J.; Vecchi, Gabriel A.; Daloz, Anne Sophie; Elsner, James; Emanuel, Kerry; Horn, Michael; Lim, Young-Kwon; Roberts, Malcolm; Patricola, Christina; hide

    2015-01-01

    While a quantitative climate theory of tropical cyclone formation remains elusive, considerable progress has been made recently in our ability to simulate tropical cyclone climatologies and understand the relationship between climate and tropical cyclone formation. Climate models are now able to simulate a realistic rate of global tropical cyclone formation, although simulation of the Atlantic tropical cyclone climatology remains challenging unless horizontal resolutions finer than 50 km are employed. The idealized experiments of the Hurricane Working Group of U.S. CLIVAR, combined with results from other model simulations, have suggested relationships between tropical cyclone formation rates and climate variables such as mid-tropospheric vertical velocity. Systematic differences are shown between experiments in which only sea surface temperature is increases versus experiments where only atmospheric carbon dioxide is increased, with the carbon dioxide experiments more likely to demonstrate a decrease in numbers. Further experiments are proposed that may improve our understanding of the relationship between climate and tropical cyclone formation, including experiments with two-way interaction between the ocean and the atmosphere and variations in atmospheric aerosols.

  4. Predicting the trajectories and intensities of hurricanes by applying machine learning techniques

    NASA Astrophysics Data System (ADS)

    Sujithkumar, A.; King, A. W.; Kovilakam, M.; Graves, D.

    2017-12-01

    The world has witnessed an escalation of devastating hurricanes and tropical cyclones over the last three decades. Hurricanes and tropical cyclones of very high magnitude will likely be even more frequent in a warmer world. Thus, precise forecasting of the track and intensity of hurricane/tropical cyclones remains one of the meteorological community's top priorities. However, comprehensive prediction of hurricane/ tropical cyclone is a difficult problem due to the many complexities of underlying physical processes with many variables and complex relations. The availability of global meteorological and hurricane/tropical storm climatological data opens new opportunities for data-driven approaches to hurricane/tropical cyclone modeling. Here we report initial results from two data-driven machine learning techniques, specifically, random forest (RF) and Bayesian learning (BL) to predict the trajectory and intensity of hurricanes and tropical cyclones. We used International Best Track Archive for Climate Stewardship (IBTrACS) data along with weather data from NOAA in a 50 km buffer surrounding each of the reported hurricane and tropical cyclone tracts to train the model. Initial results reveal that both RF and BL are skillful in predicting storm intensity. We will also present results for the more complicated trajectory prediction.

  5. Role of equatorial waves in tropical cyclogenesis

    NASA Astrophysics Data System (ADS)

    Schreck, Carl J., III

    Tropical cyclones typically form within preexisting wavelike disturbances that couple with convection. Using Tropical Rainfall Measuring Mission (TRMM) multisatellite rainfall estimates, this study determines the relative number of tropical cyclones that can be attributed to various wave types, including the Madden--Julian oscillation (MJO), Kelvin waves, equatorial Rossby (ER) waves, mixed Rossby--gravity (MRG) waves, and tropical depression (TD)-type disturbances. Tropical cyclogenesis is attributed to an equatorial wave's convection when the filtered rainfall anomaly exceeds a threshold value at the genesis location. More storms are attributed to TD-type disturbances than to any other wave type in all of the Northern Hemisphere basins. In the Southern Hemisphere, however, ER waves and TD-type disturbances are equally important as precursors. Fewer storms are attributed to MRG waves, Kelvin waves, and the MJO in every basin. Although relatively few storms are attributed to the MJO, tropical cyclogenesis is 2.6 times more likely in its convective phase compared with its suppressed phase. This modulation arises in part because each equatorial wave type is amplified within MJO's convective phase. The amplification significantly increases the probability that these waves will act as tropical cyclone precursors. A case study from June 2002 illustrates the effects of a series of Kelvin waves on two tropical cyclone formations. These waves were embedded in the convective phase of the MJO. Together, the MJO and the Kelvin waves preconditioned the low-level environment for cyclogenesis. The first Kelvin wave weakened the trade easterlies, while the subsequent waves created monsoon westerlies near the equator. These westerlies provided the background cyclonic vorticity within which both storms developed. The effects of tropical cyclone-related rainfall anomalies are also investigated. In the wavenumber--frequency spectrum for rainfall, tropical cyclones can inflate the power for shorter wavelength westward propagating waves by up to 27%. This spectrum contains signals from all longitudes, but the greatest contamination occurs in regions like the Philippines where tropical cyclones are most frequent. Here, tropical cyclones contribute more than 40% of the rainfall variance in each filter band. To mitigate these effects, tropical cyclone-related anomalies were removed before filtering in this study.

  6. Global view of the upper level outflow patterns associated with tropical cyclone intensity changes during FGGE

    NASA Technical Reports Server (NTRS)

    Chen, L.; Gray, W. M.

    1985-01-01

    The characteristics of the upper tropospheric outflow patterns which occur with tropical cyclone intensification and weakening over all of the global tropical cyclone basins during the year long period of the First GARP Global Experiment (FGGE) are discussed. By intensification is meant the change in the tropical cyclone's maximum wind or central pressure, not the change of the cyclone's outer 1 to 3 deg radius mean wind which we classify as cyclone strength. All the 80 tropical cyclones which existed during the FGGE year are studied. Two-hundred mb wind fields are derived from the analysis of the European Center for Medium Range Weather Forecasting (ECMWF) which makes extensive use of upper tropospheric satellite and aircraft winds. Corresponding satellite cloud pictures from the polar orbiting U.S. Defense Meteorological Satellite Program (DMSP) and other supplementary polar and geostationary satellite data are also used.

  7. Impacts of tropical cyclones on Fiji and Samoa

    NASA Astrophysics Data System (ADS)

    Kuleshov, Yuriy; Prakash, Bipendra; Atalifo, Terry; Waqaicelua, Alipate; Seuseu, Sunny; Ausetalia Titimaea, Mulipola

    2013-04-01

    Weather and climate hazards have significant impacts on Pacific Island Countries. Costs of hazards such as tropical cyclones can be astronomical making enormous negative economic impacts on developing countries. We highlight examples of extreme weather events which have occurred in Fiji and Samoa in the last few decades and have caused major economic and social disruption in the countries. Destructive winds and torrential rain associated with tropical cyclones can bring the most damaging weather conditions to the region causing economic and social hardship, affecting agricultural productivity, infrastructure and economic development which can persist for many years after the initial impact. Analysing historical data, we describe the impacts of tropical cyclones Bebe and Kina on Fiji. Cyclone Bebe (October 1972) affected the whole Fiji especially the Yasawa Islands, Viti Levu and Kadavu where hurricane force winds have been recorded. Nineteen deaths were reported and damage costs caused by cyclone Bebe were estimated as exceeding F20 million (F 1972). Tropical cyclone Kina passed between Fiji's two main islands of Viti Levu and Vanua Levu, and directly over Levuka on the night of 2 January 1993 with hurricane force winds causing extensive damage. Twenty three deaths have been reported making Kina one of the deadliest hurricanes in Fiji's recent history. Severe flooding on Viti Levu, combined with high tide and heavy seas led to destruction of the Sigatoka and Ba bridges, as well as almost complete loss of crops in Sigatoka and Navua deltas. Overall, damage caused by cyclone Kina was estimated as F170 million. In Samoa, we describe devastation to the country caused by tropical cyclones Ofa (February 1990) and Val (December 1991) which were considered to be the worst cyclones to affect the Samoan islands since the 1889 Apia cyclone. In Samoa, seven people were killed due to cyclone Ofa, thousands of people were left homeless and entire villages were destroyed. Damage on Samoa totalled to US130 million. Cyclone Val caused damage and destruction to 95% of houses in Samoa and severe crop damage; total damage was estimated as US200 million. Recently, severe tropical cyclone Evan affected Samoa and Fiji (December 2012). Significant progress in operational tropical cyclone forecasting has been achieved over the past few decades which resulted in improving early warning system but death toll attributed to cyclones is still high - at least 14 deaths in Samoa are related to cyclone Evan (luckily, no death reports in Fiji). Cyclone-related economic losses also remain very high making significant negative impact on economies of the countries. Preliminary assessment of damage caused by cyclone Evan in Fiji indicates loses of about 75.29 million. By the end of this century projections suggest decreasing numbers of tropical cyclones but a possible shift towards more intense categories. In addition, geographic shifts in distribution of tropical cyclone occurrences caused by warming of the atmospheric and oceanic environment are possible. This should be taken in consideration by authorities of the Pacific Island Countries when developing adaptation strategies to increasing tropical cyclone risk due to climate change.

  8. Analysis of Tropical Cyclone Tracks in the North Indian Ocean

    NASA Astrophysics Data System (ADS)

    Patwardhan, A.; Paliwal, M.; Mohapatra, M.

    2011-12-01

    Cyclones are regarded as one of the most dangerous meteorological phenomena of the tropical region. The probability of landfall of a tropical cyclone depends on its movement (trajectory). Analysis of trajectories of tropical cyclones could be useful for identifying potentially predictable characteristics. There is long history of analysis of tropical cyclones tracks. A common approach is using different clustering techniques to group the cyclone tracks on the basis of certain characteristics. Various clustering method have been used to study the tropical cyclones in different ocean basins like western North Pacific ocean (Elsner and Liu, 2003; Camargo et al., 2007), North Atlantic Ocean (Elsner, 2003; Gaffney et al. 2007; Nakamura et al., 2009). In this study, tropical cyclone tracks in the North Indian Ocean basin, for the period 1961-2010 have been analyzed and grouped into clusters based on their spatial characteristics. A tropical cyclone trajectory is approximated as an open curve and described by its first two moments. The resulting clusters have different centroid locations and also differently shaped variance ellipses. These track characteristics are then used in the standard clustering algorithms which allow the whole track shape, length, and location to be incorporated into the clustering methodology. The resulting clusters have different genesis locations and trajectory shapes. We have also examined characteristics such as life span, maximum sustained wind speed, landfall, seasonality, many of which are significantly different across the identified clusters. The clustering approach groups cyclones with higher maximum wind speed and longest life span in to one cluster. Another cluster includes short duration cyclonic events that are mostly deep depressions and significant for rainfall over Eastern and Central India. The clustering approach is likely to prove useful for analysis of events of significance with regard to impacts.

  9. Tropical Cyclone Signatures in Atmospheric Convective Available Potential Energy

    NASA Astrophysics Data System (ADS)

    Studholme, Joshua; Gulev, Sergey

    2016-04-01

    Tropical cyclones play an important role in the climate system providing transports of energy and water vapor, forcing the ocean, and also affecting mid-latitude circulation phenomena. Tropical cyclone tracks experience strong interannual variability and in addition, longer term trend-like changes in all ocean basins. Analysis of recent historical data reveal a poleward shift in the locations of tropical cyclone tracks in both the Northern and Southern Hemispheres (Kossin et al. 2014, Nature, 509, 349-352). The physical consequences of these alterations are largely unconstrained. For example, the increasing encroachment of tropical cyclone activity into the extra-tropical environment presents a novel and still poorly understood paradigm for tropical-extratropical interactions. In this respect, the role that the atmospheric convective available potential energy (CAPE) plays in the dynamics of tropical cyclones is highly interesting. The two characteristic global-scale spatial patterns in CAPE are identified using EOF analysis. The first pattern shows an abundance of CAPE in the centre of the Pacific and corresponds to the El Nino Southern Oscillation. The second one is capturing positive CAPE anomalies in the oceanic tropics and negative anomalies over equatorial Africa. Associated with these buoyancy patterns, alterations in tropical cyclone activity occur in all basins forming both zonal and meridional patterns. Atmospheric buoyancy is the trigger for deep convection, and subsequently cyclone genesis. This is the mechanism of impact upon location at the start of cyclone tracks. It is found to have less impact upon where cyclones subsequently move, whether or not they undergo extratropical transition and when and where they experience lysis. It is shown that CAPE plays a critical role in the general circulation in the tropics which in turn is the larger steering context for embedded systems within the Walker and Hadley cells. So this lack of `latter life' impact posits an interesting start for further theoretical and physical consideration.

  10. Classic Maya civilization collapse associated with reduction in tropical cyclone activity

    NASA Astrophysics Data System (ADS)

    Medina, M. A.; Polanco-Martinez, J. M.; Lases-Hernández, F.; Bradley, R. S.; Burns, S. J.

    2013-12-01

    In light of the increased destructiveness of tropical cyclones observed over recent decades one might assume that an increase and not a decrease in tropical cyclone activity would lead to societal stress and perhaps collapse of ancient cultures. In this study we present evidence that a reduction in the frequency and intensity of tropical Atlantic cyclones could have contributed to the collapse of the Maya civilization during the Terminal Classic Period (TCP, AD. 800-950). Statistical comparisons of a quantitative precipitation record from the Yucatan Peninsula (YP) Maya lowlands, based on the stalagmite known as Chaac (after the Mayan God of rain and agriculture), relative to environmental proxy records of El Niño/Southern Oscillation (ENSO), tropical Atlantic sea surface temperatures (SSTs), and tropical Atlantic cyclone counts, suggest that these records share significant coherent variability during the TCP and that summer rainfall reductions between 30 and 50% in the Maya lowlands occurred in association with decreased Atlantic tropical cyclones. Analysis of modern instrumental hydrological data suggests cyclone rainfall contributions to the YP equivalent to the range of rainfall deficits associated with decreased tropical cyclone activity during the collapse of the Maya civilization. Cyclone driven precipitation variability during the TCP, implies that climate change may have triggered Maya civilization collapse via freshwater scarcity for domestic use without significant detriment to agriculture. Pyramid in Tikal, the most prominent Maya Kingdom that collapsed during the Terminal Classic Period (circa C.E. 800-950) Rainfall feeding stalagmites inside Rio Secreto cave system, Yucatan, Mexico.

  11. Do Tropical Cyclones Shape Shorebird Habitat Patterns? Biogeoclimatology of Snowy Plovers in Florida

    DTIC Science & Technology

    2011-01-12

    THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 coastal birds in north-west Europe . Using historical data...cyclone season begins in June and ends in November. A cyclone is classified as a tropical depression, tropical storm or hurricane depending on its lifetime...fledge before the storms arrive and subsequently are able to seek inland protection with the adults during the storms [26,27]. However, tropical cyclones

  12. Tropical Cyclone Reconnaissance with the Global Hawk: Operational Thresholds and Characteristics of Convective Systems Over the Tropical Western North Pacific

    DTIC Science & Technology

    2013-12-01

    Tropical cyclone research is an intense ongoing science that has acquired even greater importance in this era of global climate change . Increased study of...RECONNAISSANCE WITH THE GLOBAL HAWK: OPERATIONAL THRESHOLDS AND CHARACTERISTICS OF CONVECTIVE SYSTEMS OVER THE TROPICAL WESTERN NORTH PACIFIC by...TROPICAL CYCLONE RECONNAISSANCE WITH THE GLOBAL HAWK: OPERATIONAL THRESHOLDS AND CHARACTERISTICS OF CONVECTIVE SYSTEMS OVER THE TROPICAL WESTERN

  13. Model finds bigger, stronger tropical cyclones with warming seas

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2014-03-01

    In the wake of powerful tropical cyclones such as Hurricanes Sandy and Katrina and Typhoon Haiyan, questions about the likely effect of climate change on tropical cyclone activity are on the public's mind. The interactions between global warming and cyclone activity, however, are complex, with rising sea surface temperatures, changing energy distributions, and altered atmospheric dynamics all having some effect.

  14. Role of the Southwest Tropical Indian Ocean on the Modulation of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Burns, J. M.; Bulusu, S.

    2016-02-01

    The Seychelles-Chagos Thermocline Ridge (SCTR), located in the Indian Ocean and bound by 55°E-65°E and 5°S-12°S, is a key region for air-sea interaction. This feature inhabits one of the seven ocean basins where tropical cyclones regularly form and is unique in that the variability of the subsurface can influence cyclogenesis. Tropical cyclone days for this region span from November through April, with peaks in the months of January and February. The influence of thermocline variation is particularly strong during the months of December through May and it is known that a high correlation exists between the depth of the thermocline and sea surface temperature (key ingredient for cyclogenesis). Past research provides evidence that more tropical cyclone days are observed in Southwest Tropical Indian Ocean (SWTIO) during austral summers with a deep thermocline ridge than in austral summers when a shallow thermocline ridge exists. The formation and thickness of the Barrier layer (BL) have also been shown to impact tropical cyclones in this region. BL formation is an important parameter for surface heat exchange. The amount of salt in the boundary layer may also effect heat exchange and thus cyclones. Other ocean basins have verified that salt-stratified barrier layers influence the intensification of tropical cyclones, however, the role that salinity in SWTIO plays in the modulation of tropical cycles has still yet to be explored. This study further explores how the dynamic properties of the SCTR influence the modulation of cyclones. Primarily Argo observations of salinity and temperature along with Soil Moisture Ocean Salinity (SMOS) and Aquarius salinity, and Hybrid Coordinate Ocean Model (HYCOM) simulations are used to examine this influence of the BL and salinity on cyclone formation and intensity in this region. This study is progressed with a particular focus on the austral summer of 2012/2013 when seven tropical cyclones developed in the region.

  15. Developing an enhanced tropical cyclone data portal for the Southern Hemisphere and the Western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Kuleshov, Yuriy; de Wit, Roald; Atalifo, Terry; Prakash, Bipendra; Waqaicelua, Alipate; Kunitsugu, Masashi; Caroff, Philippe; Chane-Ming, Fabrice

    2013-04-01

    Tropical cyclones are the most extreme weather phenomena which severely impact coastal communities and island nations. There is an ongoing research (i) on accurate analysis of observed trends in tropical cyclone occurrences, and (ii) how tropical cyclone frequency and intensity may change in the future as a result of climate change. Reliable historical records of cyclone activity are vital for this research. The Pacific Australia Climate Change Science and Adaptation Planning (PACCSAP) program is dedicated to help Pacific Island countries and Timor Leste gain a better understanding of how climate change will impact their regions. One of the key PACCSAP projects is focused on developing a tropical cyclone archive, climatology and seasonal prediction for the regions. As part of the project, historical tropical cyclone best track data have been examined and prepared to be subsequently displayed through the enhanced tropical cyclone data portal for the Southern Hemisphere and the Western Pacific Ocean. Data from the Regional Specialised Meteorological Centre (RSMC) Nadi, Fiji and Tropical Cyclone Warning Centres (TCWCs) in Brisbane, Darwin and Wellington for 1969-1970 to 2010-2011 tropical cyclone seasons have been carefully examined. Errors and inconsistencies which have been found during the quality control procedure have been corrected. To produce a consolidated data set for the South Pacific Ocean, best track data from these four centres have been used. Specifically, for 1969-1970 to 1994-1995 tropical cyclone seasons, data from TCWCs in Brisbane, Darwin and Wellington have been used. In 1995, RSMC Nadi, Fiji has been established with responsibilities for issuing tropical cyclone warnings and preparing best track data for the area south of the equator to 25°S, 160°E to 120°W. Consequently, data from RSMC Nadi have been used as a primary source for this area, starting from the 1995-1996 tropical cyclone season. These data have been combined with the data from TCWC Wellington for the area 25°S to 40°S, 160°E to 120°W and with the data from TCWCs in Brisbane and Darwin for the area south of the equator to 37°S, 135°E to 160°E. In addition, tropical cyclone best track data for the North-West Pacific for 1977-2011 seasons prepared at RSMC Tokyo and for the South Indian Ocean for 1969-2011 prepared at RSMC la Réunion have been added to the dataset. As a result, new design of the Southern Hemisphere/Pacific Tropical Cyclone Data Portal (http://www.bom.gov.au/cyclone/history/tracks/) incorporates best track data for the Western Pacific both south and north of the equator and for the South Indian Ocean. The portal has been developed using the OpenLayers web mapping library. Main features of the portal include dynamic map navigation, presenting detailed cyclone information for a selected region in the Southern Hemisphere and North-West Pacific and displaying changes in tropical cyclone intensity over the lifetime of a cyclone. One of the unique features of the portal is its enhanced functionality for spatial and temporal selection for cyclones in selected areas (e.g. economic exclusion zones of the countries). Acknowledgement The research discussed in this paper was conducted through the PACCSAP supported by the AusAID and the Department of Climate Change and Energy Efficiency and delivered by the Bureau of Meteorology and CSIRO. We acknowledge C. Shamsu, D. Duong, P. Lopatecki, W. Banerjee, P. He, P. Wickramasinghe and A. Bauers from the School of Computer Sciences and IT at the Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia for their contribution to the development of the portal's functionality on spatial selection.

  16. Characterization of flash floods induced by tropical cyclones in Mexico

    NASA Astrophysics Data System (ADS)

    Real-Rangel, R. A.; Pedrozo-Acuña, A.

    2015-12-01

    This study investigates the role of tropical cyclones (hurricanes, tropical storms and depressions) in the generation of flash floods in Mexico. For this, a severity assessment during several cyclonic events for selected catchments was estimated through the evaluation of a flash flood index recently proposed by Kim and Kim (2014). This classification is revised, considering the forcing and areal extent of torrential rainfall generated by the incidence of tropical cyclones on the studied catchments, enabling the further study of the flood regime in catchments located in tropical regions. The analysis incorporates characteristics of the flood hydrographs such as the hydrograph shape (rising curve gradient, magnitude of the peak discharge and flood response time) in order to identify flash-flood prone areas. Results show the Qp-A scaling relationship in catchments that were impacted by tropical cyclones, enabling their comparison against floods generated by other meteorological events (e.g. convective and orographic storms). Results will inform on how peak flows relationships are modified by cyclonic events and highlighting the contribution of cyclonic precipitation to flash-flooding susceptibility.

  17. Monitoring tropical cyclone intensity using wind fields derived from short-interval satellite images

    NASA Technical Reports Server (NTRS)

    Rodgers, E. B.; Gentry, R. C.

    1981-01-01

    Rapid scan visible images from the Visible Infrared Spin Scan Radiometer sensor on board SMS-2 and GOES-1 were used to derive high resolution upper and lower tropospheric environmental wind fields around three western Atlantic tropical cyclones (1975-78). These wind fields were used to derive upper and lower tropospheric areal mean relative vorticity and their differences, the net relative angular momentum balance and upper tropospheric mass outflow. These kinematic parameters were shown by studies using composite rawinsonde data to be strongly related to tropical cyclone formation and intensity changes. Also, the role of forced synoptic scale subsidence in tropical cyclone formation was examined. The studies showed that satellite-derived lower and upper tropospheric wind fields can be used to monitor and possibly predict tropical cyclone formation and intensity changes. These kinematic analyses showed that future changes in tropical cyclone intensity are mainly related to the "spin-up" of the storms by the net horizontal transport of relative angular momentum caused by convergence of cyclonic vorticity in the lower troposphere and to a lesser extent the divergence of anticyclone vorticity in the upper troposphere.

  18. Human Influence on Tropical Cyclone Intensity

    NASA Technical Reports Server (NTRS)

    Sobel, Adam H.; Camargo, Suzana J.; Hall, Timothy M.; Lee, Chia-Ying; Tippett, Michael K.; Wing, Allison A.

    2016-01-01

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity.We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities.

  19. Contrasting effects of tropical cyclones on the annual survival of a pelagic seabird in the Indian Ocean.

    PubMed

    Nicoll, Malcolm A C; Nevoux, Marie; Jones, Carl G; Ratcliffe, Norman; Ruhomaun, Kevin; Tatayah, Vikash; Norris, Ken

    2017-02-01

    Tropical cyclones are renowned for their destructive nature and are an important feature of marine and coastal tropical ecosystems. Over the last 40 years, their intensity, frequency and tracks have changed, partly in response to ocean warming, and future predictions indicate that these trends are likely to continue with potential consequences for human populations and coastal ecosystems. However, our understanding of how tropical cyclones currently affect marine biodiversity, and pelagic species in particular, is limited. For seabirds, the impacts of cyclones are known to be detrimental at breeding colonies, but impacts on the annual survival of pelagic adults and juveniles remain largely unexplored and no study has simultaneously explored the direct impacts of cyclones on different life-history stages across the annual life cycle. We used a 20-year data set on tropical cyclones in the Indian Ocean, tracking data from 122 Round Island petrels and long-term capture-mark-recapture data to explore the impacts of tropical cyclones on the survival of adult and juvenile (first year) petrels during both the breeding and migration periods. The tracking data showed that juvenile and adult Round Island petrels utilize the three cyclone regions of the Indian Ocean and were potentially exposed to cyclones for a substantial part of their annual cycle. However, only juvenile petrel survival was affected by cyclone activity; negatively by a strong cyclone in the vicinity of the breeding colony and positively by increasing cyclone activity in the Northern Indian Ocean where they spend the majority of their first year at sea. These contrasting effects raise the intriguing prospect that the projected changes in cyclones under current climate change scenarios may have positive as well as the more commonly perceived negative impacts on marine biodiversity. © 2016 John Wiley & Sons Ltd.

  20. The contribution of tropical cyclones to rainfall in Mexico

    NASA Astrophysics Data System (ADS)

    Agustín Breña-Naranjo, J.; Pedrozo-Acuña, Adrián; Pozos-Estrada, Oscar; Jiménez-López, Salma A.; López-López, Marco R.

    Investigating the contribution of tropical cyclones to the terrestrial water cycle can help quantify the benefits and hazards caused by the rainfall generated from this type of hydro-meteorological event. Rainfall induced by tropical cyclones can enhance both flood risk and groundwater recharge, and it is therefore important to characterise its minimum, mean and maximum contributions to a region or country's water balance. This work evaluates the rainfall contribution of tropical depressions, storms and hurricanes across Mexico from 1998 to 2013 using the satellite-derived precipitation dataset TMPA 3B42. Additionally, the sensitivity of rainfall to other datasets was assessed: the national rain gauge observation network, real-time satellite rainfall and a merged product that combines rain gauges with non-calibrated space-borne rainfall measurements. The lower Baja California peninsula had the highest contribution from cyclonic rainfall in relative terms (∼40% of its total annual rainfall), whereas the contributions in the rest of the country showed a low-to-medium dependence on tropical cyclones, with mean values ranging from 0% to 20%. In quantitative terms, southern regions of Mexico can receive more than 2400 mm of cyclonic rainfall during years with significant TC activity. Moreover, (a) the number of tropical cyclones impacting Mexico has been significantly increasing since 1998, but cyclonic contributions in relative and quantitative terms have not been increasing, and (b) wind speed and rainfall intensity during cyclones are not highly correlated. Future work should evaluate the impacts of such contributions on surface and groundwater hydrological processes and connect the knowledge gaps between the magnitude of tropical cyclones, flood hazards, and economic losses.

  1. Analysis of Storm Surge in Hong Kong

    NASA Astrophysics Data System (ADS)

    Kao, W. H.

    2017-12-01

    A storm surge is a type of coastal flood that is caused by low-pressure systems such as tropical cyclones. Storm surges caused by tropical cyclones can be very powerful and damaging, as they can flood coastal areas, and even destroy infrastructure in serious cases. Some serious cases of storm surges leading to more than thousands of deaths include Hurricane Katrina (2005) in New Orleans and Typhoon Haiyan (2013) in Philippines. Hong Kong is a coastal city that is prone to tropical cyclones, having an average of 5-6 tropical cyclones entering 500km range of Hong Kong per year. Storm surges have seriously damaged Hong Kong in the past, causing more than 100 deaths by Typhoon Wanda (1962), and leading to serious damage to Tai O and Cheung Chau by Typhoon Hagupit (2008). To prevent economic damage and casualties from storm surges, accurately predicting the height of storm surges and giving timely warnings to citizens is very important. In this project, I will be analyzing how different factors affect the height of storm surge, mainly using data from Hong Kong. These factors include the windspeed in Hong Kong, the atmospheric pressure in Hong Kong, the moon phase, the wind direction, the intensity of the tropical cyclone, distance between the tropical cyclone and Hong Kong, the direction of the tropical cyclone relative to Hong Kong, the speed of movement of the tropical cyclone and more. My findings will also be compared with cases from other places, to see if my findings also apply for other places.

  2. Australian tropical cyclone activity lower than at any time over the past 550-1,500 years.

    PubMed

    Haig, Jordahna; Nott, Jonathan; Reichart, Gert-Jan

    2014-01-30

    The assessment of changes in tropical cyclone activity within the context of anthropogenically influenced climate change has been limited by the short temporal resolution of the instrumental tropical cyclone record (less than 50 years). Furthermore, controversy exists regarding the robustness of the observational record, especially before 1990. Here we show, on the basis of a new tropical cyclone activity index (CAI), that the present low levels of storm activity on the mid west and northeast coasts of Australia are unprecedented over the past 550 to 1,500 years. The CAI allows for a direct comparison between the modern instrumental record and long-term palaeotempest (prehistoric tropical cyclone) records derived from the (18)O/(16)O ratio of seasonally accreting carbonate layers of actively growing stalagmites. Our results reveal a repeated multicentennial cycle of tropical cyclone activity, the most recent of which commenced around AD 1700. The present cycle includes a sharp decrease in activity after 1960 in Western Australia. This is in contrast to the increasing frequency and destructiveness of Northern Hemisphere tropical cyclones since 1970 in the Atlantic Ocean and the western North Pacific Ocean. Other studies project a decrease in the frequency of tropical cyclones towards the end of the twenty-first century in the southwest Pacific, southern Indian and Australian regions. Our results, although based on a limited record, suggest that this may be occurring much earlier than expected.

  3. An Estimate of the North Atlantic Basin Tropical Cyclone Activity for the 2011 Hurricane Season

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2011-01-01

    Estimates are presented for the expected level of tropical cyclone activity for the 2011 North Atlantic Basin hurricane season. It is anticipated that the frequency of tropical cyclones for the North Atlantic Basin during the 2011 hurricane season will be near to above the post-1995 means. Based on the Poisson distribution of tropical cyclone frequencies for the current more active interval 1995-2010, one computes P(r) = 63.7% for the expected frequency of the number of tropical cyclones during the 2011 hurricane season to be 14 plus or minus 3; P(r) = 62.4% for the expected frequency of the number of hurricanes to be 8 plus or minus 2; P(r) = 79.3% for the expected frequency of the number of major hurricanes to be 3 plus or minus 2; and P(r) = 72.5% for the expected frequency of the number of strikes by a hurricane along the coastline of the United States to be 1 plus or minus 1. Because El Nino is not expected to recur during the 2011 hurricane season, clearly, the possibility exists that these seasonal frequencies could easily be exceeded. Also examined are the effects of the El Nino-Southern Oscillation phase and climatic change (global warming) on tropical cyclone seasonal frequencies, the variation of the seasonal centroid (latitude and longitude) location of tropical cyclone onsets, and the variation of the seasonal peak wind speed and lowest pressure for tropical cyclones.

  4. Climate change impacts on tropical cyclones and extreme sea levels in the South Pacific — A regional assessment

    NASA Astrophysics Data System (ADS)

    Walsh, Kevin J. E.; McInnes, Kathleen L.; McBride, John L.

    2012-01-01

    This paper reviews the current understanding of the effect of climate change on extreme sea levels in the South Pacific region. This region contains many locations that are vulnerable to extreme sea levels in the current climate, and projections indicate that this vulnerability will increase in the future. The recent publication of authoritative statements on the relationship between global warming and global sea level rise, tropical cyclones and the El Niño-Southern Oscillation phenomenon has motivated this review. Confident predictions of global mean sea level rise are modified by regional differences in the steric (density-related) component of sea level rise and changing gravitational interactions between the ocean and the ice sheets which affect the regional distribution of the eustatic (mass-related) contribution to sea level rise. The most extreme sea levels in this region are generated by tropical cyclones. The intensity of the strongest tropical cyclones is likely to increase, but many climate models project a substantial decrease in tropical cyclone numbers in this region, which may lead to an overall decrease in the total number of intense tropical cyclones. This projection, however, needs to be better quantified using improved high-resolution climate model simulations of tropical cyclones. Future changes in ENSO may lead to large regional variations in tropical cyclone incidence and sea level rise, but these impacts are also not well constrained. While storm surges from tropical cyclones give the largest sea level extremes in the parts of this region where they occur, other more frequent high sea level events can arise from swell generated by distant storms. Changes in wave climate are projected for the tropical Pacific due to anthropogenically-forced changes in atmospheric circulation. Future changes in sea level extremes will be caused by a combination of changes in mean sea level, regional sea level trends, tropical cyclone incidence and wave climate. Recommendations are given for research to increase understanding of the response of these factors to climate change. Implications of the results for adaptation research are also discussed.

  5. The study of Merydunal and Zonal Index and its relationships with Cyclone Gonu

    NASA Astrophysics Data System (ADS)

    Ezzatian, Victoria

    2010-05-01

    Distinguish the integrated natural disaster management is basic, also there happens rarely during 100 years. Cyclone Gonu, an unusually strong tropical cyclone, developed in the eastern part of the Arabian Sea on June 1st. The cyclone made landfall in Oman on the 6th with maximum sustained winds near 148 km/hr. A few days prior to landfall, Gonu had intensified to a powerful super cyclonic storm with maximum sustained winds near 260 km/hr on the 5th, becoming the first documented super cyclone in the Arabian Sea and tied for the strongest cyclone in the North Indian Ocean. After making landfall in Oman, Gonu moved through the Gulf of Oman making a second landfall in Iran. Tropical Cyclone Gonu affected more than 20,000 people and was responsible for 49 fatalities and 27 missing people in Oman. Gonu brought heavy rainfall which caused floods and landslides. Meanwhile in Iran 5 fatalities were reported and 9 people remain missing. Tropical cyclones as strong as Gonu are rare in the Arabian Sea. Severe thunderstorms, associated with an outer band of the tropical cyclone Yemyin , produced heavy rains and winds during June 23-25. The storms produced heavy rains which caused floodings and destroyed thousands of homes .Tropical Cyclone Yemyin developed as a depression in the Bay of Bengal on the 21st and made landfall in India's southern state on the 22nd. Yemyin brought heavy rain in the southern parts of India, leaving over 254 mm of rain. After crossing over India, Yemyin moved into the Arabian Sea and began moving towards the northwest. On June 26, the cyclone intensified and maximum sustained winds reached 93 km/hr. The cyclone was responsible for at least 21 fatalities in the Baluchistan province. Meanwhile in Afghanistan, Yemyin produced heavy rainfall which prompted floods that were responsible for 56 deaths and left thousands of people homeless . Because of these happenings we decided surveying the synoptic patterns in this month. Key words: Tropical cyclones, Tropical Cyclone Gonu, merridional index, zonal index .

  6. A Classification of Mediterranean Cyclones Based on Global Analyses

    NASA Technical Reports Server (NTRS)

    Reale, Oreste; Atlas, Robert

    2003-01-01

    The Mediterranean Sea region is dominated by baroclinic and orographic cyclogenesis. However, previous work has demonstrated the existence of rare but intense subsynoptic-scale cyclones displaying remarkable similarities to tropical cyclones and polar lows, including, but not limited to, an eye-like feature in the satellite imagery. The terms polar low and tropical cyclone have been often used interchangeably when referring to small-scale, convective Mediterranean vortices and no definitive statement has been made so far on their nature, be it sub-tropical or polar. Moreover, most of the classifications of Mediterranean cyclones have neglected the small-scale convective vortices, focusing only on the larger-scale and far more common baroclinic cyclones. A classification of all Mediterranean cyclones based on operational global analyses is proposed The classification is based on normalized horizontal shear, vertical shear, scale, low versus mid-level vorticity, low-level temperature gradients, and sea surface temperatures. In the classification system there is a continuum of possible events, according to the increasing role of barotropic instability and decreasing role of baroclinic instability. One of the main results is that the Mediterranean tropical cyclone-like vortices and the Mediterranean polar lows appear to be different types of events, in spite of the apparent similarity of their satellite imagery. A consistent terminology is adopted, stating that tropical cyclone- like vortices are the less baroclinic of all, followed by polar lows, cold small-scale cyclones and finally baroclinic lee cyclones. This classification is based on all the cyclones which occurred in a four-year period (between 1996 and 1999). Four cyclones, selected among all the ones which developed during this time-frame, are analyzed. Particularly, the classification allows to discriminate between two cyclones (occurred in October 1996 and in March 1999) which both display a very well-defined eye-like feature in the satellite imagery. According to our classification system, the two events are dynamically different and can be categorized as being respectively a tropical cyclone-like vortex and well-developed polar low.

  7. Analysis of a Non-Developing Tropical Circulation System During the Tropical Cyclone Structure (TCS08) Field Experiment

    DTIC Science & Technology

    2009-12-01

    Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaigns (T- PARC ). Aircraft dropwindsondes, special ELDORA radar observations...systems within TCS025 at 2030 UTC 24 August 2008. D. ELDORA BACKGROUND For the combined TCS08 and T- PARC field experiment, the ELDORA radar was...SUBJECT TERMS Electra Doppler Radar (ELDORA), Tropical Cyclone Structure (TCS08), TCS08, Tropical Cyclone Formation, Tropical Circulation System

  8. Promoting the confluence of tropical cyclone research.

    PubMed

    Marler, Thomas E

    2015-01-01

    Contributions of biologists to tropical cyclone research may improve by integrating concepts from other disciplines. Employing accumulated cyclone energy into protocols may foster greater integration of ecology and meteorology research. Considering experienced ecosystems as antifragile instead of just resilient may improve cross-referencing among ecological and social scientists. Quantifying ecosystem capital as distinct from ecosystem services may improve integration of tropical cyclone ecology research into the expansive global climate change research community.

  9. Western North Pacific Tropical Cyclone Formation and Structure Change in TCS-08

    DTIC Science & Technology

    2012-09-30

    cyclones often transition to a fast-moving and rapidly- developing extratropical cyclone that may contain gale-, storm -, or hurricane-force winds...there is a need to improve understanding and prediction of the extratropical transition phase of a decaying tropical cyclone. The structural evolution...of the transition from a tropical to an extratropical circulation involves rapid changes to the wind, cloud, and precipitation patterns that

  10. NOAA releases final report of Sandy service assessment

    Science.gov Websites

    released a report on the National Weather Service's performance during hurricane/post tropical cyclone Sandy. The report, Hurricane/Post Tropical Cyclone Sandy Service Assessment, reaffirms that the National warnings for dangerous storms like Sandy, even when they are expected to become post-tropical cyclones by

  11. FORMAT OF TROPICAL CYCLONE RECORDS ("TCVITALS")

    Science.gov Websites

    FORMAT OF TROPICAL CYCLONE VITAL STATISTICS RECORDS ("TCVITALS") 8-16-2007 CHARACTER(S - These appear only in records that have been processed by the NCEP tropical cyclone quality control program SYNDAT_QCTROPCY. BOLDFACE - These appear only in NHC records. 1 - Prior to 1999, report date was

  12. Analysis of North Atlantic Tropical Cyclone Intensify Change Using Data Mining

    ERIC Educational Resources Information Center

    Tang, Jiang

    2010-01-01

    Tropical cyclones (TC), especially when their intensity reaches hurricane scale, can become a costly natural hazard. Accurate prediction of tropical cyclone intensity is very difficult because of inadequate observations on TC structures, poor understanding of physical processes, coarse model resolution and inaccurate initial conditions, etc. This…

  13. The persistent signature of tropical cyclones in ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Gualtieri, Lucia; Camargo, Suzana J.; Pascale, Salvatore; Pons, Flavio M. E.; Ekström, Göran

    2018-02-01

    The spectrum of ambient seismic noise shows strong signals associated with tropical cyclones, yet a detailed understanding of these signals and the relationship between them and the storms is currently lacking. Through the analysis of more than a decade of seismic data recorded at several stations located in and adjacent to the northwest Pacific Ocean, here we show that there is a persistent and frequency-dependent signature of tropical cyclones in ambient seismic noise that depends on characteristics of the storm and on the detailed location of the station relative to the storm. An adaptive statistical model shows that the spectral amplitude of ambient seismic noise, and notably of the short-period secondary microseisms, has a strong relationship with tropical cyclone intensity and can be employed to extract information on the tropical cyclones.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, Gregory R.; Balaguru, Karthik; Leung, Lai-Yung R.

    The impact of tropical cyclones on surface chlorophyll concentration is assessed in the western subtropical North Atlantic Ocean during 1998–2011. Previous studies in this area focused on individual cyclones and gave mixed results regarding the importance of tropical cyclone-induced mixing for changes in surface chlorophyll. Using a more integrated and comprehensive approach that includes quantification of cyclone-induced changes in mixed layer depth, here it is shown that accumulated cyclone energy explains 22% of the interannual variability in seasonally-averaged (June–November) chlorophyll concentration in the western subtropical North Atlantic, after removing the influence of the North Atlantic Oscillation (NAO). The variance explainedmore » by tropical cyclones is thus about 70% of that explained by the NAO, which has well-known impacts in this region. It is therefore likely that tropical cyclones contribute significantly to interannual variations of primary productivity in the western subtropical North Atlantic during the hurricane season.« less

  15. Satellite Observations of Stratospheric Gravity Waves Associated With the Intensification of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Hoffmann, Lars; Wu, Xue; Alexander, M. Joan

    2018-02-01

    Forecasting the intensity of tropical cyclones is a challenging problem. Rapid intensification is often preceded by the formation of "hot towers" near the eyewall. Driven by strong release of latent heat, hot towers are high-reaching tropical cumulonimbus clouds that penetrate the tropopause. Hot towers are a potentially important source of stratospheric gravity waves. Using 13.5 years (2002-2016) of Atmospheric Infrared Sounder observations of stratospheric gravity waves and tropical cyclone data from the International Best Track Archive for Climate Stewardship, we found empirical evidence that stratospheric gravity wave activity is associated with the intensification of tropical cyclones. The Atmospheric Infrared Sounder and International Best Track Archive for Climate Stewardship data showed that strong gravity wave events occurred about twice as often for tropical cyclone intensification compared to storm weakening. Observations of stratospheric gravity waves, which are not affected by obscuring tropospheric clouds, may become an important future indicator of storm intensification.

  16. Statistical Aspects of Tropical Cyclone Activity in the North Atlantic Basin, 1945-2010

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2012-01-01

    Examined are statistical aspects of the 715 tropical cyclones that formed in the North Atlantic basin during the interval 1945-2010. These 715 tropical cyclones include 306 storms that attained only tropical storm strength, 409 hurricanes, 179 major or intense hurricanes, and 108 storms that struck the US coastline as hurricanes. Comparisons made using 10-year moving average (10-yma) values between tropical cyclone parametric values and surface air and ENSO-related parametric values indicate strong correlations to exist, in particular, against the Armagh Observatory (Northern Ireland) surface air temperature, the Atlantic Multi-decadal Oscillation (AMO) index, the Atlantic Meridional Mode (AMM) index, and the North Atlantic Oscillation (NAO) index, in addition to the Oceanic Ni o index (ONI) and Quasi-Biennial Oscillation (QBO) indices. Also examined are the decadal variations of the tropical cyclone parametric values and a look ahead towards the 2012 hurricane season and beyond.

  17. Tropical cyclones over the North Indian Ocean: experiments with the high-resolution global icosahedral grid point model GME

    NASA Astrophysics Data System (ADS)

    Kumkar, Yogesh V.; Sen, P. N.; Chaudhari, Hemankumar S.; Oh, Jai-Ho

    2018-02-01

    In this paper, an attempt has been made to conduct a numerical experiment with the high-resolution global model GME to predict the tropical storms in the North Indian Ocean during the year 2007. Numerical integrations using the icosahedral hexagonal grid point global model GME were performed to study the evolution of tropical cyclones, viz., Akash, Gonu, Yemyin and Sidr over North Indian Ocean during 2007. It has been seen that the GME model forecast underestimates cyclone's intensity, but the model can capture the evolution of cyclone's intensity especially its weakening during landfall, which is primarily due to the cutoff of the water vapor supply in the boundary layer as cyclones approach the coastal region. A series of numerical simulation of tropical cyclones have been performed with GME to examine model capability in prediction of intensity and track of the cyclones. The model performance is evaluated by calculating the root mean square errors as cyclone track errors.

  18. Effects of cyclone-generated disturbance on a tropical reef foraminifera assemblage.

    PubMed

    Strotz, Luke C; Mamo, Briony L; Dominey-Howes, Dale

    2016-04-29

    The sedimentary record, and associated micropalaeontological proxies, is one tool that has been employed to quantify a region's tropical cyclone history. Doing so has largely relied on the identification of allochthonous deposits (sediments and microfossils), sourced from deeper water and entrained by tropical cyclone waves and currents, in a shallow-water or terrestrial setting. In this study, we examine microfossil assemblages before and after a known tropical cyclone event (Cyclone Hamish) with the aim to better resolve the characteristics of this known signal. Our results identify no allochthonous material associated with Cyclone Hamish. Instead, using a swathe of statistical tools typical of ecological studies but rarely employed in the geosciences, we identify new, previously unidentified, signal types. These signals include a homogenising effect, with the level of differentiation between sample sites greatly reduced immediately following Cyclone Hamish, and discernible shifts in assemblage diversity. In the subsequent years following Hamish, the surface assemblage returns to its pre-cyclone form, but results imply that it is unlikely the community ever reaches steady state.

  19. Promoting the confluence of tropical cyclone research

    PubMed Central

    Marler, Thomas E

    2015-01-01

    Contributions of biologists to tropical cyclone research may improve by integrating concepts from other disciplines. Employing accumulated cyclone energy into protocols may foster greater integration of ecology and meteorology research. Considering experienced ecosystems as antifragile instead of just resilient may improve cross-referencing among ecological and social scientists. Quantifying ecosystem capital as distinct from ecosystem services may improve integration of tropical cyclone ecology research into the expansive global climate change research community. PMID:26480001

  20. Do Tropical Cyclones Shape Shorebird Habitat Patterns? Biogeoclimatology of Snowy Plovers in Florida

    PubMed Central

    Convertino, Matteo; Elsner, James B.; Muñoz-Carpena, Rafael; Kiker, Gregory A.; Martinez, Christopher J.; Fischer, Richard A.; Linkov, Igor

    2011-01-01

    Background The Gulf coastal ecosystems in Florida are foci of the highest species richness of imperiled shoreline dependent birds in the USA. However environmental processes that affect their macroecological patterns, like occupancy and abundance, are not well unraveled. In Florida the Snowy Plover (Charadrius alexandrinus nivosus) is resident along northern and western white sandy estuarine/ocean beaches and is considered a state-threatened species. Methodology/Principal Findings Here we show that favorable nesting areas along the Florida Gulf coastline are located in regions impacted relatively more frequently by tropical cyclones. The odds of Snowy Plover nesting in these areas during the spring following a tropical cyclone impact are seven times higher compared to the odds during the spring following a season without a cyclone. The only intensity of a tropical cyclone does not appear to be a significant factor affecting breeding populations. Conclusions/Significance Nevertheless a future climate scenario featuring fewer, but more extreme cyclones could result in a decrease in the breeding Snowy Plover population and its breeding range. This is because the spatio-temporal frequency of cyclone events was found to significantly affect nest abundance. Due to the similar geographic range and habitat suitability, and no decrease in nest abundance of other shorebirds in Florida after the cyclone season, our results suggest a common bioclimatic feedback between shorebird abundance and tropical cyclones in breeding areas which are affected by cyclones. PMID:21264268

  1. Arabian Sea tropical cyclones intensified by emissions of black carbon and other aerosols.

    PubMed

    Evan, Amato T; Kossin, James P; Chung, Chul Eddy; Ramanathan, V

    2011-11-02

    Throughout the year, average sea surface temperatures in the Arabian Sea are warm enough to support the development of tropical cyclones, but the atmospheric monsoon circulation and associated strong vertical wind shear limits cyclone development and intensification, only permitting a pre-monsoon and post-monsoon period for cyclogenesis. Thus a recent increase in the intensity of tropical cyclones over the northern Indian Ocean is thought to be related to the weakening of the climatological vertical wind shear. At the same time, anthropogenic emissions of aerosols have increased sixfold since the 1930s, leading to a weakening of the southwesterly lower-level and easterly upper-level winds that define the monsoonal circulation over the Arabian Sea. In principle, this aerosol-driven circulation modification could affect tropical cyclone intensity over the Arabian Sea, but so far no such linkage has been shown. Here we report an increase in the intensity of pre-monsoon Arabian Sea tropical cyclones during the period 1979-2010, and show that this change in storm strength is a consequence of a simultaneous upward trend in anthropogenic black carbon and sulphate emissions. We use a combination of observational, reanalysis and model data to demonstrate that the anomalous circulation, which is radiatively forced by these anthropogenic aerosols, reduces the basin-wide vertical wind shear, creating an environment more favourable for tropical cyclone intensification. Because most Arabian Sea tropical cyclones make landfall, our results suggest an additional impact on human health from regional air pollution.

  2. Products and Services Notice - Naval Oceanography Portal

    Science.gov Websites

    Tropical Cyclone Formation Alert, Northwest Pacific Ocean Issued as required when tropical cyclone PGTW Tropical Cyclone Formation Alert, North Indian Ocean Issued as required when TC formation is , Southwest Pacific Ocean Issued as required when TC formation is expected in 12-24 hours WTPS31-35 PGTW

  3. Toward Clarity on Understanding Tropical Cyclone Intensification

    DTIC Science & Technology

    2015-08-01

    forefront of tropical cyclone research for a number of years , espe- cially in the context of the rapid intensification or decay of storms. Rapid...67, 1817 – 1830, doi:10.1175/2010JAS3318.1. Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos

  4. The Structural Changes of Tropical Cyclones Upon Interaction with Vertical Wind Shear

    NASA Technical Reports Server (NTRS)

    Ritchie, Elizabeth A.

    2003-01-01

    The Fourth Convection and Moisture Experiment (CAMEX-4) provided a unique opportunity to observe the distributions and document the roles of important atmospheric factors that impact the development of the core asymmetries and core structural changes of tropical cyclones embedded in vertical wind shear. The state-of-the-art instruments flown on the NASA DC-8 and ER-2, in addition to those on the NOAA aircraft, provided a unique set of observations that documented the core structure throughout the depth of the tropical cyclone. These data have been used to conduct a combined observational and modeling study using a state-of-the-art, high- resolution mesoscale model to examine the role of the environmental vertical wind shear in producing tropical cyclone core asymmetries, and the effects on the structure and intensity of tropical cyclones.The scientific objectives of this study were to obtain in situ measurements that would allow documentation of the physical mechanisms that influence the development of the asymmetric convection and its effect on the core structure of the tropical cyclone.

  5. Tropical cyclone induced asymmetry of sea level surge and fall and its presentation in a storm surge model with parametric wind fields

    NASA Astrophysics Data System (ADS)

    Peng, Machuan; Xie, Lian; Pietrafesa, Leonard J.

    The asymmetry of tropical cyclone induced maximum coastal sea level rise (positive surge) and fall (negative surge) is studied using a three-dimensional storm surge model. It is found that the negative surge induced by offshore winds is more sensitive to wind speed and direction changes than the positive surge by onshore winds. As a result, negative surge is inherently more difficult to forecast than positive surge since there is uncertainty in tropical storm wind forecasts. The asymmetry of negative and positive surge under parametric wind forcing is more apparent in shallow water regions. For tropical cyclones with fixed central pressure, the surge asymmetry increases with decreasing storm translation speed. For those with the same translation speed, a weaker tropical cyclone is expected to gain a higher AI (asymmetry index) value though its induced maximum surge and fall are smaller. With fixed RMW (radius of maximum wind), the relationship between central pressure and AI is heterogeneous and depends on the value of RMW. Tropical cyclone's wind inflow angle can also affect surge asymmetry. A set of idealized cases as well as two historic tropical cyclones are used to illustrate the surge asymmetry.

  6. Human influence on tropical cyclone intensity.

    PubMed

    Sobel, Adam H; Camargo, Suzana J; Hall, Timothy M; Lee, Chia-Ying; Tippett, Michael K; Wing, Allison A

    2016-07-15

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity. We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities. Copyright © 2016, American Association for the Advancement of Science.

  7. Statistical Detection of Anthropogenic Temporal Changes in the Distribution of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Joannes-boyau, R.; Bodin, T.; Scheffers, A.; Sambridge, M.

    2012-12-01

    Recent studies highlighting the potential impact of climate change on tropical cyclones have added fuel to the already controversial debates. The link between climate change and tropical cyclone intensity and frequency has been disputed, as both appear to remain in the natural variability. The difficulty lies in our ability to distinguish natural changes from anthropogenic-induced anomalies. The increased anthropogenic atmospheric carbon dioxide leads to environmental changes such as warmer Sea Surface Temperatures (SST) and thus could impact tropical cyclones intensities and frequencies. However, recent studies show that, against an increasing SST, no global trend in respect to cyclone frequency has yet emerged. Scientists have warned to consider the heterogeneity of the existing dataset; especially since the historical tropical cyclone record is frequently accused to be incomplete. Given the abundance of cyclone record data and its likely sensitivity to a number of environmental factors, the real limitation comes from our ability to understand the record as a whole. Thus, strong arguments against the impartiality of proposed models are often debated. We will present an impartial and independent statistical tool applicable to a wide variety of physical and biological phenomena such as processes described by power laws, to observe temporal variations in the tropical cyclone track record from 1842 to 2010. This methodology allows us to observe the impact of anthropogenic-induced modifications on climatic events, without being clustered in subjective parameterised models.

  8. Impacts of Particulate Matter on Gulf of Mexico Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Cao, W.; Rohli, R. V.

    2017-12-01

    The purpose of this project is to analyze the relationship between tropical cyclones of the Gulf of Mexico-Atlantic basin and fine particulate matter (PM2.5). The daily mean PM2.5 concentration values were collected from United States Environmental Protection Agency (EPA). Tropical cyclone data were collected from Tropical Prediction Center Best Track Reanalysis in Unisys Weather®. The GRIdded Binary (GRIB-formatted) data were downloaded from the Data Support Section of the Computational and Information Systems Laboratory at the National Center for Atmospheric Research (NCAR). Through ArcGIS®, the tropical cyclone tracks were compared with the interpolated daily mean PM2.5 concentration value. Results suggest that the tracks tend to avoid areas with higher PM2.5 concentrations, and the intensity was weakened significantly after passing the PM2.5-rich area. Through simulation using the Weather Research and Forecasting (WRF) model, the pressure and vertical structure of Hurricane Lili were weakened after passing the most PM2.5-rich area in Louisiana. Also, little evidence is found for the possibility of precipitation generated by the approaching tropical cyclone to cleanse the atmosphere of PM2.5 before storm passage. These results have important implications for tropical cyclone prediction as storms approach polluted areas or other places where PM2.5 particles are abundant, not only including urban environments but also in coastal areas where proscribed burns take place during tropical cyclone season, such as during sugarcane harvesting in southern Louisiana.

  9. The impacts of tropical cyclones on the net carbon balance of eastern US forests (1851-2000)

    NASA Astrophysics Data System (ADS)

    Fisk, J. P.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.; Dolan, K. A.; Negrón-Juárez, R. I.

    2013-12-01

    In temperate forests of the eastern US, tropical cyclones are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial progress has been made to quantify forest damage and resulting gross carbon emissions from tropical cyclones. However, the net effect of storms on the carbon balance of forests depends not only on the biomass lost in single events, but also on the uptake during recovery from a mosaic of past events. This study estimates the net impacts of tropical cyclones on the carbon balance of US forests over the period 1851-2000. To track both disturbance and recovery and to isolate the effects of storms, a modeling framework is used combining gridded historical estimates of mortality and damage with a mechanistic model using an ensemble approach. The net effect of tropical cyclones on the carbon balance is shown to depend strongly on the spatial and temporal scales of analysis. On average, tropical cyclones contribute a net carbon source over latter half of the 19th century. However, throughout much of the 20th century a regional carbon sink is estimated resulting from periods of forest recovery exceeding damage. The large-scale net annual flux resulting from tropical cyclones varies by up to 50 Tg C yr-1, an amount equivalent to 17%-36% of the US forest carbon sink.

  10. An evaluation of the real-time tropical cyclone forecast skill of the Navy Operational Global Atmospheric Prediction System in the western North Pacific

    NASA Technical Reports Server (NTRS)

    Fiorino, Michael; Goerss, James S.; Jensen, Jack J.; Harrison, Edward J., Jr.

    1993-01-01

    The paper evaluates the meteorological quality and operational utility of the Navy Operational Global Atmospheric Prediction System (NOGAPS) in forecasting tropical cyclones. It is shown that the model can provide useful predictions of motion and formation on a real-time basis in the western North Pacific. The meterological characteristics of the NOGAPS tropical cyclone predictions are evaluated by examining the formation of low-level cyclone systems in the tropics and vortex structure in the NOGAPS analysis and verifying 72-h forecasts. The adjusted NOGAPS track forecasts showed equitable skill to the baseline aid and the dynamical model. NOGAPS successfully predicted unusual equatorward turns for several straight-running cyclones.

  11. How ocean color can steer Pacific tropical cyclones

    NASA Astrophysics Data System (ADS)

    Gnanadesikan, Anand; Emanuel, Kerry; Vecchi, Gabriel A.; Anderson, Whit G.; Hallberg, Robert

    2010-09-01

    Because ocean color alters the absorption of sunlight, it can produce changes in sea surface temperatures with further impacts on atmospheric circulation. These changes can project onto fields previously recognized to alter the distribution of tropical cyclones. If the North Pacific subtropical gyre contained no absorbing and scattering materials, the result would be to reduce subtropical cyclone activity in the subtropical Northwest Pacific by 2/3, while concentrating cyclone tracks along the equator. Predicting tropical cyclone activity using coupled models may thus require consideration of the details of how heat moves into the upper thermocline as well as biogeochemical cycling.

  12. Interactions Between Vestige Atlantic Tropical Cyclones and Mid-Latitude Storms Over Mediterranean Basin

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Mehta, Amita; Mugnai, Alberto; Tripoli, Gregory J.

    2007-01-01

    One of the more interesting tropical-mid-latitude interactions is one that has important effects on precipitation within the Mediterranean basin. This interaction consists of an Atlantic tropical cyclone vestige whose original disturbance travels eastward and northward across Atlantic basin, eventually intermingling with a mid-latitude cyclone entering southern Europe and/or the \\bestern Mediterranean Sea. The period for these interactions is from mid-September through November. If the tropical cyclone and its vestige is able to make the eastward Atlantic transit within the low to mid-levels, or if an upper level potential vorticity perturbation Cjet streak) emitted by a Hurricane in its latter stages within the central Atlantic is able to propagate into and along the longwave pattern affecting the western Mediterranean Sea (MED), then there is the prospect for the tropical cyclone remnant to produce a major modification of the mid-latitude storm system preparing to affect the MED region. For such an occurrence to take place, it is necessary for an amplifying baroclinic perturbation to be already situated to the rear of a longwave trough, or to be excited by the emitted jet streak to the rear of a longwave trough -- in either case, preparing to affect the western MED. The Algiers City flood of 9-10 November 2001, which killed some 700 people, was produced by a Mediterranean cyclone that had been influenced by two vestige Atlantic tropical cyclones, 1,orenzo and Noel. A published modeling study involving various of this study's authors has already described the dynamical development of the Algiers storm as it amplified from a developing baroclinic disturbance in the Rossby wave train, into a northern Africa hazardous flood system, then lingered in the western MED as a semi-intense warm core cyclone. In our new modeling experiments, we investigate the impact of what might have happened in the eventual precipitation field. had the main features of the tropical cyclones NOT interacted with thc developing baroclinic disturbance as it penetrated the western MED. To do so, we first remove the moisture and dynamical features of the two vestigial tropical cyclones from the large scale meteorological fields used to initialize the Mediterranean cyclone simulation. This is done through depletion of the moisture front associated with the two tropical cyclones, accomplished by relaxation to the suppressed east Atlantic conditions. The dynamical effects are removed through energetic destruction of the latter stages of the eastward traveling tropical cyclones, accomplished by lowering the underlying sea surface temperatures. A precipitation-distribution impact experiment is then run by initializing with the customized large-scale fields. The final precipitation-impact field is described by differencing the "impact" run from the "control" run -- the latter defined as the original simulation which intrinsically includes the effects of the two vestigial tropical cyclones.

  13. Sensitivities of Tropical Cyclones to Surface Friction and the Coriolis Parameter in a 2-D Cloud-Resolving Model

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Chen, Baode; Tao, Wei-Kuo; Lau, William K. M. (Technical Monitor)

    2002-01-01

    The sensitivities to surface friction and the Coriolis parameter in tropical cyclogenesis are studied using an axisymmetric version of the Goddard cloud ensemble model. Our experiments demonstrate that tropical cyclogenesis can still occur without surface friction. However, the resulting tropical cyclone has very unrealistic structure. Surface friction plays an important role of giving the tropical cyclones their observed smaller size and diminished intensity. Sensitivity of the cyclogenesis process to surface friction. in terms of kinetic energy growth, has different signs in different phases of the tropical cyclone. Contrary to the notion of Ekman pumping efficiency, which implies a preference for the highest Coriolis parameter in the growth rate if all other parameters are unchanged, our experiments show no such preference.

  14. Influence of the Saharan Air Layer on Atlantic tropical cyclone formation during the period 1-12 September 2003

    NASA Astrophysics Data System (ADS)

    Pan, Weiyu; Wu, Liguang; Shie, Chung-Lin

    2011-01-01

    Atmospheric Infrared Sounder (AIRS) data show that the Saharan air layer (SAL) is a dry, warm, and well-mixed layer between 950 and 500 hPa over the tropical Atlantic, extending westward from the African coast to the Caribbean Sea. The formations of both Hurricane Isabel and Tropical Depression 14 (TD14) were accompanied with outbreaks of SAL air during the period 1-12 September 2003, although TD14 failed to develop into a named tropical cyclone. The influence of the SAL on their formations is investigated by examining data from satellite observations and numerical simulations, in which AIRS data are incorporated into the MM5 model through the nudging technique. Analyses of the AIRS and simulation data suggest that the SAL may have played two roles in the formation of tropical cyclones during the period 1-12 September 2003. First, the outbreaks of SAL air on 3 and 8 September enhanced the transverse-vertical circulation with the rising motion along the southern edge of the SAL and the sinking motion inside the SAL, triggering the development of two tropical disturbances associated with Hurricane Isabel and TD14. Second, in addition to the reduced environmental humidity and enhanced static stability in the lower troposphere, the SAL dry air intruded into the inner region of these tropical disturbances as their cyclonic flows became strong. This effect may have slowed down the formation of Isabel and inhibited TD14 becoming a named tropical cyclone, while the enhanced vertical shear contributed little to tropical cyclone formation during this period. The 48-h trajectory calculations confirm that the parcels from the SAL can be transported into the inner region of an incipient tropical cyclone.

  15. Epidemiology of injuries due to tropical cyclones in Hong Kong: a retrospective observational study.

    PubMed

    Rotheray, K R; Aitken, P; Goggins, W B; Rainer, T H; Graham, C A

    2012-12-01

    Tropical cyclones are huge circulating masses of wind which form over tropical and sub-tropical waters. They affect an average of 78 million people each year. Hong Kong is a large urban centre with a population of just over 7 million which is frequently affected by tropical cyclones. We aimed to describe the numbers and types of injuries due to tropical cyclones in Hong Kong, as well as their relation to tropical cyclone characteristics. The records of all patients presenting to Hong Kong's public hospital emergency departments from 1st January 2004 to 31st December 2009 with tropical cyclone related injuries were reviewed and information regarding patient and injury characteristics was collected. Meteorological records for the relevant periods were examined and data on wind speed, rainfall and timing of landfall and warning signals was recorded and compared with the timing of tropical cyclone related injuries. A total of 460 tropical cyclone related injuries and one fatality across 15 emergency departments were identified during the study period. The mean age of those injured was 48 years and 48% were female. 25.4% of injuries were work related. The head (33.5%) and upper limb (32.5%) were the most commonly injured regions, with contusions (48.6%) and lacerations (30.2%) being the most common injury types. Falls (42.6%) were the most common mechanism of injury, followed by being hit by a falling or flying object (22.0%). In univariable analysis the relative risk of injury increased with mean hourly wind speed and hourly maximum gust. Multivariable analysis, however, showed that relative risk of injury increased with maximum gust but not average wind speed, with relative risk of injury rising sharply above maximum gusts of greater than 20 m/s. Moderate wind speed with high gust (rather than high average and high gust) appears to be the most risky situation for injuries. Relative risk of injury was not associated with rainfall. The majority of injuries (56%) occurred in the 3h before and after a tropical cyclone's closest proximity to Hong Kong, with relative risk of injury being highest mid-morning. In tropical cyclone related injuries in Hong Kong the head and upper limb are the most commonly affected sites with falls and being hit by a falling or flying object being the most common mechanisms of injury. Hourly maximum gust appears to be more important that mean hourly wind speed in determining risk of injury. These findings have implications for injury prevention measures and emergency planning in Hong Kong and other regions effected by tropical cyclones. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Buoyancy and shear characteristics of hurricane-tornado environments

    NASA Technical Reports Server (NTRS)

    Mccaul, Eugene W., Jr.

    1991-01-01

    This study presents detailed composite profiles of temperature, moisture, and wind constructed for tornado environments in tropical cyclones that affected the U.S. between 1948 and 1986. Winds are composited in components radial and tangential to the tropical cyclone center at observation time. Guided by observed patterns of tornado occurrence, composites are constructed for a variety of different stratifications of the data, including proximity to tornadoes, position relative to the cyclone center, time of day, time after cyclone landfall, cyclone translation speed, and landfall location. The composites are also compared to composite soundings from Great Plains tornado environments. A variety of sounding parameters are examined to see which are most closely related to the tornado distribution patterns. Lower-tropospheric vertical shears are found to be stronger in the tropical cyclone tornado environments than on the Great Plains. Buoyancy for the tropical cyclone tornado cases is much smaller than that seen with Great Plains tornado events and exhibits a weak negative correlation with tornado outbreak severity.

  17. Westward migration of tropical cyclone rapid-intensification over the Northwestern Pacific during short duration El Niño.

    PubMed

    Guo, Yi-Peng; Tan, Zhe-Min

    2018-04-17

    The El Niño-Southern Oscillation (ENSO) can significantly affect the rapid intensification of tropical cyclones over the western North Pacific (WNP). However, ENSO events have various durations, which can lead to different atmospheric and oceanic conditions. Here we show that during short duration El Niño events, the WNP tropical cyclone rapid-intensification mean occurrence position migrates westward by ~8.0° longitude, which is caused by reduced vertical wind shear, increased mid-tropospheric humidity, and enhanced tropical cyclone heat potential over the westernmost WNP. The changes in these factors are caused by westward advected upper ocean heat during the decaying phase of a short duration El Niño. As super El Niño events tend to have short durations and their frequency is projected to increase under global warming, our findings have important implications for future projections of WNP tropical cyclone activity.

  18. Statistical Aspects of North Atlantic Basin Tropical Cyclones During the Weather Satellite Era, 1960-2013: Part 1

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2014-01-01

    A tropical cyclone is described as a warm-core, nonfrontal, synoptic-scale system that originates over tropical or subtropical waters, having organized deep convection and closed surface wind circulation (counterclockwise in the Northern Hemisphere) about a well defined center. When its sustained wind speed equals 34-63 kt, it is called a tropical (or subtropical) storm and is given a name (i.e., alternating male and female names, beginning in 1979); when its sustained wind speed equals 64-95 kt, it is called a hurricane (at least in the Eastern Pacific and North Atlantic basin); and when its sustained wind speed equals 96 kt or higher, it is called an intense or major hurricane (i.e., categories 3-5 on the Saffir-Simpson Hurricane Wind Scale). Although tropical cyclones have been reported and described since the voyages of Columbus, a detailed record of their occurrences extends only from 1851 to the present, with the most reliable portion extending only from about 1945 to the present, owing to the use of near-continuous routine reconnaissance aircraft monitoring flights and the use of satellite imagery (beginning in 1960; see Davis). Even so, the record may still be incomplete, possibly missing at least one tropical cyclone per yearly hurricane season, especially prior to the use of continuous satellite monitoring. In fact, often an unnamed tropical cyclone is included in the year-end listing of events at the conclusion of the season, following post-season analysis (e.g., as happened in 2011 and 2013, each having one unnamed event). In this two-part Technical Publication (TP), statistical aspects of the North Atlantic basin tropical cyclones are examined for the interval 1960-2013, the weather satellite era. Part 1 examines some 25 parameters of tropical cyclones (e.g., frequencies, peak wind speed (PWS), accumulated cyclone energy (ACE), etc.), while part 2 examines the relationship of these parameters against specific climate-related factors. These studies are a continuation of nearly two decades of previous tropical cyclone-related investigations.

  19. Extra-tropical Cyclones and Windstorms in Seasonal Forecasts

    NASA Astrophysics Data System (ADS)

    Leckebusch, Gregor C.; Befort, Daniel J.; Weisheimer, Antje; Knight, Jeff; Thornton, Hazel; Roberts, Julia; Hermanson, Leon

    2015-04-01

    Severe damages and large insured losses over Europe related to natural phenomena are mostly caused by extra-tropical cyclones and their related windstorm fields. Thus, an adequate representation of these events in seasonal prediction systems and reliable forecasts up to a season in advance would be of high value for society and economy. In this study, state-of-the-art seasonal forecast prediction systems are analysed (ECMWF, UK Met Office) regarding the general climatological representation and the seasonal prediction of extra-tropical cyclones and windstorms during the core winter season (DJF) with a lead time of up to four months. Two different algorithms are used to identify cyclones and windstorm events in these datasets. Firstly, we apply a cyclone identification and tracking algorithm based on the Laplacian of MSLP and secondly, we use an objective wind field tracking algorithm to identify and track continuous areas of extreme high wind speeds (cf. Leckebusch et al., 2008), which can be related to extra-tropical winter cyclones. Thus, for the first time, we can analyse the forecast of severe wind events near to the surface caused by extra-tropical cyclones. First results suggest a successful validation of the spatial climatological distributions of wind storm and cyclone occurrence in the seasonal forecast systems in comparison with reanalysis data (ECMWF-ERA40 & ERAInterim) in general. However, large biases are found for some areas. The skill of the seasonal forecast systems in simulating the year-to-year variability of the frequency of severe windstorm events and cyclones is investigated using the ranked probability skill score. Positive skill is found over large parts of the Northern Hemisphere as well as for the most intense extra-tropical cyclones and its related wind fields.

  20. Tropical Cyclone-Driven Sediment Dynamics Over the Australian North West Shelf

    NASA Astrophysics Data System (ADS)

    Dufois, François; Lowe, Ryan J.; Branson, Paul; Fearns, Peter

    2017-12-01

    Owing to their strong forcing at the air-sea interface, tropical cyclones are a major driver of hydrodynamics and sediment dynamics of continental shelves, strongly impacting marine habitats and offshore industries. Despite the North West Shelf of Australia being one of the most frequently impacted tropical cyclone regions worldwide, there is limited knowledge of how tropical cyclones influence the sediment dynamics of this shelf region, including the significance of these episodic extreme events to the normal background conditions that occur. Using an extensive 2 year data set of the in situ sediment dynamics and 14 yearlong calibrated satellite ocean-color data set, we demonstrate that alongshore propagating cyclones are responsible for simultaneously generating both strong wave-induced sediment resuspension events and significant southwestward subtidal currents. Over the 2 year study period, two particular cyclones (Iggy and Narelle) dominated the sediment fluxes resulting in a residual southwestward sediment transport over the southern part of the shelf. By analyzing results from a long-term (37 year) wind and wave hindcast, our results suggest that at least 16 tropical cyclones had a strong potential to contribute to that southwestward sediment pathway in a similar way to Iggy and Narelle.

  1. North Atlantic Basin Tropical Cyclone Activity in Relation to Temperature and Decadal- Length Oscillation Patterns

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2009-01-01

    Yearly frequencies of North Atlantic basin tropical cyclones, their locations of origin, peak wind speeds, average peak wind speeds, lowest pressures, and average lowest pressures for the interval 1950-2008 are examined. The effects of El Nino and La Nina on the tropical cyclone parametric values are investigated. Yearly and 10-year moving average (10-yma) values of tropical cyclone parameters are compared against those of temperature and decadal-length oscillation, employing both linear and bi-variate analysis, and first differences in the 10-yma are determined. Discussion of the 2009 North Atlantic basin hurricane season, updating earlier results, is given.

  2. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century

    PubMed Central

    Emanuel, Kerry A.

    2013-01-01

    A recently developed technique for simulating large [O(104)] numbers of tropical cyclones in climate states described by global gridded data is applied to simulations of historical and future climate states simulated by six Coupled Model Intercomparison Project 5 (CMIP5) global climate models. Tropical cyclones downscaled from the climate of the period 1950–2005 are compared with those of the 21st century in simulations that stipulate that the radiative forcing from greenhouse gases increases by over preindustrial values. In contrast to storms that appear explicitly in most global models, the frequency of downscaled tropical cyclones increases during the 21st century in most locations. The intensity of such storms, as measured by their maximum wind speeds, also increases, in agreement with previous results. Increases in tropical cyclone activity are most prominent in the western North Pacific, but are evident in other regions except for the southwestern Pacific. The increased frequency of events is consistent with increases in a genesis potential index based on monthly mean global model output. These results are compared and contrasted with other inferences concerning the effect of global warming on tropical cyclones. PMID:23836646

  3. On the relationship between atmospheric water vapour transport and extra-tropical cyclones development

    NASA Astrophysics Data System (ADS)

    Ferreira, Juan A.; Liberato, Margarida L. R.; Ramos, Alexandre M.

    2016-08-01

    In this study we seek to investigate the role of atmospheric water vapour on the intensification of extra-tropical cyclones over the North Atlantic Ocean and more specifically to investigate the linkage between atmospheric rivers' conditions leading to the explosive development of extra-tropical cyclones. Several WRF-ARW simulations for three recent extra-tropical storms that had major negative socio-economic impacts in the Iberian Peninsula and south-western Europe (Klaus, 2009; Gong, 2013 and Stephanie, 2014) are performed in which the water vapour content of the initial and boundary conditions are tuned. Analyses of the vertically integrated vapour transport show the dependence of the storms' development on atmospheric water vapour. In addition, results also show changes in the shape of the jet stream resulting in a reduction of the upper wind divergence, which in turn affects the intensification of the extra-tropical cyclones studied. This study suggests that atmospheric rivers tend to favour the conditions for explosive extra-tropical storms' development in the three case studies, as simulations performed without the existence of atmospheric rivers produce shallow mid-latitude cyclones, that is, cyclones that are not so intense as those on the reference simulations.

  4. Using Proxy Records to Document Gulf of Mexico Tropical Cyclones from 1820-1915

    PubMed Central

    Rohli, Robert V.; DeLong, Kristine L.; Harley, Grant L.; Trepanier, Jill C.

    2016-01-01

    Observations of pre-1950 tropical cyclones are sparse due to observational limitations; therefore, the hurricane database HURDAT2 (1851–present) maintained by the National Oceanic and Atmospheric Administration may be incomplete. Here we provide additional documentation for HURDAT2 from historical United States Army fort records (1820–1915) and other archived documents for 28 landfalling tropical cyclones, 20 of which are included in HURDAT2, along the northern Gulf of Mexico coast. One event that occurred in May 1863 is not currently documented in the HURDAT2 database but has been noted in other studies. We identify seven tropical cyclones that occurred before 1851, three of which are potential tropical cyclones. We corroborate the pre-HURDAT2 storms with a tree-ring reconstruction of hurricane impacts from the Florida Keys (1707–2009). Using this information, we suggest landfall locations for the July 1822 hurricane just west of Mobile, Alabama and 1831 hurricane near Last Island, Louisiana on 18 August. Furthermore, we model the probable track of the August 1831 hurricane using the weighted average distance grid method that incorporates historical tropical cyclone tracks to supplement report locations. PMID:27898726

  5. Tropical Cyclone Forecasters Reference Guide 2. Tropical Climatology

    DTIC Science & Technology

    1992-04-01

    stratosphere and discovered three periods of oscillation: 1.3.3 1 Quasi-biennial Oscillation (OBO) The QBO in tropical stratospheric winds is defined as a...The QBO may be associated with the seasonal weather activities. Gray (1984a,b) has used the QBO at the 30-mb level as one of the indexes to predict the...yearly number of tropical cyclones in the Atlantic with some success. However, the physical links between cyclone activity and QBO are not clearly

  6. The impact of environmental inertial stability on the secondary circulation of axisymmetric tropical cyclones

    NASA Astrophysics Data System (ADS)

    O'Neill, M. E.; Chavas, D. R.

    2017-12-01

    In f-plane numerical simulations and analytical theory, tropical cyclones completely recycle their exhausted outflow air back into the boundary layer. This low-angular momentum air must experience cyclonic torque at the sea surface for cyclone to reach equilibrium. On Earth, however, it is not clear that tropical cyclones recycle all of the outflow air in a closed secondary circulation, and strong asymmetric outflow-jet interactions suggest that much of the air may be permanently evacuated from the storm over its lifetime. The fraction of outflow air that is returned to the near-storm boundary layer is in part a function of the environmental inertial stability, which controls the size and strength of the upper anticyclone. We run a suite of idealized axisymmetric tropical cyclone simulations at constant latitude while varying the outer domain's inertial stability profile. Fixing the latitude allows the gradient wind balance of the storm core to remain constant except for changes due to the far environment. By varying both the outer inertial stability and its location with respect to the Rossby radius of deformation, we show how the tropical cyclone's area-of-influence is controlled by the nature and strength of the upper anticyclone. Parcel tracking additionally demonstrates the likelihood of outflow air parcels to be quickly re-consumed by the secondary circulation as a function of inertial stability. These experiments demonstrate the sensitivity of the tropical cyclone's secondary circulation, typically assumed to be closed, to the dynamics of the far environment.

  7. The coincidence of daily rainfall events in Liberia, Costa Rica and tropical cyclones in the Caribbean basin

    NASA Astrophysics Data System (ADS)

    Waylen, Peter R.; Harrison, Michael

    2005-10-01

    The occurrence of tropical cyclones in the Caribbean and North Atlantic basins has been previously noted to have a significant effect both upon individual hydro-climatological events as well as on the quantity of annual precipitation experienced along the Pacific flank of Central America. A methodology for examining the so-called indirect effects of tropical cyclones (i.e. those effects resulting from a tropical cyclone at a considerable distance from the area of interest) on a daily rainfall record is established, which uses a variant of contingency table analysis. The method is tested using a single station on the Pacific slope of Costa Rica. Employing daily precipitation records from Liberia, north-western Costa Rica (1964-1995), and historic storm tracks of tropical cyclones in the North Atlantic, it is determined that precipitation falling in coincidence with the passage of tropical depressions, tropical storms, and hurricanes accounts for approximately 15% of average annual precipitation. The greatest effects are associated with storms passing within 1300 km of the precipitation station, and are most apparent in the increased frequency of daily rainfall totals in the range of 40-60 mm, rather than in the largest daily totals. The complexity and nonstationarity of factors affecting precipitation in this region are reflected in the decline in the number of tropical cyclones and their significance to annual precipitation totals after 1980, simultaneous to an increase in annual precipitation totals. The methodology employed in this study is shown to be a useful tool in illuminating the indirect effects of tropical cyclones in the region, with the potential for application in other areas.

  8. Impacts of Tropical Cyclones and Accompanying Precipitation on Infectious Diarrhea in Cyclone Landing Areas of Zhejiang Province, China

    PubMed Central

    Deng, Zhengyi; Xun, Huanmiao; Zhou, Maigeng; Jiang, Baofa; Wang, Songwang; Guo, Qing; Wang, Wei; Kang, Ruihua; Wang, Xin; Marley, Gifty; Ma, Wei

    2015-01-01

    Background: Zhejiang Province, located in southeastern China, is frequently hit by tropical cyclones. This study quantified the associations between infectious diarrhea and the seven tropical cyclones that landed in Zhejiang from 2005–2011 to assess the impacts of the accompanying precipitation on the studied diseases. Method: A unidirectional case-crossover study design was used to evaluate the impacts of tropical storms and typhoons on infectious diarrhea. Principal component analysis (PCA) was applied to eliminate multicollinearity. A multivariate logistic regression model was used to estimate the odds ratios (ORs) and the 95% confidence intervals (CIs). Results: For all typhoons studied, the greatest impacts on bacillary dysentery and other infectious diarrhea were identified on lag 6 days (OR = 2.30, 95% CI: 1.81–2.93) and lag 5 days (OR = 3.56, 95% CI: 2.98–4.25), respectively. For all tropical storms, impacts on these diseases were highest on lag 2 days (OR = 2.47, 95% CI: 1.41–4.33) and lag 6 days (OR = 2.46, 95% CI: 1.69–3.56), respectively. The tropical cyclone precipitation was a risk factor for both bacillary dysentery and other infectious diarrhea when daily precipitation reached 25 mm and 50 mm with the largest OR = 3.25 (95% CI: 1.45–7.27) and OR = 3.05 (95% CI: 2.20–4.23), respectively. Conclusions: Both typhoons and tropical storms could contribute to an increase in risk of bacillary dysentery and other infectious diarrhea in Zhejiang. Tropical cyclone precipitation may also be a risk factor for these diseases when it reaches or is above 25 mm and 50 mm, respectively. Public health preventive and intervention measures should consider the adverse health impacts from tropical cyclones. PMID:25622139

  9. The View from the Top: CALIOP Ice Water Content in the Uppermost Layer of Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    Avery, Melody A.; Deng, Min; Garnier, Anne; Heymsfield, Andrew; Pelon, Jacques; Powell, Kathleen A.; Trepte, Charles R.; Vaughan, Mark A.; Winker, David M.; Young, Stuart

    2012-01-01

    NASA's CALIPSO satellite carries both the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Imaging Infrared Radiometer (IIR). The lidar is ideally suited to viewing the very top of tropical cyclones, and the IIR provides critical optical and microphysical information. The lidar and the IIR data work together to understand storm clouds since they are perfectly co-located, and big tropical cyclones provide an excellent complex target for comparing the observations. There is a lot of information from these case studies for understanding both the observations and the tropical cyclones, and we are just beginning to scratch the surface of what can be learned. Many tropical cyclone cloud particle measurements are focused on the middle and lower regions of storms, but characterization of cyclone interaction with the lowermost stratosphere at the upper storm boundary may be important for determining the total momentum and moisture transport budget, and perhaps for predicting storm intensity as well. A surprising amount of cloud ice is to be found at the very top of these big storms.

  10. Proxies of Tropical Cyclone Isotope Spikes in Precipitation: Landfall Site Selection

    NASA Astrophysics Data System (ADS)

    Lawrence, J. R.; Maddocks, R.

    2011-12-01

    The human experience of climate change is not one of gradual changes in seasonal or yearly changes in temperature or rainfall. Despite that most paleoclimatic reconstructions attempt to provide just such information. Humans experience climate change on much shorter time scales. We remember hurricanes, weeks of drought or overwhelming rainy periods. Tropical cyclones produce very low isotope ratios in both rainfall and in atmospheric water vapor. Thus, climate proxies that potentially record these low isotope ratios offer the most concrete record of climate change to which humans can relate. The oxygen isotopic composition of tropical cyclone rainfall has the potential to be recorded in fresh water carbonate fossil material, cave deposits and corals. The hydrogen isotopic composition of tropical cyclone rainfall has the potential to be recorded in tree ring cellulose and organic matter in fresh water bodies. The Class of carbonate organisms known as Ostracoda form their carapaces very rapidly. Thus fresh water ephemeral ponds in the subtropics are ideal locations for isotopic studies because they commonly are totally dry when tropical cyclones make landfall. The other proxies suffer primarily from a dilution effect. The water from tropical cyclones is mixed with pre-existing water. In cave deposits tropical cyclone rains mix with soil and ground waters. In the near shore coral environment the rain mixes with seawater. For tree rings there are three sources of water: soil water, atmospheric water vapor that exchanges with leaf water and tropical cyclone rain. In lakes because of their large size rainfall runoff mixes with ground water and preexisting water in the lake. A region that shows considerable promise is Texas / Northeast Mexico. In a study of surface waters that developed from the passage of Tropical Storm Allison (2001) in SE Texas both the pond water and Ostracoda that bloomed recorded the low oxygen isotope signal of that storm (Lawrence et al, 2008). In 2010 rain from Hurricane Alex, Tropical Depression 2 and Tropical Storm Hermine flooded ephemeral ponds in south Texas. Isotopic analysis of water and fossil Ostracoda from ephemeral ponds in south Texas is planned. Cores (50 cm in length) were taken in one of these ponds where living Ostracoda were found and collected.

  11. Evolution of environmental factors affecting tropical cyclones from the LGM through the Holocene

    NASA Astrophysics Data System (ADS)

    Korty, R.

    2010-12-01

    The debate about whether and how tropical cyclones respond to warming climates has raised several interesting questions, but it has also revealed there is much we do not understand about controls on frequency and cumulative metrics of intensity and activity. In this work, I examine how the models used for anthropogenic climate predictions handle large-scale factors influencing tropical cyclone development in a different regime: the paleoclimate simulations of the LGM and Holocene. The models were forced under guidelines set forth by the second paleoclimate model intercomparison project (PMIP2), and produce equilibrium solutions for forcings far removed from small perturbations to the present-day world. (LGM has substantially lower CO2 and CH4 levels, while mid-Holocene cases have similar levels to today but different seasonal amplitudes from orbital variations.) The large-scale environmental factors that support tropical cyclones in today’s climate undergo complex and at times counter-intuitive changes in the colder simulations. The maximum potential intensity of tropical cyclones (MPI) is lower throughout the tropics in the mid-Holocene simulations, despite having SSTs very similar to today. MPI changes at LGM are more complex: lower in some regions but higher in much of the subtropics, while SSTs are uniformly lower than today. The water vapor deficits in the tropical midtroposphere change in such a way as to make tropical cyclone formation easier in the colder states; this is a counterintuitive result, but one consistent with the predictions of fewer storms in model simulations of a warmer climate by the end of the 21st century. I analyze the thermodynamic reasons behind the evolution in the large-scale environmental factors as well as relevant dynamic factors such as low-level vorticity and tropospheric wind shear. This analysis is the first part of a long-term project to analyze model prediction of tropical cyclone activity in the recent geologic past; the analysis provides a new line of evidence to compare with geologic proxies of tropical cyclone activity through the Holocene. Changes in midtropospheric entropy deficit from preindustrial (PI) climate to mid-Holocene (6ka) and LGM. Lower values indicate a smaller saturation deficit, which is conducive for tropical cyclone development.

  12. Reduced death rates from cyclones in Bangladesh: what more needs to be done?

    PubMed Central

    Hashizume, Masahiro; Kolivras, Korine N; Overgaard, Hans J; Das, Bivash; Yamamoto, Taro

    2012-01-01

    Abstract Tropical storms, such as cyclones, hurricanes and typhoons, present major threats to coastal communities. Around two million people worldwide have died and millions have been injured over the past two centuries as a result of tropical storms. Bangladesh is especially vulnerable to tropical cyclones, with around 718 000 deaths from them in the past 50 years. However, cyclone-related mortality in Bangladesh has declined by more than 100-fold over the past 40 years, from 500 000 deaths in 1970 to 4234 in 2007. The main factors responsible for these reduced fatalities and injuries are improved defensive measures, including early warning systems, cyclone shelters, evacuation plans, coastal embankments, reforestation schemes and increased awareness and communication. Although warning systems have been improved, evacuation before a cyclone remains a challenge, with major problems caused by illiteracy, lack of awareness and poor communication. Despite the potential risks of climate change and tropical storms, little empirical knowledge exists on how to develop effective strategies to reduce or mitigate the effects of cyclones. This paper summarizes the most recent data and outlines the strategy adopted in Bangladesh. It offers guidance on how similar strategies can be adopted by other countries vulnerable to tropical storms. Further research is needed to enable countries to limit the risks that cyclones present to public health. PMID:22423166

  13. Tropical cyclones in a stabilized 1.5 and 2 degree warmer world.

    NASA Astrophysics Data System (ADS)

    Wehner, M. F.; Stone, D. A.; Loring, B.; Krishnan, H.

    2017-12-01

    We present an ensemble of very high resolution global climate model simulations of a stabilized 1.5oC and 2oC warmer climate as envisioned by the Paris COP21 agreement. The resolution of this global climate model (25km) permits simulated tropical cyclones up to Category Five on the Saffir-Simpson scale Projected changes in tropical cyclones are significant. Tropical cyclones in the two stabilization scenarios are less frequent but more intense than in simulations of the present. Output data from these simulations is freely available to all interested parties and should prove a useful resource to those interested in studying the impacts of stabilized global warming.

  14. A document-based 318-year record of tropical cyclones in the Lesser Antilles, 1690-2007

    NASA Astrophysics Data System (ADS)

    Chenoweth, Michael; Divine, Dmitry

    2008-08-01

    The most comprehensive and longest document-based time series of tropical cyclone activity for any area of the world is presented for the Atlantic and Caribbean region of the Lesser Antilles for the years 1690-2007. Newspaper accounts, ships' logbooks, meteorological journals, and other document sources were used to create this new data set, and a new methodology was applied for classifying historical tropical cyclone intensity. This compilation estimates the position and intensity of each tropical cyclone that passes through the 61.5°W meridian from the coast of South America northward through 25.0°N. The additional resources used here fills in gaps in the HURDAT record, which undercounts tropical storms and hurricanes by 28% (7%) in the years 1851-1898 (1899-1930) over populated islands from 12 to 18°N. The numbers of tropical cyclones show no trends that were significant at the 5% level. The time span 1968-1977 was probably the most inactive period since the islands were settled in the 1620s and 1630s.

  15. Is Hurricane Activity in One Basin Tied to Another?

    NASA Astrophysics Data System (ADS)

    Wang, Chunzai; Lee, Sang-Ki

    2010-03-01

    Each year, tropical cyclones and hurricanes leave millions homeless worldwide and account for, on average, over $100 billion of damage in the United States alone [Schmidt et al., 2009]. In 2005, a record-breaking 15 hurricanes formed in the North Atlantic, four of which reached category 5 strength. Over the course of that season, more than 3000 hurricane-related deaths occurred and fiscal damage reached $157 billion. Because a better understanding of when and where tropical cyclones and hurricanes will form and strike will help societies better prepare for adverse effects, improving the understanding of these storms is very important. In the Western Hemisphere, tropical cyclones can form and develop in both the tropical North Atlantic and eastern North Pacific oceans, which are separated by the landmass of Central America. From the point of view of large-scale atmospheric circulation and its influence on tropical cyclones [e.g., Bell and Chelliah, 2006], it is not surprising that tropical cyclone variabilities in these two basins are related, because of their geographic proximity. But several questions remain: How they are related? What physical mechanisms drive this relation?

  16. Simulation of the Genesis of Hurricane Javier (2004) in the Eastern Pacific

    NASA Technical Reports Server (NTRS)

    Braun, Scott

    2005-01-01

    NASA is preparing for the Tropical Cloud Systems and Processes (TCSP) field experiment in July 2005, a joint effort with NOAA to study tropical cloud systems and tropical cyclone genesis in the Eastern Pacific. A major thrust of the TCSP program is the improvement of the understanding and prediction of tropical cyclone genesis, intensity, motion, rainfall potential, and landfall impacts using remote sensing and in-situ data, as well as numerical modeling, particularly as they relate to the three phases of water. The Eastern Pacific has the highest frequency of genesis events per unit area of any region worldwide. African easterly waves, mesoscale convective systems (MCSs), and orographic effects are thought to play roles in the genesis of tropical cyclones there. The general consensus is that tropical depressions form in association with one or more mid-level, mesoscale cyclonic vortices that are generated within the stratiform region of the MCS precursors. To create the warm core tropical depression vortex, however, the midlevel cyclonic circulation must somehow extend down to the surface and the tangential winds must attain sufficient strength (-10 m s- ) to enable the wind-induced surface heat exchange to increase the potential energy of the boundary layer air.

  17. A New Coupled Ocean-Waves-Atmosphere Model Designed for Tropical Storm Studies: Example of Tropical Cyclone Bejisa (2013-2014) in the South-West Indian Ocean

    NASA Astrophysics Data System (ADS)

    Pianezze, J.; Barthe, C.; Bielli, S.; Tulet, P.; Jullien, S.; Cambon, G.; Bousquet, O.; Claeys, M.; Cordier, E.

    2018-03-01

    Ocean-Waves-Atmosphere (OWA) exchanges are not well represented in current Numerical Weather Prediction (NWP) systems, which can lead to large uncertainties in tropical cyclone track and intensity forecasts. In order to explore and better understand the impact of OWA interactions on tropical cyclone modeling, a fully coupled OWA system based on the atmospheric model Meso-NH, the oceanic model CROCO, and the wave model WW3 and called MSWC was designed and applied to the case of tropical cyclone Bejisa (2013-2014). The fully coupled OWA simulation shows good agreement with the literature and available observations. In particular, simulated significant wave height is within 30 cm of measurements made with buoys and altimeters. Short-term (< 2 days) sensitivity experiments used to highlight the effect of oceanic waves coupling show limited impact on the track, the intensity evolution, and the turbulent surface fluxes of the tropical cyclone. However, it is also shown that using a fully coupled OWA system is essential to obtain consistent sea salt emissions. Spatial and temporal coherence of the sea state with the 10 m wind speed are necessary to produce sea salt aerosol emissions in the right place (in the eyewall of the tropical cyclone) and with the right size distribution, which is critical for cloud microphysics.

  18. Citizen scientists analyzing tropical cyclone intensities

    NASA Astrophysics Data System (ADS)

    Hennon, Christopher C.

    2012-10-01

    A new crowd sourcing project called CycloneCenter enables the public to analyze historical global tropical cyclone (TC) intensities. The primary goal of CycloneCenter, which launched in mid-September, is to resolve discrepancies in the recent global TC record arising principally from inconsistent development of tropical cyclone intensity data. The historical TC record is composed of data sets called "best tracks," which contain a forecast agency's best assessment of TC tracks and intensities. Best track data have improved in quality since the beginning of the geostationary satellite era in the 1960s (because TCs could no longer disappear from sight). However, a global compilation of best track data (International Best Track Archive for Climate Stewardship (IBTrACS)) has brought to light large interagency differences between some TC best track intensities, even in the recent past [Knapp et al., 2010Knapp et al., 2010]. For example, maximum wind speed estimates for Tropical Cyclone Gay (1989) differed by as much as 70 knots as it was tracked by three different agencies.

  19. A 320-year AMM+SOI Index Reconstruction from Historical Atlantic Tropical Cyclone Records

    NASA Astrophysics Data System (ADS)

    Chenoweth, M.; Divine, D.

    2010-12-01

    Trends in the frequency of North Atlantic tropical cyclones, including major hurricanes, are dominated by those originating in the deep tropics. In addition, these tropical cyclones are stronger when making landfall and their total power dissipation is higher than storms forming elsewhere in the Atlantic basin. Both the Atlantic Meridional Mode (AMM) and El Nino-Southern Oscillation (ENSO) are the leading modes of coupled air-sea interaction in the Atlantic and Pacific, respectively, and have well-established relationships with Atlantic hurricane variability. Here we use a 320-year record of tropical cyclone activity in the Lesser Antilles region of the North Atlantic from historical manuscript and newspaper records to reconstruct a normalized seasonal (July-October) index combining the Southern Oscillation Index (SOI) and AMM employing both the modern analog technique and back-propagation artificial neural networks. Our results indicate that the AMM+SOI index since 1690 shows no long-term trend but is dominated by both short-term (<10 years) and long-term (quasi-decadal to bi-decadal) variations. The decadal-scale variation is consistent with both instrumental and proxy records elsewhere from the global tropics. Distinct periods of high and low index values, corresponding to high and low tropical cyclone frequency, are regularly-appearing features in the record and provides further evidence that natural decadal -scale variability in Atlantic tropical cyclone frequency must be accounted for when determining trends in records and attribution of climate change.

  20. Tropical Cyclone Intensity Estimation Using Deep Convolutional Neural Networks

    NASA Technical Reports Server (NTRS)

    Maskey, Manil; Cecil, Dan; Ramachandran, Rahul; Miller, Jeffrey J.

    2018-01-01

    Estimating tropical cyclone intensity by just using satellite image is a challenging problem. With successful application of the Dvorak technique for more than 30 years along with some modifications and improvements, it is still used worldwide for tropical cyclone intensity estimation. A number of semi-automated techniques have been derived using the original Dvorak technique. However, these techniques suffer from subjective bias as evident from the most recent estimations on October 10, 2017 at 1500 UTC for Tropical Storm Ophelia: The Dvorak intensity estimates ranged from T2.3/33 kt (Tropical Cyclone Number 2.3/33 knots) from UW-CIMSS (University of Wisconsin-Madison - Cooperative Institute for Meteorological Satellite Studies) to T3.0/45 kt from TAFB (the National Hurricane Center's Tropical Analysis and Forecast Branch) to T4.0/65 kt from SAB (NOAA/NESDIS Satellite Analysis Branch). In this particular case, two human experts at TAFB and SAB differed by 20 knots in their Dvorak analyses, and the automated version at the University of Wisconsin was 12 knots lower than either of them. The National Hurricane Center (NHC) estimates about 10-20 percent uncertainty in its post analysis when only satellite based estimates are available. The success of the Dvorak technique proves that spatial patterns in infrared (IR) imagery strongly relate to tropical cyclone intensity. This study aims to utilize deep learning, the current state of the art in pattern recognition and image recognition, to address the need for an automated and objective tropical cyclone intensity estimation. Deep learning is a multi-layer neural network consisting of several layers of simple computational units. It learns discriminative features without relying on a human expert to identify which features are important. Our study mainly focuses on convolutional neural network (CNN), a deep learning algorithm, to develop an objective tropical cyclone intensity estimation. CNN is a supervised learning algorithm requiring a large number of training data. Since the archives of intensity data and tropical cyclone centric satellite images is openly available for use, the training data is easily created by combining the two. Results, case studies, prototypes, and advantages of this approach will be discussed.

  1. Western North Pacific Tropical Cyclone Formation and Structure Change in TCS08

    DTIC Science & Technology

    2013-09-30

    transition to a fast-moving and rapidly- developing extratropical cyclone that may contain gale-, storm -, or hurricane-force winds, there is a need to...improve understanding and prediction of the extratropical transition phase of a decaying tropical cyclone. The structural evolution of the transition from...a tropical to an extratropical circulation involves rapid changes to the wind, cloud, and precipitation patterns that potentially impact maritime

  2. Process Study of Oceanic Responses to Typhoons Using Arrays of EM-APEX Floats and Moorings

    DTIC Science & Technology

    2012-09-30

    maximum potential intensity, structure , energy, trajectory, and dynamic evolution. The most energetic oceanic responses to tropical cyclone forcing are...during tropical cyclone passage will aid understanding of storm dynamics and structure . The ocean’s recovery after tropical cyclone passage depends...days). The wake was advected hundreds of kilometers from the storm track by a pre- existing mesoscale eddy. Its thermal structure could not be

  3. An Extended Forecast of the Frequencies of North Atlantic Basin Tropical Cyclone Activity for 2009

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2009-01-01

    An extended forecast of the frequencies for the 2009 North Atlantic basin hurricane season is presented. Continued increased activity during the 2009 season with numbers of tropical cyclones, hurricanes, and major hurricanes exceeding long-term averages are indicated. Poisson statistics for the combined high-activity intervals (1950-1965 and 1995-2008) give the central 50% intervals to be 9-14, 5-8, and 2-4, respectively, for the number of tropical cyclones, hurricanes, and major hurricanes, with a 23.4% chance of exceeding 14 tropical cyclones, a 28% chance of exceeding 8 hurricanes, and a 31.9% chance of exceeding 4 major hurricanes. Based strictly on the statistics of the current high-activity interval (1995-2008), the central 50% intervals for the numbers of tropical cyclones, hurricanes, and major hurricanes are 12-18, 6-10, and 3-5, respectively, with only a 5% chance of exceeding 23, 13, or 7 storms, respectively. Also examined are the first differences in 10-yr moving averages and the effects of global warming and decadal-length oscillations on the frequencies of occurrence for North Atlantic basin tropical cyclones. In particular, temperature now appears to be the principal driver of increased activity and storm strength during the current high-activity interval, with near-record values possible during the 2009 season.

  4. Extreme waves from tropical cyclones and climate change in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Appendini, Christian M.; Pedrozo-Acuña, Adrian; Meza-Padilla, Rafael; Torres-Freyermuth, Alec; Cerezo-Mota, Ruth; López-González, José

    2017-04-01

    Tropical cyclones generate extreme waves that represent a risk to infrastructure and maritime activities. The projection of the tropical cyclones derived wave climate are challenged by the short historical record of tropical cyclones, their low occurrence, and the poor wind field resolution in General Circulation Models. In this study we use synthetic tropical cyclones to overcome such limitations and be able to characterize present and future wave climate associated with tropical cyclones in the Gulf of Mexico. Synthetic events derived from the NCEP/NCAR atmospheric reanalysis and the Coupled Model Intercomparison Project Phase 5 models NOAA/GFDL CM3 and UK Met Office HADGEM2-ES, were used to force a third generation wave model to characterize the present and future wave climate under RCP 4.5 and 8.5 escenarios. An increase in wave activity is projected for the future climate, particularly for the GFDL model that shows less bias in the present climate, although some areas are expected to decrease the wave energy. The practical implications of determining the future wave climate is exemplified by means of the 100-year design wave, where the use of the present climate may result in under/over design of structures, since the lifespan of a structure includes the future wave climate period.

  5. Impact of tropical cyclone Matmo on mixed zone of the Yellow and Bohai seas

    NASA Astrophysics Data System (ADS)

    Guo, Jie; Ji, Diansheng; Hou, Chawei; Guo, Kai; Ji, Ling

    2017-12-01

    The Bohai Sea is a low-lying semi-enclosed sea area that is linked to the Yellow Sea via the Bohai straits (mixed zone). Its off shore seabed is shallow, which makes it vulnerable to serious marine meteorological disasters associated with the northward passage of Pacifi c tropical cyclones. Analyses on data of remote sensing and buoy of the mixed zone of the Yellow and Bohai seas indicate that all the wind speed, signifi cant wave height, and salinity (SAL) increased, sea surface temperature decreased, and wind energy density changed considerably during the passage of tropical cyclone Matmo on July 25, 2014. It was found that the SAL inversion layer in the mixed zone of the Yellow and Bohai Seas was caused by the tropical cyclone. Furthermore, it was found that the tropical cyclone transported the northern Yellow Sea cold water mass (NYSCWM) into the mixed zone of the Yellow and Bohai Seas. The NYSCWM has direct infl uence on both the aquaculture and the ecological environment of the region. Therefore, further research is needed to establish the mechanism behind the formation of the SAL inversion layer in the mixed zone, and to determine the infl uence of tropical cyclones on the NYSCWM.

  6. Infectious Diseases and Tropical Cyclones in Southeast China.

    PubMed

    Zheng, Jietao; Han, Weixiao; Jiang, Baofa; Ma, Wei; Zhang, Ying

    2017-05-07

    Southeast China is frequently hit by tropical cyclones (TCs) with significant economic and health burdens each year. However, there is a lack of understanding of what infectious diseases could be affected by tropical cyclones. This study aimed to examine the impacts of tropical cyclones on notifiable infectious diseases in southeast China. Disease data between 2005 and 2011 from four coastal provinces in southeast China, including Guangdong, Hainan, Zhejiang, and Fujian province, were collected. Numbers of cases of 14 infectious diseases were compared between risk periods and reference periods for each tropical cyclone. Risk ratios (RR s ) were calculated to estimate the risks. TCs were more likely to increase the risk of bacillary dysentery, paratyphoid fever, dengue fever and acute hemorrhagic conjunctivitis ( ps < 0.05) than to decrease the risk, more likely to decrease the risk of measles, mumps, varicella and vivax malaria ( ps < 0.05) than to increase the risk. In conclusion, TCs have mixed effects on the risk of infectious diseases. TCs are more likely to increase the risk of intestinal and contact transmitted infectious diseases than to decrease the risk, and more likely to decrease the risk of respiratory infectious diseases than to increase the risk. Findings of this study would assist in developing public health strategies and interventions for the reduction of the adverse health impacts from tropical cyclones.

  7. Impacts of tropical cyclones on U.S. forest tree mortality and carbon flux from 1851 to 2000

    PubMed Central

    Zeng, Hongcheng; Chambers, Jeffrey Q.; Negrón-Juárez, Robinson I.; Hurtt, George C.; Baker, David B.; Powell, Mark D.

    2009-01-01

    Tropical cyclones cause extensive tree mortality and damage to forested ecosystems. A number of patterns in tropical cyclone frequency and intensity have been identified. There exist, however, few studies on the dynamic impacts of historical tropical cyclones at a continental scale. Here, we synthesized field measurements, satellite image analyses, and empirical models to evaluate forest and carbon cycle impacts for historical tropical cyclones from 1851 to 2000 over the continental U.S. Results demonstrated an average of 97 million trees affected each year over the entire United States, with a 53-Tg annual biomass loss, and an average carbon release of 25 Tg y−1. Over the period 1980–1990, released CO2 potentially offset the carbon sink in forest trees by 9–18% over the entire United States. U.S. forests also experienced twice the impact before 1900 than after 1900 because of more active tropical cyclones and a larger extent of forested areas. Forest impacts were primarily located in Gulf Coast areas, particularly southern Texas and Louisiana and south Florida, while significant impacts also occurred in eastern North Carolina. Results serve as an important baseline for evaluating how potential future changes in hurricane frequency and intensity will impact forest tree mortality and carbon balance. PMID:19416842

  8. Assessing the influence of climate change on flooding hazards following tropical cyclone events in the Southeast United States

    NASA Astrophysics Data System (ADS)

    Stone, Monica Helen

    Recent tropical cyclones, like Hurricane Katrina, have been some of the worst the United States has experienced. Tropical cyclones are expected to intensify, bringing about 20% more precipitation, in the near future in response to global climate warming. Further, global climate warming may extend the hurricane season. This study focuses on four major river basins (Neches, Pearl, Mobile, and Roanoke) in the Southeast United States that are frequently impacted by tropical cyclones. The Soil and Water Assessment Tool (SWAT) was used to model flow along these rivers from 1998-2014 with 20% more precipitation during tropical cyclones. The results of this study show that an increase in tropical cyclone precipitation due to future climate change may increase peak flows at the mouths of these Southeast rivers by ˜7-18%. Most tropical cyclones that impact these river basins occur during the low discharge season, and thus rarely produce flooding conditions at their mouths. An extension of the current hurricane season of June-November, due to global climate warming, could encroach upon the wet season in these basins and lead to increased flooding. On average, this analysis shows that an extension of the hurricane season to May-December increased flooding susceptibility by 63% for the rivers analyzed in this study. That is, 4-6 more days per year likely would have been above bankfull discharge if an average tropical cyclone had occurred any day (based on 1998-2014 data) in the months May-December than in the current hurricane season months of June-November. More research is needed on the mechanisms and processes involved in the water balance of the four rivers analyzed in this study, and others in the Southeast United States, and how this is likely to change in the near future with global climate warming.

  9. The poleward migration of the location of tropical cyclone maximum intensity.

    PubMed

    Kossin, James P; Emanuel, Kerry A; Vecchi, Gabriel A

    2014-05-15

    Temporally inconsistent and potentially unreliable global historical data hinder the detection of trends in tropical cyclone activity. This limits our confidence in evaluating proposed linkages between observed trends in tropical cyclones and in the environment. Here we mitigate this difficulty by focusing on a metric that is comparatively insensitive to past data uncertainty, and identify a pronounced poleward migration in the average latitude at which tropical cyclones have achieved their lifetime-maximum intensity over the past 30 years. The poleward trends are evident in the global historical data in both the Northern and the Southern hemispheres, with rates of 53 and 62 kilometres per decade, respectively, and are statistically significant. When considered together, the trends in each hemisphere depict a global-average migration of tropical cyclone activity away from the tropics at a rate of about one degree of latitude per decade, which lies within the range of estimates of the observed expansion of the tropics over the same period. The global migration remains evident and statistically significant under a formal data homogenization procedure, and is unlikely to be a data artefact. The migration away from the tropics is apparently linked to marked changes in the mean meridional structure of environmental vertical wind shear and potential intensity, and can plausibly be linked to tropical expansion, which is thought to have anthropogenic contributions.

  10. Training on Eastern Pacific tropical cyclones for Latin American students

    NASA Astrophysics Data System (ADS)

    Farfán, L. M.; Raga, G. B.

    2009-05-01

    Tropical cyclones are one of the most impressive atmospheric phenomena and their development in the Atlantic and Eastern Pacific basins has potential to affect several Latin-American and Caribbean countries, where human resources are limited. As part of an international research project, we are offering short courses based on the current understanding of tropical cyclones in the Eastern Pacific basin. Our main goal is to train students from higher-education institutions from various countries in Latin America. Key aspects are tropical cyclone formation and evolution, with particular emphasis on their development off the west coast of Mexico. Our approach includes lectures on tropical cyclone climatology and formation, dynamic and thermodynamic models, air-sea interaction and oceanic response, ocean waves and coastal impacts as well as variability and climate-related predictions. In particular, we use a best-track dataset issued by the United States National Hurricane Center and satellite observations to analyze convective patterns for the period 1970-2006. Case studies that resulted in landfall over northwestern Mexico are analyzed in more detail; this includes systems that developed during the 2006, 2007 and 2008 seasons. Additionally, we have organized a human-dimensions symposium to discuss socio-economic issues that are associated with the landfall of tropical cyclones. This includes coastal zone impact and flooding, the link between cyclones and water resources, the flow of weather and climate information from scientists to policy- makers, the role of emergency managers and decision makers, impact over health issues and the viewpoint of the insurance industry.

  11. Ensemble Prediction of Tropical Cyclone Genesis

    DTIC Science & Technology

    2017-02-23

    future changes in tropical cyclone (TC) activity around the Hawaiian Islands are investigated using the state-of-the-art climate models1–3. We find that...future warmer climate . This is in contrast to the NA, where BDI increases for all dynamic variables investigated while it shows little change for...Li, and A. Kitoh, 2013: Projected future increase in tropical cyclones near Hawaii. Nature Climate Change , 3, 749-754, doi:10.1038/nclimate1890

  12. 1994 Annual Tropical Cyclone Report

    DTIC Science & Technology

    1995-01-01

    force winds exist near the center. . . . The NOGAPS model does not analyze Tropical Depression 20W as a distinct feature, nor does it develop the...NOGAPS model for very small westward-moving trop- ical cyclones (Figure 3-20-8). According to Carr, NOGAPS effective grid spacing is too large to properly...analyze a very small to small tropical cyclone. The bogus vortex inserted into the analysis starts out too large and usually expands if the model

  13. The Navy’s Next-Generation Tropical Cyclone Model

    DTIC Science & Technology

    2009-09-30

    when compared with the Doppler radar observations (Fig. 6c). An example of a real-time COAMPS-TC forecast during T- PARC /TCS-08 initialized on 26...prediction support for the THORPEX-Pacific Asian Campaign (T- PARC ) and the Tropical Cyclone Structure 2008 (TCS-08) (T- PARC /TCS-08) experiments...implemented from the CBLAST project. In support of the T- PARC /TCS-08 campaign, adaptive observing guidance for tropical cyclones has been provided

  14. Numerical Evaluation of Storm Surge Indices for Public Advisory Purposes

    NASA Astrophysics Data System (ADS)

    Bass, B.; Bedient, P. B.; Dawson, C.; Proft, J.

    2016-12-01

    After the devastating hurricane season of 2005, shortcomings with the Saffir-Simpson Hurricane Scale's (SSHS) ability to characterize a tropical cyclones potential to generate storm surge became widely apparent. As a result, several alternative surge indices were proposed to replace the SSHS, including Powell and Reinhold's Integrated Kinetic Energy (IKE) factor, Kantha's Hurricane Surge Index (HSI), and Irish and Resio's Surge Scale (SS). Of the previous, the IKE factor is the only surge index to-date that truly captures a tropical cyclones integrated intensity, size, and wind field distribution. However, since the IKE factor was proposed in 2007, an accurate assessment of this surge index has not been performed. This study provides the first quantitative evaluation of the IKEs ability to serve as a predictor of a tropical cyclones potential surge impacts as compared to other alternative surge indices. Using the tightly coupled ADvanced CIRCulation and Simulating WAves Nearshore models, the surge and wave responses of Hurricane Ike (2008) and 78 synthetic tropical cyclones were evaluated against the SSHS, IKE, HSI and SS. Results along the upper TX coast of the Gulf of Mexico demonstrate that the HSI performs best in capturing the peak surge response of a tropical cyclone, while the IKE accounting for winds greater than tropical storm intensity (IKETS) provides the most accurate estimate of a tropical cyclones regional surge impacts. These results demonstrate that the appropriate selection of a surge index ultimately depends on what information is of interest to be conveyed to the public and/or scientific community.

  15. Estimating the Risk of Tropical Cyclone Characteristics Along the United States Gulf of Mexico Coastline Using Different Statistical Approaches

    NASA Astrophysics Data System (ADS)

    Trepanier, J. C.; Ellis, K.; Jagger, T.; Needham, H.; Yuan, J.

    2017-12-01

    Tropical cyclones, with their high wind speeds, high rainfall totals and deep storm surges, frequently strike the United States Gulf of Mexico coastline influencing millions of people and disrupting off shore economic activities. Events, such as Hurricane Katrina in 2005 and Hurricane Isaac in 2012, can be physically different but still provide detrimental effects due to their locations of influence. There are a wide variety of ways to estimate the risk of occurrence of extreme tropical cyclones. Here, the combined risk of tropical cyclone storm surge and nearshore wind speed using a statistical copula is provided for 22 Gulf of Mexico coastal cities. Of the cities considered, Bay St. Louis, Mississippi has the shortest return period for a tropical cyclone with at least a 50 m s-1 nearshore wind speed and a three meter surge (19.5 years, 17.1-23.5). Additionally, a multivariate regression model is provided estimating the compound effects of tropical cyclone tracks, landfall central pressure, the amount of accumulated precipitation, and storm surge for five locations around Lake Pontchartrain in Louisiana. It is shown the most intense tropical cyclones typically approach from the south and a small change in the amount of rainfall or landfall central pressure leads to a large change in the final storm surge depth. Data are used from the National Hurricane Center, U-Surge, SURGEDAT, and Cooperative Observer Program. The differences in the two statistical approaches are discussed, along with the advantages and limitations to each. The goal of combining the results of the two studies is to gain a better understanding of the most appropriate risk estimation technique for a given area.

  16. Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity.

    PubMed

    Darby, Stephen E; Hackney, Christopher R; Leyland, Julian; Kummu, Matti; Lauri, Hannu; Parsons, Daniel R; Best, James L; Nicholas, Andrew P; Aalto, Rolf

    2016-11-10

    The world's rivers deliver 19 billion tonnes of sediment to the coastal zone annually, with a considerable fraction being sequestered in large deltas, home to over 500 million people. Most (more than 70 per cent) large deltas are under threat from a combination of rising sea levels, ground surface subsidence and anthropogenic sediment trapping, and a sustainable supply of fluvial sediment is therefore critical to prevent deltas being 'drowned' by rising relative sea levels. Here we combine suspended sediment load data from the Mekong River with hydrological model simulations to isolate the role of tropical cyclones in transmitting suspended sediment to one of the world's great deltas. We demonstrate that spatial variations in the Mekong's suspended sediment load are correlated (r = 0.765, P < 0.1) with observed variations in tropical-cyclone climatology, and that a substantial portion (32 per cent) of the suspended sediment load reaching the delta is delivered by runoff generated by rainfall associated with tropical cyclones. Furthermore, we estimate that the suspended load to the delta has declined by 52.6 ± 10.2 megatonnes over recent years (1981-2005), of which 33.0 ± 7.1 megatonnes is due to a shift in tropical-cyclone climatology. Consequently, tropical cyclones have a key role in controlling the magnitude of, and variability in, transmission of suspended sediment to the coast. It is likely that anthropogenic sediment trapping in upstream reservoirs is a dominant factor in explaining past, and anticipating future, declines in suspended sediment loads reaching the world's major deltas. However, our study shows that changes in tropical-cyclone climatology affect trends in fluvial suspended sediment loads and thus are also key to fully assessing the risk posed to vulnerable coastal systems.

  17. Assessing the Importance of Atlantic Basin Tropical Cyclone Steering Currents in Anticipating Landfall Risk

    NASA Astrophysics Data System (ADS)

    Truchelut, R.; Hart, R. E.

    2013-12-01

    While a number of research groups offer quantitative pre-seasonal assessments of aggregate annual Atlantic Basin tropical cyclone activity, the literature is comparatively thin concerning methods to meaningfully quantify seasonal U.S. landfall risks. As the example of Hurricane Andrew impacting Southeast Florida in the otherwise quiet 1992 season demonstrates, an accurate probabilistic assessment of seasonal tropical cyclone threat levels would be of immense public utility and economic value; however, the methods used to predict annual activity demonstrate little skill for predicting annual count of landfalling systems of any intensity bin. Therefore, while current models are optimized to predict cumulative seasonal tropical cyclone activity, they are not ideal tools for assessing the potential for sensible impacts of storms on populated areas. This research aims to bridge the utility gap in seasonal tropical cyclone forecasting by shifting the focus of seasonal modelling to the parameters that are most closely linked to creating conditions favorable for U.S. landfalls, particularly those of destructive and costly intense hurricanes. As it is clear from the initial findings of this study that overall activity has a limited influence on sensible outcomes, this project concentrates on detecting predictability and trends in cyclogenesis location and upper-level wind steering patterns. These metrics are demonstrated to have a relationship with landfall activity in the Atlantic Basin climatological record. By aggregating historic seasonally-averaged steering patterns using newly-available reanalysis model datasets, some atmospheric and oceanic precursors to an elevated risk of North American tropical cyclone landfall have been identified. Work is ongoing to quantify the variance, persistence, and predictability of such patterns over seasonal timescales, with the aim of yielding tools that could be incorporated into tropical cyclone risk mitigation strategies.

  18. Field theoretical prediction of a property of the tropical cyclone

    NASA Astrophysics Data System (ADS)

    Spineanu, F.; Vlad, M.

    2014-01-01

    The large scale atmospheric vortices (tropical cyclones, tornadoes) are complex physical systems combining thermodynamics and fluid-mechanical processes. The late phase of the evolution towards stationarity consists of the vorticity concentration, a well known tendency to self-organization , an universal property of the two-dimensional fluids. It may then be expected that the stationary state of the tropical cyclone has the same nature as the vortices of many other systems in nature: ideal (Euler) fluids, superconductors, Bose-Einsetin condensate, cosmic strings, etc. Indeed it was found that there is a description of the atmospheric vortex in terms of a classical field theory. It is compatible with the more conventional treatment based on conservation laws, but the field theoretical model reveals properties that are almost inaccessible to the conventional formulation: it identifies the stationary states as being close to self-duality. This is of highest importance: the self-duality is known to be the origin of all coherent structures known in natural systems. Therefore the field theoretical (FT) formulation finds that the cuasi-coherent form of the atmospheric vortex (tropical cyclone) at stationarity is an expression of this particular property. In the present work we examine a strong property of the tropical cyclone, which arises in the FT formulation in a natural way: the equality of the masses of the particles associated to the matter field and respectively to the gauge field in the FT model is translated into the equality between the maximum radial extension of the tropical cyclone and the Rossby radius. For the cases where the FT model is a good approximation we calculate characteristic quantities of the tropical cyclone and find good comparison with observational data.

  19. An Interactive Parallel Coordinates Technique Applied to a Tropical Cyclone Climate Analysis

    DTIC Science & Technology

    2008-06-06

    12). 3.4 Quasi-Biennial Oscillation Variable Research has also shown that the Quasi-Biennial Oscillation ( QBO ) is corre- lated to tropical cyclone...activity. The QBO is a stratospheric (16 to 35 km altitude) oscillation of equatorial east-west winds which vary with a period of about 26 to 30 months...again. The west phase of the QBO has been shown to provide favorable conditions for development of tropical cyclones, possibly because it reduces

  20. The influence of an extended Atlantic hurricane season on inland flooding potential in the southeastern United States

    NASA Astrophysics Data System (ADS)

    Stone, Monica H.; Cohen, Sagy

    2017-03-01

    Recent tropical cyclones, like Hurricane Katrina, have been some of the worst the United States has experienced. Tropical cyclones are expected to intensify, bringing about 20 % more precipitation, in the near future in response to global climate warming. Further, global climate warming may extend the hurricane season. This study focuses on four major river basins (Neches, Pearl, Mobile, and Roanoke) in the southeastern United States that are frequently impacted by tropical cyclones. An analysis of the timing of tropical cyclones that impact these river basins found that most occur during the low-discharge season and thus rarely produce riverine flooding conditions. However, an extension of the current hurricane season of June-November could encroach upon the high-discharge seasons in these basins, increasing the susceptibility for riverine hurricane-induced flooding. Our results indicate that 28-180 % more days would be at risk of flooding from an average tropical cyclone with an extension of the hurricane season to May-December (just 2 months longer). Future research should aim to extend this analysis to all river basins in the United States that are impacted by tropical cyclones in order to provide a bigger picture of which areas are likely to experience the worst increases in flooding risk due to a probable extension of the hurricane season with expected global climate change in the near future.

  1. A simple method for simulating wind profiles in the boundary layer of tropical cyclones

    DOE PAGES

    Bryan, George H.; Worsnop, Rochelle P.; Lundquist, Julie K.; ...

    2016-11-01

    A method to simulate characteristics of wind speed in the boundary layer of tropical cyclones in an idealized manner is developed and evaluated. The method can be used in a single-column modelling set-up with a planetary boundary-layer parametrization, or within large-eddy simulations (LES). The key step is to include terms in the horizontal velocity equations representing advection and centrifugal acceleration in tropical cyclones that occurs on scales larger than the domain size. Compared to other recently developed methods, which require two input parameters (a reference wind speed, and radius from the centre of a tropical cyclone) this new method alsomore » requires a third input parameter: the radial gradient of reference wind speed. With the new method, simulated wind profiles are similar to composite profiles from dropsonde observations; in contrast, a classic Ekman-type method tends to overpredict inflow-layer depth and magnitude, and two recently developed methods for tropical cyclone environments tend to overpredict near-surface wind speed. When used in LES, the new technique produces vertical profiles of total turbulent stress and estimated eddy viscosity that are similar to values determined from low-level aircraft flights in tropical cyclones. Lastly, temporal spectra from LES produce an inertial subrange for frequencies ≳0.1 Hz, but only when the horizontal grid spacing ≲20 m.« less

  2. A Simple Method for Simulating Wind Profiles in the Boundary Layer of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Bryan, George H.; Worsnop, Rochelle P.; Lundquist, Julie K.; Zhang, Jun A.

    2017-03-01

    A method to simulate characteristics of wind speed in the boundary layer of tropical cyclones in an idealized manner is developed and evaluated. The method can be used in a single-column modelling set-up with a planetary boundary-layer parametrization, or within large-eddy simulations (LES). The key step is to include terms in the horizontal velocity equations representing advection and centrifugal acceleration in tropical cyclones that occurs on scales larger than the domain size. Compared to other recently developed methods, which require two input parameters (a reference wind speed, and radius from the centre of a tropical cyclone) this new method also requires a third input parameter: the radial gradient of reference wind speed. With the new method, simulated wind profiles are similar to composite profiles from dropsonde observations; in contrast, a classic Ekman-type method tends to overpredict inflow-layer depth and magnitude, and two recently developed methods for tropical cyclone environments tend to overpredict near-surface wind speed. When used in LES, the new technique produces vertical profiles of total turbulent stress and estimated eddy viscosity that are similar to values determined from low-level aircraft flights in tropical cyclones. Temporal spectra from LES produce an inertial subrange for frequencies ≳ 0.1 Hz, but only when the horizontal grid spacing ≲ 20 m.

  3. Characteristics and development of European cyclones with tropical origin in reanalysis data

    NASA Astrophysics Data System (ADS)

    Dekker, Mark M.; Haarsma, Reindert J.; Vries, Hylke de; Baatsen, Michiel; Delden, Aarnout J. van

    2018-01-01

    Major storm systems over Europe frequently have a tropical origin. This paper analyses the characteristics and dynamics of such cyclones in the observational record, using MERRA reanalysis data for the period 1979-2013. By stratifying the cyclones along three key phases of their development (tropical phase, extratropical transition and final re-intensification), we identify four radically different life cycles: the tropical cyclone and extratropical cyclone life cycles, the classic extratropical transition and the warm seclusion life cycle. More than 50% of the storms reaching Europe from low latitudes follow the warm seclusion life cycle. It also contains the strongest cyclones. They are characterized by a warm core and a frontal T-bone structure, with a northwestward warm conveyor belt and the effects of dry intrusion. Rapid deepening occurs in the latest phase, around their arrival in Europe. Both baroclinic instability and release of latent heat contribute to the strong intensification. The pressure minimum occurs often a day after entering Europe, which enhances the potential threat of warm seclusion storms for Europe. The impact of a future warmer climate on the development of these storms is discussed.

  4. An Estimate of North Atlantic Basin Tropical Cyclone Activity for 2008

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2008-01-01

    The statistics of North Atlantic basin tropical cyclones for the interval 1945-2007 are examined and estimates are given for the frequencies of occurrence of the number of tropical cyclones, number of hurricanes, number of major hurricanes, number of category 4/5 hurricanes, and number of U.S. land-falling hurricanes for the 2008 hurricane season. Also examined are the variations of peak wind speed, average peak wind speed per storm, lowest pressure, average lowest pressure per storm, recurrence rate and duration of extreme events (El Nino and La Nina), the variation of 10-yr moving averages of parametric first differences, and the association of decadal averages of frequencies of occurrence of North Atlantic basin tropical cyclones against decadal averages of Armagh Observatory, Northern Ireland, annual mean temperature (found to be extremely important for number of tropical cyclones and number of hurricanes). Because the 2008 hurricane season seems destined to be one that is non-El Nino-related and is a post-1995 season, estimates of the frequencies of occurrence for the various subsets of storms should be above long-term averages.

  5. Tropical cyclone intensity change. A quantitative forecasting scheme

    NASA Technical Reports Server (NTRS)

    Dropco, K. M.; Gray, W. M.

    1981-01-01

    One to two day future tropical cyclone intensity change from both a composite and an individual case point-of-view are discussed. Tropical cyclones occurring in the Gulf of Mexico during the period 1957-1977 form the primary data source. Weather charts of the NW Atlantic were initially examined, but few differences were found between intensifying and non-intensifying cyclones. A rawinsonde composite analysis detected composite differences in the 200 mb height fields, the 850 mb temperature fields, the 200 mb zonal wind and the vertical shears of the zonal wind. The individual cyclones which make up the composite study were then separately examined using this composite case knowledge. Similar parameter differences were found in a majority of individual cases. A cyclone intensity change forecast scheme was tested against independent storm cases. Correct predictions of intensification or non-intensification could be made approximately 75% of the time.

  6. Tropical Cyclone Paka's Initial Explosive Development (10-12 December, 1997)

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward B.; Halverson, Jeff; Simpson, Joanne; Olson, William; Pierce, Harold

    1999-01-01

    Convection associated with an equatorial westerly wind burst was first observed late November during the strong El Nino of 1997 at approximately 2000 km southwest of the Hawaiian Islands. This region of convection lead to the formation of twin tropical cyclones, one in the southern hemisphere named Pam and the other in the northern hemisphere named Paka. During the first week in December, tropical cyclone Paka, the system of concern, reached tropical storm stage as it moved rapidly westward at relatively low latitudes. During the 10-12 of December, Paka rapidly developed into a typhoon.

  7. Tropical Cyclone Formation in 30-day Simulation Using Cloud-System-Resolving Global Nonhydrostatic Model (NICAM)

    NASA Astrophysics Data System (ADS)

    Yanase, W.; Satoh, M.; Iga, S.; Tomita, H.

    2007-12-01

    We are developing an icosahedral-grid non-hydrostatic AGCM, which can explicitly represent cumulus or meso-scale convection over the entire globe. We named the model NICAM (Nonhydrostatic ICosahedral Atmospheric Model). On 2005, we have performed a simulations with horizontal grid intervals of 14, 7 and 3.5 km using realistic topography and sea surface temperature in April 2004 (Miura et al., 2007; GRL). It simulated a typhoon Sudal that actually developed over the Northwestern Pacific in 2004. In the present study, the NICAM model with the horizontal grid interval of 14 km was used for perpetual July experiment with 30 forecasting days. In this simulation, several tropical cyclones formed over the wesetern and eastern North Pacific, althought the formation over the western North Pacific occured a little further north to the actually observed region. The mature tropical cyclones with intense wind speed had a structure of a cloud-free eye and eye wall. We have found that the enviromental parameters associated with the tropical cyclone genesis explain well the simulated region of tropical cyclone generation. Over the North Atlantic and eastern North Pacific, westward-moving disturbances like African wave are simulated, which seems to be related to the cyclone formation over the eastern North Pacific. On the other hand, the simulated tropical cyclones over the western North Pacifis seem to form by different factors as has been suggested by the previous studies based on observation. Although the model still has some problems and is under continuous improvement, we can discuss what dynamics is to be represented using a global high-resolution model.

  8. Variability in tropical cyclone heat potential over the Southwest Indian Ocean

    NASA Astrophysics Data System (ADS)

    Malan, N.; Reason, C. J. C.; Loveday, B. R.

    2013-12-01

    Tropical cyclone heat potential (TCHP) has been proposed as being important for hurricane and typhoon intensity. Here, a climatology of TCHP is developed for the Southwest Indian Ocean, a basin that experiences on average 11-12 tropical cyclones per year, many of which impact on Mauritius, Reunion and Madagascar, and Mozambique. SODA data and a regional ocean model forced with the GFDL-CORE v.2b reanalysis winds and heat fluxes are used to derive TCHP values during the 1948-2007 period. The results indicate that TCHP increases through the austral summer, peaking in March. Values of TCHP above 40 kJ cm-2, suggested as the minimum needed for tropical cyclone intensification, are still present in the northern Mozambique Channel in May. A time series of TCHP spatially averaged over the Seychelles-Chagos thermocline ridge (SCTR), an important area for tropical cyclones, is presented. The model time series, which agrees well with XBT-based observations (r = 0.82, p = 0.01), shows considerable interannual variability overlaying an upward tendency that matches with an observed increase in severe tropical cyclone days in the Southwest Indian Ocean. Although an increase in severe storms is seen during 1997-2007, the increasing TCHP tendency time series after 1997 coincides with a decrease in total cyclone numbers, a mismatch that is ascribed to increased atmospheric anticyclonicity over the basin. Seasons of increased (decreased) TCHP over the SCTR appear to be associated with dry (wet) conditions over certain areas of southern and East Africa and are linked with changes in zonal wind and vertical motion in the midtroposphere.

  9. Variability of upper-ocean characteristics and tropical cyclones in the South West Indian Ocean

    NASA Astrophysics Data System (ADS)

    Mawren, D.; Reason, C. J. C.

    2017-03-01

    Track and intensity are key aspects of tropical cyclone behavior. Intensity may be impacted by the upper-ocean heat content relevant for TC intensification (known as Tdy) and barrier layer thickness (BLT). Here the variability of Tdy and BLT in the South West Indian Ocean and their relationships with tropical cyclones are investigated. It is shown that rapid cyclone intensification is influenced by large Tdy values, thick barrier layers and the presence of anticyclonic eddies. For TC generation in the South West Indian Ocean, the parameter Tdy was found to be important. Large BLT values overlay with large Tdy values during summer. Both fields are modulated by the westward propagation of Rossby waves, which are often associated with ENSO. For example, the 1997-1998 El Niño shows a strong signal in Tdy, SST, and BLT over the South West Indian Ocean. After this event, an increasing trend in Tdy occurred over most of the basin which may be associated with changes in atmospheric circulation. Increasing SST, Power Dissipation Index and frequency of Category 5 tropical cyclones also occurred from 1980 to 2010. To further examine the links between tropical cyclones, Tdy, and BLT, the ocean response to Category 5 Tropical Cyclone Bansi that developed near Madagascar during January 2015 was analyzed. Its unusual track was found to be linked with the strengthening of the monsoonal north westerlies while its rapid intensification from Category 2 to Category 4 was linked to a high-Tdy region, associated with a warm core eddy and large BLT.

  10. Impact Factors and Risk Analysis of Tropical Cyclones on a Highway Network.

    PubMed

    Yang, Saini; Hu, Fuyu; Jaeger, Carlo

    2016-02-01

    Coastal areas typically have high social and economic development and are likely to suffer huge losses due to tropical cyclones. These cyclones have a great impact on the transportation network, but there have been a limited number of studies about tropical-cyclone-induced transportation network functional damages, especially in Asia. This study develops an innovative measurement and analytical tool for highway network functional damage and risk in the context of a tropical cyclone, with which we explored the critical spatial characteristics of tropical cyclones with regard to functional damage to a highway network by developing linear regression models to quantify their relationship. Furthermore, we assessed the network's functional risk and calculated the return periods under different damage levels. In our analyses, we consider the real-world highway network of Hainan province, China. Our results illustrate that the most important spatial characteristics were location (in particular, the midlands), travel distance, landfalling status, and origin coordinates. However, the trajectory direction did not obviously affect the results. Our analyses indicate that the highway network of Hainan province may suffer from a 90% functional damage scenario every 4.28 years. These results have critical policy implications for the transport sector in reference to emergency planning and disaster reduction. © 2015 Society for Risk Analysis.

  11. Evolution of the Tropical Cyclone Integrated Data Exchange And Analysis System (TC-IDEAS)

    NASA Technical Reports Server (NTRS)

    Turk, J.; Chao, Y.; Haddad, Z.; Hristova-Veleva, S.; Knosp, B.; Lambrigtsen, B.; Li, P.; Licata, S.; Poulsen, W.; Su, H.; hide

    2010-01-01

    The Tropical Cyclone Integrated Data Exchange and Analysis System (TC-IDEAS) is being jointly developed by the Jet Propulsion Laboratory (JPL) and the Marshall Space Flight Center (MSFC) as part of NASA's Hurricane Science Research Program. The long-term goal is to create a comprehensive tropical cyclone database of satellite and airborne observations, in-situ measurements and model simulations containing parameters that pertain to the thermodynamic and microphysical structure of the storms; the air-sea interaction processes; and the large-scale environment.

  12. The relationships between precipitation, convective cloud and tropical cyclone intensity change

    NASA Astrophysics Data System (ADS)

    Ruan, Z.; Wu, Q.

    2017-12-01

    Using 16 years precipitation, brightness temperature (IR BT) data and tropical cyclone (TC) information, this study explores the relationship between precipitation, convective cloud and tropical cyclone (TC) intensity change in the Western North Pacific Ocean. It is found that TC intensity has positive relation with TC precipitation. TC precipitation increases with increased TC intensity. Based on the different phase of diurnal cycle, convective TC clouds were divided into very cold deep convective clouds (IR BTs<208K) and cold high clouds (208K

  13. An evaluation of the precipitation distribution associated with landfalling tropical systems

    NASA Astrophysics Data System (ADS)

    Atallah, Eyad H.

    Several recent landfalling tropical cyclones (e.g. Dennis, Floyd, and Irene 1999) have highlighted a need for a refinement in the forecasting paradigms and techniques in the area of quantitative precipitation forecasting (QPF). Accordingly, several landfalling tropical storms were composited based on the precipitation distribution relative to the cyclone track (i.e. left of, right of, or along track), and cases from each composite were examined using a potential vorticity (PV) and quasi-geostrophic (QG) framework. Results indicate that a left of track precipitation distribution (e.g. Floyd 1999) is characteristic of tropical systems undergoing extratropical transition (ET). In these cases, a significant positively tilted mid-latitude trough approaches the cyclone from the northwest, shifting precipitation to the north-northwest of the cyclone. PV redistribution through diabatic heating then leads to enhanced ridging over and downstream of the tropical cyclone resulting in an increase in the cyclonic advection of vorticity by the thermal wind. Precipitation distribution is heaviest to the right of the track of the storm when downstream intensification of the ridge is important (e.g. David, 1979). Enhancement of the downstream ridge ahead of a weak mid-latitude trough accentuates the PV gradient between the tropical system and the downstream ridge. This, in combination with a slight acceleration in the movement of the tropical system, produces a region of enhanced positive PV advection (implied ascent) between the tropical system and the downstream ridge. Precipitation is heaviest along/very near the track of a storm when shear values are low and/or oriented along the track of the tropical cyclone (e.g. Fran 1996). Without large scale forcing for vertical motion associated with a midlatitude trough, most of the ascent remains concentrated near the storm core in the region of greatest diabatic heating and maximum wind speeds. In all cases, the diabatic enhancement of the downstream ridge is instrumental in the redistribution of precipitation about the tropical system. Unfortunately, this process is not well simulated in operational forecast models, leading to systematic errors in QPF.

  14. Sandy retired from list of Atlantic Basin tropical cyclone names

    Science.gov Websites

    2012 Atlantic hurricane season Media Contact Dennis Feltgen 305-229-4404 305-433-1933 (cellular) Share tropical cyclone names April 11, 2013 GOES East image of Hurricane Sandy, Oct. 29, 2012. This NOAA GOES-13 cyclone names by the World Meteorological Organization's hurricane committee because of the extreme

  15. Tropical cyclones cause CaCO3 undersaturation of coral reef seawater in a high-CO2 world

    NASA Astrophysics Data System (ADS)

    Manzello, Derek; Enochs, Ian; Musielewicz, Sylvia; Carlton, Renée.; Gledhill, Dwight

    2013-10-01

    Ocean acidification is the global decline in seawater pH and calcium carbonate (CaCO3) saturation state (Ω) due to the uptake of anthropogenic CO2 by the world's oceans. Acidification impairs CaCO3 shell and skeleton construction by marine organisms. Coral reefs are particularly vulnerable, as they are constructed by the CaCO3 skeletons of corals and other calcifiers. We understand relatively little about how coral reefs will respond to ocean acidification in combination with other disturbances, such as tropical cyclones. Seawater carbonate chemistry data collected from two reefs in the Florida Keys before, during, and after Tropical Storm Isaac provide the most thorough data to-date on how tropical cyclones affect the seawater CO2 system of coral reefs. Tropical Storm Isaac caused both an immediate and prolonged decline in seawater pH. Aragonite saturation state was depressed by 1.0 for a full week after the storm impact. Based on current "business-as-usual" CO2 emissions scenarios, we show that tropical cyclones with high rainfall and runoff can cause periods of undersaturation (Ω < 1.0) for high-Mg calcite and aragonite mineral phases at acidification levels before the end of this century. Week-long periods of undersaturation occur for 18 mol % high-Mg calcite after storms by the end of the century. In a high-CO2 world, CaCO3 undersaturation of coral reef seawater will occur as a result of even modest tropical cyclones. The expected increase in the strength, frequency, and rainfall of the most severe tropical cyclones with climate change in combination with ocean acidification will negatively impact the structural persistence of coral reefs.

  16. Tropical Cyclones Cause CaCO3 Undersaturation of Coral Reef Seawater in a High-CO2 World

    NASA Astrophysics Data System (ADS)

    Manzello, D.; Enochs, I.; Carlton, R.; Musielewicz, S.; Gledhill, D. K.

    2013-12-01

    Ocean acidification is the global decline in seawater pH and calcium carbonate (CaCO3) saturation state (Ω) due to the uptake of anthropogenic CO2 by the world's oceans. Acidification impairs CaCO3 shell and skeleton construction by marine organisms. Coral reefs are particularly vulnerable, as they are constructed by the CaCO3 skeletons of corals and other calcifiers. We understand relatively little about how coral reefs will respond to ocean acidification in combination with other disturbances, such as tropical cyclones. Seawater carbonate chemistry data collected from two reefs in the Florida Keys before, during, and after Tropical Storm Isaac provide the most thorough data to-date on how tropical cyclones affect the seawater CO2-system of coral reefs. Tropical Storm Isaac caused both an immediate and prolonged decline in seawater pH. Aragonite saturation state was depressed by 1.0 for a full week after the storm impact. Based on current 'business-as-usual' CO2 emissions scenarios, we show that tropical cyclones with high rainfall and runoff can cause periods of undersaturation (Ω < 1.0) for high-Mg calcite and aragonite mineral phases at acidification levels before the end of this century. Week-long periods of undersaturation occur for 18 mol% high-Mg calcite after storms by the end of the century. In a high-CO2 world, CaCO3 undersaturation of coral reef seawater can occur as a result of even modest tropical cyclones. The expected increase in the strength, frequency, and rainfall of the most severe tropical cyclones with climate change in combination with ocean acidification will negatively impact the structural persistence of coral reefs over this century.

  17. Analysis of Impact of Tropical Cyclone Blance on Rainfall at Kupang Region Based on Atmospheric Condition and Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Roguna, S.; Saragih, I. J. A.; Siregar, P. S.; Julius, A. M.

    2018-04-01

    The Tropical Depression previously identified on March 3, 2017, at Arafuru Sea has grown to Tropical Cyclone Blance on March 5, 2017. The existence of Tropical Cyclone Blance gave impacts like increasing rainfall for some regions in Indonesia until March 7, 2017, such as Kupang. The increase of rainfall cannot be separated from the atmospheric dynamics related to convection processes and the formation of clouds. Analysis of weather parameters is made such as vorticity to observe vertical motion over the study area, vertical velocity to see the speed of lift force in the atmosphere, wind to see patterns of air mass distribution and rainfall to see the increase of rainfall compared to several days before the cyclone. Analysis of satellite imagery data is used as supporting analysis to see clouds imagery and movement direction of the cyclone. The results of weather parameters analysis show strong vorticity and lift force of air mass support the growth of Cumulonimbus clouds, cyclonic patterns on wind streamline and significant increase of rainfall compared to previous days. The results of satellite imagery analysis show the convective clouds over Kupang and surrounding areas when this phenomena and cyclone pattern moved down from Arafuru Sea towards the western part of Australia.

  18. Resolving Tropical Cyclone Intensity in Models

    NASA Astrophysics Data System (ADS)

    Davis, C. A.

    2018-02-01

    In recent years, global weather forecast models and global climate models have begun to depict intense tropical cyclones, even up to category 5 on the Saffir-Simpson scale. In light of the limitation of horizontal resolution in such models, the author performs calculations, using the extended Best Track data for Atlantic tropical cyclones, to estimate the ability of models with differing grid spacing to represent Atlantic tropical cyclone intensity statistically. Results indicate that, under optimistic assumptions, models with horizontal grid spacing of one fourth degree or coarser should not produce a realistic number of category 4 and 5 storms unless there are errors in spatial attributes of the wind field. Furthermore, the case of Irma (2017) is used to demonstrate the importance of a realistic depiction of angular momentum and to motivate the use of angular momentum in model evaluation.

  19. Numerical simulations of tropical cyclones with assimilation of satellite, radar and in-situ observations: lessons learned from recent field programs and real-time experimental forecasts

    NASA Astrophysics Data System (ADS)

    Pu, Z.; Zhang, L.

    2010-12-01

    The impact of data assimilation on the predictability of tropical cyclones is examined with the cases from recent field programs and real-time hurricane forecast experiments. Mesoscale numerical simulations are performed to simulate major typhoons during the T-PARC/TCS08 field campaign with the assimilation of satellite, radar and in-situ observations. Results confirmed that data assimilation has indeed resulted in improved numerical simulations of tropical cyclones. However, positive impacts from the satellite and radar data are strongly depend on the quality of these data. Specifically, it is found that the overall impacts of assimilating AIRS retrieved atmospheric temperature and moisture profiles on numerical simulations of tropical cyclones are very sensitive to the bias corrections of the data.For instance, the dry biases of moisture profiles can cause the decay of tropical cyclones in the numerical simulations.In addition, the quality of airborne Doppler radar data has strong influence on numerical simulations of tropical cyclones in terms of their track, intensity and precipitation structures. Outcomes from assimilating radar data with various quality thresholds suggest that a trade-off between the quality and area coverage of the radar data is necessary in the practice. Some of those experiences obtained from the field case studies are applied to the near-real time experimental hurricane forecasts during the 2010 hurricane season. Results and issues raised from the case studies and real-time experiments will be discussed.

  20. Moist Thermodynamics of Tropical Cyclone Formation and Intensification in High-Resolution Climate Models

    NASA Astrophysics Data System (ADS)

    Wing, A. A.; Camargo, S. J.; Sobel, A. H.; Kim, D.; Moon, Y.; Bosilovich, M. G.; Murakami, H.; Reed, K. A.; Vecchi, G. A.; Wehner, M. F.; Zarzycki, C. M.; Zhao, M.

    2017-12-01

    In recent years, climate models have improved such that high-resolution simulations are able to reproduce the climatology of tropical cyclone activity with some fidelity and show some skill in seasonal forecasting. However, biases remain in many models, motivating a better understanding of what factors control the representation of tropical cyclone activity in climate models. We explore tropical cyclogenesis and intensification processes in six high-resolution climate models from NOAA/GFDL, NCAR, and NASA, including both coupled and uncoupled configurations. Our analysis framework focuses on how convection, moisture, clouds and related processes are coupled and employs budgets of column moist static energy and the spatial variance of column moist static energy. The latter allows us to quantify the different feedback processes responsible for the amplification of moist static energy anomalies associated with the organization of convection and cyclogenesis, including surface flux feedbacks and cloud-radiative feedbacks. We track the formation and evolution of tropical cyclones in the climate model simulations and apply our analysis along the individual tracks and composited over many tropical cyclones. We use two methods of compositing: a composite over all TC track points in a given intensity range, and a composite relative to the time of lifetime maximum intensity for each storm (at the same stage in the TC life cycle).

  1. Bottom-up determination of air-sea momentum exchange under a major tropical cyclone.

    PubMed

    Jarosz, Ewa; Mitchell, Douglas A; Wang, David W; Teague, William J

    2007-03-23

    As a result of increasing frequency and intensity of tropical cyclones, an accurate forecasting of cyclone evolution and ocean response is becoming even more important to reduce threats to lives and property in coastal regions. To improve predictions, accurate evaluation of the air-sea momentum exchange is required. Using current observations recorded during a major tropical cyclone, we have estimated this momentum transfer from the ocean side of the air-sea interface, and we discuss it in terms of the drag coefficient. For winds between 20 and 48 meters per second, this coefficient initially increases and peaks at winds of about 32 meters per second before decreasing.

  2. Objective classification of historical tropical cyclone intensity

    NASA Astrophysics Data System (ADS)

    Chenoweth, Michael

    2007-03-01

    Preinstrumental records of historical tropical cyclone activity require objective methods for accurately categorizing tropical cyclone intensity. Here wind force terms and damage reports from newspaper accounts in the Lesser Antilles and Jamaica for the period 1795-1879 are compared with wind speed estimates calculated from barometric pressure data. A total of 95 separate barometric pressure readings and colocated simultaneous wind force descriptors and wind-induced damage reports are compared. The wind speed estimates from barometric pressure data are taken as the most reliable and serve as a standard to compare against other data. Wind-induced damage reports are used to produce an estimated wind speed range using a modified Fujita scale. Wind force terms are compared with the barometric pressure data to determine if a gale, as used in the contemporary newspapers, is consistent with the modern definition of a gale. Results indicate that the modern definition of a gale (the threshold point separating the classification of a tropical depression from a tropical storm) is equivalent to that in contemporary newspaper accounts. Barometric pressure values are consistent with both reported wind force terms and wind damage on land when the location, speed and direction of movement of the tropical cyclone are determined. Damage reports and derived wind force estimates are consistent with other published results. Biases in ships' logbooks are confirmed and wind force terms of gale strength or greater are identified. These results offer a bridge between the earlier noninstrumental records of tropical cyclones and modern records thereby offering a method of consistently classifying storms in the Caribbean region into tropical depressions, tropical storms, nonmajor and major hurricanes.

  3. Using CYGNSS to Observe Convectively Driven Near-Surface Winds in Tropical Precipitation Systems During Madden-Julian Oscillation Events

    NASA Technical Reports Server (NTRS)

    Lang, Timothy J.; Li, Xuanli; Mecikalski, John; Hoover, Kacie; Castillo, Tyler; Chronis, Themis

    2017-01-01

    The Cyclone Global Navigation OKLMA 1411 UTC Satellite System (CYGNSS) is a multi-satellite constellation that launched 15 December 2016. The primary objective of CYGNSS is to use bistatic Global Positioning System (GPS) reflectometry to accurately measure near-surface wind speeds within the heavily raining inner core of tropical cyclones. CYGNSS also features rapid revisit times over a given region in the tropics - ranging from several minutes to a few hours, depending on the constellation geometry at that time. Despite the focus on tropical cyclones, the ability of CYGNSS to provide rapid updates of winds, unbiased by the presence of precipitation, has many other potential applications related to general tropical convection.

  4. Applications of NASA TROPICS Data for Tropical Cyclone Analysis, Nowcasting, and Impacts

    NASA Astrophysics Data System (ADS)

    Zavodsky, B.; Dunion, J. P.; Blackwell, W. J.; Braun, S. A.; Green, D. S.; Velden, C.; Adler, R. F.; Cossuth, J.; Murray, J. J.; Brennan, M. J.

    2017-12-01

    The National Aeronautics and Space Administration (NASA) Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission is a constellation of state-of-the-science observing platforms that will measure temperature and humidity soundings and precipitation with spatial resolution comparable to current operational passive microwave sounders but with unprecedented temporal resolution. TROPICS is a cost-capped ($30M) Venture-class mission funded by the NASA Earth Science Division. The mission is comprised of a constellation of 3 unit (3U) SmallSats, each hosting a 12-channel passive microwave spectrometer based on the Micro-sized Microwave Atmospheric Satellite 2 (MicroMAS-2) developed at MIT LL. TROPICS will provide imagery near 91 and 205 GHz, temperature sounding near 118 GHz, and moisture sounding near 183 GHz. Spatial resolution at nadir will be around 27 km for temperature and 17 km for moisture and precipitation. The swath width is approximately 2000 km. TROPICS enables temporal resolution similar to geostationary orbit but at a much lower cost, demonstrating a technology that could impact the design of future Earth-observing missions. The TROPICS satellites for the mission are slated for delivery to NASA in 2019 with potential launch opportunities in 2020. The primary mission objective of TROPICS is to relate temperature, humidity, and precipitation structure to the evolution of tropical cyclone (TC) intensity. This abstract summarizes the outcomes of the 1st TROPICS Applications Workshop, held from May 8-10, 2017 at the University of Miami. At this meeting, a series of presentations and breakout discussions in the topical areas of Tropical Cyclone Dynamics, Tropical Cyclone Analysis and Nowcasting, Tropical Cyclone Modeling and Data Assimilation, and Terrestrial Impacts were convened to identify applications of the mission data and to begin to establish a community of end-users who will be able to benefit from TROPICS. Key takeaways, partnerships, and applications will be highlighted.

  5. The role of mid-level vortex in the intensification and weakening of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Kutty, Govindan; Gohil, Kanishk

    2017-10-01

    The present study examines the dynamics of mid-tropospheric vortex during cyclogenesis and quantifies the importance of such vortex developments in the intensification of tropical cyclone. The genesis of tropical cyclones are investigated based on two most widely accepted theories that explain the mechanism of cyclone formation namely `top-down' and `bottom-up' dynamics. The Weather Research and Forecast model is employed to generate high resolution dataset required for analysis. The development of the mid-level vortex was analyzed with regard to the evolution of potential vorticity (PV), relative vorticity (RV) and vertical wind shear. Two tropical cyclones which include the developing cyclone, Hudhud and the non-developing cyclone, Helen are considered. Further, Hudhud and Helen, is compared to a deep depression formed over Bay of Bengal to highlight the significance of the mid-level vortex in the genesis of a tropical cyclone. Major results obtained are as follows: stronger positive PV anomalies are noticed over upper and lower levels of troposphere near the storm center for Hudhud as compared to Helen and the depression; Constructive interference in upper and lower level positive PV anomaly maxima resulted in the intensification of Hudhud. For Hudhud, the evolution of RV follows `top-down' dynamics, in which the growth starts from the middle troposphere and then progresses downwards. As for Helen, RV growth seems to follow `bottom-up' mechanism initiating growth from the lower troposphere. Though, the growth of RV for the depression initiates from mid-troposphere, rapid dissipation of mid-level vortex destabilizes the system. It is found that the formation mid-level vortex in the genesis phase is significantly important for the intensification of the storm.

  6. Continued Analysis on Multiscale Aspects of Tropical Cyclone Formation, Structure Change and Predictability in the Western North Pacific Region as Part of the TCS08 DRI

    DTIC Science & Technology

    2012-09-30

    Atmospheric Administration. The published paper was entitled “Structure of the Eye and Eyewall of Hurricane Hugo (1989) and was published in Mon. Wea. Rev., 136, 1237-1259. ...developments in tropical cyclone intensification theory A new paradigm of tropical cyclone intensification and hurricane boundary layer dynamics has been... Hurricane Rita (2005) show strong support for the second spin-up mechanism in the concentric eyewall lifecycle. Didlake and Houze (2011) found a

  7. Tropical Cyclones and Climate Controls in the Western Atlantic Basin during the First Half of the Nineteenth Century

    NASA Astrophysics Data System (ADS)

    Mock, C. J.; Dodds, S. F.; Rodgers, M. D.; Patwardhan, A.

    2008-12-01

    This study describes new comprehensive reconstructions of individual Western Atlantic Basin tropical cyclones for each year of the first half of the nineteenth century in the Western Atlantic Basin that are directly compatible and supplement the National Hurricane Center's HURDAT (Atlantic basin hurricane database). Data used for reconstructing tropical cyclones come from ship logbooks, ship protests, diaries, newspapers, and early instrumental records from more than 50 different archival repositories in the United States and the United Kingdom. Tropical cyclone strength was discriminated among tropical storms, hurricanes, major hurricanes, and non-tropical lows at least at tropical storm strength. The results detail the characteristics of several hundred storms, many of them being newly documented, and tracks for all storms were mapped. Overall, prominent active periods of tropical cyclones are evident along the western Atlantic Ocean in the 1830s but Caribbean and Gulf coasts exhibit active periods as being more evident in the 1810s and 1820s. Differences in decadal variations were even more pronounced when examining time series of activity at the statewide scale. High resolution paleoclimate and historical instrumental records of the AMO, NAO, ENSO, Atlantic SSTs, West African rainfall, and volcanic activity explain how different modes in these forcing mechanisms may explain some of the multidecadal and interannual variations. The early nineteenth century active hurricane activity appears to be particularly unique in corresponding with a low (negative index) AMO period, and as they relate to particular synoptic-scale patterns in the latter part of the Little Ice Age. Model simulations offer some hypotheses on such patterns, perhaps suggesting increased baroclinic-related storms and a slight later possible shift in the seasonal peak of tropical cyclones for some areas at times. Some years, such as 1806, 1837, 1838, 1842, and 1846 have particularly very active seasons, and we critically examined the synoptic-scale circulation responsible and also related some of the storms as they relate to potential modern analogs.

  8. The Impact of Lightning on Hurricane Rapid Intensification Forecasts Using the HWRF Model

    NASA Astrophysics Data System (ADS)

    Rosado, K.; Tallapragada, V.; Jenkins, G. S.

    2016-12-01

    In 2010, the National Oceanic and Atmospheric Administration (NOAA) created the Hurricane Forecast Improvement Project (HFIP) with the main goal of improving the tropical cyclone intensity and track forecasts by 50% in ten years. One of the focus areas is the improvement of the tropical cyclone rapid intensification (RI) forecasts. In order to contribute to this task, the role of lightning during the life cycle of a tropical cyclone using the NCEP operational HWRF hurricane model has been investigated. We ask two key research questions: (1) What is the functional relationship between atmospheric moisture content, lightning, and intensity in the HWRF model? and (2) How well does the HWRF model forecast the spatial distributions of lightning before, during, and after tropical cyclone intensification, especially for RI events? In order to address those questions, a lightning parameterization scheme called the Lightning Potential Index (LPI) was implemented into the HWRF model. The selected study cases to test the LPI implementation on the 2015 HWRF (operational version) are: Earl and Joaquin (North Atlantic), Haiyan (Western North Pacific), and Patricia (Eastern North Pacific). Five-day forecasts was executed on each case study with emphasis on rapid intensification periods. An extensive analysis between observed "best track" intensity, model intensity forecast, and potential for lightning forecast was performed. Preliminary results show that: (1) strong correlation between lightning and intensity changes does exists; and (2) the potential for lightning increases to its maximum peak a few hours prior to the peak intensity of the tropical cyclone. LPI peak values could potentially serve as indicator for future rapid intensification periods. Results from this investigation are giving us a better understanding of the mechanism behind lightning as a proxy for tropical cyclone steady state intensification and tropical cyclone rapid intensification processes. Improvement of lightning forecast has the potential to improve HWRF hurricane model intensity forecasts.

  9. Structural Changes and Convective Processes in Tropical Cyclones as Seen in Infrared and Water Vapor Satellite Data

    DTIC Science & Technology

    2013-05-10

    tropical depression; yellow, a tropical storm ; red, a typhoon; and purple, an extratropical cyclone (after http://agora.ex.nii.ac.jp/digital- typhoon... storm (JTWC 2012). Tropical Storm Jelawat continued into the Sea of Japan, where it completed extratropical transition (JTWC 2012...including strong winds, storm surge, high waves, and heavy rainfall, threaten archipelagos, densely crowded coastlines, and naval forces ashore and

  10. Comparison of tropical cyclogenesis processes in climate model and cloud-resolving model simulations using moist static energy budget analysis

    NASA Astrophysics Data System (ADS)

    Wing, Allison; Camargo, Suzana; Sobel, Adam; Kim, Daehyun; Murakami, Hiroyuki; Reed, Kevin; Vecchi, Gabriel; Wehner, Michael; Zarzycki, Colin; Zhao, Ming

    2017-04-01

    In recent years, climate models have improved such that high-resolution simulations are able to reproduce the climatology of tropical cyclone activity with some fidelity and show some skill in seasonal forecasting. However biases remain in many models, motivating a better understanding of what factors control the representation of tropical cyclone activity in climate models. We explore the tropical cyclogenesis processes in five high-resolution climate models, including both coupled and uncoupled configurations. Our analysis framework focuses on how convection, moisture, clouds and related processes are coupled and employs budgets of column moist static energy and the spatial variance of column moist static energy. The latter was originally developed to study the mechanisms of tropical convective organization in idealized cloud-resolving models, and allows us to quantify the different feedback processes responsible for the amplification of moist static energy anomalies associated with the organization of convection and cyclogenesis. We track the formation and evolution of tropical cyclones in the climate model simulations and apply our analysis both along the individual tracks and composited over many tropical cyclones. We then compare the genesis processes; in particular, the role of cloud-radiation interactions, to those of spontaneous tropical cyclogenesis in idealized cloud-resolving model simulations.

  11. Hydroclimatology of Extreme Precipitation and Floods Originating from the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Nakamura, Jennifer

    This study explores seasonal patterns and structures of moisture transport pathways from the North Atlantic Ocean and the Gulf of Mexico that lead to extreme large-scale precipitation and floods over land. Storm tracks, such as the tropical cyclone tracks in the Northern Atlantic Ocean, are an example of moisture transport pathways. In the first part, North Atlantic cyclone tracks are clustered by the moments to identify common traits in genesis locations, track shapes, intensities, life spans, landfalls, seasonal patterns, and trends. The clustering results of part one show the dynamical behavior differences of tropical cyclones born in different parts of the basin. Drawing on these conclusions, in the second part, statistical track segment model is developed for simulation of tracks to improve reliability of tropical cyclone risk probabilities. Moisture transport pathways from the North Atlantic Ocean are also explored though the specific regional flood dynamics of the U.S. Midwest and the United Kingdom in part three of the dissertation. Part I. Classifying North Atlantic Tropical Cyclones Tracks by Mass Moments. A new method for classifying tropical cyclones or similar features is introduced. The cyclone track is considered as an open spatial curve, with the wind speed or power information along the curve considered as a mass attribute. The first and second moments of the resulting object are computed and then used to classify the historical tracks using standard clustering algorithms. Mass moments allow the whole track shape, length and location to be incorporated into the clustering methodology. Tropical cyclones in the North Atlantic basin are clustered with K-means by mass moments producing an optimum of six clusters with differing genesis locations, track shapes, intensities, life spans, landfalls, seasonality, and trends. Even variables that are not directly clustered show distinct separation between clusters. A trend analysis confirms recent conclusions of increasing tropical cyclones in the basin over the past two decades. However, the trends vary across clusters. Part II: Tropical cyclone Intensity and Track Simulator (HITS) with Atlantic Ocean Applications for Risk Assessment. A nonparametric stochastic model is developed and tested for the simulation of tropical cyclone tracks. Tropical cyclone tracks demonstrate continuity and memory over many time and space steps. Clusters of tracks can be coherent, and the separation between clusters may be marked by geographical locations where groups of tracks diverge due to the physics of the underlying process. Consequently, their evolution may be non-Markovian. Markovian simulation models, as often used, may produce tracks that potentially diverge or lose memory quicker than nature. This is addressed here through a model that simulates tracks by randomly sampling track segments of varying length, selected from historical tracks. For performance evaluation, a spatial grid is imposed on the domain of interest. For each grid box, long-term tropical cyclone risk is assessed through the annual probability distributions of the number of storm hours, landfalls, winds, and other statistics. Total storm length is determined at birth by local distribution, and movement to other tropical cyclone segments by distance to neighbor tracks, comparative vector, and age of track. An assessment of the performance for tropical cyclone track simulation and potential directions for the improvement and use of such model are discussed. Part III: Dynamical Structure of Extreme Floods in the U.S. Midwest and the United Kingdom. Twenty extreme spring floods that occurred in the Ohio Basin between 1901 and 2008, identified from daily river discharge data, are investigated and compared to the April 2011 Ohio River flood event. Composites of synoptic fields for the flood events show that all these floods are associated with a similar pattern of sustained advection of low-level moisture and warm air from the tropical Atlantic Ocean and the Gulf of Mexico. The typical flow conditions are governed by an anomalous semi-stationary ridge situated east of the US East Coast, which steers the moisture and converges it into the Ohio Valley. Significantly, the moisture path common to all the 20 cases studied here as well as the case of April 2011 is distinctly different from the normal path of Atlantic moisture during spring, which occurs further west. It is shown further that the Ohio basin moisture convergence responsible for the floods is caused primarily by the atmospheric circulation anomaly advecting the climatological mean moisture field. Transport and related convergence due to the covariance between moisture anomalies and circulation anomalies are of secondary but non-negligible importance. The importance of atmospheric circulation anomalies to floods is confirmed by conducting a similar analysis for a series of winter floods on the River Eden in northwest England.

  12. Assessing the impact of cyclones in the coastal zone of Bangladesh

    NASA Astrophysics Data System (ADS)

    Wolf, Judith; Bricheno, Lucy; Chowdury, Shahad; Rahman, Munsur; Ghosh, Tuhin; Kay, Susan; Caesar, John

    2014-05-01

    We review the state of knowledge regarding tropical cyclones and their impacts on coastal ecosystems, as well as the livelihood and health of the coastal communities, under the present and future climate, with application to the coastal zone of Bangladesh. This region is particularly vulnerable to tropical cyclones as it is very low-lying and densely populated. Cyclones cause damage due to the high wind speed and also the ensuing storm surge, which causes inundation and salinity intrusion into agricultural land and contaminates fresh water. The world's largest mangrove forest, the Sundarbans, protects the coast of the Brahmaputra-Ganges-Meghna (BGM) delta from these cyclonic storms but mangroves are themselves vulnerable to cyclone damage, as in 2007 when ~36% of the mangrove area was severely damaged leading to further losses of livelihood. We apply an idealised cyclone model and use the winds and pressures from this model to drive a storm surge model in the Bay of Bengal, in order to examine the impact of the intensity, track speed and landfall of the cyclones in terms of surge and inundation. The model is tested by reproducing the track and intensity of Cyclone Sidr of 2007. We also examine the projected future climate from the South Asia Regional Climate Model to understand how tropical cyclones may change under global warming and assess how this may impact the BGM Delta over the 21st century.

  13. A climatological model of North Indian Ocean tropical cyclone genesis, tracks and landfall

    NASA Astrophysics Data System (ADS)

    Wahiduzzaman, Mohammad; Oliver, Eric C. J.; Wotherspoon, Simon J.; Holbrook, Neil J.

    2017-10-01

    Extensive damage and loss of life can be caused by tropical cyclones (TCs) that make landfall. Modelling of TC landfall probability is beneficial to insurance/re-insurance companies, decision makers, government policy and planning, and residents in coastal areas. In this study, we develop a climatological model of tropical cyclone genesis, tracks and landfall for North Indian Ocean (NIO) rim countries based on kernel density estimation, a generalised additive model (GAM) including an Euler integration step, and landfall detection using a country mask approach. Using a 35-year record (1979-2013) of tropical cyclone track observations from the Joint Typhoon Warning Centre (part of the International Best Track Archive Climate Stewardship Version 6), the GAM is fitted to the observed cyclone track velocities as a smooth function of location in each season. The distribution of cyclone genesis points is approximated by kernel density estimation. The model simulated TCs are randomly selected from the fitted kernel (TC genesis), and the cyclone paths (TC tracks), represented by the GAM together with the application of stochastic innovations at each step, are simulated to generate a suite of NIO rim landfall statistics. Three hindcast validation methods are applied to evaluate the integrity of the model. First, leave-one-out cross validation is applied whereby the country of landfall is determined by the majority vote (considering the location by only highest percentage of landfall) from the simulated tracks. Second, the probability distribution of simulated landfall is evaluated against the observed landfall. Third, the distances between the point of observed landfall and simulated landfall are compared and quantified. Overall, the model shows very good cross-validated hindcast skill of modelled landfalling cyclones against observations in each of the NIO tropical cyclone seasons and for most NIO rim countries, with only a relatively small difference in the percentage of predicted landfall locations compared with observations.

  14. Multi-hazard risk assessment of coastal vulnerability from tropical cyclones - A GIS based approach for the Odisha coast.

    PubMed

    Sahoo, Bishnupriya; Bhaskaran, Prasad K

    2018-01-15

    The coastal region bordering the East coast of India is a thickly populated belt exposed to high risk and vulnerability from natural hazards such as tropical cyclones. Tropical cyclone frequencies that develop over the Bay of Bengal (average of 5-6 per year) region are much higher as compared to the Arabian Sea thereby posing a high risk factor associated with storm surge, inland inundation, wind gust, intense rainfall, etc. The Odisha State in the East coast of India experiences the highest number of cyclone strikes as compared to West Bengal, Andhra Pradesh, and Tamil Nadu. To express the destructive potential resulting from tropical cyclones the Power Dissipation Index (PDI) is a widely used metric globally. A recent study indicates that PDI for cyclones in the present decade have increased about six times as compared to the past. Hence there is a need to precisely ascertain the coastal vulnerability and risk factors associated with high intense cyclones expected in a changing climate. As such there are no comprehensive studies attempted so far on the determination of Coastal Vulnerability Index (CVI) for Odisha coast that is highly prone to cyclone strikes. With this motivation, the present study makes an attempt to investigate the physical, environmental, social, and economic impacts on coastal vulnerability associated with tropical cyclones for the Odisha coast. The study also investigates the futuristic projection of coastal vulnerability over this region expected in a changing climate scenario. Eight fair weather parameters along with storm surge height and onshore inundation were used to estimate the Physical Vulnerability Index (PVI). Thereafter, the PVI along with social, economic, and environmental vulnerability was used to determine the overall CVI using the GIS based approach. The authors believe that the comprehensive nature of this study is expected to benefit coastal zone management authorities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Tropical cyclone track Analysis over Indian Coast Using Spatio-Temporal data-mining

    NASA Astrophysics Data System (ADS)

    Mohapatra, Gyanendranath; Manjunath, Swetha; Behera, Sasmita; Mohanty, Pratap Kumar

    2015-04-01

    Tropical cyclones are a natural hazard which largely affects the lives and property with its destructive wind and heavy rainfall. Fluctuations in the frequency and intensity complicate the detection of long-term trends and play an important role in the global climate system; therefore understanding and predicting tropical cyclones track, intensity, and landfall location is of both societal and scientific significance. In this study a data-mining approach is being used to analyze the tropical cyclone track both in the temporal and spatial scale. Basically, the Indian coast line is divided into four zones viz. north east, south east in the eastern side adjoining Bay of Bengal and North west and south west in the western side adjoining Arabian sea as these coastal areas are very much vulnerable for disaster due to maximum number of landfall of Tropical Cyclones. The track and landfall associated with all the cyclones are clustered based on their intensity (Severe, moderate and low) and landfall location. The analyses are carried out for landfall location and the extent of track separately for the events happening in two seasons i.e. pre-monsoon and post-monsoon period. Along with categorization of intensity, trend analysis of track and the targeted zone of maximum damage also been studied. Algorithms are being developed for potential resilient and impact assessment of the parameters associated with cyclone disaster in the coastal region of India. One of the important objectives of this present work is also the identification of most disaster prone coastal area and becoming a part of the information support system during the cyclone period. Based on the statistics like mean, Standard Deviation, regression and correlation analysis, an index is developed which determines the level of damage and vulnerability along the coastal region. This index can be used for the early warning system of particular coastal areas for the preparedness and mitigation of future cyclone events.

  16. Tropical Cyclones, Hurricanes, and Climate: NASA's Global Cloud-Scale Simulations and New Observations that Characterize the Lifecycle of Hurricanes

    NASA Technical Reports Server (NTRS)

    Putman, William M.

    2010-01-01

    One of the primary interests of Global Change research is the impact of climate changes and climate variability on extreme weather events, such as intense tropical storms and hurricanes. Atmospheric climate models run at resolutions of global weather models have been used to study the impact of climate variability, as seen in sea surface temperatures, on the frequency and intensity of tropical cyclones. NASA's Goddard Earth Observing System Model, version 5 (GEOS-5) in ensembles run at 50 km resolution has been able to reproduce the interannual variations of tropical cyclone frequency seen in nature. This, and other global models, have found it much more difficult to reproduce the interannual changes in intensity, a result that reflects the inability of the models to simulate the intensities of the most extreme storms. Better representation of the structures of cyclones requires much higher resolution models. Such improved representation is also fundamental to making best use of satellite observations. In collaboration with NOAA's Geophysical Fluid Dynamics Laboratory, GEOS-5 now has the capability of running at much higher resolution to better represent cloud-scale resolutions. Global simulations at cloud-permitting resolutions (10- to 3.5-km) allows for the development of realistic tropical cyclones from tropical storm 119 km/hr winds) to category 5 (>249km1hr winds) intensities. GEOS-5 has produced realistic rain-band and eye-wall structures in tropical cyclones that can be directly analyzed against satellite observations. For the first time a global climate model is capable of representing realistic intensity and track variability on a seasonal scale across basins. GEOS-5 is also used in assimilation mode to test the impact of NASA's observations on tropical cyclone forecasts. One such test, for tropical cyclone Nargis in the Indian Ocean in May 2008, showed that observations from Atmospheric Infrared Sounder (AIRS) and the Advanced Microwave Sounding Unit (AMSU-A) on Aqua substantially reduced forecast track errors. Tropical cyclones in the northern Indian Ocean pose serious challenges to operational weather forecasting systems, partly due to their shorter lifespan and more erratic track, compared to those in the Atlantic and the Pacific. SA is also bringing several state of the art instruments in recent field campaigns to peer under the clouds and study the inner workings of the tropical storms. With the Genesis and Rapid Intensification Processes (GRIP) experiment, a NASA Earth science field experiment in 2010 that includes the Global Hawk Unmanned Airborne System (UAS) configured with a suite of in situ and remote sensing instruments that are observing and characterizing the lifecycle of hurricanes, we expect significant improvement in our understanding of the track and intensification processes with the assimilation of the satellite and field campaign observations of meteorological parameters in the numerical prediction models.

  17. Relationship of The Tropical Cyclogenesis With Solar and Magnetospheric Activities

    NASA Astrophysics Data System (ADS)

    Vishnevsky, O. V.; Pankov, V. M.; Erokhine, N. S.

    Formation of tropical cyclones is a badly studied period in their life cycle even though there are many papers dedicated to analysis of influence of different parameters upon cyclones occurrence frequency (see e.g., Gray W.M.). Present paper is dedicated to study of correlation of solar and magnetospheric activity with the appearance of tropical cyclones in north-west region of Pacific ocean. Study of correlation was performed by using both classical statistical methods (including maximum entropy method) and quite modern ones, for example multifractal analysis. Information about Wolf's numbers and cyclogenesis intensity in period of 1944-2000 was received from different Internet databases. It was shown that power spectra maximums of Wolf's numbers and appeared tropical cyclones ones corresponds to 11-year period; solar activity and cyclogenesis processes intensity are in antiphase; maximum of mutual correlation coefficient (~ 0.8) between Wolf's numbers and cyclogenesis intensity is in South-China sea. There is a relation of multifractal characteristics calculated for both time series with the mutual correlation function that is another indicator of correlation between tropical cyclogenesis and solar-magnetospheric activity. So, there is the correlation between solar-magnetospheric activity and tropical cyclone intensity in this region. Possible physical mechanisms of such correlation including anomalous precipitations charged particles from the Earth radiation belts and wind intensity amplification in the troposphere are discussed.

  18. Experiments with Tropical Cyclone Wave and Intensity Forecasts

    DTIC Science & Technology

    2008-09-30

    algorithm In collaboration with Paul Wittmann (Fleet Numerical Metorology and Oceanography Center) and Hendrik Tolman (National Centers for...Wittmann, P.A., C Sampson and H. Tolman: 2006: Wave Analysis Guidance for Tropical Cyclone Forecast Advisories. 9th International Workshop on Wave

  19. How do beetle assemblages respond to cyclonic disturbance of a fragmented tropical rainforest landscape?

    PubMed

    Grimbacher, Peter S; Stork, Nigel E

    2009-09-01

    There are surprisingly few studies documenting effects of tropical cyclones (including hurricanes and typhoons) on rainforest animals, and especially insects, considering that many tropical forests are frequently affected by cyclonic disturbance. Consequently, we sampled a beetle assemblage inhabiting 18 upland rainforest sites in a fragmented landscape in north-eastern Queensland, Australia, using a standardised sampling protocol in 2002 and again 12 months after the passage of Severe Tropical Cyclone Larry (March 2006). The spatial configuration of sites allowed us to test if the effects of a cyclone and those from fragmentation interact. From all insect samples we extracted 12,568 beetles of 382 species from ten families. Beetle species composition was significantly different pre-and post-cyclone although the magnitude of faunal change was not large with 205 species, representing 96% of all individuals, present in both sampling events. Sites with the greatest changes to structure had the greatest changes in species composition. At the site level, increases in woody debris and wood-feeding beetle (Scolytinae) counts were significantly correlated but changes in the percent of ground vegetation were not mirrored by changes in the abundance of foliage-feeding beetles (Chrysomelidae). The overall direction of beetle assemblage change was consistent with increasing aridity, presumably caused by the loss of canopy cover. Sites with the greatest canopy loss had the strongest changes in the proportion of species previously identified in the pre-cyclone study as preferring arid or moist rainforest environments. The magnitude of fragmentation effects was virtually unaltered by the passage of Cyclone Larry. We postulate that in the short-term the effects of cyclonic disturbance and forest fragmentation both reduce the extent of moist, interior habitat.

  20. Statistical Aspects of North Atlantic Basin Tropical Cyclones During the Weather Satellite Era, 1960-2013. Part 2

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2014-01-01

    This Technical Publication (TP) is part 2 of a two-part study of the North Atlantic basin tropical cyclones that occurred during the weather satellite era, 1960-2013. In particular, this TP examines the inferred statistical relationships between 25 tropical cyclone parameters and 9 specific climate-related factors, including the (1) Oceanic Niño Index (ONI), (2) Southern Oscillation Index (SOI), (3) Atlantic Multidecadal Oscillation (AMO) index, (4) Quasi-Biennial Oscillation (QBO) index, (5) North Atlantic Oscillation (NAO) index of the Climate Prediction Center (CPC), (6) NAO index of the Climate Research Unit (CRU), (7) Armagh surface air temperature (ASAT), (8) Global Land-Ocean Temperature Index (GLOTI), and (9) Mauna Loa carbon dioxide (CO2) (MLCO2) index. Part 1 of this two-part study examined the statistical aspects of the 25 tropical cyclone parameters (e.g., frequencies, peak wind speed (PWS), accumulated cyclone energy (ACE), etc.) and provided the results of statistical testing (i.e., runs-testing, the t-statistic for independent samples, and Poisson distributions). Also, the study gave predictions for the frequencies of the number of tropical cyclones (NTC), number of hurricanes (NH), number of major hurricanes (NMH), and number of United States land-falling hurricanes (NUSLFH) expected for the 2014 season, based on the statistics of the overall interval 1960-2013, the subinterval 1995-2013, and whether the year 2014 would be either an El Niño year (ENY) or a non-El Niño year (NENY).

  1. Temporal clustering of tropical cyclones and its ecosystem impacts

    PubMed Central

    Mumby, Peter J.; Vitolo, Renato; Stephenson, David B.

    2011-01-01

    Tropical cyclones have massive economic, social, and ecological impacts, and models of their occurrence influence many planning activities from setting insurance premiums to conservation planning. Most impact models allow for geographically varying cyclone rates but assume that individual storm events occur randomly with constant rate in time. This study analyzes the statistical properties of Atlantic tropical cyclones and shows that local cyclone counts vary in time, with periods of elevated activity followed by relative quiescence. Such temporal clustering is particularly strong in the Caribbean Sea, along the coasts of Belize, Honduras, Costa Rica, Jamaica, the southwest of Haiti, and in the main hurricane development region in the North Atlantic between Africa and the Caribbean. Failing to recognize this natural nonstationarity in cyclone rates can give inaccurate impact predictions. We demonstrate this by exploring cyclone impacts on coral reefs. For a given cyclone rate, we find that clustered events have a less detrimental impact than independent random events. Predictions using a standard random hurricane model were overly pessimistic, predicting reef degradation more than a decade earlier than that expected under clustered disturbance. The presence of clustering allows coral reefs more time to recover to healthier states, but the impacts of clustering will vary from one ecosystem to another. PMID:22006300

  2. Resolution Dependence of Future Tropical Cyclone Projections of CAM5.1 in the U.S. CLIVAR Hurricane Working Group Idealized Configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehner, Michael; ., Prabhat; Reed, Kevin A.

    The four idealized configurations of the U.S. CLIVAR Hurricane Working Group are integrated using the global Community Atmospheric Model version 5.1 at two different horizontal resolutions, approximately 100 and 25 km. The publicly released 0.9° × 1.3° configuration is a poor predictor of the sign of the 0.23° × 0.31° model configuration’s change in the total number of tropical storms in a warmer climate. However, it does predict the sign of the higher-resolution configuration’s change in the number of intense tropical cyclones in a warmer climate. In the 0.23° × 0.31° model configuration, both increased CO 2 concentrations and elevatedmore » sea surface temperature (SST) independently lower the number of weak tropical storms and shorten their average duration. Conversely, increased SST causes more intense tropical cyclones and lengthens their average duration, resulting in a greater number of intense tropical cyclone days globally. Increased SST also increased maximum tropical storm instantaneous precipitation rates across all storm intensities. It was found that while a measure of maximum potential intensity based on climatological mean quantities adequately predicts the 0.23° × 0.31° model’s forced response in its most intense simulated tropical cyclones, a related measure of cyclogenesis potential fails to predict the model’s actual cyclogenesis response to warmer SSTs. These analyses lead to two broader conclusions: 1) Projections of future tropical storm activity obtained by a direct tracking of tropical storms simulated by coarse-resolution climate models must be interpreted with caution. 2) Projections of future tropical cyclogenesis obtained from metrics of model behavior that are based solely on changes in long-term climatological fields and tuned to historical records must also be interpreted with caution.« less

  3. Resolution Dependence of Future Tropical Cyclone Projections of CAM5.1 in the U.S. CLIVAR Hurricane Working Group Idealized Configurations

    DOE PAGES

    Wehner, Michael; ., Prabhat; Reed, Kevin A.; ...

    2015-05-12

    The four idealized configurations of the U.S. CLIVAR Hurricane Working Group are integrated using the global Community Atmospheric Model version 5.1 at two different horizontal resolutions, approximately 100 and 25 km. The publicly released 0.9° × 1.3° configuration is a poor predictor of the sign of the 0.23° × 0.31° model configuration’s change in the total number of tropical storms in a warmer climate. However, it does predict the sign of the higher-resolution configuration’s change in the number of intense tropical cyclones in a warmer climate. In the 0.23° × 0.31° model configuration, both increased CO 2 concentrations and elevatedmore » sea surface temperature (SST) independently lower the number of weak tropical storms and shorten their average duration. Conversely, increased SST causes more intense tropical cyclones and lengthens their average duration, resulting in a greater number of intense tropical cyclone days globally. Increased SST also increased maximum tropical storm instantaneous precipitation rates across all storm intensities. It was found that while a measure of maximum potential intensity based on climatological mean quantities adequately predicts the 0.23° × 0.31° model’s forced response in its most intense simulated tropical cyclones, a related measure of cyclogenesis potential fails to predict the model’s actual cyclogenesis response to warmer SSTs. These analyses lead to two broader conclusions: 1) Projections of future tropical storm activity obtained by a direct tracking of tropical storms simulated by coarse-resolution climate models must be interpreted with caution. 2) Projections of future tropical cyclogenesis obtained from metrics of model behavior that are based solely on changes in long-term climatological fields and tuned to historical records must also be interpreted with caution.« less

  4. The Teleconnection Between Atlantic Sea Surface Temperature and Eastern Pacific Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Patricola, C. M.; Saravanan, R.; Chang, P.

    2016-12-01

    The El Niño-Southern Oscillation (ENSO) is a major source of seasonal tropical cyclone (TC) predictability, in both local and remote ocean basins. Unusually warm eastern tropical Pacific sea-surface temperature (SST) during El Niño tends not only to enhance local TC activity in the eastern North Pacific (ENP) but also to suppress Atlantic TCs via well-known teleconnections. Here, we demonstrate that Atlantic SST variability likewise exerts a significant influence on remote TC activity in the eastern Pacific basin using observations and 27 km resolution tropical channel model simulations. Observed and simulated accumulated cyclone energy in the ENP is substantially reduced during the positive phase of the Atlantic Meridional Mode (AMM), which is characterized by warm and cool SST anomalies in the northern and southern tropical Atlantic respectively, and vice versa during the cool AMM phase. We find that the observed anti-correlation in seasonal TC activity between the Atlantic and ENP basins is driven by interannual climate variability in both the tropical Pacific (ENSO) and Atlantic (AMM). The physical mechanisms that drive the teleconnection between Atlantic SST and ENP TC activity will also be presented. This work provides information that can be used to improve seasonal forecasts and future projections of ENP tropical cyclone activity.

  5. Intensity of prehistoric tropical cyclones

    NASA Astrophysics Data System (ADS)

    Nott, Jonathan F.

    2003-04-01

    Prediction of future tropical cyclone climate scenarios requires identification of quasi-periodicities at a variety of temporal scales. Extension of records to identify trends at century and millennial scales is important, but to date the emerging field of paleotempestology has been hindered by the lack of a suitable methodology to discern the intensity of prehistoric storms. Here a technique to quantify the central pressure of prehistoric tropical cyclones is presented in detail and demonstrated for the tropical southwest Pacific region. The importance of extending records to century time scales is highlighted for northeast Australia, where a virtual absence of category 5 cyclones during the 20th century stands in contrast to an active period of severe cyclogenesis during the previous century. Several land crossing storms during the 19th century achieved central pressures lower than that ever recorded historically and close to the theoretical thermodynamic limit of storms for the region. This technique can be applied to all tropical and subtropical regions globally and will assist in obtaining more realistic predictions for future storm scenarios with implications for insurance premiums, urban and infrastructural design, and emergency planning.

  6. An Energetic Perspective on United States Tropical Cyclone Landfall Droughts

    NASA Astrophysics Data System (ADS)

    Truchelut, Ryan E.; Staehling, Erica M.

    2017-12-01

    The extremely active 2017 Atlantic hurricane season concluded an extended period of quiescent continental United States tropical cyclone landfall activity that began in 2006, commonly referred to as the landfall drought. We introduce an extended climatology of U.S. tropical cyclone activity based on accumulated cyclone energy (ACE) and use this data set to investigate variability and trends in landfall activity. The drought years between 2006 and 2016 recorded an average value of total annual ACE over the U.S. that was less than 60% of the 1900-2017 average. Scaling this landfall activity metric by basin-wide activity reveals a statistically significant downward trend since 1950, with the percentage of total Atlantic ACE expended over the continental U.S. at a series minimum during the recent drought period.

  7. Tropical Cyclone Diurnal Cycle as Observed by TRMM

    NASA Technical Reports Server (NTRS)

    Leppert, Kenneth D., II; Cecil, D. J.

    2015-01-01

    Using infrared satellite data, previous work has shown a consistent diurnal cycle in the pattern of cold cloud tops around mature tropical cyclones. In particular, an increase in the coverage by cold cloud tops often occurs in the inner core of the storm around the time of sunset and subsequently propagates outward to several hundred kilometers over the course of the following day. This consistent cycle may have important implications for structure and intensity changes of tropical cyclones and the forecasting of such changes. Because infrared satellite measurements are primarily sensitive to cloud top, the goal of this study is to use passive and active microwave measurements from the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR), respectively, to examine and better understand the tropical cyclone diurnal cycle throughout a larger depth of the storm's clouds. The National Hurricane Center's best track dataset was used to extract all PR and TMI pixels within 1000 km of each tropical cyclone that occurred in the Atlantic basin between 1998-2011. Then the data was composited according to radius (100-km bins from 0-1000 km) and local standard time (LST; 3-hr bins). Specifically, PR composites involved finding the percentage of pixels with reflectivity greater than or equal to 20 dBZ at various heights (i.e., 2-14 km in increments of 2 km) as a function of radius and time. The 37- and 85- GHz TMI channels are especially sensitive to scattering by precipitation-sized ice in the mid to upper portions of clouds. Hence, the percentage of 37- and 85-GHz polarization corrected temperatures less than various thresholds were calculated using data from all storms as a function of radius and time. For 37 GHz, thresholds of 260 K, 265 K, 270 K, and 275 K were used, and for 85 GHz, thresholds of 200-270 K in increments of 10 K were utilized. Note that convection forced by the interactions of a tropical cyclone with land (e.g., due to frictional convergence) may disrupt the natural convective cycle of a cyclone. Hence, only data pertaining to storms whose centers were greater than 300 km from land were included in the composites. Early results suggest the presence of a diurnal cycle in the PR composites of all Atlantic basin tropical cyclones from a height of 2-12 km from approximately 0-400 km radius, but the cycle is most apparent above 6 km. At a height of 8 km, there is a peak (minimum) in the percentage of PR pixels greater than or equal to 20 dBZ near 0 (21) LST in the inner core with some indication that this signal propagates outward with time. In contrast, the 37- and 85-GHz composites show little indication of a diurnal cycle at any radii, regardless of the threshold used. Ongoing work with this project will involve sub-setting the composites according to storm intensity to see if the diurnal cycle varies with storm strength. Moderate to strong vertical wind shear often leads to asymmetries in tropical cyclone convection and may disrupt the cyclone's natural diurnal cycle. Therefore, wind shear thresholds will be applied to the composites to determine if the diurnal cycle becomes more apparent in a low shear environment. Finally, other work to be completed will involve developing composites for other tropical cyclone basins, including the East Pacific, Northwest Pacific, South Pacific, and Indian Ocean.

  8. Growth form-dependent response to physical disturbance and thermal stress in Acropora corals

    NASA Astrophysics Data System (ADS)

    Muko, S.; Arakaki, S.; Nagao, M.; Sakai, Kazuhiko

    2013-03-01

    To predict the community structure in response to changing environmental conditions, it is necessary to know the species-specific reaction and relative impact strength of each disturbance. We investigated the coral communities in two sites, an exposed and a protected site, at Iriomote Island, Japan, from 2005 to 2008. During the study period, a cyclone and thermal stress were observed. All Acropora colonies, classified into four morphologies (arborescent, tabular, corymbose, and digitate), were identified and tracked through time to calculate the annual mortality and growth rate. The mortality of all Acropora colonies in the protected site was lower than that in the exposed site during the period without disturbances. Extremely higher mortality due to bleaching was observed in tabular and corymbose Acropora, compared to other growth forms, at the protected sites after thermal stress. In contrast, physical disturbance by a tropical cyclone induced the highest mortality in arborescent and digitate corals at the exposed site. Moreover, arborescent corals exhibited a remarkable decline 1 year after the tropical cyclone at the exposed site. The growth of colonies that survived coral bleaching did not decrease in the following year compared to previous year for all growth forms, but the growth of arborescent and tabular remnant corals at the exposed site declined severely after the tropical cyclone compared to previous year. The delayed mortality and lowered growth rate after the tropical cyclone were probably due to the damage caused by the tropical cyclone. These results indicate that the cyclone had a greater impact on fragile corals than expected. This study provides useful information for the evaluation of Acropora coral response to progressing global warming conditions, which are predicted to increase in frequency and intensity in the near future.

  9. Tropical North Atlantic ocean-atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Randerson, James T.; Morton, Douglas C.

    2015-08-01

    We describe a climate mode synchronizing forest carbon losses from North and South America by analyzing time series of tropical North Atlantic sea surface temperatures (SSTs), landfall hurricanes and tropical storms, and Amazon fires during 1995-2013. Years with anomalously high tropical North Atlantic SSTs during March-June were often followed by a more active hurricane season and a larger number of satellite-detected fires in the southern Amazon during June-November. The relationship between North Atlantic tropical cyclones and southern Amazon fires (r = 0.61, p < 0.003) was stronger than links between SSTs and either cyclones or fires alone, suggesting that fires and tropical cyclones were directly coupled to the same underlying atmospheric dynamics governing tropical moisture redistribution. These relationships help explain why seasonal outlook forecasts for hurricanes and Amazon fires both failed in 2013 and may enable the design of improved early warning systems for drought and fire in Amazon forests.

  10. Tropical Processes Applications for CYGNSS

    NASA Technical Reports Server (NTRS)

    Lang, Timothy J.

    2017-01-01

    The Cyclone Global Navigation Satellite System (CYGNSS) is focused primarily on observing extreme winds in the inner core of tropical cyclones But... Named storms will occur in view of CYGNSS constellation for only a small percentage of the time on orbit And... Rapid-update, all-weather sampling of wind speeds has many other applications in Tropical Meteorology So... Many potential tropical processes applications for CYGNSS were identified in previous Workshop - Let's revisit some of these possibilities now that the mission is up.

  11. Modulation of Tropical Cyclone Genesis by Boreal Summer Intraseasonal Oscillation: An Anomalous Dynamic Genesis Potential Index

    NASA Astrophysics Data System (ADS)

    Moon, J.; Wang, B.

    2016-12-01

    The large scale circulation anomalies associated with boreal summer intraseasonal oscillation (BSISO) strongly controls the genesis of tropical cyclone in a global perspective. The present study attempts to reveal factors by which BSISO modulation of tropical cyclone genesis (TCG) using two genesis potential indices (GPI): Dynamic GPI (DGPI) and Emanuel and Nolan's GPI (ENGPI). The ENGPI contains two dynamic (the vertical wind shear and absolute vorticity at 850 hPa) and two thermodynamic factors (relative humidity at 600 hPa and maximum potential intensity), while DPGI replaced the two thermodynamic factors by two additional dynamic factors (500 hPa vertical velocity and meridional shear of zonal winds). The major basins of tropical cyclone genesis during May to October from 1979 to 2014 are divided into North Indian Ocean (NIO), Western North Pacific (WNP), Eastern North Pacific (ENP), and North Atlantic (NAT). The genesis numbers of tropical cyclone at each basin increased distinctively at its maximum active phase of BSISO, showing the significant modulation of ISO on tropical cyclone genesis in the Northern Hemisphere. Analysis of the individual contribution of each factors in GPI reveals that the vertical velocity at 500hPa of DGPI and the relative humidity at 600hPa of ENGPI play the most important role in modulating TCG by BSISO. The SST and maximum potential intensity of ENGPI did not represent important physical processes by which the BSISO circulation anomalies affect TCG. The evolution of eight-phase BSISO with intraseasonal prediction of TCG revealed great improvement by DGPI. The evolution of TCG associated with BSISO by basins, such as NIO, WNP, ENP, and NAT showed good performance in featuring the TCG variability, indicating the possibility of improving subseasonal prediction of TCG by our new DGPI.

  12. Tropical Cyclone Induced Air-Sea Interactions Over Oceanic Fronts

    NASA Astrophysics Data System (ADS)

    Shay, L. K.

    2012-12-01

    Recent severe tropical cyclones underscore the inherent importance of warm background ocean fronts and their interactions with the atmospheric boundary layer. Central to the question of heat and moisture fluxes, the amount of heat available to the tropical cyclone is predicated by the initial mixed layer depth and strength of the stratification that essentially set the level of entrainment mixing at the base of the mixed layer. In oceanic regimes where the ocean mixed layers are thin, shear-induced mixing tends to cool the upper ocean to form cold wakes which reduces the air-sea fluxes. This is an example of negative feedback. By contrast, in regimes where the ocean mixed layers are deep (usually along the western part of the gyres), warm water advection by the nearly steady currents reduces the levels of turbulent mixing by shear instabilities. As these strong near-inertial shears are arrested, more heat and moisture transfers are available through the enthalpy fluxes (typically 1 to 1.5 kW m-2) into the hurricane boundary layer. When tropical cyclones move into favorable or neutral atmospheric conditions, tropical cyclones have a tendency to rapidly intensify as observed over the Gulf of Mexico during Isidore and Lili in 2002, Katrina, Rita and Wilma in 2005, Dean and Felix in 2007 in the Caribbean Sea, and Earl in 2010 just north of the Caribbean Islands. To predict these tropical cyclone deepening (as well as weakening) cycles, coupled models must have ocean models with realistic ocean conditions and accurate air-sea and vertical mixing parameterizations. Thus, to constrain these models, having complete 3-D ocean profiles juxtaposed with atmospheric profiler measurements prior, during and subsequent to passage is an absolute necessity framed within regional scale satellite derived fields.

  13. Cluster Analysis of Downscaled and Explicitly Simulated North Atlantic Tropical Cyclone Tracks

    DOE PAGES

    Daloz, Anne S.; Camargo, S. J.; Kossin, J. P.; ...

    2015-02-11

    A realistic representation of the North Atlantic tropical cyclone tracks is crucial as it allows, for example, explaining potential changes in U.S. landfalling systems. Here, the authors present a tentative study that examines the ability of recent climate models to represent North Atlantic tropical cyclone tracks. Tracks from two types of climate models are evaluated: explicit tracks are obtained from tropical cyclones simulated in regional or global climate models with moderate to high horizontal resolution (1°–0.25°), and downscaled tracks are obtained using a downscaling technique with large-scale environmental fields from a subset of these models. Here, for both configurations, tracksmore » are objectively separated into four groups using a cluster technique, leading to a zonal and a meridional separation of the tracks. The meridional separation largely captures the separation between deep tropical and subtropical, hybrid or baroclinic cyclones, while the zonal separation segregates Gulf of Mexico and Cape Verde storms. The properties of the tracks’ seasonality, intensity, and power dissipation index in each cluster are documented for both configurations. The authors’ results show that, except for the seasonality, the downscaled tracks better capture the observed characteristics of the clusters. The authors also use three different idealized scenarios to examine the possible future changes of tropical cyclone tracks under 1) warming sea surface temperature, 2) increasing carbon dioxide, and 3) a combination of the two. The response to each scenario is highly variable depending on the simulation considered. Lastly, the authors examine the role of each cluster in these future changes and find no preponderant contribution of any single cluster over the others.« less

  14. Environmental Disaster and Economic Change: Do tropical cyclones have permanent effects on economic growth and structure?

    NASA Astrophysics Data System (ADS)

    Jina, A.; von der Goltz, J.; Hsiang, S. M.

    2011-12-01

    Natural disasters have important, often devastating, effects upon economic growth and well-being. Due to this, disasters have become an active area of recent research and policy attention. However, much of this research has been narrowly focused, relying on anecdotal evidence and aggregated data to support conclusions about disaster impacts in the short-term. Employing a new global data set of tropical cyclone exposure from 1960 to 2008, we investigate in greater detail whether permanent changes in economic performance and structure can result from these extreme events in some cases. Our macro-economic analyses use the World Development Indicator dataset and have shown promising results: there are dramatic long-term economic transformations associated with tropical cyclones across a number of countries and industries. This effect is most clearly seen in Small Island Developing States (SIDS) and some countries in Latin America, where negative changes in long-term growth trends are observed in the years following a large tropical cyclone. In many economies with a high exposure to tropical cyclone damage, there are noticeable structural changes within the economy. The impacts of disasters might be expressed through various economic and social channels, through direct loss of lives and infrastructure damage; for instance, the destruction of infrastructure such as ports may damage export opportunities where replacement capital is not readily available. These structural changes may have far-reaching implications for economic growth and welfare. Larger nations subjected to the impacts of tropical cyclones are thought to be able to relocate economically important activities that are damaged by cyclones, and so long-term trend changes are not observed, even for events that cause a large immediate decrease in national productivity. By investigating in a more rigorous fashion the hypothesis that the environment triggers these permanent economic changes, our work has implications for the conceptual foundations of both economic theory and sustainable development.

  15. Tropical Cyclone Genesis and Sudden Changes of Track and Intensity in the Western Pacific

    DTIC Science & Technology

    2008-09-30

    North Atlantic . (Published in 2008) Our work on the effect of internally generated inner-core asymmetries on tropical cyclone potential intensity has...of the atmospheric circulation in TC basins to the global warming is more critical than increasing SST to understanding the impacts of global warming...Japan and its adjacent seas is studied with WRF model. The results suggest that the northward moisture transport through the outer cyclonic circulation

  16. Convectively-coupled Kelvin waves over the tropical Atlantic and African regions and their influence on Atlantic tropical cyclogenesis

    NASA Astrophysics Data System (ADS)

    Ventrice, Michael J.

    High-amplitude convectively coupled atmospheric Kelvin waves (CCKWs) are explored over the tropical Atlantic during the boreal summer. Atlantic tropical cyclogenesis is found to be more frequent during the passage of the convectively active phase of the CCKW, and most frequent two days after its passage. CCKWs impact convection within the mean latitude of the inter-tropical convergence zone over the northern tropical Atlantic. In addition to convection, CCKWs also impact the large scale environment that favors Atlantic tropical cyclogenesis (i.e., deep vertical wind shear, moisture, and low-level relative vorticity). African easterly waves (AEWs) are known to be the main precursors for Atlantic tropical cyclones. Therefore, the relationship between CCKWs and AEW activity during boreal summer is explored. AEW activity is found to increase over the Guinea Highlands and Darfur Mountains during and after the passage of the convectively active phase of the CCKW. First, CCKWs increase the number of convective triggers for AEW genesis. Secondly, the associated zonal wind structure of the CCKW is found to affect the horizontal shear on the equatorward side of the African easterly jet (AEJ), such that the jet becomes more unstable during and after the passage of the convectively active phase of the CCKW. The more unstable AEJ is assumed to play a role with increased AEW growth. Through the increased number of AEWs propagating over the tropical Atlantic, as well as from the direct impact on convection and the large-scale environment over the tropical Atlantic, CCKWs are recommended to be used as a means for medium-range predictability of Atlantic tropical cyclones. In addition to modulating tropical cyclone activity over the tropical Atlantic, CCKWs might impact the intensification processes of tropical cyclones. A case study highlighting two August 2010 tropical cyclones (Danielle and Earl) is explored for potential CCKW-tropical cyclone interactions. While predicted to intensify by most model guidance, both Danielle and Earl struggled to do so. It is shown that Danielle and Earl interacted with the convectively suppressed phase of an eastward propagating CCKW during the time they were predicted to intensify. Composite analysis shows that during and after the passage of the convectively suppressed phase of the CCKW over the Atlantic, large-scale vertical wind shear increases as a result of anomalous upper-level westerlies collocated with anomalous lower-level easterlies. Large-scale subsidence associated with the convectively suppressed phase of the CCKW causes the atmosphere to dry. Further, when the upper-level westerly wind anomalies associated with the CCKW are located over the equatorial Atlantic, a tropical upper-tropospheric trough (TUTT) develops over the northern tropical Atlantic. TUTTs are upper-level disturbances known to negatively impact the intensity of tropical cyclones. CCKWs over the tropical Atlantic tend to occur during preferable locations of the Madden-Julian Oscillation (MJO). Results show that the MJO significantly modulates Atlantic tropical cyclogenesis using real-time multivariate MJO indices. Like CCKWs, AEW activity is found to vary coherently with MJO passages. Furthermore, the MJO also impacts the large-scale environment that favors for Atlantic tropical cyclogenesis. Therefore in addition to CCKWs, the state of the MJO should be used for Atlantic tropical cyclogenesis medium-range predictability.

  17. 1999 Annual Tropical Cyclone Report

    DTIC Science & Technology

    1999-01-01

    over Gopalpur, India in the Ganjam district at 171730Z October. JTWC issued a Tropical Cyclone Formation Alert at 151730Z October based on a Special...collapsed buildings and up- rooted trees from the eastern Indian state of Orissa. The Ganjam district, specifically the port of Gopalpur, received

  18. Jason Tracks Powerful Tropical Cyclone Gonu High Winds, Waves

    NASA Image and Video Library

    2007-06-08

    This pair of images from the radar altimeter instrument on NASA U.S./France Jason mission reveals information on wind speeds and wave heights of Tropical Cyclone Gonu, which reached Category 5 strength in the Arabian Sea prior to landfall in early June.

  19. Tropical Cyclone - Equatorial Ionosphere Coupling: A Statistical Study

    NASA Astrophysics Data System (ADS)

    Bhagavathiammal, G. J.

    2016-07-01

    This paper describes the equatorial ionosphere response to tropical cyclone events which was observed over the Indian Ocean. This statistical study tries to reveal the possible Tropical Cyclone (TC) - Ionosphere coupling. Tropical cyclone track and data can be obtained from the India Meteorological Department, New Delhi. Digisonde/Ionosonde data for the equatorial latitudes can be obtained from Global Ionospheric Radio Observatory. It is believed that TC induced convection as the driving agent for the increased gravity wave activity in the lower atmosphere and these propagating gravity waves deposit their energy and momentum into the upper atmosphere as Travelling Ionospheric Disturbances (TIDs). The convective regions are identified with the help of Outgoing Long wave radiation (OLR) data from NOAA Climate Data Center/ Precipitation data from TRMM Statellite. The variability of ionospheric parameter like Total Electron Content (TEC), foF2, h'F2 and Drift velocity are examined during TC periods. This study will report the possibility of TC-Ionosphere Coupling in equatorial atmosphere.

  20. Interactions between tropical cyclones and mid-latitude systems in the Northeastern Pacific

    NASA Astrophysics Data System (ADS)

    Lugo, A.; Abarca, S. F.; Raga, G. B.; Vargas, D. C.

    2014-12-01

    Major challenges in tropical meteorology include the short-term forecast of tropical cyclone (TC) intensity, which is defined as the maximum tangential wind. Several efforts have been made in order to reach this goal over the last decade: Among these efforts, the study of lightning in the TC inner core (the region inside a disc of 100 km radius from the center) as a proxy to deep convection, has the potential to be used as a predictor to forecast intensity (DeMaria et al, 2012, Mon. Wea. Rev., 140, 1828-1842).While most studies focus their objectives in studying the lightning flash density in the inner core, we study the probability of flash occurrence for intensifying and weakening cyclones. We have analyzed the trajectories of the observed 62 tropical cyclones that developed in the basin from 2006 to 2009, and classified them into separate clusters according to their trajectories. These clusters can broadly be described as having trajectories mostly oriented: East-West, towards the central Pacific, NW far from the Mexican coast, parallel to the Mexican coast and recurving towards the Mexican coast.We estimate that probability of inner core lightning occurrence increases as cyclones intensify but the probability rapidly decrease as the systems weaken. This is valid for cyclones in most of the clusters. However, the cyclones that exhibit trajectories that recurve towards the Mexican coast, do not present the same relationship between intensity and inner-core lightning probability, these cyclones show little or no decrease in the lightning occurrence probability as they weaken.We hypothesize that one of the reasons for this anomalous behavior is likely the fact that these cyclones interact with mid-latitude systems. Mid-latitude systems are important in determining the recurving trajectory but they may also influence the TC by advecting mid-level moisture towards the TC inner core. This additional supply of moisture as the system is approaching land may enhance deep convection in the inner core and result in increases of lightning probability even though the cyclones are weakening. We use a Lagrangian approach similar to the used by Rutherford and Montgomery (2012, Atmos. Chem. Phys., 12, 11355-11381, 2012), to study moisture fluxes between intensifying and weakening in recurving tropical cyclones.

  1. Tropical and Extratropical Cyclone Damages under Climate Change

    NASA Astrophysics Data System (ADS)

    Ranson, M.; Kousky, C.; Ruth, M.; Jantarasami, L.; Crimmins, A.; Tarquinio, L.

    2014-12-01

    This paper provides the first quantitative synthesis of the rapidly growing literature on future tropical and extratropical cyclone losses under climate change. We estimate a probability distribution for the predicted impact of changes in global surface air temperatures on future storm damages, using an ensemble of 296 estimates of the temperature-damage relationship from twenty studies. Our analysis produces three main empirical results. First, we find strong but not conclusive support for the hypothesis that climate change will cause damages from tropical cyclones and wind storms to increase, with most models (84 and 92 percent, respectively) predicting higher future storm damages due to climate change. Second, there is substantial variation in projected changes in losses across regions. Potential changes in damages are greatest in the North Atlantic basin, where the multi-model average predicts that a 2.5°C increase in global surface air temperature would cause hurricane damages to increase by 62 percent. The ensemble predictions for Western North Pacific tropical cyclones and European wind storms (extratropical cyclones) are approximately one third of that magnitude. Finally, our analysis shows that existing models of storm damages under climate change generate a wide range of predictions, ranging from moderate decreases to very large increases in losses.

  2. Surge in North Atlantic hurricanes due to detectors, not climate change

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-07-01

    A spate of research has indicated there may be a link between climate change and the prevalence of North Atlantic tropical cyclones. In a new paper, researchers note upon closer inspection that the prominent upswing in tropical cyclone detections beginning in the midtwentieth century is attributable predominantly to the detection of “shorties” tropical cyclones with durations of less than 2 days. That the apparent surge in cyclone activity could be attributable to changes in the quality and quantity of detections has gained ground as a potential alternative explanation. Using a database of hurricane observations stretching back to 1878, Villarini et al. try to tease out any detectable climate signal from the records. The authors note that between 1878 and 1943 there were 0.58 shorty detections per year, and between 1944 and 2008 there were 2.58 shorty detections per year. This increase in shorties, which the authors propose may be related to the end of World War II and the dawn of air-based reconnaissance and weather tracking, was not mirrored by an increase in tropical cyclone activity for storms longer than 2 days. (Journal of Geophysical Research-Atmospheres, doi:10.1029/2010JD015493, 2011

  3. The Relationship Between Tropical Cyclone Frequency and 'Climate Change'

    NASA Astrophysics Data System (ADS)

    Bolton, M.; Mogil, M.

    2013-12-01

    Please note: there have been minor updates to this work since the main author, Matt Bolton, graduated high school, but the majority of the research was compiled by him while he was a high school junior in 2011. Abstract: In recent years, there has been a growing trend by many, in the meteorological community (media and scientist) to predict expected seasonal tropical cyclone frequency in the Atlantic and Pacific Basins. Typically, the numbers are related to seasonal averages. However, these predictions often show a large positive bias (i.e., there are more years in which the expected number of storms exceeds or far exceeds average). Further, observed numbers often come close to bearing out the forecasts (actually a good thing). From a public perspective (and based on extrapolations performed by media and some scientific groups), this peaking of Atlantic tropical cyclone activity is observed globally. In an attempt to determine if such a global trend exists, we set out to collect data from weather agencies around the world and present it in a way that was as unbiased as possible. While there were inconsistencies across the various datasets, especially in regard to wind data, we were still able to construct a realistic global cyclone database. We have concluded that high activity levels in one basin are often balanced by areas of low activity in others. The Atlantic - Eastern Pacific couplet is one such example. This paper will serve as an update to our previous 2011 paper, which introduced our efforts. At that time, we found, on average, 70 named tropical cyclones worldwide. In both this and our original study, we did not address the issue of naming short-lived tropical systems, which was found to be inconsistent across worldwide ocean basins. Our results suggest, that from a global climate change perspective, a growing NUMBER of tropical cyclones is NOT being observed. In the current iteration of our study, we are examining, at least preliminarily, global Accumulated Cyclone Energy (ACE) values. As these values are computed more widely in the coming months, we also hope to include a breakdown of worldwide tropical systems by category and duration.

  4. On the Relationship Between the Length of Season and Tropical Cyclone Activity in the North Atlantic Basin During the Weather Satellite Era, 1960-2013

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2014-01-01

    Officially, the North Atlantic basin tropical cyclone season runs from June 1 through November 30 of each year. During this 183-day interval, the vast majority of tropical cyclone onsets are found to occur. For example, in a study of the 715 tropical cyclones that occurred in the North Atlantic basin during the interval 1945-2010, it was found that about 97 percent of them had their onsets during the conventional hurricane season, with the bulk (78 percent) having had onset during the late summer-early fall months of August, September, and October and with none having had onset in the month of March. For the 2014 hurricane season, it already has had the onset of its first named storm on July 1 (day of year (DOY) 182), Arthur, which formed off the east coast of Florida, rapidly growing into a category-2 hurricane with peak 1-minute sustained wind speed of about 90 kt and striking the coast of North Carolina as a category-2 hurricane on July 3. Arthur is the first hurricane larger than category-1 to strike the United States (U.S.) since the year 2008 when Ike struck Texas as a category-2 hurricane and there has not been a major hurricane (category-3 or larger) to strike the U.S. since Wilma struck Florida as a category-3 hurricane in 2005. Only two category-1 hurricanes struck the U.S. in the year 2012 (Isaac and Sandy, striking Louisiana and New York, respectively) and there were no U.S. land-falling hurricanes in 2013 (also true for the years 1962, 1973, 1978, 1981, 1982, 1990, 1994, 2000, 2001, 2006, 2009, and 2010). In recent years it has been argued that the length of season (LOS), determined as the inclusive elapsed time between the first storm day (FSD) and the last storm day (LSD) of the yearly hurricane season (i.e., when peak 1-minute sustained wind speed of at least 34 kt occurred and the tropical cyclone was not classified as 'extratropical'), has increased in length with the lengthening believed to be due to the FSD occurring sooner and the LSD occurring later and with both being related to global warming. In this study, the relationship between the LOS and tropical cyclone activity and climate is examined for the weather satellite era, 1960-2013. Estimates are also given for the LOS and LSD, as well as for the expected number of tropical cyclones (NTC), the total number of storm days (NSD), the total accumulated cyclone energy (ACE), and the net tropical cyclone activity (NTCA) index for the 2014 hurricane season.

  5. An atlas of 1976 GEOS-3 radar altimeter data for tropical cyclone studies

    NASA Technical Reports Server (NTRS)

    Stanley, H. R.; Chan, B.; Givens, C.; Taylor, R.

    1979-01-01

    The means for locating and extracting GEOS-3 altimeter data acquired for the analysis of specific hurricanes, typhoons, and other tropical cyclones are presented. These data are also expected to be extremely useful in the analysis of the behavior of the altimeter instrument in the presence of severe meteorological disturbances as well as provide a data base which can be useful in the resolution of apparently anomalous geoid or sea surface characteristics. Geographic locations of 1976 tropical cyclones were correlated with the closest approaching orbits of the GEOS-3 satellite and its radar altimeter. The cyclone locations and altimeter data were correlated for the 1976 season. The area of coverage includes the northern hemisphere. This document is a sequel to NASA TM-X-69364 which covered the majority of the 1975 season.

  6. Relationship of The Tropical Cyclogenesis With Solar and Magnetospheric Activities

    NASA Astrophysics Data System (ADS)

    Vishnevsky, O.; Pankov, V.; Erokhine, N.

    Formation of tropical cyclones is a badly studied period in their life cycle even though there are many papers dedicated to analysis of influence of different parameters upon cyclones occurrence frequency (see e.g., Gray W.M.). Present paper is dedicated to study of correlation of solar and magnetospheric activity with the appearance of tropi- cal cyclones in north-west region of Pacific ocean. Study of correlation was performed by using both classical statistical methods (including maximum entropy method) and quite modern ones, for example multifractal analysis. Information about Wolf's num- bers and cyclogenesis intensity in period of 1944-2000 was received from different Internet databases. It was shown that power spectra maximums of Wolf's numbers and appeared tropical cyclones ones corresponds to 11-year period; solar activity and cyclogenesis processes intensity are in antiphase; maximum of mutual correlation co- efficient ( 0.8) between Wolf's numbers and cyclogenesis intensity is in South-China sea. There is a relation of multifractal characteristics calculated for both time series with the mutual correlation function that is another indicator of correlation between tropical cyclogenesis and solar-magnetospheric activity. So, there is the correlation between solar-magnetospheric activity and tropical cyclone intensity in this region. Possible physical mechanisms of such correlation including anomalous precipitations charged particles from the Earth radiation belts and wind intensity amplification in the troposphere are discussed.

  7. Firestorms

    DTIC Science & Technology

    1982-04-15

    Morton 1957)#]. Tropical rainforests in Vietnam are characterized by prevailing relative humidity of 80%; also, dead vegetation decays so rapidly that...wind for the onset of a firestorm raises several points. Tropical cyclones form in environments in which there is little vertical wind shear to cause...of 18-19 April 1965 as a case of a fire occurring in the warm sector of an extra- tropical cyclone (winds of 8-10 m/s, with gusts of 15; airmass

  8. Potential Application of Airborne Passive Microwave Observations for Monitoring Inland Flooding Caused by Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    Hood, Robbie E.; Radley, C.D.; LaFontaine, F.J.

    2008-01-01

    Inland flooding from tropical cyclones can be a significant factor in storm-related deaths in the United States and other countries. Information collected during NASA tropical cyclone field studies suggest surface water and flooding induced by tropical cyclone precipitation can be detected and therefore monitored using passive microwave airborne radiometers. In particular, the 10.7 GHz frequency of the NASA Advanced Microwave Precipitation Radiometer (AMPR) flown on the NASA ER-2 has demonstrated high resolution detection of anomalous surface water and flooding in numerous situations. This presentation will highlight the analysis of three cases utilizing primarily satellite and airborne radiometer data. Radiometer data from the 1998 Third Convection and Moisture Experiment (CAMEX-3) are utilized to detect surface water during landfalling Hurricane Georges in both the Dominican Republic and Louisiana. A third case is landfalling Tropical Storm Gert in Eastern Mexico during the Tropical Cloud Systems and Processes (TCSP) experiment in 2005. AMPR data are compared to topographic data and vegetation indices to evaluate the significance of the surface water signature visible in the 10.7 GHz information. The results of this study suggest the benefit of an aircraft 10 GHz radiometer to provide real-time observations of surface water conditions as part of a multi-sensor flood monitoring network.

  9. Acceleration of tropical cyclogenesis by self-aggregation feedbacks

    NASA Astrophysics Data System (ADS)

    Muller, Caroline J.; Romps, David M.

    2018-03-01

    Idealized simulations of tropical moist convection have revealed that clouds can spontaneously clump together in a process called self-aggregation. This results in a state where a moist cloudy region with intense deep convection is surrounded by extremely dry subsiding air devoid of deep convection. Because of the idealized settings of the simulations where it was discovered, the relevance of self-aggregation to the real world is still debated. Here, we show that self-aggregation feedbacks play a leading-order role in the spontaneous genesis of tropical cyclones in cloud-resolving simulations. Those feedbacks accelerate the cyclogenesis process by a factor of 2, and the feedbacks contributing to the cyclone formation show qualitative and quantitative agreement with the self-aggregation process. Once the cyclone is formed, wind-induced surface heat exchange (WISHE) effects dominate, although we find that self-aggregation feedbacks have a small but nonnegligible contribution to the maintenance of the mature cyclone. Our results suggest that self-aggregation, and the framework developed for its study, can help shed more light into the physical processes leading to cyclogenesis and cyclone intensification. In particular, our results point out the importance of the longwave radiative cooling outside the cyclone.

  10. Towards a Statistical Model of Tropical Cyclone Genesis

    NASA Astrophysics Data System (ADS)

    Fernandez, A.; Kashinath, K.; McAuliffe, J.; Prabhat, M.; Stark, P. B.; Wehner, M. F.

    2017-12-01

    Tropical Cyclones (TCs) are important extreme weather phenomena that have a strong impact on humans. TC forecasts are largely based on global numerical models that produce TC-like features. Aspects of Tropical Cyclones such as their formation/genesis, evolution, intensification and dissipation over land are important and challenging problems in climate science. This study investigates the environmental conditions associated with Tropical Cyclone Genesis (TCG) by testing how accurately a statistical model can predict TCG in the CAM5.1 climate model. TCG events are defined using TECA software @inproceedings{Prabhat2015teca, title={TECA: Petascale Pattern Recognition for Climate Science}, author={Prabhat and Byna, Surendra and Vishwanath, Venkatram and Dart, Eli and Wehner, Michael and Collins, William D}, booktitle={Computer Analysis of Images and Patterns}, pages={426-436}, year={2015}, organization={Springer}} to extract TC trajectories from CAM5.1. L1-regularized logistic regression (L1LR) is applied to the CAM5.1 output. The predictions have nearly perfect accuracy for data not associated with TC tracks and high accuracy differentiating between high vorticity and low vorticity systems. The model's active variables largely correspond to current hypotheses about important factors for TCG, such as wind field patterns and local pressure minima, and suggests new routes for investigation. Furthermore, our model's predictions of TC activity are competitive with the output of an instantaneous version of Emanuel and Nolan's Genesis Potential Index (GPI) @inproceedings{eman04, title = "Tropical cyclone activity and the global climate system", author = "Kerry Emanuel and Nolan, {David S.}", year = "2004", pages = "240-241", booktitle = "26th Conference on Hurricanes and Tropical Meteorology"}.

  11. Topical cyclone rainfall characteristics as determined from a satellite passive microwave radiometer

    NASA Technical Reports Server (NTRS)

    Rodgers, E. B.; Adler, R. F.

    1979-01-01

    Data from the Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR-5) were used to calculate latent heat release and other rainfall parameters for over 70 satellite observations of 21 tropical cyclones in the tropical North Pacific Ocean. The results indicate that the ESMR-5 measurements can be useful in determining the rainfall characteristics of these storms and appear to be potentially useful in monitoring as well as predicting their intensity. The ESMR-5 derived total tropical cyclone rainfall estimates agree favorably with previous estimates for both the disturbance and typhoon stages. The mean typhoon rainfall rate (1.9 mm h(-1)) is approximately twice that of disturbances (1.1 mm h(-1)).

  12. Variability of Tropical Cyclone Heat Potential and Barrier layers in the South Indian Ocean

    NASA Astrophysics Data System (ADS)

    Mawren, D.; Reason, C. J. C.

    2016-02-01

    This study investigates the influence of Tropical Cyclone Heat Potential (TCHP) as well as salinity stratification during the passage of intense tropical cyclones. Using in-situ observations, reanalysis data and ocean model simulations, this study indicates that TC intensification is affected by high TCHP values and deep barrier layers. TCHP computed from 1/5° resolution regional ocean model (ROMS) agrees well with that derived from Argo float data and SODA which extends over a longer period (1950-2010). Time series of TCHP in the South Indian Ocean shows strongest interannual variability during 1997-1998, 2003, 2007 and is relatively highly correlated at 1 month lag with ENSO (r = 0.67, significant at 95 %). The interannual variability of barrier layer thickness (BLT) was analyzed over the Seychelles-Chagos thermocline ridge (SCTR) and high-amplitude fluctuations in BLT appear to overlay with large positive TCHP values. Analysis also shows that both BLT and TCHP are modulated by the westward propagating Rossby waves. A case study of Category 5 Tropical cyclone BANSI that developed over and east of Madagascar during 11-18 Jan 2015 is presented.

  13. Influence of Tropical Cyclones Period 1970 TO 2010 IN the Region of Bahia de Banderas, Nayarit-Jalisco Mexico

    NASA Astrophysics Data System (ADS)

    Hernandez, J. M.

    2013-12-01

    This study evaluates the impacts of tropical cyclones (TC) that made landfall in populated areas along the Pacific coast of Mexico, especially in the region of Bahia de Banderas. During the period of 1970-2010 and used a database of international natural disasters to identify impacts. Were more than 13 events during the reporting period, of which 10 are examined more precipitation accumulated and 6 that caused further damage to the affected population in these cases ranged from 5000 to more than 15 000 inhabitants. Strong winds and heavy rainfall in periods of one to three days were associated with property damage and loss of life. The results of the study indicate that excessive accumulations of rain and daily intensity are important factors connected with the occurrence of disasters in densely populated areas. Six of the first 10 Tropical Cyclone associated with major disasters occurred in conditions of El Niño and four neutral conditions. With the analysis of satellite images using GOES-10 in the IDV software maps were obtained in the coastal impacts of Banderas Bay and describes the main features of each meteorological phenomena. In which concludes that no tropical cyclone entered directly to the Banderas Bay region, but its effects were very relevant, taking into account the topography, land use change and the vulnerability of the region. Tropical Cyclones that have affected the region of Bay of Banderas

  14. An atlas of 1977 and 1978 GEOS-3 radar altimeter data for tropical cyclone studies

    NASA Technical Reports Server (NTRS)

    Stanley, H. R.; Taylor, R. L.

    1980-01-01

    All of the GEOS 3 satellite altimeter schedule information were collected with all of the available 1977 and 1978 tropical cyclone positional information. The time period covers from March 23, 1977 through Nov. 23, 1978. The geographical region includes all ocean area north of the equator divided into the following operational areas: the Atlantic area (which includes the Caribbean and Gulf of Mexico); the eastern Pacific area; the central and western Pacific area; and the Indian Ocean area. All available source material concerning tropical cyclones was collected. The date/time/location information was extracted for each disturbance. This information was compared with the GEOS 3 altimeter ON/OFF history information to determine the existence of any altimeter data close enough in both time and location to make the data potentially useful for further study (the very liberal criteria used was time less than 24 hours and location within 25 degrees). Geographic plots (cyclone versus GEOS 3 orbit track) were produced for all of the events found showing the approximate location of the cyclone and the GEOS 3 orbit traces for the full day.

  15. Equatorial Mesosphere and Lower Thermosphere/Ionosphere (MLTI) Response to Severe Cyclonic Storm `Aila' and `Ward' observed over North Indian Ocean

    NASA Astrophysics Data System (ADS)

    G J, B.

    2016-12-01

    The present work investigates the Equatorial Mesosphere Lower Thermosphere/Ionosphere (MLTI) response to severe cyclonic storm `Aila (23-26 May 2009)' and `Ward (10-16 December 2009)' which were observed over north Indian Ocean during the extended solar minimum of the year 2009. This report reveals the coupling between Tropical Cyclone and MLTI region. Tropical cyclone track and data can be obtained from Indian Meteorological Department (IMD), New Delhi. Mesospheric and Ionospheric variation can be examined with the help of ground based Mesosphere Lower Thermosphere (MLT) radar and Digisonde located at equatorial low latitude station, Tirunelveli (8.7oN, 77.8oE). The Outgoing Long wave Radiation (OLR) data is used as a proxy for identifying the convective activity, which are retrieved from NOAA Climate Data Centre. It is observed that the tropical cyclone induced convection as the driving agent for the increased gravity wave activity in the lower atmosphere. These upward propagating gravity waves deposit their energy and momentum into the upper region of atmosphere as `Travelling Ionospheric Disturbances (TIDs). During the cyclonic storm periods, we found increased gravity wave amplitude with upward propagation in the MLT region. Ionospheric response to severe cyclonic storm is examined with the dynamical parameters, foF2, hmF2, h'F2 and Total Election Content (TEC). Significant increase of foF2 frequency is observed during `Ward' cyclonic storm. Drastic variation in foF2 and h'F2 is observed during Aila cyclonic storm than ward event. More statistical analysis has been done for finding the correlation between cyclonic storm and Ionospheric parameters. Detailed results will be presented in the meeting.

  16. Coarse, Intermediate and High Resolution Numerical Simulations of the Transition of a Tropical Wave Critical Layer to a Tropical Storm

    NASA Technical Reports Server (NTRS)

    Montgomery, M. T.; Dunkerton, T. J.; Wang, Z.

    2010-01-01

    Recent work has hypothesized that tropical cyclones in the deep Atlantic and eastern Pacific basins develop from within the cyclonic Kelvin cat's eye of a tropical easterly wave critical layer located equatorward of the easterly jet axis. The cyclonic critical layer is thought to be important to tropical cyclogenesis because its cat's eye provides (i) a region of cyclonic vorticity and weak deformation by the resolved flow, (ii) containment of moisture entrained by the developing flow and/or lofted by deep convection therein, (iii) confinement of mesoscale vortex aggregation, (iv) a predominantly convective type of heating profile, and (v) maintenance or enhancement of the parent wave until the developing proto-vortex becomes a self-sustaining entity and emerges from the wave as a tropical depression. This genesis sequence and the overarching framework for describing how such hybrid wave-vortex structures become tropical depressions/storms is likened to the development of a marsupial infant in its mother's pouch, and for this reason has been dubbed the "marsupial paradigm". Here we conduct the first multi-scale test of the marsupial paradigm in an idealized setting by revisiting the Kurihara and Tuleya problem examining the transformation of an easterly wave-like disturbance into a tropical storm vortex using the WRF model. An analysis of the evolving winds, equivalent potential temperature, and relative vertical vorticity is presented from coarse (28 km), intermediate (9 km) and high resolution (3.1 km) simulations. The results are found to support key elements of the marsupial paradigm by demonstrating the existence of rotationally dominant region with minimal strain/shear deformation near the center of the critical layer pouch that contains strong cyclonic vorticity and high saturation fraction. This localized region within the pouch serves as the "attractor" for an upscale "bottom up" development process while the wave pouch and proto-vortex move together.

  17. Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean

    PubMed Central

    Mei, Wei; Primeau, François; McWilliams, James C.; Pasquero, Claudia

    2013-01-01

    Tropical cyclones have been hypothesized to influence climate by pumping heat into the ocean, but a direct measure of this warming effect is still lacking. We quantified cyclone-induced ocean warming by directly monitoring the thermal expansion of water in the wake of cyclones, using satellite-based sea surface height data that provide a unique way of tracking the changes in ocean heat content on seasonal and longer timescales. We find that the long-term effect of cyclones is to warm the ocean at a rate of 0.32 ± 0.15 PW between 1993 and 2009, i.e., ∼23 times more efficiently per unit area than the background equatorial warming, making cyclones potentially important modulators of the climate by affecting heat transport in the ocean–atmosphere system. Furthermore, our analysis reveals that the rate of warming increases with cyclone intensity. This, together with a predicted shift in the distribution of cyclones toward higher intensities as climate warms, suggests the ocean will get even warmer, possibly leading to a positive feedback. PMID:23922393

  18. Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean.

    PubMed

    Mei, Wei; Primeau, François; McWilliams, James C; Pasquero, Claudia

    2013-09-17

    Tropical cyclones have been hypothesized to influence climate by pumping heat into the ocean, but a direct measure of this warming effect is still lacking. We quantified cyclone-induced ocean warming by directly monitoring the thermal expansion of water in the wake of cyclones, using satellite-based sea surface height data that provide a unique way of tracking the changes in ocean heat content on seasonal and longer timescales. We find that the long-term effect of cyclones is to warm the ocean at a rate of 0.32 ± 0.15 PW between 1993 and 2009, i.e., ∼23 times more efficiently per unit area than the background equatorial warming, making cyclones potentially important modulators of the climate by affecting heat transport in the ocean-atmosphere system. Furthermore, our analysis reveals that the rate of warming increases with cyclone intensity. This, together with a predicted shift in the distribution of cyclones toward higher intensities as climate warms, suggests the ocean will get even warmer, possibly leading to a positive feedback.

  19. Extreme storm activity in North Atlantic and European region

    NASA Astrophysics Data System (ADS)

    Vyazilova, N.

    2010-09-01

    The extreme storm activity study over North Atlantic and Europe includes the analyses of extreme cyclone (track number, integral cyclonic intensity) and extreme storm (track number) during winter and summer seasons in the regions: 1) 55°N-80N, 50°W-70°E; 2) 30°N-55°N, 50°W-70°E. Extreme cyclones were selected based on cyclone centre pressure (P<=970 mbar). Extreme storms were selected from extreme cyclones based on wind velocity on 925 mbar. The Bofort scala was used for this goal. Integral cyclonic intensity (for region) includes the calculation cyclone centers number and sum of MSLP anomalies in cyclone centers. The analyses based on automated cyclone tracking algorithm, 6-hourly MSLP and wind data (u and v on 925 gPa) from the NCEP/NCAR reanalyses from January 1948 to March 2010. The comparision of mean, calculated for every ten years, had shown, that in polar region extreme cyclone and storm track number, and integral cyclonic intensity gradually increases and have maximum during last years (as for summer, as for winter season). Every ten years means for summer season are more then for winter season, as for polar, as for tropical region. Means (ten years) for tropical region are significance less then for polar region.

  20. Predictability of tropical cyclone events on intraseasonal timescales with the ECMWF monthly forecast model

    NASA Astrophysics Data System (ADS)

    Elsberry, Russell L.; Jordan, Mary S.; Vitart, Frederic

    2010-05-01

    The objective of this study is to provide evidence of predictability on intraseasonal time scales (10-30 days) for western North Pacific tropical cyclone formation and subsequent tracks using the 51-member ECMWF 32-day forecasts made once a week from 5 June through 25 December 2008. Ensemble storms are defined by grouping ensemble member vortices whose positions are within a specified separation distance that is equal to 180 n mi at the initial forecast time t and increases linearly to 420 n mi at Day 14 and then is constant. The 12-h track segments are calculated with a Weighted-Mean Vector Motion technique in which the weighting factor is inversely proportional to the distance from the endpoint of the previous 12-h motion vector. Seventy-six percent of the ensemble storms had five or fewer member vortices. On average, the ensemble storms begin 2.5 days before the first entry of the Joint Typhoon Warning Center (JTWC) best-track file, tend to translate too slowly in the deep tropics, and persist for longer periods over land. A strict objective matching technique with the JTWC storms is combined with a second subjective procedure that is then applied to identify nearby ensemble storms that would indicate a greater likelihood of a tropical cyclone developing in that region with that track orientation. The ensemble storms identified in the ECMWF 32-day forecasts provided guidance on intraseasonal timescales of the formations and tracks of the three strongest typhoons and two other typhoons, but not for two early season typhoons and the late season Dolphin. Four strong tropical storms were predicted consistently over Week-1 through Week-4, as was one weak tropical storm. Two other weak tropical storms, three tropical cyclones that developed from precursor baroclinic systems, and three other tropical depressions were not predicted on intraseasonal timescales. At least for the strongest tropical cyclones during the peak season, the ECMWF 32-day ensemble provides guidance of formation and tracks on 10-30 day timescales.

  1. Electrically-Active Convection in Tropical Easterly Waves and Implications for Tropical Cyclogenesis in the Atlantic and East Pacific

    NASA Technical Reports Server (NTRS)

    Leppert, Kenneth D., II; Petersen, Walter A.; Cecil, Daniel J.

    2012-01-01

    In this study, we investigate the characteristics of tropical easterly wave convection and the possible implications of convective structure on tropical cyclogenesis and intensification over the Atlantic Ocean and East Pacific using data from the Tropical Rainfall Measurement Mission Microwave Imager, Precipitation Radar (PR), and Lightning Imaging Sensor as well as infrared (IR) brightness temperature data from the NASA global-merged IR brightness temperature dataset. Easterly waves were partitioned into northerly, southerly, trough, and ridge phases based on the 700-hPa meridional wind from the NCEP-NCAR reanalysis dataset. Waves were subsequently divided according to whether they did or did not develop tropical cyclones (i.e., developing and nondeveloping, respectively), and developing waves were further subdivided according to development location. Finally, composites as a function of wave phase and category were created using the various datasets. Results suggest that the convective characteristics that best distinguish developing from nondeveloping waves vary according to where developing waves spawn tropical cyclones. For waves that developed a cyclone in the Atlantic basin, coverage by IR brightness temperatures .240 K and .210 K provide the best distinction between developing and nondeveloping waves. In contrast, several variables provide a significant distinction between nondeveloping waves and waves that develop cyclones over the East Pacific as these waves near their genesis location including IR threshold coverage, lightning flash rates, and low-level (<4.5 km) PR reflectivity. Results of this study may be used to help develop thresholds to better distinguish developing from nondeveloping waves and serve as another aid for tropical cyclogenesis forecasting.

  2. Global warming hiatus contributed to the increased occurrence of intense tropical cyclones in the coastal regions along East Asia.

    PubMed

    Zhao, Jiuwei; Zhan, Ruifen; Wang, Yuqing

    2018-04-16

    The recent global warming hiatus (GWH) was characterized by a La Niña-like cooling in the tropical Eastern Pacific accompanied with the Indian Ocean and the tropical Atlantic Ocean warming. Here we show that the recent GWH contributed significantly to the increased occurrence of intense tropical cyclones in the coastal regions along East Asia since 1998. The GWH associated sea surface temperature anomalies triggered a pair of anomalous cyclonic and anticyclonic circulations and equatorial easterly anomalies over the Northwest Pacific, which favored TC genesis and intensification over the western Northwest Pacific but suppressed TC genesis and intensification over the southeastern Northwest Pacific due to increased vertical wind shear and anticyclonic circulation anomalies. Results from atmospheric general circulation model experiments demonstrate that the Pacific La Niña-like cooling dominated the Indian Ocean and the tropical Atlantic Ocean warming in contributing to the observed GWH-related anomalous atmospheric circulation over the Northwest Pacific.

  3. Interannual variability of the frequency and intensity of tropical cyclones striking the California coast

    NASA Astrophysics Data System (ADS)

    Mendez, F. J.; Rueda, A.; Barnard, P.; Mori, N.; Nakajo, S.; Albuquerque, J.

    2016-12-01

    Hurricanes hitting California have a very low ocurrence probability due to typically cool ocean temperature and westward tracks. However, damages associated to these improbable events would be dramatic in Southern California and understanding the oceanographic and atmospheric drivers is of paramount importance for coastal risk management for present and future climates. A statistical analysis of the historical events is very difficult due to the limited resolution of atmospheric and oceanographic forcing data available. In this work, we propose a combination of: (a) climate-based statistical downscaling methods (Espejo et al, 2015); and (b) a synthetic stochastic tropical cyclone (TC) model (Nakajo et al, 2014). To build the statistical downscaling model, Y=f(X), we apply a combination of principal component analysis and the k-means classification algorithm to find representative patterns from large-scale may-to-november averaged monthly anomalies of SST and thermocline depth fields in Tropical Pacific (predictor X) and the associated historical tropical cyclones in Eastern North Pacific basin (predictand Y). As data for the historical occurrence and paths of tropical cyclones are scarce, we apply a stochastic TC model which is based on a Monte Carlo simulation of the joint distribution of track, minimum sea level pressure and translation speed of the historical events in the Eastern Central Pacific Ocean. Results will show the ability of the approach to explain the interannual variability of the frequency and intensity of TCs in Southern California, which is clearly related to post El Niño Eastern Pacific and El Niño Central Pacific. References Espejo, A., Méndez, F.J., Diez, J., Medina, R., Al-Yahyai, S. (2015) Seasonal probabilistic forecasting of tropical cyclone activity in the North Indian Ocean, Journal of Flood Risk Management, DOI: 10.1111/jfr3.12197 Nakajo, S., N. Mori, T. Yasuda, and H. Mase (2014) Global Stochastic Tropical Cyclone Model Based on Principal Component Analysis and Cluster Analysis, Journal of Applied Meteorology and Climatology, DOI: 10.1175/JAMC-D-13-08.1

  4. Impact on Hurricane Track and Intensity Forecasts of GPS Dropwindsonde Observations from the First-Season Flights of the NOAA Gulfstream-IV Jet Aircraft.

    NASA Astrophysics Data System (ADS)

    Aberson, Sim D.; Franklin, James L.

    1999-03-01

    In 1997, the Tropical Prediction Center (TPC) began operational Gulfstream-IV jet aircraft missions to improve the numerical guidance for hurricanes threatening the continental United States, Puerto Rico, and the Virgin Islands. During these missions, the new generation of Global Positioning System dropwindsondes were released from the aircraft at 150-200-km intervals along the flight track in the environment of the tropical cyclone to obtain profiles of wind, temperature, and humidity from flight level to the surface. The observations were ingested into the global model at the National Centers for Environmental Prediction, which subsequently serves as initial and boundary conditions to other numerical tropical cyclone models. Because of a lack of tropical cyclone activity in the Atlantic basin, only five such missions were conducted during the inaugural 1997 hurricane season.Due to logistical constraints, sampling in all quadrants of the storm environment was accomplished in only one of the five cases during 1997. Nonetheless, the dropwindsonde observations improved mean track forecasts from the Geophysical Fluid Dynamics Laboratory hurricane model by as much as 32%, and the intensity forecasts by as much as 20% during the hurricane watch period (within 48 h of projected landfall). Forecasts from another dynamical tropical cyclone model (VICBAR) also showed modest improvements with the dropwindsonde observations. These improvements, if confirmed by a larger sample, represent a large step toward the forecast accuracy goals of TPC. The forecast track improvements are as large as those accumulated over the past 20-25 years, and those for forecast intensity provide further evidence that better synoptic-scale data can lead to more skillful dynamical tropical cyclone intensity forecasts.

  5. 1998 Annual Tropical Cyclone Report

    DTIC Science & Technology

    1998-01-01

    1998 ANNUAL TROPICAL CYCLONE REPORT Microwave imagery of Typhoon Rex (06W) as it passed through the Bonin Islands, taken at 0800Z on 28 August... DAVE ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 5.3 TESTING AND RESULTS...weighting the forecasts given by XTRP and CLIM. 5.2.5.2 DYNAMIC AVERAGE ( DAVE ) A simple average of all dynamic forecast aids: NOGAPS (NGPS), Bracknell

  6. An explicit three-dimensional nonhydrostatic numerical simulation of a tropical cyclone

    NASA Technical Reports Server (NTRS)

    Tripoli, G. J.

    1992-01-01

    A nonhydrostatic numerical simulation of a tropical cyclone is performed with explicit representation of cumulus on a meso-beta scale grid and for a brief period on a meso-gamma scale grid. Individual cumulus plumes are represented by a combination of explicit resolution and a 1.5 level closure predicting turbulent kinetic energy (TKE).

  7. Preservice Primary Teachers' Depth and Accuracy of Knowledge of Tropical Cyclones

    ERIC Educational Resources Information Center

    Lane, Rod; Catling, Simon

    2016-01-01

    Climatic hazards are a key feature of life. It is vital that teachers are knowledgeable about these phenomena in order to develop their students' understanding of them. This study used a mixed methods approach to examine the accuracy and depth of preservice primary teachers' (n = 430) knowledge of tropical cyclones. The findings suggest that…

  8. Changes in tropical cyclones under stabilized 1.5 and 2.0°C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehner, Michael F.; Reed, Kevin A.; Loring, Burlen

    The United Nations Framework Convention on Climate Change (UNFCCC) invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5°C above preindustrial average temperatures. In this paper, we present a projection of future tropical cyclone statistics for both 1.5 and 2.0°C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical stormsmore » is decreased. We also conclude that in the 1.5°C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.« less

  9. Changes in tropical cyclones under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols

    NASA Astrophysics Data System (ADS)

    Wehner, Michael F.; Reed, Kevin A.; Loring, Burlen; Stone, Dáithí; Krishnan, Harinarayan

    2018-02-01

    The United Nations Framework Convention on Climate Change (UNFCCC) invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5 °C above preindustrial average temperatures. We present a projection of future tropical cyclone statistics for both 1.5 and 2.0 °C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical storms is decreased. We also conclude that in the 1.5 °C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.

  10. Changes in tropical cyclones under stabilized 1.5 and 2.0°C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols

    DOE PAGES

    Wehner, Michael F.; Reed, Kevin A.; Loring, Burlen; ...

    2018-02-28

    The United Nations Framework Convention on Climate Change (UNFCCC) invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5°C above preindustrial average temperatures. In this paper, we present a projection of future tropical cyclone statistics for both 1.5 and 2.0°C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical stormsmore » is decreased. We also conclude that in the 1.5°C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.« less

  11. Tropical Cyclone Genesis: A Dynamician's Point of View

    NASA Astrophysics Data System (ADS)

    Bouali, Safieddine; Leys, Jos

    The paper focuses the route to the maturity of a cyclone as a twist process of the Hadley cell. The approach is qualified by a "dynamician's viewpoint" since the aerologic mechanism of the cyclone genesis is replicated without the classical tools of the meteorological fluid framework. Indeed, we introduce a pure dynamical model of a 2D vertical rotor of an airparcel to emulate the Hadley cell. Twisted by an appropriate feedback to inject geophysical forcing, the simulation displays two stretched solenoid rolls with clockwise and anticlockwise paths representing the Hadley belts wrapping the Earth. When the forcing parameter is higher, computations simulate overlapped whirlwind funnels revealing strong similarities with the structure of cyclones, hurricanes, and typhoons described in the atmospheric science literature. We conjecture that ocean-atmosphere interactions separate and convert a "slice" of the Hadley rotor into a fully tropical cyclone.

  12. Electric Field Profiles over Hurricanes, Tropical Cyclones, and Thunderstorms with an Instrumented ER-2 Aircraft

    NASA Technical Reports Server (NTRS)

    Mach, Doug M.; Blakeslee, Richard J.; Bateman, Monte G.; Bailey, Jeff C.

    2007-01-01

    Over the past several years, we have flown a set of calibrated electric field meters (FMs) on the NASA high altitude ER-2 aircraft over oceanic and landbased storms in a number of locations. These included tropical oceanic cyclones and hurricanes in the Caribbean and Atlantic ocean during the Third and Fourth Convection And Moisture EXperiment (CAMEX-3,1998; CAMEX-4, 2001), thunderstorms in Florida during the TExas FLorida UNderflight (TEFLUN, 1998) experiment, tropical thunderstorms in Brazil during the Tropical Rainfall Measuring Mission - Large Scale Biosphere-Atmosphere Experiment in Amazonia (TRMM LBA, 1999), and finally, hurricanes and tropical cyclones in the Caribbean and Western Pacific and thunderstorms in Central America during the Tropical Cloud Systems and Processes (TCSP, 2005) mission. Between these various missions we have well over 50 sorties that provide a unique insights on the different electrical environment, evolution and activity occurring in and around these various types of storms. In general, the electric fields over the tropical oceanic storms and hurricanes were less than a few kilovolts per meter at the ER-2 altitude, while the lightning rates were low. Land-based thunderstorms often produced high lightning activity and correspondingly higher electric fields.

  13. Stable Isotope Anatomy of Tropical Cyclone Ita, North-Eastern Australia, April 2014

    PubMed Central

    Munksgaard, Niels C.; Zwart, Costijn; Kurita, Naoyuki; Bass, Adrian; Nott, Jon; Bird, Michael I.

    2015-01-01

    The isotope signatures registered in speleothems during tropical cyclones (TC) provides information about the frequency and intensity of past TCs but the precise relationship between isotopic composition and the meteorology of TCs remain uncertain. Here we present continuous δ18O and δ2H data in rainfall and water vapour, as well as in discrete rainfall samples, during the passage of TC Ita and relate the evolution in isotopic compositions to local and synoptic scale meteorological observations. High-resolution data revealed a close relationship between isotopic compositions and cyclonic features such as spiral rainbands, periods of stratiform rainfall and the arrival of subtropical and tropical air masses with changing oceanic and continental moisture sources. The isotopic compositions in discrete rainfall samples were remarkably constant along the ~450 km overland path of the cyclone when taking into account the direction and distance to the eye of the cyclone at each sampling time. Near simultaneous variations in δ18O and δ2H values in rainfall and vapour and a near-equilibrium rainfall-vapour isotope fractionation indicates strong isotopic exchange between rainfall and surface inflow of vapour during the approach of the cyclone. In contrast, after the passage of spiral rainbands close to the eye of the cyclone, different moisture sources for rainfall and vapour are reflected in diverging d-excess values. High-resolution isotope studies of modern TCs refine the interpretation of stable isotope signatures found in speleothems and other paleo archives and should aim to further investigate the influence of cyclone intensity and longevity on the isotopic composition of associated rainfall. PMID:25742628

  14. Suomi NPP Satellite Views of Tropical Cyclone Mahasen in the Northern Indian Ocean

    NASA Image and Video Library

    2017-12-08

    The first tropical cyclone in the Northern Indian Ocean this season has been getting better organized as seen in NASA satellite imagery. Tropical Cyclone Mahasen is projected to track north through the Bay of Bengal and make landfall later this week. On May 13, NASA-NOAA's Suomi NPP satellite captured various night-time and day-time imagery that showed Mesospheric Gravity Waves, lightning, and heavy rainfall in false-colored imagery. For more information and updates on Cyclone Mahasen, visit NASA's Hurricane page at www.nasa.gov/hurricane. Image Credit: UWM-CIMSS/William Straka III/NASA/NOAA Text Credit: NASA Goddard/Rob Gutro NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Evaluation of the productivity decrease risk due to a future increase in tropical cyclone intensity in Japan.

    PubMed

    Esteban, Miguel; Longarte-Galnares, Gorka

    2010-12-01

    A number of scientists have recently conducted research that shows that tropical cyclone intensity is likely to increase in the future. This would result in an increase in the damage along with a decrease in economic productivity due to precautionary cessation of the economic activity of the affected areas during the passage of the cyclone. The economic effect of this stop in economic activity is a phenomenon that has not received much attention in the past, and the cumulative effect that it can have on the Japanese economy over the next 75 years has never been evaluated. The starting point for the evaluation of the economic risks is the change in the patterns of tropical cyclone intensity suggested by Knutson and Tuleya. The results obtained show how a significant decrease in the overall productivity of the country could be expected, which could lower GDP by between 6% and 13% by 2085. © 2010 Society for Risk Analysis.

  16. Development and Application of an Objective Tracking Algorithm for Tropical Cyclones over the North-West Pacific purely based on Wind Speeds

    NASA Astrophysics Data System (ADS)

    Befort, Daniel J.; Kruschke, Tim; Leckebusch, Gregor C.

    2017-04-01

    Tropical Cyclones over East Asia have huge socio-economic impacts due to their strong wind fields and large rainfall amounts. Especially, the most severe events are associated with huge economic losses, e.g. Typhoon Herb in 1996 is related to overall losses exceeding 5 billion US (Munich Re, 2016). In this study, an objective tracking algorithm is applied to JRA55 reanalysis data from 1979 to 2014 over the Western North Pacific. For this purpose, a purely wind based algorithm, formerly used to identify extra-tropical wind storms, has been further developed. The algorithm is based on the exceedance of the local 98th percentile to define strong wind fields in gridded climate data. To be detected as a tropical cyclone candidate, the following criteria must be fulfilled: 1) the wind storm must exist for at least eight 6-hourly time steps and 2) the wind field must exceed a minimum size of 130.000km2 for each time step. The usage of wind information is motivated to focus on damage related events, however, a pre-selection based on the affected region is necessary to remove events of extra-tropical nature. Using IBTrACS Best Tracks for validation, it is found that about 62% of all detected tropical cyclone events in JRA55 reanalysis can be matched to an observed best track. As expected the relative amount of matched tracks increases with the wind intensity of the event, with a hit rate of about 98% for Violent Typhoons, above 90% for Very Strong Typhoons and about 75% for Typhoons. Overall these results are encouraging as the parameters used to detect tropical cyclones in JRA55, e.g. minimum area, are also suitable to detect TCs in most CMIP5 simulations and will thus allow estimates of potential future changes.

  17. Contributions of tropical waves to tropical cyclone genesis over the western North Pacific

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Takahashi, Masaaki

    2018-06-01

    The present study investigates the relationship between the tropical waves and the tropical cyclone (TC) genesis over the western North Pacific (WNP) for the period 1979-2011. Five wave types are considered in this study. It is shown that the TC genesis is strongly related to enhanced low-level vorticity and convection of tropical waves and significant difference are detected in the TC modulation by dynamic and thermodynamic components of the waves. More TCs tend to form in regions of waves with overlapping cyclonic vorticity and active convection. About 83.2% of TCs form within active phase of tropical waves, mainly in a single wave and two coexisting waves. Each wave type-related genesis accounts for about 30% of all TC geneses except for the Kelvin waves that account for only 25.2% of TC geneses. The number of each wave type-related TC genesis consistently varies seasonally with peak in the TC season (July-November), which is attributed to a combined effect of active wave probability and intensity change. The interannual variation in the TC genesis is well reproduced by the tropical wave-related TC genesis, especially in the region east of 150°E. An eastward extension of the enhanced monsoon trough coincides with increased tropical wave activity by accelerated wave-mean flow interaction.

  18. Ocean waves from tropical cyclones in the Gulf of Mexico and the effect of climate change

    NASA Astrophysics Data System (ADS)

    Appendini, C. M.; Pedrozo-Acuña, A.; Meza-Padilla, R.; Torres-Freyermuth, A.; Cerezo-Mota, R.; López-González, J.

    2016-12-01

    To generate projections of wave climate associated to tropical cyclones is a challenge due to their short historical record of events, their low occurrence, and the poor wind field resolution in General Circulation Models. Synthetic tropical cyclones provide an alternative to overcome such limitations, improving robust statistics under present and future climates. We use synthetic events to characterize present and future wave climate associated with tropical cyclones in the Gulf of Mexico. The NCEP/NCAR atmospheric reanalysis and the Coupled Model Intercomparison Project Phase 5 models NOAA/GFDL CM3 and UK Met Office HADGEM2-ES, were used to derive present and future wave climate under RCPs 4.5 and 8.5. The results suggest an increase in wave activity for the future climate, particularly for the GFDL model that shows less bias in the present climate, although some areas are expected to decrease the wave energy. The practical implications of determining the future wave climate is exemplified by means of the 100-year design wave, where the use of the present climate may result in under/over design of structures, since the lifespan of a structure includes the future wave climate period.

  19. On the role of surface friction in tropical cyclone intensification

    NASA Astrophysics Data System (ADS)

    Wang, Yuqing

    2017-04-01

    Recent studies have debated on whether surface friction is positive or negative to tropical cyclone intensification in the view on angular momentum budget. That means whether the frictionally induced inward angular momentum transport can overcome the loss of angular momentum to the surface due to surface friction itself. Although this issue is still under debate, this study investigates another implicit dynamical effect, which modifies the radial location and strength of eyewall convection. We found that moderate surface friction is necessary for rapid intensity of tropical cyclones. This is demonstrated first by a simple coupled dynamical system that couples a multi-level boundary layer model and a shallow water equation model above with mass source parameterized by mass flux from the boundary layer model below, and then by a full physics model. The results show that surface friction leads to the inward penetration of inflow under the eyewall, shift the boundary layer mass convergence slightly inside the radius of maximum wind, and enhance the upward mass flux, and thus diabatic heating in the eyewall and intensification rate of a TC. This intensification process is different from the direct angular momentum budget previously used to explain the role of surface friction in tropical cyclone intensification.

  20. Tropical Cyclone Diurnal Cycle as Observed by TRMM

    PubMed Central

    Leppert, Kenneth D.; Cecil, Daniel J.

    2018-01-01

    Previous work has indicated a clear, consistent diurnal cycle in rainfall and cold cloudiness coverage around tropical cyclones. This cycle may have important implications for structure and intensity changes of these storms and the forecasting of such changes. The goal of this paper is to use passive and active microwave measurements from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR), respectively, to better understand the tropical cyclone diurnal cycle throughout a deep layer of a tropical cyclone’s clouds. The composite coverage by PR reflectivity ≥20 dBZ at various heights as a function of local standard time (LST) and radius suggests the presence of a diurnal signal for radii <500 km through a deep layer (2–10 km height) of the troposphere using 1998–2011 Atlantic tropical cyclones of at least tropical storm strength. The area covered by reflectivity ≥20 dBZ at radii 100–500 km peaks in the morning (0130–1030 LST) and reaches a minimum 1030–1930 LST. Radii between 300–500 km tend to reach a minimum in coverage closer to 1200 LST before reaching another peak at 2100 LST. The inner core (0–100 km) appears to be associated with a single-peaked diurnal cycle only at upper levels (8–10 km) with a maximum at 2230−0430 LST. The TMI rainfall composites suggest a clear diurnal cycle at all radii between 200 and 1000 km with peak rainfall coverage and rain rate occurring in the morning (0130−0730 LST). PMID:29371745

  1. Severe Autumn storms in future Western Europe with a warmer Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Baatsen, Michiel; Haarsma, Reindert J.; Van Delden, Aarnout J.; de Vries, Hylke

    2015-08-01

    Simulations with a very high resolution (~25 km) global climate model indicate that more severe Autumn storms will impact Europe in a warmer future climate. The observed increase is mainly attributed to storms with a tropical origin, especially in the later part of the twentyfirst century. As their genesis region expands, tropical cyclones become more intense and their chances of reaching Europe increase. This paper investigates the properties and evolution of such storms and clarifies the future changes. The studied tropical cyclones feature a typical evolution of tropical development, extratropical transition and a re-intensification. A reduction of the transit area between regions of tropical and extratropical cyclogenesis increases the probability of re-intensification. Many of the modelled storms exhibit hybrid properties in a considerable part of their life cycle during which they exhibit the hazards of both tropical and extratropical systems. In addition to tropical cyclones, other systems such as cold core extratropical storms mainly originating over the Gulf Stream region also increasingly impact Western Europe. Despite their different history, all of the studied storms have one striking similarity: they form a warm seclusion. The structure, intensity and frequency of storms in the present climate are compared to observations using the MERRA and IBTrACS datasets. Damaging winds associated with the occurrence of a sting jet are observed in a large fraction of the cyclones during their final stage. Baroclinic instability is of great importance for the (re-)intensification of the storms. Furthermore, so-called atmospheric rivers providing tropical air prove to be vital for the intensification through diabatic heating and will increase considerably in strength in the future, as will the associated flooding risks.

  2. The role of the equivalent blackbody temperature in the study of Atlantic Ocean tropical cyclones

    NASA Technical Reports Server (NTRS)

    Steranka, J.; Rodgers, E. B.; Gentry, R. C.

    1983-01-01

    Satellite measured equivalent blackbody temperatures of Atlantic Ocean tropical cyclones are used to investigate their role in describing the convection and cloud patterns of the storms and in predicting wind intensity. The high temporal resolution of the equivalent blackbody temperature measurements afforded with the geosynchronous satellite provided sequential quantitative measurements of the tropical cyclone which reveal a diurnal pattern of convection at the inner core during the early developmental stage; a diurnal pattern of cloudiness in the storm's outer circulation throughout the life cycle; a semidiurnal pattern of cloudiness in the environmental atmosphere surrounding the storms during the weak storm stage; an outward modulating atmospheric wave originating at the inner core; and long term convective bursts at the inner core prior to wind intensification.

  3. The Cyclone Global Navigation Satellite System (CYGNSS) - Analysis and Data Assimilation for Tropical Convection

    NASA Technical Reports Server (NTRS)

    Li, Xuanli; Lang, Timothy J.; Mecikalski, John; Castillo, Tyler; Hoover, Kacie; Chronis, Themis

    2017-01-01

    Cyclone Global Navigation Satellite System (CYGNSS): a constellation of 8 micro-satellite observatories launched in November 2016, to measure near-surface oceanic wind speed. Main goal: To monitor surface wind fields of the Tropical Cyclones' inner core, including regions beneath the intense eye wall and rain bands that could not previously be measured from space; Cover 38 deg S -38 deg N with unprecedented temporal resolution and spatial coverage, under all precipitating conditions Low flying satellite: Pass over ocean surface more frequently than one large satellite. A median(mean) revisit time of 2.8(7.2) hrs.

  4. Synoptic and climatological aspects of extra-tropical cyclones

    NASA Astrophysics Data System (ADS)

    Leckebusch, G. C.

    2010-09-01

    Mid-latitude cyclones are highly complex dynamical features embedded in the general atmospheric circulation of the extra-tropics. Although the basic mechanisms leading to the formation of cyclones are commonly understood, the specific conditions and physical reasons triggering extreme, partly explosive development, are still under investigation. This includes also the identification of processes which might modulate the frequency and intensity of cyclone systems on time scales from days to centennials. This overview presentation will thus focus on three main topics: Firstly, the dynamic-synoptic structures of cyclones, the possibility to objectively identify cyclones and wind storms, and actual statistical properties of cyclone occurrence under recent climate conditions are addressed. In a second part, aspects of the interannual variability and its causing mechanisms are related to the seasonal predictability of extreme cyclones producing severe storm events. Extending the time frame will mean to deduce information on decadal or even centennial time periods. Thus, actual work to decadal as well as climatological variability and changes will be presented. In the last part of the talk focus will be laid on potential socio-economical impacts of changed cyclone occurrence. By means of global and regional climate modeling, future damages in terms of insured losses will be investigated and measures of uncertainty estimated from a multi-model ensemble analysis will be presented.

  5. On predicting future economic losses from tropical cyclones: Comparing damage functions for the Eastern USA

    NASA Astrophysics Data System (ADS)

    Geiger, Tobias; Levermann, Anders; Frieler, Katja

    2015-04-01

    Recent years have seen an intense scientific debate of what to expect from future tropical cyclone activity under climate change [1,2]. Besides the projection of cyclones' genesis points and trajectories it is the cyclone's impact on future societies that needs to be quantified. In our present work, where we focus on the Eastern USA, we start out with a comprehensive comparison of a variety of presently available and novel functional relationships that are used to link cyclones' physical properties with their damage caused on the ground. These so-called damage functions make use of high quality data sets consisting of gridded population data, exposed capital at risk, and information on the cyclone's extension and its translational and locally resolved maximum wind speed. Based on a cross-validation ansatz we train a multitude of damage functions on a large variety of data sets in order to evaluate their performance on an equally sized test sample. Although different damage analyses have been conducted in the literature [3,4,5,6], the efforts have so far primarily been focused on determining fit parameters for individual data sets. As our analysis consists of a wide range of damage functions implemented on identical data sets, we can rigorously evaluate which (type of) damage function (for which set of parameters) does best in reproducing damages and should therefore be used for future loss analysis with highest certainty. We find that the benefits of using locally resolved data input tend to be outweighed by the large uncertainties that accompany the data. More coarse and generalized data input therefore captures the diversity of cyclonic features better. Furthermore, our analysis shows that a non-linear relation between wind speed and damage outperforms the linear as well as the exponential relationship discussed in the literature. In a second step, the damage function with the highest predictive quality is implemented to predict potential future cyclone losses for the Eastern USA until the year 2100. The projection is based on downscaling five different GCM model runs for the RCP8.5 scenario, as conducted by Emanuel et al. [7], and accounts for population and GDP changes relying on the newly developed Shared Socioenonomic Pathways (SSPs) [8]. We hereby contribute valuable input to the scientific community as well as the societies at risk. The possibility of extending this work to different regions in order to access the future impact of tropical cyclones on a global scale will also be discussed. References [1] Thomas R. Knutson, John L. McBride, Johnny Chan, Kerry Emanuel, Greg Holland, Chris Landsea, Isaac Held, James P. Kossin, A. K. Srivastava, and Masato Sugi. Tropical cyclones and climate change. Nature Geoscience, 3(3):157-163, 2010. [2] Robert Mendelsohn, Kerry Emanuel, Shun Chonabayashi, and Laura Bakkensen. The impact of climate change on global tropical cyclone damage. Nature Climate Change, 2(3):205-209, 2012. [3] Silvio Schmidt, Claudia Kemfert, and Peter Höppe. The impact of socio-economics and climate change on tropical cyclone losses in the USA. Regional Environmental Change, 10(1):13-26, 2009. [4] William D. Nordhaus. The Economics of Hurricanes and Implications of Global Warming. Climate Change Economics, 01(01):1-20, 2010. [5] Kerry Emanuel. Global Warming Effects on U.S. Hurricane Damage. Weather, Climate, and Society, 3(4):261-268, 2011. [6] Richard J. Murnane and James B. Elsner. Maximum wind speeds and US hurricane losses. Geophysical Research Letters, 39(16):707, 2012. [7] Kerry Emanuel. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proceedings of the National Academy of Sciences of the United States of America, 110(30):12219-24, 2013. [8] Detlef P. van Vuuren, Keywan Riahi, and Richard Moss. A proposal for a new scenario framework to support research and assessment in different climate research communities. Global Environmental Change, 22(1):21-35, 2012.

  6. Estimation of size of tropical cyclones in the North Indian Ocean using Oceansat-2 scatterometer high-resolution wind products

    NASA Astrophysics Data System (ADS)

    Jaiswal, Neeru; Ha, Doan Thi Thu; Kishtawal, C. M.

    2018-03-01

    Tropical cyclone (TC) is one of the most intense weather hazards, especially for the coastal regions, as it causes huge devastation through gale winds and torrential floods during landfall. Thus, accurate prediction of TC is of great importance to reduce the loss of life and damage to property. Most of the cyclone track prediction model requires size of TC as an important parameter in order to simulate the vortex. TC size is also required in the impact assessment of TC affected regions. In the present work, the size of TCs formed in the North Indian Ocean (NIO) has been estimated using the high resolution surface wind observations from oceansat-2 scatterometer. The estimated sizes of cyclones were compared to the radius of outermost closed isobar (ROCI) values provided by Joint Typhoon warning Center (JTWC) by plotting their histograms and computing the correlation and mean absolute error (MAE). The correlation and MAE between the OSCAT wind based TC size estimation and JTWC-ROCI values was found 0.69 and 33 km, respectively. The results show that the sizes of cyclones estimated by OSCAT winds are in close agreement to the JTWC-ROCI. The ROCI values of JTWC were analyzed to study the variations in the size of tropical cyclones in NIO during different time of the diurnal cycle and intensity stages.

  7. Dynamics and Predictability of Tropical Cyclone Genesis, Structure and Intensity Change

    DTIC Science & Technology

    2012-09-30

    analyses and forecasts of tropical cyclones, including genesis, intensity change, and extratropical transition. A secondary objective is to understand... storm -centered assimilation algorithm. Basic research in Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...COMPLETED For the four storms consider (Nuri, Jangmi, Sinlaku, and Hagupit), an 80-member EnKF has been cycled on observations (surface, rawinsondes, GPS

  8. The Re-Intensification of Typhoon Sinlaku (2008)

    DTIC Science & Technology

    2010-06-01

    Tropical Cyclones, TCS-08, T- PARC , Extratropical Transition, Airborne Dual Doppler Radar , ELDORA, Axisymmetrization, Mesoscale Vortices, Mesoscale...observed by multiple aircraft as part of the TCS-08 and T- PARC field programs. Airborne dual-Doppler radar , dropwindsondes, and flight-level...typhoon southwest of Japan. The evolution of the tropical cyclone (TC) structure was observed by multiple aircraft as part of the TCS-08 and T- PARC

  9. Intermediate and high resolution numerical simulations of the transition of a tropical wave critical layer to a tropical storm

    NASA Astrophysics Data System (ADS)

    Montgomery, M. T.; Wang, Z.; Dunkerton, T. J.

    2009-12-01

    Recent work has hypothesized that tropical cyclones in the deep Atlantic and eastern Pacific basins develop from the cyclonic Kelvin cat's eye of a tropical easterly wave critical layer located equatorward of the easterly jet axis that typifies the trade wind belt. The cyclonic critical layer is thought to be important to tropical cyclogenesis because its cat's eye provides (i) a region of cyclonic vorticity and weak deformation by the resolved flow, (ii) containment of moisture entrained by the developing flow and/or lofted by deep convection therein, (iii) confinement of mesoscale vortex aggregation, (iv) a predominantly convective type of heating profile, and (v) maintenance or enhancement of the parent wave until the developing proto-vortex becomes a self-sustaining entity and emerges from the wave as a tropical depression. This genesis sequence and the overarching framework for describing how such hybrid wave-vortex structures become tropical depressions/storms is likened to the development of a marsupial infant in its mother's pouch, and for this reason has been dubbed the "marsupial paradigm". Here we conduct the first multi-scale test of the marsupial paradigm in an idealized setting by revisiting the problem of the transformation of an easterly wave-like disturbance into a tropical storm vortex using the WRF model. An analysis of the evolving winds, equivalent potential temperature, and relative vertical vorticity is presented from coarse (28 km) and high resolution (3.1 km) simulations. The results are found to support key elements of the marsupial paradigm by demonstrating the existence of a vorticity dominant region with minimal strain/shear deformation within the critical layer pouch that contains strong cyclonic vorticity and high saturation fraction. This localized region within the pouch serves as the "attractor" for an upscale "bottom up" development process while the wave pouch and proto-vortex move together. Implications of these findings are discussed in relation to an upcoming field experiment for the most active period of the Atlantic hurricane season in 2010 that is to be conducted collaboratively between the National Oceanic and Atmospheric Administration (NOAA), the National Science Foundation (NSF), and the National Aeronautics and Space Adminstration (NASA).

  10. Climate extremes in the Pacific: improving seasonal prediction of tropical cyclones and extreme ocean temperatures to improve resilience

    NASA Astrophysics Data System (ADS)

    Kuleshov, Y.; Jones, D.; Spillman, C. M.

    2012-04-01

    Climate change and climate extremes have a major impact on Australia and Pacific Island countries. Of particular concern are tropical cyclones and extreme ocean temperatures, the first being the most destructive events for terrestrial systems, while the latter has the potential to devastate ocean ecosystems through coral bleaching. As a practical response to climate change, under the Pacific-Australia Climate Change Science and Adaptation Planning program (PACCSAP), we are developing enhanced web-based information tools for providing seasonal forecasts for climatic extremes in the Western Pacific. Tropical cyclones are the most destructive weather systems that impact on coastal areas. Interannual variability in the intensity and distribution of tropical cyclones is large, and presently greater than any trends that are ascribable to climate change. In the warming environment, predicting tropical cyclone occurrence based on historical relationships, with predictors such as sea surface temperatures (SSTs) now frequently lying outside of the range of past variability meaning that it is not possible to find historical analogues for the seasonal conditions often faced by Pacific countries. Elevated SSTs are the primary trigger for mass coral bleaching events, which can lead to widespread damage and mortality on reef systems. Degraded coral reefs present many problems, including long-term loss of tourism and potential loss or degradation of fisheries. The monitoring and prediction of thermal stress events enables the support of a range of adaptive and management activities that could improve reef resilience to extreme conditions. Using the climate model POAMA (Predictive Ocean-Atmosphere Model for Australia), we aim to improve accuracy of seasonal forecasts of tropical cyclone activity and extreme SSTs for the regions of Western Pacific. Improved knowledge of extreme climatic events, with the assistance of tailored forecast tools, will help enhance the resilience and adaptive capacity of Australia and Pacific Island Countries under climate change. Acknowledgement The research discussed in this paper was conducted with the support of the PACCSAP supported by the AusAID and Department of Climate Change and Energy Efficiency and delivered by the Bureau of Meteorology and CSIRO.

  11. Tropical Cyclone Intensity in Global Models

    NASA Astrophysics Data System (ADS)

    Davis, C. A.; Wang, W.; Ahijevych, D.

    2017-12-01

    In recent years, global prediction and climate models have begun to depict intense tropical cyclones, even up to Category 5 on the Saffir-Simpson scale. In light of the limitation of horizontal resolution in such models, we examine the how well these models treat tropical cyclone intensity, measured from several different perspectives. The models evaluated include the operational Global Forecast System, with a grid spacing of about 13 km, and the Model for Prediction Across Scales, with a variable resolution of 15 km over the Northwest Pacific transitioning to 60 km elsewhere. We focus on the Northwest Pacific for the period July-October, 2016. Results indicate that discrimination of tropical cyclone intensity is reasonably good up to roughly category 3 storms. The models are able to capture storms of category 4 intensity, but still exhibit a negative intensity bias of 20-30 knots at lead times beyond 5 days. This is partly indicative of the large number of super-typhoons that occurred in 2016. The question arises of how well global models should represent intensity, given that it is unreasonable for them to depict the inner core of many intense tropical cyclones with a grid increment of 13-15 km. We compute an expected "best-case" prediction of intensity based on filtering the observed wind profiles of Atlantic tropical cyclones according to different hypothetical model resolutions. The Atlantic is used because of the significant number of reconnaissance missions and more reliable estimate of wind radii. Results indicate that, even under the most optimistic assumptions, models with horizontal grid spacing of 1/4 degree or coarser should not produce a realistic number of category 4 and 5 storms unless there are errors in spatial attributes of the wind field. Furthermore, models with a grid spacing of 1/4 degree or greater are unlikely to systematically discriminate hurricanes with differing intensity. Finally, for simple wind profiles, it is shown how an accurate representation of maximum wind on a coarse grid will lead to an overestimate of horizontally integrated kinetic energy by a factor of two or more.

  12. Disaster, Deprivation and Death: Large but delayed infant mortality in the wake of Filipino tropical cyclones

    NASA Astrophysics Data System (ADS)

    Anttila-Hughes, J. K.; Hsiang, S. M.

    2011-12-01

    Tropical cyclones are some of the most disastrous and damaging of climate events, and estimates of their destructive potential abound in the natural and social sciences. Nonetheless, there have been few systematic estimates of cyclones' impact on children's health. This is concerning because cyclones leave in their wake a swath of asset losses and economic deprivation, both known to be strong drivers of poor health outcomes among children. In this paper we provide a household-level estimate of the effect of tropical cyclones on infant mortality in the Philippines, a country with one of the most active cyclone climatologies in the world. We reconstruct historical cyclones with detailed spatial and temporal resolution, allowing us to estimate the multi-year effects of cyclones on individuals living in specific locations. We combine the cyclone reconstruction with woman-level fertility and mortality data from four waves of the Filipino Demographic and Health Survey, providing birth histories for over 55,000 women. In multiple regressions that control for year and region fixed effects as well as intra-annual climate variation, we find that there is a pronounced and robust increase in female infant mortality among poor families in the 12-24 months after storms hit. The estimated mortality rate among this demographic subgroup is much larger than official mortality rates reported by the Filipino government immediately after storms, implying that much of a cyclone's human cost arrives well after the storm has passed. We find that high infant mortality rates are associated with declines in poor families' income and expenditures, including consumption of food and medical services, suggesting that the mechanism by which these deaths are effected may be economic deprivation. These results indicate that a major health and welfare impact of storms has been thus far overlooked, but may be easily prevented through appropriately targeted income support policies.

  13. Temporal clustering of tropical cyclones on the Great Barrier Reef and its ecological importance

    NASA Astrophysics Data System (ADS)

    Wolff, Nicholas H.; Wong, Aaron; Vitolo, Renato; Stolberg, Kristin; Anthony, Kenneth R. N.; Mumby, Peter J.

    2016-06-01

    Tropical cyclones have been a major cause of reef coral decline during recent decades, including on the Great Barrier Reef (GBR). While cyclones are a natural element of the disturbance regime of coral reefs, the role of temporal clustering has previously been overlooked. Here, we examine the consequences of different types of cyclone temporal distributions (clustered, stochastic or regular) on reef ecosystems. We subdivided the GBR into 14 adjoining regions, each spanning roughly 300 km, and quantified both the rate and clustering of cyclones using dispersion statistics. To interpret the consequences of such cyclone variability for coral reef health, we used a model of observed coral population dynamics. Results showed that clustering occurs on the margins of the cyclone belt, being strongest in the southern reefs and the far northern GBR, which also has the lowest cyclone rate. In the central GBR, where rates were greatest, cyclones had a relatively regular temporal pattern. Modelled dynamics of the dominant coral genus, Acropora, suggest that the long-term average cover might be more than 13 % greater (in absolute cover units) under a clustered cyclone regime compared to stochastic or regular regimes. Thus, not only does cyclone clustering vary significantly along the GBR but such clustering is predicted to have a marked, and management-relevant, impact on the status of coral populations. Additionally, we use our regional clustering and rate results to sample from a library of over 7000 synthetic cyclone tracks for the GBR. This allowed us to provide robust reef-scale maps of annual cyclone frequency and cyclone impacts on Acropora. We conclude that assessments of coral reef vulnerability need to account for both spatial and temporal cyclone distributions.

  14. Statistical Characteristic of Global Tropical Cyclone Looping Motion

    NASA Astrophysics Data System (ADS)

    Shen, W.; Song, J.; Wang, Y.

    2016-12-01

    Statistical characteristic of looping motion of tropical cyclones (TCs) in the Western North Pacific (WPAC), North Atlantic (NATL), Eastern North Pacific (EPAC), Northern Indian Ocean (NIO), Southern Indian Ocean (SIO) and South Pacific (SPAC) basins are investigated by using IBTrACS archive maintained by NOAA. From global perspective, about ten percent TCs experience a looping motion in the above six basins. The southern hemisphere (SH) including SIO and SPAC basins have higher looping percentage than the northern hemisphere (NH), while the EPAC basin has the least looping percentage. The interannual variation of the number of looping TCs are significantly correlated with that of total TCs in the NATL, SIO and SPAC basins, while there are no correlations between the EPAC and NIO basins. The numbers of looping TCs have a higher percentage in the early and late cyclone season in the NH rather than the peak period of cyclone season, while the SIO and SPAC basins have the higher looping percentage in the early and late cyclone season, respectively. The looping motion of TCs mainly concentrates on the scale of tropical depression to category 2 and has its peak value on the scale of tropical storm. The looping motion appears more frequently and has a higher percentage at the pre-mature stage than the post-mature stage of TCs in most basins except EPAC. Comparing the intensity and intensity variation caused by the looping motion, the weaker TCs tend to intensify after looping, while the more intense ones weaken.

  15. Wave ensemble forecast system for tropical cyclones in the Australian region

    NASA Astrophysics Data System (ADS)

    Zieger, Stefan; Greenslade, Diana; Kepert, Jeffrey D.

    2018-05-01

    Forecasting of waves under extreme conditions such as tropical cyclones is vitally important for many offshore industries, but there remain many challenges. For Northwest Western Australia (NW WA), wave forecasts issued by the Australian Bureau of Meteorology have previously been limited to products from deterministic operational wave models forced by deterministic atmospheric models. The wave models are run over global (resolution 1/4∘) and regional (resolution 1/10∘) domains with forecast ranges of + 7 and + 3 day respectively. Because of this relatively coarse resolution (both in the wave models and in the forcing fields), the accuracy of these products is limited under tropical cyclone conditions. Given this limited accuracy, a new ensemble-based wave forecasting system for the NW WA region has been developed. To achieve this, a new dedicated 8-km resolution grid was nested in the global wave model. Over this grid, the wave model is forced with winds from a bias-corrected European Centre for Medium Range Weather Forecast atmospheric ensemble that comprises 51 ensemble members to take into account the uncertainties in location, intensity and structure of a tropical cyclone system. A unique technique is used to select restart files for each wave ensemble member. The system is designed to operate in real time during the cyclone season providing + 10-day forecasts. This paper will describe the wave forecast components of this system and present the verification metrics and skill for specific events.

  16. Large scale features and energetics of the hybrid subtropical low `Duck' over the Tasman Sea

    NASA Astrophysics Data System (ADS)

    Pezza, Alexandre Bernardes; Garde, Luke Andrew; Veiga, José Augusto Paixão; Simmonds, Ian

    2014-01-01

    New aspects of the genesis and partial tropical transition of a rare hybrid subtropical cyclone on the eastern Australian coast are presented. The `Duck' (March 2001) attracted more recent attention due to its underlying genesis mechanisms being remarkably similar to the first South Atlantic hurricane (March 2004). Here we put this cyclone in climate perspective, showing that it belongs to a class within the 1 % lowest frequency percentile in the Southern Hemisphere as a function of its thermal evolution. A large scale analysis reveals a combined influence from an existing tropical cyclone and a persistent mid-latitude block. A Lagrangian tracer showed that the upper level air parcels arriving at the cyclone's center had been modified by the blocking. Lorenz energetics is used to identify connections with both tropical and extratropical processes, and reveal how these create the large scale environment conducive to the development of the vortex. The results reveal that the blocking exerted the most important influence, with a strong peak in barotropic generation of kinetic energy over a large area traversed by the air parcels just before genesis. A secondary peak also coincided with the first time the cyclone developed an upper level warm core, but with insufficient amplitude to allow for a full tropical transition. The applications of this technique are numerous and promising, particularly on the use of global climate models to infer changes in environmental parameters associated with severe storms.

  17. Increased threat of tropical cyclones and coastal flooding to New York City during the anthropogenic era.

    PubMed

    Reed, Andra J; Mann, Michael E; Emanuel, Kerry A; Lin, Ning; Horton, Benjamin P; Kemp, Andrew C; Donnelly, Jeffrey P

    2015-10-13

    In a changing climate, future inundation of the United States' Atlantic coast will depend on both storm surges during tropical cyclones and the rising relative sea levels on which those surges occur. However, the observational record of tropical cyclones in the North Atlantic basin is too short (A.D. 1851 to present) to accurately assess long-term trends in storm activity. To overcome this limitation, we use proxy sea level records, and downscale three CMIP5 models to generate large synthetic tropical cyclone data sets for the North Atlantic basin; driving climate conditions span from A.D. 850 to A.D. 2005. We compare pre-anthropogenic era (A.D. 850-1800) and anthropogenic era (A.D.1970-2005) storm surge model results for New York City, exposing links between increased rates of sea level rise and storm flood heights. We find that mean flood heights increased by ∼1.24 m (due mainly to sea level rise) from ∼A.D. 850 to the anthropogenic era, a result that is significant at the 99% confidence level. Additionally, changes in tropical cyclone characteristics have led to increases in the extremes of the types of storms that create the largest storm surges for New York City. As a result, flood risk has greatly increased for the region; for example, the 500-y return period for a ∼2.25-m flood height during the pre-anthropogenic era has decreased to ∼24.4 y in the anthropogenic era. Our results indicate the impacts of climate change on coastal inundation, and call for advanced risk management strategies.

  18. Increased threat of tropical cyclones and coastal flooding to New York City during the anthropogenic era

    PubMed Central

    Reed, Andra J.; Mann, Michael E.; Emanuel, Kerry A.; Lin, Ning; Horton, Benjamin P.; Kemp, Andrew C.; Donnelly, Jeffrey P.

    2015-01-01

    In a changing climate, future inundation of the United States’ Atlantic coast will depend on both storm surges during tropical cyclones and the rising relative sea levels on which those surges occur. However, the observational record of tropical cyclones in the North Atlantic basin is too short (A.D. 1851 to present) to accurately assess long-term trends in storm activity. To overcome this limitation, we use proxy sea level records, and downscale three CMIP5 models to generate large synthetic tropical cyclone data sets for the North Atlantic basin; driving climate conditions span from A.D. 850 to A.D. 2005. We compare pre-anthropogenic era (A.D. 850–1800) and anthropogenic era (A.D.1970–2005) storm surge model results for New York City, exposing links between increased rates of sea level rise and storm flood heights. We find that mean flood heights increased by ∼1.24 m (due mainly to sea level rise) from ∼A.D. 850 to the anthropogenic era, a result that is significant at the 99% confidence level. Additionally, changes in tropical cyclone characteristics have led to increases in the extremes of the types of storms that create the largest storm surges for New York City. As a result, flood risk has greatly increased for the region; for example, the 500-y return period for a ∼2.25-m flood height during the pre-anthropogenic era has decreased to ∼24.4 y in the anthropogenic era. Our results indicate the impacts of climate change on coastal inundation, and call for advanced risk management strategies. PMID:26417111

  19. Impact of Moist Physics Complexity on Tropical Cyclone Simulations from the Hurricane Weather Research and Forecast System

    NASA Astrophysics Data System (ADS)

    Kalina, E. A.; Biswas, M.; Newman, K.; Grell, E. D.; Bernardet, L.; Frimel, J.; Carson, L.

    2017-12-01

    The parameterization of moist physics in numerical weather prediction models plays an important role in modulating tropical cyclone structure, intensity, and evolution. The Hurricane Weather Research and Forecast system (HWRF), the National Oceanic and Atmospheric Administration's operational model for tropical cyclone prediction, uses the Scale-Aware Simplified Arakawa-Schubert (SASAS) cumulus scheme and a modified version of the Ferrier-Aligo (FA) microphysics scheme to parameterize moist physics. The FA scheme contains a number of simplifications that allow it to run efficiently in an operational setting, which includes prescribing values for hydrometeor number concentrations (i.e., single-moment microphysics) and advecting the total condensate rather than the individual hydrometeor species. To investigate the impact of these simplifying assumptions on the HWRF forecast, the FA scheme was replaced with the more complex double-moment Thompson microphysics scheme, which individually advects cloud ice, cloud water, rain, snow, and graupel. Retrospective HWRF forecasts of tropical cyclones that occurred in the Atlantic and eastern Pacific ocean basins from 2015-2017 were then simulated and compared to those produced by the operational HWRF configuration. Both traditional model verification metrics (i.e., tropical cyclone track and intensity) and process-oriented metrics (e.g., storm size, precipitation structure, and heating rates from the microphysics scheme) will be presented and compared. The sensitivity of these results to the cumulus scheme used (i.e., the operational SASAS versus the Grell-Freitas scheme) also will be examined. Finally, the merits of replacing the moist physics schemes that are used operationally with the alternatives tested here will be discussed from a standpoint of forecast accuracy versus computational resources.

  20. Spatial relationships between tropical cyclone frequencies and population densities in Haiti since the 19th century

    NASA Astrophysics Data System (ADS)

    Klose, C. D.

    2011-12-01

    The second edition of the United Nations Global Assessment Report on Disaster Risk Reduction in 2011 outlined that the worldwide physical exposure to tropical cyclones increased by 192 per cent between 1970 and 2010. For the past 160 years, the Republic of Haiti has experienced numerous tropical storms and hurricanes which may have directly effected the country's development path. However, statistical data regarding storm frequencies and population densities in space and time show that the population's exposure in Haiti may have more negatively influenced its development than the actual number of storms and hurricanes. Haitians, in particular, those living in urban areas have been exposed to much higher tropical cyclone hazards than rural areas since the second half of the 20th century. Specifically, more storms made landfall in regions of accelerated migration/urbanization, such as, in departments Ouest, Artibonite, Nord, and Nord-Ouest with Haiti's four largest cities Port-au-Prince, Gonaives, Cap-Haitien and Port-de-Paix.

  1. Satellite-observed latent heat release in a tropical cyclone

    NASA Technical Reports Server (NTRS)

    Adler, R. F.; Rodgers, E. B.

    1976-01-01

    Earlier observational estimates of storm latent heat release (LHR) have been made using a moisture budget approach. The present paper summarizes results for the tropical cyclone Nora, using the electrically scanning microwave radiometer (ESMR) on Nimbus 5, on the basis of the theoretical brightness temperature/rainfall rate relationship for an assumed freezing level of 5 km. The LHR of the storm as a function of time for a circular area of radius 4 deg latitude positioned on the circulation center is discussed along with the calculated mean rain rate as a function of distance from the storm center. The contribution of the various magnitudes of rain rates to the total LHR of the storm is examined. It is concluded that the Nimbus 5 ESMR data can be used to determine the LHR characteristics of tropical cyclones and are potentially useful in the monitoring of such storms. The calculations for Typhoon Nora indicate that the LHR for the storm increases as the storm intensifies from a tropical disturbance to a typhoon.

  2. Hurricanes and Typhoons: Past, Present, and Future edited by R. J. Murnane and K. -B. Liu

    NASA Astrophysics Data System (ADS)

    Yim, W. W.-S.

    2005-04-01

    Columbia University Press, New York; ISBN 0-231-12388-4; xii + 462 pp; 2004; $89.50. This is a topical book on tropical cyclones known more popularly as hurricanes in the Americas and typhoons in eastern Asia. The subject may appeal to academics and researchers as well as to the general public. The best way to predict the future variability of tropical cyclones is by examining their past record. Prehistoric records can be obtained from geological or archeological studies while historical records are provided by documentation and instrumentation. Of particular interest now are the changes in frequency and landfall pattern of tropical cyclones during El Niño years, La Niña years, and neutral years, extending back in time to cover the past 8,000 years for disaster planning.

  3. African aerosols and Atlantic tropical cyclone activities

    NASA Astrophysics Data System (ADS)

    Kafatos, M.; Sun, D.; Sahoo, A.

    2006-12-01

    Previous studies have shown that the Atlantic basin major hurricane (MH) activity is associated with western Sahelian monsoon rainfall, while rainfall in the Sahel is found to be highly anti-correlated with the African dust storms. So if the Atlantic basin MH activity may be anti-correlated with the African dust aerosols? In order to investigate the relationship between the African dust and the tropical cyclone (including both tropical storms and hurricanes) activities in the Atlantic basin, we explore how the African dust may link to Atlantic TC activity by using the long-term (1982-2005) NCEP Reynolds sea surface temperature (SST) product, and tropical cyclone (TC) data from the National Hurricane Center Best Track Files, and the TOMS aerosol index (AI) data, because the TOMS AI positive values are associated with UV-absorbing aerosols, like dust and smoke. Although no significant negative correlation between the TOMS AI and the Atlantic TC or MH frequency and duration is found, the initial locations of the Atlantic tropical cyclones did occur over the ocean where the aerosol loading was low. Our analysis shows that SST over the north tropical Atlantic ocean is anti-correlated with the TOMS aerosol index. This may be due to the radiative forcing of the aerosols. The effects of the dust aerosols carried across the West African region led to a lowering of SST and therefore inhibited tropical cyclogenesis. During 2005, the aerosol loading along the western African coast was unusually low, while the SST over the main development region (MDR) was abnormally high, and the Atlantic TC/hurricane activities became record strong. We propose future observations to test these results.

  4. Assessing the Regional Frequency, Intensity, and Spatial Extent of Tropical Cyclone Rainfall

    NASA Astrophysics Data System (ADS)

    Bosma, C.; Wright, D.; Nguyen, P.

    2017-12-01

    While the strength of a hurricane is generally classified based on its wind speed, the unprecedented rainfall-driven flooding experienced in southeastern Texas during Hurricane Harvey clearly highlights the need for better understanding of the hazards associated with extreme rainfall from hurricanes and other tropical systems. In this study, we seek to develop a framework for describing the joint probabilistic and spatio-temporal properties of extreme rainfall from hurricanes and other tropical systems. Furthermore, we argue that commonly-used terminology - such as the "500-year storm" - fail to convey the true properties of tropical cyclone rainfall occurrences in the United States. To quantify the magnitude and spatial extent of these storms, a database consisting of hundreds of unique rainfall volumetric shapes (or "voxels") was created. Each voxel is a four-dimensional object, created by connecting, in both space and time, gridded rainfall observations from the daily, gauge-based NOAA CPC-Unified precipitation dataset. Individual voxels were then associated with concurrent tropical cyclone tracks from NOAA's HURDAT-2 archive, to create distinct representations of the rainfall associated with every Atlantic tropical system making landfall over (or passing near) the United States since 1948. Using these voxels, a series of threshold-excess extreme value models were created to estimate the recurrence intervals of extreme tropical cyclone rainfall, both nationally and locally, for single and multi-day timescales. This voxel database also allows for the "indexing" of past events, placing recent extremes - such as the 50+ inches of rain observed during Hurricane Harvey - into a national context and emphasizing how rainfall totals that are rare at the point scale may be more frequent from a regional perspective.

  5. Oceanic response to tropical cyclone `Phailin' in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Pant, V.; Prakash, K. R.

    2016-02-01

    Vertical mixing largely explains surface cooling induced by Tropical Cyclones (TCs). However, TC-induced upwelling of deeper waters plays an important role as it partly balances the warming of subsurface waters induced by vertical mixing. Below 100 m, vertical advection results in cooling that persists for a few days after the storm. The present study investigates the integrated ocean response to tropical cyclone `Phaillin' (10-14 October 2013) in the Bay of Bengal (BoB) through both coupled and stand-alone ocean-atmosphere models. Two numerical experiments with different coupling configurations between Regional Ocean Modelling System (ROMS) and Weather Research and Forecasting (WRF) were performed to investigate the impact of Phailin cyclone on the surface and sub-surface oceanic parameters. In the first experiment, ocean circulation model ROMS observe surface wind forcing from a mesoscale atmospheric model (WRF with nested damin setup), while rest forcing parameters are supplied to ROMS from NCEP data. In the second experiment, all surface forcing data to ROMS directly comes from WRF. The modeling components and data fields exchanged between atmospheric and oceanic models are described. The coupled modeling system is used to identify model sensitivity by exchanging prognostic variable fields between the two model components during simulation of Phallin cyclone (10-14 October 2013) in the BoB.In general, the simulated Phailin cyclone track and intensities agree well with observations in WRF simulations. Further, the inter-comparison between stand-alone and coupled model simulations validated against observations highlights better performance of coupled modeling system in simulating the oceanic conditions during the Phailin cyclone event.

  6. Analysis of ionospheric disturbances associated with powerful cyclones in East Asia and North America

    NASA Astrophysics Data System (ADS)

    Li, Wang; Yue, Jianping; Yang, Yang; Li, Zhen; Guo, Jinyun; Pan, Yi; Zhang, Kefei

    2017-08-01

    East Asia and North America are the regions most heavily affected by powerful cyclones. In this paper we investigate the morphological characteristics of ionospheric disturbances induced by cyclones in different continents. The global ionosphere map supplied by the Center for Orbit Determination in Europe (CODE), International Reference Ionosphere Model (IRI) 2012, and Wallops Island ionosonde station data are used to analyse the ionospheric variations during powerful typhoons/hurricanes in East Asia and North America, respectively. After eliminating the ionospheric anomalies due to the solar-terrestrial environment, the total electron content (TEC) time series over the point with maximum wind speed is detected by the sliding interquartile range method. The results indicate that significant ionospheric disturbances are observed during powerful tropical cyclones in East Asia and North America, respectively, and that all the ionospheric anomalies are positive. In addition, the extent and magnitude of travelling ionospheric disturbances are associated with the category of tropical cyclone, and the extent of TEC anomalies in longitude is more pronounced than that in latitude. Furthermore, the maximum ionospheric anomaly does not coincide with the eye of the storm, but appears in the region adjacent to the centre. This implies that ionospheric disturbances at the edges of cyclones are larger than those in the eye of the winds. The phenomenon may be associated with the gravity waves which are generated by strong convective cells that occur in the spiral arms of tropical cyclones. This comprehensive analysis suggests that the presence of powerful typhoons/hurricanes may be a possible source mechanism for ionospheric anomalies.

  7. Terrestrial Gamma Ray Flashes due to Particle Acceleration in Tropical Storm Systems

    NASA Technical Reports Server (NTRS)

    Roberts, O. S.; Fitzpatrick, G.; Priftis, G.; Bedka, K.; Chronis, T.; Mcbreen, S.; Briggs, M.; Cramer, E.; Mailyan, B.; Stanbro, M.

    2017-01-01

    Terrestrial gamma ray flashes (TGFs) are submillisecond flashes of energetic radiation that are believed to emanate from intracloud lightning inside thunderstorms. This emission can be detected hundreds of kilometers from the source by space-based observatories such as the Fermi Gamma-ray Space Telescope (Fermi). The location of the TGF-producing storms can be determined using very low frequency (VLF) radio measurements made simultaneously with the Fermi detection, allowing additional insight into the mechanisms which produce these phenomena. In this paper, we report 37 TGFs originating from tropical storm systems for the first time. Previous studies to gain insight into how tropical cyclones formed and how destructive they can be include the investigation of lightning flash rates and their dependence on storm evolution. We find TGFs to emanate from a broad range of distances from the storm centers. In hurricanes and severe tropical cyclones, the TGFs are observed to occur predominately from the outer rainbands. A majority of our sample also show TGFs occurring during the strengthening phase of the encompassing storm system. These results verify that TGF production closely follows when and where lightning predominately occurs in cyclones. The intrinsic characteristics of these TGFs were not found to differ from other TGFs reported in larger samples. We also find that some TGF-producing storm cells in tropical storm systems far removed from land have a low number of WWLLN sferics. Although not unique to tropical cyclones, this TGF/sferic ratio may imply a high efficiency for the lightning in these storms to generate TGFs.

  8. Paradigms for Tropical-Cyclone Intensification

    DTIC Science & Technology

    2011-01-01

    Hurricane Opal (1995) using the Geo- physical Fluid Dynamics Laboratory hurricane prediction model, Möller and Shapiro (2002) found unbalanced flow...al. (2008) calculations on an f -plane, described in section 6.1. A specific aim was to deter- mine the separate contributions of diabatic heating and... Opal as diagnosed from a GFDL model forecast. Mon. Wea. Rev., 130, 1866-1881. Marks FD Shay LK. 1998: Landfalling tropical cyclones: Forecast

  9. An Analysis of a Developing and Non-Developing Disturbance During the Predict Experiment

    DTIC Science & Technology

    2015-09-25

    convection. As the wave propagates primarily westwards, the flow establishes dynamic flow boundaries (a Kelvin cat’s eye) that effectively trap moist...stability, the navy will need to be effective at anticipating the vast destruction caused by tropical cyclones. A thorough understanding of 6 genesis...the most current and innovative approaches for effective tasking, collection, process- ing, exploitation, and dissemination of tropical cyclone decision

  10. Annual Tropical Cyclone Report, 1983.

    DTIC Science & Technology

    1983-01-01

    impact on Ellen. In addition to were based primarily on the presence of interferring with Ellen’s outflow at upper- upper-level banding features...upper-level flow impacting Thelma is reflected in the rapidity with which the The first warning on Thelma, as a system sheared while moving...8217 %,d 4 "." ,"." .".-*. .*’,.--" * . . ." .’% .. .J *. " . . . . . . .. . . . . .• . ’ .".• -* ". FOREWORD The Annual Tropical Cyclone Report

  11. Sea Surface Signature of Tropical Cyclones Using Microwave Remote Sensing

    DTIC Science & Technology

    2013-01-01

    due to the ionosphere and troposphere, which have to be compensated for, and components due to the galactic and cosmic background radiation those...and corrections for sun glint, galactic and cosmic background radiation, and Stokes effects of the ionosphere. The accuracy of a given retrieval...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) Sea surface signature of tropical cyclones using microwave remote sensing Bumjun Kil

  12. 1975 Annual Typhoon Report

    DTIC Science & Technology

    1995-01-01

    southwest monsoon. Tropical Cyclone 24-75 formed just off the southwest tip of the Indian subcontinent. 3X tracked northwest and dissipated over water ...Tropical Cyclone 33-75 formed in late November and described an erratic track in the southwest portion of the Bay. The storm dissipated over water ...Leyte leaving 15 dead rains were spawned over the caused widespread flooding Choppy waters near capsized a crowded motorboat and 30 missing. FIGURE 4

  13. Tropical Cyclone Evolution and Water and Energy Fluxes: A Hurricane Katrina Case Study

    NASA Astrophysics Data System (ADS)

    Pinheiro, M. C.; Zhou, Y.

    2015-12-01

    Tropical cyclones are a highly destructive force of nature, characterized by extreme precipitation levels and wind speeds and heavy flooding. There are concerns that climate change will cause changes in the intensity and frequency of tropical cyclones. Therefore, the quantification of the water and energy fluxes that occur during a tropical cyclone's life cycle are important for anticipating the magnitude of damages that are likely to occur. This study used HURDAT2 storm track information and data from the satellite-derived SeaFlux and TRMM products to determine changes in precipitation, wind, and latent and sensible heat throughout the life cycle of Hurricane Katrina. The variables were examined along and around the storm track, taking averages both at stationary 5x5 degree boxes and within the instantaneous hurricane domain. Analysis focused on contributions of convergence and latent heat to the storm evolution and examined how the total flux was related to the storm intensity. Certain features, such as the eye, were not resolved due to the data resolution, but the data captures the general trend of enhanced flux levels that are due to the storm's presence. Analysis also included examination of the water and energy budgets as related to convergence and the sensible and latent heat fluxes.

  14. Analysis of Non-Tropical Cyclone Induced Flood Events over South East Asia: Investigating Flood Frequency and Extremes in the Philippines

    NASA Astrophysics Data System (ADS)

    Marcella, M. P.; CHEN, C.; Senarath, S. U.

    2013-12-01

    Much work has been completed in analyzing Southeast Asia's tropical cyclone climatology and the associated flooding throughout the region. Although, an active and strong monsoon season also brings major flooding across the Philippines resulting in the loss of lives and significant economic impacts, only a limited amount of research work has been conducted to investigate the frequency and flood loss estimates of these non-tropical cyclone (TC) storms. In this study, using the TRMM 3-hourly rainfall product, tropical cyclone rainfall is removed to construct a non-TC rainfall climatology across the region. Given this data, stochastically generated rainfall that is both spatially and temporally correlated across the country is created to generate a longer historically-based record of non-TC precipitation. After defining the rainfall criteria that constitutes a flood event based on observed floods and TRMM data, this event definition is applied to the stochastic catalog of rainfall to determine flood events. Subsequently, a thorough analysis of non-TC flood extremes, frequency, and distribution is completed for the country of the Philippines. As a result, the above methodology and datasets provide a unique opportunity to further study flood occurrences and their extremes across most of South East Asia.

  15. A New Tropical Cyclone Dynamic Initialization Technique Using High Temporal and Spatial Density Atmospheric Motion Vectors and Airborne Field Campaign Data

    NASA Technical Reports Server (NTRS)

    Hendricks, Eric A.; Bell, Michael M.; Elsberry, Russell L.; Velden, Chris S.; Cecil, Dan

    2016-01-01

    Background: Initialization of tropical cyclones in numerical weather prediction (NWP) systems is a great challenge: Mass-wind ?eld balance; Secondary circulation and heating; Asymmetries. There can be large adjustments in structure and intensity in the ?rst 24 hours if the initial vortex is not in balance: Spurious gravity waves; Spin-up (model and physics). Existing mesoscale NWP model TC (Tropical Cyclone) initialization strategies: Bogus vortex, cold start from global analyses; 3DVAR or 4DVAR, possibly with synthetic observations; EnKF (Ensemble Kalman Filter); Dynamic initialization. Dynamic initialization allows vortex to have improved balance and physics spin-up at the initial time (e.g., Hendricks et al. 2013, 2011; Nguyen and Chen 2011; Fiorino and Warner 1981; Hoke and Anthes 1976). Himawari-8 geostationary satellite has capability of continuous imagery (10-minutes) over the full disk: New GOES-R satellites will have same capability. This will allow for unprecedented observations of tropical cyclones. However, current data assimila1on systems are not capable of ingesting such high temporal observations (Atmospheric Mo1on Vectors - AMVs). Hourly AMVs are produced, and thinned to 100-kilometer spacing in the horizontal. An entirely new data assimilation concept is required to utilize these observations.

  16. Prediction of tropical cyclone over North Indian Ocean using WRF model: sensitivity to scatterometer winds, ATOVS and ATMS radiances

    NASA Astrophysics Data System (ADS)

    Dodla, Venkata B.; Srinivas, Desamsetti; Dasari, Hari Prasad; Gubbala, Chinna Satyanarayana

    2016-05-01

    Tropical cyclone prediction, in terms of intensification and movement, is important for disaster management and mitigation. Hitherto, research studies were focused on this issue that lead to improvement in numerical models, initial data with data assimilation, physical parameterizations and application of ensemble prediction. Weather Research and Forecasting (WRF) model is the state-of-art model for cyclone prediction. In the present study, prediction of tropical cyclone (Phailin, 2013) that formed in the North Indian Ocean (NIO) with and without data assimilation using WRF model has been made to assess impacts of data assimilation. WRF model was designed to have nested two domains of 15 and 5 km resolutions. In the present study, numerical experiments are made without and with the assimilation of scatterometer winds, and radiances from ATOVS and ATMS. The model performance was assessed in respect to the movement and intensification of cyclone. ATOVS data assimilation experiment had produced the best prediction with least errors less than 100 km up to 60 hours and producing pre-deepening and deepening periods accurately. The Control and SCAT wind assimilation experiments have shown good track but the errors were 150-200 km and gradual deepening from the beginning itself instead of sudden deepening.

  17. Objective tropical cyclone extratropical transition detection in high-resolution reanalysis and climate model data

    DOE PAGES

    Zarzycki, Colin M.; Thatcher, Diana R.; Jablonowski, Christiane

    2017-01-22

    This paper describes an objective technique for detecting the extratropical transition (ET) of tropical cyclones (TCs) in high-resolution gridded climate data. The algorithm is based on previous observational studies using phase spaces to define the symmetry and vertical thermal structure of cyclones. Storm tracking is automated, allowing for direct analysis of climate data. Tracker performance in the North Atlantic is assessed using 23 years of data from the variable-resolution Community Atmosphere Model (CAM) at two different resolutions (DX 55 km and 28 km), the Climate Forecast System Reanalysis (CFSR, DX 38 km), and the ERA-Interim Reanalysis (ERA-I, DX 80 km).more » The mean spatiotemporal climatologies and seasonal cycles of objectively detected ET in the observationally constrained CFSR and ERA-I are well matched to previous observational studies, demonstrating the capability of the scheme to adequately find events. High resolution CAM reproduces TC and ET statistics that are in general agreement with reanalyses. One notable model bias, however, is significantly longer time between ET onset and ET completion in CAM, particularly for TCs that lose symmetry prior to developing a cold-core structure and becoming extratropical cyclones, demonstrating the capability of this method to expose model biases in simulated cyclones beyond the tropical phase.« less

  18. The measurement of winds over the ocean from Skylab with application to measuring and forecasting typhoons and hurricanes

    NASA Technical Reports Server (NTRS)

    Cardone, V. J.; Pierson, W. J.

    1975-01-01

    On Skylab, a combination microwave radar-radiometer (S193) made measurements in a tropical hurricane (AVA), a tropical storm, and various extratropical wind systems. The winds at each cell scanned by the instrument were determined by objective numerical analysis techniques. The measured radar backscatter is compared to the analyzed winds and shown to provide an accurate method for measuring winds from space. An operational version of the instrument on an orbiting satellite will be able to provide the kind of measurements in tropical cyclones available today only by expensive and dangerous aircraft reconnaissance. Additionally, the specifications of the wind field in the tropical boundary layer should contribute to improved accuracy of tropical cyclone forecasts made with numerical weather predictions models currently being applied to the tropical atmosphere.

  19. Cascading hazards: Understanding triggering relations between wet tropical cyclones, landslides, and earthquakes

    NASA Astrophysics Data System (ADS)

    Wdowinski, S.; Peng, Z.; Ferrier, K.; Lin, C. H.; Hsu, Y. J.; Shyu, J. B. H.

    2017-12-01

    Earthquakes, landslides, and tropical cyclones are extreme hazards that pose significant threats to human life and property. Some of the couplings between these hazards are well known. For example, sudden, widespread landsliding can be triggered by large earthquakes and by extreme rainfall events like tropical cyclones. Recent studies have also shown that earthquakes can be triggered by erosional unloading over 100-year timescales. In a NASA supported project, titled "Cascading hazards: Understanding triggering relations between wet tropical cyclones, landslides, and earthquake", we study triggering relations between these hazard types. The project focuses on such triggering relations in Taiwan, which is subjected to very wet tropical storms, landslides, and earthquakes. One example for such triggering relations is the 2009 Morakot typhoon, which was the wettest recorded typhoon in Taiwan (2850 mm of rain in 100 hours). The typhoon caused widespread flooding and triggered more than 20,000 landslides, including the devastating Hsiaolin landslide. Six months later, the same area was hit by the 2010 M=6.4 Jiashian earthquake near Kaohsiung city, which added to the infrastructure damage induced by the typhoon and the landslides. Preliminary analysis of temporal relations between main-shock earthquakes and the six wettest typhoons in Taiwan's past 50 years reveals similar temporal relations between M≥5 events and wet typhoons. Future work in the project will include remote sensing analysis of landsliding, seismic and geodetic monitoring of landslides, detection of microseismicity and tremor activities, and mechanical modeling of crustal stress changes due to surface unloading.

  20. Frequency changes of tropical cyclones during the last century recorded in a canyon of the northern Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Kudrass, Hermann; Machalett, Björn; Palamenghi, Luisa; Meyer, Inka

    2017-04-01

    Frequent cyclones originating in the Bay of Bengal and landfall to the southern delta of the Ganges and Brahmaputra are well recorded in sediment cores from a canyon which deeply incises into the shelf and ends at the foreset beds of the submarine Ganges Brahmaputra delta. The large sediment supply by the two rivers during the monsoonal floods forms temporary deposits on the inner shelf, which are mobilized by waves and currents during the passage of cyclones. The resulting sand-silt-clay suspension forms high-density water masses, which plunge from the inner shelf into the shelf canyon, where they deposit graded beds evenly draping the broad canyon floor. A simple model was used to rank the historical known cyclones according to their capacity to transfer sediment from the submarine delta into the canyon. In a 362 cm-long sediment core ranging from the year 1985 to 2006, 48 graded beds can be correlated with the observed 41 cyclones. The cyclonic impact on the sediment transport has decreased by a factor of three during the last decade. The highest cyclonic impact occurred during the seventies. Compared to the sediment transfer by cyclones, the input by tidal currents and monsoonal floods is negligible. Thus cyclones are the dominating process for mobilizing and distributing sediment on the Bangladesh shelf and probably also on all shelf areas, which lie in the track of tropical cyclones.

  1. Tropical cyclone Pam field survey in Vanuatu

    NASA Astrophysics Data System (ADS)

    Fritz, Hermann M.; Pilarczyk, Jessica E.; Kosciuch, Thomas; Hong, Isabel; Rarai, Allan; Harrison, Morris J.; Jockley, Fred R.; Horton, Benjamin P.

    2016-04-01

    Severe tropical cyclone Pam (Cat. 5, SSHS) crossed the Vanuatu archipelago with sustained winds of 270 km/h on March 13 and 14, 2015 and made landfall on Erromango. Pam is the most intense tropical cyclone to make landfall on Vanuatu since the advent of satellite imagery based intensity estimates in the 1970s. Pam caused one of the worst natural disaster in Vanuatu's recorded history. Eleven fatalities were directly attributed to cyclone Pam and mostly due to lack of shelter from airborne debris. On March 6 Pam formed east of the Santa Cruz Islands causing coastal inundation on Tuvalu's Vaitupu Island located some 1100 km east of the cyclone center. Pam intensified while tracking southward along Vanuatu severely affecting the Shefa and Tafea Provinces. An international storm surge reconnaissance team was deployed to Vanuatu from June 3 to 17, 2015 to complement earlier local surveys. Cyclone Pam struck a remote island archipelago particularly vulnerable to the combined cyclonic multi-hazards encompassing extreme wind gusts, massive rainfall and coastal flooding due to a combination of storm surge and storm wave impacts. The team surveyed coastal villages on Epi, the Shepherd Islands (Tongoa and Mataso), Efate (including Lelepa), Erromango, and Tanna. The survey spanned 320 km parallel to the cyclone track between Epi and Tanna encompassing more than 45 sites including the hardest hit settlements. Coastal flooding profiles were surveyed from the shoreline to the limit of inundation. Maximum coastal flood elevations and overland flow depths were measured based on water marks on buildings, scars on trees, rafted debris and corroborated with eyewitness accounts. We surveyed 91 high water marks with characteristic coastal flood levels in the 3 to 7 m range and composed of storm surge with superimposed storm waves. Inundation distances were mostly limited to a few hundred meters but reached 800 m on Epi Island. Wrack lines containing pumice perfectly delineated the inundation at many sites and were mapped as line features. Coral boulders of more than 1 m diameter were measured on Erromango. Along each island that was sampled, Cyclone Pam deposited a 1 - 20 cm thick sedimentary layer consisting of foraminfera-bearing sand and pumice cobbles. Infrastructure damage on traditional and modern structures was assessed. Eyewitnesses were interviewed at most sites to document the chronology of the wind and coastal flooding events, survival strategies, cyclone and tsunami awareness, evacuation procedures, shelter locations and ancestral knowledge. Field observations were compared with surveyed eyewitness accounts of historic events such as severe tropical cyclone Uma in 1987. The measured cyclone Pam high water marks will facilitate the interpretation of the collected sedimentary evidence and serve as benchmarks for modeling studies.

  2. Explosive cyclogenesis of extra-tropical cyclone Klaus and its effects in Catalonia. A case study of hurricane force gusts.

    NASA Astrophysics Data System (ADS)

    Calvo, J.; López, J. A.; Martín, F.; Morales, G.; Pascual, R.

    2009-09-01

    On 23th and 24th of January 2009, the extra-tropical cyclone Klaus crossed the north of Spain and the south of France producing several deaths and generalized damages. The cyclone of Atlantic origin underwent an explosive deepening of more than 1 hPa per hour at the surface level. Catalonia region was affected by gale-force winds and hurricane gusts. The Atlantic depression underwent a process called explosive cyclogenesis (when a surface cyclone deepens at a rate higher than 1 hPa/hr over 24 hours, approximately) in front of the Spanish Atlantic coasts. In this study we focus on its impact in the Catalonia areas where both synoptic and local effects were important. Also we evaluate the performance of the numerical weather prediction model outputs against observed data.

  3. The response of land-falling tropical cyclone characteristics to projected climate change in northeast Australia

    NASA Astrophysics Data System (ADS)

    Parker, Chelsea L.; Bruyère, Cindy L.; Mooney, Priscilla A.; Lynch, Amanda H.

    2018-01-01

    Land-falling tropical cyclones along the Queensland coastline can result in serious and widespread damage. However, the effects of climate change on cyclone characteristics such as intensity, trajectory, rainfall, and especially translation speed and size are not well-understood. This study explores the relative change in the characteristics of three case studies by comparing the simulated tropical cyclones under current climate conditions with simulations of the same systems under future climate conditions. Simulations are performed with the Weather Research and Forecasting Model and environmental conditions for the future climate are obtained from the Community Earth System Model using a pseudo global warming technique. Results demonstrate a consistent response of increasing intensity through reduced central pressure (by up to 11 hPa), increased wind speeds (by 5-10% on average), and increased rainfall (by up to 27% for average hourly rainfall rates). The responses of other characteristics were variable and governed by either the location and trajectory of the current climate cyclone or the change in the steering flow. The cyclone that traveled furthest poleward encountered a larger climate perturbation, resulting in a larger proportional increase in size, rainfall rate, and wind speeds. The projected monthly average change in the 500 mb winds with climate change governed the alteration in the both the trajectory and translation speed for each case. The simulated changes have serious implications for damage to coastal settlements, infrastructure, and ecosystems through increased wind speeds, storm surge, rainfall, and potentially increased size of some systems.

  4. Impact of surface coupling grids on tropical cyclone extremes in high-resolution atmospheric simulations

    DOE PAGES

    Zarzycki, Colin M.; Reed, Kevin A.; Bacmeister, Julio T.; ...

    2016-02-25

    This article discusses the sensitivity of tropical cyclone climatology to surface coupling strategy in high-resolution configurations of the Community Earth System Model. Using two supported model setups, we demonstrate that the choice of grid on which the lowest model level wind stress and surface fluxes are computed may lead to differences in cyclone strength in multi-decadal climate simulations, particularly for the most intense cyclones. Using a deterministic framework, we show that when these surface quantities are calculated on an ocean grid that is coarser than the atmosphere, the computed frictional stress is misaligned with wind vectors in individual atmospheric gridmore » cells. This reduces the effective surface drag, and results in more intense cyclones when compared to a model configuration where the ocean and atmosphere are of equivalent resolution. Our results demonstrate that the choice of computation grid for atmosphere–ocean interactions is non-negligible when considering climate extremes at high horizontal resolution, especially when model components are on highly disparate grids.« less

  5. Relating Tropical Cyclone Track Forecast Error Distributions with Measurements of Forecast Uncertainty

    DTIC Science & Technology

    2016-03-01

    cyclone THORPEX The Observing System Research and Predictability Experiment TIGGE THORPEX Interactive Grand Global Ensemble TS tropical storm ...forecast possible, but also relay the level of uncertainty unique to a given storm . This will better inform decision makers to help protect all assets at...for any given storm . Thus, the probabilities may 4 increase or decrease (and the probability swath may widen or narrow) to provide a more

  6. Upper Oceanic Energy Response to Tropical Cyclone Passage

    DTIC Science & Technology

    2013-04-15

    insolation, and the upper ocean stratification . The importance of the upper ocean energy content to TCs, particularly their intensification, has been...similar to those of Shay and Brewster (2010), who showed that the stable stratification of the east Pacific also makes the 100-m mixed layer depth a poor... The upper oceanic temporal response to tropical cyclone (TC) passage is investigated using a 6-yr daily record of data-driven analyses of two

  7. Climatology of North Pacific Tropical Cyclone Tracks

    DTIC Science & Technology

    1988-11-01

    positions before they were used in the analyses and calculations. The interpolation was accomplished by the Akima method.* ( It should be noted that the...constant throughout its life with a heading between 2500 and 3600. A recurver is defined as a tropical cyclone that turned from its initial westward or... belongs to two periods, and in some cases three. The starting date was chosen for classification purposes because, in operational fact, a storm’s

  8. On the violation of gradient wind balance at the top of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Cohen, Yair; Harnik, Nili; Heifetz, Eyal; Nolan, David S.; Tao, Dandan; Zhang, Fuqing

    2017-08-01

    The existence of physical solutions for the gradient wind balance is examined at the top of 12 simulated tropical cyclones. The pressure field at the top of these storms, which depends on the vertically integrated effect of the warm core and the near surface low, is found to violate the gradient wind balance—termed here as a state of nonbalance. Using a toy model, it is shown that slight changes in the relative location and relative widths of the warm core drastically increase the isobaric curvature at the upper level pressure maps leading to nonbalance. While idealized storms return to balance within several days, simulations of real-world tropical cyclones retain a considerable degree of nonbalance throughout the model integration. Comparing mean and maximum values of different storms shows that peak nonbalance correlates with either peak intensity or intensification, implying the possible importance of nonbalance at upper levels for the near surface winds.

  9. How Does Tropical Cyclone Size Affect the Onset Timing of Secondary Eyewall Formation?

    NASA Astrophysics Data System (ADS)

    Guan, Liang; Ge, Xuyang

    2018-02-01

    By using idealized numerical simulations, the impact of tropical cyclone size on secondary eyewall formation (SEF) is examined. Both unbalanced boundary layer and balanced processes are examined to reveal the underlying mechanism. The results show that a tropical cyclone (TC) with a larger initial size favors a quicker SEF and a larger outer eyewall. For a TC with a larger initial size, it will lead to a stronger surface entropy flux, and thus more active outer convection. Meanwhile, a greater inertial stability helps the conversion from diabatic heating to kinetic energy. Furthermore, the progressively broadening of the tangential wind field will induce significant boundary layer imbalances. This unbalanced boundary layer process results in a supergradient wind zone that acts as an important mechanism for triggering and maintaining deep convection. In short, different behaviors of balanced and unbalanced processes associated with the initial wind profile lead to different development rates of the secondary eyewall.

  10. Tropical Cyclone Activity in the North Atlantic Basin During the Weather Satellite Era, 1960-2014

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2016-01-01

    This Technical Publication (TP) represents an extension of previous work concerning the tropical cyclone activity in the North Atlantic basin during the weather satellite era, 1960-2014, in particular, that of an article published in The Journal of the Alabama Academy of Science. With the launch of the TIROS-1 polar-orbiting satellite in April 1960, a new era of global weather observation and monitoring began. Prior to this, the conditions of the North Atlantic basin were determined only from ship reports, island reports, and long-range aircraft reconnaissance. Consequently, storms that formed far from land, away from shipping lanes, and beyond the reach of aircraft possibly could be missed altogether, thereby leading to an underestimate of the true number of tropical cyclones forming in the basin. Additionally, new analysis techniques have come into use which sometimes has led to the inclusion of one or more storms at the end of a nominal hurricane season that otherwise would not have been included. In this TP, examined are the yearly (or seasonal) and 10-year moving average (10-year moving average) values of the (1) first storm day (FSD), last storm day (LSD), and length of season (LOS); (2) frequencies of tropical cyclones (by class); (3) average peak 1-minute sustained wind speed () and average lowest pressure (); (4) average genesis location in terms of north latitudinal () and west longitudinal () positions; (5) sum and average power dissipation index (); (6) sum and average accumulated cyclone energy (); (7) sum and average number of storm days (); (8) sum of the number of hurricane days (NHD) and number of major hurricane days (NMHD); (9) net tropical cyclone activity index (NTCA); (10) largest individual storm (LIS) PWS, LP, PDI, ACE, NSD, NHD, NMHD; and (11) number of category 4 and 5 hurricanes (N4/5). Also examined are the December-May (D-M) and June-November (J-N) averages and 10-year moving average values of several climatic factors, including the (1) oceanic Nino index (); (2) Atlantic multi-decadal oscillation () index; (3) Atlantic meridional mode () index; (4) global land-ocean temperature index (); and (5) quasi-biennial oscillation () index. Lastly, the associational aspects (using both linear and nonparametric statistical tests) between selected tropical cyclone parameters and the climatic factors are examined based on their 10-year moving average trend values.

  11. A meridional dipole in premonsoon Bay of Bengal tropical cyclone activity induced by ENSO: TROPICAL CYCLONES, MONSOON AND ENSO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaguru, Karthik; Leung, L. Ruby; Lu, Jian

    2016-06-27

    Analysis of Bay of Bengal tropical cyclone (TC) track data for the month of May during 1980-2013 reveals a meridional dipole in TC intensification: TC intensification rates increased in the northern Bay and decreased in the southern Bay. The dipole was driven by an increase in low-level vorticity and atmospheric humidity in the northern Bay, making the environment more favorable for TC intensification, and enhanced vertical wind shear in the southern Bay, tending to reduce TC development. These environmental changes were associated with a strengthening of the monsoon circulation for the month of May, driven by a La Nin˜a-like shiftmore » in tropical Pacific SSTs andassociated tropical wave dynamics. Analysis of a suite of climate models fromthe CMIP5 archive for the 150-year historical period shows that most models correctly reproduce the link between ENSO and Bay of Bengal TC activity through the monsoon at interannual timescales. Under the RCP 8.5 scenario the same CMIP5 models produce an El Nin˜o like warming trend in the equatorial Pacific, tending to weaken the monsoon circulation. These results suggest« less

  12. A Conceptual Model for Tropical Cyclone Formation

    NASA Astrophysics Data System (ADS)

    Wang, Z.

    2014-12-01

    The role of cumulus congestus (shallow and congestus convection) in tropical cyclone (TC) formation is examined in a high-resolution simulation of Tropical Cyclone Fay (2008). It is found that cumulus congestus plays a dominant role in moistening the lower to middle troposphere and spinning up the near-surface circulation before genesis, while deep convection plays a key role in moistening the upper troposphere and intensifying the cyclonic circulation over a deep layer. The transition from the tropical wave stage to the TC stage is marked by a substantial increase in net condensation and potential vorticity generation by deep convection in the inner wave pouch region. This study suggests that TC formation can be regarded as a two-stage process. The first stage is a gradual process of moisture preconditioning and the low-level spinup, in which cumulus congestus plays a dominant role. The second stage commences with the rapid development of deep convection in the inner pouch region after the air column is moistened sufficiently, whereupon the concentrated convective heating near the pouch center strengthens the transverse circulation and leads to the amplification of the cyclonic circulation over a deep layer. The rapid development of deep convection can be explained by the power-law increase of precipitation rate with column water vapor (CWV) above a critical value. The high CWV near the pouch center thus plays an important role in convective organization. It is also shown that cumulus congestus can effectively drive the low-level convergence and provides a direct and simple pathway for the development of the TC proto-vortex near the surface.

  13. "Midget typhoon" in the western Pacific Ocean

    NASA Image and Video Library

    2017-12-08

    It’s usually the big, sprawling storms that attract the attention of meteorologists, but occasionally tiny storms can make news as well. The most recent example is a suspected mini-typhoon that drifted across the western Pacific Ocean in mid-July 2013. The storm system emerged on July 16 and dissipated by July 19 without making landfall or causing any significant damage. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this true-color image of the storm on July 17, 2013. It had the spiral shape of a tropical cyclone, but the cloud field was less than 100 kilometers (60 miles) across. For comparison, Super Typhoon Jelawat, the most intense storm of the 2012 season, had a cloud field that stretched nearly 1,000 kilometers (600 miles). Jelawat’s eye alone—with a diameter of 64 kilometers (40 miles)—was two-thirds the size of the entire July 2013 storm. Despite their small size, mini-cyclones are driven by the same forces that drive larger storms. Both small and large cyclonic storms are simply organized convection feeding off warm water in areas with low wind shear. According to the Joint Typhoon Warning Center, the low-pressure areas for these mini-typhoons must span less than two degrees of latitude (about 140 miles) and have sustained winds of 65 knots (74 miles per hour). The 2013 storm in the Pacific certainly meets the first criteria, but it is unlikely that the storm achieved typhoon-force winds. It’s also unlikely that the system had a “warm core,” which all true tropical cyclones have. While this storm did not cause damage, other mini storms certainly have. In 1974, the miniature cyclone Tracy hit Darwin, Australia, killing 71 people and destroying more than 70 percent of the city’s buildings. According to the National Hurricane Center, tropical cyclone Marco unseated Tracy as the smallest tropical cyclone on record in 2008. Marco had gale force winds that extended just 19 kilometers (12 miles). Typhoon Tip, with gale force winds extending 1,000 kilometers (675 miles) is the largest tropical cyclone on record. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Coastal Hazard due to Tropical Cyclones in Mexico

    NASA Astrophysics Data System (ADS)

    Silva-Casarin, R.; Mendoza-Baldwin, E.; Marino-Tapia, I.; Enriquez, C.; Ruiz, G.; Escalante-MAncera, E.; Ruíz-Rentería, F.

    2013-05-01

    The Mexican coast is hit every year by at least 3 cyclones and it is affected for nearly 59 hours a year on average; this induces undesirable consequences, such as coastal erosion and flooding. To evaluate the hazard to which the coastal zone is exposes, a historical characterization of atmospheric conditions (surface winds and pressure conditions of the storms), waves (wave heights and their associated wave periods) and flooding levels due to tropical storms for more than 60 years is presented. The atmospheric and wave conditions were evaluated using a modification of the original parametric Hydromet-Rankin Vortex Model by Bretschneider (1990) and Holland (1980) as presented by Silva, et al. (2002). The flooding levels caused by hurricanes were estimated using a two-dimensional, vertically averaged finite volume model to evaluate the storm surge, Posada et al. (2008). The cyclone model was compared to the data series of 29 cyclones recorded by buoys of the National Data Buoy Center-NOAA and some data recorded in shallow waters near Cancun, Mexico and the flooding model was compared with observed data from Cancun, Mexico; both models gave good results. For the extreme analyses of wind, wave heights and maximum flooding levels on the Mexican coasts, maps of the scale and location parameters used in the Weibull cumulative distribution function and numerical results for different return periods are provided. The historical occurrence of tropical storms is also revised as some studies indicate that the average intensity of tropical cyclones is increasing; no definite trends pointing to an increase in storm frequency or intensity were found. What was in fact found is that although there are more cyclones in the Pacific Ocean and these persist longer, the intensity of the cyclones in the Atlantic Ocean is greater affecting. In any case, the strong necessity of avoiding storm induced coastal damage (erosion and flooding) is reflected in numerous works, such as this one, which aim to better manage the coastal area and reduce its vulnerability to hurricanes. References Bretschneider, C.L., 1990. Tropical Cyclones. Handbook of Coastal and Ocean Engineering, Gulf Publishing Co., Vol. 1, 249-370. Holland, G.L., 1980. An analytical model of wind and pressure profiles in hurricanes. Monthly Weather Review, 108, 1212-1218. Posada, G., Silva, R. & de Brye, S. 2008. Three dimensional hydrodynamic model with multiquadtree meshes. American Journal of Environmental Sciences. 4(3): 209-222. Silva, R., Govaere, G., Salles, P., Bautista, G. & Díaz, G. 2002. Oceanographic vulnerability to hurricanes on the Mexican coast. International Conference on Coastal Engineering, pp. 39-51.

  15. Fuel for cyclones: The water vapor budget of a hurricane as dependent on its movement

    NASA Astrophysics Data System (ADS)

    Makarieva, Anastassia M.; Gorshkov, Victor G.; Nefiodov, Andrei V.; Chikunov, Alexander V.; Sheil, Douglas; Nobre, Antonio Donato; Li, Bai-Lian

    2017-09-01

    Despite the dangers associated with tropical cyclones and their rainfall, the origin of the moisture in these storms, which include destructive hurricanes and typhoons, remains surprisingly uncertain. Existing studies have focused on the region 40-400 km from a cyclone's center. It is known that the rainfall within this area cannot be explained by local processes alone but requires imported moisture. Nonetheless, the dynamics of this imported moisture appears unknown. Here, considering a region up to three thousand kilometers from cyclone center, we analyze precipitation, atmospheric moisture and movement velocities for severe tropical cyclones - North Atlantic hurricanes. Our findings indicate that even over such large areas a hurricane's rainfall cannot be accounted for by concurrent evaporation. We propose instead that a hurricane consumes pre-existing atmospheric water vapor as it moves. The propagation velocity of the cyclone, i.e. the difference between its movement velocity and the mean velocity of the surrounding air (steering flow), determines the water vapor budget. Water vapor available to the hurricane through its movement makes the hurricane self-sufficient at about 700 km from the hurricane center obviating the need to concentrate moisture from greater distances. Such hurricanes leave a dry wake, whereby rainfall is suppressed by up to 40% compared to the local long-term mean. The inner radius of this dry footprint approximately coincides with the hurricane's radius of water self-sufficiency. We discuss how Carnot efficiency considerations do not constrain the power of such open systems. Our findings emphasize the incompletely understood role and importance of atmospheric moisture stocks and dynamics in the behavior of severe tropical cyclones.

  16. New Science Enabled by the NASA TROPICS CubeSat Constellation Mission

    NASA Astrophysics Data System (ADS)

    Blackwell, W. J.; Braun, S. A.; Bennartz, R.; Velden, C.; Demaria, M.; Atlas, R. M.; Dunion, J. P.; Marks, F.; Rogers, R. F.; Annane, B.

    2017-12-01

    Recent technology advances in miniature microwave radiometers that can be hosted on very small satellites has made possible a new class of affordable constellation missions that provide very high revisit rates of tropical cyclones and other severe weather. The Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission was selected by NASA as part of the Earth Venture-Instrument (EVI-3) program and is now in development with planned launch readiness in late 2019. The overarching goal for TROPICS is to provide nearly all-weather observations of 3-D temperature and humidity, as well as cloud ice and precipitation horizontal structure, at high temporal resolution to conduct high-value science investigations of tropical cyclones, including: (1) relationships of rapidly evolving precipitation and upper cloud structures to upper-level warm-core intensity and associated storm intensity changes; (2) the evolution of precipitation structure and storm intensification in relationship to environmental humidity fields; and (3) the impact of rapid-update observations on numerical and statistical intensity forecasts of tropical cyclones. TROPICS will provide rapid-refresh microwave measurements (median refresh rate better than 60 minutes for the baseline mission) over the tropics that can be used to observe the thermodynamics of the troposphere and precipitation structure for storm systems at the mesoscale and synoptic scale over the entire storm lifecycle. TROPICS comprises a constellation of six CubeSats in three low-Earth orbital planes. Each CubeSat will host a high performance radiometer to provide temperature profiles using seven channels near the 118.75 GHz oxygen absorption line, water vapor profiles using 3 channels near the 183 GHz water vapor absorption line, imagery in a single channel near 90 GHz for precipitation measurements (when combined with higher resolution water vapor channels), and a single channel at 206 GHz that is more sensitive to precipitation-sized ice particles. This observing system offers an unprecedented combination of horizontal and temporal resolution to measure environmental and inner-core conditions for tropical cyclones on a nearly global scale.

  17. Coarse, intermediate and high resolution numerical simulations of the transition of a tropical wave critical layer to a tropical storm

    NASA Astrophysics Data System (ADS)

    Montgomery, M. T.; Wang, Z.; Dunkerton, T. J.

    2010-11-01

    Recent work has hypothesized that tropical cyclones in the deep Atlantic and eastern Pacific basins develop from within the cyclonic Kelvin cat's eye of a tropical easterly wave critical layer located equatorward of the easterly jet axis. The cyclonic critical layer is thought to be important to tropical cyclogenesis because its cat's eye provides (i) a region of cyclonic vorticity and weak deformation by the resolved flow, (ii) containment of moisture entrained by the developing flow and/or lofted by deep convection therein, (iii) confinement of mesoscale vortex aggregation, (iv) a predominantly convective type of heating profile, and (v) maintenance or enhancement of the parent wave until the developing proto-vortex becomes a self-sustaining entity and emerges from the wave as a tropical depression. This genesis sequence and the overarching framework for describing how such hybrid wave-vortex structures become tropical depressions/storms is likened to the development of a marsupial infant in its mother's pouch, and for this reason has been dubbed the "marsupial paradigm". Here we conduct the first multi-scale test of the marsupial paradigm in an idealized setting by revisiting the Kurihara and Tuleya problem examining the transformation of an easterly wave-like disturbance into a tropical storm vortex using the WRF model. An analysis of the evolving winds, equivalent potential temperature, and relative vertical vorticity is presented from coarse (28 km), intermediate (9 km) and high resolution (3.1 km) simulations. The results are found to support key elements of the marsupial paradigm by demonstrating the existence of a rotationally dominant region with minimal strain/shear deformation near the center of the critical layer pouch that contains strong cyclonic vorticity and high saturation fraction. This localized region within the pouch serves as the "attractor" for an upscale "bottom up" development process while the wave pouch and proto-vortex move together. Implications of these findings are discussed in relation to an upcoming field experiment for the most active period of the Atlantic hurricane season in 2010 that is to be conducted collaboratively between the National Oceanic and Atmospheric Administration (NOAA), the National Science Foundation (NSF), and the National Aeronautics and Space Adminstration (NASA).

  18. Large-scale factors in tropical and extratropical cyclone transition and extreme weather events.

    PubMed

    Pezza, Alexandre Bernardes; Simmonds, Ian

    2008-12-01

    Transition mechanisms characterizing changes from hurricanes to midlatitude cyclones and vice-versa (extratropical and tropical transition) have become a topic of increasing interest, partially because of their association with recent unusual storms that have developed in different ocean basins of both hemispheres. The aim of this work is to discuss some recent cases of transition and highly unusual hurricane developments and to address some of their wider implications for climate science. Frequently those dramatic cyclones are responsible for severe weather, potentially causing significant damage to property and infrastructure. An additional manifestation discussed here is their association with cold surges, a topic that has been very little explored in the literature. In the Southern Hemisphere, the first South Atlantic hurricane, Catarina, developed in March 2004 under very unusual large-scale conditions. That exceptional cyclone is viewed as a case of tropical transition facilitated by a well-developed blocking structure. A new index for monitoring tropical transition in the subtropical South Atlantic is discussed. This "South Atlantic index" is used to show that the unusual flow during and prior to Catarina's genesis can be attributed to tropical/extratropical interaction mechanisms. The "Donald Duck" case in Australia and Vince in the North Atlantic have also been examined and shown to belong to a category of hybrid-transitioning systems that will achieve at least partial tropical transition. While clearly more research is needed on the topic of transition, as we gain further insight, it is becoming increasingly apparent that features of large-scale circulation do play a fundamental role. A complex interaction between an extratropical transition case and an extreme summer cold surge affecting southeastern Australia is discussed as an example of wider climate implications.

  19. High Resolution Global Climate Modeling with GEOS-5: Intense Precipitation, Convection and Tropical Cyclones on Seasonal Time-Scales.

    NASA Technical Reports Server (NTRS)

    Putnam, WilliamM.

    2011-01-01

    In 2008 the World Modeling Summit for Climate Prediction concluded that "climate modeling will need-and is ready-to move to fundamentally new high-resolution approaches to capitalize on the seamlessness of the weather-climate continuum." Following from this, experimentation with very high-resolution global climate modeling has gained enhanced priority within many modeling groups and agencies. The NASA Goddard Earth Observing System model (GEOS-5) has been enhanced to provide a capability for the execution at the finest horizontal resolutions POS,SIOle with a global climate model today. Using this high-resolution, non-hydrostatic version of GEOS-5, we have developed a unique capability to explore the intersection of weather and climate within a seamless prediction system. Week-long weather experiments, to mUltiyear climate simulations at global resolutions ranging from 3.5- to 14-km have demonstrated the predictability of extreme events including severe storms along frontal systems, extra-tropical storms, and tropical cyclones. The primary benefits of high resolution global models will likely be in the tropics, with better predictions of the genesis stages of tropical cyclones and of the internal structure of their mature stages. Using satellite data we assess the accuracy of GEOS-5 in representing extreme weather phenomena, and their interaction within the global climate on seasonal time-scales. The impacts of convective parameterization and the frequency of coupling between the moist physics and dynamics are explored in terms of precipitation intensity and the representation of deep convection. We will also describe the seasonal variability of global tropical cyclone activity within a global climate model capable of representing the most intense category 5 hurricanes.

  20. Early Student Support for a Process Study of Oceanic Responses to Typhoons

    DTIC Science & Technology

    2015-09-30

    effect of these oceanic processes on air–sea fluxes during tropical cyclone passage will aid understanding of storm dynamics and structure. The ocean’s... Coriolis force, and the wind stress. This assumption is justified using the PWP3D model simulation. Before passage of the tropical cyclone eye, the...momentum balance is nearly linear, with a negligible pressure gradient effect . Most of the observed horizontal kinetic energy is within the upper 100 m

  1. Relationships Between Global Warming and Tropical Cyclone Activity in the Western North Pacific

    DTIC Science & Technology

    2007-09-01

    In this work, we investigate the relationships between global warming and tropical cyclone activity in the Western North Pacific (WNP). Our...hypothesis is that global warming impacts on TC activity occur through changes in the large scale environmental factors (LSEFs) known to be important in...averages. Using a least squares fit, we identify global warming signals in both the SST and vertical wind shear data across the WNP. These signals vary

  2. An error analysis of tropical cyclone divergence and vorticity fields derived from satellite cloud winds on the Atmospheric and Oceanographic Information Processing System (AOIPS)

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Rodgers, E. B.

    1977-01-01

    An advanced Man-Interactive image and data processing system (AOIPS) was developed to extract basic meteorological parameters from satellite data and to perform further analyses. The errors in the satellite derived cloud wind fields for tropical cyclones are investigated. The propagation of these errors through the AOIPS system and their effects on the analysis of horizontal divergence and relative vorticity are evaluated.

  3. Impact of physical parameterizations on idealized tropical cyclones in the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Reed, K. A.; Jablonowski, C.

    2011-02-01

    This paper explores the impact of the physical parameterization suite on the evolution of an idealized tropical cyclone within the National Center for Atmospheric Research's (NCAR) Community Atmosphere Model (CAM). The CAM versions 3.1 and 4 are used to study the development of an initially weak vortex in an idealized environment over a 10-day simulation period within an aqua-planet setup. The main distinction between CAM 3.1 and CAM 4 lies within the physical parameterization of deep convection. CAM 4 now includes a dilute plume Convective Available Potential Energy (CAPE) calculation and Convective Momentum Transport (CMT). The finite-volume dynamical core with 26 vertical levels in aqua-planet mode is used at horizontal grid spacings of 1.0°, 0.5° and 0.25°. It is revealed that CAM 4 produces stronger and larger tropical cyclones by day 10 at all resolutions, with a much earlier onset of intensification when compared to CAM 3.1. At the highest resolution CAM 4 also accounts for changes in the storm's vertical structure, such as an increased outward slope of the wind contours with height, when compared to CAM 3.1. An investigation concludes that the new dilute CAPE calculation in CAM 4 is largely responsible for the changes observed in the development, strength and structure of the tropical cyclone.

  4. Potential Seasonal Predictability for Winter Storms over Europe

    NASA Astrophysics Data System (ADS)

    Wild, Simon; Befort, Daniel J.; Leckebusch, Gregor C.

    2017-04-01

    Reliable seasonal forecasts of strong extra-tropical cyclones and windstorms would have great social and economical benefits, as these events are the most costly natural hazards over Europe. In a previous study we have shown good agreement of spatial climatological distributions of extra-tropical cyclones and wind storms in state-of-the-art multi-member seasonal prediction systems with reanalysis. We also found significant seasonal prediction skill of extra-tropical cyclones and windstorms affecting numerous European countries. We continue this research by investigating the mechanisms and precursor conditions (primarily over the North Atlantic) on a seasonal time scale leading to enhanced extra-tropical cyclone activity and winter storm frequency over Europe. Our results regarding mechanisms show that an increased surface temperature gradient at the western edge of the North Atlantic can be related to enhanced winter storm frequency further downstream causing for example a greater number of storms over the British Isles, as observed in winter 2013-14.The so-called "Horseshoe Index", a SST tripole anomaly pattern over the North Atlantic in the summer months can also cause a higher number of winter storms over Europe in the subsequent winter. We will show results of AMIP-type sensitivity experiments using an AGCM (ECHAM5), supporting this hypothesis. Finally we will analyse whether existing seasonal forecast systems are able to capture these identified mechanisms and precursor conditions affecting the models' seasonal prediction skill.

  5. A study on raindrop size distribution variability in before and after landfall precipitations of tropical cyclones observed over southern India

    NASA Astrophysics Data System (ADS)

    Janapati, Jayalakshmi; seela, Balaji Kumar; Reddy M., Venkatrami; Reddy K., Krishna; Lin, Pay-Liam; Rao T., Narayana; Liu, Chian-Yi

    2017-06-01

    Raindrop size distribution (RSD) characteristics in before landfall (BLF) and after landfall (ALF) of three tropical cyclones (JAL, THANE, and NILAM) induced precipitations are investigated by using a laser-based (PARticleSIze and VELocity - PARSIVEL) disdrometer at two different locations [Kadapa (14.47°N, 78.82°E) and Gadanki (13.5°N, 79.2°E)] in semi-arid region of southern India. In both BLF and ALF precipitations of these three cyclones, convective precipitations have higher mass weighted mean diameter (Dm) and lower normalized intercept parameter (log10Nw) values than stratiform precipitations. The radar reflectivity (Z) and rain rate (R) relations (Z=A*Rb) showed distinct variations in BLF and ALF precipitations of three cyclones. BLF precipitation of JAL cyclone has a higher Dm than ALF precipitation. Whereas, for THANE and NILAM cyclones ALF precipitations have higher Dm than BLF. The Dm values of three cyclones (both in BLF and ALF) are smaller than the Dm values of the other (Atlantic and Pacific) oceanic cyclones. Interaction of different regions (eyewall, inner rainbands, and outer rainbands) of cyclones with the environment and underlying surface led to RSD variations between BLF and ALF precipitations through different microphysical (collision-coalescence, breakup, evaporation, and riming) processes. The immediate significance of the present work is that (i) it contributes to our understanding of cyclone RSD in BLF and ALF precipitations, and (ii) it provides the useful information for quantitative estimation of rainfall from Doppler weather radar observations.

  6. Satellite-observed latent heat release in a tropical cyclone

    NASA Technical Reports Server (NTRS)

    Adler, R. F.; Rodgers, E. B.

    1976-01-01

    Data from the Nimbus 5 electrically scanning microwave radiometer (ESMR) are used to make calculations of the latent heat release (L.H.R.) and the distribution of rainfall rate in a tropical cyclone as it grows from a tropical disturbance to a typhoon. The L.H.R. (calculated over a circular area of 4 deg latitude radius) increases during the development and intensification of the storm from a magnitude of 2.7 X 10 to the 21st power ergs/s (in the disturbance stage) to 8.8 X 10 to the 21st power ergs (typhoon stage). The latter value corresponds to a mean rainfall rate of 2.0 mm hr/s. The more intense the cyclone and the greater the L.H.R., the greater the percentage contribution of the larger rainfall rates to the L.H.R. In the disturbance stage the percentage contribution of rainfall rates less than or minus 6 mm hr/s is typically 8%; for the typhoon stage, the value is 38%. The distribution of rainfall rate as a function of radial distance from the center indicates that as the cyclone intensifies, the higher rainfall rates tend to concentrate toward the center of the circulation.

  7. Gravity waves generated by a tropical cyclone during the STEP tropical field program - A case study

    NASA Technical Reports Server (NTRS)

    Pfister, L.; Chan, K. R.; Bui, T. P.; Bowen, S.; Legg, M.; Gary, B.; Kelly, K.; Proffitt, M.; Starr, W.

    1993-01-01

    Overflights of a tropical cyclone during the Australian winter monsoon field experiment of the Stratosphere-Troposphere Exchange Project (STEP) show the presence of two mesoscale phenomena: a vertically propagating gravity wave with a horizontal wavelength of about 110 km and a feature with a horizontal scale comparable to that of the cyclone's entire cloud shield. The larger feature is fairly steady, though its physical interpretation is ambiguous. The 110-km gravity wave is transient, having maximum amplitude early in the flight and decreasing in amplitude thereafter. Its scale is comparable to that of 100-to 150-km-diameter cells of low satellite brightness temperatures within the overall cyclone cloud shield; these cells have lifetimes of 4.5 to 6 hrs. These cells correspond to regions of enhanced convection, higher cloud altitude, and upwardly displaced potential temperature surfaces. The temporal and spatial distribution of meteorological variables associated with the 110-km gravity wave can be simulated by a slowly moving transient forcing at the anvil top having an amplitude of 400-600 m, a lifetime of 4.5-6 hrs, and a size comparable to the cells of low brightness temperature.

  8. Meteorological Drivers of Cold Temperatures in the Western Pacific TTL

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Ueyama, Rei; Jensen, Eric J.

    2017-01-01

    During the recent October 2016 aircraft sampling mission of the Tropical Tropopause Layer (POSIDON -- Pacific Oxidants, Sulfur, Ice, Dehydration, and cONvection), Western Pacific October TTL temperatures were anomalously cold due to a combination of La Nina conditions and a very stationary convective pattern. POSIDON also had more October Tropical Cyclones than typical, and tropical cyclones have substantial negative TTL temperatures associated with them. This paper investigates how meteorology in the troposphere drives TTL temperatures, and how these temperatures, coupled with the circulation, produce TTL clouds. We will also compare October TTL cloud distributions in different years, examining the relationship of clouds to October temperature anomalies.

  9. Extremes of Extra-tropical Storms and Drivers of Variability on Different Time Scales

    NASA Astrophysics Data System (ADS)

    Leckebusch, G. C.

    2015-12-01

    Extreme extra-tropical cyclones are highly complex dynamical systems with relevance not only for the meteorological and climatological conditions themselves, but also for impacts on different sectors of society and economy. In this presentation latest research results to severe cyclones and related wind fields from synoptic to multi-decadal and anthropogenic scales will be presented, including recent work to risk assessment of potential damages out of this natural hazard. Nevertheless, the focus is laid on the seasonal timescale and recent results to predictability and predictive skills out of different forecast suites will be discussed. In this context, three seasonal forecast suites, namely ECMWF System 3, ECMWF System 4 and Met Office HadGEM-GA3, are analysed regarding their ability to represent wintertime extra-tropical cyclone and wind storm events for the period 1992 until 2011. Two objective algorithms have been applied to 6 hourly MSLP data and 12 hourly wind speeds in 925hPa to detect cyclone and wind storm events, respectively. Results show that all model suites are able to simulate the climatological mean distribution of cyclones and wind storms. For wind storms, all model suites show positive skill in simulating the inter-annual variability over the sub-tropical Pacific. Results for the Atlantic region are more model dependent, with all models showing negative correlations over the western Atlantic. Over the eastern Atlantic/Western Europe only HadGEM-GA3 and ECMWF-S4 reveal significant positive correlations. However, it is found that results over this region are not robust in time for ECMWF-S4, as correlations drop if using 1982 until 2011 instead of 1992 until 2011. Factors of potential predictability will be discussed.

  10. A cyclogenesis index for tropical Atlantic off the African coasts

    NASA Astrophysics Data System (ADS)

    Sall, Saïdou Moustapha; Sauvageot, Henri; Gaye, Amadou Thierno; Viltard, Alain; de Felice, Pierre

    2006-02-01

    The westward moving Soudano-Sahelian mesoscale convective systems (MCS) frequently reach and cross the Atlantic Coast. At the end of their continental route, most MCS weaken and vanish over the ocean, near the coast, while others strengthen. The latter play an important part in the genesis of some Atlantic tropical cyclones. In the present paper, following the work of Gray (1977, 1979) [Gray, W.M., 1977. Tropical cyclone genesis in the western North Pacific. J. Meteorol. Soc. Jpn. 55, 465-482; Gray, W.M., 1979. Hurricanes: their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D.B. Shaw, (Ed.), Roy. Meteorol. Soc., 155-218] and Gray et al. (1994, 1999) [Gray, W.M., Landsea, C.W., Mielke Jr., P.W., Berry, K.J., 1994. Predicting Atlantic seasonal tropical cyclone activity by 1 June. Weather Forecast. 9, 103-115; Gray, W.M., Landsea, C.W., Mielke Jr., P.W., Berry, K.J., 1999. Forecast of Atlantic seasonal hurricane activity for 1999. Dept. of Atmos. Sci. Report, Colo. State Univ., Ft. Collins, CO, released on 4 June, 1999], an index liable to be associated with the coast-crossing MCS cyclonic evolution is built. The data used in this work are observations by the Dakar-Yoff radar, reanalyses of NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research), outgoing long wave radiation at the top of the atmosphere, and the resources of the National Hurricane Center data base. Several terms describing the variation of individual meteorological parameters are first analysed and then combined into an index of cyclogenesis or ICY. Combination of vertical vorticity at 925 hPa and potential vorticity at 700 hPa is notably found to be a good factor to discriminate between strengthening and weakening MCS over the near Atlantic. A good correlation between the ICY maximum and the beginning of the MCS cyclogenesis is observed. This index enables discrimination of the simultaneous presence of two separate cyclonic perturbations over the Atlantic. These results show that the sole variable ICY is useful to detect a cyclogenesis process in progress in a Sahelian MCS.

  11. Analysis of the interannual variability of tropical cyclones striking the California coast based on statistical downscaling

    NASA Astrophysics Data System (ADS)

    Mendez, F. J.; Rueda, A.; Barnard, P.; Mori, N.; Nakajo, S.; Espejo, A.; del Jesus, M.; Diez Sierra, J.; Cofino, A. S.; Camus, P.

    2016-02-01

    Hurricanes hitting California have a very low ocurrence probability due to typically cool ocean temperature and westward tracks. However, damages associated to these improbable events would be dramatic in Southern California and understanding the oceanographic and atmospheric drivers is of paramount importance for coastal risk management for present and future climates. A statistical analysis of the historical events is very difficult due to the limited resolution of atmospheric and oceanographic forcing data available. In this work, we propose a combination of: (a) statistical downscaling methods (Espejo et al, 2015); and (b) a synthetic stochastic tropical cyclone (TC) model (Nakajo et al, 2014). To build the statistical downscaling model, Y=f(X), we apply a combination of principal component analysis and the k-means classification algorithm to find representative patterns from a potential TC index derived from large-scale SST fields in Eastern Central Pacific (predictor X) and the associated tropical cyclone ocurrence (predictand Y). SST data comes from NOAA Extended Reconstructed SST V3b providing information from 1854 to 2013 on a 2.0 degree x 2.0 degree global grid. As data for the historical occurrence and paths of tropical cycloneas are scarce, we apply a stochastic TC model which is based on a Monte Carlo simulation of the joint distribution of track, minimum sea level pressure and translation speed of the historical events in the Eastern Central Pacific Ocean. Results will show the ability of the approach to explain seasonal-to-interannual variability of the predictor X, which is clearly related to El Niño Southern Oscillation. References Espejo, A., Méndez, F.J., Diez, J., Medina, R., Al-Yahyai, S. (2015) Seasonal probabilistic forecasting of tropical cyclone activity in the North Indian Ocean, Journal of Flood Risk Management, DOI: 10.1111/jfr3.12197 Nakajo, S., N. Mori, T. Yasuda, and H. Mase (2014) Global Stochastic Tropical Cyclone Model Based on Principal Component Analysis and Cluster Analysis, Journal of Applied Meteorology and Climatology, DOI: 10.1175/JAMC-D-13-08.1

  12. An Evaluation of QuikSCAT data over Tropical Cyclones as Determined in an Operational Environment

    NASA Astrophysics Data System (ADS)

    Hawkins, J. D.; Edson, R. T.

    2001-12-01

    QuikSCAT data over all global tropical cyclones were examined during the past 3 1/2 years in conjunction with the development of a user¡_s guide to the forecasters at the Joint Typhoon Warning Center, Pearl Harbor, Hawaii. The active microwave scatterometer has greatly enhanced the forecaster's ability to evaluate surface winds over the data poor regions of the tropical oceans. The QuikSCAT scatterometer¡_s unique ability to provide both wind speed and direction on a nearly bi-daily basis has greatly increased the forecaster¡_s near real-time knowledge of tropical cyclone genesis, intensification potential, outer wind structure, and a ¡rminimum estimate¡_ for a tropical cyclone¡_s maximum sustained winds. Scatterometer data were compared with data available to the forecasters in a near real-time environment including ship, land and buoy reports. In addition, comparisons were also made with aircraft measurements (for Atlantic and East Pacific systems), numerical weather model wind fields, and various remote sensing techniques. Wind speeds were found to be extremely useful, especially for the radius of gale force winds. However, in rain-contaminated areas, light winds were often greatly overestimated while in heavy winds, wind speeds were often quite reasonable if not slightly underestimated. The largest issues are still focused on the correct wind direction selection. In these cases, rain-flagged wind vector cells greatly affected the results from the direction ambiguity selection procedure. The ambiguity selection algorithm often had difficulties resolving a circulation center when large areas of the tropical cyclone¡_s center were flagged. Often a block of winds would occur perpendicular to the swath irregardless of the circulation¡_s position. These winds caused considerable confusion for the operational forecasters. However, it was determined that in many cases, an accurate center position could still be obtained by using methods to incorporate the more accurate wind speeds and the outer wind field vectors that were not as seriously affected. Quantitative results and comparisons will be shown in this presentation. In addition, guides to the operational forecasters to determine system centers inspite of the ambiguity selection problems will also be discussed.

  13. An Evaluation of 700 mb Aircraft Reconnaissance Data for Selected Northwest Pacific Tropical Cyclones.

    DTIC Science & Technology

    1983-09-01

    ccesearch flights inte both Atlantic and ncr-.hwust Pacific tropical cyclones. Infcrmation providal by these studies expanded and, in some cases, altered...This assumption iaplies t at the curl of the tangential frictional drag is equal to zero. This further implies that the partial derivative of the sur...20) at 30 NM1, prior to the period of most rapidl deepening, Is reflecti at 60 NNl, and possibly at 90 NMl. In the case of super typhoon. rip (Fig

  14. Tropical Cyclone Madi Approaching India

    NASA Image and Video Library

    2013-12-09

    Tropical Cyclone Madi approaching India. Acquired by Aqua/MODIS on 12/07/2013 at 07:55 UTC. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Sensitivity of Tropical-Cyclone Models to the Surface Drag Coefficient in Different Boundary-Layer Schemes

    DTIC Science & Technology

    2014-04-01

    flight-level wind measurements at an altitude of about 500 m in hurricanes Allen (1980) and Hugo (1989) by Zhang et al. (2011). In Hugo these were... Hurricanes Allen (1980) and Hugo (1989). Mon. Weather Rev. 139: 1447–1462. c© 2013 Royal Meteorological Society Q. J. R. Meteorol. Soc. 140: 792–804 (2014) ...in this direction. Key Words: hurricanes ; tropical cyclones; typhoons; surface drag coefficient; frictional drag; boundary layer Received 16 June 2010

  16. Sensitivity of Tropical-Cyclone Intensification to Perturbations in the Surface Drag Coefficient

    DTIC Science & Technology

    2012-12-11

    low-level region of intense hurricanes Allen (1980) and Hugo (1989). Mon. Weather Rev. 139: 1447–1462. c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. 140: 407–415 (2014) ...accurately forecast tropical-cyclone intensification and mature intensity. Key Words: hurricanes ; typhoons; wind–wave coupling Received 2 February 2012...10.1002/qj.2048 1. Introduction The boundary layer of a mature hurricane has been long recognized to be an important feature of the storm as it strongly

  17. Annual Tropical Cyclone Report, 1982.

    DTIC Science & Technology

    1982-01-01

    intensity forecast are made once each day by processed at AFGWC is recorded on-board applying the Dvorak technique (NOAA Technical the spacecraft as it...tropical cyclone. Season totals and the 700 mb pressure surface within the percentages are also indicated. vortex recorded in meters. 7 Z ;l__...16 TY GORDON 27 AUG - 5 SEP 10 39 100 944 2014 17 TS HOPE 4 SEP - 6 SEP 3 10 #0 979 630 18 TY IRVING 5 SEP - 16 SEP 12 44 90 952 1770 19 TY JUDY 5 SEP

  18. Western North Pacific Tropical Cyclone Formation and Structure Change in TCS-08 and TCS-08 Field Experiment Support

    DTIC Science & Technology

    2010-09-30

    TRMM Precipitation Radar and Microwave Imager observations have been collected for the developing and non-developing pre-tropical cyclone disturbances...The ELDORA radar sampled the deep convection (Fig. 3a) and the radar -relative winds (Fig. 3b) define low-level convergence and upper-level...locations of dropsondes. The yellow line defines the flight track of the NRL P-3 aircraft. The white star defines the location of the radar reflectivity

  19. TECA: A Parallel Toolkit for Extreme Climate Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhat, Mr; Ruebel, Oliver; Byna, Surendra

    2012-03-12

    We present TECA, a parallel toolkit for detecting extreme events in large climate datasets. Modern climate datasets expose parallelism across a number of dimensions: spatial locations, timesteps and ensemble members. We design TECA to exploit these modes of parallelism and demonstrate a prototype implementation for detecting and tracking three classes of extreme events: tropical cyclones, extra-tropical cyclones and atmospheric rivers. We process a modern TB-sized CAM5 simulation dataset with TECA, and demonstrate good runtime performance for the three case studies.

  20. Dissipative soliton vortices and tropical cyclones

    NASA Astrophysics Data System (ADS)

    Chefranov, S. G.; Chefranov, A. G.

    2017-10-01

    We have obtained a new exact steady-state solution to the hydrodynamic equation for a viscous incompressible liquid, which is a generalization of the well-known Sullivan solution (1959), taking into account additionally the external (Eckman) friction and rotation of the system as a single whole. In contrast to the radial structure of a Sullivan vortex, different circulation directions of velocity field tangential component are possible in the new solution in the inner and outer cells. We have considered the correspondence of this solution to the radial vortex structure observed in tropical cyclones, where the precisely anticyclonic circulation always exists in the inner core (typhoon, hurricane eye), which is associated with descending vertical currents for the cyclonic direction of rotation (as well as ascending currents) outside this core.

  1. Sedimentary record of Tropical Cyclone Pam from Vanuatu: implications for long-term event records in the tropical South Pacific

    NASA Astrophysics Data System (ADS)

    Pilarczyk, Jessica; Kosciuch, Thomas; Hong, Isabel; Fritz, Hermann; Horton, Benjamin; Wallace, Davin; Dike, Clayton; Rarai, Allan; Harrison, Morris; Jockley, Fred

    2017-04-01

    Vanuatu has a history of tropical cyclones impacting its coastlines, including Tropical Cyclone (TC) Pam, a rare Category 5 event that made landfall in March 2015. Reliable records of tropical cyclones impacting Vanuatu are limited to the last several decades, with only fragmentary evidence of events extending as far back as the 1890's. Geological investigations are a means for expanding the short historical record of tropical cyclones by hundreds to thousands of years, permitting the study of even the rare, but intense events. However, geological records of past tropical cyclones are limited in their ability to quantify the intensity of past events. Modern analogues of landfalling tropical cyclones present an opportunity to characterize overwash sediments deposited by a storm of known intensity. In this study, we document the sedimentological and micropaleontological characteristics of sediments deposited by TC Pam in order to assess sediment provenance associated with a landfalling Category 5 storm. Within three months of TC Pam making landfall on Vanuatu we surveyed high-water marks associated with the storm surge and documented the foraminiferal assemblages and grain size distributions contained within the overwash sediments from Manuro (mixed-carbonate site on Efate Island) and Port Resolution Bay (volcaniclastic site on Tanna Island). The combined use of foraminiferal taxonomy and taphonomy (surface condition of foraminifera) was most useful in distinguishing the TC Pam sediments from the underlying layer. TC Pam sediments were characterized by an influx of calcareous marine foraminifera that were dominantly unaltered relative to those that were abraded and fragmented. Similar to studies that use mollusk taphonomy to identify overwash deposits, we found that TC Pam sediments were associated with an influx of angular fragments that were broken during transport by the storm surge. A statistical comparison of foraminifera from six modern environments on Efate Island (open bay, forereef, reef crest, reef flat, mangrove, and beach) with TC Pam sediments revealed a shallow nearshore to supratidal (reef crest to beach) source, spanning depths ranging from 1.3 to -4.9 m above MSL. On Efate Island, the TC Pam sediments consisted of a medium-grained (1.20Φ), moderately well-sorted (0.55Φ), mixed-carbonate sand. At this location, the sand extended 130 m inland, where it abruptly transitioned to a pumice layer that extended 400 m inland. In contrast, TC Pam deposited a medium-grained (1.81Φ), moderately well-sorted volcanic sand at Port Resolution Bay, where the sand extended up to 320 m inland. We used a combination of measured flow heights obtained at the Port Resolution Bay site and laboratory derived grain size settling velocities to calculate the distance of sediment transport caused by TC Pam's storm surge. Based on the distribution of settling velocities from our samples, transport distances for material deposited in the trench suggests a source for the overwash sand ranging from the supratidal berm to 290 m seaward in the nearshore at Port Resolution Bay.

  2. Stratified coastal ocean interactions with tropical cyclones

    PubMed Central

    Glenn, S. M.; Miles, T. N.; Seroka, G. N.; Xu, Y.; Forney, R. K.; Yu, F.; Roarty, H.; Schofield, O.; Kohut, J.

    2016-01-01

    Hurricane-intensity forecast improvements currently lag the progress achieved for hurricane tracks. Integrated ocean observations and simulations during hurricane Irene (2011) reveal that the wind-forced two-layer circulation of the stratified coastal ocean, and resultant shear-induced mixing, led to significant and rapid ahead-of-eye-centre cooling (at least 6 °C and up to 11 °C) over a wide swath of the continental shelf. Atmospheric simulations establish this cooling as the missing contribution required to reproduce Irene's accelerated intensity reduction. Historical buoys from 1985 to 2015 show that ahead-of-eye-centre cooling occurred beneath all 11 tropical cyclones that traversed the Mid-Atlantic Bight continental shelf during stratified summer conditions. A Yellow Sea buoy similarly revealed significant and rapid ahead-of-eye-centre cooling during Typhoon Muifa (2011). These findings establish that including realistic coastal baroclinic processes in forecasts of storm intensity and impacts will be increasingly critical to mid-latitude population centres as sea levels rise and tropical cyclone maximum intensities migrate poleward. PMID:26953963

  3. Simulated sensitivity of the tropical cyclone eyewall replacement cycle to the ambient temperature profile

    NASA Astrophysics Data System (ADS)

    Ma, Xulin; He, Jie; Ge, Xuyang

    2017-09-01

    In this study, the impacts of the environmental temperature profile on the tropical cyclone eyewall replacement cycle are examined using idealized numerical simulations. It is found that the environmental thermal condition can greatly affect the formation and structure of a secondary eyewall and the intensity change during the eyewall replacement cycle. Simulation with a warmer thermal profile produces a larger moat and a prolonged eyewall replacement cycle. It is revealed that the enhanced static stability greatly suppresses convection, and thus causes slow secondary eyewall formation. The possible processes influencing the decay of inner eyewall convection are investigated. It is revealed that the demise of the inner eyewall is related to a choking effect associated with outer eyewall convection, the radial distribution of moist entropy fluxes within the moat region, the enhanced static stability in the inner-core region, and the interaction between the inner and outer eyewalls due to the barotropic instability. This study motivates further research into how environmental conditions influence tropical cyclone dynamics and thermodynamics.

  4. An Intrathermocline Eddy and a tropical cyclone in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Gordon, Arnold L.; Shroyer, Emily; Murty, V. S. N.

    2017-04-01

    The Bay of Bengal, subjected to monsoonal forcing and tropical cyclones, displays a complex field of ocean eddies. On 5 December 2013 a sub-surface vortex or Intrathermocline Eddy (ITE) composed of water characteristic of the Andaman Sea was observed within the thermocline of the western Bay of Bengal. We propose that the ITE was the product of Tropical Cyclone Lehar interaction on 27 November 2013 with a westward propagating surface eddy from the eastern Bay of Bengal. While Lehar’s interaction with the ocean initially removes heat from the upper layers of the eddy, air-sea flux is limited as the deeper portions of the eddy was subducted into the stratified thermocline, inhibiting further interaction with the atmosphere. The ITE core from 30 to 150 m is thus isolated from local air-sea fluxes by strong stratification at the mixed layer base, and its periphery is stable to shear instability, suggestive of longevity and the ability to carry water far distances with minimal modification.

  5. An Intrathermocline Eddy and a tropical cyclone in the Bay of Bengal.

    PubMed

    Gordon, Arnold L; Shroyer, Emily; Murty, V S N

    2017-04-12

    The Bay of Bengal, subjected to monsoonal forcing and tropical cyclones, displays a complex field of ocean eddies. On 5 December 2013 a sub-surface vortex or Intrathermocline Eddy (ITE) composed of water characteristic of the Andaman Sea was observed within the thermocline of the western Bay of Bengal. We propose that the ITE was the product of Tropical Cyclone Lehar interaction on 27 November 2013 with a westward propagating surface eddy from the eastern Bay of Bengal. While Lehar's interaction with the ocean initially removes heat from the upper layers of the eddy, air-sea flux is limited as the deeper portions of the eddy was subducted into the stratified thermocline, inhibiting further interaction with the atmosphere. The ITE core from 30 to 150 m is thus isolated from local air-sea fluxes by strong stratification at the mixed layer base, and its periphery is stable to shear instability, suggestive of longevity and the ability to carry water far distances with minimal modification.

  6. An Intrathermocline Eddy and a tropical cyclone in the Bay of Bengal

    PubMed Central

    Gordon, Arnold L.; Shroyer, Emily; Murty, V. S. N.

    2017-01-01

    The Bay of Bengal, subjected to monsoonal forcing and tropical cyclones, displays a complex field of ocean eddies. On 5 December 2013 a sub-surface vortex or Intrathermocline Eddy (ITE) composed of water characteristic of the Andaman Sea was observed within the thermocline of the western Bay of Bengal. We propose that the ITE was the product of Tropical Cyclone Lehar interaction on 27 November 2013 with a westward propagating surface eddy from the eastern Bay of Bengal. While Lehar’s interaction with the ocean initially removes heat from the upper layers of the eddy, air-sea flux is limited as the deeper portions of the eddy was subducted into the stratified thermocline, inhibiting further interaction with the atmosphere. The ITE core from 30 to 150 m is thus isolated from local air-sea fluxes by strong stratification at the mixed layer base, and its periphery is stable to shear instability, suggestive of longevity and the ability to carry water far distances with minimal modification. PMID:28401909

  7. The Dependence of Tropical Cyclone Count and Size on Rotation Rate

    NASA Astrophysics Data System (ADS)

    Chavas, D. R.; Reed, K. A.

    2017-12-01

    Both theory and idealized equilibrium modeling studies indicate that tropical cyclone size decreases with background rotation rate. In contrast, in real-world observations size tends to increase with latitude. Here we seek to resolve this apparent contradiction via a set of reduced-complexity global aquaplanet simulations with varying planetary rotation rates using the NCAR Community Atmosphere Model 5. The latitudinal distribution of both storm count and size are found to vary markedly with rotation rate, yielding insight into the dynamical constraints on tropical cyclone activity on a rotating planet. Moreover, storm size is found to vary non-monotonically with latitude, indicating that non-equilibrium effects are crucial to the life-cycle evolution of size in nature. Results are then compared to experiments in idealized, time-dependent limited-area modeling simulations using CM1 in axisymmetric and three-dimensional geometry. Taken together, this hierarchy of models is used to quantify the role of equilibrium versus transient controls on storm size and the relevance of each to real storms in nature.

  8. Lessons learnt from tropical cyclone losses

    NASA Astrophysics Data System (ADS)

    Honegger, Caspar; Wüest, Marc; Zimmerli, Peter; Schoeck, Konrad

    2016-04-01

    Swiss Re has a long history in developing natural catastrophe loss models. The tropical cyclone USA and China model are examples for event-based models in their second generation. Both are based on basin-wide probabilistic track sets and calculate explicitly the losses from the sub-perils wind and storm surge in an insurance portfolio. Based on these models, we present two cases studies. China: a view on recent typhoon loss history Over the last 20 years only very few major tropical cyclones have caused severe insurance losses in the Pearl River Delta region and Shanghai, the two main exposure clusters along China's southeast coast. Several storms have made landfall in China every year but most struck areas with relatively low insured values. With this study, we make the point that typhoon landfalls in China have a strong hit-or-miss character and available insured loss experience is too short to form a representative view of risk. Historical storm tracks and a simple loss model applied to a market portfolio - all from publicly available data - are sufficient to illustrate this. An event-based probabilistic model is necessary for a reliable judgement of the typhoon risk in China. New York: current and future tropical cyclone risk In the aftermath of hurricane Sandy 2012, Swiss Re supported the City of New York in identifying ways to significantly improve the resilience to severe weather and climate change. Swiss Re provided a quantitative assessment of potential climate related risks facing the city as well as measures that could reduce those impacts.

  9. Rapid wave and storm surge warning system for tropical cyclones in Mexico

    NASA Astrophysics Data System (ADS)

    Appendini, C. M.; Rosengaus, M.; Meza, R.; Camacho, V.

    2015-12-01

    The National Hurricane Center (NHC) in Miami, is responsible for the forecast of tropical cyclones in the North Atlantic and Eastern North Pacific basins. As such, Mexico, Central America and Caribbean countries depend on the information issued by the NHC related to the characteristics of a particular tropical cyclone and associated watch and warning areas. Despite waves and storm surge are important hazards for marine operations and coastal dwellings, their forecast is not part of the NHC responsibilities. This work presents a rapid wave and storm surge warning system based on 3100 synthetic tropical cyclones doing landfall in Mexico. Hydrodynamic and wave models were driven by the synthetic events to create a robust database composed of maximum envelops of wind speed, significant wave height and storm surge for each event. The results were incorporated into a forecast system that uses the NHC advisory to locate the synthetic events passing inside specified radiuses for the present and forecast position of the real event. Using limited computer resources, the system displays the information meeting the search criteria, and the forecaster can select specific events to generate the desired hazard map (i.e. wind, waves, and storm surge) based on the maximum envelop maps. This system was developed in a limited time frame to be operational in 2015 by the National Hurricane and Severe Storms Unit of the Mexican National Weather Service, and represents a pilot project for other countries in the region not covered by detailed storm surge and waves forecasts.

  10. Observed near-surface flows under all tropical cyclone intensity levels using drifters in the northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Chia; Chen, Guan-Yu; Tseng, Ruo-Shan; Centurioni, Luca R.; Chu, Peter C.

    2013-05-01

    Data from drifters of the surface velocity program and tropical cyclones (TCs) of the Joint Typhoon Warning Center during 1985-2009 were analyzed to demonstrate strong currents under various storm intensities such as category-4 to -5, category-2 to -3, and tropical storm to category-1 TCs in the northwestern Pacific. Current speeds over 2.0 m s-1 are observed under major TCs with the strongest mean currents to the right of the storm track. This study provides the characterization of the near-surface velocity response to all recorded TCs, and agrees roughly with Geisler's theory (1970). Our observations also verify earlier modeling results of Price (1983).

  11. Interannual Variability of the Bimodal Distribution of Summertime Rainfall Over Central America and Tropical Storm Activity in the Far-Eastern Pacific

    NASA Technical Reports Server (NTRS)

    Curtis, Scott; Starr, David OC. (Technical Monitor)

    2002-01-01

    The summer climate of southern Mexico and Central America is characterized by a mid summer drought (MSD), where rainfall is reduced by 40% in July as compared to June and September. A mid-summer reduction in the climatological number of eastern Pacific tropical cyclones has also been noted. Little is understood about the climatology and interannual variability of these minima. The present study uses a novel approach to quantify the bimodal distribution of summertime rainfall for the globe and finds that this feature of the annual cycle is most extreme over Pan America and adjacent oceans. One dominant interannual signal in this region occurs the summer before a strong winter El Nino/Southern Oscillation ENSO. Before El Nino events the region is dry, the MSD is strong and centered over the ocean, and the mid-summer minimum in tropical cyclone frequency is most pronounced. This is significantly different from Neutral cases (non-El Nino and non-La Nina) when the MSD is weak and positioned over the land bridge. The MSD is highly variable for La Nina years, and there is not an obvious mid-summer minimum in the number of tropical cyclones.

  12. Impacts of category 5 tropical cyclone Fantala (April 2016) on Farquhar Atoll, Seychelles Islands, Indian Ocean

    NASA Astrophysics Data System (ADS)

    Duvat, Virginie K. E.; Volto, Natacha; Salmon, Camille

    2017-12-01

    This paper provides new insights on the impacts of a category 5 tropical cyclone on Indian Ocean atoll reef islands. Using multi-date aerial imagery and field observations, the contribution of tropical cyclone Fantala to shoreline and island change, and to sediment production and transport, was assessed on Farquhar Atoll, Seychelles Islands. Results show that the two largest islands (> 3 km2) only suffered limited land loss (- 1.19 to - 8.35%) while small islets lost 13.17 to 28.45% of their initial land area. Islands and islets exhibited contrasting responses depending on their location, topography and vegetation type. Depending on islands, the retreat of the vegetation line occurred either along all shorelines, or along ocean shoreline only. The structure (wooded vs. grassy) and origin (native vs. introduced) of the vegetation played a major role in island response. Five days after the cyclone, beach width and beach area were multiplied by 1.5 to 10, depending on the setting, and were interpreted as resulting from both sediment reworking and the supply of large amounts of fresh sediments by the reef outer slopes to the island system. Fourth months after the cyclone, extended sheets of loose sediments were still present on the reef flat and in inter-islet channels and shallow lagoon waters, indicating continuing sediment transfer to islands. As a reminder (see Section 3.1.4), beach width uncertainty equals to 6 m for all beach sections.

  13. Annual Tropical Cyclone Reports - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Center Norfolk new site for Atlantic Tropical Warnings Naval Meteorology and Oceanography Command, 1100

  14. The study in the frequency of paleo-typhoon hazards and invasion locations since 2000 years ago in China

    NASA Astrophysics Data System (ADS)

    Liu, Y. C.; Chen, H. F.

    2016-12-01

    Tropical cyclones often occur in tropical and subtropical ocean, especially in coastal areas in the Northwest Pacific. We can use modern satellite technology to study the tropical cyclones. In order to study the path and the frequency of tropical cyclones in the southeast coast hit in China and Taiwan since two thousand years ago,we have analyzed the data from Chinese historical record from AD 0 to AD 1910 and the statistics from US Joint Typhoon Warning Center from AD 1945 to AD 2013. According to the statistics, there are 532 tropical cyclone events from AD1 to AD 1910. We found that the frequency of typhoons have increased rapidly from AD 700 to AD 850 (the Tang Dynasty) and the Little Ice Age (AD 1400). These two periods just coincides with La Niño-like period. After AD 1700, the region hit by typhoon was moved towards to northward. As a whole, we compared the statistic results of historical typhoons with the core records in Taiwan and South Japan. We may certify that more typhoons hit south China in La Niño-like period, while more typhoons hit Japan in El Niño-like period. Typhoons, which made landfall onto South Korea and Jiangsu, Shanghai, Zhejiang, and Fujian in China, concentrated in July and August. On the other hand, the typhoons, which made landfall onto Taiwan and Guangdong in China often, happened during July, August, and September. Japan and Hainan in China were more often hit by typhoons in August and September. Vietnam and Philippines were often hit by typhoons from August to October and from October to November, respectively. Beside, the frequency of typhoon was enhanced in abnormal temperatures.

  15. Western North Pacific Tropical Cyclone Formation and Structure Change in TCS-08

    DTIC Science & Technology

    2011-09-30

    cyclones often transition to a fast-moving and rapidly- developing extratropical cyclone that may contain gale-, storm -, or hurricane-force winds... storm begins the process of extratropical transition have revealed the role of vertical wind shear in defining structural variations related to the...horizontal wind radii as the storm starts the process of extratropical transition. Elsberry et al. (2011) have extended the analysis of the

  16. Evaluation of the Utility of Static and Adaptive Mesh Refinement for Idealized Tropical Cyclone Problems in a Spectral Element Shallow Water Model

    DTIC Science & Technology

    2015-04-09

    where u is the zonal momentum per unit mass, v is the meridional momentum per unit mass, h is the fluid depth, and f is the Coriolis parameter. An...from each cyclone advects the other116 creating a net cyclonic motion (the Fujiwhara effect ; Fujiwhara 1921) (case 2 idealization).117 In Fig. 2c, the...the interaction of the two136 vortices cause a net cyclonic motion (the Fujiwhara effect ).137 The initial condition for the binary vortex interaction

  17. South Pacific hydrologic and cyclone variability during the last 3000 years

    NASA Astrophysics Data System (ADS)

    Toomey, Michael R.; Donnelly, Jeffrey P.; Tierney, Jessica E.

    2016-04-01

    Major excursions in the position of the South Pacific Convergence Zone (SPCZ) and/or changes in its intensity are thought to drive tropical cyclone (TC) and precipitation variability across much of the central South Pacific. A lack of conventional sites typically used for multimillennial proxy reconstructions has limited efforts to extend observational rainfall/TC data sets and our ability to fully assess the risks posed to central Pacific islands by future changes in fresh water availability or the frequency of storm landfalls. Here we use the sedimentary record of Apu Bay, offshore the island of Tahaa, French Polynesia, to explore the relationship between SPCZ position/intensity and tropical cyclone overwash, resolved at decadal time scales, since 3200 years B.P. Changes in orbital precession and Pacific sea surface temperatures best explain evidence for a coordinated pattern of rainfall variability at Tahaa and across the Pacific over the late Holocene. Our companion record of tropical cyclone activity from Tahaa suggests major storm activity was higher between 2600-1500 years B.P., when decadal scale SPCZ variability may also have been stronger. A transition to lower storm frequency and a shift or expansion of the SPCZ toward French Polynesia around 1000 years B.P. may have prompted Polynesian migration into the central Pacific.

  18. Tropical Cyclone Paul

    NASA Image and Video Library

    2010-03-30

    NASA image March 29, 2010 Tropical Cyclone Paul spanned the ocean waters between Australia and New Guinea on March 29, 2010. The MODIS on NASA’s Terra satellite captured this natural-color image the same day. The center of the cyclone is along the coast of Northern Territory’s Arnhem Land. Clouds run counter-clockwise across the Gulf of Carpentaria and Cape York Peninsula, over New Guinea’s Pulau Dolok, and over the Arafura Sea. On March 29, 2010, the U.S. Navy’s Joint Typhoon Warning Center (JTWC) reported that Tropical Cyclone Paul storm had maximum sustained winds of 60 knots (110 kilometers per hour) and gusts up to 75 knots (140 kilometers per hour). The storm was located roughly 315 nautical miles (585 kilometers) east of Darwin. The storm had moved slowly toward the southwest over the previous several hours. The JTWC forecast that the storm would likely maintain its current intensity for several more hours before slowly dissipating over land. Credit: NASA/GSFC/Jeff Schmaltz/MODIS To learn more about this image go to: modis.gsfc.nasa.gov/gallery/individual.php?db_date=2010-0... NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  19. Predicting Tropical Cyclogenesis with a Global Mesoscale Model: Hierarchical Multiscale Interactions During the Formation of Tropical Cyclone Nargis(2008)

    NASA Technical Reports Server (NTRS)

    Shen, B.-W.; Tao, W.-K.; Lau, W. K.; Atlas, R.

    2010-01-01

    Very severe cyclonic storm Nargis devastated Burma (Myanmar) in May 2008, caused tremendous damage and numerous fatalities, and became one of the 10 deadliest tropical cyclones (TCs) of all time. To increase the warning time in order to save lives and reduce economic damage, it is important to extend the lead time in the prediction of TCs like Nargis. As recent advances in high-resolution global models and supercomputing technology have shown the potential for improving TC track and intensity forecasts, the ability of a global mesoscale model to predict TC genesis in the Indian Ocean is examined in this study with the aim of improving simulations of TC climate. High-resolution global simulations with real data show that the initial formation and intensity variations of TC Nargis can be realistically predicted up to 5 days in advance. Preliminary analysis suggests that improved representations of the following environmental conditions and their hierarchical multiscale interactions were the key to achieving this lead time: (1) a westerly wind burst and equatorial trough, (2) an enhanced monsoon circulation with a zero wind shear line, (3) good upper-level outflow with anti-cyclonic wind shear between 200 and 850 hPa, and (4) low-level moisture convergence.

  20. Cyclone Center: Insights on Historical Tropical Cyclones from Citizen Volunteers

    NASA Astrophysics Data System (ADS)

    Thorne, P.; Hennon, C. C.; Knapp, K. R.; Schreck, C. J., III; Stevens, S. E.; Kossin, J. P.; Rennie, J.; Hennon, P. A.; Kruk, M. C.

    2015-12-01

    The cyclonecenter.org project started in fall 2012 and has been collecting citizen scientist volunteer tropical cyclone intensity estimates ever since. The project is hosted by the Citizen Science Alliance (zooniverse) and the platform is supported by a range of scientists. We have over 30 years of satellite imagery of tropical cyclones but the analysis to date has been done on an ocean-basin by ocean-basin basis and worse still practices have changed over time. We therefore do not, presently, have a homogeneous record relevant for discerning climatic changes. Automated techniques can classify many of the images but have a propensity to be challenged during storm transitions. The problem is fundamentally one where many pairs of eyes are invaluable as there is no substitute for human eyes in discerning patterns. Each image is classified by ten unique users before it is retired. This provides a unique insight into the uncertainty inherent in classification. In the three years of the project much useful data has accrued. This presentation shall highlight some of the results and analyses to date and touch on insights as to what has worked and what perhaps has not worked so well. There are still many images left to complete so its far from too late to jump over to www.cyclonecenter.org and help out.

  1. AIRS Impact on the Analysis and Forecast Track of Tropical Cyclone Nargis in a Global Data Assimilation and Forecasting System

    NASA Technical Reports Server (NTRS)

    Reale, O.; Lau, W.K.; Susskind, J.; Brin, E.; Liu, E.; Riishojgaard, L. P.; Rosenburg, R.; Fuentes, M.

    2009-01-01

    Tropical cyclones in the northern Indian Ocean pose serious challenges to operational weather forecasting systems, partly due to their shorter lifespan and more erratic track, compared to those in the Atlantic and the Pacific. Moreover, the automated analyses of cyclones over the northern Indian Ocean, produced by operational global data assimilation systems (DASs), are generally of inferior quality than in other basins. In this work it is shown that the assimilation of Atmospheric Infrared Sounder (AIRS) temperature retrievals under partial cloudy conditions can significantly impact the representation of the cyclone Nargis (which caused devastating loss of life in Myanmar in May 2008) in a global DAS. Forecasts produced from these improved analyses by a global model produce substantially smaller track errors. The impact of the assimilation of clear-sky radiances on the same DAS and forecasting system is positive, but smaller than the one obtained by ingestion of AIRS retrievals, possibly due to poorer coverage.

  2. Small-scale field-aligned currents caused by tropical cyclones as observed by the SWARM satellites above the ionosphere

    NASA Astrophysics Data System (ADS)

    Aoyama, T.; Iyemori, T.; Nakanishi, K.

    2014-12-01

    We present case studies of small-scale magnetic fluctuations above typhoons, hurricanes and cyclones as observed by the swarm constellation. It is reported lately that AGWs(atmospheric gravity waves) generated by meteorological phenomena in the troposphere such as typhoons and tornadoes, large earthquakes and volcanic eruptions propagate to the mesosphere and thermosphere. We observe them in various forms(e.g. airglows, ionospheric disturbances and TEC variations). We are proposing the following model. AGWs caused by atmospheric disturbances in the troposphere propagate to the ionospheric E-layer, drive dynamo action and generate field-aligned currents. The satellites observe magnetic fluctuations above the ionosphere. In this presentation, we focus on cases of tropical cyclone(hurricanes in North America, typhoons in North-West Pacific).

  3. Determination of tropical cyclone surface pressure and winds from satellite microwave data

    NASA Technical Reports Server (NTRS)

    Kidder, S. Q.

    1979-01-01

    An approach to the problem of deducing wind speed and pressure around tropical cyclones is presented. The technique, called the Surface Wind Inference from Microwave data (SWIM technique, uses satellites microwave sounder data to measure upper tropospheric temperature anomalies which may then be related to surface pressure anomalies through the hydrostatic and radiative transfer equations. Surface pressure gradients outside of the radius of maximum wind are estimated for the first time. Future instruments may be able to estimate central pressure with + or - 0/1 kPa accuracy.

  4. Analysis of Sub-Grid Boundary-Layer Processes Observed by the P-3 Doppler Wind Lidar in Support of the Western Pacific Tropical Cyclone Structure 2008 Experiment

    DTIC Science & Technology

    2012-02-02

    flight hours to one significant atmospheric phenomena. OBJECTIVES The P-3 Doppler Wind Lidar (P3DWL) uses the latest version of a coherent ... Doppler transceiver developed at Lockheed Martin Coherent Technologies. The lidar , with the exception of the scanner, is shown on the top in Figure 1...Processes Observed by the P-3 Doppler Wind Lidar in Support of the Western Pacific Tropical Cyclone Structure 2008 Experiment Ralph Foster Applied

  5. NASA Sees First Land-falling Tropical Cyclone in Yemen

    NASA Image and Video Library

    2017-12-08

    On Nov. 3, 2015 at 07:20 UTC (2:20 a.m. EDT) the MODIS instrument aboard NASA's Aqua satellite captured this image of Tropical Cyclone Chapala over Yemen. Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Objective Analysis of Tropical Cyclone Intensity, Strength, and Size Using Routine Aircraft Reconnaissance Data.

    DTIC Science & Technology

    1986-05-01

    8217..".. .4.-,: -, 4’.-. -I I" " " . " "" .. -"" " " " +,’" ŗŖ. -II O CHART -JON SECIJRITY CLASSIFICATION OF THIS PAGE (When DateEntered) REPORT ...DOCUMENTATION PAGE BEFORE COMPLETING FORM I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER ~AFIT/CI/NR-86-28T 4. TITLE (and Subtitle) S...TYPE OF REPORT & PERIOD COVERED Objective Analysis of Tropical Cyclone THESIS/ Intensity, Strength, and Size Using Routine Aircraft Reconnaissance

  7. Extratropical Transition and Re-Intensification of Typhoon Toraji (2001): Large-Scale Circulations, Structural Characteristics, and Mechanism Analysis

    NASA Astrophysics Data System (ADS)

    Zhu, Xiande; Wu, Lixin; Wang, Qi

    2018-06-01

    With the use of data from the National Centers for Environmental Prediction Climate Forecast System Reanalysis, the environment and structure of typhoon Toraji (2001) are investigated during the re-intensification (RI) stage of its extratropical transition (ET), a process in which a tropical cyclone transforms into an extratropical or mid-latitude cyclone. The results provide detailed insight into the ET system and identify the specific features of the system, including wind field, a cold and dry intrusion, and a frontal structure in the RI stage. The irrotational wind provides the values of upper-and lower-level jets within the transitioning tropical cyclone and the cyclone over Shandong Peninsula, accompanied with the reduced radius of maximum surface winds around the cyclone center in the lower troposphere. Simultaneously, dry air intrusion enhances the formation of fronts and leads to strong potential instability in the southwest and northeast quadrants. The distribution of frontogenesis shows that the tilting term associated with vertical motion dominates the positive frontogenesis surrounding the cyclone center, especially in the RI stage. The diagnostics of the kinetic energy budget suggest that the divergent kinetic energy generation whose time evolution corresponds well to that of cyclone center pressure is the primary factor for the development of Toraji in the lower troposphere. The ET of Toraji is a compound pattern that contains a development similar to that of a B-type extratropical cyclone within the maintaining phase and an A-type extratropical cyclone within the strengthening period, which corresponds to the distribution of the E-P fluxes with vertically downward propagation in the maintaining stage and upwards momentum in the strengthening phase.

  8. Initial Assessment of Cyclone Global Navigation Satellite System (CYGNSS) Observations

    NASA Astrophysics Data System (ADS)

    McKague, D. S.; Ruf, C. S.

    2017-12-01

    The NASA Cyclone Global Navigation Satellite System (CYNSS) mission provides high temporal resolution observations of cyclones from a constellation of eight low-Earth orbiting satellites. Using the relatively new technique of Global Navigation Satellite System reflectometry (GNSS-R), all-weather observations are possible, penetrating even deep convection within hurricane eye walls. The compact nature of the GNSS-R receivers permits the use of small satellites, which in turn enables the launch of a constellation of satellites from a single launch vehicle. Launched in December of 2016, the eight CYGNSS satellites provide 25 km resolution observations of mean square slope (surface roughness) and surface winds with a 2.8 hour median revisit time from 38 S to 38 N degrees latitude. In addition to the calibration and validation of CYGNSS sea state observations, the CYGNSS science team is assessing the ability of the mission to provide estimates of cyclone size, intensity, and integrated kinetic energy. With its all-weather ability and high temporal resolution, the CYGNSS mission will add significantly to our ability to monitor cyclone genesis and intensification and will significantly reduce uncertainties in our ability to estimate cyclone intensity, a key variable in predicting its destructive potential. Members of the CYGNSS Science Team are also assessing the assimilation of CYGNSS data into hurricane forecast models to determine the impact of the data on forecast skill, using the data to study extra-tropical cyclones, and looking at connections between tropical cyclones and global scale weather, including the global hydrologic cycle. This presentation will focus on the assessment of early on-orbit observations of cyclones with respect to these various applications.

  9. Northern Hemisphere extratropical winter cyclones variability over the 20th century derived from ERA-20C reanalysis

    NASA Astrophysics Data System (ADS)

    Varino, Filipa; Arbogast, Philippe; Joly, Bruno; Riviere, Gwendal; Fandeur, Marie-Laure; Bovy, Henry; Granier, Jean-Baptiste

    2018-03-01

    The multi-decadal variations of wintertime extra-tropical cyclones during the last century are studied using a vorticity-based tracking algorithm applied to the long-term ERA-20C reanalysis from ECMWF. The variability of moderate-to-deep extra-tropical winter cyclones in ERA-20C show three distinct periods. Two at the beginning and at the end of the century (1900-1935 and 1980-2010) present weak or no significant trends in the Northern Hemisphere as a whole and only some regional trends. The period in between (1935-1980) is marked by a significant increase in Northern Hemisphere moderate-to-deep cyclones frequency. During the latter period, polar regions underwent a significant cooling over the whole troposphere that increased and shifted poleward the mid-latitude meridional temperature gradient and the baroclinicity. This is linked to positive-to-negative shifts of the PDO between 1935 and 1957 and of the AMO between 1957 and 1980 which mainly reinforced the storm-track eddy generation in the North Pacific and North Atlantic regions respectively, as seen from baroclinic conversion from mean to eddy potential energy. As a result, both the North Pacific and North Atlantic extra-tropical storms increase in frequency during the two subperiods (1935-1957 and 1957-1980), together with other storm-track quantities such as the high-frequency eddy kinetic energy. In contrast, the first and third periods are characterized by a warming of the polar temperatures. However, as the stronger warming is confined to the lower troposphere, the baroclinicity do not uniformly increase in the whole troposphere. This may explain why the recent rapid increase in polar temperatures has not affected the behaviour of extratropical cyclones very much. Finally, the large magnitude of the positive trend found in moderate-to-deep cyclone frequency during the second period is still questioned as the period is marked by an important increase in the number of assimilated observations. However, the dynamical link between changes in cyclone frequency, changes in large-scale baroclinicity and ocean decadal variability found in the present study makes us confident on the sign of the detected cyclone trend.

  10. Communicating the Threat of a Tropical Cyclone to the Eastern Range

    NASA Technical Reports Server (NTRS)

    Winters, Katherine A.; Roeder, William P.; McAleenan, Mike; Belson, Brian L.; Shafer, Jaclyn A.

    2012-01-01

    The 45th Weather Squadron (45 WS) has developed a tool to help visualize the Wind Speed Probability product from the National Hurricane Center (NHC) and to help communicate that information to space launch customers and decision makers at the 45th Space Wing (45 SW) and Kennedy Space Center (KSC) located in east central Florida. This paper reviews previous work and presents the new visualization tool, including initial feedback as well as the pros and cons. The NHC began issuing their Wind Speed Probability product for tropical cyclones publicly in 2006. The 45 WS uses this product to provide a threat assessment to 45 SW and KSC leadership for risk evaluations with an approaching tropical cyclone. Although the wind speed probabilities convey the uncertainty of a tropical cyclone well, communicating this information to customers is a challenge. The 45 WS continually strives to provide the wind speed probability information to customers in a context which clearly communicates the threat of a tropical cyclone. First, an intern from the Florida Institute of Technology (FIT) Atmospheric Sciences department, sponsored by Scitor Corporation, independently evaluated the NHC wind speed probability product. This work was later extended into a M.S. thesis at FIT, partially funded by Scitor Corporation and KSC. A second thesis at FIT further extended the evaluation partially funded by KSC. Using this analysis, the 45 WS categorized the probabilities into five probability interpretation categories: Very Low, Low, Moderate, High, and Very High. These probability interpretation categories convert the forecast probability and forecast interval into easily understood categories that are consistent across all ranges of probabilities and forecast intervals. As a follow-on project, KSC funded a summer intern to evaluate the human factors of the probability interpretation categories, which ultimately refined some of the thresholds. The 45 WS created a visualization tool to express the timing and risk for multiple locations in a single graphic. Preliminary results on an on-going project by FIT will be included in this paper. This project is developing a new method of assigning the probability interpretation categories and updating the evaluation of the performance of the NHC wind speed probability analysis.

  11. Storm-centric view of Tropical Cyclone oceanic wakes

    NASA Astrophysics Data System (ADS)

    Gentemann, C. L.; Scott, J. P.; Smith, D.

    2012-12-01

    Tropical cyclones (TCs) have a dramatic impact on the upper ocean. Storm-generated oceanic mixing, high amplitude near-inertial currents, upwelling, and heat fluxes often warm or cool the surface ocean temperatures over large regions near tropical cyclones. These SST anomalies occur to the right (Northern Hemisphere) or left (Southern Hemisphere) of the storm track, varying along and across the storm track. These wide swaths of temperature change have been previously documented by in situ field programs as well as IR and visible satellite data. The amplitude, temporal and spatial variability of these surface temperature anomalies depend primarily upon the storm size, storm intensity, translational velocity, and the underlying ocean conditions. Tropical cyclone 'cold wakes' are usually 2 - 5 °C cooler than pre-storm SSTs, and persist for days to weeks. Since storms that occur in rapid succession typically follow similar paths, the cold wake from one storm can affect development of subsequent storms. Recent studies, on both warm and cold wakes, have mostly focused on small subsets of global storms because of the amount of work it takes to co-locate different data sources to a storm's location. While a number of hurricane/typhoon websites exist that co-locate various datasets to TC locations, none provide 3-dimensional temporal and spatial structure of the ocean-atmosphere necessary to study cold/warm wake development and impact. We are developing a global 3-dimensional storm centric database for TC research. The database we propose will include in situ data, satellite data, and model analyses. Remote Sensing Systems (RSS) has a widely-used storm watch archive which provides the user an interface for visually analyzing collocated NASA Quick Scatterometer (QuikSCAT) winds with GHRSST microwave SSTs and SSM/I, TMI or AMSR-E rain rates for all global tropical cyclones 1999-2009. We will build on this concept of bringing together different data near storm locations when developing the storm-centric database. This database will be made available to researchers via the web display tools previously developed for RSS web pages. The database will provide scientists with a single data format collection of various atmospheric and oceanographic data, and will include all tropical storms since 1998, when the passive MW SSTs from the TMI instrument first became available. Initial results showing an analysis of Typhoon Man-Yi will be presented.

  12. Four Tropical Cyclones Across the Entire Pacific Ocean

    NASA Image and Video Library

    2017-12-08

    This GOES-West satellite image shows four tropical cyclones in the North Western, Central and Eastern Pacific Ocean on September 1, 2015. In the Western Pacific (far left) is Typhoon Kilo. Moving east (to the right) into the Central Pacific is Hurricane Ignacio (just east of Hawaii), and Hurricane Jimena. The eastern-most storm is Tropical Depression 14E in the Eastern Pacific. Credit: NASA/NOAA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Suggested hurricane operational scenario for GOES I-M

    NASA Technical Reports Server (NTRS)

    Menzel, W. P.; Merrill, R. T.; Shenk, W. E.

    1987-01-01

    Improvements in tropical cyclone forecasts require optimum use of remote sensing capabilities, because conventional data sources cannot provide the necessary spatial and temporal data density over tropical and subtropical oceanic regions. In 1989, the first of a series of geostationary weather satellites, GOES 1-M, will be launched with the capability for simultaneous imaging and sounding. Careful scheduling of the GOES 1-M will enable measurements of both the wind and mass fields over the entire tropical cyclone activity area. The document briefly describes the GOES 1-M imager and sounder, surveys the data needs for hurricane forecasting, discusses how geostationary satellite observations help to meet them, and proposes a GOES 1-M schedule of observations and hurricane relevant derived products.

  14. The influence of tropical cyclones on long-term riverine flooding; examples from tropical Australia

    NASA Astrophysics Data System (ADS)

    Nott, Jonathan

    2018-02-01

    Luminescence chronologies for two new slackwater flood deposit (SWD) sites (Broken River northeast Queensland and Ord River northwestern Western Australia) are presented and these along with other SWD chronologies from the same regions are compared with recently developed high resolution, isotope tropical cyclones (TC) records. Heightened TC activity occurred between 1400 and 1850 CE in Queensland and between 1500 and 1850 CE in Western Australia. A distinct clustering of flood events in northwest Western Australia during the period of enhanced TC activity suggests the two may be related. The SWD records in northeast Queensland do not cluster specifically during the period of heightened TC activity however several major floods do occur during this time suggesting that TCs may have been involved.

  15. Numerical modeling of storm surges in the coast of Mozambique: the cases of tropical cyclones Bonita (1996) and Lisette (1997)

    NASA Astrophysics Data System (ADS)

    Bié, Alberto José; de Camargo, Ricardo; Mavume, Alberto Francisco; Harari, Joseph

    2017-11-01

    The coast of Mozambique is often affected by storms, particularly tropical cyclones during summer or sometimes midlatitude systems in the southern part. Storm surges combined with high freshwater discharge can drive huge coastal floods, affecting both urban and rural areas. To improve the knowledge about the impact of storm surges in the coast of Mozambique, this study presents the first attempt to model this phenomenon through the implementation of the Princeton Ocean Model (POM) in the Southwestern Indian Ocean domain (SWIO; 2-32°S, 28-85°E) using a regular grid with 1/6° of spatial resolution and 36 sigma levels. The simulation was performed for the period 1979-2010, and the most interesting events of surges were related to tropical cyclones Bonita (1996) and Lisette (1997) that occurred in the Mozambique Channel. The results showed that the model represented well the amplitude and phase of principal lunar and solar tidal constituents, as well as it captured the spatial pattern and magnitudes of SST with slight positive bias in summer and negative bias in winter months. In terms of SSH, the model underestimated the presence of mesoscale eddies, mainly in the Mozambique Channel. Our results also showed that the atmospheric sea level pressure had a significant contribution to storm heights during the landfall of the tropical cyclones Bonita (1996) and Lisette (1997) in the coast of Mozambique contributing with about 20 and 16% of the total surge height for each case, respectively, surpassing the contribution of the tide-surge nonlinear interactions by a factor of 2.

  16. The combined risk of extreme tropical cyclone winds and storm surges along the U.S. Gulf of Mexico Coast

    NASA Astrophysics Data System (ADS)

    Trepanier, J. C.; Yuan, J.; Jagger, T. H.

    2017-03-01

    Tropical cyclones, with their nearshore high wind speeds and deep storm surges, frequently strike the United States Gulf of Mexico coastline influencing millions of people and disrupting offshore economic activities. The combined risk of occurrence of tropical cyclone nearshore wind speeds and storm surges is assessed at 22 coastal cities throughout the United States Gulf of Mexico. The models used are extreme value copulas fitted with margins defined by the generalized Pareto distribution or combinations of Weibull, gamma, lognormal, or normal distributions. The statistical relationships between the nearshore wind speed and storm surge are provided for each coastal city prior to the copula model runs using Spearman's rank correlations. The strongest significant relationship between the nearshore wind speed and storm surge exists at Shell Beach, LA (ρ = 0.67), followed by South Padre Island, TX (ρ = 0.64). The extreme value Archimedean copula models for each city then provide return periods for specific nearshore wind speed and storm surge pairs. Of the 22 cities considered, Bay St. Louis, MS, has the shortest return period for a tropical cyclone with at least a 50 ms-1 nearshore wind speed and a 3 m surge (19.5 years, 17.1-23.5). The 90% confidence intervals are created by recalculating the return periods for a fixed set of wind speeds and surge levels using 100 samples of the model parameters. The results of this study can be utilized by policy managers and government officials concerned with coastal populations and economic activity in the Gulf of Mexico.

  17. Modulating Effects of Mesoscale Oceanic Eddies on Sea Surface Temperature Response to Tropical Cyclones Over the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Ma, Zhanhong; Fei, Jianfang; Huang, Xiaogang; Cheng, Xiaoping

    2018-01-01

    The impact of mesoscale oceanic eddies on the temporal and spatial characteristics of sea surface temperature (SST) response to tropical cyclones is investigated in this study based on composite analysis of cyclone-eddy interactions over the western North Pacific. The occurrence times of maximum cooling, recovery time, and spatial patterns of SST response are specially evaluated. The influence of cold-core eddies (CCEs) renders the mean occurrence time of maximum SST cooling to become about half a day longer than that in eddy-free condition, while warm-core eddies (WCEs) have little effect on this facet. The recovery time of SST cooling also takes longer in presence of CCEs, being overall more pronounced for stronger or slower tropical cyclones. The effect of WCEs on the recovery time is again not significant. The modulation of maximum SST decrease by WCEs for category 2-5 storms is found to be remarkable in the subtropical region but not evident in the tropical region, while the role of CCEs is remarkable in both regions. The CCEs are observed to change the spatial characteristics of SST response, with enhanced SST decrease initially at the right side of storm track. During the recovery period the strengthened SST cooling by CCEs propagates leftward gradually, with a feature similar as both the westward-propagating eddies and the recovery of cold wake. These results underscore the importance of resolving mesoscale oceanic eddies in coupled numerical models to improve the prediction of storm-induced SST response.

  18. A review of tropical cyclone-generated storm surges: Global data sources, observations, and impacts

    NASA Astrophysics Data System (ADS)

    Needham, Hal F.; Keim, Barry D.; Sathiaraj, David

    2015-06-01

    Tropical cyclone-generated storm surges are among the world's most deadly and destructive natural hazards. This paper provides the first comprehensive global review of tropical storm surge data sources, observations, and impacts while archiving data in SURGEDAT, a global database. Available literature has provided data for more than 700 surge events since 1880, the majority of which are found in the western North Atlantic (WNA), followed by Australia/Oceania, the western North Pacific (WNP), and the northern Indian Ocean (NIO). The Bay of Bengal (BOB) in the NIO consistently observes the world's highest surges, as this subbasin averages five surges ≥5 m per decade and has observed credible storm tide levels reaching 13.7 m. The WNP observes the highest rate of low-magnitude surges, as the coast of China averages 54 surges ≥1 m per decade, and rates are likely higher in the Philippines. The U.S. Gulf Coast observes the second highest frequency of both high-magnitude (≥5 m) and low-magnitude (≥1 m) surges. The BOB observes the most catastrophic surge impacts, as 59% of global tropical cyclones that have killed at least 5000 people occurred in this basin. The six deadliest cyclones in this region have each killed at least 140,000 people, and two events have killed 300,000. Storm surge impacts transportation, agriculture, and energy sectors in the WNA. Oceania experiences long-term impacts, including contamination of fresh water and loss of food supplies, although the highest surges in this region are lower than most other basins.

  19. Shallow ocean response to tropical cyclones observed on the continental shelf of the northwestern South China Sea

    NASA Astrophysics Data System (ADS)

    Yang, Bing; Hou, Yijun; Hu, Po; Liu, Ze; Liu, Yahao

    2015-05-01

    Based on observed temperature and velocity in 2005 in northwestern South China Sea, the shallow ocean responses to three tropical cyclones were examined. The oceanic response to Washi was similar to common observations with 2°C cooling of the ocean surface and slight warming of the thermocline resulted from vertical entrainment. Moreover, the wavefield was dominated by first mode near-inertial oscillations, which were red-shifted and trapped by negative background vorticity leading to an e-folding timescale of 12 days. The repeated reflections by the surface and bottom boundaries were thought to yield the successive emergence of higher modes. The oceanic responses to Vicente appeared to be insignificant with cooling of the ocean surface by only 0.5°C and near-inertial currents no larger than 0.10 m/s as a result of a deepened surface mixed layer. However, the oceanic responses to Typhoon Damrey were drastic with cooling of 4.5°C near the surface and successive barotropic-like near-inertial oscillations. During the forced stage, the upper ocean heat content decreased conspicuously by 11.65% and the stratification was thoroughly destroyed by vertical mixing. In the relaxation stage, the water particle had vertical displacement of 20-30 m generated by inertial pumping. The current response to Damrey was weaker than Washi due to the deepened mixed layer and the destroyed stratification. Our results suggested that the shallow water oceanic responses to tropical cyclones varied significantly with the intensity of tropical cyclones, and was affected by local stratification and background vorticity.

  20. Parameter Uncertainty on AGCM-simulated Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    He, F.

    2015-12-01

    This work studies the parameter uncertainty on tropical cyclone (TC) simulations in Atmospheric General Circulation Models (AGCMs) using the Reed-Jablonowski TC test case, which is illustrated in Community Atmosphere Model (CAM). It examines the impact from 24 parameters across the physical parameterization schemes that represent the convection, turbulence, precipitation and cloud processes in AGCMs. The one-at-a-time (OAT) sensitivity analysis method first quantifies their relative importance on TC simulations and identifies the key parameters to the six different TC characteristics: intensity, precipitation, longwave cloud radiative forcing (LWCF), shortwave cloud radiative forcing (SWCF), cloud liquid water path (LWP) and ice water path (IWP). Then, 8 physical parameters are chosen and perturbed using the Latin-Hypercube Sampling (LHS) method. The comparison between OAT ensemble run and LHS ensemble run shows that the simulated TC intensity is mainly affected by the parcel fractional mass entrainment rate in Zhang-McFarlane (ZM) deep convection scheme. The nonlinear interactive effect among different physical parameters is negligible on simulated TC intensity. In contrast, this nonlinear interactive effect plays a significant role in other simulated tropical cyclone characteristics (precipitation, LWCF, SWCF, LWP and IWP) and greatly enlarge their simulated uncertainties. The statistical emulator Extended Multivariate Adaptive Regression Splines (EMARS) is applied to characterize the response functions for nonlinear effect. Last, we find that the intensity uncertainty caused by physical parameters is in a degree comparable to uncertainty caused by model structure (e.g. grid) and initial conditions (e.g. sea surface temperature, atmospheric moisture). These findings suggest the importance of using the perturbed physics ensemble (PPE) method to revisit tropical cyclone prediction under climate change scenario.

  1. Ducting Conditions for Electromagnetic Wave Propagation in Tropical Disturbances from GPS Dropsonde Data

    DTIC Science & Technology

    2013-12-01

    depression, tropical storm , hurricane, extratropical cyclone, subtropical depression, subtropical storm , a low of no category, tropical wave, disturbance or...surface-based ducts, and elevated ducts. We further separate the duct occurrence based on the location relative to their respective storms . Based...on the number of soundings in different types of tropical disturbances, we chose to further analyze duct conditions in hurricanes and tropical storms

  2. An Estimate of the North Atlantic Basin Tropical Cyclone Activity for the 2010 Hurricane Season

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2010-01-01

    Estimates are presented for the tropical cyclone activity expected for the 2010 North Atlantic basin hurricane season. It is anticipated that the 2010 season will be more active than the 2009 season, reflecting increased frequencies more akin to that of the current more active phase that has been in vogue since 1995. Averages (+/- 1 sd) during the current more active phase are 14.5+/-4.7, 7.8+/-3.2, 3.7+/-1.8, and 2+/- 2, respectively, for the number of tropical cyclones (NTC), the number of hurricanes (NH), the number of major hurricanes (NMH), and the number of United States (U.S.) land-falling hurricanes (NUSLFH). Based on the "usual" behavior of the 10-yma parametric first differences, one expects NTC = 19+/-2, NH = 14+/-2, NMH = 7+/-2, and NUSLFH = 4+/-2 for the 2010 hurricane season; however, based on the "best guess" 10-yma values of surface-air temperature at the Armagh Observatory (Northern Ireland) and the Oceanic Nino Index, one expects NTC > or equals 16, NH > or equals 14, NMH > or equals 7, and NUSLFH > or equals 6.

  3. Tropical Cyclone Information System

    NASA Technical Reports Server (NTRS)

    Li, P. Peggy; Knosp, Brian W.; Vu, Quoc A.; Yi, Chao; Hristova-Veleva, Svetla M.

    2009-01-01

    The JPL Tropical Cyclone Infor ma tion System (TCIS) is a Web portal (http://tropicalcyclone.jpl.nasa.gov) that provides researchers with an extensive set of observed hurricane parameters together with large-scale and convection resolving model outputs. It provides a comprehensive set of high-resolution satellite (see figure), airborne, and in-situ observations in both image and data formats. Large-scale datasets depict the surrounding environmental parameters such as SST (Sea Surface Temperature) and aerosol loading. Model outputs and analysis tools are provided to evaluate model performance and compare observations from different platforms. The system pertains to the thermodynamic and microphysical structure of the storm, the air-sea interaction processes, and the larger-scale environment as depicted by ocean heat content and the aerosol loading of the environment. Currently, the TCIS is populated with satellite observations of all tropical cyclones observed globally during 2005. There is a plan to extend the database both forward in time till present as well as backward to 1998. The portal is powered by a MySQL database and an Apache/Tomcat Web server on a Linux system. The interactive graphic user interface is provided by Google Map.

  4. A Statistical Model of Tropical Cyclone Tracks in the Western North Pacific with ENSO-Dependent Cyclogenesis

    NASA Technical Reports Server (NTRS)

    Yonekura, Emmi; Hall, Timothy M.

    2011-01-01

    A new statistical model for western North Pacific Ocean tropical cyclone genesis and tracks is developed and applied to estimate regionally resolved tropical cyclone landfall rates along the coasts of the Asian mainland, Japan, and the Philippines. The model is constructed on International Best Track Archive for Climate Stewardship (IBTrACS) 1945-2007 historical data for the western North Pacific. The model is evaluated in several ways, including comparing the stochastic spread in simulated landfall rates with historic landfall rates. Although certain biases have been detected, overall the model performs well on the diagnostic tests, for example, reproducing well the geographic distribution of landfall rates. Western North Pacific cyclogenesis is influenced by El Nino-Southern Oscillation (ENSO). This dependence is incorporated in the model s genesis component to project the ENSO-genesis dependence onto landfall rates. There is a pronounced shift southeastward in cyclogenesis and a small but significant reduction in basinwide annual counts with increasing ENSO index value. On almost all regions of coast, landfall rates are significantly higher in a negative ENSO state (La Nina).

  5. A global historical data set of tropical cyclone exposure (TCE-DAT)

    NASA Astrophysics Data System (ADS)

    Geiger, Tobias; Frieler, Katja; Bresch, David N.

    2018-01-01

    Tropical cyclones pose a major risk to societies worldwide, with about 22 million directly affected people and damages of USD 29 billion on average per year over the last 20 years. While data on observed cyclones tracks (location of the center) and wind speeds are publicly available, these data sets do not contain information about the spatial extent of the storm and people or assets exposed. Here, we apply a simplified wind field model to estimate the areas exposed to wind speeds above 34, 64, and 96 knots (kn). Based on available spatially explicit data on population densities and gross domestic product (GDP) we estimate (1) the number of people and (2) the sum of assets exposed to wind speeds above these thresholds accounting for temporal changes in historical distribution of population and assets (TCE-hist) and assuming fixed 2015 patterns (TCE-2015). The associated spatially explicit and aggregated country-event-level exposure data (TCE-DAT) cover the period 1950 to 2015 and are freely available at https://doi.org/10.5880/pik.2017.011 (Geiger at al., 2017c). It is considered key information to (1) assess the contribution of climatological versus socioeconomic drivers of changes in exposure to tropical cyclones, (2) estimate changes in vulnerability from the difference in exposure and reported damages and calibrate associated damage functions, and (3) build improved exposure-based predictors to estimate higher-level societal impacts such as long-term effects on GDP, employment, or migration. We validate the adequateness of our methodology by comparing our exposure estimate to estimated exposure obtained from reported wind fields available since 1988 for the United States. We expect that the free availability of the underlying model and TCE-DAT will make research on tropical cyclone risks more accessible to non-experts and stakeholders.

  6. Dry and Semi-Dry Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Cronin, T.; Chavas, D. R.

    2017-12-01

    Our understanding of dynamics in our real moist atmosphere is strongly informed by idealized dry models. It is widely believed that tropical cyclones (TCs) are an intrinsically moist phenomenon - relying fundamentally on evaporation and latent heat release - yet recent numerical modeling work has found formation of dry axisymmetric tropical cyclones from a state of dry radiative-convective equilibrium. What can such "dry hurricanes" teach us about intensity, structure, and size of real moist tropical cyclones in nature? Are dry TCs even stable in 3D? What about surfaces that are nearly dry but have some latent heat flux - can they also support TCs? To address these questions, we use the SAM cloud-system resolving model to simulate radiative-convective equilibrium on a rapidly rotating f-plane, subject to constant tropospheric radiative cooling. We use a homogeneous surface with fixed temperature and with surface saturation vapor pressure scaled by a factor 0-1 relative to that over pure water - allowing for continuous variation between moist and dry limits. We also explore cases with surface enthalpy fluxes that are uniform in space and time, where partitioning between latent and sensible heat fluxes is specified directly. We find that a completely moist surface yields a TC-world where multiple vortices form spontaneously and persist for tens of days. A completely dry surface can also yield a parallel dry TC-world with many vortices that are even more stable and persistent. Spontaneous cyclogenesis, however, is impeded for a range of low to intermediate surface wetness values, and by the combination of large rotation rates and a dry surface. We discuss whether these constraints on spontaneous cyclogenesis might arise from: 1) rain evaporation in the subcloud layer limiting the range of viable surface wetness values, and 2) a natural convective Rossby number limiting the range of viable rotation rates. Finally, we discuss simulations with uniform surface enthalpy fluxes, which suggest that wind-induced surface heat exchange may differ in its importance for dry and moist cyclones.

  7. Air- Sea Interactions in the Southwest Tropical Indian Ocean

    NASA Astrophysics Data System (ADS)

    Burns, J. M.; Bulusu, S.

    2016-12-01

    The Southwest Tropical Indian Ocean (SWTIO) features a unique, seasonal upwelling of the thermocline also known as the Seychelles-Chagos Thermocline Ridge (SCTR; 55°E-65°E, 5°S-12°S). Past research provides evidence for more tropical cyclone days over the SWTIO during austral summer with a deep thermocline ridge than in austral summer with a shallow thermocline ridge. Normally more cyclones form over the SWTIO when the thermocline is deeper, which has a positive relation to the arrival of downwelling Rossby waves originating in the southeast tropical Indian Ocean due to the anomalous effects of the Indian Ocean Dipole (IOD) and El Niño. With a particular focus on 2012/2013, this study reveals the dynamic properties of the SCTR that play an important role in the modulation of tropical cycles in the SWTIO. In addition to influencing cyclogeneis in the SCTR region, remote processes such as IOD and ENSO are also primary drivers of the SCTR interannual variability with respect to both ocean temperature and salinity.

  8. Tropical storm redistribution of Saharan dust to the upper troposphere and ocean surface

    NASA Astrophysics Data System (ADS)

    Herbener, Stephen R.; Saleeby, Stephen M.; Heever, Susan C.; Twohy, Cynthia H.

    2016-10-01

    As a tropical cyclone traverses the Saharan Air Layer (SAL), the storm will spatially redistribute the dust from the SAL. Dust deposited on the surface may affect ocean fertilization, and dust transported to the upper levels of the troposphere may impact radiative forcing. This study explores the relative amounts of dust that are vertically redistributed when a tropical cyclone crosses the SAL. The Regional Atmospheric Modeling System (RAMS) was configured to simulate the passage of Tropical Storm Debby (2006) through the SAL. A dust mass budget approach has been applied, enabled by a novel dust mass tracking capability of the model, to determine the amounts of dust deposited on the ocean surface and transferred aloft. The mass of dust removed to the ocean surface was predicted to be nearly 2 orders of magnitude greater than the amount of dust transported to the upper troposphere.

  9. Tropical cyclone intensities from satellite microwave data

    NASA Technical Reports Server (NTRS)

    Vonderhaar, T. H.; Kidder, S. Q.

    1980-01-01

    Radial profiles of mean 1000 mb to 250 mb temperature from the Nimbus 6 scanning microwave spectrometer (SCAMS) were constructed around eight intensifying tropical storms in the western Pacific. Seven storms showed distinct inward temperature gradients required for intensification; the eighth displayed no inward gradient and was decaying 24 hours later. The possibility that satellite data might be used to forecast tropical cyclone turning motion was investigated using estimates obtained from Nimbus 6 SCAMS data tapes of the mean 1000 mb to 250 mb temperature field around eleven tropical storms in 1975. Analysis of these data show that for turning storms, in all but one case, the turn was signaled 24 hours in advance by a significant temperature gradient perpendicular to the storm's path, at a distance of 9 deg to 13 deg in front of the storm. A thresholding technique was applied to the North Central U.S. during the summer to estimate precipitation frequency. except

  10. Response of the South China Sea to Forcing by Tropical Cyclone Ernie (1996)

    DTIC Science & Technology

    1998-03-01

    complicated. Wide continental shelves appear in the northwest and southwest of the basin and steep slopes in the central portion, framing a deep, bowl...bottom topography of the SCS basin provides a favorable condition for the formation of anticyclonic eddies in the central SCS during the spring. From...cyclone is produced. This cyclonic wind stress then generates Ekman upwelling in the central basin and the formation of a cold pool. Again, through

  11. Quantitative observations on tropical cyclone tracks in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Terry, James P.; Gienko, Gennady

    2018-03-01

    The Arabian Sea basin represents a minor component of global total cyclones annually and has not featured so prominently in cyclone research compared with other basins where greater numbers of cyclones are registered each year. This paper presents the results of exploratory analysis of various features of cyclone tracks in the Arabian Sea, with a particular focus on examining their temporal and spatial patterns. Track morphometry also reveals further information on track shape. The study indicates how cyclones spawned during May in the early pre-monsoon period (often strong events) have a tendency to follow more sinuous tracks, whereas cyclones occurring in October in the post-monsoon period tend to follow straighter tracks. Track sinuosity is significantly related to other attributes, including cyclone longevity and intensity. Comparisons are also drawn between the general characteristics of cyclone tracks in the Arabian Sea and other ocean basins, suggesting how the size and geography of the Arabian Sea basin exert influences on these characteristics.

  12. On the movement of tropical cyclone LEHAR

    NASA Astrophysics Data System (ADS)

    Dasari, Hari Prasad; V, Brahmananda Rao; SSVS, Ramakrishna; Gunta, Paparao; N, Nanaji Rao; P, Ramesh Kumar

    2017-12-01

    In this paper, an attempt has been made to delineate the physical processes which lead to the westward movement of the North Indian Ocean tropical cyclone LEHAR. The Advanced Weather Research and Forecasting (ARW) model is used to simulate LEHAR with 27 and 9 km resolutions. The results indicate that the model performed well in simulating the characteristics of cyclone compared with the Satellite and other observations. In addition to that all terms of the complete vorticity equation are computed to obtain the contribution of each term for the vorticity tendency. The vorticity tendency is calculated in four sectors, namely northwest, northeast, southwest and southeast and assumed that the cyclone moves from its existing location to the nearest point where the vortices tendency is maximum. It is noticed that the vorticity stretching term contributes most to the positive vorticity tendency. The second highest contribution is from the horizontal advection thus indicating the secondary importance of steering. The distribution of lightening flash rates also showing that the flash rates are higher in the SW and followed by NW sectors of the cyclone indicate more strong convective clouds are in SW sector. The equivalent potential temperatures ( θ e) at different stages of before, during and after the mature stage of the cyclone are also analysed and the analysis reveals that the wind-induced surface heat (WISH) exchange process is a plausible mechanism for the intensification of LEHAR.

  13. Overview of the Field Phase of the NASA Tropical Cloud Systems and Processes (TCSP)Experiment

    NASA Technical Reports Server (NTRS)

    Hood, Robbie E.; Zipser, Edward; Heymsfield, Gerald M.; Kakar, Ramesh; Halverson Jeffery; Rogers, Robert; Black, Michael

    2006-01-01

    The Tropical Cloud Systems and Processes experiment is sponsored by the National Aeronautics and Space Administration (NASA) to investigate characteristics of tropical cyclone genesis, rapid intensification and rainfall using a three-pronged approach that emphasizes satellite information, suborbital observations and numerical model simulations. Research goals include demonstration and assessment of new technology, improvements to numerical model parameterizations, and advancements in data assimilation techniques. The field phase of the experiment was based in Costa Rica during July 2005. A fully instrumented NASA ER-2 high altitude airplane was deployed with Doppler radar, passive microwave instrumentation, lightning and electric field sensors and an airborne simulator of visible and infrared satellite sensors. Other assets brought to TCSP were a low flying uninhabited aerial vehicle, and a surface-based radiosonde network. In partnership with the Intensity Forecasting Experiment of the National Oceanic and Atmospheric Administration (NOAA) Hurricane Research Division, two NOAA P-3 aircraft instrumented with radar, passive microwave, microphysical, and dropsonde instrumentation were also deployed to Costa Rica. The field phase of TCSP was conducted in Costa Rica to take advantage of the geographically compact tropical cyclone genesis region of the Eastern Pacific Ocean near Central America. However, the unusual 2005 hurricane season provided numerous opportunities to sample tropical cyclone development and intensification in the Caribbean Sea and Gulf of Mexico as well. Development of Hurricane Dennis and Tropical Storm Gert were each investigated over several days in addition to Hurricane Emily as it was close to Saffir-Simpson Category 5 intensity. An overview of the characteristics of these storms along with the pregenesis environment of Tropical Storm Eugene in the Eastern Pacific will be presented.

  14. Impact of Representing Model Error in a Hybrid Ensemble-Variational Data Assimilation System for Track Forecast of Tropical Cyclones over the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Kutty, Govindan; Muraleedharan, Rohit; Kesarkar, Amit P.

    2018-03-01

    Uncertainties in the numerical weather prediction models are generally not well-represented in ensemble-based data assimilation (DA) systems. The performance of an ensemble-based DA system becomes suboptimal, if the sources of error are undersampled in the forecast system. The present study examines the effect of accounting for model error treatments in the hybrid ensemble transform Kalman filter—three-dimensional variational (3DVAR) DA system (hybrid) in the track forecast of two tropical cyclones viz. Hudhud and Thane, formed over the Bay of Bengal, using Advanced Research Weather Research and Forecasting (ARW-WRF) model. We investigated the effect of two types of model error treatment schemes and their combination on the hybrid DA system; (i) multiphysics approach, which uses different combination of cumulus, microphysics and planetary boundary layer schemes, (ii) stochastic kinetic energy backscatter (SKEB) scheme, which perturbs the horizontal wind and potential temperature tendencies, (iii) a combination of both multiphysics and SKEB scheme. Substantial improvements are noticed in the track positions of both the cyclones, when flow-dependent ensemble covariance is used in 3DVAR framework. Explicit model error representation is found to be beneficial in treating the underdispersive ensembles. Among the model error schemes used in this study, a combination of multiphysics and SKEB schemes has outperformed the other two schemes with improved track forecast for both the tropical cyclones.

  15. Tropical cyclogenesis in warm climates simulated by a cloud-system resolving model

    NASA Astrophysics Data System (ADS)

    Fedorov, Alexey V.; Muir, Les; Boos, William R.; Studholme, Joshua

    2018-03-01

    Here we investigate tropical cyclogenesis in warm climates, focusing on the effect of reduced equator-to-pole temperature gradient relevant to past equable climates and, potentially, to future climate change. Using a cloud-system resolving model that explicitly represents moist convection, we conduct idealized experiments on a zonally periodic equatorial β-plane stretching from nearly pole-to-pole and covering roughly one-fifth of Earth's circumference. To improve the representation of tropical cyclogenesis and mean climate at a horizontal resolution that would otherwise be too coarse for a cloud-system resolving model (15 km), we use the hypohydrostatic rescaling of the equations of motion, also called reduced acceleration in the vertical. The simulations simultaneously represent the Hadley circulation and the intertropical convergence zone, baroclinic waves in mid-latitudes, and a realistic distribution of tropical cyclones (TCs), all without use of a convective parameterization. Using this model, we study the dependence of TCs on the meridional sea surface temperature gradient. When this gradient is significantly reduced, we find a substantial increase in the number of TCs, including a several-fold increase in the strongest storms of Saffir-Simpson categories 4 and 5. This increase occurs as the mid-latitudes become a new active region of TC formation and growth. When the climate warms we also see convergence between the physical properties and genesis locations of tropical and warm-core extra-tropical cyclones. While end-members of these types of storms remain very distinct, a large distribution of cyclones forming in the subtropics and mid-latitudes share properties of the two.

  16. Is the State of the Air-Sea Interface a Factor in Rapid Intensification and Rapid Decline of Tropical Cyclones?

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander V.; Lukas, Roger; Donelan, Mark A.; Haus, Brian K.; Ginis, Isaac

    2017-12-01

    Tropical storm intensity prediction remains a challenge in tropical meteorology. Some tropical storms undergo dramatic rapid intensification and rapid decline. Hurricane researchers have considered particular ambient environmental conditions including the ocean thermal and salinity structure and internal vortex dynamics (e.g., eyewall replacement cycle, hot towers) as factors creating favorable conditions for rapid intensification. At this point, however, it is not exactly known to what extent the state of the sea surface controls tropical cyclone dynamics. Theoretical considerations, laboratory experiments, and numerical simulations suggest that the air-sea interface under tropical cyclones is subject to the Kelvin-Helmholtz type instability. Ejection of large quantities of spray particles due to this instability can produce a two-phase environment, which can attenuate gravity-capillary waves and alter the air-sea coupling. The unified parameterization of waveform and two-phase drag based on the physics of the air-sea interface shows the increase of the aerodynamic drag coefficient Cd with wind speed up to hurricane force (U10≈35 m s-1). Remarkably, there is a local Cd minimum—"an aerodynamic drag well"—at around U10≈60 m s-1. The negative slope of the Cd dependence on wind-speed between approximately 35 and 60 m s-1 favors rapid storm intensification. In contrast, the positive slope of Cd wind-speed dependence above 60 m s-1 is favorable for a rapid storm decline of the most powerful storms. In fact, the storms that intensify to Category 5 usually rapidly weaken afterward.

  17. Predicting tropical cyclone intensity using satellite measured equivalent blackbody temperatures of cloud tops. [regression analysis

    NASA Technical Reports Server (NTRS)

    Gentry, R. C.; Rodgers, E.; Steranka, J.; Shenk, W. E.

    1978-01-01

    A regression technique was developed to forecast 24 hour changes of the maximum winds for weak (maximum winds less than or equal to 65 Kt) and strong (maximum winds greater than 65 Kt) tropical cyclones by utilizing satellite measured equivalent blackbody temperatures around the storm alone and together with the changes in maximum winds during the preceding 24 hours and the current maximum winds. Independent testing of these regression equations shows that the mean errors made by the equations are lower than the errors in forecasts made by the peristence techniques.

  18. Associating extreme precipitation events to parent cyclones in gridded data

    NASA Astrophysics Data System (ADS)

    Rhodes, Ruari; Shaffrey, Len; Gray, Sue

    2015-04-01

    When analysing the relationship of regional precipitation to its parent cyclone, it is insufficient to consider the cyclone's region of influence as a fixed radius from the centre due to the irregular shape of rain bands. A new method is therefore presented which allows the use of objective feature tracking data in the analysis of regional precipitation. Utilising the spatial extent of precipitation in gridded datasets, the most appropriate cyclone(s) may be associated with regional precipitation events. This method is applied in the context of an analysis of the influence of clustering and stalling of extra-tropical cyclones in the North Atlantic on total precipitation accumulations over England and Wales. Cyclone counts and residence times are presented for historical records (ERA-Interim) and future projections (HadGEM2-ES) of extreme (> 98th percentile) precipitation accumulations over England and Wales, for accumulation periods ranging from one day to one month.

  19. Retrieval of spatially distributed hydrological properties from satellite observations for spatial evaluation of a national water resources model.

    NASA Astrophysics Data System (ADS)

    Mendiguren González, G.; Stisen, S.; Koch, J.

    2016-12-01

    The NASA Cyclone Global Navigation Satellite System (CYNSS) mission provides high temporal resolution observations of cyclones from a constellation of eight low-Earth orbiting satellites. Using the relatively new technique of Global Navigation Satellite System reflectometry (GNSS-R), all-weather observations are possible, penetrating even deep convection within hurricane eye walls. The compact nature of the GNSS-R receivers permits the use of small satellites, which in turn enables the launch of a constellation of satellites from a single launch vehicle. Launched in December of 2016, the eight CYGNSS satellites provide 25 km resolution observations of mean square slope (surface roughness) and surface winds with a 2.8 hour median revisit time from 38 S to 38 N degrees latitude. In addition to the calibration and validation of CYGNSS sea state observations, the CYGNSS science team is assessing the ability of the mission to provide estimates of cyclone size, intensity, and integrated kinetic energy. With its all-weather ability and high temporal resolution, the CYGNSS mission will add significantly to our ability to monitor cyclone genesis and intensification and will significantly reduce uncertainties in our ability to estimate cyclone intensity, a key variable in predicting its destructive potential. Members of the CYGNSS Science Team are also assessing the assimilation of CYGNSS data into hurricane forecast models to determine the impact of the data on forecast skill, using the data to study extra-tropical cyclones, and looking at connections between tropical cyclones and global scale weather, including the global hydrologic cycle. This presentation will focus on the assessment of early on-orbit observations of cyclones with respect to these various applications.

  20. CYGNSS Surface Wind Observations and Surface Flux Estimates within Low-Latitude Extratropical Cyclones

    NASA Astrophysics Data System (ADS)

    Crespo, J.; Posselt, D. J.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS), launched in December 2016, aims to improve estimates of surface wind speeds over the tropical oceans. While CYGNSS's core mission is to provide better estimates of surface winds within the core of tropical cyclones, previous research has shown that the constellation, with its orbital inclination of 35°, also has the ability to observe numerous extratropical cyclones that form in the lower latitudes. Along with its high spatial and temporal resolution, CYGNSS can provide new insights into how extratropical cyclones develop and evolve, especially in the presence of thick clouds and precipitation. We will demonstrate this by presenting case studies of multiple extratropical cyclones observed by CYGNSS early on in its mission in both Northern and Southern Hemispheres. By using the improved estimates of surface wind speeds from CYGNSS, we can obtain better estimates of surface latent and sensible heat fluxes within and around extratropical cyclones. Surface heat fluxes, driven by surface winds and strong vertical gradients of water vapor and temperature, play a key role in marine cyclogenesis as they increase instability within the boundary layer and may contribute to extreme marine cyclogenesis. In the past, it has been difficult to estimate surface heat fluxes from space borne instruments, as these fluxes cannot be observed directly from space, and deficiencies in spatial coverage and attenuation from clouds and precipitation lead to inaccurate estimates of surface flux components, such as surface wind speeds. While CYGNSS only contributes estimates of surface wind speeds, we can combine this data with other reanalysis and satellite data to provide improved estimates of surface sensible and latent heat fluxes within and around extratropical cyclones and throughout the entire CYGNSS mission.

  1. Cyclone trends constrain monsoon variability during Late Oligocene sea level highstands (Kachchh Basin, NW India)

    NASA Astrophysics Data System (ADS)

    Reuter, M.; Piller, W. E.; Harzhauser, M.; Kroh, A.

    2013-01-01

    Important concerns about the consequences of climate change for India are the potential impact on tropical cyclones and the monsoon. Herein we present a sequence of fossil shell beds from the shallow-marine Maniyara Fort Formation (Kachcch Basin) as an indicator of tropical cyclone activity along the NW Indian coast during the Late Oligocene warming period (~27-24 Ma). Direct proxies providing information about the atmospheric circulation dynamics over the Indian subcontinent at this time are important since it corresponds to a major climate reorganization in Asia that ends up with the establishment of the modern Asian monsoon system in the Early Miocene. The vast shell concentrations comprise a mixture of parautochthonous and allochthonous assemblages indicating storm-generated sediment transport from deep to shallow water during third-order sea level highstands. Three distinct skeletal assemblages were distinguished each recording a relative storm wave base depth. (1) A shallow storm wave base is shown by nearshore mollusks, corals and Clypeaster echinoids; (2) an intermediate storm wave base depth is indicated by lepidocyclind foraminifers, Eupatagus echinoids and corallinaceans; and (3) a deep storm wave base is represented by an Amussiopecten-Schizaster echinoid assemblage. Vertical changes in these skeletal associations give evidence of gradually increasing tropical cyclone intensity in line with third-order sea level rise. The intensity of cyclones over the Arabian Sea is primarily linked to the strength of the Indian monsoon. Therefore and since the topographic boundary conditions for the Indian monsoon already existed in the Late Oligocene, the longer-term cyclone trends were interpreted to reflect monsoon variability during the initiation of the Asian monsoon system. Our results imply an active monsoon over the Eastern Tethys at ~26 Ma followed by a period of monsoon weakening during the peak of the Late Oligocene global warming (~24 Ma).

  2. The NASA CYGNSS Satellite Constellation for Tropical Cyclone Observations

    NASA Astrophysics Data System (ADS)

    Ruf, C. S.; Provost, D.; Rose, R.; Scherrer, J.; Atlas, R. M.; Chang, P.; Clarizia, M. P.; Garrison, J. L.; Gleason, S.; Katzberg, S. J.; Jelenak, Z.; Johnson, J. T.; Majumdar, S.; O'Brien, A.; Posselt, D. J.; Ridley, A. J.; Said, F.; Soisuvarn, S.; Zavorotny, V. U.

    2016-12-01

    The NASA Cyclone Global Navigation Satellite System (CYGNSS) is scheduled for launch in November 2016 to study the surface wind structure in and near the inner core of tropical cyclones. CYGNSS consists of a constellation of eight observatories carried into orbit on a single launch vehicle. Each observatory carries a 4-channel bistatic radar receiver tuned to receive GPS navigation signals scattered from the ocean surface. The eight satellites are spaced approximately twelve minutes apart in a common circular, low inclination orbit plane to provide frequent temporal sampling in the tropics. The 35deg orbit inclination results in coverage of the full globe between 38deg N and 38deg S latitude with a median(mean) revisit time of 3(7) hours The 32 CYGNSS radars operate in L-Band at a wavelength of 19 cm. This allows for adequate penetration to enable surface wind observations under all levels of precipitation, including those encountered in the inner core and eyewall of tropical cyclones. The combination of operation unaffected by heavy precipitation together with high temporal resolution throughout the life cycle of storms is expected to support significant improvements in the forecast skill of storm track and intensity, as well as better situational awareness of the extent and structure of storms in near real time. A summary of the properties of the CYGNSS science data products will be presented, together with an update on the results of ongoing Observation System Simulation Experiments performed by members of the CYGNSS science team over the past four years, in particular addressing the expected impact on storm track and intensity forecast skill. With launch scheduled for the month prior to AGU, the on orbit status of the constellation will also be presented.

  3. Development of Lightning Observation Network in the Western Pacific Region for the Intensity Prediction of Severe Weather

    NASA Astrophysics Data System (ADS)

    Sato, M.; Takahashi, Y.; Yamashita, K.; Kubota, H.; Hamada, J. I.; Momota, E.; Marciano, J. J.

    2017-12-01

    Lightning activity represents the thunderstorm activity, that is, the precipitation and/or updraft intensity and area. Thunderstorm activity is also an important parameter in terms of the energy inputs from the ocean to the atmosphere inside tropical cyclone, which is one of severe weather events. Recent studies suggest that it is possible to predict the maximum wind velocity and minimum pressure near the center of the tropical cyclone by one or two days before if we monitor the lightning activities in the tropical cyclone. Many countries in the western Pacific region suffer from the attack of tropical cyclone (typhoon) and have a strong demand to predict the intensity development of typhoons. Thus, we started developing a new lightning observation system and installing the observation system at Guam, Palau, and Manila in the Philippines from this summer. The lightning observation system consists of a VLF sensor detecting lightning-excited electromagnetic waves in the frequency range of 1-5 kHz, an automatic data-processing unit, solar panels, and batteries. Lightning-excited pulse signals detected by the VLF sensor are automatically analyzed by the data-processing unit, and only the extracted information of the trigger time and pulse amplitude is transmitted to a data server via the 3G data communications. In addition, we are now developing an upgraded lightning and weather observation system, which will be installed at 50 automated weather stations in Metro Manila and 10 radar sites in the Philippines under the 5-year project (SATREPS) scheme. At the presentation, we will show the initial results derived from the lightning observation system in detail and will show the detailed future plan of the SATREPS project.

  4. The environmental influence on tropical cyclone precipitation

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward B.; Baik, Jong-Jin; Pierce, Harold F.

    1994-01-01

    The intensity, spatial, and temporal changes in precipitation were examined in three North Atlantic hurricanes during 1989 (Dean, Gabrielle, and Hugo) using precipitation estimates made from Special Sensor Microwave/Imager (SSM/I) measurements. In addition, analyses from a barotropic hurricane forecast model and the European Centre for Medium-Range Weather Forecast model were used to examine the relationship between the evolution of the precipitation in these tropical cyclones and external forcing. The external forcing parameters examined were (1) mean climatological sea surface temperatures, (2) vertical wind shear, (3) environmental tropospheric water vapor flux, and (4) upper-tropospheric eddy relative angular momentum flux convergence. The analyses revealed that (1) the SSM/I precipitation estimates were able to delineate and monitor convective ring cycles similar to those observed with land-based and aircraft radar and in situ measurements; (2) tropical cyclone intensification was observed to occur when these convective rings propagated into the inner core of these systems (within 111 km of the center) and when the precipitation rates increased; (3) tropical cyclone weakening was observed to occur when these inner-core convective rings dissipated; (4) the inward propagation of the outer convective rings coincided with the dissipation of the inner convective rings when they came within 55 km of each other; (5) in regions with the combined warm sea surface temperatures (above 26 C) and low vertical wind shear (less than 5 m/s), convective rings outside the region of strong lower-tropospheric inertial stability could be initiated by strong surges of tropospheric moisture, while convective rings inside the region of strong lower-tropospheric inertial stability could be enhanced by upper-tropospheric eddy relative angular momentum flux convergence.

  5. The Environmental Influence on Tropical Cyclone Precipitation.

    NASA Astrophysics Data System (ADS)

    Rodgers, Edward B.; Baik, Jong-Jin; Pierce, Harold F.

    1994-05-01

    The intensity, spatial, and temporal changes in precipitation were examined in three North Atlantic hurricanes during 1989 (Dean, Gabrielle, and Hugo) using precipitation estimates made from Special Sensor Microwave/Imager (SSM/I) measurements. In addition, analyses from a barotropic hurricane forecast model and the European Centre for Medium-Range Weather Forecast model were used to examine the relationship between the evolution of the precipitation in these tropical cyclones and external forcing. The external forcing parameters examined were 1) mean climatological sea surface temperatures, 2) vertical wind shear, 3) environmental tropospheric water vapor flux, and 4) upper-tropospheric eddy relative angular momentum flux convergence.The analyses revealed that 1) the SSM/I precipitation estimates were able to delineate and monitor convective ring cycles similar to those observed with land-based and aircraft radar and in situ measurements; 2) tropical cyclone intensification was observed to occur when these convective rings propagated into the inner core of these systems (within 111 km of the center) and when the precipitation rates increased; 3) tropical cyclone weakening was observed to occur when these inner-core convective rings dissipated; 4) the inward propagation of the outer convective rings coincided with the dissipation of the inner convective rings when they came within 55 km of each other; 5) in regions with the combined warm sea surface temperatures (above 26°C) and low vertical wind shear (less than 5 m s1), convective rings outside the region of strong lower-tropospheric inertial stability could be initiated by strong surges of tropospheric moisture, while convective rings inside the region of strong lower-tropospheric inertial stability could be enhanced by upper-tropospheric eddy relative angular momentum flux convergence.

  6. Influences of the Saharan Air Layer on the Formation and Intensification of Hurricane Isabel (2003): Analysis of AIRS data and Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Wu, L.; Braun, S. A.

    2006-12-01

    Over the past two decades, little advance has been made in prediction of tropical cyclone intensity while substantial improvements have been made in forecasting hurricane tracks. One reason is that we don't well understand the physical processes that govern tropical cyclone intensity. Recent studies have suggested that the Saharan Air Layer (SAL) may be yet another piece of the puzzle in advancing our understanding of tropical cyclone intensity change in the Atlantic basin. The SAL is an elevated mixed layer, forming as air moves across the vast Sahara Desert, in particular during boreal summer months. The SAL contains warm, dry air as well as a substantial amount of mineral dust, which can affect radiative heating and modify cloud processes. Using the retrieved temperature and humidity profiles from the AIRS suite on the NASA Aqua satellite, the SAL and its influences on the formation and intensification of Hurricane Isabel (2003) are analyzed and simulated with MM5. When the warmth and dryness of the SAL (the thermodynamic effect) is considered by relaxing the model thermodynamic state to the AIRS profiles, MM5 can well simulate the large-scale flow patterns and the activity of Hurricane Isabel in terms of the timing and location of formation and the subsequent track. Compared with the experiment without nudging the AIRS data, it is suggested that the simulated SAL effect may delay the formation and intensification of Hurricane Isabel. This case study generally confirms the argument by Dunion and Velden (2004) that the SAL can suppress Atlantic tropical cyclone activity by increasing the vertical wind shear, reducing the mean relative humidity, and stabilizing the environment at lower levels.

  7. Investigation of the Ionsopheric Response to Tropical Cyclones Using Ground and Satellite Based Observations Over Indian Region

    NASA Astrophysics Data System (ADS)

    G J, B.; Lal, M.

    2015-12-01

    The present work investigates the equatorial ionospheric response to tropical cyclones which were observed over the Arabian and Bay of Bengal Ocean during the year 2009-2013. The present study utilizes various datasets in order to strengthen the mechanism of troposphere-ionosphere coupling. The tropical cyclone track and data can be obtained from the Indian Meteorological Department, New Delhi. Ionsopheric variations can be monitored from the ground based digisonde located at equatorial station, Trivandrum (8.48oN, 76.95oE), Tirunelveli (8.7oN, 77.8oE) and off equatorial station Allahabad (25.45oN, 81.85oE) and CDAAC COSMIC satellite data. It is believed that tropical cyclone induced convection as the driving agent for the increased gravity wave activity in the lower atmosphere. The convective regions are identified with the help of Outgoing Long wave radiation from NOAA. Gravity wave propagation is mainly depends on the background wind condition, can be examined by using NASA MERRA reanalyses. These Upward propagating gravity waves deposit their energy and momentum into the upper atmosphere as Travelling Ionospheric Disturbances (TIDs). It is found that the enhancement of this wave activity is increased by orders of 10 at ionospheric level. The Ionospheric variability is measured by examining the variation in the parameters such as, Total Electron Content (TEC), foF2, hmF2, foE, MUF, h'E and h'F. The extensive analysis will be carried out in order to understand the coupling mechanism between troposphere and ionosphere region. The detailed results will be discussed in the meeting.

  8. Criteria for evaluating the condition of a tropical cyclone warning system.

    PubMed

    Parker, D

    1999-09-01

    This paper evaluates the condition (i.e. health) of a tropical cyclone warning system (TCWS) during a 'quiet period' between infrequent intense cyclones. Capacity to make pre-disaster evaluations is important--disaster warning systems need to be in sound condition before, not after, disaster. The research--part of the UK's International Decade of Natural Disaster Reduction Flagship Programme--focuses upon an evaluatory method first used on flood warning systems. The Criteria-development Matrix comprises social, organisational and institutional criteria by which a TCWS may be assessed using a five-stage development scale. This method is used to evaluate Mauritius's TCWS using in-depth interview data. Ways to enhance the method and apply it to other disaster warning systems are discussed. The TCWS in Mauritius is a relatively sound one from which others can learn. Weaknesses requiring attention for Mauritius's TCWS to progress to an advanced level of development are identified.

  9. Micronesian mangrove forest structure and tree responses to a severe typhoon

    Treesearch

    J. Boone Kauffman; Thomas G. Cole

    2010-01-01

    Tropical cyclones are common disturbances that have strong effects on mangrove composition and structure. Because there are numerous ecosystem services provided by mangroves, it is important to understand their adaptations and responses to these climatic events. In April 2004, Typhoon Sudal, a category 3-4 cyclone, passed over the state of Yap, Federated States of...

  10. Cyclone Hudah As Seen By MODIS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Tropical Cyclone Hudah was one of most powerful storms ever seen in the Indian Ocean. This image from the Moderate-resolution Imaging Spectroradiometer (MODIS) aboard Terra was taken on March 29, 2000. The structure of the eye of the storm is brought out by MODIS' 250-meter resolution. Image by Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison

  11. Hazard Assessment from Storm Tides and Rainfall on a Tidal River Estuary

    NASA Technical Reports Server (NTRS)

    Orton, P.; Conticello, F.; Cioffi, F.; Hall, T.; Georgas, N.; Lall, U.; Blumberg, A.

    2015-01-01

    Here, we report on methods and results for a model-based flood hazard assessment we have conducted for the Hudson River from New York City to Troy/Albany at the head of tide. Our recent work showed that neglecting freshwater flows leads to underestimation of peak water levels at up-river sites and neglecting stratification (typical with two-dimensional modeling) leads to underestimation all along the Hudson. As a result, we use a three-dimensional hydrodynamic model and merge streamflows and storm tides from tropical and extratropical cyclones (TCs, ETCs), as well as wet extratropical cyclone (WETC) floods (e.g. freshets, rain-on-snow events). We validate the modeled flood levels and quantify error with comparisons to 76 historical events. A Bayesian statistical method is developed for tropical cyclone streamflows using historical data and consisting in the evaluation of (1) the peak discharge and its pdf as a function of TC characteristics, and (2) the temporal trend of the hydrograph as a function of temporal evolution of the cyclone track, its intensity and the response characteristics of the specific basin. A k-nearest-neighbors method is employed to determine the hydrograph shape. Out of sample validation tests demonstrate the effectiveness of the method. Thus, the combined effects of storm surge and runoff produced by tropical cyclones hitting the New York area can be included in flood hazard assessment. Results for the upper Hudson (Albany) suggest a dominance of WETCs, for the lower Hudson (at New York Harbor) a case where ETCs are dominant for shorter return periods and TCs are more important for longer return periods (over 150 years), and for the middle-Hudson (Poughkeepsie) a mix of all three flood events types is important. However, a possible low-bias for TC flood levels is inferred from a lower importance in the assessment results, versus historical event top-20 lists, and this will be further evaluated as these preliminary methods and results are finalized. Future funded work will quantify the influences of sea level rise and flood adaptation plans (e.g. surge barriers). It would also be valuable to examine how streamflows from tropical cyclones and wet cool-season storms will change, as this factor will dominate at upriver locations.

  12. Using Deep Learning for Tropical Cyclone Intensity Estimation

    NASA Astrophysics Data System (ADS)

    Miller, J.; Maskey, M.; Berendes, T.

    2017-12-01

    Satellite-based techniques are the primary approach to estimating tropical cyclone (TC) intensity. Tropical cyclone warning centers worldwide still apply variants of the Dvorak technique for such estimations that include visual inspection of the satellite images. The National Hurricane Center (NHC) estimates about 10-20% uncertainty in its post analyses when only satellite-based estimates are available. The success of the Dvorak technique proves that spatial patterns in infrared (IR) imagery strongly relate to TC intensity. With the ever-increasing quality and quantity of satellite observations of TCs, deep learning techniques designed to excel at pattern recognition have become more relevant in this area of study. In our current study, we aim to provide a fully objective approach to TC intensity estimation by utilizing deep learning in the form of a convolutional neural network trained to predict TC intensity (maximum sustained wind speed) using IR satellite imagery. Large amounts of training data are needed to train a convolutional neural network, so we use GOES IR images from historical tropical storms from the Atlantic and Pacific basins spanning years 2000 to 2015. Images are labeled using a special subset of the HURDAT2 dataset restricted to time periods with airborne reconnaissance data available in order to improve the quality of the HURDAT2 data. Results and the advantages of this technique are to be discussed.

  13. NASA CYGNSS Ocean Wind Observations in the 2017 Atlantic Hurricane Season

    NASA Astrophysics Data System (ADS)

    Ruf, C. S.; Balasubramaniam, R.; Mayers, D.; McKague, D. S.

    2017-12-01

    The CYGNSS constellation of eight satellites was successfully launched on 15 December 2016 into a low inclination (tropical) Earth orbit to measure ocean surface wind speed in the inner core of tropical cyclones with better than 12 hour refresh rates. Each satellite carries a four-channel bi-static radar receiver that measures GPS signals scattered by the ocean, from which ocean surface roughness, near surface wind speed, and air-sea latent heat flux are estimated. The measurements are unique in several respects, most notably in their ability to penetrate through all levels of precipitation, made possible by the low frequency at which GPS operates, and in the frequent sampling of tropical cyclone intensification, made possible by the large number of satellites. Level 2 science data products have been developed for near surface (10 m referenced) ocean wind speed, ocean surface roughness (mean square slope) and latent heat flux. Level 3 gridded versions of the L2 products have also been developed. A set of Level 4 products have also been developed specifically for direct tropical cyclone overpasses. These include the storm intensity (peak sustained winds) and size (radius of maximum winds), its extent (34, 50 and 64 knot wind radii), and its integrated kinetic energy. Results of measurements made during the 2017 Atlantic hurricane season, including frequent overpasses of Hurricanes Harvey, Irma and Maria, will be presented.

  14. [Equipment Inventory Report of Inventions and Subcontracts

    NASA Technical Reports Server (NTRS)

    Zipser, Edward J.

    2002-01-01

    This was a joint award to the PI, then of Texas A&M University, and Gerald Heymsfield of NASA GSFC, with co-I's Robbie Hood and Richard Blakeslee of NASA Marshall Space Flight Center (MSFC). Although the PI moved to the University of Utah during year-2 of this grant, it continued to be administered through Texas A&M for the convenience of the Ph.D. student Daniel Cecil until after he defended his dissertation in late 2000. Cecil has assembled a subset of this database for 261 Tropical Rainfall Measuring Mission (TRMM) passes over 45 hurricanes or tropical cyclones. It consists of TRMM Microwave Imager (TMI) ice scattering signatures and TRMM Precipitation Radar (PR) reflectivity profiles and Lightning Imaging Sensor (LIS) flash locations for the rain features associated with all tropical cyclones observed by TRMM from Dec. 1997 through Dec. 1998. Each rain feature has been subjectively cataloged as belonging to a hurricane eyewall, inner rainband, outer rainband, or the inner or outer regions of a developing or non-developing tropical cyclone. This database quantifies the relative abundance of lightning in outer rainbands compared to eyewalls and inner rainbands. The TRMM data set permits studies that can seek more specific physical relationships than Cecil and Zipser were able to find when they related some SSM/I measures of ice scattering to hurricane intensity change.

  15. Hurricane Watch

    NASA Astrophysics Data System (ADS)

    Hobgood, Jay S.

    Hurricanes, the strongest form of tropical cyclones over the Atlantic Ocean, are among the most deadly and destructive natural hazards. Population growth along the eastern and southern coasts of the United States places millions of people who have never experienced a major hurricane in harm's way during each hurricane season. A successful evacuation requires accurate forecasts and public education about the hazards associated with these violent storms. Bob Heets and Jack Williams' Hurricane Watch informs readers without formal training in meteorology about hurricanes and the dangers they present. Although the authors make some references to tropical cyclones in other parts of the world, the book's primary focus is on hurricanes over the Atlantic Ocean.

  16. Estimating Tropical Cyclone Surface Wind Field Parameters with the CYGNSS Constellation

    NASA Astrophysics Data System (ADS)

    Morris, M.; Ruf, C. S.

    2016-12-01

    A variety of parameters can be used to describe the wind field of a tropical cyclone (TC). Of particular interest to the TC forecasting and research community are the maximum sustained wind speed (VMAX), radius of maximum wind (RMW), 34-, 50-, and 64-kt wind radii, and integrated kinetic energy (IKE). The RMW is the distance separating the storm center and the VMAX position. IKE integrates the square of surface wind speed over the entire storm. These wind field parameters can be estimated from observations made by the Cyclone Global Navigation Satellite System (CYGNSS) constellation. The CYGNSS constellation consists of eight small satellites in a 35-degree inclination circular orbit. These satellites will be operating in standard science mode by the 2017 Atlantic TC season. CYGNSS will provide estimates of ocean surface wind speed under all precipitating conditions with high temporal and spatial sampling in the tropics. TC wind field data products can be derived from the level-2 CYGNSS wind speed product. CYGNSS-based TC wind field science data products are developed and tested in this paper. Performance of these products is validated using a mission simulator prelaunch.

  17. Model assessment using a multi-metric ranking technique

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, P. J.; Lau, Y.; Alaka, G.; Marks, F.

    2017-12-01

    Validation comparisons of multiple models presents challenges when skill levels are similar, especially in regimes dominated by the climatological mean. Assessing skill separation will require advanced validation metrics and identifying adeptness in extreme events, but maintain simplicity for management decisions. Flexibility for operations is also an asset. This work postulates a weighted tally and consolidation technique which ranks results by multiple types of metrics. Variables include absolute error, bias, acceptable absolute error percentages, outlier metrics, model efficiency, Pearson correlation, Kendall's Tau, reliability Index, multiplicative gross error, and root mean squared differences. Other metrics, such as root mean square difference and rank correlation were also explored, but removed when the information was discovered to be generally duplicative to other metrics. While equal weights are applied, weights could be altered depending for preferred metrics. Two examples are shown comparing ocean models' currents and tropical cyclone products, including experimental products. The importance of using magnitude and direction for tropical cyclone track forecasts instead of distance, along-track, and cross-track are discussed. Tropical cyclone intensity and structure prediction are also assessed. Vector correlations are not included in the ranking process, but found useful in an independent context, and will be briefly reported.

  18. Change in the tropical cyclone activity around Korea by the East Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Won; Cha, Yumi; Kim, Jeoung-Yun

    2017-12-01

    Correlation between the frequency of summer tropical cyclones (TCs) affecting Korea and the East Asian summer monsoon index (EASMI) was analyzed over the last 37 years. A clear positive correlation existed between the two variables, and this high positive correlation remained unchanged even when excluding El Niño-Southern Oscillation (ENSO) years. To investigate the causes of the positive correlation between the two variables in non-ENSO years, after the 8 years with the highest EASMI (high EASMI years) and the 8 years with the lowest EASMI (low EASMI years) were selected, and the average difference between the two phases was analyzed. In high EASMI years, in the difference between the two phases regarding 850 and 500 hPa streamline, anomalous cyclones were reinforced in the tropical and subtropical western North Pacific, while anomalous anticyclones were reinforced in mid-latitude East Asian areas. Due to these two anomalous pressure systems, anomalous southeasterlies developed near Korea, with these anomalous southeasterlies playing the role of anomalous steering flows making the TCs head toward areas near Korea. In addition, a monsoon trough strengthened more eastward, and TCs in high EASMI years occurred more in east ward over the western North Pacific.

  19. The Typhoon Disaster Analysis Based on Weibo Topic Heat

    NASA Astrophysics Data System (ADS)

    Yuan, J.; Gong, A.; Wang, J.; Li, J.

    2018-04-01

    Could social media data be utilized in hazard evaluation? Typhoon disaster as one of the costly disaster has become devastating threats for human. Moreover, social media change the communication way of human and citizens can turn to this platform to express disasterrelated information at real time. Therefore, social media improves situational awareness and widens the method of hazard information acquiring. With more and more studies investigating in relationship between social media response and degree of damage, the strong correlation has been proved. Weibo as one of the most popular social media in China can provide data with posted text, location, user identification and other additional information. Combining with 10 tropical cyclones and Weibo data in 2013, We perform a quantitative analysis between the grade of hazard situation and Weibo related topic heat in province scale. We provide a new model of Weibo topic heat to evaluate the Weibo activity in study area. Also we demonstrate the hazard assessing formula is H = 1.8845 ln(α) + 15.636 in tropical cyclone disaster. High level goodness of curve fitting also suggest that this equation can be used for rapid assessment of hazard caused by tropical cyclones.

  20. Integrating socio-economic and infrastructural dimension to reveal hazard vulnerability of coastal districts

    NASA Astrophysics Data System (ADS)

    Mazumdar, Jublee; Paul, Saikat

    2015-04-01

    Losses of life and property due to natural hazards have intensified in the past decade, motivating an alteration of disaster management away from simple post event resettlement and rehabilitation. The degree of exposure to hazard for a homogeneous population is not entirely reliant upon nearness to the source of hazard event. Socio-economic factors and infrastructural capability play an important role in determining the vulnerability of a place. This study investigates the vulnerability of eastern coastal states of India from tropical cyclones. The record of past hundred years shows that the physical vulnerability of eastern coastal states is four times as compared to the western coastal states in terms of frequency and intensity of tropical cyclones. Nevertheless, these physical factors played an imperative role in determining the vulnerability of eastern coast. However, the socio-economic and infrastructural factors influence the risk of exposure exponentially. Inclusion of these indicators would provide better insight regarding the preparedness and resilience of settlements to hazard events. In this regard, the present study is an effort to develop an Integrated Vulnerability Model (IVM) based on socio-economic and infrastructural factors for the districts of eastern coastal states of India. A method is proposed for quantifying the socio-economic and infrastructural vulnerability to tropical cyclone in these districts. The variables included in the study are extracted from Census of India, 2011 at district level administrative unit. In the analysis, a large number of variables are reduced to a smaller number of factors by using principal component analysis that represents the socio-economic and infrastructure vulnerability to tropical cyclone. Subsequently, the factor scores in socio-economic Vulnerability Index (SeVI) and Infrastructure Vulnerability Index (InVI) are standardized from 0 to 1, indicating the range from low to high vulnerability. The factor scores are then mapped for spatial analysis. Utilizing SeVI and InVI, the highly vulnerable districts are demonstrated that are likely to face significant challenges in coping with tropical cyclone and require strategies to address the various aspects of socio-economic and infrastructural vulnerability. Moreover, this model can be incorporated not only for multi-level governance but also to integrate it with the real-time weather forecasts to identify the predictive areas of vulnerability.

  1. Large-Scale Influences on the Genesis of Tropical Cyclone Karl (2010)

    NASA Astrophysics Data System (ADS)

    Griffin, K.; Bosart, L. F.

    2012-12-01

    The events leading up to the genesis of Tropical Cyclone (TC) Karl (2010) provides a unique opportunity to examine the continuing problem of understanding tropical cyclogenesis. The PRE-Depression Investigation of Cloud-systems in the Tropics (PREDICT) field campaign allowed for detailed investigation of the tropical disturbance that served as the precursor to TC Karl as it progressed westward through the Caribbean Sea. The purpose of this presentation is to examine the evolution of the pre-Karl disturbance using both common synoptic-scale analyses as well as statistically-based equatorial wave analyses, focusing on where these analyses complement and enhance each other. One of the major factors in the initial spin-up of the pre-Karl tropical disturbance is a surge of southerly and westerly winds from northern South America on 8-10 September 2010. As the surge entered the Caribbean on 9 September, it aided in the formation of a nearly closed earth-relative cyclonic circulation near the southern Leeward Islands. This circulation weakened late on 10 September and remained weak through 13 September before increased organization led to TC genesis on 14 September. This southerly wind surge can be traced to a well-defined surge of anomalously cold air and enhanced southerly winds originating in the lee of the Argentinian Andes over a week prior. While the temperature anomalies wash out prior to reaching the equator, anomalous low-level winds progress into Colombia and Venezuela, where topography aids in turning the southerly winds eastward. An investigation of the pre-Karl environment utilizing wavenumber-frequency filtering techniques also suggests that the initial spin-up of pre-Karl can be associated with the active phase of a convectively coupled Kelvin wave (CCKW). The observed formation of the nearly closed cyclonic circulation on 10 September is well timed with the passage of anomalous westerly winds along and behind the convectively active phase of a CCKW. These westerly wind anomalies have been associated with an increase in the frequency of TC genesis, commonly attributed to the generation of low-level cyclonic vorticity and a reduction in climatological shear over the western Atlantic by other researchers. Further, the total wind field associated with a CCKW promotes deep convection via the enhancement of low-level convergence and upper-level outflow ahead of the wave. The passage of the CCKW during 8-10 September occurs in concert with the aforementioned cold surge-related enhanced low-level southerly winds that turn eastward as they cross the equator, further strengthening the westerly wind anomalies associated with the CCKW. This favorable juxtaposition of low-level southerly and westerly flows results in the amplification of convective activity associated with the CCKW around the time the CCKW interacts with the pre-Karl disturbance and likely serves to enhance the resulting low-level cyclonic circulation, eventually leading to the genesis of TC Karl.

  2. Targeted observations to improve tropical cyclone track forecasts in the Atlantic and eastern Pacific basins

    NASA Astrophysics Data System (ADS)

    Aberson, Sim David

    In 1997, the National Hurricane Center and the Hurricane Research Division began conducting operational synoptic surveillance missions with the Gulfstream IV-SP jet aircraft to improve operational forecast models. During the first two years, twenty-four missions were conducted around tropical cyclones threatening the continental United States, Puerto Rico, and the Virgin Islands. Global Positioning System dropwindsondes were released from the aircraft at 150--200 km intervals along the flight track in the tropical cyclone environment to obtain wind, temperature, and humidity profiles from flight level (around 150 hPa) to the surface. The observations were processed and formatted aboard the aircraft and transmitted to the National Centers for Environmental Prediction (NCEP). There, they were ingested into the Global Data Assimilation System that subsequently provides initial and time-dependent boundary conditions for numerical models that forecast tropical cyclone track and intensity. Three dynamical models were employed in testing the targeting and sampling strategies. With the assimilation into the numerical guidance of all the observations gathered during the surveillance missions, only the 12-h Geophysical Fluid Dynamics Laboratory Hurricane Model forecast showed statistically significant improvement. Neither the forecasts from the Aviation run of the Global Spectral Model nor the shallow-water VICBAR model were improved with the assimilation of the dropwindsonde data. This mediocre result is found to be due mainly to the difficulty in operationally quantifying the storm-motion vector used to create accurate synthetic data to represent the tropical cyclone vortex in the models. A secondary limit on forecast improvements from the surveillance missions is the limited amount of data provided by the one surveillance aircraft in regular missions. The inability of some surveillance missions to surround the tropical cyclone with dropwindsonde observations is a possible third limit, though the results are inconclusive. Due to limited aircraft resources, optimal observing strategies for these missions must be developed. Since observations in areas of decaying error modes are unlikely to have large impact on subsequent forecasts, such strategies should be based on taking observations in those geographic locations corresponding to the most rapidly growing error modes in the numerical models and on known deficiencies in current data assimilation systems. Here, the most rapidly growing modes are represented by areas of large forecast spread in the NCEP bred-mode global ensemble forecasting system. The sampling strategy requires sampling the entire target region at approximately the same resolution as the North American rawinsonde network to limit the possibly spurious spread of information from dropwindsonde observations into data-sparse regions where errors are likely to grow. When only the subset of data in these fully-sampled target regions is assimilated into the numerical models, statistically significant reduction of the track forecast errors of up to 25% within the critical first two days of the forecast are seen. These model improvements are comparable with the cumulative business-as-usual track forecast model improvements expected over eighteen years.

  3. The impact of vertical shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state

    DOE PAGES

    Zhou, Wenyu

    2015-11-19

    Here, the impact of vertical wind shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state is investigated through idealized cloud-resolving simulations of the intensification of an incipient vortex. With vertical shear, tropical cyclones intensify faster with a higher Coriolis parameter, f, irrespective of the environmental thermodynamic state. The vertical shear develops a vertically tilted vortex, which undergoes a precession process with the midlevel vortices rotating cyclonically around the surface center. With a higher f, the midlevel vortices are able to rotate continuously against the vertical shear, leading to the realignment of the tilted vortex and rapidmore » intensification. With a lower f, the rotation is too slow such that the midlevel vortices are advected away from the surface center and the intensification is suppressed. The parameter, Χ b, measuring the effect from the low-entropy downdraft air on the boundary layer entropy, is found to be a good indicator of the environmental thermodynamic favorability for tropical cyclogenesis in vertical shear. Without vertical shear, tropical cyclones are found to intensify faster with a lower f by previous studies. We show this dependency on f is sensitive to the environmental thermodynamic state. The thermodynamical favorability for convection can be measured by Χ m, which estimates the time it takes for surface fluxes to moisten the midtroposphere. A smaller Χ m not only leads to a faster intensification due to a shorter period for moist preconditioning of the inner region but also neutralizes the faster intensification with a lower f due to enhanced peripheral convection.« less

  4. The impact of vertical shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Wenyu

    Here, the impact of vertical wind shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state is investigated through idealized cloud-resolving simulations of the intensification of an incipient vortex. With vertical shear, tropical cyclones intensify faster with a higher Coriolis parameter, f, irrespective of the environmental thermodynamic state. The vertical shear develops a vertically tilted vortex, which undergoes a precession process with the midlevel vortices rotating cyclonically around the surface center. With a higher f, the midlevel vortices are able to rotate continuously against the vertical shear, leading to the realignment of the tilted vortex and rapidmore » intensification. With a lower f, the rotation is too slow such that the midlevel vortices are advected away from the surface center and the intensification is suppressed. The parameter, Χ b, measuring the effect from the low-entropy downdraft air on the boundary layer entropy, is found to be a good indicator of the environmental thermodynamic favorability for tropical cyclogenesis in vertical shear. Without vertical shear, tropical cyclones are found to intensify faster with a lower f by previous studies. We show this dependency on f is sensitive to the environmental thermodynamic state. The thermodynamical favorability for convection can be measured by Χ m, which estimates the time it takes for surface fluxes to moisten the midtroposphere. A smaller Χ m not only leads to a faster intensification due to a shorter period for moist preconditioning of the inner region but also neutralizes the faster intensification with a lower f due to enhanced peripheral convection.« less

  5. Analysis of North Atlantic tropical cyclone intensify change using data mining

    NASA Astrophysics Data System (ADS)

    Tang, Jiang

    Tropical cyclones (TC), especially when their intensity reaches hurricane scale, can become a costly natural hazard. Accurate prediction of tropical cyclone intensity is very difficult because of inadequate observations on TC structures, poor understanding of physical processes, coarse model resolution and inaccurate initial conditions, etc. This study aims to tackle two factors that account for the underperformance of current TC intensity forecasts: (1) inadequate observations of TC structures, and (2) deficient understanding of the underlying physical processes governing TC intensification. To tackle the problem of inadequate observations of TC structures, efforts have been made to extract vertical and horizontal structural parameters of latent heat release from Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data products. A case study of Hurricane Isabel (2003) was conducted first to explore the feasibility of using the 3D TC structure information in predicting TC intensification. Afterwards, several structural parameters were extracted from 53 TRMM PR 2A25 observations on 25 North Atlantic TCs during the period of 1998 to 2003. A new generation of multi-correlation data mining algorithm (Apriori and its variations) was applied to find roles of the latent heat release structure in TC intensification. The results showed that the buildup of TC energy is indicated by the height of the convective tower, and the relative low latent heat release at the core area and around the outer band. Adverse conditions which prevent TC intensification include the following: (1) TC entering a higher latitude area where the underlying sea is relative cold, (2) TC moving too fast to absorb the thermal energy from the underlying sea, or (3) strong energy loss at the outer band. When adverse conditions and amicable conditions reached equilibrium status, tropical cyclone intensity would remain stable. The dataset from Statistical Hurricane Intensity Prediction Scheme (SHIPS) covering the period of 1982-2003 and the Apriori-based association rule mining algorithm were used to study the associations of underlying geophysical characteristics with the intensity change of tropical cyclones. The data have been stratified into 6 TC categories from tropical depression to category 4 hurricanes based on their strength. The result showed that the persistence of intensity change in the past and the strength of vertical shear in the environment are the most prevalent factors for all of the 6 TC categories. Hyper-edge searching had found 3 sets of parameters which showed strong intramural binds. Most of the parameters used in SHIPS model have a consistent "I-W" relation over different TC categories, indicating a consistent function of those parameters in TC development. However, the "I-W" relations of the relative momentum flux and the meridional motion change from tropical storm stage to hurricane stage, indicating a change in the role of those two parameters in TC development. Because rapid intensification (RI) is a major source of errors when predicting hurricane intensity, the association rule mining algorithm was performed on RI versus non-RI tropical cyclone cases using the same SHIPS dataset. The results had been compared with those from the traditional statistical analysis conducted by Kaplan and DeMaria (2003). The rapid intensification rule with 5 RI conditions proposed by the traditional statistical analysis was found by the association rule mining in this study as well. However, further analysis showed that the 5 RI conditions can be replaced by another association rule using fewer conditions but with a higher RI probability (RIP). This means that the rule with all 5 constraints found by Kaplan and DeMaria is not optimal, and the association rule mining technique can find a rule with fewer constraints yet fits more RI cases. The further analysis with the highest RIPs over different numbers of conditions has demonstrated that the interactions among multiple factors are responsible for the RI process of TCs. However, the influence of factors saturates at certain numbers. This study has shown successful data mining examples in studying tropical cyclone intensification using association rules. The higher RI probability with fewer conditions found by association rule technique is significant. This work demonstrated that data mining techniques can be used as an efficient exploration method to generate hypotheses, and that statistical analysis should be performed to confirm the hypotheses, as is generally expected for data mining applications.

  6. Earth Observation

    NASA Image and Video Library

    2014-06-23

    ISS040-E-017316 (23 June 2014) --- As the International Space Station was passing over the North Atlantic Ocean, just east of Newfoundland, on June 23, 2014, one of the Expedition 40 crew members on the orbital outpost recorded this panoramic view of the swirling bands of a mature, not dangerous non-tropical, cyclone. Such cyclonic activity is not unusual for this time of year in that area.

  7. Micronesian mangrove forest structure and tree responses to a severe typhoon

    Treesearch

    J. Boone Kauffman; Thomas G. Cole

    2010-01-01

    Tropical cyclones are common disturbances that have strong effects on mangrove composition and structure. Because there are numerous ecosystem services provided by mangroves, it is important to understand their adaptations and responses to these climatic events. In April 2004, Typhoon Sudal, a category 3–4 cyclone, passed over the state of Yap, Federated States of...

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarzycki, Colin M.; Thatcher, Diana R.; Jablonowski, Christiane

    This paper describes an objective technique for detecting the extratropical transition (ET) of tropical cyclones (TCs) in high-resolution gridded climate data. The algorithm is based on previous observational studies using phase spaces to define the symmetry and vertical thermal structure of cyclones. Storm tracking is automated, allowing for direct analysis of climate data. Tracker performance in the North Atlantic is assessed using 23 years of data from the variable-resolution Community Atmosphere Model (CAM) at two different resolutions (DX 55 km and 28 km), the Climate Forecast System Reanalysis (CFSR, DX 38 km), and the ERA-Interim Reanalysis (ERA-I, DX 80 km).more » The mean spatiotemporal climatologies and seasonal cycles of objectively detected ET in the observationally constrained CFSR and ERA-I are well matched to previous observational studies, demonstrating the capability of the scheme to adequately find events. High resolution CAM reproduces TC and ET statistics that are in general agreement with reanalyses. One notable model bias, however, is significantly longer time between ET onset and ET completion in CAM, particularly for TCs that lose symmetry prior to developing a cold-core structure and becoming extratropical cyclones, demonstrating the capability of this method to expose model biases in simulated cyclones beyond the tropical phase.« less

  9. Comparison between the Coastal Impacts of Cyclone Nargis and the Indian Ocean Tsunami

    NASA Astrophysics Data System (ADS)

    Fritz, H. M.; Blount, C.

    2009-12-01

    On 26 December 2004 a great earthquake with a moment magnitude of 9.3 occurred off the North tip of Sumatra, Indonesia. The Indian Ocean tsunami claimed 230,000 lives making it the deadliest in recorded history. Less than 4 years later tropical cyclone Nargis (Cat. 4) made landfall in Myanmar’s Ayeyarwady delta on 2 May 2008 causing the worst natural disaster in Myanmar’s recorded history. Official death toll estimates exceed 138,000 fatalities making it the 7th deadliest cyclone ever recorded worldwide. The Bay of Bengal counts seven tropical cyclones with death tolls in excess of 100,000 striking India and Bangladesh in the past 425 years, which highlights the difference in return periods between extreme cyclones and tsunamis. Damage estimates at over $10 billion made Nargis the most damaging cyclone ever recorded in the Indian Ocean. Although the two natural disasters are completely different in their generation mechanisms they both share massive coastal inundations as primary damage and death cause. While the damage patterns exhibit similarities the forcing differs. The primary tsunami impact is dominated by the runup of a few main waves washing rapidly ashore and inducing high lateral forces. On the contrary the tropical cyclone storm surge damage is the result of numerous storm waves continuously hitting the flooded structures on the elevated storm tide level. While coastal vegetation such as mangroves may be effective at reducing superimposed storm waves they are limited at reducing storm surge. Unfortunately, mangroves have been significantly cut for charcoal and land use as rice paddies in Myanmar due to rapid population growth and economic reasons, thereby increasing coastal vulnerability and land loss due to erosion (Figure 1). The period of a storm surge is typically an order of magnitude longer than the period of a tsunami resulting in significantly larger inundation distances along coastal plains and river deltas. The storm surge of cyclone Nargis penetrated more than 50 km inland along the Ayeyarwady delta while the maximum inundation of the Indian Ocean tsunami was 7 km at Banda Aceh. The extent of affected coast lines differs with 2 m storm surge thresholds of cyclone Nargis spanning 200 km of coastline, whereas East Africa was severely affected by the Indian Ocean tsunami at 5000 km from the epicenter. The available time window for dissemination of warnings and evacuations are significantly shorter for tsunamis than cyclones. Coastal protection in the Indian Ocean must be approached with community-based planning, education and awareness programs suited for a multi-hazard perspective. Ayeyarwady delta in Myanmar after cyclone Nargis: (a) Deforestation of mangroves for use as charcoal and land use as rice paddies; (b) Drinking water wells scoured in surf zone at Aya highlighting more than 100 m land loss due to coastal erosion.

  10. Potential Vorticity Streamers as Precursors to Tropical Cyclone Genesis in the Western Pacific

    DTIC Science & Technology

    2012-03-01

    study a developing system with an extratropical precursor (TCS-037) developing into Tropical Storm 16W (TS 16W)” (Schönenberger 2010). This subsection...tropopause maps), the TC genesis event is termed a tropical transition (TT) case. If no such extratropical feature 38 is present, the storm in... extratropical origin is deemed to play an important role in the dynamical evolution leading to tropical cyclogenesis. In contrast, non-TT storms

  11. Projected changes in medicanes in the HadGEM3 N512 high-resolution global climate model

    NASA Astrophysics Data System (ADS)

    Tous, M.; Zappa, G.; Romero, R.; Shaffrey, L.; Vidale, P. L.

    2016-09-01

    Medicanes or "Mediterranean hurricanes" represent a rare and physically unique type of Mediterranean mesoscale cyclone. There are similarities with tropical cyclones with regard to their development (based on the thermodynamical disequilibrium between the warm sea and the overlying troposphere) and their kinematic and thermodynamical properties (medicanes are intense vortices with a warm core and even a cloud-free eye). Although medicanes are smaller and their wind speeds are lower than in tropical cyclones, the severity of their winds can cause substantial damage to islands and coastal areas. Concern about how human-induced climate change will affect extreme events is increasing. This includes the future impacts on medicanes due to the warming of the Mediterranean waters and the projected changes in regional atmospheric circulation. However, most global climate models do not have high enough spatial resolution to adequately represent small features such as medicanes. In this study, a cyclone tracking algorithm is applied to high resolution global climate model data with a horizontal grid resolution of approximately 25 km over the Mediterranean region. After a validation of the climatology of general Mediterranean mesoscale cyclones, changes in medicanes are determined using climate model experiments with present and future forcing. The magnitude of the changes in the winds, frequency and location of medicanes is assessed. While no significant changes in the total number of Mediterranean mesoscale cyclones are found, medicanes tend to decrease in number but increase in intensity. The model simulation suggests that medicanes tend to form more frequently in the Gulf of Lion-Genoa and South of Sicily.

  12. Impact of tropical cyclones on aerosol properties over urban region of Hyderabad, India

    NASA Astrophysics Data System (ADS)

    Kharol, Shailesh Kumar; Badarinath, K. V. S.; Rani Sharma, Anu; Krishna Prasad, V.; Kaskaoutis, Dimitrios G.; Nastos, Panagiotis T.; Kambezidis, Harry D.

    2010-05-01

    Fierce tropical cyclones occur in India during the pre-monsoon (spring), early monsoon (early summer), or post-monsoon (fall) periods. Originating in both the Bay of Bengal and the Arabian Sea, tropical cyclones often attain velocities of more than 100 kmh-1 and are notorious for causing intense rain and tidal waves as they cross the Indian coast. Cyclones are associated with heavy rainfall, gusty winds, and sometimes, storm surges. In the present study, we have analyzed the changes in aerosol properties at Hyderabad, India, associated with very severe cyclonic storm "Mala" occurred during the last week of April, 2006 over the Central-Eastern part of the Bay of Bengal centered near Lat. 16.0 N and Long. 93.0 E, at 18:00 UTC on 28th April 2006, about 500 Km North of Portblair. This tropical cyclone, packing winds of 240 km/h, slammed into Myanmar on 28th April and 29th April destroying hundreds of houses, two beach resorts and at least five factories as per the reports of the Kyemon daily paper and the International Federation of the Red Cross. Cyclone "Mala" is described as the most severe cyclone in the Bay of Bengal after the 1999 Orissa Super Cyclone. The measurements for the case study were carried out in the premises of the National Remote Sensing Centre (NRSC) campus at Balanagar (17o.28' N and 78o.26' E) located within the Hyderabad urban center during cyclone period. Synchronous and continuous observations of columnar Aerosol Optical Depth (AOD) were carried out using a handheld multi-channel sun-photometer (Microtops-II, Solar Light Co., USA) at six wavelength bands centered around 380, 440, 500, 675, 870 and 1020 nm. Continuous measurements of particulate matter (PM) grain-size distribution were performed with the GRIMM aerosol spectrometer, model 1-108. The cyclone "Mala" over the Bay of Bengal occurred during 26-29 April, 2006, struck the coast of Myanmar with winds of 115 mph (185 kmh-1), causing severe damage and loss of human life on 29 April, 2006. Initially the depression was moving northwest and on 25 April it changed its direction and accelerated towards north and after northeast resulting in remarkable wind direction changes. As the cyclone moved towards the Myanmar coast on 29 and 30 April, the low-level convergence turned to northwesterly, pulling air from the northern Indian landscapes. This caused an increase in wind speed over the entire Bay of Bengal. The intensity of the cyclonic activity affected continental India on 28 and 29 April. On that day the wind field was dominated by a northwesterly flow from Indian continent towards the Bay of Bengal, which lifted a lot of mineral dust particles from the Indian arid landscapes. This is further confirmed from the analysis of Terra-MODIS image on 29 April, where the dust plumes over the Bay of Bengal can be clearly detected. The variation of the daily mean particulate-matter load measured by the GRIMM instrument showed nearly a two-fold increase in particulate-mass concentrations during the intense cyclone period (28th and 29th April). This is attributed to the increase in surface winds caused by the cyclonic activity, strongly associated with lifting of coarse-mode aerosols from the landscapes neighboring Hyderabad. Also, from the large standard deviations it is concluded that the diurnal pattern of the PMx concentrations are highly variable during the cyclonic activity, probably caused by the frequent and sharp changes in wind speed and direction accompanying it. The day-to-day variation of AOD500 and Ångström exponent α were also analysed. Contrary to the PMx concentrations, the AOD500 values showed remarkable decrease during the cyclone period. This decrease can be as high as 44% between the pre and during cyclone days (25th and 28th April), respectively and 41% between 28 and 30 April. These large variations in aerosol load are mainly attributed to the changes in wind speed and direction as well as the air mass trajectories, bringing marine air masses over the region on 28th April. Despite the uplifting of soil particles near the surface, the higher winds can act as a ventilation tool for the whole atmospheric column, thus resulting in lower AODs. Results are discussed in the paper.

  13. The structure and rainfall features of Tropical Cyclone Rammasun (2002)

    NASA Astrophysics Data System (ADS)

    Ma, Leiming; Duan, Yihong; Zhu, Yongti

    2004-12-01

    Tropical Rainfall Measuring Mission (TRMM) data [TRMM Microwave Imager/Precipitation Radar/Visible and Infrared Scanner (TMI/PR/VIRS)] and a numerical model are used to investigate the structure and rainfall features of Tropical Cyclone (TC) Rammasun (2002). Based on the analysis of TRMM data, which are diagnosed together with NCEP/AVN [Aviation (global model)] analysis data, some typical features of TC structure and rainfall are preliminary discovered. Since the limitations of TRMM data are considered for their time resolution and coverage, the world observed by TRMM at several moments cannot be taken as the representation of the whole period of the TC lifecycle, therefore the picture should be reproduced by a numerical model of high quality. To better understand the structure and rainfall features of TC Rammasun, a numerical simulation is carried out with mesoscale model MM5 in which the validations have been made with the data of TRMM and NCEP/AVN analysis.

  14. Dominant Role of Atlantic Multidecadal Oscillation in the Recent Decadal Changes in Western North Pacific Tropical Cyclone Activity

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Vecchi, Gabriel A.; Murakami, Hiroyuki; Villarini, Gabriele; Delworth, Thomas L.; Yang, Xiaosong; Jia, Liwei

    2018-01-01

    Over the 1997-2014 period, the mean frequency of western North Pacific (WNP) tropical cyclones (TCs) was markedly lower ( 18%) than the period 1980-1996. Here we show that these changes were driven by an intensification of the vertical wind shear in the southeastern/eastern WNP tied to the changes in the Walker circulation, which arose primarily in response to the enhanced sea surface temperature (SST) warming in the North Atlantic, while the SST anomalies associated with the negative phase of the Pacific Decadal Oscillation in the tropical Pacific and the anthropogenic forcing play only secondary roles. These results are based on observations and experiments using the Geophysical Fluid Dynamics Laboratory Forecast-oriented Low-ocean Resolution Coupled Climate Model coupled climate model. The present study suggests a crucial role of the North Atlantic SST in causing decadal changes to WNP TC frequency.

  15. Impact of tropical cyclones on the intensity and phase propagation of fall Wyrtki jets

    NASA Astrophysics Data System (ADS)

    Sreenivas, P.; Chowdary, J. S.; Gnanaseelan, C.

    2012-11-01

    Observations and model simulations are used to study the impact of tropical cyclones (TC) on the fall Wyrtki jets (WJ). These strong narrow equatorial currents peak during November and play a vital role in the energy and mass transport in the tropical Indian Ocean (TIO). Maximum number of TCs is observed over TIO during November with longer than normal life span (8-15 days). These TCs enhance equatorial westerly winds (surface) and amplify monthly mean WJs (both at surface and subsurface) by 0.4 ms-1 (anomalies exceed 0.7 ms-1 during TC), which is about half of the climatological amplitude. Intensified WJs increase the heat content of eastern TIO and modulate air-sea interaction. It is also shown that movement of TCs is mainly responsible for the westward phase propagation of WJs, a previously unexplored mechanism. These features are evident in ECCO2 simulations as well.

  16. Coral-gravel storm ridges: examples from the tropical Pacific and Caribbean

    USGS Publications Warehouse

    Richmond, Bruce M.; Morton, Robert A.

    2007-01-01

    Extreme storms in reef environments have long been recognized as a mechanism for depositing ridges of reef-derived coarse clastic sediment. This study revisits the storm ridges formed by Tropical Cyclone Bebe on Funafuti, Tuvalu and Tropical Cyclone Ofa on Upolu, Western Samoa in the South Pacific, and Hurricane Lenny on Bonaire, Netherlands Antilles in the Caribbean. Ridge characteristics produced by these storms include: heights of 1–4 m, widths of 8–50 m, and lengths up to 18 km. The ridges tend to be higher and steeper on their landward margins than on their seaward margins and are composed mostly of re-worked coral rubble derived from reef front settings with smaller amounts of fresh broken coral (5–30%). Characteristics of these modern gravel storm ridges can be used to help identify ancient storm deposits and to differentiate between other coarse-grained deposits such as those created by tsunamis.

  17. Ensemble Data Assimilation and Predictability of Tropical Cyclones

    DTIC Science & Technology

    2013-09-30

    Poterjoy and Christopher Melhauser) have been dedicated to the project tasks at the Pennsylvania State University under the guidance of both PI’s...8. Rozoff, C. M., D. S. Nolan , J. P. Kossin, F. Zhang, and J. Fang, 2012: The roles of an expanding wind field and inertial stability in tropical

  18. Frequently Asked Questions - Naval Oceanography Portal

    Science.gov Websites

    high confidence. Circular TCFA areas are issued when a developing cyclone's speed and direction of ;, "Medium", and "High" mean on the ABIO and ABPW messages? What is a "Tropical rectangle? When does JTWC initiate warnings on tropical disturbances? How often are warnings updated by JTWC

  19. Improvement of High-Resolution Tropical Cyclone Structure and Intensity Forecasts using COAMPS-TC

    DTIC Science & Technology

    2013-09-30

    scientific community including the recent T- PARC /TCS08, ITOP, and HS3 field campaigns to build upon the existing modeling capabilities. We will...heating and cooling rates in developing and non-developing tropical disturbances during tcs-08: radar -equivalent retrievals from mesoscale numerical

  20. Rayleigh convective instability in a cloud medium

    NASA Astrophysics Data System (ADS)

    Shmerlin, B. Ya.; Shmerlin, M. B.

    2017-09-01

    The problem of convective instability of an atmospheric layer containing a horizontally finite region filled with a cloud medium is considered. Solutions exponentially growing with time, i.e., solitary cloud rolls or spatially localized systems of cloud rolls, have been constructed. In the case of axial symmetry, their analogs are convective vortices with both ascending and descending motions on the axis and cloud clusters with ring-shaped convective structures. Depending on the anisotropy of turbulent exchange, the scale of vortices changes from the tornado scale to the scale of tropical cyclones. The solutions with descending motions on the axis can correspond to the formation of a tornado funnel or a hurricane eye in tropical cyclones.

  1. Leveraging LSTM for rapid intensifications prediction of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Li, Y.; Yang, R.; Yang, C.; Yu, M.; Hu, F.; Jiang, Y.

    2017-10-01

    Tropical cyclones (TCs) usually cause severe damages and destructions. TC intensity forecasting helps people prepare for the extreme weather and could save lives and properties. Rapid Intensifications (RI) of TCs are the major error sources of TC intensity forecasting. A large number of factors, such as sea surface temperature and wind shear, affect the RI processes of TCs. Quite a lot of work have been done to identify the combination of conditions most favorable to RI. In this study, deep learning method is utilized to combine conditions for RI prediction of TCs. Experiments show that the long short-term memory (LSTM) network provides the ability to leverage past conditions to predict TC rapid intensifications.

  2. Interannual and cyclone-driven variability in phytoplankton communities of a tropical coastal lagoon.

    PubMed

    Srichandan, Suchismita; Kim, Ji Yoon; Kumar, Abhishek; Mishra, Deepak R; Bhadury, Punyasloke; Muduli, Pradipta R; Pattnaik, Ajit K; Rastogi, Gurdeep

    2015-12-15

    One of the main challenges in phytoplankton ecology is to understand their variability at different spatiotemporal scales. We investigated the interannual and cyclone-derived variability in phytoplankton communities of Chilika, the largest tropical coastal lagoon in Asia and the underlying mechanisms in relation to environmental forcing. Between July 2012 and June 2013, Cyanophyta were most prolific in freshwater northern region of the lagoon. A category-5 very severe cyclonic storm (VSCS) Phailin struck the lagoon on 12th October 2013 and introduced additional variability into the hydrology and phytoplankton communities. Freshwater Cyanophyta further expanded their territory and occupied the northern as well as central region of the lagoon. Satellite remote sensing imagery revealed that the phytoplankton biomass did not change much due to high turbidity prevailing in the lagoon after Phailin. Modeling analysis of species-salinity relationship identified specific responses of phytoplankton taxa to the different salinity regime of lagoon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. MISR CMVs and Multiangular Views of Tropical Cyclone Inner-Core Dynamics

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.; Diner, David J.; Garay, Michael J; Jovanovic, Veljko M.; Lee, Jae N.; Moroney, Catherine M.; Mueller, Kevin J.; Nelson, David L.

    2010-01-01

    Multi-camera stereo imaging of cloud features from the MISR (Multiangle Imaging SpectroRadiometer) instrument on NASA's Terra satellite provides accurate and precise measurements of cloud top heights (CTH) and cloud motion vector (CMV) winds. MISR observes each cloudy scene from nine viewing angles (Nadir, +/-26(sup o), +/-46(sup o), +/-60(sup o), +/-70(sup o)) with approximatel 275-m pixel resolution. This paper provides an update on MISR CMV and CTH algorithm improvements, and explores a high-resolution retrieval of tangential winds inside the eyewall of tropical cyclones (TC). The MISR CMV and CTH retrievals from the updated algorithm are significantly improved in terms of spatial coverage and systematic errors. A new product, the 1.1-km cross-track wind, provides high accuracy and precision in measuring convective outflows. Preliminary results obtained from the 1.1-km tangential wind retrieval inside the TC eyewall show that the inner-core rotation is often faster near the eyewall, and this faster rotation appears to be related linearly to cyclone intensity.

  4. Tropical cyclone effects on insect colonization and abundance in Puerto Rico

    Treesearch

    J. A. Torres

    1988-01-01

    The knowledge of the ways in which insects disperse is important in decisions concerning their control. The dispersal of insects aided by the wind cannot be regarded as accidental and occasional but as an adaptive feature of the phylum (Johnson and Bowden 1973). Due to its location, Puerto Rico is exposed to cyclone winds that can affect the colonization and abundance...

  5. Tropical-Like Cyclones in the Mediterranean: The case of Medicane "Qendresa" in 2014

    NASA Astrophysics Data System (ADS)

    Patlakas, P.; Nenes, A.; Nikolopoulos, E. I.; Kallos, G. B.

    2016-12-01

    Intense storm characteristics and structure that resemble hurricanes can periodically form over the Mediterranean Sea. These so-called Medicanes form in a similar fashion to tropical cyclones, despite the different climatic characteristics between the Mediterranean Sea and the tropical oceans. Unlike their tropical counterparts, Medicanes are poorly understood and studied. The recurrence interval of such extreme conditions is lower than tropical cyclones, but they can cause significant damages to property and pose threat to human lives. The frequency and intensity of Medicanes, in response to climate change, is also completely unknown. One recent event is the case of Medicane "Qendresa" that took place during 7-8 November 2014. It was generated in the maritime area between Italy and Tunisia and dissipated within about 48 hours. Winds and wind gusts reached 111 km/h and 154 km/h respectively, while the lowest recorded pressure reached the value of 978.6 hPa. At the same time, a 24h accumulated precipitation of more than 100 mm was recorded in the SE part of Sicily during the second day of the event. The contact of the system with Sicily and the exhibited stationarity caused the large amounts of precipitating water over the island. The quick dissipation can be attributed to the relatively quick landfall that severely reduced latent heat supply from the warm sea surface. The formation of a cyclone was forecasted by the most of operational models but its characteristics deviated significantly. In this study we utilize a state-of-the-art atmospheric model, the RAMS-ICLAMS Modeling System, to simulate the full lifecycle of the storm and study in detail the underlying mechanisms associated with the initiation, intensification and dissipation of the system. A series of sensitivity simulations define the key drivers behind the formation and development of Medicanes. The simulations revealed the high sensitivity of these systems to different dynamical and microphysical characteristics. Nevertheless, the simulations system employed here displayed a remarkable level of agreement in terms of structure and storm characteristics when compared to available in-situ measurements and satellite data. We conclude with important conclusions on the main factors that contribute to model fidelity and potential future forecasts.

  6. The influence of an atmospheric Two-Way coupled model system on the predictability of extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Schuster, Mareike; Thürkow, Markus; Weiher, Stefan; Kirchner, Ingo; Ulbrich, Uwe; Will, Andreas

    2016-04-01

    A general bias of global atmosphere ocean models, and also of the MPI-ESM, is an under-representation of the high latitude cyclone activity and an overestimation of the mid latitude cyclone activity in the North Atlantic, thus representing the extra-tropical storm track too zonal. We will show, that this effect can be antagonized by applying an atmospheric Two-Way Coupling (TWC). In this study we present a newly developed Two-Way Coupled model system, which is based on the MPI-ESM, and show that it is able to capture the mean storm track location more accurate. It also influences the sub-decadal deterministic predictability of extra-tropical cyclones and shows significantly enhanced skill compared to the "uncoupled" MPI-ESM standalone system. This study evaluates a set of hindcast experiments performed with said Two-Way Coupled model system. The regional model COSMO CLM is Two-Way Coupled to the atmosphere of the global Max-Plack-Institute Earth System Model (MPI-ESM) and therefore integrates and exchanges the state of the atmosphere every 10 minutes (MPI-TWC-ESM). In the coupled source region (North Atlantic), mesoscale processes which are relevant for the formation and early-stage development of cyclones are expected to be better represented, and therefore influence the large scale dynamics of the target region (Europe). The database covers 102 "uncoupled" years and 102 Two-Way Coupled years of the recent climate (1960-2010). Results are validated against the ERA-Interim reanalysis. Besides the climatological point of view, the design of this single model ensemble allows for an analysis of the predictability of the first and second leadyears of the hindcasts. As a first step to understand the improved predictability of cyclones, we will show a detailed analysis of climatologies for specific cyclone categories, sorted by season and region. Especially for cyclones affecting Europe, the TWC is capable to counteract the AOGCM's biases in the North Atlantic. Also, cyclones which are generated in the northern North Atlantic and the Labrador Sea are to an extraordinary extent underestimated in the "uncoupled" MPI-ESM - for the latter region the TWC can balance this shortcoming. In the Northern Hemisphere annual mean statistics the TWC does not change the distribution of the strength of cyclones, but it changes the distribution of the lifetime of cyclones.

  7. The Impacts of Aerosols on Hurricane Katrina under the Effect of Air-Sea Coupling

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Hsieh, J. S.; Wang, Y.; Zhang, R.

    2017-12-01

    Aerosols can affect the development of tropical cyclones, which often involve intense interactions with the ocean. Therefore, the impacts of aerosols on the tropical cyclones are reckoned closely associated with the effect of ocean feedback, a priori, which has often been omitted by most of the previous modeling studies about the aerosol effects on tropical cyclones. We investigate the synergetic effects of aerosols and ocean feedback on the development of hurricane Katrina using a convection-resolving coupled regional model (WRF-ROMS). In comparison with observations, our coupled simulation under pristine aerosol condition well captures the pressure drop near the center of Katrina with maximum mean sea level pressure in good agreement with the observation albeit the simulated maximal wind speed is relatively weaker than the observation. Preliminary results suggest that the ocean feedback tends to work with (against) aerosols to suppress (enhance) the hurricane's center pressure drop/maximum wind intensity at the developing (decaying) stage, suggesting a positive (negative) feedback to the aerosols' suppression effect on hurricanes. Moreover, the size of the simulated hurricane considerably expands due to the elevated polluted aerosols while the expansion is weakened, along with the increased precipitation, by the effect of air-sea interactions during the developing stage, which demonstrates intricate nonlinear interactions between aerosols, the hurricane and the ocean.

  8. An inter-decadal increase in summer sea level pressure over the Mongolian region around the early 1990s

    NASA Astrophysics Data System (ADS)

    Zhang, Haiyan; Wen, Zhiping; Wu, Renguang; Li, Xiuzhen; Chen, Ruidan

    2018-05-01

    The East Asian summer monsoon is affected by processes in the mid-high latitudes in addition to various tropical and subtropical systems. The present study investigates the summer sea level pressure (SLP) variability over northern East Asia (NEA) and emphasizes the closed active center over the Mongolian region. It is found that the seasonal mean Mongolian SLP (MSLP) anomaly is closely connected with the variability of summertime regional synoptic extra-tropical cyclones on longer time scales. A significant inter-decadal increase in the MSLP around the early 1990s has been detected, which is accompanied by a weakening in the activity of regional extra-tropical cyclones. Recent warming over NEA may have a contribution to the inter-decadal change, which features evidently meridional inhomogeneity around 45°N. The inhomogeneous air temperature anomaly distribution results in decreased vertical wind shear, reduced atmospheric baroclinicity over the Mongolian region, and thus inactive regional cyclones and increased MSLP in the latter decade. The associated temperature anomaly distribution may be partly attributed to regional inhomogeneity in cloud and radiation anomalies, and it is further maintained by two positive feedback mechanisms associated with atmospheric internal processes: one via adiabatic heating and the other via horizontal temperature advection.

  9. Defining, Describing, and Categorizing Public Health Infrastructure Priorities for Tropical Cyclone, Flood, Storm, Tornado, and Tsunami-Related Disasters.

    PubMed

    Ryan, Benjamin J; Franklin, Richard C; Burkle, Frederick M; Watt, Kerrianne; Aitken, Peter; Smith, Erin C; Leggat, Peter

    2016-08-01

    The study aim was to undertake a qualitative research literature review to analyze available databases to define, describe, and categorize public health infrastructure (PHI) priorities for tropical cyclone, flood, storm, tornado, and tsunami-related disasters. Five electronic publication databases were searched to define, describe, or categorize PHI and discuss tropical cyclone, flood, storm, tornado, and tsunami-related disasters and their impact on PHI. The data were analyzed through aggregation of individual articles to create an overall data description. The data were grouped into PHI themes, which were then prioritized on the basis of degree of interdependency. Sixty-seven relevant articles were identified. PHI was categorized into 13 themes with a total of 158 descriptors. The highest priority PHI identified was workforce. This was followed by water, sanitation, equipment, communication, physical structure, power, governance, prevention, supplies, service, transport, and surveillance. This review identified workforce as the most important of the 13 thematic areas related to PHI and disasters. If its functionality fails, workforce has the greatest impact on the performance of health services. If addressed post-disaster, the remaining forms of PHI will then be progressively addressed. These findings are a step toward providing an evidence base to inform PHI priorities in the disaster setting. (Disaster Med Public Health Preparedness. 2016;10:598-610).

  10. An ensemble Kalman filter with a high-resolution atmosphere-ocean coupled model for tropical cyclone forecasts

    NASA Astrophysics Data System (ADS)

    Kunii, M.; Ito, K.; Wada, A.

    2015-12-01

    An ensemble Kalman filter (EnKF) using a regional mesoscale atmosphere-ocean coupled model was developed to represent the uncertainties of sea surface temperature (SST) in ensemble data assimilation strategies. The system was evaluated through data assimilation cycle experiments over a one-month period from July to August 2014, during which a tropical cyclone as well as severe rainfall events occurred. The results showed that the data assimilation cycle with the coupled model could reproduce SST distributions realistically even without updating SST and salinity during the data assimilation cycle. Therefore, atmospheric variables and radiation applied as a forcing to ocean models can control oceanic variables to some extent in the current data assimilation configuration. However, investigations of the forecast error covariance estimated in EnKF revealed that the correlation between atmospheric and oceanic variables could possibly lead to less flow-dependent error covariance for atmospheric variables owing to the difference in the time scales between atmospheric and oceanic variables. A verification of the analyses showed positive impacts of applying the ocean model to EnKF on precipitation forecasts. The use of EnKF with the coupled model system captured intensity changes of a tropical cyclone better than it did with an uncoupled atmosphere model, even though the impact on the track forecast was negligibly small.

  11. Modification of the ionosphere near the terminator due to the passage of a strong tropical cyclone through the large Island

    NASA Astrophysics Data System (ADS)

    Belyaev, G.; Boychev, B.; Kostin, V.; Trushkina, E.; Ovcharenko, O.

    2015-03-01

    Earlier by the authors according to the Intercosmos Bulgaria-1300 and Cosmos-1809 satellite data it's been shown that the ionosphere is modified above the tropical cyclones (TC). Local perturbations of the plasma density, the appearance of the electric fields and the development of ELF-VLF zone of turbulence were observed. These effects were due to the injection of up stream of neutral particles from TC. In this paper the data of the Cosmos-1809 satellite when tropical cyclone Harry (1989) passed through the island of New Caledonia was examined. Influence of evening and morning terminators on the structure of the ionosphere from TC was discussed. It is detected: 1 - the appearance of latitude belt (up to 5000km) of structured perturbations in the night ionosphere; 2 - simulation in the illuminated ionosphere of periodic oscillation of the electric field with a scale ~ 400 km, passing beyond plasma pause. Model for the formation above TC in the lower ionosphere vertical submerged jet that injects neutral particles of different varieties into the upper ionosphere on ballistic trajectories was proposed. Changing of the ionization of neutral particles near the terminator and the deviation of the jet under the interaction of the TC with the island are confirmed in the proposed model.

  12. A High Resolution Tropical Cyclone Power Outage Forecasting Model for the Continental United States

    NASA Astrophysics Data System (ADS)

    Pino, J. V.; Quiring, S. M.; Guikema, S.; Shashaani, S.; Linger, S.; Backhaus, S.

    2017-12-01

    Tropical cyclones cause extensive damage to the power infrastructure system throughout the United States. This damage can leave millions without power for extended periods of time, as most recently seen with Hurricane Matthew (2016). Accurate and timely prediction of power outages are essential for utility companies, emergency management agencies, and governmental organizations. Here we present a high-resolution (250 m x 250 m) hurricane power outage model for the United States. The model uses only publicly-available data to make predictions. It uses forecasts of storm variables such as maximum 3-second wind gust, duration of strong winds > 20 m s-2, soil moisture, and precipitation. It also incorporates static environmental variables such as elevation characteristics, land cover type, population density, tree species data, and root zone depth. A web tool was established for use by the Department of Energy (DOE) so that the model can be used for real-time outage forecasting or for synthetic tropical cyclones as an exercise in emergency management. This web tool provides DOE decision-makers with high impact analytic results and products that can be disseminated to federal, local, and state agencies. The results then aid utility companies in their pre- and post-storm activities, thus decreasing restoration times and lowering costs.

  13. Decadal Variation of the Number of El Nino Onsets and El Nino-Related Months and Estimating the Likelihood of El Nino Onset in a Warming World

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2009-01-01

    Examination of the decadal variation of the number of El Nino onsets and El Nino-related months for the interval 1950-2008 clearly shows that the variation is better explained as one expressing normal fluctuation and not one related to global warming. Comparison of the recurrence periods for El Nino onsets against event durations for moderate/strong El Nino events results in a statistically important relationship that allows for the possible prediction of the onset for the next anticipated El Nino event. Because the last known El Nino was a moderate event of short duration (6 months), having onset in August 2006, unless it is a statistical outlier, one expects the next onset of El Nino probably in the latter half of 2009, with peak following in November 2009-January 2010. If true, then initial early extended forecasts of frequencies of tropical cyclones for the 2009 North Atlantic basin hurricane season probably should be revised slightly downward from near average-to-above average numbers to near average-to-below average numbers of tropical cyclones in 2009, especially as compared to averages since 1995, the beginning of the current high-activity interval for tropical cyclone activity.

  14. Modeling High-Impact Weather and Climate: Lessons From a Tropical Cyclone Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Done, James; Holland, Greg; Bruyere, Cindy

    2013-10-19

    Although the societal impact of a weather event increases with the rarity of the event, our current ability to assess extreme events and their impacts is limited by not only rarity but also by current model fidelity and a lack of understanding of the underlying physical processes. This challenge is driving fresh approaches to assess high-impact weather and climate. Recent lessons learned in modeling high-impact weather and climate are presented using the case of tropical cyclones as an illustrative example. Through examples using the Nested Regional Climate Model to dynamically downscale large-scale climate data the need to treat bias inmore » the driving data is illustrated. Domain size, location, and resolution are also shown to be critical and should be guided by the need to: include relevant regional climate physical processes; resolve key impact parameters; and to accurately simulate the response to changes in external forcing. The notion of sufficient model resolution is introduced together with the added value in combining dynamical and statistical assessments to fill out the parent distribution of high-impact parameters. Finally, through the example of a tropical cyclone damage index, direct impact assessments are resented as powerful tools that distill complex datasets into concise statements on likely impact, and as highly effective communication devices.« less

  15. ESTIMATING THE BENEFIT OF TRMM TROPICAL CYCLONE DATA IN SAVING LIVES

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.

    2005-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is a joint NASA/JAXA research mission launched in late 1997 to improve our knowledge of tropical rainfall processes and climatology (Kummerow et ai., 2000; Adler et ai., 2003). In addition to being a highly successful research mission, its data are available in real time and operational weather agencies in the U.S. and internationally are using TRMM data and images to monitor and forecast hazardous weather (tropical cyclones, floods, etc.). For example, in 2004 TRMM data were used 669 times for determining tropical cyclone location fixes (National Research Council, 2004). TRMM flies at a relatively low altitude, 400 km, and requires orbit adjustment maneuvers to maintain altitude against the small drag of the atmosphere. There is enough fuel used for these maneuvers remaining on TRMM for the satellite to continue flying until 2011-12. However, most of the remaining fuel may be used to perform a controlled re-entry of the satellite into the Pacific Ocean. The fuel threshold for this operation will be reached in the summer of 2005, although the maneuver would actually occur in late 2006 or 2007. The full science mission would end in 2005 under the controlled re-entry option. This re-entry option is related to the estimated probability of injury (1/5,000) that might occur during an uncontrolled re-entry of the satellite. If the estimated probability of injury exceeds 1/10,000 a satellite is a candidate for a possible controlled re-entry. In the TRMM case the NASA Safety Office examined the related issues and concluded that, although TRMM exceeded the formal threshold, the use of TRMM data in the monitoring and forecasting of hazardous weather gave a public safety benefit that compensated for TRMM slightly exceeding the orbital debris threshold (Martin, 2002). This conclusion was based in part on results of an independent panel during a workshop on benefits of TRMM data in concluded that the benefit of TRMM data in saving lives through its use in operational forecasting could not be quantified. The objective of this paper is to describe a possible technique to estimate the number of lives saved per year and apply it to the TRMM case and the use of its data in monitoring and forecasting tropical cyclones.

  16. Modeling extreme sea levels due to tropical and extra-tropical cyclones at the global-scale

    NASA Astrophysics Data System (ADS)

    Muis, S.; Lin, N.; Verlaan, M.; Winsemius, H.; Ward, P.; Aerts, J.

    2017-12-01

    Extreme sea levels, a combination of storm surges and astronomical tides, can cause catastrophic floods. Due to their intense wind speeds and low pressure, tropical cyclones (TCs) typically cause higher storm surges than extra-tropical cyclones (ETCs), but ETCs may still contribute significantly to the overall flood risk. In this contribution, we show a novel approach to model extreme sea levels due to both tropical and extra-tropical cyclones at the global-scale. Using a global hydrodynamic model we have developed the Global Tide and Surge Reanalysis (GTSR) dataset (Muis et al., 2016), which provides daily maximum timeseries of storm tide from 1979 to 2014. GTSR is based on wind and pressure fields from the ERA-Interim climate reanalysis (Dee at al., 2011). A severe limitation of the GTSR dataset is the underrepresentation of TCs. This is due to the relatively coarse grid resolution of ERA-Interim, which means that the strong intensities of TCs are not fully included. Furthermore, the length of ERA-Interim is too short to estimate the probabilities of extreme TCs in a reliable way. We will discuss potential ways to address this limitation, and demonstrate how to improve the global GTSR framework. We will apply the improved framework to the east coast of the United States. First, we improve our meteorological forcing by applying a parametric hurricane model (Holland 1980), and we improve the tide and surge reanalysis dataset (Muis et al., 2016) by explicitly modeling the historical TCs in the Extended Best Track dataset (Demuth et al., 2006). Second, we improve our sampling by statistically extending the observed TC record to many thousands of years (Emanuel et al., 2006). The improved framework allows for the mapping of probabilities of extreme sea levels, including extremes TC events, for the east coast of the United States. ReferencesDee et al (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553-97. Emanuel et al (2006). A Statistical Deterministic Approach to Hurricane Risk Assessment/ Bull. Am. Meteorol. Soc. 87, 299-314. Holland (1980). An analytic model of the wind and pressure profiles in hurricanes. Mon. Weather Rev. 108, 1212-1218. Muis et al (2016). A global reanalysis of storm surge and extreme sea levels. Nat. Commun. 7, 1-11

  17. Disaster risk reduction and sustainable development for small island developing states

    PubMed Central

    Shultz, James M.; Cohen, Madeline A.; Hermosilla, Sabrina; Espinel, Zelde; McLean, Andrew

    2016-01-01

    ABSTRACT In contrast to continental nations, the world's 52 small island developing states (SIDS) are recognized as a collective of countries that experience disproportionate challenges for sustainable development related to their geography, small size, and physical isolation. These same states also face elevated risks for disaster incidence and consequences particularly in the realms of climate change, sea level rise, natural disasters (tropical cyclones, earthquakes, tsunamis, volcanoes), and marine hazardous materials spills. Cyclone Winston's direct impact on Fiji in 2016 and Cyclone Pam's landfall over Vanuatu in 2015 provide case examples illustrating the special vulnerabilities of the SIDS. PMID:28229013

  18. Disaster risk reduction and sustainable development for small island developing states.

    PubMed

    Shultz, James M; Cohen, Madeline A; Hermosilla, Sabrina; Espinel, Zelde; McLean, Andrew

    2016-01-01

    In contrast to continental nations, the world's 52 small island developing states (SIDS) are recognized as a collective of countries that experience disproportionate challenges for sustainable development related to their geography, small size, and physical isolation. These same states also face elevated risks for disaster incidence and consequences particularly in the realms of climate change, sea level rise, natural disasters (tropical cyclones, earthquakes, tsunamis, volcanoes), and marine hazardous materials spills. Cyclone Winston's direct impact on Fiji in 2016 and Cyclone Pam's landfall over Vanuatu in 2015 provide case examples illustrating the special vulnerabilities of the SIDS.

  19. Tropical Cyclone Glenda in the Indian Ocean

    NASA Image and Video Library

    2015-03-03

    Tropical Cyclone Glenda took a five day tour of the Southern Indian Ocean in late February, 2015. The storm formed from a low pressure system, System 90S on February 24, when maximum sustained winds reached 40 mph (64 km/h). The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image of Tropical Storm Glenda on February 25 at 08:55 UTC (3:55 a.m. EST). At that time bands of thunderstorms wrapped into the low-level center of circulation. An eye was beginning to form. At 0900 UTC (4 a.m. EST) on February 25, Glenda's maximum sustained winds were near 63.2 mph (102 km/h). It was centered near 17.6 south latitude and 69.1 east longitude, about 760 miles (1,224 km) south-southwest of Diego Garcia. Glenda was moving to the west-southwest at 8 mph (13 km/h). At that time, the Joint Typhoon Warning Center expect Glenda to strengthen to near 109 mph (176 km/h) before beginning to weaken. However, strong wind shear began to affect the storm. By the afternoon of February 26 Tropical Cyclone Glenda’s winds had dropped to about 58 mph (93 km/h), and by February 28 the storm had transitioned to an extra-tropical storm. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Characteristics of Deep Tropical and Subtropical Convection from Nadir-Viewing High-Altitude Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Heymsfield, Andrew J.; Li, Lihua; Guimond, Stephen

    2010-01-01

    This paper presents observations of deep convection characteristics in the tropics and subtropics that have been classified into four categories: tropical cyclone, oceanic, land, and sea breeze. Vertical velocities in the convection were derived from Doppler radar measurements collected during several NASA field experiments from the nadir-viewing high-altitude ER-2 Doppler radar (EDOP). Emphasis is placed on the vertical structure of the convection from the surface to cloud top (sometimes reaching 18-km altitude). This unique look at convection is not possible from other approaches such as ground-based or lower-altitude airborne scanning radars. The vertical motions from the radar measurements are derived using new relationships between radar reflectivity and hydrometeor fall speed. Various convective properties, such as the peak updraft and downdraft velocities and their corresponding altitude, heights of reflectivity levels, and widths of reflectivity cores, are estimated. The most significant findings are the following: 1) strong updrafts that mostly exceed 15 m/s, with a few exceeding 30 m/s, are found in all the deep convection cases, whether over land or ocean; 2) peak updrafts were almost always above the 10-km level and, in the case of tropical cyclones, were closer to the 12-km level; and 3) land-based and sea-breeze convection had higher reflectivities and wider convective cores than oceanic and tropical cyclone convection. In addition, the high-resolution EDOP data were used to examine the connection between reflectivity and vertical velocity, for which only weak linear relationships were found. The results are discussed in terms of dynamical and microphysical implications for numerical models and future remote sensors.

  1. Observed Recent Trends in Tropical Cyclone Rainfall Over Major Ocean Basins

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Zhou, Y. P.

    2011-01-01

    In this study, we use Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Climatology Project (GPCP) rainfall data together with historical storm track records to examine the trend of tropical cyclone (TC) rainfall in major ocean basins during recent decades (1980-2007). We find that accumulated total rainfall along storm tracks for all tropical cyclones shows a weak positive trend over the whole tropics. However, total rainfall associated with weak storms, and intense storms (Category 4-5) both show significant positive trends, while total rainfall associated with intermediate storms (Category1-3) show a significant negative trend. Storm intensity defined as total rain produced per unit storm also shows increasing trend for all storm types. Basin-wide, from the first half (1980-1993) to the second half (1994-2007) of the data period, the North Atlantic shows the pronounced increase in TC number and TC rainfall while the Northeast Pacific shows a significant decrease in all storm types. Except for the Northeast Pacific, all other major basins (North Atlantic, Northwest Pacific, Southern Oceans, and Northern Indian Ocean) show a significant increase in total number and rainfall amount in Category 4-5 storms. Overall, trends in TC rainfall in different ocean basins are consistent with long-term changes in the ambient large-scale environment, including SST, vertical wind shear, sea level pressure, mid-tropospheric humidity, and Maximum Potential Intensity (MPI). Notably the pronounced positive (negative) trend of TC rainfall in the North Atlantic (Northeast Pacific) appears to be related to the most (least) rapid increase in SST and MPI, and the largest decrease (increase) in vertical wind shear in the region, relative to other ocean basins.

  2. Mapping the world's tropical cyclone rainfall contribution over land using TRMM satellite data: precipitation budget and extreme rainfall

    NASA Astrophysics Data System (ADS)

    Prat, O. P.; Nelson, B. R.

    2012-12-01

    A study was performed to characterize over-land precipitation associated with tropical cyclones (TCs) for basins around the world gathered in the International Best Track Archive for Climate Stewardship (IBTrACS). From 1998 to 2010, rainfall data from TRMM 3B42, showed that TCs accounted for 8-, 11-, 7-, 10-, and 12-% of the annual over-land precipitation for North America, East Asia, Northern Indian Ocean, Australia, and South-West Indian Ocean respectively, and that TC-contribution decreased importantly within the first 150-km from the coast. At the local scale, TCs contributed on average to more than 40% and up to 77% of the annual precipitation budget over very different climatic areas with arid or tropical characteristics. The East Asia domain presented the higher and most constant TC-rain (170±23%-mm/yr) normalized over the area impacted, while the Southwest Indian domain presented the highest variability (130±48%-mm/yr), and the North American domain displayed the lowest average TC-rain (77±27%-mm/yr) despite a higher TC-activity. The maximum monthly TC-contribution (11-15%) was found later in the TC-season and was a conjunction between the peak of TC-activity, TC-rainfall, and the domain annual antagonism between dry and wet regimes if any. Furthermore, TC-days that accounted globally for 2±0.5% of all precipitation events for all basins, represented between 11-30% of rainfall extremes (>101.6mm/day). Locally, TC-rainfall was linked with the majority (>70%) or the quasi-totality (≈100%) of extreme rainfall. Finally, because of their importance in terms of rainfall amount, the contribution of tropical cyclones is provided for a selection of fifty urban areas experiencing cyclonic activity. Cases studies conducted at the regional scale will focus on the link between TC-activity, water resources, and hydrohazards such as floods and droughts.

  3. Satellite radiothermovision of atmospheric mesoscale processes: case study of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Ermakov, D. M.; Sharkov, E. A.; Chernushich, A. P.

    2015-04-01

    Satellite radiothermovision is a set of processing techniques applicable for multisource data of radiothermal monitoring of oceanatmosphere system, which allows creating dynamic description of mesoscale and synoptic atmospheric processes and estimating physically meaningful integral characteristics of the observed processes (like avdective flow of the latent heat through a given border). The approach is based on spatiotemporal interpolation of the satellite measurements which allows reconstructing the radiothermal fields (as well as the fields of geophysical parameters) of the ocean-atmosphere system at global scale with spatial resolution of about 0.125° and temporal resolution of 1.5 hour. The accuracy of spatiotemporal interpolation was estimated by direct comparison of interpolated data with the data of independent asynchronous measurements and was shown to correspond to the best achievable as reported in literature (for total precipitable water fields the accuracy is about 0.8 mm). The advantages of the implemented interpolation scheme are: closure under input radiothermal data, homogeneity in time scale (all data are interpolated through the same time intervals), automatic estimation of both the intermediate states of scalar field of the studied geophysical parameter and of vector field of effective velocity of advection (horizontal movements). Using this pair of fields one can calculate the flow of a given geophysical quantity though any given border. For example, in case of total precipitable water field, this flow (under proper calibration) has the meaning of latent heat advective flux. This opportunity was used to evaluate the latent heat flux though a set of circular contours, enclosing a tropical cyclone and drifting with it during its evolution. A remarkable interrelation was observed between the calculated magnitude and sign of advective latent flux and the intensity of a tropical cyclone. This interrelation is demonstrated in several examples of hurricanes and tropical cyclones of August, 2000, and typhoons of November, 2013, including super typhoon Haiyan.

  4. Cyclone trends constrain monsoon variability during late Oligocene sea level highstands (Kachchh Basin, NW India)

    NASA Astrophysics Data System (ADS)

    Reuter, M.; Piller, W. E.; Harzhauser, M.; Kroh, A.

    2013-09-01

    Climate change has an unknown impact on tropical cyclones and the Asian monsoon. Herein we present a sequence of fossil shell beds from the shallow-marine Maniyara Fort Formation (Kachcch Basin) as a recorder of tropical cyclone activity along the NW Indian coast during the late Oligocene warming period (~ 27-24 Ma). Proxy data providing information about the atmospheric circulation dynamics over the Indian subcontinent at this time are important since it corresponds to a major climate reorganization in Asia that ends up with the establishment of the modern Asian monsoon system at the Oligocene-Miocene boundary. The vast shell concentrations are comprised of a mixture of parautochthonous and allochthonous assemblages indicating storm-generated sediment transport from deeper to shallow water during third-order sea level highstands. Three distinct skeletal assemblages were distinguished, each recording a relative storm wave base. (1) A shallow storm wave base is shown by nearshore molluscs, reef corals and Clypeaster echinoids; (2) an intermediate storm wave base depth is indicated by lepidocyclinid foraminifers, Eupatagus echinoids and corallinacean algae; and (3) a deep storm wave base is represented by an Amussiopecten bivalve-Schizaster echinoid assemblage. These wave base depth estimates were used for the reconstruction of long-term tropical storm intensity during the late Oligocene. The development and intensification of cyclones over the recent Arabian Sea is primarily limited by the atmospheric monsoon circulation and strength of the associated vertical wind shear. Therefore, since the topographic boundary conditions for the Indian monsoon already existed in the late Oligocene, the reconstructed long-term cyclone trends were interpreted to reflect monsoon variability during the initiation of the Asian monsoon system. Our results imply an active monsoon over the Eastern Tethys at ~ 26 Ma followed by a period of monsoon weakening during the peak of the late Oligocene global warming (~ 24 Ma).

  5. A Conundrum of Tropical Cyclone Formation

    NASA Astrophysics Data System (ADS)

    Davis, C. A.

    2014-12-01

    This paper will address a conundrum that has emerged from recent research on tropical cyclone formation. Composite analyses and case studies suggest that prior to genesis, the atmosphere presents a mid-tropospheric vortex that is strong compared to the cyclonic circulation in the boundary layer. Accompanying this vortex is near saturation from the boundary layer through at least 5 km, sometimes more, and a nearly balanced weak negative temperature anomaly below the vortex and stronger positive temperature anomaly above. This thermodynamic state is one of high moisture but low buoyancy for lifted parcels (i.e. low convective available potential energy). However, observations also suggest that widespread deep convection accompanies genesis, with cloud top temperatures becoming colder near the time of genesis. This is seemingly at odds with in situ observations of thermodynamic characteristics prior to genesis. Progress toward understanding the apparent contradiction can be made by realizing that the existence of a moist, relatively stable vortex, and deep convective clouds are not necessarily coincident in space and time. This is demonstrated by a detailed analysis of the two days leading up to the formation of Atlantic tropical cyclone Karl on 14 September. Karl featured a relatively long gestation period characterized initially by a marked misalignment of mid-tropospheric and surface cyclonic circulations. The mid-tropospheric vortex strengthened due to a pulse of convection earlier on 13 September. Meanwhile, the near-surface vortex underwent a precession around the mid-tropospheric vortex as the separation between the two decreased. The eruption of convection around midnight on 14 September, 18 hours prior to declaration on a TC, occurred in the center of the nearly-aligned vortex, contained a mixture of shallow and deep convection and resulted in spin-up over a deep layer, but particularly at the surface. Prior to genesis, the most intense deep convection was located at least 200 km from the center.

  6. The Climatology of Extreme Surge-Producing Extratropical Cyclones in Observations and Models

    NASA Astrophysics Data System (ADS)

    Catalano, A. J.; Broccoli, A. J.; Kapnick, S. B.

    2016-12-01

    Extreme coastal storms devastate heavily populated areas around the world by producing powerful winds that can create a large storm surge. Both tropical and extratropical cyclones (ETCs) occur over the northwestern Atlantic Ocean, and the risks associated with ETCs can be just as severe as those associated with tropical storms (e.g. high winds, storm surge). At The Battery in New York City, 17 of the 20 largest storm surge events were a consequence of extratropical cyclones (ETCs), which are more prevalent than tropical cyclones in the northeast region of the United States. Therefore, we analyze the climatology of ETCs that are capable of producing a large storm surge along the northeastern coast of the United States. For a historical analysis, water level data was collected from National Oceanic and Atmospheric Administration (NOAA) tide gauges at three separate locations (Sewell's Pt., VA, The Battery, NY, and Boston, MA). We perform a k-means cluster analysis of sea level pressure from the ECMWF 20th Century Reanalysis dataset (ERA-20c) to explore the natural sets of observed storms with similar characteristics. We then composite cluster results with features of atmospheric circulation to observe the influence of interannual and multidecadal variability such as the North Atlantic Oscillation. Since observational records contain a small number of well-documented ETCs, the capability of a high-resolution coupled climate model to realistically simulate such extreme coastal storms will also be assessed. Global climate models provide a means of simulating a much larger sample of extreme events, allowing for better resolution of the tail of the distribution. We employ a tracking algorithm to identify ETCs in a multi-century simulation under present-day conditions. Quantitative comparisons of cyclolysis, cyclogenesis, and cyclone densities of simulated ETCs and storms from recent history (using reanalysis products) are conducted.

  7. Monitoring the Transport of Sediment During Tropical Cyclones From High-frequency Seismic Noise in Two Rivers of La Réunion Island

    NASA Astrophysics Data System (ADS)

    Fontaine, F. R.; Gonzalez, A.; Burtin, A.; Barruol, G.; Recking, A.; Join, J. L.; Delcher, E.

    2016-12-01

    La Réunion Island is a basaltic shield volcano located in the western Indian Ocean. The island undergoes heavy annual precipitations during tropical depressions and cyclones. These rainfalls modify the stream dynamics and sediment transport of rivers. The transport of sediment participates to the erosion of the volcanic island, however, in situ characterization is difficult during high water stage. In the frame of the Rivière des Pluies project, we are deploying a temporary seismic network of 10 three-component broadband seismometers around two rivers: Rivière des Pluies and Rivière du Mât. The goal of the project is to monitor spatial and temporal variations of the river's bed-load during tropical cyclones with high-frequency noise. Meteorological and hydrological stations are installed at both rivers providing valuable data such as precipitations, water discharge and water level. We will also sample the bed surface grain size distribution by visual count to determine its influence on the seismic noise. We present preliminary results from two broadband seismic stations located near instrumented streams. SALA station from the temporary RHUM-RUM seismic network (http://www.rhum-rum.net/en/) was installed close to the Rivière du Mât and the permanent GEOSCOPE RER station is located close to the Rivière de l'Est. We analyzed the footprint of the cyclone Bejisa in January 2014. We observe a significant increase of the precipitation when the cyclone eye is 300 km close to the island followed by the increase of the water discharge. Simultaneously the seismic signal shows a sudden increase of the power spectral density visible above 1 Hz. Further investigations on the relationship between the seismic noise and the hydrological and meteorological parameters will help us quantifying the river bed-load.

  8. Environmental Forcing of Super Typhoon Paka's (1997) Latent Heat Structure

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward B.; Olson, William; Halverson, Jeff; Simpson, Joanne; Pierce, Harold

    1999-01-01

    The distribution and intensity of total (i.e., combined stratified and convective processes) rainrate/latent heat release (LHR) were derived for tropical cyclone Paka during the period 9-21 December, 1997 from the F-10, F-11, F-13, and F-14 Defense Meteorological Satellite Special Sensor Microwave/Imager and the Tropical Rain Measurement Mission Microwave Imager observations. These observations were frequent enough to capture three episodes of inner core convective bursts that preceded periods of rapid intensification and a convective rainband (CRB) cycle. During these periods of convective bursts, satellite sensors revealed that the rainrates/LHR: 1) increased within the inner eye wall region; 2) were mainly convectively generated (nearly a 65% contribution), 3) propagated inwards; 4) extended upwards within the middle and upper-troposphere, and 5) became electrically charged. These factors may have caused the eye wall region to become more buoyant within the middle and upper-troposphere, creating greater cyclonic angular momentum, and, thereby, warming the center and intensifying the system. Radiosonde measurements from Kwajalein Atoll and Guam, sea surface temperature observations, and the European Center for Medium Range Forecast analyses were used to examine the necessary and sufficient condition for initiating and maintaining these inner core convective bursts. For example, the necessary conditions such as the atmospheric thermodynamics (i.e., cold tropopause temperatures, moist troposphere, and warm SSTs [greater than 26 deg]) suggested that the atmosphere was ideal for Paka's maximum potential intensity (MPI) to approach super-typhoon strength. Further, Paka encountered weak vertical wind shear (less than 15 m/s ) before interacting with the westerlies on 21 December. The sufficient conditions, on the other hand, appeared to have some influence on Paka's convective burst, but the horizontal moisture flux convergence values in the outer core were weaker than some of the previously examined tropical cyclones. Also, the upper tropospheric outflow generation of eddy relative angular momentum flux convergence was 4D much less than that found during moderate tropical cyclone/trough interaction. These results indicated how important the external necessary condition and the internal forcing (i.e., CRB cycle) were in generating Paka's convective bursts as compared to the external sufficient forcing mechanisms found in higher latitude tropical cyclones. Later, as Paka began to interact with the westerlies, both the necessary (i.e., strong vertical shear and colder SSTs) and sufficient (i.e., dry air intrusion) external forcing mechanisms helped to decrease Paka's rainrate.

  9. Powerful Tropical Cyclone Ita Making Landfall in Queensland, Australia

    NASA Image and Video Library

    2014-04-11

    NASA's Aqua satellite passed over Tropical Cyclone Ita as it began making landfall on the Eastern Cape York Peninsula of Queensland, Australia, today, April 11, 2014. Ita officially made landfall at Cape Flattery about 9:00 p.m. local AEST time as a Category 4 storm according to reports from the Australian Broadcasting Corporation (ABC). The Moderate Resolution Imaging Spectroradiometer that flies aboard Aqua captured an image of the Category 4 storm on April 11 at 12:00 a.m. EDT (4 a.m. UTC). Satellite imagery indicates the eye is 9.2 miles wide (8 nautical miles, or 14.8 km). Warnings and watches remain in effect as the center of Ita is expected to remain at hurricane strength as it moves in a southerly direction, staying just west of Cairns over the next day. A tropical cyclone warning is in effect between Coen and Innisfail, including Cooktown, Port Douglas, Cairns, extending inland to Kalinga, Palmerville, Mareeba and Chillagoe. A tropical cyclone watch is in effect between Innisfail to Cardwell, extending inland. ABC reported that the strongest maximum sustained winds around the center of circulation were near 142.9 mph (124.2 knots, or 230 kph) and many trees have been downed and homes damaged. According to ABC, preliminary reports suggest that power may be out for a month in some areas. On April 11 at 5 a.m. EDT (9 a.m. UTC), Tropical Cyclone Ita had maximum sustained winds near 143.8 mph (125 knots, or 231.5 kph). It was centered near 14.8 degrees south latitude and 145.3 degrees east longitude, about 168 miles (146 nautical miles, or 288 km) north of Cairns, Australia, and has tracked south-southwestward at 10.3 mph (9 knots, or 16.6 kph). Ita is moving around a subtropical ridge (elongated area) of high pressure and the Joint Typhoon Warning Center expects Ita to start curving to the southeast around that ridge in the next day before heading back out into the Coral Sea. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team Rob Gutro, NASA's Goddard Space Flight Center, Greenbelt, Md. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Environmental Forcing of Supertyphoon Paka's (1997) Latent Heat Structure.

    NASA Astrophysics Data System (ADS)

    Rodgers, Edward; Olson, William; Halverson, Jeff; Simpson, Joanne; Pierce, Harold

    2000-12-01

    The distribution and intensity of total (i.e., combined stratified and convective processes) rain rate/latent heat release (LHR) were derived for Tropical Cyclone Paka during the period 9-21 December 1997 from the F-10, F-11, F-13, and F-14 Defense Meteorological Satellite Special Sensor Microwave Imager and the Tropical Rainfall Measuring Mission Microwave Imager observations. These observations were frequent enough to capture three episodes of inner-core convective bursts and a convective rainband cycle that preceded periods of rapid intensification. During these periods of convective bursts, satellite sensors revealed that the rain rates/LHR 1) increased within the inner-core region, 2) were mainly convectively generated (nearly a 65% contribution), 3) propagated inward, 4) extended upward within the mid- and upper troposphere, and 5) became electrically charged. These factors may have increased the areal mean ascending motion in the mid- and upper-troposphere eyewall region, creating greater cyclonic angular momentum, and, thereby, warming the center and intensifying the system.Radiosonde measurements from Kwajalein Atoll and Guam, sea surface temperature observations, and the European Centre for Medium-Range Forecasts analyses were used to examine the necessary and sufficient conditions for initiating and maintaining these inner-core convective bursts. For example, the necessary conditions such as the atmospheric thermodynamics [i.e., cold tropopause temperatures, moist troposphere, and warm SSTs (>26°C)] fulfill the necessary conditions and suggested that the atmosphere was ideally suited for Paka's maximum potential intensity to approach supertyphoon strength. Further, Paka encountered moderate vertical wind shear (<15 m s1) before interacting with the westerlies on 21 December. The sufficient conditions that include horizontal moisture and the upper-tropospheric eddy relative angular momentum fluxes, on the other hand, appeared to have some influence on Paka's convective burst. However, the horizontal moisture flux convergence values in the outer core were weaker than some of the previously examined tropical cyclones. Also, the upper-tropospheric outflow generation of eddy relative angular momentum flux convergence was much less than that found during moderate tropical cyclone-trough interaction. These results indicated how important the external necessary condition and the internal forcing (i.e., convective rainband cycle) were in generating Paka's convective bursts as compared with the external sufficient forcing mechanisms found in higher-latitude tropical cyclones. Later, as Paka began to interact with the westerlies, both the necessary (i.e., strong vertical wind shear and colder SSTs) and sufficient (i.e., dry air intrusion) external forcing mechanisms helped to decrease Paka's rain rate.

  11. The impact of Cyclone Nargis on the Ayeyarwady (Irrawaddy) River delta shoreline and nearshore zone (Myanmar): Towards degraded delta resilience?

    NASA Astrophysics Data System (ADS)

    Besset, Manon; Anthony, Edward J.; Dussouillez, Philippe; Goichot, Marc

    2017-10-01

    The Ayeyarwady River delta (Myanmar) is exposed to tropical cyclones, of which the most devastating has been cyclone Nargis (2-4 May 2008). We analysed waves, flooded area, nearshore suspended sediments, and shoreline change from satellite images. Suspended sediment concentrations up to 40% above average during the cyclone may reflect fluvial mud supply following heavy rainfall and wave reworking of shoreface mud. Massive recession of the high-water line resulted from backshore flooding by cyclone surge. The shoreline showed a mean retreat of 47 m following Nargis. Erosion was stronger afterwards (-148 m between August 2008 and April 2010), largely exceeding rates prior to Nargis (2000-2005: -2.14 m/year) and over 41 years (1974-2015: -0.62 m/year). This implies that resilience was weak following cyclone impact. Consequently, the increasingly more populous Ayeyarwady delta, rendered more and more vulnerable by decreasing fluvial sediment supply, could, potentially, become more severely impacted by future high-energy events.

  12. The dynamical structure of intense Mediterranean cyclones

    NASA Astrophysics Data System (ADS)

    Flaounas, Emmanouil; Raveh-Rubin, Shira; Wernli, Heini; Drobinski, Philippe; Bastin, Sophie

    2015-05-01

    This paper presents and analyzes the three-dimensional dynamical structure of intense Mediterranean cyclones. The analysis is based on a composite approach of the 200 most intense cyclones during the period 1989-2008 that have been identified and tracked using the output of a coupled ocean-atmosphere regional simulation with 20 km horizontal grid spacing and 3-hourly output. It is shown that the most intense Mediterranean cyclones have a common baroclinic life cycle with a potential vorticity (PV) streamer associated with an upper-level cyclonic Rossby wave breaking, which precedes cyclogenesis in the region and triggers baroclinic instability. It is argued that this common baroclinic life cycle is due to the strongly horizontally sheared environment in the Mediterranean basin, on the poleward flank of the quasi-persistent subtropical jet. The composite life cycle of the cyclones is further analyzed considering the evolution of key atmospheric elements as potential temperature and PV, as well as the cyclones' thermodynamic profiles and rainfall. It is shown that most intense Mediterranean cyclones are associated with warm conveyor belts and dry air intrusions, similar to those of other strong extratropical cyclones, but of rather small scale. Before cyclones reach their mature stage, the streamer's role is crucial to advect moist and warm air towards the cyclones center. These dynamical characteristics, typical for very intense extratropical cyclones in the main storm track regions, are also valid for these Mediterranean cases that have features that are visually similar to tropical cyclones.

  13. Building of tropical beach ridges, northeastern Queensland, Australia: Cyclone inundation and aeolian decoration

    NASA Astrophysics Data System (ADS)

    Tamura, Toru; Nicholas, William; Brooke, Brendan; Oliver, Thomas

    2016-04-01

    Processes associated with tropical cyclones are thought responsible for building coarse sand beach ridges along the northeastern Queensland coast, Australia. While these ridges are expected to be geological records of the past cyclone, they question the general consensus of the aeolian genesis of sandy beach ridges. To explore the ridge-forming process, we carried out the GPR survey, auger drilling, pit excavation, grain-size analysis, and OSL dating for coarse sand beach ridges at the Cowley Beach, northeastern Queensland. The Cowley Beach is a mesotidal beach characterized by a low-tide terrace and steep beach face. Ten beach ridges are recognized along the survey transect that extends 700 m inland from the shore. 37 OSL ages are younger seawards, indicating the seaward accretion of the ridge sequence over the last 2700 years. The highest ridge is +5.1 m high above AHD (Australian Height Datum). Two GPR units are bounded by a groundwater surface at c. +1.5 m AHD. The upper unit is characterized by horizontal to hummocky reflectors punctuated by seaward dipping truncation surfaces. These reflectors in places form dome-like structure that appears to be the nucleus of a beach ridge. The shape and level (+2.5 m AHD) of the dome are similar to those of the present swash berm. The lower unit shows a sequence of reflectors that dip at an angle of present beach face. The sequence is dissected by truncation surfaces, some of which are continuous to those in the upper unit. Coarse sand mainly forms beach ridge deposits below +4.0 m AHD, while a few higher ridges have an upward fining layer composed of medium sand above +4.0 m, which is finer than aeolian ripples found on the backshore during the survey. In addition, pumice gravel horizons underlie the examined ridge crests. The sequence of seaward dipping reflectors indicates that the Cowley Beach, like other many sandy beaches, has prograded during onshore sand accretion by fairweather waves and has been eroded by storms waves. It is evident that increased water level and high waves associated with tropical cyclones are responsible for ridge building between +2.5 and +4.0 m AHD. However, astronomical tide should be critical rather than rare, intense cyclones for frequent coastal inundations up to +4.0 m AHD, just 1.5 m higher than the high-tide swash limit. The medium-grained sand layer on a few beach ridges higher than +4.0 m AHD can be accounted for by aeolian origin, but pumice gravels indicate the contribution of cyclone inundation. The building process of the ridges at Cowley Beach is thus most likely a mixture of fairweather swash and cyclone inundation modulated by tides, and aeolian processes during cyclonic and non-cyclonic conditions. For the reconstruction of the past cyclone based on these ridges, the roles of higher astronomical tides and aeolian processes should be taken into account.

  14. Tropical Cyclone Ensemble Data Assimilation

    DTIC Science & Technology

    2012-09-30

    the global system. The improvement is almost uniform in the extratropics , while in the tropics clear improvements tend to occur in the immediate...surrounding of storms . The latter result suggests that the limited area analysis provides a better representation of the interactions between the...circulation of the storm and the wind field in its immediate vicinity. 2

  15. Tropical Cyclone Report, 1988

    DTIC Science & Technology

    1988-01-01

    Cmdr. David Gray; National Weather Service 5. Cooperation with the Naval Environmental Pacific Region for the startup of 24-hour operatiois at Ponape...0.1 27.7 TOTAL CASES 3 1 1 4 12 27 54 56 30 25 7 1 221 * (GRAY, 1979) TABLE 4-3 ANNUAL VARIATION C SOTR MUSHER TROPICAL CYCLOUZ BY O(EN BASIN SOUTH

  16. A Subtropical Cyclone in the Canary Islands: the October 2014 event

    NASA Astrophysics Data System (ADS)

    Quitian, Lara; Martin, Maria Luisa; Jesús González-Alemán, Juan; Santos-Muñoz, Daniel; Valero Rodríguez, Francisco

    2016-04-01

    Depending on the thermal structure and dynamics, there are different types of cyclones in the troposphere. Subtropical cyclones (STC) are low pressure systems that share tropical and extratropical characteristics, having hybrid thermal structures. In October 2014, a cyclonic system landfall the Canary Islands, causing widespread damages. The system began to develop in October 18 and its effects lasted until October 21. Here, the diagnosis and identification of such cyclone as STC is carried out, examining its dynamical and thermal evolution. Diverse fields have been obtained from three different numerical models, and several diagnostic tools and cyclone phase space diagrams have been used. The cyclone evolved from a typical extratropical cyclone, detached from the atmospheric circulation which was highly meridional and became a stationary cut-off low. The meridional intrusion of the trough as well as a low-level baroclinic zone favored the formation of a STC northwestern of the Canary Islands. Several cyclone phase space diagrams are used to classify the cyclone as a STC, highlighting a deep cold core in its early stages that develops into a shallow warm core. High potential vorticity areas associated with the cyclone promoted strong winds and precipitation over the Islands. Throughout the event, an increased conditional instability is observed in the different soundings, leading to strong vertical wind shear. Moreover, relatively warm sea surface temperature is obtained, establishing the conditions to favor the organization of long-lived convective structures.

  17. Introduction to Special Section on Oceanic Responses and Feedbacks to Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Zhou, Lei; Chen, Dake; Karnauskas, Kristopher B.; Wang, Chunzai; Lei, Xiaotu; Wang, Wei; Wang, Guihua; Han, Guijun

    2018-02-01

    Tropical cyclones (TCs) are among the most destructive natural hazards on Earth. The ocean can have dramatic responses to TCs and further imposes significant feedbacks to the atmosphere. A comprehensive understanding of the ocean-TC interaction is a challenging hindrance for improving the simulation and prediction of TCs and therefore avoidance of human and economic losses. A special section of JGR-Oceans was thus organized, in order to have a broad summary of latest progress in ocean-TC interactions. This introduction presents a brief overview of the contributions found in this collection. We hope it can also shed light on recent advance and future challenges in the studies on the oceanic responses and feedbacks to TCs.

  18. The extratropical transition of Tropical Storm Cindy from a GLM, ISS LIS and GPM perspective

    NASA Astrophysics Data System (ADS)

    Heuscher, L.; Gatlin, P. N.; Petersen, W. A.; Liu, C.; Cecil, D. J.

    2017-12-01

    The distribution of lightning with respect to tropical convective precipitation systems has been well established in previous studies, and more recently by the successful Tropical Rainfall Measuring Mission (TRMM). However, TRMM did not provide information about precipitation features pole-ward of ±38° latitude. Hence not much is known about the evolution of lightning within extra-tropical cyclones traversing the mid-latitudes, especially its oceans. To facilitate such studies we have combined lightning data from the Geostationary Lightning Mapper (GLM) onboard GOES-16 and the Lightning Imaging Sensor (LIS) onboard the International Space Station (ISS) together with precipitation features obtained from the Global Precipitation Measurement (GPM) mission constellation of satellites. We used this lightning-enriched precipitation feature dataset to investigate the lightning and precipitation characteristics of Tropical Storm Cindy (20 June - 24 June 2017) from its organization in the central Gulf of Mexico to its landfall along the northern Gulf and transition to an extra-tropical cyclone. We analyzed lightning observations from GLM and ISS LIS in relation to microwave brightness temperatures from GPM constellation satellite overpasses of Cindy. We find that the 37 and 89 GHz brightness temperatures decreased as Cindy strengthened and continued to decrease after landfall and as Cindy took on more baroclinic characteristics during which time its overall lightning activity increased by a factor of six. In this regard, the study provides a new observationally-based view of the tropical to extra-tropical transition and its impact on lightning production.

  19. Warm Water Pools of the Western Caribbean and Eastern Tropical Pacific: Their Influence on Intraseasonal Rainfall Regimes and Tropical Storm Activity in Mexico

    NASA Astrophysics Data System (ADS)

    Douglas, A. V.; Englehart, P. J.

    2007-05-01

    A dipole in tropical cyclone development between the Caribbean and the eastern tropical Pacific will be examined relative to its affect on southern Mexican rainfall. With the change over in the AMO and PDO in 1994 and 1998, respectively, tropical storm genesis has been increasing in the Caribbean while declining in the tropical east Pacific. This dipole in tropical cyclone development appears to be related to changes in the pre storm season heat content of the two ocean basins (data Scripps Institution of Oceanography). Preliminary work indicates that if the Caribbean is warmer than the Pacific by late May the dipole will be accentuated with a pronounced decrease in tropical storms in the east Pacific with an early and prolonged season in the Caribbean. In recent years there appears to have been an increase in the intensity and duration of midsummer drought (Canicula) in Mexico associated with changes in the PDO and AMO. These long term ocean oscillations appear to control the dipole in the strength of the Caribbean and East Pacific warm pools. Mid summer drought is a normal occurrence in much of Mexico and Central America, but the intensified droughts of the recent period have stressed the agricultural community of the region. Based on preliminary work, it appears that the recent increased frequency of midsummer drought can be linked to a shift in the warmest pool from the East Pacific to the Caribbean.

  20. Winds, Water Budgets and Stable Isotopes in Tropical Cyclones using TRMM and QUICKSCAT

    NASA Technical Reports Server (NTRS)

    Lawrence, James R.

    2004-01-01

    Water vapor is the most abundant greenhouse gas in the atmosphere. Changes in its concentration and distribution are controlled by the hydrologic cycle. Because of its capacity to absorb and emit long wave radiation, release latent heat during condensation in storms and reflect short wave radiation when clouds form it has a major impact on Global climate change. The stable isotope ratios of water are H20 H2l6O and H0 H2l6O. These ratios change whenever water undergoes a phase change. They also change in both rain and water vapor whenever an air parcel is exposed to rain. In addition the relative changes in the two ratios differ as a &nction of the relative humidity. In short, the stable isotope ratios in water vapor in the atmosphere contain an integrated history of the processes affecting the concentration and distribution of water vapor in the atmosphere. Therefore the measurement and interpretation of changes in these stable isotope ratios are a powerful tool matched by no other method in tracing the transport history of water in the atmosphere. Our initial studies under this grant focused on the changes of the stable isotope ratios of precipitation and water vapor in tropical cyclones. The changes in time and space were found to be very large and to trace the transport of water in the storms reflecting changes in basic structural features. Because the stable isotope ratios of rains from tropical cyclones are so low flooding associated with land falling tropical cyclones introduces a negative isotopic spike into the coastal surface waters. In addition the stable isotope ratios of water vapor in the vicinity of tropical cyclones is anomalously low. This suggests that carbonate shelled organisms such as ostracoda living in coastal waters have the potential to record the isotopic spike and thereby provide a long term record of tropical storm activity in sediment cores containing fossil shells. Likewise, tree rings in coastal environments offer a similar potential. We have analyzed the oxygen isotopic composition of ostrcoda shells formed in the floodwaters of Tropical Storm Allison (2001) and discovered the negative isotopic 1 16 spike. Because we had learned that storm activity has a major impact on the stable isotope ratios of water vapor in the tropics and sub-tropics we decided to analyze the isotopic compositions of water vapor in different locations in the tropics. We did this in Puerto Escondido, Mexico in July 1998, near Kwajalein Island in the Pacific in 1999 as part of a TRMM summer field program and in 2001 in Key West, Florida as part of the CAMEX 4 summer field program. Our isotopic studies along with our earlier tropical cyclone studies showed that the low isotopic ratios in water vapor induced by exposure to rains the storms persisted for 48 hours often far away from the original storm site. We also noted that positive isotopic spikes were introduced into atmospheric water vapor if winds were high and extensive sea spray was present. These findings have a significant impact on the interpretation of the stable isotope studies of tropical ice cores found in the high mountain regions of the tropics. The assumption made in interpreting the ice core record is that the source water vapor evaporated from the sea surface is in near isotopic equilibrium with the seawater and undergoes a decrease during its transport that reflects the change in temperature from the sea surface to the site of the ice core. Because an additional isotopic depletion occurs at the sea surface source area that depends on the intensity, duration and size of the tropical rain system the isotopic variations found in the ice cores must take into account changes in past storm activity in the tropics. These systems must be an important source of water vapor to the ice cores because they charge the troposphere with water vapor to a far greater vertical height than evaporation in quiescent regions. Finally, an interest in increased heat transfer in thnterior of tropical cyclones resulting from greater amounts of sea spray is a topic of considerable interest to the research community. Increases in sea spray may be related to rapid changes in the intensity of hurricanes, a feature of hurricanes that currently is very poorly forecast. Project CBLAST of the Hurricane Research Division of NOAA is an active program that uses P3 research aircraft to evaluate this problem. An instrument has been designed and built at the University of Houston that will be placed on the P3 research aircraft during the 2004 hurricane season. It continuously measures the salt content of rain in hurricanes. Changes in the salt content of the rains should reflect the abundance of sea spray at the sea surface. In this way maps of sea spray intensity in hurricanes may be forthcoming. This should help computer modelers who simulate hurricanes to better understand the potential of changes in sea spray to change the intensity of hurricanes. The cost of designing, building and installing this instrument was borne largely by funding from this NASA grant. A list of presentations at national meetings and publications that were as the result of funding from this NASA grant are found in the report.

  1. 1987 Annual Tropical Cyclone Report

    DTIC Science & Technology

    1987-01-01

    Significant Tropical Weather Adviso~~ es : issued daily, these products describe all tropical disturbances and assess their potential for further...COA3fm communicati~ estimates ofcurnmf andfmecast intensity ahiveffj%m sateC & a!hta. In tlie a.yampk,the current ‘T-number’ is 3.$ fiut the cun-ent...DEVIATION : 111 = ES : 465 Figure 5-2B. Frequeney di.s~”buticnt of th 48-hourforecast emorsin 30 nm (56 ~m) increnwttsfor dsignif~ant tropicalyclk.s in

  2. Global Tropical Moisture Exports and their Influence on Extratropical Cyclone Activity

    NASA Astrophysics Data System (ADS)

    Knippertz, P.; Wernli, H.; Gläser, G.

    2012-04-01

    Many case studies have shown that heavy precipitation events and rapid cyclogenesis in the extratropics can be fuelled by moist and warm tropical air masses. Often the tropical moisture export (TME) occurs through a longitudinally confined region in the subtropics. Here a climatology of TMEs to both hemispheres is constructed on the basis of seven-day forward trajectories, which were started daily from the tropical lower troposphere and which were required to reach a water vapour flux of at least 100 g kg-1 m s-1 somewhere poleward of 35 degrees. For this analysis 6-hourly European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim re-analysis data have been used for the 32-year period 1979-2010. A comparison with a TME climatology based upon the older ERA-40 re-analysis shows little sensitivity. The results are then related to the deepening of objectively identified (extratropical) cyclones in both hemispheres. On average TME trajectories move upwards and eastwards on their way across the subtropics in both hemispheres and are associated with both moisture and meridional-wind anomalies. TME shows four main regions of activity in both hemispheres: In the northern hemisphere these are the eastern Pacific ("Pineapple Express" region) with a marked activity maximum in boreal winter, the West Pacific with maximum activity in summer and autumn associated with the Asian monsoon, the narrow Great Plains region with a maximum in spring and summer associated with the North American monsoon and the western Atlantic or Gulf Stream region with a rather flat seasonal cycle. In the southern hemisphere activity peaks over the central and eastern Pacific, eastern South America and the adjacent Atlantic, the western Indian Ocean, and western Australia. Southern hemisphere TME activity peaks in boreal winter, particularly over the Atlantic and Pacific Oceans, which suggests a significant influence of northern hemispheric Rossby wave energy propagation across the equator. The interannual variability in several regions is significantly modulated by El Niño. A detailed analysis of TME encounters along individual extratropical cyclone tracks reveals several extraordinary cyclone-deepening events associated with TME trajectories (e.g. storm "Klaus" in January 2009). A statistical analysis quantifies the fraction of explosively deepening cyclones that occur with and without a TME influence.

  3. Tropical cyclone activity enhanced by Sahara greening and reduced dust emissions during the African Humid Period.

    PubMed

    Pausata, Francesco S R; Emanuel, Kerry A; Chiacchio, Marc; Diro, Gulilat T; Zhang, Qiong; Sushama, Laxmi; Stager, J Curt; Donnelly, Jeffrey P

    2017-06-13

    Tropical cyclones (TCs) can have devastating socioeconomic impacts. Understanding the nature and causes of their variability is of paramount importance for society. However, historical records of TCs are too short to fully characterize such changes and paleo-sediment archives of Holocene TC activity are temporally and geographically sparse. Thus, it is of interest to apply physical modeling to understanding TC variability under different climate conditions. Here we investigate global TC activity during a warm climate state (mid-Holocene, 6,000 yBP) characterized by increased boreal summer insolation, a vegetated Sahara, and reduced dust emissions. We analyze a set of sensitivity experiments in which not only solar insolation changes are varied but also vegetation and dust concentrations. Our results show that the greening of the Sahara and reduced dust loadings lead to more favorable conditions for tropical cyclone development compared with the orbital forcing alone. In particular, the strengthening of the West African Monsoon induced by the Sahara greening triggers a change in atmospheric circulation that affects the entire tropics. Furthermore, whereas previous studies suggest lower TC activity despite stronger summer insolation and warmer sea surface temperature in the Northern Hemisphere, accounting for the Sahara greening and reduced dust concentrations leads instead to an increase of TC activity in both hemispheres, particularly over the Caribbean basin and East Coast of North America. Our study highlights the importance of regional changes in land cover and dust concentrations in affecting the potential intensity and genesis of past TCs and suggests that both factors may have appreciable influence on TC activity in a future warmer climate.

  4. Tropical cyclone activity enhanced by Sahara greening and reduced dust emissions during the African Humid Period

    NASA Astrophysics Data System (ADS)

    Pausata, Francesco S. R.; Emanuel, Kerry A.; Chiacchio, Marc; Diro, Gulilat T.; Zhang, Qiong; Sushama, Laxmi; Stager, J. Curt; Donnelly, Jeffrey P.

    2017-06-01

    Tropical cyclones (TCs) can have devastating socioeconomic impacts. Understanding the nature and causes of their variability is of paramount importance for society. However, historical records of TCs are too short to fully characterize such changes and paleo-sediment archives of Holocene TC activity are temporally and geographically sparse. Thus, it is of interest to apply physical modeling to understanding TC variability under different climate conditions. Here we investigate global TC activity during a warm climate state (mid-Holocene, 6,000 yBP) characterized by increased boreal summer insolation, a vegetated Sahara, and reduced dust emissions. We analyze a set of sensitivity experiments in which not only solar insolation changes are varied but also vegetation and dust concentrations. Our results show that the greening of the Sahara and reduced dust loadings lead to more favorable conditions for tropical cyclone development compared with the orbital forcing alone. In particular, the strengthening of the West African Monsoon induced by the Sahara greening triggers a change in atmospheric circulation that affects the entire tropics. Furthermore, whereas previous studies suggest lower TC activity despite stronger summer insolation and warmer sea surface temperature in the Northern Hemisphere, accounting for the Sahara greening and reduced dust concentrations leads instead to an increase of TC activity in both hemispheres, particularly over the Caribbean basin and East Coast of North America. Our study highlights the importance of regional changes in land cover and dust concentrations in affecting the potential intensity and genesis of past TCs and suggests that both factors may have appreciable influence on TC activity in a future warmer climate.

  5. Hazard Avoidance Products for Convectively-Induced Turbulence in Support of High-Altitude Global Hawk Aircraft Missions

    NASA Astrophysics Data System (ADS)

    Griffin, Sarah M.; Velden, Christopher S.

    2018-01-01

    A combination of satellite-based and ground-based information is used to identify regions of intense convection that may act as a hazard to high-altitude aircraft. Motivated by concerns that Global Hawk pilotless aircraft, flying near 60,000 feet, might encounter significant convectively-induced turbulence during research overflights of tropical cyclones, strict rules were put in place to avoid such hazards. However, these rules put constraints on science missions focused on sampling convection with onboard sensors. To address these concerns, three hazard avoidance tools to aid in real-time mission decision support are used to more precisely identify areas of potential turbulence: Satellite-derived Cloud-top height and tropical overshooting tops, and ground-based global network lightning flashes. These tools are used to compare an ER-2 aircraft overflight of tropical cyclone Emily in 2005, which experienced severe turbulence, to Global Hawk overflights of tropical cyclones Karl and Matthew in 2010 that experienced no turbulence. It is found that the ER-2 overflew the lowest cloud tops and had the largest vertical separation from them compared to the Global Hawk flights. Therefore, cold cloud tops alone cannot predict turbulence. Unlike the overflights of Matthew and Karl, Emily exhibited multiple lightning flashes and a distinct overshooting top coincident with the observed turbulence. Therefore, these tools in tandem can better assist in identifying likely regions/periods of intense active convection. The primary outcome of this study is an altering of the Global Hawk overflight rules to be more flexible based on the analyzed conditions.

  6. Stalling Tropical Cyclones over the Atlantic Basin

    NASA Astrophysics Data System (ADS)

    Nielsen-Gammon, J. W.; Emanuel, K.

    2017-12-01

    Hurricane Harvey produced massive amounts of rain over southeast Texas and southwest Louisiana. Average storm total rainfall amounts over a 10,000 square mile (26,000 square km) area exceeded 30 inches (750 mm). An important aspect of the storm that contributed to the large rainfall totals was its unusual motion. The storm stalled shortly after making landfall, then moved back offshore before once again making landfall five days later. This storm motion permitted heavy rainfall to occur in the same general area for an extended period of time. The unusual nature of this event motivates an investigation into the characteristics and potential climate change influences on stalled tropical cyclones in the Atlantic basin using the HURDAT 2 storm track database for 1866-2016 and downscaled tropical cyclones driven by simulations of present and future climate. The motion of cyclones is quantified as the size of a circle circumscribing all storm locations during a given length of time. For a three-day period, Harvey remained inside a circle with a radius of 123 km. This ranks within the top 0.6% of slowest-moving historical storm instances. Among the 2% of slowest-moving storm instances prior to Harvey, only 13 involved storms that stalled near the continental United States coast, where they may have produced substantial rainfall onshore while tapping into marine moisture. Only two such storms stalled in the month of September, in contrast to 20 September stalls out of the 36 storms that stalled over the nearby open Atlantic. Just four of the stalled coastal storms were hurricanes, implying a return frequency for such storms of much less than once per decade. The synoptic setting of these storms is examined for common features, and historical and projected trends in occurrences of stalled storms near the coast and farther offshore are investigated.

  7. The Role of Moist Processes in the Intrinsic Predictability of Indian Ocean Cyclones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taraphdar, Sourav; Mukhopadhyay, P.; Leung, Lai-Yung R.

    The role of moist processes and the possibility of error cascade from cloud scale processes affecting the intrinsic predictable time scale of a high resolution convection permitting model within the environment of tropical cyclones (TCs) over the Indian region are investigated. Consistent with past studies of extra-tropical cyclones, it is demonstrated that moist processes play a major role in forecast error growth which may ultimately limit the intrinsic predictability of the TCs. Small errors in the initial conditions may grow rapidly and cascades from smaller scales to the larger scales through strong diabatic heating and nonlinearities associated with moist convection.more » Results from a suite of twin perturbation experiments for four tropical cyclones suggest that the error growth is significantly higher in cloud permitting simulation at 3.3 km resolutions compared to simulations at 3.3 km and 10 km resolution with parameterized convection. Convective parameterizations with prescribed convective time scales typically longer than the model time step allows the effects of microphysical tendencies to average out so convection responds to a smoother dynamical forcing. Without convective parameterizations, the finer-scale instabilities resolved at 3.3 km resolution and stronger vertical motion that results from the cloud microphysical parameterizations removing super-saturation at each model time step can ultimately feed the error growth in convection permitting simulations. This implies that careful considerations and/or improvements in cloud parameterizations are needed if numerical predictions are to be improved through increased model resolution. Rapid upscale error growth from convective scales may ultimately limit the intrinsic mesoscale predictability of the TCs, which further supports the needs for probabilistic forecasts of these events, even at the mesoscales.« less

  8. Tropical Cyclone Spin-Up Revisited

    DTIC Science & Technology

    2009-05-01

    Rev. Earth Planet. Sci. 31: 75–104. Emanuel KA, Neelin JD, Bretherton CS. 1994. On large-scale circulations in convecting atmospheres . Q. J. R...cyclones and other rapidly rotating atmospheric vortices. Dyn. Atmos. Oceans 40: 189–208. Smith RK, Montgomery MT, Vogl S. 2008. A critique of Emanuel’s...surface heat exchange, was first coined by Yano and Emanuel (1991) to denote the source of fluctuations in subcloud-layer entropy aris- ing from

  9. Typhoons Pat and Odessa in the Western Pacific Ocean

    NASA Image and Video Library

    1985-08-30

    51I-35-078 (30 Aug 1985) --- Typhoons Pat (left) and Odessa in the western Pacific. Of the many tropical cyclones photographed by the STS 51-I crew, the dual typhoons of Pat and Odessa were the most unusual. The twin typhoons constitute a Fujiwara system of connected cyclones first described by the Japanese meteorologist after whom the phenomena has been named. Never before have such paired typhoons been photographed from orbit.

  10. Bill spurs efforts to improve forecasting of inland flooding from tropical storms

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Newly-enacted U.S. legislation to reduce the threat of inland flooding from tropical storms could provide a "laser beam" focus to dealing with this natural hazard, according to Rep. Bob Etheridge (D-N.C.), the chief sponsor of the bill.The Tropical Cyclone Inland Forecasting Improvement and Warning System Development Act, (PL. 107-253), signed into law on 29 October, authorizes the National Oceanic and Atmospheric Administration's U.S. Weather Research Program (USWRP) to improve the capability to accurately forecast inland flooding from tropical storms through research and modeling.

  11. Physical understanding of the tropical cyclone wind-pressure relationship.

    PubMed

    Chavas, Daniel R; Reed, Kevin A; Knaff, John A

    2017-11-08

    The relationship between the two common measures of tropical cyclone intensity, the central pressure deficit and the peak near-surface wind speed, is a long-standing problem in tropical meteorology that has been approximated empirically yet lacks physical understanding. Here we provide theoretical grounding for this relationship. We first demonstrate that the central pressure deficit is highly predictable from the low-level wind field via gradient wind balance. We then show that this relationship reduces to a dependence on two velocity scales: the maximum azimuthal-mean azimuthal wind speed and half the product of the Coriolis parameter and outer storm size. This simple theory is found to hold across a hierarchy of models spanning reduced-complexity and Earth-like global simulations and observations. Thus, the central pressure deficit is an intensity measure that combines maximum wind speed, storm size, and background rotation rate. This work has significant implications for both fundamental understanding and risk analysis, including why the central pressure better explains historical economic damages than does maximum wind speed.

  12. Mesoscale air-sea interactions related to tropical and extratropical storms in the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Lewis, James K.; Hsu, S. A.

    1992-01-01

    Observations of the lower atmosphere of the northwestern Gulf of Mexico from November 1982 to mid-February 1983 were studied in which seven significant cyclones were generated in the northwestern gulf. It was found that all seven storms occurred when the vorticity correlate of the horizontal air temperature difference was about 3-5 C above the climatological mean difference. It is shown that a maximum in the frequency of tropical storms within the Gulf of Mexico exists some 275 km south of the Mississippi delta at 27 deg N, 90 deg W. This maximum is a result of only those storms which originate within the gulf. Two plausible effects of the Loop Current and its rings on tropical storms are discussed. One is that these ocean features are large and consolidated heat and moisture sources from which a nearby slowly moving atmospheric disturbance can extract energy. The second is that of the cyclonic vorticity that can be generated in the lower atmosphere by such oceanographic features.

  13. Linkages of Remote Sea Surface Temperatures and Atlantic Tropical Cyclone Activity Mediated by the African Monsoon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taraphdar, Sourav; Leung, Lai-Yung R.; Hagos, Samson M.

    2015-01-28

    Warm sea surface temperatures (SSTs) in North Atlantic and Mediterranean (NAMED) can influence tropical cyclone (TC) activity in the tropical East Atlantic by modulating summer convection over western Africa. Analysis of 30 years of observations show that the NAMED SST is linked to a strengthening of the Saharan heat low and enhancement of moisture and moist static energy in the lower atmosphere over West Africa, which favors a northward displacement of the monsoonal front. These processes also lead to a northward shift of the African easterly jet that introduces an anomalous positive vorticity from western Africa to the main developmentmore » region (50W–20E; 10N–20N) of Atlantic TC. By modulating multiple processes associated with the African monsoon, this study demonstrates that warm NAMED SST explains 8% of interannual variability of Atlantic TC frequency. Thus NAME SST may provide useful predictability for Atlantic TC activity on seasonal-to-interannual time scale.« less

  14. Magnitudes of nearshore waves generated by tropical cyclone Winston, the strongest landfalling cyclone in South Pacific records. Unprecedented or unremarkable?

    NASA Astrophysics Data System (ADS)

    Terry, James P.; Lau, A. Y. Annie

    2018-02-01

    We delimit nearshore storm waves generated by category-5 Tropical Cyclone Winston in February 2016 on the northern Fijian island of Taveuni. Wave magnitudes (heights and flow velocities) are hindcast by inverse modelling, based on the characteristics of large carbonate boulders (maximum 33.8 m3, 60.9 metric tons) that were quarried from reef-front sources, transported and deposited on coral reef platforms during Winston and older extreme events. Results indicate that Winston's storm waves on the seaward-margin of reefs fringing the southeastern coasts of Taveuni reached over 10 m in height and generated flow velocities of 14 m s- 1, thus coinciding with the scale of the biggest ancient storms as estimated from pre-existing boulder evidence. We conclude that although Winston tracked an uncommon path and was described as the most powerful storm on record to make landfall in the Fiji Islands, its coastal wave characteristics were not unprecedented on centennial timescales. At least seven events of comparable magnitude have occurred over the last 400 years.

  15. High Probability of Cyclone Development in the Bay of Bengal

    NASA Image and Video Library

    2014-05-22

    The Joint Typhoon Warning Center states that formation of a significant tropical cyclone is possible in the Bay of Bengal within the next 12 - 24 hours as of 0730Z on May 21, 2014. Along with deep convective banding associated with a consolidating low-level circulation center, warm sea surface temperatures are conducive for further development. This image was taken by the Suomi NPP satellite's VIIRS instrument in two passes, the east pass around 0615Z and the west pass around 0755Z on May 21, 2014. Credit: NASA/NOAA/NPP/VIIRS The Joint Typhoon Warning Center states that formation of a significant tropical cyclone is possible in the Bay of Bengal within the next 12 - 24 hours as of 0730Z on May 21, 2014. Along with deep convective banding associated with a consolidating low-level circulation center, warm sea surface temperatures are conducive for further development. This image was taken by the Suomi NPP satellite's VIIRS instrument in two passes, the east pass around 0615Z and the west pass around 0755Z on May 21, 2014.

  16. Contribution of tropical cyclones to abnormal sea surface temperature warming in the Yellow Sea in December 2004

    NASA Astrophysics Data System (ADS)

    Kim, Taekyun; Choo, Sung-Ho; Moon, Jae-Hong; Chang, Pil-Hun

    2017-12-01

    Unusual sea surface temperature (SST) warming occurred over the Yellow Sea (YS) in December 2004. To identify the causes of the abnormal SST warming, we conducted an analysis on atmospheric circulation anomalies induced by tropical cyclones (TCs) and their impacts on upper ocean characteristics using multiple datasets. With the analysis of various datasets, we explored a new aspect of the relationship between TC activity and SST. The results show that there is a significant link between TC activity over the Northwest Pacific (NWP) and SST in the YS. The integrated effect of consecutive TCs activity induces a large-scale atmospheric cyclonic circulation anomaly over the NWP and consequently anomalous easterly winds over the YS and East China Sea. The mechanism of the unusually warm SST in the YS can be explained by considering TCs acting as an important source of Ekman heat transport that results in substantial intrusion of relatively warm surface water into the YS interior. Furthermore, TC-related circulation anomalies contribute to the retention of the resulting warm SST anomalies in the entire YS.

  17. Objective Operational Utilization of Satellite Microwave Scatterometer Observations of Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    Cardone, Vincent J.; Cox, Andrew T.

    2000-01-01

    This study has demonstrated that high-resolution scatterometer measurements in tropical cyclones and other high-marine surface wind regimes may be retrieved accurately for wind speeds up to about 35 mls (1-hour average at 10 m) when the scatterometer data are processed through a revised geophysical model function, and a spatial adaptive algorithm is applied which utilizes the fact that wind direction is so tightly constrained in tile inner core of severe marine storms that wind direction may be prescribed from conventional data. This potential is demonstrated through case studies with NSCAT data in a severe West Pacific Typhoon (Violet, 1996) and an intense North Atlantic hurricane (Lili, 1996). However, operational scatterometer winds from NSCAT and QuickScat in hurricanes and severe winter storms are biased low in winds above 25 m/s. We have developed an inverse model to specify the entire surface wind field about a tropical cyclone from operational QuickScat scatterometer measurements within 150 nm of a storm center with the restriction that only wind speeds up to 20 m/s are used until improved model function are introduced. The inverse model is used to specify the wind field over the entire life-cycle of Hurricane Floyd (1999) for use to drive an ocean wave model. The wind field compares very favorably with wind fields developed from the copious aircraft flight level winds obtained in this storm.

  18. Vulnerability Assessment of Housing Damage in the Philippines Due to an Increase Increase in Typhoon Intensity

    NASA Astrophysics Data System (ADS)

    Esteban, Miguel; Stromberg, Per; Gasparatos, Alexandros

    2010-05-01

    It is currently feared that the increase in surface sea temperature resulting from increasing level of greenhouse gases in the atmosphere could result in higher tropical cyclone intensity in the future. Although the vulnerability of infrastructure and economic systems have been studied for a number of developed countries, very little work has been done on developing countries. The present work first attempts to evaluate the vulnerability of different regions in the Philippines to the passage of tropical cyclones. To this effect a total of 22 typhoons and tropical storms that affected the Philippines were analysed for the period 2003-2008. The data used was collected by the National Disaster Coordinating Council of the Philippines, who issue "SitRep" NDCC Reports after each major storm. This agency provides damage data for each region, including number of casualties, affected people, damaged and destroyed houses, and losses in the infrastructure and agriculture. The likely economic effects of increased typhoon intensity by using a Monte Carlo Simulation that magnifies the intensity of historical tropical cyclones between the years 1978 and 2008 to simulate the economic damage by 2085. The methodology used is based on the work of Esteban et al. (2009), which in turn uses the results of Knutson and Tuleya (2004) for the estimation of the increase in tropical cyclone intensity in 2085. The results show that downtime could increase from a national 1% to 1.3% by 2050 if economic and population growth are taken into account (29 to 36bn USD, from a total GDP of 2,757bn USD by 2050). If these are ignored the time lost each year can be estimated to cost around 630m USD (PPP) for the control scenario, which could increase to between 766m or 945mm USD by the year 2085 for the two different scenarios considered. This indirect damage depends on the geographical location and is for example higher in some areas of the northern island of Luzon, while the island of Mindanao in the south is almost unaffected due to its proximity to the equator. The estimation of the damage shows that the number of houses partially or totally destroyed could increase by up to 58% in certain regions by 2085. The historical damage data shows how the adaptive capacity values of each region given by Yusuf and Herminia (2009) are crucial to the amount of damage recorded. These authors defined this parameter as the degree to which adjustments in practices, processes or structures can moderate or offset potential damage or take advantage of opportunities from climate change. This clearly highlights the importance of mitigation measures to increase the resilience of communities in the future. This is a significant conclusion of the present paper, independent of whether tropical cyclones increase in intensity or not.

  19. A Statistical Approach For Modeling Tropical Cyclones. Synthetic Hurricanes Generator Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasqualini, Donatella

    This manuscript brie y describes a statistical ap- proach to generate synthetic tropical cyclone tracks to be used in risk evaluations. The Synthetic Hur- ricane Generator (SynHurG) model allows model- ing hurricane risk in the United States supporting decision makers and implementations of adaptation strategies to extreme weather. In the literature there are mainly two approaches to model hurricane hazard for risk prediction: deterministic-statistical approaches, where the storm key physical parameters are calculated using physi- cal complex climate models and the tracks are usually determined statistically from historical data; and sta- tistical approaches, where both variables and tracks are estimatedmore » stochastically using historical records. SynHurG falls in the second category adopting a pure stochastic approach.« less

  20. Impact of tropical cyclones on modeled extreme wind-wave climate

    DOE PAGES

    Timmermans, Ben; Stone, Daithi; Wehner, Michael; ...

    2017-02-16

    Here, the effect of forcing wind resolution on the extremes of global wind-wave climate are investigated in numerical simulations. Forcing winds from the Community Atmosphere Model at horizontal resolutions of ~1.0° and ~0.25° are used to drive Wavewatch III. Differences in extreme wave height are found to manifest most strongly in tropical cyclone (TC) regions, emphasizing the need for high-resolution forcing in those areas. Comparison with observations typically show improvement in performance with increased forcing resolution, with a strong influence in the tail of the distribution, although simulated extremes can exceed observations. A simulation for the end of the 21stmore » century under a RCP 8.5 type emission scenario suggests further increases in extreme wave height in TC regions.« less

  1. Impact of tropical cyclones on modeled extreme wind-wave climate

    NASA Astrophysics Data System (ADS)

    Timmermans, Ben; Stone, Dáithí; Wehner, Michael; Krishnan, Harinarayan

    2017-02-01

    The effect of forcing wind resolution on the extremes of global wind-wave climate are investigated in numerical simulations. Forcing winds from the Community Atmosphere Model at horizontal resolutions of ˜1.0° and ˜0.25° are used to drive Wavewatch III. Differences in extreme wave height are found to manifest most strongly in tropical cyclone (TC) regions, emphasizing the need for high-resolution forcing in those areas. Comparison with observations typically show improvement in performance with increased forcing resolution, with a strong influence in the tail of the distribution, although simulated extremes can exceed observations. A simulation for the end of the 21st century under a RCP 8.5 type emission scenario suggests further increases in extreme wave height in TC regions.

  2. Characteristics of Tropical Cyclones in High-Resolution Models of the Present Climate

    NASA Technical Reports Server (NTRS)

    Shaevitz, Daniel A.; Camargo, Suzana J.; Sobel, Adam H.; Jonas, Jeffery A.; Kim, Daeyhun; Kumar, Arun; LaRow, Timothy E.; Lim, Young-Kwon; Murakami, Hiroyuki; Roberts, Malcolm J.; hide

    2014-01-01

    The global characteristics of tropical cyclones (TCs) simulated by several climate models are analyzed and compared with observations. The global climate models were forced by the same sea surface temperature (SST) in two types of experiments, using a climatological SST and interannually varying SST. TC tracks and intensities are derived from each model's output fields by the group who ran that model, using their own preferred tracking scheme; the study considers the combination of model and tracking scheme as a single modeling system, and compares the properties derived from the different systems. Overall, the observed geographic distribution of global TC frequency was reasonably well reproduced. As expected, with the exception of one model, intensities of the simulated TC were lower than in observations, to a degree that varies considerably across models.

  3. Rayleigh convective instability in the presence of phase transitions of water vapor. The formation of large-scale eddies and cloud structures

    NASA Astrophysics Data System (ADS)

    Shmerlin, B. Ya; Kalashnik, M. V.

    2013-05-01

    Convective motions in moist saturated air are accompanied by the release of latent heat of condensation. Taking this effect into account, we consider the problem of convective instability of a moist saturated air layer, generalizing the formulation of the classical Rayleigh problem. An analytic solution demonstrating the fundamental difference between moist convection and Rayleigh convection is obtained. Upon losing stability in the two-dimensional case, localized convective rolls or spatially periodic chains of rollers with localized areas of upward motion evolve. In the case of axial symmetry, the growth of localized convective vortices with circulation characteristic of tropical cyclones (hurricanes) is possible at the early stages of development and on the scale of tornados to tropical cyclones.

  4. Intensity of vortices: from soap bubbles to hurricanes

    PubMed Central

    Meuel, T.; Xiong, Y. L.; Fischer, P.; Bruneau, C. H.; Bessafi, M.; Kellay, H.

    2013-01-01

    By using a half soap bubble heated from below, we obtain large isolated single vortices whose properties as well as their intensity are measured under different conditions. By studying the effects of rotation of the bubble on the vortex properties, we found that rotation favors vortices near the pole. Rotation also inhibits long life time vortices. The velocity and vorticity profiles of the vortices obtained are well described by a Gaussian vortex. Besides, the intensity of these vortices can be followed over long time spans revealing periods of intensification accompanied by trochoidal motion of the vortex center, features which are reminiscent of the behavior of tropical cyclones. An analysis of this intensification period suggests a simple relation valid for both the vortices observed here and for tropical cyclones. PMID:24336410

  5. Characteristics of Tropical Cyclones in High-resolution Models in the Present Climate

    NASA Technical Reports Server (NTRS)

    Shaevitz, Daniel A.; Camargo, Suzana J.; Sobel, Adam H.; Jonas, Jeffrey A.; Kim, Daehyun; Kumar, Arun; LaRow, Timothy E.; Lim, Young-Kwon; Murakami, Hiroyuki; Reed, Kevin; hide

    2014-01-01

    The global characteristics of tropical cyclones (TCs) simulated by several climate models are analyzed and compared with observations. The global climate models were forced by the same sea surface temperature (SST) fields in two types of experiments, using climatological SST and interannually varying SST. TC tracks and intensities are derived from each model's output fields by the group who ran that model, using their own preferred tracking scheme; the study considers the combination of model and tracking scheme as a single modeling system, and compares the properties derived from the different systems. Overall, the observed geographic distribution of global TC frequency was reasonably well reproduced. As expected, with the exception of one model, intensities of the simulated TC were lower than in observations, to a degree that varies considerably across models.

  6. Storm surge modeling and applications in coastal areas

    USGS Publications Warehouse

    Dube, Shisir K.; Murty, Tad S.; Feyen, Jesse C.; Cabrera, Reggina; Harper, Bruce A.; Bales, Jerad D.; Amer, Saud A.

    2010-01-01

    This chapter introduces the reader to a wide spectrum of storm surge modeling systems used to assess the impact of tropical cyclones, covering a range of numerical methods, model domains, forcing and boundary conditions, and purposes. New technologies to obtain data such as deployment of temporary sensors and remote sensing practices to support modeling are also presented. Extensive storm surge modeling applications have been made with existing modeling systems and some of them are described in this chapter.The authors recognize the importance of evaluating river-ocean interactions in coastal environments during tropical cyclones. Therefore, the coupling of hydraulic (riverine) and storm surge models is discussed. In addition, results from studies performed in the coast of India are shown which generated maps to help emergency managers and reduce risk due to coastal inundation.

  7. Combining New Satellite Tools and Models to Examine Role of Mesoscale Interactions in Formation and Intensification of Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    Simpson, Joanne; Pierce, H.; Ritchie, L.; Liu, T.; Brueske, K.; Velden, C.; Halverson, J.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The objective of this research is to start filling the mesoscale gap to improve understanding and probability forecasts of formation and intensity variations of tropical cyclones. Sampling by aircraft equipped to measure mesoscale processes is expensive, thus confined in place and time. Hence we turn to satellite products. This paper reports preliminary results of a tropical cyclone genesis and early intensification study. We explore the role of mesoscale processes using a combination of products from TRMM, QuikSCAT, AMSU, also SSM/I, geosynchronous and model output. Major emphasis is on the role of merging mesoscale vortices. These initially form in midlevel stratiform cloud. When they form in regions of lowered Rossby radius of deformation (strong background vorticity) the mesoscale vortices can last long enough to interact and merge, with the weaker vortex losing vorticity to the stronger, which can then extend down to the surface. In an earlier cyclongenesis case (Oliver 1993) off Australia, intense deep convection occurred when the stronger vortex reached the surface; this vortex became the storm center while the weaker vortex was sheared out as the major rainband. In our study of Atlantic tropical cyclones originating from African waves, we use QuikSCAT to examine surface winds in the African monsoon trough and in the vortices which move westward off the coast, which may or may not undergo genesis (defined by NHC as reaching TD, or tropical depression, with a west wind to the south of the surface low). We use AMSU mainly to examine development of warm cores. TRMM passive microwave TMI is used with SSM/I to look at the rain structure, which often indicates eye formation, and to look at the ice scattering signatures of deep convection. The TRMM precipitation radar, PR, when available, gives precipitation cross sections. So far we have detailed studies of two African-origin cyclones, one which became severe hurricane Floyd 1999, and the other reached TD2 in June 2000 and then died out. The atmosphere off West African is dry and stable. It becomes less so between June and September, as the SST and convection heat up. QuikSCAT shows the African monsoon trough and shear zone extend westward over the ocean to nearly 30 degrees West. The evidence is strong that the two cyclones had in common multiple midlevel mergers, which extended to the surface keeping the surface vortex strong. These continued until both systems were designated TD's by NHC. In the June 2000 case, the main reason for failure was the lower SST and dry, stable atmosphere. This is shown by the comparison of the equivalent potential temperature maps and profiles with those from pre-Floyd. In the vortex which became Floyd, QuikSCAT shows continuous importation of high theta e (warm, moist) air from the south. From September 2-8, this air flowed around the vortex center, building up a high theta-e pool to the north. Then late on September 9, a 100-km wide jet of high theta-e air penetrated the vortex core, a major convective burst' was observed, and an intensifying, more elevated warm core was seen on AMSU. Rapid pressure fall and wind intensification were underway by 0000 UTC on September 10. Floyd became a Hurricane at 1200 UTC on Sept 10, 1999, with successive convective bursts running the hurricane thermodynamic engine by intensifying the warm core. TD2 was a strong African vortex, sustained by moderate convection (up to about 12.5 km) offshore of Africa. It peaked on June 23, showing an apparent "eye" on passive microwave composites. However, it could not assemble the ingredients for a convective burst. Thus it failed to get the thermodynamic hurricane engine going before it moved too far west of the region of lowered Rossby radius. By June 26, cloud systems were dying out. On June 25, a surface vortex was no longer seen on QuikSCAT, although one continued above the surface on model profiles until June 27. One of our main findings so far is showing the role of the mesoscale vortex interactions in sustaining some African vortices far out in to the mid Atlantic, where under adequate thermal/moisture conditions the hurricane heat engine can sometimes be started. We are working on similar studies of Cindy and Irene 1999. Cindy illustrates a case of wind shear working against an early-stage hurricane heat engine, while Irene formed from a Caribbean wave. An enormous value of combinations of satellite tools is that tropical cyclones can be studied in all parts of the global oceans where they occur. Detailed studies like ours are labor intensive but many statistical studies can be based on physical postulates developed. There are other new tools such as MODIS on TERRA of the Earth Observing System (EOS) which can be used to study the microphysics of tropical cyclones world wide, in particular to investigate the presence of mixed phase and the impact of atmospheric aerosols on the hydrometeor structure and rainfall from tropical cyclones.

  8. The Air-Sea Interface and Surface Stress under Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander; Lukas, Roger; Donelan, Mark; Ginis, Isaac

    2013-04-01

    Air-sea interaction dramatically changes from moderate to very high wind speed conditions (Donelan et al. 2004). Unresolved physics of the air-sea interface are one of the weakest components in tropical cyclone prediction models. Rapid disruption of the air-water interface under very high wind speed conditions was reported in laboratory experiments (Koga 1981) and numerical simulations (Soloviev et al. 2012), which resembled the Kelvin-Helmholtz instability at an interface with very large density difference. Kelly (1965) demonstrated that the KH instability at the air-sea interface can develop through parametric amplification of waves. Farrell and Ioannou (2008) showed that gustiness results in the parametric KH instability of the air-sea interface, while the gusts are due to interacting waves and turbulence. The stochastic forcing enters multiplicatively in this theory and produces an exponential wave growth, augmenting the growth from the Miles (1959) theory as the turbulence level increases. Here we complement this concept by adding the effect of the two-phase environment near the mean interface, which introduces additional viscosity in the system (turning it into a rheological system). The two-phase environment includes air-bubbles and re-entering spray (spume), which eliminates a portion of the wind-wave wavenumber spectrum that is responsible for a substantial part of the air sea drag coefficient. The previously developed KH-type interfacial parameterization (Soloviev and Lukas 2010) is unified with two versions of the wave growth model. The unified parameterization in both cases exhibits the increase of the drag coefficient with wind speed until approximately 30 m/s. Above this wind speed threshold, the drag coefficient either nearly levels off or even slightly drops (for the wave growth model that accounts for the shear) and then starts again increasing above approximately 65 m/s wind speed. Remarkably, the unified parameterization reveals a local minimum of the drag coefficient wind speed dependence around 65 m/s. This minimum may contribute to the rapid intensification of storms to major tropical cyclones. The subsequent slow increase of the drag coefficient with wind above 65 m/s serves as an obstacle for further intensification of tropical cyclones. Such dependence may explain the observed bi-modal distribution of tropical cyclone intensity. Implementation of the new parameterization into operational models is expected to improve predictions of tropical cyclone intensity and the associated wave field. References: Donelan, M. A., B. K. Haus, N. Reul, W. Plant, M. Stiassnie, H. Graber, O. Brown, and E. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds, Farrell, B.F, and P.J. Ioannou, 2008: The stochastic parametric mechanism for growth of wind-driven surface water waves. Journal of Physical Oceanography 38, 862-879. Kelly, R.E., 1965: The stability of an unsteady Kelvin-Helmholtz flow. J. Fluid Mech. 22, 547-560. Koga, M., 1981: Direct production of droplets from breaking wind-waves-Its observation by a multi-colored overlapping exposure technique, Tellus 33, 552-563. Miles, J.W., 1959: On the generation of surface waves by shear flows, part 3. J. Fluid. Mech. 6, 583-598. Soloviev, A.V. and R. Lukas, 2010: Effects of bubbles and sea spray on air-sea exchanges in hurricane conditions. Boundary-Layer Meteorology 136, 365-376. Soloviev, A., A. Fujimura, and S. Matt, 2012: Air-sea interface in hurricane conditions. J. Geophys. Res. 117, C00J34.

  9. NASA Satellite Captures Tropical Cyclones Tomas and Ului

    NASA Image and Video Library

    2010-03-17

    NASA Image acquired March 14 - 15, 2010 Two fierce tropical cyclones raged over the South Pacific Ocean in mid-March 2010, the U.S. Navy’s Joint Typhoon Warning Center (JTWC) reported. Over the Solomon Islands, Tropical Cyclone Ului had maximum sustained winds of 130 knots (240 kilometers per hour, 150 miles per hour) and gusts up to 160 knots (300 km/hr, 180 mph). Over Fiji, Tropical Cyclone Tomas had maximum sustained winds of 115 knots (215 km/hr, 132 mph) and gusts up to 140 knots (260 km/hr, 160 mph). The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra and Aqua satellites captured both storms in multiple passes over the South Pacific on March 15, 2010, local time. The majority of the image is from the morning of March 15 (late March 14, UTC time) as seen by MODIS on the Terra satellite, with the right portion of the image having been acquired earliest. The wedge-shaped area right of center is from Aqua MODIS, and it was taken in the early afternoon of March 15 (local time). Although it packs less powerful winds, according to the JTWC, Tomas stretches across a larger area. It was moving over the northern Fiji islands when Terra MODIS captured the right portion of the image. According to early reports, Tomas forced more than 5,000 people from their homes while the islands sustained damage to crops and buildings. The JTWC reported that Tomas had traveled slowly toward the south and was passing over an area of high sea surface temperatures. (Warm seas provide energy for cyclones.) This storm was expected to intensify before transitioning to an extratropical storm. Ului is more compact and more powerful. A few hours before this image was taken, the storm had been an extremely dangerous Category 5 cyclone with sustained winds of 140 knots (260 km/hr, 160 mph). Ului degraded slightly before dealing the southern Solomon Islands a glancing blow. Initial news reports say that homes were damaged on the islands, but no one was injured. Like Tomas, Ului had been moving westward over an area of high sea surface temperatures. This storm was expected to continue moving westward before turning south and eventually weakening. The high-resolution image provided above is at 500 meters per pixel. The MODIS Rapid Response System provides this image at additional resolutions. NASA image by Jeff Schmaltz, MODIS Rapid Response Team, Goddard Space Flight Center. Caption by Michon Scott and Holli Riebeek. Instrument: Terra - MODIS To learn more about this image go here: earthobservatory.nasa.gov/IOTD/view.php?id=43154..

  10. A coupled atmosphere-ocean-wave modeling approach for a Tropical Like Cyclone in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Ricchi, Antonio; Miglietta, M. Marcello; Barbariol, Francesco; Benetazzo, Alvise; Bonaldo, Davide; Falcieri, Francesco; Russo, Aniello; Sclavo, Mauro; Carniel, Sandro

    2016-04-01

    In November 6-8, 2011, in the Balearic islands an extra-tropical depression developed into a Tropical-Like Cyclone (TLC) characterized by a deep-warm core, leading to a mean sea level pressure minimum of about 991 hPa, 10 m wind speeds higher than 28 m/s around the eye, and very intense rainfall, especially in the Gulf of Lion. To explore in detail the effect of the sea surface temperature on the Medicane evolution, we employed the coupled modeling system COAWST, which consists of the ROMS model for the hydrodynamic part, the WRF model for the meteorological part, and the SWAN for the surface wave modeling. All model run over 5 km domain (same domain for ROMS and SWAN). COAWST was used with different configurations: in Stand Alone (SA) mode (that is, with only the atmospheric part), in atmosphere-ocean coupled mode (AO), and in a fully coupled version including also surface waves (AOW). Several sensitivity simulations performed with the SA approach were undertaken to simulate the TLC evolution. Especially in the later stage of the lifetime, when the cyclone was weaker, the predictability appears limited. Sensitivity simulations have considered the effect of the cumulus scheme (using an explicit scheme the Medicane does not develop and remains an extra-tropical depression) and the PBL scheme (using MYJ or MYNN resulting "Medicane" are extremely similar, although the roughness appears rather different among the two experiments). Comparing the three runs, the effects of different simulations on the Medicane tracks are significant only in the later stage of the cyclone lifetime. In the overall modeled basin, wind intensity is higher in the SA case w.r.t. both coupled runs. When compared to case AO, winds are about 1 m/s larger, even though the spatial distribution is very similar (possibly because of the lower SST produced by case AO). Case AOW produces less intense winds then SA and AO case in the areas where the wave is most developed (differences are about 2-4 m/s), while they are more intense in the neighborhood of the eye of the cyclone. Moreover, the inclusion of the wave model (AOW) has implications in the water column, by changing the depth of the ocean mixed layer along the track of the Medicane, so that eventually the SST in AOW run is colder than in AO. The date chosen for the run initialization appears important: an earlier initial condition allows to properly simulate the evolution of the cyclone from the cyclogenesis and to include the effect of the air-sea interaction through the coupled models.

  11. Weather Avoidance Guidelines for NASA Global Hawk High-Altitude UAS

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; Zipser, Edward J.; Velden, Chris; Monette, Sarah; Heymsfield, Gerry; Braun, Scott; Newman, Paul; Black, Pete; Black, Michael; Dunion, Jason

    2014-01-01

    NASA operates two Global Hawk unmanned aircraft systems for Earth Science research projects. In particular, they are used in the Hurricane and Severe Storm Sentinel (HS3) project during 2012, 2013, and 2014 to take measurements from the environment around tropical cyclones, and from directly above tropical cyclones. There is concern that strict adherence to the weather avoidance rules used in 2012 may sacrifice the ability to observe important science targets. We have proposed modifications to these weather avoidance rules that we believe will improve the ability to observe science targets without compromising aircraft safety. The previous guidelines, used in 2012, specified: Do not approach thunderstorms within 25 nm during flight at FL500 or below. When flying above FL500: Do not approach reported lightning within 25NM in areas where cloud tops are reported at FL500 or higher. Aircraft should maintain at least 10000 ft vertical separation from reported lightning if cloud tops are below FL500. No over-flight of cumulus tops higher than FL500. No flight into forecast or reported icing conditions. No flight into forecast or reported moderate or severe turbulence Based on past experience with high-altitude flights over tropical cyclones, we have recommended changing this guidance to: Do not approach thunderstorms within 25 nm during flight at FL500 or below. Aircraft should maintain at least 5000 ft vertical separation from significant convective cloud tops except: a) When cloud tops above FL500: In the event of reported significant lightning activity or indicators of significant overshooting tops, do not approach within 10-25 nm, depending on pilot discretion and advice from Mission Scientist. b) When cloud tops are below FL500, maintain 10000 ft separation from reported significant lightning or indicators of significant overshooting tops. No flight into forecasted or reported icing conditions. No flight into forecasted or reported moderate or severe turbulence The key changes have to do with overflight of high convective cloud tops and those producing lightning. Experience shows that most tropical oceanic convection (including that in tropical cyclones) is relatively gentle even if the cloud tops are quite high, and can be safely overflown. Exceptions are convective elements producing elevated lightning flash rates (more than just the occasional flash, which would trigger avoidance under the previous rules) and significant overshooting cloud tops.

  12. Structural Variability of Tropospheric Growth Factors Transforming Mid-latitude Cyclones to Severe Storms over the North Atlantic

    NASA Astrophysics Data System (ADS)

    Wild, Simon; Befort, Daniel J.; Leckebusch, Gregor C.

    2015-04-01

    The development of European surface wind storms out of normal mid-latitude cyclones is substantially influenced by upstream tropospheric growth factors over the Northern Atlantic. The main factors include divergence and vorticity advection in the upper troposphere, latent heat release and the presence of instabilities of short baroclinic waves of suitable wave lengths. In this study we examine a subset of these potential growth factors and their related influences on the transformation of extra-tropical cyclones into severe damage prone surface storm systems. Previous studies have shown links between specific growth factors and surface wind storms related to extreme cyclones. In our study we investigate in further detail spatial and temporal variability patterns of these upstream processes at different vertical levels of the troposphere. The analyses will comprise of the three growth factors baroclinicity, latent heat release and upper tropospheric divergence. Our definition of surface wind storms is based on the Storm Severity Index (SSI) alongside a wind tracking algorithm identifying areas of exceedances of the local 98th percentile of the 10m wind speed. We also make use of a well-established extra-tropical cyclone identification and tracking algorithm. These cyclone tracks form the base for a composite analysis of the aforementioned growth factors using ERA-Interim Reanalysis from 1979 - 2014 for the extended winter season (ONDJFM). Our composite analysis corroborates previous similar studies but extends them by using an impact based algorithm for the identification of strong wind systems. Based on this composite analysis we further identify variability patterns for each growth factor most important for the transformation of a cyclone into a surface wind storm. We thus also address the question whether the link between storm intensity and related growth factor anomaly taking into account its spatial variability is stable and can be quantified. While the robustness of our preliminary results is generally dependent on the growth factor investigated, some examples include i) the overall availability of latent heat seems to be less important than its spatial structure around the cyclone core and ii) the variability of upper-tropospheric baroclinicity appears to be highest north of the surface position of the cyclone, especially for those that transform into a surface storm.

  13. 1995 Annual Tropical Cyclone Report

    DTIC Science & Technology

    1995-01-01

    ANNTJA.L TROPICAL .,. CYCL(MJ3 ItEI?C) RT ..,,.“.,- JCNNTTYPHOON WARNNG CENTER GU4Nl, M4RIANA ISLANDS REPORT DOCUMENTATION PAGE Form Approved...any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN...217 5.2 Comparison of Objective Techniques ............................................................ 231 5.3 Testing and Results

  14. Evaluation of the AFWA WRF 4-KM Moving Nest Model Predictions for Western North Pacific Tropical Cyclones

    DTIC Science & Technology

    2006-03-01

    16 3. Typhoon Mawar ..................................................................... 19 4. Typhoon Talim...From: Digital Typhoon website) Infrared satellite image of Tropical Storm Mawar (center) and the seedling convection of what would become...Typhoon Mawar . The red triangular points represent the period covered by the two 72-h ARW integrations. The large red dot indicates the ending time of

  15. An estimation of water origins in the vicinity of a tropical cyclone's center and associated dynamic processes

    NASA Astrophysics Data System (ADS)

    Takakura, Toshinari; Kawamura, Ryuichi; Kawano, Tetsuya; Ichiyanagi, Kimpei; Tanoue, Masahiro; Yoshimura, Kei

    2018-01-01

    To clarify the time evolution of water origins in the vicinity of a tropical cyclone (TC)'s center, we have simulated Typhoon Man-yi (July 2007) in our case study, using an isotopic regional spectral model. The model results confirm that the replacement of water origins occurs successively as the TC develops and migrates northward over the western North Pacific. It is confirmed that, in this case, a significant proportion of total precipitable water around the cyclone center comes from external regions rather than the underlying ocean during the mature stage of a TC. Similar features can also be seen in the proportion of each oceanic origin to total condensation. Indian Ocean, South China Sea, and Maritime Continent water vapors begin to increase gradually at the developing stage and reach their peak at the decay stage when the TC approaches southwestern Japan. These remote ocean vapors are transported to the east of the cyclone via the moisture conveyor belt, a zone characterized by distinct low-level moisture flux that stretches from the Indian Ocean to the TC, and are further supplied into the inner region of the TC by inflow within the boundary layer associated with its secondary circulation. Since it takes time to undergo these two dynamic processes, the delayed influence of remote ocean vapors on the TC appears to become evident during the mature stage.

  16. Tropical Cyclone Indlala

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On March 14, 2007, storm-weary Madagascar braced for its fourth land-falling tropical cyclone in as many months. Cyclone Indlala was hovering off the island's northeast coast when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite captured this photo-like image at 1:40 p.m. local time (10:40 UTC). Just over a hundred kilometers offshore, the partially cloudy eye at the heart of the storm seems like a vast drain sucking in a disk of swirling clouds. According to reports from the Joint Typhoon Warning Center issued less than three hours after MODIS captured this image, Indlala had winds of 115 knots (132 miles per hour), with gusts up to 140 knots (161 mph). Wave heights were estimated to be 36 feet. At the time of the report, the storm was predicted to intensify through the subsequent 12-hour period, to turn slightly southwest, and to strike eastern Madagascar as a Category 4 storm with sustained winds up to 125 knots (144 mph), and gusts up to 150 knots (173 mph). According to Reuters AlertNet news service, Madagascar's emergency response resources were taxed to their limit in early March 2007 as a result of extensive flooding in the North, drought and food shortages in the South, and three previous hits from cyclones in the preceding few months: Bondo in December 2006, Clovis in January 2007, and Gamede in February.

  17. Hurricane Forecasting with the High-resolution NASA Finite-volume General Circulation Model

    NASA Technical Reports Server (NTRS)

    Atlas, R.; Reale, O.; Shen, B.-W.; Lin, S.-J.; Chern, J.-D.; Putman, W.; Lee, T.; Yeh, K.-S.; Bosilovich, M.; Radakovich, J.

    2004-01-01

    A high-resolution finite-volume General Circulation Model (fvGCM), resulting from a development effort of more than ten years, is now being run operationally at the NASA Goddard Space Flight Center and Ames Research Center. The model is based on a finite-volume dynamical core with terrain-following Lagrangian control-volume discretization and performs efficiently on massive parallel architectures. The computational efficiency allows simulations at a resolution of a quarter of a degree, which is double the resolution currently adopted by most global models in operational weather centers. Such fine global resolution brings us closer to overcoming a fundamental barrier in global atmospheric modeling for both weather and climate, because tropical cyclones and even tropical convective clusters can be more realistically represented. In this work, preliminary results of the fvGCM are shown. Fifteen simulations of four Atlantic tropical cyclones in 2002 and 2004 are chosen because of strong and varied difficulties presented to numerical weather forecasting. It is shown that the fvGCM, run at the resolution of a quarter of a degree, can produce very good forecasts of these tropical systems, adequately resolving problems like erratic track, abrupt recurvature, intense extratropical transition, multiple landfall and reintensification, and interaction among vortices.

  18. Space Station Camera Captures New Views of Hurricane Harvey

    NASA Image and Video Library

    2017-08-24

    The National Hurricane Center (NHC) upgraded the remnants of tropical storm Harvey to a tropical depression on August 23, 2017 at 11 a.m. EDT (1500 UTC). Harvey became better organized and was revived after moving from Mexico's Yucatan Peninsula into the Bay of Campeche. The warm waters of the Gulf of Mexico and favorable vertical wind shear promoted the regeneration of the tropical cyclone. This video includes views from The International Space Station recorded on August 24, 2017 at 6:15 p.m. Eastern Time.

  19. Identification of a subtropical cyclone in the proximity of the Canary Islands and its analysis by numerical modeling

    NASA Astrophysics Data System (ADS)

    Quitián-Hernández, L.; Martín, M. L.; González-Alemán, J. J.; Santos-Muñoz, D.; Valero, F.

    2016-09-01

    Subtropical cyclones (STC) are low-pressure systems that share tropical and extratropical characteristics. Because of the great economic and social damage, the study of these systems has recently grown. This paper analyzes the cyclone formed in October 2014 near the Canary Islands and diagnoses such a cyclone in order to identify its correspondence to an STC category, examining its dynamical and thermal evolution. Diverse fields have been obtained from three different numerical models, and several diagnostic tools and cyclone phase space diagrams have been used. An extratropical cyclone, in its early stage, experimented a process of cut-off and isolation from the midlatitude flow. The incursion of a trough in conjunction with a low-level baroclinic zone favored the formation of the STC northwestern of the Canary Islands. Streamers of high potential vorticity linked to the cyclone favored strong winds and precipitation in the study domain. Cyclone phase space diagrams are used to complement the synoptic analysis and the satellite images of the cyclone to categorize such system. The diagrams reveal the transition from extratropical cyclone to STC remaining for several days with a subtropical structure with a quite broad action radius. The study of the mesoscale environment parameters showed an enhanced conditional instability through a deep troposphere layer. It is shown that moderate to strong vertical wind shear together with relatively warm sea surface temperature determine conditions enabling the development of long-lived convective structures.

  20. Cloud evaluation using satellite simulators and cloud changes for global nonhydrostatic simulations with NICAM

    NASA Astrophysics Data System (ADS)

    Satoh, M.; Noda, A. T.; Kodama, C.; Yamada, Y.; Hashino, T.

    2012-12-01

    Global cloud distributions and properties simulated by the global nonhydrostatic model, NICAM (Nonhydrostatic Icosahedral Atmospheric Model), are evaluated and their future changes are discussed. First, we evaluated the simulated cloud properties produced by a case study of the 3.5km mesh experiment of NICAM using the satellite simulator package (the Joint-simulator) with cloud microphysics oriented approach (Hashino et al. 2012). Then, we analyzed future cloud changes using various sets of simulations under the present and the future global warming conditions. The results show that the zonal averaged ice water path (IWP) generally decreases or marginally unchanged in the tropics, while IWP in the extra-tropics increases. The upper cloud fraction increases both in the tropics and in the extra-tropics in general. We further analyzed contributions of cloud systems such as cloud clusters, tropical cyclones (TCs), and storm-tracks to these changes. Probability distribution of the larger cloud clusters decreases, while that of the smaller ones increases, consistent with the decrease in the number of tropical cyclones in the future climate. Average liquid water path (LWP) and IWP associated with each tropical cyclone are diagnosed, and it is found that both the associated LWP and IWP increase under the warmer condition. Even though, since the number of the intensive cloud systems decrease, the average IWP decreases. It should be remarked that the change in TC tracks largely contribute to the change in the horizontal distribution of clouds. The NICAM simulations also show that the storm-tracks shift poleward, and the storms become less frequent and stronger in the extra-tropics, similar to the results of other general circulation models. Both LWP and IWP associated with the storms also increase in the warmer climate in the NICAM simulations. This results in increase in the upper clouds under the warmer climate condition, as described by Miura et al. (2005). References: Hashino, T., Satoh, M., Hagihara, Y., Kubota, T., Matsui, T., Nasuno, T., and Okamoto, H. (2012), Evaluating Global Cloud Distribution and Microphysics from the NICAM against CloudSat and CALIPSO, J. Geophys. Res., submitted. Miura, H., Tomita,H., Nasuno,T., Iga, S., Satoh,M., and Matsuno, T. (2005), A climate sensitivity test using a global cloud resolving model under an aqua planet condition, Geophys. Res. Lett., 32, L19717, doi:10.1029/2005GL023672.

Top