Broad-scale patterns of Brook Trout responses to introduced Brown Trout in New York
McKenna, James E.; Slattery, Michael T.; Kean M. Clifford,
2013-01-01
Brook Trout Salvelinus fontinalis and Brown Trout Salmo trutta are valuable sport fish that coexist in many parts of the world due to stocking introductions. Causes for the decline of Brook Trout within their native range are not clear but include competition with Brown Trout, habitat alteration, and repetitive stocking practices. New York State contains a large portion of the Brook Trout's native range, where both species are maintained by stocking and other management actions. We used artificial neural network models, regression, principal components analysis, and simulation to evaluate the effects of Brown Trout, environmental conditions, and stocking on the distribution of Brook Trout in the center of their native range. We found evidence for the decline of Brook Trout in the presence of Brown Trout across many watersheds; 22% of sampled reaches where both species were expected to occur contained only Brown Trout. However, a model of the direct relationship between Brook Trout and Brown Trout abundance explained less than 1% of data variation. Ordination showed extensive overlap of Brook Trout and Brown Trout habitat conditions, with only small components of the hypervolume (multidimensional space) being distinctive. Subsequent analysis indicated higher abundances of Brook Trout in highly forested areas, while Brown Trout were more abundant in areas with relatively high proportions of agriculture. Simulation results indicated that direct interactions and habitat conditions were relatively minor factors compared with the effects of repeated stocking of Brown Trout into Brook Trout habitat. Intensive annual stocking of Brown Trout could eliminate resident Brook Trout in less than a decade. Ecological differences, harvest behavior, and other habitat changes can exacerbate Brook Trout losses. Custom stocking scenarios with Brown Trout introductions at relatively low proportions of resident Brook Trout populations may be able to sustain healthy populations of both species within their present range.
Chivers, Douglas P.; Mathiron, Anthony; Sloychuk, Janelle R.; Ferrari, Maud C. O.
2015-01-01
Previous studies have established that when a prey animal knows the identity of a particular predator, it can use this knowledge to make an ‘educated guess' about similar novel predators. Such generalization of predator recognition may be particularly beneficial when prey are exposed to introduced and invasive species of predators or hybrids. Here, we examined generalization of predator recognition for woodfrog tadpoles exposed to novel trout predators. Tadpoles conditioned to recognize tiger trout, a hybrid derived from brown trout and brook trout, showed generalization of recognition of several unknown trout odours. Interestingly, the tadpoles showed stronger responses to odours of brown trout than brook trout. In a second experiment, we found that tadpoles trained to recognize brown trout showed stronger responses to tiger trout than those tadpoles trained to recognize brook trout. Given that tiger trout always have a brown trout mother and a brook trout father, these results suggest a strong maternal signature in trout odours. Tadpoles that were trained to recognize both brown trout and brook trout showed stronger response to novel tiger trout than those trained to recognize only brown trout or only brook trout. This is consistent with a peak shift in recognition, whereby cues that are intermediate between two known cues evoke stronger responses than either known cue. Given that our woodfrog tadpoles have no evolutionary or individual experience with trout, they have no way of knowing whether or not brook trout, brown trout or tiger trout are more dangerous. The differential intensity of responses that we observed to hybrid trout cues and each of the parental species indicates that there is a likely mismatch between risk and anti-predator response intensity. Future work needs to address the critical role of prey naivety on responses to invasive and introduced hybrid predators. PMID:26041358
Trophic relationships between a native and a nonnative predator in a system of natural lakes
Meeuwig, Michael H.; Guy, Christopher S.; Fedenberg, Wade A.
2011-01-01
Bull trout, a species of char listed as threatened under the US Endangered Species Act, have been displaced from portions of their historic range following the introduction of nonnative lake trout. It has been suggested that competitive exclusion as a result of trophic overlap between bull trout and lake trout may be the causal mechanism associated with displacement of bull trout. This study used stable isotope data to evaluate trophic relationships among native bull trout, nonnative lake trout and other fishes in seven lakes in Glacier National Park (GNP), Montana. Bull trout and lake trout had greater δ15N values relative to other fishes among lakes (δ15N = 3.0). Lake trout had greater δ15N values relative to bull trout (δ15N = +1.0). Bull trout had greater δ13C values relative to lake trout in six of the seven lakes examined. Although both bull trout and lake trout had greater δ15N values relative to other fishes within lakes in GNP, differences in δ15N and 13C between bull trout and lake trout suggest that they are consuming different prey species or similar prey species in different proportions. Therefore, displacement of bull trout as a direct result of complete overlap in food resource use is not anticipated unless diet shifts occur or food resources become limiting. Additionally, future studies should evaluate food habits to identify important prey species and sources of partial dietary overlap between bull trout and lake trout.
Scoppettone, G. Gary; Rissler, Peter H.; Shea, Sean P.; Somer, William
2012-01-01
Independence Lake (Nevada and Sierra counties, California) harbors the only extant native population of Lahontan cutthroat trout Oncorhynchus clarkii henshawi in the Truckee River system and one of two extant adfluvial populations in the Lahontan basin. The persistence of this population has been precarious for more than 50 years, with spawning runs consisting of only 30–150 fish. It is assumed that this population was much larger prior to the introduction of nonnative brook trout Salvelinus fontinalis. Brook trout overlap with cutthroat trout in upper Independence Creek, where the cutthroat trout spawn and their resulting progeny emigrate to Independence Lake. In 2005, we began removing brook trout from upper Independence Creek using electrofishers and monitored the cutthroat trout population. Stomach analysis of captured brook trout revealed cutthroat trout fry, and cutthroat trout fry survival increased significantly from 4% to 12% with brook trout removal. Prior to brook trout removal, the only Lahontan cutthroat trout progeny emigrating to Independence Lake were fry; with brook trout removal, juveniles were found entering the lake. In 2010, 237 potential spawners passed a prefabricated weir upstream of Independence Lake. Although the results of this study suggest that brook trout removal from upper Independence Creek has had a positive influence on the population dynamics of Independence Lake Lahontan cutthroat trout, additional years of removal are needed to assess the ultimate effect this action will have upon the cutthroat trout population.
Meeuwig, Michael H.; Guy, Christopher S.; Fredenberg, Wade A.
2011-01-01
Lacustrine-adfluvial bull trout, Salvelinus confluentus, migrate from spawning and rearing streams to lacustrine environments as early as age 0. Within lacustrine environments, cover habitat pro- vides refuge from potential predators and is a resource that is competed for if limiting. Competitive inter- actions between bull trout and other species could result in bull trout being displaced from cover habitat, and bull trout may lack evolutionary adaptations to compete with introduced species, such as lake trout, Salvelinus namaycush. A laboratory experiment was performed to examine habitat use and interactions for cover by juvenile (i.e., <80 mm total length) bull trout and lake trout. Differences were observed between bull trout and lake trout in the proportion of time using cover (F1,22.6=20.08, P<0.001) and bottom (F1,23.7 = 37.01, P < 0.001) habitat, with bull trout using cover and bottom habitats more than lake trout. Habitat selection ratios indicated that bull trout avoided water column habitat in the presence of lake trout and that lake trout avoided bottom habitat. Intraspecific and interspecific agonistic interactions were infrequent, but approximately 10 times greater for intraspecific inter- actions between lake trout. Results from this study provide little evidence that juvenile bull trout and lake trout compete for cover, and that species-specific differences in habitat use and selection likely result in habitat partitioning between these species.
Hansen, Michael J.; Hansen, Barry S; Beauchamp, David A.
2016-01-01
Non-native lake trout Salvelinus namaycush displaced native bull trout Salvelinus confluentus in Flathead Lake, Montana, USA, after 1984, when Mysis diluviana became abundant following its introduction in upstream lakes in 1968–1976. We developed a simulation model to determine the fishing mortality rate on lake trout that would enable bull trout recovery. Model simulations indicated that suppression of adult lake trout by 75% from current abundance would reduce predation on bull trout by 90%. Current removals of lake trout through incentivized fishing contests has not been sufficient to suppress lake trout abundance estimated by mark-recapture or indexed by stratified-random gill netting. In contrast, size structure, body condition, mortality, and maturity are changing consistent with a density-dependent reduction in lake trout abundance. Population modeling indicated total fishing effort would need to increase 3-fold to reduce adult lake trout population density by 75%. We conclude that increased fishing effort would suppress lake trout population density and predation on juvenile bull trout, and thereby enable higher abundance of adult bull trout in Flathead Lake and its tributaries.
Fetherman, Eric R.; Winkelman, Dana L.; Bailey, Larissa L.; Schisler, George J.; Davies, K.
2015-01-01
Following establishment of Myxobolus cerebralis (the parasite responsible for salmonid whirling disease) in Colorado, populations of Rainbow Trout Oncorhynchus mykissexperienced significant declines, whereas Brown Trout Salmo trutta densities increased in many locations across the state, potentially influencing the success of M. cerebralis-resistant Rainbow Trout reintroductions. We examined the effects of Brown Trout removal on the short-term (3-month) survival and movement of two crosses of reintroduced, M. cerebralis-resistant Rainbow Trout in the Cache la Poudre River, Colorado. Radio frequency identification passive integrated transponder tags and antennas were used to track movements of wild Brown Trout and stocked Rainbow Trout in reaches where Brown Trout had or had not been removed. Multistate mark–recapture models were used to estimate tagged fish apparent survival and movement in these sections 3 months following Brown Trout removal. A cross between the German Rainbow Trout and Colorado River Rainbow Trout strains exhibited similar survival and movement probabilities in the reaches, suggesting that the presence of Brown Trout did not affect its survival or movement. However, a cross between the German Rainbow Trout and Harrison Lake Rainbow Trout exhibited less movement from the reach in which Brown Trout had been removed. Despite this, the overall short-term benefits of the removal were equivocal, suggesting that Brown Trout removal may not be beneficial for the reintroduction of Rainbow Trout. Additionally, the logistical constraints of conducting removals in large river systems are substantial and may not be a viable management option in many rivers.
Petty, J. Todd; Thorne, David; Huntsman, Brock M.; Mazik, Patricia M.
2014-01-01
We tested the hypothesis that brook trout growth rates are controlled by a complex interaction of food availability, water temperature, and competitor density. We quantified trout diet, growth, and consumption in small headwater tributaries characterized as cold with low food and high trout density, larger tributaries characterized as cold with moderate food and moderate trout density, and large main stems characterized as warm with high food and low trout density. Brook trout consumption was highest in the main stem where diets shifted from insects in headwaters to fishes and crayfish in larger streams. Despite high water temperatures, trout growth rates also were consistently highest in the main stem, likely due to competitively dominant trout monopolizing thermal refugia. Temporal changes in trout density had a direct negative effect on brook trout growth rates. Our results suggest that competition for food constrains brook trout growth in small streams, but access to thermal refugia in productive main stem habitats enables dominant trout to supplement growth at a watershed scale. Brook trout conservation in this region should seek to relieve the “temperature-productivity squeeze,” whereby brook trout productivity is constrained by access to habitats that provide both suitable water temperature and sufficient prey.
Fall and winter survival of brook trout and brown trout in a north-central Pennsylvania watershed
Sweka, John A.; Davis, Lori A.; Wagner, Tyler
2017-01-01
Stream-dwelling salmonids that spawn in the fall generally experience their lowest survival during the fall and winter due to behavioral changes associated with spawning and energetic deficiencies during this time of year. We used data from Brook Trout Salvelinus fontinalis and Brown Trout Salmo trutta implanted with radio transmitters in tributaries of the Hunts Run watershed of north-central Pennsylvania to estimate survival from the fall into the winter seasons (September 2012–February 2013). We examined the effects that individual-level covariates (trout species, size, and movement rates) and stream-level covariates (individual stream and cumulative drainage area of a stream) have on survival. Brook Trout experienced significantly lower survival than Brown Trout, especially in the early fall during their peak spawning period. Besides a significant species effect, none of the other covariates examined influenced survival for either species. A difference in life history between these species, with Brook Trout having a shorter life expectancy than Brown Trout, is likely the primary reason for the lower survival of Brook Trout. However, Brook Trout also spawn earlier in the fall than Brown Trout and low flows during Brook Trout spawning may have resulted in a greater risk of predation for Brook Trout compared with Brown Trout, thereby also contributing to the observed differences in survival between these species. Our estimates of survival can aid parameterization of future population models for Brook Trout and Brown Trout through the spawning season and into winter.
Are brown trout replacing or displacing bull trout populations in a changing climate?
Al-Chokhachy, Robert K.; Schmetterling, David A.; Clancy, Chris; Saffel, Pat; Kovach, Ryan; Nyce, Leslie; Liermann, Brad; Fredenberg, Wade A.; Pierce, Ron
2016-01-01
Understanding how climate change may facilitate species turnover is an important step in identifying potential conservation strategies. We used data from 33 sites in western Montana to quantify climate associations with native bull trout (Salvelinus confluentus) and non-native brown trout (Salmo trutta) abundance and population growth rates (λ). We estimated λ using exponential growth state space models and delineated study sites based on bull trout use for either Spawning and Rearing (SR) or Foraging, Migrating, and Overwintering (FMO) habitat. Bull trout abundance was negatively associated with mean August stream temperatures within SR habitat (r = -0.75). Brown trout abundance was generally highest at temperatures between 12 and 14°C. We found bull trout λ were generally stable at sites with mean August temperature below 10°C but significantly decreasing, rare, or extirpated at 58% of the sites with temperatures exceeding 10°C. Brown trout λ were highest in SR and sites with temperatures exceeding 12°C. Declining bull trout λs at sites where brown trout were absent suggests brown trout are likely replacing bull trout in a warming climate.
Zimmerman, J.K.H.; Vondracek, B.
2006-01-01
We examined growth of native slimy sculpin (Cottus cognatus), native brook trout (Salvelinus fontinalis), and nonnative brown trout (Salmo trutta) to investigate potential interactions of a native nongame fish with native and nonnative trout. Enclosures (1 m2) were stocked with five treatments (juvenile brown trout with sculpin, juvenile brook trout with sculpin, and single species controls) at three densities. Treatments (with replication) were placed in riffles in Valley Creek, Minnesota, and growth rates were measured for six experiments. We examined the difference in growth of each species in combined species treatments compared with each species alone. We did not find evidence of interactions between brook trout and sculpin, regardless of density or fish size. However, sculpin gained greater mass when alone than with brown trout when sculpin were >16 g. Likewise, brown trout grew more when alone than with sculpin when brown trout were >24 g. In contrast, brown trout ???5 g grew more with sculpin compared with treatments alone. We suggest that native brook trout and sculpin coexist without evidence of competition, whereas nonnative brown trout may compete with sculpin. ?? 2006 NRC.
Neville, Helen M.; Dunham, Jason B.
2011-01-01
Hybridization is one of the greatest threats to native fishes. Threats from hybridization are particularly important for native trout species as stocking of nonnative trout has been widespread within the ranges of native species, thus increasing the potential for hybridization. While many studies have documented hybridization between native cutthroat trout Oncorhynchus clarkii and nonnative rainbow trout O. mykiss, fewer have focused on this issue in native rainbow trout despite widespread threats from introductions of both nonnative cutthroat trout and hatchery rainbow trout. Here, we describe the current genetic (i.e., hybridization) status of native redband trout O. mykiss gairdneri populations in the upper Boise River, Idaho. Interspecific hybridization was widespread (detected at 14 of the 41 sampled locations), but high levels of hybridization between nonnative cutthroat trout and redband trout were detected in only a few streams. Intraspecific hybridization was considerably more widespread (almost 40% of sampled locations), and several local populations of native redband trout have been almost completely replaced with hatchery coastal rainbow trout O. mykiss irideus; other populations exist as hybrid swarms, some are in the process of being actively invaded, and some are maintaining genetic characteristics of native populations. The persistence of some redband trout populations with high genetic integrity provides some opportunity to conserve native genomes, but our findings also highlight the complex decisions facing managers today. Effective management strategies in this system may include analysis of the specific attributes of each site and population to evaluate the relative risks posed by isolation versus maintaining connectivity, identifying potential sites for control or eradication of nonnative trout, and long-term monitoring of the genetic integrity of remaining redband trout populations to track changes in their status.
Turek, Kelly C.; Pegg, Mark A.; Pope, Kevin L.; Schainost, Steve
2014-01-01
Non-native trout are currently stocked to support recreational fisheries in headwater streams throughout Nebraska. The influence of non-native trout introductions on native fish populations and their role in structuring fish assemblages in these systems is unknown. The objectives of this study were to determine (i) if the size structure or relative abundance of native fish differs in the presence and absence of non-native trout, (ii) if native fish-assemblage structure differs in the presence and absence of non-native trout and (iii) if native fish-assemblage structure differs across a gradient in abundances of non-native trout. Longnose dace Rhinichthys cataractae were larger in the presence of brown trout Salmo trutta and smaller in the presence of rainbow trout Oncorhynchus mykiss compared to sites without trout. There was also a greater proportion of larger white suckers Catostomus commersonii in the presence of brown trout. Creek chub Semotilus atromaculatus and fathead minnow Pimephales promelas size structures were similar in the presence and absence of trout. Relative abundances of longnose dace, white sucker, creek chub and fathead minnow were similar in the presence and absence of trout, but there was greater distinction in native fish-assemblage structure between sites with trout compared to sites without trout as trout abundances increased. These results suggest increased risk to native fish assemblages in sites with high abundances of trout. However, more research is needed to determine the role of non-native trout in structuring native fish assemblages in streams, and the mechanisms through which introduced trout may influence native fish populations.
Brook trout use of thermal refugia and foraging habitat influenced by brown trout
Hitt, Nathaniel P.; Snook, Erin; Massie, Danielle L.
2017-01-01
The distribution of native brook trout (Salvelinus fontinalis) in eastern North America is often limited by temperature and introduced brown trout (Salmo trutta), the relative importance of which is poorly understood but critical for conservation and restoration planning. We evaluated effects of brown trout on brook trout behavior and habitat use in experimental streams across increasing temperatures (14–23 °C) with simulated groundwater upwelling zones providing thermal refugia (6–9 °C below ambient temperatures). Allopatric and sympatric trout populations increased their use of upwelling zones as ambient temperatures increased, demonstrating the importance of groundwater as thermal refugia in warming streams. Allopatric brook trout showed greater movement rates and more even spatial distributions within streams than sympatric brook trout, suggesting interference competition by brown trout for access to forage habitats located outside thermal refugia. Our results indicate that removal of introduced brown trout may facilitate native brook trout expansion and population viability in downstream reaches depending in part on the spatial configuration of groundwater upwelling zones.
Larson, Gary L.; Moore, S.E.
1995-01-01
Brook trout Salvelinus fontinalis is the native salmonid species of streams in the southern Appalachian Mountains. The present distribution of this species, once widespread from headwaters to lower reaches of large streams, is restricted to mostly headwater areas. Changes in the distribution of native brook trout in the presence of' nonnative rainbow trout Oncorhynchus mykiss have been documented in Great Smoky Mountains National Park. When rainbow trout were first found in a tributary (Rock Creek) in the park in 1979, a study was begun to assess changes through time in distribution and abundance of rainbow trout in Rock Creek and to compare the brook trout and rainbow trout associations in Rock Creek with associations found in other park streams. Abundance of brook trout was low in the downstream sections of Rock Creek in 1979a??1993. Brook trout abundance was highest in the steep-gradient, pool-dominated headwater section which was only 2 km from the confluence of Rock Creek and Cosby Creek. Rainbow trout were present in low densities in Rock Creek during the same period. Although rainbow trout were most abundant in the lower stream sections and never found in the headwater section, adult and age-0 rainbow trout were found in the middle section in 1988. Rainbow trout were absent in the middle section in 1991, but one large adult rainbow trout was present in the section in 1992 and 1993. Floods, freshets, and periods of low stream discharge appeared to play an important role in the distribution and population structure of rainbow trout in Rock Creek. The lower portion of Rock Creek was poor trout habitat because the sections were dominated by cobblea??rubble substrate and shallow riffle areas. Stream habitat appeared to be better suited for brook trout than for rainbow trout in the steep-gradient upstream sections which were dominated by boulder-cobble substrate and deep pools. The results of this study suggest that encroachment by rainbow trout can exhibit considerable ebb and flow in steep-gradient tributaries in the park, and they suggest substantial evolutionary adaptation by brook trout to the hydrological conditions in the Rock Creek drainage.
Winters, Lisa K.; Budy, Phaedra; Thiede, Gary P.
2017-01-01
Maintaining a balance between predator and prey populations can be an ongoing challenge for fisheries managers, especially in managing artificial ecosystems such as reservoirs. In a high-elevation Utah reservoir, the unintentional introduction of the Utah Chub Gila atraria and its subsequent population expansion prompted managers to experimentally shift from exclusively stocking Rainbow Trout Oncorhynchus mykiss to also stocking tiger trout (female Brown Trout Salmo trutta × male Brook Trout Salvelinus fontinalis) and Bonneville Cutthroat Trout O. clarkii utah (hereafter, Cutthroat Trout) as potential biological control agents. We measured a combination of diet, growth, temperature, and abundance and used bioenergetic simulations to quantify predator demand versus prey supply. Utah Chub were the predominant prey type for tiger trout, contributing up to 80% of the diet depending on the season. Utah Chub represented up to 70% of the total diet consumed by Cutthroat Trout. Although Utah Chub dominated the fish biomass in the reservoir, we still estimated abundances of 238,000 tiger trout, 214,000 Cutthroat Trout, and 55,000 Rainbow Trout. Consequently, when expanded to the population level of each predator, tiger trout and Cutthroat Trout consumed large quantities of Utah Chub on an annual basis: tiger trout consumed 508,000 kg (2,660 g/predator) of the standing prey population, and Cutthroat Trout consumed an estimated 322,000 kg (1,820 g/predator). The estimated combined consumption by Cutthroat Trout and tiger trout exceeded the estimate of Utah Chub annual production. As such, our results suggest that the high rates of piscivory exhibited by Cutthroat Trout and tiger trout in artificial lentic ecosystems are likely sufficient to effectively reduce the overall abundance of forage fishes and to prevent forage fishes from dominating fish assemblages. Collectively, this research provides the first documented findings on tiger trout ecology and performance, which will aid managers in designing and implementing the best stocking strategy to optimize sport fish performance, control undesirable forage fish, and enhance and maintain angler satisfaction.
Diet overlap of top-level predators in recent sympatry: bull trout and nonnative lake trout
Guy, Christopher S.; McMahon, Thomas E.; Fredenberg, Wade A.; Smith, Clinton J.; Garfield, David W.; Cox, Benjamin S.
2011-01-01
The establishment of nonnative lake trout Salvelinus namaycush in lakes containing lacustrine–adfluvial bull trout Salvelinus confluentus often results in a precipitous decline in bull trout abundance. The exact mechanism for the decline is unknown, but one hypothesis is related to competitive exclusion for prey resources. We had the rare opportunity to study the diets of bull trout and nonnative lake trout in Swan Lake, Montana during a concomitant study. The presence of nonnative lake trout in Swan Lake is relatively recent and the population is experiencing rapid population growth. The objective of this study was to evaluate the diets of bull trout and lake trout during the early expansion of this nonnative predator. Diets were sampled from 142 bull trout and 327 lake trout during the autumn in 2007 and 2008. Bull trout and lake trout had similar diets, both consumed Mysis diluviana as the primary invertebrate, especially at juvenile stages, and kokanee Oncorhynchus nerka as the primary vertebrate prey, as adults. A diet shift from primarily M. diluviana to fish occurred at similar lengths for both species, 506 mm (476–545 mm, 95% CI) for bull trout and 495 mm (470–518 mm CI) for lake trout. These data indicate high diet overlap between these two morphologically similar top-level predators. Competitive exclusion may be a possible mechanism if the observed overlap remains similar at varying prey densities and availability.
Winters, Lisa K.; Budy, Phaedra
2015-01-01
In highly managed reservoir systems, species interactions within novel fish assemblages can be difficult to predict. In high-elevation Scofield Reservoir in Utah the unintentional introduction of Utah Chub Gila atraria and subsequent population expansion prompted a shift from stocking exclusively Rainbow Trout Oncorhynchus mykiss to include tiger trout (female Brown Trout Salmo trutta × male Brook Trout Salvelinus fontinalis) and Bonneville Cutthroat Trout O. clarkii utah, which composed a novel suite of top predators and potential competitors. We examined the interspecific interactions among Scofield Reservoir piscivores using a multifaceted approach including gut analyses, stable isotopes, and gape limitation. Large Cutthroat Trout consumed 50–100% Utah Chub and tiger trout consumed 45–80%. In contrast, small and large Rainbow Trout consumed primarily invertebrate prey and exhibited significant overlap with small tiger trout, Cutthroat Trout, and Utah Chub. Large Cutthroat Trout and tiger trout occupy a top piscivore trophic niche and are more littoral, while Rainbow Trout occupy an omnivore niche space and are more pelagic. Both Cutthroat and tiger trout varied in niche space with respect to size-class, demonstrating an ontogenetic shift to piscivory at approximately 350 mm TL. Cutthroat Trout and tiger trout are capable of consuming prey up to 50% of their own size, which is larger than predicted based on their theoretical gape limit. Because it appears food resources (Utah Chub) are not limited, and performance metrics are high, competition is unlikely between Cutthroat Trout and tiger trout. In contrast, apparent survival of Rainbow Trout has recently declined significantly, potentially due to shared food resources with Utah Chub or negative behavioral interactions with other members of the community. Collectively, this research aids in understanding biotic interactions within a top-heavy and novel fish community and assists towards developing and implementing suitable management strategies to control nuisance species.
Syslo, John M.; Guy, Christopher S.; Koel, Todd M.
2016-01-01
The illegal introduction of Lake Trout Salvelinus namaycush into Yellowstone Lake, Yellowstone National Park, preceded the collapse of the native population of Yellowstone Cutthroat Trout Oncorhynchus clarkii bouvieri, producing a four-level trophic cascade. The Yellowstone Cutthroat Trout population’s collapse and the coinciding increase in Lake Trout abundance provided a rare opportunity to evaluate the feeding ecology of a native prey species and a nonnative piscivore species after the restructuring of a large lentic ecosystem. We assessed diets, stable isotope signatures, and depth-related CPUE patterns for Yellowstone Cutthroat Trout and Lake Trout during 2011–2013 to evaluate trophic overlap. To evaluate diet shifts related to density, we also compared 2011–2013 diets to those from studies conducted during previous periods with contrasting Yellowstone Cutthroat Trout and Lake Trout CPUEs. We illustrate the complex interactions between predator and prey in a simple assemblage and demonstrate how a nonnative apex predator can alter competitive interactions. The diets of Yellowstone Cutthroat Trout were dominated by zooplankton during a period when the Yellowstone Cutthroat Trout CPUE was high and were dominated by amphipods when the CPUE was reduced. Lake Trout shifted from a diet that was dominated by Yellowstone Cutthroat Trout during the early stages of the invasion to a diet that was dominated by amphipods after Lake Trout abundance had increased and after Yellowstone Cutthroat Trout prey had declined. The shifts in Yellowstone Cutthroat Trout and Lake Trout diets resulted in increased trophic similarity of these species through time due to their shared reliance on benthic amphipods. Yellowstone Cutthroat Trout not only face the threat posed by Lake Trout predation but also face the potential threat of competition with Lake Trout if amphipods are limiting. Our results demonstrate the importance of studying the long-term feeding ecology of fishes in invaded ecosystems.
Competition and predation as mechanisms for displacement of greenback cutthroat trout by brook trout
C. C. McGrath; W. M. Lewis
2007-01-01
Cutthroat trout Oncorhynchus clarkii frequently are displaced by nonnative brook trout Salvelinus fontinalis, but the ecological mechanisms of displacement are not understood. Competition for food and predation between greenback cutthroat trout O. c. stomias and brook trout were investigated in montane streams of...
Wenger, Seth J.; Isaak, Daniel J.; Dunham, Jason B.; Fausch, Kurt D.; Luce, Charles H.; Neville, Helen M.; Rieman, Bruce E.; Young, Michael K.; Nagel, David E.; Horan, Dona L.; Chandler, Gwynne L.
2011-01-01
Recent and projected climate warming trends have prompted interest in impacts on coldwater fishes. We examined the role of climate (temperature and flow regime) relative to geomorphology and land use in determining the observed distributions of three trout species in the interior Columbia River Basin, USA. We considered two native species, cutthroat trout (Oncorhynchus clarkii) and bull trout (Salvelinus confluentus), as well as nonnative brook trout (Salvelinus fontinalis). We also examined the response of the native species to the presence of brook trout. Analyses were conducted using multilevel logistic regression applied to a geographically broad database of 4165 fish surveys. The results indicated that bull trout distributions were strongly related to climatic factors, and more weakly related to the presence of brook trout and geomorphic variables. Cutthroat trout distributions were weakly related to climate but strongly related to the presence of brook trout. Brook trout distributions were related to both climate and geomorphic variables, including proximity to unconfined valley bottoms. We conclude that brook trout and bull trout are likely to be adversely affected by climate warming, whereas cutthroat trout may be less sensitive. The results illustrate the importance of considering species interactions and flow regime alongside temperature in understanding climate effects on fish.
Ostberg, C.O.; Duda, J.J.; Graham, J.H.; Zhang, S.; Haywood, K. P.; Miller, B.; Lerud, T.L.
2011-01-01
Hybridization of cutthroat trout Oncorhynchus clarkii with nonindigenous rainbow trout O. mykiss contributes to the decline of cutthroat trout subspecies throughout their native range. Introgression by rainbow trout can swamp the gene pools of cutthroat trout populations, especially if there is little selection against hybrids. We used rainbow trout, Yellowstone cutthroat trout O. clarkii bouvieri, and rainbow trout × Yellowstone cutthroat trout F1 hybrids as parents to construct seven different line crosses: F1 hybrids (both reciprocal crosses), F2 hybrids, first-generation backcrosses (both rainbow trout and Yellowstone cutthroat trout), and both parental taxa. We compared growth, morphology, and developmental instability among these seven crosses reared at two different temperatures. Growth was related to the proportion of rainbow trout genome present within the crosses. Meristic traits were influenced by maternal, additive, dominant, overdominant, and (probably) epistatic genetic effects. Developmental stability, however, was not disturbed in F1 hybrids, F2 hybrids, or backcrosses. Backcrosses were morphologically similar to their recurrent parent. The lack of developmental instability in hybrids suggests that there are few genetic incompatibilities preventing introgression. Our findings suggest that hybrids are not equal: that is, growth, development, character traits, and morphology differ depending on the genomic contribution from each parental species as well as the hybrid generation.
Genetic strategies for lake trout rehabilitation: a synthesis
Burnham-Curtis, Mary K.; Krueger, Charles C.; Schreiner, Donald R.; Johnson, James E.; Stewart, Thomas J.; Horrall, Ross M.; MacCallum, Wayne R.; Kenyon, Roger; Lange, Robert E.
1995-01-01
The goal of lake trout rehabilitation efforts in the Great Lakes has been to reestablish inshore lake trout (Salvelinus namaycush) populations to self-sustaining levels. A combination of sea lamprey control, stocking of hatchery-reared lake trout, and catch restrictions were used to enhance remnant lake trout stocks in Lake Superior and reestablish lake trout in Lakes Michigan, Huron, Erie, and Ontario. Genetic diversity is important for the evolution and maintenance of successful adaptive strategies critical to population restoration. The loss of genetic diversity among wild lake trout stocks in the Great Lakes imposes a severe constraint on lake trout rehabilitation. The objective of this synthesis is to address whether the particular strain used for stocking combined with the choice of stocking location affects the success or failure of lake trout rehabilitation. Poor survival, low juvenile recruitment, and inefficient habitat use are three biological impediments to lake trout rehabilitation that can be influenced by genetic traits. Evidence supports the hypothesis that the choices of appropriate lake trout strain and stocking locations enhance the survival of lake trout stocked into the Great Lakes. Genetic strategies proposed for lake trout rehabilitation include conservation of genetic diversity in remnant stocks, matching of strains with target environments, stocking a greater variety of lake trout phenotypes, and rehabilitation of diversity at all trophic levels.
NASA Astrophysics Data System (ADS)
Vincenzi, Simone; Crivelli, Alain J.; Jesensek, Dusan; Rossi, Gianluigi; de Leo, Giulio A.
2011-01-01
To understand the consequences of the invasion of the nonnative rainbow trout Oncorhynchus mykiss on the native marble trout Salmo marmoratus, we compared two distinct headwater sectors where marble trout occur in allopatry (MTa) or sympatry (MTs) with rainbow trout (RTs) in the Idrijca River (Slovenia). Using data from field surveys from 2002 to 2009, with biannual (June and September) sampling and tagging from June 2004 onwards, we analyzed body growth and survival probabilities of marble trout in each stream sector. Density of age-0 in September over the study period was greater for MTs than MTa and very similar between MTs and RTs, while density of trout ≥age-1 was similar for MTa and MTs and greater than density of RTs. Monthly apparent survival probabilities were slightly higher in MTa than in MTs, while RTs showed a lower survival than MTs. Mean weight of marble and rainbow trout aged 0+ in September was negatively related to cohort density for both marble and rainbow trout, but the relationship was not significantly different between MTs and MTa. No clear depression of body growth of sympatric marble trout between sampling intervals was observed. Despite a later emergence, mean weight of RTs cohorts at age 0+ in September was significantly higher than weight of both MTs and MTa. The establishment of a self-sustaining population of rainbow trout does not have a significant impact on body growth and survival probabilities of sympatric marble trout. The numerical dominance of rainbow trout in streams at lower altitudes seem to suggest that while the low summer flow pattern of Slovenian streams is favorable for rainbow trout invasion, the adaptation of marble trout to headwater environments may limit the invasion success of rainbow trout in headwaters.
Kumar, Gokhlesh; Abd-Elfattah, Ahmed; Saleh, Mona; El-Matbouli, Mansour
2013-11-25
Tetracapsuloides bryosalmonae (Myxozoa) is the causative agent of proliferative kidney disease in salmonids. We assessed differences in intensity of T. bryosalmonae infection between brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss from the clinical phase of infection onwards. Specific pathogen-free fish were exposed to T. bryosalmonae spores under controlled laboratory conditions and sampled at 6, 8, 10, 12, 14, and 17 wk post exposure (wpe), and the transmission of T. bryosalmonae from infected fish to the bryozoan Fredericella sultana was observed. Parasite load was determined in fish kidneys by quantitative real-time PCR (qRT-PCR), and parasite stages were detected in kidney, liver, and spleen tissues at different time points by immunohistochemistry. T. bryosalmonae was successfully transmitted from infected brown trout to F. sultana colonies but not from infected rainbow trout. Body length and weight of infected brown trout did not differ significantly from control brown trout during all time points, while length and weight of infected rainbow trout differed significantly compared to controls from 10 to 17 wpe. qRT-PCR revealed that parasite load was significantly higher in kidneys of brown trout compared with rainbow trout. Immunohistochemistry showed high numbers of intra-luminal stages (sporogonic stages) in kidneys of brown trout with low numbers of pre-sporogonic stages. Sporogonic stages were not seen in kidneys of rainbow trout; only high numbers of pre-sporogonic stages were detected. Numbers of pre-sporogonic stages were low in the spleen and liver of brown trout but high in rainbow trout. These data confirmed that there are differences in the development and infection progress of T. bryosalmonae between brown trout and rainbow trout.
Kumar, Gokhlesh; Abd-Elfattah, Ahmed; Saleh, Mona; El-Matbouli, Mansour
2014-01-01
Tetracapsuloides bryosalmonae (Myxozoa) is the causative agent of proliferative kidney disease in salmonids. We assessed differences in intensity of T. bryosalmonae infection between brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss from the clinical phase of infection onwards. Specific pathogen-free fish were exposed to T. bryosalmonae spores under controlled laboratory conditions and sampled at 6, 8, 10, 12, 14, and 17 wk post exposure (wpe), and the transmission of T. bryosalmonae from infected fish to the bryozoan Fredericella sultana was observed. Parasite load was determined in fish kidneys by quantitative real-time PCR (qRT-PCR), and parasite stages were detected in kidney, liver, and spleen tissues at different time points by immunohistochemistry. T. bryosalmonae was successfully transmitted from infected brown trout to F. sultana colonies but not from infected rainbow trout. Body length and weight of infected brown trout did not differ significantly from control brown trout during all time points, while length and weight of infected rainbow trout differed significantly compared to controls from 10 to 17 wpe. qRT-PCR revealed that parasite load was significantly higher in kidneys of brown trout compared with rainbow trout. Immunohistochemistry showed high numbers of intra-luminal stages (sporogonic stages) in kidneys of brown trout with low numbers of pre-sporogonic stages. Sporogonic stages were not seen in kidneys of rainbow trout; only high numbers of pre-sporogonic stages were detected. Numbers of pre-sporogonic stages were low in the spleen and liver of brown trout but high in rainbow trout. These data confirmed that there are differences in the development and infection progress of T. bryosalmonae between brown trout and rainbow trout. PMID:24270019
Spatial and temporal movement dynamics of brook Salvelinus fontinalis and brown trout Salmo trutta
Davis, L.A.; Wagner, Tyler; Barton, Meredith L.
2015-01-01
Native eastern brook trout Salvelinus fontinalis and naturalized brown trout Salmo trutta occur sympatrically in many streams across the brook trout’s native range in the eastern United States. Understanding within- among-species variability in movement, including correlates of movement, has implications for management and conservation. We radio tracked 55 brook trout and 45 brown trout in five streams in a north-central Pennsylvania, USA watershed to quantify the movement of brook trout and brown trout during the fall and early winter to (1) evaluate the late-summer, early winter movement patterns of brook trout and brown trout, (2) determine correlates of movement and if movement patterns varied between brook trout and brown trout, and (3) evaluate genetic diversity of brook trout within and among study streams, and relate findings to telemetry-based observations of movement. Average total movement was greater for brown trout (mean ± SD = 2,924 ± 4,187 m) than for brook trout (mean ± SD = 1,769 ± 2,194 m). Although there was a large amount of among-fish variability in the movement of both species, the majority of movement coincided with the onset of the spawning season, and a threshold effect was detected between stream flow and movement: where movement increased abruptly for both species during positive flow events. Microsatellite analysis of brook trout revealed consistent findings to those found using radio-tracking, indicating a moderate to high degree of gene flow among brook trout populations. Seasonal movement patterns and the potential for relatively large movements of brook and brown trout highlight the importance of considering stream connectivity when restoring and protecting fish populations and their habitats.
Changes in Wisconsin's Lake Michigan salmonid sport fishery, 1969-1985
Hansen, Michael J.; Schultz, Paul T.; Lasee, Becky A.
1990-01-01
The modern sport fishery for salmonids in Wisconsin waters of Lake Michigan was begun during 1963-1969 with the stocking of rainbow trout (Oncorhynchus mykiss), lake trout (Salvelinus namaycush), brook trout (S. fontinalis), brown trout (Salmo trutta), coho salmon (O. kisutch), and chinook salmon (O. tshawytscha). The fishery grew rapidly during 1969-1985 as angler effort increased 10-fold, catch rate doubled, and catch increased 20-fold. The stocking and catch became increasingly dominated by chinook salmon, with coho salmon and lake trout of secondary importance and brown, rainbow, and brook trout of least importance. Trolling dominated the fishery, particularly by launched-boat anglers and, more recently, by moored-boat anglers. Charter boat trolling grew the most continuously and had the highest catch rates. The catch by trollers was dominated by chinook and coho salmon and lake trout. Pier, stream, and shore anglers fished less overall, but had catch rates that were similar to launched-boat anglers. The catch by pier and shore anglers was spread among chinook and coho salmon, and lake, brown and rainbow trout. The catch by stream anglers was dominated by chinook salmon. The percentage of stocked fish that were subsequently caught (catch ratio) was highest for fingerling chinook salmon (12.9%). Yearling brook trout, brown trout, coho salmon, lake trout, and rainbow trout had intermediate catch ratios (5.1-9.8%). Fingerling brook trout, brown trout, and lake trout had the lowest catch ratios (2.5-3.5%). The catch ratio for rainbow trout dropped from 9.8 to 5.1% after stocking with a different strain (the Shasta strain). Fingerling rainbow trout produced the lowest returns (<0.5%). We derived stocking recommendations for each species and life stage based on these catch ratios, and catch objectives based on maintaining catch levels recorded during 1983-1985.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walters, Jody P.
Rainbow trout Oncorhynchus mykiss provide the most important sport fishery in the Kootenai River, Idaho, but densities and catch rates are low. Low recruitment is one possible factor limiting the rainbow trout population. Bull trout Salvelinus confluentus also exist in the Kootenai River, but little is known about this population. Research reported here addresses the following objectives for the Kootenai River, Idaho: increase rainbow trout recruitment, identify rainbow and bull trout spawning tributaries and migration timing, establish baseline data on bull trout redd numbers in tributaries, and improve the rainbow trout population size structure. Six adult rainbow trout were movedmore » to spawning habitat upstream of a potential migration barrier on Caboose Creek, but numbers of redds and age-0 out-migrants did not appear to increase relative to a reference stream. Measurements taken on the Moyie River indicated the gradient is inadequate to deliver suitable flows to a proposed rainbow trout spawning channel. Summer water temperatures measured in the Deep Creek drainage sometimes exceeded 24 C, higher than those reported as suitable for rainbow trout. Radio-tagged rainbow trout were located in Boulder Creek during the spring spawning season, and bull trout were located in the Moyie River and O'Brien Creek, Montana in the fall. Bull trout spawning migration timing was related to increases in Kootenai River flows. Bull trout redd surveys documented 19 redds on Boulder Creek and North and South Callahan creeks. Fall 2002 electrofishing showed that the Kootenai River rainbow trout proportional stock density was 54, higher than prior years when more liberal fishing regulations were in effect. Boulder Creek produces the highest number of age-0 rainbow trout out-migrants upstream of Bonners Ferry, but the survival rate of these out-migrants upon reaching the Kootenai River is unknown. Determining juvenile survival rates and sources of mortality could aid management efforts to increase rainbow trout recruitment. North and South Callahan creeks support the largest spawning population of bull trout in the Kootenai River drainage, Idaho, so management of the watershed should consider bull trout as high priority.« less
Bonnie. J.E. Myers; C. Andrew Dolloff; Andrew L. Rypel
2014-01-01
Many Appalachian streams historically dominated by Brook Trout Salvelinus fontinalis have experienced shifts towards fish communities dominated by Rainbow Trout Onchorhynchus mykiss. We used empirical estimates of biomass and secondary production of trout conspecifics to evaluate species success under varied thermal regimes. Trout...
Microsatellite analyses of the trout of northwest Mexico
Nielsen, J.L.; Sage, G.K.
2001-01-01
The trout of northwest Mexico represent an undescribed group of fish considered part of the Oncorhynchus mykiss (Pacific trout) complex of species and subspecies. Recent genetic studies have shown these fish to have important genetic diversity and a unique evolutionary history when compared to coastal rainbow trout. Increased levels of allelic diversity have been found in this species at the southern extent of its range. In this study we describe the trout in the Sierra Madre Occidental from the rios Yaqui, Mayo, Casas Grandes and de Bavispe, and their relationship to the more southern distribution of Mexican golden trout (O. chrysogaster) using 11 microsatellite loci. Microsatellite allelic diversity in Mexican trout was high with a mean of 6.6 alleles/locus, average heterozygosity = 0.35, and a mean Fst = 0.43 for all loci combined. Microsatellite data were congruent with previously published mtDNA results showing unique panmictic population structure in the Rio Yaqui trout that differs from Pacific coastal trout and Mexican golden trout. These data also add support for the theory of headwaters transfer of trout across the Continental Divide from tributaries of the Rio de Bavispe into the Rio Casas Grandes. Rio Mayo trout share a close genetic relationship to trout in Rio Yaqui, but sample sizes from the Rio Mayo prevent significant comparisons in this study. Microsatellite analyses show significant allelic frequency differences between Rio Yaqui trout and O. chrysogaster in Sinaloa and Durango Mexico, adding further support for a unique evolutionary status for this group of northwestern Mexican trout.
Benjamin, Joseph R.; Heltzel, Jeannie; Dunham, Jason B.; Heck, Michael; Banish, Nolan P.
2016-01-01
The occurrence of fish species may be strongly influenced by a stream’s thermal regime (magnitude, frequency, variation, and timing). For instance, magnitude and frequency provide information about sublethal temperatures, variability in temperature can affect behavioral thermoregulation and bioenergetics, and timing of thermal events may cue life history events, such as spawning and migration. We explored the relationship between thermal regimes and the occurrences of native Bull Trout Salvelinus confluentus and nonnative Brook Trout Salvelinus fontinalis and Brown Trout Salmo trutta across 87 sites in the upper Klamath River basin, Oregon. Our objectives were to associate descriptors of the thermal regime with trout occurrence, predict the probability of Bull Trout occurrence, and estimate upper thermal tolerances of the trout species. We found that each species was associated with a different suite of thermal regime descriptors. Bull Trout were present at sites that were cooler, had fewer high-temperature events, had less variability, and took longer to warm. Brook Trout were also observed at cooler sites with fewer high-temperature events, but the sites were more variable and Brook Trout occurrence was not associated with a timing descriptor. In contrast, Brown Trout were present at sites that were warmer and reached higher temperatures faster, but they were not associated with frequency or variability descriptors. Among the descriptors considered, magnitude (specifically June degree-days) was the most important in predicting the probability of Bull Trout occurrence, and model predictions were strengthened by including Brook Trout occurrence. Last, all three trout species exhibited contrasting patterns of tolerating longer exposures to lower temperatures. Tolerance limits for Bull Trout were lower than those for Brook Trout and Brown Trout, with contrasts especially evident for thermal maxima. Our results confirm the value of exploring a suite of thermal regime descriptors for understanding the distribution and occurrence of fishes. Moreover, these descriptors and their relationships to fish should be considered with future changes in land use, water use, or climate.
Spawning and rearing behavior of bull trout in a headwaterlake ecosystem
Lora B. Tennant,; Gresswell, Bob; Guy, Christopher S.; Michael H. Meeuwig,
2015-01-01
Numerous life histories have been documented for bull trout Salvelinus confluentus. Lacustrine-adfluvial bull trout populations that occupy small, headwater lake ecosystems and migrate short distances to natal tributaries to spawn are likely common; however, much of the research on potamodromous bull trout has focused on describing the spawning and rearing characteristics of bull trout populations that occupy large rivers and lakes and make long distance spawning migrations to natal headwater streams. This study describes the spawning and rearing characteristics of lacustrine-adfluvial bull trout in the Quartz Lake drainage, Glacier National Park, USA, a small headwater lake ecosystem. Many spawning and rearing characteristics of bull trout in the Quartz Lake drainage are similar to potamodromous bull trout that migrate long distances. For example, subadult bull trout distribution was positively associated with slow-water habitat unit types and maximum wetted width, and negatively associated with increased stream gradient. Bull trout spawning also occurred when water temperatures were between 5 and 9 °C, and redds were generally located in stream segments with low stream gradient and abundant gravel and cobble substrates. However, this study also elucidated characteristics of bull trout biology that are not well documented in the literature, but may be relatively widespread and have important implications regarding general characteristics of bull trout ecology, use of available habitat by bull trout, and persistence of lacustrine-adfluvial bull trout in small headwater lake ecosystems.
Bruce E. Rieman; James T. Peterson; Deborah L. Myers
2006-01-01
Invasions of non-native brook trout (Salvelinus fontinalis) have the potential for upstream displacement or elimination of bull trout (Salvelinus confluentus) and other native species already threatened by habitat loss. We summarized the distribution and number of bull trout in samples from 12 streams with and without brook trout...
Brown trout and food web interactions in a Minnesota stream
Zimmerman, J.K.H.; Vondracek, B.
2007-01-01
1. We examined indirect, community-level interactions in a stream that contained non-native brown trout (Salmo trutta Linnaeus), native brook trout (Salvelinus fontinalis Mitchill) and native slimy sculpin (Cottus cognatus Richardson). Our objectives were to examine benthic invertebrate composition and prey selection of fishes (measured by total invertebrate dry mass, dry mass of individual invertebrate taxa and relative proportion of invertebrate taxa in the benthos and diet) among treatments (no fish, juvenile brook trout alone, juvenile brown trout alone, sculpin with brook trout and sculpin with brown trout). 2. We assigned treatments to 1 m2 enclosures/exclosures placed in riffles in Valley Creek, Minnesota, and conducted six experimental trials. We used three designs of fish densities (addition of trout to a constant number of sculpin with unequal numbers of trout and sculpin; addition of trout to a constant number of sculpin with equal numbers of trout and sculpin; and replacement of half the sculpin with an equal number of trout) to investigate the relative strength of interspecific versus intraspecific interactions. 3. Presence of fish (all three species, alone or in combined-species treatments) was not associated with changes in total dry mass of benthic invertebrates or shifts in relative abundance of benthic invertebrate taxa, regardless of fish density design. 4. Brook trout and sculpin diets did not change when each species was alone compared with treatments of both species together. Likewise, we did not find evidence for shifts in brown trout or sculpin diets when each species was alone or together. 5. We suggest that native brook trout and non-native brown trout fill similar niches in Valley Creek. We did not find evidence that either species had an effect on stream communities, potentially due to high invertebrate productivity in Valley Creek. ?? 2007 Blackwell Publishing Ltd.
Relative Weight of Brown Trout and Lake Trout in Blue Mesa Reservoir, Colorado
2012-01-27
Published data concerning the standard weight in lake trout (Salvelinus namaycush) and brown trout (salmo trutta) have been established. The...standard weights can be used to compute relative weights for data collected in the spring and summer of 2011 for brown trout and lake trout in the Blue Mesa...Reservoir, Colorado. The mean relative weight of a sample of 100 brown trout ranging in length from 260 to 432 mm was 80.01 +/- 0.74, showing that the
Joseph L. Bonneau; Russell F. Thurow; Dennis L. Scarnecchia
1995-01-01
Relative efficiencies of sampling methods were evaluated for bull trout Salvefinus confluentus and cutthroat trout Oncorhynchus clarki in small, high-gradient streams with low conductivities. We compared day and nighttime observations by snorkelers to enumerate bull trout and cutthroat trout, and at night we also used a bank observer. Methods were developed for...
Scudder, Barbara C.; Selbig, J.W.; Waschbusch, R.J.
2000-01-01
Two Habitat Suitability Index (HSI) models, developed by the U.S. Fish and Wildlife Service, were used to evaluate the effects of fine-grained (less than 2 millimeters) sediment on brook trout (Salvelinusfontinalis, Mitchill) and brown trout (Salmo trutta, Linnaeus) in 11 streams in west-central and southwestern Wisconsin. Our results indicated that fine-grained sediment limited brook trout habitat in 8 of 11 streams and brown trout habitat in only one stream. Lack of winter and escape cover for fry was the primary limiting variable for brown trout at 61 percent of the sites, and this factor also limited brook trout at several stations. Pool area or quality, in stream cover, streambank vegetation for erosion control, minimum flow, thalweg depth maximum, water temperature, spawning substrate, riffle dominant substrate, and dissolved oxygen also were limiting to trout in the study streams. Brook trout appeared to be more sensitive to the effects of fine-grained sediment than brown trout. The models for brook trout and brown trout appeared to be useful and objective screening tools for identifying variables limiting trout habitat in these streams. The models predicted that reduction in the amount of fine-grained sediment would improve brook trout habitat. These models may be valuable for establishing instream sediment-reduction goals; however, the decrease in sediment delivery needed to meet these goals cannot be estimated without quantitative data on land use practices and their effects on sediment delivery and retention by streams.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-12
... species indigenous to the region--Lahontan cutthroat trout, Alvord cutthroat trout, or redband trout...; replacing nonnative trout in Big Spring Reservoir with trout species indigenous to the region, but not...
Michael J. Jakober; Thomas E. McMahon; Russell F. Thurow; Christopher G. Clancy
1998-01-01
We used radiotelemetry and underwater observation to assess fall and winter movements and habitat use by bull trout Salvelinus confluentus and westslope cutthroat trout Oncorhynchus clarki lewisi in two headwater streams in the Bitterroot River drainage, Montana, that varied markedly in habitat availability and stream ice conditions. Bull trout and cutthroat trout made...
Estimate of net trophic transfer efficiency of PCBs to Lake Michigan lake trout from their prey
Madenjian, Charles P.; Hesselberg, Robert J.; DeSorcie, Timothy J.; Schmidt, Larry J.; Stedman, Ralph M.; Quintal, Richard T.; Begnoche, Linda J.; Passino-Reader, Dora R.
1998-01-01
Most of the polychlorinated biphenyl (PCB) body burden accumulated by lake trout (Salvelinus namaycush) from the Laurentian Great Lakes is from their food. We used diet information, PCB determinations in both lake trout and their prey, and bioenergetics modeling to estimate the efficiency with which Lake Michigan lake trout retain PCBs from their food. Our estimates were the most reliable estimates to date because (a) the lake trout and prey fish sampled during our study were all from the same vicinity of the lake, (b) detailed measurements were made on the PCB concentrations of both lake trout and prey fish over wide ranges in fish size, and (c) lake trout diet was analyzed in detail over a wide range of lake trout size. Our estimates of net trophic transfer efficiency of PCBs to lake trout from their prey averaged from 0.73 to 0.89 for lake trout between the ages of 5 and 10 years old. There was no evidence of an upward or downward trend in our estimates of net trophic transfer efficiency for lake trout between the ages of 5 and 10 years old, and therefore this efficiency appeared to be constant over the duration of the lake trout's adult life in the lake. On the basis of our estimtes, lake trout retained 80% of the PCBs that are contained within their food.
Examining indirect effects of lake trout recovery
With the recovery of lake trout populations in Lake Superior, there are indications of decreased forage fish abundance and density-dependence in lake trout. In Lake Superior, lean lake trout historically occupied depths < 60 m, and siscowet lake trout occupied depths > 60 m...
Warner, D.M.; Claramunt, R.M.; Janssen, J.; Jude, D.J.; Wattrus, N.
2009-01-01
Efforts to restore self-sustaining lake trout (Salvelinus namaycush) populations in the Laurentian Great Lakes have had widespread success in Lake Superior; but in other Great Lakes, populations of lake trout are maintained by stocking. Recruitment bottlenecks may be present at a number of stages of the reproduction process. To study eggs and fry, it is necessary to identify spawning locations, which is difficult in deep water. Acoustic sampling can be used to rapidly locate aggregations of fish (like spawning lake trout), describe their distribution, and estimate their abundance. To assess these capabilities for application to lake trout, we conducted an acoustic survey covering 22 km2 at Sheboygan Reef, a deep reef (<40 m summit) in southern Lake Michigan during fall 2005. Data collected with remotely operated vehicles (ROV) confirmed that fish were large lake trout, that lake trout were 1–2 m above bottom, and that spawning took place over specific habitat. Lake trout density exhibited a high degree of spatial structure (autocorrelation) up to a range of ~190 m, and highest lake trout and egg densities occurred over rough substrates (rubble and cobble) at the shallowest depths sampled (36–42 m). Mean lake trout density in the area surveyed (~2190 ha) was 5.8 fish/ha and the area surveyed contained an estimated 9500–16,000 large lake trout. Spatial aggregation in lake trout densities, similarity of depths and substrates at which high lake trout and egg densities occurred, and relatively low uncertainty in the lake trout density estimate indicate that acoustic sampling can be a useful complement to other sampling tools used in lake trout restoration research.
Spatial and temporal consumption dynamics of trout in catch-and-release areas in Arkansas tailwaters
Flinders, John M.; Magoulick, Daniel D.
2017-01-01
Restrictive angling regulations in tailwater trout fisheries may be unsuccessful if food availability limits energy for fish to grow. We examined spatial and temporal variation in energy intake and growth in populations of Brown Trout Salmo trutta and Rainbow Trout Oncorhynchus mykiss within three catch-and-release (C-R) areas in Arkansas tailwaters to evaluate food availability compared with consumption. Based on bioenergetic simulations, Rainbow Trout fed at submaintenance levels in both size-classes (≤400 mm TL, >400 mm TL) throughout most seasons. A particular bottleneck in food availability occurred in the winter for Rainbow Trout when the daily ration was substantially below the minimum required for maintenance, despite reduced metabolic costs associated with lower water temperatures. Rainbow Trout growth rates followed a similar pattern to consumption with negative growth rates during the winter periods. All three size-classes (<250 mm TL, 250–400 mm TL, >400 mm TL) of Brown Trout experienced high growth rates and limited temporal bottlenecks in food availability. We observed higher mean densities for Rainbow Trout (47–342 fish/ha) than for Brown Trout (3–84 fish/ha) in all C-R areas. Lower densities of Brown Trout coupled with an ontogenetic shift towards piscivory may have allowed for higher growth rates and sufficient consumption rates to meet energetic demands. Brown Trout at current densities were more effective in maintaining adequate growth rates and larger sizes in C-R areas than were Rainbow Trout. Bioenergetic simulations suggest that reducing stocking levels of Rainbow Trout in the tailwaters may be necessary in order to achieve increased catch rates of larger trout in the C-R areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walters, Jody P.
2005-08-01
Rainbow trout Oncorhynchus mykiss provide the most important sport fishery in the Kootenai River, Idaho, but densities and catch rates are low. Low recruitment is one possible factor limiting the rainbow trout population. Bull trout Salvelinus confluentus also exist in the Kootenai River, but little is known about this population. Research reported here addresses the following objectives for the Kootenai River, Idaho: identify sources of rainbow and bull trout recruitment, monitor the rainbow trout population size structure to evaluate regulation changes initiated in 2002, and identify factors potentially limiting rainbow trout recruitment. A screw trap was used to estimate juvenilemore » redband and bull trout out-migration from the Callahan Creek drainage, and electrofishing was conducted to estimate summer densities of bull trout rearing in the Idaho portion of the drainage. An estimated 1,132 juvenile redband trout and 68 juvenile bull trout out-migrated from Callahan Creek to the Kootenai River from April 7 through July 15, 2003. Densities of bull trout {ge} age-1 in North and South Callahan creeks ranged from 1.6 to 7.7 fish/100m{sup 2} in August. Bull trout redd surveys were conducted in North and South Callahan creeks, Boulder Creek, and Myrtle Creek. Thirty-two bull trout redds were located in North Callahan Creek, while 10 redds were found in South Callahan Creek. No redds were found in the other two streams. Modeling of culverts in the Deep Creek drainage identified two as upstream migration barriers, preventing rainbow trout from reaching spawning and rearing habitat. Water temperature monitoring in Deep Creek identified two sites where maximum temperatures exceeded those suitable for rainbow trout. Boulder Creek produces the most rainbow trout recruits to the Kootenai River in Idaho upstream of Deep Creek, but may be below carrying capacity for rearing rainbow trout due to nutrient limitations. Monthly water samples indicate Boulder Creek is nutrient limited as soluble reactive and total dissolved phosphorus were typically at or below detection limits, and dissolved inorganic nitrogen concentrations were <30 {micro}/L. A fall 2003 electrofishing survey of the Kootenai River rainbow trout population showed that the proportional stock density (55) and quality stock density (6) increased for the second year in a row following implementation of more conservative harvest regulations. North and South Callahan creeks support the largest spawning population of bull trout in the Kootenai River drainage, Idaho, so management of the watershed should consider bull trout as high priority. Monitoring of the Kootenai River rainbow trout population size structure should continue for at least two to three years to help evaluate the conservative harvest regulations. Finally, options to improve or increase access to rainbow trout spawning and rearing habitat in the Deep Creek drainage should be investigated.« less
Moyer, Katherine R.
2016-01-01
Portable antennas have become an increasingly common technique for tracking fish marked with passive integrated transponder (PIT) tags. We used logistic regression to evaluate how species, fish length, and physical habitat characteristics influence portable antenna detection efficiency in stream-dwelling brown trout (Salmo trutta), bull trout (Salvelinus confluentus), and redband trout (Oncorhynchus mykiss newberrii) marked with 12-mm PIT tags. We redetected 56% (20/36) of brown trout, 34% (68/202) of bull trout, and 33% (20/61) of redband trout after a recovery period of 21 to 46 hours. Models indicate support for length and species and minor support for percent boulder, large woody debris, and percent cobble as parameters important for describing variation in detection efficiency, although 95% confidence intervals for estimates were large. The odds of detecting brown trout (1.5 ± 2.2 [mean ± SE]) are approximately four times as high as bull trout (0.4 ± 1.6) or redband trout (0.3 ± 1.8) and species-specific differences may be related to length. Our reported detection efficiency for brown trout falls within the range of other studies, but is the first reported for bull trout and redband trout. Portable antennas may be a relatively unbiased way of redetecting varying sizes of all three salmonid species. PMID:26901317
Banish, Nolan P.; Burdick, Summer M.; Moyer, Katherine R.
2016-01-01
Portable antennas have become an increasingly common technique for tracking fish marked with passive integrated transponder (PIT) tags. We used logistic regression to evaluate how species, fish length, and physical habitat characteristics influence portable antenna detection efficiency in stream-dwelling brown trout (Salmo trutta), bull trout (Salvelinus confluentus), and redband trout (Oncorhynchus mykiss newberrii) marked with 12-mm PIT tags. We redetected 56% (20/36) of brown trout, 34% (68/202) of bull trout, and 33% (20/61) of redband trout after a recovery period of 21 to 46 hours. Models indicate support for length and species and minor support for percent boulder, large woody debris, and percent cobble as parameters important for describing variation in detection efficiency, although 95% confidence intervals for estimates were large. The odds of detecting brown trout (1.5 ± 2.2 [mean ± SE]) are approximately four times as high as bull trout (0.4 ± 1.6) or redband trout (0.3 ± 1.8) and species-specific differences may be related to length. Our reported detection efficiency for brown trout falls within the range of other studies, but is the first reported for bull trout and redband trout. Portable antennas may be a relatively unbiased way of redetecting varying sizes of all three salmonid species.
Hybridization dynamics between Colorado's native cutthroat trout and introduced rainbow trout.
Metcalf, Jessica L; Siegle, Matthew R; Martin, Andrew P
2008-01-01
Newly formed hybrid populations provide an opportunity to examine the initial consequences of secondary contact between species and identify genetic patterns that may be important early in the evolution of hybrid inviability. Widespread introductions of rainbow trout (Oncorhynchus mykiss) into watersheds with native cutthroat trout (Oncorhynchus clarkii) have resulted in hybridization. These introductions have contributed to the decline of native cutthroat trout populations. Here, we examine the pattern of hybridization between introduced rainbow trout and 2 populations of cutthroat trout native to Colorado. For this study, we utilized 7 diagnostic, codominant nuclear markers and a diagnostic mitochondrial marker to investigate hybridization in a population of greenback cutthroat trout (Oncorhynchus clarkii stomias) and a population of Colorado River cutthroat trout (Oncorhynchus clarkii pleuriticus). We infer that cutthroat-rainbow trout hybrid swarms have formed in both populations. Although a mixture of hybrid genotypes was present, not all genotype combinations were detected at expected frequencies. We found evidence that mitochondrial DNA introgression in hybrids is asymmetric and more likely from rainbow trout than from cutthroat trout. A difference in spawning time of the 2 species or differences in the fitness between the reciprocal crosses may explain the asymmetry. Additionally, the presence of intraspecific cytonuclear associations found in both populations is concordant with current hypotheses regarding coevolution of mitochondrial and nuclear genomes.
Jones, D.T.; Moffitt, C.M.
2004-01-01
We tested the swimming endurance of juvenile bull trout Salvelinus confluentus, lake trout S. namaycush, Arctic char S. alpinus, and rainbow trout Oncorhynchus mykiss at 9??C and 15??C to determine whether sublethal infection from a moderate challenge of Renibacterium salmoninarum administered months before testing affected the length of time fish could maintain a swimming speed of 5-6 body lengths per second in an experimental flume. Rainbow trout and Arctic char swam longer in trials than did bull trout or lake trout, regardless of challenge treatment. When we tested fish 14-23 weeks postchallenge, we found no measurable effect of R. salmoninarum on the swimming endurance of the study species except for bull trout, which showed a mixed response. We conducted additional trials with bull trout 5-8 weeks postchallenge to determine whether increasing the challenge dose would affect swimming endurance and hematocrit. In those tests, bull trout with clinical signs of disease and those exposed to the highest challenge doses had significantly reduced swimming endurance compared with unchallenged control fish. Fish hematocrit levels measured at the end of all swimming endurance tests varied among species and between test temperatures, and patterns were not always consistent between challenged and control fish.
Embryotoxicity of an extract from Great Lakes lake trout to rainbow trout and lake trout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, P.J.; Tillitt, D.E.
1995-12-31
Aquatic ecosystems such as the Great Lakes are known to be contaminated with chemicals that are toxic to fish. However, the role of these contaminants in reproductive failures of fishes, such as lake trout recruitment, has remained controvertible. It was the objective to evaluate dioxin-like embryotoxicity of a complex mixture of chemicals and predict their potential to cause the lack of recruitment in Great Lakes lake trout. Graded doses of a complex environmental extract were injected into eggs of both rainbow trout and lake trout. The extract was obtained from whole adult lake trout collected from Lake Michigan in 1988.more » The extract was embryotoxic in rainbow trout, with LD50 values for Arlee strain and Erwin strain of 33 eggEQ and 14 eggEQ respectively. The LOAEL for hemorrhaging, yolk-sac edema, and craniofacial deformities in rainbow trout were 2, 2, and 4 eggEQ, respectively. Subsequent injections of the extract into lake trout eggs were likewise embryotoxic, with an LD50 value of 7 eggEQ. The LOAEL values for the extract in lake trout for hemorrhaging, yolk-sac edema, and craniofacial deformities were 0.1, 1, and 2 eggEQ, respectively. The current levels of contaminants in lake trout eggs are above the threshold for hemorrhaging and yolk-sac edema. The results also support the use of an additive model of toxicity to quantify PCDDs, PCDFs, Non-o-PCBs, and Mono-o-PCBs in relation to early life stage mortality in Lake Michigan lake trout.« less
Stream pH as an abiotic gradient influencing distributions of trout in Pennsylvania streams
Kocovsky, P.M.; Carline, R.F.
2005-01-01
Elevation and stream slope are abiotic gradients that limit upstream distributions of brook trout Salvelinus fontinalis and brown trout Salmo trutta in streams. We sought to determine whether another abiotic gradient, base-flow pH, may also affect distributions of these two species in eastern North America streams. We used historical data from the Pennsylvania Fish and Boat Commission's fisheries management database to explore the effects of reach elevation, slope, and base-flow pH on distributional limits to brook trout and brown trout in Pennsylvania streams in the Appalachian Plateaus and Ridge and Valley physiographic provinces. Discriminant function analysis (DFA) was used to calculate a canonical axis that separated allopatric brook trout populations from allopatric brown trout populations and allowed us to assess which of the three independent variables were important gradients along which communities graded from allopatric brook trout to allopatric brown trout. Canonical structure coefficients from DFA indicated that in both physiographic provinces, stream base-flow pH and slope were important factors in distributional limits; elevation was also an important factor in the Ridge and Valley Province but not the Appalachian Plateaus Province. Graphs of each variable against the proportion of brook trout in a community also identified apparent zones of allopatry for both species on the basis of pH and stream slope. We hypothesize that pH-mediated interspecific competition that favors brook trout in competition with brown trout at lower pH is the most plausible mechanism for segregation of these two species along pH gradients. Our discovery that trout distributions in Pennsylvania are related to stream base-flow pH has important implications for brook trout conservation in acidified regions. Carefully designed laboratory and field studies will be required to test our hypothesis and elucidate the mechanisms responsible for the partitioning of brook trout and brown trout along pH gradients. ?? Copyright by the American Fisheries Society 2005.
Spatial modeling to project Southern Appalachian Trout distribution in warmer climate
Patrica A. Flebbe; Laura D. Roghair; Jennifer L. Bruggink
2006-01-01
In the southern Appalachian Mountains, the distributions of native brook trout Salvelinus fontinalis and introduced rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta are presently limited by temperature and are expected to be limited further by a warmer climate. To estimate trout habitat in a future...
1979-07-31
salmon Oncorhynchus kisutch 311 Kokanee Oncorhynchus nerka 312 Humper lake trout 313 Halfbreed lake trout 314 Splake (brook trout x lake trout) - 315...Unidentified chubs 214 Chubs (large) 215 Chubs (small) 216 Chubs 300 Trouts and graylings: Oncorhynchus tshawytscha 301 Chinook salmon 302 Cutthroat...Released lake trout (commercial) MDNR use 316 Pink salmon Oncorhynchus gorbuscha Catostomidae 400 Suckers: 403 Quillback Carpiodes cyprinus 404
Food of salmonine predators in Lake Superior, 1981-87
Conner, David J.; Bronte, Charles R.; Selgeby, James H.; Collins, Hollie L.
1993-01-01
Diets of ten species of Lake Superior salmonines are described. Rainbow smelt (Osmerus mordax) were the primary prey during all seasons and years for inshore lake trout (Salvelinus namaycush), Pacific salmon (Oncorhynchus spp.), Atlantic salmon (Salmo salar), brown trout (S. trutta), brook trout (Salvelinus fontinalis), and splake (lake trout x brook trout hybrid). Coregonines were the second most-important prey for chinook salmon (O. tshawytscha), siscowet trout (S. namaycush siscowet), and splake. Invertebrates were important to rainbow trout (O. mykiss), coho salmon (O. kisutch), and pink salmon (O. gorbuscha), especially during the summer. Diets of lake trout from inshore and offshore locations differed markedly. Rainbow smelt were the primary food of inshore lake trout, and coregonines were the main food of offshore lake trout. Chinook salmon and inshore lake trout had the most similar diets because they ate similar proportions of rainbow smelt and coregonines. Salmonines generally ate more rainbow smelt and less coregonines in proportion to the abundance of these prey in the lake. If rainbow smelt populations collapse, the ability of salmonines to convert to a diet based on lake herring (Coregonus artedi) could be important to the stability of predator populations.
Introgression and susceptibility to disease in a wild population of rainbow trout
Currens, K.P.; Hemmingsen, A.R.; French, R.A.; Buchanan, D.V.; Schreck, C.B.; Li, H.W.
1997-01-01
We examined susceptibility of wild rainbow trout Oncorhynchus mykiss from the Metolius River, a tributary of the Deschutes River, Oregon, to genetic introgression and ceratomyxosis as a result of stocking nonnative hatchery rainbow trout. Ceratomyxa shasta, an enzootic myxosporean parasite that can be lethal to nonnative hatchery rainbow trout, might have been limiting the interbreeding of hatchery and wild rainbow trout in the river. However, rainbow trout from the Metolius River had allozyme frequencies intermediate between those of wild and hatchery fish at LDH-B2* and sSOD-1*, two diagnostic genetic loci that allow the inland subspecies of rainbow trout to be distinguished from hatchery strains of coastal origin. They also had notable frequencies of ADA-1*85, an allele documented in hatchery rainbow trout but rarely seen in wild populations. We also found that rainbow trout in the Metolius River averaged 138.9 scales in the lateral series, intermediate between the counts for 9 coastal or nonnative hatchery populations, which always had fewer than 140 scales, and 10 inland populations, which always had more than 140 scales. Disease challenges revealed that rainbow trout from the Metolius River had much greater susceptibility to C. shasta than rainbow trout from the Deschutes River, which have genetic resistance to the lethal disease. Based on these data, we concluded that introgression with nonnative hatchery rainbow trout has reduced the abilities of wild rainbow trout in the Metolius River to survive when conditions for ceratomyxosis infection occur.
Agonistic behavior among three stocked trout species in a novel reservoir fish community
Budy, Phaedra; Hafen, Konrad
2015-01-01
The popularity of reservoirs to support sport fisheries has led to the stocking of species that did not co-evolve, creating novel reservoir fish communities. In Utah, the Bear Lake strain of Bonneville Cutthroat Trout Oncorhynchus clarkii utah and tiger trout (female Brown Trout Salmo trutta × male Brook Trout Salvelinus fontinalis) are being more frequently added to a traditional stocking regimen consisting primarily of Rainbow TroutO. mykiss. Interactions between these three predatory species are not well understood, and studies evaluating community interactions have raised concern for an overall decrease of trout condition. To evaluate the potential for negative interactions among these species, we tested aggression in laboratory aquaria using three-species and pairwise combinations at three densities. Treatments were replicated before and after feeding. During the three-species trials Rainbow Trout initiated 24.8 times more aggressive interactions than Cutthroat Trout and 10.2 times more aggressive interactions than tiger trout, and tiger trout exhibited slightly (1.9 times) more aggressive initiations than Cutthroat Trout. There was no significant difference in behavior before versus after feeding for any species, and no indication of increased aggression at higher densities. Although Rainbow Trout in aquaria may benefit from their bold, aggressive behavior, given observations of decreased relative survival in the field, these benefits may be outweighed in reservoirs, possibly through unnecessary energy expenditure and exposure to predators.
Demographic characteristics of an adfluvial bull trout population in Lake Pend Oreille, Idaho
McCubbins, Jonathan L; Hansen, Michael J.; DosSantos, Joseph M; Dux, Andrew M
2016-01-01
Introductions of nonnative species, habitat loss, and stream fragmentation have caused the Bull Trout Salvelinus confluentus to decline throughout much of its native distribution. Consequently, in June 1998, the Bull Trout was listed under the U.S. Endangered Species Act as threatened. The Bull Trout has existed in Lake Pend Oreille and its surrounding tributaries since the last ice age, and the lake once supported a world-renowned Bull Trout fishery. To quantify the current status of the Bull Trout population in Lake Pend Oreille, Idaho, we compared the mean age, growth, maturity, and abundance with reports in a study conducted one decade earlier. Abundance was estimated by mark–recapture for Bull Trout caught in trap nets and gill nets set in Lake Pend Oreille during ongoing suppression netting of Lake Trout S. namaycushin 2007–2008. Bull Trout sampled in 2006–2008 were used to estimate age structure, survival, growth, and maturity. Estimated Bull Trout abundance was similar to that estimated one decade earlier in Lake Pend Oreille. Bull Trout residing in Lake Pend Oreille between 2006 and 2008 were between ages 4 and 14 years; their growth was fastest between ages 1 and 2 and slowed thereafter. Male and female Bull Trout matured at a similar age, but females grew faster than males, thereby maturing at a larger size. Our findings suggest that management has effectively addressed current threats to increase the likelihood of long-term persistence of the Bull Trout population in Lake Pend Oreille.
Popoff, N.D.; Neumann, Robert M.
2005-01-01
The 5.8-km West Branch Farmington River Trout Management Area (TMA) is one of Connecticut's premier catch-and-release fisheries for brown trout Salmo trutta. However, little is known about the behavior of brown trout in this system and to what extent brown trout emigrate from the TMA. The objectives of this study were to determine the movement, range, and emigration of resident holdover and newly stocked brown trout tagged with radio transmitters in the TMA. Transmitters were implanted into 22 first-year (mean total length = 314 mm) and 25 second-year (mean total length = 432 mm) holdover brown trout. Twenty catchable-size (mean total length = 290 mm) brown trout were also implanted with transmitters and released into the TMA. The mean range (distance between the extreme upstream and downstream locations) was greater for second-year holdover brown trout than for first-year holdover brown trout, and it was greater in fall than in winter. The movement (distance moved between successive locations) of holdover brown trout was greater in fall than in winter. Movement of first-year holdover brown trout was significantly related to discharge, water temperature, and the number of days between successive locations. Newly stocked brown trout exhibited the two largest ranges (5.3 and 4.7 km). The range of newly stocked brown trout was not different between seasons, but movement was greater in spring than in summer. Through 16 weeks poststocking, there was no discernable difference in the percentage of stocked brown trout dispersing in a predominantly upstream or downstream direction. Mean dispersal distances from the stocking location were 0.5 and 0.9 km at 2 and 12 weeks poststocking, respectively. Movement of newly stocked brown trout was positively related to discharge and negatively related to water temperature. A known 6% (4 of 67) of the tagged brown trout emigrated from the TMA, but up to 21% (14 of 67) of tagged fish could have left the study area if all missing fish were emigrants. ?? Copyright by the American Fisheries Society 2005.
Ruohonen; Grove; McIlroy
1997-07-01
Two-year-old 1·5-kg rainbow trout were held in cages and conditioned by feeding either on low-fat chopped herring (H trout) or dry pellets (P trout) for 15 weeks. Their satiation amounts were then determined under standard conditions. On a wet weight basis H trout ate 2·5-3·5 times more food than P trout; this was sufficient to compensate for the high water content of herring and thereby maintain the dry matter intake. When P trout were offered herring (PH trout) they consumed more food than when offered dry pellets but not as much as H trout. Stomach capacity restricted the intake and their dry matter intake was reduced by c. 40%. When H trout were offered dry pellets (HP trout) they adjusted their intake immediately close to the level of P trout although their larger stomachs could have accommodated more than twice this volume of dry food. The return of appetite after a satiation meal was almost linear with time. Appetite increased at c. 556 mg g-1 body weight h-1 for H trout and at 142 mg g-1 bw h-1 for P trout. The return of appetite in PH trout was significantly slower (c. 370 mg g-1 bw h-1) than in H trout; the previous dietary history of the PH trout limited their capacity to process larger volumes of wet food in a single meal. Fish offered dry diet (P and HP trout) had similar rates of appetite return despite their previous feeding history suggesting that the property of the dry feed itself might limit meal size. The total gastric emptying time of diets of similar dry matter content (with and without large amounts of water) was similar, but the delay time before gastric emptying starts tended to be longer for dry diets. Dry pellets appear to impose a demand for water that prolongs the gastric delay. This water demand is met partly by drinking since the trout fed on dry pellets drank significantly more (436±189 mg kg-1 h-1) than unfed and herring-fed trout which drank little or not at all (65±113 and 70±66 mg kg-1 h-1 respectively). Dietary water facilitated food processing and increased daily dry matter intake of trout when fed four times a day. When only one satiation meal per day was allowed, dietary water had no effect. It is concluded from this work that, in addition to gastric volume, a short-term limitation on the size of satiation meals in the rainbow trout is the availability of water to moisturize the food and thus to promote gastric digestion and emptying. 1997 The Fisheries Society of the British Isles
Distribution and movement of bull trout in the upper Jarbidge River watershed, Nevada
Allen, M. Brady; Connolly, Patrick J.; Mesa, Matthew G.; Charrier, Jodi; Dixon, Chris
2010-01-01
In 2006 and 2007, we surveyed the occurrence of bull trout (Salvelinus confluentus), the relative distributions of bull trout and redband trout (Oncorhynchus mykiss), and stream habitat conditions in the East and West Forks of the Jarbidge River in northeastern Nevada and southern Idaho. We installed passive integrated transponder (PIT) tag interrogation systems at strategic locations within the watershed, and PIT-tagged bull trout were monitored to evaluate individual fish growth, movement, and the connectivity of bull trout between streams. Robust bull trout populations were found in the upper portions of the East Fork Jarbidge River, the West Fork Jarbidge River, and in the Pine, Jack, Dave, and Fall Creeks. Small numbers of bull trout also were found in Slide and Cougar Creeks. Bull trout were numerically dominant in the upper portions of the East Fork Jarbidge River, and in Fall, Dave, Jack, and Pine Creeks, whereas redband trout were numerically dominant throughout the rest of the watershed. The relative abundance of bull trout was notably higher at altitudes above 2,100 m. This study was successful in documenting bull trout population connectivity within the West Fork Jarbidge River, particularly between West Fork Jarbidge River and Pine Creek. Downstream movement of bull trout to the confluence of the East Fork and West Fork Jarbidge River both from Jack Creek (rkm 16.6) in the West Fork Jarbidge River and from Dave Creek (rkm 7.5) in the East Fork Jarbidge River was detected. Although bull trout exhibited some downstream movement during the spring and summer, much of their emigration occurred in the autumn, concurrent with decreasing water temperatures and slightly increasing flows. The bull trout that emigrated were mostly age-2 or older, but some age-1 fish also emigrated. Upstream movement by bull trout was detected less than downstream movement. The overall mean annual growth rate of bull trout in the East Fork and West Fork Jarbidge River was 36 mm. This growth rate is within the range reported in other river systems and is indicative of good habitat conditions. Mark-recapture methods were used to estimate a population of 147 age-1 or older bull trout in the reach of Jack Creek upstream of Jenny Creek.
Genetic Structure of Pacific Trout at the Extreme Southern End of Their Native Range
Abadía-Cardoso, Alicia; Garza, John Carlos; Mayden, Richard L.; García de León, Francisco Javier
2015-01-01
Salmonid fishes are cold water piscivores with a native distribution spanning nearly the entire temperate and subarctic northern hemisphere. Trout in the genus Oncorhynchus are the most widespread salmonid fishes and are among the most important fish species in the world, due to their extensive use in aquaculture and valuable fisheries. Trout that inhabit northwestern Mexico are the southernmost native salmonid populations in the world, and the least studied in North America. They are unfortunately also facing threats to their continued existence. Previous work has described one endemic species, the Mexican golden trout (O. chrysogaster), and one endemic subspecies, Nelson’s trout (O. mykiss nelsoni), in Mexico, but previous work indicated that there is vastly more biodiversity in this group than formally described. Here we conducted a comprehensive genetic analysis of this important group of fishes using novel genetic markers and techniques to elucidate the biodiversity of trout inhabiting northwestern Mexico, examine genetic population structure of Mexican trout and their relationships to other species of Pacific trout, and measure introgression from non-native hatchery rainbow trout. We confirmed substantial genetic diversity and extremely strong genetic differentiation present in the Mexican trout complex, not only between basins but also between some locations within basins, with at least four species-level taxa present. We also revealed significant divergence between Mexican trout and other trout species and found that introgression from non-native rainbow trout is present but limited, and that the genetic integrity of native trout is still maintained in most locations. This information will help to guide effective conservation strategies for this important group of fishes. PMID:26509445
DOE Office of Scientific and Technical Information (OSTI.GOV)
Underwood, Keith D.
1995-01-01
The goal of this two year study was to determine if supplementation with hatchery reared steelhead trout (Oncorhynchus mykiss) and spring chinook salmon (O. tshawytscha) negatively impacted wild native bull trout (Salvelinus confluentus) through competitive interactions. Four streams with varying levels of fish supplementation activity were sampled in Southeast Washington. Tasks performed during this study were population density, relative abundance, microhabitat utilization, habitat availability, diet analysis, bull trout spawning ground surveys, radio telemetry of adult bull trout, and growth analysis. Results indicate that bull trout overlapped geographically with the supplemented species in each of the study streams suggesting competition amongmore » species was possible. Within a stream, bull trout and the supplemented species utilized dissimilar microhabitats and microhabitat utilization by each species was the same among streams suggesting that there was no shifts in microhabitat utilization among streams. The diet of bull trout and O. mykiss significantly overlapped in each of the study streams. The stream most intensely supplemented contained bull trout with the slowest growth and the non-supplemented stream contained bull trout with the fastest growth. Conversely, the stream most intensely supplemented contain steelhead with the fastest growth and the non-supplemented stream contained steelhead with the slowest growth. Growth indicated that bull trout may have been negatively impacted from supplementation, although other factors may have contributed. At current population levels, and current habitat quantity and quality, no impacts to bull trout as a result of supplementation with hatchery reared steelhead trout and spring chinook salmon were detected. Project limitations and future research recommendations are discussed.« less
Kumar, Gokhlesh; Abd-Elfattah, Ahmed; El-Matbouli, Mansour
2015-03-01
Tetracapsuloides bryosalmonae Canning et al., 1999 (Myxozoa) is the causative agent of proliferative kidney disease in various species of salmonids in Europe and North America. We have shown previously that the development and distribution of the European strain of T. bryosalmonae differs in the kidney of brown trout (Salmo trutta) Linnaeus, 1758 and rainbow trout (Oncorhynchus mykiss) Walbaum, 1792, and that intra-luminal sporogonic stages were found in brown trout but not in rainbow trout. We have now compared transcriptomes from kidneys of brown trout and rainbow trout infected with T. bryosalmonae using suppressive subtractive hybridization (SSH). The differentially expressed transcripts produced by SSH were cloned, transformed, and tested by colony PCR. Differential expression screening of PCR products was validated using dot blot, and positive clones having different signal intensities were sequenced. Differential screening and a subsequent NCBI-BLAST analysis of expressed sequence tags revealed nine clones expressed differently between both fish species. These differentially expressed genes were validated by quantitative real-time PCR of kidney samples from both fish species at different time points of infection. Expression of anti-inflammatory (TSC22 domain family protein 3) and cell proliferation (Prothymin alpha) genes were upregulated significantly in brown trout but downregulated in rainbow trout. The expression of humoral immune response (immunoglobulin mu) and endocytic pathway (Ras-related protein Rab-11b) genes were significantly upregulated in rainbow trout but downregulated in brown trout. This study suggests that differential expression of host anti-inflammatory, humoral immune and endocytic pathway responses, cell proliferation, and cell growth processes do not inhibit the development of intra-luminal sporogonic stages of the European strain of T. bryosalmonae in brown trout but may suppress it in rainbow trout.
Wagner, Tyler; Jefferson T. Deweber,; Jason Detar,; John A. Sweka,
2013-01-01
Predicting the distribution of native stream fishes is fundamental to the management and conservation of many species. Modeling species distributions often consists of quantifying relationships between species occurrence and abundance data at known locations with environmental data at those locations. However, it is well documented that native stream fish distributions can be altered as a result of asymmetric interactions between dominant exotic and subordinate native species. For example, the naturalized exotic Brown Trout Salmo trutta has been identified as a threat to native Brook Trout Salvelinus fontinalis in the eastern United States. To evaluate large-scale patterns of co-occurrence and to quantify the potential effects of Brown Trout presence on Brook Trout occupancy, we used data from 624 stream sites to fit two-species occupancy models. These models assumed that asymmetric interactions occurred between the two species. In addition, we examined natural and anthropogenic landscape characteristics we hypothesized would be important predictors of occurrence of both species. Estimated occupancy for Brook Trout, from a co-occurrence model with no landscape covariates, at sites with Brown Trout present was substantially lower than sites where Brown Trout were absent. We also observed opposing patterns for Brook and Brown Trout occurrence in relation to percentage forest, impervious surface, and agriculture within the network catchment. Our results are consistent with other studies and suggest that alterations to the landscape, and specifically the transition from a forested catchment to one that contains impervious surface or agriculture, reduces the occurrence probability of wild Brook Trout. Our results, however, also suggest that the presence of Brown Trout results in lower occurrence probability of Brook Trout over a range of anthropogenic landscape characteristics, compared with streams where Brown Trout were absent.
Petty, J. Todd; Hansbarger, Jeff L.; Huntsman, Brock M.; Mazik, Patricia M.
2012-01-01
We quantified movements of brook trout Salvelinus fontinalis and brown trout Salmo trutta in a complex riverscape characterized by a large, open-canopy main stem and a small, closed-canopy tributary in eastern West Virginia, USA. Our objectives were to quantify the overall rate of trout movement and relate movement behaviors to variation in streamflow, water temperature, and access to coldwater refugia. The study area experienced extremely high seasonal, yearly, and among-stream variability in water temperature and flow. The relative mobility of brook trout within the upper Shavers Fork watershed varied significantly depending on whether individuals resided within the larger main stem or the smaller tributary. The movement rate of trout inhabiting the main stem during summer months (50 m/d) was an order of magnitude higher than that of tributary fish (2 m/d). Movement rates of main-stem-resident brook trout during summer were correlated with the maximum water temperature experienced by the fish and with the fish's initial distance from a known coldwater source. For main-stem trout, use of microhabitats closer to cover was higher during extremely warm periods than during cooler periods; use of microhabitats closer to cover during warm periods was also greater for main-stem trout than for tributary inhabitants. Main-stem-resident trout were never observed in water exceeding 19.5°C. Our study provides some of the first data on brook trout movements in a large Appalachian river system and underscores the importance of managing trout fisheries in a riverscape context. Brook trout conservation in this region will depend on restoration and protection of coldwater refugia in larger river main stems as well as removal of barriers to trout movement near tributary and main-stem confluences.
Spatial patterns in PCB concentrations of Lake Michigan lake trout
Madenjian, Charles P.; DeSorcie, Timothy J.; Stedman, Ralph M.; Brown, Edward H.; Eck, Gary W.; Schmidt, Larry J.; Hesselberg, Robert J.; Chernyak, Sergei M.; Passino-Reader, Dora R.
1999-01-01
Most of the PCB body burden in lake trout (Salvelinus namaycush) of the Great Lakes is from their food. PCB concentrations were determined in lake trout from three different locations in Lake Michigan during 1994–1995, and lake trout diets were analyzed at all three locations. The PCB concentrations were also determined in alewife (Alosa pseudoharengus), rainbow smelt (Osmerus mordax), bloater (Coregonus hoyi), slimy sculpin (Cottus cognatus), and deepwater sculpin (Myoxocephalus thompsoni), five species of prey fish eaten by lake trout in Lake Michigan, at three nearshore sites in the lake. Despite the lack of significant differences in the PCB concentrations of alewife, rainbow smelt, bloater, slimy sculpin, and deepwater sculpin from the southeastern nearshore site near Saugatuck (Michigan) compared with the corresponding PCB concentrations from the northwestern nearshore site near Sturgeon Bay (Wisconsin), PCB concentrations in lake trout at Saugatuck were significantly higher than those at Sturgeon Bay. The difference in the lake trout PCB concentrations between Saugatuck and Sturgeon Bay could be explained by diet differences. The diet of lake trout at Saugatuck was more concentrated in PCBs than the diet of Sturgeon Bay lake trout, and therefore lake trout at Saugatuck were more contaminated in PCBs than Sturgeon Bay lake trout. These findings were useful in interpreting the long-term monitoring series for contaminants in lake trout at both Saugatuck and the Wisconsin side of the lake.
Page, G I; Davies, S J
2006-01-01
A comparative investigation of tissue carotenoid distribution between rainbow trout, Oncorhynchus mykiss, and Atlantic salmon, Salmo salar, was undertaken to identify the relative efficiency of utilization of astaxanthin and canthaxanthin. Higher apparent digestibility coefficients (ADCs) (96% in trout vs. 28-31% in salmon; P<0.05), and pigment retention efficiencies (11.5-12.5% in trout vs. 5.5% in salmon; P<0.05), for both astaxanthin and canthaxanthin, were observed for rainbow trout. Astaxanthin deposition was higher than canthaxanthin in rainbow trout, while the reverse was true for Atlantic salmon, suggesting species-specificity in carotenoid utilization. The white muscle (95% in trout vs. 93% in salmon) and kidneys (0.5% in trout vs. 0.2% in salmon) represented higher proportions of the total body carotenoid pool in rainbow trout than in Atlantic salmon (P<0.05), whereas the liver was a more important storage organ in Atlantic salmon (2-6% in salmon vs. 0.2% in trout; P<0.05). The liver and kidney appeared to be important sites of carotenoid catabolism based on the relative proportion of the peak chromatogram of the fed carotenoid in both species, with the pyloric caecae and hind gut being more important in Atlantic salmon than in the rainbow trout. Liver catabolism is suspected to be a critical determinant in carotenoid clearance, with higher catabolism expected in Atlantic salmon than in rainbow trout.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-15
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14446-000] Peabody Trout.... c. Dated Filed: August 9, 2012. d. Submitted By: Peabody Trout Creek Reservoir LLC. e. Name of Project: Trout Creek Reservoir Hydroelectric Project. f. Location: On Trout Creek, 15 miles southwest of...
NASA Astrophysics Data System (ADS)
Korsu, Kai; Huusko, Ari; Muotka, Timo
2009-03-01
Non-native brook trout have become widely established in North European streams. We combined evidence from an artificial-stream experiment and drainage-scale field surveys to examine whether brook trout suppressed the growth of the native brown trout (age 0 to age 2). Our experimental results demonstrated that brown trout were unaffected by the presence of brook trout but that brook trout showed reduced growth in the presence of brown trout. However, the growth reduction only appeared in the experimental setting, indicating that the reduced spatial constraint of the experimental system may have forced the fish to unnaturally intense interactions. Indeed, in the field, no effect of either species on the growth of the putative competitor was detected. These results caution against uncritical acceptance of findings from small-scale experiments because they rarely scale up to more complex field situations. This and earlier work suggest that the establishment of brook trout in North European streams has taken place mainly because of the availability of unoccupied (or underutilized) niche space, rather than as a result of species trait combinations or interspecific competition per se.
Yard, Michael D.; Coggins,, Lewis G.; Baxter, Colden V.; Bennett, Glenn E.; Korman, Josh
2011-01-01
Introductions of nonnative salmonids, such as rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta, have affected native fishes worldwide in unforeseen and undesirable ways. Predation and other interactions with nonnative rainbow trout and brown trout have been hypothesized as contributing to the decline of native fishes (including the endangered humpback chub Gila cypha) in the Colorado River, Grand Canyon. A multiyear study was conducted to remove nonnative fish from a 15-km segment of the Colorado River near the Little Colorado River confluence. We evaluated how sediment, temperature, fish prey availability, and predator abundance influenced the incidence of piscivory (IP) by nonnative salmonids. Study objectives were addressed through spatial (upstream and downstream of the Little Colorado River confluence) and temporal (seasonal and annual) comparisons of prey availability and predator abundance. Data were then evaluated by modeling the quantity of fish prey ingested by trout during the first 2 years (2003–2004) of the mechanical removal period. Field effort resulted in the capture of 20,000 nonnative fish, of which 90% were salmonids. Results indicated that the brown trout IP was higher (8–70%) than the rainbow trout IP (0.5–3.3%); however, rainbow trout were 50 times more abundant than brown trout in the study area. We estimated that during the study period, over 30,000 fish (native and nonnative species combined) were consumed by rainbow trout (21,641 fish) and brown trout (11,797 fish). On average, rainbow trout and brown trout ingested 85% more native fish than nonnative fish in spite of the fact that native fish constituted less than 30% of the small fish available in the study area. Turbidity may mediate piscivory directly by reducing prey detection, but this effect was not apparent in our data, as rainbow trout IP was greater when suspended sediment levels (range = 5.9–20,000 mg/L) were higher.
Philip J. Howell
2017-01-01
Many bull trout populations have declined from non-native brook trout introductions, habitat changes (e.g. water temperature) and other factors. We systematically sampled the distribution of bull trout and brook trout in the upper Powder River basin in Oregon in the 1990s and resampled it in 2013â2015, examined temperature differences in the habitats of the two species...
Evidence of offshore lake trout reproduction in Lake Huron
DeSorcie, Timothy J.; Bowen, Charles A.
2003-01-01
Six Fathom Bank-Yankee Reef, an offshore reef complex, was an historically important spawning area believed to represent some of the best habitat for the rehabilitation of lake trout Salvelinus namaycush in Lake Huron. Since 1986, lake trout have been stocked on these offshore reefs to reestablish self-sustaining populations. We sampled with beam trawls to determine the abundance of naturally reproduced age-0 lake trout on these offshore reefs during May-July in 1994-1998 and 2000-2002. In total, 123 naturally reproduced lake trout fry were caught at Six Fathom Bank, and 2 naturally reproduced lake trout fry were caught at nearby Yankee Reef. Our findings suggest that this region of Lake Huron contains suitable habitat for lake trout spawning and offers hope that lake trout rehabilitation can be achieved in the main basin of Lake Huron.
Evidence of Lake Trout reproduction at Lake Michigan's mid-lake reef complex
Janssen, J.; Jude, D.J.; Edsall, T.A.; Paddock, R.W.; Wattrus, N.; Toneys, M.; McKee, P.
2006-01-01
The Mid-Lake Reef Complex (MLRC), a large area of deep (> 40 m) reefs, was a major site where indigenous lake trout (Salvelinus namaycush) in Lake Michigan aggregated during spawning. As part of an effort to restore Lake Michigan's lake trout, which were extirpated in the 1950s, yearling lake trout have been released over the MLRC since the mid-1980s and fall gill net censuses began to show large numbers of lake trout in spawning condition beginning about 1999. We report the first evidence of viable egg deposition and successful lake trout fry production at these deep reefs. Because the area's existing bathymetry and habitat were too poorly known for a priori selection of sampling sites, we used hydroacoustics to locate concentrations of large fish in the fall; fish were congregating around slopes and ridges. Subsequent observations via unmanned submersible confirmed the large fish to be lake trout. Our technological objectives were driven by biological objectives of locating where lake trout spawn, where lake trout fry were produced, and what fishes ate lake trout eggs and fry. The unmanned submersibles were equipped with a suction sampler and electroshocker to sample eggs deposited on the reef, draw out and occasionally catch emergent fry, and collect egg predators (slimy sculpin Cottus cognatus). We observed slimy sculpin to eat unusually high numbers of lake trout eggs. Our qualitative approaches are a first step toward quantitative assessments of the importance of lake trout spawning on the MLRC.
Fat content of the flesh of siscowets and lake trout from Lake Superior
Eschmeyer, Paul H.; Phillips, Arthur M.
1965-01-01
Samples of flesh were excised from the middorsal region of 67 siscowets (Salvelinus namaycush siscowet) and 46 lake trout (Salvelinus n. namaycush) collected from Lake Superior. Chemical analysis of the samples revealed a range in fat content (dry weight) of 32.5 to 88.8 per cent in siscowets and 6.6 to 52.3 per cent in lake trout. Percentage fat increased progressively with increase in length of fish in both forms, but the average rate of increase was far greater for siscowets than for lake trout at lengths between 12 and 20 inches. Despite substantial individual variation, the percentage fat in the two forms was widely different and without overlap at all comparable lengths. The range in iodine number of the fat was 100 to 160 for siscowets and 103 to 161 for lake trout; average values were generally lower for siscowets than for lake trout among fish of comparable length. Percentage fat and relative weight were not correlated significantly in either subspecies. The fat content of flesh samples from a distinctive subpopulation of Lake Superior lake trout known as 'humpers' was more closely similar to that of typical lean lake trout than to siscowets, but the rate of increase in fat with increasing length was greater than for lean lake trout. Flesh samples from hatchery-reared stocks of lake trout, hybrid lake trout X siscowets, and siscowets tended to support the view that the wide difference in fat content between siscowets and lake trout is genetically determined.
Metcalf, Jessica L; Pritchard, Victoria L; Silvestri, Sarah M; Jenkins, Jazzmin B; Wood, John S; Cowley, David E; Evans, R Paul; Shiozawa, Dennis K; Martin, Andrew P
2007-11-01
Accurate assessment of species identity is fundamental for conservation biology. Using molecular markers from the mitochondrial and nuclear genomes, we discovered that many putatively native populations of greenback cutthroat trout (Oncorhynchus clarkii stomias) comprised another subspecies of cutthroat trout, Colorado River cutthroat trout (Oncorhynchus clarkii pleuriticus). The error can be explained by the introduction of Colorado River cutthroat trout throughout the native range of greenback cutthroat trout in the late 19th and early 20th centuries by fish stocking activities. Our results suggest greenback cutthroat trout within its native range is at a higher risk of extinction than ever before despite conservation activities spanning more than two decades.
Bull trout distributions related to temperature regimes in four central Idaho streams
Susan B. Adams; Theodore C. Bjornn
1997-01-01
bull trout Salvelinus confluentus distributions and water temperature regimes were studied in four streams in the Weiser River basin, Idaho, in 1992 and 1993. bull trout occurred at elevations ranging from 1,472 m to 2,182 m and at densities up to 9.5 fish per 100 m2. Bull trout were sympatric with rainbow trout
Woodward, Daniel F.; Farag, Aïda M.; Bergman, Harold L.; Delonay, Aaron J.; Little, Edward E.; Smiths, Charlie E.; Barrows, Frederic T.
1995-01-01
Benthic organisms in the upper Clark Fork River have recently been implicated as a dietary source of metals that may be a chronic problem for young-of-the-year rainbow trout (Oncorhynchus mykiss). In this present study, early life stage brown trout (Salmo trutta) and rainbow trout were exposed for 88 d to simulated Clark Fork River water and a diet of benthic invertebrates collected from the river. These exposures resulted in reduced growth and elevated levels of metals in the whole body of both species. Concentrations of As, Cd, Cu, and Pb increased in whole brown trout; in rainbow trout, As and Cd increased in whole fish, and As also increased in liver. Brown trout on the metals-contaminated diets exhibited constipation, gut impaction, increased cell membrane damage (lipid peroxidation), decreased digestive enzyme production (zymogen), and a sloughing of intestinal mucosal epithelial cells. Rainbow trout fed the contaminated diets exhibited constipation and reduced feeding activity. We believe that the reduced standing crop of trout in the Clark Fork River results partly from chronic effects of metals contamination in benthic invertebrates that are important as food for young-of-the-year fish.
Movement and survival of brown trout and rainbow trout in an ozark tailwater river
Quinn, J.W.; Kwak, T.J.
2011-01-01
We evaluated the movement of adult brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss in relation to a catch-andrelease area in the White River downstream from Beaver Dam, Arkansas. Nine fish of each species were implanted with radio transmitters and monitored from July 1996 to July 1997. The 1.5- km river length of a catch-and-release area (closed to angler harvest) was greater than the total linear range of 72% of the trout (13 of 18 fish), but it did not include two brown trout spawning riffles, suggesting that it effectively protects resident fish within the catch-and-release area except during spawning. The total detected linear range of movement varied from 172 to 3,559 m for brown trout and from 205 to 3,023mfor rainbow trout. The movements of both species appeared to be generally similar to that in unregulated river systems. The annual apparent survival of both trout species was less than 0.40, and exploitation was 44%.Management to protect fish on spawning riffles may be considered if management for wild brown trout becomes a priority. ?? American Fisheries Society 2011.
Spring-summer diet of lake trout on Six Fathom Bank and Yankee Reef in Lake Huron
Madenjian, C.P.; Holuszko, J.D.; Desorcie, T.J.
2006-01-01
We examined the stomach contents of 1,045 lake trout (Salvelinus namaycush) caught on Six Fathom Bank and Yankee Reef, two offshore reef complexes in Lake Huron, during late spring and early summer 1998-2003. Lake trout ranged in total length from 213 to 858 mm, and in age from 2 to 14 years. In total, 742 stomachs contained food. On a wet-weight basis, alewife (Alosa pseudoharengus) dominated the spring-summer diet of lake trout on both of these offshore reef complexes. Alewives accounted for 75 to 90% of lake trout diet, depending on the lake trout size category. Size of alewives found in lake trout stomachs increased with increasing lake trout size. Faster growth of juvenile lake trout on Six Fathom Bank and Yankee Reef than on Sheboygan Reef in Lake Michigan was attributed to greater availability of small alewives on the offshore reefs in Lake Huron. Our findings indicated that alewives inhabited Six Fathom Bank and Yankee Reef during spring and summer months. Thus, our study provided support for the contention that alewives may have interfered with natural reproduction by lake trout on these offshore reef complexes in Lake Huron.
Turek, Kelly C.; Pegg, Mark A.; Pope, Kevin L.
2014-01-01
Laboratory and in-stream enclosure experiments were used to determine whether rainbow trout Oncorhynchus mykiss influence survival of longnose dace Rhinichthys cataractae. In the laboratory, adult rainbow trout preyed on longnose dace in 42% of trials and juvenile rainbow trout did not prey on longnose dace during the first 6 h after rainbow trout introduction. Survival of longnose dace did not differ in the presence of adult rainbow trout previously exposed to active prey and those not previously exposed to active prey ( = 0.28, P = 0.60). In field enclosures, the number of longnose dace decreased at a faster rate in the presence of rainbow trout relative to controls within the first 72 h, but did not differ between moderate and high densities of rainbow trout (F2,258.9 = 3.73, P = 0.03). Additionally, longnose dace were found in 7% of rainbow trout stomachs after 72 h in enclosures. Rainbow trout acclimated to the stream for longer periods had a greater initial influence on the number of longnose dace remaining in enclosures relative to those acclimated for shorter periods regardless of rainbow trout density treatment (F4,148.5 = 2.50, P = 0.04). More research is needed to determine how predation rates will change in natural environments, under differing amounts of habitat and food resources and in the context of whole assemblages. However, if rainbow trout are introduced into the habitat of longnose dace, some predation on longnose dace is expected, even when rainbow trout have no previous experience with active prey.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paragamian, Vaughn L.; Walters, Jody; Maiolie, Melo
2009-04-09
This research report addresses bull trout Salvelinus confluentus and Redband trout Oncorhynchus mykiss redd surveys, population monitoring, trout distribution, and abundance surveys in the Kootenai River drainage of Idaho. The bull trout is one of several sport fish native to the Kootenai River, Idaho that no longer supports a fishery. Because bull trout are listed under the Endangered Species Act, population data will be vital to monitoring status relative to recovery goals. Thirty-three bull trout redds were found in North and South Callahan creeks and Boulder Creek in 2007. This is a decrease from 2006 and 2005 and less thanmore » the high count in 2003. However, because redd numbers have only been monitored since 2002, the data series is too short to determine bull trout population trends based on redd counts. Redband trout still provide an important Kootenai River sport fishery, but densities are low, at least partly due to limited recruitment. The redband trout proportional stock density (PSD) in 2007 increased from 2006 for a second year after a two-year decline in 2004 and 2005. This may indicate increased recruitment to or survival in the 201-305 mm length group due to the minimum 406 mm (16 inches) length limit initiated in 2002. We conducted 13 redd surveys and counted 44 redband trout redds from May 7 to June 3, 2007 in a 3.8 km survey reach on Twentymile Creek. We surveyed streams in the Kootenai River valley to look for barriers to trout migration. Man-made barriers, for at least part of the year, were found on Caboose, Debt, Fisher, and Twenty Mile creeks. Removing these barriers would increase spawning and rearing habitat for trout and help to restore trout fisheries in the Kootenai River.« less
Nielsen, J.L.; Heine, Erika L.; Gan, Christina A.; Fountain, Monique C.
2000-01-01
Mitochondrial DNA (mtDNA) sequence and allelic frequency data for 12 microsatellite loci were used to analyze population genetic structure and recolonization by rainbow trout, Oncorhynchus mykiss, following the 1991 Cantara spill on the upper Sacramento River, California. Genetic analyses were performed on 1,016 wild rainbow trout collected between 1993 and 1996 from the mainstem and in 8 tributaries. Wild trout genotypes were compared to genotypes for 79 Mount Shasta Hatchery rainbow trout. No genetic heterogeneity was found 2 years after the spill (1993) between tributary populations and geographically proximate mainstem fish, suggesting recolonization of the upper mainstem directly from adjacent tributaries. Trout collections made in 1996 showed significant year-class genetic variation for mtDNA and microsatellites when compared to fish from the same locations in 1993. Five years after the spill, mainstem populations appeared genetically mixed with no significant allelic frequency differences between mainstem populations and geographically proximate tributary trout. In our 1996 samples, we found no significant genetic differences due to season of capture (summer or fall) or sampling technique used to capture rainbow trout, with the exception of trout collected by electrofishing and hook and line near Prospect Avenue. Haplotype and allelic frequencies in wild rainbow trout populations captured in the upper Sacramento River and its tributaries were found to differ genetically from Mount Shasta Hatchery trout for both years, with the notable exception of trout collected in the lower mainstem river near Shasta Lake, where mtDNA and microsatellite data both suggested upstream colonization by hatchery fish from the reservoir. These data suggest that the chemical spill in the upper Sacramento River produced significant effects over time on the genetic population structure of rainbow trout throughout the entire upper river basin.
Kootenai River Fisheries Investigations; Rainbow and Bull Trout Recruitment, 1999 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walters, Jody P.; Downs, Christopher C.
2001-08-01
Our 1999 objectives were to determine sources of rainbow trout Oncorhynchus mykiss and bull trout Salvelinus confluentus spawning and recruitment in the Idaho reach of the Kootenai River. We used a rotary-screw trap to capture juvenile trout to determine age at out-migration and to estimate total out-migration from the Boundary Creek drainage to the Kootenai River. The out-migrant estimate for March through August 1999 was 1,574 (95% C. I. = 825-3,283) juvenile rainbow trout. Most juveniles out-migrated at age-2 and age-3. No out-migrating bull trout were caught. Five of 17 rainbow trout radio-tagged in Idaho migrated upstream into Montana watersmore » during the spawning season. Five bull trout originally radio-tagged in O'Brien Creek, Montana in early October moved downstream into Idaho and British Columbia by mid-October. Annual angler exploitation for the rainbow trout population upstream of Bonners Ferry, Idaho was estimated to be 58%. Multi-pass depletion estimates for index reaches of Caboose, Curley, and Debt creeks showed 0.20, 0.01, and 0.13 rainbow trout juveniles/m{sup 2}, respectively. We estimated rainbow trout (180-415 mm TL) standing stock of 1.6 kg/ha for the Hemlock Bar reach (29.4 ha) of the Kootenai River, similar to the 1998 estimate. Recruitment of juvenile rainbow and bull trout from Idaho tributaries is not sufficient to be the sole source of subsequent older fish in the mainstem Kootenai River. These populations are at least partly dependent on recruitment from Montana waters. The low recruitment and high exploitation rate may be indicators of a rainbow trout population in danger of further decline.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Steven W.
Bull trout (Salvelinus confluentus) are native to many tributaries of the Snake River in southeast Washington. The Washington Department of Wildlife (WDW) and the American Fisheries Society (AFS) have identified bull trout as a species of special concern which means that they may become threatened or endangered by relatively, minor disturbances to their habitat. Steelhead trout/rainbow trout (Oncorhynchus mykiss) and spring chinook salmon (O.tshawytscha) are also native to several tributaries of the Snake river in southeast Washington. These species of migratory fishes are depressed, partially due to the construction of several dams on the lower Snake river. In response tomore » decreased run size, large hatchery program were initiated to produce juvenile steelhead and salmon to supplement repressed tributary stocks, a practice known as supplementation. There is a concern that supplementing streams with artificially high numbers of steelhead and salmon may have an impact on resident bull trout in these streams. Historically, these three species of fish existed together in large numbers, however, the amount of high-quality habitat necessary for reproduction and rearing has been severely reduced in recent years, as compared to historic amounts. The findings of the first year of a two year study aimed at identifying species interactions in southeast Washington streams are presented in this report. Data was collected to assess population dynamics; habitat utilization and preference, feeding habits, fish movement and migration, age, condition, growth, and the spawning requirements of bull trout in each of four streams. A comparison of the indices was then made between the study streams to determine if bull trout differ in the presence of the putative competitor species. Bull trout populations were highest in the Tucannon River (supplemented stream), followed by Mill Creek (unsupplemented stream). Young of the year bull trout utilized riffle and cascade habitat the most in all four streams. Juvenile bull trout utilized scour pool and run habitat the most in all four streams. YOY bull trout preferred plunge pool and scour pool habitat, as did juvenile bull trout in all four streams. These data show that while in the presence of the putative competitors, bull trout prefer the same habitat as in the absence of the putative competitors. Juvenile bull trout preferred mayflies and stoneflies in Mill Creek, while in the presence of the competitor species they preferred caddisflies, stoneflies, and Oligochaeta. It is felt that this difference is due to the differences in food items available and not species interactions, bull trout consume what is present. Adult bull trout were difficult to capture, and therefore it was difficult to determine the migratory habits in the Tucannon River. It is recommended that future studies use radio telemetry to determine the migratory habitat of these fish. The age, condition, and growth rates of bull trout differed only minimally between streams, indicating that if competitive interactions are occurring between these species it is not reflected by: (1) the length at age of bull trout; (2) the length-weight relationship of bull trout; or (3) the rate of growth of bull trout. The spawning habits of bull trout and spring chinook salmon are similar in the Tucannon River, however it was found that they spawn in different river locations. The salmon spawn below river kilometer 83, while 82% of bull trout spawn above that point. The peak of spawning for salmon occurred 10 days before the peak of bull trout spawning, indicating that very little competition for spawning locations occurs between these species in the Tucannon River. Future species interactions study recommendations include the use of electrofishing to enumerate bull trout populations, snorkeling to identify micro-habitat utilization, seasonal diet analysis, and radio transmitters to identify seasonal migration patterns of bull trout.« less
Influence of landscape-scale factors in limiting brook trout populations in Pennsylvania streams
Kocovsky, P.M.; Carline, R.F.
2006-01-01
Landscapes influence the capacity of streams to produce trout through their effect on water chemistry and other factors at the reach scale. Trout abundance also fluctuates over time; thus, to thoroughly understand how spatial factors at landscape scales affect trout populations, one must assess the changes in populations over time to provide a context for interpreting the importance of spatial factors. We used data from the Pennsylvania Fish and Boat Commission's fisheries management database to investigate spatial factors that affect the capacity of streams to support brook trout Salvelinus fontinalis and to provide models useful for their management. We assessed the relative importance of spatial and temporal variation by calculating variance components and comparing relative standard errors for spatial and temporal variation. We used binary logistic regression to predict the presence of harvestable-length brook trout and multiple linear regression to assess the mechanistic links between landscapes and trout populations and to predict population density. The variance in trout density among streams was equal to or greater than the temporal variation for several streams, indicating that differences among sites affect population density. Logistic regression models correctly predicted the absence of harvestable-length brook trout in 60% of validation samples. The r 2-value for the linear regression model predicting density was 0.3, indicating low predictive ability. Both logistic and linear regression models supported buffering capacity against acid episodes as an important mechanistic link between landscapes and trout populations. Although our models fail to predict trout densities precisely, their success at elucidating the mechanistic links between landscapes and trout populations, in concert with the importance of spatial variation, increases our understanding of factors affecting brook trout abundance and will help managers and private groups to protect and enhance populations of wild brook trout. ?? Copyright by the American Fisheries Society 2006.
Ostberg, C.O.; Rodriguez, R.J.
2006-01-01
Historic introductions of nonnative rainbow trout Oncorhynchus mykiss into the native habitats of cutthroat trout O. clarkii have impacted cutthroat trout populations through introgressive hybridization, creating challenges and concerns for cutthroat trout conservation. We examined the effects of rainbow trout introductions on the native westslope cutthroat trout O. c. lewisii within the Stehekin River drainage, North Cascades National Park, Washington, by analyzing 1,763 salmonid DNA samples from 18 locations with nine diagnostic nuclear DNA markers and one diagnostic mitochondrial DNA (mtDNA) marker. Pure westslope cutthroat trout populations only occurred above upstream migration barriers in the Stehekin River and Park Creek. Two categories of rainbow trout admixture were observed: (1) less than 10% within the Stehekin River drainage above the Bridge Creek confluence and the middle and upper Bridge Creek drainage and (2) greater than 30% within the Stehekin River below the Bridge Creek confluence and in lower Bridge Creek. Hybrid indices and multilocus genotypes revealed an absence of rainbow trout and reduced hybrid diversity within the Stehekin River above the Bridge Creek confluence relative to hybrid diversity in the Stehekin River below the confluence and within lower Bridge Creek. Cytonuclear disequilibrium statistics revealed assortative mating between westslope cutthroat and rainbow trout but not among hybrids within the same locations. This suggests that a randomly mating hybrid swarm does not currently exist. However, continual migration of parental genotypes into the study location could also create significant cytonuclear disequilibria. The Stehekin River represents a novel and unique example of a dynamic hybridization zone where the invasion of rainbow trout alleles into the Stehekin River westslope cutthroat trout population above the Bridge Creek confluence appears to be impeded, suggesting that divergent ecological or evolutionary mechanisms promote the population structure within the Stehekin River drainage, depending upon location.
Causes of declining survival of lake trout stocked in U.S. waters of Lake Superior in 1963-1986
Hansen, Michael J.; Ebener, Mark P.; Schorfhaar, Richard G.; Schram, Stephen T.; Schreiner, Donald R.; Selgeby, James H.; Taylor, William W.
1996-01-01
Survival of the 1963-1982 year-classes of stocked yearling lake trout Salvelinus namaycush declined significantly over time in Lake Superior. To investigate possible causes of this decline, a Ricker model of stock-recruitment was used to describe the catch per effort (CPE) of age-7 stocked lake trout in the Michigan, Minnesota, and Wisconsin waters of Lake Superior as functions of the numbers of yearlings stocked 6 years earlier (an index of density dependence), the density (CPE) of wild adult lake trout (an index of predation), and large-mesh (a?Y 114-mm stretch-measure) gill-net fishing effort (an index of fishing mortality). Declining CPE of stocked lake trout in Michigan and Wisconsin was significantly associated with increasing large-mesh gillnet fishing effort. Declining CPE of stocked lake trout in Minnesota was significantly associated with increasing density of wild lake trout. Declining survival of stocked lake trout may therefore have been caused by increased mortality in large-mesh gill-net fisheries in Michigan and Wisconsin, and by predation by wild lake trout that recently recolonized the Minnesota area. We recommend that experimental management be pursued to determine the relative importance of large-mesh gillnet fishing effort and of predation by wild lake trout on the survival of stocked lake trout in U.S. waters of Lake Superior.
Microsatellite analyses of San Franciscuito Creek rainbow trout
Nielsen, Jennifer L.
2000-01-01
Microsatellite genetic diversity found in San Francisquito Creek rainbow trout support a close genetic relationship with rainbow trout (Oncorhynchus mykiss) from another tributary of San Francisco Bay, Alameda Creek, and coastal trout found in Lagunitas Creek, Marin County, California. Fish collected for this study from San Francisquito Creek showed a closer genetic relationship to fish from the north-central California steelhead ESU than for any other listed group of O. mykiss. No significant genotypic or allelic frequency associations could be drawn between San Francisquito Creek trout and fish collected from the four primary rainbow trout hatchery strains in use in California, i.e. Whitney, Mount Shasta, Coleman, and Hot Creek hatchery fish. Indeed, genetic distance analyses (δµ2) supported separation between San Francisquito Creek trout and all hatchery trout with 68% bootstrap values in 1000 replicate neighbor-joining trees. Not surprisingly, California hatchery rainbow trout showed their closest evolutionary relationships with contemporary stocks derived from the Sacramento River. Wild collections of rainbow trout from the Sacramento-San Joaquin basin in the Central Valley were also clearly separable from San Francisquito Creek fish supporting separate, independent ESUs for two groups of O. mykiss (one coastal and one Central Valley) with potentially overlapping life histories in San Francisco Bay. These data support the implementation of management and conservation programs for rainbow trout in the San Francisquito Creek drainage as part of the central California coastal steelhead ESU.
Laing, K.J.; Dutton, S.; Hansen, J.D.
2007-01-01
Two genes were identified in rainbow trout that display high sequence identity to vertebrate Lck. Both of the trout Lck transcripts are associated with lymphoid tissues and were found to be highly expressed in IgM-negative lymphocytes. In vitro analysis of trout lymphocytes indicates that trout Lck mRNA is up-regulated by T-cell mitogens, supporting an evolutionarily conserved function for Lck in the signaling pathways of T-lymphocytes. Here, we describe the generation and characterization of a specific monoclonal antibody raised against the N-terminal domains of recombinant trout Lck that can recognize Lck protein(s) from trout thymocyte lysates that are similar in size (???57 kDa) to mammalian Lck. This antibody also reacted with permeabilized lymphocytes during FACS analysis, indicating its potential usage for cellular analyses of trout lymphocytes, thus representing an important tool for investigations of salmonid T-cell function.
N. R. Campbell; S. J. Amish; V. L. Prichard; K. M. McKelvey; M. K. Young; M. K. Schwartz; J. C. Garza; G. Luikart; S. R. Narum
2012-01-01
DNA sequence data were collected and screened for single nucleotide polymorphisms (SNPs) in westslope cutthroat trout (Oncorhynchus clarki lewisi) and also for substitutions that could be used to genetically discriminate rainbow trout (O. mykiss) and cutthroat trout, as well as several cutthroat trout subspecies. In total, 260 expressed sequence tag-derived loci were...
Benjamin, Joseph R.; McDonnell, Kevin; Dunham, Jason B.; Brignon, William R.; Peterson, James T.
2017-06-21
With the decline of bull trout (Salvelinus confluentus), managers face multiple, and sometimes contradictory, management alternatives for species recovery. Moreover, effective decision-making involves all stakeholders influenced by the decisions (such as Tribal, State, Federal, private, and non-governmental organizations) because they represent diverse objectives, jurisdictions, policy mandates, and opinions of the best management strategy. The process of structured decision making is explicitly designed to address these elements of the decision making process. Here we report on an application of structured decision making to a population of bull trout believed threatened by high densities of nonnative brook trout (S. fontinalis) and habitat fragmentation in Long Creek, a tributary to the Sycan River in the Klamath River Basin, south-central Oregon. This involved engaging stakeholders to identify (1) their fundamental objectives for the conservation of bull trout, (2) feasible management alternatives to achieve their objectives, and (3) biological information and assumptions to incorporate in a decision model. Model simulations suggested an overarching theme among the top decision alternatives, which was a need to simultaneously control brook trout and ensure that the migratory tactic of bull trout can be expressed. More specifically, the optimal management decision, based on the estimated adult abundance at year 10, was to combine the eradication of brook trout from Long Creek with improvement of downstream conditions (for example, connectivity or habitat conditions). Other top decisions included these actions independently, as well as electrofishing removal of brook trout. In contrast, translocating bull trout to a different stream or installing a barrier to prevent upstream spread of brook trout had minimal or negative effects on the bull trout population. Moreover, sensitivity analyses suggested that these actions were consistently identified as optimal across a large range of parameter values. Taken together, these results support the conclusion that management actions focused on controlling brook trout and enhancing migrant bull trout are more likely to yield more adult bull trout within the 10-year time frame specified by stakeholders.
Zwollo, Patty; Ray, Jocelyn C; Sestito, Michael; Kiernan, Elizabeth; Wiens, Gregory D; Kaattari, Steve; StJacques, Brittany; Epp, Lidia
2015-01-01
Bacterial cold water disease (BCWD) is a chronic disease of rainbow trout, and is caused by the Gram-negative bacterium Flavobacterium psychrophilum (Fp), a common aquaculture pathogen. The National Center for Cool and Cold Water Aquaculture has bred two genetic lines of rainbow trout: a line of Fp-resistant trout (ARS-Fp-R or R-line trout) and a line of susceptible trout (ARS-Fp-S, or S-line). Little is known about how phenotypic selection alters immune response parameters or how such changes relate to genetic disease resistance. Herein, we quantify interindividual variation in the distribution and abundance of B cell populations (B cell signatures) and examine differences between genetic lines of naive animals. There are limited trout-specific cell surface markers currently available to resolve B cell subpopulations and thus we developed an alternative approach based on detection of differentially expressed transcription factors and intracellular cytokines. B cell signatures were compared between R-line and S-line trout by flow cytometry using antibodies against transcription factors early B cell factor-1 (EBF1) and paired domain box protein Pax5, the pro-inflammatory cytokine IL-1β, and the immunoglobulin heavy chain mu. R-line trout had higher percentages of EBF(+) B myeloid/ progenitor and pre-B cells in PBL, anterior and posterior kidney tissues compared to S-line trout. The opposite pattern was detected in more mature B cell populations: R-line trout had lower percentages of both IgM(+) mature B cells and IgM-secreting cells in anterior kidney and PBL compared to S-line trout. In vitro LPS-activation studies of PBL and spleen cell cultures revealed no significant induction differences between R-line and S-line trout. Together, our findings suggest that selective resistance to BCWD may be associated with shifts in naive animal developmental lineage commitment that result in decreased B lymphopoiesis and increased myelopoiesis in BCWD resistant trout relative to susceptible trout. Copyright © 2014 Elsevier Ltd. All rights reserved.
Founding population size of an aquatic invasive species
Kalinowski, Steven T.; Muhlfeld, Clint C.; Guy, Christopher S.; Benjamin Cox,
2010-01-01
Non-native species of fish threaten native fishes throughout North America, and in the Rocky Mountains, introduced populations of lake trout threaten native populations of bull trout. Effective management of lake trout and other exotic species require understanding the dynamics of invasion in order to either suppress non-native populations or to prevent their spread. In this study, we used microsatellite genetic data to estimate the number of lake trout that invaded a population of bull trout in Swan Lake, MT. Examination of genetic diversity and allele frequencies within the Swan Lake populations showed that most of the genes in the lake trout population are descended from two founders. This emphasizes the importance of preventing even a few lake trout from colonizing new territory.
Habitat shifts in rainbow trout: competitive influences of brown trout.
Gatz, A J; Sale, M J; Loar, J M
1987-11-01
We compared habitat use by rainbow trout sympatric (three streams) and allopatric (two streams) with brown trout to determine whether competition occurred between these two species in the southern Appalachian Mountains. We measured water depth, water velocity, substrate, distance to overhead vegetation, sunlight, and surface turbulence both where we collected trout and for the streams in general. This enabled us to separate the effects of habitat availability from possible competitive effects. The results provided strong evidence for asymmetrical interspecific competition. Habitat use varied significantly between allopatric and sympatric rainbow trout in 68% of the comparisons made. Portions of some differences refelected differences in habitats available in the several streams. However, for all habitat variables measured except sunlight, rainbow trout used their preferred habitats less in sympatry with brown trout than in allopatry if brown trout also preferred the same habitats. Multivariate analysis indicated that water velocity and its correlates (substrate particle size and surface turbulence) were the most critical habitat variables in the interaction between the species, cover in the form of shade and close overhead vegetation was second most important, and water depth was least important.
Johnson, James H.; McKenna, James E.
2015-01-01
Interspecific partitioning of food and habitat resources has been widely studied in stream salmonids. Most studies have examined resource partitioning between two native species or between a native species and one that has been introduced. In this study we examine the diel feeding ecology and habitat use of three species of juvenile salmonids (i.e., Atlantic Salmon Salmo salar, Brown Trout Salmo trutta, and Rainbow Trout Oncorhynchus mykiss) in a tributary of Skaneateles Lake, New York. Subyearling Brown Trout and Rainbow Trout fed more heavily from the drift than the benthos, whereas subyearling Atlantic Salmon fed more from the benthos than either species of trout. Feeding activity of Atlantic Salmon and Rainbow Trout was similar, with both species increasing feeding at dusk, whereas Brown Trout had no discernable feeding peak or trough. Habitat availability was important in determining site-specific habitat use by juvenile salmonids. Habitat selection was greater during the day than at night. The intrastream, diel, intraspecific, and interspecific variation we observed in salmonid habitat use in Grout Brook illustrates the difficulty of acquiring habitat use information for widespread management applications.
Riley, S.C.; He, J.X.; Johnson, J.E.; O'Brien, T. P.; Schaeffer, J.S.
2007-01-01
Localized natural reproduction of lake trout Salvelinus namaycush in Lake Huron has occurred since the 1980s near Thunder Bay, Michigan. During 2004–2006, USGS spring and fall bottom trawl surveys captured 63 wild juvenile lake trout at depths ranging from 37–73 m at four of five ports in the Michigan waters of the main basin of Lake Huron, more than five times the total number captured in the previous 30-year history of the surveys. Relatively high catches of wild juvenile lake trout in bottom trawls during 2004–2006 suggest that natural reproduction by lake trout has increased and occurred throughout the Michigan waters of the main basin. Increased catches of wild juvenile lake trout in the USGS fall bottom trawl survey were coincident with a drastic decline in alewife abundance, but data were insufficient to determine what mechanism may be responsible for increased natural reproduction by lake trout. We recommend further monitoring of juvenile lake trout abundance and research into early life history of lake trout in Lake Huron.
Biology, population structure, and estimated forage requirements of lake trout in Lake Michigan
Eck, Gary W.; Wells, LaRue
1983-01-01
Data collected during successive years (1971-79) of sampling lake trout (Salvelinus namaycush) in Lake Michigan were used to develop statistics on lake trout growth, maturity, and mortality, and to quantify seasonal lake trout food and food availability. These statistics were then combined with data on lake trout year-class strengths and age-specific food conversion efficiencies to compute production and forage fish consumption by lake trout in Lake Michigan during the 1979 growing season (i.e., 15 May-1 December). An estimated standing stock of 1,486 metric tons (t) at the beginning of the growing season produced an estimated 1,129 t of fish flesh during the period. The lake trout consumed an estimated 3,037 t of forage fish, to which alewives (Alosa pseudoharengus) contributed about 71%, rainbow smelt (Osmerus mordax) 18%, and slimy sculpins (Cottus cognatus) 11%. Seasonal changes in bathymetric distributions of lake trout with respect to those of forage fish of a suitable size for prey were major determinants of the size and species compositions of fish in the seasonal diet of lake trout.
Ramesh Paudyal; Neelam C. Poudyal; J.M. Bowker; Adrienne M. Dorison; Stanley J. Zarnoch; Gary T. Green
2015-01-01
Trout in Georgia could experience early impacts from climate change as the streams in the region are located at the southern most edge of their North American home range. This study surveyed trout anglers in Georgia to understand how anglers perceive the potential impact of climate change on trout, and whether and how their perception and response to declines in trout...
Effect of stocking sub-yearling Atlantic salmon on the habitat use of sub-yearling rainbow trout
Johnson, James H.
2016-01-01
Atlantic salmon (Salmo salar) restoration in the Lake Ontario watershed may depend on the species' ability to compete with naturalized non-native salmonids, including rainbow trout (Oncorhynchus mykiss) in Lake Ontario tributaries. This study examined interspecific habitat associations between sub-yearling Atlantic salmon and rainbow trout as well as the effect of salmon stocking on trout habitat in two streams in the Lake Ontario watershed. In sympatry, Atlantic salmon occupied significantly faster velocities and deeper areas than rainbow trout. However, when examining the habitat use of rainbow trout at all allopatric and sympatric sites in both streams, trout habitat use was more diverse at the sympatric sites with an orientation for increased cover and larger substrate. In Grout Brook, where available habitat remained constant, there was evidence suggesting that trout may have shifted to slower and shallower water in the presence of salmon. The ability of sub-yearling Atlantic salmon to affect a habitat shift in rainbow trout may be due to their larger body size and/or larger pectoral fin size. Future studies examining competitive interactions between these species during their first year of stream residence should consider the size advantage that earlier emerging Atlantic salmon will have over rainbow trout.
Regulation of an unexploited brown trout population in Spruce Creek, Pennsylvania
Carline, R.F.
2006-01-01
The purpose of this paper is to describe the annual variations in the density of an unexploited population of lotic brown trout Salmo trutta that has been censused annually for 19 years and to explore the importance of density-independent and density-dependent processes in regulating population size. Brown trout density and indices of stream discharge and water temperature were related to annual variations in natural mortality, recruitment, and growth. Annual mortality of age-1 and older (age-1+) brown trout ranged from 0.30 to 0.75 and was best explained by discharge during spring and by brown trout density. Recruitment to age 1 varied fivefold. Density of age-1 brown trout was inversely related to spawner density and positively related to discharge during the fall spawning period. The median length of age-1 brown trout was positively related to discharge during summer and fall. Relative weight was inversely related to the density of age-2+ brown trout. The interactive effects of discharge and brown trout density accounted for most of the annual variation in mortality, recruitment, and growth during the first year of life. Annual trends in the abundance of age-1+ brown trout were largely dictated by natural mortality. ?? Copyright by the American Fisheries Society 2006.
Riley, Stephen C.; Rinchard, Jacques; Honeyfield, Dale C.; Evans, Allison N.; Begnoche, Linda
2011-01-01
Lake trout Salvelinus namaycush in the Laurentian Great Lakes suffer from thiamine deficiency as a result of adult lake trout consuming prey containing thiaminase, a thiamine-degrading enzyme. Sufficiently low egg thiamine concentrations result in direct mortality of or sublethal effects on newly hatched lake trout fry. To determine the prevalence and severity of low thiamine in lake trout eggs, we monitored thiamine concentrations in lake trout eggs from 15 sites in Lakes Huron and Michigan from 2001 to 2009. Lake trout egg thiamine concentrations at most sites in both lakes were initially low and increased over time at 11 of 15 sites, and the proportion of females with egg thiamine concentrations lower than the recommended management objective of 4 nmol/g decreased over time at eight sites. Egg thiamine concentrations at five of six sites in Lakes Huron and Michigan were significantly inversely related to site-specific estimates of mean abundance of alewives Alosa pseudoharengus, and successful natural reproduction of lake trout has been observed in Lake Huron since the alewife population crashed. These results support the hypothesis that low egg thiamine in Great Lakes lake trout is associated with increased alewife abundance and that low alewife abundance may currently be a prerequisite for successful reproduction by lake trout in the Great Lakes.
Johnson, James E.; Ebener, Mark P.; Gebhardt, Kenneth; Bergstedt, Roger
2004-01-01
We compared seasonal lake whitefish catch rates, lake trout bycatch, and gearinduced lake trout mortality between commercial trap nets and gill nets in north-central Lake Huron. Onboard monitors recorded catches from 260 gill net and 96 trap net lifts from October 1998 through December 1999. Catch rates for lake whitefish were highest in fall for both gear types, reflecting proximity of spawning sites to the study area. Lake whitefish catch rates were also relatively high in spring but low in both gear types in summer. Lake trout were the principal bycatch species in both gears. The lake trout bycatch was lowest in both gear types in fall, highest in gill nets in spring, and highest in trap nets in summer. The ratio of lake trout to legal whitefish (the target species) was highest in summer and lowest in fall in both gear types. The high lake trout ratio in summer was due principally to low catch rates of lake whitefish. All but 3 of 186 live lake trout removed from trap net pots survived for at least two days of observation in laboratory tanks. Therefore, we estimated that post-release survival of trap netted lake trout that had not been entangled in the mesh was 98.4%. In addition, we accounted for stress-induced mortality for lake trout that were live at capture but entangled in the mesh of either gear type. Resulting estimates of lake trout survival were higher in trap nets (87.8%) than in gill nets (39.6%). The number of lake trout killed per lift was highest during summer in trap nets and during spring in gill nets. In trap nets, 85% of dead lake trout were observed to be entangled in the mesh of the pot or tunnels. Survival rates of lake trout in gill nets were higher in our study than reported by others, probably because our nets were hand lifted in a small boat. Our trap net-induced mortality estimates on lake trout were higher than those reported by others because we adjusted our estimates to account for post-release mortality caused by handling and injury. Studies such as ours should prove useful to managers developing harvest allocation options that are consistent with the need to protect nontarget populations. For example, applying our seasonal lake trout-whitefish catch ratios to a hypothetical small-boat gill net fishery, the lake trout bycatch from harvest of 100,000 kg of whitefish would equal the estimated lake trout production available for harvest in the study area for year 2002. The two trap net fisheries may have incidentally killed half this number of lake trout annually from 1995-99. Bycatch estimates are also important inputs to catch-at-age decision models used in developing rehabilitation and harvest strategies for target and bycatch species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magnusson, A. K.; LaGory, K. E.; Hayse, J. W.
2009-01-09
Flaming Gorge Dam, a hydroelectric facility operated by the Bureau of Reclamation (Reclamation), is located on the Green River in Daggett County, northeastern Utah. In recent years, single peak releases each day or steady flows have been the operational pattern during the winter period. A double-peak pattern (two flow peaks each day) was implemented during the winter of 2006-2007 by Reclamation. Because there is no recent history of double-peaking at Flaming Gorge Dam, the potential effects of double-peaking operations on the body condition of trout in the dam's tailwater are not known. A study plan was developed that identified researchmore » activities to evaluate potential effects from double-peaking operations during winter months. Along with other tasks, the study plan identified the need to conduct a statistical analysis of existing data on trout condition and macroinvertebrate abundance to evaluate potential effects of hydropower operations. This report presents the results of this analysis. We analyzed historical data to (1) describe temporal patterns and relationships among flows, benthic macroinvertebrate abundance, and condition of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in the tailwaters of Flaming Gorge Dam and (2) to evaluate the degree to which flow characteristics (i.e., flow volumes and flow variability) and benthic macroinvertebrate abundance affect the condition of trout in this area. This information, together with further analyses of size-stratified trout data, may also serve as baseline data to which the effects of potential future double-peaking flows can be compared. The condition (length, weight and/or relative weight) of rainbow trout (Oncorhynchus mykiss) at two sites in the Green River downstream of Flaming Gorge Dam (Tailrace and Little Hole) and weight of brown trout (Salmo trutta) at the Little Hole site has been decreasing since 1990 while the abundance of brown trout has been increasing at the two sites. At the same time, flow variability in the river has decreased and the abundance of total benthic macroinvertebrates at the Tailrace site has increased. The condition of trout in spring (averaged across all sampled trout) was positively correlated with fall and winter flow variability (including within-day skewness, within-season skewness and/or change in flow between days) at both locations. No negative correlations between trout condition and any measure of flow variability were detected. The length and weight of rainbow trout at the Little Hole site were negatively correlated with increasing fall and winter flow volume. The condition of brown trout at Little Hole and the condition of brown and rainbow trout at Tailrace were not correlated with flow volume. Macroinvertebrate variables during October were either positively correlated or not correlated with measures of trout condition at the Tailrace and Little Hole sites. With the exception of a positive correlation between taxa richness of macroinvertebrates in January and the relative weight of brown trout at Tailrace, the macroinvertebrate variables during January and April were either not correlated or negatively correlated with measures of trout condition. We hypothesize that high flow variability increased drift by dislodging benthic macroinvertebrates, and that the drift, in turn, resulted in mostly lower densities of benthic macroinvertebrates, which benefited the trout by giving them more feeding opportunities. This was supported by negative correlations between benthic macroinvertebrates and flow variability. Macroinvertebrate abundance (with the exception of ephemeropterans) was also negatively correlated with flow volume. The change in trout condition from fall to spring, as measured by the ratio of spring to fall relative weight, was evaluated to determine their usefulness as a standardized index to control for the initial condition of the fish as they enter the winter period. The ratio values were less correlated with the fall condition values than the spring condition values and did not show the same relationships to flows, to macroinvertebrates, or across years as the above-mentioned spring relative weight values. We found that the condition ratio of rainbow trout at Tailrace was positively correlated with within-day flow variability but was not correlated with flow volume, between-day-, or within-season flow variability. The condition ratios of rainbow trout at Little Hole and of both trout species at Tailrace were not correlated to any of the measured flow variables. The condition ratios of both trout species were positively correlated with the abundance of January benthic macroinvertebrates at the Little Hole site and with January dipterans (brown trout) or total coleopterans (rainbow trout) at the Tailrace site. The relationships among flows, macroinvertebrates, and trout condition were varied among species and locations.« less
Lake trout in northern Lake Huron spawn on submerged drumlins
Riley, Stephen C.; Binder, Thomas; Wattrus, Nigel J.; Faust, Matthew D.; Janssen, John; Menzies, John; Marsden, J. Ellen; Ebener, Mark P.; Bronte, Charles R.; He, Ji X.; Tucker, Taaja R.; Hansen, Michael J.; Thompson, Henry T.; Muir, Andrew M.; Krueger, Charles C.
2014-01-01
Recent observations of spawning lake trout Salvelinus namaycush near Drummond Island in northern Lake Huron indicate that lake trout use drumlins, landforms created in subglacial environments by the action of ice sheets, as a primary spawning habitat. From these observations, we generated a hypothesis that may in part explain locations chosen by lake trout for spawning. Most salmonines spawn in streams where they rely on streamflows to sort and clean sediments to create good spawning habitat. Flows sufficient to sort larger sediment sizes are generally lacking in lakes, but some glacial bedforms contain large pockets of sorted sediments that can provide the interstitial spaces necessary for lake trout egg incubation, particularly if these bedforms are situated such that lake currents can penetrate these sediments. We hypothesize that sediment inclusions from glacial scavenging and sediment sorting that occurred during the creation of bedforms such as drumlins, end moraines, and eskers create suitable conditions for lake trout egg incubation, particularly where these bedforms interact with lake currents to remove fine sediments. Further, these bedforms may provide high-quality lake trout spawning habitat at many locations in the Great Lakes and may be especially important along the southern edge of the range of the species. A better understanding of the role of glacially-derived bedforms in the creation of lake trout spawning habitat may help develop powerful predictors of lake trout spawning locations, provide insight into the evolution of unique spawning behaviors by lake trout, and aid in lake trout restoration in the Great Lakes.
Interspecific interactions between brown trout and slimy sculpin in stream enclosures
Ruetz, C. R.; Hurford, A.L.; Vondracek, B.
2003-01-01
We conducted a 30-d manipulative experiment in Valley Creek, Minnesota, to examine interspecific interactions between juvenile brown trout Salmo trutta and adult slimy sculpin Cottus cognatus. We measured the instantaneous growth of each species in the presence and absence of the other in 1-m2 enclosures. We tested single-species (three slimy sculpins/m2 or three brown trout/m2) and combined-species (three sculpins/m2 and three trout/m2) combinations in each of six riffles. We placed a clay tile in each enclosure to evaluate the effects of fish combinations on benthic macroinvertebrates. Growth of brown trout was unaffected by the presence of slimy sculpins (P = 0.647, power [to detect 50% increase in growth] = 0.92), whereas slimy sculpin growth was less in the presence of brown trout (P = 0.038). Densities of total benthic macroinvertebrates, Chironomidae, Trichoptera, and Physa did not differ among fish combinations (P > 0.3). However, densities of Gammarus pseudolimnaeus were significantly less in the presence of brown trout irrespective of the presence of slimy sculpins (P = 0.024), which could be a causal factor underlying the interaction between brown trout and slimy sculpins. We found asymmetrical competition between brown trout and slimy sculpins in stream enclosures, with brown trout being the superior competitor. Nevertheless, the size of enclosures may have biased our results, making it more likely to detect an effect of brown trout on slimy sculpins than vice versa.
A trial of two trouts: Comparing the impacts of rainbow and brown trout on a native galaxiid
Young, K.A.; Dunham, J.B.; Stephenson, J.F.; Terreau, A.; Thailly, A.F.; Gajardo, G.; de Leaniz, C. G.
2010-01-01
Rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta are the world's two most widespread exotic fishes, dominate the fish communities of most cold-temperate waters in the southern hemisphere and are implicated in the decline and extirpation of native fish species. Here, we provide the first direct comparison of the impacts of rainbow and brown trout on populations of a native fish by quantifying three components of exotic species impact: range, abundance and effect. We surveyed 54 small streams on the island of Chilo?? in Chilean Patagonia and found that the rainbow trout has colonized significantly more streams and has a wider geographic range than brown trout. The two species had similar post-yearling abundances in allopatry and sympatry, and their abundances depended similarly on reach-level variation in the physical habitat. The species appeared to have dramatically different effects on native drift-feeding Aplochiton spp., which were virtually absent from streams invaded by brown trout but shared a broad sympatric range with rainbow trout. Within this range, the species' post-yearling abundances varied independently before and after controlling for variation in the physical habitat. In the north of the island, Aplochiton spp. inhabited streams uninvaded by exotic trouts. Our results provide a context for investigating the mechanisms responsible for apparent differences in rainbow and brown trout invasion biology and can help inform conservation strategies for native fishes in Chilo?? and elsewhere. ?? 2010 The Authors. Journal compilation ?? 2010 The Zoological Society of London.
Varol, Memet; Sünbül, Muhammet Raşit
2017-10-01
In this study, levels of ten metals (arsenic, cadmium, cobalt, chromium, copper, iron, manganese, nickel, lead, and zinc) in muscles of farmed and escaped farmed rainbow trout (Oncorhynchus mykiss) in the Keban Dam Reservoir (Turkey) were determined. Also, human health risks associated with their consumption were assessed. Of ten metals, only Co and Fe levels in escaped rainbow trout were significantly higher than those in farmed rainbow trout. The metal levels in farmed and escaped rainbow trout were below the maximum permissible limits. The estimated daily intake (EDI) of each metal in both farmed and escaped farmed rainbow trout was much lower than the respective tolerable daily intake (TDI). The target hazard quotient (THQ) values for individual metal and the total THQ values for combined metals were lower than 1 in both farmed and escaped rainbow trout, indicating no health risk for humans. The cancer risk (CR) values estimated for inorganic As in both farmed and escaped rainbow trout indicated low carcinogenic risk to the consumers. According to the maximum allowable monthly consumption limits (CR mm) , adults may safely consume 24 meals of farmed rainbow trout per month or 39 meals of escaped rainbow trout per month, with minimal adverse carcinogenic and non-carcinogenic health effects. This study revealed that the risk from consuming farmed and escaped farmed rainbow trout in the Keban Dam Reservoir due to these trace elements is minimal.
Jones, Michael L.; Eck, Gary W.; Evans, David O.; Fabrizio, Mary C.; Hoff, Michael H.; Hudson, Patrick L.; Janssen, John; Jude, David; O'Gorman, Robert; Savino, Jacqueline F.
1995-01-01
We examine evidence that biotic factors, particularly predation, may be limiting early survival of wild lake trout (Salvelinus namaycush) juveniles in many areas of the Great Lakes. The Great Lakes contain numerous potential predators of lake trout eggs and fry, some of which are recent invaders, and most of which were probably absent when lake trout most recently re-invaded the Great Lakes after the last ice age. Simple quantitative models of predation suggest that plausible assumptions about prey densities, predator feeding rates, and duration of exposure of predator to prey can lead to very high estimates of predation mortality, in some instances approaching 100%. Indirect evidence from inter-Great Lake comparisons and inland lake examples also suggest that biotic factors may impede successful lake trout colonization. Our synthesis of the evidence leads to recommendations for research to better define field feeding rates of lake trout egg and fry predators and comparative studies of densities of potential egg and fry predators on lake trout spawning reefs. Management options should be designed to provide useful information as well as achieve short-term goals. From a management standpoint we recommend that: newly constructed lake trout reefs should be placed well away from concentrations of potential predators; offshore spawning reefs should be stocked; salmonine stocking, nutrient abatement, and commercial harvest of alewives should all be considered as options to enhance survival of young lake trout; hatchery lake trout should not be stocked at sites where wild lake trout are showing signs of recovery; and exotic species expansions or introductions must be curtailed to maintain or improve on our recent successes in lake trout rehabilitation.
Loxterman, Janet L; Keeley, Ernest R
2012-03-19
For wide-ranging species, intraspecific variation can occur as a result of reproductive isolation from local adaptive differences or from physical barriers to movement. Cutthroat trout (Oncorhynchus clarkii), a widely distributed fish species from North America, has been divided into numerous putative subspecies largely based on its isolation in different watersheds. In this study, we examined mtDNA sequence variation of cutthroat trout to determine the major phylogenetic lineages of this polytypic species. We use these data as a means of testing whether geographic isolation by watershed boundaries can be a primary factor organizing intraspecific diversification. We collected cutthroat trout from locations spanning almost the entire geographic range of this species and included samples from all major subspecies of cutthroat trout. Based on our analyses, we reveal eight major lineages of cutthroat trout, six of which correspond to subspecific taxonomy commonly used to describe intraspecific variation in this species. The Bonneville cutthroat trout (O. c. utah) and Yellowstone cutthroat trout (O. c. bouvieri) did not form separate monophyletic lineages, but instead formed an intermixed clade. We also document the geographic distribution of a Great Basin lineage of cutthroat trout; a group typically defined as Bonneville cutthroat trout, but it appears more closely related to the Colorado River lineage of cutthroat trout. Our study indicates that watershed boundaries can be an organizing factor isolating genetic diversity in fishes; however, historical connections between watersheds can also influence the template of isolation. Widely distributed species, like cutthroat trout, offer an opportunity to assess where historic watershed connections may have existed, and help explain the current distribution of biological diversity across a landscape.
Fairchild, J.F.; Feltz, K.P.; Sappington, L.C.; Allert, A.L.; Nelson, K.J.; Valle, J.
2009-01-01
We conducted acute and chronic toxicity studies of the effects of picloram acid on the threatened bull trout (Salvelinus confluentus) and the standard coldwater surrogate rainbow trout (Oncorhynchus mykiss). Juvenile fish were chronically exposed for 30 days in a proportional flow-through diluter to measured concentrations of 0, 0.30, 0.60, 1.18, 2.37, and 4.75 mg/L picloram. No mortality of either species was observed at the highest concentration. Bull trout were twofold more sensitive to picloram (30-day maximum acceptable toxic concentration of 0.80 mg/L) compared to rainbow trout (30-day maximum acceptable toxic concentration of 1.67 mg/L) based on the endpoint of growth. Picloram was acutely toxic to rainbow trout at 36 mg/L (96-h ALC50). The acute:chronic ratio for rainbow trout exposed to picloram was 22. The chronic toxicity of picloram was compared to modeled and measured environmental exposure concentrations (EECs) using a four-tiered system. The Tier 1, worst-case exposure estimate, based on a direct application of the current maximum use rate (1.1 kg/ha picloram) to a standardized aquatic ecosystem (water body of 1-ha area and 1-m depth), resulted in an EEC of 0.73 mg/L picloram and chronic risk quotients of 0.91 and 0.44 for bull trout and rainbow trout, respectively. Higher-tiered exposure estimates reduced chronic risk quotients 10-fold. Results of this study indicate that picloram, if properly applied according to the manufacturer's label, poses little risk to the threatened bull trout or rainbow trout in northwestern rangeland environments on either an acute or a chronic basis. ?? 2008 Springer Science+Business Media, LLC.
Scale-dependent seasonal pool habitat use by sympatric Wild Brook Trout and Brown Trout populations
Davis, Lori A.; Wagner, Tyler
2016-01-01
Sympatric populations of native Brook Trout Salvelinus fontinalis and naturalized Brown Trout Salmo truttaexist throughout the eastern USA. An understanding of habitat use by sympatric populations is of importance for fisheries management agencies because of the close association between habitat and population dynamics. Moreover, habitat use by stream-dwelling salmonids may be further complicated by several factors, including the potential for fish to display scale-dependent habitat use. Discrete-choice models were used to (1) evaluate fall and early winter daytime habitat use by sympatric Brook Trout and Brown Trout populations based on available residual pool habitat within a stream network and (2) assess the sensitivity of inferred habitat use to changes in the spatial scale of the assumed available habitat. Trout exhibited an overall preference for pool habitats over nonpool habitats; however, the use of pools was nonlinear over time. Brook Trout displayed a greater preference for deep residual pool habitats than for shallow pool and nonpool habitats, whereas Brown Trout selected for all pool habitat categories similarly. Habitat use by both species was found to be scale dependent. At the smallest spatial scale (50 m), habitat use was primarily related to the time of year and fish weight. However, at larger spatial scales (250 and 450 m), habitat use varied over time according to the study stream in which a fish was located. Scale-dependent relationships in seasonal habitat use by Brook Trout and Brown Trout highlight the importance of considering scale when attempting to make inferences about habitat use; fisheries managers may want to consider identifying the appropriate spatial scale when devising actions to restore and protect Brook Trout populations and their habitats.
Schmidt-Posthaus, Heike; Steiner, Pascale; Müller, Barbara; Casanova-Nakayama, Ayako
2013-04-29
Proliferative kidney disease (PKD) is a temperature-dependent disease caused by the myxozoan Tetracapsuloides bryosalmonae. It is an emerging threat to wild brown trout Salmo trutta fario populations in Switzerland. Here we examined (1) how PKD prevalence and pathology in young-of-the-year (YOY) brown trout relate to water temperature, (2) whether wild brown trout can completely recover from T. bryosalmonae-induced renal lesions and eliminate T. bryosalmonae over the winter months, and (3) whether this rate and/or extent of the recovery is influenced by concurrent infection. A longitudinal field study on a wild brown trout cohort was conducted over 16 mo. YOY and age 1+ fish were sampled from 7 different field sites with various temperature regimes, and monitored for infection with T. bryosalmonae and the nematode Raphidascaris acus. T. bryosamonae was detectable in brown trout YOY from all sampling sites, with similar renal pathology, independent of water temperature. During winter months, recovery was mainly influenced by the presence or absence of concurrent infection with R. acus larvae. While brown trout without R. acus regenerated completely, concurrently infected brown trout showed incomplete recovery, with chronic renal lesions and incomplete translocation of T. bryosalmonae from the renal interstitium into the tubular lumen. Water temperature seemed to influence complete excretion of T. bryosalmonae, with spores remaining in trout from summer-warm rivers, but absent in trout from summer-cool rivers. In the following summer months, we found PKD infections in 1+ brown trout from all investigated river sites. The pathological lesions indicated a re-infection rather than a proliferation of remaining T. bryosalmonae. However, disease prevalence in 1+ trout was lower than in YOY.
2012-01-01
Background For wide-ranging species, intraspecific variation can occur as a result of reproductive isolation from local adaptive differences or from physical barriers to movement. Cutthroat trout (Oncorhynchus clarkii), a widely distributed fish species from North America, has been divided into numerous putative subspecies largely based on its isolation in different watersheds. In this study, we examined mtDNA sequence variation of cutthroat trout to determine the major phylogenetic lineages of this polytypic species. We use these data as a means of testing whether geographic isolation by watershed boundaries can be a primary factor organizing intraspecific diversification. Results We collected cutthroat trout from locations spanning almost the entire geographic range of this species and included samples from all major subspecies of cutthroat trout. Based on our analyses, we reveal eight major lineages of cutthroat trout, six of which correspond to subspecific taxonomy commonly used to describe intraspecific variation in this species. The Bonneville cutthroat trout (O. c. utah) and Yellowstone cutthroat trout (O. c. bouvieri) did not form separate monophyletic lineages, but instead formed an intermixed clade. We also document the geographic distribution of a Great Basin lineage of cutthroat trout; a group typically defined as Bonneville cutthroat trout, but it appears more closely related to the Colorado River lineage of cutthroat trout. Conclusion Our study indicates that watershed boundaries can be an organizing factor isolating genetic diversity in fishes; however, historical connections between watersheds can also influence the template of isolation. Widely distributed species, like cutthroat trout, offer an opportunity to assess where historic watershed connections may have existed, and help explain the current distribution of biological diversity across a landscape. PMID:22429757
2016 Lake Michigan Lake Trout Working Group Report
Madenjian, Charles P.; Breidert, Brian; Boyarski, David; Bronte, Charles R.; Dickinson, Ben; Donner, Kevin; Ebener, Mark P.; Gordon, Roger; Hanson, Dale; Holey, Mark; Janssen, John; Jonas, Jory; Kornis, Matthew; Olsen, Erik; Robillard, Steve; Treska, Ted; Weldon, Barry; Wright, Greg D.
2017-01-01
This report provides a review on the progression of lake trout rehabilitation towards meeting the Salmonine Fish Community Objectives (FCOs) for Lake Michigan (Eshenroder et. al. 1995) and the interim goal and evaluation objectives articulated in A Fisheries Management Implementation Strategy for the Rehabilitation of Lake Trout in Lake Michigan (Dexter et al. 2011); we also include data describing lake trout stocking and mortality to portray the present state of progress towards lake trout rehabilitation.
K.R. Matthews
1996-01-01
Abstract.âI used radio transmitters to determine the diel habitat use and movement patterns of California golden trout Oncorhynchus mykiss aquabonita inside and outside cattle exclosures on the South Fork Kern River, Golden Trout Wilderness, California. Twenty-three golden trout were monitored from September 10 to 19, 1993, during 216 diel-tracking hours at four study...
Lowery, Erin D.; Beauchamp, David A.
2015-01-01
Bull Trout Salvelinus confluentus are typically top predators in their host ecosystems. The Skagit River in northwestern Washington State contains Bull Trout and Chinook Salmon Oncorhynchus tshawytschapopulations that are among the largest in the Puget Sound region and also contains a regionally large population of steelhead O. mykiss (anadromous Rainbow Trout). All three species are listed as threatened under the Endangered Species Act (ESA). Our objective was to determine the trophic ecology of Bull Trout, especially their role as predators and consumers in the riverine food web. We seasonally sampled distribution, diets, and growth of Bull Trout in main-stem and tributary habitats during 2007 and winter–spring 2008. Consumption rates were estimated with a bioenergetics model to (1) determine the annual and seasonal contributions of different prey types to Bull Trout energy budgets and (2) estimate the potential impacts of Bull Trout predation on juvenile Pacific salmon populations. Salmon carcasses and eggs contributed approximately 50% of the annual energy budget for large Bull Trout in main-stem habitats, whereas those prey types were largely inaccessible to smaller Bull Trout in tributary habitats. The remaining 50% of the energy budget was acquired by eating juvenile salmon, resident fishes, and immature aquatic insects. Predation on listed Chinook Salmon and steelhead/Rainbow Trout was highest during winter and spring (January–June). Predation on juvenile salmon differed between the two study years, likely due to the dominant odd-year spawning cycle for Pink Salmon O. gorbuscha. The population impact on ocean- and stream-type Chinook Salmon was negligible, whereas the impact on steelhead/Rainbow Trout was potentially very high. Due to the ESA-listed status of Bull Trout, steelhead, and Chinook Salmon, the complex trophic interactions in this drainage provide both challenges and opportunities for creative adaptive management strategies.
Madenjian, Charles P.; Rediske, Richard R.; O'Keefe, James P.; David, Solomon R.
2014-01-01
A technique for laboratory estimation of net trophic transfer efficiency (γ) of polychlorinated biphenyl (PCB) congeners to piscivorous fish from their prey is described herein. During a 135-day laboratory experiment, we fed bloater (Coregonus hoyi) that had been caught in Lake Michigan to lake trout (Salvelinus namaycush) kept in eight laboratory tanks. Bloater is a natural prey for lake trout. In four of the tanks, a relatively high flow rate was used to ensure relatively high activity by the lake trout, whereas a low flow rate was used in the other four tanks, allowing for low lake trout activity. On a tank-by-tank basis, the amount of food eaten by the lake trout on each day of the experiment was recorded. Each lake trout was weighed at the start and end of the experiment. Four to nine lake trout from each of the eight tanks were sacrificed at the start of the experiment, and all 10 lake trout remaining in each of the tanks were euthanized at the end of the experiment. We determined concentrations of 75 PCB congeners in the lake trout at the start of the experiment, in the lake trout at the end of the experiment, and in bloaters fed to the lake trout during the experiment. Based on these measurements, γ was calculated for each of 75 PCB congeners in each of the eight tanks. Mean γ was calculated for each of the 75 PCB congeners for both active and inactive lake trout. Because the experiment was replicated in eight tanks, the standard error about mean γ could be estimated. Results from this type of experiment are useful in risk assessment models to predict future risk to humans and wildlife eating contaminated fish under various scenarios of environmental contamination.
Summer microhabitat use of fluvial bull trout in Eastern Oregon streams
Al-Chokhachy, R.; Budy, P.
2007-01-01
The management and recovery of populations of bull trout Salvelinus confluentus requires a comprehensive understanding of habitat use across different systems, life stages, and life history forms. To address these needs, we collected microhabitat use and availability data in three fluvial populations of bull trout in eastern Oregon. We evaluated diel differences in microhabitat use, the consistency of microhabitat use across systems and size-classes based on preference, and our ability to predict bull trout microhabitat use. Diel comparisons suggested bull trout continue to use deeper microhabitats with cover but shift into significantly slower habitats during nighttime periods; however, we observed no discrete differences in substrate use patterns across diel periods. Across life stages, we found that both juvenile and adult bull trout used slow-velocity microhabitats with cover, but the use of specific types varied. Both logistic regression and habitat preference analyses suggested that adult bull trout used deeper habitats than juveniles. Habitat preference analyses suggested that bull trout habitat use was consistent across all three systems, as chi-square tests rejected the null hypotheses that microhabitats were used in proportion to those available (P < 0.0001). Validation analyses indicated that the logistic regression models (juvenile and adult) were effective at predicting bull trout absence across all tests (specificity values = 100%); however, our ability to accurately predict bull trout absence was limited (sensitivity values = 0% across all tests). Our results highlight the limitations of the models used to predict microhabitat use for fish species like bull trout, which occur at naturally low densities. However, our results also demonstrate that bull trout microhabitat use patterns are generally consistent across systems, a pattern that parallels observations at both similar and larger scales and across life history forms. Thus, our results, in combination with previous bull trout habitat studies, provide managers with benchmarks for restoration in highly degraded systems.
Biology and management of threatened and endangered western trouts
R. J. Behnke; Mark Zarn
1976-01-01
Discusses taxonomy, reasons for decline, life history and ecology, and suggestions for preservation and management of six closely related trouts native to western North America: Colorado River cutthroat, Salmo clarki pleuriticus; greenback trout, S. c. stomias; Lahontan cutthroat, S. c. henshawi; Paiute trout,...
Evaluation of dietary soy sensitivity in snake river cutthroat trout
USDA-ARS?s Scientific Manuscript database
Hatchery-cultured cutthroat trout fed some commercially available rainbow trout feeds display slow growth and increased mortality. Feed characteristics such as buoyancy and texture alter feed acceptance in some fish species but their effects have not been adequately addressed in cutthroat trout. Th...
75 FR 18235 - Paiute Cutthroat Trout Restoration Project, Alpine County, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-09
...] Paiute Cutthroat Trout Restoration Project, Alpine County, CA AGENCY: Fish and Wildlife Service, Interior... availability of the Paiute Cutthroat Trout Restoration Project Final Environmental Impact Statement (EIS... cutthroat trout to the species historical range within the Silver King Creek watershed, Alpine County...
NASA Astrophysics Data System (ADS)
Montori, Albert; Tierno de Figueroa, J. Manuel; Santos, Xavier
2006-10-01
We investigated the autumnal diet of the brown trout Salmo trutta, in a Prepyrenean stream (NW Iberian Peninsula) focusing on intraspecific dietary differences related to size and sex. The diet of trout included 18 types of prey, with Plecoptera and Ephemeroptera nymphs and Diptera larvae as the most consumed taxa. Large trout ate larger prey, than did small trout, and also increased the consumption of terrestrial-surface prey with respect to aquatic-benthic prey. As terrestrial-surface preys were larger than aquatic-benthic prey, the size-related differences in the diet of trout were related to gape-limitations. Although male and female trout did not differ in size, we found that males foraged on a more diverse type of prey than females, probably owing to male territoriality during the reproductive period. This study provides new evidence of dietary plasticity in the brown trout and confirms the importance of local dietary studies to better understand factors which drive trophic ecology of predators.
Carl, L.M.
2008-01-01
The objective of the study was to test the hypothesis that lake trout populations change in relation to cisco, lake whitefish, round whitefish and burbot populations in lakes in the Algonquin Highlands region of Ontario. Lake trout population change is greatest where cisco and lake whitefish are present. Lake trout populations in lakes without either coregonine tend to have small adults and many juveniles. Where cisco or lake whitefish are present, adult lake trout are large, juvenile abundance is low, and the stock-recruit relationship appears to be uncoupled likely due to a larval bottleneck. Lake trout populations in these lakes may be sensitive to overfishing and recruitment failure. Lake trout populations do not appear to change in relation to round whitefish. There appears to be an indirect positive change on juvenile lake trout abundance through reductions in the density of benthic coregonines in the presence of large, hypolimnetic burbot. ?? 2007 Springer Science+Business Media B.V.
Fairchild, James F; Allert, Ann; Sappington, Linda S; Nelson, Karen J; Valle, Janet
2008-03-01
We conducted 96-h static acute toxicity studies to evaluate the relative sensitivity of juveniles of the threatened bull trout (Salvelinus confluentus) and the standard cold-water surrogate rainbow trout (Onchorhyncus mykiss) to three rangeland herbicides commonly used for controlling invasive weeds in the northwestern United States. Relative species sensitivity was compared using three procedures: standard acute toxicity testing, fractional estimates of lethal concentrations, and accelerated life testing chronic estimation procedures. The acutely lethal concentrations (ALC) resulting in 50% mortality at 96 h (96-h ALC50s) were determined using linear regression and indicated that the three herbicides were toxic in the order of picloram acid > 2,4-D acid > clopyralid acid. The 96-h ALC50 values for rainbow trout were as follows: picloram, 41 mg/L; 2.4-D, 707 mg/L; and clopyralid, 700 mg/L. The 96-h ALC50 values for bull trout were as follows: picloram, 24 mg/L; 2.4-D, 398 mg/L; and clopyralid, 802 mg/L. Fractional estimates of safe concentrations, based on 5% of the 96-h ALC50, were conservative (overestimated toxicity) of regression-derived 96-h ALC5 values by an order of magnitude. Accelerated life testing procedures were used to estimate chronic lethal concentrations (CLC) resulting in 1% mortality at 30 d (30-d CLC1) for the three herbicides: picloram (1 mg/L rainbow trout, 5 mg/L bull trout), 2,4-D (56 mg/L rainbow trout, 84 mg/L bull trout), and clopyralid (477 mg/L rainbow trout; 552 mg/L bull trout). Collectively, the results indicated that the standard surrogate rainbow trout is similar in sensitivity to bull trout. Accelerated life testing procedures provided cost-effective, statistically defensible methods for estimating safe chronic concentrations (30-d CLC1s) of herbicides from acute toxicity data because they use statistical models based on the entire mortality:concentration:time data matrix.
Fairchild, J.F.; Allert, A.; Sappington, L.S.; Nelson, K.J.; Valle, J.
2008-01-01
We conducted 96-h static acute toxicity studies to evaluate the relative sensitivity of juveniles of the threatened bull trout (Salvelinus confluentus) and the standard cold-water surrogate rainbow trout (Onchorhyncus mykiss) to three rangeland herbicides commonly used for controlling invasive weeds in the northwestern United States. Relative species sensitivity was compared using three procedures: standard acute toxicity testing, fractional estimates of lethal concentrations, and accelerated life testing chronic estimation procedures. The acutely lethal concentrations (ALC) resulting in 50% mortality at 96 h (96-h ALC50s) were determined using linear regression and indicated that the three herbicides were toxic in the order of picloram acid > 2,4-D acid > clopyralid acid. The 96-h ALC50 values for rainbow trout were as follows: picloram, 41 mg/L; 2.4-D, 707 mg/L; and clopyralid, 700 mg/L. The 96-h ALC50 values for bull trout were as follows: picloram, 24 mg/L; 2.4-D, 398 mg/L; and clopyralid, 802 mg/L. Fractional estimates of safe concentrations, based on 5% of the 96-h ALC50, were conservative (overestimated toxicity) of regression-derived 96-h ALC5 values by an order of magnitude. Accelerated life testing procedures were used to estimate chronic lethal concentrations (CLC) resulting in 1% mortality at 30 d (30-d CLC1) for the three herbicides: picloram (1 mg/L rainbow trout, 5 mg/L bull trout), 2,4-D (56 mg/L rainbow trout, 84 mg/L bull trout), and clopyralid (477 mg/L rainbow trout; 552 mg/L bull trout). Collectively, the results indicated that the standard surrogate rainbow trout is similar in sensitivity to bull trout. Accelerated life testing procedures provided cost-effective, statistically defensible methods for estimating safe chronic concentrations (30-d CLC1s) of herbicides from acute toxicity data because they use statistical models based on the entire mortality:concentration: time data matrix. ?? 2008 SETAC.
Johnson, James H.; McKenna, James E.
2015-01-01
Interspecific partitioning of food and habitat resources has been widely studied in stream salmonids. Most studies have examined resource partitioning between two native species or between a native species and one that has been introduced. In this study we examine the diel feeding ecology and habitat use of three species of juvenile salmonids (i.e., Atlantic Salmon Salmo salar, Brown Trout Salmo trutta, and Rainbow Trout Oncorhynchus mykiss) in a tributary of Skaneateles Lake, New York. Subyearling Brown Trout and Rainbow Trout fed more heavily from the drift than the benthos, whereas subyearling Atlantic Salmon fed more from the benthos than either species of trout. Feeding activity of Atlantic Salmon and Rainbow Trout was similar, with both species increasing feeding at dusk, whereas Brown Trout had no discernable feeding peak or trough. Habitat availability was important in determining site-specific habitat use by juvenile salmonids. Habitat selection was greater during the day than at night. The intrastream, diel, intraspecific, and interspecific variation we observed in salmonid habitat use in Grout Brook illustrates the difficulty of acquiring habitat use information for widespread management applications.
Communications: Blood chemistry of laboratory-reared Golden trout
Hunn, Joseph B.; Wiedmeyer, Ray H.; Greer, Ivan E.; Grady, Andrew W.
1992-01-01
Golden trout Oncorhynchus aguabonita obtained from a wild stock as fertilized eggs were reared in the laboratory for 21 months. The laboratory-reared golden trout in our study reached sexual maturity earlier and grew more rapidly than wild golden trout do (according to the scientific literature). Male fish averaged 35.6 cm in total length and 426 g in weight, and females averaged 36.2 cm and 487 g. All golden trout were sexually mature when used for hematological analysis. The hematological profile (hematocrit, red blood cells, white blood cells, and thrombocytes) of golden trout was similar to that reported elsewhere for other trout species. Male and female golden trout did not have significantly different thrombocyte counts; however, the immobilization treatment used on the fish (anesthesia versus a blow to the head) resulted in significant treatment differences in thrombocyte numbers and interaction effect of sex in treatment for hematocrits. Gravid female golden trout had significantly higher plasma protein and calcium levels than did males. The ionic compositions of plasma (sodium, potassium, calcium, magnesium, copper, zinc, iron, and chloride) and gallbladder bile (calcium and chloride) were similar to those reported for other salmonids.
[Carotenoids and vitamin A in fish].
Elmadfa, I; Majchrzak, D
1998-06-01
Seven commercial salmon and six trout samples were investigated. Retinol and the carotenoids astaxanthin and canthaxanthin important for pigmentation of the muscle were determined by RP-HPLC. Vitamin A concentrations of raw salmon samples were 16-19 micrograms/100 g, of smoked salmon samples 9-19 micrograms/ 100 g; retinol values of salmon trout (raw) and trout (raw) reached 14-16 micrograms/100 g and 7-9 micrograms/100 g. Concentrations of astaxanthin the important carotenoid of pigmentation, ranged in samples of salmon from 310-465 micrograms/100 g. Samples of salmon trout showed astaxanthin values between 90 and 536 micrograms/100 g, trout samples only 67-85 micrograms/100 g. Concentrations of canthaxanthin were different in the examined samples and were not detectable in all samples. Highest values of canthaxanthin were found in salmon trout samples (113-226 micrograms/100 g), Irish smoked salmon and stremel-salmon (145-169 micrograms/100 g). Raw samples of salmon and of trout showed only low concentrations of canthaxanthin. Astaxanthin and canthaxanthin together reached values of 419-524 micrograms/100 g for salmon, 316-701 micrograms/100 g for salmon trout, and 72-91 micrograms/100 g for trout samples.
Terrestrial–aquatic linkages in spring-fed and snowmelt-dominated streams
Sepulveda, Adam
2017-01-01
The importance of trophic linkages between aquatic and terrestrial ecosystems is predicted to vary as a function of subsidy quantity and quality relative to in situ resources. To test this prediction, I used multi-year diet data from Bonneville cutthroat trout Oncorhynchus clarki Utah in spring-fed and snowmelt-driven streams in the high desert of western North America. I documented that trout in spring-fed streams consumed more (number and weight) aquatic than terrestrial invertebrates, while trout in snowmelt-driven streams consumed a similar number of both prey types but consumed more terrestrial than aquatic invertebrates by weight. Trout in spring-fed streams consumed more aquatic invertebrates than trout in snowmelt streams and trout consumed more terrestrial invertebrates in snowmelt than in spring-fed streams. Up to 93% of trout production in spring-fed streams and 60% in snowmelt streams was fueled by aquatic invertebrates, while the remainder of trout production in each stream type was from terrestrial production. I found that the biomass and occurrence of consumed terrestrial invertebrates were not related to our measures of in situ resource quality or quantity in either stream type. These empirical data highlight the importance of autotrophic-derived production to trout in xeric regions.
Liedtke, Theresa L.; Kock, Tobias J.; Ekstrom, Brian K.; Tomka, Ryan G.; Rondorf, Dennis W.
2011-01-01
A creel evaluation was conducted in Lake Scanewa, a reservoir on the Cowlitz River, to monitor catch rates of rainbow trout (Oncorhynchus mykiss) and determine if the trout fishery was having negative impacts on juvenile anadromous salmon (Oncorhynchus spp.) in the system. The trout fishery, which is supported by releases of 20,000 fish (2 fish per pound) per year from June to August, was developed to mitigate for the construction of the Cowlitz Falls Dam in 1994. The trout fishery has a target catch rate of at least 0.50 fish per hour. Interviews with 1,214 anglers during the creel evaluation found that most anglers targeted rainbow trout (52 percent) or Chinook and coho salmon (48 percent). The interviewed anglers caught a total of 1,866 fish, most of which were rainbow trout (1,213 fish; 78 percent) or coho salmon (311 fish; 20 percent). We estimated that anglers spent 17,365 hours fishing in Lake Scanewa from June to November 2010. Catch rates for boat anglers (1.39 fish per hour) exceeded the 0.50 fish per hour target, whereas catch rates for shore anglers (0.35 fish per hour) fell short of the goal. The combined catch rates for all trout anglers in the reservoir were 0.96 fish per hour. We estimated that anglers harvested 7,584 (95 percent confidence interval = 2,795-12,372 fish) rainbow trout during the study period and boat anglers caught more fish than shore anglers (5,975 and 1,609 fish, respectively). This estimate suggests that more than 12,000 of the 20,000 rainbow trout released into Lake Scanewa during 2010 were not harvested, and could negatively impact juvenile salmon in the reservoir through predation or competition. We examined 1,236 stomach samples from rainbow trout and found that 2.1 percent (26 fish) of these samples contained juvenile fish. Large trout (greater than 300 millimeters) had a higher incidence of predation than small trout (less than 300 millimeters; 8.50 and 0.06 percent, respectively). A total of 39 fish were found in rainbow trout stomachs and 13 (33 percent) of these were juvenile salmon. These data and uncertainties associated with movement patterns and survival rates of rainbow trout in Lake Scanewa suggest that future evaluations would be helpful to better understand the potential effects of the mitigation trout fishery on juvenile salmon in the reservoir.
James, Daniel A.; Chipps, Steven R.
2016-01-01
We compared diet, stomach fullness, condition, and growth of Brown Trout Salmo trutta among streams with or without blooms of the benthic diatom Didymosphenia geminata in the Black Hills, South Dakota. In Rapid Creek, where D. geminata blooms covered ∼30% of the stream bottom, Brown Trout consumed fewer ephemeropterans (6–8% by weight) than individuals from two stream sections that have not had D. geminatablooms (Castle and Spearfish creeks; 13–39% by weight). In contrast, dipterans (primarily Chironomidae) represented a larger percentage of Brown Trout diets from Rapid Creek (D. geminata blooms present; 16–28% dry weight) compared with diets of trout from streams without D. geminata blooms (6–19% dry weight). Diets of small Brown Trout (100–199 mm TL) reflected the invertebrate species composition in benthic stream samples; in Rapid Creek, ephemeropterans were less abundant whereas dipterans were more abundant than in streams without D. geminata blooms. Stomach fullness and condition of Brown Trout from Rapid Creek were generally greater than those of Brown Trout from other populations. Linkages among invertebrate availability, diet composition, and condition of Brown Trout support the hypothesis that changes in invertebrate assemblages associated with D. geminata (i.e., more Chironomidae) could be contributing to high recruitment success for small Brown Trout in Rapid Creek.
Mink predation on brown trout in a Black Hills stream
Davis, Jacob L.; Wilhite, Jerry W.; Chipps, Steven R.
2016-01-01
In the early 2000’s, declines in the brown trout (Salmo trutta) fishery in Rapid Creek, South Dakota, caused concern for anglers and fisheries managers. We conducted a radio telemetry study in 2010 and 2011 to identify predation mortality associated with mink, using hatchery-reared (2010) or wild (2011) brown trout. Estimated predation rates by mink (Mustela vison) on radio-tagged brown trout were 30% for hatchery fish and 32% for wild fish. Size frequency analysis revealed that the size distribution of brown trout lost to predation was similar to that of other, radio-tagged brown trout. In both years, a higher proportion of predation mortality (83–92%) occurred during spring, consistent with seasonal fish consumption by mink. Predation by mink appeared to be a significant source of brown trout mortality in our study.
A blood chemistry profile for lake trout
Edsall, Carol Cotant
1999-01-01
A blood chemistry profile for lake trout Salvelinus namaycush was developed by establishing baseline ranges for several clinical chemistry tests (glucose, total protein, amylase, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, creatine kinase, calcium, and magnesium). Measurements were made accurately and rapidly with a Kodak Ektachem DT60 Analyzer and the Ektachem DTSC Module. Blood serum was collected from both laboratory-reared lake trout (1978 and 1986 year-classes) and feral spawning trout from Lake Michigan and then analyzed in the laboratory. No clinically significant differences were found between samples analyzed fresh and those frozen for 1 or 6 weeks. The ranges in chemistry variables for feral lake trout were generally wider than those for laboratory-reared lake trout, and significant differences existed between male and female feral lake trout for several tests. Blood chemistry profiles also varied seasonally on fish sampled repeatedly.
Schmidt-Posthaus, Heike; Ros, Albert; Hirschi, Regula; Schneider, Ernst
2017-03-21
Proliferative kidney disease (PKD) is an emerging disease threatening wild salmonid populations, with the myxozoan parasite Tetracapsuloides bryosalmonae as the causative agent. Species differences in parasite susceptibility and disease-induced mortality seem to exist. The aim of the present study was to compare incidence, pathology and mortality of PKD in grayling Thymallus thymallus and brown trout Salmo trutta under identical semi-natural conditions. Young-of-the-year grayling and brown trout, free of T. bryosalmonae, were jointly exposed in cage compartments in a river in the northeast of Switzerland during 3 summer months. Wild brown trout were caught by electrofishing near the cage, and PKD status was compared with that of caged animals. Cage-exposed grayling showed a PKD incidence of 1%, regardless of whether parasite infection was determined by means of real-time PCR or histopathology/immunohistochemistry. In contrast, PKD incidence of caged brown trout was 77%. This value was not significantly different to PKD prevalence of wild brown trout caught above and below the cage (60 and 91%, respectively). Mortality in grayling was significantly higher compared with that of brown trout (40 versus 23%); however, grayling mortality was not considered to be associated with PKD. Mortality of caged and infected brown trout was significantly higher than mortality of non-infected caged trout. Histopathology indicated an ongoing mostly acute or chronic active infection in brown trout, which survived until the end of exposure. The results suggest that grayling are less susceptible to infection with T. bryosalmonae compared with brown trout under the tested field conditions.
Budy, Phaedra; Gaeta, Jereme W.; Lobón-Cerviá, Javier; Sanz, Nuria
2017-01-01
Brown trout are one of the most pervasive and successful invaders worldwide and are ubiquitous across the Intermountain West, USA (IMW). This species is the foundation of extremely popular and economically significant sport fisheries despite well-established negative effects on native fishes and ecosystems, resulting in very challenging, and often opposing, conservation and management goals. Herein, we review the direct (e.g., competition and predation) and indirect (e.g., disease vectors) pathways through which brown trout across the IMW have posed a threat to native species. We discuss the importance of brown trout as economically and culturally important fisheries, especially in novel tailwater ecosystems created by damming. To this end, we surveyed 24 experts from eight states across the IMW to document the relevance of novel brown trout fisheries in 51 tailwaters and found brown trout are thriving in these novel ecosystems, which are often unsuitable for native fishes. We discuss the challenging interplay between protecting native species and managing novel brown trout fisheries. Notably, the future of exotic brown trout in the IMW is shifting as the prestige of native fisheries is growing and many non-native eradication efforts have occurred. The future of exotic brown trout in the IMW, will depend on the nexus of public sentiment and policy, the effectiveness of eradication efforts, and the effect of climate change on both the native fishes and exotic brown trout. Regardless, because brown trout are pervasive and have a broad distribution through the IMW, populations of this species will likely persist at least in some locations into the future.
Exploring trends, causes, and consequences of declining lipids in Lake Superior lake trout
The ability of lake trout to forage in deepwater habitats is facilitated by high lipid content, which affords buoyancy. In Lake Superior, lean lake trout historically occupied depths < 80 m, and siscowet lake trout occupied depths > 80 m. Siscowets have been known f...
IN VIVO MEASUREMENT OF PHENYLGLUCUCURONIDE IN RAINBOW TROUT BY ON-LINE INJECTION MICRODIALYSIS
Phenylglucuronide (PG) was measured in vivo in arterial blood of rainbow trout using on-line injection microdialysis. A microdialysis probe was surgically implanted in the dorsal aorta of spinally-transected trout. The trout were dosed continuously with PG for 24 h using a ventra...
Chapter 5. Yellowstone cutthroat trout
Robert E. Gresswell
1995-01-01
The Yellowstone cutthroat trout is more abundant and inhabits a greater geographical range than does any other nonanadronnous subspecies of cutthroat trout (Varley and Gresswell 1988). The Yellowstone cutthroat trout was indigenous to the Snake River upstream from Shoshone Falls, Idaho, and the Yellowstone River above the Tongue River, Montana (Behnke 1992). Although...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Trout River. 117.337 Section 117... OPERATION REGULATIONS Specific Requirements Florida § 117.337 Trout River. The draw of the CSX Railroad Bridge across the Trout River, mile 0.9 at Jacksonville, operates as follows: (a) The bridge is not...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Trout River. 117.337 Section 117... OPERATION REGULATIONS Specific Requirements Florida § 117.337 Trout River. The draw of the CSX Railroad Bridge across the Trout River, mile 0.9 at Jacksonville, operates as follows: (a) The bridge is not...
Habitat Suitability Index Models: Lake trout (exclusive of the Great Lakes)
Marcus, Michael D.; Hubert, Wayne A.; Anderson, Stanley H.
1984-01-01
The lake trout is an important commercial and sport fish in North America. In the Central Rocky Mountain regi on, 1ake trout are common ly referred to as "mackinaw". There is good evidence that lake trout should be called "1 ake charr" (Morton 1980). No subspecies of lake trout is presently recognized (Robins et al. 1980). The species, however, has extreme variability throughout its range, making it difficult to draw general conclusions about its biology (Martin and Olver 1980).
Wentz, Dennis A.; Graczyk, David J.
1982-01-01
From 1960 to 1979, winter floods seem to have had the greatest adverse effect on the survival of brown trout eggs and sac fry. Although construction of the FRS has eliminated some spawning gravels in the flood pool owing to sedimentation, the wild trout have adapted by using spawning grounds above the flood pool more extensively and intensively. The FRS has not blocked the upstream migration of spawning trout, but it has eliminated similar migrations of fish that compete with and prey on the trout. Controlled streamflows downstream from the FRS have had a stabilizing influence on the limited trout reproduction in this region.
Patricia A. Flebbe
1997-01-01
Current distributions of native brook trout (Salvelinus fontinalis) in the Southern Appalachians are restricted to upper elevations by multiple factors, including habitat requirements, introduced rainbow (Oncorhynchus mykiss) and brown (Salmo trutta) trout, and other human activities. Present-day distribution of brook trout habitat is already fragmented. Increased...
Brook trout movement within a high-elevation watershed: Consequences for watershed restoration
Jeff L. Hansbarger; J. Todd Petty; Patricia M. Mazik
2010-01-01
We used radio-telemetry to quantify brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta) movements in the Shavers Fork of the Cheat River, West Virginia, and an adjacent second-order tributary (Rocky Run). Our objectives were to quantify the overall rate of trout movement, assess spatial and temporal variation in...
1980-12-22
fish in Nevada and Utah. COMMON NAME SCIENTIFIC NAME NEVADA UTAH SALMON, TROUT, GRAYLING & WHITEFISH Family SALMONIDAE King Salmon Oncorhynchus ...tsawytscha X Kokanee Red Salmon 0. nerka kennalyi I X X Lake Trout Salvelinus namayeush X Brook Trout S. fontinalis X Dolly Varden Trout S. malma X
Evidence of sexually dimorphic introgression in Pinaleno Mountain Apache trout
Porath, M.T.; Nielsen, J.L.
2003-01-01
The high-elevation headwater streams of the Pinaleno Mountains support small populations of threatened Apache trout Oncorhynchus apache that were stocked following the chemical removal of nonnative salmonids in the 1960s. A fisheries survey to assess population composition, growth, and size structure confirmed angler reports of infrequent occurrences of Oncorhynchus spp. exhibiting the external morphological characteristics of both Apache trout and rainbow trout O. mykiss. Nonlethal tissue samples were collected from 50 individuals in the headwaters of each stream. Mitochondrial DNA (mtDNA) sequencing and amplification of nuclear microsatellite loci were used to determine the levels of genetic introgression by rainbow trout in Apache trout populations at these locations. Sexually dimorphic introgression from the spawning of male rainbow trout with female Apache trout was detected using mtDNA and microsatellites. Estimates of the degree of hybridization based on three microsatellite loci were 10-88%. The use of nonlethal DNA genetic analyses can supplement information obtained from standard survey methods and be useful in assessing the relative importance of small and sensitive populations with a history of nonnative introductions.
Diet and prey selection by Lake Superior lake trout during springs 1986-2001
Ray, B.A.; Hrabik, T.R.; Ebener, M.P.; Gorman, O.T.; Schreiner, D.R.; Schram, S.T.; Sitar, S.P.; Mattes, W.P.; Bronte, C.R.
2007-01-01
We describe the diet and prey selectivity of lean (Salvelinus namaycush namaycush) and siscowet lake trout (S. n. siscowet) collected during spring (April–June) from Lake Superior during 1986–2001. We estimated prey selectivity by comparing prey numerical abundance estimates from spring bottom trawl surveys and lake trout diet information in similar areas from spring gill net surveys conducted annually in Lake Superior. Rainbow smelt (Osmerus mordax) was the most common prey and was positively selected by both lean and siscowet lake trout throughout the study. Selection by lean lake trout for coregonine (Coregonus spp.) prey increased after 1991 and corresponded with a slight decrease in selection for rainbow smelt. Siscowet positively selected for rainbow smelt after 1998, a change that was coincident with the decrease in selection for this prey item by lean lake trout. However, diet overlap between lean and siscowet lake trout was not strong and did not change significantly over the study period. Rainbow smelt remains an important prey species for lake trout in Lake Superior despite declines in abundance.
Korman, Josh; Melis, Theodore S.
2011-01-01
The Lees Ferry reach of the Colorado River-a 16-mile segment from Glen Canyon Dam to the confluence with the Paria River-supports an important recreational rainbow trout (Oncorhynchus mykiss) fishery. In Grand Canyon, nonnative rainbow trout prey on and compete for habitat and food with native fish, such as the endangered humpback chub (Gila cypha). Experimental flow fluctuations from the dam during winter and spring 2003-5 dewatered and killed a high proportion of rainbow trout eggs in gravel spawning bars, but this mortality had no measurable effect on the abundance of juvenile fish. Flow fluctuations during summer months reduced growth of juvenile trout relative to steadier flows. A high-flow experiment in March 2008 increased both trout survival rates for early life stages and fish abundance. These findings demonstrate that Glen Canyon Dam operations directly affect the trout population in the Lees Ferry reach and could be used to regulate nonnative fish abundance to limit potential negative effects of trout on native fish in Grand Canyon.
Zint, Michaela T.; Taylor, William W.; Carl, Leon; Edsall, Carol C.; Heinrich, John; Sippel, Al; Lavis, Dennis; Schaner, Ted
1995-01-01
Toxic substances have been suspected of being one of the causes of Great Lakes lake trout reproductive failure. Because toxic substances are present in the Great Lakes basin, managers should be aware of the role of contaminants in preventing lake trout rehabilitation. This paper summarizes studies which have sought to establish a relation between toxic substances and lake trout mortality or morbidity, and offers recommendations for future research and management. The review suggests that exposure to toxic substances has the possibility of affecting the species' rehabilitation. A variety of toxic substances, specifically organochlorine compounds, concentrated in lake trout eggs, fry, and the environment, have affected the hatching success of lake trout in the laboratory, but the strength of the relation between toxic substances and lake trout mortality and morbidity in the field remains unclear. In order to clarify this relation, more information is needed on lake trout physiology, biochemistry, behavior, and genetics. An interdisciplinary workshop should be convened to evaluate existing evidence by epidemiological methods, to set priorities for further research, and to develop management strategies.
Leonard, Jill B.K.; Stott, Wendylee; Loope, Delora M.; Kusnierz, Paul C.; Sreenivasan, Ashwin
2013-01-01
The coaster Brook Trout Salvelinus fontinalis is a Lake Superior ecotype representing intraspecific variation that has been impacted by habitat loss and overfishing. Hatchery strains of Brook Trout derived from populations in Lake Superior were stocked into streams within Pictured Rocks National Lakeshore, Michigan, as part of an effort to rehabilitate adfluvial coaster Brook Trout. Wild and hatchery Brook Trout from three streams (Mosquito River, Hurricane River, and Sevenmile Creek) were examined for movement behavior, size, physiology, and reproductive success. Behavior and size of the stocked fish were similar to those of wild fish, and less than 15% of the stocked, tagged Brook Trout emigrated from the river into which they were stocked. There was little evidence of successful reproduction by stocked Brook Trout. Similar to the results of other studies, our findings suggest that the stocking of nonlocal Brook Trout strains where a local population already exists results in limited natural reproduction and should be avoided, particularly if the mechanisms governing the ecotype of interest are poorly understood.
Young, W.P.; Ostberg, C.O.; Keim, P.; Thorgaard, G.H.
2001-01-01
Interspecific hybridization represents a dynamic evolutionary phenomenon and major conservation problem in salmonid fishes. In this study we used amplified fragment length polymorphisms (AFLP) and mitochondrial DNA (mtDNA) markers to describe the extent and characterize the pattern of hybridization and introgression between coastal rainbow trout (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki). Hybrid individuals were initially identified using principle coordinate analysis of 133 polymorphic AFLP markers. Subsequent analysis using 23 diagnostic AFLP markers revealed the presence of F1, rainbow trout backcross, cutthroat trout backcross and later-generation hybrids. mtDNA analysis demonstrated equal numbers of F1 hybrids with rainbow and cutthroat trout mtDNA indicating reciprocal mating of the parental types. In contrast, rainbow and cutthroat trout backcross hybrids always exhibited the mtDNA from the recurrent parent, indicating a male hybrid mating with a pure female. This study illustrates the usefulness of the AFLP technique for generating large numbers of species diagnostic markers. The pattern of hybridization raises many questions concerning the existence and action of reproductive isolating mechanisms between these two species. Our findings are consistent with the hypothesis that introgression between anadromous populations of coastal rainbow and coastal cutthroat trout is limited by an environment-dependent reduction in hybrid fitness.
Henrickson, Eirik H.; Knudsen, Rune; Kristoffersen, Roar; Kuris, Armand M.; Lafferty, Kevin D.; Siwertsson, Anna; Amundsen, Per-Arne
2016-01-01
The trophic niches of Arctic charr and brown trout differ when the species occur in sympatry. Their trophically transmitted parasites are expected to reflect these differences. Here, we investigate how the infections of Diphyllobothrium dendriticum and D. ditremum differ between charr and trout. These tapeworms use copepods as their first intermediate hosts and fish can become infected as second intermediate hosts by consuming either infected copepods or infected fish. We examined 767 charr and 368 trout for Diphyllobothrium plerocercoids in a subarctic lake. The prevalence of D. ditremum was higher in charr (61.5%) than in trout, (39.5%), but the prevalence of D. dendriticum was higher in trout (31.2%) than in charr (19.3%). Diphyllobothrium spp. intensities were elevated in trout compared to charr, particularly for D. dendriticum. Large fish with massive parasite burdens were responsible for the high Diphyllobothrium spp. loads in trout. We hypothesize that fish prey may be the most important source for the Diphyllobothrium spp. infections in trout, whereas charr predominantly acquire Diphyllobothrium spp. by feeding on copepods. Our findings support previous suggestions that the ability to establish in a second piscine host is greater for D. dendriticum than for D. ditremum.
Dispersal, mortality, and predation on recently-stocked rainbow trout in Dale Hollow Lake, Tennessee
Ivasauskas, Tomas J.; Bettoli, Phillip William
2011-01-01
Forty-four hatchery-raised rainbow trout (Oncorhynchus mykiss) were implanted with ultrasonic tags and stocked into Dale Hollow Lake, Tennessee, and tracked at least once per week for eight weeks to describe post-stocking dispersal rates, movements, and habitat use. Dispersal followed a three-stage pattern characterized by rapid movement away from each stocking site during the first week, relatively little dispersal during the next three weeks, and further dispersion during the final four weeks that fish were tracked. Rainbow trout exhibited a strong affinity for coves and were rarely encountered in the main channel. Tagged fish stocked in March exhibited lower mortality (Zweekly = 0.027) than those stocked in January (Zweekly = 0.062) during the first eight weeks post-stocking. Diets of potential predators in Dale Hollow Lake were examined. Walleye (Sander vitreus), smallmouth bass (Micropterus dolomieu), largemouth bass (M. salmoides), and holdover rainbow trout all preyed on recently stocked trout. Larger walleye were more likely to prey on stocked rainbow trout, and walleye of all sizes tended to prey on the smaller trout in each stocked cohort. Walleye were more likely to feed on rainbow trout during January than March. Effective stocking strategies should focus on reducing predation by stocking larger rainbow trout or by stocking when predation risk is minimized (i.e., March).
Felicetti, L.A.; Schwartz, C.C.; Rye, R.O.; Gunther, K.A.; Crock, J.G.; Haroldson, M.A.; Waits, L.; Robbins, C.T.
2004-01-01
Spawning cutthroat trout (Oncorhynchus clarki (Richardson, 1836)) are a potentially important food resource for grizzly bears (Ursus arctos horribilis Ord, 1815) in the Greater Yellowstone Ecosystem. We developed a method to estimate the amount of cutthroat trout ingested by grizzly bears living in the Yellowstone Lake area. The method utilized (i) the relatively high, naturally occurring concentration of mercury in Yellowstone Lake cutthroat trout (508 ± 93 ppb) and its virtual absence in all other bear foods (6 ppb), (ii) hair snares to remotely collect hair from bears visiting spawning cutthroat trout streams between 1997 and 2000, (iii) DNA analyses to identify the individual and sex of grizzly bears leaving a hair sample, (iv) feeding trials with captive bears to develop relationships between fish and mercury intake and hair mercury concentrations, and (v) mercury analyses of hair collected from wild bears to estimate the amount of trout consumed by each bear. Male grizzly bears consumed an average of 5 times more trout/kg bear than did female grizzly bears. Estimated cutthroat trout intake per year by the grizzly bear population was only a small fraction of that estimated by previous investigators, and males consumed 92% of all trout ingested by grizzly bears.
Ward, David L.; Morton-Starner, Rylan
2015-01-01
Predation on juvenile native fish by introduced Rainbow Trout and Brown Trout is considered a significant threat to the persistence of endangered Humpback Chub Gila cypha in the Colorado River in the Grand Canyon. Diet studies of Rainbow Trout and Brown Trout in Glen and Grand canyons indicate that these species do eat native fish, but impacts are difficult to assess because predation vulnerability is highly variable, depending on prey size, predator size, and the water temperatures under which the predation interactions take place. We conducted laboratory experiments to evaluate how short-term predation vulnerability of juvenile native fish changes in response to fish size and water temperature using captivity-reared Humpback Chub, Bonytail, and Roundtail Chub. Juvenile chub 45–90 mm total length (TL) were exposed to adult Rainbow and Brown trouts at 10, 15, and 20°C to measure predation vulnerability as a function of water temperature and fish size. A 1°C increase in water temperature decreased short-term predation vulnerability of Humpback Chub to Rainbow Trout by about 5%, although the relationship is not linear. Brown Trout were highly piscivorous in the laboratory at any size > 220 mm TL and at all water temperatures we tested. Understanding the effects of predation by trout on endangered Humpback Chub is critical in evaluating management options aimed at preserving native fishes in Grand Canyon National Park.
Jacobs, Gregory R.; Madenjian, Charles P.; Bunnell, David B.; Holuszko, Jeffrey D.
2010-01-01
We used analyses of burbot (Lota lota) and lake trout (Salvelinus namaycush) diets taken during spring gill-net surveys in northern Lake Michigan in 2006-2008 to investigate the potential for competition and predator-prey interactions between these two species. We also compared our results to historical data from 1932. During 2006-2008, lake trout diet consisted mainly of alewives (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax), whereas burbot utilized a much wider prey base including round goby (Neogobius melanostomus), rainbow smelt, alewives, and sculpins. Using the Schoener's diet overlap index, we found a higher potential for interspecific competition in 1932 than in 2006-2008, though diet overlap was not significant in either time period. No evidence of cannibalism by lake trout or lake trout predation on burbot was found in either time period. In 2006-2008, however, lake trout composed 5.4% (by weight) of burbot diet. To determine whether this predation could be having an impact on lake trout rehabilitation efforts in northern Lake Michigan, we developed a bioenergetic-based consumption estimate for burbot on Boulder Reef (a representative reef within the Northern Refuge) and found that burbot alone can consume a considerable proportion of the yearling lake trout stocked annually, depending on burbot density. Overall, we conclude that predation, rather than competition, is the more important ecological interaction between burbot and lake trout, and burbot predation may be contributing to the failed lake trout rehabilitation efforts in Lake Michigan.
Ostrand, Kenneth G.; Zydlewski, Gayle B.; Gale, William L.; Zydlewski, Joseph D.
2011-01-01
To track individuals in situ, over 12 million salmon and trout have been marked with passive integrated transponder (PIT) tags in the Columbia River Basin, USA. However, few studies have examined long term tag retention as well as tag effects on juvenile salmon and trout. We marked juvenile coho salmon Oncorhynchus kisutch (N = 207), steelhead (anadromous rainbow trout) O. mykiss (N = 221), cutthroat trout O. clarkii (N = 202) and bull trout Salvelinus confluentus (N = 180) with 12, 19, or 23 mm PIT tags and examined tag retention, survival, growth, and physiological performance over a six month period in a laboratory environment. PIT tag retention rates were high for coho salmon (100%), steelhead (95%), cutthroat trout (97%), and bull trout (99%), regardless of tag size. Survival was also high for coho (99%), steelhead (99%), cutthroat trout (97%), and bull trout (88%) and did not vary among tag sizes. Short term individual growth rates for coho salmon marked with 12 mm tags were significantly higher than those marked with 19 mm and 23 mm PIT tags. Likewise, steelhead trout individual growth rates were lower for fish marked with 23 mm PIT tags followed by 19 and 12 mm tags. Conversely, long-term growth rates were positive and not affected by tag size. There were no significant effects of tag size or marking on coho gill Na+, K+, -ATPase activity (µmol ADP x mg protein–1 h–1) and plasma osmolality (µmol kg–1) or bull trout hepatosomatic indices. Our study suggests that marking juvenile salmonids with PIT tags results in high retention with little effect upon their survival, growth, and important physiological indicators regardless of tag size in a laboratory environment.
D'Angelo, Vincent S.; Muhlfeld, Clint C.
2013-01-01
The widespread declines of native bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarkii lewisi) populations prompted researchers to investigate factors influencing their distribution and status in western Glacier National Park, Montana. We evaluated the association of a suite of abiotic factors (stream width, elevation, gradient, large woody debris density, pool density, August mean stream temperature, reach surface area) with the occurrence (presence or absence) of bull trout and westslope cutthroat trout in 79 stream reaches in five sub-drainages containing glacial lakes. We modeled the occurrence of each species using logistic regression and evaluated competing models using an information theoretic approach. Westslope cutthroat trout were widely distributed (47 of 79 reaches), and there appeared to be no restrictions on their distribution other than physical barriers. Westslope cutthroat trout were most commonly found in relatively warm reaches downstream of lakes and in headwater reaches with large amounts of large woody debris and abundant pools. By contrast, bull trout were infrequently detected (10 of 79 reaches), with 7 of the 10 (70%) detections in sub-drainages that have not been compromised by non-native lake trout (S. namaycush). Bull trout were most often found in cold, low-gradient reaches upstream of glacial lakes. Our results indicate that complex stream habitats in sub-drainages free of non-native species are important to the persistence of native salmonids in western Glacier National Park. Results from this study may help managers monitor and protect important habitats and populations, inform conservation and recovery programs, and guide non-native species suppression efforts in Glacier National Park and elsewhere.
Bergstedt, Roger A.; Argyle, Ray L.; Krueger, Charles C.; Taylor, William W.
2012-01-01
A study conducted in Lake Huron during October 1998–June 2001 found that strains of Great Lakes-origin (GLO) lake trout Salvelinus namaycush occupied significantly higher temperatures than did Finger Lakes-origin (FLO; New York) lake trout based on data from archival (or data storage) telemetry tags that recorded only temperature. During 2002 and 2003, we implanted archival tags that recorded depth as well as temperature in GLO and FLO lake trout in Lake Huron. Data subsequently recorded by those tags spanned 2002–2005. Based on those data, we examined whether temperatures and depths occupied by GLO and FLO lake trout differed during 2002–2005. Temperatures occupied during those years were also compared with occupied temperatures reported for 1998–2001, before a substantial decline in prey fish biomass. Temperatures occupied by GLO lake trout were again significantly higher than those occupied by FLO lake trout. This result supports the conclusion of the previous study. The GLO lake trout also occupied significantly shallower depths than FLO lake trout. In 2002–2005, both GLO and FLO lake trout occupied significantly lower temperatures than they did in 1998–2001. Aside from the sharp decline in prey fish biomass between study periods, the formerly abundant pelagic alewife Alosa pseudoharengus virtually disappeared and the demersal round goby Neogobius melanostomus invaded the lake and became locally abundant. The lower temperatures occupied by lake trout in Lake Huron during 2002–2005 may be attributable to changes in the composition of the prey fish community, food scarcity (i.e., a retreat to cooler water could increase conversion efficiency), or both.
Status of lake trout rehabilitation in the Northern Refuge of Lake Michigan
Madenjian, Charles P.; DeSorcie, Timothy J.
1999-01-01
The Northern Refuge in Lake Michigan was established in 1985 as part of a rehabilitation program to stock yearling lake trout Salvelinus namaycush in areas with the best potential for success. Stocking of hatchery-reared lake trout within the refuge began in 1986 at three reefs: Boulder Reef, Gull Island Reef, and Richards Reef. On each reef from 1991 to 1997 we conducted gill-net surveys during the fall spawning season to evaluate performance of adult lake trout, and we conducted beam trawl surveys for naturally reproduced age-0 lake trout in the spring. Criteria to evaluate performance included spawner density, growth, maturity, and mortality. We found no evidence of natural reproduction by lake trout from our surveys. Nevertheless, density of spawning lake trout on Boulder Reef (69 fish/305 m of gill net/night) and Gull Island Reef (34 fish/305 m of gill net/night) appeared to be sufficiently high to initiate a self-sustaining population. Growth and maturity rates of lake trout in the Northern Refuge were similar to those for lake trout stocked in the nearshore region of Lake Michigan. In the Northern Refuge, growth rate for the Marquette strain of lake trout was slightly higher than for the Lewis Lake strain. Annual mortality estimates from catch curve analyses ranged from 0.46 to 0.41, and therefore, these estimates approached a level that was considered to be sufficiently low to allow for a self-sustaining population. Thus, it appeared that the lack of evidence for natural reproduction by lake trout in the Northern Refuge should not be attributed to inability of the population to attain a sufficiently large stock of spawners.
Population control of exotic rainbow trout in streams of a natural area park
NASA Astrophysics Data System (ADS)
Moore, Stephen E.; Larson, Gary L.; Ridley, Bromfield
1986-03-01
Expansion of the distribution of exotic rainbow trout is thought to be a leading cause for the decline of native brook trout since the 1930s in Great Smoky Mountains National Park, USA. An experimental rehabilitation project was conducted from 1976 to 1981 using backpack electrofish shockers on four remnant brook trout populations sympatric with rainbow trout. The objectives were to evaluate the effectiveness of the technique to remove the exotic rainbow trout, to determine the population responses by native brook trout, and to evaluate the usefulness of the technique for trout management in the park. Rainbow trout populations were greatly reduced in density after up to six years of electrofishing, but were not eradicated. Rainbow trout recruitment, however, was essentially eliminated. Brook trout populations responded by increasing in density (including young-of-the-year), but rates of recovery differed among streams. The maximum observed densities ir each stream occurred at the end of the project. The findings suggest that electrofishing had a major negative impact on the exotic species, which was followed by positive responses from the native species in the second and third order study streams. The technique would probably be less effective in larger (fourth-order) park streams, but as an eradication tool the technique may have its highest potential in small first order streams. Nonetheless, the technique appears useful for population control without causing undue impacts on native aquatic species, although it is labor intensive, and capture efficiency is greatly influenced by fish size and stream morphology. To completely remove the exotic fish from selected streams, different technologies will have to be explored and developed.
Impacts of Northern Pike on stocked Rainbow Trout in Pactola Reservoir, South Dakota
Scheibel, Natalie C.; Dembkowski, Daniel J.; Davis, Jacob L.; Chipps, Steven R.
2016-01-01
Establishment of nonnative Northern Pike Esox lucius in Pactola Reservoir, South Dakota, has prompted concern among biologists about the influence of this species on the lake’s intensively managed salmonid fisheries. Ancedotal information suggests that catch rates of Rainbow Trout Oncorhynchus mykiss have declined while mean size and abundance of Northern Pike has increased, although quantitative information on diet and growth of the Northern Pike population is lacking. To address potential interactions between Northern Pike and Rainbow Trout, we assessed size-dependent predation by Northern Pike on Rainbow Trout and determined the relative energetic contribution of stocked Rainbow Trout to Northern Pike growth using bioenergetics modeling. Stable isotopes combined with traditional diet analyses revealed that smaller Northern Pike (<600 mm TL) consumed primarily centrarchids and Rainbow Smelt Osmerus mordax, and Rainbow Trout contributed less than 10% to their annual energy consumption. In contrast, larger Northern Pike (≥600 mm TL) consumed primarily Rainbow Trout, which accounted for 56% of their annual energy consumption. Combining estimates of Northern Pike predation with production costs of catchable-size Rainbow Trout revealed that annual economic losses ranged from US$15,259 to $24,801 per year. Over its lifespan, an age-10 Northern Pike was estimated to consume ~117 Rainbow Trout worth approximately $340. Thus, Northern Pike predation substantially influences salmonid management initiatives and is likely a primary factor contributing to reduced Rainbow Trout abundance and return to anglers in Pactola Reservoir. Strategies for reducing Northern Pike predation on Rainbow Trout include increasing the size of stocked fish or altering the timing and spatial distribution of stocking events.
Patterns of organochlorine contamination in lake trout from Wisconsin waters of the Great Lakes
Miller, Michael A.; Madenjian, Charles P.; Masnado, Robert G.
1992-01-01
To investigate spatial and temporal patterns of organochlorine contamination in lake trout from Wisconsin waters of the Great Lakes, we examined laboratory contaminant analysis data of muscle tissue samples from Lake Michigan (n=317) and Lake Superior (n=53) fish. Concentrations of polychlorinated biphenyls (PCBs), chlordane, and dieldrin, reported as mg/kg wet weight in 620 mm to 640 mm mean length Lake Michigan lake trout, decreased over time. Mean total PCB concentration declined exponentially from 9.7 in 1975 to 1.9 in 1990. Total chlordane concentration declined 63 percent from 0.48 in 1983 to 0.18 in 1990, and dieldrin declined 52 percent during this same period, from 0.21 to 0.10. The bioaccumulation rate of PCBs is significantly lower for lake trout inhabiting Lake Michigan's midlake reef complex, compared to lake trout from the nearshore waters of western Lake Michigan. Organochlorine compound concentrations were greater in Lake Michigan lake trout than Lake Superior fish. Lake Superior lean lake trout and siscowet exhibited similar rates of PCB bioaccumulation despite major differneces in muscle tissue lipid content between the two subspecies. The lack of a significant difference in the PCB bioaccumulation rates of lean trout and siscowet suggests that lipid content may not be an important factor influencing PCB bioaccumulation in lake trout, within the range of lipid concentrations observed. Relative concentrations of the various organochlorine contaminants found in lake trout were highly correlated, suggesting similar mass balance processes for these compounds. Evidence presented revealing spatial and temporal patterns of organochlorine contamination may be of value in reestablishing self-sustaining populations of lake trout in Lake Michigan.
Weaver, D.; Kwak, Thomas J.
2013-01-01
Fisheries managers are faced with the challenge of balancing the management of recreational fisheries with that of conserving native species and preserving ecological integrity. The negative effects that nonnative trout species exert on native trout are well documented and include alteration of competitive interactions, habitat use, and production. However, the effects that nonnative trout may exert on nongame fish assemblages are poorly understood. Our objectives were to quantify the effects of trout stocking on native nongame fish assemblages intensively on one newly stocked river, the North Toe River, North Carolina, and extensively on other southern Appalachian Mountain streams that are annually stocked with trout. In the intensive study, we adopted a before-after, control-impact (BACI) experimental design to detect short-term effects on the nongame fish assemblage and found no significant differences in fish density, species richness, species diversity, or fish microhabitat use associated with trout stocking. We observed differences in fish microhabitat use between years, however, which suggests there is a response to environmental changes, such as the flow regime, which influence available habitat. In the extensive study, we sampled paired stocked and unstocked stream reaches to detect long-term effects from trout stocking; however, we detected no differences in nongame fish density, species richness, species diversity, or population size structure between paired sites. Our results revealed high inherent system variation caused by natural and anthropogenic factors that appear to overwhelm any acute or chronic effect of stocked trout. Furthermore, hatchery-reared trout may be poor competitors in a natural setting and exert a minimal or undetectable impact on native fish assemblages in these streams. These findings provide quantitative results necessary to assist agencies in strategic planning and decision making associated with trout fisheries, stream management, and conservation of native fishes.
Movement of resident rainbow trout transplanted below a barrier to anadromy
Wilzbach, Margaret A.; Ashenfelter, Mark J.; Ricker, Seth J.
2012-01-01
We tracked the movement of resident coastal rainbow trout Oncorhynchus mykiss irideus that were experimentally transplanted below a migration barrier in a northern California stream. In 2005 and 2006, age-1 and older rainbow trout were captured above a 5-m-high waterfall in Freshwater Creek and individually marked with passive integrated transponder tags. Otolith microchemistry confirmed that the above-barrier trout were the progeny of resident rather than anadromous parents, and genetic analysis indicated that the rainbow trout were introgressed with cutthroat trout O. clarkii. At each of three sampling events, half of the tagged individuals (n = 22 and 43 trout in 2005 and 2006, respectively) were released 5 km downstream from the waterfall (approximately 10 km upstream from tidewater), and an equal number of tagged individuals were released above the barrier. Tagged individuals were subsequently relocated with stationary and mobile antennae or recaptured in downstream migrant traps, or both, until tracking ceased in October 2007. Most transplanted individuals remained within a few hundred meters of their release location. Three individuals, including one rainbow trout released above the waterfall, were last detected in the tidally influenced lower creek. Two additional tagged individuals released above the barrier were found alive in below-barrier reaches and had presumably washed over the falls. Two of seven tagged rainbow trout captured in downstream migrant traps had smolted and one was a presmolt. The smoltification of at least some individuals, coupled with above-barrier "leakage" of fish downstream, suggests that above-barrier resident trout have the potential to exhibit migratory behavior and to enter breeding populations of steelhead (anadromous rainbow trout) within the basin.
Wigwam River Juvenile Bull Trout and Fish Habitat Monitoring Program : 2000 Data Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cope, R.S.; Morris, K.J.
2001-03-01
The Wigwam River bull trout (Salvelinus confluentus) and fish habitat monitoring program is a trans-boundary initiative implemented by the British Columbia Ministry of Environment, Lands and Parks (MOE), in cooperation with Bonneville Power Administration (BPA). The Wigwam River is an important fisheries stream located in southeastern British Columbia that supports healthy populations of both bull trout and Westslope cutthroat trout (Figure 1.1). This river has been characterized as the single most important bull trout spawning stream in the Kootenay Region (Baxter and Westover 2000, Cope 1998). In addition, the Wigwam River supports some of the largest Westslope cutthroat trout (Oncorhynchusmore » clarki lewisi) in the Kootenay Region. These fish are highly sought after by anglers (Westover 1999a, 1999b). Bull trout populations have declined in many areas of their range within Montana and throughout the northwest including British Columbia. Bull trout were blue listed as vulnerable in British Columbia by the B.C. Conservation Data Center (Cannings 1993) and although there are many healthy populations of bull trout in the East Kootenays they remain a species of special concern. Bull trout in the United States portion of the Columbia River were listed as threatened in 1998 under the Endangered Species Act by the U.S. Fish and Wildlife Service. The upper Kootenay River is within the Kootenai sub-basin of the Mountain Columbia Province, one of the eleven Eco-provinces that make up the Columbia River Basin. MOE applied for and received funding from BPA to assess and monitor the status of wild, native stocks of bull trout in tributaries to Lake Koocanusa (Libby Reservoir) and the upper Kootenay River. This task is one of many that was undertaken to ''Monitor and Protect Bull Trout for Koocanusa Reservoir'' (BPA Project Number 2000-04-00).« less
Embryotoxicity of Great Lakes lake trout extracts to developing rainbow trout
Wright, Peggy J.; Tillitt, Donald E.
1999-01-01
Planar halogenated hydrocarbons (PHHs), such as polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls are present in aquatic systems, and are known to produce adverse effects in fish. This study investigated the embryotoxicity of PHH mixtures through the nanoinjection of environmental extracts into newly fertilized eggs from two strains of rainbow trout. Organic extracts were obtained from whole adult lake trout collected from Lake Michigan in 1988 and Lake Superior in 1994. The graded doses of the final extracts used for injection were quantified as 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic-equivalents (TEQs) based on the concentrations of dioxins, furans and non-o-PCBs in each, and as equivalent amounts found in the eggs of the original lake trout (eggEQ). Total TEQs in the lake trout were 14.7 pg TEQ/g in the Lake Michigan sample and 7.3 pg TEQ/g in the Lake Superior sample. The extract of the Lake Michigan lake trout was embryotoxic to rainbow trout; LD50 values were 35 eggEQ (15–90, 95% F.L.) in the Arlee strain and 14 eggEQ (5–99, 95% F.L.) in the Erwin strain of rainbow trout. The LD50 values of the Lake Michigan extract in either of these strains of rainbow trout fall within the actual range of TCDD LD50values based on TEQs. This indicates that an additive model of toxicity is appropriate to quantify PHHs in relation to early life stage mortality in fish. Gross lesions characteristic of exposure to PHHs (i.e. yolk-sac edema, craniofacial deformities, and hemorrhaging) increased in a dose-related manner. The lowest observable adverse effect concentrations (LOAEC) for these gross lesions and cumulative mortalities suggests that current concentrations of PHHs in lake trout from Lake Michigan are above a threshold for adverse effects and these compounds may have implications on the lack of recruitment in certain Great Lakes lake trout populations.
Relying on fin erosion to identify hatchery-reared brown trout in a Tennessee river
Meerbeek, Jonathan R.; Bettoli, Phillip William
2012-01-01
Hatchery-induced fin erosion can be used to identify recently stocked catchable-size brown trout Salmo trutta during annual surveys to qualitatively estimate contributions to a fishery. However, little is known about the longevity of this mark and its effectiveness as a short-term (≤ 1 year) mass-marking technique. We evaluated hatchery-induced pectoral fin erosion as a mass-marking technique for short-term stocking evaluations by stocking microtagged brown trout in a tailwater and repeatedly sampling those fish to observe and measure their pectoral fins. At Dale Hollow National Fish Hatchery, 99.1% (228 of 230) of microtagged brown trout in outdoor concrete raceways had eroded pectoral fins 1 d prior to stocking. Between 34 and 68 microtagged and 26-35 wild brown trout were collected during eight subsequent electrofishing samples. In a blind test based on visual examination of pectoral fins at up to 322 d poststocking, one observer correctly identified 91.7% to 100.0% (mean of 96.9%) of microtagged brown trout prior to checking for microtags. In the laboratory, pectoral fin length and width measurements were recorded to statistically compare the fin measurements of wild and microtagged hatchery brown trout. With only one exception, all pectoral fin measurements on each date averaged significantly larger for wild trout than for microtagged brown trout. Based on the number of pectoral fin measurements falling below 95% prediction intervals, 93.7% (148 of 158) of microtagged trout were correctly identified as hatchery fish based on regression models up to 160 d poststocking. Only 72.2% (70 of 97) of microtagged trout were identified correctly after 160 d based on pectoral fin measurements and the regression models. We concluded that visual examination of pectoral fin erosion was a very effective way to identify stocked brown trout for up to 322 d poststocking.
Lake trout (Salvelinus namaycush) populations in Lake Superior and their restoration in 1959-1993
Hansen, Michael J.; Peck, James W.; Schorfhaar, Richard G.; Selgeby, James H.; Schreiner, Donald R.; Schram, Stephen T.; Swanson, Bruce L.; MacCallum, Wayne R.; Burnham-Curtis, Mary K.; Curtis, Gary L.; Heinrich, John W.; Young, Robert J.
1995-01-01
Naturally-reproducing populations of lake trout (Salvelinus namaycush) have been reestablished in most of Lake Superior, but have not been restored to 1929-1943 average abundance. Progress toward lake trout restoration in Lake Superior is described, management actions are reviewed, and the effectiveness of those actions is evaluated; especially stocking lake trout as a tool for building spawning stocks, and subsequently, populations of wild recruits. Widespread destruction of lake trout stocks in the 1950s due to an intense fishery and sea lamprey (Petromyzon marinus) predation resulted in lower overall phenotypic diversity than was previously present. Stocking of yearling lake trout, begun in the 1950s, produced high densities of spawners that reproduced wherever inshore spawning habitat was widespread. Sea lampreys were greatly reduced, beginning in 1961, using selective chemical toxicants and barrier dams, but continue to exert substantial mortality. Fishery regulation was least effective in Wisconsin, where excessive gillnet effort caused high by-catch of lake trout until 1991, and in eastern Michigan, where lake trout restoration was deferred in favor of a tribal fishery for lake whitefish (Coregonus clupeaformis) in 1985. Restoration of stocks was quicker in offshore areas where remnant wild lake trout survived and fishing intensity was low, and was slower in inshore areas where stocked lake trout reproduced successfully and fishing intensity was high. Inshore stocks of wild lake trout are currently about 61 % of historic abundance in Michigan and 53% in Wisconsin. Direct comparison of modern and historic abundances of inshore lake trout stocks in Minnesota and Ontario is impossible due to lack of historic stock assessment data. Stocks in Minnesota are less abundant at present than in Michigan or Wisconsin, and stocks in Ontario are similar to those in Michigan. Further progress in stock recovery can only be achieved if sea lampreys are depressed and if fisheries are constrained further than at present.
Benjamin, Joseph R.; Dunham, Jason B.; Dare, M.R.
2007-01-01
Theoretical models and empirical evidence suggest that the invasion of nonnative species in freshwaters is facilitated through the interaction of three factors: habitat quality, biotic resistance, and connectivity. We measured variables that represented each factor to determine which were associated with the occurrence of nonnative brook trout Salvelinus fontinalis in Panther Creek, a tributary to the Salmon River, Idaho. Habitat variables included measures of summer and winter temperature, instream cover, and channel size. The abundance of native rainbow trout Oncorhynchus mykiss within sampled sites was used as a measure of biotic resistance. We also considered the connectivity of sample sites to unconfined valley bottoms, which were considered habitats that may serve as sources for the spread of established populations of brook trout. We analyzed the occurrence of small (<150‐mm [fork length]) and large (≥150‐mm) brook trout separately, assuming that the former represents an established invasion while accounting for the higher potential mobility of the latter. The occurrence of small brook trout was strongly associated with the proximity of sites to large, unconstrained valley bottoms, providing evidence that such habitats may serve as sources for the spread of brook trout invasion. Within sites, winter degree‐days and maximum summer temperature were positively associated with the occurrence of small brook trout. The occurrence of large brook trout was not related to any of the variables considered, perhaps due to the difficulty of linking site‐specific habitat factors to larger and more mobile individuals. The abundance of rainbow trout was not conclusively associated with the occurrence of either small or large brook trout, providing little support for the role of biotic resistance. Overall, our results suggest that source connectivity and local habitat characteristics, but not biotic resistance, influence the establishment and spread of nonnative brook trout populations. Further work is needed to confirm that the patterns observed here are relevant to other localities where brook trout have invaded and to understand the mechanisms contributing to the invasion process.
2012-01-01
Background Salmonids are popular sport fishes, and as such have been subjected to widespread stocking throughout western North America. Historically, stocking was done with little regard for genetic variation among populations and has resulted in genetic mixing among species and subspecies in many areas, thus putting the genetic integrity of native salmonid populations at risk and creating a need to assess the genetic constitution of native salmonid populations. Cutthroat trout is a salmonid species with pronounced geographic structure (there are 10 extant subspecies) and a recent history of hybridization with introduced rainbow trout in many populations. Genetic admixture has also occurred among cutthroat trout subspecies in areas where introductions have brought two or more subspecies into contact. Consequently, management agencies have increased their efforts to evaluate the genetic composition of cutthroat trout populations to identify populations that remain uncompromised and manage them accordingly, but additional genetic markers are needed to do so effectively. Here we used genome reduction, MID-barcoding, and 454-pyrosequencing to discover single nucleotide polymorphisms that differentiate cutthroat trout subspecies and can be used as a rapid, cost-effective method to characterize the genetic composition of cutthroat trout populations. Results Thirty cutthroat and six rainbow trout individuals were subjected to genome reduction and next-generation sequencing. A total of 1,499,670 reads averaging 379 base pairs in length were generated by 454-pyrosequencing, resulting in 569,060,077 total base pairs sequenced. A total of 43,558 putative SNPs were identified, and of those, 125 SNP primers were developed that successfully amplified 96 cutthroat trout and rainbow trout individuals. These SNP loci were able to differentiate most cutthroat trout subspecies using distance methods and Structure analyses. Conclusions Genomic and bioinformatic protocols were successfully implemented to identify 125 nuclear SNPs that are capable of differentiating most subspecies of cutthroat trout from one another. The ability to use this suite of SNPs to identify individuals of unknown genetic background to subspecies can be a valuable tool for management agencies in their efforts to evaluate the genetic structure of cutthroat trout populations prior to constructing and implementing conservation plans. PMID:23259499
USDA-ARS?s Scientific Manuscript database
The newly released rainbow trout genome assembly in NCBI RefSeq has greatly expanded our abilities for analyzing rainbow trout sequencing data. In this poster, we evaluate the utility of this genome assembly for analyzing RNA sequencing (RNA-seq) data of rainbow trout responses to various stressors,...
D.A. Saiget; M.R. Sloat; Reeves. G.H.
2007-01-01
We studied the movement patterns of migratory coastal cutthroat trout Oncorhynchus clarkii clarkii in the western Copper River delta, Alaska, near the northern extent of the subspecies' distribution. Life history information for coastal cutthroat trout is scarce within this region. Movement of coastal cutthroat trout was monitored from 1994 to...
The use of hoop nets seeded with mature brook trout to capture conspecifics
James A. Lamansky; Ernest R. Keeley; Michael K. Young; Kevin A. Meyer
2009-01-01
The brook trout Salvelinus fontinalis, a native of eastern North America, is considered an invasive species in the western United States because it has been implicated in the decline of many native trout species there. Current methods for controlling brook trout are usually time-consuming and expensive and are sometimes harmful to nontarget species....
Movements of nonnative brook trout in relation to stream channel slope
Susan B. Adams; Christopher A. Frissell; Bruce E. Rieman
2000-01-01
Abstract.We provide new insights on the ability of naturalized brook trout Salvelinus fontinalis to ascend steep, headwater streams in the western USA. We tested hypotheses that upstream movements by brook trout are limited or absent in reaches of steep streams and are more prevalent and longer in gradually sloping streams. We compared brook trout...
Patterns of hybridization among cutthroat trout and rainbow trout in northern Rocky Mountain streams
Kevin S. McKelvey; Michael K. Young; Taylor M. Wilcox; Daniel M. Bingham; Kristine L. Pilgrim; Michael K. Schwartz
2016-01-01
Introgressive hybridization between native and introduced species is a growing conservation concern. For native cutthroat trout and introduced rainbow trout in western North America, this process is thought to lead to the formation of hybrid swarms and the loss of monophyletic evolutionary lineages. Previous studies of this phenomenon, however, indicated that...
R. Knapp; K. Matthews
1996-01-01
Impacts of livestock grazing on California golden trout Oncorhynchus rnykiss aguabonita and their habitat were studied inside and outside of livestock exclosures in the Golden Trout Wilderness, California. In two consecutive years, the majority of stream physical characteristics showed large differences between grazed and ungrazed areas, and the directions of these...
Winter feeding success of stream trout under different streamflow and turbidity conditions
Jason L. White; Bret C. Harvey
2007-01-01
To investigate the relationship between turbidity and trout feeding success in natural systems, we sampled the stomach contents of resident rainbow trout Oncorhynchus mykiss and coastal cutthroat trout O. clarkii clarkii under different streamflow and turbidity conditions during winter in two northwestern California streams (total sample size¼161). Feeding success...
75 FR 24400 - Drawbridge Operation Regulation; CSX Railroad, Trout River, Mile 0.9, Jacksonville, FL
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-05
...-AA09 Drawbridge Operation Regulation; CSX Railroad, Trout River, Mile 0.9, Jacksonville, FL AGENCY... operation of the CSX Railroad Bridge across the Trout River, mile 0.9, Jacksonville, Florida. This rule will... (NPRM) entitled CSX Railroad, Trout River, mile 0.9, Jacksonville, FL in the Federal Register (74 FR 106...
Hughes, S.G.
1985-01-01
1. A semi-purified test diet which contained either glutamic acid or glycine as the major source of nonessential amino acids (NEAA) was fed to lake and rainbow trout.2. Trout fed the diet containing glutamic acid consistently showed better growth and feed conversion efficiencies than those fed the diets containing glycine.3. The data indicate that these trout utilize glutamic acid more efficiently than glycine when no other major sources of NEAA are present.
Crayfish (Orconectes virilis) predation on zebra mussels (Dreissena polymorpha)
Love, Joy; Savino, Jacqueline F.
1993-01-01
In laboratory studies, we quantified predation rates and handling time of crayfish (Orconectes virilis) on zebra mussels (Dreissena polymorpha) and rainbow trout (Oncorhhynchus mykiss) eggs. In single prey species tests, crayfish ate zebra mussels at similar rates as they ate rainbow trout eggs. When both prey were present, crayfish preferred rainbow trout eggs. Handling time of mussels was about twice that of rainbow trout eggs, and energetic content of mussels was lower. Therefore, net benefit for foraging on rainbow trout eggs was about three times that of foraging on zebra mussels.
Acute toxicity of cadmium, lead, zinc, and their mixtures to stream-resident fish and invertebrates
Mebane, Christopher A.; Dillon, Frank S.; Hennessy, Daniel P.
2012-01-01
The authors conducted 150 tests of the acute toxicity of resident fish and invertebrates to Cd, Pb, and Zn, separately and in mixtures, in waters from the South Fork Coeur d'Alene River watershed, Idaho, USA. Field-collected shorthead sculpin (Cottus confusus), westslope cutthroat trout (Oncorhynchus clarkii lewisi), two mayflies (Baetis tricaudatus and Rhithrogena sp.), a stonefly (Sweltsa sp.), a caddisfly (Arctopsyche sp.), a snail (Gyraulus sp.), and hatchery rainbow trout (Oncorhynchus mykiss), were tested with all three metals. With Pb, the mayflies (Drunella sp., Epeorus sp., and Leptophlebiidae), a Simuliidae black fly, a Chironomidae midge, a Tipula sp. crane fly, a Dytiscidae beetle, and another snail (Physa sp.), were also tested. Adult westslope cutthroat trout were captured to establish a broodstock to provide fry of known ages for testing. With Cd, the range of 96-h median effect concentrations (EC50s) was 0.4 to >5,329μg/L, and the relative resistances of taxa were westslope cutthroat trout ≈ rainbow trout ≈ sculpin << other taxa; with Pb, EC50s ranged from 47 to 3,323μg/L, with westslope cutthroat trout < rainbow trout < other taxa; and with Zn, EC50s ranged from 21 to 3,704μg/L, with rainbow trout < westslope cutthroat trout ≈ sculpin << other taxa. With swim-up trout fry, a pattern of decreasing resistance with increasing fish size was observed. In metal mixtures, the toxicities of the three metals were less than additive on a concentration-addition basis.
Hansbarger, Jeff L.; Petty, J. Todd; Mazik, Patricia M.
2008-01-01
Brook trout (Salvelinus fontinalis) habitat restoration is needed across a range of stream sizes; however, studies quantifying brook trout habitat preferences in streams of differing sizes are rare. We used radio-telemetry to quantify adult brook trout microhabitat use in a central Appalachian watershed, the upper Shavers Fork of the Cheat River in eastern West Virginia. Our objectives were to: 1) quantify non-random microhabitat use by adult brook trout in the Shavers Fork main stem (drainage area = 32 km2) and an adjacent tributary, Rocky Run (drainage area = 7 km2); and 2) construct stream-specific habitat suitability curves (HSCs) for four important microhabitat variables (depth, average current velocity, maximum current velocity within one meter, and distance to cover). Brook trout used a subset of available microhabitats in both the main stem and Rocky Run: trout tended to occupy microhabitats that were deeper, higher velocity, and closer to cover than expected by chance alone. Although specific microhabitat values differed between the main stem and tributary populations, the overall patterns in brook trout microhabitat use were consistent regardless of stream size. Habitat suitability curves were constructed based on brook trout microhabitat use and will be used to design and monitor the effectiveness of future habitat restoration efforts in the Shavers Fork watershed. Our results suggest that habitat enhancement projects that increase the availability of deep, high velocity microhabitats adjacent to cover would benefit brook trout in both small tributaries and larger river main stems.
Ecology and population status of trout-perch (Percopsis omiscomaycus) in western Lake Erie
Kocovsky, Patrick; Stoneman, Andrea T.; Kraus, Richard T.
2014-01-01
Trout-perch Percopsis omiscomaycus is among the most abundant benthic species in Lake Erie, but comparatively little is known about its ecology. Although others have conducted extensive studies on trout-perch ecology, those efforts predated invasions of white perch Morone americana, Dreissena spp., Bythotrephes longimanus and round goby Neogobius melanostomus, suggesting the need to revisit past work. Trout-perch were sampled with bottom trawls at 56 sites during June and September 2010. We examined diets, fecundity, average annual mortality, sex ratio, and long-term population trends at sites sampled since 1961. Trout-perch abundance fluctuated periodically, with distinct shorter- (4-year) and longer-term (over period of 50 years) fluctuations. Males had higher average annual mortality than females. Both sexes were equally abundant at age 0, but females outnumbered males 4:1 by age 2. Diets of trout-perch were dominated by macroinvertebrates, particularly chironomids and Hexagenia sp. Size distributions of trout-perch eggs varied widely and exhibited multiple modes indicative of protracted batch spawning. A review of the few other studies of trout-perch revealed periodic fluctuations in sex ratio of adults, which in light of our evidence of periodicity in abundance suggests the potential for sex-ratio-mediated intrinsic population regulation. Despite the introduction of numerous invasive species in Lake Erie, trout-perch remain one of the most abundant benthic invertivores and the population is relatively stable.
Larval long-toed salamanders incur nonconsumptive effects in the presence of nonnative trout
Kenison, Erin K.; Litt, Andrea R.; Pilliod, David S.; McMahon, Thomas E.
2016-01-01
Predators can influence prey directly through consumption or indirectly through nonconsumptive effects (NCEs) by altering prey behavior, morphology, and life history. We investigated whether predator-avoidance behaviors by larval long-toed salamanders (Ambystoma macrodactylum) in lakes with nonnative trout result in NCEs on morphology and development. Field studies in lakes with and without trout were corroborated by experimental enclosures, where prey were exposed only to visual and chemical cues of predators. We found that salamanders in lakes with trout were consistently smaller than in lakes without trout: 38% lower weight, 24% shorter body length, and 29% shorter tail length. Similarly, salamanders in protective enclosures grew 2.9 times slower when exposed to visual and olfactory trout cues than when no trout cues were present. Salamanders in trout-free lakes and enclosures were 22.7 times and 1.48 times, respectively, more likely to metamorphose during the summer season than those exposed to trout in lakes and/or their cues. Observed changes in larval growth rate and development likely resulted from a facultative response to predator-avoidance behavior and demonstrate NCEs occurred even when predation risk was only perceived. Reduced body size and growth, as well as delayed metamorphosis, could have ecological consequences for salamander populations existing with fish if those effects carry-over into lower recruitment, survival, and fecundity.
K.R. Matthews; N.H. Berg
1997-01-01
Habitat use by rainbow trout Oncorhynchus mykiss is described for a southern California stream where the summer water temperatures typically exceed the lethal limits for trout (>25) C). During August 1994, water temperature, dissolved oxygen (DO), and trout distribution were monitored in two adjacent pools in Sespe Creek, Ventura County, where summer water...
Restoration of Soldier Spring: an isolated habitat for native Apache trout
Jonathan W. Long; B. Mae Burnette; Alvin L. Medina; Joshua L. Parker
2004-01-01
Degradation of streams is a threat to the recovery of the Apache trout, an endemic fish of the White Mountains of Arizona. Historic efforts to improve trout habitat in the Southwest relied heavily on placement of in-stream log structures. However, the effects of structural interventions on trout habitat and populations have not been adequately evaluated. We treated an...
Russell F. Thurow; Danny C. Lee; Bruce E. Rieman
1997-01-01
We summarized presence, absence, current status, and potential historical distribution of seven native salmonid taxa - bull trout Salvelinus confluentus, Yellowstone cutthroat trout Oncorhynchus clarki bouvieri, westslope cutthroat trout O. c. lewisi, redband trout and steelhead O. mykiss gairdneri, stream type (age-1 migrant) chinook salmon O. tshawytscha. and ocean...
Seasonal and spatial patterns of growth of rainbow trout in the Colorado River in Grand Canyon, AZ
Yard, Micheal D.; Korman, Josh; Walters, Carl J.; Kennedy, T.A.
2016-01-01
Rainbow trout (Oncorhynchus mykiss) have been purposely introduced in many regulated rivers, with inadvertent consequences on native fishes. We describe how trout growth rates and condition could be influencing trout population dynamics in a 130 km section of the Colorado River below Glen Canyon Dam based on a large-scale mark–recapture program where ∼8000 rainbow trout were recaptured over a 3-year period (2012–2014). There were strong temporal and spatial variations in growth in both length and weight as predicted from von Bertalanffy and bioenergetic models, respectively. There was more evidence for seasonal variation in the growth coefficient and annual variation in the asymptotic length. Bioenergetic models showed more variability for growth in weight across seasons and years than across reaches. These patterns were consistent with strong seasonal variation in invertebrate drift and effects of turbidity on foraging efficiency. Highest growth rates and relative condition occurred in downstream reaches with lower trout densities. Results indicate that reduction in rainbow trout abundance in Glen Canyon will likely increase trout size in the tailwater fishery and may reduce downstream dispersal into Grand Canyon.
Grimm, Amanda G.; Brooks, Colin N.; Binder, Thomas R.; Riley, Stephen C.; Farha, Steve A.; Shuchman, Robert A.; Krueger, Charles C.
2016-01-01
The availability and quality of spawning habitat may limit lake trout recovery in the Great Lakes, but little is known about the location and characteristics of current spawning habitats. Current methods used to identify lake trout spawning locations are time- and labor-intensive and spatially limited. Due to the observation that some lake trout spawning sites are relatively clean of overlaying algae compared to areas not used for spawning, we suspected that spawning sites could be identified using satellite imagery. Satellite imagery collected just before and after the spawning season in 2013 was used to assess whether lake trout spawning habitat could be identified based on its spectral characteristics. Results indicated that Pléiades high-resolution multispectral satellite imagery can be successfully used to estimate algal coverage of substrates and temporal changes in algal coverage, and that models developed from processed imagery can be used to identify potential lake trout spawning sites based on comparison of sites where lake trout eggs were and were not observed after spawning. Satellite imagery is a potential new tool for identifying lake trout spawning habitat at large scales in shallow nearshore areas of the Great Lakes.
Madenjian, Charles P.; David, Solomon R.; Rediske, Richard R.; O’Keefe, James P.
2012-01-01
Lake trout (Salvelinus namaycush) were fed bloater (Coregonus hoyi) in eight laboratory tanks over a 135-d experiment. At the start of the experiment, four to nine fish in each tank were sacrificed, and the concentrations of 75 polychlorinated biphenyl (PCB) congeners within these fish were determined. Polychlorinated biphenyl congener concentrations were also determined in the 10 lake trout remaining in each of the eight tanks at the end of the experiment as well as in the bloater fed to the lake trout. Each lake trout was weighed at the start and the end of the experiment, and the amount of food eaten by the lake trout was recorded. Using these measurements, net trophic transfer efficiency (γ) from the bloater to the lake trout in each of the eight tanks was calculated for each of the 75 congeners. Results showed that γ did not vary significantly with the degree of chlorination of the PCB congeners, and γ averaged 0.66 across all congeners. However,γ did show a slight, but significant, decrease as logKOW increased from 6.0 to 8.2. Activity level of the lake trout did not have a significant effect on γ.
Moody, E.K.; Weidel, B.C.; Ahrenstorff, T.D.; Mattes, W.P.; Kitchell, J.F.
2011-01-01
Differences in the preferred thermal habitat of Lake Superior lake trout morphotypes create alternative growth scenarios for parasitic sea lamprey (Petromyzon marinus) attached to lake trout hosts. Siscowet lake trout (Salvelinus namaycush) inhabit deep, consistently cold water (4–6 °C) and are more abundant than lean lake trout (Salvelinus namaycush) which occupy temperatures between 8 and 12 °C during summer thermal stratification. Using bioenergetics models we contrasted the growth potential of sea lampreys attached to siscowet and lean lake trout to determine how host temperature influences the growth and ultimate size of adult sea lamprey. Sea lampreys simulated under the thermal regime of siscowets are capable of reaching sizes within the range of adult sea lamprey sizes observed in Lake Superior tributaries. High lamprey wounding rates on siscowets suggest siscowets are important lamprey hosts. In addition, siscowets have higher survival rates from lamprey attacks than those observed for lean lake trout which raises the prospect that siscowets serve as a buffer to predation on more commercially desirable hosts such as lean lake trout, and could serve to subsidize lamprey growth.
Genetic variation among wild lake trout populations: the 'wanted' and the 'unwanted'
Burnham-Curtis, Mary K.; Kallemeyn, Larry W.; Bronte, Charles R.; Greswell, Robert E.; Dwyer, Pat; Hamre, R.H.
1997-01-01
In this study we examine genetic variation within and among self-sustaining lake trout populations from the Great Lakes basin, the Rainy Lake basin, and Yellowstone Lake. We used RFLP analysis and direct sequencing to examine DNA sequence variation among several mitochondrial and nuclear genes, including highly conserved loci (e.g. cytochrome b, nuclear exon regions) and highly variable loci (e.g. mitochondrial d-loop and nuclear intron regions). Native Lake Superior lake trout populations show high levels of genetic diversity, while populations from the Rainy Lake basin show little or none. The lake trout population sampled from Yellowstone Lake shows moderate genetic diversity, possibly representative of a relatively large source population closely related to lake trout from Lewis Lake, Wyoming. There has been significant social and management controversy involving these lake trout populations, particularly those that are located in National Parks. In the Great Lakes and Rainy Lake basins, the controversy involves the degree to which hatchery supplementation can contribute to or negatively impact self-sustaining populations which are highly desired by recreational and commercial fisheries. In Yellowstone Lake, the lake trout are viewed as an undesirable intruder that may interfere with resident populations of highly prized native cutthroat trout.
Habitat associations of age-0 cutthroat trout in a spring stream improved for adult salmonids
Hubert, W.A.; Joyce, M.P.
2005-01-01
Native cutthroat trout (Oncorhynchus clarki) in the Snake River watershed use streams formed by large springs for spawning and nursery habitat. Several spring streams have been modified to enhance abundance of adult salmonids, but the habitat associations of age-0 cutthroat trout in these systems are undescribed. We assessed the frequency of collection of age-0 cutthroat trout in riffles, riffle margins, pool margins, and backwaters from late June to the middle of August 2000 in a spring stream with such modifications. The proportion of sites in which age-0 cutthroat trout were collected increased up to the middle of July and then decreased. We found substantially lower frequencies of collection of age-0 cutthroat trout in riffles compared to the three stream-margin habitat types. Age-0 cutthroat trout appeared to select shallow, low-velocity, stream-margin habitat with cover that provided protection from piscivorous adult salmonids and avian predators. Our observations suggest that modification of spring streams for production of cutthroat trout should include efforts to manage stream margins so they provide cover in the form of aquatic macrophytes or overhanging vegetation for age-0 fish.
Drinan, Daniel P.; Webb, Molly A. H.; Naish, Kerry A.; Kalinowski, Steven T.; Boyer, Matthew C.; Steed, Amber C.; Shepard, Bradley B.; Muhlfeld, Clint C.
2015-01-01
Hybridization between introduced and native fauna is a risk to native species and may threaten the long-term persistence of numerous taxa. Rainbow Trout Oncorhynchus mykiss has been one of the most widely introduced species around the globe and often hybridizes with native Cutthroat Trout O. clarkii in the Rocky Mountains. Previous work has shown that hybridization negatively affects reproductive success, but identification of the traits contributing to that reduction has been elusive. In this study, we used a combination of field and laboratory techniques to assess how hybridization with Rainbow Trout affects seven traits during several stages of Westslope Cutthroat Trout development: embryonic survival, ova size, ova energy concentration, sperm motility, juvenile weight, juvenile survival, and burst swimming endurance. Rainbow Trout admixture was correlated with an increase in embryonic survival and ova energy concentration but with a decrease in juvenile weight and burst swimming endurance. These correlations differed from previously observed patterns of reproductive success and likely do not explain the declines in reproductive success associated with admixture. Future investigation of additional, unstudied traits and the use of different environments may shed light on the traits responsible for reproductive success in admixed Cutthroat Trout.
Korman, Josh; Yard, Michael D.; Yackulic, Charles B.
2015-01-01
We estimated the abundance, survival, movement, and recruitment of non-native rainbow trout in the Colorado River in Grand Canyon to determine what controls their abundance near the Little Colorado River (LCR) confluence where endangered humpback chub rear. Over a 3-year period, we tagged more than 70,000 trout and recovered over 8,200 tagged fish. Trout density was highest (10,000-25,000 fish/km) in the reach closest to Glen Canyon Dam where the majority of trout recruitment occurs, and was 30-50-fold lower (200-800 fish/km) in reaches near the LCR confluence ~100 km downstream. The extent of rainbow trout movement was limited with less than 1% of recaptures making movements greater than 20 km. However, due to high trout densities in upstream source areas, this small dispersal rate was sufficient to explain the 3-fold increase in the relatively small population near the LCR. Reducing dispersal rates of trout from upstream sources is the most feasible solution to maintain low densities near the LCR to minimize negative effects of competition and predation on humpback chub.
Dux, A.M.; Guy, C.S.; Fredenberg, W.A.
2011-01-01
We evaluated the distribution and population characteristics of nonnative lake trout Salvelinus namaycush in Lake McDonald,Glacier National Park,Montana, to provide biological data in support of a potential suppression program. Using ultrasonic telemetry, we identified spatial and temporal distribution patterns by tracking 36 adult lake trout (1,137 relocations). Lake trout rarely occupied depths greater than 30 m and were commonly located in the upper hypolimnion directly below the metalimnion during thermal stratification. After breakdown of themetalimnion in the fall, lake trout primarily aggregated at two spawning sites. Lake trout population characteristics were similar to those of populations within the species' native range. However, lake trout in Lake McDonald exhibited lower total annual mortality (13.2%), latermaturity (age 12 formales, age 15 for females), lower body condition, and slower growth than are typically observed in the southern extent of their range. These results will be useful in determining where to target suppression activities (e.g., gillnetting, trap-netting, or electrofishing) and in evaluating responses to suppression efforts. Similar evaluations of lake trout distribution patterns and population characteristics are recommended to increase the likelihood that suppression programs will succeed. ?? American Fisheries Society 2011.
Suppression of invasive lake trout in an isolated backcountry lake in Glacier National Park
Fredenberg, C. R.; Muhlfeld, Clint C.; Guy, Christopher S.; D'Angelo, Vincent S.; Downs, Christopher C.; Syslo, John M.
2017-01-01
Fisheries managers have implemented suppression programmes to control non-native lake trout, Salvelinus namaycush (Walbaum), in several lakes throughout the western United States. This study determined the feasibility of experimentally suppressing lake trout using gillnets in an isolated backcountry lake in Glacier National Park, Montana, USA, for the conservation of threatened bull trout, Salvelinus confluentus (Suckley). The demographics of the lake trout population during suppression (2009–2013) were described, and those data were used to assess the effects of suppression scenarios on population growth rate (λ) using an age-structured population model. Model simulations indicated that the population was growing exponentially (λ = 1.23, 95% CI: 1.16–1.28) prior to suppression. However, suppression resulted in declining λ(0.61–0.79) for lake trout, which was concomitant with stable bull trout adult abundances. Continued suppression at or above observed exploitation levels is needed to ensure continued population declines.
Docker, Margaret F; Dale, Angie; Heath, Daniel D
2003-12-01
The frequency of hybridization between cutthroat (Onchorhynchus clarki clarki) and rainbow (O. mykiss irideus) trout from coastal habitats in British Columbia, Canada, was examined in seven populations where the two species are sympatric with no history of rainbow trout stocking and compared with areas where native rainbow trout populations have been supplemented with hatchery fish (three populations). Four nuclear markers were used to identify each species and interspecific hybrids and one mitochondrial marker showed the direction of gene exchange between species. The frequency of hybrids was significantly higher (Fisher exact test, P < 0.001) in river systems where hatchery rainbow trout have been introduced (50.6% hybrids) than in populations where the two species naturally co-occur without supplementation (9.9% hybrids).
Ostberg, C.O.; Rodriguez, R.J.
2004-01-01
Eight polymerase chain reaction primer sets amplifying bi-parentally inherited species-specific markers were developed that differentiate between rainbow trout (Oncorhynchus mykiss) and various cutthroat trout (O. clarki) subspecies. The primers were tested within known F1 and first generation hybrid backcrosses and were shown to amplify codominantly within hybrids. Heterozygous individuals also amplified a slower migrating band that was a heteroduplex, caused by the annealing of polymerase chain reaction products from both species. These primer sets have numerous advantages for native cutthroat trout conservation including statistical genetic analyses of known crosses and simple hybrid identification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magnusson, A. K.; LaGory, K. E.; Hayse, J. W.
2010-06-25
Flaming Gorge Dam, a hydroelectric facility operated by the Bureau of Reclamation (Reclamation), is located on the Green River in Daggett County, northeastern Utah. Until recently, and since the early 1990s, single daily peak releases or steady flows have been the operational pattern of the dam during the winter period. However, releases from Flaming Gorge Reservoir followed a double-peak pattern (two daily flow peaks) during the winters of 2006-2007 and 2008-2009. Because there is little recent long-term history of double-peaking at Flaming Gorge Dam, the potential effects of double-peaking operations on trout body condition in the dam's tailwater are notmore » known. A study plan was developed that identified research activities to evaluate potential effects from winter double-peaking operations (Hayse et al. 2009). Along with other tasks, the study plan identified the need to conduct a statistical analysis of historical trout condition and macroinvertebrate abundance to evaluate the potential effects of hydropower operations. The results from analyses based on the combined size classes of trout (85-630 mm) were presented in Magnusson et al. (2008). The results of this earlier analysis suggested possible relationships between trout condition and flow, but concern that some of the relationships resulted from size-based effects (e.g., apparent changes in condition may have been related to concomitant changes in size distribution, because small trout may have responded differently to flow than large trout) prompted additional analysis of within-size class relationships. This report presents the results of analyses of three different size classes of trout (small: 200-299 mm, medium: 300-399 mm, and large: {ge}400 mm body length). We analyzed historical data to (1) describe temporal patterns and relationships among flows, benthic macroinvertebrate abundance, and condition of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in the tailwaters of Flaming Gorge Dam, and to (2) evaluate the relative importance of the effects of flow (i.e., flow volumes and flow variability), trout abundance (catch per unit effort [CPUE]), and benthic macroinvertebrate abundance on trout condition for different size classes of trout.« less
Breyta, R.; Samson, Corie; Blair, Marilyn; Black, Allison; Kurath, Gael
2015-01-01
In 2009, the largest steelhead trout conservation hatchery in the state of Idaho, Dworshak National Fish Hatchery (NFH), lost over 50% of the juvenile steelhead trout (Oncorhynchus mykiss) population being reared for release. The causative agent of this high mortality was the viral pathogen infectious hematopoietic necrosis virus (IHNV). This was neither the first nor the worst epidemic of IHNV to occur at the hatchery, but it was the worst in over a decade. Genetic analysis of IHNV isolates taken from juveniles suffering epidemic IHN disease in 2009 revealed that the virus was of the M group of IHNV viruses, known to have high virulence for trout. The water supply for steelhead trout rearing at Dworshak NFH is untreated water taken directly from the Clearwater River. Further genetic analysis of IHNV isolates from adults spawned in 2009 indicated that adult steelhead trout in the river (in the hatchery water supply) were the most probable transmission source for the epidemic IHN disease in the juvenile fish. Previously, Dworshak NFH had been able to gain access to reservoir water from behind the Dworshak Dam for nursery egg incubation and the earliest stage of fry rearing, which nearly eliminated incidence of IHN disease in that stage of rearing. Additionally, the nearby Clearwater State Fish Hatchery (SFH), which operates entirely with reservoir water, has never had a case of IHN disease in juvenile steelhead trout. Therefore, staff at Dworshak NFH sought and obtained access to a limited supply of reservoir water for the first few months of outdoor rearing of juvenile steelhead trout, beginning in 2010. This strategy delayed the exposure of juvenile steelhead trout to river water for several months. The effects of this program change were: drastic reduction in IHN disease in juvenile steelhead trout; interruption in the transmission of highly virulent M group IHNV from adult steelhead trout; no interruption in the transmission of low virulent U group IHNV from adult Chinook salmon; and a shift of IHNV types in adult fish spawned at Dworshak NFH in subsequent years from M to U group viruses. While juvenile steelhead trout may still be infected via exposure to IHNV in river water, the disruption of virulent M group IHNV has been successful in dramatically reducing IHN disease in steelhead trout every year since 2010.
K.R. Matthews
1996-01-01
Abstract.âI used radio transmitters to determine habitat selection and movement patterns of California golden trout Oncorhynchus mykiss aguabonita in two areas defined by their different levels of habitat recovery in the Golden Trout Wilderness, California. Study areas were differentiated by the amount of streamside vegetation (low or high coverage of beaked sedge...
Sébastien Nusslé; Kathleen R. Matthews; Stephanie M. Carlson
2017-01-01
In 1978, the Golden Trout Wilderness area was established to protect the California golden trout (Oncorhynchus mykiss aguabonita)âa vulnerable subspecies of the rainbow trout that is endemic to Californiaâand its habitat, which is currently restricted to a few streams within high-elevation meadows in the Sierra Nevada Mountain Range....
Kanno, Yoichiro; Pregler, Kasey C.; Hitt, Nathaniel P.; Letcher, Benjamin H.; Hocking, Daniel; Wofford, John E.B.
2015-01-01
Our results indicate that YOY abundance is a key driver of brook trout population dynamics that is mediated by seasonal weather patterns. A reliable assessment of climate change impacts on brook trout needs to account for how alternations in seasonal weather patterns impact YOY abundance and how such relationships may differ across the range of brook trout distribution.
From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?
Chavarie, Louise; Howland, Kimberly L.; Harris, Les N.; Hansen, Michael J.; Harford, William J.; Gallagher, Colin P.; Baillie, Shauna M.; Malley, Brendan; Tonn, William M.; Muir, Andrew M.; Krueger, Charles C.
2018-01-01
Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0–150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats. The ambiguity surrounding mechanisms driving divergence of Lake Trout in Great Bear Lake should be seen as reflective of the highly variable nature of ecological opportunity and divergent natural selection itself.
From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?
Chavarie, Louise; Howland, Kimberly L; Harris, Les N; Hansen, Michael J; Harford, William J; Gallagher, Colin P; Baillie, Shauna M; Malley, Brendan; Tonn, William M; Muir, Andrew M; Krueger, Charles C
2018-01-01
Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0-150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats. The ambiguity surrounding mechanisms driving divergence of Lake Trout in Great Bear Lake should be seen as reflective of the highly variable nature of ecological opportunity and divergent natural selection itself.
Avery, Luke A.; Korman, Josh; Persons, William R.
2015-01-01
Negative interactions of Rainbow Trout Oncorhynchus mykiss with endangered Humpback Chub Gila cypha pose challenges to the operation of Glen Canyon Dam (GCD) to manage for both species in the Colorado River. Operations to enhance the Rainbow Trout tailwater fishery may lead to an increase in downstream movement of the trout to areas where they are likely to interact with Humpback Chub. We evaluated the effects of dam operations on age-0 Rainbow Trout in the tailwater fishery to inform managers about how GCD operations could benefit a tailwater fishery for Rainbow Trout; although this could affect a Humpback Chub population farther downstream. A near year-long increase in discharge at GCD in 2011 enabled us to evaluate whether high and stable flows led to increased spawning and production of age-0 Rainbow Trout compared with other years. Rainbow Trout spawning was monitored by fitting a model to observed redd counts to estimate the number of redds created over a spawning season. Data collected during electrofishing trips in July–September and November were used to acquire age-0 trout population and mortality rate estimates. We found that high and stable flows in 2011 resulted in 3,062 redds (1.7 times the mean of all survey years) and a population estimate of 686,000 age-0 Rainbow Trout (second highest on record). Despite high initial abundance, mortality remained low through the year (0.0043%/d) resulting in significant recruitment with a record high November population estimate of 214,000 age-0 Rainbow Trout. Recent monitoring indicates this recruitment event was followed by an increase in downstream migration, which may lead to increased interactions with downstream populations of Humpback Chub. Consequently, while our results indicate that manipulating flow at GCD can be used to manage Rainbow Trout spawning and recruitment, fisheries managers should use flow manipulation in moderation to minimize downstream migration in order to reduce negative interactions with other species in the Colorado River.
From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?
Howland, Kimberly L.; Harris, Les N.; Hansen, Michael J.; Harford, William J.; Gallagher, Colin P.; Baillie, Shauna M.; Malley, Brendan; Tonn, William M.; Muir, Andrew M.; Krueger, Charles C.
2018-01-01
Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0–150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats. The ambiguity surrounding mechanisms driving divergence of Lake Trout in Great Bear Lake should be seen as reflective of the highly variable nature of ecological opportunity and divergent natural selection itself. PMID:29566015
Gorman, O.T.; Moore, S.A.; Carlson, A.J.; Quinlan, H.R.
2008-01-01
We characterized the nearshore habitat and fish community composition of approximately 300 km of shoreline within and adjacent to the major embayments of Isle Royale, Lake Superior. Sampling yielded 17 species, of which 12 were widespread and represented a common element of the Lake Superior fish community, including cisco Coregonus artedi, lake whitefish C. clupeaformis, round whitefish Prosopium cylindraceum, lake trout Salvelinus namaycush, rainbow smelt Osmerus mordax, lake chub Couesius plumbeus, longnose sucker Catostomus catostomus, white sucker C. commersonii, trout-perch Percopsis omiscomaycus, ninespine stickleback Pungitius pungitius, burbot Lota lota, and slimy sculpin Cottus cognatus. The presence of brook trout S. fontinalis in an embayment was associated with the common species of the Isle Royale nearshore fish community, particularly cisco, longnose sucker, and round whitefish. However, brook trout were present in only five embayments and were common only in Tobin Harbor. Most Isle Royale embayments had broadly overlapping ranges of nearshore habitats. Within embayments, fish were distributed along a habitat gradient from less-protected rocky habitat near the mouth to highly protected habitat with mixed and finer substrates at the head. Embayments with brook trout had greater mean protection from the open lake, greater variation in depth, greater mean cover, and higher mean frequencies of large substrates (cobble, boulder, and bedrock). Within those embayments, brook trout were associated with habitat patches with higher mean frequencies of small substrates (particularly sand and coarse gravel). Within Tobin Harbor, brook trout were associated with midembayment habitat and species assemblages, especially those locations with a mixture of sand, gravel, and cobble substrates, an absence of bedrock, and the presence of round whitefish, white sucker, and trout-perch. Comparison of embayments with the model, Tobin Harbor, showed that six embayments without brook trout had very similar arrays of habitat. However, four embayments with brook trout had relatively different arrays of habitat from Tobin Harbor. These results suggest that there is potential for further recovery of brook trout populations across Isle Royale nearshore habitats. ?? Copyright by the American Fisheries Society 2008.
Wigwam River Juvenile Bull Trout and Fish Habitat Monitoring Program : 2002 Data Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cope, R.S.
2003-03-01
The Wigwam River bull trout (Salvelinus confluentus) and fish habitat monitoring program is a trans-boundary initiative implemented by the British Columbia Ministry of Water, Land, and Air Protection (MWLAP), in cooperation with Bonneville Power Administration (BPA). The Wigwam River is an important fisheries stream located in southeastern British Columbia that supports healthy populations of both bull trout and Westslope cutthroat trout (Figure 1). This river has been characterized as the single most important bull trout spawning stream in the Kootenay Region (Baxter and Westover 2000, Cope 1998). In addition, the Wigwam River supports some of the largest Westslope cutthroat troutmore » (Oncorhynchus clarki lewisi) in the Kootenay Region. These fish are highly sought after by anglers (Westover 1999a, 1999b). Bull trout populations have declined in many areas of their range within Montana and throughout the northwest including British Columbia. Bull trout were blue listed as vulnerable in British Columbia by the B.C. Conservation Data Center (Cannings 1993) and although there are many healthy populations of bull trout in the East Kootenay they remain a species of special concern. Bull trout in the United States portion of the Columbia River were listed as threatened in 1998 under the Endangered Species Act by the U.S. Fish and Wildlife Service. The upper Kootenay River is within the Kootenai sub-basin of the Mountain Columbia Province, one of the eleven Eco-provinces that make up the Columbia River Basin. MWLAP applied for and received funding from BPA to assess and monitor the status of wild, native stocks of bull trout in tributaries to Lake Koocanusa (Libby Reservoir) and the upper Kootenay River. This task is one of many that were undertaken to ''Monitor and Protect Bull Trout for Koocanusa Reservoir'' (BPA Project Number 2000-04-00).« less
Status of lake trout rehabilitation on Six Fathom Bank and Yankee Reef in Lake Huron
Madenjian, Charles P.; DeSorcie, Timothy J.; McClain, Jerry R.; Woldt, Aaron P.; Holuszko, Jeffrey D.; Bowen, Charles A.
2004-01-01
Six Fathom Bank, an offshore reef in the central region of Lake Huron's main basin, was stocked annually with hatchery-reared lake trout Salvelinus namaycush during 1985–1998, and nearby Yankee Reef was stocked with hatchery-reared lake trout in 1992, 1997, and annually during 1999–2001. We conducted gill-net surveys during spring and fall to evaluate performances of each of the various strains of lake trout, as well as the performance of the entire lake trout population (all strains pooled), on these two offshore reefs during 1992–2000. Criteria to evaluate performance included the proportion of “wild” fish within the population, spawner density, adult survival, growth, maturity, and wounding rate by sea lamprey Petromyzon marinus. Although naturally reproduced age-0 lake trout fry were caught on Six Fathom Bank and Yankee Reef, wild lake trout did not recruit to the adult population to any detectable degree. The density of spawning lake trout on Six Fathom Bank (>100 fish/305 m of gill net) during 1995–1998 appeared to be sufficiently high to initiate a self-sustaining population. However, annual mortality estimates for all lake trout strains pooled from catch curve analyses ranged from 0.48 to 0.62, well exceeding the target level of 0.40 suggested for lake trout rehabilitation. Annual mortality rate for the Seneca Lake strain (0.34) was significantly lower than that for the Superior–Marquette (0.69) and Lewis Lake (0.69) strains. This disparity in survival among strains was probably attributable to the lower sea-lamprey-induced mortality experienced by the Seneca Lake strain. The relatively high mortality experienced by adult lake trout partly contributed to the lack of successful natural recruitment to the adult population on these offshore reefs, but other factors were probably also involved. We recommend that both stocking of the Seneca Lake strain and enhanced efforts to reduce sea lamprey abundance in Lake Huron be continued.
Hanson, Niklas; Larsson, Åke
2011-06-01
An unexpectedly high frequency of skeletal deformations in brown trout has previously been observed in the brook Vallkärrabäcken in southern Sweden. Environmental pollutants from storm water and leachate from an old landfill have been suggested as responsible for the observed deformations. Biomarkers in farmed rainbow trout, placed in tanks with water supplied from the brook, were used to investigate if exposure to pollutants may induce toxic responses in fish. Furthermore, biomarkers were also measured in wild brown trout that were caught in the brook. The most important finding was that the hepatic ethoxyresorufin-O-deethylase (EROD) activity was five to seven times higher for rainbow trout and brown trout in exposed areas compared to reference sites (P<0.001). Analyses of bile in rainbow trout showed that the concentration of PAH-metabolites was two to three times higher (P<0.001) in the exposed areas. However, due to their smaller size and the feeding status, only insufficient amounts of bile could be retrieved from the wild brown trout. The study provides evidence for pollution in parts of Vallkärrabäcken. It is therefore possible that the previously observed high frequency of skeletal damage have been caused by pollutants. The methodology with farmed rainbow trout in flow through tanks worked well and provided more information about the occurrence of pollutants in Vallkärrabäcken than the data from brown trout. The main reasons for this were that the size and the feeding status of the fish could be controlled. This allowed a total of 21 biomarkers to be analyzed in farmed rainbow trout compared to only five in wild brown trout. Furthermore, the use of farmed fish eliminates the risk of migration, which may otherwise bias the data when wild fish are used. © 2010 Wiley Periodicals, Inc.
Sedell, Edwin R; Gresswell, Bob; McMahon, Thomas E.
2015-01-01
Habitat fragmentation and degradation and invasion of nonnative species have restricted the distribution of native trout. Many trout populations are limited to headwater streams where negative effects of predicted climate change, including reduced stream flow and increased risk of catastrophic fires, may further jeopardize their persistence. Headwater streams in steep terrain are especially susceptible to disturbance associated with postfire debris flows, which have led to local extirpation of trout populations in some systems. We conducted a reach-scale spatial analysis of debris-flow risk among 11 high-elevation watersheds of the Colorado Rocky Mountains occupied by isolated populations of Colorado River Cutthroat Trout (Oncorhynchus clarkii pleuriticus). Stream reaches at high risk of disturbance by postfire debris flow were identified with the aid of a qualitative model based on 4 primary initiating and transport factors (hillslope gradient, flow accumulation pathways, channel gradient, and valley confinement). This model was coupled with a spatially continuous survey of trout distributions in these stream networks to assess the predicted extent of trout population disturbances related to debris flows. In the study systems, debris-flow potential was highest in the lower and middle reaches of most watersheds. Colorado River Cutthroat Trout occurred in areas of high postfire debris-flow risk, but they were never restricted to those areas. Postfire debris flows could extirpate trout from local reaches in these watersheds, but trout populations occupy refugia that should allow recolonization of interconnected, downstream reaches. Specific results of our study may not be universally applicable, but our risk assessment approach can be applied to assess postfire debris-flow risk for stream reaches in other watersheds.
Young, Michael K; Isaak, Daniel J; McKelvey, Kevin S; Wilcox, Taylor M; Bingham, Daniel M; Pilgrim, Kristine L; Carim, Kellie J; Campbell, Matthew R; Corsi, Matthew P; Horan, Dona L; Nagel, David E; Schwartz, Michael K
2016-01-01
Among the many threats posed by invasions of nonnative species is introgressive hybridization, which can lead to the genomic extinction of native taxa. This phenomenon is regarded as common and perhaps inevitable among native cutthroat trout and introduced rainbow trout in western North America, despite that these taxa naturally co-occur in some locations. We conducted a synthetic analysis of 13,315 genotyped fish from 558 sites by building logistic regression models using data from geospatial stream databases and from 12 published studies of hybridization to assess whether environmental covariates could explain levels of introgression between westslope cutthroat trout and rainbow trout in the U.S. northern Rocky Mountains. A consensus model performed well (AUC, 0.78-0.86; classification success, 72-82%; 10-fold cross validation, 70-82%) and predicted that rainbow trout introgression was significantly associated with warmer water temperatures, larger streams, proximity to warmer habitats and to recent sources of rainbow trout propagules, presence within the historical range of rainbow trout, and locations further east. Assuming that water temperatures will continue to rise in response to climate change and that levels of introgression outside the historical range of rainbow trout will equilibrate with those inside that range, we applied six scenarios across a 55,234-km stream network that forecast 9.5-74.7% declines in the amount of habitat occupied by westslope cutthroat trout populations of conservation value, but not the wholesale loss of such populations. We conclude that introgression between these taxa is predictably related to environmental conditions, many of which can be manipulated to foster largely genetically intact populations of westslope cutthroat trout and help managers prioritize conservation activities.
Cox, B.S.; Dux, A.M.; Quist, M.C.; Guy, C.S.
2012-01-01
The detrimental impacts of nonnative lake trout Salvelinus namaycush in the western USA have prompted natural resource management agencies in several states to implement lake trout suppression programs. Currently, these programs rely on mechanical removal methods (i.e., gill nets, trap nets, and angling) to capture subadult and adult lake trout. We conducted a study to explore the potential for using high-intensity sound from a relatively small (655.5 cm3 [40 in3]) seismic air gun to reduce survival of lake trout embryos. Lake trout embryos at multiple stages of development were exposed to a single discharge of the seismic air gun at two depths (5 and 15 m) and at two distances from the air gun (0.1 and 2.7 m). Control groups for each developmental stage, distance, and depth were treated identically except that the air gun was not discharged. Mortality in lake trout embryos treated at 0.1 m from the air gun was 100% at 74 daily temperature units in degrees Celsius (TU°C) at both depths. Median mortality in lake trout embryos treated at 0.1 m from the air gun at 207 TU°C (93%) and 267 °C (78%) appeared to be higher than that of controls (49% and 48%, respectively) at 15-m depth. Among the four lake trout developmental stages, exposure to the air gun at 0.1 m resulted in acute mortality up to 60% greater than that of controls. Mortality at a distance of 2.7 m did not appear to differ from that of controls at any developmental stage or at either depth. Our results indicate that seismic air guns have potential as an alternative tool for controlling nonnative lake trout, but further investigation is warranted.
Eck, Gary W.; Wells, LaRue
1986-01-01
Lake trout were collected in graded-mesh gill nets and forage fishes were collected in trawls in mid December 1981 and late March 1982. The length ranges of 317 lake trout caught in December and 138 in March were 280-767 and 286-857 mm, and the age ranges I-XI and II-XIV, respectively. Three year classes (1977-79) made up almost 80% of the catches of lake trout in both sampling periods. Lake trout were most abundant at depth of 18 to 37 m in December (water temperatures, 5.5-6.8A?C) and at 2864 m in March (water temperatures, 1.0-1.3A?C). Fish of the 1977-79 year classes completed 9 to 24% of their annual growth in length, and 14 to 39% of their growth in weight, between mid December and late March. Lake trout ate mainly alewives (Alosa pseudoharengus), especially young-of-the-year, in December, but primarily slimy sculpins (Cottus cognatus) in March, when alewives were mainly at depths of greater than those occupied by most lake trout. Other important food items were rainbow smelt (Osmerus mordax) and, in deeper water, deepwater sculpins (Myoxocephalus thompsoni). Bloaters (Coregonus hoyi) were eaten only sparingly, although they were abundantly available in both sampling periods. Perhaps this species, which coevolved with the lake trout in Lake Michigan and was important in the native trout's diet, is better able to avoid capture by the trout than are the exotic alewife and rainbow smelt. It may not again become a major forage species unless the other food sources become scarce.
Introduced brown trout alter native acanthocephalan infections in native fish.
Paterson, Rachel A; Townsend, Colin R; Poulin, Robert; Tompkins, Daniel M
2011-09-01
1. Native parasite acquisition provides introduced species with the potential to modify native host-parasite dynamics by acting as parasite reservoirs (with the 'spillback' of infection increasing the parasite burdens of native hosts) or sinks (with the 'dilution' of infection decreasing the parasite burdens of native hosts) of infection. 2. In New Zealand, negative correlations between the presence of introduced brown trout (Salmo trutta) and native parasite burdens of the native roundhead galaxias (Galaxias anomalus) have been observed, suggesting that parasite dilution is occurring. 3. We used a multiple-scale approach combining field observations, experimental infections and dynamic population modelling to investigate whether native Acanthocephalus galaxii acquisition by brown trout alters host-parasite dynamics in native roundhead galaxias. 4. Field observations demonstrated higher infection intensity in introduced trout than in native galaxias, but only small, immature A. galaxii were present in trout. Experimental infections also demonstrated that A. galaxii does not mature in trout, although parasite establishment and initial growth were similar in the two hosts. Taken together, these results support the hypothesis that trout may serve as an infection sink for the native parasite. 5. However, dynamic population modelling predicts that A. galaxii infections in native galaxias should at most only be slightly reduced by dilution in the presence of trout. Rather, model exploration indicates parasite densities in galaxias are highly sensitive to galaxias predation on infected amphipods, and to relative abundances of galaxias and trout. Hence, trout presence may instead reduce parasite burdens in galaxias by either reducing galaxias density or by altering galaxias foraging behaviour. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.
Young, Michael K.; Isaak, Daniel J.; McKelvey, Kevin S.; Wilcox, Taylor M.; Pilgrim, Kristine L.; Carim, Kellie J.; Campbell, Matthew R.; Corsi, Matthew P.; Horan, Dona L.; Nagel, David E.; Schwartz, Michael K.
2016-01-01
Among the many threats posed by invasions of nonnative species is introgressive hybridization, which can lead to the genomic extinction of native taxa. This phenomenon is regarded as common and perhaps inevitable among native cutthroat trout and introduced rainbow trout in western North America, despite that these taxa naturally co-occur in some locations. We conducted a synthetic analysis of 13,315 genotyped fish from 558 sites by building logistic regression models using data from geospatial stream databases and from 12 published studies of hybridization to assess whether environmental covariates could explain levels of introgression between westslope cutthroat trout and rainbow trout in the U.S. northern Rocky Mountains. A consensus model performed well (AUC, 0.78–0.86; classification success, 72–82%; 10-fold cross validation, 70–82%) and predicted that rainbow trout introgression was significantly associated with warmer water temperatures, larger streams, proximity to warmer habitats and to recent sources of rainbow trout propagules, presence within the historical range of rainbow trout, and locations further east. Assuming that water temperatures will continue to rise in response to climate change and that levels of introgression outside the historical range of rainbow trout will equilibrate with those inside that range, we applied six scenarios across a 55,234-km stream network that forecast 9.5–74.7% declines in the amount of habitat occupied by westslope cutthroat trout populations of conservation value, but not the wholesale loss of such populations. We conclude that introgression between these taxa is predictably related to environmental conditions, many of which can be manipulated to foster largely genetically intact populations of westslope cutthroat trout and help managers prioritize conservation activities. PMID:27828980
Lake trout rehabilitation in Lake Huron
Eshenroder, Randy L.; Payne, N. Robert; Johnson, James E.; Bowen, Charles; Ebener, Mark P.
1995-01-01
Efforts to restore lake trout (Salvelinus namaycush) in Lake Huron after their collapse in the 1940s were underway in the early 1970s with completion of the first round of lampricide applications in tributary streams and the stocking of several genotypes. We assess results of rehabilitation and establish a historical basis for comparison by quantifying the catch of spawning lake trout from Michigan waters in 1929-1932. Sixty-eight percent of this catch occurred in northern waters (MH-1) and most of the rest (15%) was from remote reefs in the middle of the main basin. Sea lampreys (Petromyzon marinus) increased in the early 1980s in the main basin and depressed spawning populations of lake trout. This increase was especially severe in northern waters and appeared to be associated with untreated populations in the St. Marys River. Excessive commercial fishing stemming from unresolved treaty rights also contributed to loss of spawning fish in northern Michigan waters. Seneca-strain lake trout did not appear to be attacked by sea lampreys until they reached a size > 532 mm. At sizes > 632 mm, Seneca trout were 40-fold more abundant than the Marquette strain in matched-planting experiments. Natural reproduction past the fry stage has occurred in Thunder Bay and South Bay, but prospects for self-sustaining populations of lake trout in the main basin are poor because sea lampreys are too abundant, only one side of the basin is stocked, and stocking is deferred to allow commercial gillnetting in areas where most of the spawning occurred historically. Backcross lake trout, a lake trout x splake (s. Fontinalis x s. Namaycush) hybrid, did not reproduce in Georgian Bay, but this genotype is being replaced with pure-strain lake trout, whose early performance appears promising.
Williams, I.; Reeves, G.H.; Graziano, S.L.; Nielsen, J.L.
2007-01-01
Molecular genetic methods were used to quantify natural hybridization between rainbow trout Oncorhynchus mykiss or steelhead (anadromous rainbow trout) and coastal cutthroat trout O. clarkii clarkii collected in the Copper River delta, Southeast Alaska. Eleven locations were sampled to determine the extent of hybridization and the distribution of hybrids. Four diagnostic nuclear microsatellite loci and four species-specific simple sequence repeat markers were used in combination with restriction fragment length polymorphism analyses of NADH dehydrogenase 5/6 (ND5/6) mitochondrial DNA (mtDNA) to investigate the genetic structure of trout from both species and identify putative interspecific hybrids. Hybrids were found in 7 of the 11 streams sampled in the Copper River delta, the extent of hybridization across all streams varying from 0% to 58%. Hybrid trout distribution appeared to be nonrandom, most individuals of mixed taxonomic ancestry being detected in streams containing rainbow trout rather than in streams containing coastal cutthroat trout. Genotypic disequilibrium was observed among microsatellite loci in populations with high levels of hybridization. We found no significant correlation between unique stream channel process groups and the number of hybrid fish sampled. Eighty-eight percent of fish identified as first-generation hybrids (F1) in two populations contained coastal cutthroat trout mtDNA, suggesting directionality in hybridization. However, dominance of coastal cutthroat trout mtDNA was not observed at a third location containing F1 hybrids, indicating that interspecific mating behavior varied among locations. Backcrossed individuals were found in drainages lacking F1 hybrids and in populations previously thought to contain a single species. The extent and distribution of backcrossed individuals suggested that at least some hybrids are reproductively viable and backcrossed hybrid offspring move throughout the system.
Buehrens, T.W.; Glasgow, J.; Ostberg, Carl O.; Quinn, T.P.
2013-01-01
Native Coastal Cutthroat Trout Oncorhynchus clarkii clarkii and Coastal Steelhead O. mykiss irideus hybridize naturally in watersheds of the Pacific Northwest yet maintain species integrity. Partial reproductive isolation due to differences in spawning habitat may limit hybridization between these species, but this process is poorly understood. We used a riverscape approach to determine the spatial distribution of spawning habitats used by native Coastal Cutthroat Trout and Steelhead as evidenced by the distribution of recently emerged fry. Molecular genetic markers were used to classify individuals as pure species or hybrids, and individuals were assigned to age-classes based on length. Fish and physical habitat data were collected in a spatially continuous framework to assess the relationship between habitat and watershed features and the spatial distribution of parental species and hybrids. Sampling occurred in 35 reaches from tidewaters to headwaters in a small (20 km2) coastal watershed in Washington State. Cutthroat, Steelhead, and hybrid trout accounted for 35%, 42%, and 23% of the fish collected, respectively. Strong segregation of spawning areas between Coastal Cutthroat Trout and Steelhead was evidenced by the distribution of age-0 trout. Cutthroat Trout were located farther upstream and in smaller tributaries than Steelhead were. The best predictor of species occurrence at a site was the drainage area of the watershed that contributed to the site. This area was positively correlated with the occurrence of age-0 Steelhead and negatively with the presence of Cutthroat Trout, whereas hybrids were found in areas occupied by both parental species. A similar pattern was observed in older juveniles of both species but overlap was greater, suggesting substantial dispersal of trout after emergence. Our results offer support for spatial reproductive segregation as a factor limiting hybridization between Steelhead and Coastal Cutthroat Trout.
Mennigen, Jan A; Zhang, Dapeng
2016-12-01
Rainbow trout represent an important teleost research model and aquaculture species. As such, rainbow trout are employed in diverse areas of biological research, including basic biological disciplines such as comparative physiology, toxicology, and, since rainbow trout have undergone both teleost- and salmonid-specific rounds of genome duplication, molecular evolution. In recent years, microRNAs (miRNAs, small non-protein coding RNAs) have emerged as important posttranscriptional regulators of gene expression in animals. Given the increasingly recognized importance of miRNAs as an additional layer in the regulation of gene expression and hence biological function, recent efforts using RNA- and genome sequencing approaches have resulted in the creation of several resources for the construction of a comprehensive repertoire of rainbow trout miRNAs and isomiRs (variant miRNA sequences that all appear to derive from the same gene but vary in sequence due to post-transcriptional processing). Importantly, through the recent publication of the rainbow trout genome (Berthelot et al., 2014), mRNA 3'UTR information has become available, allowing for the first time the genome-wide prediction of miRNA-target RNA relationships in this species. We here report the creation of the microtrout database, a comprehensive resource for rainbow trout miRNA and annotated 3'UTRs. The comprehensive database was used to implement an algorithm to predict genome-wide rainbow trout-specific miRNA-mRNA target relationships, generating an improved predictive framework over previously published approaches. This work will serve as a useful framework and sequence resource to experimentally address the role of miRNAs in several research areas using the rainbow trout model, examples of which are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Jeserich, G; Waehneldt, T V
1986-02-01
Peripheral nervous system (PNS) myelin from the rainbow trout (Salmo gairdneri) banded at a density of 0.38 M sucrose. The main myelin proteins consisted of (1) two basic proteins, BPa and BPb (11,500 and 13,000 MW, similar to those of trout central nervous system (CNS) myelin proteins BP1 and BP2), and (2) two glycosylated components, IPb (24,400 MW) and IPc (26,200 MW). IPc comigrated with trout CNS myelin protein IP2 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, whereas trout CNS myelin protein IP1 had a lower molecular weight (23,000). Following two-dimensional separation, however, both IPb and IPc from PNS showed two components; the more acidic component of IPc comigrated with IP2 from CNS. PNS tissue autolysis led to the formation of IPa (20,000 MW), consisting of two components in isoelectric focusing of which again the more acidic one comigrated with the CNS autolysis product IP0. Limited enzymatic digestion of isolated IP proteins from PNS and CNS led to closely similar degradation patterns, being most pronounced in the case of IP2 and IPc. Immunoblotting revealed that all IP components from trout PNS and CNS myelins reacted with antibodies to trout IP1 (CNS) and bovine P0 protein (PNS) whereas antibodies to rat PLP (CNS) were entirely unreactive. All BP components from trout PNS and CNS myelins bound to antibodies against human myelin basic protein. On the basis of these studies trout PNS and CNS myelins contain at least one common IP glycoprotein, whereas other members of the IP myelin protein family appear closely related. In the CNS myelin of trout the IP components appear to replace PLP.(ABSTRACT TRUNCATED AT 250 WORDS)
Hilton, J W; Atkinson, J L; Slinger, S J
1987-11-01
1. Quadruplicate groups of rainbow trout (Salmo gairdneri) (mean body-weight 24.9 g) were reared on six dietary treatments (practical-type diets) in a modified paired-feeding experiment for 12 weeks at 15 degrees to determine the net energy (NE) value of starch and glucose to rainbow trout. 2. Three test diets were prepared to contain (g/kg): 0 supplemented carbohydrate (diet 1), 250 maize starch (diet 2) and 250 glucose (diet 3) and were given ad lib. to the trout with the feeding rate of the glucose- and starch-fed groups being monitored after each feeding. The remaining three treatments involved controlled feeding of the trout with diet 1 at 75% of the feed intake of trout reared on diets 2 and 3, so as to provide the same levels of protein and lipids without carbohydrate, and with diet 2 at 100% of the feed intake of trout reared on diet 3. 3. The difference in the final carcass energy of the ad lib.-fed group and the respective controlled-fed group divided by the amount of dietary glucose or starch energy consumed by the trout is the NE value for that carbohydrate. 4. The determined NE value of glucose was 3.99 kJ/g and starch 2.17 kJ/g, which is 24.6 and 12.6% respectively of the gross energy values of these carbohydrates in rainbow trout. 5. The results indicate that digestible energy and calculated metabolizable energy values for carbohydrates in rainbow trout overestimate the utilizable energy content of the diet.(ABSTRACT TRUNCATED AT 250 WORDS)
Spawning migration of lacustrine-adfluvial bull trout in a natural area
Brenkman, Samuel J.; Larson, Gary L.; Gresswell, Robert E.
2001-01-01
We investigated the spawning migration of lacustrine-adfluvial bull trout Salvelinus confluentus in the North Fork Skokomish River in Olympic National Park (Washington State) during 1996. Day-snorkeling and electrofishing were conducted to determine timing and duration of the migration and the distribution and abundance of bull trout. The primary spawning migration began in early October and was waning by December. Bull trout migrated 6 km or less up the river from Lake Cushman. Increased river discharge and decreased water temperature appeared to be the primary environmental variables corresponding to the initiation of the migration. Mean length of migratory bull trout increased from June to December. Comparisons with other lacustrine-adfluvial bull trout populations in Oregon, Montana, Idaho, and British Columbia suggested that these populations exhibit specific migratory strategies related to local environmental conditions.
Helminths in an intensively stocked population of lake trout, Salvelinus namaycush, from Lake Huron
Muzzall, Patrick M.; Bowen, Charles A.
2000-01-01
Eighty stocked lake trout Salvelinus namaycush (Salmonidae), collected from 2 locations in Lake Huron in May 1995, were examined for parasites. The parasite fauna of this top predator in Lake Huron was characterized by only 6 helminth species. Echinorhynchus salmonis infected all lake trout with a mean intensity of 163.9. The intensity of this acanthocephalan species significantly increased with host length and weight. Eubothrium salvelini infected 78 lake trout with a maximum number of 81 scoleces counted. Diplostomum sp., Cyathocephalus truncatus, Capillaria salvelini, and Neoechinorhynchus sp. infrequently infected lake trout. The low parasite species richness in these lake trout is believed to be due to their large size at stocking and to the loss of historical enzootic host-parasite relationships that followed the absence of this fish species in Lake Huron for 26 yr.
Use of electricity to sedate Lake Trout for intracoelomic implantation of electronic transmitters
Faust, Matthew D.; Vandergoot, Christopher; Hostnik, Eric T.; Binder, Thomas R.; Mida Hinderer, Julia L.; Ives, Jessica T.; Krueger, Charles C.
2017-01-01
Use of telemetry data to inform fisheries conservation and management is becoming increasingly common; as such, fish typically must be sedated before surgical implantation of transmitters into the coelom. Given that no widely available, immediate-release chemical sedative currently exists in North America, we investigated the feasibility of using electricity to sedate Lake Trout Salvelinus namaycush long enough for an experienced surgeon to implant an electronic transmitter (i.e., 180 s). Specifically, our study objectives were to determine (1) whether some combination of electrical waveform characteristics (i.e., duty cycle, frequency, voltage, and pulse type) could sedate Lake Trout for at least 180 s; and (2) whether Lake Trout that were sequentially exposed to continuous DC and pulsed DC had greater rates of spinal injury and short-term mortality than control fish. A Portable Electrosedation System unit was used to sedate hatchery and wild Lake Trout. Dual-frequency pulsed-DC and two-stage approaches successfully sedated Lake Trout and had similar induction and recovery times. Lake Trout sedated using the two-stage approach did not have survival rates or spinal abnormalities that were significantly different from those of control fish. We concluded that electricity was a viable alternative to chemical sedatives for sedating Lake Trout before surgical implantation of an electronic transmitter, but we suggest that Lake Trout and other closely related species (e.g., Arctic Char Salvelinus alpinus) may require morphotype-specific electrical waveforms due to their morphological diversity.
Lantry, Brian F.; Adams, Jean; Christie, Gavin; Schaner, Teodore; Bowlby, James; Keir, Michael; Lantry, Jana; Sullivan, Paul; Bishop, Daniel; Treska, Ted; Morrison, Bruce
2015-01-01
We examined how attack frequency by sea lampreys on fishes in Lake Ontario varied in response to sea lamprey abundance and preferred host abundance (lake trout > 433 mm). For this analysis we used two gill net assessment surveys, one angler creel survey, three salmonid spawning run datasets, one adult sea lamprey assessment, and a bottom trawl assessment of dead lake trout. The frequency of fresh sea lamprey marks observed on lake trout from assessment surveys was strongly related to the frequency of sea lamprey attacks observed on salmon and trout from the creel survey and spawning migrations. Attack frequencies on all salmonids examined were related to the ratio between the abundances of adult sea lampreys and lake trout. Reanalysis of the susceptibility to sea lamprey attack for lake trout strains stocked into Lake Ontario reaffirmed that Lake Superior strain lake trout were among the most and Seneca Lake strain among the least susceptible and that Lewis Lake strain lake trout were even more susceptible than the Superior strain. Seasonal attack frequencies indicated that as the number of observed sea lamprey attacks decreased during June–September, the ratio of healing to fresh marks also decreased. Simulation of the ratios of healing to fresh marks indicated that increased lethality of attacks by growing sea lampreys contributed to the decline in the ratios and supported laboratory studies about wound healing duration.
Lantry, Brian F.; Adams, Jean V.; Christie, Gavin; Schaner, Teodore; Bowlby, James; Keir, Michael; Lantry, Jana; Sullivan, Paul; Bishop, Daniel; Treska, Ted; Morrison, Bruce
2015-01-01
We examined how attack frequency by sea lampreys on fishes in Lake Ontario varied in response to sea lamprey abundance and preferred host abundance (lake trout > 433 mm). For this analysis we used two gill net assessment surveys, one angler creel survey, three salmonid spawning run datasets, one adult sea lamprey assessment, and a bottom trawl assessment of dead lake trout. The frequency of fresh sea lamprey marks observed on lake trout from assessment surveys was strongly related to the frequency of sea lamprey attacks observed on salmon and trout from the creel survey and spawning migrations. Attack frequencies on all salmonids examined were related to the ratio between the abundances of adult sea lampreys and lake trout. Reanalysis of the susceptibility to sea lamprey attack for lake trout strains stocked into Lake Ontario reaffirmed that Lake Superior strain lake trout were among the most and Seneca Lake strain among the least susceptible and that Lewis Lake strain lake trout were even more susceptible than the Superior strain. Seasonal attack frequencies indicated that as the number of observed sea lamprey attacks decreased during June–September, the ratio of healing to fresh marks also decreased. Simulation of the ratios of healing to fresh marks indicated that increased lethality of attacks by growing sea lampreys contributed to the decline in the ratios and supported laboratory studies about wound healing duration.
Wright, P.J.; Noltie, Douglas B.; Tillitt, D.E.
2003-01-01
The C-start in teleost fishes, a type of startle response, mediates the ability to respond to abrupt, unexpected stimuli and is characterized by a short-latency, C-type fast start acceleration. In prehatch fish embryos, the C-start appears necessary for mechanical breakdown of the egg chorion and successful hatching by way of increased embryo movement and distribution of the hatching enzymes. In later stages, the C-start plays an important role in predator avoidance. Using tactile stimulation, we evaluated the C-start response in rainbow trout Oncorhynchus mykiss at 170 degree-days, when 6.6% of embryos exhibited C-starts, and lake trout Salvelinus namaycush embryos at 320 degree-days, when 23% of embryos exhibited C-starts. Triplicate groups of embryos were later tested at three developmental stages: early (220 and 360 degree-days for rainbow trout and lake trout, respectively), middle (260 and 480 degree-days, respectively), and late (320 and 560 degree-days, respectively). The proportion of trout embryos exhibiting C-start increased through time, such that 100% had responded by the late stage, just prior to hatching. C-starts could be obtained by repeated stimulation, and the relative activity of the embryos (based on the number of flexures per stimulus) also increased over time. Rainbow trout and lake trout showed very similar C-start responses at parallel developmental stages, and these patterns of response were similar to those reported in other fish species.
Cool Water Formation and Trout Habitat Use in a Deep Pool in the Sierra Nevada, California
KATHLEEN R. MATTHEWS; NEIL H. BERG; AZUMA DAVID L.
1994-01-01
We documented temperature stratification in a deep bedrock pool in the North Fork of the American River, described the diel movement of rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta. and determined whether these trout used cooler portions of the pool.From July 30 to October 10, 1992, the main study pool and an adjacent pool were stratified(temperature...
Karami, Asma Mohammad; Bani, Ali; Pourkazemi, Mohammad; Ghasemi, Mohades; Kania, Per Walter; Buchmann, Kurt
2018-06-04
Caspian trout Salmo trutta caspius is an endangered subspecies of brown trout Salmo trutta which is native to the Caspian Sea. Restocking programmes have been established, but recent introduction of the rhabdovirus viral haemorrhagic septicaemia virus (VHSV) into Iranian rainbow trout farms connected to waterbodies supporting wild Caspian trout may represent an additional threat to the declining stock. The susceptibility of wild and cultured populations of this endemic subspecies was demonstrated by performing controlled VHSV infection experiments (both by bath and injection challenges). Subsequently, VHSV infection in exposed fish was confirmed (CPE and quantitative PCR), virus levels were measured, and regulation of immune genes in exposed fish was investigated with a focus on the genes encoding IL-8, IFNγ, TGFβ, TNFα, SAA, C3-4, CD8α, IgM, MHC I, MHC II, iNOS and IGF-1. The presence of IgM-, CD8α- and MHC II-positive cells in host organs was visualized by immunohistochemistry. Both wild and cultured trout strains proved to be VHSV-susceptible following experimental challenge, but the mortality curves and associated regulation of immune-related genes differed between the 2 trout types. Implications of the results for future management of Caspian trout populations are discussed.
Ng, Elizabeth L.; Fredericks, Jim P.; Quist, Michael C.
2016-01-01
Non-native piscivores can alter food web dynamics; therefore, evaluating interspecific relationships is vital for conservation and management of ecosystems with introduced fishes. Priest Lake, Idaho, supports a number of introduced species, including lake troutSalvelinus namaycush, brook trout S. fontinalis and opossum shrimp Mysis diluviana. In this study, we used stable isotopes (δ13C and δ15N) to describe the food web structure of Priest Lake and to test hypotheses about apparent patterns in lake trout growth. We found that isotopic niches of species using pelagic-origin carbon did not overlap with those using more littoral-origin carbon. Species using more littoral-origin carbon, such as brook trout and westslope cutthroat trout Oncorhynchus clarki lewisi, exhibited a high degree of isotopic niche overlap and high intrapopulation variability in resource use. Although we hypothesised that lake trout would experience an ontogenetic diet shift, no such patterns were apparent in isotopic signatures. Lake trout growth rates were not associated with patterns in δ15N, indicating that variation in adult body composition may not be related to adult diet. Understanding trophic relationships at both the individual and species levels provides a more complete understanding of food webs altered by non-native species.
Schmidt-Posthaus, Heike; Hirschi, Regula; Schneider, Ernst
2015-05-21
Proliferative kidney disease (PKD) is an emerging disease threatening wild salmonid populations. In temperature-controlled aquaria, PKD can cause mortality rates of up to 85% in rainbow trout. So far, no data about PKD-related mortality in wild brown trout Salmo trutta fario are available. The aim of this study was to investigate mortality rates and pathology in brown trout kept in a cage within a natural river habitat known to harbor Tetracapsuloides bryosalmonae. Young-of-the-year (YOY) brown trout, free of T. bryosalmonae, were exposed in the River Wutach, in the northeast of Switzerland, during 3 summer months. Samples of wild brown trout caught by electrofishing near the cage location were examined in parallel. The incidence of PKD in cage-exposed animals (69%) was not significantly different to the disease prevalence of wild fish (82 and 80% in the upstream and downstream locations, respectively). The mortality in cage-exposed animals, however, was as low as 15%. At the termination of the exposure experiment, surviving fish showed histological lesions typical for PKD regression, suggesting that many YOY brown trout survive the initial infection. Our results at the River Wutach suggest that PKD in brown trout does not always result in high mortality under natural conditions.
Monzón-Argüello, Catalina; Consuegra, Sofia; Gajardo, Gonzalo; Marco-Rius, Francisco; Fowler, Daniel M; DeFaveri, Jacquelin; Garcia de Leaniz, Carlos
2014-01-01
Invasion success may be expected to increase with residence time (i.e., time since first introduction) and secondary releases (i.e., those that follow the original introduction), but this has rarely been tested in natural fish populations. We compared genetic and phenotypic divergence in rainbow trout and brown trout in Chile and the Falkland Islands to test the prediction that adaptive divergence, measured as PST/FST, would increase with residence time and secondary releases. We also explored whether interspecific competition between invaders could drive phenotypic divergence. Residence time had no significant effect on genetic diversity, phenotypic divergence, effective population size, or signatures of expansion of invasive trout. In contrast, secondary releases had a major effect on trout invasions, and rainbow trout populations mostly affected by aquaculture escapees showed significant divergence from less affected populations. Coexistence with brown trout had a positive effect on phenotypic divergence of rainbow trout. Our results highlight an important role of secondary releases in shaping fish invasions, but do not support the contention that older invaders are more differentiated than younger ones. They also suggest that exotic trout may not have yet developed local adaptations in these recently invaded habitats, at least with respect to growth-related traits. PMID:25469171
Life history migrations of adult Yellowstone Cutthroat Trout in the upper Yellowstone River
Ertel, Brian D.; McMahon, Thomas E.; Koel, Todd M.; Gresswell, Robert E.; Burckhardt, Jason
2017-01-01
Knowledge of salmonid life history types at the watershed scale is increasingly recognized as a cornerstone for effective management. In this study, we used radiotelemetry to characterize the life history movements of Yellowstone Cutthroat Trout Oncorhynchus clarkii bouvieri in the upper Yellowstone River, an extensive tributary that composes nearly half of the drainage area of Yellowstone Lake. In Yellowstone Lake, Yellowstone Cutthroat Trout have precipitously declined over the past 2 decades primarily due to predation from introduced Lake Trout Salvelinus namaycush. Radio tags were implanted in 152 Yellowstone Cutthroat Trout, and their movements monitored over 3 years. Ninety-six percent of tagged trout exhibited a lacustrine–adfluvial life history, migrating upstream a mean distance of 42.6 km to spawn, spending an average of 24 d in the Yellowstone River before returning to Yellowstone Lake. Once in the lake, complex postspawning movements were observed. Only 4% of radio-tagged trout exhibited a fluvial or fluvial–adfluvial life history. Low prevalence of fluvial and fluvial–adfluvial life histories was unexpected given the large size of the upper river drainage. Study results improve understanding of life history diversity in potamodromous salmonids inhabiting relatively undisturbed watersheds and provide a baseline for monitoring Yellowstone Cutthroat Trout response to management actions in Yellowstone Lake.
Quist, M.C.; Hubert, W.A.
2004-01-01
The cutthroat trout (Oncorhynchus clarki) was the only endemic salmonid species across most of the western United States, and it has severely declined largely due to introduction and bioinvasion by non-native salmonid species. However, the ecological, social, and economic consequences of cutthroat trout declines and replacement by non-native salmonid species are relatively minor, and measurable affects on ecosystem function are rare. Restoration efforts for cutthroat trout involve removal or control of bioinvasive salmonid species, but such efforts are costly, ongoing, and resisted frequently by segments of society. Cutthroat trout declines are of little concern to much of the public because they are valued similarly to non-native salmonids, and non-native salmonid species frequently have higher recreational values. Due to the low values placed on cutthroat trout relative to non-native salmonid species, net economic benefits of preserving cutthroat trout are equal to or less than those for non-native salmonids. Cutthroat trout provide a classic case of the consequences of biological invasion; however, other native species are faced with similar issues. We suggest that management agencies establish realistic goals to preserve native species within the context of ecological, social, and economic issues. ?? 2004 Elsevier Ltd. All rights reserved.
Effect of electric barrier on passage and physical condition of juvenile and adult rainbow trout
Layhee, Megan J.; Sepulveda, Adam; Shaw, Amy; Smuckall, Matthew; Kapperman, Kevin; Reyes, Alejandro
2016-01-01
Electric barriers can inhibit passage and injure fish. Few data exist on electric barrier parameters that minimize these impacts and on how body size affects susceptibility, especially to nontarget fish species. The goal of this study was to determine electric barrier voltage and pulse-width settings that inhibit passage of larger bodied rainbow trout Oncorhynchus mykiss (215–410 mm fork length) while allowing passage of smaller bodied juvenile rainbow trout (52–126 mm) in a static laboratory setting. We exposed rainbow trout to 30-Hz pulsed-direct current voltage gradients (0.00–0.45 V cm−1) and pulse widths (0.0–0.7 ms) and recorded their movement, injury incidence, and mortality. No settings tested allowed all juveniles to pass while impeding all adult passage. Juvenile and adult rainbow trout avoided the barrier at higher pulse widths, and fewer rainbow trout passed the barrier at 0.7-ms pulse width compared to 0.1 ms and when the barrier was turned off. We found no effect of voltage gradient on fish passage. No mortality occurred, and we observed external bruising in 5 (7%) juvenile rainbow trout and 15 (21%) adult rainbow trout. This study may aid managers in selecting barrier settings that allow for increased juvenile passage.
Jones, D.T.; Moffitt, C.M.; Peters, K.K.
2007-01-01
Resource managers considering restoration and reconnection of watersheds to protect and enhance threatened populations of bull trout Salvelinus confluentus have little information about the consequences of bacterial kidney disease (BKD) caused by Renibacterium salmoninarum. To better understand the response of bull trout to R. salmoninarum challenge, we conducted several laboratory experiments at two water temperatures. The extent, severity, and lethality of BKD in bull trout were compared with those of similarly challenged lake trout S. namaycush, Arctic char S. alpinus, Chinook salmon Oncorhynchus tshawytscha, and rainbow trout O. mykiss. The lethal dose of bacterial cells necessary to induce 50% mortality (LD50) was 10-fold lower at the 15??C challenge than at the 9??C challenge. Of the species tested, bull trout were relatively resistant to BKD, Arctic char were the most susceptible among Salvelinus species, and Chinook salmon were the most susceptible among Oncorhynchus species tested. Mean time to death was more rapid for all fish tested at 15??C than for fish challenged at 9??C. These results suggest that infection of bull trout with BKD likely poses a low risk to successful restoration of threatened populations. ?? Copyright by the American Fisheries Society 2007.
Age, growth, maturity, and fecundity of 'humper' lake trout, Isle Royale, Lake Superior
Rahrer, Jerold F.
1965-01-01
Humper lake trout are one of the several races or subpopulations of lake trout in Lake Superior. This study is based on 3,705 fish collected on a reef south of Isle Royale near the eastern end. The mean lengths of humper trout from commercial gill nets were smaller than those of lean lake trout. Members of age-groups VII, VIII, and IX represented 81.5 per cent of the commercial humper catch. The body-scale relation was described by two intersecting straight lines. The weight of humper trout increased as the 3.282 power of the length. Growth in length was slow and ranged from 1.6 to 3.5 inches per year. Annual increments were greatest in the first, sixth, and seventh years. Growth in weight was also slow but increased each year. Humper trout became legal (1 1/2 pounds) in the eighth year of life and reached 5 pounds in 11 years. All fish longer than 19.1 inches and older than age-group VIII were mature; the shortest mature fish were: males, 12.7 inches; females, 14.7 inches. At minimum legal size, 98 per cent of the males and 56 per cent of the females were mature. Humper trout produced an average of 1,351 eggs per fish or 516 per pound.
A new geographic and host record for infectious pancreatic necrosis
Parisot, T.J.; Yasutake, W.T.; Bressler, V.
1963-01-01
The occurrence of infectious pancreatic necrosis in rainbow trout (Salmo gairdneri), brook trout (Salvelinus fontinalis), and cutthroat trout (Salmo clarki) has been experimentally authenticated for the first time in the western United States. The cutthroat trout represents a new host. Brook trout fin tissue culture inoculated with bacteria-free filtrate from the diseased fish tissue showed marked degenerative changes after 24 hours. Chinook salmon (Oncorhynchus tshawytscha), kokanee (O. nerka), and silver salmon (O. kisutch) were not susceptible to the virus when inoculated. Histologically, extensive pancreatic necrosis was observed in the original and experimental materials, but striated muscle hyalinization was detected only in the original material.
Ostberg, C.O.; Rodriguez, R.J.
2002-01-01
A suite of 26 PCR-based markers was developed that differentiates rainbow (Oncorhynchus mykiss) and coastal cutthroat trout (O. clarki clarki). The markers also differentiated rainbow from other cutthroat trout subspecies (O. clarki), and several of the markers differentiated between cutthroat trout subspecies. This system has numerous positive attributes, including: nonlethal sampling, high species-specificity and products that are easily identified and scored using agarose gel electrophoresis. The methodology described for developing the markers can be applied to virtually any system in which numerous markers are desired for identifying or differentiating species or subspecies.
Hydrology and trout populations of cold-water rivers of Michigan and Wisconsin
Hendrickson, G.E.; Knutilla, R.L.
1974-01-01
Statistical multiple-regression analyses showed significant relationships between trout populations and hydrologic parameters. Parameters showing the higher levels of significance were temperature, hardness of water, percentage of gravel bottom, percentage of bottom vegetation, variability of streamflow, and discharge per unit drainage area. Trout populations increase with lower levels of annual maximum water temperatures, with increase in water hardness, and with increase in percentage of gravel and bottom vegetation. Trout populations also increase with decrease in variability of streamflow, and with increase in discharge per unit drainage area. Most hydrologic parameters were significant when evaluated collectively, but no parameter, by itself, showed a high degree of correlation with trout populations in regression analyses that included all the streams sampled. Regression analyses of stream segments that were restricted to certain limits of hardness, temperature, or percentage of gravel bottom showed improvements in correlation. Analyses of trout populations, in pounds per acre and pounds per mile and hydrologic parameters resulted in regression equations from which trout populations could be estimated with standard errors of 89 and 84 per cent, respectively.
Runge, Michael C.; Yackulic, Charles B.; Bair, Lucas S.; Kennedy, Theodore A.; Valdez, Richard A.; Ellsworth, Craig; Kershner, Jeffrey L.; Rogers, R. Scott; Trammell, Melissa A.; Young, Kirk L.
2018-04-17
Over the period 2014–2016, the number of nonnative brown trout (Salmo trutta) captured during routine monitoring in the Lees Ferry reach of the Colorado River, downstream of Glen Canyon Dam, began increasing. Management agencies and stakeholders have questioned whether the increase in brown trout in the Lees Ferry reach represents a threat to the endangered humpback chub (Gila cypha), to the rainbow trout (Oncorhynchus mykiss) sport fishery, or to other resources of concern. In this report, we evaluate the evidence for the expansion of brown trout in the Lees Ferry reach, consider a range of causal hypotheses for this expansion, examine the likely efficacy of several potential management interventions to reduce brown trout, and analyze the effects of those interventions on other resources of concern.The brown trout population at Lees Ferry historically consisted of a small number of large fish supported by low levels of immigration from downstream reaches. This population is now showing signs of sustained successful reproduction and is on the cusp of recruiting locally hatched fish into the spawning class, based on analysis with a new integrated population model. The proximate causes of this change in status are a large pulse of immigration in the fall of 2014 and higher reproductive rates in 2015–2017. The ultimate causes of this change are not clear. The pulse of immigrants from downstream reaches in fall 2014 may have been induced by three sequential high-flow releases from the dam in November of 2012–2014, but may also have been the result of a unique set of circumstances unrelated to dam operations. The increase in reproduction may have been the result of any number of changes, including an Allee effect, warmer water temperatures, a decrease in competition from rainbow trout, or fall high-flow releases. Correlations over space and time among predictor variables do not allow us to make a clear inference about the cause of the changes. Under a null causal model, and without any changes to management, we predict there is a 36-percent chance the brown trout population at Lees Ferry will not show sustained growth, and will remain around a mean size of 5,800 adults, near its current size; in contrast, we predict there is a 64-percent chance that the population has a positive intrinsic growth rate and will increase 3–10 fold over the next 20 years. A humpback chub population model linked to the brown trout model suggests an increase of brown trout of this magnitude could lead to declines in the minimum adult humpback chub population over the same time period. Forecasts of rainbow trout abundance, however, suggest that increased abundance of brown trout in the Lees Ferry reach does not pose a threat to the rainbow trout fishery there. There are interventions that may be effective in moderating the growth of the brown trout population in the Lees Ferry reach of the Colorado River. Across causal hypotheses, we predict that removal strategies (for example, a concerted electrofishing effort or an incentivized take program targeted at large brown trout) could reduce brown trout abundance by approximately 50 percent relative to status quo management. Reductions in the frequency or a change in the seasonal timing of high-flow releases from Glen Canyon Dam could be even more effective, but only under the causal hypotheses that involve effects of such releases on immigration or reproduction. Brown trout management flows— dam releases designed to strand young fish at a vulnerable stage—may be able to reduce brown trout abundance to some degree, but are not forecast to be the most effective strategy under any causal hypothesis. We predict that the alternative management interventions would have effects on other resource goals as well, and the pattern of these effects differs across causal hypotheses. The removal strategies would incur direct costs (on the order of $7 million over 20 years) and the mechanical removal strategy is unethical from the perspective of several tribes. The strategies that involve reducing the frequency of high-flow releases from Glen Canyon Dam would decrease the ability to transport and store sediment in the ecosystem, potentially undermining goals associated with sandbar building, recreation, and riparian vegetation, but would increase hydropower revenue. Trout management flows would reduce hydropower revenue. From the standpoint of humpback chub, the alternative strategies largely follow the effect on brown trout; when brown trout abundance is reduced, predation pressure decreases, and humpback chub viability is predicted to increase, but the variation in predicted chub viability is not large across strategies or causal hypotheses.To design a response to brown trout, management agencies will need to navigate both the tradeoffs among resources goals and the uncertainty in the causes of the brown trout expansion. Continued monitoring, possibly coupled with new research or experimental management actions that better inform demographic and ecological dynamics, can help to reduce the causal uncertainty.
Effect on tricaine methanesulfonate (MS-222) on hematocrit values in rainbow trout (Salmo gairdneri)
Reinitz, G.L.; Rix, J.
1977-01-01
1. Anesthesia of rainbow trout (Salmo gairdneri) with 70 ppm tricaine methanesulfonate (MS-222) for 3-9 min resulted in a linear increase in hematocrit.2. Handling of unanesthetized trout caused a higher and more variable hematocrit reading than did exposure to MS-222 for up to 3 min.3. The range and standard error of hematocrit readings was smallest in trout treated with MS-222 for 1 min.
Long, James M.; Starks, Trevor A.; Farling, Tyler; Bastarache, Robert
2016-01-01
inventory of the resident fish communities in these tributaries is lacking. To address these gaps, we surveyed 10 tributaries, from intermittent through third order, for fishes during presumed spawning periods of rainbow trout; we used backpack electrofishing in February and April 2015 and 2016 to determine the composition of the fish assemblages and whether trout were present. Stocked adult trout were found in three tributaries in 2015; wild juvenile rainbow trout were found in Bee Branch in 2015 and in an intermittent tributary of Spillway Creek, just above the “Cold Hole,” in 2016. Fish assemblages were dominated by highland stonerollers (Campostoma spadiceum) in larger, wider systems and by orangebelly darters (Etheostoma radiosum) in smaller, narrower streams. These data fill an information gap in our understanding of small streams in the Ouachita Mountains, and they demonstrate that some streams are suitable for rainbow trout reproduction.
Mitochondrial haplotype variation and phylogeography of Iberian brown trout populations.
MacHordom, A; Suárez, J; Almodóvar, A; Bautista, J M
2000-09-01
The biogeographical distribution of brown trout mitochondrial DNA haplotypes throughout the Iberian Peninsula was established by polymerase chain reaction-restriction fragment polymorphism analysis. The study of 507 specimens from 58 localities representing eight widely separated Atlantic-slope (north and west Iberian coasts) and six Mediterranean drainage systems served to identify five main groups of mitochondrial haplotypes: (i) haplotypes corresponding to non-native, hatchery-reared brown trout that were widely distributed but also found in wild populations of northern Spain (Cantabrian slope); (ii) a widespread Atlantic haplotype group; (iii) a haplotype restricted to the Duero Basin; (iv) a haplotype shown by southern Iberian populations; and (v) a Mediterranean haplotype. The Iberian distribution of these haplotypes reflects both the current fishery management policy of introducing non-native brown trout, and Messinian palaeobiogeography. Our findings complement and extend previous allozyme studies on Iberian brown trout and improve present knowledge of glacial refugia and postglacial movement of brown trout lineages.
Johnson, J. H.; Ross, R.M.; Dropkin, D.S.; Redell, L.A.
2011-01-01
Although considerable information exists on habitat use by stream salmonids, only a small portion has quantitatively examined diurnal and nocturnal habitat variation. We examined diel variation in habitat use by age-0 and age-1+ brook trout (Salvelinus fontinalis) during summer and autumn in a headwater stream in northern Pennsylvania. Habitat variables measured included cover, depth, substrate, and velocity. The most pronounced diel variation occurred in the use of cover during both seasons. Both age-0 brook trout and age-1+ trout were associated with less cover at night. Age-0 brook trout occupied swifter water during the day than at night during both seasons, but the difference was not significant. Increased cover, depth, and substrate size governed the habitat of age-1+ brook trout. Our findings support the need for a better understanding of diel differences in habitat use of stream salmonids when considering habitat enhancement and protection.
Knudsen, K.-L.; Muhlfeld, C.C.; Sage, G.K.; Leary, R.F.
2002-01-01
We describe the genetic divergence among 10 populations of redband trout Oncorhynchus mykiss gairdneri from the upper Columbia River drainage. Resident redband trout from two watersheds in the Kootenai River drainage and hatchery stocks of migratory Kamloops redband trout from Kootenay Lake, British Columbia, were analyzed using allele frequency data from microsatellite and allozyme loci. The Kamloops populations have significantly different allele frequencies from those of the Kootenai River drainage. Of the total genetic variation detected in the resident redband trout, 40.7% (microsatellites) and 15.5% (allozymes) were due to differences between populations from the two Kootenai River watersheds. The divergence among populations within each watershed, however, was less than 3.5% with both techniques. Our data indicate that watershed-specific broodstocks of redband trout are needed by fisheries managers for reintroduction or the supplementation of populations at risk of extinction.
Penney, Zachary L.; Moffitt, Christine M.
2014-01-01
Steelhead trout (Oncorhynchus mykiss) are anadromous and iteroparous, but repeat-spawning rates are generally low. Like other anadromous salmonids, steelhead trout fast during freshwater spawning migrations, but little is known about the changes that occur in vital organs and tissues. We hypothesized that fish capable of repeat-spawning would not undergo the same irreversible degeneration and cellular necrosis documented in semelparous salmon. Using Snake River steelhead trout as a model we used histological analysis to assess the cellular architecture in the pyloric stomach, ovary, liver, and spleen in sexually mature and kelt steelhead trout. We observed 38 % of emigrating kelts with food or fecal material in the gastrointestinal tract. Evidence of feeding was more likely in good condition kelts, and feeding was associated with a significant renewal of villi in the pyloric stomach. No vitellogenic oocytes were observed in sections of kelt ovaries, but perinucleolar and early/late stage cortical alveolus oocytes were present suggesting iteroparity was possible. We documented a negative correlation between the quantity of perinucleolar oocytes in ovarian tissues and fork length of kelts suggesting that larger steelhead trout may invest more into a single spawning event. Liver and spleen tissues of both mature and kelt steelhead trout had minimal cellular necroses. Our findings indicate that the physiological processes causing rapid senescence and death in semelparous salmon are not evident in steelhead trout, and recovery begins in fresh water. Future management efforts to increase iteroparity in steelhead trout and Atlantic salmon must consider the physiological processes that influence post-spawning recovery.
Lindstrom, J.W.; Hubert, W.A.
2004-01-01
Habitat use and movements of 25 adult cutthroat trout Oncorhynchus clarkii and 25 adult brook trout Salvelinus fontinalis from fall through winter 2002-2003 were assessed by means of radiotelemetry in a 7-km reach of a Rocky Mountains foothills stream. Temporal dynamics of winter habitat conditions were evaluated by regularly measuring the features of 30 pools and 5 beaver Castor canadensis ponds in the study reach. Groundwater inputs at three locations raised mean daily water temperatures in the stream channel during winter to 0.2-0.6??C and kept at least 250 m of the downstream channel free of ice, but the lack of surface ice further downstream led to the occurrence of frazil ice and anchor ice in pools and unstable habitat conditions for trout. Pools in segments that were not affected by groundwater inputs and beaver ponds tended to be stable and snow accumulated on the surface ice. Pools throughout the study reach tended to become more stable as snow accumulated. Both cutthroat trout and brook trout selected beaver ponds as winter progressed but tended to use lateral scour pools in proportion to their availability. Tagged fish not in beaver ponds selected lateral scour pools that were deeper than average and stable during winter. Movement frequencies by tagged fish decreased from fall through winter, but some individuals of both species moved during winter. Ice processes affected both the habitat use and movement patterns of cutthroat trout and brook trout in this foothills stream.
Wilson, P.J.; Tillitt, D.E.
1996-01-01
Persistent Hydrophobic contaminants such as poly chlorinated dibenzo-p-dioxins, dibenzofurans and biphenyl congeners are present in aquatic systems, and are known to produce adverse effects in fish. Reproductive failure in fish populations has been observed in aquatic systems contaminated with persistent hydrophobic compounds. In order to mimic maternal transfer of environmental contaminants to newly fertilized fish eggs, a complex environmental extract was tested for embryotoxicity in a nanoinjection bioassay with embryos of rainbow trout. The extract was obtained from whole adult lake trout collected from Lake Michigan in 1988. The tissue extraction involved blending and dehydration with sodium sulfate, column extraction, dialysis separation, reactive cleanup and, finally, high-performance gel permeation chromatography. Egg gram-equivalent doses (g tissue/g egg normalized for egg % lipid) of the final extract (0.02, 0.10, 0.20, 1.0, 2.0, 4.0, 10.0, 20.0 eggEQ) were injected into newly fertilized rainbow trout eggs using triolein as the vehicle. The extract of the lake trout was embryotoxic to rainbow trout, with an LD50 of 35 eggEQ, based on total cumulative mortality. Gross physical abnormalities characteristic of dioxin exposure, such as hemorrhaging, yolk-sac edema and craniofacial deformities, were observed and showed significant dose-related increases. Sublethal effects in the rainbow trout, such as delayed time to hatch, mild hemorrhaging and moderate yolk-sac edema, resulted from estimated total PCB exposure as low as 8.8 ng/g, and this may have significant implications on Great Lakes lake trout fry and juvenile mortality.
Elrod, Joseph H.; O'Gorman, Robert
1991-01-01
We examined the diet of juvenile lake trout Salvelinus namaycush (<450 mm, total length) in Lake Ontario during four sampling periods (April–May, June, July–August, and October 1979–1987) in relation to changes in prey fish abundance in the depth zone where we caught the lake trout. Over all years combined, slimy sculpins Cottus cognatus contributed the most (39–52%) by wet weight to the diet, followed by alewives Alosa pseudoharengus(3–38%), rainbow smelt Osmerus mordax (17–43%), and johnny darters Etheostoma nigrum(2–10%). Over 90% of alewives eaten during April–May and June were age 1, and 98% of those eaten during October were age 0 (few alewives were eaten in July–August). Mean lengths of rainbow smelt and slimy sculpins in stomachs increased with size of lake trout. Juvenile lake trout generally fed opportunistically—seasonal and annual changes in diet usually reflected seasonal and annual changes in abundance of prey fishes near bottom where we captured the lake trout. Furthermore, diet within a given season varied with depth of capture of lake trout, and changes with depth in proportions of prey species in lake trout stomachs mirrored changes in proportions of the prey species in trawl catches at the same depth. Alewives (ages 0 and 1) were the only prey fish eaten in substantial quantities by both juvenile lake trout and other salmonines, and thus are a potential focus of competition between these predators.
Benjamin, J.R.; Fausch, K.D.; Baxter, C.V.
2011-01-01
Replacement of a native species by a nonnative can have strong effects on ecosystem function, such as altering nutrient cycling or disturbance frequency. Replacements may cause shifts in ecosystem function because nonnatives establish at different biomass, or because they differ from native species in traits like foraging behavior. However, no studies have compared effects of wholesale replacement of a native by a nonnative species on subsidies that support consumers in adjacent habitats, nor quantified the magnitude of these effects. We examined whether streams invaded by nonnative brook trout (Salvelinus fontinalis) in two regions of the Rocky Mountains, USA, produced fewer emerging adult aquatic insects compared to paired streams with native cutthroat trout (Oncorhynchus clarkii), and whether riparian spiders that depend on these prey were less abundant along streams with lower total insect emergence. As predicted, emergence density was 36% lower from streams with the nonnative fish. Biomass of brook trout was higher than the cutthroat trout they replaced, but even after accounting for this difference, emergence was 24% lower from brook trout streams. More riparian spiders were counted along streams with greater total emergence across the water surface. Based on these results, we predicted that brook trout replacement would result in 6-20% fewer spiders in the two regions. When brook trout replace cutthroat trout, they reduce cross-habitat resource subsidies and alter ecosystem function in stream-riparian food webs, not only owing to increased biomass but also because traits apparently differ from native cutthroat trout. ?? 2011 Springer-Verlag.
Zuccarino-Crowe , Chiara M.; Taylor, William W.; Hansen, Michael J.; Seider, Michael J.; Krueger, Charles C.
2016-01-01
Lake trout refuges in the Apostle Islands region of Lake Superior are analogous to the concept of marine protected areas. These refuges, established specifically for lake trout (Salvelinus namaycush) and closed to most forms of recreational and commercial fishing, were implicated as one of several management actions leading to successful rehabilitation of Lake Superior lake trout. To investigate the potential significance of Gull Island Shoal and Devils Island Shoal refuges for populations of not only lake trout but also other fish species, relative abundances of lake trout, lake whitefish (Coregonus clupeaformis), and cisco (Coregonus artedi) were compared between areas sampled inside versus outside of refuge boundaries. During 1982–2010, lake trout relative abundance was higher and increased faster inside the refuges, where lake trout fishing was prohibited, than outside the refuges. Over the same period, lake whitefish relative abundance increased faster inside than outside the refuges. Both evaluations provided clear evidence that refuges protected these species. In contrast, trends in relative abundance of cisco, a prey item of lake trout, did not differ significantly between areas inside and outside the refuges. This result did not suggest indirect or cascading refuge effects due to changes in predator levels. Overall, this study highlights the potential of species-specific refuges to benefit other fish species beyond those that were the refuges' original target. Improved understanding of refuge effects on multiple species of Great Lakes fishes can be valuable for developing rationales for refuge establishment and predicting associated fish community-level effects.
A Single Rainbow Trout Cobalamin-binding Protein Stands in for Three Human Binders
Greibe, Eva; Fedosov, Sergey; Sorensen, Boe S.; Højrup, Peter; Poulsen, Steen S.; Nexo, Ebba
2012-01-01
Cobalamin uptake and transport in mammals are mediated by three cobalamin-binding proteins: haptocorrin, intrinsic factor, and transcobalamin. The nature of cobalamin-binding proteins in lower vertebrates remains to be elucidated. The aim of this study was to characterize the cobalamin-binding proteins of the rainbow trout (Oncorhynchus mykiss) and to compare their properties with those of the three human cobalamin-binding proteins. High cobalamin-binding capacity was found in trout stomach (210 pmol/g), roe (400 pmol/g), roe fluid (390 nmol/liter), and plasma (2500 nmol/liter). In all cases, it appeared to be the same protein based on analysis of partial sequences and immunological responses. The trout cobalamin-binding protein was purified from roe fluid, sequenced, and further characterized. Like haptocorrin, the trout cobalamin-binding protein was stable at low pH and had a high binding affinity for the cobalamin analog cobinamide. Like haptocorrin and transcobalamin, the trout cobalamin-binding protein was present in plasma and recognized ligands with altered nucleotide moiety. Like intrinsic factors, the trout cobalamin-binding protein was present in the stomach and resisted degradation by trypsin and chymotrypsin. It also resembled intrinsic factor in the composition of conserved residues in the primary cobalamin-binding site in the C terminus. The trout cobalamin-binding protein was glycosylated and displayed spectral properties comparable with those of haptocorrin and intrinsic factor. In conclusion, only one soluble cobalamin-binding protein was identified in the rainbow trout, a protein that structurally behaves like an intermediate between the three human cobalamin-binding proteins. PMID:22872637
Spatial and seasonal dynamics of brook trout populations inhabiting a central Appalachian watershed
Petty, J.T.; Lamothe, P.J.; Mazik, P.M.
2005-01-01
We quantified the watershed-scale spatial population dynamics of brook trout Salvelinus fontinalis in the Second Fork, a third-order tributary of Shavers Fork in eastern West Virginia. We used visual surveys, electrofishing, and mark-recapture techniques to quantify brook trout spawning intensity, population density, size structure, and demographic rates (apparent survival and immigration) throughout the watershed. Our analyses produced the following results. Spawning by brook trout was concentrated in streams with small basin areas (i.e., segments draining less than 3 km2), relatively high alkalinity (>10 mg CaCO3/L), and high amounts of instream cover. The spatial distribution of juvenile and small-adult brook trout within the watershed was relatively stable and was significantly correlated with spawning intensity. However, no such relationship was observed for large adults, which exhibited highly variable distribution patterns related to seasonally important habitat features, including instream cover, stream depth and width, and riparian canopy cover. Brook trout survival and immigration rates varied seasonally, spatially, and among size-classes. Differential survival and immigration tended to concentrate juveniles and small adults in small, alkaline streams, whereas dispersal tended to redistribute large adults at the watershed scale. Our results suggest that spatial and temporal variations in spawning, survival, and movement interact to determine the distribution, abundance, and size structure of brook trout populations at a watershed scale. These results underscore the importance of small tributaries for the persistence of brook trout in this watershed and the need to consider watershed-scale processes when designing management plans for Appalachian brook trout populations. ?? Copyright by the American Fisheries Society 2005.
Feed characteristics alter growth efficiency of cutthroat trout
USDA-ARS?s Scientific Manuscript database
The shift in commercial Rainbow Trout Oncorhynchus mykiss diet formulations toward formulations with more plant ingredient inclusion, and specifically increased soy product inclusion, may have negative implications for less domesticated trout species fed these modern diets. Therefore, the objective ...
Mexican native trouts: A review of their history and current systematic and conservation status
Hendrickson, D.A.; Perez, H.E.; Findley, L.T.; Forbes, W.; Tomelleri, J.R.; Mayden, Richard L.; Nielsen, J.L.; Jensen, B.; Campos, G.R.; Romero, A.V.; van der Heiden, A.; Camarena, F.; Garcia de Leon, F.J.
2002-01-01
While biologists have been aware of the existence of native Mexican trouts for over a century, they have received little study. The few early studies that did much more than mention their existence began in the 1930s and continued into the early 1960s, focusing primarily on distributional surveys and taxonomic analyses. Starting in the 1980s the Baja California rainbow trout became the subject of more detailed studies, but very little remains known of mainland trouts of the Sierra Madre Occidental. We review earlier studies and report on our own collections and observations made between 1975 and 2000. We present newly discovered historical evidence that leads us to conclude that a "lost" cutthroat trout, a lineage not previously known from Mexico, was collected more than a century ago from headwaters of the Ri??o Conchos (a major tributary of the Rio Grande (= Ri??o Bravo)), a basin not previously considered to harbor a native trout. We review the last century of regional natural resource management and discuss our own observations of trout habitats. Impacts of logging, road building and overgrazing are widespread and expanding. Many streams suffer from heavy erosion, siltation and contamination, and though long-term hydrologic data are generally not available, there is evidence of decreased discharge in many streams. These problems appear related to region-wide land management practices as well as recent regional drought. Trout culture operations using exotic rainbow trout have rapidly proliferated throughout the region, threatening genetic introgression and/or competition with native forms and predation on them. Knowledge of distribution, abundance, relationships and taxonomy, not to mention ecology and population biology, of native trouts of the Sierra Madre Occidental remains inadequate. Vast areas of most mainland drainages are still unexplored by fish collectors, and even rudimentary information regarding basic biology, ecology and population structure of stocks remains lacking. Concentrated exploration, research and management of this long overlooked and undervalued resource are all urgently needed. The history of natural resources exploitation that placed so many native trouts of the western United States on threatened and endangered species lists is repeating itself in the Sierra Madre Occidental. Without concentrated action and development of region-wide socio-economic solutions for current, largely non-sustainable resource management practices, native Mexican trout gene pools will soon be in grave danger of extinction.
Ice-cover effects on competitive interactions between two fish species.
Helland, Ingeborg P; Finstad, Anders G; Forseth, Torbjørn; Hesthagen, Trygve; Ugedal, Ola
2011-05-01
1. Variations in the strength of ecological interactions between seasons have received little attention, despite an increased focus on climate alterations on ecosystems. Particularly, the winter situation is often neglected when studying competitive interactions. In northern temperate freshwaters, winter implies low temperatures and reduced food availability, but also strong reduction in ambient light because of ice and snow cover. Here, we study how brown trout [Salmo trutta (L.)] respond to variations in ice-cover duration and competition with Arctic charr [Salvelinus alpinus (L.)], by linking laboratory-derived physiological performance and field data on variation in abundance among and within natural brown trout populations. 2. Both Arctic charr and brown trout reduced resting metabolic rate under simulated ice-cover (darkness) in the laboratory, compared to no ice (6-h daylight). However, in contrast to brown trout, Arctic charr was able to obtain positive growth rate in darkness and had higher food intake in tank experiments than brown trout. Arctic charr also performed better (lower energy loss) under simulated ice-cover in a semi-natural environment with natural food supply. 3. When comparing brown trout biomass across 190 Norwegian lakes along a climate gradient, longer ice-covered duration decreased the biomass only in lakes where brown trout lived together with Arctic charr. We were not able to detect any effect of ice-cover on brown trout biomass in lakes where brown trout was the only fish species. 4. Similarly, a 25-year time series from a lake with both brown trout and Arctic charr showed that brown trout population growth rate depended on the interaction between ice breakup date and Arctic charr abundance. High charr abundance was correlated with low trout population growth rate only in combination with long winters. 5. In conclusion, the two species differed in performance under ice, and the observed outcome of competition in natural populations was strongly dependent on duration of the ice-covered period. Our study shows that changes in ice phenology may alter species interactions in Northern aquatic systems. Increased knowledge of how adaptations to winter conditions differ among coexisting species is therefore vital for our understanding of ecological impacts of climate change. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.
First evidence of successful natural reproduction by planted lake trout in Lake Huron
Nester, Robert T.; Poe, Thomas P.
1984-01-01
Twenty-two lake trout (Salvelinus namaycush) swim-up fry, 24-27 mm long, were captured with emergent fry traps and a tow net in northwestern Lake Huron on a small nearshore reef off Alpena, Michigan, between May 10 and June 1, 1982. These catches represent the first evidence of successful production of swim-up fry by planted, hatchery-reared lake trout in Lake Huron since the lake trout rehabilitation program began in 1973.
James M. Long; Trevor A. Starks; Tyler Farling; Robert Bastarache
2016-01-01
Stocked trout (Salmonidae) in reservoir tailwater systems in the Southern United States have been shown to use tributary streams for spawning and rearing. The lower Mountain Fork of the Little River below Broken Bow Dam is one of two year-round tailwater trout fisheries in Oklahoma, and the only one with evidence of reproduction by stocked rainbow trout (Oncorhynchus...
Sea trout adapt their migratory behaviour in response to high salmon lice concentrations.
Halttunen, E; Gjelland, K-Ø; Hamel, S; Serra-Llinares, R-M; Nilsen, R; Arechavala-Lopez, P; Skarðhamar, J; Johnsen, I A; Asplin, L; Karlsen, Ø; Bjørn, P-A; Finstad, B
2018-06-01
Sea trout face growth-mortality trade-offs when entering the sea to feed. Salmon lice epizootics resulting from aquaculture have shifted these trade-offs, as salmon lice might both increase mortality and reduce growth of sea trout. We studied mortality and behavioural adaptations of wild sea trout in a large-scale experiment with acoustic telemetry in an aquaculture intensive area that was fallowed (emptied of fish) synchronically biannually, creating large variations in salmon lice concentrations. We tagged 310 wild sea trout during 3 years, and gave half of the individuals a prophylaxis against further salmon lice infestation. There was no difference in survival among years or between treatments. In years of high infestation pressure, however, sea trout remained closer to the river outlet, used freshwater (FW) habitats for longer periods and returned earlier to the river than in the low infestation year. This indicates that sea trout adapt their migratory behaviour by actively choosing FW refuges from salmon lice to escape from immediate mortality risk. Nevertheless, simulations show that these adaptations can lead to lost growth opportunities. Reduced growth can increase long-term mortality of sea trout due to prolonged exposure to size-dependent predation risk, lead to lower fecundity and, ultimately, reduce the likelihood of sea migration. © 2017 The Authors. Journal of Fish Diseases Published by John Wiley & Sons Ltd.
Aunins, Aaron W.; Petty, J. Todd; King, Timothy L.; Schilz, Mariya; Mazik, Patricia M.
2015-01-01
Brook trout (Salvelinus fontinalis) often exist as highly differentiated populations, even at small spatial scales, due either to natural or anthropogenic sources of isolation and low rates of dispersal. In this study, we used molecular approaches to describe the unique population structure of brook trout inhabiting the Shavers Fork watershed, located in eastern West Virginia, and contrast it to nearby populations in tributaries of the upper Greenbrier River and North Fork South Branch Potomac Rivers. Bayesian and maximum likelihood clustering methods identified minimal population structuring among 14 collections of brook trout from throughout the mainstem and tributaries of Shavers Fork, highlighting the role of the cold-water mainstem for connectivity and high rates of effective migration among tributaries. In contrast, the Potomac and Greenbrier River collections displayed distinct levels of population differentiation among tributaries, presumably resulting from tributary isolation by warm-water mainstems. Our results highlight the importance of protecting and restoring cold-water mainstem habitats as part of region-wide brook trout conservation efforts. In addition, our results from Shavers Fork provide a contrast to previous genetic studies that characterize Appalachian brook trout as fragmented isolates rather than well-mixed populations. Additional study is needed to determine whether the existence of brook trout as genetically similar populations among tributaries is truly unique and whether connectivity among brook trout populations can potentially be restored within other central Appalachian watersheds.
Miura, Go; Munakata, Arimune; Yada, Takashi; Schreck, Carl B; Noakes, David L G; Matsuda, Hiroyuki
2013-09-01
The Pacific salmonid species Oncorhynchus mykiss is separated into a migratory form (steelhead trout) and a non-migratory form (rainbow trout). A decrease in water temperature is likely a cue triggering downstream behavior in the migratory form, and testosterone inhibits onset of this behavior. To elucidate differences in sensitivity to water temperature decreases between the migratory and non-migratory forms and effect of testosterone on the sensitivity, we examined two experiments. In experiment 1, we compared changes in body temperature during a short-term decrease in water temperature between both live and dead steelhead and rainbow trout. In experiment 2, we investigated effects of testosterone on body temperature decrease in steelhead trout. Water temperature was decreased by 3°C in 30min. The body temperature of the steelhead decreased faster than that of the rainbow trout. In contrast, there was no significant difference in the decrease in body temperature between dead steelhead and rainbow trout specimens. The body temperature of the testosterone-treated steelhead trout decreased more slowly than that of control fish. Our results suggest that the migratory form is more sensitive to decreases in water temperature than the non-migratory form. Moreover, testosterone might play an inhibitory role in sensitivity to such decreases. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teuscher, D.
1996-05-01
The objective of this study was to determine if hatchery rainbow trout compete with or prey on juvenile Snake River sockeye salmon Oncorhynchus nerka in Pettit Lake, Idaho. In 1995, a total of 8,570 age-0 sockeye and 4,000 hatchery rainbow trout were released in Pettit Lake. After releasing the fish, gillnets were set in the pelagic and littoral zones to collected diet and spatial distribution data. Interactions were assessed monthly from June 1995 through March 1996. Competition for food was discounted based on extremely low diet overlap results observed throughout the sample period. Conversely, predation interactions were more significant. Amore » total of 119 rainbow trout stomachs were analyzed, two contained O. nerka. The predation was limited to one sample period, but when extrapolated to the whole rainbow trout populations results in significant losses. Total consumption of O. nerka by rainbow trout ranged from an estimated 10 to 23% of initial stocking numbers. Predation results contradict earlier findings that stocked rainbow trout do not prey on wild kokanee or sockeye in the Sawtooth Lakes. The contradiction may be explained by a combination of poorly adapted hatchery sockeye and a littoral release site that forced spatial overlap that was not occurring in the wild populations. Releasing sockeye in the pelagic zone may have reduced or eliminated predation losses to rainbow trout.« less
Behavioural and physiological response of trout to winter habitat in tailwaters in Wyoming, USA
Annear, T.C.; Hubert, W.; Simpkins, D.; Hebdon, L.
2002-01-01
Fisheries managers have often suggested that survival of trout during the winter is a major factor affecting population densities in many stream ecosystems in the Rocky Mountains. In Wyoming, trout population reductions from fall to spring in excess of 90% have been documented in some reservoir tailwaters. Though biologists have surmised that these reductions were the result of either mortality or emigration from some river sections, the specific mechanisms have not been defined and the factors leading to the trout loss are unknown. This is a review of four studies that were conducted or funded between 1991 and 1998 by the Wyoming Game and Fish Department to understand the extent of overwinter losses, identify some of the mechanisms leading to those conditions and develop management strategies to help avoid those impacts. Winter studies were conducted on tailwater fisheries in the Green, North Platte, Bighorn and Shoshone rivers to document trout population dynamics, assess physical habitat availability, evaluate trout movement and habitat selection, and understand the relationships between food availability and bioenergetic relationships. Results indicate that winter trout losses are extreme in some years, that trout movement and habitat selection are affected by supercooled flows, and that mortality is probably not directly due to starvation. The combination of physiological impairment with frequently altered habitat availability probably leads to indirect mortality from predators and other factors. Copyright ?? 2002 John Wiley & Sons, Ltd.
Movements of hatchery-reared lake trout in Lake Superior
Pycha, Richard L.; Dryer, William R.; King, George R.
1965-01-01
The history of stocking of lake trout (Salvelinus namaycush) in the Great Lakes is reviewed. The study of movements is based on capture of 24,275 fin-clipped lake trout taken in experimental gill nets and trawls and commercial gill nets. Yearling lake trout planted from shore dispersed to 15-fath (27-m) depths in 3A? hr. Most fish remained within 2 miles (3.2 km) of the planting site 2 months, but within 4 months some fish had moved as much as 17 miles (27 km). The highest abundance of planted lake trout was in areas 2-4 miles (3.2-6.4 km) from the planting site even 3 years after release. Distance moved and size of fish were not correlated. Dispersal of lake trout begins at planting and probably continues until the fish are mature. Most movement was eastward in southern Lake Superior and followed the counterclockwise surface currents. Movement is most rapid in areas of strong currents and slowest in areas of weak currents or eddies. Movement to areas west of the Keweenaw Peninsula was insignificant from plantings in Keweenaw Bay and nil from other plantings farther east. Lake trout planted in the eastern third of the lake dispersed more randomly than those planted farther west. Few fish moved farther offshore than the 50-fath (91-m) contour. Lake trout planted in Canadian waters made insignificant contributions to populations in US waters.
Wigwam River McNeil Substrate Sampling Program : 1998-2002 Summary Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tepper, Herb
2003-01-01
The Wigwam River is an important fisheries stream in the East Kootenay region of British Columbia that supports healthy populations of both bull trout (Salvelinus confluentus) and Westslope cutthroat trout (Oncorhynchus clarki lewisi). The river has been characterized as the single most important bull trout spawning steam in the Kootenay Region (Baxter and Westover 2000), and thus has been the focus of numerous studies in the last ten years (Cope 1998; Cope and Morris 2001; Cope, Morris and Bisset 2002; Kohn Crippen Consultants Ltd. 1998; Westover 1999a; Westover 1999b; Westover and Conroy 1997). Although bull trout populations in the Eastmore » Kootenay region remain healthy, bull trout populations in other parts of British Columbia and within their traditional range in northwestern United States have declined. Thus, bull trout were blue listed as vulnerable in British Columbia by the B.C. Conservation Data Centre (Cannings 1993) and remain a species of special concern. Bull trout in the north-western United States, within the Columbia River watershed, were listed as threatened in 1998 under the Endangered Species Act by the U.S. Fish and Wildlife Service. In 1999, the Ministry of Water, Land and Air Protection applied and received funding from the Bonneville Power Administration (BPA) to assess and monitor the status of wild, native stocks of bull trout in tributaries to Lake Koocanusa (Libby Reservoir) and the upper Kootenay River. The purpose of this report is to summarize one of the many studies undertaken to ''Monitor and Protect Bull Trout for Koocanusa Reservoir'' (BPA Project Number 2000-04-00). Three permanent sampling sites were established on the Wigwam River in April 1998. At each site, substrate samples were obtained using a McNeil Core sampler in April of each year from 1998 to 2002. The objectives of this study were to assess the quality of stream-bed substrates used by bull trout for spawning prior to major resource development in the Wigwam watershed, thus providing one potential measure of future impact to bull trout spawning habitat.« less
Progress toward lake trout restoration in Lake Michigan
Holey, Mark E.; Rybicki, Ronald W.; Eck, Gary W.; Brown, Edward H.; Marsden, J. Ellen; Lavis, Dennis S.; Toneys, Michael L.; Trudeau, Tom N.; Horrall, Ross M.
1995-01-01
Progress toward lake trout restoration in Lake Michigan is described through 1993. Extinction of the native lake trout fishery by sea lamprey predation, augmented by exploitation and habitat destruction, resulted in an extensive stocking program of hatchery-reared lake trout that began in 1965. Sea lamprey abundance was effectively controlled using selective chemical toxicants. The initial stocking produced a measurable wild year class of lake trout by 1976 in Grand Traverse Bay, but failed to continue probably due to excessive exploitation. The overall lack of successful reproduction lakewide by the late 1970s led to the development and implementation in 1985 of a focused inter-agency lakewide restoration plan by a technical committee created through the Lake Committee structure of the Great Lakes Fishery Commission. Strategies implemented in 1985 by the plan included setting a 40% total mortality goal lakewide, creating two large refuges designed to encompass historically the most productive spawning habitat and protect trout stocked over their home range, evaluating several lake trout strains, and setting stocking priorities throughout the lake. Target levels for stocking in the 1985 Plan have never been reached, and are much less than the estimated lakewide recruitment of yearlings by the native lake trout stocks. Since 1985, over 90% of the available lake trout have been stocked over the best spawning habitat, and colonization of the historically productive offshore reefs has occurred. Concentrations of spawning lake trout large enough for successful reproduction, based on observations of successful hatchery and wild stocks, have developed at specific reefs. Continued lack of recruitment at these specific sites suggests that something other than stotk abundance has limited success. Poor survival of lake trout eggs, assumed to be related to contaminant burden, occurred in the late 1970s and early 1980s, but survival has since increased to equal survival in the hatchery. A recent increase in lamprey wounding rates in northern Lake Michigan appears to be related to the uncontrolled build-up of lampreys in the St. Marys River a tributary of Lake Huron. If left uncontrolled, further progress toward restoration in the Northern Refuge may be limited.
Huntsman, Brock M.; Petty, J. Todd
2014-01-01
Spatial population models predict strong density-dependence and relatively stable population dynamics near the core of a species' distribution with increasing variance and importance of density-independent processes operating towards the population periphery. Using a 10-year data set and an information-theoretic approach, we tested a series of candidate models considering density-dependent and density-independent controls on brook trout population dynamics across a core-periphery distribution gradient within a central Appalachian watershed. We sampled seven sub-populations with study sites ranging in drainage area from 1.3–60 km2 and long-term average densities ranging from 0.335–0.006 trout/m. Modeled response variables included per capita population growth rate of young-of-the-year, adult, and total brook trout. We also quantified a stock-recruitment relationship for the headwater population and coefficients of variability in mean trout density for all sub-populations over time. Density-dependent regulation was prevalent throughout the study area regardless of stream size. However, density-independent temperature models carried substantial weight and likely reflect the effect of year-to-year variability in water temperature on trout dispersal between cold tributaries and warm main stems. Estimated adult carrying capacities decreased exponentially with increasing stream size from 0.24 trout/m in headwaters to 0.005 trout/m in the main stem. Finally, temporal variance in brook trout population size was lowest in the high-density headwater population, tended to peak in mid-sized streams and declined slightly in the largest streams with the lowest densities. Our results provide support for the hypothesis that local density-dependent processes have a strong control on brook trout dynamics across the entire distribution gradient. However, the mechanisms of regulation likely shift from competition for limited food and space in headwater streams to competition for thermal refugia in larger main stems. It also is likely that source-sink dynamics and dispersal from small headwater habitats may partially influence brook trout population dynamics in the main stem. PMID:24618602
Intracellular diffusion restrictions in isolated cardiomyocytes from rainbow trout.
Sokolova, Niina; Vendelin, Marko; Birkedal, Rikke
2009-12-17
Restriction of intracellular diffusion of adenine nucleotides has been studied intensively on adult rat cardiomyocytes. However, their cause and role in vivo is still uncertain. Intracellular membrane structures have been suggested to play a role. We therefore chose to study cardiomyocytes from rainbow trout (Oncorhynchus mykiss), which are thinner and have fewer intracellular membrane structures than adult rat cardiomyocytes. Previous studies suggest that trout permeabilized cardiac fibers also have diffusion restrictions. However, results from fibers may be affected by incomplete separation of the cells. This is avoided when studying permeabilized, isolated cardiomyocytes. The aim of this study was to verify the existence of diffusion restrictions in trout cardiomyocytes by comparing ADP-kinetics of mitochondrial respiration in permeabilized fibers, permeabilized cardiomyocytes and isolated mitochondria from rainbow trout heart. Experiments were performed at 10, 15 and 20 degrees C in the absence and presence of creatine. Trout cardiomyocytes hypercontracted in the solutions used for mammalian cardiomyocytes. We developed a new solution in which they retained their shape and showed stable steady state respiration rates throughout an experiment. The apparent ADP-affinity of permeabilized cardiomyocytes was different from that of fibers. It was higher, independent of temperature and not increased by creatine. However, it was still about ten times lower than in isolated mitochondria. The differences between fibers and cardiomyocytes suggest that results from trout heart fibers were affected by incomplete separation of the cells. However, the lower ADP-affinity of cardiomyocytes compared to isolated mitochondria indicate that intracellular diffusion restrictions are still present in trout cardiomyocytes despite their lower density of intracellular membrane structures. The lack of a creatine effect indicates that trout heart lacks mitochondrial creatine kinase tightly coupled to respiration. This argues against diffusion restriction by the outer mitochondrial membrane. These results from rainbow trout cardiomyocytes resemble those from other low-performance hearts such as neonatal rat and rabbit hearts. Thus, it seems that metabolic regulation is related to cardiac performance, and it is likely that rainbow trout can be used as a model animal for further studies of the localization and role of diffusion restrictions in low-performance hearts.
Zooplankton size selection relative to gill raker spacing in rainbow trout
Budy, P.; Haddix, T.; Schneidervin, R.
2005-01-01
Rainbow trout Oncorhynchus mykiss are one of the most widely stocked salmonids worldwide, often based on the assumption that they will effectively utilize abundant invertebrate food resources. We evaluated the potential for feeding morphology to affect prey selection by rainbow trout using a combination of laboratory feeding experiments and field observations in Flaming Gorge Reservoir, Utah-Wyoming. For rainbow trout collected from the reservoir, inter-gill raker spacing averaged 1.09 mm and there was low variation among fish overall (SD = 0.28). Ninety-seven percent of all zooplankton observed in the diets of rainbow trout collected in the reservoir were larger than the interraker spacing, while only 29% of the zooplankton found in the environment were larger than the interraker spacing. Over the size range of rainbow trout evaluated here (200-475 mm), interraker spacing increased moderately with increasing fish length; however, the size of zooplankton found in the diet did not increase with increasing fish length. In laboratory experiments, rainbow trout consumed the largest zooplankton available; the mean size of zooplankton observed in the diets was significantly larger than the mean size of zooplankton available. Electivity indices for both laboratory and field observations indicated strong selection for larger-sized zooplankton. The size threshold at which electivity switched from selection against smaller-sized zooplankton to selection for larger-sized zooplankton closely corresponded to the mean interraker spacing for both groups (???1-1.2 mm). The combination of results observed here indicates that rainbow trout morphology limits the retention of different-sized zooplankton prey and reinforces the importance of understanding how effectively rainbow trout can utilize the type and sizes of different prey available in a given system. These considerations may improve our ability to predict the potential for growth and survival of rainbow trout within and among different systems. ?? Copyright by the American Fisheries Society 2005.
Djurdjevič, Ida; Kreft, Mateja Erdani; Sušnik Bajec, Simona
2015-01-01
Skin pigmentation in animals is an important trait with many functions. The present study focused on two closely related salmonid species, marble trout (Salmo marmoratus) and brown trout (S. trutta), which display an uncommon labyrinthine (marble-like) and spot skin pattern, respectively. To determine the role of chromatophore type in the different formation of skin pigment patterns in the two species, the distribution and ultrastructure of chromatophores was examined with light microscopy and transmission electron microscopy. The presence of three types of chromatophores in trout skin was confirmed: melanophores; xanthophores; and iridophores. In addition, using correlative microscopy, erythrophore ultrastructure in salmonids was described for the first time. Two types of erythrophores are distinguished, both located exclusively in the skin of brown trout: type 1 in black spot skin sections similar to xanthophores; and type 2 with a unique ultrastructure, located only in red spot skin sections. Morphologically, the difference between the light and dark pigmentation of trout skin depends primarily on the position and density of melanophores, in the dark region covering other chromatophores, and in the light region with the iridophores and xanthophores usually exposed. With larger amounts of melanophores, absence of xanthophores and presence of erythrophores type 1 and type L iridophores in the black spot compared with the light regions and the presence of erythrophores type 2 in the red spot, a higher level of pigment cell organisation in the skin of brown trout compared with that of marble trout was demonstrated. Even though the skin regions with chromatophores were well defined, not all the chromatophores were in direct contact, either homophilically or heterophilically, with each other. In addition to short-range interactions, an important role of the cellular environment and long-range interactions between chromatophores in promoting adult pigment pattern formation of trout are proposed. PMID:26467239
Djurdjevič, Ida; Kreft, Mateja Erdani; Sušnik Bajec, Simona
2015-11-01
Skin pigmentation in animals is an important trait with many functions. The present study focused on two closely related salmonid species, marble trout (Salmo marmoratus) and brown trout (S. trutta), which display an uncommon labyrinthine (marble-like) and spot skin pattern, respectively. To determine the role of chromatophore type in the different formation of skin pigment patterns in the two species, the distribution and ultrastructure of chromatophores was examined with light microscopy and transmission electron microscopy. The presence of three types of chromatophores in trout skin was confirmed: melanophores; xanthophores; and iridophores. In addition, using correlative microscopy, erythrophore ultrastructure in salmonids was described for the first time. Two types of erythrophores are distinguished, both located exclusively in the skin of brown trout: type 1 in black spot skin sections similar to xanthophores; and type 2 with a unique ultrastructure, located only in red spot skin sections. Morphologically, the difference between the light and dark pigmentation of trout skin depends primarily on the position and density of melanophores, in the dark region covering other chromatophores, and in the light region with the iridophores and xanthophores usually exposed. With larger amounts of melanophores, absence of xanthophores and presence of erythrophores type 1 and type L iridophores in the black spot compared with the light regions and the presence of erythrophores type 2 in the red spot, a higher level of pigment cell organisation in the skin of brown trout compared with that of marble trout was demonstrated. Even though the skin regions with chromatophores were well defined, not all the chromatophores were in direct contact, either homophilically or heterophilically, with each other. In addition to short-range interactions, an important role of the cellular environment and long-range interactions between chromatophores in promoting adult pigment pattern formation of trout are proposed. © 2015 Anatomical Society.
Landscape models of brook trout abundance and distribution in lotic habitat with field validation
McKenna, James E.; Johnson, James H.
2011-01-01
Brook trout Salvelinus fontinalis are native fish in decline owing to environmental changes. Predictions of their potential distribution and a better understanding of their relationship to habitat conditions would enhance the management and conservation of this valuable species. We used over 7,800 brook trout observations throughout New York State and georeferenced, multiscale landscape condition data to develop four regionally specific artificial neural network models to predict brook trout abundance in rivers and streams. Land cover data provided a general signature of human activity, but other habitat variables were resistant to anthropogenic changes (i.e., changing on a geological time scale). The resulting models predict the potential for any stream to support brook trout. The models were validated by holding 20% of the data out as a test set and by comparison with additional field collections from a variety of habitat types. The models performed well, explaining more than 90% of data variability. Errors were often associated with small spatial displacements of predicted values. When compared with the additional field collections (39 sites), 92% of the predictions were off by only a single class from the field-observed abundances. Among “least-disturbed” field collection sites, all predictions were correct or off by a single abundance class, except for one where brown trout Salmo trutta were present. Other degrading factors were evident at most sites where brook trout were absent or less abundant than predicted. The most important habitat variables included landscape slope, stream and drainage network sizes, water temperature, and extent of forest cover. Predicted brook trout abundances were applied to all New York streams, providing a synoptic map of the distribution of brook trout habitat potential. These fish models set benchmarks of best potential for streams to support brook trout under broad-scale human influences and can assist with planning and identification of protection or rehabilitation sites.
Lavado, Ramon; Schlenk, Daniel
2011-01-17
Rainbow trout often serve as a surrogate species evaluating xenobiotic toxicity in cold-water species including other salmonids of the same genus, which are listed as threatened or endangered. Biotransformation tends to show species-specific patterns that influence susceptibility to xenobiotic toxicity, particularly organophosphate insecticides (OPs). To evaluate the contribution of biotransformation in the mechanism of toxicity of three organophosphate (phosphorothionate) insecticides, (chlorpyrifos, parathion and fenthion), microsomal bioactivation and detoxification pathways were measured in gills, liver and olfactory tissues in juvenile rainbow trout (Oncorhynchus mykiss) and compared to juvenile coho salmon (Oncorhynchus kisutch). Consistent with species differences in acute toxicity, significantly higher chlorpyrifos bioactivation was found in liver microsomes of rainbow trout (up to 2-fold) when compared with coho salmon. Although bioactivation to the oxon was observed, the catalytic efficiency towards chlorpyrifos dearylation (detoxification) was significantly higher in liver for both species (1.82 and 0.79 for trout and salmon, respectively) when compared to desulfuration (bioactivation). Bioactivation of parathion to paraoxon was significantly higher (up to 2.2-fold) than detoxification to p-nitrophenol in all tissues of both species with rates of conversion in rainbow trout, again significantly higher than coho salmon. Production of fenoxon and fenthion sulfoxides from fenthion was detected only in liver and gills of both species with activities in rainbow trout significantly higher than coho salmon. NADPH-dependent cleavage of fenthion was observed in all tissues, and was the only activity detected in olfactory tissues. These results indicate rainbow trout are more sensitive than coho salmon to the acute toxicity of OP pesticides because trout have higher catalytic rates of oxon formation. Thus, rainbow trout may serve as a conservative surrogate species for the evaluation of OP pesticides in coho salmon. Copyright © 2010 Elsevier B.V. All rights reserved.
Lavado, Ramon
2010-01-01
Rainbow trout often serve as a surrogate species evaluating xenobiotic toxicity in cold-water species including other salmonids of the same genus, which are listed as threatened or endangered. Biotransformation tends to show species-specific patterns that influence susceptibility to xenobiotic toxicity, particularly organophoshpate insecticides (OPs). To evaluate the contribution of biotransformation in the mechanism of toxicity of three organophosphate (phosphorothionate) insecticides, chlorpyrifos, parathion and fenthion, microsomal bioactivation and detoxification pathways were measured in gills, liver and olfactory tissues in juvenile rainbow trout (Oncorhynchus mykiss) and compared to juvenile coho salmon (Oncorhynchus kisutch). Consistent with species differences in acute toxicity, significantly higher chlorpyrifos bioactivation was found in liver microsomes of rainbow trout (up to 2-fold) when compared with coho salmon. Although bioactivation to the oxon was observed, the catalytic efficiency towards chlorpyrifos dearylation (detoxification) was significantly higher in liver for both species (1.82 and 0.79 for trout and salmon, respectively) when compared to desulfuration (bioactivation). Bioactivation of parathion to paraoxon was significantly higher (up to 2.2-fold) than detoxification to p-nitrophenol in all tissues of both species with rates of conversion in rainbow trout, again significantly higher than coho salmon. Production of fenoxon and fenthion sulfoxides from fenthion was detected only in liver and gills of both species with activities in rainbow trout significantly higher than coho salmon. NADPH-Dependent hydrolysis of fenthion was observed in all tissues, and was the only activity detected in olfactory tissues. These results indicate rainbow trout are more sensitive than coho salmon to the acute toxicity of OP pesticides because trout have higher catalytic rates of oxon formation. Thus, rainbow trout may serve as a conservative surrogate species for the evaluation of OP pesticides in coho salmon. PMID:20947181
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwabe, Lawrence; Tiley, Mark; Perkins, Raymond R.
2000-11-01
The purpose of this study is to document the seasonal distribution of adult/sub-adult bull trout (Salvelinus confluentus) in the Malheur River basin. Due to the decline of bull trout in the Columbia Basin, the United States Fish and Wildlife Service listed bull trout as a threatened species in June 1998. Past land management activities; construction of dams; and fish eradication projects in the North Fork and Middle Fork Malheur River by poisoning have worked in concert to cumulatively impact native species in the Malheur Basin (Bowers et. al. 1993). Survival of the remaining bull trout populations is severely threatened (Buchananmore » 1997). 1999 Research Objects are: (1) Document the migratory patterns of adult/sub-adult bull trout in the North Fork Malheur River; (2) Determine the seasonal bull trout use of Beulah Reservoir and bull trout entrainment; and (3) Timing and location of bull trout spawning in the North Fork Malheur River basin. The study area includes the Malheur basin from the mouth of the Malheur River located near Ontario, Oregon to the headwaters of the North Fork Malheur River (Map 1). All fish collected and most of the telemetry effort was done on the North Fork Malheur River subbasin (Map 2). Fish collection was conducted on the North Fork Malheur River at the tailwaters of Beulah Reservoir (RK 29), Beulah Reservoir (RK 29-RK 33), and in the North Fork Malheur River at Crane Crossing (RK 69) to the headwaters of the North Fork Malheur. Radio telemetry was done from the mouth of the Malheur River in Ontario, Oregon to the headwaters of the North Fork Malheur. This report will reflect all migration data collected from 3/1/99 to 12/31/99.« less
Relationship between fish size and upper thermal tolerance
Recsetar, Matthew S.; Zeigler, Matthew P.; Ward, David L.; Bonar, Scott A.; Caldwell, Colleen A.
2012-01-01
Using critical thermal maximum (CTMax) tests, we examined the relationship between upper temperature tolerances and fish size (fry-adult or subadult lengths) of rainbow trout Oncorhynchus mykiss (41-200-mm TL), Apache trout O. gilae apache (40-220-mm TL), largemouth bass Micropterus salmoides (72-266-mm TL), Nile tilapia Oreochromis niloticus (35-206-mm TL), channel catfish Ictalurus punctatus (62-264 mm-TL), and Rio Grande cutthroat trout O. clarkii virginalis (36-181-mm TL). Rainbow trout and Apache trout were acclimated at 18°C, Rio Grande cutthroat trout were acclimated at 14°C, and Nile tilapia, largemouth bass, and channel catfish were acclimated at 25°C, all for 14 d. Critical thermal maximum temperatures were estimated and data were analyzed using simple linear regression. There was no significant relationship (P > 0.05) between thermal tolerance and length for Nile tilapia (P = 0.33), channel catfish (P = 0.55), rainbow trout (P = 0.76), or largemouth bass (P = 0.93) for the length ranges we tested. There was a significant negative relationship between thermal tolerance and length for Rio Grande cutthroat trout (R2 = 0.412, P 2 = 0.1374, P = 0.028); however, the difference was less than 1°C across all lengths of Apache trout tested and about 1.3°C across all lengths of Rio Grande cutthroat trout tested. Because there was either no or at most a slight relationship between upper thermal tolerance and size, management and research decisions based on upper thermal tolerance should be similar for the range of sizes within each species we tested. However, the different sizes we tested only encompassed life stages ranging from fry to adult/subadult, so thermal tolerance of eggs, alevins, and larger adults should also be considered before making management decisions affecting an entire species.
Dobos, Marika E.; Corsi, Matthew P.; Schill, Daniel J.; DuPont, Joseph M.; Quist, Michael C.
2016-01-01
Although many Westslope Cutthroat Trout Oncorhynchus clarkii lewisi populations in Idaho are robust and stable, population densities in some systems remain below management objectives. In many of those systems, such as in the South Fork Clearwater River (SFCR) system, environmental conditions (e.g., summer temperatures) are hypothesized to limit populations of Westslope Cutthroat Trout. Radiotelemetry and snorkeling methods were used to describe seasonal movement patterns, distribution, and habitat use of Westslope Cutthroat Trout in the SFCR during the summers of 2013 and 2014. Sixty-six radio transmitters were surgically implanted into Westslope Cutthroat Trout (170–405 mm TL) from May 30–June 25, 2013, and June 20–July 6, 2014. Sedentary and mobile summer movement patterns by Westslope Cutthroat Trout were observed in the SFCR. Westslope Cutthroat Trout were generally absent from the lower SFCR. In the upper region of the SFCR, fish generally moved from the main-stem SFCR into tributaries as water temperatures increased during the summer. Fish remained in the middle region of the SFCR where water temperatures were cooler than in the upper or lower regions of the SFCR. A spatially explicit water temperature model indicated that the upper and lower regions of the SFCR exceeded thermal tolerance levels of Westslope Cutthroat Trout throughout the summer. During snorkeling, 23 Westslope Cutthroat Trout were observed in 13 sites along the SFCR and at low density (mean ± SD, 0.0003 ± 0.0001 fish/m2). The distribution of fish observed during snorkeling was consistent with the distribution of radio-tagged fish in the SFCR during the summer. Anthropogenic activities (i.e., grazing, mining, road construction, and timber harvest) in the SFCR basin likely altered the natural flow dynamics and temperature regime and thereby limited stream habitat in the SFCR system for Westslope Cutthroat Trout.
Side-scan sonar mapping of lake trout spawning habitat in northern Lake Michigan
Edsall, Thomas A.; Poe, Thomas P.; Nester, Robert T.; Brown, Charles L.
1989-01-01
Native stocks of lake trout Salvelinus namaycush were virtually or completely extirpated from the lower four Great Lakes by the early 1960s. The failure of early attempts to reestablish self-sustaining populations of lake trout was attributed partly to the practice of stocking hatcheryreared juveniles at locations and over substrates that had not been used in the past for spawning by native fish. Subsequent attempts to improve the selection of stocking locations were impeded by the lack of reliable information on the distribution of substrates on historical spawning grounds. Here we demonstrate the potential of side-scan sonar to substantially expand the data base needed to pinpoint the location of substrates where lake trout eggs, fry, or juveniles could be stocked to maximize survival and help ensure that survivors returning to spawn would encounter suitable substrates. We also describe the substrates and bathymetry of large areas on historical lake trout spawning grounds in the Fox Island Lake Trout Sanctuary in northern Lake Michigan. These areas could be used to support a contemporary self-sustaining lake trout population in the sanctuary and perhaps also in adjacent waters.
Conservation of native Pacific trout diversity in western North America
Penaluna, Brooke E.; Abadía-Cardoso, Alicia; Dunham, Jason B.; García de León, Francisco J; Gresswell, Robert E.; Luna, Arturo Ruiz; Taylor, Eric B.; Shepard, Bradley B.; Al-Chokhachy, Robert K.; Muhlfeld, Clint C.; Bestgen, Kevin R.; Rogers, Kevin H.; Escalante, Marco A; Keeley, Ernest R; Temple, Gabriel; Williams, Jack E.; Matthews, Kathleen; Pierce, Ron; Mayden, Richard L.; Kovach, Ryan; Garza, John Carlos; Fausch, Kurt D.
2016-01-01
Pacific trout Oncorhynchus spp. in western North America are strongly valued in ecological, socioeconomic, and cultural views, and have been the subject of substantial research and conservation efforts. Despite this, the understanding of their evolutionary histories, overall diversity, and challenges to their conservation is incomplete. We review the state of knowledge on these important issues, focusing on Pacific trout in the genus Oncorhynchus. Although most research on salmonid fishes emphasizes Pacific salmon, we focus on Pacific trout because they share a common evolutionary history, and many taxa in western North America have not been formally described, particularly in the southern extent of their ranges. Research in recent decades has led to the revision of many hypotheses concerning the origin and diversification of Pacific trout throughout their range. Although there has been significant success at addressing past threats to Pacific trout, contemporary and future threats represented by nonnative species, land and water use activities, and climate change pose challenges and uncertainties. Ultimately, conservation of Pacific trout depends on how well these issues are understood and addressed, and on solutions that allow these species to coexist with a growing scope of human influences.
Korman, Josh; Martell, Steven J.D.; Walters, Carl J.; Makinster, Andrew S.; Coggins, Lewis G.; Yard, Michael D.; Persons, William R.
2012-01-01
We used an integrated assessment model to examine effects of flow from Glen Canyon Dam, Arizona, USA, on recruitment of nonnative rainbow trout (Oncorhynchus mykiss) in the Colorado River and to estimate downstream migration from Glen Canyon to Marble Canyon, a reach used by endangered native fish. Over a 20-year period, recruitment of rainbow trout in Glen Canyon increased with the annual flow volume and when hourly flow variation was reduced and after two of three controlled floods. The model predicted that approximately 16 000 trout·year–1 emigrated to Marble Canyon and that the majority of trout in this reach originate from Glen Canyon. For most models that were examined, over 70% of the variation in emigration rates was explained by variation in recruitment in Glen Canyon, suggesting that flow from the dam controls in large part the extent of potential negative interactions between rainbow trout and native fish. Controlled floods and steadier flows, which were originally aimed at partially restoring conditions before the dam (greater native fish abundance and larger sand bars), appear to have been more beneficial to nonnative rainbow trout than to native fish.
Response of slimy sculpins to predation by juvenile lake trout in southern Lake Ontario
Owens, Randall W.; Bergstedt, Roger A.
1994-01-01
Abundance and biomass of slimy sculpin Cottus cognatus declined in Lake Ontario at depths most frequently occupied by juvenile lake trout Salvelinus namaycush (<70 m), but not at greater depths, during 1980–1987. The abundance of juvenile lake trout increased at depths less than 70 m between 1980 and 1987, and slimy sculpin abundance was negatively correlated with lake trout abundance. The size of slimy sculpins caught at depths less than 70 m decreased between 1980 and 1987, fish 50–99 mm becoming less common and fish 100 mm or longer becoming rare. The size of slimy sculpins at depths greater than 70 m did not change, Because slimy sculpins are the principal fish eaten by juvenile lake trout, and because juvenile lake trout were most abundant at depths where the greatest changes in the slimy sculpin population took place, we conclude that juvenile lake trout in Lake Ontario altered the slimy sculpin population. No significant negative correlations were found between abundance of slimy sculpins and those of the two most abundant fishes in Lake Ontario: Alewife Alosa pseudoharengus and rainbow smeltOsmerus mordax.
Delineation of sympatric morphotypes of lake trout in Lake Superior
Moore, Seth A.; Bronte, Charles R.
2001-01-01
Three morphotypes of lake trout Salvelinus namaycush are recognized in Lake Superior: lean, siscowet, and humper. Absolute morphotype assignment can be difficult. We used a size-free, whole-body morphometric analysis (truss protocol) to determine whether differences in body shape existed among lake trout morphotypes. Our results showed discrimination where traditional morphometric characters and meristic measurements failed to detect differences. Principal components analysis revealed some separation of all three morphotypes based on head and caudal peduncle shape, but it also indicated considerable overlap in score values. Humper lake trout have smaller caudal peduncle widths to head length and depth characters than do lean or siscowet lake trout. Lean lake trout had larger head measures to caudal widths, whereas siscowet had higher caudal peduncle to head measures. Backward stepwise discriminant function analysis retained two head measures, three midbody measures, and four caudal peduncle measures; correct classification rates when using these variables were 83% for leans, 80% for siscowets, and 83% for humpers, which suggests the measures we used for initial classification were consistent. Although clear ecological reasons for these differences are not readily apparent, patterns in misclassification rates may be consistent with evolutionary hypotheses for lake trout within the Laurentian Great Lakes.
Eckmann, Madeleine; Dunham, Jason B.; Connor, Edward J.; Welch, Carmen A.
2018-01-01
Many species living in deeper lentic ecosystems exhibit daily movements that cycle through the water column, generally referred to as diel vertical migration (DVM). In this study, we applied bioenergetics modelling to evaluate growth as a hypothesis to explain DVM by bull trout (Salvelinus confluentus) in a thermally stratified reservoir (Ross Lake, WA, USA) during the peak of thermal stratification in July and August. Bioenergetics model parameters were derived from observed vertical distributions of temperature, prey and bull trout. Field sampling confirmed that bull trout prey almost exclusively on recently introduced redside shiner (Richardsonius balteatus). Model predictions revealed that deeper (>25 m) DVMs commonly exhibited by bull trout during peak thermal stratification cannot be explained by maximising growth. Survival, another common explanation for DVM, may have influenced bull trout depth use, but observations suggest there may be additional drivers of DVM. We propose these deeper summertime excursions may be partly explained by an alternative hypothesis: the importance of colder water for gametogenesis. In Ross Lake, reliance of bull trout on warm water prey (redside shiner) for consumption and growth poses a potential trade-off with the need for colder water for gametogenesis.
Wilcox, Taylor M; Carim, Kellie J; McKelvey, Kevin S; Young, Michael K; Schwartz, Michael K
2015-01-01
Environmental DNA (eDNA) sampling is a powerful tool for detecting invasive and native aquatic species. Often, species of conservation interest co-occur with other, closely related taxa. Here, we developed qPCR (quantitative PCR) markers which distinguish westslope cutthroat trout (Oncorhynchus clarkii lewsi), Yellowstone cutthroat trout (O. clarkii bouvieri), and rainbow trout (O. mykiss), which are of conservation interest both as native species and as invasive species across each other's native ranges. We found that local polymorphisms within westslope cutthroat trout and rainbow trout posed a challenge to designing assays that are generally applicable across the range of these widely-distributed species. Further, poorly-resolved taxonomies of Yellowstone cutthroat trout and Bonneville cutthroat trout (O. c. utah) prevented design of an assay that distinguishes these recognized taxa. The issues of intraspecific polymorphism and unresolved taxonomy for eDNA assay design addressed in this study are likely to be general problems for closely-related taxa. Prior to field application, we recommend that future studies sample populations and test assays more broadly than has been typical of published eDNA assays to date.
Seasonal habitat use of brook trout and juvenile steelhead in a Lake Ontario tributary
Johnson, James H.; Abbett, Ross; Chalupnicki, Marc A.; Verdoliva, Francis
2016-01-01
Brook trout (Salvelinus fontinalis) are generally restricted to headwaters in New York tributaries of Lake Ontario. In only a few streams are brook trout abundant in lower stream reaches that are accessible to adult Pacific salmonids migrating from the lake. Consequently, because of the rarity of native brook trout populations in these lower stream reaches it is important to understand how they use stream habitat in sympatry with juvenile Pacific salmonids which are now naturalized in several Lake Ontario tributaries. In this study, we examined the seasonal (spring, summer, and fall) habitat use of brook trout and juvenile steelhead (Oncorhynchus mykiss) in Hart Brook, a tributary of eastern Lake Ontario. We found interspecific, intraspecific, and seasonal variation in habitat use. Subyearling steelhead were associated with faster water velocities than subyearling brook trout and, overall, had the least habitat similarity to the other salmonid groups examined. Overyearling brook trout and yearling steelhead exhibited the greatest degree of habitat selection and habitat selection by all four salmonid groups was greatest in summer. The availability of pool habitat for overyearling salmonids may pose the largest impediment to these species in Hart Brook.
Airborne lidar detection and mapping of invasive lake trout in Yellowstone Lake.
Roddewig, Michael R; Churnside, James H; Hauer, F Richard; Williams, Jacob; Bigelow, Patricia E; Koel, Todd M; Shaw, Joseph A
2018-05-20
The use of airborne lidar to survey fisheries has not yet been extensively applied in freshwater environments. In this study, we investigated the applicability of this technology to identify invasive lake trout (Salvelinus namaycush) in Yellowstone Lake, Yellowstone National Park, USA. Results of experimental trials conducted in 2004 and in 2015-16 provided lidar data that identified groups of fish coherent with current knowledge and models of lake trout spawning sites, and one identified site was later confirmed to have lake trout.
Madenjian, C.P.; Ebener, M.P.; Desorcie, T.J.
2008-01-01
The Drummond Island Refuge (DIR) was established in 1985 as part of the rehabilitation effort for lake trout Salvelinus namaycush in Lake Huron. Since then, several strains of hatchery-reared lake trout have been stocked annually at the DIR. An intensive lampricide treatment of the St. Marys River during 1998-2001 was expected to lower the abundance of sea lamprey Petromyzon marinus within the DIR by 2000. We conducted annual gill-net surveys during spring and fall to evaluate the performance of each of the strains of lake trout as well as that of the entire lake trout population (all strains pooled) in the DIR during 1991-2005. The criteria to evaluate performance included the proportion of "wild" fish within the population, spawner density, adult survival, growth, maturity, and wounding rate by sea lampreys. Wild lake trout did not recruit to the adult population to any detectable degree. During 1991-2005, the average density of spawning lake trout appeared to be marginally sufficient to initiate a self-sustaining population. Survival of the Seneca Lake (SEN) strain of lake trout was significantly higher than that of the Superior-Marquette (SUP) strain, in part because of the higher sea-lamprey-induced mortality suffered by the SUP strain. However, other factors were also involved. Apparently SUP fish were more vulnerable to fishing conducted in waters near the refuge boundaries than SEN fish. The St. Marys River treatment appeared to be effective in reducing the sea lamprey wounding rate on SEN fish. We recommend that the stocking of SEN lake trout in the DIR, control of sea lampreys in the St. Marys River, and reduction of commercial fishery effort in waters near the DIR be maintained. ?? Copyright by the American Fisheries Society 2008.
Brenkman, Samuel J.; Duda, Jeffrey J.; Kennedy, Philip R.; Baker, Bruce M.
2014-01-01
As a means to increase visitation, early fisheries management in the National Park Service (NPS) promoted sport harvest and hatchery supplementation. Today, NPS management objectives focus on the preservation of native fish. We summarized management regimes of Olympic National Park's Lake Crescent, which included decades of liberal sport harvest and hatchery releases of 14.3 million salmonids. Notably, nonnative species failed to persist in the lake. Complementary analyses of annual redd counts (1989–2012) and genetics data delineated three sympatric trout (one rainbow; two cutthroat) populations that exhibited distinct spatial and temporal spawning patterns, variable emergence timings, and genetic distinctiveness. Allacustrine rainbow trout spawned in the lake outlet from January to May. Cutthroat trout spawned in the major inlet tributary (Barnes Creek) from February to June and in the outlet river (Lyre) from September to March, an unusual timing for coastal cutthroat trout. Redd counts for each species were initially low (rainbow = mean 89; range 37–159; cutthroat = mean 93; range 18–180), and significantly increased for rainbow trout (mean 306; range 254–352) after implementation of catch-and-release regulations. Rainbow and cutthroat trout reached maximum sizes of 10.4 kg and 5.4 kg, respectively, and are among the largest throughout their native ranges. Morphometric analyses revealed interspecific differences but no intraspecific differences between the two cutthroat populations. Genetic analyses identified three distinct populations and low levels (9–17%) of interspecific hybridization. Lake Crescent rainbow trout were genetically divergent from 24 nearby Oncorhynchus mykiss populations, and represented a unique evolutionary legacy worthy of protection. The indigenous and geographically isolated Lake Crescent trout populations were resilient to overharvest and potential interactions with introduced fish species.
Ostberg, Carl O.; Chase, Dorothy M.; Hauser, Lorenz
2015-01-01
Hybridization creates novel gene combinations that may generate important evolutionary novelty, but may also reduce existing adaptation by interrupting inherent biological processes, such as genotype-environment interactions. Hybridization often causes substantial change in patterns of gene expression, which, in turn, may cause phenotypic change. Rainbow trout (Oncorhynchus mykiss) and cutthroat trout (O. clarkii) produce viable hybrids in the wild, and introgressive hybridization with introduced rainbow trout is a major conservation concern for native cutthroat trout. The two species differ in body shape, which is likely an evolutionary adaptation to their native environments, and their hybrids tend to show intermediate morphology. The characterization of gene expression patterns may provide insights on the genetic basis of hybrid and parental morphologies, as well as on the ecological performance of hybrids in the wild. Here, we evaluated the expression of eight growth-related genes (MSTN-1a, MSTN-1b, MyoD1a, MyoD1b, MRF-4, IGF-1, IGF-2, and CAST-L) and the relationship of these genes with growth traits (length, weight, and condition factor) in six line crosses: both parental species, both reciprocal F1 hybrids, and both first-generation backcrosses (F1 x rainbow trout and F1 x cutthroat trout). Four of these genes were differentially expressed among rainbow, cutthroat, and their hybrids. Transcript abundance was significantly correlated with growth traits across the parent species, but not across hybrids. Our findings suggest that rainbow and cutthroat trout exhibit differences in muscle growth regulation, that transcriptional networks may be modified by hybridization, and that hybridization disrupts intrinsic relationships between gene expression and growth patterns that may be functionally important for phenotypic adaptations.
DeWeber, Jefferson Tyrell; Wagner, Tyler
2015-01-01
The Brook Trout Salvelinus fontinalis is an important species of conservation concern in the eastern USA. We developed a model to predict Brook Trout population status within individual stream reaches throughout the species’ native range in the eastern USA. We utilized hierarchical logistic regression with Bayesian estimation to predict Brook Trout occurrence probability, and we allowed slopes and intercepts to vary among ecological drainage units (EDUs). Model performance was similar for 7,327 training samples and 1,832 validation samples based on the area under the receiver operating curve (∼0.78) and Cohen's kappa statistic (0.44). Predicted water temperature had a strong negative effect on Brook Trout occurrence probability at the stream reach scale and was also negatively associated with the EDU average probability of Brook Trout occurrence (i.e., EDU-specific intercepts). The effect of soil permeability was positive but decreased as EDU mean soil permeability increased. Brook Trout were less likely to occur in stream reaches surrounded by agricultural or developed land cover, and an interaction suggested that agricultural land cover also resulted in an increased sensitivity to water temperature. Our model provides a further understanding of how Brook Trout are shaped by habitat characteristics in the region and yields maps of stream-reach-scale predictions, which together can be used to support ongoing conservation and management efforts. These decision support tools can be used to identify the extent of potentially suitable habitat, estimate historic habitat losses, and prioritize conservation efforts by selecting suitable stream reaches for a given action. Future work could extend the model to account for additional landscape or habitat characteristics, include biotic interactions, or estimate potential Brook Trout responses to climate and land use changes.
Ninua, Levan; Tarkhnishvili, David; Gvazava, Elguja
2018-03-01
Current taxonomy of western Eurasian trout leaves a number of questions open; it is not clear to what extent some species are distinct genetically and morphologically. The purpose of this paper was to explore phylogeography and species boundaries in freshwater and anadromous trout from the drainages of the Black and the Caspian Seas (Ponto-Caspian). We studied morphology and mitochondrial phylogeny, combining samples from the western Caucasus within the potential range of five nominal species of trout that are thought to inhabit this region, and using the sequences available from GenBank. Our results suggest that the genetic diversity of trout in the Ponto-Caspian region is best explained with the fragmentation of catchments. (1) All trout species from Ponto-Caspian belong to the same mitochondrial clade, separated from the other trout since the Pleistocene; (2) the southeastern Black Sea area is the most likely place of diversification of this clade, which is closely related to the clades from Anatolia; (3) The species from the Black Sea and the Caspian Sea drainages are monophyletic; (4) except for the basal lineage of the Ponto-Caspian clade, Salmo rizeensis , all the lineages produce anadromous forms; (5) genetic diversification within the Ponto-Caspian clade is related to Pleistocene glacial waves; (6) the described morphological differences between the species are not fully diagnostic, and some earlier described differences depend on body size; the differences between freshwater and marine forms exceed those between the different lineages. We suggest a conservative taxonomic approach, using the names S. rizeensis and Salmo labrax for trout from the Black Sea basin and Salmo caspius and Salmo ciscaucasicus for the fish from the Caspian basin.
Effects of turbidity on predation vulnerability of juvenile humpback chub to rainbow and brown trout
Ward, David L.; Morton-Starner, Rylan; Vaage, Benjamin M.
2016-01-01
Predation on juvenile native fish by introduced rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta is considered a significant threat to the persistence of endangered humpback chub Gila cypha in the Colorado River in Grand Canyon. Diet studies of rainbow and brown trout in Glen and Grand canyons indicate that these species eat native fish, but impacts are difficult to assess because predation vulnerability is highly variable depending on the physical conditions under which the predation interactions take place. We conducted laboratory experiments to evaluate how short-term predation vulnerability of juvenile humpback chub changes in response to changes in turbidity. In overnight laboratory trials, we exposed hatchery-reared juvenile humpback chub and bonytail Gila elegans (a surrogate for humpback chub) to adult rainbow and brown trout at turbidities ranging from 0 to 1,000 formazin nephlometric units. We found that turbidity as low as 25 formazin nephlometric units significantly reduced predation vulnerability of bonytail to rainbow trout and led to a 36% mean increase in survival (24–60%, 95% CI) compared to trials conducted in clear water. Predation vulnerability of bonytail to brown trout at 25 formazin nephlometric units also decreased with increasing turbidity and resulted in a 25% increase in survival on average (17–32%, 95% CI). Understanding the effects of predation by trout on endangered humpback chub is important when evaluating management options aimed at preservation of native fishes in Grand Canyon National Park. This research suggests that relatively small changes in turbidity may be sufficient to alter predation dynamics of trout on humpback chub in the mainstem Colorado River and that turbidity manipulation may warrant further investigation as a fisheries management tool.
Trophic ecology of northern pike and their effect on conservation of westslope cutthroat trout.
Walrath, John D.; Quist, Michael C.; Firehammer, Jon A.
2015-01-01
Westslope Cutthroat Trout Oncorhynchus clarkii lewisi in Coeur d’Alene Lake, Idaho, have declined in recent years; predation by Northern Pike Esox lucius, a nonnative sport fish, is thought to be a causative mechanism. The goal of this study was to describe the seasonal food habits of Northern Pike and determine their influence on Westslope Cutthroat Trout in Coeur d’Alene Lake by using a bioenergetics modeling approach. Fish were sampled monthly from March 2012 to May 2013 using pulsed-DC electrofishing and experimental gillnetting in four bays. Northern Pike catch rates from electrofishing were generally low but increased slightly each season and were highest in the southern portion of the lake; catch rates from gillnetting were approximately 50% higher during the two spring sampling periods compared with the summer and fall. Seasonal growth and food habits of 695 Northern Pike (TL = 16.2–108.0 cm; weight = 24–9,628 g) were analyzed. Diets primarily consisted of kokanee O. nerka, Westslope Cutthroat Trout, and Yellow PerchPerca flavescens. Results of a bioenergetics model estimated that Westslope Cutthroat Trout represented approximately 2–30% of the biomass consumed by age-1–4 Northern Pike. Total Westslope Cutthroat Trout biomass consumed by Northern Pike (2008–2011 year-classes) across all seasons sampled was estimated to be 1,231 kg (95% CI = 723–2,396 kg), and the total number consumed was 5,641 (95% CI = 3,311–10,979). The highest occurrence of Westslope Cutthroat Trout in Northern Pike diets was observed during spring. Thus, reducing Northern Pike predation on Westslope Cutthroat Trout would be one tool worth considering for conserving Westslope Cutthroat Trout populations in Coeur d’Alene Lake.
Thornton, Emily J; Duda, Jeff; Quinn, Thomas P.
2016-01-01
Resource competition between animals is influenced by a number of factors including the species, size and relative abundance of competing individuals. Stream-dwelling animals often experience variably available food resources, and some employ territorial behaviors to increase their access to food. We investigated the factors that affect dominance between resident, non-native brook trout and recolonizing juvenile coho salmon in the Elwha River, WA, USA, to see if brook trout are likely to disrupt coho salmon recolonization via interference competition. During dyadic laboratory feeding trials, we hypothesized that fish size, not species, would determine which individuals consumed the most food items, and that species would have no effect. We found that species, not size, played a significant role in dominance; coho salmon won 95% of trials, even when only 52% the length of their brook trout competitors. As the pairs of competing fish spent more time together during a trial sequence, coho salmon began to consume more food, and brook trout began to lose more, suggesting that the results of early trials influenced fish performance later. In group trials, we hypothesized that group composition and species would not influence fish foraging success. In single species groups, coho salmon consumed more than brook trout, but the ranges overlapped. Brook trout consumption remained constant through all treatments, but coho salmon consumed more food in treatments with fewer coho salmon, suggesting that coho salmon experienced more intra- than inter-specific competition and that brook trout do not pose a substantial challenge. Based on our results, we think it is unlikely that competition from brook trout will disrupt Elwha River recolonization by coho salmon.
Klinck, Joel; Dunbar, Michael; Brown, Stephanie; Nichols, Joel; Winter, Anna; Hughes, Christopher; Playle, Richard C
2005-03-25
To distinguish physiologically regulated uptake from passive uptake of inorganic Hg in fish, rainbow trout (Oncorhynchus mykiss) were exposed to inorganic Hg (0.5, 1, or 2 microM total Hg) in ion-poor water with various treatments. Addition of ions to the water (mM concentrations of Ca, K, Cl) did not consistently alter Hg accumulation by trout gills, although there was a trend to higher Hg accumulation at higher ion concentrations. The apical Ca channel blockers Verapamil and lanthanum also did not consistently affect Hg accumulation by trout gills. Pre-treatment of trout with the Na channel blocker Phenamil decreased Hg uptake by about half. These results suggest a combination of physiologically regulated and passive uptake of Hg by trout gills. Strong complexing agents of Hg (EDTA, NTA, ethylenediamine, cysteine) decreased Hg-binding by trout gills in a dose-dependent manner. From these data, a conditional equilibrium binding constant for Hg to the gills was estimated as logK(Hg-gill) = 18.0, representing very strong binding of Hg to the gills. This value is a first step in creating a biotic ligand model (BLM) for inorganic Hg and fish. Natural organic matter (2-10 mg C/L) also decreased Hg-binding by trout gills, although mM concentrations of Na, K, and Cl interfered with this effect. At low concentrations of these ions, natural organic matter samples isolated from various sources bound Hg to similar degrees, as judged by Hg accumulation by trout gills. A conditional binding constant to natural organic matter (NOM) was estimated as logK(Hg-NOM) = 18.0 with about 0.5 micromol binding sites per mg C, representing strong binding of Hg to NOM.
Status of the rainbow trout genome reference sequence assembly
USDA-ARS?s Scientific Manuscript database
Rainbow trout (Oncorhynchus mykiss) are the most cultivated cold water fish in the U.S. In addition to interests associated with aquaculture and sport fisheries, the rainbow trout serves as a model research organism for studies related to carcinogenesis, toxicology, comparative immunology, disease ...
Stephen J. Amish,; Paul A. Hohenlohe,; Sally Painter,; Robb F. Leary,; Muhlfeld, Clint C.; Fred W. Allendorf,; Luikart, Gordon
2012-01-01
Hybridization with introduced rainbow trout threatens most native westslope cutthroat trout populations. Understanding the genetic effects of hybridization and introgression requires a large set of high-throughput, diagnostic genetic markers to inform conservation and management. Recently, we identified several thousand candidate single-nucleotide polymorphism (SNP) markers based on RAD sequencing of 11 westslope cutthroat trout and 13 rainbow trout individuals. Here, we used flanking sequence for 56 of these candidate SNP markers to design high-throughput genotyping assays. We validated the assays on a total of 92 individuals from 22 populations and seven hatchery strains. Forty-six assays (82%) amplified consistently and allowed easy identification of westslope cutthroat and rainbow trout alleles as well as heterozygote controls. The 46 SNPs will provide high power for early detection of population admixture and improved identification of hybrid and nonhybridized individuals. This technique shows promise as a very low-cost, reliable and relatively rapid method for developing and testing SNP markers for nonmodel organisms with limited genomic resources.
Aquatic biology in Nederlo Creek, southwestern Wisconsin
Kammerer, Phil A.; Lidwin, R.A.; Mason, J.W.; Narf, R.P.
1982-01-01
The aquatic community is diverse and reasonably stable with little indication of environmental disturbance. Aquatic macrophyte population (dominated by Ranunculus aquatilis L., Veronica catenata Penn., and Nasturtium offlcinale) varies little from spring to fall. Periphytic and planktonic algae are predominantly diatoms, with the genus Achnanthes dominating both communities. Most genera of planktonic algae originate in the periphyton, but some true planktonic algae were identified. The benthic invertebrate population is dominated by Trichoptera and is a major food source for trout and forage fish. Biotic index values calculated from benthic invertebrate data indicate that water quality is very good to excellent. The trout population is low and represents only a small part of the total fish population both in biomass and numbers. Brown trout are usually stocked annually in the spring to enhance sport fishing, but by fall most trout are wild. The major environmental factors limiting trout population seem to be insufficient cover, insufficient pool depth and volume, and small spawning areas. The wild trout population is highly dependent on spawning success the previous fall.
Binder, Thomas R.; Thompson, Henry T.; Muir, Andrew M.; Riley, Stephen C.; Marsden, J. Ellen; Bronte, Charles R.; Krueger, Charles C.
2015-01-01
Spawning behavior of lake trout, Salvelinus namaycush, is poorly understood, relative to stream-dwelling salmonines. Underwater video records of spawning in a recovering population from the Drummond Island Refuge (Lake Huron) represent the first reported direct observations of lake trout spawning in the Laurentian Great Lakes. These observations provide new insight into lake trout spawning behavior and expand the current conceptual model. Lake trout spawning consisted of at least four distinct behaviors: hovering, traveling, sinking, and gamete release. Hovering is a new courtship behavior that has not been previously described. The apparent concentration of hovering near the margin of the spawning grounds suggests that courtship and mate selection might be isolated from the spawning act (i.e., traveling, sinking, and gamete release). Moreover, we interpret jockeying for position displayed by males during traveling as a unique form of male-male competition that likely evolved in concert with the switch from redd-building to itinerant spawning in lake trout. Unlike previous models, which suggested that intra-sexual competition and mate selection do not occur in lake trout, our model includes both and is therefore consistent with evolutionary theory, given that the sex ratio on spawning grounds is skewed heavily towards males. The model presented in this paper is intended as a working hypothesis, and further revision may become necessary as we gain a more complete understanding of lake trout spawning behavior.
Beaver Colony Density Trends on the Chequamegon-Nicolet National Forest, 1987 – 2013
Ribic, Christine A.; Donner, Deahn M.; Beck, Albert J.; Reinecke, Sue; Eklund, Dan
2017-01-01
The North American beaver (Castor canadensis) is a managed species in the United States. In northern Wisconsin, as part of the state-wide beaver management program, the Chequamegon-Nicolet National Forest removes beavers from targeted trout streams on U.S. Forest Service lands. However, the success of this management program has not been evaluated. Targeted removals comprise only 3% of the annual beaver harvest, a level of effort that may not affect the beaver population. We used colony location data along Forest streams from 1987–2013 (Nicolet, northeast Wisconsin) and 1997–2013 (Chequamegon, northwest Wisconsin) to assess trends in beaver colony density on targeted trout streams compared to non-targeted streams. On the Chequamegon, colony density on non-targeted trout and non-trout streams did not change over time, while colony density on targeted trout streams declined and then stabilized. On the Nicolet, beaver colony density decreased on both non-targeted streams and targeted trout streams. However, colony density on targeted trout streams declined faster. The impact of targeted trapping was similar across the two sides of the Forest (60% reduction relative to non-targeted trout streams). Exploratory analyses of weather influences found that very dry conditions and severe winters were associated with transient reductions in beaver colony density on non-targeted streams on both sides of the Forest. Our findings may help land management agencies weigh more finely calibrated beaver control measures against continued large-scale removal programs. PMID:28081271
Beaver Colony Density Trends on the Chequamegon-Nicolet National Forest, 1987 - 2013.
Ribic, Christine A; Donner, Deahn M; Beck, Albert J; Rugg, David J; Reinecke, Sue; Eklund, Dan
2017-01-01
The North American beaver (Castor canadensis) is a managed species in the United States. In northern Wisconsin, as part of the state-wide beaver management program, the Chequamegon-Nicolet National Forest removes beavers from targeted trout streams on U.S. Forest Service lands. However, the success of this management program has not been evaluated. Targeted removals comprise only 3% of the annual beaver harvest, a level of effort that may not affect the beaver population. We used colony location data along Forest streams from 1987-2013 (Nicolet, northeast Wisconsin) and 1997-2013 (Chequamegon, northwest Wisconsin) to assess trends in beaver colony density on targeted trout streams compared to non-targeted streams. On the Chequamegon, colony density on non-targeted trout and non-trout streams did not change over time, while colony density on targeted trout streams declined and then stabilized. On the Nicolet, beaver colony density decreased on both non-targeted streams and targeted trout streams. However, colony density on targeted trout streams declined faster. The impact of targeted trapping was similar across the two sides of the Forest (60% reduction relative to non-targeted trout streams). Exploratory analyses of weather influences found that very dry conditions and severe winters were associated with transient reductions in beaver colony density on non-targeted streams on both sides of the Forest. Our findings may help land management agencies weigh more finely calibrated beaver control measures against continued large-scale removal programs.
Wilberg, Michael J.; Bronte, Charles R.; Hansen, Michael J.
2004-01-01
Understanding fishing fleet dynamics is important when using fishery dependent data to infer the status of fish stocks. We analyzed data from mandatory catch reports from the commercial lake trout (Salvelinus namaycush) fishery in Michigan waters of Lake Superior during 1929-1961, a period when lake trout populations collapsed through the combined effects of overfishing and sea lamprey (Petromyzon marinus) predation. The number of full-time fishermen increased during 1933-1943 and then decreased during 1943-1957. Addition of new fishermen was related to past yield, market prices, World War II draft exemptions, and lost fishing opportunities in Lake Huron and Lake Michigan. Loss of existing fishermen was related to declining lake trout density. Large mesh (a?Y 114-mm stretch-measure) gill net effort increased during 1929-1951 because fishermen fished more net inshore as lake trout density declined, even though catch per effort (CPE) was often higher in deeper waters. The most common gill net mesh size increased from 114-mm to 120-mm stretch-measure during 1929-1957, as lake trout growth increased. More effort was fished inshore than offshore and the amount of inshore effort was less variable over time than offshore effort. Relatively stable yield was maintained by increasing gill net effort and by moving some effort to better grounds. Because fishing-up caused yield and CPE to remain high despite declining lake trout abundance, caution must be used when basing goals for lake trout restoration on historical fishery indices.
Baldigo, Barry P.; Sporn, Lee Ann; George, Scott D.; Ball, Jacob
2016-01-01
Environmental DNA (eDNA) analysis is rapidly evolving as a tool for monitoring the distributions of aquatic species. Detection of species’ populations in streams may be challenging because the persistence time for intact DNA fragments is unknown and because eDNA is diluted and dispersed by dynamic hydrological processes. During 2015, the DNA of Brook Trout Salvelinus fontinalis was analyzed from water samples collected at 40 streams across the Adirondack region of upstate New York, where Brook Trout populations were recently quantified. Study objectives were to evaluate different sampling methods and the ability of eDNA to accurately predict the presence and abundance of resident Brook Trout populations. Results from three-pass electrofishing surveys indicated that Brook Trout were absent from 10 sites and were present in low (<100 fish/0.1 ha), moderate (100–300 fish/0.1 ha), and high (>300 fish/0.1 ha) densities at 9, 11, and 10 sites, respectively. The eDNA results correctly predicted the presence and confirmed the absence of Brook Trout at 85.0–92.5% of the study sites; eDNA also explained 44% of the variability in Brook Trout population density and 24% of the variability in biomass. These findings indicate that eDNA surveys will enable researchers to effectively characterize the presence and abundance of Brook Trout and other species’ populations in headwater streams across the Adirondack region and elsewhere.
Bailey, C; Schmidt-Posthaus, H; Segner, H; Wahli, T; Strepparava, N
2018-02-01
Proliferative kidney disease (PKD) of salmonids caused by Tetracapsuloides bryosalmonae causes high mortalities of wild brown trout (Salmo trutta fario) and farmed rainbow trout (Oncorhynchus mykiss) at elevated water temperatures. Here the aim was to compare the temperature-dependent modulation of T. bryosalmonae in the two salmonid host species, which display different temperature optima. We used a novel experimental set-up in which we exposed brown trout and rainbow trout to an identical quantified low concentration of T. bryosalmonae for a short time period (1 hr). We followed the development of the parasite in the fish hosts for 70 days. PKD prevalence and parasite kinetics were assessed using qPCR. Exposures were performed at temperatures (12°C and 15°C) that reflect an environmental scenario that may occur in the natural habitat of salmonids. T. bryosalmonae infection was confirmed earliest in brown trout kept at 15°C (day 7 post-exposure) while, in all other groups, T. bryosalmonae was not confirmed until day 15 post-exposure. Moreover, significantly greater infection prevalence and a faster increase of parasite intensity were observed in brown trout kept at 15°C than in all other groups. These results indicate that PKD is differentially modulated by water temperature in related host species. © 2017 John Wiley & Sons Ltd.
Reevaluation of lake trout and lake whitefish bioenergetics models
Madenjian, Charles P.; Pothoven, Steve A.; Kao, Yu-Chun
2013-01-01
Using a corrected algorithm for balancing the energy budget, we reevaluated the Wisconsin bioenergetics model for lake trout (Salvelinus namaycush) in the laboratory and for lake whitefish (Coregonus clupeaformis) in the laboratory and in the field. For lake trout, results showed that the bioenergetics model slightly overestimated food consumption by the lake trout when they were fed low and intermediate rations, whereas the model predicted food consumption by lake trout fed ad libitum without any detectable bias. The slight bias in model predictions for lake trout on restricted rations may have been an artifact of the feeding schedule for these fish, and we would therefore recommend application of the Wisconsin lake trout bioenergetics model to lake trout populations in the field without any revisions to the model. Use of the Wisconsin bioenergetics model for coregonids resulted in overestimation of food consumption by lake whitefish both in the laboratory and in the field by between 20 and 30%, on average. This overestimation of food consumption was most likely due to overestimation of respiration rate. We therefore adjusted the respiration component of the bioenergetics model to obtain a good fit to the observed consumption in our laboratory tanks. The adjusted model predicted the consumption in the laboratory and the field without any detectable bias. Until a detailed lake whitefish respiration study can be conducted, we recommend application of our adjusted version of the Wisconsin generalized coregonid bioenergetics model to lake whitefish populations in the field.
Blazer, V.S.; Densmore, Christine L.; Schill, W.B.; Cartwright, Deborah D.; Page, S.J.
2004-01-01
The susceptibility of lake trout Salvelinus namaycush, rainbow trout Oncorhynchus mykiss and Atlantic salmon Salmo salar to Myxobolus cerebralis, the causative agent of whirling disease, was compared in controlled laboratory exposures. A total of 450 (225 for each dose) fry for each species were exposed to a low (200 spores per fish) or high (2000 spores per fish) dose of the infective triactinomyxon. At 22 wk post-exposure, 60 fish from each group, as well as controls for each species, were examined for clinical signs (whirling behavior, blacktail, deformed heads and skeletal deformities), microscopic lesions, and presence of spores. Rainbow trout were highly susceptible to infection, with 100% being positive for spores and with microscopic pathological changes in both exposure groups. Rainbow trout were the only species to show whirling behavior and blacktail. Atlantic salmon were less susceptible, with only 44 and 61% being positive for spores, respectively, in the low and high dose groups, while 68 and 75%, respectively, had microscopic pathology associated with cartilage damage. Rainbow trout heads contained mean spore concentrations of 2.2 (low dose) or 4.0 (high dose) ?? 106 spores g tissue-1. The means for positive Atlantic salmon (not including zero values) were 1.7 (low) and 7.4 (high) ?? 104 spores g tissue-1. Lake trout showed no clinical signs of infection, were negative for spores in both groups and showed no histopathological signs of M. cerebralis infection.
Beaver colony density trends on the Chequamegon-Nicolet National Forest, 1987 – 2013
Ribic, Christine; Donner, Deahn M.; Beck, Albert J.; Rugg, David J.; Reinecke, Sue; Eklund, Dan
2017-01-01
The North American beaver (Castor canadensis) is a managed species in the United States. In northern Wisconsin, as part of the state-wide beaver management program, the Chequamegon-Nicolet National Forest removes beavers from targeted trout streams on U.S. Forest Service lands. However, the success of this management program has not been evaluated. Targeted removals comprise only 3% of the annual beaver harvest, a level of effort that may not affect the beaver population. We used colony location data along Forest streams from 1987–2013 (Nicolet, northeast Wisconsin) and 1997–2013 (Chequamegon, northwest Wisconsin) to assess trends in beaver colony density on targeted trout streams compared to non-targeted streams. On the Chequamegon, colony density on non-targeted trout and non-trout streams did not change over time, while colony density on targeted trout streams declined and then stabilized. On the Nicolet, beaver colony density decreased on both non-targeted streams and targeted trout streams. However, colony density on targeted trout streams declined faster. The impact of targeted trapping was similar across the two sides of the Forest (60% reduction relative to non-targeted trout streams). Exploratory analyses of weather influences found that very dry conditions and severe winters were associated with transient reductions in beaver colony density on non-targeted streams on both sides of the Forest. Our findings may help land management agencies weigh more finely calibrated beaver control measures against continued large-scale removal programs.
Blazer, V S; Densmore, C L; Schill, W B; Cartwright, D D; Page, S J
2004-01-28
The susceptibility of lake trout Salvelinus namaycush, rainbow trout Oncorhynchus mykiss and Atlantic salmon Salmo salar to Myxobolus cerebralis, the causative agent of whirling disease, was compared in controlled laboratory exposures. A total of 450 (225 for each dose) fry for each species were exposed to a low (200 spores per fish) or high (2000 spores per fish) dose of the infective triactinomyxon. At 22 wk post-exposure, 60 fish from each group, as well as controls for each species, were examined for clinical signs (whirling behavior, blacktail, deformed heads and skeletal deformities), microscopic lesions, and presence of spores. Rainbow trout were highly susceptible to infection, with 100% being positive for spores and with microscopic pathological changes in both exposure groups. Rainbow trout were the only species to show whirling behavior and blacktail. Atlantic salmon were less susceptible, with only 44 and 61% being positive for spores, respectively, in the low and high dose groups, while 68 and 75%, respectively, had microscopic pathology associated with cartilage damage. Rainbow trout heads contained mean spore concentrations of 2.2 (low dose) or 4.0 (high dose) x 10(6) spores g tissue(-1). The means for positive Atlantic salmon (not including zero values) were 1.7 (low) and 7.4 (high) x 10(4) spores g tissue(-1). Lake trout showed no clinical signs of infection, were negative for spores in both groups and showed no histopathological signs of M. cerebralis infection.
USDA-ARS?s Scientific Manuscript database
Bacterial cold water disease (BCWD), caused by Flavobacterium psychrophilum, is an endemic and problematic disease in rainbow trout (Oncorhynchus mykiss) aquaculture. Previously, we have identified SNPs (single nucleotide polymorphisms) associated with BCWD resistance in rainbow trout. The objective...
Indirect effects of introduced trout on Cascades frogs (Rana cascadae) via shared aquatic prey
Maxwell B. Joseph; Jonah Piovia-Scott; Sharon P. Lawler; Karen L. Pope
2010-01-01
1. The introduction of trout to montane lakes has negatively affected amphibian populations across the western United States. In northern California’s Klamath–Siskiyou Mountains, introduced trout have diminished the distribution and abundance of a native ranid frog, Rana (=Lithobates)
Plasma protein biomarkers associated with exposure of rainbow trout (Oncorhynchus mykiss) to 17β-estradiol were isolated and identified using novel sample preparation techniques and state-of-the-art mass spectrometry and bioinformatics approaches. Juvenile male and female trout ...
DIETARY UPTAKE KINETICS OF 2,2', 5, 5'-TETRACHLOROBIPHENYL IN RAINBOW TROUT
The disposition of 2,2',5,5'-tetrachlorobiphenyl (TCB) in rainbow trout (Oncorhynchus mykiss) was studied in dietary exposures with live prey. Trout were fed TCB-dosed fathead minnows (Pimephales promelas; 4% of body wt) containing whole-body residues of 244 (low dose) or 1663 (h...
Performance of Yellowstone and Snake River Cutthroat Trout Fry Fed Seven Different Diets.
USDA-ARS?s Scientific Manuscript database
Five commercial diets and two formulated feeds were fed to initial-feeding Yellowstone cutthroat trout Oncorhynchus clarkii bouvieri fry and Snake River cutthroat trout O. clarkii spp. (currently being petitioned for classification as O. clarkii behnkei) fry for 18 weeks to evaluate fish performance...
Assessment of metabolic stability using the rainbow trout (Oncorhynchus mykiss) liver S9 fraction
Standard protocols are given for assessing metabolic stability in rainbow trout using the liver S9 fraction. These protocols describe the isolation of S9 fractions from trout livers, evaluation of metabolic stability using a substrate depletion approach, and expression of the res...
Ecological segregation moderates a climactic conclusion to trout hybridization
Michael K. Young; Daniel J. Isaak; Kevin S. McKelvey; Taylor M. Wilcox; Matthew R. Campbell; Matthew P. Corsi; Dona Horan; Michael K. Schwartz
2017-01-01
Invasive hybridization, in which an introduced species may introgressively hybridize with a native taxon and threaten its persistence, is prominently featured in the conservation literature. One of the most frequently cited examples of this phenomenon involves interactions between native westslope cutthroat trout Oncorhynchus clarkii lewisi and introduced rainbow trout...
Virulence and molecular variation of Flavobacterium columnare affecting rainbow trout in ID, USA
USDA-ARS?s Scientific Manuscript database
Columnaris disease is an emerging problem in the rainbow trout (Oncorhychus mykiss) aquaculture industry of Idaho. The epidemiology of this pathogen in the area, and for rainbow trout, is all isolates taken from disease outbreaks are genomovar I and similar based on basic typing protocols. Virulence...
Conservation status of Colorado River cutthroat trout
Michael K. Young; R. Nick Schmal; Thomas W. Kohley; Victoria G. Leonard
1996-01-01
Though biologists recognize that populations of Colorado River cutthroat trout have declined, the magnitude of the loss remains unquantified. We obtained information from state and federal biologists and from state databases to determine the current distribution and status of populations of Colorado River cutthroat trout. Recent population extinctions have been...
During the 20th century, declines of lake trout (Salvelinus namaycush) populations to virtual extinction in all the Great Lakes except Lake Superior were followed by failure of stocked lake trout to achieve recruitment through natural reproduction. Stresses such as excessive harv...
Survey of stocking policies for tailwater trout fisheries in the southern United States
Swink, William D.
1983-01-01
A survey of the 16 southern states showed that 48 tailwaters in 13 states were stocked with trout in 1980. Of the almost 3.7 million trout released in these waters, 81% were of catchable size and 19% were fingerlings (Salmo gairdneri). A trend away from "put-grow-and-take" fisheries toward "put-and-take" fisheries was noted. Limited creel data confirmed that fishing pressure in southern tailwaters was heavy, and that 25 to 90% of the trout stocked were recovered by anglers
Do native brown trout and non-native brook trout interact reproductively?
NASA Astrophysics Data System (ADS)
Cucherousset, J.; Aymes, J. C.; Poulet, N.; Santoul, F.; Céréghino, R.
2008-07-01
Reproductive interactions between native and non-native species of fish have received little attention compared to other types of interactions such as predation or competition for food and habitat. We studied the reproductive interactions between non-native brook trout ( Salvelinus fontinalis) and native brown trout ( Salmo trutta) in a Pyrenees Mountain stream (SW France). We found evidence of significant interspecific interactions owing to consistent spatial and temporal overlap in redd localizations and spawning periods. We observed mixed spawning groups composed of the two species, interspecific subordinate males, and presence of natural hybrids (tiger trout). These reproductive interactions could be detrimental to the reproduction success of both species. Our study shows that non-native species might have detrimental effects on native species via subtle hybridization behavior.
Physiological response to hooking stress in hatchery and wild rainbow trout (Salmo gairdneri)
Wydoski, R.S.; Wedemeyer, G.A.; Nelson, N. C.
1976-01-01
This study evaluated the physiological response of rainbow trout to hooking stress after being played under standardized conditions (0–5 min) and estimated the time needed for recovery (to 72 h). Plasma osmolality and chloride measurements were used to evaluate osmoregulatory disturbances and gill ion-exchange function, and plasma glucose was used as an index of the generalized nonspecific physiological stress response. Hooking stress caused more severe blood chemistry differences in hatchery fish than in wild trout. Also, hooking stress imposed a greater stress on larger than on smaller hatchery rainbow trout. Higher water temperatures aggravated the delayed hyperglycemia and hyperchloremia in both hatchery and wild trout but only about 3 days were needed for recovery at 4, 10, or 20 C.
Bronte, Charles R.; Schram, Stephen T.; Selgeby, James H.; Swanson, Bruce L.
2002-01-01
Fertilized eggs from lake trout Salvelinus namaycush were placed in artificial turf incubators and deployed on Devils Island Shoal, Lake Superior, in an attempt to reestablish a spawning population on this once important spawning area. Efficacy was measured by the changes in catch rates, age composition, and origin of adult lake trout returning to the shoal in the fall in subsequent years. The abundance of lake trout spawners without fin clips, which implies that these fish hatched in the lake, increased throughout the sampling period, whereas the abundance of hatchery-reared fish (indicated by one or more fin clips) stocked for restoration purposes remained low. Year-class-specific stock-recruitment analysis suggested that the recruitment of unclipped spawners was related to the number of eggs planted in previous years rather than to spawning by the few adult lake trout visiting the reef. Increases in adult fish at Devils Island Shoal were independent of trends at adjacent sites, where unclipped spawner abundances remained low. Enhanced survival to hatch and apparent site imprinting of young lake trout make this technique a viable alternative to stocking fingerling and yearling lake trout to reestablish spawning populations on specific sites in the Great Lakes.
Production and evaluation of YY-male Brook Trout to eradicate nonnative wild brook trout populations
Kennedy, Patrick; Schill, Daniel J.; Meyer, Kevin A.; Campbell, Matthew R.; Vu, Ninh V.; Hansen, Michael J.
2017-01-01
Nonnative Brook Trout Salvelinus fontinalis were introduced throughout western North America in the early 1900s, resulting in widespread self-sustaining populations that are difficult to eradicate and often threaten native salmonid populations. A novel approach for their eradication involves use of YY male (MYY) Brook Trout (created in the hatchery by feminizing XY males and crossing them with normal XY males). If MYY Brook Trout survive after stocking, and reproduce successfully with wild females, in theory this could eventually drive the sex ratio of the wild population to 100% males, at which point the population would not be able to reproduce and would be eradicated. This study represents the first successful development of a FYY and MYY salmonid broodstock, which was produced in four years at relatively low cost. Field trials demonstrated that stocked hatchery MYY Brook Trout survived and produced viable MYY offspring in streams, although reproductive fitness appeared to have been lower than their wild conspecifics. Even if reduced fitness is the norm in both streams and alpine lakes, our population simulations suggest that eradication can be achieved in reasonable time periods under some MYY stocking scenarios, especially when wild Brook Trout are simultaneously suppressed in the population.
Huntsman, Brock M; Petty, J Todd; Sharma, Shikha; Merriam, Eric R
2016-10-01
Coldwater fishes in streams, such as brook trout (Salvelinus fontinalis), typically are headwater specialists that occasionally expand distributions downstream to larger water bodies. It is unclear, however, whether larger streams function simply as dispersal corridors connecting headwater subpopulations, or as critical foraging habitat needed to sustain large mobile brook trout. Stable isotopes (δ(13)C and δ(15)N) and a hierarchical Bayesian mixing model analysis was used to identify brook trout that foraged in main stem versus headwater streams of the Shavers Fork watershed, West Virginia. Headwater subpopulations were composed of headwater and to a lesser extent main stem foraging individuals. However, there was a strong relationship between brook trout size and main stem prey contributions. The average brook trout foraging on headwater prey were limited to 126 mm standard length. This size was identified by mixing models as a point where productivity support switched from headwater to main stem dependency. These results, similar to other studies conducted in this watershed, support the hypothesis that productive main stem habitat maintain large brook trout and potentially facilitates dispersal among headwater subpopulations. Consequently, loss of supplementary main stem foraging habitats may explain loss of large, mobile fish and subsequent isolation of headwater subpopulations in other central Appalachian watersheds.
Madenjian, C.P.; Chipman, B.D.; Marsden, J.E.
2008-01-01
Sea lamprey (Petromyzon marinus) control in North America costs millions of dollars each year, and control measures are guided by assessment of lamprey-induced damage to fisheries. The favored prey of sea lamprey in freshwater ecosystems has been lake trout (Salvelinus namaycush). A key parameter in assessing sea lamprey damage, as well as managing lake trout fisheries, is the probability of an adult lake trout surviving a lamprey attack. The conventional value for this parameter has been 0.55, based on laboratory experiments. In contrast, based on catch curve analysis, mark-recapture techniques, and observed wounding rates, we estimated that adult lake trout in Lake Champlain have a 0.74 probability of surviving a lamprey attack. Although sea lamprey growth in Lake Champlain was lower than that observed in Lake Huron, application of an individual-based model to both lakes indicated that the probability of surviving an attack in Lake Champlain was only 1.1 times higher than that in Lake Huron. Thus, we estimated that lake trout survive a lamprey attack in Lake Huron with a probability of 0.66. Therefore, our results suggested that lethality of a sea lamprey attack on lake trout has been overestimated in previous model applications used in fisheries management. ?? 2008 NRC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faler, Michael P.; Mendel, Glen; Fulton, Carl
2008-11-20
The Columbia River Distinct Population Segment of bull trout (Salvelinus confluentus) was listed as threatened under the Endangered Species Act in 1998. One of the identified major threats to the species is fragmentation resulting from dams on over-wintering habitats of migratory subpopulations. A migratory subgroup in the Tucannon River appeared to utilize the Snake River reservoirs for adult rearing on a seasonal basis. As a result, a radio telemetry study was conducted on this subgroup from 2002-2006, to help meet Reasonable and Prudent Measures, and Conservation Recommendations associated with the lower Snake River dams in the FCRPS Biological Opinion, andmore » to increase understanding of bull trout movements within the Tucannon River drainage. We sampled 1,109 bull trout in the Tucannon River; 124 of these were surgically implanted with radio tags and PIT tagged, and 681 were only PIT tagged. The remaining 304 fish were either recaptures, or released unmarked. Bull trout seasonal movements within the Tucannon River were similar to those described for other migratory bull trout populations. Bull trout migrated upstream in spring and early summer to the spawning areas in upper portions of the Tucannon River watershed. They quickly moved off the spawning areas in the fall, and either held or continued a slower migration downstream through the winter until early the following spring. During late fall and winter, bull trout were distributed in the lower half of the Tucannon River basin, down to and including the mainstem Snake River below Little Goose Dam. We were unable to adequately radio track bull trout in the Snake River and evaluate their movements or interactions with the federal hydroelectric dams for the following reasons: (1) none of our radio-tagged fish were detected attempting to pass a Snake River dam, (2) our radio tags had poor transmission capability at depths greater than 12.2 m, and (3) the sample size of fish that actually entered the Snake River was small (n=6). In spite of this project's shortcomings, bull trout continue to be observed in low numbers at Snake River dam fish facilities. It is highly possible that bull trout observed at the Snake River dam fish facilities are originating from sources other than the Tucannon River. We suggest that these fish might come from upstream sources like the Clearwater or Salmon rivers in Idaho, and are simply following the outmigration of juvenile anadromous fish (a food supply) as they emigrate toward the Pacific Ocean. Based on our study results, we recommend abandoning radio telemetry as a tool to monitor bull trout movements in the mainstem Snake River. We do recommend continuing PIT tagging and tag interrogation activities to help determine the origin of bull trout using the Snake River hydropower facilities. As a complementary approach, we also suggest the use of genetic assignment tests to help determine the origin of these fish. Lastly, several recommendations are included in the report to help manage and recover bull trout in the Tucannon subbasin.« less
NASA Astrophysics Data System (ADS)
Owens, H.; Skaugset, A. E.
2012-12-01
Resident Coastal Cutthroat trout are ubiquitous in headwater streams across western Oregon. The federal Endangered Species Act lists coastal cutthroat trout as a species of concern and lists habitat modification due to forest management as a cause of population decline. Protection of cutthroat trout is a concern to natural resource managers, yet the dynamics of cutthroat trout populations are complex and poorly understood. Thus, identifying the factors that drive the dynamics of cutthroat trout populations is important to the management of forested headwater watersheds. This poster describes an interdisciplinary study to identify hydrologic determinants of annual abundance, age structure, and growth in resident Cutthroat trout in headwater streams of the western Cascades of southern Oregon. Discharge is a primary variable of interest because it affects habitat volume, stream velocity, channel hydraulics, water quality, channel geomorphology, bed-load stability, and resource availability. Discharge is also affected by forest management activities, specifically timber harvest. The objective of this project is to identify and quantify the influence streamflow has on the abundance of resident cutthroat trout in western Oregon. The study was a part of the Hinkle Creek Paired Watershed Study and took place in the foothills of the Cascade Mountains in the Umpqua River basin from 2004-2011. Streamflow and fish populations were measured in the streams of a 3rd order, 1,950 hectare watershed. The study design was a nested paired watershed study that allowed the investigation to occur at multiple spatial and temporal scales. The study watersheds supported harvest-regenerated stands of Douglas-fir (pseudotsuga menziesii) and are part of a larger study to investigate the environmental impacts of contemporary forest practices on fish-bearing headwater streams. Fish populations and channel habitat characteristics were measured throughout the stream network annually. Discharge was measured at eight gaging stations (two 3rd-order and six 2nd-order streams). Stream temperature was measured at 29 locations throughout the study period. Linear regression was used to model potential explanatory variables of discharge, temperature, and habitat characteristics to explain annual trout abundance, age structure, and growth.
Rescan, Pierre-Yves; Le Cam, Aurelie; Rallière, Cécile; Montfort, Jérôme
2017-06-07
Compensatory growth is a phase of rapid growth, greater than the growth rate of control animals, that occurs after a period of growth-stunting conditions. Fish show a capacity for compensatory growth after alleviation of dietary restriction, but the underlying cellular mechanisms are unknown. To learn more about the contribution of genes regulating hypertrophy (an increase in muscle fibre size) and hyperplasia (the generation of new muscle fibres) in the compensatory muscle growth response in fish, we used high-density microarray analysis to investigate the global gene expression in muscle of trout during a fasting-refeeding schedule and in muscle of control-fed trout displaying normal growth. The compensatory muscle growth signature, as defined by genes up-regulated in muscles of refed trout compared with control-fed trout, showed enrichment in functional categories related to protein biosynthesis and maturation, such as RNA processing, ribonucleoprotein complex biogenesis, ribosome biogenesis, translation and protein folding. This signature was also enriched in chromatin-remodelling factors of the protein arginine N-methyl transferase family. Unexpectedly, functional categories related to cell division and DNA replication were not inferred from the molecular signature of compensatory muscle growth, and this signature contained virtually none of the genes previously reported to be up-regulated in hyperplastic growth zones of the late trout embryo myotome and to potentially be involved in production of new myofibres, notably genes encoding myogenic regulatory factors, transmembrane receptors essential for myoblast fusion or myofibrillar proteins predominant in nascent myofibres. Genes promoting myofibre growth, but not myofibre formation, were up-regulated in muscles of refed trout compared with continually fed trout. This suggests that a compensatory muscle growth response, resulting from the stimulation of hypertrophy but not the stimulation of hyperplasia, occurs in trout after refeeding. The generation of a large set of genes up-regulated in muscle of refed trout may yield insights into the molecular and cellular mechanisms controlling skeletal muscle mass in teleost and serve as a useful list of potential molecular markers of muscle growth in fish.
Genetic status and conservation of Westslope Cutthroat Trout in Glacier National Park
Muhlfeld, Clint C.; D'Angelo, Vincent S.; Downs, Christopher C.; Powell, John D.; Amish, Stephen J.; Luikart, Gordon; Kovach, Ryan; Boyer, Matthew; Kalinowski, Steven T.
2016-01-01
Invasive hybridization is one of the greatest threats to the persistence of Westslope Cutthroat Trout Oncorhynchus clarkii lewisi. Large protected areas, where nonhybridized populations are interconnected and express historical life history and genetic diversity, provide some of the last ecological and evolutionary strongholds for conserving this species. Here, we describe the genetic status and distribution of Westslope Cutthroat Trout throughout Glacier National Park, Montana. Admixture between Westslope Cutthroat Trout and introduced Rainbow Trout O. mykiss and Yellowstone Cutthroat Trout O. clarkii bouvieri was estimated by genotyping 1,622 fish collected at 115 sites distributed throughout the Columbia, Missouri, and South Saskatchewan River drainages. Currently, Westslope Cutthroat Trout occupy an estimated 1,465 km of stream habitat and 45 lakes (9,218 ha) in Glacier National Park. There was no evidence of introgression in samples from 32 sites along 587 km of stream length (40% of the stream kilometers currently occupied) and 17 lakes (2,555 ha; 46% of the lake area currently occupied). However, nearly all (97%) of the streams and lakes that were occupied by nonhybridized populations occurred in the Columbia River basin. Based on genetic status (nonnative genetic admixture ≤ 10%), 36 Westslope Cutthroat Trout populations occupying 821 km of stream and 5,482 ha of lakes were identified as “conservation populations.” Most of the conservation populations (N = 27; 736 km of stream habitat) occurred in the Columbia River basin, whereas only a few geographically restricted populations were found in the South Saskatchewan River (N = 7; 55 km) and Missouri River (N = 2; 30 km) basins. Westslope Cutthroat Trout appear to be at imminent risk of genomic extinction in the South Saskatchewan and Missouri River basins, whereas populations in the Columbia River basin are widely distributed and conservation efforts are actively addressing threats from hybridization and other stressors. A diverse set of pro-active management approaches will be required to conserve, protect, and restore Westslope Cutthroat Trout populations in Glacier National Park throughout the 21st century.
Impacts of climatic variation on trout: A global synthesis and path forward
Kovach, Ryan; Muhlfeld, Clint C.; Al-Chokhachy, Robert K.; Dunham, Jason B.; Letcher, Benjamin; Kershner, Jeffrey L.
2016-01-01
Despite increasing concern that climate change may negatively impact trout—a globally distributed group of fish with major economic, ecological, and cultural value—a synthetic assessment of empirical data quantifying relationships between climatic variation and trout ecology does not exist. We conducted a systematic review to describe how temporal variation in temperature and streamflow influences trout ecology in freshwater ecosystems. Few studies (n = 42) have quantified relationships between temperature or streamflow and trout demography, growth, or phenology, and nearly all estimates (96 %) were for Salvelinus fontinalis and Salmo trutta. Only seven studies used temporal data to quantify climate-driven changes in trout ecology. Results from these studies were beset with limitations that prohibited quantitatively rigorous meta-analysis, a concerning inadequacy given major investment in trout conservation and management worldwide. Nevertheless, consistent patterns emerged from our synthesis, particularly a positive effect of summer streamflow on trout demography and growth; 64 % of estimates were positive and significant across studies, age classes, species, and locations, highlighting that climate-induced changes in hydrology may have numerous consequences for trout. To a lesser degree, summer and fall temperatures were negatively related to population demography (51 and 53 % of estimates, respectively), but temperature was rarely related to growth. To address limitations and uncertainties, we recommend: (1) systematically improving data collection, description, and sharing; (2) appropriately integrating climate impacts with other intrinsic and extrinsic drivers over the entire lifecycle; (3) describing indirect consequences of climate change; and (4) acknowledging and describing intrinsic resiliency.
Egg fatty acid composition from lake trout fed two Lake Michigan prey fish species.
Honeyfield, D.C.; Fitzsimons, J.D.; Tillitt, D.E.; Brown, S.B.
2009-01-01
We previously demonstrated that there were significant differences in the egg thiamine content in lake trout Salvelinus namaycush fed two Lake Michigan prey fish (alewife Alosa pseudoharengus and bloater Coregonus hoyi). Lake trout fed alewives produced eggs low in thiamine, but it was unknown whether the consumption of alewives affected other nutritionally important components. In this study we investigated the fatty acid composition of lake trout eggs when females were fed diets that resulted in different egg thiamine concentrations. For 2 years, adult lake trout were fed diets consisting of four combinations of captured alewives and bloaters (100% alewives; 65% alewives, 35% bloaters; 35% alewives, 65% bloaters; and 100% bloaters). The alewife fatty acid profile had higher concentrations of arachidonic acid and total omega-6 fatty acids than the bloater profile. The concentrations of four fatty acids (cis-13, 16-docosadienoic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids) were higher in bloaters than in alewives. Although six fatty acid components were higher in lake trout eggs in 2001 than in 2000 and eight fatty acids were lower, diet had no effect on any fatty acid concentration measured in lake trout eggs in this study. Based on these results, it appears that egg fatty acid concentrations differ between years but that the egg fatty acid profile does not reflect the alewife-bloater mix in the diet of adults. The essential fatty acid content of lake trout eggs from females fed alewives and bloaters appears to be physiologically regulated and adequate to meet the requirements of developing embryos.
Simulation of the effects of time and size at stocking on PCB accumulation in lake trout
Madenjian, Charles P.; Carpenter, Stephen R.
1993-01-01
Manipulations of size at stocking and timing of stocking have already been used to improve survival of stocked salmonines in the Great Lakes. It should be possible to stock salmonines into the Great Lakes in a way that reduces the rate of polychlorinated biphenyl (PCB) accumulation in these fishes. An individual-based model (IBM) was used to investigate the effects of size at stocking and timing of stocking on PCB accumulation by lake trout Salvelinus namaycush in Lake Michigan. The individual-based feature of the model allowed lake trout individuals to encounter prey fish individuals and then consume sufficiently small prey fish. The IBM accurately accounted for the variation in PCB concentrations observed within the Lake Michigan lake trout population. Results of the IBM simulations revealed that increasing the average size at stocking from 110 to 160 mm total length led to an increase in the average PCB concentration in the stocked cohort at age 5, after the fish had spent 4 years in the lake, from 2.33 to 2.65 mg/kg; the percentage of lake trout in the cohort at the end of the simulated time period with PCB concentration of 2 mg/kg or more increased from 62% to 79%. Thus, PCB contamination was reduced when the simulated size at stocking was smallest. An overall stocking strategy for lake trout into Lake Michigan should weigh this advantage regarding PCB contamination against the poor survival of lake trout that may occur if the trout are stocked at too small a size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trotter, Patrick C.
2001-10-01
The 1994 Fish and Wildlife Program of the Northwest Power Planning Council specifies the recovery and preservation of population health of native resident fishes of the Columbia River Basin. Among the native resident species of concern are interior rainbow trout of the Columbia River redband subspecies Oncorhynchus mykiss gairdneri 1 and westslope cutthroat trout O. clarki lewisi. The westslope cutthroat trout has been petitioned for listing under the U. S. Endangered Species Act (American Wildlands et al. 1997). Before at-risk populations can be protected, their presence and status must be established. Where introgression from introduced species is a concern, asmore » in the case of both westslope cutthroat trout and redband rainbow trout, genetic issues must be addressed as well. As is true with native trout elsewhere in the western United States (Behnke 1992), most of the remaining pure populations of these species in the Columbia River Basin are in relatively remote headwater reaches. The objective of this project was to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique. FY-2001 was year three (and final year) of a project in which we conducted field visits to remote locations to seek out and catalog these populations. In FY-2001 we worked in collaboration with the Wenatchee National Forest to catalog populations in the Wenatchee, Entiat, Lake Chelan, and Methow River drainages of Washington State.« less
Phylogeographic structure and demographic patterns of brown trout in North-West Africa.
Snoj, Aleš; Marić, Saša; Bajec, Simona Sušnik; Berrebi, Patrick; Janjani, Said; Schöffmann, Johannes
2011-10-01
The objectives of the study were to determine the phylogeographic structure of brown trout (Salmo trutta) in Morocco, elucidate their colonization patterns in North-West Africa and identify the mtDNA lineages involved in this process. We also aimed to resolve whether certain brown trout entities are also genetically distinct. Sixty-two brown trout from eleven locations across the Mediterranean and the Atlantic drainages in Morocco were surveyed using sequence analysis of the mtDNA control region and nuclear gene LDH, and by genotyping twelve microsatellite loci. Our study confirms that in Morocco both the Atlantic and Mediterranean basins are populated by Atlantic mtDNA lineage brown trout only, demonstrating that the Atlantic lineage (especially its southern clade) invaded initially not only the western part of the Mediterranean basin in Morocco but also expanded deep into the central area. Atlantic haplotypes identified here sort into three distinct groups suggesting Morocco was colonized in at least three successive waves (1.2, 0.4 and 0.2-0.1 MY ago). This notion becomes more pronounced with the finding of a distinct haplotype in the Dades river system, whose origin appears to coalesce with the nascent stage of the basal mtDNA evolutionary lineages of brown trout. According to our results, Salmo akairos, Salmo pellegrini and "green trout" from Lake Isli do not exhibited any character states that distinctively separate them from the other brown trout populations studied. Therefore, their status as distinct species was not confirmed. Copyright © 2011 Elsevier Inc. All rights reserved.
Wenger, Seth J.; Isaak, Daniel J.; Luce, Charles H.; Neville, Helen M.; Fausch, Kurt D.; Dunham, Jason B.; Dauwalter, Daniel C.; Young, Michael K.; Elsner, Marketa M.; Rieman, Bruce E.; Hamlet, Alan F.; Williams, Jack E.
2011-01-01
Broad-scale studies of climate change effects on freshwater species have focused mainly on temperature, ignoring critical drivers such as flow regime and biotic interactions. We use downscaled outputs from general circulation models coupled with a hydrologic model to forecast the effects of altered flows and increased temperatures on four interacting species of trout across the interior western United States (1.01 million km2), based on empirical statistical models built from fish surveys at 9,890 sites. Projections under the 2080s A1B emissions scenario forecast a mean 47% decline in total suitable habitat for all trout, a group of fishes of major socioeconomic and ecological significance. We project that native cutthroat trout Oncorhynchus clarkii, already excluded from much of its potential range by nonnative species, will lose a further 58% of habitat due to an increase in temperatures beyond the species’ physiological optima and continued negative biotic interactions. Habitat for nonnative brook trout Salvelinus fontinalis and brown trout Salmo trutta is predicted to decline by 77% and 48%, respectively, driven by increases in temperature and winter flood frequency caused by warmer, rainier winters. Habitat for rainbow trout, Oncorhynchus mykiss, is projected to decline the least (35%) because negative temperature effects are partly offset by flow regime shifts that benefit the species. These results illustrate how drivers other than temperature influence species response to climate change. Despite some uncertainty, large declines in trout habitat are likely, but our findings point to opportunities for strategic targeting of mitigation efforts to appropriate stressors and locations. PMID:21844354
Wenger, S.J.; Isaak, D.J.; Luce, C.H.; Neville, H.M.; Fausch, K.D.; Dunham, J.B.; Dauwalter, D.C.; Young, M.K.; Elsner, M.M.; Rieman, B.E.; Hamlet, A.F.; Williams, J.E.
2011-01-01
Broad-scale studies of climate change effects on freshwater species have focused mainly on temperature, ignoring critical drivers such as flow regime and biotic interactions. We use downscaled outputs from general circulation models coupled with a hydrologic model to forecast the effects of altered flows and increased temperatures on four interacting species of trout across the interior western United States (1.01 million km2), based on empirical statistical models built from fish surveys at 9,890 sites. Projections under the 2080s A1B emissions scenario forecast a mean 47% decline in total suitable habitat for all trout, a group of fishes of major socioeconomic and ecological significance. We project that native cutthroat trout Oncorhynchus clarkii, already excluded from much of its potential range by nonnative species, will lose a further 58% of habitat due to an increase in temperatures beyond the species' physiological optima and continued negative biotic interactions. Habitat for nonnative brook trout Salvelinus fontinalis and brown trout Salmo trutta is predicted to decline by 77% and 48%, respectively, driven by increases in temperature and winter flood frequency caused by warmer, rainier winters. Habitat for rainbow trout, Oncorhynchus mykiss, is projected to decline the least (35%) because negative temperature effects are partly offset by flow regime shifts that benefit the species. These results illustrate how drivers other than temperature influence species response to climate change. Despite some uncertainty, large declines in trout habitat are likely, but our findings point to opportunities for strategic targeting of mitigation efforts to appropriate stressors and locations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trotter, Patrick C.
2001-05-01
The 1994 Fish and Wildlife Program of the Northwest Power Planning Council specifies the recovery and preservation of population health of native resident fishes of the Columbia River Basin. Among the native resident species of concern are interior rainbow trout of the Columbia River redband subspecies Oncorhynchus mykiss gairdneri 1 and westslope cutthroat trout O. clarki lewisi. The westslope cutthroat trout has been petitioned for listing under the U. S. Endangered Species Act (American Wildlands et al. 1997). Before at-risk populations can be protected, their presence and status must be established. Where introgression from introduced species is a concern, asmore » in the case of both westslope cutthroat trout and redband rainbow trout, genetic issues must be addressed as well. As is true with native trout elsewhere in the western United States (Behnke 1992), most of the remaining pure populations of these species in the Columbia River Basin are in relatively remote headwater reaches. The objective of this project is to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique. FY-99 was year two of a five-year project in which we conducted field visits to remote locations to seek out and catalog these populations. In FY-99 we worked in collaboration with the Colville National Forest and Kalispel Indian Tribe to catalog populations in the northeastern corner of Washington State.« less
Karro, Niina; Sepp, Mervi; Jugai, Svetlana; Laasmaa, Martin; Vendelin, Marko; Birkedal, Rikke
2017-01-01
Rainbow trout (Oncorhynchus mykiss) cardiomyocytes have a simple morphology with fewer membrane structures such as sarcoplasmic reticulum and t-tubules penetrating the cytosol. Despite this, intracellular ADP diffusion is restricted. Intriguingly, although diffusion is restricted, trout cardiomyocytes seem to lack the coupling between mitochondrial creatine kinase (CK) and respiration. Our aim was to study the distribution of diffusion restrictions in permeabilized trout cardiomyocytes and verify the role of CK. We found a high activity of hexokinase (HK), which led us to reassess the situation in trout cardiomyocytes. We show that diffusion restrictions are more prominent than previously thought. In the presence of a competitive ADP-trapping system, ADP produced by HK, but not CK, was channeled to the mitochondria. In agreement with this, we found no positively charged mitochondrial CK in trout heart homogenate. The results were best fit by a simple mathematical model suggesting that trout cardiomyocytes lack a functional coupling between ATPases and pyruvate kinase. The model simulations show that diffusion is restricted to almost the same extent in the cytosol and by the outer mitochondrial membrane. Furthermore, they confirm that HK, but not CK, is functionally coupled to respiration. In perspective, our results suggest that across a range of species, cardiomyocyte morphology and metabolism go hand in hand with cardiac performance, which is adapted to the circumstances. Mitochondrial CK is coupled to respiration in adult mammalian hearts, which are specialized to high, sustained performance. HK associates with mitochondria in hearts of trout and neonatal mammals, which are more hypoxia-tolerant.
Kolb Ayre, Kimberley; Caldwell, Colleen A.; Stinson, Jonah; Landis, Wayne G.
2014-01-01
Introduction and spread of the parasite Myxobolus cerebralis, the causative agent of whirling disease, has contributed to the collapse of wild trout populations throughout the intermountain west. Of concern is the risk the disease may have on conservation and recovery of native cutthroat trout. We employed a Bayesian belief network to assess probability of whirling disease in Colorado River and Rio Grande cutthroat trout (Oncorhynchus clarkii pleuriticus and Oncorhynchus clarkii virginalis, respectively) within their current ranges in the southwest United States. Available habitat (as defined by gradient and elevation) for intermediate oligochaete worm host, Tubifex tubifex, exerted the greatest influence on the likelihood of infection, yet prevalence of stream barriers also affected the risk outcome. Management areas that had the highest likelihood of infected Colorado River cutthroat trout were in the eastern portion of their range, although the probability of infection was highest for populations in the southern, San Juan subbasin. Rio Grande cutthroat trout had a relatively low likelihood of infection, with populations in the southernmost Pecos management area predicted to be at greatest risk. The Bayesian risk assessment model predicted the likelihood of whirling disease infection from its principal transmission vector, fish movement, and suggested that barriers may be effective in reducing risk of exposure to native trout populations. Data gaps, especially with regard to location of spawning, highlighted the importance in developing monitoring plans that support future risk assessments and adaptive management for subspecies of cutthroat trout.
Wang, Le; Yu, Cuiping; Guo, Liang; Lin, Haoran; Meng, Zining
2015-01-01
The common coral trout is one species of major importance in commercial fisheries and aquaculture. Recently, two different color morphs of Plectropomus leopardus were discovered and the biological importance of the color difference is unknown. Since coral trout species are poorly characterized at the molecular level, we undertook the transcriptomic characterization of the two color morphs, one black and one red coral trout, using Illumina next generation sequencing technologies. The study produced 55162966 and 54588952 paired-end reads, for black and red trout, respectively. De novo transcriptome assembly generated 95367 and 99424 unique sequences in black and red trout, respectively, with 88813 sequences shared between them. Approximately 50% of both trancriptomes were functionally annotated by BLAST searches against protein databases. The two trancriptomes were enriched into 25 functional categories and showed similar profiles of Gene Ontology category compositions. 34110 unigenes were grouped into 259 KEGG pathways. Moreover, we identified 14649 simple sequence repeats (SSRs) and designed primers for potential application. We also discovered 130524 putative single nucleotide polymorphisms (SNPs) in the two transcriptomes, supplying potential genomic resources for the coral trout species. In addition, we identified 936 fast-evolving genes and 165 candidate genes under positive selection between the two color morphs. Finally, 38 candidate genes underlying the mechanism of color and pigmentation were also isolated. This study presents the first transcriptome resources for the common coral trout and provides basic information for the development of genomic tools for the identification, conservation, and understanding of the speciation and local adaptation of coral reef fish species. PMID:26713756
Spokane Tribal Hatchery, 2005 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peone, Tim L.
2006-03-01
Due to the construction and operation of Grand Coulee Dam (1939), anadromous salmon have been eradicated and resident fish populations permanently altered in the upper Columbia River region. Federal and private hydropower dam operations throughout the Columbia River system severely limits indigenous fish populations in the upper Columbia. Artificial production has been determined appropriate for supporting harvestable fisheries for kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) in Lake Roosevelt and Banks Lake (Grand Coulee Dam impoundments). The Spokane Tribe, Washington Department of Fish and Wildlife, Colville Confederated Tribes and Lake Roosevelt Development Association/Lake Roosevelt Volunteer Net Pen Projectmore » are cooperating in a comprehensive artificial production program to produce kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) for annual releases into the project area. The program consists of the Spokane Tribal Hatchery, Sherman Creek Hatchery, Ford Trout Hatchery and Lake Roosevelt Rainbow Trout Net Pen Rearing Projects. The Lake Roosevelt and Banks Lake Fisheries Evaluation Program monitor and evaluates release strategies and production methods for the aforementioned projects. Between 1985 and 2005 the projects have collectively produced up to 800,000 rainbow trout and 4 million kokanee salmon for release into Lake Roosevelt and 1.4 million kokanee fry for Banks Lake annually. In 2005, the annual release goal included 3.3 million kokanee fry, 475,000 kokanee yearlings and 500,000 rainbow trout yearlings. Fish produced by this project in 2005 to meet collective fish production and release goals included: 3,446,438 kokanee fingerlings, 347,730 rainbow trout fingerlings and 525,721 kokanee yearlings. Kokanee yearlings were adipose fin clipped before release. Stock composition consisted of Meadow Creek and Lake Whatcom kokanee, diploid-triploid Spokane Trout Hatchery (McCloud River) rainbow trout and Phalon Lake red-band rainbow trout. All kokanee were marked with either thermal, oxytetracyline or fin clips prior to release. Preliminary 2004 Lake Roosevelt fisheries investigations indicate hatchery/net pen stocking significantly contributed to rainbow trout catch and harvest rates while the impact on the kokanee fishery was minimal. Success of the Lake Roosevelt kokanee artificial production program appears to be limited primarily owing to predation, precocity and high entrainment rates through Grand Coulee Dam. Recommendations for future hatchery/net pen operations include use of stocks compatible or native to the upper Columbia River, continue kokanee fry and post-smolt releases, 100% triploid hatchery stock rainbow trout used and adipose fin clip hatchery stock rainbow trout prior to release. The Spokane Tribal Hatchery is funded by the Bonneville Power Administration under directives by the Northwest Power Conservation Council Columbia River Basin Fish & Wildlife Program, Resident Fish Substitution Measures, 1987 to current (Subbasin Plan), as partial mitigation for anadromous and resident fish losses in the blocked areas above Chief Joseph and Grand Coulee Dams.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-22
... climate change. Because of the range contraction and the imminent threats, the Rio Grande cutthroat trout... Finding of No Significant Impact; Rio Grande Cutthroat Trout, New Mexico and Colorado AGENCY: Fish and... Grande cutthroat trout (Oncorhynchus clarki virginialis) in New Mexico and Colorado, as well as the final...
Greenback cutthroat trout (Oncorhynchus clarkii stomias): A technical conservation assessment
Michael K. Young
2009-01-01
Greenback cutthroat trout (Oncorhynchus clarkii stomias) was once presumably distributed throughout the colder waters of the South Platte and Arkansas River basins in Colorado and southeastern Wyoming. Primarily a fluvial species, greenback cutthroat trout may have occupied 10,614 to 13,231 km of streams above 1,800 m in these basins. Nevertheless,...
Assessing the consequences of nonnative trout in headwater ecosystems in western North America
Jason B. Dunham; David S. Pilliod; Michael K. Young
2004-01-01
Intentional introductions of nonnative trout into headwater lakes and streams can have numerous effects on the receiving ecosystems, potentially threatening native species and disrupting key ecological processes. In this perspective, we focus on seven key issues for assessing the biological and economic consequences of nonnative trout in headwater ecosystems: (1)...
A watershed-scale monitoring protocol for bull trout
Dan Isaak; Bruce Rieman; Dona Horan
2009-01-01
Bull trout is a threatened species native to the Pacific Northwest that has been selected as Management Indicator Species on several national forests. Scientifically defensible procedures for monitoring bull trout populations are necessary that can be applied to the extensive and remote lands managed by the U.S. Forest Service. Distributional monitoring focuses...
Movement and capture efficiency of radio-tagged salmonids sampled by electrofishing
Michael K. Young; David A. Schmetterling
2012-01-01
Electrofishing-based estimates of fish abundance are common. Most population models assume that samples are drawn froma closed population, but population closure is sometimes difficult to achieve. Consequently, we individually electrofished 103 radio-tagged trout of two species, westslope cutthroat trout Oncorhynchus clarkii lewisi and brook trout Salvelinus fontinalis...
USDA-ARS?s Scientific Manuscript database
Hepcidin is an antimicrobial peptide responsive to bacterial infection. We report the characterization of a virus/doublestranded RNA (dsRNA) induction of hepcidin in rainbow trout (Oncorhynchus mykiss). Increased level of hepcidin mRNA was observed in trout macrophage RTS11 cells treated with poly...
Changes in ethoxyresorufin-O-deethylase (EROD) activity were monitored through an extended 6-month dietary exposure to determine the relationship between EROD activity and uptake of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in brook trout, Salvelinus fontinalis. Brook trout were...
Changes in ethoxyresorufin-0-deethylase (EROD) activity were monitored through an extended 6-month dietary exposure to determine the relationship between EROD activity and uptake of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in brook trout, Salvelinus fontinalis. Brook trout wer...
USDA-ARS?s Scientific Manuscript database
Rainbow trout (Oncorhynchus mykiss) is the most widely cultured cold freshwater fish in the world, with production on every continent except Antarctica. Troutlodge, Inc., one of the largest commercial rainbow trout egg producers in the world, has developed four strains (February, May, August and Nov...
Demographic and habitat requirements for conservation of bull trout
Bruce E. Rieman; John D. Mclntyre
1993-01-01
Elements in bull trout biology, population dynamics, habitat, and biotic interactions important to conservation of the species are identified. Bull trout appear to have more specific habitat requirements than other salmonids, but no critical thresholds of acceptable habitat condition were found. Size, temporal variation, and spatial distribution are likely to influence...
In the present study, protein markers of estrogenic exposure in rainbow trout (Oncorhynchus mykiss) were isolated and identified using innovative sample preparation techniques followed by advanced MS and bioinformatics approaches. Juvenile trout were administered 17ß-estradiol t...
Population Genetics of Boise Basin Bull Trout (Salvelinus confluentus)
A.R. Whiteley; P. Spruell; F.W. Allendorf
2003-01-01
We analyzed the population genetic structure of bull trout (Salvelinus confluentus) in the Boise River Basin, Idaho. We determined the influence of contemporary (including anthropogenic) and historic factors on genetic structure, taking into accountexisting data on bull trout habitat patches in this basin. We tested three models of the organization of genetic structure...
Conservation of Yellowstone Cutthroat Trout in Yellowstone National Park: A Case Study
ERIC Educational Resources Information Center
Duncan, Michael B.; Murphy, Brian R.; Zale, Alexander V.
2009-01-01
The Yellowstone cutthroat trout (YCT; "Oncorhynchus clarki bouvieri") has become a species of special concern for Yellowstone National Park (YNP) fisheries biologists. Although this subspecies formerly occupied a greater area than any other inland cutthroat trout, the current distribution of YCT is now limited to several watersheds within the…
USDA-ARS?s Scientific Manuscript database
As a first step towards the genetic mapping of quantitative trait loci (QTL) affecting stress response variation in rainbow trout, we performed complex segregation analyses (CSA) fitting mixed inheritance models of plasma cortisol using Bayesian methods in large full-sib families of rainbow trout. ...
USDA-ARS?s Scientific Manuscript database
A growth trial and fillet sensory analysis were conducted to examine the effects of replacing dietary fish meal with black soldier fly (BSF) prepupae, Hermetia illucens, in rainbow trout, Oncorhynchus mykiss. A practical-type trout diet was formulated to contain 45% protein; four test diets were dev...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-27
... Safe Harbor Agreement for Lahontan cutthroat trout The primary objective of this proposed SHA is to... cutthroat trout (Oncorhynchus clarkii henshawi). The SHA would cover conservation activities to create, maintain, restore, or enhance habitat for Lahontan cutthroat trout and achieve species' recovery goals...
Code of Federal Regulations, 2010 CFR
2010-04-01
... spp., on salmon, trout, catfish, largemouth bass, and bluegill. (ii) Select finfish eggs. For control of fungi of the family Saprolegniaceae on salmon, trout, and esocid eggs. (iii) Penaeid shrimp. For...) Earthen ponds (indefinitely) Salmon and trout: Above 50 °F Up to 170 15-25 Below 50 °F Up to 250 15-25...
Fraley, Kevin M.; Falke, Jeffrey A.; McPhee, Megan V.; Prakash, Anupma
2018-01-01
We used spatially continuous field-measured and remotely-sensed aquatic habitat characteristics paired with weekly ground-based telemetry tracking and snorkel surveys to describe movements and habitat occupancy of adult rainbow trout (N = 82) in a runoff-fed, salmon-influenced southcentral Alaska river system. We found that during the ice-free feeding season (June through September) rainbow trout occurrence was associated more with fine-scale (channel unit) characteristics relative to coarse-scale (stream reach) variables. The presence of Pacific salmon (which provide an important seasonal food subsidy), and habitat size were particularly useful predictors. Weekly movement distance differed between pre- and post- spawning salmon arrival, but did not vary by sex. Habitat quality, season, and the arrival of spawning salmon influenced the likelihood of rainbow trout movement, and fish moved farther to seek out higher quality habitats. Because rainbow trout respond to habitat factors at multiple scales and seek out salmon-derived subsidies, it will be important to take a multiscale approach in protecting trout and salmon populations and managing the associated fisheries.
Diurnal stream habitat use of juvenile Atlantic salmon, brown trout and rainbow trout in winter
Johnson, J. H.; Douglass, K.A.
2009-01-01
The diurnal winter habitat of three species of juvenile salmonids was examined in a tributary of Skaneateles Lake, NY to compare habitat differences among species and to determine if species/age classes were selecting specific habitats. A total of 792 observations were made on the depth, velocity, substrate and cover (amount and type) used by sympatric subyearling Atlantic salmon, subyearling brown trout and subyearling and yearling rainbow trout. Subyearling Atlantic salmon occurred in shallower areas with faster velocities and less cover than the other salmonid groups. Subyearling salmon was also the only group associated with substrate of a size larger than the average size substrate in the study reach during both winters. Subyearling brown trout exhibited a preference for vegetative cover. Compared with available habitat, yearling rainbow trout were the most selective in their habitat use. All salmonid groups were associated with more substrate cover in 2002 under high flow conditions. Differences in the winter habitat use of these salmonid groups have important management implications in terms of both habitat protection and habitat enhancement.
Growth rate differences between resident native brook trout and non-native brown trout
Carlson, S.M.; Hendry, A.P.; Letcher, B.H.
2007-01-01
Between species and across season variation in growth was examined by tagging and recapturing individual brook trout Salvelinus fontinalis and brown trout Salmo trutta across seasons in a small stream (West Brook, Massachusetts, U.S.A.). Detailed information on body size and growth are presented to (1) test whether the two species differed in growth within seasons and (2) characterize the seasonal growth patterns for two age classes of each species. Growth differed between species in nearly half of the season- and age-specific comparisons. When growth differed, non-native brown trout grew faster than native brook trout in all but one comparison. Moreover, species differences were most pronounced when overall growth was high during the spring and early summer. These growth differences resulted in size asymmetries that were sustained over the duration of the study. A literature survey also indicated that non-native salmonids typically grow faster than native salmonids when the two occur in sympatry. Taken together, these results suggest that differences in growth are not uncommon for coexisting native and non-native salmonids. ?? 2007 The Authors.
Proposed standard-weight (W(s)) equations for kokanee, golden trout and bull trout
Hyatt, M.H.; Hubert, W.A.
2000-01-01
We developed standard-weight (W(s)) equations for kokanee (lacustrine Oncorhynchus nerka), golden trout (O. aguabonita), and bull trout (Salvelinus confluentus) using the regression-line-percentile technique. The W(s) equation for kokanee of 120-550 mm TL is log10 W(s) = -5.062 + 3.033 log10 TL, when W(s) is in grams and TL is total length in millimeters; the English-unit equivalent is log10 W(s) = -3.458 + 3.033 log10 TL, when W(s) is in pounds and TL is total length in inches. The W(s) equation for golden trout of 120-530 mm TL is log10 W(s) = -5.088 + 3.041 log10 TL, with the English-unit equivalent being log10 W(s) = -3.473 + 3.041 log10 TL. The W(s) equation for bull trout of 120-850 mm TL is log10 W(s) = -5.327 + 3.115 log10 TL, with the English-unit equivalent being log10 W(s) = -3.608 + 3.115 log10 TL.
The trout fishery in Shenandoah National Park
Lennon, Robert E.
1961-01-01
Populations of brook trout in streams of Shenandoah National Park were reduced drastically early in the past decade by a succession of unusually severe droughts and floods. The drying of stream beds, predation, and scouring were principal factors in the loss of fish. The park was closed to fishing in 1954 and 1955 to protect survivors. The small numbers of survivors quickly repopulated the streams after drought conditions abated. The stocking of hatchery-reared fingerling trout in selected waters failed to augment the recovery of populations. Survival and growth of young, wild trout were especially good. Their redistribution through miles of previously dry streams was rapid. The park was opened again to fishing in 1956 under regulations which restrict the take but afford an increase in sporting opportunity. Two streams were placed under fishing-for-fun-only regulations in 1961.The welfare of the trout populations is dependent mostly on the weather cycle . Fish may be abundant in wet years but very scarc e in dry ones. Thus, the stream must be managed a s marginal for trout.
Wedemeyer, Gary
1971-01-01
Changes in gill function, acid–base balance and pituitary activation occurring during standard 200 ppm formalin treatments of juvenile rainbow trout (Salmo gairdneri) and coho salmon (Oncorhynchus kisutch) were compared. Plasma Cl−, Ca++, total CO2, and interrenal vitamin C in the trout declined continuously and in proportion to the exposure time, but the salmon were able to maintain these metabolic parameters at approximately initial levels. Blood pH and alkaline reserve regulation of the salmon was also less affected by formalin treatments, especially during prolonged exposures. The oxygen consumption of both species was depressed, but substantially more so in the trout than could be accounted for by decreased ventilation rates. Little frank hemolysis occurred in either species, but there was a significant bilirubinemia in the trout.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blenden, Michael L.; Rocklage, Stephen J.; Kucera, Paul A.
1997-04-01
For the third consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 23 to June 24, 1996. A total of 1,797 wild chinook salmon, 11,896 hatchery chinook salmon, 3,786 wild steelhead trout, and 31,094 hatchery steelhead trout smolts were captured during outmigration studies on the Imnaha River in 1996. Mortality associated with trapping, handling and tagging was low, being 1.4% for wildmore » chinook, 0.18% for hatchery chinook, 0.21% for wild steelhead and 0.28% for hatchery steelhead trout smolts.« less
Survival of hatchery-reared lake trout stocked near shore and off shore in Lake Ontario
Elrod, Joseph H.
1997-01-01
Establishing a stock of mature, hatchery-reared fish is necessary to restore a self-sustaining population of lake trout Salvelinus namaycush in Lake Ontario. Stocking fish off shore rather than near shore to reduce predation on these fish by large lake trout or piscivorous birds may enhance survival of hatchery-reared fish and accelerate establishment of a population of adults. Results of an earlier study did not support routinely stocking fish off shore by helicopter in Lake Ontario, but stresses associated with helicopter stocking suggested another method of transporting fish off shore might enhance survival. I conducted this study to determine whether stocking lake trout off shore by barge would enhance first-year survival. Two lots of yearling lake trout were stocked at each of four locations in Lake Ontario in May 1992. One lot was stocked from shore, and an identical lot was transported by barge 3.4–10.4 km off shore of nearshore locations and stocked in water 46–52 m deep. Fish were recovered during trawl, gillnet, and creel surveys in 1992–1996. First-year survival of lake trout stocked off shore tended to be better than that of fish stocked near shore. Predation by double-crested cormorantsPhalacrocorax auritus likely affected survival of fish stocked near shore at two locations, 7 and 37 km, respectively, from a nesting colony of 5,443 pairs of double-crested cormorants. Predation by large lake trout remains a viable hypothesis, which explains, at least partially, lower survival of lake trout stocked near shore at two other locations. Stocking lake trout off shore of traditional nearshore stocking sites likely will enhance first-year survival of hatchery-reared fish and promote accumulation of an adult population, especially for those occassions where nearshore stocking locations are near nesting colonies of double-crested cormorants.
Walker, M.K.; Hufnagle, L.C.; Clayton, M.K.; Peterson, R.E.
1992-01-01
To characterize the risk that polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and biphenyls (PCBs) pose to salmonid early life stage survival, we developed a method to expose rainbow trout (Oncorhynchus mykiss) eggs to graded doses of PCDD, PCDF, and PCB congeners, using 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as a prototype. Rainbow trout eggs were injected 24–50 h post-fertilization with 0.2 μl of 50 mM phosphatidylcholine (PC) liposomes (control) or 0.2 μl of 5–7 graded doses of TCDD incorporated into 50 mM PC liposomes. Injection volume never exceeded 0.6% egg volume. Immediately following injection, the injection site was sealed with Super glue®, resulting in 92–97% of TCDD dose retained by the egg. Following both egg injection and waterborne egg exposure. TCDD toxicity in rainbow trout was manifested by half-hatching mortality but predominantly by sac fry mortality associated with hemorrhages, pericardial edema, and yolk sac edema. TCDD LD50s, following injection and waterborne exposure of rainbow trout eggs, were 421 (331–489) and 439 (346–519) pg TCDD/g egg (LD50, 95% fiducial limits), respectively. As in rainbow trout, TCDD toxicity in lake trout (Salvelinus namaycush) following the same two routes of exposure was manifested by half-hatching mortality but predominantly by sac fry mortality preceded by hemorrhages and yolk sac edema. LD50s, based on the dose of TCDD in lake trout eggs, were 47 (21–65) and 65 (60–71) pg/g following injection and waterborne exposure, respectively. The egg injection method is ideal for assessing the relationship between early life stage mortality in rainbow trout and graded egg doses of individual PCDD, PCDF, or PCB congeners.
Warren, Dana R.; Dunham, Jason B.; Hockman-Wert, David
2014-01-01
Understanding local and geographic factors influencing species distributions is a prerequisite for conservation planning. Our objective in this study was to model local and geographic variability in elevations occupied by native and nonnative trout in the northwestern Great Basin, USA. To this end, we analyzed a large existing data set of trout presence (5,156 observations) to evaluate two fundamental factors influencing occupied elevations: climate-related gradients in geography and local constraints imposed by topography. We applied quantile regression to model upstream and downstream distribution elevation limits for each trout species commonly found in the region (two native and two nonnative species). With these models in hand, we simulated an upstream shift in elevation limits of trout distributions to evaluate potential consequences of habitat loss. Downstream elevation limits were inversely associated with latitude, reflecting regional gradients in temperature. Upstream limits were positively related to maximum stream elevation as expected. Downstream elevation limits were constrained topographically by valley bottom elevations in northern streams but not in southern streams, where limits began well above valley bottoms. Elevation limits were similar among species. Upstream shifts in elevation limits for trout would lead to more habitat loss in the north than in the south, a result attributable to differences in topography. Because downstream distributions of trout in the north extend into valley bottoms with reduced topographic relief, trout in more northerly latitudes are more likely to experience habitat loss associated with an upstream shift in lower elevation limits. By applying quantile regression to relatively simple information (species presence, elevation, geography, topography), we were able to identify elevation limits for trout in the Great Basin and explore the effects of potential shifts in these limits that could occur in response to changing climate conditions that alter streams directly (e.g., through changes in temperature and precipitation) or indirectly (e.g., through changing water use).
Temporary Restoration of Bull Trout Passage at Albeni Falls Dam, 2008 Progress Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellgraph, Brian J.
2009-03-31
The goal of this project is to provide temporary upstream passage of bull trout around Albeni Falls Dam on the Pend Oreille River, Idaho. Our specific objectives are to capture fish downstream of Albeni Falls Dam, tag them with combination acoustic and radio transmitters, release them upstream of Albeni Falls Dam, and determine if genetic information on tagged fish can be used to accurately establish where fish are located during the spawning season. In 2007, radio receiving stations were installed at several locations throughout the Pend Oreille River watershed to detect movements of adult bull trout; however, no bull troutmore » were tagged during that year. In 2008, four bull trout were captured downstream of Albeni Falls Dam, implanted with transmitters, and released upstream of the dam at Priest River, Idaho. The most-likely natal tributaries of bull trout assigned using genetic analyses were Grouse Creek (N = 2); a tributary of the Pack River, Lightning Creek (N = 1); and Rattle Creek (N = 1), a tributary of Lightning Creek. All four bull trout migrated upstream from the release site in Priest River, Idaho, were detected at monitoring stations near Dover, Idaho, and were presumed to reside in Lake Pend Oreille from spring until fall 2008. The transmitter of one bull trout with a genetic assignment to Grouse Creek was found in Grouse Creek in October 2008; however, the fish was not found. The bull trout assigned to Rattle Creek was detected in the Clark Fork River downstream from Cabinet Gorge Dam (approximately 13 km from the mouth of Lightning Creek) in September but was not detected entering Lightning Creek. The remaining two bull trout were not detected in 2008 after detection at the Dover receiving stations. This report details the progress by work element in the 2008 statement of work, including data analyses of fish movements, and expands on the information reported in the quarterly Pisces status reports.« less
Thiamine deficiency effects on the vision and foraging ability of lake trout fry
Tillitt, Donald E.; Zajicek, James L.; Claunch, Rachel; Honeyfield, Dale C.; Fitzsimons, John D.; Brown, Scott B.
2008-01-01
The exact causes of the historical recruitment failures of Great Lakes lake trout Salvelinus namaycush are unknown. Thiamine deficiency has been associated with neurological abnormalities in lake trout that lead to early mortality syndrome (EMS) in salmonine swim-up fry, and EMS-related mortality at the swim-up stage is a factor that contributes to the reproductive failure of lake trout populations in the Great Lakes. The potential for adverse effects of thiamine deficiency beyond the swim-up stage is unknown. We investigated the effects of low egg thiamine on behavioral functions in young, post-swim-up lake trout fry. The behavioral endpoints included visual acuity and prey capture rates in the same groups of lake trout fry from each family. Low-thiamine eggs were produced by feeding lake trout broodstock diets entailing thiaminase activity. The thiamine content of the spawned eggs ranged from 0.3 to 26.1 nmol/g. Both visual acuity and prey capture rates were affected by the thiamine content of the eggs. The visual acuity of lake trout was severely affected by low egg thiamine, mainly at thiamine concentrations below the threshold of 0.8 nmol/g but also at higher concentrations in field-collected eggs. Feeding was also reduced with low egg thiamine content. The reduction of prey capture rates was dramatic below 0.8 nmol/g and less dramatic, but still significant, in a portion of the families with egg thiamine concentrations of less than 5.0 nmol/g from both laboratory and field samples. Approximately one-third of the latter families had reduced feeding rates. Deficits in visual acuity may be part of the mechanism leading to decreased feeding rates in these fry. The effects of low egg thiamine on both of the behavioral endpoints studied increase the risk of low recruitment rates in Great Lakes lake trout populations.
Schill, Daniel J.; Meyer, Kevin A.; Hansen, Michael J.
2017-01-01
Eradication of nonnative Brook Trout Salvelinus fontinalis populations is difficult to achieve with standard techniques, such as electrofishing removal or piscicides; new approaches are needed. A novel concept is to stock “supermale” hatchery fish with wild conspecifics. Supermales (MYY) have two Y-chromosomes, resulting in offspring that are all males; over time, successful supermale reproduction could eradicate the wild population. We constructed an age-structured stochastic model to investigate the effects of manually suppressing wild fish and stocking MYY fingerlings on the long-term viability of hypothetical nonnative Brook Trout populations. In streams, an annual stocking rate of supermales equivalent to 50% of wild age-0 Brook Trout density combined with an annual selective suppression rate equivalent to 50% of wild Brook Trout density resulted in a time to extirpation of only 2–4 years if supermale fitness was equivalent to wild male fitness. However, time to extirpation in streams was 5–15 years if supermale fitness was 80% lower than wild male fitness. In alpine lakes, higher supermale stocking rates and nonselective gillnetting were required to eradicate Brook Trout populations. If supermales were assumed to be as fit as wild males, however, any supermale stocking rate greater than 49% in alpine lakes or 60% in streams achieved eradication in 10 years or less, regardless of the suppression rate. Because manual suppression and the stocking of MYY fingerlings can readily be conducted at the levels assumed in our simulations, use of such an integrated pest management (IPM) approach could extirpate undesirable Brook Trout populations within reasonably short periods of time. Given the recent successful development of an MYY Brook Trout broodstock capable of producing large numbers of MYY fingerlings and given the positive results of the present simulations for both streams and alpine lakes, field testing of MYY stocking is warranted within an IPM program that includes manual suppression for eradicating undesirable Brook Trout populations.
Warr, G.W.; DeLuca, D.; Anderson, D.P.
1983-01-01
1. Thymic lymphocytes of the rainbow trout, S. gairdneri were disrupted and a plasma membrane containing fraction isolated by differential and buoyant density centrifugation.2. Radioiodine introduced into the membrane by the lactoperoxidase catalyzed reaction and immunoglobulin (identified by radioimmunoassay with monoclonal antibody) both copurified in the plasma membrane fraction.3. Rabbit antibody raised to the plasma membrane fraction showed a strong reaction with trout lymphocytes in immunofluorescence, was mitogenic for trout lymphocytes, and recognized lymphocyte membrane heteroantigens of molecular weight > 70,000 in the thymus and 45,000–95,000 in the head kidney.
Musseau, C; Vincenzi, S; Jesenšek, D; Crivelli, A J
2017-12-01
Introduced and allopatric populations of brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss were sampled in Slovenia for stable isotope analysis to assess dietary niche shifts through ontogeny and estimate the propensity for cannibalism. Both S. trutta and O. mykiss are cannibals, with higher average relative contribution of conspecific assimilated energy for S. trutta (27·9%) compared with O. mykiss (7·7%). The smallest cannibal was 166 mm in the S. trutta population and 247 mm in the O. mykiss population. © 2017 The Fisheries Society of the British Isles.
Ostberg, Carl O.; Hauser, Lorenz; Pritchard, Victoria L.; Garza, John C.; Naish, Kerry A.
2013-01-01
Chromosome rearrangements suppressed recombination in the hybrids. This result supports several previous findings demonstrating that recombination suppression restricts gene flow between chromosomes that differ by arrangement. Conservation of synteny and map order between the hybrid and rainbow trout maps and minimal segregation distortion in the hybrids suggest rainbow and Yellowstone cutthroat trout genomes freely introgress across chromosomes with similar arrangement. Taken together, these results suggest that rearrangements impede introgression. Recombination suppression across rearrangements could enable large portions of non-recombined chromosomes to persist within admixed populations.
Carrera, E; García, T; Céspedes, A; González, I; Sanz, B; Hernández, P E; Martín, R
1998-04-01
Restriction site analysis of polymerase chain reaction (PCR) products from a conserved region of the cytochrome b gene has been used for the identification of fresh and smoked samples of Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Digestion of the 359-bp PCR product with the endonucleases EcoRV and TaqI yielded specific banding patterns for salmon and trout. This genetic marker can be very useful for detecting fraudulent substitution of the cheaper smoked trout for the more expensive smoked salmon.
de Toledo, F G; Albuquerque, M C; Goulart, B H; Chini, E N
1995-05-01
Trout and rabbit (Ca2+ + Mg2+)-ATPases from sarcoplasmic reticulum were compared for differences in thermal inactivation and susceptibility to trypsin digestion. The trout ATPase is more heat-sensitive than the rabbit ATPase and is stabilized by Ca2+, Na+, K+ and nucleotides. Solubilization of both ATPases shows that the two ATPases have different protein-intrinsic inactivation kinetics. When digested by trypsin, the two ATPases display different cleavage patterns. The present results indicate that the trout and rabbit ATPases have dissimilarities in protein structure that may explain the differences in thermal inactivation kinetics.
Maret, Terry R.; Schultz, Justin E.
2013-01-01
Acoustic telemetry was used to determine spring to summer (April–August) movement and habitat use of bull trout (Salvelinus confluentus) in Arrowrock Reservoir (hereafter “Arrowrock”), a highly regulated reservoir in the Boise River Basin of southwestern Idaho. Water management practices annually use about 86 percent of the reservoir water volume to satisfy downstream water demands. These practices might be limiting bull trout habitat and movement patterns. Bull trout are among the more thermally sensitive coldwater species in North America, and the species is listed as threatened throughout the contiguous United States under the Endangered Species Act. Biweekly water-temperature and dissolved-oxygen profiles were collected by the Bureau of Reclamation at three locations in Arrowrock to characterize habitat conditions for bull trout. Continuous streamflow and water temperature also were measured immediately upstream of the reservoir on the Middle and South Fork Boise Rivers, which influence habitat conditions in the riverine zones of the reservoir. In spring 2012, 18 bull trout ranging in total length from 306 to 630 millimeters were fitted with acoustic transmitters equipped with temperature and depth sensors. Mobile boat tracking and fixed receivers were used to detect released fish. Fish were tagged from March 28 to April 20 and were tracked through most of August. Most bull trout movements were detected in the Middle Fork Boise River arm of the reservoir. Fifteen individual fish were detected at least once after release. Water surface temperature at each fish detection location ranged from 6.0 to 16.2 degrees Celsius (°C) (mean=10.1°C), whereas bull trout body temperatures were colder, ranging from 4.4 to 11.6°C (mean=7.3°C). Bull trout were detected over deep-water habitat, ranging from 8.0 to 42.6 meters (m) (mean=18.1 m). Actual fish depths were shallower than total water depth, ranging from 0.0 to 24.5 m (mean=6.7 m). The last bull trout was detected in early June, suggesting that fish used little, if any, summertime habitat within the reservoir. Water-quality profile measurements indicated that temperature could limit bull trout use of the reservoir during warm, summer months that coincide with decreased water volume. Thermal refuge during this study appeared to be limited based on scarcity of water that was 15°C and cooler. From the first week of August through the latter part of September, little if any suitable habitat remained for bull trout, with most temperatures exceeding 15°C at all locations where water quality profiles were measured.
Seasonal food of juvenile lake trout in U.S. waters of Lake Ontario
Elrod, Joseph H.
1983-01-01
Stomach contents of 3,554 lake trout (Salvelinus namaycush), 100 to 449 mm in total length, captured with bottom trawls during April through October 1978–81 along the south shore of Lake Ontario were examined. Invertebrates appeared to be an important food of lake trout less than 200 mm long but were only occasionally eaten by larger fish. For all seasons and size groups of juvenile lake trout combined, the slimy sculpin (Cottus cognatus) was the principal forage fish, making up 42% (by weight) of identifiable fish remains. Young-of-the-year slimy sculpins were a major food of recently stocked yearling lake trout during July through October. Alewives (Alosa pseudoharengus) were the principal forage during April and May, and made up 28% (by weight) of the identifiable fish remains. They were rarely eaten during July and August, however, when lake trout remained in the hypolimnion and alewives were above it. Over 99% of the alewives eaten from April through August were yearlings and over 99% eaten during October were young-of-the-year. Rainbow smelt (Osmerus mordax) were the primary forage during July and August, but contributed only a small part of the diet during other seasons; overall, they made up 25% of identifiable fish remains. Johnny darters (Etheostoma nigrum) made up 4% of identifiable fish remains and were most common in stomachs of small lake trout during October.
Fish assemblage structure in an Oklahoma Ozark stream before and after rainbow trout introduction
Walsh, M.G.; Winkelman, D.L.
2005-01-01
Rainbow trout Oncorhynchus mykiss have been widely stocked throughout the United States as a popular sport fish. Our study was initiated to evaluate potential effects of rainbow trout introduction on native fishes to inform future decisions about trout stocking in northeastern Oklahoma streams. We sampled fish assemblages in pools, glides, and riffles in Brush Creek, Delaware County, Oklahoma, from February 2000 to September 2002, and experimentally stocked rainbow trout into the stream from November 2000 to March 2001 and November 2001 to March 2002. We used a combination of multivariate analyses to evaluate seasonal and habitat effects on native fish assemblages and to compare assemblage structure between prestocking, the first year of stocking, and the second year of stocking. Mesohabitat type significantly affected assemblage structure among years, whereas we did not detect an effect of season. We did not detect differences in assemblage structure among years in glide or riffle habitats. Native fish assemblage structure in pool habitats before rainbow trout introduction differed from assemblage structure in both the first and second year of stocking. Declines in seven species, including two native game fish (smallmouth bass Micropterus dolomieu and bluegill Lepomis machrochirus), contributed to assemblage dissimilarity in pool habitats between prestocking conditions and the second year of stocking. Our results indicate that stocking rainbow trout may cause local disruption in assemblage structure in pool habitats. ?? 2004 by the American Fisheries Society.
Wilberg, Michael J.; Hansen, Michael J.; Bronte, Charles R.
2003-01-01
Populations of lake trout Salvelinus namaycush in Lake Superior collapsed in the late 1950s due to overfishing and predation by sea lampreys Petromyzon marinus. A binational effort to restore the lean morphotype of lake trout began with the stocking of hatchery-reared fish followed by the chemical control of sea lampreys and closure of the commercial fishery. Previous comparisons of the contemporary abundance of wild lean lake trout with that from historic commercial fishery statistics indicate that abundance was higher historically. However, this conclusion may be biased because several factors—the inclusion of siscowet (the “fat” morphotype of lake trout) in the catch statistics, the soak time of nets, seasonal effects on catch per effort, and the confounding effects of effort targeted at lake whitefish Coregonus clupeaformis—were not accounted for. We developed new indices of historic lean lake trout abundance that correct for these biases and compared them with the assessment data from 1984 to 1998 in Michigan waters of Lake Superior. The modern (1984–1998) abundance of wild lean lake trout is at least as high as that during 1929–1943 in six of eight management areas but lower in one area. Measures to promote and protect naturally reproducing populations have been more successful than previously realized.
Zeigler, Matthew P.; Todd, Andrew S.; Caldwell, Colleen A.
2013-01-01
This study characterized the thermal regime in a number of Colorado and New Mexico streams that contain populations of Rio Grande cutthroat trout (Oncorhynchus clarkii virginalis) and had no previous record of continual temperature records. When compared to Colorado’s water temperature criteria (Cold Tier 1), a portion of these populations appeared to be at risk from elevated stream temperatures, as indicated by exceedance of both acute (17–22 percent) and chronic (2–9 percent) water quality metrics. Summer water temperature profiles recorded at sites within current Rio Grande cutthroat trout habitat indicated that although the majority of currently occupied conservation streams have temperatures that fall well below these biologically based acute and chronic thermal thresholds, several sites may be at or approaching water temperatures considered stressful to cutthroat trout. Further, water temperatures should be considered in decisions regarding the current and future thermal suitability of potential Rio Grande cutthroat trout restoration sites. Additionally, baseflow discharge sampling indicated that a majority of the sampled stream segments containing Rio Grande cutthroat trout have flows less than 1.0 cubic feet per second (cfs) in both 2010 (74 percent) and 2011 (77 percent). The relative drought sensitivity of these low baseflow streams containing Rio Grande cutthroat trout could be further evaluated to assess their probable sustainability under possible future drought conditions.
Kumar, Gokhlesh; Abd-Elfattah, Ahmed; El-Matbouli, Mansour
2014-10-04
Tetracapsuloides bryosalmonae (Myxozoa) is the causative agent of proliferative kidney disease in various species of salmonids in Europe and North America. In Europe, spores of T. bryosalmonae develop in the kidney of infected brown trout Salmo trutta and are released via urine to infect the freshwater bryozoan Fredericella sultana. The transcriptomes of kidneys of infected and non-infected brown trout were compared by suppressive subtractive hybridization. Differential screening and a subsequent NCBI BLAST analysis of expressed sequence tags revealed 21 transcripts with functions that included cell stress and cell growth, ribonucleoprotein, signal transduction, ion transporter, immune response, hemoglobin and calcium metabolisms. Quantitative real time PCR was used to verify the presence of these selected transcripts in brown trout kidney at sporogonic stages of T. bryosalmonae development. Expression of cold-inducible RNA-binding protein, cyclin-dependent kinase inhibitor 2A, prothymosin alpha, transforming protein RhoA, immunoglobulin light chain and major histocompatibility complex class I were up-regulated significantly in infected brown trout. Expression of both the hemoglobin subunit beta and stanniocalcin precursor were down-regulated significantly in infected brown trout. This study suggests that cell stress and cell growth processes, signal transduction activities, erythropoiesis and calcium homeostasis of the host are modulated during sporogonic stages of parasite development, which may support the sporogenesis of T. bryosalmonae in the kidney of brown trout.
Idaho Habitat/Natural Production Monitoring Part I, 1995 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall-Griswold, J.A.; Petrosky, C.E.
The Idaho Department of Fish and Game (IDFG) has been monitoring trends in juvenile spring and summer chinook salmon, Oncorhynchus tshawytscha, and steelhead trout, O. mykiss, populations in the Salmon, Clearwater, and lower Snake River drainages for the past 12 years. This work is the result of a program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric power plants on the Columbia River. Project 91-73, Idaho Natural Production Monitoring, consists of two subprojects: General Monitoring and Intensive Monitoring. This report updates and summarizes data through 1995 for the General Parr Monitoring (GPM)more » database to document status and trends of classes of wild and natural chinook salmon and steelhead trout populations. A total of 281 stream sections were sampled in 1995 to monitor trends in spring and summer chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss parr populations in Idaho. Percent carrying capacity and density estimates were summarized for 1985--1995 by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon, and natural spring and summer chinook salmon. The 1995 data were also summarized by subbasins as defined in Idaho Department of Fish and Game`s 1992--1996 Anadromous Fish Management Plan.« less
Blanchfield, P.J.; Tate, L.S.; Plumb, J.M.; Acolas, M.-L.; Beaty, K.G.
2009-01-01
The need for cold, well-oxygenated waters significantly reduces the habitat available for lake trout (Salvelinus namaycush) during stratification of small temperate lakes. We examined the spatial and pelagic distribution of lake trout over two consecutive summers and winters and tested whether winter increased habitat availability and access to littoral regions in a boreal shield lake in which pelagic prey fish are absent. In winter, lake trout had a narrowly defined pelagic distribution that was skewed to the upper 3 m of the water column and spatially situated in the central region of the lake. Individual core areas of use (50% Kernel utilization distributions) in winter were much reduced (75%) and spatially non-overlapping compared to summer areas, but activity levels were similar between seasons. Winter habitat selection is in contrast to observations from the stratified season, when lake trout were consistently located in much deeper waters (>6 m) and widely distributed throughout the lake. Winter distribution of lake trout appeared to be strongly influenced by ambient light levels; snow depth and day length accounted for up to 69% of the variation in daily median fish depth. More restricted habitat use during winter than summer was in contrast to our original prediction and illustrates that a different suite of factors influence lake trout distribution between these seasons. ?? Springer Science+Business Media B.V. 2009.
Leland, H.V.
1983-01-01
Morphological changes in hepatocytes of mature brown trout (Salmo trutta Linnaeus) and juvenile rainbow trout (Salmo gairdneri Richardson), accompanying chronic exposures to copper and zinc, were examined by transmission electron microscopy. At a concentration of copper not inhibitory to the final stages of gonadal development or spawning of brown trout, structural alterations included contraction of mitochondria and a tendency for nuclei to be slightly enlarged. Concentrations of copper or zinc lethal to a small fraction (10% and 4%, respectively) of a population of juvenile rainbow trout exposed for 42 d during larval and early juvenile development caused hepatocyte changes in survivors indicative of a reduction in ability to maintain intracellular water and cation balance and possible intranuclear metal sequestering. Specific structural alterations included increased vesiculation of rough endoplasmic reticulum, an increase in the abundance of electron-dense particles in the nucleus, increases in the numbers of multilaminar and globular inclusions, pooling of glycogen, increased autophagocytic activity and an increase in the number of necrotic cells. At advanced stages of toxicosis (concentrations of copper or zinc lethal to approximately 50% of the juveniles exposed for 42 d during development), loss in integrity of mitochondrial membranes, rupturing of plasma and nuclear membranes, separation of granular and fibrillar nuclear components, fragmentation of endoplasmic reticulum, and extensive autophagic vacuolization were significant features of hepatocytes of surviving juvenile rainbow trout. ?? 1983.
USDA-ARS?s Scientific Manuscript database
Sexual maturation occurs at the expense of stored energy and nutrients, including lipids; however, little is known regarding gender effects on nutrient regulatory mechanisms in rainbow trout prior to maturity. Thirty-two, 14 month old, male and female rainbow trout were sampled for growth, carcass ...
Bull trout recovery: Monitoring and evaluation guidance
U.S. Fish and Wildlife Service (USFWS)
2008-01-01
Bull trout (Salvelinus confluentus) is an imperiled species of char native to the Pacific Northwest. Combinations of habitat degradation (e.g., Fraley and Shepard 1989), barriers to migration (e.g., Rieman and McIntyre 1995), and the introduction of non-natives (e.g., Leary et al. 1993) have led to the decline of bull trout populations across their...
Tissue body weight relaltionships, total lipid, and major lipid subclasses were measured in 20 adult hatchery lake trout to obtain a more in-depth understanding of the major lipid compartments of the "lean" lake trout for use in modeling the disposition of xenobiotics. It is sug...
Population-level analysis and validation of an individual-based cutthroat trout model
Steven F. Railsback; Bret C. Harvey; Roland H. Lamberson; Derek E. Lee; Claasen Nathan J.; Shuzo Yoshihara
2002-01-01
Abstract - An individual-based model of stream trout is analyzed by testing its ability to reproduce patterns of population-level behavior observed in real trout: (1) "self-thinning," a negative power relation between weight and abundance; (2) a "critical period" of density-dependent mortality in young-of-the-year; (3) high and age-speci...
USDA-ARS?s Scientific Manuscript database
Many factors have been reported to affect rainbow trout egg quality, among which, postovulatory aging is one of the most significant causes as reared rainbow trout do not usually volitionally oviposit the ovulated eggs. In order to uncover the genetic regulation underling egg deterioration caused by...
USDA-ARS?s Scientific Manuscript database
Numerous factors have been reported to affect rainbow trout egg quality, among which, post-ovulatory aging is one of the most significant causes as reared rainbow trout do not usually volitionally oviposit the ovulated eggs. Frequent examination of the stock is therefore required in order to reduce...
USDA-ARS?s Scientific Manuscript database
In a research rainbow trout (Oncorhynchus mykiss) RAS, two different sized raceways were operated with one common biofilter unit. The larger raceway was stocked with food fish, while the smaller raceway was stocked with juvenile trout. After removal of the food fish, juveniles were moved into free s...
Attributes of Yellowstone cutthroat trout redds in a tributary of the Snake River, Idaho
Russell F. Thurow; John G. King
1994-01-01
We characterized spawning sites of Yellowstone cutthroat trout Oncorhynchus clarki bouvieri, described the microhabitat of completed redds, and tested the influence of habitat conditions on the morphology of completed redds in Pine Creek, Idaho. Cutthroat trout spawned in June as flows subsided after peak stream discharge. During spawning, minimum and maximum water...
Patricia A. Flebbe
1994-01-01
In the southern Appalachian Mountains, native brook trout Salvelinus fontinalis and introduced rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta are at the southern extremes of their distributions, an often overlooked kind of marginal habitat. At a regional scale composed of the states of Virginia...
Brook trout movement during and after recolonization of a naturally defaunated stream reach
Craig N. Roghair; C. Andrew Dolloff
2005-01-01
In june 1995 a debris flow associated with a massive streamwide flood completely eliminated brook trout Salvelinus fontinalis from the lower 1.9 km of the Staunton River in Shenandoah National Park, Virginia. Biannual diver counts revealed that brook trout moved several hundred meters into the debris-flow-affected area each year, resulting in...
C.F. Rich; T.E. McMahon; B.E. Rieman; W.L. Thompson
2003-01-01
We evaluated the association of local-habitat features, large-scale watershed factors, the presence of nonnative brook trout Salvelinus fontinalis, and connectivity to neighboring populations with patterns of occurrence of threatened bull trout S. confluentus in 112 first-order to fourthorder streams in the Bitterroot River drainage in western Montana. Species presence...
Individual-based model formulation for cutthroat trout, Little Jones Creek, California
Steven F. Railsback; Bret C. Harvey
2001-01-01
This report contains the detailed formulation of an individual-based model (IBM) of cutthroat trout developed for three study sites on Little Jones Creek, Del Norte County, in northwestern California. The model was designed to support research on relations between habitat and fish population dynamics, the importance of small tributaries to trout populations, and the...
2012-04-01
most prevalent noxious weeds found at F. E. Warren AFB. · Fish and Wildlife Fish species that have been stocked in the Pearson Lakes include brown ... trout , rainbow trout , lake trout , catfish , perch , and fathead minnow. Aquatic furbearers on the base include beaver and muskrat. Beavers are found
Eric D. Romaniszyn; John J. Jr. Hutchens; J. Bruce Wallance
2007-01-01
We characterised aquatic and terrestrial invertebrate drift in six south-western North Carolina streams and their implications for trout production. Streams of this region typically have low standing stock and production of trout because of low benthic productivity. However, little is known about the contribution of terrestrial invertebrates entering drift, the factors...
Seasonal movement of brown trout in a southern Appalachian river
Kyle H. Burrell; J. Jeffery Isely; David B. Bunnell; David H. Van Lear; C. Andrew Dolloff
2000-01-01
Radio telemetry was used to evaluate the seasonal movement, activity level, and home range size of adult brown trout Salmo trutta in the Chattooga River watershed, one of the southernmost coldwater stream systems in the United States. In all, 27 adult brown trout (262-452 mm total length) were successfully monitored from 16 November 1995 to 15...
SNP identification, genetic mapping and tissue expression of the rainbow trout TLR9 gene
USDA-ARS?s Scientific Manuscript database
Single nucleotide polymorphisms (SNPs) in Toll-like receptor (TLR) genes have been reported to be associated with disease resistance in human and livestock. A number of TLR genes have been identified in rainbow trout including TLR2, TLR3, TLR5, TLR20, TLR22 and TLR23. The rainbow trout (Oncorhynch...
An environmental DNA marker for detecting nonnative brown trout (Salmo trutta)
K. J. Carim; T. M. Wilcox; M. Anderson; D. Lawrence; Michael Young; Kevin McKelvey; Michael Schwartz
2016-01-01
Brown trout (Salmo trutta) are widely introduced in western North America where their presence has led to declines of several native species. To assist conservation efforts aimed at early detection and eradication of this species, we developed a quantitative PCR marker to detect the presence of brown trout DNA in environmental samples. The marker strongly...
The kinetics of phenylglucuronide (PG) in blood and urine of spinally-transected rainbow trout were investigated using microdialysis sampling techniques. Trout weighing 0.9 to 1.3 kg were dosed continuously with PG for an additional 48 h. PG could not be detected in expired branc...
USDA-ARS?s Scientific Manuscript database
Rainbow trout is an excellent source of long chain omega-3 polyunsaturated fatty acids (PUFA) which have beneficial health effects. We determined the fatty acid and oxylipin content of 2-year old rainbow trout fillets that were raw, baked, broiled, microwaved, or pan-fried in corn (CO), canola (CaO...
USDA-ARS?s Scientific Manuscript database
Our goal was to describe the effects of frying with various oils on the fatty acid content of rainbow trout. Four different oils were evaluated (peanut oil, high oleic sunflower oil, corn oil, and canola oil). Farmed rainbow trout (Oncorhynchus mykiss) fillets were sliced into three portions and eac...
The scotopic visual sensitivity of four species of trout: A comparative study
Russel B. Rader; Timberley Belish; Michael K. Young; John Rothlisberger
2007-01-01
We compared the maximum scotopic visual sensitivity of 4 species of trout from twilight (mesotopic) to fully dark-adapted vision. Scotopic vision is the minimum number of photons to which a fully dark-adapted animal will show a behavioral response. A comparison of visual sensitivity under controlled laboratory conditions showed that brown trout (Salmo trutta...
Evaluation of long-chain n3 fatty acid content in diploid and triploid rainbow trout
USDA-ARS?s Scientific Manuscript database
Intake of long chain n3 fatty acids (LCn3), eicosapentaenoic acid (EPA; 20:5 n3) and docosahexaenoic acid (DHA; 22:6 n3), is associated with reduced cardiovascular disease. There is growing interest in farmed fish like rainbow trout, Oncorhynchus mykiss, as sources of LCn3. The trout industry raises...
The near extinction of lake trout in Lake Michigan
Eschmeyer, Paul H.
1957-01-01
Comparisons in 1949 and 1950 of numbers of legal-sized lake trout caught in large-mesh nets with numbers of small fish taken in chub nets showed that both large and small lake trout declined over the same period, and that by these years the decline may have been greater among small than among legal-sized fish.
California golden trout and climate change: Is their stream habitat vulnerable to climate warming?
Kathleen Matthews; Sebastien Nussle
2014-01-01
To determine the current range of water temperatures in streams inhabited by California Golden Trout Oncorhynchus mykiss aguabonita, we deployed and monitored water temperature recording probes from 2008-2013 in three meadows in the Golden Trout Wilderness in the southern Sierra Nevada, California. Ninety probes were placed in three meadow streams...
A reporter gene assay in a cultured rainbow trout cell line was used to determine the influence of temperature on the expression of an estrogen-responsive gene. Rainbow trout hepatoma cells (RTH 149) incubated at 11 or 18 degrees C were co-transfected with an estrogen-responsive ...
Kokanee Stocking and Monitoring, Flathead Lake, 1993-1994 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deleray, Mark; Fredenberg, Wade; Hansen, Barry
1995-07-01
One mitigation goal of the Hungry Horse Dam fisheries mitigation program, funded by the Bonneville Power Administration, is to replace lost production of 100,000 adult kokanee in Flathead Lake. The mitigation program calls for a five-year test to determine if kokanee can be reestablished in Flathead Lake. The test consists. of annual stocking of one million hatchery-raised yearling kokanee. There are three benchmarks for judging the success of the kokanee reintroduction effort: (1) Post-stocking survival of 30 percent of planted kokanee one year after stocking; (2) Yearling to adult survival of 10 percent (100,000 adult salmon); (3) Annual kokanee harvestmore » of 50,000 or more fish per year by 1998, with an average length of 11 inches or longer for harvested fish, and fishing pressure of 100,000 angler hours or more. Kokanee were the primary sport fish species in the Flathead Lake fishery in the early 1900s, and up until the late 1980s when the population rapidly declined in numbers and then disappeared. Factors identified which influenced the decline of kokanee are the introduction of opossum shrimp (Mysis relicta), hydroelectric operations, overharvest through angling, and competition and/or predation by lake trout (Salvelinus namaycush) and lake whitefish (Coregonur clupeaformis). The purpose of this report was to summarize the stocking program and present monitoring results from the 1993 and 1994 field seasons. In June 1993, roughly 210,000 yearling kokanee were stocked into two bays on the east shore of Flathead Lake. Following stocking, we observed a high incidence of stocked kokanee in stomach samples from lake trout captured in areas adjacent to the stocking sites and a high percentage of captured lake trout containing kokanee. Subsequent monitoring concluded that excessive lake trout predation precluded significant survival of kokanee stocked in 1993. In June 1994, over 802,000 kokanee were stocked into Big Arm Bay. The combination of near optimum water temperatures, an upsurge in the abundance of Duphniu rhorum, and saturation planting in an area believed to have lower lake trout densities was expected to maximize short-term survival of stocked kokanee. A net-pen experiment demonstrated that yearling hatchery kokanee, in the absence of predation, adjusted to conditions in Flathead Lake and utilized available zooplankton during June and July without substantial poststocking mortality. Kokanee captured after several months in the lake exhibited good growth and condition. We concluded that the food supply in Big Arm Bay was not limiting survival of stocked kokanee. The 1994 monitoring objective was to quantify lake trout predation of kokanee in Big Arm Bay in the first eight weeks following stocking. There were three components needed to quantify predation; estimated number of lake trout in Big Arm Bay, average number of kokanee consumed by lake trout, and estimated time required for lake trout to digest kokanee. As in the previous year, the monitoring results from the 1994 kokanee plant demonstrated that lake trout predation is the primary factor reducing survival of stocked kokanee. We estimated that lake trout consumed a minimum of 232,000 kokanee in Big Arm Bay during the first eight weeks following stocking. This represents 29 percent of kokanee planted. The consumption estimate was based on a hydroacoustic estimate for lake trout abundance (7,850 fish over 300 mm in total length), an incidence of kokanee per lake trout stomach sample which ranged from 2.99 to 0.22 fish, and a gastric evacuation rate of 47 hours for lake trout to digest consumed kokanee. Due to hydroacoustic limitations in identifying bottom-oriented lake trout, we underestimated the true abundance of lake trout, which led to an underestimate of kokanee mortality. By fall of 1994, we estimated that an additional 12.7 percent of surviving kokanee matured, based on observations of similar-sized fish in the hatchery. Thus, up to 72,000 additional fish were removed from the population due to early maturation. Adding the loss due to predation in the first eight weeks (232,000) to the loss due to early maturation (72,000), we accounted for mortality of at least 304,000 (38 percent) of the original 802,000 fish planted. These estimates did not account for additional losses, including predation outside Big Arm Bay, predation in the months following July, and predation from species other than lake trout, such as bull trout and northern squawfish. We documented lake trout predation of kokanee from June through October, and predation by fish species other than lake trout. One of the program goals is to achieve post-stocking survival of 30 percent one year after planting. Based on observations of the 1994 program, it is unlikely we will achieve this level of survival from the 1994 plant.« less
A comparative evaluation of crowding stress on muscle HSP90 and myostatin expression in salmonids
Galt, Nicholas J.; Froehlich, Jacob Michael; McCormick, Stephen; Biga, Peggy R.
2018-01-01
Stress is a major factor that contributes to poor production and animal welfare concerns in aquaculture. As such, a thorough understanding of mechanisms involved in the stress response is imperative to developing strategies to mitigate the negative side effects of stressors, including the impact of high stocking densities on growth. The purpose of this study was to determine how the muscle growth inhibitor, myostatin, and the stress-responsive gene HSP90 are regulated in response to crowding stress in rainbow trout (Oncorhynchus mykiss), cutthroat trout (Oncorhynchus clarki), brook trout (Salvelinus fontinalis), and Atlantic salmon (Salmo salar). All species exhibited higher cortisol and glucose levels following the handling stress, indicating physiological response to the treatment. Additionally, all species, except rainbow trout, exhibited higher HSP90 levels in muscle after a 48 h crowding stress. Crowding stress resulted in a decrease of myostatin-1ain brook trout white muscle but not red muscle, while, myostatin-1a and -2a levels increased in white muscle and myostatin-1b levels increased in red muscle in Atlantic salmon. In rainbow trout, no significant changes were detected in either muscle type, but myostatin-1awas upregulated in both white and red skeletal muscle in the closely related cutthroat trout. The variation in response to crowding suggests a complex and species-specific interaction between stress and the muscle gene regulation in these salmonids. Only Atlantic salmon and cutthroat trout exhibited increased muscle myostatin transcription, and also exhibited the largest increase in circulating glucose in response to crowding. These results suggest that species-specific farming practices should be carefully examined in order to optimize low stress culture conditions.
Egg thiamine status of Lake Ontario salmonines 1995-2004 with emphasis on lake trout
Fitzsimons, J.D.; Williston, B.; Williston, G.; Brown, L.; El-Shaarawi, A.; Vandenbyllaardt, L.; Honeyfeld, D.; Tillitt, D.; Wolgamood, M.; Brown, S.B.
2007-01-01
Alewives (Alosa pseudoharengus), the major prey fish for Lake Ontario, contain thiaminase. They are associated with development of a thiamine deficiency in salmonines which greatly increases the potential for developing an early mortality syndrome (EMS). To assess the possible effects of thiamine deficiency on salmonine reproduction we measured egg thiamine concentrations for five species of Lake Ontario salmonines. From this we estimated the proportion of families susceptible to EMS based on whether they were below the ED20, the egg thiamine concentration associated with 20% mortality due to EMS. The ED20s were 1.52, 2.63, and 2.99 nmol/g egg for Chinook salmon (Oncorhynchus tshawytscha), lake trout (Salvelinus namaycush), and coho salmon (Oncorhynchus kisutch), respectively. Based on the proportion of fish having egg thiamine concentrations falling below the ED20, the risk of developing EMS in Lake Ontario was highest for lake trout, followed by coho (O. kisutch), and Chinook salmon, with the least risk for rainbow trout (O. mykiss). For lake trout from western Lake Ontario, mean egg thiamine concentration showed significant annual variability during 1994 to 2003, when the proportion of lake trout at risk of developing EMS based on ED20 ranged between 77 and 100%. Variation in the annual mean egg thiamine concentration for western Lake Ontario lake trout was positively related (p < 0.001, r2 = 0.94) with indices of annual adult alewife biomass. While suggesting the possible involvement of density-dependent changes in alewives, the changes are small relative to egg thiamine concentrations when alewife are not part of the diet and are of insufficient magnitude to allow for natural reproduction by lake trout.
Muhlfeld, Clint C.; Jones, Leslie A.; Kotter, D.; Miller, William J.; Geise, Doran; Tohtz, Joel; Marotz, Brian
2012-01-01
Hungry Horse Dam on the South Fork Flathead River, Montana, USA, has modified the natural flow regimen for power generation, flood risk management and flow augmentation for anadromous fish recovery in the Columbia River. Concern over the detrimental effects of dam operations on native resident fishes prompted research to quantify the impacts of alternative flow management strategies on threatened bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarkii lewisi) habitats. Seasonal and life‐stage specific habitat suitability criteria were combined with a two‐dimensional hydrodynamic habitat model to assess discharge effects on usable habitats. Telemetry data used to construct seasonal habitat suitability curves revealed that subadult (fish that emigrated from natal streams to the river system) bull trout move to shallow, low‐velocity shoreline areas at night, which are most sensitive to flow fluctuations. Habitat time series analyses comparing the natural flow regimen (predam, 1929–1952) with five postdam flow management strategies (1953–2008) show that the natural flow conditions optimize the critical bull trout habitats and that the current strategy best resembles the natural flow conditions of all postdam periods. Late summer flow augmentation for anadromous fish recovery, however, produces higher discharges than predam conditions, which reduces the availability of usable habitat during this critical growing season. Our results suggest that past flow management policies that created sporadic streamflow fluctuations were likely detrimental to resident salmonids and that natural flow management strategies will likely improve the chances of protecting key ecosystem processes and help to maintain and restore threatened bull trout and westslope cutthroat trout populations in the upper Columbia River Basin.
Optimum temperature for growth and preferred temperatures of age-0 lake trout
Edsall, Thomas A.; Cleland, Joshua
2000-01-01
This study was performed to determine the thermal preferences and optimum temperature for growth of age-0 lake trout Salvelinus namaycush to help predict the thermal habitat they select when they leave the spawning grounds and to assess the risk posed to them in the Great Lakes by piscivorus, nonnative fishes whose thermal habitat preferences are known. The test fish were hatched in the laboratory from eggs taken from wild fish, acclimated to 5, 10, 15, and 18°C, and fed to excess with commercial trout food for 47 d. The test fish grew at all of the temperatures, and the specific growth rate was highest at about 12.5°C (3.8% wet body weight/d). Fish used in the growth study were also tested in a vertical thermal gradient tank and had a final thermal preferendum between 10.1°C and 10.2°C. These results, which generally agreed with those of an earlier laboratory study of the temperature preference of age-1 lake trout and the limited information on thermal habitat use by age-0 lake trout in the Great Lakes, indicated age-0 lake trout would tend to seek temperatures near 10°C, or as high as 12.5°C, during summer if food was abundant. Published information on thermal habitat use of age-1 and adult alewives Alosa pseudoharengus and rainbow smelt Osmerus mordax indicated they would be expected to co-occur with age-0 lake trout during much of the time when the lake trout were small enough to be eaten by these two introduced piscivores.
Muhlfeld, C.C.; Bennett, D.H.; Kirk, Steinhorst R.; Marotz, B.; Boyer, M.
2008-01-01
Introductions of nonnative northern pike Esox lucius have created recreational fisheries in many waters in the United States and Canada, yet many studies have shown that introduced northern pike may alter the composition and structure of fish communities through predation. We estimated the abundance of nonnative northern pike (2002-2003) and applied food habits data (1999-2003) to estimate their annual consumption of native bull trout Salvelinus confluentus and westslope cutthroat trout Oncorhynchus clarkii lewisi juveniles in the upper Flathead River system, Montana. Population estimates were generally consistent among years and ranged from 1,200 to 1,300 individuals. Westslope cutthroat trout were present in the diet of younger (???600 mm) and older (>600 mm) northern pike during all seasons and bull trout were found only in larger northern pike during all seasons but summer. Bioenergetics modeling estimated that the northern pike population annually consumed a total of 8.0 metric tons (mt) of fish flesh; the highest biomass was composed of cyprinids (4.95 mt) followed by whitefishes Prosopium spp. (1.02 mt), bull trout (0.80 mt), westslope cutthroat trout (0.68 mt), yellow perch Perca flavescens (0.41 mt),1 and other fishes (centrarchids and cottids; 0.14 mt). Numerically, the northern pike population consumed more than 342,000 fish; cyprinids and catostomids comprised approximately 82% of prey fish (278,925), whereas over 13,000 westslope cutthroat trout and nearly 3,500 bull trout were eaten, comprising about 5% of the prey consumed. Our results suggest that predation by introduced northern pike is contributing to the lower abundance of native salmonids in the system and that a possible benefit might accrue to native salmonids by reducing these predatory interactions. ?? Copyright by the American Fisheries Society 2008.
Evaluation of catch-and-release regulations on Brook Trout in Pennsylvania streams
Jason Detar,; Kristine, David; Wagner, Tyler; Greene, Tom
2014-01-01
In 2004, the Pennsylvania Fish and Boat Commission implemented catch-and-release (CR) regulations on headwater stream systems to determine if eliminating angler harvest would result in an increase in the number of adult (≥100 mm) or large (≥175 mm) Brook Trout Salvelinus fontinalis. Under the CR regulations, angling was permitted on a year-round basis, no Brook Trout could be harvested at any time, and there were no tackle restrictions. A before-after–control-impact design was used to evaluate the experimental regulations. Brook Trout populations were monitored in 16 treatment (CR regulations) and 7 control streams (statewide regulations) using backpack electrofishing gear periodically for up to 15 years (from 1990 to 2003 or 2004) before the implementation of the CR regulations and over a 7–8-year period (from 2004 or 2005 to 2011) after implementation. We used Poisson mixed models to evaluate whether electrofishing catch per effort (CPE; catch/100 m2) of adult (≥100 mm) or large (≥175 mm) Brook Trout increased in treatment streams as a result of implementing CR regulations. Brook Trout CPE varied among sites and among years, and there was no significant effect (increase or decrease) of CR regulations on the CPE of adult or large Brook Trout. Results of our evaluation suggest that CR regulations were not effective at improving the CPE of adult or large Brook Trout in Pennsylvania streams. Low angler use, high voluntary catch and release, and slow growth rates in infertile headwater streams are likely the primary reasons for the lack of response.
O'Gorman, Robert; Elrod, Joseph H.; Owens, Randall W.; Schneider, Clifford P.; Eckert, Thomas H.; Lantry, Brian F.
2000-01-01
In the mid-1990s, biologists conducting assessments of fish stocks in Lake Ontario reported finding alewives Alosa pseudoharengus, rainbow smelt Osmerus mordax, and juvenile lake trout Salvelinus namaycush at greater depths than in the mid-1980s. To determine if depth distributions shifted coincident with the early 1990s colonization of Lake Ontario by exotic Dreissena mussels, we calculated mean depth of capture for each of the three species during trawl surveys conducted annually during 1978–1997 and examined the means for significant deviations from established patterns. We found that mean capture depth of alewives, rainbow smelt, and age-2 lake trout shifted deeper during the build up of the dreissenid population in Lake Ontario but that timing of the shift varied among seasons and species. Depth shifts occurred first for rainbow smelt and age-2 lake trout in June 1991. In 1992, alewives shifted deeper in June followed by age-2 lake trout in July–August. Finally, in 1993 and 1994, the distribution of lake trout and alewives shifted in April–May. Reasons why the three fishes moved to deeper water are not clear, but changes in distribution were not linked to temperature. Mean temperature of capture after the depth shift was significantly lower than before the depth shift except for alewives in April–May. Movement of alewives, rainbow smelt, and age-2 lake trout to colder, deeper water has the potential to alter growth and reproduction schedules by exposing the fish to different temperature regimes and to alter the food chain, increasing predation on Mysis relicta in deep water and decreasing alewife predation on lake trout fry over nearshore spawning grounds in spring.
Connolly, P.J.; Hall, J.D.
1999-01-01
Populations of coastal cutthroat trout Oncorhynchus clarki clarki were sampled in 16 Oregon headwater streams during 1991-1993. These streams were above upstream migration barriers and distributed among basins that had been logged 20-30 and 40-60 years ago and basins that had not been logged but had burned 125-150 years ago. The objective of our study was to characterize the populations and habitats of age-1 or older cutthroat trout within these three forest management types. Streams within unlogged basins had relatively low levels and a small range of trout biomass (g/m2). Streams in basins logged 40-60 years ago supported low levels but an intermediate range of trout biomass. Streams in basins logged 20-30 years ago supported the widest range of biomass, including the lowest and highest biomasses among all streams sampled. The variable thai best explained the variation of trout biomass among all 16 streams was the amount of large woody debris (LWD). All streams were heavily shaded during at least part of the year by mostly closed tree canopies. Deciduous trees were more prominent in canopies over streams in logged basins, while conifers were more prominent in the stream canopies of unlogged basins. Our results suggest that trout production in basins extensively clear-cut 20-60 years ago may generally decrease or remain low over the next 50 or more years because of decreasing loads of remnant LWD, persistent low recruitment potential for new LWD, and persistent heavy shading by conifers. These logged basins are not likely to show an increase in trout biomass over the next 50 years unless reset by favorable natural disturbances or by habitat restoration efforts.
Connolly, P.J.; Hall, J.D.
1999-01-01
Populations of coastal cutthroat trout Oncorhynchus clarki clarki were sampled in 16 Oregon headwater streams during 1991–1993. These streams were above upstream migration barriers and distributed among basins that had been logged 20–30 and 40–60 years ago and basins that had not been logged but had burned 125–150 years ago. The objective of our study was to characterize the populations and habitats of age-1 or older cutthroat trout within these three forest management types. Streams within unlogged basins had relatively low levels and a small range of trout biomass (g/m2). Streams in basins logged 40–60 years ago supported low levels but an intermediate range of trout biomass. Streams in basins logged 20–30 years ago supported the widest range of biomass, including the lowest and highest biomasses among all streams sampled. The variable that best explained the variation of trout biomass among all 16 streams was the amount of large woody debris (LWD). All streams were heavily shaded during at least part of the year by mostly closed tree canopies. Deciduous trees were more prominent in canopies over streams in logged basins, while conifers were more prominent in the stream canopies of unlogged basins. Our results suggest that trout production in basins extensively clear-cut 20–60 years ago may generally decrease or remain low over the next 50 or more years because of decreasing loads of remnant LWD, persistent low recruitment potential for new LWD, and persistent heavy shading by conifers. These logged basins are not likely to show an increase in trout biomass over the next 50 years unless reset by favorable natural disturbances or by habitat restoration efforts.
Hevrøy, Ernst M; Tipsmark, Christian K; Remø, Sofie C; Hansen, Tom; Fukuda, Miki; Torgersen, Thomas; Vikeså, Vibeke; Olsvik, Pål A; Waagbø, Rune; Shimizu, Munetaka
2015-10-01
A comparative experiment with Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) postsmolts was conducted over 35 days to provide insight into how growth, respiration, energy metabolism and the growth hormone (GH) and insulin-like growth factor 1 (IGF-1) system are regulated at elevated sea temperatures. Rainbow trout grew better than Atlantic salmon, and did not show reduced growth at 19 °C. Rainbow trout kept at 19 °C had increased blood hemoglobin concentration compared to rainbow trout kept at 13 °C, while salmon did not show the same hemoglobin response due to increased temperature. Both species showed reduced length growth and decreased muscle glycogen stores at 19 °C. Circulating IGF-1 concentration was higher in rainbow trout than in Atlantic salmon, but was not affected by temperature in either species. Plasma IGF-binding protein 1b (IGFBP-1b) concentration was reduced in Atlantic salmon reared at 19 °C after 15 days but increased in rainbow trout at 19 °C after 35 days. The igfbp1b mRNA level in liver showed a positive correlation to plasma concentrations of glucose and IGFBP-1b, suggesting involvement of this binding protein in carbohydrate metabolism at 19 °C. At this temperature muscle igfbp1a mRNA was down-regulated in both species. The muscle expression of this binding protein correlated negatively with muscle igf1 and length growth. The plasma IGFBP-1b concentration and igfbp1b and igfbp1a expression suggests reduced muscle igf1 signaling at elevated temperature leading to glucose allostasis, and that time course is species specific due to higher thermal tolerance in rainbow trout. Copyright © 2015 Elsevier Inc. All rights reserved.
Carbajal-González, M T; Fregeneda-Grandes, J M; González-Palacios, C; Aller-Gancedo, J M
2013-04-29
Biological control of saprolegniosis with bacteria might be an alternative to the use of chemical compounds. Among criteria for the selection of such bacteria are their absence of pathogenicity to fish and their ability to prevent adhesion of the pathogen to the skin mucus. The pathogenicity to rainbow trout of 21 bacterial isolates with in vitro inhibitory activity against Saprolegnia parasitica was studied. Fifteen of the isolates, identified as Aeromonas sobria, Pantoea agglomerans, Pseudomonas fluorescens, Serratia fonticola, Xanthomonas retroflexus and Yersinia kristensenii, were non-pathogenic when injected into rainbow trout. Their capacity to adhere to the skin mucus of male and female brown trout and to reduce the adhesion of S. parasitica cysts under exclusion, competition and displacement conditions was tested. The 15 bacterial isolates showed a low adhesion rate, ranging between 1.7% (for an A. sobria isolate) and 15.3% (a P. fluorescens isolate). This adhesion was greater in the case of mucus from male brown trout than from females. Similarities in the adhesion to male mucus and other substrates and correlation to that observed to polystyrene suggest that adhesion to skin mucus does not depend on the substrate. A high percentage (88.9%) of the S. parasitica cysts adhered to the skin mucus of male brown trout. Almost all of the bacteria reduced this adhesion ratio significantly under exclusion and competition conditions. However, only half of the isolates displaced cysts from skin mucus, and more bacterial cells were necessary for this effect. A novel method to study the adhesion of S. parasitica cysts to skin mucus of trout and their interactions with inhibitory bacteria is described.
Kalb, Bradley W.; Huntsman, Brock M.; Caldwell, Colleen A.; Bozek, Michael A.
2018-01-01
The positioning of fishes within a riverscape is dependent on the proximity of complementary habitats. In this study, foraging and non-foraging habitat were quantified monthly over an entire year for a rainbow trout (Oncorhynchus mykiss) population in an isolated, headwater stream in southcentral New Mexico. The stream follows a seasonal thermal and hydrologic pattern typical for a Southwestern stream and was deemed suitable for re-introduction of the native and close relative, Rio Grande cutthroat trout (O. clarkii virginalis). However, uncertainty associated with limited habitat needed to be resolved if repatriation of the native fish was to be successful. Habitat was evaluated using resource selection functions with a mechanistic drift-foraging model to explain trout distributions. Macroinvertebrate drift was strongly season- and temperature-dependent (lower in winter and spring, higher in summer and fall). Models identified stream depth as the most limiting factor for habitat selection across seasons and size-classes. Additionally, positions closer to cover were selected during the winter by smaller size-classes (0, 1, 2), while net energy intake was important during the spring for most size-classes (0, 1, 2, 3). Drift-foraging models identified that 81% of observed trout selected positions that could meet maintenance levels throughout the year. Moreover, 40% of selected habitats could sustain maximum growth. Stream positions occupied by rainbow trout were more energetically profitable than random sites regardless of season or size-class. Larger size-classes (3, 4+) were energetically more limited throughout the year than were smaller size-classes. This research suggests that habitat in the form of deep pools is of paramount importance for rainbow trout or native cutthroat trout.
Colborne, Scott F.; Rush, Scott A.; Paterson, Gordon; Johnson, Timothy B.; Lantry, Brian F.; Fisk, Aaron T.
2016-01-01
Recent development of multi-dimensional stable isotope models for estimating both foraging patterns and niches have presented the analytical tools to further assess the food webs of freshwater populations. One approach to refine predictions from these analyses is to include a third isotope to the more common two-isotope carbon and nitrogen mixing models to increase the power to resolve different prey sources. We compared predictions made with two-isotope carbon and nitrogen mixing models and three-isotope models that also included sulphur (δ34S) for the diets of Lake Ontario lake trout (Salvelinus namaycush). We determined the isotopic compositions of lake trout and potential prey fishes sampled from Lake Ontario and then used quantitative estimates of resource use generated by two- and three-isotope Bayesian mixing models (SIAR) to infer feeding patterns of lake trout. Both two- and three-isotope models indicated that alewife (Alosa pseudoharengus) and round goby (Neogobius melanostomus) were the primary prey items, but the three-isotope models were more consistent with recent measures of prey fish abundances and lake trout diets. The lake trout sampled directly from the hatcheries had isotopic compositions derived from the hatchery food which were distinctively different from those derived from the natural prey sources. Those hatchery signals were retained for months after release, raising the possibility to distinguish hatchery-reared yearlings and similarly sized naturally reproduced lake trout based on isotopic compositions. Addition of a third-isotope resulted in mixing model results that confirmed round goby have become an important component of lake trout diet and may be overtaking alewife as a prey resource.
Salazar, Soraya; Oliver, Cristian; Yáñez, Alejandro J; Avendaño-Herrera, Ruben
2016-04-01
Streptococcus phocae subsp. salmonis is a Gram-positive bacterium that causes mortality only in Atlantic salmon (Salmo salar) farmed in Chile, even when this species is co-cultured with rainbow trout (Oncorhynchus mykiss). This susceptibility could be determined by innate immune response components and their responses to bacterial infection. This fish pathogen shares subspecies status with Streptococcus phocae subsp. phocae isolated from seals. The present study compared innate immune system mechanisms in Atlantic salmon and rainbow trout when challenged with different S. phocae, including two isolates from Atlantic salmon (LM-08-Sp and LM-13-Sp) and two from seal (ATCC 51973(T) and P23). Streptococcus phocae growth was evaluated in the mucus and serum of both species, with rainbow trout samples evidencing inhibitory effects. Lysozyme activity supported this observation, with significantly higher (p < 0.01) expression in rainbow trout serum and mucus as compared to Atlantic salmon. No differences were found in phagocytic capacity between fish species when stimulated with ATCC 51973(T) and P23. Against all S. phocae strains, rainbow trout and Atlantic salmon showed up to two-fold increased bactericidal activity, and rainbow trout demonstrated up to three-fold greater reactive oxygen species production in macrophages. In conclusion, the non-specific humoral and cellular barriers of Atlantic salmon were immunologically insufficient against S. phocae subsp. salmonis, thereby facilitating streptococcosis. Moreover, the more robust response of rainbow trout to S. phocae could not be attributed to any specific component of the innate immune system, but was rather the consequence of a combined response by the evaluated components. Copyright © 2016 Elsevier Ltd. All rights reserved.
Schmitt, C.J.; Lemly, A.D.; Winger, P.V.
1993-01-01
Data from several sources were collated and analyzed by correlation, regression, and principal components analysis to define surrrogate variables for use in the brook trout (Salvelinus fontinalis) habitat suitability index (HSI) model, and to evaluate the applicability of the model for assessing habitat in high elevation streams of the southern Blue Ridge Province (SBRP). In all data sets examined, pH and alkalinity were highly correlated, and both declined with increasing elevation; however, the magnitude of the decline varied with underlying rock formations and other factors, thereby restricting the utility of elevation as a surrogate for pH. In the data sets that contained biological information, brook trout abundance (as biomass, density, or both) tended to increase with elevation and decrease with the abundance of rainbow trout (Oncorhynchus mykiss), and was not significantly correlated (P >0.05) with the abundance of most benthic macroinvertebrate taxa normally construed as important in the diet of brook trout. Using multiple linear regression, the authors formulated an alternative HSI model A? based on point estimates of gradient, pH, elevation, stream width, and rainbow trout density A? which explained 40 to 50 percent of the variance in brook trout density in 256 stream reaches. Although logically developed, the present U.S. Fish and Wildlife Service HSI model, proposed in 1982, seems deficient in several areas, especially when applied to SBRP streams. The authors recommend that the water quality component in the model be updated and reevaluated, focusing on the differential sensitivities of each life stage, the stochastic nature of the water quality variables, and the possible existence of habitat requirements that differ among brook trout strains.
A nematomorph parasite explains variation in terrestrial subsidies to trout streams in Japan
Sato, Takuya; Watanabe, Katsutoshi; Tokuchi, Naoko; Kamauchi, Hiromitsu; Harada, Yasushi; Lafferty, Kevin D.
2011-01-01
Nematomorph parasites alter the behavior of their orthopteran hosts, driving them to water and creating a source of food for stream salmonids. We investigated whether nematomorphs could explain variation in terrestrial subsidies across several streams. In nine study streams, orthopterans comprise much of the stomach contents of trout (46 +/- 31% on average). Total mass of ingested prey per trout biomass positively correlated with the mass of orthopterans ingested, suggesting that the orthopterans enhanced absolute mass of prey consumption by the trout population. The orthopterans ingested per trout biomass positively correlated with the abundance of nematomorphs in the stream, but not with the abundance of camel crickets (the dominant hosts) around the streams. Streams in conifer plantations had fewer nematomorphs than streams in natural deciduous forests. These results provide the first quantitative evidence that a manipulative parasite can explain variation in the allochthonous energy flow through and across ecosystems.
George, Scott D.; Baldigo, Barry P.
2016-05-13
The U.S. Geological Survey, in cooperation with Cornell Cooperative Extension of Ulster County, New York State Energy Research and Development Authority, the New York State Department of Environmental Conservation, and the New York City Department of Environmental Protection, surveyed fish communities annually on the main stem and tributaries of the upper Esopus Creek, Ulster County, New York, from 2009 to 2015. This report summarizes the density, biomass, and size structure of rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta) populations from the 2015 surveys along with data from the preceding 6 years. The mean density of rainbow trout populations in 2015 was 98 fish per 0.1 hectare, which was the highest value observed since 2010, and the mean biomass of rainbow trout populations in 2015 was 864 grams per 0.1 hectare, which was the highest value observed since 2012.
Dunham, Jason B.; Gallo, Kirsten
2008-01-01
In a species conservation context, translocations can be an important tool, but they frequently fail to successfully establish new populations. We consider the case of reintroductions for bull trout (Salvelinus confluentus), a federally-listed threatened species with a widespread but declining distribution in western North America. Our specific objectives in this work were to: 1) develop a general framework for assessing the feasibility of reintroduction for bull trout, 2) provide a detailed example of implementing this framework to assess the feasibility of reintroducing bull trout in the Clackamas River, Oregon, and 3) discuss the implications of this effort in the more general context of fish reintroductions as a conservation tool. Review of several case histories and our assessment of the Clackamas River suggest that an attempt to reintroduce bull trout could be successful, assuming adequate resources are committed to the subsequent stages of implementation, monitoring, and evaluation.
Dibble, Kimberly L.; Yackulic, Charles B.; Kennedy, Theodore A.; Budy, Phaedra E.
2015-01-01
The mean lengths of adult rainbow and brown trout were influenced by similar flow and catch metrics. Length in both species was positively correlated with high annual flow but declined in tailwaters with high daily fluctuations in flow, high catch rates of conspecifics, and when large cohorts recruited to adult size. Whereas brown trout did not respond to the proportion of water allocated between seasons, rainbow trout length increased in rivers that released more water during winter than in spring. Rainbow trout length was primarily related to high catch rates of conspecifics, whereas brown trout length was mainly related to large cohorts recruiting to the adult size class. Species-specific responses to flow management are likely attributable to differences in seasonal timing of key life history events such as spawning, egg hatching, and fry emergence.
Ali, Ahmad Omar; Hohn, Claudia; Allen, Peter J; Ford, Lorelei; Dail, Mary Beth; Pruett, Stephen; Petrie-Hanson, Lora
2014-02-15
In August and November 2010 we collected and examined peripheral blood and tissues from three species of Gulf of Mexico fish. Findings were compared to non-exposed control fish. The leukocyte counts of exposed alligator gar were not significantly different from controls, while exposed Gulf killifish and sea trout had significantly decreased lymphocyte counts. Liver ethoxyresorufin-O-deethylase (EROD) values from sea trout were significantly greater than control sea trout EROD values, suggesting poly aromatic hydrocarbon exposure. Splenic melano-macrophage centers (MMCs) from exposed sea trout and Gulf killifish showed a significant increase in number compared to non-exposed fish. Sea trout splenic MMCs were also significantly greater in size. These findings suggest that Gulf fish sampled were exposed to crude oil from the Macondo well and were in a lymphopenic or immuno-compromised state. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Feeding periodicity, diet composition, and food consumption of subyearling rainbow trout in winter
Johnson, James H.; Chalupnicki, Marc; Abbett, Ross
2016-01-01
Although winter is a critically important period for stream salmonids, aspects of the ecology of several species are poorly understood. Consequently, we examined the diel feeding ecology of subyearling rainbow trout (Oncorhynchus mykiss) during winter in a central New York stream. Rainbow trout diet was significantly different during each 4-h interval and also differed from the drift and benthos. Feeding was significantly greater during darkness (i.e. 20:00 h – 04:00 h) than during daylight hours (i.e. 08:00 h – 16:00 h), peaking at 20:00 h. Daily food consumption (1.9 mg) and daily ration (3.4 %) during winter were substantially lower than previously reported for subyearling rainbow trout in the same stream during summer. These findings provide important new insights into the winter feeding ecology of juvenile rainbow trout in streams.
Hydraulic complexity metrics for evaluating in-stream brook trout habitat
J. Kozarek; W. Hession; M. ASCE; C. Dolloff; P. Diplas
2010-01-01
A two-dimensional hydraulic model (River2D) was used to investigate the significance of flow complexity on habitat preferences of brook trout (Salvelinus fontinalis) in the high-gradient Staunton River in Shenandoah National Park, Virginia. Two 100-m reaches were modeled where detailed brook trout surveys (10â30-m resolution) have been conducted annually since 1997....
Pedro A. Rincón; Gary D. Grossman
1998-01-01
Rainbow trout (Oncorhynchus mykiss) and rosyside dace (Clinostomus fitnduloides) exhibit substantial overlap in microhabitat use in Coweeta Creek, North Carolina, USA. We conducted a replicated experiment in an artificial stream to assess the effects of both the presence of rainbow trout and dace density on: 1) microhabitat use, 2...
USDA-ARS?s Scientific Manuscript database
Estradiol (E2) is a steroid hormone that negatively affects muscle growth in rainbow trout, but the mechanisms directing with this response are not fully understood. To better characterize the effects of E2 in muscle, we identified differentially regulated mRNAs and lncRNAs in juvenile rainbow trout...
Kathleen R. Matthews
2016-01-01
To determine the current range of water temperatures in the streams inhabited by California golden trout, Oncorhynchus mykiss aguabonita, I deployed and monitored water temperature recording probes from 2008 through 2013 in three meadows in the Golden Trout Wilderness (GTW). Ninety probes were placed in three meadow streams: Mulkey Creek in Mulkey...
Influence of maximum water temperature on occurrence of Lahontan cutthroat trout within streams
J. Dunham; R. Schroeter; B. Rieman
2003-01-01
We measured water temperature at 87 sites in six streams in two different years (1998 and 1999) to test for association with the occurrence of Lahontan cutthroat trout Oncorhynchus clarki henshawi. Because laboratory studies suggest that Lahontan cutthroat trout begin to show signs of acute stress at warm (>22°C) temperatures, we focused on the...
Seth J. Wenger; Daniel J. Isaak; Jason B. Dunham; Kurt D. Fausch; Charlie Luce; Helen M. Neville; Bruce E. Rieman; Michael K. Young; David E. Nagel; Dona L. Horan; Gwynne L. Chandler
2011-01-01
Recent and projected climate warming trends have prompted interest in impacts on coldwater fishes. We examined the role of climate (temperature and flow regime) relative to geomorphology and land use in determining the observed distributions of three trout species in the interior Columbia River Basin, USA. We considered two native species, cutthroat trout (Oncorhynchus...
USDA-ARS?s Scientific Manuscript database
Rainbow trout exhibit extensive phenotypic variation in innate disease resistance. Five generations of family based selection has resulted in rainbow trout lines with either increased or reduced survival following exposure to the gram-negative bacterium, Flavobacterium psychrophilum (Fp), the causa...
California golden trout and climate change: Is their stream habitat vulnerable to climate warming?
Kathleen R. Matthews
2010-01-01
The California golden trout (CGT) Oncorhynchus mykiss aguabonita is one of the few native high-elevation fish in the Sierra Nevada. They are already in trouble because of exotic trout, genetic introgression, and degraded habitat, and now face further stress from climate warming. Their native habitat on the Kern Plateau meadows mostly in the Golden...
Physical, biotic, and sampling influences on diel habitat use by stream-dwelling bull trout
Nolan P. Banish; James T. Peterson; Russell F. Thurow
2008-01-01
We used daytime and nighttime underwater observation to assess microhabitat use by bull trout Salvelinus confluentus (N = 213) in streams of the intermountain western USA during the summers of 2001 and 2002. We recorded fish focal points and measured a set of habitat characteristics as well as habitat availability via line transects. Bull trout were...
Some problems of private trout hatchery operators
Rucker, Robert R.
1957-01-01
Disease, nutritional, and environmental problems in commercial production of trout are discussed, including mortality and age of spawners, copepod and gyrodactylid infections, suitable water temperatures, diseases (especially red mouth and back peel) and inspection of fish. It is concluded that experiences with hatchery procedures have varied greatly and often the commercial trout producer must adjust methods to fit his particular needs and conditions.
Trout Use of Woody Debris and Habitat in Appalachian Wilderness Streams of North Carolina
Patricia A. Flebbe; C. Andrew Dolloff
1995-01-01
Wilderness areas in the Appalachian Mountains of North Carolina are set aside to preserve characteristics of both old-growth and second-growth forests and associated streams. Woody debris loadings, trout habitat, and trout were inventoried in three southern Appalachian wilderness streams in North Carolina by the basin-wide visual estimation technique. Two streams in...
The lake trout, Salvelinus namaycush, is the predominant top predator native fish species of the Great Lakes. Lake trout are valued for commercial and recreational use in addition to their ecological importance. In the last half of the 20th century, population declines lead to vi...
USDA-ARS?s Scientific Manuscript database
To determine the effects of feed pellet processing (extrusion and expansion-steam pelleting) and on feed physico-chemical characteristics, fecal stability, water quality, and growth performance in rainbow trout, three types of trout feed pellets (compressed sinking, extruded sinking, and extruded fl...
Code of Federal Regulations, 2010 CFR
2010-07-01
... on Trout Lake in Saint Louis County, Fall Lake, Moose Lake, Newfound Lake, Newton Lake, Sucker Lake... of Basswood Lake. (v) The portage from Vermilion Lake to Trout Lake. (2) The Forest Service may... portages: (i) Four Mile Portage From Fall Lake to Hoist Bay of Basswood Lake. (ii) Vermilion Lake to Trout...
Code of Federal Regulations, 2011 CFR
2011-07-01
... on Trout Lake in Saint Louis County, Fall Lake, Moose Lake, Newfound Lake, Newton Lake, Sucker Lake... of Basswood Lake. (v) The portage from Vermilion Lake to Trout Lake. (2) The Forest Service may... portages: (i) Four Mile Portage From Fall Lake to Hoist Bay of Basswood Lake. (ii) Vermilion Lake to Trout...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-19
... sections 104, 106, 107, and 122 of CERCLA, 42 U.S.C. 9604, 9606, 9607, and 9622, between EPA and Trout Unlimited, Inc. (``Trout Unlimited'') regarding the Kerber Creek Site located in the Rio Grande Basin near..., and extending to the town of Villa Grove. This AOC requires that Trout Unlimited perform the following...
Orozova, P; Sirakov, I; Chikova, V; Popova, R; Al-Harbi, A H; Crumlish, M; Austin, B
2014-10-01
Hafnia alvei was isolated in Bulgaria from healthy noble crayfish, Astacus astacus (L.), and then from farmed diseased brown trout, Salmo trutta L., with signs of haemorrhagic septicaemia. The isolates were identified initially with conventional phenotyping and commercial Merlin Micronaut and API 20E rapid identification systems, followed by sequencing of the 16S rRNA gene. Hafnia alvei Bt1, Bt2 and Aa4 were of low virulence to rainbow trout and brown trout, although cytotoxicity was demonstrated by Bt1 and Bt2, but not by Aa4. © 2014 John Wiley & Sons Ltd.
Estrogen receptor mRNA in mineralized tissues of rainbow trout: calcium mobilization by estrogen.
Armour, K J; Lehane, D B; Pakdel, F; Valotaire, Y; Graham, R; Russell, R G; Henderson, I W
1997-07-07
RT-PCR was undertaken on total RNA extracts from bone and scales of the rainbow trout, Oncorhynchus mykiss. The rainbow trout estrogen receptor (ER)-specific primers used amplified a single product of expected size from each tissue which, using Southern blotting, strongly hybridized with a 32P-labelled rtER probe under stringent conditions. These data provide the first in vivo evidence of ER mRNA in bone and scale tissues of rainbow trout and suggest that the effects of estrogen observed in this study (increased bone mineral and decreased scale mineral contents, respectively) may be mediated directly through ER.
Varol, Memet; Kaya, Gülderen Kurt; Alp, Sumru Anık; Sünbül, Muhammet Raşit
2017-09-19
Although fish consumption has positive health effects, metals accumulated in fish can cause human health risks. In this study, the levels of ten metals in rainbow trout (Oncorhynchus mykiss) farmed in the Keban Dam Reservoir, which has the biggest rainbow trout production capacity in Turkey, were determined and compared with the maximum permissible levels (MPLs). Also, human health risks associated with rainbow trout consumption were assessed. The metal concentrations in rainbow trout were found below the MPLs. The estimated daily intake of each metal was much lower than the respective tolerable daily intake. The target hazard quotient (THQ) for individual metal and total THQ for combined metals did not exceed 1, indicating no health risk for consumers. The cancer risk (CR) value for inorganic arsenic was within the acceptable lifetime risk range of 10 -6 and 10 -4 . For carcinogenic and non-carcinogenic effects, the maximum allowable fish consumption rates were high enough to ensure the human health. According to these results, the consumption of rainbow trout farmed in the Keban Dam Reservoir does not pose a risk on human health.
Tetracapsuloides bryosalmonae persists in brown trout Salmo trutta for five years post exposure.
Soliman, Hatem; Kumar, Gokhlesh; El-Matbouli, Mansour
2018-01-31
Tetracapsuloides bryosalmonae is a malacosporean parasite and the causative agent of proliferative kidney disease (PKD) that seriously impacts farmed and wild salmonids. The parasite's life cycle includes an invertebrate host, the bryozoan Fredericella sultana, and a vertebrate host, salmonid fish. The persistence of T. bryosalmonae in brown trout Salmo trutta for up to 2 yr following exposure is well documented. Results from the present study confirmed that one brown trout that had recovered from PKD did not completely clear the parasite from its tissues and that T. bryosalmonae could persist in brown trout for up to 5 yr post exposure. Furthermore, recovered infected brown trout can release viable T. bryosalmonae spores that are able to infect specific pathogen-free F. sultana colonies. T. bryosalmonae DNA was detected by PCR in every organ, and parasite stages were observed in the kidney, spleen and liver following immunohistochemistry. This finding indicates that T. bryosalmonae-infected brown trout can act as asymptomatic carriers and release the parasite for several years after the initial infection, acting as a reservoir of infection, and contributing to the dissemination of the parasite to new areas.
Ng, Elizabeth L.; Fredericks, Jim P.; Quist, Michael C.
2016-01-01
Lake Trout Salvelinus namaycush have been introduced widely throughout the western USA to enhance recreational fisheries, but high predatory demand can create challenges for management of yield and trophy fisheries alike. Lake Trout were introduced to Priest Lake, Idaho, during the 1920s, but few fishery-independent data are available to guide current or future management actions. We collected fishery-independent data to describe population dynamics and evaluate potential management scenarios using an age-structured population model. Lake Trout in Priest Lake were characterized by fast growth at young ages, which resulted in young age at maturity. However, adult growth rates and body condition were lower than for other Lake Trout populations. High rates of skipped spawning (>50%) were also observed. Model projections indicated that the population was growing (λ = 1.03). Eradication could be achieved by increasing annual mortality to 0.32, approximately twice the current rate. A protected slot length limit could increase population length-structure, but few fish grew fast enough to exit the slot. In contrast, a juvenile removal scenario targeting age-2 to age-5 Lake Trout maintained short-term harvest of trophy-length individuals while reducing overall population abundance.
Shen, Song; Jiang, Yan; Liu, Xiaochang; Luo, Yongkang; Gao, Liang
2015-08-01
In order to evaluate the effect of super chilling (-3 °C) and chilled (3 °C) storage on the quality of rainbow trout fillets, total volatile base nitrogen (TVB-N), drip loss, pH, electric conductivity (EC), total aerobic count (TAC), K and related values, adenosine triphosphate (ATP) and related compounds, color and sensory score were determined and correlation between these indicators were analyzed. According to the comprehensive evaluation of TAC, K value and sensory score, the limit for acceptability of rainbow trout fillets was 5 days at 3 °C and 11 days at -3 °C. Additionally, the correlation coefficients between TVB-N and other freshness indicators (TAC, K value, sensory score) were relatively low. TVB-N may be inadequate for evaluating freshness changes of rainbow trout fillets compared with other indicators. Among the K and related values, H value was a better freshness indicator in rainbow trout fillets during chilled and super chilling storage for its better correlation coefficients with other freshness indicators. Super chilling storage could extend the shelf life of rainbow trout fillets by 6 days compared to chilled storage.
Sexual difference in PCB concentrations of lake trout (Salvelinus namaycush) from Lake Ontario
Madenjian, Charles P.; Keir, Michael J.; Whittle, D. Michael; Noguchi, George E.
2010-01-01
We determined polychlorinated biphenyl (PCB) concentrations in 61 female lake trout (Salvelinus namaycush) and 71 male lake trout from Lake Ontario (Ontario, Canada and New York, United States). To estimate the expected change in PCB concentration due to spawning, PCB concentrations in gonads and in somatic tissue of lake trout were also determined. In addition, bioenergetics modeling was applied to investigate whether gross growth efficiency (GGE) differed between the sexes. Results showed that, on average, males were 22% higher in PCB concentration than females in Lake Ontario. Results from the PCB determinations of the gonads and somatic tissues revealed that shedding of the gametes led to 3% and 14% increases in PCB concentration for males and females, respectively. Therefore, shedding of the gametes could not explain the higher PCB concentration in male lake trout. According to the bioenergetics modeling results, GGE of males was about 2% higher than adult female GGE, on average. Thus, bioenergetics modeling could not explain the higher PCB concentrations exhibited by the males. Nevertheless, a sexual difference in GGE remained a plausible explanation for the sexual difference in PCB concentrations of the lake trout.
Kootenai River Fisheries Investigations : Rainbow Trout Recruitment : Period Covered: 1997.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Downs, Chris
1999-02-02
The objective of this study was to determine if juvenile production is limiting the population of rainbow trout Oncorbynchus mykiss in the Idaho reach of the Kootenai River. We used snorkeling and electrofishing techniques to estimate juvenile rainbow trout abundance in, and outmigration from, the Deep, Boulder, and Myrtle creek drainages in Idaho. The total population estimates for the three drainages estimated in 1997 were 30,023; 763; and 235; respectively. A rotary-screw trap was utilized to capture juvenile outmigrants for quantification of age at outmigration and total outmigration from the Deep Creek drainage to the Kootenai River. The total outmigrantmore » estimate for 1997 from the Deep Creek drainage was 38,206 juvenile rainbow trout. Age determination based largely on scales suggests that most juvenile rainbow trout outmigration from the Deep Creek drainage occurs at age-l, during the spring runoff period. Forty-three adult rainbow trout captured in the Deep Creek drainage were tagged with $10.00 reward T-bar anchor tags in 1997. A total of three of these fish were harvested, all in Kootenay Lake, British Columbia. This suggests the possibility of an adfluvial component in the spawning population of the Deep Creek drainage.« less
Movement patterns, habitat use, and survival of Lahontan cutthroat trout in the Truckee River
Alexiades, Alexander V.; Peacock, Mary M.; Al-Chokhachy, Robert K.
2012-01-01
Habitat fragmentation, hybridization, and competition with nonnative salmonids are viewed as major threats to Lahontan cutthroat trout Oncorhynchus clarkii henshawi. Understanding Lahontan cutthroat trout behavior and survival is a necessary step in the reintroduction and establishment of naturally reproducing populations of Lahontan cutthroat trout. We used weekly radiotelemetry monitoring to examine movement patterns, habitat use, and apparent survival of 42 hatchery-reared Lahontan cutthroat trout in a 16.5-km stretch of the Truckee River, Nevada, across three reaches separated by barriers to upstream movement. We found differences in total movement distances and home range sizes of fish in different reaches within our study area. Fish used pool habitats more than fast water habitats in all reaches. Time of year, stream temperature, and fish standard length covariates had the strongest relationship with apparent survival. Monthly apparent survival was lowest in January, which coincided with the lowest flows and temperatures during the study period. Our results verify the mobility of Lahontan cutthroat trout and indicate that conditions during winter may limit the survival and reintroduction success in the portions of the Truckee River evaluated in this study.
Fitzsimons, J.D.; Brown, S.; Brown, L.; Honeyfield, D.; He, J.; Johnson, J.E.
2010-01-01
In the Great Lakes there is still uncertainty as to the population level effects of a thiamine deficiency on salmonines caused by high consumption of alewives Alosa pseudoharengus. A resurgence of lake trout Salvelinus namaycush reproduction in Lake Huron following the crash of alewife stocks between 2002 and 2004 provided an opportunity to evaluate the relative effects of this crash on reproduction through relief from either alewife mediated thiamine deficiency or alewife predation on larval lake trout relative to possible changes in the size of the lake trout spawning stock. Changes in mean lake trout egg thiamine concentration post crash at one spawning reef in Parry Sound, where mean thiamine concentration increased by almost two-fold, were consistent with diet switching from alewives to rainbow smelt Osmerus mordax, the next most abundant prey fish in Lake Huron. Although thiamine levels for lake trout collected at a second reef in Parry Sound did not change post-crash, levels both pre- and post-crash were consistent with a rainbow smelt diet. A reef specific fry emergence index was found to be positively related to reef specific egg thiamine concentration but negatively related to reef specific occurrence of EMS, a thiamine deficiency related mortality syndrome. We found little evidence for overlap between the timing of spring shoreward migration of alewives and lake trout emergence, suggesting that relief from alewife predation effects had relatively little effect on the observed increase in lake trout recruitment. Numbers of spawners in the north, north-central, and southern zones of the lake increased from 2000 onwards. Overall the abundance post-2003 was higher than from pre-2004, suggesting that spawner abundance may also have contributed to increased lake trout reproduction. However, predicted numbers of spawners and measured abundance of wild recruits in assessment gear were poorly correlated suggesting that the increase in reproduction was not totally spawner dependent and hence relief from thiamine deficiency was also likely involved. We conclude from this that eliminating the effects of an alewife diet mediated thiamine deficiency can have positive effects on lake trout reproduction but more research is required to understand the effect of spawner number and the role of spawning habitat availability.
NASA Astrophysics Data System (ADS)
Babić Milijašević, J.; Milijašević, M.; Đinović-Stojanović, J.; Vranić, D.
2017-09-01
The aim of our research was to examine the influence of packaging in modified atmosphere and vacuum on the total volatile basic nitrogen (TVB-N) content in muscle of rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio), as well as to determine the most suitable gas mixtures for packing of these freshwater species. Three sample groups of trout and carp cuts were investigated. The two groups were packaged in modified atmosphere with different gas ratios: 90%CO2+10%N2 (MAP 1) and 60%CO2+40%N2 (MAP 2), whereas the third group of fish cuts were vacuum packaged. During trials, the trout and carp cuts were stored in refrigerator at 3°C±0.5°C. Determination of TVB-N was performed on 1, 4, 7, 9, 12 and 14 days of storage. The obtained results indicate that the investigated mixtures of gases and vacuum had a significant influence on the values of TVB-N in trout and carp cuts. The lowest increase in TVB-N was established in trout and carp cuts packaged in MAP 1, whereas the highest increase was established in vacuum packaged cuts. Based on the obtained results, it can be concluded that the gas mixture consisting of 90% CO2 and 10% N2 was the most suitable for packaging of fresh trout and carp cuts in terms of TVB-N value.
Harper, D.D.; Farag, A.M.; Hogstr, C.; MacConnell, Elizabeth
2009-01-01
A history of hard-rock mining has resulted in elevated concentrations of heavy metals in Prickly Pear Creek (MT. USA). Remediation has improved water quality; however, dissolved zinc and cadmium concentrations still exceed U.S. Environmental Protection Agency water-quality criteria. Physical habitat, salmonid density, fish health, and water quality were assessed, and metal concentrations in fish tissues, biofilm, and macroinvertebrates were determined to evaluate the existing condition in the watershed. Cadmium, zinc, and lead concentrations in fish tissues, biofilm, and invertebrates were significantly greater than those at the upstream reference site and an experimental site farther downstream of the confluence. Fish densities were greatest, and habitat quality for trout was better, downstream of the confluence, where water temperatures were relatively cool (16??C). Measures of fish health (tissue metal residues, histology, metallothionein concentrations, and necropsies), however, indicate that the health of trout at this site was negatively affected. Trout were in colder but more contaminated water and were subjected to increased trace element exposures and associated health effects. Maximum water temperatures in Prickly Pear Creek were significantly lower directly below Spring Creek (16??C) compared to those at an experimental site 10 km downstream (26??C). Trout will avoid dissolved metals at concentrations below those measured in Prickly Pear Creek; however, our results suggest that the preference of trout to use cool water temperatures may supersede behaviors to avoid heavy metals. ?? 2009 SETAC.
Foster, N.R.; Kennedy, G.W.; Munawar, M.; Edsall, T.; Leach, J.
1995-01-01
In August 1987, the Michigan Department of Natural Resources (MDNR), with the help and co-sponsorship of Walleyes for Iosco County, constructed Tawas artificial reef to improve recreational fishing in Tawas Bay. Post-construction assessment in October, 1987, by the MDNR found twice as many adult lake trout in a gill net set on the reef as in a similar net set off the reef, indicating that lake trout already had begun to investigate this new habitat. Similar netting efforts in October 1989 caught three times as many adults on the reef as off it, even though the on-reef net was set for less than one third as long a period. Using a remotely operated vehicle (ROV), we detected prespawning aggregations of lake trout on the reef in fall 1989, and MDNR biologists set emergent fly traps on the reef in April-May 1990-1991. These fry traps captured several newly emerged lake trout and lake whitefish fry, demonstrating that eggs of both species has hatched successfully. Gill netting in 1992-1993 by U.S. Fish and Wildlife Service biologists netted large numbers of ripe lake trout in late October and ripe lake whitefish in early to mid-November. The purpose of this paper is to describe the relative quantities of eggs deposited and the spatial patterns of egg deposition by lake trout and lake whitefish at Tawas artificial reef during 1990-1993.
Brenkman, S.J.; Pess, G.R.; Torgersen, C.E.; Kloehn, K.K.; Duda, J.J.; Corbett, S.C.
2008-01-01
The restoration of salmonids in the Elwha River following dam removal will cause interactions between anadromous and potamodromous forms as recolonization occurs in upstream and downstream directions. Anadromous salmonids are expected to recolonize historic habitats, and rainbow trout (Oncorhynchus mykiss) and bull trout (Salvelinus confluentus) isolated above the dams for 90 years are expected to reestablish anadromy. We summarized the distribution and abundance of potamodromous salmonids, determined locations of spawning areas, and mapped natural barriers to fish migration at the watershed scale based on data collected from 1993 to 2006. Rainbow trout were far more abundant than bull trout throughout the watershed and both species were distributed up to river km 71. Spawning locations for bull trout and rainbow trout occurred in areas where we anticipate returning anadromous fish to spawn. Nonnative brook trout were confined to areas between and below the dams, and seasonal velocity barriers are expected to prevent their upstream movements. We hypothesize that the extent of interaction between potamodromous and anadromous salmonids will vary spatially due to natural barriers that will limit upstream-directed recolonization for some species of salmonids. Consequently, most competitive interactions will occur in the main stem and floodplain downstream of river km 25 and in larger tributaries. Understanding future responses of Pacific salmonids after dam removal in the Elwha River depends upon an understanding of existing conditions of the salmonid community upstream of the dams prior to dam removal.
Spokane Tribal Hatchery, 2003 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peone, Tim L.
2004-05-01
Due to the construction and operation of Grand Coulee Dam (1939), anadromous salmon have been eradicated and resident fish populations permanently altered in the upper Columbia River region. Federal and private hydropower dam operations throughout the Columbia River system severely limits indigenous fish populations in the upper Columbia. Artificial production has been determined appropriate for supporting a harvestable fishery for kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) in Lake Roosevelt and Banks Lake (Grand Coulee Dam impoundments). A collaborative multi-agency artificial production program for the Lake Roosevelt and Banks Lake fisheries exists consisting of the Spokane Tribal Hatchery,more » Sherman Creek Hatchery, Ford Trout Hatchery and the Lake Roosevelt Kokanee and Rainbow Trout Net Pen Rearing Projects. These projects operate complementary of one another to target an annual release of 1 million yearling kokanee and 500,000 yearling rainbow trout for Lake Roosevelt and 1.4 million kokanee fry/fingerlings for Banks Lake. Combined fish stocking by the hatcheries and net pen rearing projects in 2003 included: 899,168 kokanee yearlings released into Lake Roosevelt; 1,087,331 kokanee fry/fingerlings released into Banks Lake, 44,000 rainbow trout fingerlings and; 580,880 rainbow trout yearlings released into Lake Roosevelt. Stock composition of 2003 releases consisted of Lake Whatcom kokanee, 50:50 diploid-triploid Spokane Trout Hatchery (McCloud River) rainbow trout and Phalon Lake red-band rainbow trout. All kokanee were marked with either thermal, oxytetracyline or fin clips prior to release. Preliminary 2003 Lake Roosevelt fisheries investigations indicate hatchery/net pen stocking significantly contributed to harvestable rainbow trout and kokanee salmon fisheries. An increase in kokanee harvest was primarily owing to new release strategies. Walleye predation, early maturity and entrainment through Grand Coulee Dam continues to have a negative impact on adult kokanee returns and limits the success of hatchery/net pen stocking on the number of harvestable fish. Preliminary results of gonad necropsies indicate a reduced incidence of precocious kokanee produced at the Spokane Tribal Hatchery in 2003. This was a probable attribute of change in hatchery rearing practices employed on 2002 brood year kokanee produced in 2003, primarily thermal manipulation and feed protein source. Kokanee and rainbow trout fingerlings transferred to Lake Roosevelt and Banks Lake net pen rearing operations in the fall of 2003 for subsequent release as yearlings in 2004 consisted of 645,234 rainbow trout and 627,037 kokanee salmon. A total of 590,000 Lake Whatcom kokanee fingerlings were carried over at the Spokane Tribal Hatchery for stocking as yearlings in 2004. Recommendations for future hatchery/net pen operations include use of stocks compatible or native to the upper Columbia River, continue hatchery-rearing practices to reduce precocity rates of kokanee and continue new kokanee stocking strategies associated with increased kokanee harvest rates.« less
USDA-ARS?s Scientific Manuscript database
Bacterial Cold Water Disease (BCWD) is a chronic disease of rainbow trout, and is caused by the gram-negative bacterium Flavobacterium psychrophilum (Fp), a common aquaculture pathogen. The National Center for Cool and Cold Water Aquaculture has bred two genetic lines of rainbow trout: a line of Fp...
Albert Rodriguez; Weldon Jones
1993-01-01
Abstract - This annual study has been conducted, since 1987, on two coastal streams, in order to observe the different trend patterns of juvenile out migrations for coho salmon and steelhead-trout, figure 1. Analysis of the 1993 trapping season indicates, at Little River, a decrease of steelhead-trout yearlings but an increase in coho ""y+"". Coho...
A hedonic price analysis of the outfitter market for trout fishing in the Rocky Mountain West
Heidi M. Pitts; Jennifer A. Thacher; Patricia A. Champ; Robert P. Berrens
2012-01-01
Trout is the most popular sport fish in Montana, Wyoming, Colorado, and New Mexico where fishing outfitters bring revenues to many rural economies. This article uses the hedonic pricing method on a monopolistically competitive outfitter market in those four states to examine angler values for trout fishing characteristics. A total of 1,685 fishing trip observations...
Fitzpatrick, Faith A.; Peppler, Marie C.; Saad, David A.; Pratt, Dennis M.; Lenz, Bernard N.
2015-01-01
Available brook-trout habitat is dependent on the locations of groundwater upwellings, the sizes of flood peaks, and sediment loads. Management practices that focus on reducing or slowing runoff from upland areas and increasing channel roughness have potential to reduce flood peaks, erosion, and sedimentation and improve brook-trout habitat in all Bayfield Peninsula streams.
Bradley B. Shepard; Jim Robison-Cox; Susan C. Ireland; Robert G. White
1996-01-01
Retention of visible implant (VI) tags by westslope cutthroat trout Oncorhynchus clarki lewisi inhabiting 20 reaches of 13 isolated headwater tributary drainages in Montana was evaluated during 1993 and 1994. In 1993, 2,071 VI tags were implanted in westslope cutthroat trout (100-324 mm fork length) and adipose tins were removed as a secondary mark to evaluate tag...
Douglas P. Peterson; Bruce E. Rieman; Jason B. Dunham; Kurt D. Fausch; Michael K. Young
2007-01-01
Native fishes often face simultaneous threats from habitat fragmentation and invasion by nonnative trout. Unfortunately, management actions to address one may create or exacerbate the other. A consistent decision process would include a systematic analysis of when and where intentional use or removal of barriers is most appropriate. We developed a Bayesian belief...
Patricia A. Flebbe
1993-01-01
Meisner (1990) proposed in the Journall that the lower elevational margin of brook trout (Salvelinus fontinalis), in the southern part of their native range is related to the 15 degrees C groundwater isotherm, based on a modelled relationship between minimum elevations at which brook trout occur in this part of the native range and...
Daniel J. Isaak; Clint C. Muhlfeld; Andrew S. Todd; Robert Al-Chokhachy; James Roberts; Jeffrey L. Kershner; Kurt D. Fausch; Steven W. Hostetler
2012-01-01
Bioclimatic models predict large reductions in native trout across the Rocky Mountains in the 21st century but lack details about how changes will occur. Through five case histories across the region, we explore how a changing climate has been affecting streams and the potential consequences for trout. Monitoring records show trends in temperature and hydrographs...
USDA-ARS?s Scientific Manuscript database
The genome sequence of Flavobacterium psychrophilum strain CSF259-93, isolated from rainbow trout (Oncorhynchus mykiss), consists of a single circular genome of 2,900,735 bp and 2,701 predicted open reading frames (ORFs). Strain CSF259-93 has been used to select a line of rainbow trout with increase...
Spokane Tribal Hatchery, 2004 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peone, Tim L.
2005-03-01
Due to the construction and operation of Grand Coulee Dam (1939), anadromous salmon have been eradicated and resident fish populations permanently altered in the upper Columbia River region. Federal and private hydropower dam operations throughout the Columbia River system severely limits indigenous fish populations in the upper Columbia. Artificial production has been determined appropriate for supporting a harvestable fishery for kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) in Lake Roosevelt and Banks Lake (Grand Coulee Dam impoundments). A collaborative multi-agency artificial production program for the Lake Roosevelt and Banks Lake fisheries exists consisting of the Spokane Tribal Hatchery,more » Sherman Creek Hatchery, Ford Trout Hatchery and the Lake Roosevelt Kokanee and Rainbow Trout Net Pen Rearing Projects. These projects operate complementary of one another to target an annual release of 1 million yearling kokanee and 500,000 yearling rainbow trout for Lake Roosevelt and 1.4 million kokanee fry/fingerlings for Banks Lake. Fish produced by this project in 2004 to meet collective fish production and release goals included: 1,655,722 kokanee fingerlings, 537,783 rainbow trout fingerlings and 507,660 kokanee yearlings. Kokanee yearlings were adipose fin clipped before release. Stock composition consisted of Lake Whatcom kokanee, 50:50 diploid-triploid Spokane Trout Hatchery (McCloud River) rainbow trout and Phalon Lake red-band rainbow trout. All kokanee were marked with either thermal, oxytetracyline or fin clips prior to release. Preliminary 2004 Lake Roosevelt fisheries investigations indicate hatchery/net pen stocking significantly contributed to harvestable rainbow trout and kokanee salmon fisheries. An increase in kokanee harvest was primarily owing to new release strategies. Walleye predation, early maturity and entrainment through Grand Coulee Dam continues to have a negative impact on adult kokanee returns and limits the success of hatchery/net pen stocking on the number of harvestable fish. Recommendations for future hatchery/net pen operations include use of stocks compatible or native to the upper Columbia River, continue hatchery-rearing practices to reduce precocity rates of kokanee and continue new kokanee stocking strategies associated with increased kokanee harvest rates.« less
Munz, Carrie S.; Allen, M. Brady; Connolly, Patrick J.
2011-01-01
We monitored bull trout (Salvelinus confluentus) in 2008 and 2009 as a continuation of our work in 2006 and 2007, which involved the tagging of 1,536 bull trout with passive integrated transponder (PIT) tags in the East Fork Jarbidge River and West Fork Jarbidge River and their tributaries in northeastern Nevada and southern Idaho. We installed PIT tag interrogation systems (PTISs) at established locations soon after ice-out, and maintained the PTISs in order to collect information on bull trout movements through December of each year. We observed a marked increase of movement in 2008 and 2009. Bull trout tagged in the uppermost portions of the East Fork Jarbidge River at altitudes greater than 2,100 meters moved to the confluence of the East Fork Jarbidge River and West Fork Jarbidge River in summer and autumn. Ten bull trout tagged upstream of the confluence of Pine Creek and the West Fork Jarbidge River moved downstream and then upstream in the East Fork Jarbidge River, and then past the PTIS at Murphy Hot Springs (river kilometer [rkm] 4.1). Two of these fish ascended Dave Creek, a tributary of the East Fork Jarbidge River, past the PTIS at rkm 0.4. One bull trout that was tagged at rkm 11 in Dave Creek on June 28, 2007 moved downstream to the confluence of the East Fork Jarbidge River and West Fork Jarbidge River (rkm 0) on July 28, 2007, and it was then detected in the West Fork Jarbidge River moving past our PTIS at rkm 15 on May 4, 2008. Combined, the extent and types of bull trout movements observed indicated that the primarily age-1 and age-2 bull trout that we tagged in 2006 and 2007 showed increased movement with age and evidence of a substantial amount of fluvial life history. The movements suggest strong connectivity between spawning areas and downstream mainstem areas, as well as between the East Fork Jarbidge River and West Fork Jarbidge River.
Status and conservation of interior Redband Trout in the western United States
Muhlfeld, Clint C.; Albeke, Shannon E.; Gunckel, Stephanie L; Writer, Benjamin J; Shepard, Bradley B.; May, Bruce E
2015-01-01
In this article we describe the current status and conservation of interior (potamodromous) Redband Trout Oncorhynchus mykiss sspp. throughout its range in the western United States using extant data and expert opinion provided by fish managers. Redband Trout historically occupied 60,295 km of stream habitat and 152 natural lakes. Currently, Redband Trout occupy 25,417 km of stream habitat (42% of their historical range) and 124 lakes or reservoirs. Nonhybridized populations are assumed to occupy 11,695 km (46%) of currently occupied streams; however, fish from only 4,473 km (18%) have been genetically tested. Approximately 47% of the streams occupied by Redband Trout occur on private land, 45% on government lands, and 8% in protected areas. A total of 210 Redband Trout populations, occupying 15,252 km of stream habitat (60% of the current distribution) and 95,158 ha of lake habitat (52%), are being managed as “conservation populations.” Most conservation populations have been designated as weakly to strongly connected metapopulations (125; 60%) and occupy much more stream length (14,112 km; 93%) than isolated conservation populations (1,141 km; 7%). The primary threats to Redband Trout include invasive species, habitat degradation and fragmentation, and climate change. Although the historical distribution of interior Redband Trout has declined dramatically, we conclude that the species is not currently at imminent risk of extinction because it is still widely distributed with many populations isolated by physical barriers and active conservation efforts are occurring for many populations. However, the hybridization status of many populations has not been well quantified, and introgression may be more prevalent than documented here. We recommend (1) collecting additional genetic data and estimating distribution and abundance by means of a more rigorous spatial sampling design to reduce uncertainties, (2) collecting additional information to assess and predict the impacts of climate on populations, and (3) continuing to use this database to evaluate the status of Redband Trout and inform conservation efforts through time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blenden, Michael L.; Kucera, Paul A.; Osborne, Randall S.
1996-04-01
For the second consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 6 to June 20, 1995. We PIT tagged and released 421 wild chinook salmon smolts, 747 hatchery chinook salmon smolts (445 HxW and 302 HxH), 227 wild steelhead trout smolts and 1,296 hatchery steelhead trout smolts. Cumulative interrogation rates at mainstem Snake and Columbia River dams were 78.4% for wildmore » chinook salmon, 58.9% for hatchery chinook salmon (HxW), 56.6% for hatchery chinook salmon (HxH), 76.2% for wild steelhead trout, and 69.2% for hatchery steelhead trout. Peak outmigration of NPT tagged wild Imnaha River chinook salmon smolts occurred from early to mid-May at Lower Granite, Little Goose, and Lower Monumental Dams. Median and 90% passage dates for wild chinook salmon smolts at Lower Granite Dam were May 1 and May 11, respectively. Continuous spill at Lower Granite Dam was initiated on May 3 and lasted for 51 days. The 90% passage date of wild chinook salmon smolts at Lower Granite Dam (May 11) preceded peak Snake River and Lower Granite (June 6) flows by 26 days. Although hatchery chinook salmon exhibited a shorter outmigration period through the Snake River than their wild counterparts, peak arrival for both groups occurred at approximately the same time. Median and 90% passage dates at Lower Granite Dam for other PIT tagged groups were: hatchery chinook salmon (NPT-HxW) - May 2 and May 13; hatchery chinook salmon (FPC-HxH) - May 8 and May 15; wild steelhead trout - May 2 and May 9; and hatchery steelhead trout (NPT and FPC) - May 31 and June 16. Hatchery steelhead trout displayed small peaks in arrival timing at Lower Granite and Little Goose Dams in mid-May to mid-June.« less
Gorman, Owen T.
2012-01-01
The Lake Superior fish community underwent massive changes in the second half of the 20th century. Those changes are largely reflected in changes in abundance of the adults of principal prey species, the ciscoes (Coregonus spp.), the invasive rainbow smelt (Osmerus mordax), and the principal predator, lake trout (Salvelinus namaycush). To better understand changes in species abundances, a comprehensive series of gillnet and bottom trawl data collected from 1958 to 2008 were examined. In the late 1950s/early 1960s, smelt abundance was at its maximum, wild lake trout was at its minimum, and an abundance of hatchery lake trout was increasing rapidly. The bloater (Coregonus hoyi) was the prevalent cisco in the lake; abundance was more than 300% greater than the next most abundant cisco, shortjaw cisco (C. zenithicus), followed by kiyi (C. kiyi) and lake cisco (C. artedi). By the mid-1960s, abundance of hatchery lake trout was nearing maximum, smelt abundance was beginning to decline, and abundances of all ciscoes declined, but especially that of shortjaw cisco and kiyi. By the late 1970s, recovery of wild lake trout stocks was well underway and abundances of hatchery lake trout and smelt were declining and the ciscoes were reaching their nadir. During 1980–1990, the fish community underwent a dramatic shift in organization and structure. The rapid increase in abundance of wild lake trout, concurrent with a rapid decline in hatchery lake trout, signaled the impending recovery. Rainbow smelt abundance dropped precipitously and within four years, lake cisco and bloater populations rebounded on the heels of a series of strong recruitment events. Kiyi populations showed signs of recovery by 1989, and shortjaw by 2000, though well below historic maximum abundances. High abundance of adult smelt prior to 1980 appears to be the only factor linked to recruitment failure in the ciscoes. Life history traits of the cisco species were examined to better understand their different responses to conditions of low and high predator levels, i.e., late 1950s–early 1960s vs. post 1980. Bloaters are most likely to become the predominant cisco in the absence of strong predation and the least abundant under prolonged predation; smelt share this pattern. Conversely, the lake cisco and shortjaw cisco fare better when predator abundance is high. The recovery of lake trout in Lake Superior reestablished a strong top-down influence on the fish community and its present structure and organization appears to be approaching an equilibrium that reflects a more natural state. If lake trout recovery is sustained, shortjaw cisco abundance is expected to increase and join lake cisco and kiyi as dominant cisco species, and bloater and smelt will oscillate at lower abundances.
Ormsby, Michael J.; Caws, Thomas; Burchmore, Richard; Wallis, Tim; Verner-Jeffreys, David W.
2016-01-01
ABSTRACT Yersinia ruckeri is the etiological agent of enteric redmouth (ERM) disease of farmed salmonids. Enteric redmouth disease is traditionally associated with rainbow trout (Oncorhynchus mykiss, Walbaum), but its incidence in Atlantic salmon (Salmo salar) is increasing. Yersinia ruckeri isolates recovered from diseased Atlantic salmon have been poorly characterized, and very little is known about the relationship of the isolates associated with these two species. Phenotypic approaches were used to characterize 109 Y. ruckeri isolates recovered over a 14-year period from infected Atlantic salmon in Scotland; 26 isolates from infected rainbow trout were also characterized. Biotyping, serotyping, and comparison of outer membrane protein profiles identified 19 Y. ruckeri clones associated with Atlantic salmon but only five associated with rainbow trout; none of the Atlantic salmon clones occurred in rainbow trout and vice versa. These findings suggest that distinct subpopulations of Y. ruckeri are associated with each species. A new O serotype (designated O8) was identified in 56 biotype 1 Atlantic salmon isolates and was the most common serotype identified from 2006 to 2011 and in 2014, suggesting an increased prevalence during the time period sampled. Rainbow trout isolates were represented almost exclusively by the same biotype 2, serotype O1 clone that has been responsible for the majority of ERM outbreaks in this species within the United Kingdom since the 1980s. However, the identification of two biotype 2, serotype O8 isolates in rainbow trout suggests that vaccines containing serotypes O1 and O8 should be evaluated in both rainbow trout and Atlantic salmon for application in Scotland. IMPORTANCE Vaccination plays an important role in protecting Atlantic salmon against the bacterial pathogen Yersinia ruckeri, but, in recent years, there has been an increasing incidence of vaccine breakdown in salmon. This is largely because current vaccines are aimed at rainbow trout and are based on serotypes specific for this species. A wider range of serotypes is responsible for infection in Atlantic salmon, but very little is known about the diversity of these strains and their relationships to those recovered from rainbow trout. In the present study, we demonstrate that Y. ruckeri isolates recovered from diseased Atlantic salmon in Scotland are more diverse than those from rainbow trout; furthermore, isolates from the two species represent distinct subpopulations. In addition, a new O serotype was identified that is responsible for a significant proportion of the disease in Atlantic salmon. Our findings are likely to have important implications for the development of improved vaccines against Y. ruckeri. PMID:27451448
Ormsby, Michael J; Caws, Thomas; Burchmore, Richard; Wallis, Tim; Verner-Jeffreys, David W; Davies, Robert L
2016-10-01
Yersinia ruckeri is the etiological agent of enteric redmouth (ERM) disease of farmed salmonids. Enteric redmouth disease is traditionally associated with rainbow trout (Oncorhynchus mykiss, Walbaum), but its incidence in Atlantic salmon (Salmo salar) is increasing. Yersinia ruckeri isolates recovered from diseased Atlantic salmon have been poorly characterized, and very little is known about the relationship of the isolates associated with these two species. Phenotypic approaches were used to characterize 109 Y. ruckeri isolates recovered over a 14-year period from infected Atlantic salmon in Scotland; 26 isolates from infected rainbow trout were also characterized. Biotyping, serotyping, and comparison of outer membrane protein profiles identified 19 Y. ruckeri clones associated with Atlantic salmon but only five associated with rainbow trout; none of the Atlantic salmon clones occurred in rainbow trout and vice versa These findings suggest that distinct subpopulations of Y. ruckeri are associated with each species. A new O serotype (designated O8) was identified in 56 biotype 1 Atlantic salmon isolates and was the most common serotype identified from 2006 to 2011 and in 2014, suggesting an increased prevalence during the time period sampled. Rainbow trout isolates were represented almost exclusively by the same biotype 2, serotype O1 clone that has been responsible for the majority of ERM outbreaks in this species within the United Kingdom since the 1980s. However, the identification of two biotype 2, serotype O8 isolates in rainbow trout suggests that vaccines containing serotypes O1 and O8 should be evaluated in both rainbow trout and Atlantic salmon for application in Scotland. Vaccination plays an important role in protecting Atlantic salmon against the bacterial pathogen Yersinia ruckeri, but, in recent years, there has been an increasing incidence of vaccine breakdown in salmon. This is largely because current vaccines are aimed at rainbow trout and are based on serotypes specific for this species. A wider range of serotypes is responsible for infection in Atlantic salmon, but very little is known about the diversity of these strains and their relationships to those recovered from rainbow trout. In the present study, we demonstrate that Y. ruckeri isolates recovered from diseased Atlantic salmon in Scotland are more diverse than those from rainbow trout; furthermore, isolates from the two species represent distinct subpopulations. In addition, a new O serotype was identified that is responsible for a significant proportion of the disease in Atlantic salmon. Our findings are likely to have important implications for the development of improved vaccines against Y. ruckeri. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
An evaluation of trout culture
1940-01-01
In an evaluation of the efficiency of trout culture, the author presents a detailed analysis of complete loss records from 288 individual lots of trout at twenty-two hatcheries in the western United States. Summarized data are given to show the percentage loss of eggs, fry, and fingerlings by progressive one-half inch size groups. The accumulative percentage loss is also included to indicate the losses, under average hatchery conditions, between the egg stage and each successive size-group. These data cover the individual species of trout commonly reared in hatcheries; summarized data are given also for all species combined. A brief discussion of hatchery losses, natural losses, and the cost of artificial propagation is included.
Fost, B A; Ferreri, C P
2015-08-01
The goal of this study was to determine if short-term exposure of brook trout Salvelinus fontinalis and brown trout Salmo trutta to a lower pH than found in their source stream results in a shift in preference or avoidance pH. The lack of a shift in preference or avoidance pH of adult S. fontinalis and S. trutta suggests that these species can be held at a pH different from the source waterbody for a short period of time without altering preference or avoidance pH behaviour. © 2015 The Fisheries Society of the British Isles.
Fish, F.F.
1934-01-01
During the summer of 1933, lesions of a disease were noted among some fingerling brook, rainbow, blackspotted, and lake trout at the Cortland (New York) trout hatchery. Although these lesions bore a marked superficial resemblance to those of furunculosis, they were sufficiently atypical to warrant further investigation. A more detailed examination of the lesions proved them to be of a distinct disease, which for lack of a better name is herein called "ulcer disease," for the lesions closely resemble those described by Calkins (1899) under this name. Because of the marked resemblance to furunculosis, ulcer disease has not been generally recognized by trout culturists, and any ulcer appearing on fish has been ascribed by them to furunculosis without further question.
Liu, Youchang; Iwasaki, Tadashi; Watarai, Shinobu; Kodama, Hiroshi
2004-09-01
The effect of turpentine oil on C-reactive protein (CRP) production was studied in rainbow trout (Oncorhynchus mykiss). Serum CRP concentration was estimated by sandwich enzyme-linked immunosorbent assay using anti-rainbow trout CRP monoclonal antibody (mAb) AC4 and polyclonal antibody. Intracellular CRP was demonstrated by flow cytometry using anti-trout CRP mAb. Hepatocytes, head kidney macrophages, spleen lymphocytes and peripheral blood lymphocytes showed reaction against AC4, but RTG-2 fibroblastic line cells, derived from rainbow trout gonad did not. This is the first report on the detection of intracellular CRP in fish. CRP levels decreased significantly 1 day after intramuscular injection of turpentine oil and remained low for 14 days. Significant decreases in the expression of CRP in hepatocytes, head kidney macrophages and spleen lymphocytes after injection of turpentine oil were found. The reduction of serum CRP concentration after turpentine oil injection may be attributed to decreases in intracellular CRP synthesis.
Factors associated with stocked cutthroat trout populations in high-mountain lakes
Bailey, Paul E.; Hubert, W.A.
2003-01-01
High-mountain lakes provide important fisheries in the Rocky Mountains; therefore we sought to gain an understanding of the relationships among environmental factors, accessibility to anglers, stocking rates, and features of stocks of cutthroat trout Oncorhynchus clarki in high-mountain lakes of the Bighorn Mountains, Wyoming. We sampled fish with experimental gill nets, measured lake habitat features, and calculated factors affecting angler access among 19 lakes that lacked sufficient natural reproduction to support salmonid fisheries and that were stocked at 1-, 2-, or 4-year intervals with fingerling cutthroat trout. We found that angler accessibility was probably the primary factor affecting stock structure, whereas stocking rates affected the densities of cutthroat trout among lakes. The maximum number of years survived after stocking appeared to have the greatest affect on biomass and population structure. Our findings suggest that control of harvest and manipulation of stocking densities can affect the density, biomass, and structure of cutthroat trout stocks in high-elevation lakes.
Fregeneda-Grandes, Juan M; Hernández-Navarro, Salvador; Fernandez-Coppel, Ignacio A; Correa-Guimaraes, Adriana; Ruíz-Potosme, Norlan; Navas-Gracia, Luis M; Aller-Gancedo, J Miguel; Martín-Gil, Francisco J; Martín-Gil, Jesús
2013-12-01
Serum steroid profiles were investigated in order to evaluate the potential use of circulating sex steroid levels as a tool for sex identification in brown trout. Changes in the serum concentrations of testosterone (T), progesterone (P), 17-β-estradiol (E2), and cortisol (F) in wild and farmed mature female and male brown trout, Salmo trutta L., were measured in each season (January, May, July, and October) in six rivers and four hatcheries located in the north-west of Spain. Serum cortisol levels in farmed brown trout were significantly higher and showed a seasonal pattern opposite to that found in wild trout. Because levels of the hormones under study can be affected by disruptive factors such as exposure to phytoestrogens (which alters the hypothalamic-pituitary-gonadal axis) and infection with Saprolegnia parasitica (which alters the hypothalamic-pituitary-adrenal axis), both factors are taken into account.
Effects of nonlethal sea lamprey attack on the blood chemistry of lake trout
Edsall, Carol Cotant; Swink, William D.
2001-01-01
A laboratory study examined changes in the blood chemistry of field-caught and hatchery-reared lake trout Salvelinus namaycush subjected to a nonlethal attack by sea lampreys Petromyzon marinus. We measured glucose, total protein, amylase, alkaline phosphatase (ALKP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatine kinase, calcium, magnesium, triglycerides, sodium, and potassium with a Kodak Ektachem DT60 Analyzer, Ektachem DTSC Module, and the DTE Module. Mean levels of total protein, AST, ALKP, hematocrit, calcium, magnesium, and sodium decreased significantly (Pa?? 0.05), and mean levels of ALT and potassium increased significantly (Pa?? 0.05) after sea lamprey feeding. Lake trout condition (K) and hematocrit levels also decreased significantly (Pa?? 0.05) after the sea lamprey attack. Frequency distributions of eight lake trout blood chemistry variables and the hematocrit were significantly different before and after a sea lamprey attack. A second study that used hatchery lake trout broodstock measured changes in hematocrit before and after a sea lamprey attack.
Movement patterns of Brook Trout in a restored coastal stream system in southern Massachusetts
Snook, Erin L.; Letcher, Benjamin H.; Dubreuil, Todd L.; Zydlewski, Joseph D.; O'Donnell, Matthew J.; Whiteley, Andrew R.; Hurley, Stephen T.; Danylchuk, Andy J.
2016-01-01
Coastal Brook Trout (Salvelinus fontinalis) populations are found from northern Canada to New England. The extent of anadromy generally decreases with latitude, but the ecology and movements of more southern populations are poorly understood. We conducted a 33-month acoustic telemetry study of Brook Trout in Red Brook, MA, and adjacent Buttermilk Bay (marine system) using 16 fixed acoustic receivers and surgically implanting acoustic transmitters in 84 individuals. Tagged Brook Trout used the stream, estuary (50% of individuals) and bay (10% of individuals). Movements into full sea water were brief when occurring. GAMM models revealed that transitions between habitat areas occurred most often in spring and fall. Environmental data suggest that use of the saline environment is limited by summer temperatures in the bay. Movements may also be related to moon phase. Compared to more northern coastal populations of Brook Trout, the Red Brook population appears to be less anadromous overall, yet the estuarine segment of the system may have considerable ecological importance as a food resource.
Johnson, Nicholas S.; Higgs, Dennis; Binder, Thomas R.; Marsden, J. Ellen; Buchinger, Tyler John; Brege, Linnea; Bruning, Tyler; Farha, Steve A.; Krueger, Charles C.
2018-01-01
Two sounds associated with spawning lake trout (Salvelinus namaycush) in lakes Huron and Champlain were characterized by comparing sound recordings to behavioral data collected using acoustic telemetry and video. These sounds were named growls and snaps, and were heard on lake trout spawning reefs, but not on a non-spawning reef, and were more common at night than during the day. Growls also occurred more often during the spawning period than the pre-spawning period, while the trend for snaps was reversed. In a laboratory flume, sounds occurred when male lake trout were displaying spawning behaviors; growls when males were quivering and parallel swimming, and snaps when males moved their jaw. Combining our results with the observation of possible sound production by spawning splake (Salvelinus fontinalis × Salvelinus namaycush hybrid), provides rare evidence for spawning-related sound production by a salmonid, or any other fish in the superorder Protacanthopterygii. Further characterization of these sounds could be useful for lake trout assessment, restoration, and control.
NASA Astrophysics Data System (ADS)
Karatas, Tayfun
2016-04-01
The aim of this study was to compare biochemical parameters of cultured rainbow trouts (Oncorhynchus mykiss, Walbaum, 1972) reared in two different trout farms' (Agri and Erzurum). The average weights of fish were 150±10gr for first station (Agri), 230±10gr for second station (Erzurum). Fishes used in research were randomly caught from pools, and fifteen pieces were used for each group. Fishes were fed with commercial trout feed with 45-50% crude protein twice a day. The levels of AST, ALT, LDL, total cholesterol and triglyceride in the second station (Erzurum) were found to be higher (p<0.05) than that of first station (Agri). Whereas, the levels of HDL in the second station (Erzurum) were found to be lower (p<0.05) than that of first station (Agri). Differences in the levels of total cholesterol and AST, ALT, HDL, LDL, triglyceride may be associated with size, sex, sexual maturity and environmental conditions (temperature, pH, hardness and dissolved oxygen).
Douglas P. Peterson; Bruce E. Reiman; Jason B. Dunham; Kurt D. Fausch; Michael K. Young
2008-01-01
Native salmonid fishes often face simultaneous threats from habitat fragmentation and invasion by nonnative trout species. Unfortunately, management actions to address one may create or exacerbate the other. A consistent decision process would include a systematic analysis of when and where intentional use or removal of barriers is the most appropriate action. We...
USDA-ARS?s Scientific Manuscript database
All-female rainbow trout and mixed-sex Atlantic salmon (approximately 200 g and 120 g initial weight, respectively) were maintained in small circular tanks in a flow-through system under study conditions for a period of five months. The four tank populations consisted of rainbow trout exposed to ei...
Russell F. Thurow; Daniel J. Schill
1996-01-01
Biologists lack sufficient information to develop protocols for sampling the abundance and size structure of bull trout Salvelinus confluentus. We compared summer estimates of the abundance and size structure of bull trout in a second-order central Idaho stream, derived by day snorkeling, night snorkeling, and electrofishing. We also examined the influence of water...
USDA-ARS?s Scientific Manuscript database
The contribution of sex steroids to nutrient partitioning and energy balance during gonad development was studied in rainbow trout (Oncorhynchus mykiss). Nineteen month old triploid (3N) female rainbow trout were fed a diet supplemented with 17ß-estradiol (E2) at 30 mg steroid/kg diet for a 1 month...
Amanda E. Rosenberger; Jason B. Dunham; Helen Neville
2012-01-01
In this short piece we address the question of how aquatic ecosystems and species can change in response to disturbances, such as those related to the influence of wildfire on stream ecosystems. Our focal species is rainbow trout (Oncorhynchus mykiss) in the Boise River, Idaho. Rainbow trout in this system have persisted in the face of widespread and often severe...
Effects of non-native trout on Pacific treefrogs (Hyla regilla) in the Sierra Nevada.
K.R. Matthews; K.L. Pope; H. K. Preisler; R.A. Knapp
2001-01-01
We used analyses based on surveys of . 1700 water bodies in a 100,000-ha area in the John Muir Wilderness (JMW) and Kings Canyon National Park (KCNP) to determine the influence of nonnative trout on the distribution and abundance of Hyla regilla in the High Sierra Nevada. At the landscape scale (JMW compared to KCNP), a negative relationship between trout and frogs in...