Cloud-Induced Uncertainty for Visual Navigation
2014-12-26
images at the pixel level. The result is a method that can overlay clouds with various structures on top of any desired image to produce realistic...cloud-shaped structures . The primary contribution of this research, however, is to investigate and quantify the errors in features due to clouds. The...of clouds types, this method does not emulate the true structure of clouds. An alternative popular modern method of creating synthetic clouds is known
Structures observed on the spot radiance fields during the FIRE experiment
NASA Technical Reports Server (NTRS)
Seze, Genevieve; Smith, Leonard; Desbois, Michel
1990-01-01
Three Spot images taken during the FIRE experiment on stratocumulus are analyzed. From this high resolution data detailed observations of the true cloud radiance field may be made. The structure and inhomogeneity of these radiance fields hold important implications for the radiation budget, while the fine scale structure in radiance field provides information on cloud dynamics. Wieliki and Welsh, and Parker et al., have quantified the inhomogeneities of the cumulus clouds through a careful examination of the distribution of cloud (and hole) size as functions of an effective cloud diameter and radiance threshold. Cahalan (1988) has compared for different cloud types of (stratocumulus, fair weather cumulus, convective clouds in the ITCZ) the distributions of clouds (and holes) sizes, the relation between the size and the perimeter of these clouds (and holes), and examining the possibility of scale invariance. These results are extended from LANDSAT resolution (57 m and 30 m) to the Spot resolution (10 m) resolution in the case of boundary layer clouds. Particular emphasis is placed on the statistics of zones of high and low reflectivity as a function of a threshold reflectivity.
Yang, Xiaomei; Zhou, Chenghu; Li, Zhi
2017-01-01
Cloud cover is inevitable in optical remote sensing (RS) imagery on account of the influence of observation conditions, which limits the availability of RS data. Therefore, it is of great significance to be able to reconstruct the cloud-contaminated ground information. This paper presents a sparse dictionary learning-based image inpainting method for adaptively recovering the missing information corrupted by thick clouds patch-by-patch. A feature dictionary was learned from exemplars in the cloud-free regions, which was later utilized to infer the missing patches via sparse representation. To maintain the coherence of structures, structure sparsity was brought in to encourage first filling-in of missing patches on image structures. The optimization model of patch inpainting was formulated under the adaptive neighborhood-consistency constraint, which was solved by a modified orthogonal matching pursuit (OMP) algorithm. In light of these ideas, the thick-cloud removal scheme was designed and applied to images with simulated and true clouds. Comparisons and experiments show that our method can not only keep structures and textures consistent with the surrounding ground information, but also yield rare smoothing effect and block effect, which is more suitable for the removal of clouds from high-spatial resolution RS imagery with salient structures and abundant textured features. PMID:28914787
Meng, Fan; Yang, Xiaomei; Zhou, Chenghu; Li, Zhi
2017-09-15
Cloud cover is inevitable in optical remote sensing (RS) imagery on account of the influence of observation conditions, which limits the availability of RS data. Therefore, it is of great significance to be able to reconstruct the cloud-contaminated ground information. This paper presents a sparse dictionary learning-based image inpainting method for adaptively recovering the missing information corrupted by thick clouds patch-by-patch. A feature dictionary was learned from exemplars in the cloud-free regions, which was later utilized to infer the missing patches via sparse representation. To maintain the coherence of structures, structure sparsity was brought in to encourage first filling-in of missing patches on image structures. The optimization model of patch inpainting was formulated under the adaptive neighborhood-consistency constraint, which was solved by a modified orthogonal matching pursuit (OMP) algorithm. In light of these ideas, the thick-cloud removal scheme was designed and applied to images with simulated and true clouds. Comparisons and experiments show that our method can not only keep structures and textures consistent with the surrounding ground information, but also yield rare smoothing effect and block effect, which is more suitable for the removal of clouds from high-spatial resolution RS imagery with salient structures and abundant textured features.
A simple biota removal algorithm for 35 GHz cloud radar measurements
NASA Astrophysics Data System (ADS)
Kalapureddy, Madhu Chandra R.; Sukanya, Patra; Das, Subrata K.; Deshpande, Sachin M.; Pandithurai, Govindan; Pazamany, Andrew L.; Ambuj K., Jha; Chakravarty, Kaustav; Kalekar, Prasad; Krishna Devisetty, Hari; Annam, Sreenivas
2018-03-01
Cloud radar reflectivity profiles can be an important measurement for the investigation of cloud vertical structure (CVS). However, extracting intended meteorological cloud content from the measurement often demands an effective technique or algorithm that can reduce error and observational uncertainties in the recorded data. In this work, a technique is proposed to identify and separate cloud and non-hydrometeor echoes using the radar Doppler spectral moments profile measurements. The point and volume target-based theoretical radar sensitivity curves are used for removing the receiver noise floor and identified radar echoes are scrutinized according to the signal decorrelation period. Here, it is hypothesized that cloud echoes are observed to be temporally more coherent and homogenous and have a longer correlation period than biota. That can be checked statistically using ˜ 4 s sliding mean and standard deviation value of reflectivity profiles. The above step helps in screen out clouds critically by filtering out the biota. The final important step strives for the retrieval of cloud height. The proposed algorithm potentially identifies cloud height solely through the systematic characterization of Z variability using the local atmospheric vertical structure knowledge besides to the theoretical, statistical and echo tracing tools. Thus, characterization of high-resolution cloud radar reflectivity profile measurements has been done with the theoretical echo sensitivity curves and observed echo statistics for the true cloud height tracking (TEST). TEST showed superior performance in screening out clouds and filtering out isolated insects. TEST constrained with polarimetric measurements was found to be more promising under high-density biota whereas TEST combined with linear depolarization ratio and spectral width perform potentially to filter out biota within the highly turbulent shallow cumulus clouds in the convective boundary layer (CBL). This TEST technique is promisingly simple in realization but powerful in performance due to the flexibility in constraining, identifying and filtering out the biota and screening out the true cloud content, especially the CBL clouds. Therefore, the TEST algorithm is superior for screening out the low-level clouds that are strongly linked to the rainmaking mechanism associated with the Indian Summer Monsoon region's CVS.
NASA Astrophysics Data System (ADS)
Krinitskiy, Mikhail; Sinitsyn, Alexey
2017-04-01
Shortwave radiation is an important component of surface heat budget over sea and land. To estimate them accurate observations of cloud conditions are needed including total cloud cover, spatial and temporal cloud structure. While massively observed visually, for building accurate SW radiation parameterizations cloud structure needs also to be quantified using precise instrumental measurements. While there already exist several state of the art land-based cloud-cameras that satisfy researchers needs, their major disadvantages are associated with inaccuracy of all-sky images processing algorithms which typically result in the uncertainties of 2-4 octa of cloud cover estimates with the resulting true-scoring cloud cover accuracy of about 7%. Moreover, none of these algorithms determine cloud types. We developed an approach for cloud cover and structure estimating, which provides much more accurate estimates and also allows for measuring additional characteristics. This method is based on the synthetic controlling index, namely the "grayness rate index", that we introduced in 2014. Since then this index has already demonstrated high efficiency being used along with the technique namely the "background sunburn effect suppression", to detect thin clouds. This made it possible to significantly increase the accuracy of total cloud cover estimation in various sky image states using this extension of routine algorithm type. Errors for the cloud cover estimates significantly decreased down resulting the mean squared error of about 1.5 octa. Resulting true-scoring accuracy is more than 38%. The main source of this approach uncertainties is the solar disk state determination errors. While the deep neural networks approach lets us to estimate solar disk state with 94% accuracy, the final result of total cloud estimation still isn`t satisfying. To solve this problem completely we applied the set of machine learning algorithms to the problem of total cloud cover estimation directly. The accuracy of this approach varies depending on algorithm choice. Deep neural networks demonstrated the best accuracy of more than 96%. We will demonstrate some approaches and the most influential statistical features of all-sky images that lets the algorithm reach that high accuracy. With the use of our new optical package a set of over 480`000 samples has been collected in several sea missions in 2014-2016 along with concurrent standard human observed and instrumentally recorded meteorological parameters. We will demonstrate the results of the field measurements and will discuss some still remaining problems and the potential of the further developments of machine learning approach.
NASA Technical Reports Server (NTRS)
Iguchi, Takamichi; Matsui, Toshihisa; Tokay, Ali; Kollias, Pavlos; Tao, Wei-Kuo
2012-01-01
A unique microphysical structure of rainfall is observed by the surface laser optical Particle Size and Velocity (Parsivel) disdrometers on 25 April 2011 during Midlatitude Continental Convective Clouds Experiment (MC3E). According to the systematic differences in rainfall rate and bulk effective droplet radius, the sampling data can be divided into two groups; the rainfall mostly from the deep convective clouds has relatively high rainfall rate and large bulk effective droplet radius, whereas the reverse is true for the rainfall from the shallow wrm clouds. The Weather Research and Forecasting model coupled with spectral bin microphysics (WRF-SBM) successfully reproduces the two distinct modes in the observed rainfall microphysical structure. The results show that the up-to-date model can demonstrate how the cloud physics and the weather condition on the day are involved in forming the unique rainfall characteristic.
NASA Astrophysics Data System (ADS)
Iguchi, Takamichi; Matsui, Toshihisa; Tokay, Ali; Kollias, Pavlos; Tao, Wei-Kuo
2012-12-01
A unique microphysical structure of rainfall is observed by the surface laser optical Particle Size and Velocity (Parsivel) disdrometers on 25 April 2011 during Midlatitude Continental Convective Clouds Experiment (MC3E). According to the systematic differences in rainfall rate and bulk effective droplet radius, the sampling data can be divided into two groups; the rainfall mostly from the deep convective clouds has relatively high rainfall rate and large bulk effective droplet radius, whereas the reverse is true for the rainfall from the shallow warm clouds. The Weather Research and Forecasting model coupled with spectral bin microphysics (WRF-SBM) successfully reproduces the two distinct modes in the observed rainfall microphysical structure. The results show that the up-to-date model can demonstrate how the cloud physics and the weather condition on the day are involved in forming the unique rainfall characteristic.
The impact of radiatively active water-ice clouds on Martian mesoscale atmospheric circulations
NASA Astrophysics Data System (ADS)
Spiga, A.; Madeleine, J.-B.; Hinson, D.; Navarro, T.; Forget, F.
2014-04-01
Background and Goals Water ice clouds are a key component of the Martian climate [1]. Understanding the properties of the Martian water ice clouds is crucial to constrain the Red Planet's climate and hydrological cycle both in the present and in the past [2]. In recent years, this statement have become all the more true as it was shown that the radiative effects of water ice clouds is far from being as negligible as hitherto believed; water ice clouds plays instead a key role in the large-scale thermal structure and dynamics of the Martian atmosphere [3, 4, 5]. Nevertheless, the radiative effect of water ice clouds at lower scales than the large synoptic scale (the so-called meso-scales) is still left to be explored. Here we use for the first time mesoscale modeling with radiatively active water ice clouds to address this open question.
V2.2 L2AS Detailed Release Description April 15, 2002
Atmospheric Science Data Center
2013-03-14
... 'optically thick atmosphere' algorithm. Implement new experimental aerosol retrieval algorithm over homogeneous surface types. ... Change values: cloud_mask_decision_matrix(1,1): .true. -> .false. cloud_mask_decision_matrix(2,1): .true. -> .false. ...
NASA Technical Reports Server (NTRS)
Smith, Samantha A.; DelGenio, Anthony D.
1999-01-01
Ways to determine the turbulence intensity and the horizontal variability in cirrus clouds have been investigated using FIRE-II aircraft, radiosonde and radar data. Higher turbulence intensities were found within some, but not all, of the neutrally stratified layers. It was also demonstrated that the stability of cirrus layers with high extinction values decrease in time, possibly as a result of radiative destabilization. However, these features could not be directly related to each other in any simple manner. A simple linear relationship was observed between the amount of horizontal variability in the ice water content and its average value. This was also true for the extinction and ice crystal number concentrations. A relationship was also suggested between the variability in cloud depth and the environmental stability across the depth of the cloud layer, which requires further investigation.
The Area Coverage of Geophysical Fields as a Function of Sensor Field-of View
NASA Technical Reports Server (NTRS)
Key, Jeffrey R.
1994-01-01
In many remote sensing studies of geophysical fields such as clouds, land cover, or sea ice characteristics, the fractional area coverage of the field in an image is estimated as the proportion of pixels that have the characteristic of interest (i.e., are part of the field) as determined by some thresholding operation. The effect of sensor field-of-view on this estimate is examined by modeling the unknown distribution of subpixel area fraction with the beta distribution, whose two parameters depend upon the true fractional area coverage, the pixel size, and the spatial structure of the geophysical field. Since it is often not possible to relate digital number, reflectance, or temperature to subpixel area fraction, the statistical models described are used to determine the effect of pixel size and thresholding operations on the estimate of area fraction for hypothetical geophysical fields. Examples are given for simulated cumuliform clouds and linear openings in sea ice, whose spatial structures are described by an exponential autocovariance function. It is shown that the rate and direction of change in total area fraction with changing pixel size depends on the true area fraction, the spatial structure, and the thresholding operation used.
Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) Final Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, R.
2016-01-01
The extensive coverage of low clouds over the subtropical eastern oceans greatly impacts the current climate. In addition, the response of low clouds to changes in atmospheric greenhouse gases and aerosols is a major source of uncertainty, which thwarts accurate prediction of future climate change. Low clouds are poorly simulated in climate models, partly due to inadequate long-term simultaneous observations of their macrophysical and microphysical structure, radiative effects, and associated aerosol distribution in regions where their impact is greatest. The thickness and extent of subtropical low clouds is dependent on tight couplings between surface fluxes of heat and moisture, radiativemore » cooling, boundary layer turbulence, and precipitation (much of which evaporates before reaching the ocean surface and is closely connected to the abundance of cloud condensation nuclei). These couplings have been documented as a result of past field programs and model studies. However, extensive research is still required to achieve a quantitative understanding sufficient for developing parameterizations, which adequately predict aerosol indirect effects and low cloud response to climate perturbations. This is especially true of the interactions between clouds, aerosol, and precipitation. These processes take place in an ever-changing synoptic environment that can confound interpretation of short time period observations.« less
Atmospheric Science Data Center
2013-04-22
article title: MISR Mystery Image Quiz #21: Actinoform Clouds ... This mystery concerns a particular type of cloud, one example of which was imaged by the Multi-angle Imaging SpectroRadiometer (MISR) ... ) These clouds are commonly tracked using propeller-driven research aircraft. Answer: C is True. The weather satellite, TIROS ...
Remote Sensing of Cloud Properties using Ground-based Measurements of Zenith Radiance
NASA Technical Reports Server (NTRS)
Chiu, J. Christine; Marshak, Alexander; Knyazikhin, Yuri; Wiscombe, Warren J.; Barker, Howard W.; Barnard, James C.; Luo, Yi
2006-01-01
An extensive verification of cloud property retrievals has been conducted for two algorithms using zenith radiances measured by the Atmospheric Radiation Measurement (ARM) Program ground-based passive two-channel (673 and 870 nm) Narrow Field-Of-View Radiometer. The underlying principle of these algorithms is that clouds have nearly identical optical properties at these wavelengths, but corresponding spectral surface reflectances (for vegetated surfaces) differ significantly. The first algorithm, the RED vs. NIR, works for a fully three-dimensional cloud situation. It retrieves not only cloud optical depth, but also an effective radiative cloud fraction. Importantly, due to one-second time resolution of radiance measurements, we are able, for the first time, to capture detailed changes in cloud structure at the natural time scale of cloud evolution. The cloud optical depths tau retrieved by this algorithm are comparable to those inferred from both downward fluxes in overcast situations and microwave brightness temperatures for broken clouds. Moreover, it can retrieve tau for thin patchy clouds, where flux and microwave observations fail to detect them. The second algorithm, referred to as COUPLED, couples zenith radiances with simultaneous fluxes to infer 2. In general, the COUPLED and RED vs. NIR algorithms retrieve consistent values of tau. However, the COUPLED algorithm is more sensitive to the accuracies of measured radiance, flux, and surface reflectance than the RED vs. NIR algorithm. This is especially true for thick overcast clouds where it may substantially overestimate z.
NASA Technical Reports Server (NTRS)
Martins, J. V.; Marshak, A.; Remer, L. A.; Rosenfeld, D.; Kaufman, Y. J.; Fernandez-Borda, R.; Koren, I.; Correia, A. L.; Zubko, V.; Artaxo, P.
2011-01-01
Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil.
Cloud cover estimation optical package: New facility, algorithms and techniques
NASA Astrophysics Data System (ADS)
Krinitskiy, Mikhail
2017-02-01
Short- and long-wave radiation is an important component of surface heat budget over sea and land. For estimating them accurate observations of the cloud cover are needed. While massively observed visually, for building accurate parameterizations cloud cover needs also to be quantified using precise instrumental measurements. Major disadvantages of the most of existing cloud-cameras are associated with their complicated design and inaccuracy of post-processing algorithms which typically result in the uncertainties of 20% to 30% in the camera-based estimates of cloud cover. The accuracy of these types of algorithm in terms of true scoring compared to human-observed values is typically less than 10%. We developed new generation package for cloud cover estimating, which provides much more accurate results and also allows for measuring additional characteristics. New algorithm, namely SAIL GrIx, based on routine approach, also developed for this package. It uses the synthetic controlling index ("grayness rate index") which allows to suppress the background sunburn effect. This makes it possible to increase the reliability of the detection of the optically thin clouds. The accuracy of this algorithm in terms of true scoring became 30%. One more approach, namely SAIL GrIx ML, we have used to increase the cloud cover estimating accuracy is the algorithm that uses machine learning technique along with some other signal processing techniques. Sun disk condition appears to be a strong feature in this kind of models. Artificial Neural Networks type of model demonstrates the best quality. This model accuracy in terms of true scoring increases up to 95,5%. Application of a new algorithm lets us to modify the design of the optical sensing package and to avoid the use of the solar trackers. This made the design of the cloud camera much more compact. New cloud-camera has already been tested in several missions across Atlantic and Indian oceans on board of IORAS research vessels.
Validation of Nimbus-7 temperature-humidity infrared radiometer estimates of cloud type and amount
NASA Technical Reports Server (NTRS)
Stowe, L. L.
1982-01-01
Estimates of clear and low, middle and high cloud amount in fixed geographical regions approximately (160 km) squared are being made routinely from 11.5 micron radiance measurements of the Nimbus-7 Temperature-Humidity Infrared Radiometer (THIR). The purpose of validation is to determine the accuracy of the THIR cloud estimates. Validation requires that a comparison be made between the THIR estimates of cloudiness and the 'true' cloudiness. The validation results reported in this paper use human analysis of concurrent but independent satellite images with surface meteorological and radiosonde observations to approximate the 'true' cloudiness. Regression and error analyses are used to estimate the systematic and random errors of THIR derived clear amount.
NASA Astrophysics Data System (ADS)
Siebert, H.; Shaw, R. A.; Ditas, J.; Schmeissner, T.; Malinowski, S. P.; Bodenschatz, E.; Xu, H.
2015-01-01
Mountain research stations are advantageous not only for long-term sampling of cloud properties, but also for measurements that prohibitively difficult to perform on airborne platforms due to the true air speed or adverse factors such as weight and complexity of the equipment necessary. Some cloud-turbulence measurements, especially Lagrangian in nature, fall into this category. We report results from simultaneous, high-resolution and collocated measurements of cloud microphysical and turbulence properties during several warm cloud events at the Umweltforschungsstation Schneefernerhaus (UFS) on Zugspitze in the German Alps. The data gathered was found to be representative of observations made with similar instrumentation in free clouds. The turbulence observed, shared all features known for high Reynolds number flows: it exhibited approximately Gaussian fluctuations for all three velocity components, a clearly defined inertial subrange following Kolmogorov scaling (power spectrum, and second and third order Eulerian structure functions), and highly intermittent velocity gradients, as well as approximately lognormal kinetic energy dissipation rates. The clouds were observed to have liquid water contents of order 1 g m-3, and size distributions typical of continental clouds, sometimes exhibiting long positive tails indicative of large drop production through turbulent mixing or coalescence growth. Dimensionless parameters relevant to cloud-turbulence interactions, the Stokes number and settling parameter, are in the range typically observed in atmospheric clouds. Observed fluctuations in droplet number concentration and diameter suggest a preference for inhomogeneous mixing. Finally, enhanced variance in liquid water content fluctuations is observed at high frequencies, and the scale break occurs at a value consistent with the independently estimated phase relaxation time from microphysical measurements.
Opalescent and cloudy fruit juices: formation and particle stability.
Beveridge, Tom
2002-07-01
Cloudy fruit juices, particularly from tropical fruit, are becoming a fast-growing part of the fruit juice sector. The classification of cloud as coarse and fine clouds by centrifugation and composition of cloud from apple, pineapple, orange, guava, and lemon juice are described. Fine particulate is shown to be the true stable cloud and to contain considerable protein, carbohydrate, and lipid components. Often, tannin is present as well. The fine cloud probably arises from cell membranes and appears not to be simply cell debris. Factors relating to the stability of fruit juice cloud, including particle sizes, size distribution, and density, are described and discussed. Factors promoting stable cloud in juice are presented.
NASA Astrophysics Data System (ADS)
Kainulainen, J.; Juvela, M.; Alves, J.
2007-06-01
The giant molecular clouds (GMCs) of external galaxies can be mapped with sub-arcsecond resolution using multiband observations in the near-infrared. However, the interpretation of the observed reddening and attenuation of light, and their transformation into physical quantities, is greatly hampered by the effects arising from the unknown geometry and the scattering of light by dust particles. We examine the relation between the observed near-infrared reddening and the column density of the dust clouds. In this paper we particularly assess the feasibility of deriving the mass function of GMCs from near-infrared color excess data. We perform Monte Carlo radiative transfer simulations with 3D models of stellar radiation and clumpy dust distributions. We include the scattered light in the models and calculate near-infrared color maps from the simulated data. The color maps are compared with the true line-of-sight density distributions of the models. We extract clumps from the color maps and compare the observed mass function to the true mass function. For the physical configuration chosen in this study, essentially a face-on geometry, the observed mass function is a non-trivial function of the true mass function with a large number of parameters affecting its exact form. The dynamical range of the observed mass function is confined to 103.5dots 105.5 M_⊙ regardless of the dynamical range of the true mass function. The color maps are more sensitive in detecting the high-mass end of the mass function, and on average the masses of clouds are underestimated by a factor of ˜ 10 depending on the parameters describing the dust distribution. A significant fraction of clouds is expected to remain undetected at all masses. The simulations show that the cloud mass function derived from JHK color excess data using simple foreground screening geometry cannot be regarded as a one-to-one tracer of the underlying mass function.
High-resolution measurement of cloud microphysics and turbulence at a mountaintop station
NASA Astrophysics Data System (ADS)
Siebert, H.; Shaw, R. A.; Ditas, J.; Schmeissner, T.; Malinowski, S. P.; Bodenschatz, E.; Xu, H.
2015-08-01
Mountain research stations are advantageous not only for long-term sampling of cloud properties but also for measurements that are prohibitively difficult to perform on airborne platforms due to the large true air speed or adverse factors such as weight and complexity of the equipment necessary. Some cloud-turbulence measurements, especially Lagrangian in nature, fall into this category. We report results from simultaneous, high-resolution and collocated measurements of cloud microphysical and turbulence properties during several warm cloud events at the Umweltforschungsstation Schneefernerhaus (UFS) on Zugspitze in the German Alps. The data gathered were found to be representative of observations made with similar instrumentation in free clouds. The observed turbulence shared all features known for high-Reynolds-number flows: it exhibited approximately Gaussian fluctuations for all three velocity components, a clearly defined inertial subrange following Kolmogorov scaling (power spectrum, and second- and third-order Eulerian structure functions), and highly intermittent velocity gradients, as well as approximately lognormal kinetic energy dissipation rates. The clouds were observed to have liquid water contents on the order of 1 g m-3 and size distributions typical of continental clouds, sometimes exhibiting long positive tails indicative of large drop production through turbulent mixing or coalescence growth. Dimensionless parameters relevant to cloud-turbulence interactions, the Stokes number and settling parameter are in the range typically observed in atmospheric clouds. Observed fluctuations in droplet number concentration and diameter suggest a preference for inhomogeneous mixing. Finally, enhanced variance in liquid water content fluctuations is observed at high frequencies, and the scale break occurs at a value consistent with the independently estimated phase relaxation time from microphysical measurements.
2015-11-02
Cloud vortices off Heard Island, south Indian Ocean. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image of sea ice off Heard Island on Nov 2, 2015 at 5:02 AM EST (09:20 UTC). Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team
Winter QPF Sensitivities to Snow Parameterizations and Comparisons to NASA CloudSat Observations
NASA Technical Reports Server (NTRS)
Molthan, Andrew; Haynes, John M.; Jedlovec, Gary J.; Lapenta, William M.
2009-01-01
Steady increases in computing power have allowed for numerical weather prediction models to be initialized and run at high spatial resolution, permitting a transition from larger scale parameterizations of the effects of clouds and precipitation to the simulation of specific microphysical processes and hydrometeor size distributions. Although still relatively coarse in comparison to true cloud resolving models, these high resolution forecasts (on the order of 4 km or less) have demonstrated value in the prediction of severe storm mode and evolution and are being explored for use in winter weather events . Several single-moment bulk water microphysics schemes are available within the latest release of the Weather Research and Forecast (WRF) model suite, including the NASA Goddard Cumulus Ensemble, which incorporate some assumptions in the size distribution of a small number of hydrometeor classes in order to predict their evolution, advection and precipitation within the forecast domain. Although many of these schemes produce similar forecasts of events on the synoptic scale, there are often significant details regarding precipitation and cloud cover, as well as the distribution of water mass among the constituent hydrometeor classes. Unfortunately, validating data for cloud resolving model simulations are sparse. Field campaigns require in-cloud measurements of hydrometeors from aircraft in coordination with extensive and coincident ground based measurements. Radar remote sensing is utilized to detect the spatial coverage and structure of precipitation. Here, two radar systems characterize the structure of winter precipitation for comparison to equivalent features within a forecast model: a 3 GHz, Weather Surveillance Radar-1988 Doppler (WSR-88D) based in Omaha, Nebraska, and the 94 GHz NASA CloudSat Cloud Profiling Radar, a spaceborne instrument and member of the afternoon or "A-Train" of polar orbiting satellites tasked with cataloguing global cloud characteristics. Each system provides a unique perspective. The WSR-88D operates in a surveillance mode, sampling cloud volumes of Rayleigh scatterers where reflectivity is proportional to the sixth moment of the size distribution of equivalent spheres. The CloudSat radar provides enhanced sensitivity to smaller cloud ice crystals aloft, as well as consistent vertical profiles along each orbit. However, CloudSat reflectivity signatures are complicated somewhat by resonant Mie scattering effects and significant attenuation in the presence of cloud or rain water. Here, both radar systems are applied to a case of light to moderate snowfall within the warm frontal zone of a cold season, synoptic scale storm. Radars allow for an evaluation of the accuracy of a single-moment scheme in replicating precipitation structures, based on the bulk statistical properties of precipitation as suggested by reflectivity signatures.
ERIC Educational Resources Information Center
Schaffhauser, Dian
2013-01-01
For any institution looking to shift enterprise resource planning (ERP) systems to the cloud, big savings can be achieved--but only if the school has properly prepped "before" negotiations begin. These three steps can help: (1) Mop up the mess first; (2) Understand the true costs for services; and (3) Calculate the cost of transition.
Type-Dependent Responses of Ice Cloud Properties to Aerosols From Satellite Retrievals
NASA Astrophysics Data System (ADS)
Zhao, Bin; Gu, Yu; Liou, Kuo-Nan; Wang, Yuan; Liu, Xiaohong; Huang, Lei; Jiang, Jonathan H.; Su, Hui
2018-04-01
Aerosol-cloud interactions represent one of the largest uncertainties in external forcings on our climate system. Compared with liquid clouds, the observational evidence for the aerosol impact on ice clouds is much more limited and shows conflicting results, partly because the distinct features of different ice cloud and aerosol types were seldom considered. Using 9-year satellite retrievals, we find that, for convection-generated (anvil) ice clouds, cloud optical thickness, cloud thickness, and cloud fraction increase with small-to-moderate aerosol loadings (<0.3 aerosol optical depth) and decrease with further aerosol increase. For in situ formed ice clouds, however, these cloud properties increase monotonically and more sharply with aerosol loadings. An increase in loading of smoke aerosols generally reduces cloud optical thickness of convection-generated ice clouds, while the reverse is true for dust and anthropogenic pollution aerosols. These relationships between different cloud/aerosol types provide valuable constraints on the modeling assessment of aerosol-ice cloud radiative forcing.
NASA Astrophysics Data System (ADS)
Fletcher, S. J.; Kleist, D.; Ide, K.
2017-12-01
As the resolution of operational global numerical weather prediction system approach the meso-scale, then the assumption of Gaussianity for the errors at these scales may not valid. However, it is also true that synoptic variables that are positive definite in behavior, for example humidity, cannot be optimally analyzed with a Gaussian error structure, where the increment could force the full field to go negative. In this presentation we present the initial work of implementing a mixed Gaussian-lognormal approximation for the temperature and moisture variable in both the ensemble and variational component of the NCEP GSI hybrid EnVAR. We shall also lay the foundation for the implementation of the lognormal approximation to cloud related control variables to allow for a possible more consistent assimilation of cloudy radiances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Ming; Albrecht, Bruce A.; Ghate, Virendra P.
This study first illustrates the utility of using the Doppler spectrum width from millimetrewavelength radar to calculate the energy dissipation rate and then to use the energy dissipation rate to study turbulence structure in a continental stratocumulus cloud. It is shown that the turbulence kinetic energy dissipation rate calculated from the radar-measured Doppler spectrum width agrees well with that calculated from the Doppler velocity power spectrum. During the 16-h stratocumulus cloud event, the small-scale turbulence contributes 40%of the total velocity variance at cloud base, 50% at normalized cloud depth=0.8 and 70% at cloud top, which suggests that small-scale turbulence playsmore » a critical role near the cloud top where the entrainment and cloud-top radiative cooling act. The 16-h mean vertical integral length scale decreases from about 160 m at cloud base to 60 m at cloud top, and this signifies that the larger scale turbulence dominates around cloud base whereas the small-scale turbulence dominates around cloud top. The energy dissipation rate, total variance and squared spectrum width exhibit diurnal variations, but unlike marine stratocumulus they are high during the day and lowest around sunset at all levels; energy dissipation rates increase at night with the intensification of the cloud-top cooling. In the normalized coordinate system, the averaged coherent structure of updrafts is characterized by low energy dissipation rates in the updraft core and higher energy dissipation rates surround the updraft core at the top and along the edges. In contrast, the energy dissipation rate is higher inside the downdraft core indicating that the downdraft core is more turbulent. The turbulence around the updraft is weaker at night and stronger during the day; the opposite is true around the downdraft. This behaviour indicates that the turbulence in the downdraft has a diurnal cycle similar to that observed in marine stratocumuluswhereas the turbulence diurnal cycle in the updraft is reversed. For both updraft and downdraft, the maximum energy dissipation rate occurs at a cloud depth=0.8 where the maximum reflectivity and air acceleration or deceleration are observed. Resolved turbulence dominates near cloud base whereas unresolved turbulence dominates near cloud top. Similar to the unresolved turbulence, the resolved turbulence described by the radial velocity variance is higher in the downdraft than in the updraft. The impact of the surface heating on the resolved turbulence in the updraft decreases with height and diminishes around the cloud top. In both updrafts and downdrafts, the resolved turbulence increases with height and reaches a maximum at cloud depth=0.4 and then decreases to the cloud top; the resolved turbulence near cloud top, just as the unresolved turbulence, is mostly due to the cloud-top radiative cooling.« less
Electron-cloud updated simulation results for the PSR, and recent results for the SNS
NASA Astrophysics Data System (ADS)
Pivi, M.; Furman, M. A.
2002-05-01
Recent simulation results for the main features of the electron cloud in the storage ring of the Spallation Neutron Source (SNS) at Oak Ridge, and updated results for the Proton Storage Ring (PSR) at Los Alamos are presented in this paper. A refined model for the secondary emission process including the so called true secondary, rediffused and backscattered electrons has recently been included in the electron-cloud code.
E4 True and False Color Hot Spot Mosaic
1998-03-06
True and false color views of Jupiter from NASA's Galileo spacecraft show an equatorial "hotspot" on Jupiter. These images cover an area 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles). The top mosaic combines the violet and near infrared continuum filter images to create an image similar to how Jupiter would appear to human eyes. Differences in coloration are due to the composition and abundances of trace chemicals in Jupiter's atmosphere. The bottom mosaic uses Galileo's three near-infrared wavelengths displayed in red, green, and blue) to show variations in cloud height and thickness. Bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the deep cloud with an overlying thin haze. The light blue region to the left is covered by a very high haze layer. The multicolored region to the right has overlapping cloud layers of different heights. Galileo is the first spacecraft to distinguish cloud layers on Jupiter. North is at the top. The mosaic covers latitudes 1 to 10 degrees and is centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging camera system aboard Galileo. http://photojournal.jpl.nasa.gov/catalog/PIA00602
NASA Technical Reports Server (NTRS)
2007-01-01
Thick haze collected over the Beijing region in late March 2007. Earlier that month, the BBC News reported that an international team of scientists had documented how increasing pollution in China led to decreasing rainfall over the region. The Moderate Resolution Imaging Spectroradiometer (MODIS) flying onboard the Aqua satellite captured these images of the Beijing region on March 22, 2007. The top image is a 'true-color' picture, similar to a digital photo. The bottom, 'false-color,' image uses a combination of visible and infrared light to more clearly show vegetation, water, and clouds. Even sparse vegetation appears bright green, while water appears deep blue (bright blue when tinged with sediment). Clouds dominated by water droplets appear white, while clouds made of ice crystals appear light blue. The false-color image highlights water bodies, perhaps aqua-culture ponds, that are all but invisible in the true-color image, especially along the shores of the Bo Hai. While vegetation and water show up more clearly in the false-color image, haze is much more transparent. Although dingy gray haze dominates the true-color picture, it is all but invisible in the false-color view. The haze 'disappears' in the infrared-enhanced image because tiny haze particles do not reflect longer-wavelength infrared light very well, making this type of image useful for distinguishing haze from clouds. The bank of clouds in the upper right corner shows up clearly in both pictures. As China industrializes, factories, power plants, and automobiles all contribute to pollution in the region. In examining pollutants and rainfall, the team of scientists examined records covering more than 50 years, concluding that pollution decreased precipitation at Mount Hua near Xi'an in central China. They concluded that when conditions are so hazy that visibility is reduced to less than 8 kilometers (5 miles), hilly precipitation can drop by 30 to 50 percent. When moist air passes over mountains, it usually cools and forms raindrops, but heavy pollutant concentrations cause the clouds to hang on to their moisture.
The size-line width relation and the mass of molecular hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Issa, M.; Maclaren, I.; Wolfendale, A. W.
Some difficulties associated with the problem of cloud definition are considered, with particular regard to the crowded distribution of clouds and the difficulty of choosing an appropriate boundary in such circumstances. A number of tests carried out on the original data suggest that the delta(v) - S relation found by Solomon et al. (1987) is not a genuine reflection of the dynamical state of Giant Molecular Clouds. The Solomon et al. parameters, are insensitive to the actual cloud properties and are unable to distinguish true clouds from the consequences of sampling any crowded region of emission down to a lowmore » threshold temperature. The overall effect of such problems is to overestimate both the masses of Giant Molecular Clouds and the number of very large clouds. 24 refs.« less
Satellite view of the extreme haze clouds over China
NASA Astrophysics Data System (ADS)
Minghui, T.; Chen, L.; Wang, Z.
2013-12-01
Minghui Tao*, Liangfu Chen, Zifeng Wang State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences and Beijing Normal University, Beijing 100101, China *Email: tmh1985@163.com ABSTRACT: In the past decades, great increases in anthropogenic emissions have caused dramatic changes in air quality and regional climate in China, which are further complicated by the natural processes such as dust events and atmospheric dynamics such as variations in intensity of the Asian monsoon. The common urban photochemistry smog, haze, and fog-haze pollution lead to poor air quality in major cities in eastern and middle parts of China. On the other hand, the heavy aerosol loading exerts marked influences on radiation, clouds, and precipitation over China. Satellites usually observed widespread haze clouds over eastern China. In most of previous studies, the dense haze clouds were directly connected with accumulation of anthropogenic emissions. However, satellite observations show that formation processes of haze clouds and local pollution near surface were different. Understanding the connections and interactions between haze clouds and local anthropogenic emissions is essential in chemistry and climate modeling of the aerosols over China. In January 2013, durative haze clouds covered most parts of eastern China, leading to extreme pollution events in many cities. With integrated A-train satellite observations and ground measurements, we investigated variations, optical properties, vertical structures as well as formation process of the extreme haze clouds over eastern China. Satellite-surface results were compared to analyze relations between the haze clouds and surface pollution. Different from traditional views, our results reveal that variation and formation of the haze clouds were driven by large-scale natural processes rather than local anthropogenic emissions. Figure 1. Aqua MODIS true color images of the haze clouds over eastern China on Jan 10, 2013.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Cho, H. M.; Platnick, S. E.; Meyer, K.; Lebsock, M. D.
2014-12-01
The cloud optical thickness (τ) and droplet effective radius (re) are two key cloud parameters retrieved by MODIS (Moderate Resolution Imaging Spectroradiometer). These MODIS cloud products are widely used in a broad range of earth system science applications. In this paper, we present a comprehensive analysis of the failed cloud τ and/or re retrievals for liquid-phase clouds over ocean in the Collection 6 MODIS cloud product. The main findings from this study are summarized as follows: MODIS retrieval failure rates for marine boundary layer (MBL) clouds have a strong dependence on the spectral combination used for retrieval (e.g., 0.86 + 2.1 µm vs. 0.8 + 3.7 µm) and the cloud morphology (i.e., "good" pixels vs. partly cloudy (PCL) pixels). Combining all clear-sky-restoral (CSR) categories (CSR=0,1 and 3), the 0.86 + 2.1 µm and 0.86 + 3.7 µm spectral combinations have an overall failure rate of about 20% and 12%, respectively (See figure below). The PCL pixels (CSR=1 & 3) have significantly higher failure rates and contribute more to the total failure population than the "good" (CSR=0) pixels. The majority of the failed retrievals are caused by the re too large failure, which explains about 85% and 70% of the failed 0.86 + 2.1 µm and 0.86 + 3.7 µm retrievals, respectively. The remaining failures are either due to the re too small failure or τ retrieval failure. The geographical distribution of failure rates has a significant dependence on cloud regime, lower over the coastal stratocumulus cloud regime and higher over the broken trade-wind cumulus cloud regime over open oceans. Enhanced retrieval failure rates are found when MBL clouds have high sub-pixel inhomogeneity , or are located at special Sun-satellite viewing geometries, such as sunglint, large viewing or solar zenith angle, or cloudbow and glory angles, or subject to cloud masking, cloud overlapping and/or cloud phase retrieval issues. About 80% of the failure retrievals can be attributed to at least one or more potential reasons mentioned above. Collocated radar reflectivity observations from CloudSat suggest that the remaining 20% are unlikely to be retrieval artifacts, but reflection of true cloud microphysics, i.e., the true is either truly very small or very large.
NASA Technical Reports Server (NTRS)
Scowcroft, Victoria; Freedman, Wendy L.; Madore, Barry F.; Monson, Andy; Persson, S. E.; Rich, Jeff; Seibert, Mark; Rigby, Jane R.
2016-01-01
Using Spitzer observations of classical Cepheids we have measured the true average distance modulus of the Small Magellanic Cloud (SMC) to be18.96 +/- 0.01 stat +/- 0.03sys mag (corresponding to 62+/- 0.3kpc), which is 0.48 +/- 0.01 mag more distant than the LMC. This is in agreement with previous results from Cepheid observations, as well as with measurements from other indicators such as RR Lyrae stars and the tip of the red giant branch. Utilizing the properties of the mid-infrared Leavitt Law we measured precise distances to individual Cepheids in the SMC, and have confirmed that the galaxy is tilted and elongated such that its eastern side is up to20 kpc closer than its western side. This is in agreement with the results from red clump stars and dynamical simulations of the Magellanic Clouds and Stream.
NASA Astrophysics Data System (ADS)
Lopez-Gonzaga, N.
2015-09-01
The high resolution achieved by the instrument MIDI at the VLTI allowed to obtain more detail information about the geometry and structure of the nuclear mid-infrared emission of AGNs, but due to the lack of real images, the interpretation of the results is not an easy task. To profit more from the high resolution data, we developed a statistical tool that allows interpret these data using clumpy torus models. A statistical approach is needed to overcome effects such as, the randomness in the position of the clouds and the uncertainty of the true position angle on the sky. Our results, obtained by studying the mid-infrared emission at the highest resolution currently available, suggest that the dusty environment of Type I objects is formed by a lower number of clouds than Type II objects.
1986-01-14
Range : 12.9 million miles (8.0 million miles) P-29468C This false color Voyager photograph of Uranus shows a discrete cloud seen as a bright streak near the planets limb. The cloud visible here is the most prominent feature seen in a series of Voyager images designed to track atmospheric motions. The occasional donut shaped features, including one at the bottom, are shadows cast by dust on the camera optics. The picture is a highly processed composite of three images. The processing necessary to bring out the faint features on the planet also brings out these camera blemishes. The three seperate images used where shot through violet, blue, and orange filters. Each color image showd the cloud to a different degree; because they were not exposed at the same time , the images were processed to provide a good spatial match. In a true color image, the cloud would be barely discernable; the false color helps to bring out additional details. The different colors imply variations in vertical structure, but as of yet it is not possible to be specific about such differences. One possiblity is that the uranian atmosphere may contain smog like constituents, in which case some color differences may represent differences in how these molecules are distributed.
Testing the Two-Layer Model for Correcting Clear Sky Reflectance near Clouds
NASA Technical Reports Server (NTRS)
Wen, Guoyong; Marshak, Alexander; Evans, Frank; Varnai, Tamas; Levy, Rob
2015-01-01
A two-layer model (2LM) was developed in our earlier studies to estimate the clear sky reflectance enhancement due to cloud-molecular radiative interaction at MODIS at 0.47 micrometers. Recently, we extended the model to include cloud-surface and cloud-aerosol radiative interactions. We use the LES/SHDOM simulated 3D true radiation fields to test the 2LM for reflectance enhancement at 0.47 micrometers. We find: The simple model captures the viewing angle dependence of the reflectance enhancement near cloud, suggesting the physics of this model is correct; the cloud-molecular interaction alone accounts for 70 percent of the enhancement; the cloud-surface interaction accounts for 16 percent of the enhancement; the cloud-aerosol interaction accounts for an additional 13 percent of the enhancement. We conclude that the 2LM is simple to apply and unbiased.
Cloud Computing - A Unified Approach for Surveillance Issues
NASA Astrophysics Data System (ADS)
Rachana, C. R.; Banu, Reshma, Dr.; Ahammed, G. F. Ali, Dr.; Parameshachari, B. D., Dr.
2017-08-01
Cloud computing describes highly scalable resources provided as an external service via the Internet on a basis of pay-per-use. From the economic point of view, the main attractiveness of cloud computing is that users only use what they need, and only pay for what they actually use. Resources are available for access from the cloud at any time, and from any location through networks. Cloud computing is gradually replacing the traditional Information Technology Infrastructure. Securing data is one of the leading concerns and biggest issue for cloud computing. Privacy of information is always a crucial pointespecially when an individual’s personalinformation or sensitive information is beingstored in the organization. It is indeed true that today; cloud authorization systems are notrobust enough. This paper presents a unified approach for analyzing the various security issues and techniques to overcome the challenges in the cloud environment.
Solar Maps Development: How the Maps Were Made | Geospatial Data Science |
10% of a true measured value within the grid cell. Due to terrain effects and other microclimate effects and other microclimate influences, the local cloud cover can vary significantly even within a approximately 10% of a true measured value within the grid cell. Due to terrain effects and other microclimate
NASA Astrophysics Data System (ADS)
Bailey, Nicole D.; Basu, Shantanu; Caselli, Paola
2017-05-01
Context. Previous studies show that the physical structures and kinematics of a region depend significantly on the ionisation fraction. These studies have only considered these effects in non-ideal magnetohydrodynamic simulations with microturbulence. The next logical step is to explore the effects of turbulence on ionised magnetic molecular clouds and then compare model predictions with observations to assess the importance of turbulence in the dynamical evolution of molecular clouds. Aims: In this paper, we extend our previous studies of the effect of ionisation fractions on star formation to clouds that include both non-ideal magnetohydrodynamics and turbulence. We aim to quantify the importance of a treatment of the ionisation fraction in turbulent magnetised media and investigate the effect of the turbulence on shaping the clouds and filaments before star formation sets in. In particular, here we investigate how the structure, mass and width of filamentary structures depend on the amount of turbulence in ionised media and the initial mass-to-flux ratio. Methods: To determine the effects of turbulence and mass-to-flux ratio on the evolution of non-ideal magnetised clouds with varying ionisation profiles, we have run two sets of simulations. The first set assumes different initial turbulent Mach values for a fixed initial mass-to-flux ratio. The second set assumes different initial mass-to-flux ratio values for a fixed initial turbulent Mach number. Both sets explore the effect of using one of two ionisation profiles: step-like (SL) or cosmic ray only (CR-only). We compare the resulting density and mass-to-flux ratio structures both qualitatively and quantitatively via filament and core masses and filament fitting techniques (Gaussian and Plummer profiles). Results: We find that even with almost no turbulence, filamentary structure still exists although at lower density contours. Comparison of simulations shows that for turbulent Mach numbers above 2, there is little structural difference between the SL and CR-only models, while below this threshold the ionisation structure significantly affects the formation of filaments. This holds true for both sets of models. Analysis of the mass within cores and filaments shows that the mass decreases as the degree of turbulence increases. Finally, observed filaments within the Taurus L1495/B213 complex are best reproduced by models with supercritical mass-to-flux ratios and/or at least mildly supersonic turbulence, however, our models show that the sterile fibres observed within Taurus may occur in highly ionised, subcritical environments. Conclusions: From the analysis of the simulations, we conclude that in the presence of low turbulent velocities, the ionisation structure of the medium still plays a role in shaping the structure of the cloud, however, above Mach 2, the differences between the two profiles become indistinguishable. However, differences may be present in the underlying velocity structure. Kinematics studies will be the focus of the next paper in this series. Regions with fertile fibres likely indicate a trans- or supercritical mass-to-flux ratio within the region while sterile fibres are likely subcritical and transient.
In situ observations of Arctic cloud properties across the Beaufort Sea marginal ice zone
NASA Astrophysics Data System (ADS)
Corr, C.; Moore, R.; Winstead, E.; Thornhill, K. L., II; Crosbie, E.; Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Martin, R.; Shook, M.; Corbett, J.; Smith, W. L., Jr.; Anderson, B. E.
2016-12-01
Clouds play an important role in Arctic climate. This is particularly true over the Arctic Ocean where feedbacks between clouds and sea-ice impact the surface radiation budget through modifications of sea-ice extent, ice thickness, cloud base height, and cloud cover. This work summarizes measurements of Arctic cloud properties made aboard the NASA C-130 aircraft over the Beaufort Sea during ARISE (Arctic Radiation - IceBridge Sea&Ice Experiment) in September 2014. The influence of surface-type on cloud properties is also investigated. Specifically, liquid water content (LWC), droplet concentrations, and droplet size distributions are compared for clouds sampled over three distinct regimes in the Beaufort Sea: 1) open water, 2) the marginal ice zone, and 3) sea-ice. Regardless of surface type, nearly all clouds intercepted during ARISE were liquid-phase clouds. However, differences in droplet size distributions and concentrations were evident for the surface types; clouds over the MIZ and sea-ice generally had fewer and larger droplets compared to those over open water. The potential implication these results have for understanding cloud-surface albedo climate feedbacks in Arctic are discussed.
NASA Astrophysics Data System (ADS)
Helmuth, Kristen
1998-12-01
The dynamical components of six isolated barred spiral (SB) galaxies are investigated. No evidence is found supporting the hypothesis of a low amount of dark matter being characteristic of SB galaxies. The presence of companion galaxies is found to correlate with an increased statistical spread in the neutral hydrogen (HI) extent. It is concluded that the selection of galaxies with large HI extent may introduce a bias towards tidally interacting systems. The circumnuclear region of the SB galaxy NGC 1365 is studied with the Hubble Space Telescope (HST). Numerous bright "super star clusters" (SSCs) are detected, surrounding the active nucleus. The bright compact radio source NGC 1365:A is found to coincide spatially with one of the SSCs. We conclude that the source is a "radio supernova". In the [OIII] l 5007 line, the HST resolves individual clouds within the conical outflow from the nucleus, some of which gather in larger agglomerations. An in-depth study of the dynamics of the SB galaxy NGC 1300 is presented. Multi-wavelength data yield an estimate of the velocity field and gravitational potential. Subsequent hydrodynamical simulations are able to reproduce the morphology and kinematics in the bar region using a pure bar perturbing potential. To reproduce the spiral structure a weak spiral component has to be added, indicative of stellar spiral response to the bar and/or self-gravitating gas in the arms. Two separate models, differing mainly with respect to pattern speed and associated resonance structure, are found to reproduce the observations. We study numerically the linear polarization and extinction of light from background stars passing through molecular clouds, illuminating the intricacies of the derivation of the magnetic-field-line pattern in a cloud from the observed polarization pattern: Due to a higher gas-grain collision frequency within the cloud, the polarization caused by the cloud may well be dominated by background/foreground polarization. Furthermore, variations in field-orientation along the line-of-sight may cause notable differences between the observed polarization vectors and the true magnetic-field-line pattern. Small-scale, helical, interstellar filaments are discussed on the basis of optical observations of an "elephant trunk" structure in the Rosette nebula. The observed sinusoidal filaments are suggested to be helices lined up by magnetic fields. We propose that the Rosette elephant trunks form an interconnected system of rope-like structures which are relics from filamentary skeletons of magnetic fields in the primordial cloud. Stochastic mass fractionation of a molecular cloud is simulated numerically. It is found that geometry alone may constrain the resulting mass spectrum of molecular cloud clumps. We demonstrate that further fragmentation of the cloud clumps, under the assumption of a lower limit of the self-similar regime, produces a mass spectrum that has qualitative and quantitative similarities with the empirically determined stellar initial mass function.
2017-12-08
A vigorous summer fire season continued through July, 2013 as many large wildfires continued to burn in the forests of northern Canada. The high fire activity not only laid waste to thousands of hectares of boreal forest, but sent thick smoke billowing high into the atmosphere, where it was carried far across the Atlantic Ocean. On July 30, the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image of a river of smoke spreading south across the Hudson Bay. The blue background is formed by the waters of Hudson Bay. In the southeast the green, forest-covered land of Quebec province peeks from under a large cloud bank. Another large bank of white cloud covers the water in the southwest, and a smaller cloud bank covers the territory of Nunavut in the northwest. A bit of Baffin Island can be seen near the top center of the image. Looking closely at the image, it appears that the gray smoke mixes with whiter cloud in the south, suggesting they may be at the same level in the atmosphere. In the northeast corner of the image, a ribbon of smoke appears to blow over a bank of popcorn clouds as well as over a few lower-lying clouds, causing some of the clouds to appear gray beneath the smoky veil. Where cloud meets smoke in the northeast, however, the line of the cloud bank remains sharp, while the smoke appears to continue traveling under the edge. Although these interpretations are somewhat subjective in this true-color image, the false-color image of the same scene (not shown here) lends strength to the interpretation. Data from other NASA instruments, designed to measure cloud height and characteristics, agree that clouds vary in height, and that smoke mingles with cloud in the south. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Methods for estimating 2D cloud size distributions from 1D observations
Romps, David M.; Vogelmann, Andrew M.
2017-08-04
The two-dimensional (2D) size distribution of clouds in the horizontal plane plays a central role in the calculation of cloud cover, cloud radiative forcing, convective entrainment rates, and the likelihood of precipitation. Here, a simple method is proposed for calculating the area-weighted mean cloud size and for approximating the 2D size distribution from the 1D cloud chord lengths measured by aircraft and vertically pointing lidar and radar. This simple method (which is exact for square clouds) compares favorably against the inverse Abel transform (which is exact for circular clouds) in the context of theoretical size distributions. Both methods also performmore » well when used to predict the size distribution of real clouds from a Landsat scene. When applied to a large number of Landsat scenes, the simple method is able to accurately estimate the mean cloud size. Finally, as a demonstration, the methods are applied to aircraft measurements of shallow cumuli during the RACORO campaign, which then allow for an estimate of the true area-weighted mean cloud size.« less
Methods for estimating 2D cloud size distributions from 1D observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romps, David M.; Vogelmann, Andrew M.
The two-dimensional (2D) size distribution of clouds in the horizontal plane plays a central role in the calculation of cloud cover, cloud radiative forcing, convective entrainment rates, and the likelihood of precipitation. Here, a simple method is proposed for calculating the area-weighted mean cloud size and for approximating the 2D size distribution from the 1D cloud chord lengths measured by aircraft and vertically pointing lidar and radar. This simple method (which is exact for square clouds) compares favorably against the inverse Abel transform (which is exact for circular clouds) in the context of theoretical size distributions. Both methods also performmore » well when used to predict the size distribution of real clouds from a Landsat scene. When applied to a large number of Landsat scenes, the simple method is able to accurately estimate the mean cloud size. Finally, as a demonstration, the methods are applied to aircraft measurements of shallow cumuli during the RACORO campaign, which then allow for an estimate of the true area-weighted mean cloud size.« less
Towards a true aerosol-and-cloud retrieval scheme
NASA Astrophysics Data System (ADS)
Thomas, Gareth; Poulsen, Caroline; Povey, Adam; McGarragh, Greg; Jerg, Matthias; Siddans, Richard; Grainger, Don
2014-05-01
The Optimal Retrieval of Aerosol and Cloud (ORAC) - formally the Oxford-RAL Aerosol and Cloud retrieval - offers a framework that can provide consistent and well characterised properties of both aerosols and clouds from a range of imaging satellite instruments. Several practical issues stand in the way of achieving the potential of this combined scheme however; in particular the sometimes conflicting priorities and requirements of aerosol and cloud retrieval problems, and the question of the unambiguous identification of aerosol and cloud pixels. This presentation will present recent developments made to the ORAC scheme for both aerosol and cloud, and detail how these are being integrated into a single retrieval framework. The implementation of a probabilistic method for pixel identification will also be presented, for both cloud detection and aerosol/cloud type selection. The method is based on Bayesian methods applied the optimal estimation retrieval output of ORAC and is particularly aimed at providing additional information in the so-called "twilight zone", where pixels can't be unambiguously identified as either aerosol or cloud and traditional cloud or aerosol products do not provide results.
2008-01-01
the sensor is a data cloud in multi- dimensional space with each band generating an axis of dimension. When the data cloud is viewed in two or three...endmember of interest is not a true endmember in the data space . A ) B) Figure 8: Linear mixture models. A ) two- dimensional ...multi- dimensional space . A classifier is a computer algorithm that takes
E4 True and false color hot spot mosaic
NASA Technical Reports Server (NTRS)
1997-01-01
True and false color views of Jupiter from NASA's Galileo spacecraft show an equatorial 'hotspot' on Jupiter. These images cover an area 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles). The top mosaic combines the violet and near infrared continuum filter images to create an image similar to how Jupiter would appear to human eyes. Differences in coloration are due to the composition and abundances of trace chemicals in Jupiter's atmosphere. The bottom mosaic uses Galileo's three near-infrared wavelengths displayed in red, green, and blue) to show variations in cloud height and thickness. Bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the deep cloud with an overlying thin haze. The light blue region to the left is covered by a very high haze layer. The multicolored region to the right has overlapping cloud layers of different heights. Galileo is the first spacecraft to distinguish cloud layers on Jupiter.
North is at the top. The mosaic covers latitudes 1 to 10 degrees and is centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging camera system aboard Galileo. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at: http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at: http:/ /www.jpl.nasa.gov/galileo/sepo.Accuracy Analysis of a Dam Model from Drone Surveys
Buffi, Giulia; Venturi, Sara
2017-01-01
This paper investigates the accuracy of models obtained by drone surveys. To this end, this work analyzes how the placement of ground control points (GCPs) used to georeference the dense point cloud of a dam affects the resulting three-dimensional (3D) model. Images of a double arch masonry dam upstream face are acquired from drone survey and used to build the 3D model of the dam for vulnerability analysis purposes. However, there still remained the issue of understanding the real impact of a correct GCPs location choice to properly georeference the images and thus, the model. To this end, a high number of GCPs configurations were investigated, building a series of dense point clouds. The accuracy of these resulting dense clouds was estimated comparing the coordinates of check points extracted from the model and their true coordinates measured via traditional topography. The paper aims at providing information about the optimal choice of GCPs placement not only for dams but also for all surveys of high-rise structures. The knowledge a priori of the effect of the GCPs number and location on the model accuracy can increase survey reliability and accuracy and speed up the survey set-up operations. PMID:28771185
Accuracy Analysis of a Dam Model from Drone Surveys.
Ridolfi, Elena; Buffi, Giulia; Venturi, Sara; Manciola, Piergiorgio
2017-08-03
This paper investigates the accuracy of models obtained by drone surveys. To this end, this work analyzes how the placement of ground control points (GCPs) used to georeference the dense point cloud of a dam affects the resulting three-dimensional (3D) model. Images of a double arch masonry dam upstream face are acquired from drone survey and used to build the 3D model of the dam for vulnerability analysis purposes. However, there still remained the issue of understanding the real impact of a correct GCPs location choice to properly georeference the images and thus, the model. To this end, a high number of GCPs configurations were investigated, building a series of dense point clouds. The accuracy of these resulting dense clouds was estimated comparing the coordinates of check points extracted from the model and their true coordinates measured via traditional topography. The paper aims at providing information about the optimal choice of GCPs placement not only for dams but also for all surveys of high-rise structures. The knowledge a priori of the effect of the GCPs number and location on the model accuracy can increase survey reliability and accuracy and speed up the survey set-up operations.
Cloud Infrastructures for In Silico Drug Discovery: Economic and Practical Aspects
Clematis, Andrea; Quarati, Alfonso; Cesini, Daniele; Milanesi, Luciano; Merelli, Ivan
2013-01-01
Cloud computing opens new perspectives for small-medium biotechnology laboratories that need to perform bioinformatics analysis in a flexible and effective way. This seems particularly true for hybrid clouds that couple the scalability offered by general-purpose public clouds with the greater control and ad hoc customizations supplied by the private ones. A hybrid cloud broker, acting as an intermediary between users and public providers, can support customers in the selection of the most suitable offers, optionally adding the provisioning of dedicated services with higher levels of quality. This paper analyses some economic and practical aspects of exploiting cloud computing in a real research scenario for the in silico drug discovery in terms of requirements, costs, and computational load based on the number of expected users. In particular, our work is aimed at supporting both the researchers and the cloud broker delivering an IaaS cloud infrastructure for biotechnology laboratories exposing different levels of nonfunctional requirements. PMID:24106693
NASA Astrophysics Data System (ADS)
Marinos, Alexandros; Briscoe, Gerard
Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns over privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon and Microsoft. Our response is an alternative model for the Cloud conceptualisation, providing a paradigm for Clouds in the community, utilising networked personal computers for liberation from the centralised vendor model. Community Cloud Computing (C3) offers an alternative architecture, created by combing the Cloud with paradigms from Grid Computing, principles from Digital Ecosystems, and sustainability from Green Computing, while remaining true to the original vision of the Internet. It is more technically challenging than Cloud Computing, having to deal with distributed computing issues, including heterogeneous nodes, varying quality of service, and additional security constraints. However, these are not insurmountable challenges, and with the need to retain control over our digital lives and the potential environmental consequences, it is a challenge we must pursue.
Stereoscopic, thermal, and true deep cumulus cloud top heights
NASA Astrophysics Data System (ADS)
Llewellyn-Jones, D. T.; Corlett, G. K.; Lawrence, S. P.; Remedios, J. J.; Sherwood, S. C.; Chae, J.; Minnis, P.; McGill, M.
2004-05-01
We compare cloud-top height estimates from several sensors: thermal tops from GOES-8 and MODIS, stereoscopic tops from MISR, and directly measured heights from the Goddard Cloud Physics Lidar on board the ER-2, all collected during the CRYSTAL-FACE field campaign. Comparisons reveal a persistent 1-2 km underestimation of cloud-top heights by thermal imagery, even when the finite optical extinctions near cloud top and in thin overlying cirrus are taken into account. The most severe underestimates occur for the tallest clouds. The MISR "best-sinds" and lidar estimates disagree in very similar ways with thermally estimated tops, which we take as evidence of excellent performance by MISR. Encouraged by this, we use MISR to examine variations in cloud penetration and thermal top height errors in several locations of tropical deep convection over multiple seasons. The goals of this are, first, to learn how cloud penetration depends on the near-tropopause environment; and second, to gain further insight into the mysterious underestimation of tops by thermal imagery.
Atmospheric Motion in Jupiter Northern Hemisphere
2000-09-25
True-color (left) and false-color (right) mosaics of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric motions are controlled by alternating eastward and westward bands of air between Jupiter's equator and polar regions. The direction and speed of these bands influences the color and texture of the clouds seen in this mosaic. The high and thin clouds are represented by light blue, deep clouds are reddish, and high and thick clouds are white. A high haze overlying a clear, deep atmosphere is represented by dark purple. This image was taken by NASA's Galileo spacecraft on April 3, 1997 at a distance of 1.4 million kilometers (.86 million miles). http://photojournal.jpl.nasa.gov/catalog/PIA03000
The role of magnetic fields in the collapse of protostellar gas clouds
NASA Technical Reports Server (NTRS)
Scott, E. H.; Black, D. C.
1980-01-01
The paper presents the results of a numerical calculation of the collapse of an idealized protostellar gas cloud including the effects of a 'frozen-in' magnetic field. The 'traditional' picture of magnetic effects on gas clouds and recent observational and theoretical work on the subject are summarized. Attention is given to the method of calculation and the results are interpreted. It is found that the central magnetic field in the collapsing cloud model follows a rho to the 1/2 power relation, and the discussion implies that this is a general result which should hold true for some range of initial conditions around those chosen. In addition, it is found that the outer envelope of the cloud will be held up by tension in the field lines.
Dynamics of the Interstellar Matter in Galaxies
NASA Astrophysics Data System (ADS)
Kristen, H.
The dynamical components of six isolated barred spiral (SB) galaxies are investigated. No evidence is found supporting the hypothesis of a low amount of dark matter being characteristic of SB galaxies. The presence of companion galaxies is found to correlate with an increased statistical spread in the neutral hydrogen (HI) extent. It is concluded that the selection of galaxies with large HI~extent may introduce a bias towards tidally interacting systems. The circumnuclear region of the SB galaxy NGC 1365 is studied with the Hubble Space Telescope (HST). Numerous bright ``super star clusters'' (SSCs) are detected, surrounding the active nucleus. The bright compact radio source NGC 1365:A is found to coincide spatially with one of the SSCs. We conclude that the source is a ``radio supernova''. In the [OIII] 5007 line, the HST resolves individual clouds within the conical outflow from the nucleus, some of which gather in larger agglomerations. An in-depth study of the dynamics of the SB galaxy NGC 1300 is presented. Multi-wavelength data yield an estimate of the velocity field and gravitational potential. Subsequent hydrodynamical simulations are able to reproduce the morphology and kinematics in the bar region using a pure bar perturbing potential. To reproduce the spiral structure a weak spiral component has to be added, indicative of stellar spiral response to the bar and/or self-gravitating gas in the arms. Two separate models, differing mainly with respect to pattern speed and associated resonance structure, are found to reproduce the observations. We study numerically the linear polarization and extinction of light from background stars passing through molecular clouds, illuminating the intricacies of the derivation of the magnetic-field-line pattern in a cloud from the observed polarization pattern: Due to a higher gas-grain collision frequency within the cloud, the polarization caused by the cloud may well be dominated by background/foreground polarization. Furthermore, variations in field-orientation along the line-of-sight may cause notable differences between the observed polarization vectors and the true magnetic-field-line pattern. Small-scale, helical, interstellar filaments are discussed on the basis of optical observations of an ``elephant trunk'' structure in the Rosette nebula. The observed sinusoidal filaments are suggested to be helices lined up by magnetic fields. We propose that the Rosette elephant trunks form an interconnected system of rope-like structures which are relics from filamentary skeletons of magnetic fields in the primordial cloud. Stochastic mass fractionation of a molecular cloud is simulated numerically. It is found that geometry alone may constrain the resulting mass spectrum of molecular cloud clumps. We demonstrate that further fragmentation of the cloud clumps, under the assumption of a lower limit of the self-similar regime, produces a mass spectrum that has qualitative and quantitative similarities with the empirically determined stellar initial mass function.
Hole punch clouds over the Bahamas
2017-12-08
In elementary school, students learn that water freezes at 0 degrees Celsius (32 degrees Fahrenheit). That is true most of the time, but there are exceptions to the rule. For instance, water with very few impurities (such as dust or pollution particles, fungal spores, bacteria) can be chilled to much cooler temperatures and still remain liquid—a process known as supercooling. Supercooling may sound exotic, but it occurs pretty routinely in Earth’s atmosphere. Altocumulus clouds, a common type of mid-altitude cloud, are mostly composed of water droplets supercooled to a temperature of about -15 degrees C. Altocumulus clouds with supercooled tops cover about 8 percent of Earth’s surface at any given time. Supercooled water droplets play a key role in the formation of hole-punch and canal clouds, the distinctive clouds shown in these satellite images. Hole-punch clouds usually appear as circular gaps in decks of altocumulus clouds; canal clouds look similar but the gaps are longer and thinner. This true-color image shows hole-punch and canal clouds off the coast of Florida, as observed on December 12, 2014, by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite. Both types of cloud form when aircraft fly through cloud decks rich with supercooled water droplets and produce aerodynamic contrails. Air expands and cools as it moves around the wings and past the propeller, a process known as adiabatic cooling. Air temperatures over jet wings often cool by as much as 20 degrees Celsius, pushing supercooled water droplets to the point of freezing. As ice crystals form, they absorb nearby water droplets. Since ice crystals are relatively heavy, they tend to sink. This triggers tiny bursts of snow or rain that leave gaps in the cloud cover. Whether a cloud formation becomes a hole-punch or canal depends on the thickness of the cloud layer, the air temperature, and the degree of horizontal wind shear. Both descending and ascending aircraft—including jets and propeller planes—can trigger hole-punch and canal clouds. The nearest major airports in the images above include Miami International, Fort Lauderdale International, Grand Bahama International, and Palm Beach International. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Cloud Computing with iPlant Atmosphere.
McKay, Sheldon J; Skidmore, Edwin J; LaRose, Christopher J; Mercer, Andre W; Noutsos, Christos
2013-10-15
Cloud Computing refers to distributed computing platforms that use virtualization software to provide easy access to physical computing infrastructure and data storage, typically administered through a Web interface. Cloud-based computing provides access to powerful servers, with specific software and virtual hardware configurations, while eliminating the initial capital cost of expensive computers and reducing the ongoing operating costs of system administration, maintenance contracts, power consumption, and cooling. This eliminates a significant barrier to entry into bioinformatics and high-performance computing for many researchers. This is especially true of free or modestly priced cloud computing services. The iPlant Collaborative offers a free cloud computing service, Atmosphere, which allows users to easily create and use instances on virtual servers preconfigured for their analytical needs. Atmosphere is a self-service, on-demand platform for scientific computing. This unit demonstrates how to set up, access and use cloud computing in Atmosphere. Copyright © 2013 John Wiley & Sons, Inc.
A Jovian Hotspot in True and False Colors (Time set 3)
NASA Technical Reports Server (NTRS)
1997-01-01
True and false color views of an equatorial 'hotspot' on Jupiter. These images cover an area 34,000 kilometers by 11,000 kilometers. The top mosaic combines the violet (410 nanometers or nm) and near-infrared continuum (756 nm) filter images to create an image similar to how Jupiter would appear to human eyes. Differences in coloration are due to the composition and abundances of trace chemicals in Jupiter's atmosphere. The bottom mosaic uses Galileo's three near-infrared wavelengths (756 nm, 727 nm, and 889 nm displayed in red, green, and blue) to show variations in cloud height and thickness. Bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the deep cloud with an overlying thin haze. The light blue region to the left is covered by a very high haze layer. The multicolored region to the right has overlapping cloud layers of different heights. Galileo is the first spacecraft to distinguish cloud layers on Jupiter.
North is at the top. The mosaics cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees West. The planetary limb runs along the right edge of the image. Cloud patterns appear foreshortened as they approach the limb. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoNASA Technical Reports Server (NTRS)
Platnick, Steven; King, Michael D.; Wind, Gala; Holz, Robert E.; Ackerman, Steven A.; Nagle, Fred W.
2008-01-01
CALIPSO and CloudSat, launched in June 2006, provide global active remote sensing measurements of clouds and aerosols that can be used for validation of a variety of passive imager retrievals derived from instruments flying on the Aqua spacecraft and other A-Train platforms. The most recent processing effort for the MODIS Atmosphere Team, referred to as the "Collection 5" stream, includes a research-level multilayer cloud detection algorithm that uses both thermodynamic phase information derived from a combination of solar and thermal emission bands to discriminate layers of different phases, as well as true layer separation discrimination using a moderately absorbing water vapor band. The multilayer detection algorithm is designed to provide a means of assessing the applicability of 1D cloud models used in the MODIS cloud optical and microphysical product retrieval, which are generated at a 1 h resolution. Using pixel-level collocations of MODIS Aqua, CALIOP, and CloudSat radar measurements, we investigate the global performance of the thermodynamic phase and multilayer cloud detection algorithms.
A High Definition View of AGN Feedback: Chandra Imaging of Nearby Seyfert Galaxies
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Fabbiano, G.; Risaliti, G.; Elvis, M.; Karovska, M.; Zezas, A.; Mundell, C. G.
2010-03-01
To improve the physics of AGN feedback, it is crucial to evaluate the true role of outflows on galaxy evolution observationally. I will present new results from Chandra spectral imaging of nearby Seyfert galaxies, which offer unique opportunities to examine feedback in action in much greater detail than at high redshift. Exploiting Chandra's highest possible resolution, we are able to study structures in NGC 4151 on spatial scales of 0.5 arcsec (30 pc), showing an extended X-ray morphology overall consistent with the optical NLR. We find that most of the NLR clouds in NGC 4151 have [OIII] to soft X-ray ratio consistent with the values observed in NLRs of some Seyfert 2 galaxies, which indicates a uniform ionization parameter even at large radii. We examine various X-ray emission mechanisms of the radio jet and consider thermal emission from interaction between radio outflow and the NLR clouds the most probable origin for the X-ray emission associated with the jet.
Net thermal radiation in the atmosphere of Venus
NASA Technical Reports Server (NTRS)
Revercomb, H. E.; Sromovsky, L. A.; Suomi, V. E.; Boese, R. W.
1985-01-01
Estimates of the true atmospheric net fluxes at the four Pioneer Venus entry sites are presently obtained through corrections of measured values that are relatively small for the case of the clouds, but generally large deeper in the atmosphere. The correction procedure for both the small and large probe fluxes used model results near 14 km to establish the size of the correction. The thermal net fluxes obtained imply that the contribution of mode 3 particles to the IR opacity of the middle and lower clouds is smaller than indicated by the Pioneer Venus cloud particle spectrometer measurements, and the day probe results favor a reduction of only about 50 percent. The fluxes at all sites imply that a yet-undetermined source of considerable opacity is present in the upper cloud. Beneath the clouds, the thermal net fluxes generally increase with increasing latitude.
Morning Clouds Atop Martian Mountain
2015-06-19
Seen shortly after local Martian sunrise, clouds gather in the summit pit, or caldera, of Pavonis Mons, a giant volcano on Mars, in this image from the Thermal Emission Imaging System (THEMIS) on NASA's Mars Odyssey orbiter. The clouds are mostly made of ice crystals. They appear blue in the image because the cloud particles scatter blue light more strongly than other colors. Pavonis Mons stands about nine miles (14 kilometers) high, and the caldera spans about 29 miles (47 kilometers) wide. This image was made by THEMIS through three of its visual-light filters plus a near-infrared filter, and it is approximately true in color. THEMIS and other instruments on Mars Odyssey have been studying Mars from orbit since 2001. http://photojournal.jpl.nasa.gov/catalog/PIA19675
Semantic Web-based digital, field and virtual geological
NASA Astrophysics Data System (ADS)
Babaie, H. A.
2012-12-01
Digital, field and virtual Semantic Web-based education (SWBE) of geological mapping requires the construction of a set of searchable, reusable, and interoperable digital learning objects (LO) for learners, teachers, and authors. These self-contained units of learning may be text, image, or audio, describing, for example, how to calculate the true dip of a layer from two structural contours or find the apparent dip along a line of section. A collection of multi-media LOs can be integrated, through domain and task ontologies, with mapping-related learning activities and Web services, for example, to search for the description of lithostratigraphic units in an area, or plotting orientation data on stereonet. Domain ontologies (e.g., GeologicStructure, Lithostratigraphy, Rock) represent knowledge in formal languages (RDF, OWL) by explicitly specifying concepts, relations, and theories involved in geological mapping. These ontologies are used by task ontologies that formalize the semantics of computational tasks (e.g., measuring the true thickness of a formation) and activities (e.g., construction of cross section) for all actors to solve specific problems (making map, instruction, learning support, authoring). A SWBE system for geological mapping should also involve ontologies to formalize teaching strategy (pedagogical styles), learner model (e.g., for student performance, personalization of learning), interface (entry points for activities of all actors), communication (exchange of messages among different components and actors), and educational Web services (for interoperability). In this ontology-based environment, actors interact with the LOs through educational servers, that manage (reuse, edit, delete, store) ontologies, and through tools which communicate with Web services to collect resources and links to other tools. Digital geological mapping involves a location-based, spatial organization of geological elements in a set of GIS thematic layers. Each layer in the stack assembles a set of polygonal (e.g., formation, member, intrusion), linear (e.g., fault, contact), and/or point (e.g., sample or measurement site) geological elements. These feature classes, represented in domain ontologies by classes, have their own sets of property (attribute, association relation) and topological (e.g., overlap, adjacency, containment), and network (cross-cuttings; connectivity) relationships. Since geological mapping involves describing and depicting different aspects of each feature class (e.g., contact, formation, structure), the same geographic region may be investigated by different communities, for example, for its stratigraphy, rock type, structure, soil type, and isotopic and paleontological age, using sets of ontologies. These data can become interconnected applying the Semantic Web technologies, on the Linked Open Data Cloud, based on their underlying common geographic coordinates. Sets of geological data published on the Cloud will include multiple RDF links to Cloud's geospatial nodes such as GeoNames and Linked GeoData. During mapping, a device such as smartphone, laptop, or iPad, with GPS and GIS capability and a DBpedia Mobile client, can use the current position to discover and query all the geological linked data, and add new data to the thematic layers and publish them to the Cloud.
Snow Storm Blankets Southeastern U.S.
NASA Technical Reports Server (NTRS)
2002-01-01
A new year's storm brought heavy snow to portions of the southeastern United States, with some regions receiving more than a foot in less than two days. By Friday, January 4, 2002, the skies had cleared, and MODIS captured this false-color image showing the extent of the snowfall. Snow cover is red, and extends all the way from Alabama (lower left), up through Georgia, South Carolina, North Carolina, Virginia, and Maryland, including the southern reaches of the Delmarva Peninsula (upper right). Beneath some clouds in West Virginia (top center), snow is also visible on the Allegheny Mountains and the Appalachian Plateau, although it did come from the same storm. Though red isn't the color we associate with snow, scientists often find 'false-color' images more useful than 'true-color' images in certain situations. True-color images are images in which the satellite data are made to look like what our eyes would see, using a combination of red, green, and blue. In a true-color image of this scene, cloud and snow would appear almost identical-both would be very bright white-and would be hard to distinguish from each other. However, at near-infrared wavelengths of light, snow cover absorbs sunlight and therefore appears much darker than clouds. So a false-color image in which one visible wavelength of the data is colored red, and different near-infrared wavelengths are colored green and blue helps show the snow cover most clearly.
ALMA RESOLVES 30 DORADUS: SUB-PARSEC MOLECULAR CLOUD STRUCTURE NEAR THE CLOSEST SUPER STAR CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Indebetouw, Remy; Brogan, Crystal; Leroy, Adam
2013-09-01
We present Atacama Large (sub)Millimeter Array observations of 30 Doradus-the highest resolution view of molecular gas in an extragalactic star formation region to date ({approx}0.4 pc Multiplication-Sign 0.6 pc). The 30Dor-10 cloud north of R136 was mapped in {sup 12}CO 2-1, {sup 13}CO 2-1, C{sup 18}O 2-1, 1.3 mm continuum, the H30{alpha} recombination line, and two H{sub 2}CO 3-2 transitions. Most {sup 12}CO emission is associated with small filaments and clumps ({approx}<1 pc, {approx}10{sup 3} M{sub Sun} at the current resolution). Some clumps are associated with protostars, including ''pillars of creation'' photoablated by intense radiation from R136. Emission from molecularmore » clouds is often analyzed by decomposition into approximately beam-sized clumps. Such clumps in 30 Doradus follow similar trends in size, linewidth, and surface density to Milky Way clumps. The 30 Doradus clumps have somewhat larger linewidths for a given size than predicted by Larson's scaling relation, consistent with pressure confinement. They extend to a higher surface density at a given size and linewidth compared to clouds studied at 10 pc resolution. These trends are also true of clumps in Galactic infrared-dark clouds; higher resolution observations of both environments are required. Consistency of clump masses calculated from dust continuum, CO, and the virial theorem reveals that the CO abundance in 30 Doradus clumps is not significantly different from the Large Magellanic Cloud mean, but the dust abundance may be reduced by {approx}2. There are no strong trends in clump properties with distance from R136; dense clumps are not strongly affected by the external radiation field, but there is a modest trend toward lower dense clump filling fraction deeper in the cloud.« less
Ortho- and para-hydrogen in dense clouds, protoplanets, and planetary atmospheres
NASA Technical Reports Server (NTRS)
Decampli, W. M.; Cameron, A. G. W.; Bodenheimer, P.; Black, D. C.
1978-01-01
If ortho- and para-hydrogen achieve a thermal ratio on dynamical time scales in a molecular hydrogen cloud, then the specific heat is high enough in the temperature range 35-70 K to possibly induce hydrodynamic collapse. The ortho-para ratio in many interstellar cloud fragments is expected to meet this condition. The same may have been true for the primitive solar nebula. Detailed hydrodynamic and hydrostatic calculations are presented that show the effects of the assumed ortho-para ratio on the evolution of Jupiter during its protoplanetary phase. Some possible consequences of a thermalized ortho-para ratio in the atmospheres of the giant planets are also discussed.
Io, the closest Galileo's Medicean Moon: Changes in its Sodium Cloud Caused by Jupiter Eclipse
NASA Astrophysics Data System (ADS)
Grava, Cesare; Schneider, Nicholas M.; Barbieri, Cesare
2010-01-01
We report results of a study of true temporal variations in Io's sodium cloud before and after eclipse by Jupiter. The eclipse geometry is important because there is a hypothesis that the atmosphere partially condenses when the satellite enters the Jupiter's shadow, preventing sodium from being released to the cloud in the hours immediately after the reappearance. The challenge lies in disentangling true variations in sodium content from the changing strength of resonant scattering due Io's changing Doppler shift in the solar sodium absorption line. We undertook some observing runs at Telescopio Nazionale Galileo (TNG) at La Palma Canary Island with the high resolution spectrograph SARG in order to observe Io entering into Jupiter's shadow and coming out from it. The particular configuration chosen for the observations allowed us to observe Io far enough from Jupiter and to disentangle line-of-sight effects looking perpendicularly at the sodium cloud. We will present results which took advantage of a very careful reduction strategy. We remove the dependence from γ-factor, which is the fraction of solar light available for resonant scattering, in order to remove the dependence on the radial velocity of Io with respect to the Sun. This work has been supported by NSF's Planetary Astronomy Program, INAF/TNG and the Department of Astronomy and Cisas of University of Padova, through a contract by the Italian Space Agency ASI.
A Jovian Hotspot in True and False Colors (Time set 1)
NASA Technical Reports Server (NTRS)
1997-01-01
True and false color views of an equatorial 'hotspot' on Jupiter. These images cover an area 34,000 kilometers by 11,000 kilometers. The top mosaic combines the violet (410 nanometers or nm) and near-infrared continuum (756 nm) filter images to create an image similar to how Jupiter would appear to human eyes. Differences in coloration are due to the composition and abundances of trace chemicals in Jupiter's atmosphere. The bottom mosaic uses Galileo's three near-infrared wavelengths (756 nm, 727 nm, and 889 nm displayed in red, green, and blue) to show variations in cloud height and thickness. Bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the deep cloud with an overlying thin haze. The light blue region to the left is covered by a very high haze layer. The multicolored region to the right has overlapping cloud layers of different heights. Galileo is the first spacecraft to distinguish cloud layers on Jupiter.
North is at the top. The mosaics cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoCloud screening Coastal Zone Color Scanner images using channel 5
NASA Technical Reports Server (NTRS)
Eckstein, B. A.; Simpson, J. J.
1991-01-01
Clouds are removed from Coastal Zone Color Scanner (CZCS) data using channel 5. Instrumentation problems require pre-processing of channel 5 before an intelligent cloud-screening algorithm can be used. For example, at intervals of about 16 lines, the sensor records anomalously low radiances. Moreover, the calibration equation yields negative radiances when the sensor records zero counts, and pixels corrupted by electronic overshoot must also be excluded. The remaining pixels may then be used in conjunction with the procedure of Simpson and Humphrey to determine the CZCS cloud mask. These results plus in situ observations of phytoplankton pigment concentration show that pre-processing and proper cloud-screening of CZCS data are necessary for accurate satellite-derived pigment concentrations. This is especially true in the coastal margins, where pigment content is high and image distortion associated with electronic overshoot is also present. The pre-processing algorithm is critical to obtaining accurate global estimates of pigment from spacecraft data.
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the northeast, from between the cloud layers and above the streaks in the lower cloud leading towards the hotspot. The upper haze layer has some features that match the lower cloud, such as the bright streak in the foreground of the frame. These are probably thick clouds that span several tens of vertical kilometers.Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper and lower clouds are separated in the rendering by an arbitrary amount, and the height variations are exaggerated by a factor of 25.The lower cloud is colored using the same false color scheme used in previously released image products, assigning red, green, and blue to the 756, 727, and 889 nanometer mosaics, respectively. Light bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the lower cloud with an overlying thin haze.The images used cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the northeast, from between the cloud layers and above the streaks in the lower cloud leading towards the hotspot. The hotspot is clearly visible as a deep blue feature. The cloud streaks end near the hotspot, consistent with the idea that clouds traveling along these streak lines descend and evaporate as they approach the hotspot. The upper haze layer is slightly bowed upwards above the hotspot.Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper and lower clouds are separated in the rendering by an arbitrary amount, and the height variations are exaggerated by a factor of 25.The lower cloud is colored using the same false color scheme used in previously released image products, assigning red, green, and blue to the 756, 727, and 889 nanometer mosaics, respectively. Light bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the lower cloud with an overlying thin haze.The images used cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.Comparison of the MODIS Collection 5 Multilayer Cloud Detection Product with CALIPSO
NASA Technical Reports Server (NTRS)
Platnick, Steven; Wind, Gala; King, Michael D.; Holz, Robert E.; Ackerman, Steven A.; Nagle, Fred W.
2010-01-01
CALIPSO, launched in June 2006, provides global active remote sensing measurements of clouds and aerosols that can be used for validation of a variety of passive imager retrievals derived from instruments flying on the Aqua spacecraft and other A-Train platforms. The most recent processing effort for the MODIS Atmosphere Team, referred to as the Collection 5 scream, includes a research-level multilayer cloud detection algorithm that uses both thermodynamic phase information derived from a combination of solar and thermal emission bands to discriminate layers of different phases, as well as true layer separation discrimination using a moderately absorbing water vapor band. The multilayer detection algorithm is designed to provide a means of assessing the applicability of 1D cloud models used in the MODIS cloud optical and microphysical product retrieval, which are generated at a 1 km resolution. Using pixel-level collocations of MODIS Aqua, CALIOP, we investigate the global performance of multilayer cloud detection algorithms (and thermodynamic phase).
NASA Technical Reports Server (NTRS)
Fowler, Laura D.; Wielicki, Bruce A.; Randall, David A.; Branson, Mark D.; Gibson, Gary G.; Denn, Fredrick M.
2000-01-01
Collocated in time and space, top-of-the-atmosphere measurements of the Earth radiation budget (ERB) and cloudiness from passive scanning radiometers, and lidar- and radar-in-space measurements of multilayered cloud systems, are the required combination to improve our understanding of the role of clouds and radiation in climate. Experiments to fly multiple satellites "in formation" to measure simultaneously the radiative and optical properties of overlapping cloud systems are being designed. Because satellites carrying ERB experiments and satellites carrying lidars- or radars-in space have different orbital characteristics, the number of simultaneous measurements of radiation and clouds is reduced relative to the number of measurements made by each satellite independently. Monthly averaged coincident observations of radiation and cloudiness are biased when compared against more frequently sampled observations due, in particular, to the undersampling of their diurnal cycle, Using the Colorado State University General Circulation Model (CSU GCM), the goal of this study is to measure the impact of using simultaneous observations from the Earth Observing System (EOS) platform and companion satellites flying lidars or radars on monthly averaged diagnostics of longwave radiation, cloudiness, and its cloud optical properties. To do so, the hourly varying geographical distributions of coincident locations between the afternoon EOS (EOS-PM) orbit and the orbit of the ICESAT satellite set to fly at the altitude of 600 km, and between the EOS PM orbit and the orbits of the PICASSO satellite proposed to fly at the altitudes of 485 km (PICA485) or 705 km (PICA705), are simulated in the CSU GCM for a 60-month time period starting at the idealistic July 1, 2001, launch date. Monthly averaged diagnostics of the top-of-the-atmosphere, atmospheric, and surface longwave radiation budgets and clouds accumulated over grid boxes corresponding to satellite overpasses are compared against monthly averaged diagnostics obtained from hourly samplings over the entire globe. Results show that differences between irregularly (satellite) and regularly (true) sampled diagnostics of the longwave net radiative budgets are the greatest at the surface and the smallest in the atmosphere and at the top-of-the-atmosphere, under both cloud-free and cloudy conditions. In contrast, differences between the satellite and the true diagnostics of the longwave cloud radiative forcings are the largest in the atmosphere and at the top-of-the-atmosphere, and the smallest at the surface. A poorer diurnal sampling of the surface temperature in the satellite simulations relative to the true simulation contributes a major part to sampling biases in the longwave net radiative budgets, while a poorer diurnal sampling of cloudiness and its optical properties directly affects diagnostics of the longwave cloud radiative forcings. A factor of 8 difference in the number of satellite overpasses between PICA705 and PICA485 and ICESAT leads to a systematic factor of 3 difference in the spatial standard deviations of all radiative and cloudiness diagnostics.
Negativity as the entanglement measure to probe the Kondo regime in the spin-chain Kondo model
NASA Astrophysics Data System (ADS)
Bayat, Abolfazl; Sodano, Pasquale; Bose, Sougato
2010-02-01
We study the entanglement of an impurity at one end of a spin chain with a block of spins using negativity as a true measure of entanglement to characterize the unique features of the gapless Kondo regime in the spin-chain Kondo model. For this spin chain in the Kondo regime we determine—with a true entanglement measure—the spatial extent of the Kondo screening cloud, we propose an ansatz for its ground state and demonstrate that the impurity spin is indeed maximally entangled with the cloud. To better evidence the peculiarities of the Kondo regime, we carry a parallel analysis of the entanglement properties of the Kondo spin-chain model in the gapped dimerized regime. Our study shows how a genuine entanglement measure stemming from quantum information theory can fully characterize also nonperturbative regimes accessible to certain condensed matter systems.
The Landsat Image Mosaic of Antarctica
Bindschadler, Robert; Vornberger, P.; Fleming, A.; Fox, A.; Mullins, J.; Binnie, D.; Paulsen, S.J.; Granneman, Brian J.; Gorodetzky, D.
2008-01-01
The Landsat Image Mosaic of Antarctica (LIMA) is the first true-color, high-spatial-resolution image of the seventh continent. It is constructed from nearly 1100 individually selected Landsat-7 ETM+ scenes. Each image was orthorectified and adjusted for geometric, sensor and illumination variations to a standardized, almost seamless surface reflectance product. Mosaicing to avoid clouds produced a high quality, nearly cloud-free benchmark data set of Antarctica for the International Polar Year from images collected primarily during 1999-2003. Multiple color composites and enhancements were generated to illustrate additional characteristics of the multispectral data including: the true appearance of the surface; discrimination between snow and bare ice; reflectance variations within bright snow; recovered reflectance values in regions of sensor saturation; and subtle topographic variations associated with ice flow. LIMA is viewable and individual scenes or user defined portions of the mosaic are downloadable at http://lima.usgs.gov. Educational materials associated with LIMA are available at http://lima.nasa.gov.
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view from the southwest looking northeast, from an altitude just above the high haze layer. The streaks in the lower cloud leading towards the hotspot are visible. The upper haze layer is mostly flat, with notable small peaks that can be matched with features in the lower cloud. In reality, these areas may represent a continuous vertical cloud column.Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper and lower clouds are separated in the rendering by an arbitrary amount, and the height variations are exaggerated by a factor of 25.The lower cloud is colored using the same false color scheme used in previously released image products, assigning red, green, and blue to the 756, 727, and 889 nanometer mosaics, respectively. Light bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the lower cloud with an overlying thin haze.The images used cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the southeast, from between the cloud layers and over the north center of the region. The tall white clouds in the lower cloud deck are probably much like large terrestrial thunderclouds. They may be regions where atmospheric water powers vertical convection over large horizontal distances.Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper and lower clouds are separated in the rendering by an arbitrary amount, and the height variations are exaggerated by a factor of 25.The lower cloud is colored using the same false color scheme used in previously released image products, assigning red, green, and blue to the 756, 727, and 889 nanometer mosaics, respectively. Light bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the lower cloud with an overlying thin haze.The images used cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the west, from between the cloud layers and over the patchy white clouds to the east of the hotspot. This is probably an area where moist convection is occurring over large horizontal distances, similar to the atmosphere over the equatorial ocean on Earth. The clouds are high and thick, and are observed to change rapidly over short time scales.Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper and lower clouds are separated in the rendering by an arbitrary amount, and the height variations are exaggerated by a factor of 25.The lower cloud is colored using the same false color scheme used in previously released image products, assigning red, green, and blue to the 756, 727, and 889 nanometer mosaics, respectively. Light bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the lower cloud with an overlying thin haze.The images used cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.Assessment of Cloud Screening with Apparent Surface Reflectance in Support of the ICESat-2 Mission
NASA Technical Reports Server (NTRS)
Yang, Yuekui; Marshak, Alexander; Palm, Stephen P.; Wang, Zhuosen; Schaaf, Crystal
2011-01-01
The separation of cloud and clear scenes is usually one of the first steps in satellite data analysis. Before deriving a geophysical product, almost every satellite mission requires a cloud mask to label a scene as either clear or cloudy through a cloud detection procedure. For clear scenes, products such as surface properties may be retrieved; for cloudy scenes, scientist can focus on studying the cloud properties. Hence the quality of cloud detection directly affects the quality of most satellite operational and research products. This is certainly true for the Ice, Cloud, and land Elevation Satellite-2 (lCESat-2), which is the successor to the ICESat-l. As a top priority mission, ICESat-2 will continue to provide measurements of ice sheets and sea ice elevation on a global scale. Studies have shown that clouds can significantly affect the accuracy of the retrieved results. For example, some of the photons (a photon is a basic unit of light) in the laser beam will be scattered by cloud particles on its way. So instead of traveling in a straight line, these photons are scattered sideways and have traveled a longer path. This will result in biases in ice sheet elevation measurements. Hence cloud screening must be done and be done accurately before the retrievals.
NASA Technical Reports Server (NTRS)
Hoffert, Steven G.; Pearce, Matt L.
1996-01-01
Many researchers have shown that the development and evolution of electrical discharges within convective clouds is fundamentally related to the growth and dynamics of precipitation particles aloft. In the presence of strong updrafts above the freezing level collisions among mixed-phase particles (i.e., hail. ice, supercooled water) promote the necessary charge separation needed to initiate intra-cloud lightning. A precipitation core that descends below the freezing level is often accompanied by a change in the electrical structure of the cloud. Consequently, more Cloud-to-Ground (CG) than Intra-Cloud (IC) lightning flashes appear. Descending precipitation cores can also play a significant role in the evolution of mesoscale features at the surface (e.g., microbursts, downbursts) because of latent heat and mass loading effects of water and ice. For this reason, some believe that lightning and microbursts are fundamentally linked by the presence of ice particles in thunderstorms. Several radar and lightning studies of microburst thunderstorms from COHMEX in 1986 showed that the peak IC lightning systematically occurred ten minutes before the onset of a microburst. In contrast, most CG lightning occurred at the time of the microburst. Many of the preceding studies have been done using high-resolution research radars and experimental lightning detection systems in focused field projects. In addition, these studies could only determine the vertical origin or occurrence of IC lightning, and not a true three-dimensional representation. Currently, the WSR-88D radar system and a real-time, state-of-the-art lightning system (LDAR) at the Kennedy Space Center (KSC) in Florida provide an opportunity to extend these kinds of studies in a more meaningful operational setting.
2007-03-01
examples of plumes with a natural cause. Figure 3.2 The left true colour panel depicts part of the Iberian peninsula . The huge forest fires in Portugal...these research activities has been dedicated to the provision of a number of atmospherical products for air quality and climate studies within the EU...as cloud condensation nuclei for the formation of clouds, which is an important topic in climate studies. The products in the former paragraphs, such
Aerosol and Cloud Observations and Data Products by the GLAS Polar Orbiting Lidar Instrument
NASA Technical Reports Server (NTRS)
Spinhirne, J. D.; Palm, S. P.; Hlavka, D. L.; Hart, W. D.; Mahesh, A.; Welton, E. J.
2005-01-01
The Geoscience Laser Altimeter System (GLAS) launched in 2003 is the first polar orbiting satellite lidar. The instrument was designed for high performance observations of the distribution and optical scattering cross sections of clouds and aerosol. The backscatter lidar operates at two wavelengths, 532 and 1064 nm. Both receiver channels meet and exceed their design goals, and beginning with a two month period through October and November 2003, an excellent global lidar data set now exists. The data products for atmospheric observations include the calibrated, attenuated backscatter cross section for cloud and aerosol; height detection for multiple cloud layers; planetary boundary layer height; cirrus and aerosol optical depth and the height distribution of aerosol and cloud scattering cross section profiles. The data sets are now in open release through the NASA data distribution system. The initial results on global statistics for cloud and aerosol distribution has been produced and in some cases compared to other satellite observations. The sensitivity of the cloud measurements is such that the 70% global cloud coverage result should be the most accurate to date. Results on the global distribution of aerosol are the first that produce the true height distribution for model inter-comparison.
Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds
NASA Astrophysics Data System (ADS)
Seinstra, Frank J.; Maassen, Jason; van Nieuwpoort, Rob V.; Drost, Niels; van Kessel, Timo; van Werkhoven, Ben; Urbani, Jacopo; Jacobs, Ceriel; Kielmann, Thilo; Bal, Henri E.
In recent years, the application of high-performance and distributed computing in scientific practice has become increasingly wide spread. Among the most widely available platforms to scientists are clusters, grids, and cloud systems. Such infrastructures currently are undergoing revolutionary change due to the integration of many-core technologies, providing orders-of-magnitude speed improvements for selected compute kernels. With high-performance and distributed computing systems thus becoming more heterogeneous and hierarchical, programming complexity is vastly increased. Further complexities arise because urgent desire for scalability and issues including data distribution, software heterogeneity, and ad hoc hardware availability commonly force scientists into simultaneous use of multiple platforms (e.g., clusters, grids, and clouds used concurrently). A true computing jungle.
Hydrodynamic model of a self-gravitating optically thick gas and dust cloud
NASA Astrophysics Data System (ADS)
Zhukova, E. V.; Zankovich, A. M.; Kovalenko, I. G.; Firsov, K. M.
2015-10-01
We propose an original mechanism of sustained turbulence generation in gas and dust clouds, the essence of which is the consistent provision of conditions for the emergence and maintenance of convective instability in the cloud. We considered a quasi-stationary one-dimensional model of a selfgravitating flat cloud with stellar radiation sources in its center. The material of the cloud is considered a two-component two-speed continuous medium, the first component of which, gas, is transparent for stellar radiation and is supposed to rest being in hydrostatic equilibrium, and the second one, dust, is optically dense and is swept out by the pressure of stellar radiation to the periphery of the cloud. The dust is specified as a set of spherical grains of a similar size (we made calculations for dust particles with radii of 0.05, 0.1, and 0.15 μm). The processes of scattering and absorption of UV radiation by dust particles followed by IR reradiation, with respect to which the medium is considered to be transparent, are taken into account. Dust-driven stellar wind sweeps gas outwards from the center of the cloud, forming a cocoon-like structure in the gas and dust. For the radiation flux corresponding to a concentration of one star with a luminosity of about 5 ×104 L ⊙ per square parsec on the plane of sources, sizes of the gas cocoon are equal to 0.2-0.4 pc, and for the dust one they vary from tenths of a parsec to six parsecs. Gas and dust in the center of the cavity are heated to temperatures of about 50-60 K in the model with graphite particles and up to 40 K in the model with silicate dust, while the background equilibrium temperature outside the cavity is set equal to 10 K. The characteristic dust expansion velocity is about 1-7 kms-1. Three structural elements define the hierarchy of scales in the dust cocoon. The sizes of the central rarefied cavity, the dense shell surrounding the cavity, and the thin layer inside the shell in which dust is settling provide the proportions 1 : {1-30} : {10-7-10-6}. The density differentials in the dust cocoon (cavity-shell) are much steeper than in the gas one, dust forms multiple flows in the shell so that the dust caustics in the turning points and in the accumulation layer have infinite dust concentration. We give arguments in favor of unstable character of the inverse gas density distribution in the settled dust flow that can power turbulence constantly sustained in the cloud. If this hypothesis is true, the proposed mechanism can explain turbulence in gas and dust clouds on a scale of parsecs and subparsecs.
How well does CO emission measure the H2 mass of MCs?
NASA Astrophysics Data System (ADS)
Szűcs, László; Glover, Simon C. O.; Klessen, Ralf S.
2016-07-01
We present numerical simulations of molecular clouds (MCs) with self-consistent CO gas-phase and isotope chemistry in various environments. The simulations are post-processed with a line radiative transfer code to obtain 12CO and 13CO emission maps for the J = 1 → 0 rotational transition. The emission maps are analysed with commonly used observational methods, I.e. the 13CO column density measurement, the virial mass estimate and the so-called XCO (also CO-to-H2) conversion factor, and then the inferred quantities (I.e. mass and column density) are compared to the physical values. We generally find that most methods examined here recover the CO-emitting H2 gas mass of MCs within a factor of 2 uncertainty if the metallicity is not too low. The exception is the 13CO column density method. It is affected by chemical and optical depth issues, and it measures both the true H2 column density distribution and the molecular mass poorly. The virial mass estimate seems to work the best in the considered metallicity and radiation field strength range, even when the overall virial parameter of the cloud is above the equilibrium value. This is explained by a systematically lower virial parameter (I.e. closer to equilibrium) in the CO-emitting regions; in CO emission, clouds might seem (sub-)virial, even when, in fact, they are expanding or being dispersed. A single CO-to-H2 conversion factor appears to be a robust choice over relatively wide ranges of cloud conditions, unless the metallicity is low. The methods which try to take the metallicity dependence of the conversion factor into account tend to systematically overestimate the true cloud masses.
2017-12-08
Visualization Date 2003-12-18 Clouds ripple over Ireland and Scotland in a wave pattern, similar to the pattern of waves along a seashore. The similarity is not coincidental — the atmosphere behaves like a fluid, so when it encounters an obstacle, it must move around it. This movement forms a wave, and the wave movement can continue for long distances. In this case, the waves were caused by the air moving over and around the mountains of Scotland and Ireland. As the air crested a wave, it cooled, and clouds formed. Then, as the air sank into the trough, the air warmed, and clouds did not form. This pattern repeated itself, with clouds appearing at the peak of every wave. Other types of clouds are also visible in the scene. Along the northwestern and southwestern edges of this true-color image from December 17, 2003, are normal mid-altitude clouds with fairly uniform appearances. High altitude cirrus-clouds float over these, casting their shadows on the lower clouds. Open- and closed-cell clouds formed off the coast of northwestern France, and thin contrail clouds are visible just east of these. Contrail clouds form around the particles carried in airplane exhaust. Fog is also visible in the valleys east of the Cambrian Mountains, along the border between northern/central Wales and England. This is an Aqua MODIS image. Sensor Aqua/MODIS Credit Jacques Descloitres, MODIS Rapid Response Team, NASA/GSFC For more information go to: visibleearth.nasa.gov/view_rec.php?id=6146
NASA Technical Reports Server (NTRS)
Susskind, Joel; Lee, Jae N.; Iredell, Lena
2013-01-01
The AIRS Science Team Version-6 data set is a valuable resource for meteorological studies. Quality Controlled earth's surface skin temperatures are produced on a 45 km x 45 km spatial scale under most cloud cover conditions. The same retrieval algorithm is used for all surface types under all conditions. This study used eleven years of AIRS monthly mean surface skin temperature and cloud cover products to show that land surface skin temperatures have decreased significantly in some areas and increased significantly in other areas over the period September 2002 through August 2013. These changes occurred primarily at 1:30 PM but not at 1:30 AM. Cooling land areas contained corresponding increases in cloud cover over this time period, with the reverse being true for warming land areas. The cloud cover anomaly patterns for a given month are affected significantly by El Nino/La Nina activity, and anomalies in cloud cover are a driving force behind anomalies in land surface skin temperature.
Ground-based cloud classification by learning stable local binary patterns
NASA Astrophysics Data System (ADS)
Wang, Yu; Shi, Cunzhao; Wang, Chunheng; Xiao, Baihua
2018-07-01
Feature selection and extraction is the first step in implementing pattern classification. The same is true for ground-based cloud classification. Histogram features based on local binary patterns (LBPs) are widely used to classify texture images. However, the conventional uniform LBP approach cannot capture all the dominant patterns in cloud texture images, thereby resulting in low classification performance. In this study, a robust feature extraction method by learning stable LBPs is proposed based on the averaged ranks of the occurrence frequencies of all rotation invariant patterns defined in the LBPs of cloud images. The proposed method is validated with a ground-based cloud classification database comprising five cloud types. Experimental results demonstrate that the proposed method achieves significantly higher classification accuracy than the uniform LBP, local texture patterns (LTP), dominant LBP (DLBP), completed LBP (CLTP) and salient LBP (SaLBP) methods in this cloud image database and under different noise conditions. And the performance of the proposed method is comparable with that of the popular deep convolutional neural network (DCNN) method, but with less computation complexity. Furthermore, the proposed method also achieves superior performance on an independent test data set.
2015-10-05
This planetary nebula is called PK 329-02.2 and is located in the constellation of Norma in the southern sky. It is also sometimes referred to as Menzel 2, or Mz 2, named after the astronomer Donald Menzel who discovered the nebula in 1922. When stars that are around the mass of the Sun reach their final stages of life, they shed their outer layers into space, which appear as glowing clouds of gas called planetary nebulae. The ejection of mass in stellar burnout is irregular and not symmetrical, so that planetary nebulae can have very complex shapes. In the case of Menzel 2 the nebula forms a winding blue cloud that perfectly aligns with two stars at its centre. In 1999 astronomers discovered that the star at the upper right is in fact the central star of the nebula, and the star to the lower left is probably a true physical companion of the central star. For tens of thousands of years the stellar core will be cocooned in spectacular clouds of gas and then, over a period of a few thousand years, the gas will fade away into the depths of the Universe. The curving structure of Menzel 2 resembles a last goodbye before the star reaches its final stage of retirement as a white dwarf. A version of this image was entered into the Hubble's Hidden Treasures image processing competition by contestant Serge Meunier.
NASA Astrophysics Data System (ADS)
Yastikli, N.; Özerdem, Ö. Z.
2017-11-01
The digital documentation of architectural heritage is important for monitoring, preserving, managing as well as 3B BIM modelling, time-space VR (virtual reality) applications. The unmanned aerial vehicles (UAVs) have been widely used in these application thanks to rapid developments in technology which enable the high resolution images with resolutions in millimeters. Moreover, it has become possible to produce highly accurate 3D point clouds with structure from motion (SfM) and multi-view stereo (MVS), to obtain a surface reconstruction of a realistic 3D architectural heritage model by using high-overlap images and 3D modeling software such as Context capture, Pix4Dmapper, Photoscan. In this study, digital documentation of Otag-i Humayun (The Ottoman Empire Sultan's Summer Palace) located in Davutpaşa, Istanbul/Turkey is aimed using low cost UAV. The data collections have been made with low cost UAS 3DR Solo UAV with GoPro Hero 4 with fisheye lens. The data processing was accomplished by using commercial Pix4D software. The dense point clouds, a true orthophoto and 3D solid model of the Otag-i Humayun were produced results. The quality check of the produced point clouds has been performed. The obtained result from Otag-i Humayun in Istanbul proved that, the low cost UAV with fisheye lens can be successfully used for architectural heritage documentation.
Transition and Evaluation of RGB Imagery to WFOs and National Centers by NASA SPoRT
NASA Technical Reports Server (NTRS)
Fuell, Kevin K.; Molthan, Andrew L.
2012-01-01
MODIS Snow/Cloud and True Color RGB imagery has been used by SPoRT partners since 2004 to examine changes in surface features such as snow cover, vegetation, ocean color, fires, smoke plumes, and oil spills.
NASA Astrophysics Data System (ADS)
Venema, V. K. C.; Lindau, R.; Varnai, T.; Simmer, C.
2009-04-01
Two main groups of statistical methods used in the Earth sciences are geostatistics and stochastic modelling. Geostatistical methods, such as various kriging algorithms, aim at estimating the mean value for every point as well as possible. In case of sparse measurements, such fields have less variability at small scales and a narrower distribution as the true field. This can lead to biases if a nonlinear process is simulated on such a kriged field. Stochastic modelling aims at reproducing the structure of the data. One of the stochastic modelling methods, the so-called surrogate data approach, replicates the value distribution and power spectrum of a certain data set. However, while stochastic methods reproduce the statistical properties of the data, the location of the measurement is not considered. Because radiative transfer through clouds is a highly nonlinear process it is essential to model the distribution (e.g. of optical depth, extinction, liquid water content or liquid water path) accurately as well as the correlations in the cloud field because of horizontal photon transport. This explains the success of surrogate cloud fields for use in 3D radiative transfer studies. However, up to now we could only achieve good results for the radiative properties averaged over the field, but not for a radiation measurement located at a certain position. Therefore we have developed a new algorithm that combines the accuracy of stochastic (surrogate) modelling with the positioning capabilities of kriging. In this way, we can automatically profit from the large geostatistical literature and software. The algorithm is tested on cloud fields from large eddy simulations (LES). On these clouds a measurement is simulated. From the pseudo-measurement we estimated the distribution and power spectrum. Furthermore, the pseudo-measurement is kriged to a field the size of the final surrogate cloud. The distribution, spectrum and the kriged field are the inputs to the algorithm. This algorithm is similar to the standard iterative amplitude adjusted Fourier transform (IAAFT) algorithm, but has an additional iterative step in which the surrogate field is nudged towards the kriged field. The nudging strength is gradually reduced to zero. We work with four types of pseudo-measurements: one zenith pointing measurement (which together with the wind produces a line measurement), five zenith pointing measurements, a slow and a fast azimuth scan (which together with the wind produce spirals). Because we work with LES clouds and the truth is known, we can validate the algorithm by performing 3D radiative transfer calculations on the original LES clouds and on the new surrogate clouds. For comparison also the radiative properties of the kriged fields and standard surrogate fields are computed. Preliminary results already show that these new surrogate clouds reproduce the structure of the original clouds very well and the minima and maxima are located where the pseudo-measurements sees them. The main limitation seems to be the amount of data, which is especially very limited in case of just one zenith pointing measurement.
Contrasting the co-variability of daytime cloud and precipitation over tropical land and ocean
NASA Astrophysics Data System (ADS)
Jin, Daeho; Oreopoulos, Lazaros; Lee, Dongmin; Cho, Nayeong; Tan, Jackson
2018-03-01
The co-variability of cloud and precipitation in the extended tropics (35° N-35° S) is investigated using contemporaneous data sets for a 13-year period. The goal is to quantify potential relationships between cloud type fractions and precipitation events of particular strength. Particular attention is paid to whether the relationships exhibit different characteristics over tropical land and ocean. A primary analysis metric is the correlation coefficient between fractions of individual cloud types and frequencies within precipitation histogram bins that have been matched in time and space. The cloud type fractions are derived from Moderate Resolution Imaging Spectroradiometer (MODIS) joint histograms of cloud top pressure and cloud optical thickness in 1° grid cells, and the precipitation frequencies come from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) data set aggregated to the same grid.
It is found that the strongest coupling (positive correlation) between clouds and precipitation occurs over ocean for cumulonimbus clouds and the heaviest rainfall. While the same cloud type and rainfall bin are also best correlated over land compared to other combinations, the correlation magnitude is weaker than over ocean. The difference is attributed to the greater size of convective systems over ocean. It is also found that both over ocean and land the anti-correlation of strong precipitation with weak
(i.e., thin and/or low) cloud types is of greater absolute strength than positive correlations between weak cloud types and weak precipitation. Cloud type co-occurrence relationships explain some of the cloud-precipitation anti-correlations. Weak correlations between weaker rainfall and clouds indicate poor predictability for precipitation when cloud types are known, and this is even more true over land than over ocean.
Submillimeter astronomy and the problem of star formation
NASA Technical Reports Server (NTRS)
Harwit, M.
1984-01-01
Sources that have traditionally been called 'protostars,' because they were strong emitters of infrared radiation embedded in dust clouds, are now recognized to be 'newly formed' stars instead. Recent developments in submillimeter astronomy should permit a redoubling of efforts to find bodies that are the actual predecessors of newly formed stars. This renewed search for true protostars will be aided by advances that have occurred in submillimeter spectroscopy; these will permit an analysis of the physical conditions and chemical constitution of cooler protostellar clouds, and may provide insight into circumstances favoring protostellar collapse.
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view from above and to the south of the visualized area, showing the entire model. The entire region is overlain by a thin, transparent haze. In places the haze is high and thick, especially to the east (to the right of) the hotspot.Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper and lower clouds are separated in the rendering by an arbitrary amount, and the height variations are exaggerated by a factor of 25.The lower cloud is colored using the same false color scheme used in previously released image products, assigning red, green, and blue to the 756, 727, and 889 nanometer mosaics, respectively. Light bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the lower cloud with an overlying thin haze.The images used cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.NASA Technical Reports Server (NTRS)
Evans, Keith D.; Demoz, Belay B.; Cadirola, Martin P.; Melfi, S. H.; Whiteman, David N.; Schwemmer, Geary K.; Starr, David OC.; Schmidlin, F. J.; Feltz, Wayne
2000-01-01
The NAcA/Goddard Space Flight Center Scanning Raman Lidar has made measurements of water vapor and aerosols for almost ten years. Calibration of the water vapor data has typically been performed by comparison with another water vapor sensor such as radiosondes. We present a new method for water vapor calibration that only requires low clouds, and surface pressure and temperature measurements. A sensitivity study was performed and the cloud base algorithm agrees with the radiosonde calibration to within 10- 15%. Knowledge of the true atmospheric lapse rate is required to obtain more accurate cloud base temperatures. Analysis of water vapor and aerosol measurements made in the vicinity of Hurricane Bonnie are discussed.
NASA Astrophysics Data System (ADS)
Soler, J. D.; Hennebelle, P.
2017-10-01
>
NASA Astrophysics Data System (ADS)
Zhao, B.; Gu, Y.; Liou, K. N.; Jiang, J. H.; Li, Q.; Liu, X.; Huang, L.; Wang, Y.; Su, H.
2016-12-01
The interactions between aerosols and ice clouds (consisting only of ice) represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. The observational evidence for the aerosol impact on ice cloud properties has been quite limited and showed conflicting results, partly because previous observational studies did not consider the distinct features of different ice cloud and aerosol types. Using 9-year satellite observations, we find that, for ice clouds generated from deep convection, cloud thickness, cloud optical thickness (COT), and ice cloud fraction increase and decrease with small-to-moderate and high aerosol loadings, respectively. For in-situ formed ice clouds, however, the preceding cloud properties increase monotonically and more sharply with aerosol loadings. The case is more complicated for ice crystal effective radius (Rei). For both convection-generated and in-situ ice clouds, the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters, but the sensitivities of Rei to aerosols under the same water vapor amount differ remarkably between the two ice cloud types. As a result, overall Rei slightly increases with aerosol loading for convection-generated ice clouds, but decreases for in-situ ice clouds. When aerosols are decomposed into different types, an increase in the loading of smoke aerosols generally leads to a decrease in COT of convection-generated ice clouds, while the reverse is true for dust and anthropogenic pollution. In contrast, an increase in the loading of any aerosol type can significantly enhance COT of in-situ ice clouds. The modulation of the aerosol impacts by cloud/aerosol types is demonstrated and reproduced by simulations using the Weather Research and Forecasting (WRF) model. Adequate and accurate representations of the impact of different cloud/aerosol types in climate models are crucial for reducing the substantial uncertainty in assessment of the aerosol-ice cloud radiative forcing.
NASA Astrophysics Data System (ADS)
Zhao, B.; Gu, Y.; Liou, K. N.; Jiang, J. H.; Li, Q.; Liu, X.; Huang, L.; Wang, Y.; Su, H.
2017-12-01
The interactions between aerosols and ice clouds (consisting only of ice) represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. The observational evidence for the aerosol impact on ice cloud properties has been quite limited and showed conflicting results, partly because previous observational studies did not consider the distinct features of different ice cloud and aerosol types. Using 9-year satellite observations, we find that, for ice clouds generated from deep convection, cloud thickness, cloud optical thickness (COT), and ice cloud fraction increase and decrease with small-to-moderate and high aerosol loadings, respectively. For in-situ formed ice clouds, however, the preceding cloud properties increase monotonically and more sharply with aerosol loadings. The case is more complicated for ice crystal effective radius (Rei). For both convection-generated and in-situ ice clouds, the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters, but the sensitivities of Rei to aerosols under the same water vapor amount differ remarkably between the two ice cloud types. As a result, overall Rei slightly increases with aerosol loading for convection-generated ice clouds, but decreases for in-situ ice clouds. When aerosols are decomposed into different types, an increase in the loading of smoke aerosols generally leads to a decrease in COT of convection-generated ice clouds, while the reverse is true for dust and anthropogenic pollution. In contrast, an increase in the loading of any aerosol type can significantly enhance COT of in-situ ice clouds. The modulation of the aerosol impacts by cloud/aerosol types is demonstrated and reproduced by simulations using the Weather Research and Forecasting (WRF) model. Adequate and accurate representations of the impact of different cloud/aerosol types in climate models are crucial for reducing the substantial uncertainty in assessment of the aerosol-ice cloud radiative forcing.
A cloud/particle model of the interstellar medium - Galactic spiral structure
NASA Technical Reports Server (NTRS)
Levinson, F. H.; Roberts, W. W., Jr.
1981-01-01
A cloud/particle model for gas flow in galaxies is developed that incorporates cloud-cloud collisions and supernovae as dominant local processes. Cloud-cloud collisions are the main means of dissipation. To counter this dissipation and maintain local dispersion, supernova explosions in the medium administer radial snowplow pushes to all nearby clouds. The causal link between these processes is that cloud-cloud collisions will form stars and that these stars will rapidly become supernovae. The cloud/particle model is tested and used to investigate the gas dynamics and spiral structures in galaxies where these assumptions may be reasonable. Particular attention is given to whether large-scale galactic shock waves, which are thought to underlie the regular well-delineated spiral structure in some galaxies, form and persist in a cloud-supernova dominated interstellar medium; this question is answered in the affirmative.
The three-dimensional structure of cumulus clouds over the ocean. 1: Structural analysis
NASA Technical Reports Server (NTRS)
Kuo, Kwo-Sen; Welch, Ronald M.; Weger, Ronald C.; Engelstad, Mark A.; Sengupta, S. K.
1993-01-01
Thermal channel (channel 6, 10.4-12.5 micrometers) images of five Landsat thematic mapper cumulus scenes over the ocean are examined. These images are thresholded using the standard International Satellite Cloud Climatology Project (ISCCP) thermal threshold algorithm. The individual clouds in the cloud fields are segmented to obtain their structural statistics which include size distribution, orientation angle, horizontal aspect ratio, and perimeter-to-area (PtA) relationship. The cloud size distributions exhibit a double power law with the smaller clouds having a smaller absolute exponent. The cloud orientation angles, horizontal aspect ratios, and PtA exponents are found in good agreement with earlier studies. A technique also is developed to recognize individual cells within a cloud so that statistics of cloud cellular structure can be obtained. Cell structural statistics are computed for each cloud. Unicellular clouds are generally smaller (less than or equal to 1 km) and have smaller PtA exponents, while multicellular clouds are larger (greater than or equal to 1 km) and have larger PtA exponents. Cell structural statistics are similar to those of the smaller clouds. When each cell is approximated as a quadric surface using a linear least squares fit, most cells have the shape of a hyperboloid of one sheet, but about 15% of the cells are best modeled by a hyperboloid of two sheets. Less than 1% of the clouds are ellipsoidal. The number of cells in a cloud increases slightly faster than linearly with increasing cloud size. The mean nearest neighbor distance between cells in a cloud, however, appears to increase linearly with increasing cloud size and to reach a maximum when the cloud effective diameter is about 10 km; then it decreases with increasing cloud size. Sensitivity studies of threshold and lapse rate show that neither has a significant impact upon the results. A goodness-of-fit ratio is used to provide a quantitative measure of the individual cloud results. Significantly improved results are obtained after applying a smoothing operator, suggesting the eliminating subresolution scale variations with higher spatial resolution may yield even better shape analyses.
Using cloud models of heartbeats as the entity identifier to secure mobile devices.
Fu, Donglai; Liu, Yanhua
2017-01-01
Mobile devices are extensively used to store more private and often sensitive information. Therefore, it is important to protect them against unauthorised access. Authentication ensures that authorised users can use mobile devices. However, traditional authentication methods, such as numerical or graphic passwords, are vulnerable to passive attacks. For example, an adversary can steal the password by snooping from a shorter distance. To avoid these problems, this study presents a biometric approach that uses cloud models of heartbeats as the entity identifier to secure mobile devices. Here, it is identified that these concepts including cloud model or cloud have nothing to do with cloud computing. The cloud model appearing in the study is the cognitive model. In the proposed method, heartbeats are collected by two ECG electrodes that are connected to one mobile device. The backward normal cloud generator is used to generate ECG standard cloud models characterising the heartbeat template. When a user tries to have access to their mobile device, cloud models regenerated by fresh heartbeats will be compared with ECG standard cloud models to determine if the current user can use this mobile device. This authentication method was evaluated from three aspects including accuracy, authentication time and energy consumption. The proposed method gives 86.04% of true acceptance rate with 2.73% of false acceptance rate. One authentication can be done in 6s, and this processing consumes about 2000 mW of power.
Oblique Longwave Infrared Atmospheric Compensation
2017-09-14
Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Computational Modeling...calculated assuming an emissivity of water), the emissivity was computed for the rivers and compared against the true emissivity of water. The RMS...disturbed earth in various soil types [15], tripwires [12], clouds [29, 37], aircraft coating degradation [44], and targets obscured by clutter [35] or
Cloud4Psi: cloud computing for 3D protein structure similarity searching.
Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Kłapciński, Artur
2014-10-01
Popular methods for 3D protein structure similarity searching, especially those that generate high-quality alignments such as Combinatorial Extension (CE) and Flexible structure Alignment by Chaining Aligned fragment pairs allowing Twists (FATCAT) are still time consuming. As a consequence, performing similarity searching against large repositories of structural data requires increased computational resources that are not always available. Cloud computing provides huge amounts of computational power that can be provisioned on a pay-as-you-go basis. We have developed the cloud-based system that allows scaling of the similarity searching process vertically and horizontally. Cloud4Psi (Cloud for Protein Similarity) was tested in the Microsoft Azure cloud environment and provided good, almost linearly proportional acceleration when scaled out onto many computational units. Cloud4Psi is available as Software as a Service for testing purposes at: http://cloud4psi.cloudapp.net/. For source code and software availability, please visit the Cloud4Psi project home page at http://zti.polsl.pl/dmrozek/science/cloud4psi.htm. © The Author 2014. Published by Oxford University Press.
Cloud4Psi: cloud computing for 3D protein structure similarity searching
Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Kłapciński, Artur
2014-01-01
Summary: Popular methods for 3D protein structure similarity searching, especially those that generate high-quality alignments such as Combinatorial Extension (CE) and Flexible structure Alignment by Chaining Aligned fragment pairs allowing Twists (FATCAT) are still time consuming. As a consequence, performing similarity searching against large repositories of structural data requires increased computational resources that are not always available. Cloud computing provides huge amounts of computational power that can be provisioned on a pay-as-you-go basis. We have developed the cloud-based system that allows scaling of the similarity searching process vertically and horizontally. Cloud4Psi (Cloud for Protein Similarity) was tested in the Microsoft Azure cloud environment and provided good, almost linearly proportional acceleration when scaled out onto many computational units. Availability and implementation: Cloud4Psi is available as Software as a Service for testing purposes at: http://cloud4psi.cloudapp.net/. For source code and software availability, please visit the Cloud4Psi project home page at http://zti.polsl.pl/dmrozek/science/cloud4psi.htm. Contact: dariusz.mrozek@polsl.pl PMID:24930141
Investigation of the utility of ERTS-1 imagery for updating land use and resource data in Guatemala
NASA Technical Reports Server (NTRS)
Garcia, L. E. (Principal Investigator)
1973-01-01
The author has identified the following significant results. An intensive analysis of the imagery received has been completed and findings are reported. Conclusions are restricted by receipt of only limited amounts of cloud-free coverage of test areas. In most cases the interpretation findings were as anticipated from previous experience with multiband images. Band 7 provides promising indication of some economically important environmental communities. It also permits viewing through thin cirrus cloud layers for features of medium to high contrast. Band 4 provides information of submerged reefs and of movement of suspended sediment bodies in water areas. ERTS-1 bulk images have positional mapping accuracy adequate for representation at 1:1,000,000 scale maps. Cloud cover is a true constraint to useable satellite coverage.
NASA Astrophysics Data System (ADS)
Stillinger, T.; Dozier, J.; Phares, N.; Rittger, K.
2015-12-01
Discrimination between snow and clouds poses a serious but tractable challenge to the consistent delivery of high-quality information on mountain snow from remote sensing. Clouds obstruct the surface from the sensor's view, and the similar optical properties of clouds and snow make accurate discrimination difficult. We assess the performance of the current Landsat 8 operational snow and cloud mask products (LDCM CCA and CFmask), along with a new method, using over one million manually identified snow and clouds pixels in Landsat 8 scenes. The new method uses physically based scattering models to generate spectra in each Landsat 8 band, at that scene's solar illumination, for snow and cloud particle sizes that cover the plausible range for each. The modeled spectra are compared to pixels' spectra via several independent ways to identify snow and clouds. The results are synthesized to create a final snow/cloud mask, and the method can be applied to any multispectral imager with bands covering the visible, near-infrared, and shortwave-infrared regions. Each algorithm we tested misidentifies snow and clouds in both directions to varying degrees. We assess performance with measures of Precision, Recall, and the F statistic, which are based on counts of true and false positives and negatives. Tests for significance in differences between spectra in the measured and modeled values among incorrectly identified pixels help ascertain reasons for misidentification. A cloud mask specifically designed to separate snow from clouds is a valuable tool for those interested in remotely sensing snow cover. Given freely available remote sensing datasets and computational tools to feasibly process entire mission histories for an area of interest, enabling researchers to reliably identify and separate snow and clouds increases the usability of the data for hydrological and climatological studies.
Cloud-based adaptive exon prediction for DNA analysis.
Putluri, Srinivasareddy; Zia Ur Rahman, Md; Fathima, Shaik Yasmeen
2018-02-01
Cloud computing offers significant research and economic benefits to healthcare organisations. Cloud services provide a safe place for storing and managing large amounts of such sensitive data. Under conventional flow of gene information, gene sequence laboratories send out raw and inferred information via Internet to several sequence libraries. DNA sequencing storage costs will be minimised by use of cloud service. In this study, the authors put forward a novel genomic informatics system using Amazon Cloud Services, where genomic sequence information is stored and accessed for processing. True identification of exon regions in a DNA sequence is a key task in bioinformatics, which helps in disease identification and design drugs. Three base periodicity property of exons forms the basis of all exon identification techniques. Adaptive signal processing techniques found to be promising in comparison with several other methods. Several adaptive exon predictors (AEPs) are developed using variable normalised least mean square and its maximum normalised variants to reduce computational complexity. Finally, performance evaluation of various AEPs is done based on measures such as sensitivity, specificity and precision using various standard genomic datasets taken from National Center for Biotechnology Information genomic sequence database.
NASA Astrophysics Data System (ADS)
Lolli, Simone; Campbell, James R.; Lewis, Jasper R.; Gu, Yu; Welton, Ellsworth J.
2017-06-01
We compare, for the first time, the performance of a simplified atmospheric radiative transfer algorithm package, the Corti-Peter (CP) model, versus the more complex Fu-Liou-Gu (FLG) model, for resolving top-of-the-atmosphere radiative forcing characteristics from single-layer cirrus clouds obtained from the NASA Micro-Pulse Lidar Network database in 2010 and 2011 at Singapore and in Greenbelt, Maryland, USA, in 2012. Specifically, CP simplifies calculation of both clear-sky longwave and shortwave radiation through regression analysis applied to radiative calculations, which contributes significantly to differences between the two. The results of the intercomparison show that differences in annual net top-of-the-atmosphere (TOA) cloud radiative forcing can reach 65 %. This is particularly true when land surface temperatures are warmer than 288 K, where the CP regression analysis becomes less accurate. CP proves useful for first-order estimates of TOA cirrus cloud forcing, but may not be suitable for quantitative accuracy, including the absolute sign of cirrus cloud daytime TOA forcing that can readily oscillate around zero globally.
2017-12-08
Cloud vortices off Heard Island, south Indian Ocean. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image of sea ice off Heard Island on Nov 2, 2015 at 5:02 AM EST (09:20 UTC). Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Phytoplankton and sediments in Yellow Sea
NASA Technical Reports Server (NTRS)
2002-01-01
Sediment and phytoplankton cloud the waters of the Yellow Sea in this true-color MODIS image acquired March 18, 2002. The swirls of sediment appear as a murky brownish blue color, while the phytoplankton are purely blue green and are concentrated around the small island in the lower right corner of the image.
What Research Says: Children's Conceptions of Weather.
ERIC Educational Resources Information Center
Stepans, Joseph; Kuehn, Christine
1985-01-01
Children in grades two and five explained such weather phenomena as wind, clouds, thunder, lightning, rain, snow, and rainbows during interviews. Results indicate that most students in both grades were at a stage of nonreligious finalism and do not use true causality in explanations. Implications for teaching are discussed. (DH)
Cloud properties inferred from 8-12 micron data
NASA Technical Reports Server (NTRS)
Strabala, Kathleen I.; Ackerman, Steven A.; Menzel, W. Paul
1994-01-01
A trispectral combination of observations at 8-, 11-, and 12-micron bands is suggested for detecting cloud and cloud properties in the infrared. Atmospheric ice and water vapor absorption peak in opposite halves of the window region so that positive 8-minus-11-micron brightness temperature differences indicate cloud, while near-zero or negative differences indicate clear regions. The absorption coefficient for water increases more between 11 and 12 microns than between 8 and 11 microns, while for ice, the reverse is true. Cloud phases is determined by a scatter diagram of 8-minus-11-micron versus 11-minus-12-micron brightness temperature differences; ice cloud shows a slope greater than 1 and water cloud less than 1. The trispectral brightness temperature method was tested upon high-resolution interferometer data resulting in clear-cloud and cloud-phase delineation. Simulations using differing 8-micron bandwidths revealed no significant degradation of cloud property detection. Thus, the 8-micron bandwidth for future satellites can be selected based on the requirements of other applications, such as surface characterization studies. Application of the technique to current polar-orbiting High-Resolution Infrared Sounder (HIRS)-Advanced Very High Resolution Radiometer (AVHRR) datasets is constrained by the nonuniformity of the cloud scenes sensed within the large HIRS field of view. Analysis of MAS (MODIS Airborne Simulator) high-spatial resolution (500 m) data with all three 8-, 11-, and 12-micron bands revealed sharp delineation of differing cloud and background scenes, from which a simple automated threshold technique was developed. Cloud phase, clear-sky, and qualitative differences in cloud emissivity and cloud height were identified on a case study segment from 24 November 1991, consistent with the scene. More rigorous techniques would allow further cloud parameter clarification. The opportunities for global cloud delineation with the Moderate-Resolution Imaging Spectrometer (MODIS) appear excellent. The spectral selection, the spatial resolution, and the global coverage are all well suited for significant advances.
NASA Technical Reports Server (NTRS)
Pounder, Nicola L.; Hogan, Robin J.; Varnai, Tamas; Battaglia, Alessandro; Cahalan, Robert F.
2011-01-01
While liquid clouds playa very important role in the global radiation budget, it's been very difficult to remotely determine their internal cloud structure. Ordinary lidar instruments (similar to radars but using visible light pulses) receive strong signals from such clouds, but the information is limited to a thin layer near the cloud boundary. Multiple field-of-view (FOV) lidars offer some new hope as they are able to isolate photons that were scattered many times by cloud droplets and penetrated deep into a cloud before returning to the instrument. Their data contains new information on cloud structure, although the lack of fast simulation methods made it challenging to interpret the observations. This paper describes a fast new technique that can simulate multiple-FOV lidar signals and can even estimate the way the signals would change in response to changes in cloud properties-an ability that allows quick refinements in our initial guesses of cloud structure. Results for a hypothetical airborne three-FOV lidar suggest that this approach can help determine cloud structure for a deeper layer in clouds, and can reliably determine the optical thickness of even fairly thick liquid clouds. The algorithm is also applied to stratocumulus observations by the 8-FOV airborne "THOR" lidar. These tests demonstrate that the new method can determine the depth to which a lidar provides useful information on vertical cloud structure. This work opens the way to exploit data from spaceborne lidar and radar more rigorously than has been possible up to now.
Two new algorithms to combine kriging with stochastic modelling
NASA Astrophysics Data System (ADS)
Venema, Victor; Lindau, Ralf; Varnai, Tamas; Simmer, Clemens
2010-05-01
Two main groups of statistical methods used in the Earth sciences are geostatistics and stochastic modelling. Geostatistical methods, such as various kriging algorithms, aim at estimating the mean value for every point as well as possible. In case of sparse measurements, such fields have less variability at small scales and a narrower distribution as the true field. This can lead to biases if a nonlinear process is simulated driven by such a kriged field. Stochastic modelling aims at reproducing the statistical structure of the data in space and time. One of the stochastic modelling methods, the so-called surrogate data approach, replicates the value distribution and power spectrum of a certain data set. While stochastic methods reproduce the statistical properties of the data, the location of the measurement is not considered. This requires the use of so-called constrained stochastic models. Because radiative transfer through clouds is a highly nonlinear process, it is essential to model the distribution (e.g. of optical depth, extinction, liquid water content or liquid water path) accurately. In addition, the correlations within the cloud field are important, especially because of horizontal photon transport. This explains the success of surrogate cloud fields for use in 3D radiative transfer studies. Up to now, however, we could only achieve good results for the radiative properties averaged over the field, but not for a radiation measurement located at a certain position. Therefore we have developed a new algorithm that combines the accuracy of stochastic (surrogate) modelling with the positioning capabilities of kriging. In this way, we can automatically profit from the large geostatistical literature and software. This algorithm is similar to the standard iterative amplitude adjusted Fourier transform (IAAFT) algorithm, but has an additional iterative step in which the surrogate field is nudged towards the kriged field. The nudging strength is gradually reduced to zero during successive iterations. A second algorithm, which we call step-wise kriging, pursues the same aim. Each time the kriging algorithm estimates a value, noise is added to it, after which this new point is accounted for in the estimation of all the later points. In this way, the autocorrelation of the step-krigged field is close to that found in the pseudo measurements. The amount of noise is determined by the kriging uncertainty. The algorithms are tested on cloud fields from large eddy simulations (LES). On these clouds, a measurement is simulated. From these pseudo-measurements, we estimated the power spectrum for the surrogates, the semi-variogram for the (stepwise) kriging and the distribution. Furthermore, the pseudo-measurement is kriged. Because we work with LES clouds and the truth is known, we can validate the algorithm by performing 3D radiative transfer calculations on the original LES clouds and on the two new types of stochastic clouds. For comparison, also the radiative properties of the kriged fields and standard surrogate fields are computed. Preliminary results show that both algorithms reproduce the structure of the original clouds well, and the minima and maxima are located where the pseudo-measurements see them. The main problem for the quality of the structure and the root mean square error is the amount of data, which is especially very limited in case of just one zenith pointing measurement.
Impact of Cumulus Cloud Spacing on Landsat Atmospheric Correction and Aerosol Retrieval
NASA Technical Reports Server (NTRS)
Wen, Guoyong; Cahalan, Robert F.; Tsay, Si-Chee; Oreopoulos, Lazaros
2001-01-01
A Landsat-7 ETM+ image acquired over the Southern Great Plains DoE/ARM site during the ARESE II experiment is used to study the effect of clouds on reflected radiation in clear patches of a cumulus cloud field. The result shows that the apparent path radiance in the clear patches is enhanced by nearby clouds in both band 1 (blue) and band 3 (red) of ETM+. More importantly, the magnitude of the enhancement depends on the mean cloud-free distance in the clear patches. For cloud-free distance less than 0.5 km, the enhancement of apparent path radiance is more than 0.025 and 0.015 (reflectance units) in band 1 and band 3 respectively, which corresponds to an enhancement of apparent aerosol optical thickness of approximately 0.25 and approximately 0.15. Neglecting of the 3-D cloud effect would lead to underestimates of surface reflectance of approximately 0.025 and approximately 0.015 in the blue and red band respectively, if the true aerosol optical thickness is 0.2 and the surface reflectance is 0.05. The enhancement decreases exponentially with mean cloud-free distance, reaching asymptotic values of 0.09 for band 1 and 0.027 for band 3 at a mean cloud-free distance about 2 km. The asymptotic values are slightly larger than the mean path radiances retrieved from a completely clear region -- 0.086 and 0.024 for the blue and red band respectively.
NASA Astrophysics Data System (ADS)
Miller, D. J.; Zhang, Z.; Platnick, S. E.; Ackerman, A. S.; Cornet, C.; Baum, B. A.
2013-12-01
A polarized cloud reflectance simulator was developed by coupling an LES cloud model with a polarized radiative transfer model to assess the capabilities of polarimetric cloud retrievals. With future remote sensing campaigns like NASA's Aerosols/Clouds/Ecosystems (ACE) planning to feature advanced polarimetric instruments it is important for the cloud remote sensing community to understand the retrievable information available and the related systematic/methodical limitations. The cloud retrieval simulator we have developed allows us to probe these important questions in a realistically relevant test bed. Our simulator utilizes a polarized adding-doubling radiative transfer model and an LES cloud field from a DHARMA simulation (Ackerman et al. 2004) with cloud properties based on the stratocumulus clouds observed during the DYCOMS-II field campaign. In this study we will focus on how the vertical structure of cloud microphysics can influence polarized cloud effective radius retrievals. Numerous previous studies have explored how retrievals based on total reflectance are affected by cloud vertical structure (Platnick 2000, Chang and Li 2002) but no such studies about the effects of vertical structure on polarized retrievals exist. Unlike the total cloud reflectance, which is predominantly multiply scattered light, the polarized reflectance is primarily the result of singly scattered photons. Thus the polarized reflectance is sensitive to only the uppermost region of the cloud (tau~<1) where photons can scatter once and still escape before being scattered again. This means that retrievals based on polarized reflectance have the potential to reveal behaviors specific to the cloud top. For example cloud top entrainment of dry air, a major influencer on the microphysical development of cloud droplets, can be potentially studied with polarimetric retrievals.
Ring structure of a neutral gas cloud studied in a one-dimensional expansion into space
NASA Technical Reports Server (NTRS)
Davidson, R. E.
1972-01-01
A one dimensional treatment of the expansion of a gas cloud of uncharged particles into vacuum is discussed. It is determined that the whole cloud does not change from continuum to free molecular flow at the same time. Some regions of the cloud make the transition sooner than others. An explanation of the ring structure observed during barium cloud experiments is presented using this conclusion. An analysis of the velocity distributions for the two kinds of flow yields a velocity distribution for the whole cloud that exhibits ring structure.
Modeling marine boundary-layer clouds with a two-layer model: A one-dimensional simulation
NASA Technical Reports Server (NTRS)
Wang, Shouping
1993-01-01
A two-layer model of the marine boundary layer is described. The model is used to simulate both stratocumulus and shallow cumulus clouds in downstream simulations. Over cold sea surfaces, the model predicts a relatively uniform structure in the boundary layer with 90%-100% cloud fraction. Over warm sea surfaces, the model predicts a relatively strong decoupled and conditionally unstable structure with a cloud fraction between 30% and 60%. A strong large-scale divergence considerably limits the height of the boundary layer and decreases relative humidity in the upper part of the cloud layer; thus, a low cloud fraction results. The efffects of drizzle on the boundary-layer structure and cloud fraction are also studied with downstream simulations. It is found that drizzle dries and stabilizes the cloud layer and tends to decouple the cloud from the subcloud layer. Consequently, solid stratocumulus clouds may break up and the cloud fraction may decrease because of drizzle.
Optical instruments synergy in determination of optical depth of thin clouds
NASA Astrophysics Data System (ADS)
Viviana Vlăduţescu, Daniela; Schwartz, Stephen E.; Huang, Dong
2018-04-01
Optically thin clouds have a strong radiative effect and need to be represented accurately in climate models. Cloud optical depth of thin clouds was retrieved using high resolution digital photography, lidar, and a radiative transfer model. The Doppler Lidar was operated at 1.5 μm, minimizing return from Rayleigh scattering, emphasizing return from aerosols and clouds. This approach examined cloud structure on scales 3 to 5 orders of magnitude finer than satellite products, opening new avenues for examination of cloud structure and evolution.
Optical Instruments Synergy in Determination of Optical Depth of Thin Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vladutescu, Daniela V.; Schwartz, Stephen E.
Optically thin clouds have a strong radiative effect and need to be represented accurately in climate models. Cloud optical depth of thin clouds was retrieved using high resolution digital photography, lidar, and a radiative transfer model. The Doppler Lidar was operated at 1.5 μm, minimizing return from Rayleigh scattering, emphasizing return from aerosols and clouds. This approach examined cloud structure on scales 3 to 5 orders of magnitude finer than satellite products, opening new avenues for examination of cloud structure and evolution.
NASA Astrophysics Data System (ADS)
Vaillant de Guélis, Thibault; Chepfer, Hélène; Noel, Vincent; Guzman, Rodrigo; Dubuisson, Philippe; Winker, David M.; Kato, Seiji
2017-12-01
According to climate model simulations, the changing altitude of middle and high clouds is the dominant contributor to the positive global mean longwave cloud feedback. Nevertheless, the mechanisms of this longwave cloud altitude feedback and its magnitude have not yet been verified by observations. Accurate, stable, and long-term observations of a metric-characterizing cloud vertical distribution that are related to the longwave cloud radiative effect are needed to achieve a better understanding of the mechanism of longwave cloud altitude feedback. This study shows that the direct measurement of the altitude of atmospheric lidar opacity is a good candidate for the necessary observational metric. The opacity altitude is the level at which a spaceborne lidar beam is fully attenuated when probing an opaque cloud. By combining this altitude with the direct lidar measurement of the cloud-top altitude, we derive the effective radiative temperature of opaque clouds which linearly drives (as we will show) the outgoing longwave radiation. We find that, for an opaque cloud, a cloud temperature change of 1 K modifies its cloud radiative effect by 2 W m-2. Similarly, the longwave cloud radiative effect of optically thin clouds can be derived from their top and base altitudes and an estimate of their emissivity. We show with radiative transfer simulations that these relationships hold true at single atmospheric column scale, on the scale of the Clouds and the Earth's Radiant Energy System (CERES) instantaneous footprint, and at monthly mean 2° × 2° scale. Opaque clouds cover 35 % of the ice-free ocean and contribute to 73 % of the global mean cloud radiative effect. Thin-cloud coverage is 36 % and contributes 27 % of the global mean cloud radiative effect. The link between outgoing longwave radiation and the altitude at which a spaceborne lidar beam is fully attenuated provides a simple formulation of the cloud radiative effect in the longwave domain and so helps us to understand the longwave cloud altitude feedback mechanism.
NASA Technical Reports Server (NTRS)
Spafford, Eugene H.; Mckendry, Martin S.
1986-01-01
An overview of the internal structure of the Clouds kernel was presented. An indication of how these structures will interact in the prototype Clouds implementation is given. Many specific details have yet to be determined and await experimentation with an actual working system.
Turbulent Region Near Jupiter's Great Red Spot
NASA Technical Reports Server (NTRS)
1997-01-01
True and false color mosaics of the turbulent region west of Jupiter's Great Red Spot. The Great Red Spot is on the planetary limb on the right hand side of each mosaic. The region west (left) of the Great Red Spot is characterized by large, turbulent structures that rapidly change in appearance. The turbulence results from the collision of a westward jet that is deflected northward by the Great Red Spot into a higher latitude eastward jet. The large eddies nearest to the Great Red Spot are bright, suggesting that convection and cloud formation are active there.
The top mosaic combines the violet (410 nanometers) and near infrared continuum (756 nanometers) filter images to create a mosaic similar to how Jupiter would appear to human eyes. Differences in coloration are due to the composition and abundance of trace chemicals in Jupiter's atmosphere. The lower mosaic uses the Galileo imaging camera's three near-infrared (invisible) wavelengths (756 nanometers, 727 nanometers, and 889 nanometers displayed in red, green, and blue) to show variations in cloud height and thickness. Light blue clouds are high and thin, reddish clouds are deep, and white clouds are high and thick. Purple most likely represents a high haze overlying a clear deep atmosphere. Galileo is the first spacecraft to distinguish cloud layers on Jupiter.The mosaic is centered at 16.5 degrees south planetocentric latitude and 85 degrees west longitude. The north-south dimension of the Great Red Spot is approximately 11,000 kilometers. The smallest resolved features are tens of kilometers in size. North is at the top of the picture. The images used were taken on June 26, 1997 at a range of 1.2 million kilometers (1.05 million miles) by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.Space Science Cloud: a Virtual Space Science Research Platform Based on Cloud Model
NASA Astrophysics Data System (ADS)
Hu, Xiaoyan; Tong, Jizhou; Zou, Ziming
Through independent and co-operational science missions, Strategic Pioneer Program (SPP) on Space Science, the new initiative of space science program in China which was approved by CAS and implemented by National Space Science Center (NSSC), dedicates to seek new discoveries and new breakthroughs in space science, thus deepen the understanding of universe and planet earth. In the framework of this program, in order to support the operations of space science missions and satisfy the demand of related research activities for e-Science, NSSC is developing a virtual space science research platform based on cloud model, namely the Space Science Cloud (SSC). In order to support mission demonstration, SSC integrates interactive satellite orbit design tool, satellite structure and payloads layout design tool, payload observation coverage analysis tool, etc., to help scientists analyze and verify space science mission designs. Another important function of SSC is supporting the mission operations, which runs through the space satellite data pipelines. Mission operators can acquire and process observation data, then distribute the data products to other systems or issue the data and archives with the services of SSC. In addition, SSC provides useful data, tools and models for space researchers. Several databases in the field of space science are integrated and an efficient retrieve system is developing. Common tools for data visualization, deep processing (e.g., smoothing and filtering tools), analysis (e.g., FFT analysis tool and minimum variance analysis tool) and mining (e.g., proton event correlation analysis tool) are also integrated to help the researchers to better utilize the data. The space weather models on SSC include magnetic storm forecast model, multi-station middle and upper atmospheric climate model, solar energetic particle propagation model and so on. All the services above-mentioned are based on the e-Science infrastructures of CAS e.g. cloud storage and cloud computing. SSC provides its users with self-service storage and computing resources at the same time.At present, the prototyping of SSC is underway and the platform is expected to be put into trial operation in August 2014. We hope that as SSC develops, our vision of Digital Space may come true someday.
NASA Astrophysics Data System (ADS)
Webley, P. W.; Lopez, T. M.; Ekstrand, A. L.; Dean, K. G.; Rinkleff, P.; Dehn, J.; Cahill, C. F.; Wessels, R. L.; Bailey, J. E.; Izbekov, P.; Worden, A.
2013-06-01
Volcanoes often erupt explosively and generate a variety of hazards including volcanic ash clouds and gaseous plumes. These clouds and plumes are a significant hazard to the aviation industry and the ground features can be a major hazard to local communities. Here, we provide a chronology of the 2009 Redoubt Volcano eruption using frequent, low spatial resolution thermal infrared (TIR), mid-infrared (MIR) and ultraviolet (UV) satellite remote sensing data. The first explosion of the 2009 eruption of Redoubt Volcano occurred on March 15, 2009 (UTC) and was followed by a series of magmatic explosive events starting on March 23 (UTC). From March 23-April 4 2009, satellites imaged at least 19 separate explosive events that sent ash clouds up to 18 km above sea level (ASL) that dispersed ash across the Cook Inlet region. In this manuscript, we provide an overview of the ash clouds and plumes from the 19 explosive events, detailing their cloud-top heights and discussing the variations in infrared absorption signals. We show that the timing of the TIR data relative to the event end time was critical for inferring the TIR derived height and true cloud top height. The ash clouds were high in water content, likely in the form of ice, which masked the negative TIR brightness temperature difference (BTD) signal typically used for volcanic ash detection. The analysis shown here illustrates the utility of remote sensing data during volcanic crises to measure critical real-time parameters, such as cloud-top heights, changes in ground-based thermal activity, and plume/cloud location.
NASA Technical Reports Server (NTRS)
Logan, T. L.; Huning, J. R.; Glackin, D. L.
1983-01-01
The use of two dimensional Fast Fourier Transforms (FFTs) subjected to pattern recognition technology for the identification and classification of low altitude stratus cloud structure from Geostationary Operational Environmental Satellite (GOES) imagery was examined. The development of a scene independent pattern recognition methodology, unconstrained by conventional cloud morphological classifications was emphasized. A technique for extracting cloud shape, direction, and size attributes from GOES visual imagery was developed. These attributes were combined with two statistical attributes (cloud mean brightness, cloud standard deviation), and interrogated using unsupervised clustering amd maximum likelihood classification techniques. Results indicate that: (1) the key cloud discrimination attributes are mean brightness, direction, shape, and minimum size; (2) cloud structure can be differentiated at given pixel scales; (3) cloud type may be identifiable at coarser scales; (4) there are positive indications of scene independence which would permit development of a cloud signature bank; (5) edge enhancement of GOES imagery does not appreciably improve cloud classification over the use of raw data; and (6) the GOES imagery must be apodized before generation of FFTs.
Quantifying the Climate-Scale Accuracy of Satellite Cloud Retrievals
NASA Astrophysics Data System (ADS)
Roberts, Y.; Wielicki, B. A.; Sun-Mack, S.; Minnis, P.; Liang, L.; Di Girolamo, L.
2014-12-01
Instrument calibration and cloud retrieval algorithms have been developed to minimize retrieval errors on small scales. However, measurement uncertainties and assumptions within retrieval algorithms at the pixel level may alias into decadal-scale trends of cloud properties. We first, therefore, quantify how instrument calibration changes could alias into cloud property trends. For a perfect observing system the climate trend accuracy is limited only by the natural variability of the climate variable. Alternatively, for an actual observing system, the climate trend accuracy is additionally limited by the measurement uncertainty. Drifts in calibration over time may therefore be disguised as a true climate trend. We impose absolute calibration changes to MODIS spectral reflectance used as input to the CERES Cloud Property Retrieval System (CPRS) and run the modified MODIS reflectance through the CPRS to determine the sensitivity of cloud properties to calibration changes. We then use these changes to determine the impact of instrument calibration changes on trend uncertainty in reflected solar cloud properties. Secondly, we quantify how much cloud retrieval algorithm assumptions alias into cloud optical retrieval trends by starting with the largest of these biases: the plane-parallel assumption in cloud optical thickness (τC) retrievals. First, we collect liquid water cloud fields obtained from Multi-angle Imaging Spectroradiometer (MISR) measurements to construct realistic probability distribution functions (PDFs) of 3D cloud anisotropy (a measure of the degree to which clouds depart from plane-parallel) for different ISCCP cloud types. Next, we will conduct a theoretical study with dynamically simulated cloud fields and a 3D radiative transfer model to determine the relationship between 3D cloud anisotropy and 3D τC bias for each cloud type. Combining these results provides distributions of 3D τC bias by cloud type. Finally, we will estimate the change in frequency of occurrence of cloud types between two decades and will have the information needed to calculate the total change in 3D optical thickness bias between two decades. If we uncover aliases in this study, the results will motivate the development and rigorous testing of climate specific cloud retrieval algorithms.
NASA Technical Reports Server (NTRS)
Torres, O.; Jethva, H.; Bhartia, P. K.
2012-01-01
A large fraction of the atmospheric aerosol load reaching the free troposphere is frequently located above low clouds. Most commonly observed aerosols above clouds are carbonaceous particles generally associated with biomass burning and boreal forest fires, and mineral aerosols originated in arid and semi-arid regions and transported across large distances, often above clouds. Because these aerosols absorb solar radiation, their role in the radiative transfer balance of the earth atmosphere system is especially important. The generally negative (cooling) top of the atmosphere direct effect of absorbing aerosols, may turn into warming when the light-absorbing particles are located above clouds. The actual effect depends on the aerosol load and the single scattering albedo, and on the geometric cloud fraction. In spite of its potential significance, the role of aerosols above clouds is not adequately accounted for in the assessment of aerosol radiative forcing effects due to the lack of measurements. In this paper we discuss the basis of a simple technique that uses near-UV observations to simultaneously derive the optical depth of both the aerosol layer and the underlying cloud for overcast conditions. The two-parameter retrieval method described here makes use of the UV aerosol index and reflectance measurements at 388 nm. A detailed sensitivity analysis indicates that the measured radiances depend mainly on the aerosol absorption exponent and aerosol-cloud separation. The technique was applied to above-cloud aerosol events over the Southern Atlantic Ocean yielding realistic results as indicated by indirect evaluation methods. An error analysis indicates that for typical overcast cloudy conditions and aerosol loads, the aerosol optical depth can be retrieved with an accuracy of approximately 54% whereas the cloud optical depth can be derived within 17% of the true value.
Phytoplankton bloom in the Bay of Biscay and off the coast of Brittany, France
NASA Technical Reports Server (NTRS)
2002-01-01
This MODIS true-color image of France and a small strip of Spain shows the characteristic blue-green swirls of phytoplankton blooming in the Bay of Biscay, as well as another bloom, mostly obscured by clouds, to the east of Brittany in the upper left corner of the image.
78 FR 70552 - Guidance on Supervisory Concerns and Expectations Regarding Deposit Advance Products
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-26
... raised by commenters had to do with the impact of the ``cooling off'' period. For example, the commenters... credit, reputation, operational, and compliance risks. The combined impact of both an expensive credit... practices, if repeated, can cloud the true performance and delinquency status of the portfolio.\\6\\ \\6\\ See...
78 FR 70624 - Guidance on Supervisory Concerns and Expectations Regarding Deposit Advance Products
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-26
... impact of the ``cooling off'' period. For example, the commenters felt a required cooling off period... consumers, as well as elevated credit, reputation, operational, and compliance risks. The combined impact of... cloud the true performance and delinquency status of the portfolio.\\6\\ Further, a bank should ensure...
21 CFR 172.810 - Dioctyl sodium sulfo-suc-cinate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Dioctyl sodium sulfo-suc-cinate. 172.810 Section... combination with α-hydro-omega -hydroxy - poly(oxyethylene) - poly-(oxypropylene) (53-59 moles) poly(oxyethylene) (14-16 moles) block copolymer, having a molecular weight range of 3,500-4,125 and a cloud point...
NASA Technical Reports Server (NTRS)
Lada, Charles J.
2005-01-01
This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process. During the second year of this grant, progress toward these goals is discussed.
NASA Technical Reports Server (NTRS)
Lada, Charles J.
2004-01-01
This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to determine the detailed initial conditions for star formation from quantitative measurements of the internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process.
NASA Astrophysics Data System (ADS)
Lee, Yeon Joo; Imamura, Takeshi; Maejima, Yasumitsu; Sugiyama, Ko-ichiro
The thick cloud layer of Venus reflects solar radiation effectively, resulting in a Bond albedo of 76% (Moroz et al., 1985). Most of the incoming solar flux is absorbed in the upper cloud layer at 60-70 km altitude. An unknown UV absorber is a major sink of the solar energy at the cloud top level. It produces about 40-60% of the total solar heating near the cloud tops, depending on its vertical structure (Crisp et al., 1986; Lee et al., in preparation). UV images of Venus show a clear difference in morphology between laminar flow shaped clouds on the morning side and convective-like cells on the afternoon side of the planet in the equatorial region (Titov et al., 2012). This difference is probably related to strong solar heating at the cloud tops at the sub-solar point, rather than the influence from deeper level convection in the low and middle cloud layers (Imamura et al., 2014). Also, small difference in cloud top structures may trigger horizontal convection at this altitude, because various cloud top structures can significantly alter the solar heating and thermal cooling rates at the cloud tops (Lee et al., in preparation). Performing radiative forcing calculations for various cloud top structures using a radiative transfer model (SHDOM), we investigate the effect of solar heating at the cloud tops on atmospheric dynamics. We use CReSS (Cloud Resolving Storm Simulator), and consider the altitude range from 35 km to 90 km, covering a full cloud deck.
The Study of Spherical Cores with a Toroidal Magnetic Field Configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gholipour, Mahmoud
Observational studies of the magnetic fields in molecular clouds have significantly improved the theoretical models developed for the structure and evolution of dense clouds and for the star formation process as well. The recent observational analyses on some cores indicate that there is a power-law relationship between magnetic field and density in the molecular clouds. In this study, we consider the stability of spherical cores with a toroidal magnetic field configuration in the molecular clouds. For this purpose, we model a spherical core that is in magnetostatic equilibrium. Herein, we propose an equation of density structure, which is a modifiedmore » form of the isothermal Lane–Emden equation in the presence of the toroidal magnetic field. The proposed equation describes the effect of the toroidal magnetic field on the cloud structure and the mass cloud. Furthermore, we found an upper limit for this configuration of magnetic field in the molecular clouds. Then, the virial theorem is used to consider the cloud evolution leading to an equation in order to obtain the lower limit of the field strength in the molecular cloud. However, the results show that the field strength of the toroidal configuration has an important effect on the cloud structure, whose upper limit is related to the central density and field gradient. The obtained results address some regions of clouds where the cloud decomposition or star formation can be seen.« less
2017-12-08
The late winter sun shone brightly on a stunning scene of clouds and ice in the Davis Strait in late February, 2013. The Moderate Resolution Imaging Spectroradiometer aboard NASA’s Aqua satellite captured this true-color image on February 22 at 1625 UTC. The Davis Strait connects the Labrador Sea (part of the Atlantic Ocean) in the south with Baffin Bay to the north, and separates Canada, to the west, from Greenland to the east. Strong, steady winds frequently blow southward from the colder Baffin Bay to the warmer waters of the Labrador Sea. Over ice, the air is dry and no clouds form. However, as the Arctic air moves over the warmer, open water the rising moist air and the temperature differential gives rise to lines of clouds. In this image, the clouds are aligned in a beautiful, parallel pattern. Known as “cloud streets”, this pattern is formed in a low-level wind, with the clouds aligning in the direction of the wind. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Cho, Hyoun-Myoung; Zhang, Zhibo; Meyer, Kerry; Lebsock, Matthew; Platnick, Steven; Ackerman, Andrew S; Di Girolamo, Larry; C-Labonnote, Laurent; Cornet, Céline; Riedi, Jerome; Holz, Robert E
2015-05-16
Moderate Resolution Imaging Spectroradiometer (MODIS) retrieves cloud droplet effective radius ( r e ) and optical thickness ( τ ) by projecting observed cloud reflectances onto a precomputed look-up table (LUT). When observations fall outside of the LUT, the retrieval is considered "failed" because no combination of τ and r e within the LUT can explain the observed cloud reflectances. In this study, the frequency and potential causes of failed MODIS retrievals for marine liquid phase (MLP) clouds are analyzed based on 1 year of Aqua MODIS Collection 6 products and collocated CALIOP and CloudSat observations. The retrieval based on the 0.86 µm and 2.1 µm MODIS channel combination has an overall failure rate of about 16% (10% for the 0.86 µm and 3.7 µm combination). The failure rates are lower over stratocumulus regimes and higher over the broken trade wind cumulus regimes. The leading type of failure is the " r e too large" failure accounting for 60%-85% of all failed retrievals. The rest is mostly due to the " r e too small" or τ retrieval failures. Enhanced retrieval failure rates are found when MLP cloud pixels are partially cloudy or have high subpixel inhomogeneity, are located at special Sun-satellite viewing geometries such as sunglint, large viewing or solar zenith angles, or cloudbow and glory angles, or are subject to cloud masking, cloud overlapping, and/or cloud phase retrieval issues. The majority (more than 84%) of failed retrievals along the CALIPSO track can be attributed to at least one or more of these potential reasons. The collocated CloudSat radar reflectivity observations reveal that the remaining failed retrievals are often precipitating. It remains an open question whether the extremely large r e values observed in these clouds are the consequence of true cloud microphysics or still due to artifacts not included in this study.
Cho, Hyoun‐Myoung; Meyer, Kerry; Lebsock, Matthew; Platnick, Steven; Ackerman, Andrew S.; Di Girolamo, Larry; C.‐Labonnote, Laurent; Cornet, Céline; Riedi, Jerome; Holz, Robert E.
2015-01-01
Abstract Moderate Resolution Imaging Spectroradiometer (MODIS) retrieves cloud droplet effective radius (r e) and optical thickness (τ) by projecting observed cloud reflectances onto a precomputed look‐up table (LUT). When observations fall outside of the LUT, the retrieval is considered “failed” because no combination of τ and r e within the LUT can explain the observed cloud reflectances. In this study, the frequency and potential causes of failed MODIS retrievals for marine liquid phase (MLP) clouds are analyzed based on 1 year of Aqua MODIS Collection 6 products and collocated CALIOP and CloudSat observations. The retrieval based on the 0.86 µm and 2.1 µm MODIS channel combination has an overall failure rate of about 16% (10% for the 0.86 µm and 3.7 µm combination). The failure rates are lower over stratocumulus regimes and higher over the broken trade wind cumulus regimes. The leading type of failure is the “r e too large” failure accounting for 60%–85% of all failed retrievals. The rest is mostly due to the “r e too small” or τ retrieval failures. Enhanced retrieval failure rates are found when MLP cloud pixels are partially cloudy or have high subpixel inhomogeneity, are located at special Sun‐satellite viewing geometries such as sunglint, large viewing or solar zenith angles, or cloudbow and glory angles, or are subject to cloud masking, cloud overlapping, and/or cloud phase retrieval issues. The majority (more than 84%) of failed retrievals along the CALIPSO track can be attributed to at least one or more of these potential reasons. The collocated CloudSat radar reflectivity observations reveal that the remaining failed retrievals are often precipitating. It remains an open question whether the extremely large r e values observed in these clouds are the consequence of true cloud microphysics or still due to artifacts not included in this study. PMID:27656330
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Jedlovec, Gary J.; Lapenta, William M.
2008-01-01
The CloudSat Mission, part of the NASA A-Train, is providing the first global survey of cloud profiles and cloud physical properties, observing seasonal and geographical variations that are pertinent to evaluating the way clouds are parameterized in weather and climate forecast models. CloudSat measures the vertical structure of clouds and precipitation from space through the Cloud Profiling Radar (CPR), a 94 GHz nadir-looking radar measuring the power backscattered by clouds as a function of distance from the radar. One of the goals of the CloudSat mission is to evaluate the representation of clouds in forecast models, thereby contributing to improved predictions of weather, climate and the cloud-climate feedback problem. This paper highlights potential limitations in cloud microphysical schemes currently employed in the Weather Research and Forecast (WRF) modeling system. The horizontal and vertical structure of explicitly simulated cloud fields produced by the WRF model at 4-km resolution are being evaluated using CloudSat observations in concert with products derived from MODIS and AIRS. A radiative transfer model is used to produce simulated profiles of radar reflectivity given WRF input profiles of hydrometeor mixing ratios and ambient atmospheric conditions. The preliminary results presented in the paper will compare simulated and observed reflectivity fields corresponding to horizontal and vertical cloud structures associated with midlatitude cyclone events.
A scheme for parameterizing cirrus cloud ice water content in general circulation models
NASA Technical Reports Server (NTRS)
Heymsfield, Andrew J.; Donner, Leo J.
1990-01-01
Clouds strongly influence th earth's energy budget. They control th amount of solar radiative energy absorbed by the climate system, partitioning the energy between the atmosphere and the earth's surface. They also control the loss of energy to space by their effect on thermal emission. Cirrus and altostratus are the most frequent cloud types, having an annual average global coverage of 35 and 40 percent, respectively. Cirrus is composed almost entirely of ice crystals and the same is frequently true of the upper portions of altostratus since they are often formed by the thickening of cirrostratus and by the spreading of the middle or upper portions of thunderstorms. Thus, since ice clouds cover such a large portion of the earth's surface, they almost certainly have an important effect on climate. With this recognition, researchers developing climate models are seeking largely unavailable methods for specifying the conditions for ice cloud formation, and quantifying the spatial distribution of ice water content, IWC, a necessary step in deriving their radiative characteristics since radiative properties are apparently related to IWC. A method is developed for specifying IWC in climate models, based on theory and measurements in cirrus during FIRE and other experiments.
Cloud-based adaptive exon prediction for DNA analysis
Putluri, Srinivasareddy; Fathima, Shaik Yasmeen
2018-01-01
Cloud computing offers significant research and economic benefits to healthcare organisations. Cloud services provide a safe place for storing and managing large amounts of such sensitive data. Under conventional flow of gene information, gene sequence laboratories send out raw and inferred information via Internet to several sequence libraries. DNA sequencing storage costs will be minimised by use of cloud service. In this study, the authors put forward a novel genomic informatics system using Amazon Cloud Services, where genomic sequence information is stored and accessed for processing. True identification of exon regions in a DNA sequence is a key task in bioinformatics, which helps in disease identification and design drugs. Three base periodicity property of exons forms the basis of all exon identification techniques. Adaptive signal processing techniques found to be promising in comparison with several other methods. Several adaptive exon predictors (AEPs) are developed using variable normalised least mean square and its maximum normalised variants to reduce computational complexity. Finally, performance evaluation of various AEPs is done based on measures such as sensitivity, specificity and precision using various standard genomic datasets taken from National Center for Biotechnology Information genomic sequence database. PMID:29515813
NASA Astrophysics Data System (ADS)
Welch, R. M.; Sengupta, S. K.; Kuo, K. S.
1988-04-01
Statistical measures of the spatial distributions of gray levels (cloud reflectivities) are determined for LANDSAT Multispectral Scanner digital data. Textural properties for twelve stratocumulus cloud fields, seven cumulus fields, and two cirrus fields are examined using the Spatial Gray Level Co-Occurrence Matrix method. The co-occurrence statistics are computed for pixel separations ranging from 57 m to 29 km and at angles of 0°, 45°, 90° and 135°. Nine different textual measures are used to define the cloud field spatial relationships. However, the measures of contrast and correlation appear to be most useful in distinguishing cloud structure.Cloud field macrotexture describes general cloud field characteristics at distances greater than the size of typical cloud elements. It is determined from the spatial asymptotic values of the texture measures. The slope of the texture curves at small distances provides a measure of the microtexture of individual cloud cells. Cloud fields composed primarily of small cells have very steep slopes and reach their asymptotic values at short distances from the origin. As the cells composing the cloud field grow larger, the slope becomes more gradual and the asymptotic distance increases accordingly. Low asymptotic values of correlation show that stratocumulus cloud fields have no large scale organized structure.Besides the ability to distinguish cloud field structure, texture appears to be a potentially valuable tool in cloud classification. Stratocumulus clouds are characterized by low values of angular second moment and large values of entropy. Cirrus clouds appear to have extremely low values of contrast, low values of entropy, and very large values of correlation.Finally, we propose that sampled high spatial resolution satellite data be used in conjunction with coarser resolution operational satellite data to detect and identify cloud field structure and directionality and to locate regions of subresolution scale cloud contamination.
Black Clouds vs Random Variation in Hospital Admissions.
Ong, Luei Wern; Dawson, Jeffrey D; Ely, John W
2018-06-01
Physicians often accuse their peers of being "black clouds" if they repeatedly have more than the average number of hospital admissions while on call. Our purpose was to determine whether the black-cloud phenomenon is real or explainable by random variation. We analyzed hospital admissions to the University of Iowa family medicine service from July 1, 2010 to June 30, 2015. Analyses were stratified by peer group (eg, night shift attending physicians, day shift senior residents). We analyzed admission numbers to find evidence of black-cloud physicians (those with significantly more admissions than their peers) and white-cloud physicians (those with significantly fewer admissions). The statistical significance of whether there were actual differences across physicians was tested with mixed-effects negative binomial regression. The 5-year study included 96 physicians and 6,194 admissions. The number of daytime admissions ranged from 0 to 10 (mean 2.17, SD 1.63). Night admissions ranged from 0 to 11 (mean 1.23, SD 1.22). Admissions increased from 1,016 in the first year to 1,523 in the fifth year. We found 18 white-cloud and 16 black-cloud physicians in simple regression models that did not control for this upward trend. After including study year and other potential confounding variables in the regression models, there were no significant associations between physicians and admission numbers and therefore no true black or white clouds. In this study, apparent black-cloud and white-cloud physicians could be explained by random variation in hospital admissions. However, this randomness incorporated a wide range in workload among physicians, with potential impact on resident education at the low end and patient safety at the high end.
Clouds on Neptune: Motions, Evolution, and Structure
NASA Technical Reports Server (NTRS)
Sromovsky, Larry A.; Morgan, Thomas (Technical Monitor)
2001-01-01
The aims of our original proposal were these: (1) improving measurements of Neptune's circulation, (2) understanding the spatial distribution of cloud features, (3) discovery of new cloud features and understanding their evolutionary process, (4) understanding the vertical structure of zonal cloud patterns, (5) defining the structure of discrete cloud features, and (6) defining the near IR albedo and light curve of Triton. Towards these aims we proposed analysis of existing 1996 groundbased NSFCAM/IRTF observations and nearly simultaneous WFPC2 observations from the Hubble Space Telescope. We also proposed to acquire new observations from both HST and the IRTF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kollias, Pavlos
2017-04-23
With the vast upgrades to the ARM program radar measurement capabilities in 2010 and beyond, our ability to probe the 3D structure of clouds and associated precipitation has increased dramatically. This project build on the PI's and co-I's expertisein the analysis of radar observations. The first research thrust aims to document the 3D morphological (as depicted by the radar reflectivity structure) and 3D dynamical (cloud$-$scale eddies) structure of boundary layer clouds. Unraveling the 3D dynamical structure of stratocumulus and shallow cumulus clouds requires decomposition of the environmental wind contribution and particle sedimentation velocity from the observed radial Doppler velocity. Themore » second thrust proposes to unravel the mechanism of cumulus entrainment (location, scales) and its impact on microphysics utilizing radar measurements from the vertically pointing and new scanning radars at the ARM sites. The third research thrust requires the development of a cloud$-$tracking algorithm that monitors the properties of cloud.« less
Comprehensive inventory of true flies (Diptera) at a tropical site
Brian V. Brown; Art Borkent; Peter H. Adler; Dalton de Souza Amorim; Kevin Barber; Daniel Bickel; Stephanie Boucher; Scott E. Brooks; John Burger; Zelia L. Burington; Renato S. Capellari; Daniel N. R. Costa; Jeffrey M. Cumming; Greg Curler; Carl W. Dick; John H. Epler; Eric Fisher; Stephen D. Gaimari; Jon Gelhaus; David A. Grimaldi; John Hash; Martin Hauser; Heikki Hippa; Sergio Ibanez-Bernal; Mathias Jaschhof; Elena P. Kameneva; Peter H. Kerr; Valery Korneyev; Cheslavo A. Korytkowski; Giar-Ann Kung; Gunnar Mikalsen Kvifte; Owen Lonsdale; Stephen A. Marshall; Wayne Mathis; Verner Michelsen; Stefan Naglis; Allen L. Norrbom; Steven Paiero; Thomas Pape; Alessandre Pereira-Colavite; Marc Pollet; Sabrina Rochefort; Alessandra Rung; Justin B. Runyon; Jade Savage; Vera C. Silva; Bradley J. Sinclair; Jeffrey H. Skevington; John O. Stireman; John Swann; F. Christian Thompson; Pekka Vilkamaa; Terry Wheeler; Terry Whitworth; Maria Wong; D. Monty Wood; Norman Woodley; Tiffany Yau; Thomas J. Zavortink; Manuel A. Zumbado
2018-01-01
Estimations of tropical insect diversity generally suffer from lack of known groups or faunas against which extrapolations can be made, and have seriously underestimated the diversity of some taxa. Here we report the intensive inventory of a four-hectare tropical cloud forest in Costa Rica for one year, which yielded 4332 species of Diptera, providing the first...
Research and implementation of group animation based on normal cloud model
NASA Astrophysics Data System (ADS)
Li, Min; Wei, Bin; Peng, Bao
2011-12-01
Group Animation is a difficult technology problem which always has not been solved in computer Animation technology, All current methods have their limitations. This paper put forward a method: the Motion Coordinate and Motion Speed of true fish group was collected as sample data, reverse cloud generator was designed and run, expectation, entropy and super entropy are gotten. Which are quantitative value of qualitative concept. These parameters are used as basis, forward cloud generator was designed and run, Motion Coordinate and Motion Speed of two-dimensional fish group animation are produced, And two spirit state variable about fish group : the feeling of hunger, the feeling of fear are designed. Experiment is used to simulated the motion state of fish Group Animation which is affected by internal cause and external cause above, The experiment shows that the Group Animation which is designed by this method has strong Realistic.
NASA Technical Reports Server (NTRS)
Zhang, Zhibo; Werner, Frank; Miller, Daniel; Platnick, Steven; Ackerman, Andrew; DiGirolamo, Larry; Meyer, Kerry; Marshak, Alexander; Wind, Galina; Zhao, Guangyu
2016-01-01
Theory: A novel framework based on 2-D Tayler expansion for quantifying the uncertainty in MODIS retrievals caused by sub-pixel reflectance inhomogeneity. (Zhang et al. 2016). How cloud vertical structure influences MODIS LWP retrievals. (Miller et al. 2016). Observation: Analysis of failed MODIS cloud property retrievals. (Cho et al. 2015). Cloud property retrievals from 15m resolution ASTER observations. (Werner et al. 2016). Modeling: LES-Satellite observation simulator (Zhang et al. 2012, Miller et al. 2016).
ALMA Observations of a Quiescent Molecular Cloud in the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Wong, Tony; Hughes, Annie; Tokuda, Kazuki; Indebetouw, Rémy; Bernard, Jean-Philippe; Onishi, Toshikazu; Wojciechowski, Evan; Bandurski, Jeffrey B.; Kawamura, Akiko; Roman-Duval, Julia; Cao, Yixian; Chen, C.-H. Rosie; Chu, You-hua; Cui, Chaoyue; Fukui, Yasuo; Montier, Ludovic; Muller, Erik; Ott, Juergen; Paradis, Deborah; Pineda, Jorge L.; Rosolowsky, Erik; Sewiło, Marta
2017-12-01
We present high-resolution (subparsec) observations of a giant molecular cloud in the nearest star-forming galaxy, the Large Magellanic Cloud. ALMA Band 6 observations trace the bulk of the molecular gas in 12CO(2-1) and the high column density regions in 13CO(2-1). Our target is a quiescent cloud (PGCC G282.98-32.40, which we refer to as the “Planck cold cloud” or PCC) in the southern outskirts of the galaxy where star formation activity is very low and largely confined to one location. We decompose the cloud into structures using a dendrogram and apply an identical analysis to matched-resolution cubes of the 30 Doradus molecular cloud (located near intense star formation) for comparison. Structures in the PCC exhibit roughly 10 times lower surface density and five times lower velocity dispersion than comparably sized structures in 30 Dor, underscoring the non-universality of molecular cloud properties. In both clouds, structures with relatively higher surface density lie closer to simple virial equilibrium, whereas lower surface-density structures tend to exhibit supervirial line widths. In the PCC, relatively high line widths are found in the vicinity of an infrared source whose properties are consistent with a luminous young stellar object. More generally, we find that the smallest resolved structures (“leaves”) of the dendrogram span close to the full range of line widths observed across all scales. As a result, while the bulk of the kinetic energy is found on the largest scales, the small-scale energetics tend to be dominated by only a few structures, leading to substantial scatter in observed size-line-width relationships.
The wavelet transform as an analysis tool for structure identification in molecular clouds
NASA Astrophysics Data System (ADS)
Gill, Arnold Gerald
1993-01-01
Of the many methods used to attempt to understand the complex structure of giant molecular clouds, perhaps the most commonly used are the autocorrelation functions (ACF), the structure function, and the power spectrum. However, these do not give unique interpretations of structure, as is shown by explicit examples compared to the Taurus Molecular Complex. Thus, another, independent method of analysis is indicated. Here, the wavelet transform is presented, a relatively new technique less than 10 years old. It can be thought of as a band-pass filter that identifies structures of specific sizes. In addition, its mathematical properties allow it to be used to identify fractal structures and accurately identify the scaling exponent. This is shown by the wavelet transform identifying the fractal dimension of a hierarchical rain cloud model first proposed by Frisch et al. (1978). A wavelet analysis is then carried out for a range of astronomical CO data, including the clouds Orion A and B and NGC 7538 (in (12)CO) and Orion A and B, Mon R2, and L1551 (in (13)CO). The data analyzed consists of the velocities of the fitted Gaussians to the individual spectra, the halfwidths and amplitude of these Gaussians, and the total area of the spectral line. For most of the clouds investigated, each of these data types showed a very high degree of scaling coherence over a wide range of scales, from down at the beam spacing up to the full size of the cloud. The analysis carried out uses both the scaling and structure identification strengths of the wavelet transform The fragmentation parameters used by Scalo (1985) and the parameters of the geometric molecular cloud description introduced by Henriksen (1986) are calculated for each cloud. These results are all consistent with previous observations of these and other molecular clouds, though they are obtained individually for each cloud investigated. It is found that the uncertainties are of a magnitude that the differentiation of various theories of molecular cloud structure is not possible. It is noted that the effects of projection and superposition strongly affect the values of some of these parameters, thus hampering a thorough understanding of the underlying physics. The strengths and weaknesses of the wavelet transform in the analysis of molecular cloud data are presented, as well as directions for future work.
NASA Astrophysics Data System (ADS)
LIU, J.; Bi, Y.; Duan, S.; Lu, D.
2017-12-01
It is well-known that cloud characteristics, such as top and base heights and their layering structure of micro-physical parameters, spatial coverage and temporal duration are very important factors influencing both radiation budget and its vertical partitioning as well as hydrological cycle through precipitation data. Also, cloud structure and their statistical distribution and typical values will have respective characteristics with geographical and seasonal variation. Ka band radar is a powerful tool to obtain above parameters around the world, such as ARM cloud radar at the Oklahoma US, Since 2006, Cloudsat is one of NASA's A-Train satellite constellation, continuously observe the cloud structure with global coverage, but only twice a day it monitor clouds over same local site at same local time.By using IAP Ka band Doppler radar which has been operating continuously since early 2013 over the roof of IAP building in Beijing, we obtained the statistical characteristic of clouds, including cloud layering, cloud top and base heights, as well as the thickness of each cloud layer and their distribution, and were analyzed monthly and seasonal and diurnal variation, statistical analysis of cloud reflectivity profiles is also made. The analysis covers both non-precipitating clouds and precipitating clouds. Also, some preliminary comparison of the results with Cloudsat/Calipso products for same period and same area are made.
New insights about cloud vertical structure from CloudSat and CALIPSO observations
NASA Astrophysics Data System (ADS)
Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin
2017-09-01
Active cloud observations from A-Train's CloudSat and CALIPSO satellites offer new opportunities to examine the vertical structure of hydrometeor layers. We use the 2B-CLDCLASS-LIDAR merged CloudSat-CALIPSO product to examine global aspects of hydrometeor vertical stratification. We group the data into major cloud vertical structure (CVS) classes based on our interpretation of how clouds in three standard atmospheric layers overlap and provide their global frequency of occurrence. The two most frequent CVS classes are single-layer (per our definition) low and high clouds that represent 53% of cloudy skies, followed by high clouds overlying low clouds, and vertically extensive clouds that occupy near-contiguously a large portion of the troposphere. The prevalence of these configurations changes seasonally and geographically, between daytime and nighttime, and between continents and oceans. The radiative effects of the CVS classes reveal the major radiative warmers and coolers from the perspective of the planet as a whole, the surface, and the atmosphere. Single-layer low clouds dominate planetary and atmospheric cooling and thermal infrared surface warming. We also investigate the consistency between passive and active views of clouds by providing the CVS breakdowns of Moderate Resolution Imaging Spectroradiometer cloud regimes for spatiotemporally coincident MODIS-Aqua (also on the A-Train) and CloudSat-CALIPSO daytime observations. When the analysis is expanded for a more in-depth look at the most heterogeneous of the MODIS cloud regimes, it ultimately confirms previous interpretations of their makeup that did not have the benefit of collocated active observations.
NASA Astrophysics Data System (ADS)
Cura, Rémi; Perret, Julien; Paparoditis, Nicolas
2017-05-01
In addition to more traditional geographical data such as images (rasters) and vectors, point cloud data are becoming increasingly available. Such data are appreciated for their precision and true three-Dimensional (3D) nature. However, managing point clouds can be difficult due to scaling problems and specificities of this data type. Several methods exist but are usually fairly specialised and solve only one aspect of the management problem. In this work, we propose a comprehensive and efficient point cloud management system based on a database server that works on groups of points (patches) rather than individual points. This system is specifically designed to cover the basic needs of point cloud users: fast loading, compressed storage, powerful patch and point filtering, easy data access and exporting, and integrated processing. Moreover, the proposed system fully integrates metadata (like sensor position) and can conjointly use point clouds with other geospatial data, such as images, vectors, topology and other point clouds. Point cloud (parallel) processing can be done in-base with fast prototyping capabilities. Lastly, the system is built on open source technologies; therefore it can be easily extended and customised. We test the proposed system with several billion points obtained from Lidar (aerial and terrestrial) and stereo-vision. We demonstrate loading speeds in the ˜50 million pts/h per process range, transparent-for-user and greater than 2 to 4:1 compression ratio, patch filtering in the 0.1 to 1 s range, and output in the 0.1 million pts/s per process range, along with classical processing methods, such as object detection.
NASA Astrophysics Data System (ADS)
Singh, Y. P.; Badruddin
2007-02-01
Interplanetary manifestations of coronal mass ejections (CMEs) with specific plasma and field properties, called ``interplanetary magnetic clouds,'' have been observed in the heliosphere since the mid-1960s. Depending on their associated features, a set of observed magnetic clouds identified at 1 AU were grouped in four different classes using data over 4 decades: (1) interplanetary magnetic clouds moving with the ambient solar wind (MC structure), (2) magnetic clouds moving faster than the ambient solar wind and forming a shock/sheath structure of compressed plasma and field ahead of it (SMC structure), (3) magnetic clouds ``pushed'' by the high-speed streams from behind, forming an interaction region between the two (MIH structure), and (4) shock-associated magnetic clouds followed by high-speed streams (SMH structure). This classification into different groups led us to study the role, effect, and the relative importance of (1) closed field magnetic cloud structure with low field variance, (2) interplanetary shock and magnetically turbulent sheath region, (3) interaction region with large field variance, and (4) the high-speed solar wind stream coming from the open field regions, in modulating the galactic cosmic rays (GCRs). MC structures are responsible for transient decrease with fast recovery. SMC structures are responsible for fast decrease and slow recovery, MIH structures produce depression with slow decrease and slow recovery, and SMH structures are responsible for fast decrease with very slow recovery. Simultaneous variations of GCR intensity, solar plasma velocity, interplanetary magnetic field strength, and its variance led us to study the relative effectiveness of different structures as well as interplanetary plasma/field parameters. Possible role of the magnetic field, its topology, field turbulence, and the high-speed streams in influencing the amplitude and time profile of resulting decreases in GCR intensity have also been discussed.
NASA Technical Reports Server (NTRS)
Roberts, William W., Jr.; Stewart, Glen R.
1987-01-01
The role of orbit crowding and cloud-cloud collisions in the formation of GMCs and their organization in global spiral structure is investigated. Both N-body simulations of the cloud system and a detailed analysis of individual particle orbits are used to develop a conceptual understanding of how individual clouds participate in the collective density response. Detailed comparisons are made between a representative cloud-particle simulation in which the cloud particles collide inelastically with one another and give birth to and subsequently interact with young star associations and stripped down simulations in which the cloud particles are allowed to follow ballistic orbits in the absence of cloud-cloud collisions or any star formation processes. Orbit crowding is then related to the behavior of individual particle trajectories in the galactic potential field. The conceptual picture of how GMCs are formed in the clumpy ISMs of spiral galaxies is formulated, and the results are compared in detail with those published by other authors.
The Black Cloud Phenomenon in Hand Surgery.
Zhao, Emily; Tiedeken, Nathan; Wang, William; Fowler, John
2018-04-01
The term black cloud for a surgeon is generally used to describe someone who is unusually busy compared with his or her counterparts, and it is a superstition that tends to pervade the medical world. The purpose of this study is to investigate whether black clouds exist in hand surgery. We examined one academic year's worth of hand surgery-specific call at a level I trauma center and tabulated the number of hand-related patient transfers and add-on cases per surgeon. Each surgeon was given a black cloud rating by the fellows who were in training that year. Correlations were made between the black cloud rating and the surgeons' call volume. There were 12 surgeons who shared 365 days of hand call, and 5 of them are hand surgery fellowship trained. Those 5 surgeons tended to be busier on their call days, with more cases added on overnight and the next day, and also had worse black cloud ratings than the 7 non-hand fellowship trained surgeons. In regard to hand surgery, while true emergencies occur and require emergent intervention, how busy hand surgeons may be during call may be influenced by a variety of factors not related to their patients' problems but rather their daily schedules, their hospitals' ability to facilitate add-on cases, and their rapport with their fellow surgeons to share case loads.
NASA Astrophysics Data System (ADS)
Küchler, N.; Kneifel, S.; Kollias, P.; Loehnert, U.
2017-12-01
Cumulus and stratocumulus clouds strongly affect the Earth's radiation budget and are a major uncertainty source in weather and climate prediction models. To improve and evaluate models, a comprehensive understanding of cloud processes is necessary and references are needed. Therefore active and passive microwave remote sensing of clouds can be used to derive cloud properties such as liquid water path and liquid water content (LWC), which can serve as a reference for model evaluation. However, both the measurements and the assumptions when retrieving physical quantities from the measurements involve uncertainty sources. Frisch et al. (1998) combined radar and radiometer observations to derive LWC profiles. Assuming their assumptions are correct, there will be still uncertainties regarding the measurement setup. We investigate how varying beam width, temporal and vertical resolutions, frequency combinations, and beam overlap of and between the two instruments influence the retrieval of LWC profiles. Especially, we discuss the benefit of combining vertically, high resolved radar and radiometer measurements using the same antenna, i.e. having ideal beam overlap. Frisch, A. S., G. Feingold, C. W. Fairall, T. Uttal, and J. B. Snider, 1998: On cloud radar and microwave radiometer measurements of stratus cloud liquid water profiles. J. Geophys. Res.: Atmos., 103 (18), 23 195-23 197, doi:0148-0227/98/98JD-01827509.00.
Statistical thermodynamics and the size distributions of tropical convective clouds.
NASA Astrophysics Data System (ADS)
Garrett, T. J.; Glenn, I. B.; Krueger, S. K.; Ferlay, N.
2017-12-01
Parameterizations for sub-grid cloud dynamics are commonly developed by using fine scale modeling or measurements to explicitly resolve the mechanistic details of clouds to the best extent possible, and then to formulating these behaviors cloud state for use within a coarser grid. A second is to invoke physical intuition and some very general theoretical principles from equilibrium statistical thermodynamics. This second approach is quite widely used elsewhere in the atmospheric sciences: for example to explain the heat capacity of air, blackbody radiation, or even the density profile or air in the atmosphere. Here we describe how entrainment and detrainment across cloud perimeters is limited by the amount of available air and the range of moist static energy in the atmosphere, and that constrains cloud perimeter distributions to a power law with a -1 exponent along isentropes and to a Boltzmann distribution across isentropes. Further, the total cloud perimeter density in a cloud field is directly tied to the buoyancy frequency of the column. These simple results are shown to be reproduced within a complex dynamic simulation of a tropical convective cloud field and in passive satellite observations of cloud 3D structures. The implication is that equilibrium tropical cloud structures can be inferred from the bulk thermodynamic structure of the atmosphere without having to analyze computationally expensive dynamic simulations.
Dusty Cloud Acceleration by Radiation Pressure in Rapidly Star-forming Galaxies
NASA Astrophysics Data System (ADS)
Zhang, Dong; Davis, Shane W.; Jiang, Yan-Fei; Stone, James M.
2018-02-01
We perform two-dimensional and three-dimensional radiation hydrodynamic simulations to study cold clouds accelerated by radiation pressure on dust in the environment of rapidly star-forming galaxies dominated by infrared flux. We utilize the reduced speed of light approximation to solve the frequency-averaged, time-dependent radiative transfer equation. We find that radiation pressure is capable of accelerating the clouds to hundreds of kilometers per second while remaining dense and cold, consistent with observations. We compare these results to simulations where acceleration is provided by entrainment in a hot wind, where the momentum injection of the hot flow is comparable to the momentum in the radiation field. We find that the survival time of the cloud accelerated by the radiation field is significantly longer than that of a cloud entrained in a hot outflow. We show that the dynamics of the irradiated cloud depends on the initial optical depth, temperature of the cloud, and intensity of the flux. Additionally, gas pressure from the background may limit cloud acceleration if the density ratio between the cloud and background is ≲ {10}2. In general, a 10 pc-scale optically thin cloud forms a pancake structure elongated perpendicular to the direction of motion, while optically thick clouds form a filamentary structure elongated parallel to the direction of motion. The details of accelerated cloud morphology and geometry can also be affected by other factors, such as the cloud lengthscale, reduced speed of light approximation, spatial resolution, initial cloud structure, and dimensionality of the run, but these have relatively little affect on the cloud velocity or survival time.
Cloud and boundary layer structure over San Nicolas Island during FIRE
NASA Technical Reports Server (NTRS)
Albrecht, Bruce A.; Fairall, Christopher W.; Syrett, William J.; Schubert, Wayne H.; Snider, Jack B.
1990-01-01
The temporal evolution of the structure of the marine boundary layer and of the associated low-level clouds observed in the vicinity of the San Nicolas Island (SNI) is defined from data collected during the First ISCCP Regional Experiment (FIRE) Marine Stratocumulus Intense Field Observations (IFO) (July 1 to 19). Surface, radiosonde, and remote-sensing measurements are used for this analysis. Sounding from the Island and from the ship Point Sur, which was located approximately 100 km northwest of SNI, are used to define variations in the thermodynamic structure of the lower-troposphere on time scales of 12 hours and longer. Time-height sections of potential temperature and equivalent potential temperature clearly define large-scale variations in the height and the strength of the inversion and periods where the conditions for cloud-top entrainment instability (CTEI) are met. Well defined variations in the height and the strength of the inversion were associated with a Cataline Eddy that was present at various times during the experiment and with the passage of the remnants of a tropical cyclone on July 18. The large-scale variations in the mean thermodynamic structure at SNI correlate well with those observed from the Point Sur. Cloud characteristics are defined for 19 days of the experiment using data from a microwave radiometer, a cloud ceilometer, a sodar, and longwave and shortwave radiometers. The depth of the cloud layer is estimated by defining inversion heights from the sodar reflectivity and cloud-base heights from a laser ceilometer. The integrated liquid water obtained from NOAA's microwave radiometer is compared with the adiabatic liquid water content that is calculated by lifting a parcel adiabatically from cloud base. In addition, the cloud structure is characterized by the variability in cloud-base height and in the integrated liquid water.
The dense gas mass fraction of molecular clouds in the Milky Way
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battisti, Andrew J.; Heyer, Mark H., E-mail: abattist@astro.umass.edu, E-mail: heyer@astro.umass.edu
2014-01-10
The mass fraction of dense gas within giant molecular clouds (GMCs) of the Milky Way is investigated using {sup 13}CO data from the Five College Radio Astronomy Observatory Galactic Plane Surveys and the Bolocam Galactic Plane Survey (BGPS) of 1.1 mm dust continuum emission. A sample of 860 compact dust sources are selected from the BGPS catalog and kinematically linked to 344 clouds of extended (>3') {sup 13}CO J = 1-0 emission. Gas masses are tabulated for the full dust source and subregions within the dust sources with mass surface densities greater than 200 M {sub ☉} pc{sup –2}, whichmore » are assumed to be regions of enhanced volume density. Masses of the parent GMCs are calculated assuming optically thin {sup 13}CO J = 1-0 emission and local thermodynamic equilibrium conditions. The mean fractional mass of dust sources to host GMC mass is 0.11{sub −0.06}{sup +0.12}. The high column density subregions comprise 0.07{sub −0.05}{sup +0.13} of the mass of the cloud. Owing to our assumptions, these values are upper limits to the true mass fractions. The fractional mass of dense gas is independent of GMC mass and gas surface density. The low dense gas mass fraction suggests that the formation of dense structures within GMCs is the primary bottleneck for star formation. The distribution of velocity differences between the dense gas and the low density material along the line of sight is also examined. We find a strong, centrally peaked distribution centered on zero velocity displacement. This distribution of velocity differences is modeled with radially converging flows toward the dense gas position that are randomly oriented with respect to the observed line of sight. These models constrain the infall velocities to be 2-4 km s{sup –1} for various flow configurations.« less
Global Weather States and Their Properties from Passive and Active Satellite Cloud Retrievals
NASA Technical Reports Server (NTRS)
Tselioudis, George; Rossow, William; Zhang, Yuanchong; Konsta, Dimitra
2013-01-01
In this study, the authors apply a clustering algorithm to International Satellite Cloud Climatology Project (ISCCP) cloud optical thickness-cloud top pressure histograms in order to derive weather states (WSs) for the global domain. The cloud property distribution within each WS is examined and the geographical variability of each WS is mapped. Once the global WSs are derived, a combination of CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) vertical cloud structure retrievals is used to derive the vertical distribution of the cloud field within each WS. Finally, the dynamic environment and the radiative signature of the WSs are derived and their variability is examined. The cluster analysis produces a comprehensive description of global atmospheric conditions through the derivation of 11 WSs, each representing a distinct cloud structure characterized by the horizontal distribution of cloud optical depth and cloud top pressure. Matching those distinct WSs with cloud vertical profiles derived from CloudSat and CALIPSO retrievals shows that the ISCCP WSs exhibit unique distributions of vertical layering that correspond well to the horizontal structure of cloud properties. Matching the derived WSs with vertical velocity measurements shows a normal progression in dynamic regime when moving from the most convective to the least convective WS. Time trend analysis of the WSs shows a sharp increase of the fair-weather WS in the 1990s and a flattening of that increase in the 2000s. The fact that the fair-weather WS is the one with the lowest cloud radiative cooling capability implies that this behavior has contributed excess radiative warming to the global radiative budget during the 1990s.
Cloud vertical structure, precipitation, and cloud radiative effects over Tibetan Plateau
NASA Astrophysics Data System (ADS)
Liu, Y.; Yan, Y.; Lu, J.
2017-12-01
The vertical structure of clouds and its connection with precipitation and cloud radiative effects (CRE) over the Tibetan Plateau (TP) are analyzed and compared with its neighboring land and tropical oceans based on CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) products and the Tropical Rainfall Measuring Mission (TRMM) precipitation data. Unique characteristics of cloud vertical structure and CRE over the TP are found. The cloud amount shows seasonal variation over the TP, which presents a single peak (located in 7-11 km) during January to April and two peaks (located in 5-8 km and 11-17 km separately) after mid-June, and then resumes to one peak (located in 5-10 km) after mid-August. Topography-induced restriction on moisture supply leads to a compression effect on clouds, i.e., the reduction in both cloud thickness and number of cloud layers, over the TP. The topography-induced compression effect is also shown in the range in the variation of cloud thickness and cloud-top height corresponding to different precipitation intensity, which is much smaller over the TP than its neighboring regions. In summer, cloud ice particles over the TP are mostly located at lower altitude (5-10 km) with richer variety of sizes and aggregation in no rain conditions compared to other regions. Ice water content becomes abundant and the number concentration tends to be dense at higher levels when precipitation is enhanced. The longwave CRE in the atmosphere over the TP is a net cooling effect. The vertical structure of CRE over the TP is unique compared to other regions: there exists a strong cooling layer of net CRE at the altitude of 8 km, from June to the beginning of October; the net radiative heating layer above the surface is shallower but stronger underneath 7 km and with a stronger seasonal variation over the TP.
NASA Technical Reports Server (NTRS)
Albrecht, Bruce A.; Barlow, Roy W.
1990-01-01
Satellite images often show significant variations in the structure of marine stratocumulus clouds on scales ranging from 10 to 1000 km. This is illustrated where a GOES West satellite image shows a well-defined variation in cloud structure near 32 N, 122 W on 30 June 1987. Aircraft measurements were made with the UK C-130 and the NCAR Electra on this day as part of the FIRE Marine Stratocumulus Intensive Field Observations (IFO). The mean, turbulent, and the microphysical structure of the clouds sampled in these two areas are compared an an attempt is made to explain the differences in cloud structure. In an attempt to identify any systematic differences between the measurements made with the two aircraft, data were analyzed that were collected on 14 July 1987 with the C-130 and the Electra flying in close formation at an altitude of 250 m. The microphysical and turbulence data are being compared in an attempt to explain the differences in the cloud liquid water content obtained with the two aircraft and the differences in cloud structure shown by the GOES image. In addition, data are being analyzed for three other days during the experiment when coordinated downstream flights were made with the Electra and the C-130.
Vertical Structures of Anvil Clouds of Tropical Mesoscale Convective Systems Observed by CloudSat
NASA Technical Reports Server (NTRS)
Hence, Deanna A.; Houze, Robert A.
2011-01-01
A global study of the vertical structures of the clouds of tropical mesoscale convective systems (MCSs) has been carried out with data from the CloudSat Cloud Profiling Radar. Tropical MCSs are found to be dominated by cloud-top heights greater than 10 km. Secondary cloud layers sometimes occur in MCSs, but outside their primary raining cores. The secondary layers have tops at 6 8 and 1 3 km. High-topped clouds extend outward from raining cores of MCSs to form anvil clouds. Closest to the raining cores, the anvils tend to have broader distributions of reflectivity at all levels, with the modal values at higher reflectivity in their lower levels. Portions of anvil clouds far away from the raining core are thin and have narrow frequency distributions of reflectivity at all levels with overall weaker values. This difference likely reflects ice particle fallout and therefore cloud age. Reflectivity histograms of MCS anvil clouds vary little across the tropics, except that (i) in continental MCS anvils, broader distributions of reflectivity occur at the uppermost levels in the portions closest to active raining areas; (ii) the frequency of occurrence of stronger reflectivity in the upper part of anvils decreases faster with increasing distance in continental MCSs; and (iii) narrower-peaked ridges are prominent in reflectivity histograms of thick anvil clouds close to the raining areas of connected MCSs (superclusters). These global results are consistent with observations at ground sites and aircraft data. They present a comprehensive test dataset for models aiming to simulate process-based upper-level cloud structure around the tropics.
Vertical Structures of Anvil Clouds of Tropical Mesoscale Convective Systems Observed by CloudSat
NASA Technical Reports Server (NTRS)
Yuan, J.; Houze, R. A., Jr.; Heymsfield, A.
2011-01-01
A global study of the vertical structures of the clouds of tropical mesoscale convective systems (MCSs) has been carried out with data from the CloudSat Cloud Profiling Radar. Tropical MCSs are found to be dominated by cloud-top heights greater than 10 km. Secondary cloud layers sometimes occur in MCSs, but outside their primary raining cores. The secondary layers have tops at 6--8 and 1--3 km. High-topped clouds extend outward from raining cores of MCSs to form anvil clouds. Closest to the raining cores, the anvils tend to have broader distributions of reflectivity at all levels, with the modal values at higher reflectivity in their lower levels. Portions of anvil clouds far away from the raining core are thin and have narrow frequency distributions of reflectivity at all levels with overall weaker values. This difference likely reflects ice particle fallout and therefore cloud age. Reflectivity histograms of MCS anvil clouds vary little across the tropics, except that (i) in continental MCS anvils, broader distributions of reflectivity occur at the uppermost levels in the portions closest to active raining areas; (ii) the frequency of occurrence of stronger reflectivity in the upper part of anvils decreases faster with increasing distance in continental MCSs; and (iii) narrower-peaked ridges are prominent in reflectivity histograms of thick anvil clouds close to the raining areas of connected MCSs (superclusters). These global results are consistent with observations at ground sites and aircraft data. They present a comprehensive test dataset for models aiming to simulate process-based upper-level cloud structure around the tropics.
NASA Astrophysics Data System (ADS)
Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong
2016-06-01
With the rapid developments of the sensor technology, high spatial resolution imagery and airborne Lidar point clouds can be captured nowadays, which make classification, extraction, evaluation and analysis of a broad range of object features available. High resolution imagery, Lidar dataset and parcel map can be widely used for classification as information carriers. Therefore, refinement of objects classification is made possible for the urban land cover. The paper presents an approach to object based image analysis (OBIA) combing high spatial resolution imagery and airborne Lidar point clouds. The advanced workflow for urban land cover is designed with four components. Firstly, colour-infrared TrueOrtho photo and laser point clouds were pre-processed to derive the parcel map of water bodies and nDSM respectively. Secondly, image objects are created via multi-resolution image segmentation integrating scale parameter, the colour and shape properties with compactness criterion. Image can be subdivided into separate object regions. Thirdly, image objects classification is performed on the basis of segmentation and a rule set of knowledge decision tree. These objects imagery are classified into six classes such as water bodies, low vegetation/grass, tree, low building, high building and road. Finally, in order to assess the validity of the classification results for six classes, accuracy assessment is performed through comparing randomly distributed reference points of TrueOrtho imagery with the classification results, forming the confusion matrix and calculating overall accuracy and Kappa coefficient. The study area focuses on test site Vaihingen/Enz and a patch of test datasets comes from the benchmark of ISPRS WG III/4 test project. The classification results show higher overall accuracy for most types of urban land cover. Overall accuracy is 89.5% and Kappa coefficient equals to 0.865. The OBIA approach provides an effective and convenient way to combine high resolution imagery and Lidar ancillary data for classification of urban land cover.
NASA Astrophysics Data System (ADS)
Jayakumar, A.; Mamgain, Ashu; Jisesh, A. S.; Mohandas, Saji; Rakhi, R.; Rajagopal, E. N.
2016-05-01
Representation of rainfall distribution and monsoon circulation in the high resolution versions of NCMRWF Unified model (NCUM-REG) for the short-range forecasting of extreme rainfall event is vastly dependent on the key factors such as vertical cloud distribution, convection and convection/cloud relationship in the model. Hence it is highly relevant to evaluate the vertical structure of cloud and precipitation of the model over the monsoon environment. In this regard, we utilized the synergy of the capabilities of CloudSat data for long observational period, by conditioning it for the synoptic situation of the model simulation period. Simulations were run at 4-km grid length with the convective parameterization effectively switched off and on. Since the sample of CloudSat overpasses through the monsoon domain is small, the aforementioned methodology may qualitatively evaluate the vertical cloud structure for the model simulation period. It is envisaged that the present study will open up the possibility of further improvement in the high resolution version of NCUM in the tropics for the Indian summer monsoon associated rainfall events.
Cumulus cloud model estimates of trace gas transports
NASA Technical Reports Server (NTRS)
Garstang, Michael; Scala, John; Simpson, Joanne; Tao, Wei-Kuo; Thompson, A.; Pickering, K. E.; Harris, R.
1989-01-01
Draft structures in convective clouds are examined with reference to the results of the NASA Amazon Boundary Layer Experiments (ABLE IIa and IIb) and calculations based on a multidimensional time dependent dynamic and microphysical numerical cloud model. It is shown that some aspects of the draft structures can be calculated from measurements of the cloud environment. Estimated residence times in the lower regions of the cloud based on surface observations (divergence and vertical velocities) are within the same order of magnitude (about 20 min) as model trajectory estimates.
Spin-Imbalanced Quasi-Two-Dimensional Fermi Gases
NASA Astrophysics Data System (ADS)
Ong, W.; Cheng, Chingyun; Arakelyan, I.; Thomas, J. E.
2015-03-01
We measure the density profiles for a Fermi gas of
A novel method to detect shadows on multispectral images
NASA Astrophysics Data System (ADS)
Daǧlayan Sevim, Hazan; Yardımcı ćetin, Yasemin; Özışık Başkurt, Didem
2016-10-01
Shadowing occurs when the direct light coming from a light source is obstructed by high human made structures, mountains or clouds. Since shadow regions are illuminated only by scattered light, true spectral properties of the objects are not observed in such regions. Therefore, many object classification and change detection problems utilize shadow detection as a preprocessing step. Besides, shadows are useful for obtaining 3D information of the objects such as estimating the height of buildings. With pervasiveness of remote sensing images, shadow detection is ever more important. This study aims to develop a shadow detection method on multispectral images based on the transformation of C1C2C3 space and contribution of NIR bands. The proposed method is tested on Worldview-2 images covering Ankara, Turkey at different times. The new index is used on these 8-band multispectral images with two NIR bands. The method is compared with methods in the literature.
Cloud Computing Value Chains: Understanding Businesses and Value Creation in the Cloud
NASA Astrophysics Data System (ADS)
Mohammed, Ashraf Bany; Altmann, Jörn; Hwang, Junseok
Based on the promising developments in Cloud Computing technologies in recent years, commercial computing resource services (e.g. Amazon EC2) or software-as-a-service offerings (e.g. Salesforce. com) came into existence. However, the relatively weak business exploitation, participation, and adoption of other Cloud Computing services remain the main challenges. The vague value structures seem to be hindering business adoption and the creation of sustainable business models around its technology. Using an extensive analyze of existing Cloud business models, Cloud services, stakeholder relations, market configurations and value structures, this Chapter develops a reference model for value chains in the Cloud. Although this model is theoretically based on porter's value chain theory, the proposed Cloud value chain model is upgraded to fit the diversity of business service scenarios in the Cloud computing markets. Using this model, different service scenarios are explained. Our findings suggest new services, business opportunities, and policy practices for realizing more adoption and value creation paths in the Cloud.
The structure and phase of cloud tops as observed by polarization lidar
NASA Technical Reports Server (NTRS)
Spinhirne, J. D.; Hansen, M. Z.; Simpson, J.
1983-01-01
High-resolution observations of the structure of cloud tops have been obtained with polarization lidar operated from a high altitude aircraft. Case studies of measurements acquired from cumuliform cloud systems are presented, two from September 1979 observations in the area of Florida and adjacent waters and a third during the May 1981 CCOPE experiment in southeast Montana. Accurate cloud top height structure and relative density of hydrometers are obtained from the lidar return signal intensity. Correlation between the signal return intensity and active updrafts was noted. Thin cirrus overlying developing turrets was observed in some cases. Typical values of the observed backscatter cross section were 0.1-5 (km/sr) for cumulonimbus tops. The depolarization ratio of the lidar signals was a function of the thermodynamic phase of cloud top areas. An increase of the cloud top depolarization with decreasing temperature was found for temperatures above and below -40 C.
Es structure using an HF radar
NASA Astrophysics Data System (ADS)
From, W. R.; Whitehead, J. D.
1986-05-01
By using an HF radar which produces a steerable beam about 4° wide and measures angle of arrival and Doppler shift of radio echoes, the structure of various types of mid-latitude sporadic E (Es) has been determined. Totally reflecting Es is a very smooth layer, tilted less than 1° from the horizontal. Partially reflecting Es consists of clouds of ionization. These clouds vary in size from a few kilometers to 25 km in the direction of movement and larger in the transverse direction. Echoes often disappear rapidly: the clouds either disappear quickly or have sharp edges. Spread Es has a curious structure of small clouds, each of which reflects only for a few seconds, but each cloud moves with the same velocity, typically 100 m/s, even though the heights of the clouds vary up to 10 km. It is difficult to reconcile this finding with the presence of wind shears.
Es structure using an HF radar
NASA Astrophysics Data System (ADS)
From, W. R.; Whitehead, J. D.
Using an HF radar which produces a steerable beam about 4 deg wide and measures angle of arrival and Doppler shift of radio echoes, the structure of various types of midlatitude sporadic E (Es) has been determined. Totally reflecting Es is a very smooth layer, tilted less than 1 deg from the horizontal. Partially reflecting Es consists of clouds of ionization. These clouds vary in size from a few kilometers to 25 km in the direction of movement and larger in the transverse direction. Echoes often disappear rapidly: the clouds either disappear quickly or have sharp edges. Spread Es has a curious structure of small clouds each of which reflects only for a few seconds, but each cloud moves with the same velocity, typically 100 m/s, even though the heights of the clouds vary up to 10 km. It is difficult to reconcile this finding with the presence of wind shears.
NASA Astrophysics Data System (ADS)
Mondal, Santanu; Chakrabarti, Sandip K.; Debnath, Dipak
2015-01-01
In outburst sources, quasi-periodic oscillation (QPO) frequency is known to evolve in a certain way: in the rising phase, it monotonically goes up until a soft intermediate state is achieved. In the propagating oscillatory shock model, oscillation of the Compton cloud is thought to cause QPOs. Thus, in order to increase QPO frequency, the Compton cloud must collapse steadily in the rising phase. In decline phases, the exact opposite should be true. We investigate cause of this evolution of the Compton cloud. The same viscosity parameter that increases the Keplerian disk rate also moves the inner edge of the Keplerian component, thereby reducing the size of the Compton cloud and reducing the cooling timescale. We show that cooling of the Compton cloud by inverse Comptonization is enough for it to collapse sufficiently so as to explain the QPO evolution. In the two-component advective flow configuration of Chakrabarti-Titarchuk, centrifugal force-induced shock represents the boundary of the Compton cloud. We take the rising phase of 2010 outburst of Galactic black hole candidate H 1743-322 and find an estimation of variation of the α parameter of the sub-Keplerian flow to be monotonically rising from 0.0001 to 0.02, well within the range suggested by magnetorotational instability. We also estimate the inward velocity of the Compton cloud to be a few meters per second, which is comparable to what is found in several earlier studies of our group by empirically fitting the shock locations with the time of observations.
1979-07-06
Range : 3.2 million km This image returned by Voyager 2 shows one of the long dark clouds observed in the North Equatorial Belt of Jupiter. A high, white cloud is seen moving over the darker cloud, providing an indication of the structure of the cloud layers. Thin white clouds are also seen within the dark cloud. At right, blue areas, free of high clouds, are seen.
ERIC Educational Resources Information Center
Caminero, Agustín C.; Ros, Salvador; Hernández, Roberto; Robles-Gómez, Antonio; Tobarra, Llanos; Tolbaños Granjo, Pedro J.
2016-01-01
The use of practical laboratories is a key in engineering education in order to provide our students with the resources needed to acquire practical skills. This is specially true in the case of distance education, where no physical interactions between lecturers and students take place, so virtual or remote laboratories must be used. UNED has…
NASA Technical Reports Server (NTRS)
Kahre, M. A.
2015-01-01
The dust and water cycles are crucial to the current Martian climate, and they are coupled through cloud formation. Dust strongly impacts the thermal structure of the atmosphere and thus greatly affects atmospheric circulation, while clouds provide radiative forcing and control the hemispheric exchange of water through the modification of the vertical distributions of water and dust. Recent improvements in the quality and sophistication of both observations and climate models allow for a more comprehensive understanding of how the interaction between the dust and water cycles (through cloud formation) affects the dust and water cycles individually. We focus here on the effects of clouds on the vertical distribution of dust and water, and how those vertical distributions control the net meridional transport of water. For this study, we utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) combined with the NASA ARC Mars Global Climate Model (MGCM). We demonstrate that the magnitude and nature of the net meridional transport of water between the northern and southern hemispheres during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. We further examine how clouds influence the atmospheric thermal structure and thus the vertical structure of the cloud belt. Our goal is to identify and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.
NASA Astrophysics Data System (ADS)
Khatri, P.; Iwabuchi, H.; Saito, M.
2017-12-01
High-level cirrus clouds, which normally occur over more than 20% of the globe, are known to have profound impacts on energy budget and climate change. The scientific knowledge regarding the vertical structure of such high-level cirrus clouds and their geometrical thickness are relatively poorer compared to low-level water clouds. Knowledge regarding cloud vertical structure is especially important in passive remote sensing of cloud properties using infrared channels or channels strongly influenced by gaseous absorption when clouds are geometrically thick and optically thin. Such information is also very useful for validating cloud resolving numerical models. This study analyzes global scale data of ice clouds identified by Cloud profiling Radar (CPR) onboard CloudSat and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard CALIPSO to parameterize (i) vertical profiles of ice water content (IWC), cloud-particle effective radius (CER), and ice-particle number concentration for varying ice water path (IWP) values and (ii) the relation of cloud geometrical thickness (CGT) with IWP and CER for varying cloud top temperature (CTT) values. It is found that the maxima in IWC and CER profile shifts towards cloud base with the increase of IWP. Similarly, if the cloud properties remain same, CGT shows an increasing trend with the decrease of CTT. The implementation of such cloud vertical inhomogeneity parameterization in the forward model used in the Integrated Cloud Analysis System ICAS (Iwabuchi et al., 2016) generally shows increase of brightness temperatures in infrared channels compared to vertically homogeneous cloud assumption. The cloud vertical inhomogeneity is found to bring noticeable changes in retrieved cloud properties. Retrieved CER and cloud top height become larger for optically thick cloud. We will show results of comparison of cloud properties retrieved from infrared measurements and active remote sensing.
The Effects of Ram Pressure on the Cold Clouds in the Centers of Galaxy Clusters
NASA Astrophysics Data System (ADS)
Li, Yuan; Ruszkowski, Mateusz; Tremblay, Grant
2018-02-01
We discuss the effect of ram pressure on the cold clouds in the centers of cool-core galaxy clusters, and in particular, how it reduces cloud velocity and sometimes causes an offset between the cold gas and young stars. The velocities of the molecular gas in both observations and our simulations fall in the range of 100–400 km s‑1, which is much lower than expected if they fall from a few tens of kiloparsecs ballistically. If the intracluster medium (ICM) is at rest, the ram pressure of the ICM only slightly reduces the velocity of the clouds. When we assume that the clouds are actually “fluffier” because they are co-moving with a warm-hot layer, the velocity becomes smaller. If we also consider the active galactic nucleus wind in the cluster center by adding a wind profile measured from the simulation, the clouds are further slowed down at small radii, and the resulting velocities are in general agreement with the observations and simulations. Because ram pressure only affects gas but not stars, it can cause a separation between a filament and young stars that formed in the filament as they move through the ICM together. This separation has been observed in Perseus and also exists in our simulations. We show that the star-filament offset, combined with line-of-sight velocity measurements, can help determine the true motion of the cold gas, and thus distinguish between inflows and outflows.
Filtering Photogrammetric Point Clouds Using Standard LIDAR Filters Towards DTM Generation
NASA Astrophysics Data System (ADS)
Zhang, Z.; Gerke, M.; Vosselman, G.; Yang, M. Y.
2018-05-01
Digital Terrain Models (DTMs) can be generated from point clouds acquired by laser scanning or photogrammetric dense matching. During the last two decades, much effort has been paid to developing robust filtering algorithms for the airborne laser scanning (ALS) data. With the point cloud quality from dense image matching (DIM) getting better and better, the research question that arises is whether those standard Lidar filters can be used to filter photogrammetric point clouds as well. Experiments are implemented to filter two dense matching point clouds with different noise levels. Results show that the standard Lidar filter is robust to random noise. However, artefacts and blunders in the DIM points often appear due to low contrast or poor texture in the images. Filtering will be erroneous in these locations. Filtering the DIM points pre-processed by a ranking filter will bring higher Type II error (i.e. non-ground points actually labelled as ground points) but much lower Type I error (i.e. bare ground points labelled as non-ground points). Finally, the potential DTM accuracy that can be achieved by DIM points is evaluated. Two DIM point clouds derived by Pix4Dmapper and SURE are compared. On grassland dense matching generates points higher than the true terrain surface, which will result in incorrectly elevated DTMs. The application of the ranking filter leads to a reduced bias in the DTM height, but a slightly increased noise level.
Cloud Optimized Image Format and Compression
NASA Astrophysics Data System (ADS)
Becker, P.; Plesea, L.; Maurer, T.
2015-04-01
Cloud based image storage and processing requires revaluation of formats and processing methods. For the true value of the massive volumes of earth observation data to be realized, the image data needs to be accessible from the cloud. Traditional file formats such as TIF and NITF were developed in the hay day of the desktop and assumed fast low latency file access. Other formats such as JPEG2000 provide for streaming protocols for pixel data, but still require a server to have file access. These concepts no longer truly hold in cloud based elastic storage and computation environments. This paper will provide details of a newly evolving image storage format (MRF) and compression that is optimized for cloud environments. Although the cost of storage continues to fall for large data volumes, there is still significant value in compression. For imagery data to be used in analysis and exploit the extended dynamic range of the new sensors, lossless or controlled lossy compression is of high value. Compression decreases the data volumes stored and reduces the data transferred, but the reduced data size must be balanced with the CPU required to decompress. The paper also outlines a new compression algorithm (LERC) for imagery and elevation data that optimizes this balance. Advantages of the compression include its simple to implement algorithm that enables it to be efficiently accessed using JavaScript. Combing this new cloud based image storage format and compression will help resolve some of the challenges of big image data on the internet.
Study of Tropospheric Ozone and UV Reflectivity Using TOMS Data
NASA Technical Reports Server (NTRS)
Yung, Yuk L.
2002-01-01
Perhaps the single most important result from the study of Chuang and Yung is that the interannual variability of the Earth's albedo (especially in Spring) on land is dominated by snow/ice, and not by clouds. This interannual variability could be the major driver of changes in the atmosphere and the biosphere. It is plausible that the interannual variability of snow/ice, through interactions with the atmosphere and biosphere, is responsible for the interannual variability of atmospheric CO2. By carefully studying the albedo variations off the Peru coast, we found evidence for indirect aerosol effect on clouds. Based on a detailed analysis of the cloud data obtained by the International Satellite Cloud Climatology Project (SCCP) in the years 1983-1991, we show that besides the reported 3 % variation in global cloudiness, the global mean cloud optical thickness (MCOT) also has significant variation which is out of phase with that of the global cloudiness. The combined effect of the two opposing variations may be a null effect on the cloud reflectivity. These results are consistent with the Total Ozone Mapping Spectrometer (TOMS) reflectively measurements. The MCOT variation is further shown to be correlated with both the solar cycle and the ENSO (El Nino Southern Oscillation) cycle. Our present analysis cannot distinguish which of the above two provides better correlation, although independent data from the High resolution Infrared Radiation Sounder (HIRS) from 1990 to 1996 favor the solar cycle. Future data are needed to identify the true cause of these changes.
Planetary lightning - Earth, Jupiter, and Venus
NASA Astrophysics Data System (ADS)
Williams, M. A.; Krider, E. P.; Hunten, D. M.
1983-05-01
The principal characteristics of lightning on earth are reviewed, and the evidence for lightning on Venus and Jupiter is examined. The mechanisms believed to be important to the electrification of terrestrial clouds are reviewed, with attention given to the applicability of some of these mechanisms to the atmospheres of Venus and Jupiter. The consequences of the existence of lightning on Venus and Jupiter for their atmospheres and for theories of cloud electrification on earth are also considered. Since spacecraft observations do not conclusively show that lightning does occur on Venus, it is suggested that alternative explanations for the experimental results be explored. Since Jupiter has no true surface, the Jovian lightning flashes are cloud dischargaes. Observations suggest that Jovian lightning emits, on average, 10 to the 10 J of optical energy per flash, whereas on earth lightning radiates only about 10 to the 6th J per flash. Estimates of the average planetary lightning rate on Jupiter range from 0.003 per sq km per yr to 40 per sq km per yr.
Library of Giant Planet Reflection Spectra for WFirst and Future Space Telescopes
NASA Astrophysics Data System (ADS)
Smith, Adam J. R. W.; Fortney, Jonathan; Morley, Caroline; Batalha, Natasha E.; Lewis, Nikole K.
2018-01-01
Future large space space telescopes will be able to directly image exoplanets in optical light. The optical light of a resolved planet is due to stellar flux reflected by Rayleigh scattering or cloud scattering, with absorption features imprinted due to molecular bands in the planetary atmosphere. To aid in the design of such missions, and to better understand a wide range of giant planet atmospheres, we have built a library of model giant planet reflection spectra, for the purpose of determining effective methods of spectral analysis as well as for comparison with actual imaged objects. This library covers a wide range of parameters: objects are modeled at ten orbital distances between 0.5 AU and 5.0 AU, which ranges from planets too warm for water clouds, out to those that are true Jupiter analogs. These calculations include six metalicities between solar and 100x solar, with a variety of different cloud thickness parameters, and across all possible phase angles.
NASA Astrophysics Data System (ADS)
Su, Yun-Ting; Hu, Shuowen; Bethel, James S.
2017-05-01
Light detection and ranging (LIDAR) has become a widely used tool in remote sensing for mapping, surveying, modeling, and a host of other applications. The motivation behind this work is the modeling of piping systems in industrial sites, where cylinders are the most common primitive or shape. We focus on cylinder parameter estimation in three-dimensional point clouds, proposing a mathematical formulation based on angular distance to determine the cylinder orientation. We demonstrate the accuracy and robustness of the technique on synthetically generated cylinder point clouds (where the true axis orientation is known) as well as on real LIDAR data of piping systems. The proposed algorithm is compared with a discrete space Hough transform-based approach as well as a continuous space inlier approach, which iteratively discards outlier points to refine the cylinder parameter estimates. Results show that the proposed method is more computationally efficient than the Hough transform approach and is more accurate than both the Hough transform approach and the inlier method.
Hubble Sees an Aging Star Wave Goodbye
2017-12-08
This planetary nebula is called PK 329-02.2 and is located in the constellation of Norma in the southern sky. It is also sometimes referred to as Menzel 2, or Mz 2, named after the astronomer Donald Menzel who discovered the nebula in 1922. When stars that are around the mass of the sun reach their final stages of life, they shed their outer layers into space, which appear as glowing clouds of gas called planetary nebulae. The ejection of mass in stellar burnout is irregular and not symmetrical, so that planetary nebulae can have very complex shapes. In the case of Menzel 2 the nebula forms a winding blue cloud that perfectly aligns with two stars at its center. In 1999 astronomers discovered that the star at the upper right is in fact the central star of the nebula, and the star to the lower left is probably a true physical companion of the central star. For tens of thousands of years the stellar core will be cocooned in spectacular clouds of gas and then, over a period of a few thousand years, the gas will fade away into the depths of the universe. The curving structure of Menzel 2 resembles a last goodbye before the star reaches its final stage of retirement as a white dwarf. Image credit: ESA/Hubble & NASA, Acknowledgement: Serge Meunier NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Pairwise registration of TLS point clouds using covariance descriptors and a non-cooperative game
NASA Astrophysics Data System (ADS)
Zai, Dawei; Li, Jonathan; Guo, Yulan; Cheng, Ming; Huang, Pengdi; Cao, Xiaofei; Wang, Cheng
2017-12-01
It is challenging to automatically register TLS point clouds with noise, outliers and varying overlap. In this paper, we propose a new method for pairwise registration of TLS point clouds. We first generate covariance matrix descriptors with an adaptive neighborhood size from point clouds to find candidate correspondences, we then construct a non-cooperative game to isolate mutual compatible correspondences, which are considered as true positives. The method was tested on three models acquired by two different TLS systems. Experimental results demonstrate that our proposed adaptive covariance (ACOV) descriptor is invariant to rigid transformation and robust to noise and varying resolutions. The average registration errors achieved on three models are 0.46 cm, 0.32 cm and 1.73 cm, respectively. The computational times cost on these models are about 288 s, 184 s and 903 s, respectively. Besides, our registration framework using ACOV descriptors and a game theoretic method is superior to the state-of-the-art methods in terms of both registration error and computational time. The experiment on a large outdoor scene further demonstrates the feasibility and effectiveness of our proposed pairwise registration framework.
Photoionization-regulated star formation and the structure of molecular clouds
NASA Technical Reports Server (NTRS)
Mckee, Christopher F.
1989-01-01
A model for the rate of low-mass star formation in Galactic molecular clouds and for the influence of this star formation on the structure and evolution of the clouds is presented. The rate of energy injection by newly formed stars is estimated, and the effect of this energy injection on the size of the cloud is determined. It is shown that the observed rate of star formation appears adequate to support the observed clouds against gravitational collapse. The rate of photoionization-regulated star formation is estimated and it is shown to be in agreement with estimates of the observed rate of star formation if the observed molecular cloud parameters are used. The mean cloud extinction and the Galactic star formation rate per unit mass of molecular gas are predicted theoretically from the condition that photionization-regulated star formation be in equilibrium. A simple model for the evolution of isolated molecular clouds is developed.
Wave clouds over the Central African Republic
2016-02-04
On January 27, 2016, the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite passed over the Central African Republic and captured a true-color image of wave clouds rippling over a fire-speckled landscape. Wave clouds typically form when a mountain, island, or even another mass of air forces an air mass to rise, then fall again, in a wave pattern. The air cools as it rises, and if there is moisture in the air, the water condenses into clouds at the top of the wave. As the air begins to sink, the air warms and the cloud dissipates. The result is a line of clouds marking the crests of the wave separated by clear areas in the troughs of the wave. In addition to the long lines of clouds stretching across the central section of the country, clouds appear to line up in parallel rows near the border of the Democratic Republic of the Congo. In this area, small sets of grayish cloud appear to be lined up with the prevailing wind, judging by the plumes of smoke rising from red hotspots near each set of clouds. Clouds like this, that line in parallel rows parallel with the prevailing wind, are known as “cloud streets”. Each red “hotspot” marks an area where the thermal sensors on the MODIS instrument detected high temperatures. When accompanied by typical smoke, such hotspots are diagnostic for actively burning fires. Given the time of the year, the widespread nature, and the location of the fires, they are almost certainly agricultural fires that have been deliberately set to manage land. Image Credit: Jeff Schmaltz, MODIS Land Rapid Response Team, NASA GSFC NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Different structures formed at HII boundaries
NASA Astrophysics Data System (ADS)
Miao, Jingqi; Cornwall, Paul; Kinnear, Tim
2015-03-01
Hydrodynamic simulations on the evolution of molecular clouds (MCs) at HII boundaries are used to show that radiation driven implosion (RDI) model can create almost all of the different morphological structures, such as a single bright-rimmed cloud (BRC), fragment structure and multiple elephant trunk (ET) structures.
Stability of cavitation structures in a thin liquid layer.
Wu, Pengfei; Bai, Lixin; Lin, Weijun; Yan, Jiuchun
2017-09-01
The inception and evolution of acoustic cavitation structures in thin liquid layers under different conditions and perturbations are investigated experimentally with high speed photography. The stability and characterization of cavitation structures are quantified by image analysis methods. It is found that cavitation structures (shape of bubble cloud and number of bubbles) are stable under unaltered experimental conditions, and the cavitation bubble cloud will return to the original structure and remain stable even in the face of large perturbations. When the experimental conditions are altered (for example, acoustic intensity, cavitation nuclei, boundary), the cavitation structures will vary correspondingly. Further analysis implies that the stability of cavitation structures is closely related to the number of bubbles in the cavitation bubble cloud. There are two mechanisms acting simultaneously in the cavitation bubble cloud evolution, one "bubble production" and the other "bubble disappearance". We propose that the two mechanisms acting together constitute the most likely explanation for the stability of cavitation structures and their transformation. Copyright © 2017 Elsevier B.V. All rights reserved.
Occurrence of lower cloud albedo in ship tracks
NASA Astrophysics Data System (ADS)
Chen, Y.-C.; Christensen, M. W.; Xue, L.; Sorooshian, A.; Stephens, G. L.; Rasmussen, R. M.; Seinfeld, J. H.
2012-09-01
The concept of geoengineering by marine cloud brightening is based on seeding marine stratocumulus clouds with sub-micrometer sea-salt particles to enhance the cloud droplet number concentration and cloud albedo, thereby producing a climate cooling effect. The efficacy of this as a strategy for global cooling rests on the extent to which aerosol-perturbed marine clouds will respond with increased albedo. Ship tracks, quasi-linear cloud features prevalent in oceanic regions impacted by ship exhaust, are a well-known manifestation of the effect of aerosol injection on marine clouds. We present here an analysis of the albedo responses in ship tracks, based on in situ aircraft measurements and three years of satellite observations of 589 individual ship tracks. It is found that the sign (increase or decrease) and magnitude of the albedo response in ship tracks depends on the mesoscale cloud structure, the free tropospheric humidity, and cloud top height. In a closed cell structure (cloud cells ringed by a perimeter of clear air), nearly 30% of ship tracks exhibited a decreased albedo. Detailed cloud responses must be accounted for in global studies of the potential efficacy of sea-spray geoengineering as a means to counteract global warming.
Arctic PBL Cloud Height and Motion Retrievals from MISR and MINX
NASA Technical Reports Server (NTRS)
Wu, Dong L.
2012-01-01
How Arctic clouds respond and feedback to sea ice loss is key to understanding of the rapid climate change seen in the polar region. As more open water becomes available in the Arctic Ocean, cold air outbreaks (aka. off-ice flow from polar lows) produce a vast sheet of roll clouds in the planetary boundary layer (PBl). The cold air temperature and wind velocity are the critical parameters to determine and understand the PBl structure formed under these roll clouds. It has been challenging for nadir visible/IR sensors to detect Arctic clouds due to lack of contrast between clouds and snowy/icy surfaces. In addition) PBl temperature inversion creates a further problem for IR sensors to relate cloud top temperature to cloud top height. Here we explore a new method with the Multiangle Imaging Spectro-Radiometer (MISR) instrument to measure cloud height and motion over the Arctic Ocean. Employing a stereoscopic-technique, MISR is able to measure cloud top height accurately and distinguish between clouds and snowy/icy surfaces with the measured height. We will use the MISR INteractive eXplorer (MINX) to quantify roll cloud dynamics during cold-air outbreak events and characterize PBl structures over water and over sea ice.
NASA Technical Reports Server (NTRS)
Wang, Pi-Huan; Minnis, Patrick; McCormick, M. Patrick; Kent, Geoffrey S.; Yue, Glenn K.; Young, David F.; Skeens, Kristi M.
1998-01-01
The tropical cloud data obtained by the satellite instrument of the Stratospheric Aerosol and Gas Experiment (SAGE) II from October 1984 to May 1991 have been used to study cloud vertical distribution, including thickness and multilayer structure, and to estimate cloud optical depth. The results indicate that the SAGE-II-observed clouds are generally optically thin clouds, corresponding to a range of optical depth between approximately 8 x 10(exp -4) and 3 x 10(exp -1) with a mean of about 0.035. Two-thirds are classified as subvisual cirrus and one-third thin cirrus. Clouds between 2- to 3-km thick occur most frequently. Approximately 30% of the SAGE II cloud measurements are isolated single-layer clouds, while 65% are high clouds contiguous with an underlying opaque cloud that terminates the SAGE II profile. Thin clouds above detached opaque clouds at altitudes greater than 6.5 km occur less often. Only about 3% of the SAGE II single-layer clouds are located above the tropopause, while 58% of the cloud layers never reach the tropopause. More than one-third of the clouds appear at the tropopause. This study also shows that clouds occur more frequently and extend higher above the tropopause over the western Pacific than than over the eastern Pacific, especially during northern winter. The uncertainty of the derived results due to the SAGE II sampling constraints, data processing, and cloud characteristics is discussed.
View-angle-dependent AIRS Cloudiness and Radiance Variance: Analysis and Interpretation
NASA Technical Reports Server (NTRS)
Gong, Jie; Wu, Dong L.
2013-01-01
Upper tropospheric clouds play an important role in the global energy budget and hydrological cycle. Significant view-angle asymmetry has been observed in upper-level tropical clouds derived from eight years of Atmospheric Infrared Sounder (AIRS) 15 um radiances. Here, we find that the asymmetry also exists in the extra-tropics. It is larger during day than that during night, more prominent near elevated terrain, and closely associated with deep convection and wind shear. The cloud radiance variance, a proxy for cloud inhomogeneity, has consistent characteristics of the asymmetry to those in the AIRS cloudiness. The leading causes of the view-dependent cloudiness asymmetry are the local time difference and small-scale organized cloud structures. The local time difference (1-1.5 hr) of upper-level (UL) clouds between two AIRS outermost views can create parts of the observed asymmetry. On the other hand, small-scale tilted and banded structures of the UL clouds can induce about half of the observed view-angle dependent differences in the AIRS cloud radiances and their variances. This estimate is inferred from analogous study using Microwave Humidity Sounder (MHS) radiances observed during the period of time when there were simultaneous measurements at two different view-angles from NOAA-18 and -19 satellites. The existence of tilted cloud structures and asymmetric 15 um and 6.7 um cloud radiances implies that cloud statistics would be view-angle dependent, and should be taken into account in radiative transfer calculations, measurement uncertainty evaluations and cloud climatology investigations. In addition, the momentum forcing in the upper troposphere from tilted clouds is also likely asymmetric, which can affect atmospheric circulation anisotropically.
NASA Technical Reports Server (NTRS)
Welch, Ronald M.
1993-01-01
A series of cloud and sea ice retrieval algorithms are being developed in support of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team objectives. These retrievals include the following: cloud fractional area, cloud optical thickness, cloud phase (water or ice), cloud particle effective radius, cloud top heights, cloud base height, cloud top temperature, cloud emissivity, cloud 3-D structure, cloud field scales of organization, sea ice fractional area, sea ice temperature, sea ice albedo, and sea surface temperature. Due to the problems of accurately retrieving cloud properties over bright surfaces, an advanced cloud classification method was developed which is based upon spectral and textural features and artificial intelligence classifiers.
NASA Astrophysics Data System (ADS)
Matsui, T. N.; Suzuki, K.; Nakajima, T. Y.; Matsumae, Y.
2011-12-01
Clouds play an import role in energy balance and climate changes of the Earth. IPCC AR4, however, pointed out that cloud feedback is still the large source of uncertainty in climate estimates. In the recent decade, the new satellites with the active instruments (e.g. Cloudsat) represented a new epoch in earth observations. The active remote sensing is powerful for illustrating the vertical structures of clouds, but the passive remote sensing from satellite images also contribute to better understating of cloud system. For instance, Nakajima et al. (2010a) and Suzuki et al. (2010) illustrated transition of cloud growth, from cloud droplet to drizzle to rain, using the combine analysis of the cloud droplet size retrieved from passive images (MODIS) and the reflectivity profiles from Cloudsat. Furthermore, EarthCARE that is a new satellite launched years later is composed of not only the active but also passive instruments for the combined analysis. On the other hands, the methods to retrieve the advanced information of cloud properties are also required because many imagers have been operated and are now planned (e.g. GCOM-C/SGLI), and have the advantages such as wide observation width and more observation channels. Cloud droplet effective radius (CDR) and cloud optical thickness (COT) can be retrieved using a non-water-absorbing band (e.g. 0.86μm) and a water-absorbing band (1.6, 2.1, 3.7μm) of imagers under the assumptions such as the log-normal droplet size distribution and the plane-parallel cloud structure. However, the differences between three retrieved CDRs using 1.6, 2.1 or 3.7μm (R16, R21 and R37) are found in the satellite observations. Several studies pointed out that vertical/horizontal inhomogeneity of cloud structure, difference of penetration depth of water-absorbing bands, multi-modal droplet distribution and/or 3-D radiative transfer effect cause the CDR differences. In other words, the advanced information of clouds may lie hidden in the differences. Nakajima et al. (2010b) investigated the impact of the differences sensitivities to particle size and the penetration depth in an attempt to explain the CDR differences found in by using a simple two-layer cloud model with the bi-modal size distribution functions. Their results showed the sensitivity differences between 1.6, 2.1 and 3.7μm bands to droplet sizes and their vertical stratification. In this study, we further investigate the impact of the vertical inhomogeneity structure including the drizzle by using a spectral-bin microphysics cloud model. We apply the 1-D radiative transfer computation to the numerical cloud fields generated by the cloud model, and retrieve the CDRs from the reflectances thus simulated at each band. We then compare the statistics of these retrieved CDRs with the CDRs obtained from MODIS observations and derive the sensitivity functions of the retrieved CDRs to the particle size and the optical depth from the sets of the droplet distribution functions predicted by the model and the retrieved CDRs. This study is an attempt to interpret the CDR differences in terms of the cloud vertical structure and the cloud particle growth processes.
NASA Astrophysics Data System (ADS)
Smith, W. L., Jr.; Spangenberg, D.; Fleeger, C.; Sun-Mack, S.; Chen, Y.; Minnis, P.
2016-12-01
Determining accurate cloud properties horizontally and vertically over a full range of time and space scales is currently next to impossible using data from either active or passive remote sensors or from modeling systems. Passive satellite imagers provide horizontal and temporal resolution of clouds, but little direct information on vertical structure. Active sensors provide vertical resolution but limited spatial and temporal coverage. Cloud models embedded in NWP can produce realistic clouds but often not at the right time or location. Thus, empirical techniques that integrate information from multiple observing and modeling systems are needed to more accurately characterize clouds and their impacts. Such a strategy is employed here in a new cloud water content profiling technique developed for application to satellite imager cloud retrievals based on VIS, IR and NIR radiances. Parameterizations are developed to relate imager retrievals of cloud top phase, optical depth, effective radius and temperature to ice and liquid water content profiles. The vertical structure information contained in the parameterizations is characterized climatologically from cloud model analyses, aircraft observations, ground-based remote sensing data, and from CloudSat and CALIPSO. Thus, realistic cloud-type dependent vertical structure information (including guidance on cloud phase partitioning) circumvents poor assumptions regarding vertical homogeneity that plague current passive satellite retrievals. This paper addresses mixed phase cloud conditions for clouds with glaciated tops including those associated with convection and mid-latitude storm systems. Novel outcomes of our approach include (1) simultaneous retrievals of ice and liquid water content and path, which are validated with active sensor, microwave and in-situ data, and yield improved global cloud climatologies, and (2) new estimates of super-cooled LWC, which are demonstrated in aviation safety applications and validated with icing PIREPS. The initial validation is encouraging for single-layer cloud conditions. More work is needed to test and refine the method for global application in a wider range of cloud conditions. A brief overview of our current method, applications, verification, and plans for future work will be presented.
Smart Point Cloud: Definition and Remaining Challenges
NASA Astrophysics Data System (ADS)
Poux, F.; Hallot, P.; Neuville, R.; Billen, R.
2016-10-01
Dealing with coloured point cloud acquired from terrestrial laser scanner, this paper identifies remaining challenges for a new data structure: the smart point cloud. This concept arises with the statement that massive and discretized spatial information from active remote sensing technology is often underused due to data mining limitations. The generalisation of point cloud data associated with the heterogeneity and temporality of such datasets is the main issue regarding structure, segmentation, classification, and interaction for an immediate understanding. We propose to use both point cloud properties and human knowledge through machine learning to rapidly extract pertinent information, using user-centered information (smart data) rather than raw data. A review of feature detection, machine learning frameworks and database systems indexed both for mining queries and data visualisation is studied. Based on existing approaches, we propose a new 3-block flexible framework around device expertise, analytic expertise and domain base reflexion. This contribution serves as the first step for the realisation of a comprehensive smart point cloud data structure.
NASA Technical Reports Server (NTRS)
2002-01-01
This true-color image over the North Pole was acquired by the MODerate-resolution Imaging Spectroradiometer (MODIS), flying aboard the Terra spacecraft, on May 5, 2000. The scene was received and processed by Norway's MODIS Direct Broadcast data receiving station, located in Svalbard, within seconds of photons hitting the sensor's detectors. (Click for more details about MODIS Direct Broadcast data.) In this image, the sea ice appears white and areas of open water, or recently refrozen sea surface, appear black. The irregular whitish shapes toward the bottom of the image are clouds, which are often difficult to distinguish from the white Arctic surface. Notice the considerable number of cracks, or 'leads,' in the ice that appear as dark networks of lines. Throughout the region within the Arctic Circle leads are continually opening and closing due to the direction and intensity of shifting wind and ocean currents. Leads are particularly common during the summer, when temperatures are higher and the ice is thinner. In this image, each pixel is one square kilometer. Such true-color views of the North Pole are quite rare, as most of the time much of the region within the Arctic Circle is cloaked in clouds. Image by Allen Lunsford, NASA GSFC Direct Readout Laboratory; Data courtesy Tromso receiving station, Svalbard, Norway
An origin of arc structures deeply embedded in dense molecular cloud cores
NASA Astrophysics Data System (ADS)
Matsumoto, Tomoaki; Onishi, Toshikazu; Tokuda, Kazuki; Inutsuka, Shu-ichiro
2015-04-01
We investigated the formation of arc-like structures in the infalling envelope around protostars, motivated by the recent Atacama Large Millimeter/Submillimeter Array (ALMA) observations of the high-density molecular cloud core, MC27/L1521F. We performed self-gravitational hydrodynamical numerical simulations with an adaptive mesh refinement code. A filamentary cloud with a 0.1 pc width fragments into cloud cores because of perturbations due to weak turbulence. The cloud core undergoes gravitational collapse to form multiple protostars, and gravitational torque from the orbiting protostars produces arc structures extending up to a 1000 au scale. As well as on a spatial extent, the velocity ranges of the arc structures, ˜0.5 km s-1, are in agreement with the ALMA observations. We also found that circumstellar discs are often misaligned in triple system. The misalignment is caused by the tidal interaction between the protostars when they undergo close encounters because of a highly eccentric orbit of the tight binary pair.
NASA Technical Reports Server (NTRS)
2002-01-01
This spectacular Moderate Resolution Imaging Spectroradiometer (MODIS) 'blue marble' image is based on the most detailed collection of true-color imagery of the entire Earth to date. Using a collection of satellite-based observations, scientists and visualizers stitched together months of observations of the land surface, oceans, sea ice, and clouds into a seamless, true-color mosaic of every square kilometer (.386 square mile) of our planet. Most of the information contained in this image came from MODIS, illustrating MODIS' outstanding capacity to act as an integrated tool for observing a variety of terrestrial, oceanic, and atmospheric features of the Earth. The land and coastal ocean portions of this image is based on surface observations collected from June through September 2001 and combined, or composited, every eight days to compensate for clouds that might block the satellite's view on any single day. Global ocean color (or chlorophyll) data was used to simulate the ocean surface. MODIS doesn't measure 3-D features of the Earth, so the surface observations were draped over topographic data provided by the U.S. Geological Survey EROS Data Center. MODIS observations of polar sea ice were combined with observations of Antarctica made by the National Oceanic and Atmospheric Administration's AVHRR sensor-the Advanced Very High Resolution Radiometer. The cloud image is a composite of two days of MODIS imagery collected in visible light wavelengths and a third day of thermal infra-red imagery over the poles. A large collection of imagery based on the blue marble in a variety of sizes and formats, including animations and the full (1 km) resolution imagery, is available at the Blue Marble page. Image by Reto Stockli, Render by Robert Simmon. Based on data from the MODIS Science Team
Beyond multi-fractals: surrogate time series and fields
NASA Astrophysics Data System (ADS)
Venema, V.; Simmer, C.
2007-12-01
Most natural complex are characterised by variability on a large range of temporal and spatial scales. The two main methodologies to generate such structures are Fourier/FARIMA based algorithms and multifractal methods. The former is restricted to Gaussian data, whereas the latter requires the structure to be self-similar. This work will present so-called surrogate data as an alternative that works with any (empirical) distribution and power spectrum. The best-known surrogate algorithm is the iterative amplitude adjusted Fourier transform (IAAFT) algorithm. We have studied six different geophysical time series (two clouds, runoff of a small and a large river, temperature and rain) and their surrogates. The power spectra and consequently the 2nd order structure functions were replicated accurately. Even the fourth order structure function was more accurately reproduced by the surrogates as would be possible by a fractal method, because the measured structure deviated too strong from fractal scaling. Only in case of the daily rain sums a fractal method could have been more accurate. Just as Fourier and multifractal methods, the current surrogates are not able to model the asymmetric increment distributions observed for runoff, i.e., they cannot reproduce nonlinear dynamical processes that are asymmetric in time. Furthermore, we have found differences for the structure functions on small scales. Surrogate methods are especially valuable for empirical studies, because the time series and fields that are generated are able to mimic measured variables accurately. Our main application is radiative transfer through structured clouds. Like many geophysical fields, clouds can only be sampled sparsely, e.g. with in-situ airborne instruments. However, for radiative transfer calculations we need full 3-dimensional cloud fields. A first study relating the measured properties of the cloud droplets and the radiative properties of the cloud field by generating surrogate cloud fields yielded good results within the measurement error. A further test of the suitability of the surrogate clouds for radiative transfer is evaluated by comparing the radiative properties of model cloud fields of sparse cumulus and stratocumulus with their surrogate fields. The bias and root mean square error in various radiative properties is small and the deviations in the radiances and irradiances are not statistically significant, i.e. these deviations can be attributed to the Monte Carlo noise of the radiative transfer calculations. We compared these results with optical properties of synthetic clouds that have either the correct distribution (but no spatial correlations) or the correct power spectrum (but a Gaussian distribution). These clouds did show statistical significant deviations. For more information see: http://www.meteo.uni-bonn.de/venema/themes/surrogates/
Aerosol and Cloud Experiments in Eastern North Atlantic (ACE-ENA) Science Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian; Dong, Xiquan; Wood, Robert
With their extensive coverage, low clouds greatly impact global climate. Presently, low clouds are poorly represented in global climate models (GCMs), and the response of low clouds to changes in atmospheric greenhouse gases and aerosols remains the major source of uncertainty in climate simulations. The poor representations of low clouds in GCMs are in part due to inadequate observations of their microphysical and macrophysical structures, radiative effects, and the associated aerosol distribution and budget in regions where the aerosol impact is the greatest. The Eastern North Atlantic (ENA) is a region of persistent but diverse subtropical marine boundary-layer (MBL) clouds,more » whose albedo and precipitation are highly susceptible to perturbations in aerosol properties. Boundary-layer aerosol in the ENA region is influenced by a variety of sources, leading to strong variations in cloud condensation nuclei (CCN) concentration and aerosol optical properties. Recently a permanent ENA site was established by the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility on Graciosa Island in the Azores, providing invaluable information on MBL aerosol and low clouds. At the same time, the vertical structures and horizontal variabilities of aerosol, trace gases, cloud, drizzle, and atmospheric thermodynamics are critically needed for understanding and quantifying the budget of MBL aerosol, the radiative properties, precipitation efficiency, and lifecycle of MBL clouds, and the cloud response to aerosol perturbations. Much of this data can be obtained only through aircraft-based measurements. In addition, the interconnected aerosol and cloud processes are best investigated by a study involving simultaneous in situ aerosol, cloud, and thermodynamics measurements. Furthermore, in situ measurements are also necessary for validating and improving ground-based retrieval algorithms at the ENA site. This project is motivated by the need for comprehensive in situ characterizations of boundary-layer structure, and associated vertical distributions and horizontal variabilities of low clouds and aerosol over the Azores. ARM Aerial Facility (AAF) Gulfstream-1 (G-1) aircraft will be deployed at the ENA site during two intensive operational periods (IOPs) of early summer (June to July) of 2017 and winter (January to February) of 2018, respectively. Deployments during both seasons allow for examination of key aerosol and cloud processes under a variety of representative meteorological and cloud conditions. The science themes for the deployments include: 1) Budget of MBL CCN and its seasonal variation; 2) Effects of aerosol on cloud and precipitation; 3) Cloud microphysical and macrophysical structures, and entrainment mixing; 4) Advancing retrievals of turbulence, cloud, and drizzle; and 5) Model evaluation and processes studies. A key advantage of the deployments is the strong synergy between the measurements onboard the G-1 and the routine measurements at the ENA site, including state-of-the-art profiling and scanning radars. The 3D cloud structures provided by the scanning radars will put the detailed in situ measurements into mesoscale and cloud lifecycle contexts. On the other hand, high quality in situ measurements will enable validation and improvements of ground-based retrieval algorithms at the ENA site, leading to high-quality and statistically robust data sets from the routine measurements. The deployments, combined with the routine measurements at the ENA site, will have a long lasting impact on the research and modeling of low clouds and aerosols in the remote marine environment.« less
NASA Technical Reports Server (NTRS)
da Silva, Arlindo M.; Norris, Peter M.
2013-01-01
Part I presented a Monte Carlo Bayesian method for constraining a complex statistical model of GCM sub-gridcolumn moisture variability using high-resolution MODIS cloud data, thereby permitting large-scale model parameter estimation and cloud data assimilation. This part performs some basic testing of this new approach, verifying that it does indeed significantly reduce mean and standard deviation biases with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud top pressure, and that it also improves the simulated rotational-Ramman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the OMI instrument. Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows finite jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast where the background state has a clear swath. This paper also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in the cloud observables on cloud vertical structure, beyond cloud top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification due to Riishojgaard (1998) provides some help in this respect, by better honoring inversion structures in the background state.
A synthetic data set of high-spectral-resolution infrared spectra for the Arctic atmosphere
NASA Astrophysics Data System (ADS)
Cox, Christopher J.; Rowe, Penny M.; Neshyba, Steven P.; Walden, Von P.
2016-05-01
Cloud microphysical and macrophysical properties are critical for understanding the role of clouds in climate. These properties are commonly retrieved from ground-based and satellite-based infrared remote sensing instruments. However, retrieval uncertainties are difficult to quantify without a standard for comparison. This is particularly true over the polar regions, where surface-based data for a cloud climatology are sparse, yet clouds represent a major source of uncertainty in weather and climate models. We describe a synthetic high-spectral-resolution infrared data set that is designed to facilitate validation and development of cloud retrieval algorithms for surface- and satellite-based remote sensing instruments. Since the data set is calculated using pre-defined cloudy atmospheres, the properties of the cloud and atmospheric state are known a priori. The atmospheric state used for the simulations is drawn from radiosonde measurements made at the North Slope of Alaska (NSA) Atmospheric Radiation Measurement (ARM) site at Barrow, Alaska (71.325° N, 156.615° W), a location that is generally representative of the western Arctic. The cloud properties for each simulation are selected from statistical distributions derived from past field measurements. Upwelling (at 60 km) and downwelling (at the surface) infrared spectra are simulated for 260 cloudy cases from 50 to 3000 cm-1 (3.3 to 200 µm) at monochromatic (line-by-line) resolution at a spacing of ˜ 0.01 cm-1 using the Line-by-line Radiative Transfer Model (LBLRTM) and the discrete-ordinate-method radiative transfer code (DISORT). These spectra are freely available for interested researchers from the NSF Arctic Data Center data repository (doi:10.5065/D61J97TT).
Evidence in Magnetic Clouds for Systematic Open Flux Transport on the Sun
NASA Technical Reports Server (NTRS)
Crooker, N. U.; Kahler, S. W.; Gosling, J. T.; Lepping, R. P.
2008-01-01
Most magnetic clouds encountered by spacecraft at 1 AU display a mix of unidirectional suprathermal electrons signaling open field lines and counterstreaming electrons signaling loops connected to the Sun at both ends. Assuming the open fields were originally loops that underwent interchange reconnection with open fields at the Sun, we determine the sense of connectedness of the open fields found in 72 of 97 magnetic clouds identified by the Wind spacecraft in order to obtain information on the location and sense of the reconnection and resulting flux transport at the Sun. The true polarity of the open fields in each magnetic cloud was determined from the direction of the suprathermal electron flow relative to the magnetic field direction. Results indicate that the polarity of all open fields within a given magnetic cloud is the same 89% of the time, implying that interchange reconnection at the Sun most often occurs in only one leg of a flux rope loop, thus transporting open flux in a single direction, from a coronal hole near that leg to the foot point of the opposite leg. This pattern is consistent with the view that interchange reconnection in coronal mass ejections systematically transports an amount of open flux sufficient to reverse the polarity of the heliospheric field through the course of the solar cycle. Using the same electron data, we also find that the fields encountered in magnetic clouds are only a third as likely to be locally inverted as not. While one might expect inversions to be equally as common as not in flux rope coils, consideration of the geometry of spacecraft trajectories relative to the modeled magnetic cloud axes leads us to conclude that the result is reasonable.
NASA Astrophysics Data System (ADS)
Weeden, R.; Horn, W. B.; Dimarchi, H.; Arko, S. A.; Hogenson, K.
2017-12-01
A problem often faced by Earth science researchers is the question of how to scale algorithms that were developed against few datasets and take them to regional or global scales. This problem only gets worse as we look to a future with larger and larger datasets becoming available. One significant hurdle can be having the processing and storage resources available for such a task, not to mention the administration of those resources. As a processing environment, the cloud offers nearly unlimited potential for compute and storage, with limited administration required. The goal of the Hybrid Pluggable Processing Pipeline (HyP3) project was to demonstrate the utility of the Amazon cloud to process large amounts of data quickly and cost effectively. Principally built by three undergraduate students at the ASF DAAC, the HyP3 system relies on core Amazon cloud services such as Lambda, Relational Database Service (RDS), Elastic Compute Cloud (EC2), Simple Storage Service (S3), and Elastic Beanstalk. HyP3 provides an Application Programming Interface (API) through which users can programmatically interface with the HyP3 system; allowing them to monitor and control processing jobs running in HyP3, and retrieve the generated HyP3 products when completed. This presentation will focus on the development techniques and enabling technologies that were used in developing the HyP3 system. Data and process flow, from new subscription through to order completion will be shown, highlighting the benefits of the cloud for each step. Because the HyP3 system can be accessed directly from a user's Python scripts, powerful applications leveraging SAR products can be put together fairly easily. This is the true power of HyP3; allowing people to programmatically leverage the power of the cloud.
The simulation of molecular clouds formation in the Milky Way
NASA Astrophysics Data System (ADS)
Khoperskov, S. A.; Vasiliev, E. O.; Sobolev, A. M.; Khoperskov, A. V.
2013-01-01
Using 3D hydrodynamic calculations we simulate formation of molecular clouds in the Galaxy. The simulations take into account molecular hydrogen chemical kinetics, cooling and heating processes. Comprehensive gravitational potential accounts for contributions from the stellar bulge, two- and four-armed spiral structure, stellar disc, dark halo and takes into account self-gravitation of the gaseous component. Gas clouds in our model form in the spiral arms due to shear and wiggle instabilities and turn into molecular clouds after t ≳ 100 Myr. At the times t ˜ 100-300 Myr the clouds form hierarchical structures and agglomerations with the sizes of 100 pc and greater. We analyse physical properties of the simulated clouds and find that synthetic statistical distributions like mass spectrum, `mass-size' relation and velocity dispersion are close to those observed in the Galaxy. The synthetic l-v (galactic longitude-radial velocity) diagram of the simulated molecular gas distribution resembles observed one and displays a structure with appearance similar to molecular ring of the Galaxy. Existence of this structure in our modelling can be explained by superposition of emission from the galactic bar and the spiral arms at ˜3-4 kpc.
NASA Technical Reports Server (NTRS)
Marochnik, Leonid S.; Mukhin, Lev M.; Sagdeev, Roald Z.
1991-01-01
Views of the large-scale structure of the solar system, consisting of the Sun, the nine planets and their satellites, changed when Oort demonstrated that a gigantic cloud of comets (the Oort cloud) is located on the periphery of the solar system. The following subject areas are covered: (1) the Oort cloud's mass; (2) Hill's cloud mass; (3) angular momentum distribution in the solar system; and (4) the cometary cloud around other stars.
The response of filamentary and spherical clouds to the turbulence and magnetic field
NASA Astrophysics Data System (ADS)
Gholipour, Mahmoud
2018-05-01
Recent observations have revealed that there is a power-law relation between magnetic field and density in molecular clouds. Furthermore, turbulence has been observed in some regions of molecular clouds and the velocity dispersion resulting from the turbulence is found to correlate with to the cloud density. Relating to these observations, in this study, we model filamentary and spherical clouds in magnetohydrostatic equilibrium in two quiescent and turbulent regions. The proposed equations are expected to represent the impact of magnetic field and turbulence on the cloud structure and the relation of cloud mass with shape. The Virial theorem is applied to consider the cloud evolution leading to important conditions for equilibrium of the cloud over its lifetime. The obtained results indicate that under the same conditions of the magnetic field and turbulence, each shape presents different responses. The possible ways for the formation of massive cores or coreless clouds in some regions as well as the formation of massive stars or low-mass stars can be discussed based on the results of this study. It should be mentioned that the shape of the clouds plays an important role in the formation of the protostellar clouds as well as their structure and evolution. This role is due to the effects of magnetic fields and turbulence.
NASA Astrophysics Data System (ADS)
Wang, Zhenzhu; Liu, Dong; Wang, Yingjian; Wang, Bangxin; Zhong, Zhiqing; Xie, Chenbo; Wu, Decheng; Bo, Guangyu; Shao, Jie
2014-11-01
A Dual-wavelength Mie Polarization Raman Lidar has been developed for cloud and aerosol optical properties measurement. This idar system has built in Hefei and passed the performance assessment in 2012, and then moved to Jinhua city to carry out the long-term continuous measurements of vertical distribution of regional cloud and aerosol. A double wavelengths (532 and 1064 nm) Nd-YAG laser is employed as emitting source and four channels are used for detecting back-scattering signals from atmosphere aerosol and cloud including 1064 nm Mie, 607 nm N2 Raman, two 532 nm Orthogonal Polarization channels. The temporal and spatial resolutions for this system, which is operating with a continuing mode (24/7) automatically, are 30s and 7.5m, respectively. The measured data are used for investigating the aerosol and cloud vertical structure and cloud phase from combining of cloud signal intensity, polarization ratio and color ratio.
NASA Astrophysics Data System (ADS)
van Diedenhoven, B.; Fridlind, A. M.; Sinclair, K.; Ackerman, A. S.
2016-12-01
It is generally observed that ice crystal sizes decrease as a function of altitude within clouds. This dependency is often explained as resulting from size sorting owing to the greater fall speeds of larger particles, but may also be related to dependence of ice diffusional growth on available water vapor and temperature, or other factors. Furthermore, the vertical variation of ice sizes is expected to be affected by the glaciation temperature of convectively-driven clouds. Realistic modeling of ice formation, growth and sedimentation is crucial to reliably represent vertical structures of ice clouds and cloud evolution in general. In this presentation we use remote sensing observations of glaciation temperature and ice effective radius obtained with airborne instruments to explore how their vertical dependencies vary with atmospheric conditions, such as humidity and wind profiles. Our focus will be on convectively-driven clouds. Subsequently, we test the ability of a quasi-idealized cloud permitting model to reproduce these dependencies of ice formation and size to atmospheric conditions, applying various ice growth and multiplication assumptions. The goal of this study is to identify variables that determine the vertical structure of cold clouds that can be used to evaluate model simulations.
Inhomogeneities in frontal cirrus clouds
NASA Astrophysics Data System (ADS)
Neis, Patrick; Krämer, Martina; Hoor, Peter; Reutter, Philipp; Spichtinger, Peter
2013-04-01
Frontal cirrus clouds have a scientifically proven effect on the Earth's radiation budget and thereby an influence on the weather and climate change in regional scale. The formation processes and structures of frontal cirrus clouds are still not fully understood. For a close investigation of typical frontal cirrus clouds, we use in situ measurements from the CIRRUS-III campaign over Germany and Northern Europe in November 2006. Besides water vapour, cloud ice water content, ice particle size distributions, condensation nuclei, and reactive nitrogen were measured during 6 flights. In this work the data of the 24th November flight is used to detect and to analyze warm frontal cirrus clouds in the mid latitudes on small temporal and spatial scale. Further, these results are compared with large-scale meteorological analyses from ECMWF and satellite data. Combining these data, the formation and evolution of inhomogeneities in the cirrus cloud structure are investigated. One important result is a qualitative agreement between the occurrence of cirrus clouds and the 'sharpness' of the Tropopause Inversion Layer (TIL).
NASA Technical Reports Server (NTRS)
Forbes, R. E.; Smith, M. R.; Farrell, R. R.
1972-01-01
An experimental program was conducted during the static firing of the S-1C stage 13, 14, and 15 rocket engines and the S-2 stage 13, 14, and 15 rocket engines. The data compiled during the experimental program consisted of photographic recordings of the time-dependent growth and diffusion of the exhaust clouds, the collection of meteorological data in the ambient atmosphere, and the acquisition of data on the physical structure of the exhaust clouds which were obtained by flying instrumented aircraft through the clouds. A new technique was developed to verify the previous measurements of evaporation and entrainment of blast deflector cooling water into the cloud. The results of the experimental program indicate that at the lower altitudes the rocket exhaust cloud or plume closely resembles a free-jet type of flow. At the upper altitudes, where the cloud is approaching an equilibrium condition, structure is very similar to a natural cumulus cloud.
Physical conditions in molecular clouds
NASA Technical Reports Server (NTRS)
Evans, Neal J., II
1989-01-01
Recent developments have complicated the picture of the physical conditions in molecular clouds. The discoveries of widespread emission from high-J lines of CD and 12-micron IRAS emission have revealed the presence of considerably hotter gas and dust near the surfaces of molecular clouds. These components can complicate interpretation of the bulk of the cloud gas. Commonly assumed relations between column density or mean density and cloud size are called into question by conflicting results and by consideration of selection effects. Analysis of density and density structure through molecular excitation has shown that very high densities exist in star formation regions, but unresolved structure and possible chemical effects complicate the interpretation. High resolution far-IR and submillimeter observations offer a complementary approach and are beginning to test theoretical predictions of density gradients in clouds.
NASA Astrophysics Data System (ADS)
Ehrlich, André; Bierwirth, Eike; Istomina, Larysa; Wendisch, Manfred
2017-09-01
The passive solar remote sensing of cloud properties over highly reflecting ground is challenging, mostly due to the low contrast between the cloud reflectivity and that of the underlying surfaces (sea ice and snow). Uncertainties in the retrieved cloud optical thickness τ and cloud droplet effective radius reff, C may arise from uncertainties in the assumed spectral surface albedo, which is mainly determined by the generally unknown effective snow grain size reff, S. Therefore, in a first step the effects of the assumed snow grain size are systematically quantified for the conventional bispectral retrieval technique of τ and reff, C for liquid water clouds. In general, the impact of uncertainties of reff, S is largest for small snow grain sizes. While the uncertainties of retrieved τ are independent of the cloud optical thickness and solar zenith angle, the bias of retrieved reff, C increases for optically thin clouds and high Sun. The largest deviations between the retrieved and true original values are found with 83 % for τ and 62 % for reff, C. In the second part of the paper a retrieval method is presented that simultaneously derives all three parameters (τ, reff, C, reff, S) and therefore accounts for changes in the snow grain size. Ratios of spectral cloud reflectivity measurements at the three wavelengths λ1 = 1040 nm (sensitive to reff, S), λ2 = 1650 nm (sensitive to τ), and λ3 = 2100 nm (sensitive to reff, C) are combined in a trispectral retrieval algorithm. In a feasibility study, spectral cloud reflectivity measurements collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART) during the research campaign Vertical Distribution of Ice in Arctic Mixed-Phase Clouds (VERDI, April/May 2012) were used to test the retrieval procedure. Two cases of observations above the Canadian Beaufort Sea, one with dense snow-covered sea ice and another with a distinct snow-covered sea ice edge are analysed. The retrieved values of τ, reff, C, and reff, S show a continuous transition of cloud properties across snow-covered sea ice and open water and are consistent with estimates based on satellite data. It is shown that the uncertainties of the trispectral retrieval increase for high values of τ, and low reff, S but nevertheless allow the effective snow grain size in cloud-covered areas to be estimated.
Jo, Byung Wan; Jo, Jun Ho; Khan, Rana Muhammad Asad; Kim, Jung Hoon; Lee, Yun Sung
2018-05-23
Structure Health Monitoring is a topic of great interest in port structures due to the ageing of structures and the limitations of evaluating structures. This paper presents a cloud computing-based stability evaluation platform for a pier type port structure using Fiber Bragg Grating (FBG) sensors in a system consisting of a FBG strain sensor, FBG displacement gauge, FBG angle meter, gateway, and cloud computing-based web server. The sensors were installed on core components of the structure and measurements were taken to evaluate the structures. The measurement values were transmitted to the web server via the gateway to analyze and visualize them. All data were analyzed and visualized in the web server to evaluate the structure based on the safety evaluation index (SEI). The stability evaluation platform for pier type port structures involves the efficient monitoring of the structures which can be carried out easily anytime and anywhere by converging new technologies such as cloud computing and FBG sensors. In addition, the platform has been successfully implemented at “Maryang Harbor” situated in Maryang-Meyon of Korea to test its durability.
a Probability-Based Statistical Method to Extract Water Body of TM Images with Missing Information
NASA Astrophysics Data System (ADS)
Lian, Shizhong; Chen, Jiangping; Luo, Minghai
2016-06-01
Water information cannot be accurately extracted using TM images because true information is lost in some images because of blocking clouds and missing data stripes, thereby water information cannot be accurately extracted. Water is continuously distributed in natural conditions; thus, this paper proposed a new method of water body extraction based on probability statistics to improve the accuracy of water information extraction of TM images with missing information. Different disturbing information of clouds and missing data stripes are simulated. Water information is extracted using global histogram matching, local histogram matching, and the probability-based statistical method in the simulated images. Experiments show that smaller Areal Error and higher Boundary Recall can be obtained using this method compared with the conventional methods.
NASA Technical Reports Server (NTRS)
Gosling, J. T.; Riley, P.; Skoug, R. M.
2001-01-01
We strongly disagree with the essence of the Osherovich (hereafter Osherovich) comment on one of our papers. The following paragraphs provide the basis of our disagreement and elaborate on why we believe that none of the concluding statements in his Comment are true. Our most important point is that one can apply the model developed by Osherovich and colleagues to real data obtained at a single point in space to determine the polytropic index within magnetic clouds if and only if the highly idealized assumptions of that model conform to physical reality. There is good reason to believe that those assumptions do not provide an accurate physical description of real magnetic clouds in the spherically expanding solar wind.
Discrete cloud structure on Neptune
NASA Technical Reports Server (NTRS)
Hammel, H. B.
1989-01-01
Recent CCD imaging data for the discrete cloud structure of Neptune shows that while cloud features at CH4-band wavelengths are manifest in the southern hemisphere, they have not been encountered in the northern hemisphere since 1986. A literature search has shown the reflected CH4-band light from the planet to have come from a single discrete feature at least twice in the last 10 years. Disk-integrated photometry derived from the imaging has demonstrated that a bright cloud feature was responsible for the observed 8900 A diurnal variation in 1986 and 1987.
What does Reflection from Cloud Sides tell us about Vertical Distribution of Cloud Droplet Sizes?
NASA Technical Reports Server (NTRS)
Marshak, A.; Martins, J. V.; Zubko, V.; Kaufman, Y. J.
2006-01-01
Cloud development, the onset of precipitation and the effect of aerosol on clouds depend on the structure of the cloud profiles of droplet size and phase. Aircraft measurements of cloud profiles are limited in their temporal and spatial extent. Satellites were used to observe cloud tops not cloud profiles with vertical profiles of precipitation-sized droplets anticipated from CloudSat. The recently proposed CLAIM-3D satellite mission (cloud aerosol interaction mission in 3-D) suggests to measure profiles of cloud microphysical properties by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides. Inversion of measurements from the cloud sides requires rigorous understanding of the 3-dimentional(3-D) properties of clouds. Here we discuss the reflected sunlight from the cloud sides and top at two wavelengths: one nonabsorbing to solar radiation (0.67 microns) and one with liquid water efficient absorption of solar radiation (2.1 microns). In contrast to the plane-parallel approximation, a conventional approach to all current operational retrievals, 3-D radiative transfer is used for interpreting the observed reflectances. General properties of the radiation reflected from the sides of an isolated cloud are discussed. As a proof of concept, the paper shows a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with the prescribed vertically resolved microphysics. To retrieve the information about droplet sizes, we propose to use the probability density function of the droplet size distribution and its first two moments instead of the assumption about fixed values of the droplet effective radius. The retrieval algorithm is based on the Bayesian theorem that combines prior information about cloud structure and microphysics with radiative transfer calculations.
Morphological diagnostics of star formation in molecular clouds
NASA Astrophysics Data System (ADS)
Beaumont, Christopher Norris
Molecular clouds are the birth sites of all star formation in the present-day universe. They represent the initial conditions of star formation, and are the primary medium by which stars transfer energy and momentum back to parsec scales. Yet, the physical evolution of molecular clouds remains poorly understood. This is not due to a lack of observational data, nor is it due to an inability to simulate the conditions inside molecular clouds. Instead, the physics and structure of the interstellar medium are sufficiently complex that interpreting molecular cloud data is very difficult. This dissertation mitigates this problem, by developing more sophisticated ways to interpret morphological information in molecular cloud observations and simulations. In particular, I have focused on leveraging machine learning techniques to identify physically meaningful substructures in the interstellar medium, as well as techniques to inter-compare molecular cloud simulations to observations. These contributions make it easier to understand the interplay between molecular clouds and star formation. Specific contributions include: new insight about the sheet-like geometry of molecular clouds based on observations of stellar bubbles; a new algorithm to disambiguate overlapping yet morphologically distinct cloud structures; a new perspective on the relationship between molecular cloud column density distributions and the sizes of cloud substructures; a quantitative analysis of how projection effects affect measurements of cloud properties; and an automatically generated, statistically-calibrated catalog of bubbles identified from their infrared morphologies.
A Cloud Microphysics Model for the Gas Giant Planets
NASA Astrophysics Data System (ADS)
Palotai, Csaba J.; Le Beau, Raymond P.; Shankar, Ramanakumar; Flom, Abigail; Lashley, Jacob; McCabe, Tyler
2016-10-01
Recent studies have significantly increased the quality and the number of observed meteorological features on the jovian planets, revealing banded cloud structures and discrete features. Our current understanding of the formation and decay of those clouds also defines the conceptual modes about the underlying atmospheric dynamics. The full interpretation of the new observational data set and the related theories requires modeling these features in a general circulation model (GCM). Here, we present details of our bulk cloud microphysics model that was designed to simulate clouds in the Explicit Planetary Hybrid-Isentropic Coordinate (EPIC) GCM for the jovian planets. The cloud module includes hydrological cycles for each condensable species that consist of interactive vapor, cloud and precipitation phases and it also accounts for latent heating and cooling throughout the transfer processes (Palotai and Dowling, 2008. Icarus, 194, 303-326). Previously, the self-organizing clouds in our simulations successfully reproduced the vertical and horizontal ammonia cloud structure in the vicinity of Jupiter's Great Red Spot and Oval BA (Palotai et al. 2014, Icarus, 232, 141-156). In our recent work, we extended this model to include water clouds on Jupiter and Saturn, ammonia clouds on Saturn, and methane clouds on Uranus and Neptune. Details of our cloud parameterization scheme, our initial results and their comparison with observations will be shown. The latest version of EPIC model is available as open source software from NASA's PDS Atmospheres Node.
NASA Astrophysics Data System (ADS)
Mackey, A. D.; Gilmore, G. F.
2003-01-01
We have compiled a pseudo-snapshot data set of two-colour observations from the Hubble Space Telescope archive for a sample of 53 rich LMC clusters with ages of 106-1010 yr. We present surface brightness profiles for the entire sample, and derive structural parameters for each cluster, including core radii, and luminosity and mass estimates. Because we expect the results presented here to form the basis for several further projects, we describe in detail the data reduction and surface brightness profile construction processes, and compare our results with those of previous ground-based studies. The surface brightness profiles show a large amount of detail, including irregularities in the profiles of young clusters (such as bumps, dips and sharp shoulders), and evidence for both double clusters and post-core-collapse (PCC) clusters. In particular, we find power-law profiles in the inner regions of several candidate PCC clusters, with slopes of approximately -0.7, but showing considerable variation. We estimate that 20 +/- 7 per cent of the old cluster population of the Large Magellanic Cloud (LMC) has entered PCC evolution, a similar fraction to that for the Galactic globular cluster system. In addition, we examine the profile of R136 in detail and show that it is probably not a PCC cluster. We also observe a trend in core radius with age that has been discovered and discussed in several previous publications by different authors. Our diagram has better resolution, however, and appears to show a bifurcation at several hundred Myr. We argue that this observed relationship reflects true physical evolution in LMC clusters, with some experiencing small-scale core expansion owing to mass loss, and others large-scale expansion owing to some unidentified characteristic or physical process.
Imaging the nuclear environment of NGC 1365 with the Hubble Space Telescope
NASA Astrophysics Data System (ADS)
Kristen, Helmuth; Jorsater, Steven; Lindblad, Per Olof; Boksenberg, Alec
1997-12-01
The region surrounding the active nucleus of the barred spiral galaxy NGC 1365 is observed in the [Oiii] lambda 5007 line and neighbouring continuum using the Faint Object Camera (FOC) aboard the Hubble Space Telescope (HST). In the continuum light numerous bright ``super star clusters'' (SSCs) are seen in the nuclear region. They tend to fall on an elongated ring around the nucleus and contribute about 20 % of the total continuum flux in this wavelength regime. Without applying any extinction correction the brightest SSCs have an absolute luminosity M_B=-14fm1 +/- 0fm3 and are very compact with radii R la 3 pc. Complementary ground-based spectroscopy gives an extinction estimate A_B = 2fm5 +/- 0fm5 towards these regions, indicating a true luminosity M_B = -16fm6 +/- 0fm6 . The bright compact radio source NGC 1365:A is found to coincide spatially with one of the SSCs. We conclude that it is a ``radio supernova''. The HST observations resolve the inner structure of the conical outflow previously seen in the [Oiii] lambda 5007 line in ground-based observations, and reveal a complicated structure of individual emission-line clouds, some of which gather in larger agglomerations. The total luminosity in the [Oiii] line amounts to L_[OIII] =~ 3.7x 10(40) erg s(-1) where about 40 % is emitted by the clouds. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555, and observations at the European Southern Observatory (ESO), La Silla, Chile.
HUBBLE REVEALS THE HEART OF THE WHIRLPOOL GALAXY
NASA Technical Reports Server (NTRS)
2002-01-01
New images from NASA's Hubble Space Telescope are helping researchers view in unprecedented detail the spiral arms and dust clouds of a nearby galaxy, which are the birth sites of massive and luminous stars. The Whirlpool galaxy, M51, has been one of the most photogenic galaxies in amateur and professional astronomy. Easily photographed and viewed by smaller telescopes, this celestial beauty is studied extensively in a range of wavelengths by large ground- and space-based observatories. This Hubble composite image shows visible starlight as well as light from the emission of glowing hydrogen, which is associated with the most luminous young stars in the spiral arms. M51, also known as NGC 5194, is having a close encounter with a nearby companion galaxy, NGC 5195, just off the upper edge of this image. The companion's gravitational pull is triggering star formation in the main galaxy, as seen in brilliant detail by numerous, luminous clusters of young and energetic stars. The bright clusters are highlighted in red by their associated emission from glowing hydrogen gas. This Wide Field Planetary Camera 2 image enables a research group, led by Nick Scoville (Caltech), to clearly define the structure of both the cold dust clouds and the hot hydrogen and link individual clusters to their parent dust clouds. Team members include M. Polletta (U. Geneva); S. Ewald and S. Stolovy (Caltech); R. Thompson and M. Rieke (U. of Arizona). Intricate structure is also seen for the first time in the dust clouds. Along the spiral arms, dust 'spurs' are seen branching out almost perpendicular to the main spiral arms. The regularity and large number of these features suggests to astronomers that previous models of 'two-arm' spiral galaxies may need to be revisited. The new images also reveal a dust disk in the nucleus, which may provide fuel for a nuclear black hole. The team is also studying this galaxy at near-infrared wavelengths with the NICMOS instrument onboard Hubble. At these wavelengths, the dusty clouds are more transparent and the true distribution of stars is more easily seen. In addition, regions of star formation that are obscured in the optical images are newly revealed in the near-infrared images. This image was composed by the Hubble Heritage Team from Hubble archival data of M51 and is superimposed onto ground-based data taken by Travis Rector (NOAO) at the 0.9-meter telescope at the National Science Foundation's Kitt Peak National Observatory (NOAO/AURA) in Tucson, AZ. Image Credit: NASA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: N. Scoville (Caltech) and T. Rector (NOAO)
NASA Astrophysics Data System (ADS)
Veremey, N. E.; Dovgalyuk, Yu. A.; Zatevakhin, M. A.; Ignatyev, A. A.; Morozov, V. N.
2014-04-01
Numerical nonstationary three-dimensional model of a convective cloud with parameterized description of microphysical processes with allowance for the electrization processes is considered. The results of numerical modeling of the cloud evolution for the specified atmospheric conditions are presented. The spatio-temporal distribution of the main cloud characteristics including the volume charge density and the electric field is obtained. The calculation results show that the electric structure of the cloud is different at its various life stages, i.e., it varies from unipolar to dipolar and then to tripolar. This conclusion is in fair agreement with the field studies.
What Does Reflection from Cloud Sides Tell Us About Vertical Distribution of Cloud Droplet Sizes?
NASA Technical Reports Server (NTRS)
Marshak, Alexander; Martins, J. Vanderlei; Zubko, Victor; Kaufman, Yoram, J.
2005-01-01
Cloud development, the onset of precipitation and the effect of aerosol on clouds depend on the structure of the cloud profiles of droplet size and phase. Aircraft measurements of cloud profiles are limited in their temporal and spatial extent. Satellites were used to observe cloud tops not cloud profiles with vertical profiles of precipitation-sized droplets anticipated from Cloudsat. The recently proposed CLAIM-3D satellite mission (cloud aerosol interaction mission in 3D) suggests to measure profiles of cloud microphysical properties by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides. Inversion of measurements from the cloud sides requires rigorous understanding of the 3-dimensional (3D) properties of clouds. Here we discuss the reflected sunlight from the cloud sides and top at two wavelengths: one nonabsorbing to solar radiation (0.67 micrometers) and one with liquid water efficient absorption of solar radiation (2.1 micrometers). In contrast to the plane-parallel approximation, a conventional approach to all current operational retrievals, 3D radiative transfer is used for interpreting the observed reflectances. General properties of the radiation reflected from the sides of an isolated cloud are discussed. As a proof of concept, the paper shows a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with the prescribed vertically resolved microphysics. To retrieve the information about droplet sizes, we propose to use the probability density function of the droplet size distribution and its first two moments instead of the assumption about fixed values of the droplet effective radius. The retrieval algorithm is based on the Bayesian theorem that combines prior information about cloud structure and microphysics with radiative transfer calculations.
Major Characteristics of Southern Ocean Cloud Regimes and Their Effects on the Energy Budget
NASA Technical Reports Server (NTRS)
Haynes, John M.; Jakob, Christian; Rossow, William B.; Tselioudis, George; Brown, Josephine
2011-01-01
Clouds over the Southern Ocean are often poorly represented by climate models, but they make a significant contribution to the top-of-atmosphere (TOA) radiation balance, particularly in the shortwave portion of the energy spectrum. This study seeks to better quantify the organization and structure of Southern Hemisphere midlatitude clouds by combining measurements from active and passive satellite-based datasets. Geostationary and polar-orbiter satellite data from the International Satellite Cloud Climatology Project (ISCCP) are used to quantify large-scale, recurring modes of cloudiness, and active observations from CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) are used to examine vertical structure, radiative heating rates, and precipitation associated with these clouds. It is found that cloud systems are organized into eight distinct regimes and that ISCCP overestimates the midlevel cloudiness of these regimes. All regimes contain a relatively high occurrence of low cloud, with 79%of all cloud layers observed having tops below 3 km, but multiple-layered clouds systems are present in approximately 34% of observed cloud profiles. The spatial distribution of regimes varies according to season, with cloud systems being geometrically thicker, on average, during the austral winter. Those regimes found to be most closely associated with midlatitude cyclones produce precipitation the most frequently, although drizzle is extremely common in low-cloud regimes. The regimes associated with cyclones have the highest in-regime shortwave cloud radiative effect at the TOA, but the low-cloud regimes, by virtue of their high frequency of occurrence over the oceans, dominate both TOA and surface shortwave effects in this region as a whole.
NASA Astrophysics Data System (ADS)
Norris, P. M.; da Silva, A. M., Jr.
2016-12-01
Norris and da Silva recently published a method to constrain a statistical model of sub-gridcolumn moisture variability using high-resolution satellite cloud data. The method can be used for large-scale model parameter estimation or cloud data assimilation (CDA). The gridcolumn model includes assumed-PDF intra-layer horizontal variability and a copula-based inter-layer correlation model. The observables used are MODIS cloud-top pressure, brightness temperature and cloud optical thickness, but the method should be extensible to direct cloudy radiance assimilation for a small number of channels. The algorithm is a form of Bayesian inference with a Markov chain Monte Carlo (MCMC) approach to characterizing the posterior distribution. This approach is especially useful in cases where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach is not gradient-based and allows jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast where the background state has a clear swath. The new approach not only significantly reduces mean and standard deviation biases with respect to the assimilated observables, but also improves the simulated rotational-Ramman scattering cloud optical centroid pressure against independent (non-assimilated) retrievals from the OMI instrument. One obvious difficulty for the method, and other CDA methods, is the lack of information content in passive cloud observables on cloud vertical structure, beyond cloud-top and thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification due to Riishojgaard is helpful, better honoring inversion structures in the background state.
NASA Astrophysics Data System (ADS)
Hillman, Benjamin R.; Marchand, Roger T.; Ackerman, Thomas P.; Mace, Gerald G.; Benson, Sally
2017-03-01
Satellite retrievals of cloud properties are often used in the evaluation of global climate models, and in recent years satellite instrument simulators have been used to account for known retrieval biases in order to make more consistent comparisons between models and retrievals. Many of these simulators have seen little critical evaluation. Here we evaluate the Multiangle Imaging Spectroradiometer (MISR) simulator by using visible extinction profiles retrieved from a combination of CloudSat, CALIPSO, MODIS, and AMSR-E observations as inputs to the MISR simulator and comparing cloud top height statistics from the MISR simulator with those retrieved by MISR. Overall, we find that the occurrence of middle- and high-altitude topped clouds agrees well between MISR retrievals and the MISR-simulated output, with distributions of middle- and high-topped cloud cover typically agreeing to better than 5% in both zonal and regional averages. However, there are significant differences in the occurrence of low-topped clouds between MISR retrievals and MISR-simulated output that are due to differences in the detection of low-level clouds between MISR and the combined retrievals used to drive the MISR simulator, rather than due to errors in the MISR simulator cloud top height adjustment. This difference highlights the importance of sensor resolution and boundary layer cloud spatial structure in determining low-altitude cloud cover. The MISR-simulated and MISR-retrieved cloud optical depth also show systematic differences, which are also likely due in part to cloud spatial structure.
Medeiros, Brian; Nuijens, Louise
2016-05-31
Trade wind regions cover most of the tropical oceans, and the prevailing cloud type is shallow cumulus. These small clouds are parameterized by climate models, and changes in their radiative effects strongly and directly contribute to the spread in estimates of climate sensitivity. This study investigates the structure and variability of these clouds in observations and climate models. The study builds upon recent detailed model evaluations using observations from the island of Barbados. Using a dynamical regimes framework, satellite and reanalysis products are used to compare the Barbados region and the broader tropics. It is shown that clouds in the Barbados region are similar to those across the trade wind regions, implying that observational findings from the Barbados Cloud Observatory are relevant to clouds across the tropics. The same methods are applied to climate models to evaluate the simulated clouds. The models generally capture the cloud radiative effect, but underestimate cloud cover and show an array of cloud vertical structures. Some models show strong biases in the environment of the Barbados region in summer, weakening the connection between the regional biases and those across the tropics. Even bearing that limitation in mind, it is shown that covariations of cloud and environmental properties in the models are inconsistent with observations. The models tend to misrepresent sensitivity to moisture variations and inversion characteristics. These model errors are likely connected to cloud feedback in climate projections, and highlight the importance of the representation of shallow cumulus convection.
Nuijens, Louise
2016-01-01
Trade wind regions cover most of the tropical oceans, and the prevailing cloud type is shallow cumulus. These small clouds are parameterized by climate models, and changes in their radiative effects strongly and directly contribute to the spread in estimates of climate sensitivity. This study investigates the structure and variability of these clouds in observations and climate models. The study builds upon recent detailed model evaluations using observations from the island of Barbados. Using a dynamical regimes framework, satellite and reanalysis products are used to compare the Barbados region and the broader tropics. It is shown that clouds in the Barbados region are similar to those across the trade wind regions, implying that observational findings from the Barbados Cloud Observatory are relevant to clouds across the tropics. The same methods are applied to climate models to evaluate the simulated clouds. The models generally capture the cloud radiative effect, but underestimate cloud cover and show an array of cloud vertical structures. Some models show strong biases in the environment of the Barbados region in summer, weakening the connection between the regional biases and those across the tropics. Even bearing that limitation in mind, it is shown that covariations of cloud and environmental properties in the models are inconsistent with observations. The models tend to misrepresent sensitivity to moisture variations and inversion characteristics. These model errors are likely connected to cloud feedback in climate projections, and highlight the importance of the representation of shallow cumulus convection. PMID:27185925
Lidar cloud studies for FIRE and ECLIPS
NASA Technical Reports Server (NTRS)
Sassen, Kenneth; Grund, Christian J.; Spinhirne, James D.; Hardesty, Michael; Alvarez, James
1990-01-01
Optical remote sensing measurements of cirrus cloud properties were collected by one airborne and four ground-based lidar systems over a 32 h period during this case study from the First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment (FIRE) Intensive Field Observation (IFO) program. The lidar systems were variously equipped to collect linear depolarization, intrinsically calibrated backscatter, and Doppler velocity information. Data presented describe the temporal evolution and spatial distribution of cirrus clouds over an area encompassing southern and central Wisconsin. The cirrus cloud types include: dissipating subvisual and thin fibrous cirrus cloud bands, an isolated mesoscale uncinus complex (MUC), a large-scale deep cloud that developed into an organized cirrus structure within the lidar array, and a series of intensifying mesoscale cirrus cloud masses. Although the cirrus frequently developed in the vertical from particle fall-streaks emanating from generating regions at or near cloud tops, glaciating supercooled (-30 to -35 C) altocumulus clouds contributed to the production of ice mass at the base of the deep cirrus cloud, apparently even through riming, and other mechanisms involving evaporation, wave motions, and radiative effects are indicated. The generating regions ranged in scale from approximately 1.0 km cirrus uncinus cells, to organized MUC structures up to approximately 120 km across.
NASA Technical Reports Server (NTRS)
Genkova, I.; Long, C. N.; Heck, P. W.; Minnis, P.
2003-01-01
One of the primary Atmospheric Radiation Measurement (ARM) Program objectives is to obtain measurements applicable to the development of models for better understanding of radiative processes in the atmosphere. We address this goal by building a three-dimensional (3D) characterization of the cloud structure and properties over the ARM Southern Great Plains (SGP). We take the approach of juxtaposing the cloud properties as retrieved from independent satellite and ground-based retrievals, and looking at the statistics of the cloud field properties. Once these retrievals are well understood, they will be used to populate the 3D characterization database. As a first step we determine the relationship between surface fractional sky cover and satellite viewing angle dependent cloud fraction (CF). We elaborate on the agreement intercomparing optical depth (OD) datasets from satellite and ground using available retrieval algorithms with relation to the CF, cloud height, multi-layer cloud presence, and solar zenith angle (SZA). For the SGP Central Facility, where output from the active remote sensing cloud layer (ARSCL) valueadded product (VAP) is available, we study the uncertainty of satellite estimated cloud heights and evaluate the impact of this uncertainty for radiative studies.
Reconciling biases and uncertainties of AIRS and MODIS ice cloud properties
NASA Astrophysics Data System (ADS)
Kahn, B. H.; Gettelman, A.
2015-12-01
We will discuss comparisons of collocated Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) ice cloud optical thickness (COT), effective radius (CER), and cloud thermodynamic phase retrievals. The ice cloud comparisons are stratified by retrieval uncertainty estimates, horizontal inhomogeneity at the pixel-scale, vertical cloud structure, and other key parameters. Although an estimated 27% globally of all AIRS pixels contain ice cloud, only 7% of them are spatially uniform ice according to MODIS. We find that the correlations of COT and CER between the two instruments are strong functions of horizontal cloud heterogeneity and vertical cloud structure. The best correlations are found in single-layer, horizontally homogeneous clouds over the low-latitude tropical oceans with biases and scatter that increase with scene complexity. While the COT comparisons are unbiased in homogeneous ice clouds, a bias of 5-10 microns remains in CER within the most homogeneous scenes identified. This behavior is entirely consistent with known sensitivity differences in the visible and infrared bands. We will use AIRS and MODIS ice cloud properties to evaluate ice hydrometeor output from climate model output, such as the CAM5, with comparisons sorted into different dynamical regimes. The results of the regime-dependent comparisons will be described and implications for model evaluation and future satellite observational needs will be discussed.
Phytoplankton off the Coast of Portugal
NASA Technical Reports Server (NTRS)
2002-01-01
A large phytoplankton bloom off of the coast of Portugal can be seen in this true-color image taken on April 23, 2002, by the Moderate-resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra satellite. The bloom is roughly half the size of Portugal and forms a bluish-green cloud in the water. The red spots in northwest Spain denote what are likely small agricultural fires. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC
NASA Technical Reports Server (NTRS)
2002-01-01
As the clouds allowed during the past two months, the Sea-viewing Wide field-of-View Sensor (SeaWiFS) recorded the changing colors of eastern U.S. and Canadian vegetation. This series of true-color images from the fall of 2000 shows the deciduous forests of the region change from dark green to bright red and orange, and begin to drop their leaves. Image provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
NASA Technical Reports Server (NTRS)
Dasgupta, Partha; Leblanc, Richard J., Jr.; Appelbe, William F.
1988-01-01
Clouds is an operating system in a novel class of distributed operating systems providing the integration, reliability, and structure that makes a distributed system usable. Clouds is designed to run on a set of general purpose computers that are connected via a medium-of-high speed local area network. The system structuring paradigm chosen for the Clouds operating system, after substantial research, is an object/thread model. All instances of services, programs and data in Clouds are encapsulated in objects. The concept of persistent objects does away with the need for file systems, and replaces it with a more powerful concept, namely the object system. The facilities in Clouds include integration of resources through location transparency; support for various types of atomic operations, including conventional transactions; advanced support for achieving fault tolerance; and provisions for dynamic reconfiguration.
NASA Technical Reports Server (NTRS)
Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Brecht, A. S.; Urata, R.
2015-01-01
The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.
NASA Astrophysics Data System (ADS)
Kahre, Melinda A.; Haberle, Robert M.; Hollingsworth, Jeffery L.; Brecht, Amanda S.; Urata, Richard A.
2015-11-01
The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.
Sideloading - Ingestion of Large Point Clouds Into the Apache Spark Big Data Engine
NASA Astrophysics Data System (ADS)
Boehm, J.; Liu, K.; Alis, C.
2016-06-01
In the geospatial domain we have now reached the point where data volumes we handle have clearly grown beyond the capacity of most desktop computers. This is particularly true in the area of point cloud processing. It is therefore naturally lucrative to explore established big data frameworks for big geospatial data. The very first hurdle is the import of geospatial data into big data frameworks, commonly referred to as data ingestion. Geospatial data is typically encoded in specialised binary file formats, which are not naturally supported by the existing big data frameworks. Instead such file formats are supported by software libraries that are restricted to single CPU execution. We present an approach that allows the use of existing point cloud file format libraries on the Apache Spark big data framework. We demonstrate the ingestion of large volumes of point cloud data into a compute cluster. The approach uses a map function to distribute the data ingestion across the nodes of a cluster. We test the capabilities of the proposed method to load billions of points into a commodity hardware compute cluster and we discuss the implications on scalability and performance. The performance is benchmarked against an existing native Apache Spark data import implementation.
Satellite Articulation Characterization from an Image Trajectory Matrix Using Optimization
NASA Astrophysics Data System (ADS)
Curtis, D. H.; Cobb, R. G.
Autonomous on-orbit satellite servicing and inspection benefits from an inspector satellite that can autonomously gain as much information as possible about the primary satellite. This includes performance of articulated objects such as solar arrays, antennas, and sensors. This paper presents a method of characterizing the articulation of a satellite using resolved monocular imagery. A simulated point cloud representing a nominal satellite with articulating solar panels and a complex articulating appendage is developed and projected to the image coordinates that would be seen from an inspector following a given inspection route. A method is developed to analyze the resulting image trajectory matrix. The developed method takes advantage of the fact that the route of the inspector satellite is known to assist in the segmentation of the points into different rigid bodies, the creation of the 3D point cloud, and the identification of the articulation parameters. Once the point cloud and the articulation parameters are calculated, they can be compared to the known truth. The error in the calculated point cloud is determined as well as the difference between the true workspace of the satellite and the calculated workspace. These metrics can be used to compare the quality of various inspection routes for characterizing the satellite and its articulation.
NASA Astrophysics Data System (ADS)
Benaud, P.; Anderson, K.; Quine, T. A.; James, M. R.; Quinton, J.; Brazier, R. E.
2016-12-01
While total sediment capture can accurately quantify soil loss via water erosion, it isn't practical at the field scale and provides little information on the spatial nature of soil erosion processes. Consequently, high-resolution, remote sensing, point cloud data provide an alternative method for quantifying soil loss. The accessibility of Structure-from-Motion Multi-Stereo View (SfM) and the potential for multi-temporal applications, offers an exciting opportunity to spatially quantify soil erosion. Accordingly, published research provides examples of the successful quantification of large erosion features and events, to centimetre accuracy. Through rigorous control of the camera and image network geometry, the centimetre accuracy achievable at the field scale, can translate to sub-millimetre accuracies within a laboratory environment. Accordingly, this study looks to understand how the ultra-high-resolution spatial information on soil surface topography, derived from SfM, can be integrated with a multi-element sediment tracer to develop a mechanistic understanding of rill and inter-rill erosion, under experimental conditions. A rainfall simulator was used to create three soil surface conditions; compaction and rainsplash, inter-rill erosion, and rill erosion, at two experimental scales (0.15 m2 and 3 m2). Total sediment capture was the primary validation for the experiments, allowing the comparison between structurally and volumetrically derived change, and true soil loss. A Terrestrial Laser Scanner (resolution of ca. 0.8mm) has been employed to assess spatial discrepancies within the SfM data sets and to provide an alternative measure of volumetric change. Preliminary results show the SfM approach used can achieve a ground resolution of less than 0.2 mm per pixel, and a RMSE of less than 0.3 mm. Consequently, it is expected that the ultra-high-resolution SfM point clouds can be utilised to provide a detailed assessment of soil loss via water erosion processes.
Two cloud-based cues for estimating scene structure and camera calibration.
Jacobs, Nathan; Abrams, Austin; Pless, Robert
2013-10-01
We describe algorithms that use cloud shadows as a form of stochastically structured light to support 3D scene geometry estimation. Taking video captured from a static outdoor camera as input, we use the relationship of the time series of intensity values between pairs of pixels as the primary input to our algorithms. We describe two cues that relate the 3D distance between a pair of points to the pair of intensity time series. The first cue results from the fact that two pixels that are nearby in the world are more likely to be under a cloud at the same time than two distant points. We describe methods for using this cue to estimate focal length and scene structure. The second cue is based on the motion of cloud shadows across the scene; this cue results in a set of linear constraints on scene structure. These constraints have an inherent ambiguity, which we show how to overcome by combining the cloud motion cue with the spatial cue. We evaluate our method on several time lapses of real outdoor scenes.
Structure formation in a colliding flow: The Herschel view of the Draco nebula
NASA Astrophysics Data System (ADS)
Miville-Deschênes, M.-A.; Salomé, Q.; Martin, P. G.; Joncas, G.; Blagrave, K.; Dassas, K.; Abergel, A.; Beelen, A.; Boulanger, F.; Lagache, G.; Lockman, F. J.; Marshall, D. J.
2017-03-01
Context. The Draco nebula is a high Galactic latitude interstellar cloud observed at velocities corresponding to the intermediate velocity cloud regime. This nebula shows unusually strong CO emission and remarkably high-contrast small-scale structures for such a diffuse high Galactic latitude cloud. The 21 cm emission of the Draco nebula reveals that it is likely to have been formed by the collision of a cloud entering the disk of the Milky Way. Such physical conditions are ideal to study the formation of cold and dense gas in colliding flows of diffuse and warm gas. Aims: The objective of this study is to better understand the process of structure formation in a colliding flow and to describe the effects of matter entering the disk on the interstellar medium. Methods: We conducted Herschel-SPIRE observations of the Draco nebula. The clumpfind algorithm was used to identify and characterize the small-scale structures of the cloud. Results: The high-resolution SPIRE map reveals the fragmented structure of the interface between the infalling cloud and the Galactic layer. This front is characterized by a Rayleigh-Taylor (RT) instability structure. From the determination of the typical length of the periodic structure (2.2 pc) we estimated the gas kinematic viscosity. This allowed us to estimate the dissipation scale of the warm neutral medium (0.1 pc), which was found to be compatible with that expected if ambipolar diffusion were the main mechanism of turbulent energy dissipation. The statistical properties of the small-scale structures identified with clumpfind are found to be typical of that seen in molecular clouds and hydrodynamical turbulence in general. The density of the gas has a log-normal distribution with an average value of 103 cm-3. The typical size of the structures is 0.1-0.2 pc, but this estimate is limited by the resolution of the observations. The mass of these structures ranges from 0.2 to 20 M⊙ and the distribution of the more massive structures follows a power-law dN/ dlog (M) M-1.4. We identify a mass-size relation with the same exponent as that found in molecular clouds (M L2.3). On the other hand, we found that only 15% of the mass of the cloud is in gravitationally bound structures. Conclusions: We conclude that the collision of diffuse gas from the Galactic halo with the diffuse interstellar medium of the outer layer of the disk is an efficient mechanism for producing dense structures. The increase of pressure induced by the collision is strong enough to trigger the formation of cold neutral medium out of the warm gas. It is likely that ambipolar diffusion is the mechanism dominating the turbulent energy dissipation. In that case the cold structures are a few times larger than the energy dissipation scale. The dense structures of Draco are the result of the interplay between magnetohydrodynamical turbulence and thermal instability as self-gravity is not dominating the dynamics. Interestingly they have properties typical of those found in more classical molecular clouds. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.The reduced Herschel data (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A109
2012-02-24
NASA image acquired February 24, 2012 By late February, 2012, the great European cold wave had begun to loosen its frigid grip, but significant snow still remained in the region. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua satellite captured this true-color image of snow in Italy on February 24 at 12:35 UTC (1:30 p.m. local time). In the north of the image, bright white clouds blanket the region in a broad arc. Snow, which tends to be generally less bright that clouds, covers the Alps in the north of Italy. The Apennine Mountains, which form the backbone of the Italian peninsula, also carry a blanket of snow. Although clouds and snow can, at times, be distinguished visually in a true-color image, sometimes they can appear very similar. When it is important to clearly define snow from cloud, false color images are often helpful. Rome, which can be seen as a gray smudge on the southwestern coast of the peninsula, recorded highs of a spring-like 50°F the day this image was captured, but earlier in the month the temperatures dove as low as 26°F on February 5. During that cold snap a rare intense snowfall blanketed Rome, causing the closure of the Colosseum, the Roman Forum and the Palatine Hill due to concerns of the risk of icy footing for tourists, and roads became impassible. Further north, temperatures plummeted to −21 °C (−6 °F) on 7 February. On February 11, news media reported over 2 meters (6.5 feet) of snow had fallen in Urbino, a walled town situated on a high sloping hillside on the eastern side of the Apennine Mountains. That same snowfall cut access to many remote towns in the Apennines, blocking roads and trapping some people in the homes. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Where Next for Marine Cloud Brightening Research?
NASA Astrophysics Data System (ADS)
Jenkins, A. K. L.; Forster, P.
2014-12-01
Realistic estimates of geoengineering effectiveness will be central to informed decision-making on its possible role in addressing climate change. Over the last decade, global-scale computer climate modelling of geoengineering has been developing. While these developments have allowed quantitative estimates of geoengineering effectiveness to be produced, the relative coarseness of the grid of these models (tens of kilometres) means that key practical details of the proposed geoengineering is not always realistically captured. This is particularly true for marine cloud brightening (MCB), where both the clouds, as well as the tens-of-meters scale sea-going implementation vessels cannot be captured in detail. Previous research using cloud resolving modelling has shown that neglecting such details may lead to MCB effectiveness being overestimated by up to half. Realism of MCB effectiveness will likely improve from ongoing developments in the understanding and modelling of clouds. We also propose that realism can be increased via more specific improvements (see figure). A readily achievable example would be the reframing of previous MCB effectiveness estimates in light of the cloud resolving scale findings. Incorporation of implementation details could also be made - via parameterisation - into future global-scale modelling of MCB. However, as significant unknowns regarding the design of the MCB aerosol production technique remain, resource-intensive cloud resolving computer modelling of MCB may be premature unless of broader benefit to the wider understanding of clouds. One of the most essential recommendations is for enhanced communication between climate scientists and MCB designers. This would facilitate the identification of potentially important design aspects necessary for realistic computer simulations. Such relationships could be mutually beneficial, with computer modelling potentially informing more efficient designs of the MCB implementation technique. (Acknowledgment) This work is part of the Integrated Assessment of Geoengineering Proposals (IAGP) project, funded by the Engineering and Physical Sciences Research Council and the Natural Environment Research Council (EP/I014721/1).
Influence of Ice-phase of Hydrometeors on Moist-Convection
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Walker, G. K.
2003-01-01
Climate models often ignore the influence of ice-phase physics (IPP) of hydrometeors as a second order effect. This has also been true for McRAS (Microphysics of clouds with Relaxed Arakawa Schubert Scheme) developed by the authors. Recognizing that the temperature sounding is critical for moist-convection, and, that IPP would modify it, we investigated the influence of introducing IPP into McRAS coupled to FvGCM (finite volume General Circulation Model with NCAR physics). We analyzed three 3-yr long simulations; the first called Control Case, CC and had no IPP; the other two called Experiments El and E2 had IPP introduced with two different in-cloud freezing assumptions. Simulation El assumed that all hydrometeors remain liquid in the updraft and freeze upon detrainment. Simulation E2 invoked the in-cloud freezing of new condensate generated at subfreezing temperatures in the updraft while old cloud water continued to ascend as liquid. Upon detrainment, this cloud water also froze like in E1. With these assumptions, about 50% of hydrometeors froze in the tower and the rest froze in the anvil. However, in both El and E2, the frozen hydrometeors melted during fall at the first encounter of above freezing ambient temperature. Comparative analysis revealed that El simulated far more mid-level and far less deep clouds while E2 had modified deep and more mid-level clouds as compared to CC along with some major changes around the melt-level. We infer that IPP produced a more realistic response in E2. At the basic level, the results show that ice-phase processes influence convective detrainment at mid- and deep levels in accord with TOGAGOARE observations. The results suggest that IPP can help to mitigate less-than-observed mid-level and over-abundance of deep convective clouds in McRAS.
Fall, Veronica M; Cao, Qing; Hong, Yang
2013-01-01
Spaceborne radars provide great opportunities to investigate the vertical structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud Profiling Radar (CPR) and Ku-band Precipitation Radar (PR), which are onboard NASA's CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics for different hydrometeors in clouds and precipitation. The combination of spaceborne and ground-based radar observations can help in the identification of hydrometeors and improve the radar-based quantitative precipitation estimation (QPE). This study analyzes the vertical structure of the 18 January, 2009 storm using data from the CloudSat CPR, TRMM PR, and a NEXRAD-based National Mosaic and Multisensor QPE (NMQ) system. Microphysics above, within, and below the melting layer are studied through an intercomparison of multifrequency measurements. Hydrometeors' type and their radar scattering characteristics are analyzed. Additionally, the study of the vertical profile of reflectivity (VPR) reveals the brightband properties in the cold-season precipitation and its effect on the radar-based QPE. In all, the joint analysis of spaceborne and ground-based radar data increases the understanding of the vertical structure of storm systems and provides a good insight into the microphysical modeling for weather forecasts.
Fall, Veronica M.; Hong, Yang
2013-01-01
Spaceborne radars provide great opportunities to investigate the vertical structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud Profiling Radar (CPR) and Ku-band Precipitation Radar (PR), which are onboard NASA's CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics for different hydrometeors in clouds and precipitation. The combination of spaceborne and ground-based radar observations can help in the identification of hydrometeors and improve the radar-based quantitative precipitation estimation (QPE). This study analyzes the vertical structure of the 18 January, 2009 storm using data from the CloudSat CPR, TRMM PR, and a NEXRAD-based National Mosaic and Multisensor QPE (NMQ) system. Microphysics above, within, and below the melting layer are studied through an intercomparison of multifrequency measurements. Hydrometeors' type and their radar scattering characteristics are analyzed. Additionally, the study of the vertical profile of reflectivity (VPR) reveals the brightband properties in the cold-season precipitation and its effect on the radar-based QPE. In all, the joint analysis of spaceborne and ground-based radar data increases the understanding of the vertical structure of storm systems and provides a good insight into the microphysical modeling for weather forecasts. PMID:24459424
Fractal properties and denoising of lidar signals from cirrus clouds
NASA Astrophysics Data System (ADS)
van den Heuvel, J. C.; Driesenaar, M. L.; Lerou, R. J. L.
2000-02-01
Airborne lidar signals of cirrus clouds are analyzed to determine the cloud structure. Climate modeling and numerical weather prediction benefit from accurate modeling of cirrus clouds. Airborne lidar measurements of the European Lidar in Space Technology Experiment (ELITE) campaign were analyzed by combining shots to obtain the backscatter at constant altitude. The signal at high altitude was analyzed for horizontal structure of cirrus clouds. The power spectrum and the structure function show straight lines on a double logarithmic plot. This behavior is characteristic for a Brownian fractal. Wavelet analysis using the Haar wavelet confirms the fractal aspects. It is shown that the horizontal structure of cirrus can be described by a fractal with a dimension of 1.8 over length scales that vary 4 orders of magnitude. We use the fractal properties in a new denoising method. Denoising is required for future lidar measurements from space that have a low signal to noise ratio. Our wavelet denoising is based on the Haar wavelet and uses the statistical fractal properties of cirrus clouds in a method based on the maximum a posteriori (MAP) probability. This denoising based on wavelets is tested on airborne lidar signals from ELITE using added Gaussian noise. Superior results with respect to averaging are obtained.
Biotic games and cloud experimentation as novel media for biophysics education
NASA Astrophysics Data System (ADS)
Riedel-Kruse, Ingmar; Blikstein, Paulo
2014-03-01
First-hand, open-ended experimentation is key for effective formal and informal biophysics education. We developed, tested and assessed multiple new platforms that enable students and children to directly interact with and learn about microscopic biophysical processes: (1) Biotic games that enable local and online play using galvano- and photo-tactic stimulation of micro-swimmers, illustrating concepts such as biased random walks, Low Reynolds number hydrodynamics, and Brownian motion; (2) an undergraduate course where students learn optics, electronics, micro-fluidics, real time image analysis, and instrument control by building biotic games; and (3) a graduate class on the biophysics of multi-cellular systems that contains a cloud experimentation lab enabling students to execute open-ended chemotaxis experiments on slimemolds online, analyze their data, and build biophysical models. Our work aims to generate the equivalent excitement and educational impact for biophysics as robotics and video games have had for mechatronics and computer science, respectively. We also discuss how scaled-up cloud experimentation systems can support MOOCs with true lab components and life-science research in general.
Integrating the Apache Big Data Stack with HPC for Big Data
NASA Astrophysics Data System (ADS)
Fox, G. C.; Qiu, J.; Jha, S.
2014-12-01
There is perhaps a broad consensus as to important issues in practical parallel computing as applied to large scale simulations; this is reflected in supercomputer architectures, algorithms, libraries, languages, compilers and best practice for application development. However, the same is not so true for data intensive computing, even though commercially clouds devote much more resources to data analytics than supercomputers devote to simulations. We look at a sample of over 50 big data applications to identify characteristics of data intensive applications and to deduce needed runtime and architectures. We suggest a big data version of the famous Berkeley dwarfs and NAS parallel benchmarks and use these to identify a few key classes of hardware/software architectures. Our analysis builds on combining HPC and ABDS the Apache big data software stack that is well used in modern cloud computing. Initial results on clouds and HPC systems are encouraging. We propose the development of SPIDAL - Scalable Parallel Interoperable Data Analytics Library -- built on system aand data abstractions suggested by the HPC-ABDS architecture. We discuss how it can be used in several application areas including Polar Science.
Non-destructive evaluation of laboratory scale hydraulic fracturing using acoustic emission
NASA Astrophysics Data System (ADS)
Hampton, Jesse Clay
The primary objective of this research is to develop techniques to characterize hydraulic fractures and fracturing processes using acoustic emission monitoring based on laboratory scale hydraulic fracturing experiments. Individual microcrack AE source characterization is performed to understand the failure mechanisms associated with small failures along pre-existing discontinuities and grain boundaries. Individual microcrack analysis methods include moment tensor inversion techniques to elucidate the mode of failure, crack slip and crack normal direction vectors, and relative volumetric deformation of an individual microcrack. Differentiation between individual microcrack analysis and AE cloud based techniques is studied in efforts to refine discrete fracture network (DFN) creation and regional damage quantification of densely fractured media. Regional damage estimations from combinations of individual microcrack analyses and AE cloud density plotting are used to investigate the usefulness of weighting cloud based AE analysis techniques with microcrack source data. Two granite types were used in several sample configurations including multi-block systems. Laboratory hydraulic fracturing was performed with sample sizes ranging from 15 x 15 x 25 cm3 to 30 x 30 x 25 cm 3 in both unconfined and true-triaxially confined stress states using different types of materials. Hydraulic fracture testing in rock block systems containing a large natural fracture was investigated in terms of AE response throughout fracture interactions. Investigations of differing scale analyses showed the usefulness of individual microcrack characterization as well as DFN and cloud based techniques. Individual microcrack characterization weighting cloud based techniques correlated well with post-test damage evaluations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riihimaki, Laura D.; Comstock, Jennifer M.; Luke, Edward
To understand the microphysical processes that impact diabatic heating and cloud lifetimes in convection, we need to characterize the spatial distribution of supercooled liquid water. To address this observational challenge, vertically pointing active sensors at the Darwin Atmospheric Radiation Measurement (ARM) site are used to classify cloud phase within a deep convective cloud in a shallow to deep convection transitional case. The cloud cannot be fully observed by a lidar due to signal attenuation. Thus we develop an objective method for identifying hydrometeor classes, including mixed-phase conditions, using k-means clustering on parameters that describe the shape of the Doppler spectramore » from vertically pointing Ka band cloud radar. This approach shows that multiple, overlapping mixed-phase layers exist within the cloud, rather than a single region of supercooled liquid, indicating complexity to how ice growth and diabatic heating occurs in the vertical structure of the cloud.« less
Diffuse cloud chemistry. [in interstellar matter
NASA Technical Reports Server (NTRS)
Van Dishoeck, Ewine F.; Black, John H.
1988-01-01
The current status of models of diffuse interstellar clouds is reviewed. A detailed comparison of recent gas-phase steady-state models shows that both the physical conditions and the molecular abundances in diffuse clouds are still not fully understood. Alternative mechanisms are discussed and observational tests which may discriminate between the various models are suggested. Recent developments regarding the velocity structure of diffuse clouds are mentioned. Similarities and differences between the chemistries in diffuse clouds and those in translucent and high latitude clouds are pointed out.
Lidar Observations of the Optical Properties and 3-Dimensional Structure of Cirrus Clouds
NASA Technical Reports Server (NTRS)
Eloranta, E. W.
1996-01-01
The scientific research conducted under this grant have been reported in a series of journal articles, dissertations, and conference proceedings. This report consists of a compilation of these publications in the following areas: development and operation of a High Spectral Resolution Lidar, cloud physics and cloud formation, mesoscale observations of cloud phenomena, ground-based and satellite cloud cover observations, impact of volcanic aerosols on cloud formation, visible and infrared radiative relationships as measured by satellites and lidar, and scattering cross sections.
Hurricane Irma's Cloud Structure as Seen by NASA's AIRS
2017-09-08
The large-scale structure of clouds in and around Hurricane Irma is seen in this animation and still image created with data from the Atmospheric Infrared Sounder (AIRS) instrument on NASA's Aqua satellite. The clouds are typical of tropical areas both nearby and away from tropical cyclones. Observations were taken at 1 p.m. EDT (5 p.m. UTC) on Tuesday, Sept. 5, 2017, as Irma approached the Caribbean islands and was just becoming a powerful Category 5 storm. Each cylinder represents a volume of cloud detected by AIRS. The oval cylinder ends represent a region viewed by AIRS, with the oval sizes adjusted to reflect the proportion of clouds filling the area viewed. The largest ovals are about 30 miles (45 kilometers) across. The height of the cylinders indicates the cloud thickness, with thickest clouds reaching down to the surface. The vertical scale is exaggerated 15 times. Colors represent temperatures at the tops of the clouds. The perspective views the storm diagonally from above with an initial view toward the north-northwest, with the perspective rotating clockwise for a full circle. The area depicted is about 1,000 miles by 800 miles across (1,600 by 1,300 kilometers). At the start of the loop, North America is seen at the top of the image, and coastal Venezuela at the lower right. In the initial perspective, cirrus clouds (thin and blue), associated with flow outward from the top of the hurricane, overlie warmer (pink and red) shallow clouds. About five seconds into the loop, the deep clouds in the middle of Irma are easily seen. The most dangerous parts of Irma are within the region of high and cold (blue), thick clouds surrounding the central eye. The clouds are cold because they are carried to high, cold altitudes by vigorous thunderstorms within the hurricane. The eye itself is nearly cloud free, but the few clouds within it are low and warm. As the perspective shift toward the south-southeast around seven seconds into the loop, another storm system well north of Irma can be seen. It contains high, thick clouds, with more cirrus carried outward over shallow clouds. At about nine seconds, more outflow from Irma is seen, with high, thin clouds over shallow clouds once again apparent. Shortly afterward when the view is toward the southwest, yet more deep clouds and their outflowing cirrus clouds are apparent. This image depicts many of the clouds typical of the tropics even when cyclones are not present: high, cold thunderstorms pushing cirrus clouds over nearby regions containing many warm, shallow clouds. The animation also shows the structure typical of tropical cyclones around the world: very strong thunderstorms lifting clouds into cold parts of the atmosphere, with strong outflow at upper levels carrying cirrus clouds away from the storm center, and the storm organized symmetrically around a central eye. https://photojournal.jpl.nasa.gov/catalog/PIA21950
Infrared Extinction and the Initial Conditions for Star and Planet Formation
NASA Technical Reports Server (NTRS)
Lada, Charles J.
2005-01-01
This grant funded a research program to use infrared extinction measurements to probe the detailed structure of dark molecular clouds and investigate the physical conditions which give rise to star and planet formation. The goals of the this program were to: 1) acquire deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds, 2) reduce and analyze the data obtained in order to produce detailed extinction maps of the clouds, 3) use the results to measure and quantitatively describe the physical conditions of the dense gas and dust that produce stars and their accompanying planetary systems in molecular clouds. The goals of this project were met and exceeded as described below. 1) The infrared data for the project were obtained in a number of observing runs using the 3.5-meter NTT and 8-meter VLT telescopes of the European Southern Observatory in Chile and the 1.2-meter telescope of the Smithsonian Astrophysical Observatory in Arizona, the 1 0-meter Keck telescope in Hawaii, the 6.5-meter MMT of the Smithsonian Astrophysical Observatory in Arizona, and the NASA Hubble Space Telescope. The molecular-line data was obtained in three runs using the IRAM 30-meter telescope in Spain and one run with the ESO-15 meter millimeter-wave telescope in Chile. Millimeter-wave continuum measurements were obtained with the 15-meter JCMT in Hawaii. 2) Considerable effort was expended to reduce the infrared imaging observations including the development of custom software to produce high quality photometry and source astrometry. All the millimeter-line data was reduced using standard reduction routines. The highlights of the infrared analysis were the production of detailed extinction maps and the construction of profiles of the density structure of the B68, Coalsack, B335 and Lupus clouds. 3) The principal scientific accomplishments of this research program include the following: We were able to use our infrared observations to determine the density structure of the B68 cloud to an unprecedented level of precision. This lead to a major breakthrough in the study of molecular cloud structure. For the first time we have been able to characterize the structure of a dark cloud in a detail only exceeded by that known for a star. We determined that the cloud's structure is exquisitely well described by the equations of a Bonner-Ebert sphere (a pressure confined isothermal sphere). We were able to show that the cloud is very nearly in equilibrium with the internal thermal pressure of the cloud balancing gravity and the external pressure of the surrounding interstellar medium. We were able to determine for the first time the gas-to-dust ratio in a dense cloud core. We also demonstrated a new method to determine extremely precise distances to such clouds by combining knowledge of the properties of Bonner-Ebert Spheres with our infrared and millimeter-wave observations.
Security and Interdependency in a Public Cloud: A Game Theoretic Approach
2014-08-29
maximum utility can be reached (i.e., Pareto efficiency). However, the examples of perverse incentives and information inequality (where this feedback...interdependent structure. Cloud computing gives way to two types of interdependent relationships: cloud host-to- client and cloud client -to- client ... Client -to- client interdependency is much less studied than to the above-mentioned cloud host-to- client relationship. Although, it can still carry the
Norris, Peter M.; da Silva, Arlindo M.
2018-01-01
Part 1 of this series presented a Monte Carlo Bayesian method for constraining a complex statistical model of global circulation model (GCM) sub-gridcolumn moisture variability using high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) cloud data, thereby permitting parameter estimation and cloud data assimilation for large-scale models. This article performs some basic testing of this new approach, verifying that it does indeed reduce mean and standard deviation biases significantly with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud-top pressure and that it also improves the simulated rotational–Raman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the Ozone Monitoring Instrument (OMI). Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows non-gradient-based jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast, where the background state has a clear swath. This article also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in passive-radiometer-retrieved cloud observables on cloud vertical structure, beyond cloud-top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification from Riishojgaard provides some help in this respect, by better honouring inversion structures in the background state. PMID:29618848
NASA Technical Reports Server (NTRS)
Norris, Peter M.; da Silva, Arlindo M.
2016-01-01
Part 1 of this series presented a Monte Carlo Bayesian method for constraining a complex statistical model of global circulation model (GCM) sub-gridcolumn moisture variability using high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) cloud data, thereby permitting parameter estimation and cloud data assimilation for large-scale models. This article performs some basic testing of this new approach, verifying that it does indeed reduce mean and standard deviation biases significantly with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud-top pressure and that it also improves the simulated rotational-Raman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the Ozone Monitoring Instrument (OMI). Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows non-gradient-based jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast, where the background state has a clear swath. This article also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in passive-radiometer-retrieved cloud observables on cloud vertical structure, beyond cloud-top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification from Riishojgaard provides some help in this respect, by better honouring inversion structures in the background state.
Norris, Peter M; da Silva, Arlindo M
2016-07-01
Part 1 of this series presented a Monte Carlo Bayesian method for constraining a complex statistical model of global circulation model (GCM) sub-gridcolumn moisture variability using high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) cloud data, thereby permitting parameter estimation and cloud data assimilation for large-scale models. This article performs some basic testing of this new approach, verifying that it does indeed reduce mean and standard deviation biases significantly with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud-top pressure and that it also improves the simulated rotational-Raman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the Ozone Monitoring Instrument (OMI). Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows non-gradient-based jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast, where the background state has a clear swath. This article also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in passive-radiometer-retrieved cloud observables on cloud vertical structure, beyond cloud-top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification from Riishojgaard provides some help in this respect, by better honouring inversion structures in the background state.
Photographer : JPL Range : 3.4 million km This pair of images shows two of the long-lived white oval
NASA Technical Reports Server (NTRS)
1979-01-01
Photographer : JPL Range : 3.4 million km This pair of images shows two of the long-lived white oval clouds which have resided in the Jovian southern hemisphere for nearly 40 years. The upper picture shows the cloud that is at a longitude west of the Great Red Spot, and the lower frame, the cloud at a longitude east of this feature. The third oval is currently just south of the Great Red Spot. The clouds show very similar internal structures. To the east of each of them, recirculation currents are clearly seen. In the lower frame, a similar structure is seen to the west of the cloud. Although a recirculation current is associated with the upper western region of the cloud, it is further away from this feature and not seen in the image. This photo was taken by Voyager 2.
NASA Astrophysics Data System (ADS)
Biagi, C. J.; Cummins, K. L.
2015-12-01
The growing possibility of inexpensive airborne observations of electric fields using one or more small UAVs increases the importance of understanding what can be determined about cloud electrification and associated electric fields outside cloud boundaries. If important information can be inferred from carefully selected flight paths outside of a cloud, then the aircraft and its instrumentation will be much cheaper to develop and much safer to operate. These facts have led us to revisit this long-standing topic using quasi-static, finite-element modeling inside and outside arbitrarily shaped clouds with a variety of internal charge distributions. In particular, we examine the effect of screening layers on electric fields outside of electrified clouds by comparing modeling results for charged clouds having electrical conductivities that are both equal to and lower than the surrounding clear air. The comparisons indicate that the spatial structure of the electric field is approximately the same regardless of the difference in the conductivities between the cloud and clear air and the formation of a screening layer, even for altitude-dependent electrical conductivities. This result is consistent with the numerical modeling results reported by Driscoll et al [1992]. The similarity of the spatial structure of the electric field outside of clouds with and without a screening layer suggests that "bulk" properties related to cloud electrification might be determined using measurements of the electric field at multiple locations in space outside the cloud, particularly at altitude. Finally, for this somewhat simplified model, the reduction in electric field magnitude outside the cloud due to the presence of a screening layer exhibits a simple dependence on the difference in conductivity between the cloud and clear air. These results are particularly relevant for studying clouds that are not producing lightning, such as developing thunderstorms and decaying anvils associated with mature storm systems.Driscoll K.T., R.J. Blakeslee, M.E. Baginski, 1992, A modeling study of the time-averaged electric currents in the vicinity of isolated thunderstorms, J. Geophys. Res., 97, D11, pp 11535-11551.
Cloud Forecasting and 3-D Radiative Transfer Model Validation using Citizen-Sourced Imagery
NASA Astrophysics Data System (ADS)
Gasiewski, A. J.; Heymsfield, A.; Newman Frey, K.; Davis, R.; Rapp, J.; Bansemer, A.; Coon, T.; Folsom, R.; Pfeufer, N.; Kalloor, J.
2017-12-01
Cloud radiative feedback mechanisms are one of the largest sources of uncertainty in global climate models. Variations in local 3D cloud structure impact the interpretation of NASA CERES and MODIS data for top-of-atmosphere radiation studies over clouds. Much of this uncertainty results from lack of knowledge of cloud vertical and horizontal structure. Surface-based data on 3-D cloud structure from a multi-sensor array of low-latency ground-based cameras can be used to intercompare radiative transfer models based on MODIS and other satellite data with CERES data to improve the 3-D cloud parameterizations. Closely related, forecasting of solar insolation and associated cloud cover on time scales out to 1 hour and with spatial resolution of 100 meters is valuable for stabilizing power grids with high solar photovoltaic penetrations. Data for cloud-advection based solar insolation forecasting with requisite spatial resolution and latency needed to predict high ramp rate events obtained from a bottom-up perspective is strongly correlated with cloud-induced fluctuations. The development of grid management practices for improved integration of renewable solar energy thus also benefits from a multi-sensor camera array. The data needs for both 3D cloud radiation modelling and solar forecasting are being addressed using a network of low-cost upward-looking visible light CCD sky cameras positioned at 2 km spacing over an area of 30-60 km in size acquiring imagery on 30 second intervals. Such cameras can be manufactured in quantity and deployed by citizen volunteers at a marginal cost of 200-400 and operated unattended using existing communications infrastructure. A trial phase to understand the potential utility of up-looking multi-sensor visible imagery is underway within this NASA Citizen Science project. To develop the initial data sets necessary to optimally design a multi-sensor cloud camera array a team of 100 citizen scientists using self-owned PDA cameras is being organized to collect distributed cloud data sets suitable for MODIS-CERES cloud radiation science and solar forecasting algorithm development. A low-cost and robust sensor design suitable for large scale fabrication and long term deployment has been developed during the project prototyping phase.
A cloudiness transition in a marine boundary layer
NASA Technical Reports Server (NTRS)
Betts, Alan K.; Boers, Reinout
1990-01-01
Boundary layer cloudiness plays several important roles in the energy budget of the earth. Low level stratocumulus are highly reflective clouds which reduce the net incoming shortwave radiation at the earth's surface. Climatically, the transition to a small area fraction of scattered cumulus clouds occurs as the air flows over warmer water. Although these clouds reflect less sunlight, they still play an important role in the boundary layer equilibrium by transporting water vapor upwards, and enhancing the surface evaporation. The First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE) included a marine stratocumulus experiment off the southern California coast from June 29 to July 19, 1987. The objectives of this experiment were to study the controls on fractional cloudiness, and to assess the role of cloud-top entrainment instability (CTEI) and mesoscale structure in determining cloud type. The focus is one research day, July 7, 1987, when coordinated aircraft missions were flown by four research aircraft, centered on a LANDSAT scene at 1830 UTC. The remarkable feature of this LANDSAT scene is the transition from a clear sky in the west through broken cumulus to solid stratocumulus in the east. The dynamic and thermodynamic structure of this transition in cloudiness is analyzed using data from the NCAR Electra. By averaging the aircraft data, the internal structure of the different cloud regimes is documented, and it is shown that the transition between broken cumulus and stratocumulus is associated with a change in structure with respect to the CTEI condition. However, this results not from sea surface temperature changes, but mostly from a transition in the air above the inversion, and the breakup appears to be at a structure on the unstable side of the wet virtual adiabat.
Similar complex kinematics within two massive, filamentary infrared dark clouds
NASA Astrophysics Data System (ADS)
Barnes, A. T.; Henshaw, J. D.; Caselli, P.; Jiménez-Serra, I.; Tan, J. C.; Fontani, F.; Pon, A.; Ragan, S.
2018-04-01
Infrared dark clouds (IRDCs) are thought to be potential hosts of the elusive early phases of high-mass star formation. Here, we conduct an in-depth kinematic analysis of one such IRDC, G034.43+00.24 (Cloud F), using high sensitivity and high spectral resolution IRAM-30m N2H+ (1-0) and C18O (1-0) observations. To disentangle the complex velocity structure within this cloud, we use Gaussian decomposition and hierarchical clustering algorithms. We find that four distinct coherent velocity components are present within Cloud F. The properties of these components are compared to those found in a similar IRDC, G035.39-00.33 (Cloud H). We find that the components in both clouds have high densities (inferred by their identification in N2H+), trans-to-supersonic non-thermal velocity dispersions with Mach numbers of ˜1.5-4, a separation in velocity of ˜3 km s-1, and a mean red-shift of ˜0.3 km s-1 between the N2H+ (dense gas) and C18O emission (envelope gas). The latter of these could suggest that these clouds share a common formation scenario. We investigate the kinematics of the larger-scale Cloud F structures, using lower-density-tracing 13CO(1-0) observations. A good correspondence is found between the components identified in the IRAM-30m observations and the most prominent component in the 13CO data. We find that the IRDC Cloud F is only a small part of a much larger structure, which appears to be an inter-arm filament of the Milky Way.
Computer simulations of ions in radio-frequency traps
NASA Technical Reports Server (NTRS)
Williams, A.; Prestage, J. D.; Maleki, L.; Djomehri, J.; Harabetian, E.
1990-01-01
The motion of ions in a trapped-ion frequency standard affects the stability of the standard. In order to study the motion and structures of large ion clouds in a radio-frequency (RF) trap, a computer simulation of the system that incorporates the effect of thermal excitation of the ions was developed. Results are presented from the simulation for cloud sizes up to 512 ions, emphasizing cloud structures in the low-temperature regime.
NASA Technical Reports Server (NTRS)
Esposito, L. W.; Knollenberg, R. G.; Marov, M. IA.; Toon, O. B.; Turco, R. P.
1983-01-01
Pioneer Venus and Venera probe data for the clouds of Venus are considered. These clouds consist of a main cloud deck at 45-70 km altitude, with thinner hazes above and below, although the microphysical properties of the main cloud are further subdivided into upper, middle and lower cloud levels. Much of the cloud exhibits a multimodal particle size distribution, with the mode most visible from the earth being H2SO4 droplets having 2-3 micron diameters. Despite variations, the vertical structure of the clouds indicates persistent features at sites separated by years and by great distances. The clouds are more strongly affected by radiation than by latent heat release, and the small particle size and weak convective activity observed are incompatible with lightning of cloud origin.
Observed microphysical structure of nimbostratus in northeast cold vortex over China
NASA Astrophysics Data System (ADS)
Zhao, Zhen; Lei, Hengchi
2014-06-01
Airborne measurements were collected during a stepwise ascent within a nimbostratus cloud associated with a northeast cold vortex in Jilin Province over China on 20 June 2005 to study cloud structure and ice particle spectra. The microphysical structure of the nimbostratus was elucidated by King liquid water probe and Particle Measuring Systems (PMS) probes aboard the research aircraft. The PMS 2D images provide detailed information on crystal habits. A thick layer of supercooled cloud is observed and Hallett-Mossop ice multiplication process is used to explain very high ice particle concentrations in the temperature region between - 3 °C and - 6 °C. From near cloud top to melting layer, ice crystals shape in the form of columns, needles, aggregations and plates. In addition, significant horizontal variability was evident on the scale of few hundred meters. Ice particle spectra in this cloud were adequately described by exponential relationships. Relationship between the intercept (N0) and slope (λ) parameters of an exponential size distribution was well characterized by a power law.
Spatial Inference for Distributed Remote Sensing Data
NASA Astrophysics Data System (ADS)
Braverman, A. J.; Katzfuss, M.; Nguyen, H.
2014-12-01
Remote sensing data are inherently spatial, and a substantial portion of their value for scientific analyses derives from the information they can provide about spatially dependent processes. Geophysical variables such as atmopsheric temperature, cloud properties, humidity, aerosols and carbon dioxide all exhibit spatial patterns, and satellite observations can help us learn about the physical mechanisms driving them. However, remote sensing observations are often noisy and incomplete, so inferring properties of true geophysical fields from them requires some care. These data can also be massive, which is both a blessing and a curse: using more data drives uncertainties down, but also drives costs up, particularly when data are stored on different computers or in different physical locations. In this talk I will discuss a methodology for spatial inference on massive, distributed data sets that does not require moving large volumes of data. The idea is based on a combination of ideas including modeling spatial covariance structures with low-rank covariance matrices, and distributed estimation in sensor or wireless networks.
NASA Technical Reports Server (NTRS)
Valero, Francisco P. J.; Cess, Robert D.; Zhang, Minghua; Pope, Shelly K.; Bucholtz, Anthony; Bush, Brett; Vitko, John, Jr.
1997-01-01
As part of the Atmospheric Radiation Measurement (ARM) Enhanced Shortwave Experiment (ARESE), we have obtained and analyzed measurements made from collocated aircraft of the absorption of solar radiation within the atmospheric column between the two aircraft. The measurements were taken during October 1995 at the ARM site in Oklahoma. Relative to a theoretical radiative transfer model, we find no evidence for excess solar absorption in the clear atmosphere and significant evidence for its existence in the cloudy atmosphere. This excess cloud solar absorption appears to occur in both visible (0.224-0.68 microns) and near-infrared (0.68-3.30 microns) spectral regions, although not at 0.5 microns for the visible contribution, and it is shown to be true absorption rather than an artifact of sampling errors caused by measuring three-dimensional clouds.
NASA Astrophysics Data System (ADS)
Rusch, D. W.; Thomas, G. E.; McClintock, W.; Merkel, A. W.; Bailey, S. M.; Russell, J. M., III; Randall, C. E.; Jeppesen, C.; Callan, M.
2009-03-01
The Aeronomy of Ice in the Mesosphere (AIM) mission was launched from Vandenberg Air Force Base in California at 4:26:03 EDT on April 25, 2007, becoming the first satellite mission dedicated to the study of noctilucent clouds (NLCs), also known as polar mesospheric clouds (PMC) when viewed from space. We present the first results from one of the three instruments on board the satellite, the Cloud Imaging and Particle Size (CIPS) instrument. CIPS has produced detailed morphology of the Northern 2007 PMC and Southern 2007/2008 seasons with 5 km horizontal spatial resolution. CIPS, with its very large angular field of view, images cloud structures at multiple scattering angles within a narrow spectral bandpass centered at 265 nm. Spatial coverage is 100% above about 70° latitude, where camera views overlap from orbit to orbit, and terminates at about 82°. Spatial coverage decreases to about 50% at the lowest latitudes where data are collected (35°). Cloud structures have for the first time been mapped out over nearly the entire summertime polar region. These structures include [`]ice rings', spatially small but bright clouds, and large regions ([`]ice-free regions') in the heart of the cloud season essentially devoid of ice particles. The ice rings bear a close resemblance to tropospheric convective outflow events, suggesting a point source of mesospheric convection. These rings (often circular arcs) are most likely Type IV NLC ([`]whirls' in the standard World Meteorological Organization (WMO) nomenclature).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovchinnikov, Mikhail; Lim, Kyo-Sun Sunny; Larson, Vincent E.
Coarse-resolution climate models increasingly rely on probability density functions (PDFs) to represent subgrid-scale variability of prognostic variables. While PDFs characterize the horizontal variability, a separate treatment is needed to account for the vertical structure of clouds and precipitation. When sub-columns are drawn from these PDFs for microphysics or radiation parameterizations, appropriate vertical correlations must be enforced via PDF overlap specifications. This study evaluates the representation of PDF overlap in the Subgrid Importance Latin Hypercube Sampler (SILHS) employed in the assumed PDF turbulence and cloud scheme called the Cloud Layers Unified By Binormals (CLUBB). PDF overlap in CLUBB-SILHS simulations of continentalmore » and tropical oceanic deep convection is compared with overlap of PDF of various microphysics variables in cloud-resolving model (CRM) simulations of the same cases that explicitly predict the 3D structure of cloud and precipitation fields. CRM results show that PDF overlap varies significantly between different hydrometeor types, as well as between PDFs of mass and number mixing ratios for each species, - a distinction that the current SILHS implementation does not make. In CRM simulations that explicitly resolve cloud and precipitation structures, faster falling species, such as rain and graupel, exhibit significantly higher coherence in their vertical distributions than slow falling cloud liquid and ice. These results suggest that to improve the overlap treatment in the sub-column generator, the PDF correlations need to depend on hydrometeor properties, such as fall speeds, in addition to the currently implemented dependency on the turbulent convective length scale.« less
Cloud-based Communications Planning Collaboration and Interoperability
2012-06-01
battle concept is derived from the observation that all actions in the battle space have the ability to affect other areas or functions in the battle... space . This is equally true for tactical networks, which grow and transform dynamically as an operation evolves. Changes in one aspect of the network...availability of any updated network plans not only to the local SYSCON and TECHCON, but to all other units operating in the battle space (keeping in mind
2015-10-01
likely outcomes and make decisions; however, that is a fundamentally different dy- namic than a true learning process. Preprogrammed assumptions and design ...ISR, targeting, forward air control, laser designation , weapons delivery, battle damage assessment ISR, targeting acquisition, and attack...KTAS 400 KTAS Weapons Payload N/A N/A 2 Hellfire missiles 4 Hellfire missiles 14 Hellfire or 4 Hellfire and 2x GBU -12 or 2 Joint Direct Attack
Geometric identification and damage detection of structural elements by terrestrial laser scanner
NASA Astrophysics Data System (ADS)
Hou, Tsung-Chin; Liu, Yu-Wei; Su, Yu-Min
2016-04-01
In recent years, three-dimensional (3D) terrestrial laser scanning technologies with higher precision and higher capability are developing rapidly. The growing maturity of laser scanning has gradually approached the required precision as those have been provided by traditional structural monitoring technologies. Together with widely available fast computation for massive point cloud data processing, 3D laser scanning can serve as an efficient structural monitoring alternative for civil engineering communities. Currently most research efforts have focused on integrating/calculating the measured multi-station point cloud data, as well as modeling/establishing the 3D meshes of the scanned objects. Very little attention has been spent on extracting the information related to health conditions and mechanical states of structures. In this study, an automated numerical approach that integrates various existing algorithms for geometric identification and damage detection of structural elements were established. Specifically, adaptive meshes were employed for classifying the point cloud data of the structural elements, and detecting the associated damages from the calculated eigenvalues in each area of the structural element. Furthermore, kd-tree was used to enhance the searching efficiency of plane fitting which were later used for identifying the boundaries of structural elements. The results of geometric identification were compared with M3C2 algorithm provided by CloudCompare, as well as validated by LVDT measurements of full-scale reinforced concrete beams tested in laboratory. It shows that 3D laser scanning, through the established processing approaches of the point cloud data, can offer a rapid, nondestructive, remote, and accurate solution for geometric identification and damage detection of structural elements.
USDA-ARS?s Scientific Manuscript database
Pectin comprises one of the major components of cloud material in citrus juices. Juice cloud is a complex mixture of polysaccharides, proteins and lower molecular weight compounds that are responsible for the turbid appearance of citrus juices. The stability of juice cloud depends on a number of fac...
Multi-layer Clouds Over the South Indian Ocean
2003-05-07
The complex structure and beauty of polar clouds are highlighted by these images acquired by NASA Terra spacecraft on April 23, 2003. These clouds occur at multiple altitudes and exhibit a noticeable cyclonic circulation over the Southern Indian Ocean,
Zhu, Bi; Chen, Chuansheng; Loftus, Elizabeth F; He, Qinghua; Lei, Xuemei; Dong, Qi; Lin, Chongde
2016-11-01
There is a keen interest in identifying specific brain regions that are related to individual differences in true and false memories. Previous functional neuroimaging studies showed that activities in the hippocampus, right fusiform gyrus, and parahippocampal gyrus were associated with true and false memories, but no study thus far has examined whether the structures of these brain regions are associated with short-term and long-term true and false memories. To address that question, the current study analyzed data from 205 healthy young adults, who had valid data from both structural brain imaging and a misinformation task. In the misinformation task, subjects saw the crime scenarios, received misinformation, and took memory tests about the crimes an hour later and again after 1.5 years. Results showed that bilateral hippocampal volume was associated with short-term true and false memories, whereas right fusiform gyrus volume and surface area were associated with long-term true and false memories. This study provides the first evidence for the structural neural bases of individual differences in short-term and long-term true and false memories.
Extratropical Cyclone in the Southern Ocean
NASA Technical Reports Server (NTRS)
2001-01-01
These images from the Multi-angle Imaging SpectroRadiometer portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia.Parts of the Yorke Peninsula and a portion of the Murray-Darling River basin are visible between the clouds near the top of the left-hand image, a true-color view from MISR's nadir(vertical-viewing) camera. Retrieved cloud-tracked wind velocities are indicated by the superimposed arrows. The image on the right displays cloud-top heights. Areas where cloud heights could not be retrieved are shown in black. Both the wind vectors and the cloud heights were derived using data from multiple MISR cameras within automated computer processing algorithms. The stereoscopic algorithms used to generate these results are still being refined, and future versions of these products may show modest changes.Extratropical cyclones are the dominant weather system at midlatitudes, and the term is used generically for region allow-pressure systems in the mid- to high-latitudes. In the southern hemisphere, cyclonic rotation is clockwise. These storms obtain their energy from temperature differences between air masses on either side of warm and cold fronts, and their characteristic pattern is of warm and cold fronts radiating out from a migrating low pressure center which forms, deepens, and dissipates as the fronts fold and collapse on each other. The center of this cyclone has started to decay, with the band of cloud to the south most likely representing the main front that was originally connected with the cyclonic circulation.These views were acquired on October 11, 2001 during Terra orbit 9650, and represent an area of about 380 kilometers x 1900 kilometers.Extratropical Cyclone in the Southern Ocean
NASA Technical Reports Server (NTRS)
2002-01-01
These images from the Multi-angle Imaging SpectroRadiometer (MISR) portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia. The left-hand image, a true-color view from MISR's nadir (vertical-viewing) camera, shows clouds just south of the Yorke Peninsula and the Murray-Darling river basin in Australia. Retrieved cloud-tracked wind velocities are indicated by the superimposed arrows. The image on the right displays cloud-top heights. Areas where cloud heights could not be retrieved are shown in black. Both the wind vectors and the cloud heights were derived using data from multiple MISR cameras within automated computer processing algorithms. The stereoscopic algorithms used to generate these results are still being refined, and future versions of these products may show modest changes. Extratropical cyclones are the dominant weather system at midlatitudes, and the term is used generically for regional low-pressure systems in the mid- to high-latitudes. In the southern hemisphere, cyclonic rotation is clockwise. These storms obtain their energy from temperature differences between air masses on either side of warm and cold fronts, and their characteristic pattern is of warm and cold fronts radiating out from a migrating low pressure center which forms, deepens, and dissipates as the fronts fold and collapse on each other. The center of this cyclone has started to decay, with the band of cloud to the south most likely representing the main front that was originally connected with the cyclonic circulation. These views were acquired on October 11, 2001, and the large view represents an area of about 380 kilometers x 1900 kilometers. Image courtesy NASA/GSFC/LaRC/JPL, MISR Team.
SEMANTIC3D.NET: a New Large-Scale Point Cloud Classification Benchmark
NASA Astrophysics Data System (ADS)
Hackel, T.; Savinov, N.; Ladicky, L.; Wegner, J. D.; Schindler, K.; Pollefeys, M.
2017-05-01
This paper presents a new 3D point cloud classification benchmark data set with over four billion manually labelled points, meant as input for data-hungry (deep) learning methods. We also discuss first submissions to the benchmark that use deep convolutional neural networks (CNNs) as a work horse, which already show remarkable performance improvements over state-of-the-art. CNNs have become the de-facto standard for many tasks in computer vision and machine learning like semantic segmentation or object detection in images, but have no yet led to a true breakthrough for 3D point cloud labelling tasks due to lack of training data. With the massive data set presented in this paper, we aim at closing this data gap to help unleash the full potential of deep learning methods for 3D labelling tasks. Our semantic3D.net data set consists of dense point clouds acquired with static terrestrial laser scanners. It contains 8 semantic classes and covers a wide range of urban outdoor scenes: churches, streets, railroad tracks, squares, villages, soccer fields and castles. We describe our labelling interface and show that our data set provides more dense and complete point clouds with much higher overall number of labelled points compared to those already available to the research community. We further provide baseline method descriptions and comparison between methods submitted to our online system. We hope semantic3D.net will pave the way for deep learning methods in 3D point cloud labelling to learn richer, more general 3D representations, and first submissions after only a few months indicate that this might indeed be the case.
NASA Astrophysics Data System (ADS)
Markiewicz, J. S.; Kowalczyk, M.; Podlasiak, P.; Bakuła, K.; Zawieska, D.; Bujakiewicz, A.; Andrzejewska, E.
2013-12-01
Due to considerable development of the non - invasion measurement technologies, taking advantages from the distance measurement, the possibility of data acquisition increased and at the same time the measurement period has been reduced. This, by combination of close range laser scanning data and images, enabled the wider expansion of photogrammetric methods effectiveness in registration and analysis of cultural heritage objects. Mentioned integration allows acquisition of objects three - dimensional models and in addition digital image maps - true - ortho and vector products. The quality of photogrammetric products is defined by accuracy and the range of content, therefore by number and the minuteness of detail. That always depends on initial data geometrical resolution. The research results presented in the following paper concern the quality valuation of two products, image of true - ortho and vector data, created for selected parts of architectural object. Source data is represented by point collection i n cloud, acquired from close range laser scanning and photo images. Both data collections has been acquired with diversified resolutions. The exterior orientation of images and several versions of the true - ortho are based on numeric models of the object, acquired with specified resolutions. The comparison of these products gives the opportunity to rate the influence of initial data resolution on their quality (accuracy, information volume). Additional analysis will be performed on the base of vector product s comparison, acquired from monoplotting and true - ortho images. As a conclusion of experiment it was proved that geometric resolution has significant impact on the possibility of generation and on the accuracy of relative orientation TLS scans. If creation of high - resolution products is considered, scanning resolution of about 2 mm should be applied and in case of architecture details - 1 mm. It was also noted that scanning angle and object structure has significant influence on accuracy and completeness of the data. For creation of true - orthoimages for architecture purposes high - resolution ground - based images in geometry close to normal case are recommended to improve their quality. The use of grayscale true - orthoimages with values from scanner intensity is not advised. Presented research proved also that accuracy of manual and automated vectorisation results depend significantly on the resolution of the generated orthoimages (scans and images resolution) and mainly of blur effect and possible pixel size.
Misinformation, partial knowledge and guessing in true/false tests.
Burton, Richard F
2002-09-01
Examiners disagree on whether or not multiple choice and true/false tests should be negatively marked. Much of the debate has been clouded by neglect of the role of misinformation and by vagueness regarding both the specification of test types and "partial knowledge" in relation to guessing. Moreover, variations in risk-taking in the face of negative marking have too often been treated in absolute terms rather than in relation to the effect of guessing on test unreliability. This paper aims to clarify these points and to compare the ill-effects on test reliability of guessing and of variable risk-taking. Three published studies on medical students are examined. These compare responses in true/false tests obtained with both negative marking and number-right scoring. The studies yield data on misinformation and on the extent to which students may fail to benefit from distrusted partial knowledge when there is negative marking. A simple statistical model is used to compare variations in risk-taking with test unreliability due to blind guessing under number-right scoring conditions. Partial knowledge should be least problematic with independent true/false items. The effect on test reliability of blind guessing under number-right conditions is generally greater than that due to the over-cautiousness of some students when there is negative marking.
NASA Technical Reports Server (NTRS)
Goldsmith, Paul F.
2012-01-01
Surveys of all different types provide basic data using different tracers. Molecular clouds have structure over a very wide range of scales. Thus, "high resolution" surveys and studies of selected nearby clouds add critical information. The combination of large-area and high resolution allows Increased spatial dynamic range, which in turn enables detection of new and perhaps critical morphology (e.g. filaments). Theoretical modeling has made major progress, and suggests that multiple forces are at work. Galactic-scale modeling also progressing - indicates that stellar feedback is required. Models must strive to reproduce observed cloud structure at all scales. Astrochemical observations are not unrelated to questions of cloud evolution and star formation but we are still learning how to use this capability.
Development of Three-Dimensional Dental Scanning Apparatus Using Structured Illumination
Park, Anjin; Lee, Byeong Ha; Eom, Joo Beom
2017-01-01
We demonstrated a three-dimensional (3D) dental scanning apparatus based on structured illumination. A liquid lens was used for tuning focus and a piezomotor stage was used for the shift of structured light. A simple algorithm, which detects intensity modulation, was used to perform optical sectioning with structured illumination. We reconstructed a 3D point cloud, which represents the 3D coordinates of the digitized surface of a dental gypsum cast by piling up sectioned images. We performed 3D registration of an individual 3D point cloud, which includes alignment and merging the 3D point clouds to exhibit a 3D model of the dental cast. PMID:28714897
NASA Technical Reports Server (NTRS)
Anderson, James G.
2005-01-01
In order to improve our understanding of the role clouds play in the climate system, NASA is investing considerable effort in characterizing clouds with instruments ranging from passive remote sensors on board the EOS platforms, to the forthcoming active remote sensors on Cloudsat and Calipso. These missions, when taken together, have the capacity to advance our understanding of the coupling between various components of the hydrologic cycle and the atmospheric circulation, and hold the additional potential of leading to significant improvements in the characterization of cloud feedbacks in global models. This is especially true considering that several of these platforms will be flown in an identical orbit within several minutes of one another-a constellation of satellites known as the A-Train. The algorithms that are being implemented and developed to convert these new data streams from radiance and reflectivity measurements into geophysical parameters invariably rely on some set of simplifymg assumptions and empirical constants. Uncertainties in these relationships lead to poorly understood random and systematic errors in the retrieved properties. This lack of understanding introduces ambiguity in interpreting the data and in using the global data sets for their intended purposes. In light of this, a series of flights with the W57F was proposed to address certain specific issues related to the basic properties of mid latitude cirrus clouds: the NASA WE357 Middle Latitude Cirrus Experiment ("MidCiX"). The science questions addressed are: 1) Can cloud property retrieval algorithms developed for A-Train active and passive remote sensing measurements accurately characterize the microphysical properties of synoptic and convectively generated cirrus cloud systems? 2) What are the relationships between the cirrus particle mass, projected area, and particle size spectrum in various genre of cirrus clouds? 3) Does the present compliment of state of the art in situ cloud probes provide the level of precision and accuracy needed to develop and validate algorithms and to contribute to our understanding of the characteristics and microphysical processes operating in cirrus clouds?
NASA Astrophysics Data System (ADS)
Sekaranom, A. B.; Nurjani, E.; Pujiastuti, I.
2018-04-01
Heavy rain events are often associated with flood hazards as one of the most devastating events across the globe. It is therefore essential to identify the evolution of heavy rainfall cloud structures, primarily from global satellite observation, as a tool to provide better disaster early warning systems. To identify the mechanism of heavy rainfall systems and its relationship with cloud development, especially over The Pacific Ocean, we aim to study the westward evolution of the convective systems over this area. Several datasets from Tropical Rainfall Measuring Mission (TRMM), CloudSat GEOPROF product, and ECMWF-reanalysis (ERA) interim were utilized to characterize the evolution. Geolocation and orbital time-lag analysis of the three different datasets for more than 8 years (2006-2014) could provide information related to the evolution of cloud structures associated with heavy rain events. In the first step, a heavy rainfall database was generated from TRMM. The CloudSat coordinate and time position were then matched with TRMM coordinate and time position. All of the processes were programatically conducted in fortran programming language. The result shows a transition between East and West Pacific ocean for TMI data.
Evaluating cloudiness in an AGCM with Cloud Vertical Structure classes and their radiative effects
NASA Astrophysics Data System (ADS)
Lee, D.; Cho, N.; Oreopoulos, L.; Barahona, D.
2017-12-01
Clouds are recognized not only as the main modulator of Earth's Radiation Budget but also as the atmospheric constituent carrying the largest uncertainty in future climate projections. The presentation will showcase a new framework for evaluating clouds and their radiative effects in Atmospheric Global Climate Models (AGCMs) using Cloud Vertical Structure (CVS) classes. We take advantage of a new CVS reference dataset recently created from CloudSat's 2B-CLDCLASS-LIDAR product and which assigns observed cloud vertical configurations to nine simplified CVS classes based on cloud co-occurrence in three standard atmospheric layers. These CVS classes can also be emulated in GEOS-5 using the subcolumn cloud generator currently paired with the RRTMG radiation package as an implementation of the McICA scheme. Comparisons between the observed and modeled climatologies of the frequency of occurrence of the various CVS classes provide a new vantage point for assessing the realism of GEOS-5 clouds. Furthermore, a comparison between observed and modeled cloud radiative effects according to their CVS is also possible thanks to the availability of CloudSat's 2B-FLXHR-LIDAR product and our ability to composite radiative fluxes by CVS class - both in the observed and modeled realm. This latter effort enables an investigation of whether the contribution of the various CVS classes to the Earth's radiation budget is represented realistically in GEOS-5. Making this new pathway of cloud evaluation available to the community is a major step towards the improved representation of clouds in climate models.
NASA Astrophysics Data System (ADS)
Chen, Dandan; Guo, Jianping; Wang, Hongqing; Li, Jian; Min, Min; Zhao, Wenhui; Yao, Dan
2018-04-01
Clouds, as one of the most uncertain factors in climate system, have been intensively studied as satellites with advanced instruments emerged in recent years. However, few studies examine the vertical distributions of cloud top and their temporal variations over East Asia based on geostationary satellite data. In this study, the vertical structures of cloud top and its diurnal variations in summer of 2016 are analyzed using the Advanced Himawari Imager/Himawari-8 cloud products. Results show that clouds occur most frequently over the southern Tibetan Plateau and the Bay of Bengal. We find a steep gradient of cloud occurrence frequency extending from southwest to northeast China and low-value centers over the eastern Pacific and the Inner Mongolia Plateau. The vertical structures of cloud top are highly dependent on latitude, in addition to the nonnegligible roles of both terrain and land-sea thermal contrast. In terms of the diurnal cycle, clouds tend to occur more often in the afternoon, peaking around 1700 local time over land and ocean. The amplitude of cloud diurnal variation over ocean is much smaller than that over land, and complex terrain tends to be linked to larger amplitude. In vertical, the diurnal cycle of cloud frequency exhibits bimodal pattern over both land and ocean. The high-level peaks occur at almost the same altitude over land and ocean. In contrast, the low-level peaks over ocean mainly reside in the boundary layer, much lower than those over land, which could be indicative of the frequent occurrence of marine boundary layer clouds.
Opto-mechanical design of small infrared cloud measuring device
NASA Astrophysics Data System (ADS)
Zhang, Jiao; Yu, Xun; Tao, Yu; Jiang, Xu
2018-01-01
In order to make small infrared cloud measuring device can be well in a wide temperature range and day-night environment, a design idea using catadioptric infrared panoramic imaging optical system and simple mechanical structure for realizing observation clode under all-weather conditions was proposed. Firstly, the optical system of cloud measuring device was designed. An easy-to-use numerical method was proposed to acquire the profile of a catadioptric mirror, which brought the property of equidistance projection and played the most important role in a catadioptric panoramic lens. Secondly, the mechanical structure was studied in detail. Overcoming the limitations of traditional primary mirror support structure, integrative design was used for refractor and mirror support structure. Lastly, temperature adaptability and modes of the mirror support structure were analyzed. Results show that the observation range of the cloud measuring device is wide and the structure is simple, the fundamental frequency of the structure is greater than 100 Hz, the surface precision of the system reflector reaches PV of λ/10 and RMS of λ/40under the load of temperature range - 40 60°C, it can meet the needs of existing meteorological observation.
NASA Astrophysics Data System (ADS)
Chen, How-Huan; Goodman, Alyssa
2018-01-01
In the past decade, multiple attempts at understanding the connection between filaments and star forming cores have been made using observations across the entire epectrum. However, the filaments and the cores are usually treated as predefined--and well-defined--entities, instead of structures that often come at different sizes, shapes, with substantially different dynamics, and inter-connected at different scales. In my dissertation, I present an array of studies using different statistical methods, including the dendrogram and the probability distribution function (PDF), of structures at different size scales within nearby molecular clouds. These structures are identified using observations of different density tracers, and where possible, in the multi-dimensional parameter space of key dynamic properties--the LSR velocity, the velocity dispersion, and the column density. The goal is to give an overview of structure formation in nearby star-forming clouds, as well as of the dynamics in these structures. I find that the overall statistical properties of a larger structure is often the summation/superposition of sub-structures within, and that there could be significant variations due to local physical processes. I also find that the star formation process within molecular clouds could in fact take place in a non-monolithic manner, connecting potentially merging and/or transient structures, at different scales.
Passive Microwave Rainfall Estimates from the GPM Mission
NASA Astrophysics Data System (ADS)
Kummerow, Christian; Petkovic, Veljko
2017-04-01
The Global Precipitation Measurement (GPM) mission was launched in February 2014 as a joint mission between JAXA from Japan and NASA from the United States. GPM carries a state of the art dual-frequency precipitation radar and a multi-channel passive microwave radiometer that acts not only to enhance the radar's retrieval capability, but also as a reference for a constellation of existing satellites carrying passive microwave sensors. In March of 2016, GPM released Version 4 of its precipitation products that consists of radar, radiometer, and combined radar/radiometer products. The precipitation products from these sensors or sensor combination are consistent by design and show relatively minor differences in the mean global sense. Closer examination of the biases, however, reveals regional biases between active and passive sensors that can be directly related top the nature of the convection. By looking at cloud systems instead of individual satellite pixels, the relationship between biases and the large scale environmental state become obvious. Organized convection, which occurs more readily in regimes with large Convective Available Potential Energy (CAPE) and shear tend to drive biases in different directions than isolated convection. This is true over both land and ocean. This talk will present the latest findings and explore these discrepancies from a physical perspective in order to gain some understanding between cloud structures, information content, and retrieval differences. This analysis will be used to then drive a bigger picture of how GPM's latest results inform the Global Water and Energy budgets.
NASA Astrophysics Data System (ADS)
Wang, Yueyang; Bao, Biwen; Yang, Chuyuan; Zhang, Li
2018-05-01
The dynamical properties of supernova remnants (SNRs) evolving with different interstellar medium structures are investigated through performing extensive two-dimensional magnetohydrodynamic (MHD) simulations in the cylindrical symmetry. Three cases of different interstellar medium structures are considered: the uniform medium, the turbulent medium and the cloudy medium. Large-scale density and magnetic fluctuations are calculated and mapped into the computational domain before simulations. The clouds are set by random distribution in advance. The above configuration allows us to study the time-dependent dynamical properties and morphological evolution of the SNR evolving with different ambient structures, along with the development of the instabilities at the contact discontinuity. Our simulation results indicate that remnant morphology deviates from symmetry if the interstellar medium contains clouds or turbulent density fluctuations. In the cloudy medium case, interactions between the shock wave and clouds lead to clouds' fragmentation. The magnetic field can be greatly enhanced by stretching field lines with a combination of instabilities while the width of amplification region is quite different among the three cases. Moreover, both the width of amplification region and the maximum magnetic-field strength are closely related to the clouds' density.
Cloud System Evolution in the Trades—CSET
NASA Astrophysics Data System (ADS)
Albrecht, B. A.; Zuidema, P.; Bretherton, C. S.; Wood, R.; Ghate, V. P.
2015-12-01
The Cloud System Evolution in the Trades (CSET) study was designed to describe and explain the evolution of the boundary layer aerosol, cloud, and thermodynamic structures along trajectories within the north-Pacific trade-winds. The observational component of this study centered on 7 round-trips made by the NSF NCAR Gulfstream V (GV) between Sacramento, CA and Kona, Hawaii between 1 July and 15 August 2015. The CSET observing strategy used a Lagrangian approach to sample aerosol, cloud, and boundary layer properties upwind from the transition zone over the North Pacific and to resample these areas two days later. GFS forecast trajectories were used to plan the outbound flight to Hawaii and then updated forecast trajectories helped set the return flight plan two days later. Two key elements of the CSET observing system were the newly developed HIAPER Cloud Radar (HCR) and the HIAPER Spectral Resolution Lidar (HSRL). Together they provided unprecedented characterizations of aerosol, cloud and precipitation structures. A full suite of probes on the aircraft were used for in situ measurements of aerosol, cloud, precipitation, and turbulence properties during the low-level aircraft profiling portions of the flights. A wide range of boundary layer structures and aerosol, cloud, and precipitation conditions were observed during CSET. The cloud systems sampled included solid stratocumulus infused with smoke from Canadian wildfires, mesoscale (100-200 km) cloud-precipitation complexes, and patches of shallow cumuli in environments with accumulation mode aerosol concentrations of less than 50 cm-3. Ultra clean layers (UCLs with accumulation mode concentrations of less than 10 cm-3) were observed frequently near the top of the boundary layer and were often associated with shallow, gray (optically thin) layered clouds—features that are the subject of focused investigations by the CSET science team. The extent of aerosol, cloud, drizzle and boundary layer sampling that was made over open areas of the North Pacific along 2-day trajectories during CSET is unprecedented and will enable focused modeling studies of cloud system evolution and the role of aerosol-cloud-precipitation interactions in that evolution.
The Mass Surface Density Distribution of a High-Mass Protocluster forming from an IRDC and GMC
NASA Astrophysics Data System (ADS)
Lim, Wanggi; Tan, Jonathan C.; Kainulainen, Jouni; Ma, Bo; Butler, Michael
2016-01-01
We study the probability distribution function (PDF) of mass surface densities of infrared dark cloud (IRDC) G028.36+00.07 and its surrounding giant molecular cloud (GMC). Such PDF analysis has the potential to probe the physical processes that are controlling cloud structure and star formation activity. The chosen IRDC is of particular interest since it has almost 100,000 solar masses within a radius of 8 parsecs, making it one of the most massive, dense molecular structures known and is thus a potential site for the formation of a high-mass, "super star cluster". We study mass surface densities in two ways. First, we use a combination of NIR, MIR and FIR extinction maps that are able to probe the bulk of the cloud structure that is not yet forming stars. This analysis also shows evidence for flattening of the IR extinction law as mass surface density increases, consistent with increasing grain size and/or growth of ice mantles. Second, we study the FIR and sub-mm dust continuum emission from the cloud, especially utlizing Herschel PACS and SPIRE images. We first subtract off the contribution of the foreground diffuse emission that contaminates these images. Next we examine the effects of background subtraction and choice of dust opacities on the derived mass surface density PDF. The final derived PDFs from both methods are compared, including also with other published studies of this cloud. The implications for theoretical models and simulations of cloud structure, including the role of turbulence and magnetic fields, are discussed.
Jupiter's Great Red Spot in True Color
2017-07-27
This image of Jupiter's iconic Great Red Spot (GRS) was created by citizen scientist Björn Jónsson using data from the JunoCam imager on NASA's Juno spacecraft. This true-color image offers a natural color rendition of what the Great Red Spot and surrounding areas would look like to human eyes from Juno's position. The tumultuous atmospheric zones in and around the Great Red Spot are clearly visible. The image was taken on July 10, 2017 at 07:10 p.m. PDT (10:10 p.m. EDT), as the Juno spacecraft performed its seventh close flyby of Jupiter. At the time the image was taken, the spacecraft was about 8,648 miles (13,917 kilometers) from the tops of the clouds of the planet at a latitude of -32.6 degrees. https://photojournal.jpl.nasa.gov/catalog/PIA21775
HUBBLE SPOTS NORTHERN HEMISPHERIC CLOUDS ON URANUS
NASA Technical Reports Server (NTRS)
2002-01-01
Using visible light, astronomers for the first time this century have detected clouds in the northern hemisphere of Uranus. The newest images, taken July 31 and Aug. 1, 1997 with NASA Hubble Space Telescope's Wide Field and Planetary Camera 2, show banded structure and multiple clouds. Using these images, Dr. Heidi Hammel (Massachusetts Institute of Technology) and colleagues Wes Lockwood (Lowell Observatory) and Kathy Rages (NASA Ames Research Center) plan to measure the wind speeds in the northern hemisphere for the first time. Uranus is sometimes called the 'sideways' planet, because its rotation axis is tipped more than 90 degrees from the planet's orbit around the Sun. The 'year' on Uranus lasts 84 Earth years, which creates extremely long seasons - winter in the northern hemisphere has lasted for nearly 20 years. Uranus has also been called bland and boring, because no clouds have been detectable in ground-based images of the planet. Even to the cameras of the Voyager spacecraft in 1986, Uranus presented a nearly uniform blank disk, and discrete clouds were detectable only in the southern hemisphere. Voyager flew over the planet's cloud tops near the dead of northern winter (when the northern hemisphere was completely shrouded in darkness). Spring has finally come to the northern hemisphere of Uranus. The newest images, both the visible-wavelength ones described here and those taken a few days earlier with the Near Infrared and Multi-Object Spectrometer (NICMOS) by Erich Karkoschka (University of Arizona), show a planet with banded structure and detectable clouds. Two images are shown here. The 'aqua' image (on the left) is taken at 5,470 Angstroms, which is near the human eye's peak response to wavelength. Color has been added to the image to show what a person on a spacecraft near Uranus might see. Little structure is evident at this wavelength, though with image-processing techniques, a small cloud can be seen near the planet's northern limb (rightmost edge). The 'red' image (on the right) is taken at 6,190 Angstroms, and is sensitive to absorption by methane molecules in the planet's atmosphere. The banded structure of Uranus is evident, and the small cloud near the northern limb is now visible. Scientists are expecting that the discrete clouds and banded structure may become even more pronounced as Uranus continues in its slow pace around the Sun. 'Some parts of Uranus haven't seen the Sun in decades,' says Dr. Hammel, 'and historical records suggest that we may see the development of more banded structure and patchy clouds as the planet's year progresses.' Some scientists have speculated that the winds of Uranus are not symmetric around the planet's equator, but no clouds were visible to test those theories. The new data will provide the opportunity to measure the northern winds. Hammel and colleagues expect to have results soon. Credits: Heidi Hammel (Massachusetts Institute of Technology), and NASA.
NASA Astrophysics Data System (ADS)
Wang, Fang; Yang, Song
2018-02-01
Using principal component (PC) analysis, three leading modes of cloud vertical structure (CVS) are revealed by the GCM-Oriented CALIPSO Cloud Product (GOCCP), i.e. tropical high, subtropical anticyclonic and extratropical cyclonic cloud modes (THCM, SACM and ECCM, respectively). THCM mainly reflect the contrast between tropical high clouds and clouds in middle/high latitudes. SACM is closely associated with middle-high clouds in tropical convective cores, few-cloud regimes in subtropical anticyclonic clouds and stratocumulus over subtropical eastern oceans. ECCM mainly corresponds to clouds along extratropical cyclonic regions. Models of phase 2 of Cloud Feedback Model Intercomparison Project (CFMIP2) well reproduce the THCM, but SACM and ECCM are generally poorly simulated compared to GOCCP. Standardized PCs corresponding to CVS modes are generally captured, whereas original PCs (OPCs) are consistently underestimated (overestimated) for THCM (SACM and ECCM) by CFMIP2 models. The effects of CVS modes on relative cloud radiative forcing (RSCRF/RLCRF) (RSCRF being calculated at the surface while RLCRF at the top of atmosphere) are studied in terms of principal component regression method. Results show that CFMIP2 models tend to overestimate (underestimated or simulate the opposite sign) RSCRF/RLCRF radiative effects (REs) of ECCM (THCM and SACM) in unit global mean OPC compared to observations. These RE biases may be attributed to two factors, one of which is underestimation (overestimation) of low/middle clouds (high clouds) (also known as stronger (weaker) REs in unit low/middle (high) clouds) in simulated global mean cloud profiles, the other is eigenvector biases in CVS modes (especially for SACM and ECCM). It is suggested that much more attention should be paid on improvement of CVS, especially cloud parameterization associated with particular physical processes (e.g. downwelling regimes with the Hadley circulation, extratropical storm tracks and others), which may be crucial to reduce the CRF biases in current climate models.
GNSS Polarimetric Radio Occultations: Thermodynamical Structure of pecipitating clouds
NASA Astrophysics Data System (ADS)
De La Torre Juarez, M.; Padulles, R.; Cardellach, E.; Turk, F. J.; Tomás, S.; Ao, C. O.
2016-12-01
Recent analysis of changes in the hydrological sensitivity during a recent weakening of transient warming show that the representation of the processes linking the condensation of water vapor and the growth and invigoration of convective precipitation produce the greatest disparities between cloud resolving models and current observations of convective cloud systems. The temperature and moisture structure of a cloud environment is the main control on the thermodynamical processes leading to the development of precipitation. The surrounding environmental state acts as the broader sink and source for moisture exchange between clouds and their surroundings. As precipitation develops, water vapor condensation leads to an evolving 3D temperature and moisture structure in and near clouds different from the larger scale structure or the clear-sky environment. Yet there is a gap in existing space-based observations since conventional IR and microwave sounding data are degraded in the presence of clouds and precipitation. GNSS radio occultations (RO) are a low-cost approach to sounding the global atmosphere with high precision, accuracy and vertical resolution inside clouds and across land-ocean boundaries. GNSS provides reliable, sustained signal sources. While current RO provide no direct information on the associated precipitation state, a recently studied concept of Polarimetric RO (PRO) can characterize the moist thermodynamics within precipitating systems. Since precipitation-sized hydrometeors are non-spherically shaped, precipitation induces a cross-polarized component during propagation through clouds, recorded by a dual-channel RO receiver as a differential phase shift. Theoretical analysis performed using coincident TRMM Precipitation Radar and COSMIC observations shows that the polarimetric phase shift is sensitive to the path-integrated rain rate. Based on the expected signal-to-noise ratio (SNR) of simulated PRO measurements, the precision of the differential phase signal averaged over 1-sec has been estimated greater than 1.5 mm, with rain rates exceeding 5 mm hr-1 detectable above the instrument noise level 90% of the time. We present the technique and show analyses that prove its potential to characterize the lapse rate inside precipitating vs. non-precipitating clouds.
Giant molecular cloud scaling relations: the role of the cloud definition
NASA Astrophysics Data System (ADS)
Khoperskov, S. A.; Vasiliev, E. O.; Ladeyschikov, D. A.; Sobolev, A. M.; Khoperskov, A. V.
2016-01-01
We investigate the physical properties of molecular clouds in disc galaxies with different morphologies: a galaxy without prominent structure, a spiral barred galaxy and a galaxy with flocculent structure. Our N-body/hydrodynamical simulations take into account non-equilibrium H2 and CO chemical kinetics, self-gravity, star formation and feedback processes. For the simulated galaxies, the scaling relations of giant molecular clouds, or so-called Larson's relations, are studied for two types of cloud definition (or extraction method): the first is based on total column density position-position (PP) data sets and the second is indicated by the CO (1-0) line emission used in position-position-velocity (PPV) data. We find that the cloud populations obtained using both cloud extraction methods generally have similar physical parameters, except that for the CO data the mass spectrum of clouds has a tail with low-mass objects M ˜ 103-104 M⊙. Owing toa varying column density threshold, the power-law indices in the scaling relations are significantly changed. In contrast, the relations are invariant to the CO brightness temperature threshold. Finally, we find that the mass spectra of clouds for PPV data are almost insensitive to the galactic morphology, whereas the spectra for PP data demonstrate significant variation.
Modeling the Impact of Drizzle and 3D Cloud Structure on Remote Sensing of Effective Radius
NASA Technical Reports Server (NTRS)
Platnick, Steven; Zinner, Tobias; Ackerman, S.
2008-01-01
Remote sensing of cloud particle size with passive sensors like MODIS is an important tool for cloud microphysical studies. As a measure of the radiatively relevant droplet size, effective radius can be retrieved with different combinations of visible through shortwave infrared channels. MODIS observations sometimes show significantly larger effective radii in marine boundary layer cloud fields derived from the 1.6 and 2.1 pm channel observations than for 3.7 pm retrievals. Possible explanations range from 3D radiative transport effects and sub-pixel cloud inhomogeneity to the impact of drizzle formation on the droplet distribution. To investigate the potential influence of these factors, we use LES boundary layer cloud simulations in combination with 3D Monte Carlo simulations of MODIS observations. LES simulations of warm cloud spectral microphysics for cases of marine stratus and broken stratocumulus, each for two different values of cloud condensation nuclei density, produce cloud structures comprising droplet size distributions with and without drizzle size drops. In this study, synthetic MODIS observations generated from 3D radiative transport simulations that consider the full droplet size distribution will be generated for each scene. The operational MODIS effective radius retrievals will then be applied to the simulated reflectances and the results compared with the LES microphysics.
NASA Astrophysics Data System (ADS)
Owers, Christopher J.; Rogers, Kerrylee; Woodroffe, Colin D.
2018-05-01
Above-ground biomass represents a small yet significant contributor to carbon storage in coastal wetlands. Despite this, above-ground biomass is often poorly quantified, particularly in areas where vegetation structure is complex. Traditional methods for providing accurate estimates involve harvesting vegetation to develop mangrove allometric equations and quantify saltmarsh biomass in quadrats. However broad scale application of these methods may not capture structural variability in vegetation resulting in a loss of detail and estimates with considerable uncertainty. Terrestrial laser scanning (TLS) collects high resolution three-dimensional point clouds capable of providing detailed structural morphology of vegetation. This study demonstrates that TLS is a suitable non-destructive method for estimating biomass of structurally complex coastal wetland vegetation. We compare volumetric models, 3-D surface reconstruction and rasterised volume, and point cloud elevation histogram modelling techniques to estimate biomass. Our results show that current volumetric modelling approaches for estimating TLS-derived biomass are comparable to traditional mangrove allometrics and saltmarsh harvesting. However, volumetric modelling approaches oversimplify vegetation structure by under-utilising the large amount of structural information provided by the point cloud. The point cloud elevation histogram model presented in this study, as an alternative to volumetric modelling, utilises all of the information within the point cloud, as opposed to sub-sampling based on specific criteria. This method is simple but highly effective for both mangrove (r2 = 0.95) and saltmarsh (r2 > 0.92) vegetation. Our results provide evidence that application of TLS in coastal wetlands is an effective non-destructive method to accurately quantify biomass for structurally complex vegetation.
The shapes of column density PDFs. The importance of the last closed contour
NASA Astrophysics Data System (ADS)
Alves, João; Lombardi, Marco; Lada, Charles J.
2017-10-01
The probability distribution function of column density (PDF) has become the tool of choice for cloud structure analysis and star formation studies. Its simplicity is attractive, and the PDF could offer access to cloud physical parameters otherwise difficult to measure, but there has been some confusion in the literature on the definition of its completeness limit and shape at the low column density end. In this letter we use the natural definition of the completeness limit of a column density PDF, the last closed column density contour inside a surveyed region, and apply it to a set of large-scale maps of nearby molecular clouds. We conclude that there is no observational evidence for log-normal PDFs in these objects. We find that all studied molecular clouds have PDFs well described by power laws, including the diffuse cloud Polaris. Our results call for a new physical interpretation of the shape of the column density PDFs. We find that the slope of a cloud PDF is invariant to distance but not to the spatial arrangement of cloud material, and as such it is still a useful tool for investigating cloud structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rannou, P.; Le Mouelic, S.; Sotin, C.
2012-03-20
A large cloud in the north polar region of Titan was first observed by the Visual and Infrared Mapping Spectrometer (VIMS) in 2005 and then in 2006. This cloud, confined beyond the latitude 62 Degree-Sign N, is surrounded by a mixture of aerosol and mist probably lying in the low stratosphere and troposphere. Subsequent images of this region of Titan show a gradual vanishing of this cloud which was reported previously. In this paper, we characterize the physical properties of this cloud, haze, and mist as well as their time evolutions. We note several details on the images such asmore » a secondary cloud above the main cloud and latitudes beyond 70 Degree-Sign N. We also show that the cloud disappearance leaves the polar region poorly loaded in aerosols, yielding an annular zone of aerosols between 50 Degree-Sign N and 65 Degree-Sign N. Our analysis suggests that this structure observed by VIMS in the near-IR is an annular structure observed by ISS on board Voyager one Titan year ago in 1980.« less
Effects of cloud size and cloud particles on satellite-observed reflected brightness
NASA Technical Reports Server (NTRS)
Reynolds, D. W.; Mckee, T. B.; Danielson, K. S.
1978-01-01
Satellite observations allowed obtaining data on the visible brightness of cumulus clouds over South Park, Colorado, while aircraft observations were made in cloud to obtain the drop size distributions and liquid water content of the cloud. Attention is focused on evaluating the relationship between cloud brightness, horizontal dimension, and internal microphysical structure. A Monte Carlo cloud model for finite clouds was run using different distributions of drop sizes and numbers, while varying the cloud depth and width to determine how theory would predict what the satellite would view from its given location in space. Comparison of these results to the satellite observed reflectances is presented. Theoretical results are found to be in good agreement with observations. For clouds of optical thickness between 20 and 60, monitoring cloud brightness changes in clouds of uniform depth and variable width gives adequate information about a cloud's liquid water content. A cloud having a 10:1 width to depth ratio is almost reaching its maximum brightness for a specified optical thickness.
Fine-scale Horizontal Structure of Arctic Mixed-Phase Clouds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rambukkange,M.; Verlinde, J.; Elorante, E.
2006-07-10
Recent in situ observations in stratiform clouds suggest that mixed phase regimes, here defined as limited cloud volumes containing both liquid and solid water, are constrained to narrow layers (order 100 m) separating all-liquid and fully glaciated volumes (Hallett and Viddaurre, 2005). The Department of Energy Atmospheric Radiation Measurement Program's (DOE-ARM, Ackerman and Stokes, 2003) North Slope of Alaska (NSA) ARM Climate Research Facility (ACRF) recently started collecting routine measurement of radar Doppler velocity power spectra from the Millimeter Cloud Radar (MMCR). Shupe et al. (2004) showed that Doppler spectra has potential to separate the contributions to the total reflectivitymore » of the liquid and solid water in the radar volume, and thus to investigate further Hallett and Viddaurre's findings. The Mixed-Phase Arctic Cloud Experiment (MPACE) was conducted along the NSA to investigate the properties of Arctic mixed phase clouds (Verlinde et al., 2006). We present surface based remote sensing data from MPACE to discuss the fine-scale structure of the mixed-phase clouds observed during this experiment.« less
NASA Astrophysics Data System (ADS)
Bott, Andreas; Kerkweg, Astrid; Wurzler, Sabine
A study has been made of the modification of aerosol spectra due to cloud pro- cesses and the impact of the modified aerosols on the microphysical structure of future clouds. For this purpose an entraining air parcel model with two-dimensional spectral cloud microphysics has been used. In order to treat collision/coalescence processes in the two-dimensional microphysical module, a new realistic and continuous formu- lation of the collection kernel has been developed. Based on experimental data, the kernel covers the entire investigated size range of aerosols, cloud and rain drops, that is the kernel combines all important coalescence processes such as the collision of cloud drops as well as the impaction scavenging of small aerosols by big raindrops. Since chemical reactions in the gas phase and in cloud drops have an important impact on the physico-chemical properties of aerosol particles, the parcel model has been extended by a chemical module describing gas phase and aqueous phase chemical reactions. However, it will be shown that in the numerical case studies presented in this paper the modification of aerosols by chemical reactions has a minor influence on the microphysical structure of future clouds. The major process yielding in a second cloud event an enhanced formation of rain is the production of large aerosol particles by collision/coalescence processes in the first cloud.
NASA Astrophysics Data System (ADS)
Brant Dodson, J.; Taylor, Patrick C.; Branson, Mark
2018-05-01
Recently launched cloud observing satellites provide information about the vertical structure of deep convection and its microphysical characteristics. In this study, CloudSat reflectivity data is stratified by cloud type, and the contoured frequency by altitude diagrams reveal a double-arc structure in deep convective cores (DCCs) above 8 km. This suggests two distinct hydrometeor modes (snow versus hail/graupel) controlling variability in reflectivity profiles. The day-night contrast in the double arcs is about four times larger than the wet-dry season contrast. Using QuickBeam, the vertical reflectivity structure of DCCs is analyzed in two versions of the Superparameterized Community Atmospheric Model (SP-CAM) with single-moment (no graupel) and double-moment (with graupel) microphysics. Double-moment microphysics shows better agreement with observed reflectivity profiles; however, neither model variant captures the double-arc structure. Ultimately, the results show that simulating realistic DCC vertical structure and its variability requires accurate representation of ice microphysics, in particular the hail/graupel modes, though this alone is insufficient.
Jupiter's Deep Cloud Structure Revealed Using Keck Observations of Spectrally Resolved Line Shapes
NASA Technical Reports Server (NTRS)
Bjoraker, G. L.; Wong, M.H.; de Pater, I.; Adamkovics, M.
2015-01-01
Technique: We present a method to determine the pressure at which significant cloud opacity is present between 2 and 6 bars on Jupiter. We use: a) the strength of a Fraunhofer absorption line in a zone to determine the ratio of reflected sunlight to thermal emission, and b) pressure- broadened line profiles of deuterated methane (CH3D) at 4.66 meters to determine the location of clouds. We use radiative transfer models to constrain the altitude region of both the solar and thermal components of Jupiter's 5-meter spectrum. Results: For nearly all latitudes on Jupiter the thermal component is large enough to constrain the deep cloud structure even when upper clouds are present. We find that Hot Spots, belts, and high latitudes have broader line profiles than do zones. Radiative transfer models show that Hot Spots in the North and South Equatorial Belts (NEB, SEB) typically do not have opaque clouds at pressures greater than 2 bars. The South Tropical Zone (STZ) at 32 degrees South has an opaque cloud top between 4 and 5 bars. From thermochemical models this must be a water cloud. We measured the variation of the equivalent width of CH3D with latitude for comparison with Jupiter's belt-zone structure. We also constrained the vertical profile of H2O in an SEB Hot Spot and in the STZ. The Hot Spot is very dry for a probability less than 4.5 bars and then follows the H2O profile observed by the Galileo Probe. The STZ has a saturated H2O profile above its cloud top between 4 and 5 bars.
The Photoevaporation of a Neutral Structure by an EUV+FUV Radiation Field
NASA Astrophysics Data System (ADS)
Lora, Veronica; Vasconcelos, M. J.; Raga, A. C.; Cerqueira, A. H.; Esquivel, A.
The expansion of an HII region into a surrounding inhomogeneous molecular cloud, leads to the formation of elongated "elephant trunk" structures. The EUV photo-ionising radiation and FUV dissociating radiation from newly born stars photo-evaporate their parental neutral cloud, leading to the formation of dense clumps in the tips of elephant trunks, that could in principle eventually form stars. We study th effects of including a photo-dissociating FUV flux in models of fragmentation of a photo-evaporating, self-gravitating molecular cloud.
Numerical simulation of cloud and precipitation structure during GALE IOP-2
NASA Technical Reports Server (NTRS)
Robertson, F. R.; Perkey, D. J.; Seablom, M. S.
1988-01-01
A regional scale model, LAMPS (Limited Area Mesoscale Prediction System), is used to investigate cloud and precipitation structure that accompanied a short wave system during a portion of GALE IOP-2. A comparison of satellite imagery and model fields indicates that much of the large mesoscale organization of condensation has been captured by the simulation. In addition to reproducing a realistic phasing of two baroclinic zones associated with a split cold front, a reasonable simulation of the gross mesoscale cloud distribution has been achieved.
Properties of Cold HI Emission Clouds in the Inner-Galaxy ALFA Survey
NASA Astrophysics Data System (ADS)
Hughes, James Marcus; Gibson, Steven J.; Noriega-Crespo, Alberto; Newton, Jonathan; Koo, Bon-Chul; Douglas, Kevin A.; Peek, Joshua Eli Goldston; Park, Geumsook; Kang, Ji-hyun; Korpela, Eric J.; Heiles, Carl E.; Dame, Thomas M.
2017-01-01
Star formation, a critical process within galaxies, occurs in the coldest, densest interstellar clouds, whose gas and dust content are observed primarily at radio and infrared wavelengths. The formation of molecular hydrogen (H2) from neutral atomic hydrogen (HI) is an essential early step in the condensation of these clouds from the ambient interstellar medium, but it is not yet completely understood, e.g., what is the predominant trigger? Even more troubling, the abundance of H2 may be severely underestimated by standard tracers like CO, implying significant "dark" H2, and the quantity of HI may also be in error if opacity effects are neglected. We have developed an automated method to account for both HI and H2 in cold, diffuse clouds traced by narrow-line HI 21-cm emission in the Arecibo Inner-Galaxy ALFA (I-GALFA) survey. Our algorithm fits narrow (2-5 km/s), isolated HI line profiles to determine their spin temperature, optical depth, and true column density. We then estimate the "visible" H2 column in the same clouds with CfA and Planck CO data and the total gas column from dust emission measured by Planck, IRAS, and other surveys. Together, these provide constraints on the dark H2 abundance, which we examine in relation to other cloud properties and stages of development. Our aim is to build a database of H2-forming regions with significant dark gas to aid future analyses of coalescing interstellar clouds. We acknowledge support from NSF, NASA, Western Kentucky University, and Williams College. I-GALFA is a GALFA-HI survey observed with the 7-beam ALFA receiver on the 305-meter William E. Gordon Telescope. The Arecibo Observatory is a U.S. National Science Foundation facility operated under sequential cooperative agreements with Cornell University and SRI International, the latter in alliance with the Ana G. Mendez-Universidad Metropolitana and the Universities Space Research Association.
NASA Technical Reports Server (NTRS)
Welch, R. M.; Sengupta, S. K.; Chen, D. W.
1990-01-01
Stratocumulus cloud fields in the FIRE IFO region are analyzed using LANDSAT Thematic Mapper imagery. Structural properties such as cloud cell size distribution, cell horizontal aspect ratio, fractional coverage and fractal dimension are determined. It is found that stratocumulus cloud number densities are represented by a power law. Cell horizontal aspect ratio has a tendency to increase at large cell sizes, and cells are bi-fractal in nature. Using LANDSAT Multispectral Scanner imagery for twelve selected stratocumulus scenes acquired during previous years, similar structural characteristics are obtained. Cloud field spatial organization also is analyzed. Nearest-neighbor spacings are fit with a number of functions, with Weibull and Gamma distributions providing the best fits. Poisson tests show that the spatial separations are not random. Second order statistics are used to examine clustering.
Three-dimensional simulations of cumulus congestus clouds on GATE day 261
NASA Technical Reports Server (NTRS)
Simpson, J.; Van Helvoirt, G.; Mccumber, M.
1982-01-01
Schlesinger's (1978) three-dimensional cumulus model is applied to showering congestus clouds on day 261 of GATE. Model results are compared with each other and with observations to analyze the effects of varying shear and altered sounding. Relationships between shear, mesovortices and dynamic entrainment are examined, as well as the model clouds' impact on the environment as a function of shear. The simulations appear to resemble reality in many important aspects. Altostratus layers observed on day 261 are found to be a by-product of convection in three-dimensional shear. Rapid erosion of cloud base to 3.6 km is related to the ambient thermal structure, with wind shear and initial perturbation playing a secondary role. Some of the apparent conflict regarding lateral versus cloud-top entrainment is clarified, as well as some factors governing convective downdraft structure and intensity.
NASA Astrophysics Data System (ADS)
Lawton, R.; Nair, U. S.
2011-12-01
Cloud forests stand at the core of the complex of montane ecosystems that provide the backbone to the multinational Mesoamerican Biological Corridor, which seeks to protect a biodiversity conservation "hotspot" of global significance in an area of rapidly changing land use. Although cloud forests are generally defined by frequent and prolonged immersion in cloud, workers differ in their feelings about "frequent" and "prolonged", and quantitative assessments are rare. Here we focus on the dry season, in which the cloud and mist from orographic cloud plays a critical role in forest water relations, and discuss remote sensing of orographic clouds, and regional and atmospheric modeling at several scales to quantitatively examine the distribution of the atmospheric conditions that characterize cloud forests. Remote sensing using data from GOES reveals diurnal and longer scale patterns in the distribution of dry season orographic clouds in Central America at both regional and local scales. Data from MODIS, used to calculate the base height of orographic cloud banks, reveals not only the geographic distributon of cloud forest sites, but also striking regional variation in the frequency of montane immersion in orographic cloud. At a more local scale, wind is known to have striking effects on forest structure and species distribution in tropical montane ecosystems, both as a general mechanical stress and as the major agent of ecological disturbance. High resolution regional atmospheric modeling using CSU RAMS in the Monteverde cloud forests of Costa Rica provides quantitative information on the spatial distribution of canopy level winds, insight into the spatial structure and local dynamics of cloud forest communities. This information will be useful in not only in local conservation planning and the design of the Mesoamerican Biological Corridor, but also in assessments of the sensitivity of cloud forests to global and regional climate changes.
Phytoplankton off the Coast of Washington State
NASA Technical Reports Server (NTRS)
2002-01-01
Clear weather over the Pacific Northwest yesterday gave the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) a good view of this mountain region of the United States. Also, there are several phytoplankton blooms visible offshore. The white areas hugging the California coastline toward the bottom of the image are low-level stratus clouds. SeaWiFS acquired this true-color scene on October 3, 2001. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
Subjective Mapping of Dust-Emission Sources by Using MODIS Imagery
2017-05-01
within the inset of Panel A. Panel A is a True Color image that depicts white clouds against a brown landscape; a bird’s eye representation of Earth...shows the location of the Hamun dry lakes, which are an important dust source in the region. The enlarged image box in the top right depicts the...Bacon and McDonald 2016). For example, dry lakebeds filled with unconsolidated ERDC/CRREL TR-17-8 4 fine-grained sediments are commonly
Surface features of central North America: a synoptic view from computer graphics
Pike, R.J.
1991-01-01
A digital shaded-relief image of the 48 contiguous United States shows the details of large- and small-scale landforms, including several linear trends. The features faithfully reflect tectonism, continental glaciation, fluvial activity, volcanism, and other surface-shaping events and processes. The new map not only depicts topography accurately and in its true complexity, but does so in one synoptic view that provides a regional context for geologic analysis unobscured by clouds, culture, vegetation, or artistic constraints. -Author
Mesoscale modeling of smoke radiative feedback over the Sahel region
NASA Astrophysics Data System (ADS)
Yang, Z.; Wang, J.; Ichoku, C. M.; Ellison, L.; Zhang, F.; Yue, Y.
2013-12-01
This study employs satellite observations and a fully-coupled meteorology-chemistry-aerosol model, Weather Research and Forecasting model with Chemistry (WRF-Chem) to study the smoke radative feedback on surface energy budget, boundary layer processes, and atmospheric lapse rate in February 2008 over the Sahel region. The smoke emission inventories we use come from various sources, including but not limited to the Fire Locating and Modeling of Burning Emissions (FLAMBE) developed by NRL and the Fire Energetic and Emissions Research (FEER) developed by NASA GSFC. Model performance is evaluated using numerous satellite and ground-based datasets: MODIS true color images, ground-based Aerosol Optical Depth (AOD) measurements from AERONET, MODIS AOD retrievals, and Cloud-Aerosol Lidar data with Orthogonal Polarization (CALIOP) atmospheric backscattering and extinction products. Specification of smoke injection height of 650 m in WRF-Chem yields aerosol vertical profiles that are most consistent with CALIOP observations of aerosol layer height. Statistically, 5% of the CALIPSO valid measurements of aerosols in February 2008 show aerosol layers either above the clouds or between the clouds, reinforcing the importance of the aerosol vertical distribution for quantifying aerosol impact on climate in the Sahel region. The results further show that the smoke radiative feedbacks are sensitive to assumptions of black carbon and organic carbon ratio in the particle emission inventory. Also investigated is the smoke semi-direct effect as a function of cloud fraction.
Ship-wave-shaped wave clouds induced by the Crozet Islands, south Indian Ocean
2017-12-08
There are special places on Earth that sometimes write their personal signature in the clouds. The Crozet Islands are one such place, thanks to the tall volcanic peaks that grace the islands. When air flows around these tall peaks, it gets pushed around the islands as well as up and over the peak. The net effect of the flowing air flowing around the solid, tall peaks is much like the solid bow of a ship cutting through standing water. In each case v-shaped waves are formed behind the motion. In liquid, this is called a wake; in the atmosphere, when clouds are present or created, they are known as ship-wave-shaped clouds. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite captured this true-color image as it passed over the Crozet Islands on November 26, 2014. Three distinct waves are seen behind the three largest islands. From west to east these are Pig Island, Possession Island and East Island. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
2002-01-01
This spectacular, full-color image of the Earth is a composite of the first full day of data gathered by the Moderate-resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra spacecraft. MODIS collected the data for each wavelength of red, green, and blue light as Terra passed over the daylit side of the Earth on April 19, 2000. Terra is orbiting close enough to the Earth so that it cannot quite see the entire surface in a day, resulting in the narrow gaps around the equator. Although the sensor's visible channels were combined to form this true-color picture, MODIS collects data in a total of 36 wavelengths, ranging from visible to thermal infrared energy. Scientists use these data to measure regional and global-scale changes in marine and land-based plant life, sea and land surface temperatures, cloud properties, aerosols, fires, and land surface properties. Notice how cloudy the Earth is, and the large differences in brightness between clouds, deserts, oceans, and forests. The Antarctic, surrounded by clockwise swirls of cloud, is shrouded in darkness because the sun is north of the equator at this time of year. The tropical forests of Africa, Southeast Asia, and South America are shrouded by clouds. The bright Sahara and Arabian deserts stand out clearly. Green vegetation is apparent in the southeast United States, the Yucatan Peninsula, and Madagascar. Image by Mark Gray, MODIS Atmosphere Team, NASA GSFC
NASA Technical Reports Server (NTRS)
Houlahan, Padraig; Scalo, John
1992-01-01
A new method of image analysis is described, in which images partitioned into 'clouds' are represented by simplified skeleton images, called structure trees, that preserve the spatial relations of the component clouds while disregarding information concerning their sizes and shapes. The method can be used to discriminate between images of projected hierarchical (multiply nested) and random three-dimensional simulated collections of clouds constructed on the basis of observed interstellar properties, and even intermediate systems formed by combining random and hierarchical simulations. For a given structure type, the method can distinguish between different subclasses of models with different parameters and reliably estimate their hierarchical parameters: average number of children per parent, scale reduction factor per level of hierarchy, density contrast, and number of resolved levels. An application to a column density image of the Taurus complex constructed from IRAS data is given. Moderately strong evidence for a hierarchical structural component is found, and parameters of the hierarchy, as well as the average volume filling factor and mass efficiency of fragmentation per level of hierarchy, are estimated. The existence of nested structure contradicts models in which large molecular clouds are supposed to fragment, in a single stage, into roughly stellar-mass cores.
Stochastic Convection Parameterizations
NASA Technical Reports Server (NTRS)
Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios
2012-01-01
computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts
Cloud Computing for Protein-Ligand Binding Site Comparison
2013-01-01
The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery. PMID:23762824
Cloud computing for protein-ligand binding site comparison.
Hung, Che-Lun; Hua, Guan-Jie
2013-01-01
The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.
Seasonal Evolution of Titan's South Pole 220 cm-1 Cloud
NASA Astrophysics Data System (ADS)
Jennings, Donald
2016-06-01
A cloud of ices that had been seen only in Titan's north during winter began to emerge at the south pole in 2012. Discovered by Voyager IRIS as an emission feature at 220 cm-1, the cloud has been studied extensively in both the north and south by Cassini CIRS. The spectral feature acts as a tracer of the seasonal changes at Titan's poles, relating to evolving composition, temperature structure and dynamics. Although candidates have been proposed, the chemical makeup of the cloud has never been identified. The cloud is composed of condensates derived from gases created at high altitude and transported to the cold, shadowed pole. In the north the cloud has diminished gradually over the Cassini mission as Titan has transitioned from winter to spring. The southern cloud, on the other hand, grew rapidly after 2012. By late 2014 it had developed a complex ring structure that was confined to latitudes poleward of 70°S within the deep temperature well that had formed at the south pole [1]. The location of the cloud coincides in latitude with the HCN cloud reported by ISS and VIMS [2,3]. CIRS also saw enhanced gas emissions at those latitudes [4]. When it first formed, the cloud was abundant at altitudes as high as 250 km, while later it was found mostly at 100-150 km, suggesting that the material that had been deposited from above had gathered at the lower altitudes. Radiance from the southern cloud increased until mid-2015 and since then has decreased. The cloud may be transitioning to the more uniform hood morphology familiar in the north. Taking the north and south together, by the end of the Cassini mission in 2017 we will have observed almost an entire seasonal cycle of the ice cloud.
Moisture structure of tropical cloud systems as inferred from SSM/I
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.
1989-01-01
The structure of tropical cloud systems was examined using data obtained by the Special Sensor Microwave/Imager on vertically-integrated vapor, ice, and liquid water (including precipitable water) in a cloud cluster associated with a Pacific easterly wave. The cloud cluster provided a sample of the varying signatures of bulk microphysical processes in organized tropical convection. Composition techniques were used to interpret this variability and its significance in terms of the response of convection to its thermodynamic environment. The relative intensities of the ice and liquid-water signatures should provide insight on the relative contribution of stratiform vs convective rain and the characteristics of the water budgets of mesoscale convective systems.
Solid images for geostructural mapping and key block modeling of rock discontinuities
NASA Astrophysics Data System (ADS)
Assali, Pierre; Grussenmeyer, Pierre; Villemin, Thierry; Pollet, Nicolas; Viguier, Flavien
2016-04-01
Rock mass characterization is obviously a key element in rock fall hazard analysis. Managing risk and determining the most adapted reinforcement method require a proper understanding of the considered rock mass. Description of discontinuity sets is therefore a crucial first step in the reinforcement work design process. The on-field survey is then followed by a structural modeling in order to extrapolate the data collected at the rock surface to the inner part of the massif. Traditional compass survey and manual observations can be undoubtedly surpassed by dense 3D data such as LiDAR or photogrammetric point clouds. However, although the acquisition phase is quite fast and highly automated, managing, handling and exploiting such great amount of collected data is an arduous task and especially for non specialist users. In this study, we propose a combined approached using both 3D point clouds (from LiDAR or image matching) and 2D digital images, gathered into the concept of ''solid image''. This product is the connection between the advantages of classical true colors 2D digital images, accessibility and interpretability, and the particular strengths of dense 3D point clouds, i.e. geometrical completeness and accuracy. The solid image can be considered as the information support for carrying-out a digital survey at the surface of the outcrop without being affected by traditional deficiencies (lack of data and sampling difficulties due to inaccessible areas, safety risk in steep sectors, etc.). Computational tools presented in this paper have been implemented into one standalone software through a graphical user interface helping operators with the completion of a digital geostructural survey and analysis. 3D coordinates extraction, 3D distances and area measurement, planar best-fit for discontinuity orientation, directional roughness profiles, block size estimation, and other tools have been experimented on a calcareous quarry in the French Alps.
Global Distribution and Vertical Structure of Clouds Revealed by CALIPSO
NASA Astrophysics Data System (ADS)
Yi, Y.; Minnis, P.; Winker, D.; Huang, J.; Sun-Mack, S.; Ayers, K.
2007-12-01
Understanding the effects of clouds on Earth's radiation balance, especially on longwave fluxes within the atmosphere, depends on having accurate knowledge of cloud vertical location within the atmosphere. The Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite mission provides the opportunity to measure the vertical distribution of clouds at a greater detail than ever before possible. The CALIPSO cloud layer products from June 2006 to June 2007 are analyzed to determine the occurrence frequency and thickness of clouds as functions of time, latitude, and altitude. In particular, the latitude-longitude and vertical distributions of single- and multi-layer clouds and the latitudinal movement of cloud cover with the changing seasons are examined. The seasonal variablities of cloud frequency and geometric thickness are also analyzed and compared with similar quantities derived from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) using the Clouds and the Earth's Radiant Energy System (CERES) cloud retrieval algorithms. The comparisons provide an estimate of the errors in cloud fraction, top height, and thickness incurred by passive algorithms.
Line segment extraction for large scale unorganized point clouds
NASA Astrophysics Data System (ADS)
Lin, Yangbin; Wang, Cheng; Cheng, Jun; Chen, Bili; Jia, Fukai; Chen, Zhonggui; Li, Jonathan
2015-04-01
Line segment detection in images is already a well-investigated topic, although it has received considerably less attention in 3D point clouds. Benefiting from current LiDAR devices, large-scale point clouds are becoming increasingly common. Most human-made objects have flat surfaces. Line segments that occur where pairs of planes intersect give important information regarding the geometric content of point clouds, which is especially useful for automatic building reconstruction and segmentation. This paper proposes a novel method that is capable of accurately extracting plane intersection line segments from large-scale raw scan points. The 3D line-support region, namely, a point set near a straight linear structure, is extracted simultaneously. The 3D line-support region is fitted by our Line-Segment-Half-Planes (LSHP) structure, which provides a geometric constraint for a line segment, making the line segment more reliable and accurate. We demonstrate our method on the point clouds of large-scale, complex, real-world scenes acquired by LiDAR devices. We also demonstrate the application of 3D line-support regions and their LSHP structures on urban scene abstraction.
Characteristics of middle and upper tropospheric clouds as deduced from rawinsonde data
NASA Technical Reports Server (NTRS)
Starr, D. D. O.; Cox, S. K.
1982-01-01
The static environment of middle and upper tropospheric clouds is characterized. Computed relative humidity with respect to ice is used to diagnose the presence of cloud layer. The deduced seasonal mean cloud cover estimates based on this technique are shown to be reasonable. The cases are stratified by season and pressure thickness, and the dry static stability, vertical wind speed shear, and Richardson number are computed for three layers for each case. Mean values for each parameter are presented for each stratification and layer. The relative frequency of occurrence of various structures is presented for each stratification. The observed values of each parameter and the observed structure of each parameter are quite variable. Structures corresponding to any of a number of different conceptual models may be found. Moist adiabatic conditions are not commonly observed and the stratification based on thickness yields substantially different results for each group.
A Strengthening Eastern Pacific Storm
NASA Technical Reports Server (NTRS)
2006-01-01
These July 11, 2006 images are from the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra Satellite. They show then Tropical Storm Bud as it was intensifying into a hurricane, which it became later that day. The true-color image at left is next to an image of cloud heights on the right. Two-dimensional maps of cloud heights such as these give scientists an opportunity to compare their models against actual hurricane observations. At the time of these images, Bud was located near 14.4 degrees north latitude and 112.5 degrees west longitude, or about 620 miles (1000 kilometers) southwest of Cabo San Lucas, Baja California, Mexico. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena,Calif. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, Md. JPL is a division of the California Institute of Technology.Automatic extraction of blocks from 3D point clouds of fractured rock
NASA Astrophysics Data System (ADS)
Chen, Na; Kemeny, John; Jiang, Qinghui; Pan, Zhiwen
2017-12-01
This paper presents a new method for extracting blocks and calculating block size automatically from rock surface 3D point clouds. Block size is an important rock mass characteristic and forms the basis for several rock mass classification schemes. The proposed method consists of four steps: 1) the automatic extraction of discontinuities using an improved Ransac Shape Detection method, 2) the calculation of discontinuity intersections based on plane geometry, 3) the extraction of block candidates based on three discontinuities intersecting one another to form corners, and 4) the identification of "true" blocks using an improved Floodfill algorithm. The calculated block sizes were compared with manual measurements in two case studies, one with fabricated cardboard blocks and the other from an actual rock mass outcrop. The results demonstrate that the proposed method is accurate and overcomes the inaccuracies, safety hazards, and biases of traditional techniques.
Quality Assessment and Comparison of Smartphone and Leica C10 Laser Scanner Based Point Clouds
NASA Astrophysics Data System (ADS)
Sirmacek, Beril; Lindenbergh, Roderik; Wang, Jinhu
2016-06-01
3D urban models are valuable for urban map generation, environment monitoring, safety planning and educational purposes. For 3D measurement of urban structures, generally airborne laser scanning sensors or multi-view satellite images are used as a data source. However, close-range sensors (such as terrestrial laser scanners) and low cost cameras (which can generate point clouds based on photogrammetry) can provide denser sampling of 3D surface geometry. Unfortunately, terrestrial laser scanning sensors are expensive and trained persons are needed to use them for point cloud acquisition. A potential effective 3D modelling can be generated based on a low cost smartphone sensor. Herein, we show examples of using smartphone camera images to generate 3D models of urban structures. We compare a smartphone based 3D model of an example structure with a terrestrial laser scanning point cloud of the structure. This comparison gives us opportunity to discuss the differences in terms of geometrical correctness, as well as the advantages, disadvantages and limitations in data acquisition and processing. We also discuss how smartphone based point clouds can help to solve further problems with 3D urban model generation in a practical way. We show that terrestrial laser scanning point clouds which do not have color information can be colored using smartphones. The experiments, discussions and scientific findings might be insightful for the future studies in fast, easy and low-cost 3D urban model generation field.
Convective and Stratiform Precipitation Processes and their Relationship to Latent Heating
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Lang, Steve; Zeng, Xiping; Shige, Shoichi; Takayabu, Yukari
2009-01-01
The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. An improved convective -stratiform heating (CSH) algorithm has been developed to obtain the 3D structure of cloud heating over the Tropics based on two sources of information: 1) rainfall information, namely its amount and the fraction due to light rain intensity, observed directly from the Precipitation Radar (PR) on board the TRMM satellite and 2) synthetic cloud physics information obtained from cloud-resolving model (CRM) simulations of cloud systems. The cloud simulations provide details on cloud processes, specifically latent heating, eddy heat flux convergence and radiative heating/cooling, that. are not directly observable by satellite. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. One of the major differences between new and old algorithms is that the level of maximum cloud heating occurs 1 to 1.5 km lower in the atmosphere in the new algorithm. This can effect the structure of the implied air currents associated with the general circulation of the atmosphere in the Tropics. The new CSH algorithm will be used provide retrieved heating data to other heating algorithms to supplement their performance.
TU-CD-304-11: Veritas 2.0: A Cloud-Based Tool to Facilitate Research and Innovation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, P; Patankar, A; Etmektzoglou, A
Purpose: We introduce Veritas 2.0, a cloud-based, non-clinical research portal, to facilitate translation of radiotherapy research ideas to new delivery techniques. The ecosystem of research tools includes web apps for a research beam builder for TrueBeam Developer Mode, an image reader for compressed and uncompressed XIM files, and a trajectory log file based QA/beam delivery analyzer. Methods: The research beam builder can generate TrueBeam readable XML file either from scratch or from pre-existing DICOM-RT plans. DICOM-RT plan is first converted to XML format and then researcher can interactively modify or add control points to them. Delivered beam can be verifiedmore » via reading generated images and analyzing trajectory log files. Image reader can read both uncompressed and HND-compressed XIM images. The trajectory log analyzer lets researchers plot expected vs. actual values and deviations among 30 mechanical axes. The analyzer gives an animated view of MLC patterns for the beam delivery. Veritas 2.0 is freely available and its advantages versus standalone software are i) No software installation or maintenance needed, ii) easy accessibility across all devices iii) seamless upgrades and iv) OS independence. Veritas is written using open-source tools like twitter bootstrap, jQuery, flask, and Python-based modules. Results: In the first experiment, an anonymized 7-beam DICOM-RT IMRT plan was converted to XML beam containing 1400 control points. kV and MV imaging points were inserted into this XML beam. In another experiment, a binary log file was analyzed to compare actual vs expected values and deviations among axes. Conclusions: Veritas 2.0 is a public cloud-based web app that hosts a pool of research tools for facilitating research from conceptualization to verification. It is aimed at providing a platform for facilitating research and collaboration. I am full time employee at Varian Medical systems, Palo Alto.« less
Development of a New Model for Accurate Prediction of Cloud Water Deposition on Vegetation
NASA Astrophysics Data System (ADS)
Katata, G.; Nagai, H.; Wrzesinsky, T.; Klemm, O.; Eugster, W.; Burkard, R.
2006-12-01
Scarcity of water resources in arid and semi-arid areas is of great concern in the light of population growth and food shortages. Several experiments focusing on cloud (fog) water deposition on the land surface suggest that cloud water plays an important role in water resource in such regions. A one-dimensional vegetation model including the process of cloud water deposition on vegetation has been developed to better predict cloud water deposition on the vegetation. New schemes to calculate capture efficiency of leaf, cloud droplet size distribution, and gravitational flux of cloud water were incorporated in the model. Model calculations were compared with the data acquired at the Norway spruce forest at the Waldstein site, Germany. High performance of the model was confirmed by comparisons of calculated net radiation, sensible and latent heat, and cloud water fluxes over the forest with measurements. The present model provided a better prediction of measured turbulent and gravitational fluxes of cloud water over the canopy than the Lovett model, which is a commonly used cloud water deposition model. Detailed calculations of evapotranspiration and of turbulent exchange of heat and water vapor within the canopy and the modifications are necessary for accurate prediction of cloud water deposition. Numerical experiments to examine the dependence of cloud water deposition on the vegetation species (coniferous and broad-leaved trees, flat and cylindrical grasses) and structures (Leaf Area Index (LAI) and canopy height) are performed using the presented model. The results indicate that the differences of leaf shape and size have a large impact on cloud water deposition. Cloud water deposition also varies with the growth of vegetation and seasonal change of LAI. We found that the coniferous trees whose height and LAI are 24 m and 2.0 m2m-2, respectively, produce the largest amount of cloud water deposition in all combinations of vegetation species and structures in the experiments.
Cloud top structure of Venus revealed by Subaru/COMICS mid-infrared images
NASA Astrophysics Data System (ADS)
Sato, T. M.; Sagawa, H.; Kouyama, T.; Mitsuyama, K.; Satoh, T.; Ohtsuki, S.; Ueno, M.; Kasaba, Y.; Nakamura, M.; Imamura, T.
2014-04-01
We have investigated the cloud top structure of Venus by analyzing ground-based images obtained by the Cooled Mid-Infrared Camera and Spectrometer (COMICS), mounted on the 8.2-m Subaru Telescope. In this presentation, we will overview the observational results and discuss their interpretations.
A network approach to the geometric structure of shallow cloud fields
NASA Astrophysics Data System (ADS)
Glassmeier, F.; Feingold, G.
2017-12-01
The representation of shallow clouds and their radiative impact is one of the largest challenges for global climate models. While the bulk properties of cloud fields, including effects of organization, are a very active area of research, the potential of the geometric arrangement of cloud fields for the development of new parameterizations has hardly been explored. Self-organized patterns are particularly evident in the cellular structure of Stratocumulus (Sc) clouds so readily visible in satellite imagery. Inspired by similar patterns in biology and physics, we approach pattern formation in Sc fields from the perspective of natural cellular networks. Our network analysis is based on large-eddy simulations of open- and closed-cell Sc cases. We find the network structure to be neither random nor characteristic to natural convection. It is independent of macroscopic cloud fields properties like the Sc regime (open vs closed) and its typical length scale (boundary layer height). The latter is a consequence of entropy maximization (Lewis's Law with parameter 0.16). The cellular pattern is on average hexagonal, where non-6 sided cells occur according to a neighbor-number distribution variance of about 2. Reflecting the continuously renewing dynamics of Sc fields, large (many-sided) cells tend to neighbor small (few-sided) cells (Aboav-Weaire Law with parameter 0.9). These macroscopic network properties emerge independent of the Sc regime because the different processes governing the evolution of closed as compared to open cells correspond to topologically equivalent network dynamics. By developing a heuristic model, we show that open and closed cell dynamics can both be mimicked by versions of cell division and cell disappearance and are biased towards the expansion of smaller cells. This model offers for the first time a fundamental and universal explanation for the geometric pattern of Sc clouds. It may contribute to the development of advanced Sc parameterizations. As an outlook, we discuss how a similar network approach can be applied to describe and quantify the geometric structure of shallow cumulus cloud fields.
NASA Astrophysics Data System (ADS)
Garland, Justin; Sayanagi, Kunio M.; Blalock, John J.; Gunnarson, Jacob; McCabe, Ryan M.; Gallego, Angelina; Hansen, Candice; Orton, Glenn S.
2017-10-01
We present an analysis of the spatial-scales contained in the cloud morphology of Jupiter’s southern high latitudes using images captured by JunoCam in 2016 and 2017, and compare them to those on Saturn using images captured using the Imaging Science Subsystem (ISS) on board the Cassini orbiter. For Jupiter, the characteristic spatial scale of cloud morphology as a function of latitude is calculated from images taken in three visual (600-800, 500-600, 420-520 nm) bands and a near-infrared (880- 900 nm) band. In particular, we analyze the transition from the banded structure characteristic of Jupiter’s mid-latitudes to the chaotic structure of the polar region. We apply similar analysis to Saturn using images captured using Cassini ISS. In contrast to Jupiter, Saturn maintains its zonally organized cloud morphology from low latitudes up to the poles, culminating in the cyclonic polar vortices centered at each of the poles. By quantifying the differences in the spatial scales contained in the cloud morphology, our analysis will shed light on the processes that control the banded structures on Jupiter and Saturn. Our work has been supported by the following grants: NASA PATM NNX14AK07G, NASA MUREP NNX15AQ03A, and NSF AAG 1212216.
Nighttime observations of thunderstorm electrical activity from a high altitude airplane
NASA Technical Reports Server (NTRS)
Brook, M.; Vonnegut, B.; Orville, R. E.; Vaughan, O. H., Jr.
1984-01-01
Nocturnal thunderstorms were observed from above and features of cloud structure and lightning which are not generally visible from the ground are discussed. Most, lightning activity seems to be associated with clouds with strong convective cauliflower tops. In both of the storms lightning channels were visible in the clear air above the cloud. It is shown that substances produced by thunderstorm electrical discharges can be introduced directly into the stratosphere. The cause and nature of the discharges above the cloud are not clear. They may be produced by accumulations of space charge in the clear air above the cloud. The discharges may arise solely because of the intense electric fields produced by charges within the cloud. In the latter case the ions introduced by these discharges will increase the electrical conductivity of the air above the cloud and increase the conduction current that flows from the cloud to the electrosphere. More quantitative data at higher resolution may show significant spectral differences between cloud to ground and intracloud strokes. It is shown that electric field change data taken with an electric field change meter mounted in an airplane provide data on lightning discharges from above that are quite similar to those obtained from the ground in the past. The optical signals from dart leaders, from return strokes, and from continuing currents are recognizable, can be used to provide information on the fine structure of lightning, and can be used to distinguish between cloud to ground and intracloud flashes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert A. Houze, Jr.
2013-11-13
We examined cloud radar data in monsoon climates, using cloud radars at Darwin in the Australian monsoon, on a ship in the Bay of Bengal in the South Asian monsoon, and at Niamey in the West African monsoon. We followed on with a more in-depth study of the continental MCSs over West Africa. We investigated whether the West African anvil clouds connected with squall line MCSs passing over the Niamey ARM site could be simulated in a numerical model by comparing the observed anvil clouds to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model at highmore » resolution using six different ice-phase microphysical schemes. We carried out further simulations with a cloud-resolving model forced by sounding network budgets over the Niamey region and over the northern Australian region. We have devoted some of the effort of this project to examining how well satellite data can determine the global breadth of the anvil cloud measurements obtained at the ARM ground sites. We next considered whether satellite data could be objectively analyzed to so that their large global measurement sets can be systematically related to the ARM measurements. Further differences were detailed between the land and ocean MCS anvil clouds by examining the interior structure of the anvils with the satellite-detected the CloudSat Cloud Profiling Radar (CPR). The satellite survey of anvil clouds in the Indo-Pacific region was continued to determine the role of MCSs in producing the cloud pattern associated with the MJO.« less
Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds
Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H.; Rudich, Yinon
2013-01-01
The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908
Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.
Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon
2013-12-17
The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.
UV 380 nm reflectivity of the Earth's surface, clouds and aerosols
NASA Astrophysics Data System (ADS)
Herman, J. R.; Celarier, E.; Larko, D.
2001-03-01
The 380 nm radiance measurements of the Total Ozone Mapping Spectrometer (TOMS) have been converted into a global data set of daily (1979-1992) Lambert equivalent reflectivities R of the Earth's surface and boundary layer (clouds, aerosols, surface haze, and snow/ice) and then corrected to RPC for the presence of partly clouded scenes. Since UV surface reflectivity is between 2 and 8% for both land and water during all seasons of the year (except for ice and snow cover), reflectivities larger than the surface value indicate the presence of clouds, haze, or aerosols in the satellite field of view. A statistical analysis of 14 years of daily reflectivity data shows that most snow-/ice-free scenes observed by TOMS have a reflectivity less than 10% for the majority of days during a year. The 380 nm reflectivity data show that the true surface reflectivity is 2-3% lower than the most frequently occurring reflectivity value for each TOMS scene as seen from space. Most likely the cause is a combination of frequently occurring boundary layer water and/or aerosol haze. For most regions the observation of extremely clear conditions needed to estimate the surface reflectivity from space is a comparatively rare occurrence. Certain areas (e.g., Australia, southern Africa, portions of northern Africa) are cloud-free more than 80% of the year, which exposes these regions to larger amounts of UV radiation than at comparable latitudes in the Northern Hemisphere. Regions over rain forests, jungle areas, Europe and Russia, the bands surrounding the Arctic and Antarctic regions, and many ocean areas have significant cloud cover (R>15%) more than half of each year. In the low to middle latitudes the areas with the heaviest cloud cover (highest reflectivity for most of the year) are the forest areas of northern South America, southern Central America, the jungle areas of equatorial Africa, and high mountain regions such as the Himalayas or the Andes. The TOMS reflectivity data show both the presence of large nearly clear ocean areas and the effects of the major ocean currents on cloud production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kollias, Pavlos
This is a multi-institutional, collaborative project using a three-tier modeling approach to bridge field observations and global cloud-permitting models, with emphases on cloud population structural evolution through various large-scale environments. Our contribution was in data analysis for the generation of high value cloud and precipitation products and derive cloud statistics for model validation. There are two areas in data analysis that we contributed: the development of a synergistic cloud and precipitation cloud classification that identify different cloud (e.g. shallow cumulus, cirrus) and precipitation types (shallow, deep, convective, stratiform) using profiling ARM observations and the development of a quantitative precipitation ratemore » retrieval algorithm using profiling ARM observations. Similar efforts have been developed in the past for precipitation (weather radars), but not for the millimeter-wavelength (cloud) radar deployed at the ARM sites.« less
Efficient terrestrial laser scan segmentation exploiting data structure
NASA Astrophysics Data System (ADS)
Mahmoudabadi, Hamid; Olsen, Michael J.; Todorovic, Sinisa
2016-09-01
New technologies such as lidar enable the rapid collection of massive datasets to model a 3D scene as a point cloud. However, while hardware technology continues to advance, processing 3D point clouds into informative models remains complex and time consuming. A common approach to increase processing efficiently is to segment the point cloud into smaller sections. This paper proposes a novel approach for point cloud segmentation using computer vision algorithms to analyze panoramic representations of individual laser scans. These panoramas can be quickly created using an inherent neighborhood structure that is established during the scanning process, which scans at fixed angular increments in a cylindrical or spherical coordinate system. In the proposed approach, a selected image segmentation algorithm is applied on several input layers exploiting this angular structure including laser intensity, range, normal vectors, and color information. These segments are then mapped back to the 3D point cloud so that modeling can be completed more efficiently. This approach does not depend on pre-defined mathematical models and consequently setting parameters for them. Unlike common geometrical point cloud segmentation methods, the proposed method employs the colorimetric and intensity data as another source of information. The proposed algorithm is demonstrated on several datasets encompassing variety of scenes and objects. Results show a very high perceptual (visual) level of segmentation and thereby the feasibility of the proposed algorithm. The proposed method is also more efficient compared to Random Sample Consensus (RANSAC), which is a common approach for point cloud segmentation.
NASA Technical Reports Server (NTRS)
Wu, D. L.; Kelly, M.A.; Yee, J.-H.; Boldt, J.; Demajistre, R.; Reynolds, E. L.; Tripoli, G. J.; Oman, L. D.; Prive, N.; Heidinger, A. K.;
2016-01-01
The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to better understand mesoscale dynamics and their structures in severe weather systems. With potential catastrophic damage and loss of life, strong extratropical and tropical cyclones (ETCs and TCs) have profound three-dimensional impacts on the atmospheric dynamic and thermodynamic structures, producing complex cloud precipitation patterns, strong low-level winds, extensive tropopause folds, and intense stratosphere-troposphere exchange. Employing a compact, stereo IR-visible imaging technique from two formation-flying CubeSats, C3Winds seeks to measure and map high-resolution (2 km) cloud motion vectors (CMVs) and cloud geometric height (CGH) accurately by tracking cloud features within 5-15 min. Complementary to lidar wind observations from space, the high-resolution wind fields from C3Winds will allow detailed investigations on strong low-level wind formation in an occluded ETC development, structural variations of TC inner-core rotation, and impacts of tropopause folding events on tropospheric ozone and air quality. Together with scatterometer ocean surface winds, C3Winds will provide a more comprehensive depiction of atmosphere-boundary-layer dynamics and interactive processes. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with potential of increased diurnal sampling via CubeSat constellation.
Job Scheduling with Efficient Resource Monitoring in Cloud Datacenter
Loganathan, Shyamala; Mukherjee, Saswati
2015-01-01
Cloud computing is an on-demand computing model, which uses virtualization technology to provide cloud resources to users in the form of virtual machines through internet. Being an adaptable technology, cloud computing is an excellent alternative for organizations for forming their own private cloud. Since the resources are limited in these private clouds maximizing the utilization of resources and giving the guaranteed service for the user are the ultimate goal. For that, efficient scheduling is needed. This research reports on an efficient data structure for resource management and resource scheduling technique in a private cloud environment and discusses a cloud model. The proposed scheduling algorithm considers the types of jobs and the resource availability in its scheduling decision. Finally, we conducted simulations using CloudSim and compared our algorithm with other existing methods, like V-MCT and priority scheduling algorithms. PMID:26473166
Job Scheduling with Efficient Resource Monitoring in Cloud Datacenter.
Loganathan, Shyamala; Mukherjee, Saswati
2015-01-01
Cloud computing is an on-demand computing model, which uses virtualization technology to provide cloud resources to users in the form of virtual machines through internet. Being an adaptable technology, cloud computing is an excellent alternative for organizations for forming their own private cloud. Since the resources are limited in these private clouds maximizing the utilization of resources and giving the guaranteed service for the user are the ultimate goal. For that, efficient scheduling is needed. This research reports on an efficient data structure for resource management and resource scheduling technique in a private cloud environment and discusses a cloud model. The proposed scheduling algorithm considers the types of jobs and the resource availability in its scheduling decision. Finally, we conducted simulations using CloudSim and compared our algorithm with other existing methods, like V-MCT and priority scheduling algorithms.
Wehner, Rüdiger; Müller, Martin
2006-08-15
As textbook knowledge has it, bees and ants use polarized skylight as a backup cue whenever the main compass cue, the sun, is obscured by clouds. Here we show, by employing a unique experimental paradigm, that the celestial compass system of desert ants, Cataglyphis, relies predominantly on polarized skylight. If ants experience only parts of the polarization pattern during training but the full pattern in a subsequent test situation, they systematically deviate from their true homeward courses, with the systematics depending on what parts of the skylight patterns have been presented during training. This "signature" of the polarization compass remains unaltered, even if the ants can simultaneously experience the sun, which, if presented alone, enables the ants to select their true homeward courses. Information provided by direct sunlight and polarized skylight is picked up by different parts of the ant's compound eyes and is channeled into two rather separate systems of navigation.
Bent, John M.; Faibish, Sorin; Grider, Gary
2016-04-19
Cloud object storage is enabled for checkpoints of high performance computing applications using a middleware process. A plurality of files, such as checkpoint files, generated by a plurality of processes in a parallel computing system are stored by obtaining said plurality of files from said parallel computing system; converting said plurality of files to objects using a log structured file system middleware process; and providing said objects for storage in a cloud object storage system. The plurality of processes may run, for example, on a plurality of compute nodes. The log structured file system middleware process may be embodied, for example, as a Parallel Log-Structured File System (PLFS). The log structured file system middleware process optionally executes on a burst buffer node.
Continuum topology optimization considering uncertainties in load locations based on the cloud model
NASA Astrophysics Data System (ADS)
Liu, Jie; Wen, Guilin
2018-06-01
Few researchers have paid attention to designing structures in consideration of uncertainties in the loading locations, which may significantly influence the structural performance. In this work, cloud models are employed to depict the uncertainties in the loading locations. A robust algorithm is developed in the context of minimizing the expectation of the structural compliance, while conforming to a material volume constraint. To guarantee optimal solutions, sufficient cloud drops are used, which in turn leads to low efficiency. An innovative strategy is then implemented to enormously improve the computational efficiency. A modified soft-kill bi-directional evolutionary structural optimization method using derived sensitivity numbers is used to output the robust novel configurations. Several numerical examples are presented to demonstrate the effectiveness and efficiency of the proposed algorithm.
FIRE aircraft observations of horizontal and vertical transport in marine stratocumulus
NASA Technical Reports Server (NTRS)
Paluch, Ilga R.; Lenschow, Donald H.
1990-01-01
A major goal of research on marine stratocumulus is to try to understand the processes that generate and dissipate them. One approach to studying this problem is to investigate the boundary layer structure in the vicinity of a transition from a cloudy to a cloud-free region to document the differences in structure on each side of the transition. Since stratiform clouds have a major impact on the radiation divergence in the boundary layer, the transition from a cloudy to a clear boundary layer is a region of large horizontal inhomogeneity in air temperature and turbulence intensity. This leads to a considerable difference in horizontal and vertical transports between the cloudy and cloud-free regions. Measurements are used from the NCAR Electra aircraft during flights 5 (7 July 1987) and 10 (18 July 1987) of FIRE for this purpose. Flight 5 coincided with a LANDSAT overflight, and was designed to investigate the transition across a well-defined N-S cloud boundary, since the LANDSAT image can document the cloud cover in considerable detail. Turbulence legs were flown about 60 km on both sides of the cloud boundary. Flight 10 was flown at night in an area of scattered small cumuli and broken cloud patches.
Giant molecular cloud collisions as triggers of star formation. VI. Collision-induced turbulence
NASA Astrophysics Data System (ADS)
Wu, Benjamin; Tan, Jonathan C.; Nakamura, Fumitaka; Christie, Duncan; Li, Qi
2018-05-01
We investigate collisions between giant molecular clouds (GMCs) as potential generators of their internal turbulence. Using magnetohydrodynamic (MHD) simulations of self-gravitating, magnetized, turbulent GMCs, we compare kinematic and dynamic properties of dense gas structures formed when such clouds collide compared to those that form in non-colliding clouds as self-gravity overwhelms decaying turbulence. We explore the nature of turbulence in these structures via distribution functions of density, velocity dispersions, virial parameters, and momentum injection. We find that the dense clumps formed from GMC collisions have higher effective Mach number, greater overall velocity dispersions, sustain near-virial equilibrium states for longer times, and are the conduit for the injection of turbulent momentum into high density gas at high rates.
Giant molecular cloud collisions as triggers of star formation. VI. Collision-induced turbulence
NASA Astrophysics Data System (ADS)
Wu, Benjamin; Tan, Jonathan C.; Nakamura, Fumitaka; Christie, Duncan; Li, Qi
2018-01-01
We investigate collisions between giant molecular clouds (GMCs) as potential generators of their internal turbulence. Using magnetohydrodynamic (MHD) simulations of self-gravitating, magnetized, turbulent GMCs, we compare kinematic and dynamic properties of dense gas structures formed when such clouds collide compared to those that form in non-colliding clouds as self-gravity overwhelms decaying turbulence. We explore the nature of turbulence in these structures via distribution functions of density, velocity dispersions, virial parameters, and momentum injection. We find that the dense clumps formed from GMC collisions have higher effective Mach number, greater overall velocity dispersions, sustain near-virial equilibrium states for longer times, and are the conduit for the injection of turbulent momentum into high density gas at high rates.
NASA Astrophysics Data System (ADS)
Huang, Dong; Liu, Yangang
2014-12-01
Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost, allowing for more realistic representation of cloud radiation interactions in large-scale models.
Pillars of Creation among Destruction: Star Formation in Molecular Clouds near R136 in 30 Doradus
NASA Astrophysics Data System (ADS)
Kalari, Venu M.; Rubio, Mónica; Elmegreen, Bruce G.; Guzmán, Viviana V.; Zinnecker, Hans; Herrera, Cinthya N.
2018-01-01
We present new sensitive CO(2–1) observations of the 30 Doradus region in the Large Magellanic Cloud. We identify a chain of three newly discovered molecular clouds that we name KN1, KN2, and KN3 lying within 2–14 pc in projection from the young massive cluster R136 in 30 Doradus. Excited H2 2.12 μm emission is spatially coincident with the molecular clouds, but ionized Brγ emission is not. We interpret these observations as the tails of pillar-like structures whose ionized heads are pointing toward R136. Based on infrared photometry, we identify a new generation of stars forming within this structure.
Aerosol-cloud interactions in mixed-phase convective clouds - Part 1: Aerosol perturbations
NASA Astrophysics Data System (ADS)
Miltenberger, Annette K.; Field, Paul R.; Hill, Adrian A.; Rosenberg, Phil; Shipway, Ben J.; Wilkinson, Jonathan M.; Scovell, Robert; Blyth, Alan M.
2018-03-01
Changes induced by perturbed aerosol conditions in moderately deep mixed-phase convective clouds (cloud top height ˜ 5 km) developing along sea-breeze convergence lines are investigated with high-resolution numerical model simulations. The simulations utilise the newly developed Cloud-AeroSol Interacting Microphysics (CASIM) module for the Unified Model (UM), which allows for the representation of the two-way interaction between cloud and aerosol fields. Simulations are evaluated against observations collected during the COnvective Precipitation Experiment (COPE) field campaign over the southwestern peninsula of the UK in 2013. The simulations compare favourably with observed thermodynamic profiles, cloud base cloud droplet number concentrations (CDNC), cloud depth, and radar reflectivity statistics. Including the modification of aerosol fields by cloud microphysical processes improves the correspondence with observed CDNC values and spatial variability, but reduces the agreement with observations for average cloud size and cloud top height. Accumulated precipitation is suppressed for higher-aerosol conditions before clouds become organised along the sea-breeze convergence lines. Changes in precipitation are smaller in simulations with aerosol processing. The precipitation suppression is due to less efficient precipitation production by warm-phase microphysics, consistent with parcel model predictions. In contrast, after convective cells organise along the sea-breeze convergence zone, accumulated precipitation increases with aerosol concentrations. Condensate production increases with the aerosol concentrations due to higher vertical velocities in the convective cores and higher cloud top heights. However, for the highest-aerosol scenarios, no further increase in the condensate production occurs, as clouds grow into an upper-level stable layer. In these cases, the reduced precipitation efficiency (PE) dominates the precipitation response and no further precipitation enhancement occurs. Previous studies of deep convective clouds have related larger vertical velocities under high-aerosol conditions to enhanced latent heating from freezing. In the presented simulations changes in latent heating above the 0°C are negligible, but latent heating from condensation increases with aerosol concentrations. It is hypothesised that this increase is related to changes in the cloud field structure reducing the mixing of environmental air into the convective core. The precipitation response of the deeper mixed-phase clouds along well-established convergence lines can be the opposite of predictions from parcel models. This occurs when clouds interact with a pre-existing thermodynamic environment and cloud field structural changes occur that are not captured by simple parcel model approaches.
2010-09-01
Cloud computing describes a new distributed computing paradigm for IT data and services that involves over-the-Internet provision of dynamically scalable and often virtualized resources. While cost reduction and flexibility in storage, services, and maintenance are important considerations when deciding on whether or how to migrate data and applications to the cloud, large organizations like the Department of Defense need to consider the organization and structure of data on the cloud and the operations on such data in order to reap the full benefit of cloud
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cecchini, Micael A.; Machado, Luiz A. T.; Comstock, Jennifer M.
The remote atmosphere over the Amazon can be similar to oceanic regions in terms of aerosol conditions and cloud type formations. This is especially true during the wet season. The main aerosol-related disturbances over the Amazon have both natural sources, such as dust transport from Africa, and anthropogenic sources, such as biomass burning or urban pollution. The present work considers the impacts of the latter on the microphysical properties of warm-phase clouds by analysing observations of the interactions between the Manaus pollution plume and its surroundings, as part of the GoAmazon2014/5 Experiment. The analysed period corresponds to the wet seasonmore » (specifically from February to March 2014 and corresponding to the first Intensive Operating Period (IOP1) of GoAmazon2014/5). The droplet size distributions reported are in the range 1 µm ≤ D≤50 µm in order to capture the processes leading up to the precipitation formation. The wet season largely presents a clean background atmosphere characterized by frequent rain showers. As such, the contrast between background clouds and those affected by the Manaus pollution can be observed and detailed. The focus is on the characteristics of the initial microphysical properties in cumulus clouds predominantly at their early stages. The pollution-affected clouds are found to have smaller effective diameters and higher droplet number concentrations. The differences range from 10 to 40% for the effective diameter and are as high as 1000% for droplet concentration for the same vertical levels. The growth rates of droplets with altitude are slower for pollution-affected clouds (2.90 compared to 5.59 µm km ₋1), as explained by the absence of bigger droplets at the onset of cloud development. Clouds under background conditions have higher concentrations of larger droplets (>20 µm) near the cloud base, which would contribute significantly to the growth rates through the collision–coalescence process. The overall shape of the droplet size distribution (DSD) does not appear to be predominantly determined by updraught strength, especially beyond the 20 µm range. The aerosol conditions play a major role in that case. However, the updraughts modulate the DSD concentrations and are responsible for the vertical transport of water in the cloud. The larger droplets found in background clouds are associated with weak water vapour competition and a bimodal distribution of droplet sizes in the lower levels of the cloud, which enables an earlier initiation of the collision–coalescence process. This study shows that the pollution produced by Manaus significantly affects warm-phase microphysical properties of the surrounding clouds by changing the initial DSD formation. The corresponding effects on ice-phase processes and precipitation formation will be the focus of future endeavours.« less
NASA Astrophysics Data System (ADS)
Nayak, M.; Beck, J.; Udrea, B.
This paper focuses on the aerospace application of a single beam laser rangefinder (LRF) for 3D imaging, shape detection, and reconstruction in the context of a space-based space situational awareness (SSA) mission scenario. The primary limitation to 3D imaging from LRF point clouds is the one-dimensional nature of the single beam measurements. A method that combines relative orbital motion and scanning attitude motion to generate point clouds has been developed and the design and characterization of multiple relative motion and attitude maneuver profiles are presented. The target resident space object (RSO) has the shape of a generic telecommunications satellite. The shape and attitude of the RSO are unknown to the chaser satellite however, it is assumed that the RSO is un-cooperative and has fixed inertial pointing. All sensors in the metrology chain are assumed ideal. A previous study by the authors used pure Keplerian motion to perform a similar 3D imaging mission at an asteroid. A new baseline for proximity operations maneuvers for LRF scanning, based on a waypoint adaptation of the Hill-Clohessy-Wiltshire (HCW) equations is examined. Propellant expenditure for each waypoint profile is discussed and combinations of relative motion and attitude maneuvers that minimize the propellant used to achieve a minimum required point cloud density are studied. Both LRF strike-point coverage and point cloud density are maximized; the capability for 3D shape registration and reconstruction from point clouds generated with a single beam LRF without catalog comparison is proven. Next, a method of using edge detection algorithms to process a point cloud into a 3D modeled image containing reconstructed shapes is presented. Weighted accuracy of edge reconstruction with respect to the true model is used to calculate a qualitative “ metric” that evaluates effectiveness of coverage. Both edge recognition algorithms and the metric are independent of point cloud densit- , therefore they are utilized to compare the quality of point clouds generated by various attitude and waypoint command profiles. The RSO model incorporates diverse irregular protruding shapes, such as open sensor covers, instrument pods and solar arrays, to test the limits of the algorithms. This analysis is used to mathematically prove that point clouds generated by a single-beam LRF can achieve sufficient edge recognition accuracy for SSA applications, with meaningful shape information extractable even from sparse point clouds. For all command profiles, reconstruction of RSO shapes from the point clouds generated with the proposed method are compared to the truth model and conclusions are drawn regarding their fidelity.
Satellite-Observed Vertical Structures of Clouds over the Amazon Basin
NASA Astrophysics Data System (ADS)
Wu, M.; Lee, J. E.
2017-12-01
The long wet season of the Amazon basin currently plays a critical role in the terrestrial ecosystem, regulating carbon balance and supporting high biodiversity. It has been argued that the land surface processes are important in maintaining high precipitation; yet, how the land-atmosphere interactions modulate the atmospheric processes are not completely understood. As a first step toward solving this problem, here we examine the vertical structures of clouds and the thermodynamics of the atmosphere over the entire basin at the different time of the year. We combine the vertical distribution of cloud water content from CloudSat, and the atmospheric thermodynamic conditions from the ECMWF ERA-interim reanalysis to compare and contrast the atmospheric condition at different time of the year-the wet, dry, and dry-to-wet transition seasons-and in different regions-ever-wet evergreen broadleaf forests, wet evergreen broadleaf forests with a dry season, and dry wooded grasslands/woodlands-following water stress gradient. In the ever-wet and wet regions, a large amount of cloud ice water is present in the upper atmosphere (above 11km) and convective available potential energy (CAPE) is high during the transition season, supporting the claim that the convective activity is strongest during the transition season. In the dry region, there are more cloud water above 8km over woodlands than over wooded grasslands during the dry and transition seasons, indicating the influence of the land cover. We also classified our data following the large-scale circulation pattern, and the CloudSat data support more deep convective activities in the wet and dry regions when the wind blows from the east during the wet and transition seasons. As a next step, we will focus more on linking the cloud structure to the large-scale circulation and surface processes.
Observations and Measurements on Unsteady Cloud Cavitation Flow Structures
NASA Astrophysics Data System (ADS)
Gu, L. X.; Yan, G. J.; Huang, B.
2015-12-01
The objectives of this paper are to investigate the unsteady structures and hydrodynamics of cavitating flows. Experimental results are presented for a Clark-Y hydrofoil, which is fixed at α=0°, 5° and 8°. The high-speed video camera and Particle Image Velocimetry (PIV) are applied to investigate the transient flow structures. The dynamic measurement system is used to record the dynamic characteristics. The cloud cavitation exhibits noticeable unsteady characteristics. For the case of α=0°, there exit strong interactions between the attached cavity and the re-entrant flow. While for the case of α=8°, the re-entrant flow is relatively thin and the interaction between the cavity and re-entrant flow is limited. The results also present that the periodic collapse and shedding of the large-scale cloud cavitation, which leads to substantial increase of turbulent velocity fluctuations in the cavity region. Experimental evidence indicates that the hydrodynamics are clearly affected by the cavitating flow structures, the amplitude of load fluctuation are much higher for the cloud cavitating cases.
Aerosol and cloud vertical structure in New York City: micro-pulse lidar measurements and validation
NASA Astrophysics Data System (ADS)
Hassebo, Ahmed; Ahmed, Sameh; Hassebo, Yasser Y.
2017-02-01
We report on the measurements of aerosol and cloud vertical structure in New York City (NYC) using the first polarization Micro pulse Lidar (MPL) located at the City University of New York (CUNY). MPL operation, setup, data collection and correction will be introduced. Preliminary results and comparison analysis between 2015 and 2016 of cloud vertical structure and the Planetary Boundary Layer (PBL) above NYC will be discussed. An investigation analysis of the impact of NYC rush hour pollution on the level of PBL depth will be introduced using the MPL measurements (such as temporal and spatial trends in aerosol and cloud structure). Applications of the MPL tow-polarization channels will be investigated. Potential future studies and collaborations in protecting NYC against environmental disasters by employing more devices along with MPL real-time data will be emphasized. For pedagogical purposes, a lab module was developed to be implemented in the newly developed undergraduate track in Earth System Science and Environmental Engineering (ESE) at LaGuardia Community College of CUNY (LaGCC), more details will be presented.
Castellazzi, Giovanni; D'Altri, Antonio Maria; Bitelli, Gabriele; Selvaggi, Ilenia; Lambertini, Alessandro
2015-07-28
In this paper, a new semi-automatic procedure to transform three-dimensional point clouds of complex objects to three-dimensional finite element models is presented and validated. The procedure conceives of the point cloud as a stacking of point sections. The complexity of the clouds is arbitrary, since the procedure is designed for terrestrial laser scanner surveys applied to buildings with irregular geometry, such as historical buildings. The procedure aims at solving the problems connected to the generation of finite element models of these complex structures by constructing a fine discretized geometry with a reduced amount of time and ready to be used with structural analysis. If the starting clouds represent the inner and outer surfaces of the structure, the resulting finite element model will accurately capture the whole three-dimensional structure, producing a complex solid made by voxel elements. A comparison analysis with a CAD-based model is carried out on a historical building damaged by a seismic event. The results indicate that the proposed procedure is effective and obtains comparable models in a shorter time, with an increased level of automation.
Bimodal pair f-KdV dynamics in star-forming clouds
NASA Astrophysics Data System (ADS)
Karmakar, Pralay Kumar; Haloi, Archana; Roy, Supriya
2018-04-01
A theoretical formalism for investigating the bimodal conjugational mode dynamics of hybrid source, dictated by a unique pair of forced Korteweg-de Vries (f-KdV) equations in a complex turbo-magnetized star-forming cloud, is reported. It uses a standard multi-scale analysis executed over the cloud-governing equations in a closure form to derive the conjugated pair f-KdV system. We numerically see the structural features of two distinctive classes of eigenmode patterns stemming from the conjoint gravito-electrostatic interplay. The electrostatic compressive monotonic aperiodic shock-like patterns and gravitational compressive non-monotonic oscillatory shock-like structures are excitable. It is specifically revealed that the constitutive grain-charge (grain-mass) acts as electrostatic stabilizer (gravitational destabilizer) against the global cloud collapse dynamics. The basic features of the nonlinear coherent structures are confirmed in systematic phase-plane landscapes, indicating electrostatic irregular non-homoclinic open trajectories and gravitational atypical non-chaotic homoclinic fixed-point attractors. The relevance in the real astro-cosmic scenarios of the early phases of structure formation via wave-driven fluid-accretive transport processes is summarily emphasized.
NASA Technical Reports Server (NTRS)
Starr, D. OC.; Cox, S. K.
1985-01-01
A simplified cirrus cloud model is presented which may be used to investigate the role of various physical processes in the life cycle of a cirrus cloud. The model is a two-dimensional, time-dependent, Eulerian numerical model where the focus is on cloud-scale processes. Parametrizations are developed to account for phase changes of water, radiative processes, and the effects of microphysical structure on the vertical flux of ice water. The results of a simulation of a thin cirrostratus cloud are given. The results of numerical experiments performed with the model are described in order to demonstrate the important role of cloud-scale processes in determining the cloud properties maintained in response to larger scale forcing. The effects of microphysical composition and radiative processes are considered, as well as their interaction with thermodynamic and dynamic processes within the cloud. It is shown that cirrus clouds operate in an entirely different manner than liquid phase stratiform clouds.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Song, H.; Wang, M.; Ghan, S. J.; Dong, X.
2016-12-01
he main objective of this study is to systematically evaluate the MBL cloud properties simulated in CAM5 family models using a combination of satellite-based CloudSat/MODIS observations and ground-based observations from the ARM Azores site, with a special focus on MBL cloud microphysics and warm rain process. First, we will present a global evaluation based on satellite observations and retrievals. We will compare global cloud properties (e.g., cloud fraction, cloud vertical structure, cloud CER, COT, and LWP, as well as drizzle frequency and intensity diagnosed using the CAM5-COSP instrumental simulators) simulated in the CAM5 models with the collocated CloudSat and MODIS observations. We will also present some preliminary results from a regional evaluation based mainly on ground observations from ARM Azores site. We will compare MBL cloud properties simulated in CAM5 models over the ARM Azores site with collocated satellite (MODIS and CloudSat) and ground-based observations from the ARM site.
NASA Astrophysics Data System (ADS)
Scholten, O.; Trinh, T. N. G.; de Vries, K. D.; Hare, B. M.
2018-01-01
The radio intensity and polarization footprint of a cosmic-ray induced extensive air shower is determined by the time-dependent structure of the current distribution residing in the plasma cloud at the shower front. In turn, the time dependence of the integrated charge-current distribution in the plasma cloud, the longitudinal shower structure, is determined by interesting physics which one would like to extract, such as the location and multiplicity of the primary cosmic-ray collision or the values of electric fields in the atmosphere during thunderstorms. To extract the structure of a shower from its footprint requires solving a complicated inverse problem. For this purpose we have developed a code that semianalytically calculates the radio footprint of an extensive air shower given an arbitrary longitudinal structure. This code can be used in an optimization procedure to extract the optimal longitudinal shower structure given a radio footprint. On the basis of air-shower universality we propose a simple parametrization of the structure of the plasma cloud. This parametrization is based on the results of Monte Carlo shower simulations. Deriving the parametrization also teaches which aspects of the plasma cloud are important for understanding the features seen in the radio-emission footprint. The calculated radio footprints are compared with microscopic CoREAS simulations.
Characteristics Associated with the Madden-Julian Oscillation at Manus Island
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Liping; McFarlane, Sally A.; Flaherty, Julia E.
2013-05-15
Ground-based high temporal and vertical resolution datasets from 2002 to 2008 of observations at the Atmospheric Radiation Measurement (ARM) Tropical Western Pacific (TWP) site on Manus Island, Papua New Guinea are used to examine the evolution of clouds and rainfall associated with the MJO life cycle. A composite MJO event is developed based on the NOAA MJO Index 4 using 13 events. The analysis shows that the cloud evolution during the composited MJO life cycle depicts a two-phase structure consisting of a development phase and a mature phase. During the development phase, congestus is the most important cloud type; duringmore » the mature phase, deep convection is the dominant cloud type. Consistent with this two-phase structure, the heavy rainfall frequency also shows a two-peak structure during the MJO life cycle. Light rainfall does not show a clear relation to the MJO life cycle, but shows variability on shorter time scales. From the development phase to the mature phase, the MJO structure shifts from the Type I to Type II structure, showing a different phase relationship between convection and dynamic fields (or wave motion) in the development and mature phases. During the shift, mid-level clouds play an important role in moving moisture to the mid-troposphere and preparing the atmosphere for the following deep convection. The discharge-recharge theory explains some of observed features of the MJO evolution at the ARM TWP Manus Island site.« less
Does the Alfvén wave wreck the large-scale magnetic cloud structure?
NASA Astrophysics Data System (ADS)
Raghav, Anil N.; Kule, Ankita
2018-06-01
Alfvén waves are primal and pervasive in space plasmas and significantly contributes to microscale fluctuations in the solar wind and some heliospheric processes. Here, we demonstrate the first observable distinct feature of Alfvén wave while propagating from magnetic cloud to trailing solar wind. The Walén test is used to confirm their presence in selected regions. The amplitude ratio of inward to outward Alfvén waves is employed to establish their flow direction. The dominant inward flow is observed in magnetic cloud whereas trailing solar wind shows the dominant outward flow of Alfvén waves. The observed reduction in Walén slope and correlation coefficient within magnetic cloud suggest (i) the simultaneous presence of an inward & outward Alfvén waves and/or (ii) a possibility of magnetic reconnection and/or (iii) development of thermal anisotropy and/or (iv) dissipation of Alfvénic fluctuations. The study implies that either the Alfvén waves dissipate in the magnetic cloud or its presence can lead to disruption of the magnetic cloud structure.
Magnetic seismology of interstellar gas clouds: Unveiling a hidden dimension
NASA Astrophysics Data System (ADS)
Tritsis, Aris; Tassis, Konstantinos
2018-05-01
Stars and planets are formed inside dense interstellar molecular clouds by processes imprinted on the three-dimensional (3D) morphology of the clouds. Determining the 3D structure of interstellar clouds remains challenging because of projection effects and difficulties measuring the extent of the clouds along the line of sight. We report the detection of normal vibrational modes in the isolated interstellar cloud Musca, allowing determination of the 3D physical dimensions of the cloud. We found that Musca is vibrating globally, with the characteristic modes of a sheet viewed edge on, not the characteristics of a filament as previously supposed. We reconstructed the physical properties of Musca through 3D magnetohydrodynamic simulations, reproducing the observed normal modes and confirming a sheetlike morphology.
Observations of marine stratocumulus clouds during FIRE
NASA Technical Reports Server (NTRS)
Albrecht, Bruce A.; Randall, David A.; Nicholls, Stephen
1988-01-01
The First International Satellite Cloud Climatology Project Regional Experiment (FIRE) to study extensive fields of stratocumulus clouds off the coast of California is presented. Measurements on the regional and detailed local scales were taken, allowing for a wide interpretation of the mean, turbulent, microphysical, radiative, and chemical characteristics of stratocumulus. Multiple aircraft and ground-based remote-sensing systems were used to study the time evolution of the boundary layer structure over a three-week period, and probes from tethered balloons were used to measure turbulence and to collect cloud-microphysical and cloud-radiative data. The observations provide a base for studying the generation maintenance and dissipation of stratocumulus clouds, and could aid in developing numerical models and improved methods for retrieving cloud properties by satellite.
NASA Astrophysics Data System (ADS)
Davis, A. B.
2015-12-01
Planetary atmospheres are made primarily of molecules, and their optical properties are well known. They scatter sunlight across the spectrum, but far more potently at shorter wavelengths. Consequently, they redden the Sun as it sets and, at the same time, endow the daytime sky with its characteristic blue hue. There are also microscopic atmospheric particulates that are equally omnipresent because small enough (up to ~10s of microns) to remain lofted for long periods of time. However, in contrast with molecules of the major gases, their concentrations are highly variable in space and time. Their optical properties are also far more interesting. These airborne particles are either solid---hence the word "aerosols"---or liquid, most notably in the form of cloud droplets. Needless to say that both aerosols and clouds have major impacts on the balance of the Earth's climate system. Harder to understand, but nonetheless true, is that their climate impacts are much harder to assess by Earth system modelers than those of greenhouse gases such as CO2. That makes them prime targets of study by multiple approaches, including ground- and space-based remote sensing. To characterize aerosols and clouds quantitatively by optical remote sensing methods, either passive (sunlight-based) or active (laser-based), we need predictive capability for the signals recorded by sensors, whether ground-based, airborne, or carried by satellites. This in turn draws on the physical theory of "radiative transfer" that describes how the light propagates and scatters in the molecular-and-particulate atmosphere. This is a challenge for remote sensing scientists. I will show why by simulating with simple means the point spread function or "PSF" of scattering particulate atmospheres with varying opacity, thus covering tabletop analogs of the pristine air, the background aerosol, all the way to optically thick cloudy airmasses. I will also show PSF measurements of real clouds over New Mexico and Oklahoma. These were used as a piece of the Multiple Scattering Cloud Lidar (MuSCL) observations from which cloud properties where derived and compared against independent determinations. For the STEM-hungry, I will show how to derive the dependence of the cloud PSF on cloud geometry and opacity.
Zhang, Yang; Chen, Ying; Fan, Jiwen; ...
2015-09-14
Aerosol particles can affect cloud microphysical properties by serving as ice nuclei (IN). Large uncertainties exist in the ice nucleation parameterizations (INPs) used in current climate models. In this Part II paper, to examine the sensitivity of the model predictions to different heterogeneous INPs, WRF-CAM5 simulation using the INP of Niemand et al. (N12) [1] is conducted over East Asia for two full years, 2006 and 2011, and compared with simulation using the INP of Meyers et al. (M92) [2], which is the original INP used in CAM5. M92 calculates the nucleated ice particle concentration as a function of icemore » supersaturation, while N12 represents the nucleated ice particle concentration as a function of temperature and the number concentrations and surface areas of dust particles. Compared to M92, the WRF-CAM5 simulation with N12 produces significantly higher nucleated ice crystal number concentrations (ICNCs) in the northern domain where dust sources are located, leading to significantly higher cloud ice number and mass concentrations and ice water path, but the opposite is true in the southern domain where temperatures and moistures play a more important role in ice formation. Overall, the simulation with N12 gives lower downward shortwave radiation but higher downward longwave radiation, cloud liquid water path, cloud droplet number concentrations, and cloud optical depth. The increase in cloud optical depth and the decrease in downward solar flux result in a stronger shortwave and longwave cloud forcing, and decreases temperature at 2-m and precipitation. Changes in temperature and radiation lower surface concentrations of OH, O₃, SO₄²⁻, and PM 2.5, but increase surface concentrations of CO, NO₂, and SO₂ over most of the domain. By acting as cloud condensation nuclei (CCN) and IN, dust particles have different impacts on cloud water and ice number concentrations, radiation, and temperature at 2-m and precipitation depending on whether the dominant role of dust is CCN or IN. These results indicate the importance of the heterogeneous ice nucleation treatments and dust emissions in accurately simulating regional climate and air quality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yang; Chen, Ying; Fan, Jiwen
Aerosol particles can affect cloud microphysical properties by serving as ice nuclei (IN). Large uncertainties exist in the ice nucleation parameterizations (INPs) used in current climate models. In this Part II paper, to examine the sensitivity of the model predictions to different heterogeneous INPs, WRF-CAM5 simulation using the INP of Niemand et al. (N12) [1] is conducted over East Asia for two full years, 2006 and 2011, and compared with simulation using the INP of Meyers et al. (M92) [2], which is the original INP used in CAM5. M92 calculates the nucleated ice particle concentration as a function of icemore » supersaturation, while N12 represents the nucleated ice particle concentration as a function of temperature and the number concentrations and surface areas of dust particles. Compared to M92, the WRF-CAM5 simulation with N12 produces significantly higher nucleated ice crystal number concentrations (ICNCs) in the northern domain where dust sources are located, leading to significantly higher cloud ice number and mass concentrations and ice water path, but the opposite is true in the southern domain where temperatures and moistures play a more important role in ice formation. Overall, the simulation with N12 gives lower downward shortwave radiation but higher downward longwave radiation, cloud liquid water path, cloud droplet number concentrations, and cloud optical depth. The increase in cloud optical depth and the decrease in downward solar flux result in a stronger shortwave and longwave cloud forcing, and decreases temperature at 2-m and precipitation. Changes in temperature and radiation lower surface concentrations of OH, O₃, SO₄²⁻, and PM 2.5, but increase surface concentrations of CO, NO₂, and SO₂ over most of the domain. By acting as cloud condensation nuclei (CCN) and IN, dust particles have different impacts on cloud water and ice number concentrations, radiation, and temperature at 2-m and precipitation depending on whether the dominant role of dust is CCN or IN. These results indicate the importance of the heterogeneous ice nucleation treatments and dust emissions in accurately simulating regional climate and air quality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yang; Chen, Ying; Fan, Jiwen
Aerosol particles can affect cloud microphysical properties by serving as ice nuclei (IN). Large uncertainties exist in the ice nucleation parameterizations (INPs) used in current climate models. In this Part II paper, to examine the sensitivity of the model predictions to different heterogeneous INPs, WRF-CAM5 simulation using the INP of Niemand et al. (N12) [1] is conducted over East Asia for two full years, 2006 and 2011, and compared with simulation using the INP of Meyers et al. (M92) [2], which is the original INP used in CAM5. M92 calculates the nucleated ice particle concentration as a function of icemore » supersaturation, while N12 represents the nucleated ice particle concentration as a function of temperature and the number concentrations and surface areas of dust particles. Compared to M92, the WRF-CAM5 simulation with N12 produces significantly higher nucleated ice crystal number concentrations (ICNCs) in the northern domain where dust sources are located, leading to significantly higher cloud ice number and mass concentrations and ice water path, but the opposite is true in the southern domain where temperatures and moistures play a more important role in ice formation. Overall, the simulation with N12 gives lower downward shortwave radiation but higher downward longwave radiation, cloud liquid water path, cloud droplet number concentrations, and cloud optical depth. The increase in cloud optical depth and the decrease in downward solar flux result in a stronger shortwave and longwave cloud forcing, and decreases temperature at 2-m and precipitation. Changes in temperature and radiation lower surface concentrations of OH, O 3, SO 4 2-, and PM2.5, but increase surface concentrations of CO, NO 2, and SO 2 over most of the domain. By acting as cloud condensation nuclei (CCN) and IN, dust particles have different impacts on cloud water and ice number concentrations, radiation, and temperature at 2-m and precipitation depending on whether the dominant role of dust is CCN or IN. These results indicate the importance of the heterogeneous ice nucleation treatments and dust emissions in accurately simulating regional climate and air quality.« less
Typical and Unusual Properties of Magnetic Clouds during the WIND Era
NASA Technical Reports Server (NTRS)
Lepping, R. P.; Berdichevsky, D.; Szabo, A.; Burlaga, L. F.; Thompson, B. J.; Mariani, F.; Lazarus, A. J.; Steinberg, J. T.
1999-01-01
A list of 33 magnetic clouds as identified in WIND magnetic field and plasma data has been compiled. The intervals for these events are provided as part of NASA/GSFC, WIND-MFI's Website under the URL http://lepmfi.qsfc.nasa.gov/mfi/mag_cloud publ.html#table The period covered in this study is from early 1995 to November 1998 which primarily occurs in the quiet part of the solar cycle. A force free, cylindrically symmetric, magnetic field model has been applied to the field data in 1-hour averaged form for all of these events (except one small event where 10 min avg's were used) and the resulting fit-parameters examined. Each event was provided a semi-quantitatively determined quality factor (excellent, good or poor). A set of 28 good or better cases, spanning a surprisingly large range of values for its various properties, was used for further analysis. These properties are, for example, durations, attitudes, sizes, asymmetries, axial field strengths, speeds, and relative impact parameters. They will be displayed and analyzed, along with some related derived quantities, with emphasis on typical vs unusual properties and on the magnetic fields magnetic clouds' relationships to the Sun and to upstream interplanetary shocks, where possible. For example, it is remarkable how narrowly distributed the speeds of these clouds are, and the overall average speed (390 techniques km/s) is less than that normally quoted for the average solar wind speed (420 km/s) despite the fact that many of these clouds are d"drivers" of interplanetary shocks. On average, a cloud appears to be a little less symmetric when the spacecraft is able to pass close to the cloud's axis as compared to a farther out passage. The average longitude and latitude (in GSE) of the axes of the clouds are 85 degrees and 8 degrees, respectively, with standard deviations near 40 degrees. Also, the half=yearly averaged axial magnetic flux has approximately tripled. almost monotonically, from about 6 to 17 X 10(exp 29) Mx over the first 3.5 years of consideration, but with a large uncertainty on each of the half-year estimates, because of small sampling. If true,this finding implies an approximate tripling of the events' solar fluxes over this period as it goes into solar maximum.
NASA Technical Reports Server (NTRS)
Grund, C. J.; Eloranta, E. W.
1996-01-01
During the First ISCCP Region Experiment (FIRE) cirrus intensive field observation (IFO) the High Spectral Resolution Lidar was operated from a roof top site on the University of Wisconsin-Madison campus. Because the HSRL technique separately measures the molecular and cloud particle backscatter components of the lidar return, the optical thickness is determined independent of particle backscatter. This is accomplished by comparing the known molecular density distribution to the observed decrease in molecular backscatter signal with altitude. The particle to molecular backscatter ratio yields calibrated measurements of backscatter cross sections that can be plotted ro reveal cloud morphology without distortion due to attenuation. Changes in cloud particle size, shape, and phase affect the backscatter to extinction ratio (backscatter-phase function). The HSRL independently measures cloud particle backscatter phase function. This paper presents a quantitative analysis of the HSRL cirrus cloud data acquired over an approximate 33 hour period of continuous near zenith observations. Correlations between small scale wind structure and cirrus cloud morphology have been observed. These correlations can bias the range averaging inherent in wind profiling lidars of modest vertical resolution, leading to increased measurement errors at cirrus altitudes. Extended periods of low intensity backscatter were noted between more strongly organized cirrus cloud activity. Optical thicknesses ranging from 0.01-1.4, backscatter phase functions between 0.02-0.065 sr (exp -1) and backscatter cross sections spanning 4 orders of magnitude were observed. the altitude relationship between cloud top and bottom boundaries and the cloud optical center altitude was dependent on the type of formation observed Cirrus features were observed with characteristic wind drift estimated horizontal sizes of 5-400 km. The clouds frequently exhibited cellular structure with vertical to horizontal dimension ratios of 1:5-1:1.
Chandra X-ray Observation of a Mature Cloud-Shock Interaction in the Bright Eastern Knot of Puppis A
NASA Technical Reports Server (NTRS)
Hwang, Una; Flanagan, Kathryn A.; Petre, Robert
2005-01-01
We present Chandra X-ray images and spectra of the most prominent cloud-shock interaction region in the Puppis A supernova remnant. The Bright Eastern Knot (BEK) has two main morphological components: (1) a bright compact knot that lies directly behind the apex of an indentation in the eastern X-ray boundary and (2) lying 1 westward behind the shock, a curved vertical structure (bar) that is separated from a smaller bright cloud (cap) by faint diffuse emission. Based on hardness images and spectra, we identify the bar and cap as a single shocked interstellar cloud. Its morphology strongly resembles the "voided sphere" structures seen at late times in Klein et al. experimental simulat.ions of cloud-shock interactions, when the crushing of the cloud by shear instabilities is well underway. We infer an intera.ction time of roughly cloud-crushing timescales, which translates to 2000-4000 years, based on the X-ray temperature, physical size, and estimated expansion of the shocked cloud. This is the first X-ray identified example of a cloud-shock interaction in this advanced phase. Closer t o the shock front, the X-ray emission of the compact knot in the eastern part of the BEK region implies a recent interaction with relatively denser gas, some of which lies in front of the remnant. The complex spatial relationship of the X-ray emission of the compact knot to optical [O III] emission suggests that there are multiple cloud interactions occurring along the line of sight.
NASA Astrophysics Data System (ADS)
Wareing, C. J.; Pittard, J. M.; Falle, S. A. E. G.
2017-09-01
We have used the AMR hydrodynamic code, mg, to perform 3D hydrodynamic simulations with self-gravity of stellar feedback in a spherical clumpy molecular cloud formed through the action of thermal instability. We simulate the interaction of the mechanical energy input from 15, 40, 60 and 120 M⊙ stars into a 100 pc diameter 16 500 M⊙ cloud with a roughly spherical morphology with randomly distributed high-density condensations. The stellar winds are introduced using appropriate non-rotating Geneva stellar evolution models. In the 15 M⊙ star case, the wind has very little effect, spreading around a few neighbouring clumps before becoming overwhelmed by the cloud collapse. In contrast, in the 40, 60 and 120 M⊙ star cases, the more powerful stellar winds create large cavities and carve channels through the cloud, breaking out into the surrounding tenuous medium during the wind phase and considerably altering the cloud structure. After 4.97, 3.97 and 3.01 Myr, respectively, the massive stars explode as supernovae (SNe). The wind-sculpted surroundings considerably affect the evolution of these SN events as they both escape the cloud along wind-carved channels and sweep up remaining clumps of cloud/wind material. The 'cloud' as a coherent structure does not survive the SN from any of these stars, but only in the 120 M⊙ case is the cold molecular material completely destabilized and returned to the unstable thermal phase. In the 40 and 60 M⊙ cases, coherent clumps of cold material are ejected from the cloud by the SN, potentially capable of further star formation.
NASA Technical Reports Server (NTRS)
Knupp, Kevin R.
1991-01-01
A summary of an investigation of deep convective cloud systems that typify the summertime subtropical environment of northern Alabama is presented. The major portion of the research effort included analysis of data acquired during the 1986 Cooperative Huntsville Meteorological Experiment (COHMEX), which consisted of the joint programs Satellite Precipitation and Cloud Experiment (SPACE) under NASA direction, the Microburst and Service Thunderstorm (MIST) Program under NSF sponsorship, and the FAA-Lincoln Laboratory Weather Study (FLOWS). This work relates closely to the SPACE component of COHMEX, one of the general goals of which was to further the understanding of kinematic and precipitation structure of convective cloud systems. The special observational plateforms that were available under the SPACE/COHMEX Program are shown. The original objectives included studies of both isolated deep convection and of (small) mesoscale convection systems that are observed in the Southeast environment. In addition, it was proposed to include both observational and comparative numerical modeling studies of these characteristic cloud systems. Changes in scope were made during the course of this investigation to better accommodate both the manpower available and the data that was acquired. A greater emphasis was placed on determination of the internal structure of small mesoscale convective systems, and the relationship of internal dynamical and microphysical processes to the observed cloud top behavior as inferred from GOES IR (30 min) data. The major accomplishments of this investigation are presented.
Features of clouds and convection during the pre- and post-onset periods of the Asian summer monsoon
NASA Astrophysics Data System (ADS)
Wang, Yi; Wang, Chenghai
2016-02-01
The statistical characteristics of the vertical structure of clouds in the Asian summer monsoon region are investigated using two CloudSat standard products (Geometrical Profiling Product (GEOPROF) and GEOPROF-lidar) during the pre- and post-onset periods of the Asian summer monsoon, from April to August in 2007-2010. The characteristics of the vertical structure of clouds are analyzed and compared for different underlying surfaces in four subregions during this period. Also analyzed are the evolution of precipitation and hydrometeors with the northward advance of the Asian summer monsoon, and different hydrometeor characteristics attributed to the underlying surface features. The results indicate that the vertical cloud amounts increase significantly after the summer monsoon onset; this increase occurs first in the upper troposphere and then at lower altitudes over tropical regions (South Asian and tropical Northwest Pacific regions). The heights of the cloud top ascend, and the vertical height between the top and the base of the whole cloud increases. Single-layer (SL) and double-layer (DL) hydrometeors contribute over half and one third of the cloudiness in these 5 months (April to August), respectively. The multilayer frequencies increase in four different regions, and cloud layer depths (CLD) increase after the summer monsoon onset. These changes are stronger in tropical regions than in subtropical regions, while the vertical distance between cloud layers (VDCL) deceases in tropical regions and increases in subtropical regions.
Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parishani, Hossein; Pritchard, Michael S.; Bretherton, Christopher S.
Systematic biases in the representation of boundary layer (BL) clouds are a leading source of uncertainty in climate projections. A variation on superparameterization (SP) called “ultraparameterization” (UP) is developed, in which the grid spacing of the cloud-resolving models (CRMs) is fine enough (250 × 20 m) to explicitly capture the BL turbulence, associated clouds, and entrainment in a global climate model capable of multiyear simulations. UP is implemented within the Community Atmosphere Model using 2° resolution (~14,000 embedded CRMs) with one-moment microphysics. By using a small domain and mean-state acceleration, UP is computationally feasible today and promising for exascale computers.more » Short-duration global UP hindcasts are compared with SP and satellite observations of top-of-atmosphere radiation and cloud vertical structure. The most encouraging improvement is a deeper BL and more realistic vertical structure of subtropical stratocumulus (Sc) clouds, due to stronger vertical eddy motions that promote entrainment. Results from 90 day integrations show climatological errors that are competitive with SP, with a significant improvement in the diurnal cycle of offshore Sc liquid water. Ongoing concerns with the current UP implementation include a dim bias for near-coastal Sc that also occurs less prominently in SP and a bright bias over tropical continental deep convection zones. Nevertheless, UP makes global eddy-permitting simulation a feasible and interesting alternative to conventionally parameterized GCMs or SP-GCMs with turbulence parameterizations for studying BL cloud-climate and cloud-aerosol feedback.« less
Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence
Parishani, Hossein; Pritchard, Michael S.; Bretherton, Christopher S.; ...
2017-06-19
Systematic biases in the representation of boundary layer (BL) clouds are a leading source of uncertainty in climate projections. A variation on superparameterization (SP) called “ultraparameterization” (UP) is developed, in which the grid spacing of the cloud-resolving models (CRMs) is fine enough (250 × 20 m) to explicitly capture the BL turbulence, associated clouds, and entrainment in a global climate model capable of multiyear simulations. UP is implemented within the Community Atmosphere Model using 2° resolution (~14,000 embedded CRMs) with one-moment microphysics. By using a small domain and mean-state acceleration, UP is computationally feasible today and promising for exascale computers.more » Short-duration global UP hindcasts are compared with SP and satellite observations of top-of-atmosphere radiation and cloud vertical structure. The most encouraging improvement is a deeper BL and more realistic vertical structure of subtropical stratocumulus (Sc) clouds, due to stronger vertical eddy motions that promote entrainment. Results from 90 day integrations show climatological errors that are competitive with SP, with a significant improvement in the diurnal cycle of offshore Sc liquid water. Ongoing concerns with the current UP implementation include a dim bias for near-coastal Sc that also occurs less prominently in SP and a bright bias over tropical continental deep convection zones. Nevertheless, UP makes global eddy-permitting simulation a feasible and interesting alternative to conventionally parameterized GCMs or SP-GCMs with turbulence parameterizations for studying BL cloud-climate and cloud-aerosol feedback.« less
Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence
NASA Astrophysics Data System (ADS)
Parishani, Hossein; Pritchard, Michael S.; Bretherton, Christopher S.; Wyant, Matthew C.; Khairoutdinov, Marat
2017-07-01
Systematic biases in the representation of boundary layer (BL) clouds are a leading source of uncertainty in climate projections. A variation on superparameterization (SP) called "ultraparameterization" (UP) is developed, in which the grid spacing of the cloud-resolving models (CRMs) is fine enough (250 × 20 m) to explicitly capture the BL turbulence, associated clouds, and entrainment in a global climate model capable of multiyear simulations. UP is implemented within the Community Atmosphere Model using 2° resolution (˜14,000 embedded CRMs) with one-moment microphysics. By using a small domain and mean-state acceleration, UP is computationally feasible today and promising for exascale computers. Short-duration global UP hindcasts are compared with SP and satellite observations of top-of-atmosphere radiation and cloud vertical structure. The most encouraging improvement is a deeper BL and more realistic vertical structure of subtropical stratocumulus (Sc) clouds, due to stronger vertical eddy motions that promote entrainment. Results from 90 day integrations show climatological errors that are competitive with SP, with a significant improvement in the diurnal cycle of offshore Sc liquid water. Ongoing concerns with the current UP implementation include a dim bias for near-coastal Sc that also occurs less prominently in SP and a bright bias over tropical continental deep convection zones. Nevertheless, UP makes global eddy-permitting simulation a feasible and interesting alternative to conventionally parameterized GCMs or SP-GCMs with turbulence parameterizations for studying BL cloud-climate and cloud-aerosol feedback.
NASA Astrophysics Data System (ADS)
Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.
2013-06-01
The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, is an important characteristic in order to describe the impact of clouds in a changing climate. In this work several methods to estimate the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering number and position of cloud layers, with a ground based system which is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ on the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study these methods are applied to 125 radiosonde profiles acquired at the ARM Southern Great Plains site during all seasons of year 2009 and endorsed by GOES images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The overall agreement for the methods ranges between 44-88%; four methods produce total agreements around 85%. Further tests and improvements are applied on one of these methods. In addition, we attempt to make this method suitable for low resolution vertical profiles, which could be useful in atmospheric modeling. The total agreement, even when using low resolution profiles, can be improved up to 91% if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.
Structure and covariance of cloud and rain water in marine stratocumulus
NASA Astrophysics Data System (ADS)
Witte, Mikael; Morrison, Hugh; Gettelman, Andrew
2017-04-01
Many state of the art cloud microphysics parameterizations in large-scale models use assumed probability density functions (pdfs) to represent subgrid scale variability of relevant resolved scale variables such as vertical velocity and cloud liquid water content (LWC). Integration over the assumed pdfs of small scale variability results in physically consistent prediction of nonlinear microphysical process rates and obviates the need to apply arbitrary tuning parameters to the calculated rates. In such parameterizations, the covariance of cloud and rain LWC is an important quantity for parameterizing the accretion process by which rain drops grow via collection of cloud droplets. This covariance has been diagnosed by other workers from a variety of observational and model datasets (Boutle et al., 2013; Larson and Griffin, 2013; Lebsock et al., 2013), but there is poor agreement in findings across the studies. Two key assumptions that may explain some of the discrepancies among past studies are 1) LWC (both cloud and rain) distributions are statistically stationary and 2) spatial structure may be neglected. Given the highly intermittent nature of precipitation and the fact that cloud LWC has been found to be poorly represented by stationary pdfs (e.g. Marshak et al., 1997), neither of the aforementioned assumptions are valid. Therefore covariance must be evaluated as a function of spatial scale without the assumption of stationary statistics (i.e. variability cannot be expressed as a fractional standard deviation, which necessitates well-defined first and second moments of the LWC distribution). The present study presents multifractal analyses of both rain and cloud LWC using aircraft data from the VOCALS-REx field campaign to illustrate the importance of spatial structure in microphysical parameterizations and extends the results of Boutle et al. (2013) to provide a parameterization of rain-cloud water covariance as a function of spatial scale without the assumption of statistical stationarity.
The structure of the clouds distributed operating system
NASA Technical Reports Server (NTRS)
Dasgupta, Partha; Leblanc, Richard J., Jr.
1989-01-01
A novel system architecture, based on the object model, is the central structuring concept used in the Clouds distributed operating system. This architecture makes Clouds attractive over a wide class of machines and environments. Clouds is a native operating system, designed and implemented at Georgia Tech. and runs on a set of generated purpose computers connected via a local area network. The system architecture of Clouds is composed of a system-wide global set of persistent (long-lived) virtual address spaces, called objects that contain persistent data and code. The object concept is implemented at the operating system level, thus presenting a single level storage view to the user. Lightweight treads carry computational activity through the code stored in the objects. The persistent objects and threads gives rise to a programming environment composed of shared permanent memory, dispensing with the need for hardware-derived concepts such as the file systems and message systems. Though the hardware may be distributed and may have disks and networks, the Clouds provides the applications with a logically centralized system, based on a shared, structured, single level store. The current design of Clouds uses a minimalist philosophy with respect to both the kernel and the operating system. That is, the kernel and the operating system support a bare minimum of functionality. Clouds also adheres to the concept of separation of policy and mechanism. Most low-level operating system services are implemented above the kernel and most high level services are implemented at the user level. From the measured performance of using the kernel mechanisms, we are able to demonstrate that efficient implementations are feasible for the object model on commercially available hardware. Clouds provides a rich environment for conducting research in distributed systems. Some of the topics addressed in this paper include distributed programming environments, consistency of persistent data and fault-tolerance.
Thin Cloud Detection Method by Linear Combination Model of Cloud Image
NASA Astrophysics Data System (ADS)
Liu, L.; Li, J.; Wang, Y.; Xiao, Y.; Zhang, W.; Zhang, S.
2018-04-01
The existing cloud detection methods in photogrammetry often extract the image features from remote sensing images directly, and then use them to classify images into cloud or other things. But when the cloud is thin and small, these methods will be inaccurate. In this paper, a linear combination model of cloud images is proposed, by using this model, the underlying surface information of remote sensing images can be removed. So the cloud detection result can become more accurate. Firstly, the automatic cloud detection program in this paper uses the linear combination model to split the cloud information and surface information in the transparent cloud images, then uses different image features to recognize the cloud parts. In consideration of the computational efficiency, AdaBoost Classifier was introduced to combine the different features to establish a cloud classifier. AdaBoost Classifier can select the most effective features from many normal features, so the calculation time is largely reduced. Finally, we selected a cloud detection method based on tree structure and a multiple feature detection method using SVM classifier to compare with the proposed method, the experimental data shows that the proposed cloud detection program in this paper has high accuracy and fast calculation speed.
A suppression of differential rotation in Jupiter’s deep interior
NASA Astrophysics Data System (ADS)
Guillot, T.; Miguel, Y.; Militzer, B.; Hubbard, W. B.; Kaspi, Y.; Galanti, E.; Cao, H.; Helled, R.; Wahl, S. M.; Iess, L.; Folkner, W. M.; Stevenson, D. J.; Lunine, J. I.; Reese, D. R.; Biekman, A.; Parisi, M.; Durante, D.; Connerney, J. E. P.; Levin, S. M.; Bolton, S. J.
2018-03-01
Jupiter’s atmosphere is rotating differentially, with zones and belts rotating at speeds that differ by up to 100 metres per second. Whether this is also true of the gas giant’s interior has been unknown, limiting our ability to probe the structure and composition of the planet. The discovery by the Juno spacecraft that Jupiter’s gravity field is north–south asymmetric and the determination of its non-zero odd gravitational harmonics J3, J5, J7 and J9 demonstrates that the observed zonal cloud flow must persist to a depth of about 3,000 kilometres from the cloud tops. Here we report an analysis of Jupiter’s even gravitational harmonics J4, J6, J8 and J10 as observed by Juno and compared to the predictions of interior models. We find that the deep interior of the planet rotates nearly as a rigid body, with differential rotation decreasing by at least an order of magnitude compared to the atmosphere. Moreover, we find that the atmospheric zonal flow extends to more than 2,000 kilometres and to less than 3,500 kilometres, making it fully consistent with the constraints obtained independently from the odd gravitational harmonics. This depth corresponds to the point at which the electric conductivity becomes large and magnetic drag should suppress differential rotation. Given that electric conductivity is dependent on planetary mass, we expect the outer, differentially rotating region to be at least three times deeper in Saturn and to be shallower in massive giant planets and brown dwarfs.
Bent, John M.; Faibish, Sorin; Grider, Gary
2015-06-30
Cloud object storage is enabled for archived data, such as checkpoints and results, of high performance computing applications using a middleware process. A plurality of archived files, such as checkpoint files and results, generated by a plurality of processes in a parallel computing system are stored by obtaining the plurality of archived files from the parallel computing system; converting the plurality of archived files to objects using a log structured file system middleware process; and providing the objects for storage in a cloud object storage system. The plurality of processes may run, for example, on a plurality of compute nodes. The log structured file system middleware process may be embodied, for example, as a Parallel Log-Structured File System (PLFS). The log structured file system middleware process optionally executes on a burst buffer node.
Meteorology of Jupiter's Equatorial Hot Spots and Plumes from Cassini
NASA Technical Reports Server (NTRS)
Choi, David Sanghun; Showman, Adam P.; Vasavada, Ashwin R.; Simon-Miller, Amy A.
2013-01-01
We present an updated analysis of Jupiter's equatorial meteorology from Cassini observations. For two months preceding the spacecraft's closest approach, the Imaging Science Subsystem (ISS) onboard regularly imaged the atmosphere. We created time-lapse movies from this period in order to analyze the dynamics of equatorial hot spots and their interactions with adjacent latitudes. Hot spots are relatively cloud-free regions that emit strongly at 5 lm; improved knowledge of these features is crucial for fully understanding Galileo probe measurements taken during its descent through one. Hot spots are quasistable, rectangular dark areas on visible-wavelength images, with defined eastern edges that sharply contrast with surrounding clouds, but diffuse western edges serving as nebulous boundaries with adjacent equatorial plumes. Hot spots exhibit significant variations in size and shape over timescales of days and weeks. Some of these changes correspond with passing vortex systems from adjacent latitudes interacting with hot spots. Strong anticyclonic gyres present to the south and southeast of the dark areas appear to circulate into hot spots. Impressive, bright white plumes occupy spaces in between hot spots. Compact cirrus-like 'scooter' clouds flow rapidly through the plumes before disappearing within the dark areas. These clouds travel at 150-200 m/s, much faster than the 100 m/s hot spot and plume drift speed. This raises the possibility that the scooter clouds may be more illustrative of the actual jet stream speed at these latitudes. Most previously published zonal wind profiles represent the drift speed of the hot spots at their latitude from pattern matching of the entire longitudinal image strip. If a downward branch of an equatorially-trapped Rossby wave controls the overall appearance of hot spots, however, the westward phase velocity of the wave leads to underestimates of the true jet stream speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Elizabeth A. K.; Giovanelli, Riccardo; Haynes, Martha P., E-mail: betsey@astro.cornell.edu, E-mail: riccardo@astro.cornell.edu, E-mail: haynes@astro.cornell.edu
2013-05-01
We present a catalog of 59 ultra-compact high velocity clouds (UCHVCs) extracted from the 40% complete ALFALFA HI-line survey. The ALFALFA UCHVCs have median flux densities of 1.34 Jy km s{sup -1}, median angular diameters of 10', and median velocity widths of 23 km s{sup -1}. We show that the full UCHVC population cannot easily be associated with known populations of high velocity clouds. Of the 59 clouds presented here, only 11 are also present in the compact cloud catalog extracted from the commensal GALFA-HI survey, demonstrating the utility of this separate dataset and analysis. Based on their sky distributionmore » and observed properties, we infer that the ALFALFA UCHVCs are consistent with the hypothesis that they may be very low mass galaxies within the Local Volume. In that case, most of their baryons would be in the form of gas, and because of their low stellar content, they remain unidentified by extant optical surveys. At distances of {approx}1 Mpc, the UCHVCs have neutral hydrogen (H I) masses of {approx}10{sup 5}-10{sup 6} M{sub Sun }, H I diameters of {approx}2-3 kpc, and indicative dynamical masses within the H I extent of {approx}10{sup 7}-10{sup 8} M{sub Sun }, similar to the Local Group ultra-faint dwarf Leo T. The recent ALFALFA discovery of the star-forming, metal-poor, low mass galaxy Leo P demonstrates that this hypothesis is true in at least one case. In the case of the individual UCHVCs presented here, confirmation of their extragalactic nature will require further work, such as the identification of an optical counterpart to constrain their distance.« less
Spatial Variability of CCN Sized Aerosol Particles
NASA Astrophysics Data System (ADS)
Asmi, A.; Väänänen, R.
2014-12-01
The computational limitations restrict the grid size used in GCM models, and for many cloud types they are too large when compared to the scale of the cloud formation processes. Several parameterizations for e.g. convective cloud formation exist, but information on spatial subgrid variation of the cloud condensation nuclei (CCNs) sized aerosol concentration is not known. We quantify this variation as a function of the spatial scale by using datasets from airborne aerosol measurement campaigns around the world including EUCAARI LONGREX, ATAR, INCA, INDOEX, CLAIRE, PEGASOS and several regional airborne campaigns in Finland. The typical shapes of the distributions are analyzed. When possible, we use information obtained by CCN counters. In some other cases, we use particle size distribution measured by for example SMPS to get approximated CCN concentration. Other instruments used include optical particle counters or condensational particle counters. When using the GCM models, the CCN concentration used for each the grid-box is often considered to be either flat, or as an arithmetic mean of the concentration inside the grid-box. However, the aircraft data shows that the concentration values are often lognormal distributed. This, combined with the subgrid variations in the land use and atmospheric properties, might cause that the aerosol-cloud interactions calculated by using mean values to vary significantly from the true effects both temporary and spatially. This, in turn, can cause non-linear bias into the GCMs. We calculate the CCN aerosol concentration distribution as a function of different spatial scales. The measurements allow us to study the variation of these distributions within from hundreds of meters up to hundreds of kilometers. This is used to quantify the potential error when mean values are used in GCMs.
NASA Technical Reports Server (NTRS)
Schwemmer, Geary K.; Miller, David O.
2005-01-01
Clouds have a powerful influence on atmospheric radiative transfer and hence are crucial to understanding and interpreting the exchange of radiation between the Earth's surface, the atmosphere, and space. Because clouds are highly variable in space, time and physical makeup, it is important to be able to observe them in three dimensions (3-D) with sufficient resolution that the data can be used to generate and validate parameterizations of cloud fields at the resolution scale of global climate models (GCMs). Simulation of photon transport in three dimensionally inhomogeneous cloud fields show that spatial inhomogeneities tend to decrease cloud reflection and absorption and increase direct and diffuse transmission, Therefore it is an important task to characterize cloud spatial structures in three dimensions on the scale of GCM grid elements. In order to validate cloud parameterizations that represent the ensemble, or mean and variance of cloud properties within a GCM grid element, measurements of the parameters must be obtained on a much finer scale so that the statistics on those measurements are truly representative. High spatial sampling resolution is required, on the order of 1 km or less. Since the radiation fields respond almost instantaneously to changes in the cloud field, and clouds changes occur on scales of seconds and less when viewed on scales of approximately 100m, the temporal resolution of cloud properties should be measured and characterized on second time scales. GCM time steps are typically on the order of an hour, but in order to obtain sufficient statistical representations of cloud properties in the parameterizations that are used as model inputs, averaged values of cloud properties should be calculated on time scales on the order of 10-100 s. The Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) provides exceptional temporal (100 ms) and spatial (30 m) resolution measurements of aerosol and cloud backscatter in three dimensions. HARLIE was used in a ground-based configuration in several recent field campaigns. Principal data products include aerosol backscatter profiles, boundary layer heights, entrainment zone thickness, cloud fraction as a function of altitude and horizontal wind vector profiles based on correlating the motions of clouds and aerosol structures across portions of the scan. Comparisons will be made between various cloud detecting instruments to develop a baseline performance metric.
Cloud Simulations in Response to Turbulence Parameterizations in the GISS Model E GCM
NASA Technical Reports Server (NTRS)
Yao, Mao-Sung; Cheng, Ye
2013-01-01
The response of cloud simulations to turbulence parameterizations is studied systematically using the GISS general circulation model (GCM) E2 employed in the Intergovernmental Panel on Climate Change's (IPCC) Fifth Assessment Report (AR5).Without the turbulence parameterization, the relative humidity (RH) and the low cloud cover peak unrealistically close to the surface; with the dry convection or with only the local turbulence parameterization, these two quantities improve their vertical structures, but the vertical transport of water vapor is still weak in the planetary boundary layers (PBLs); with both local and nonlocal turbulence parameterizations, the RH and low cloud cover have better vertical structures in all latitudes due to more significant vertical transport of water vapor in the PBL. The study also compares the cloud and radiation climatologies obtained from an experiment using a newer version of turbulence parameterization being developed at GISS with those obtained from the AR5 version. This newer scheme differs from the AR5 version in computing nonlocal transports, turbulent length scale, and PBL height and shows significant improvements in cloud and radiation simulations, especially over the subtropical eastern oceans and the southern oceans. The diagnosed PBL heights appear to correlate well with the low cloud distribution over oceans. This suggests that a cloud-producing scheme needs to be constructed in a framework that also takes the turbulence into consideration.
NASA Astrophysics Data System (ADS)
Darmawan, H.; Walter, T. R.; Brotopuspito, K. S.; Subandriyo, S.; Nandaka, M. A.
2017-12-01
Six gas-driven explosions between 2012 and 2014 had changed the morphology and structures of the Merapi lava dome. The explosions mostly occurred during rainfall season and caused NW-SE elongated open fissures that dissected the lava dome. In this study, we conducted UAVs photogrammetry before and after the explosions to investigate the morphological and structural changes and to assess the quality of the UAV photogrammetry. The first UAV photogrammetry was conducted on 26 April 2012. After the explosions, we conducted Terrestrial Laser Scanning (TLS) survey on 18 September 2014 and repeated UAV photogrammetry on 6 October 2015. We applied Structure from Motion (SfM) algorithm to reconstruct 3D SfM point clouds and photomosaics of the 2012 and 2015 UAVs images. Topography changes has been analyzed by calculating height difference between the 2012 and 2015 SfM point clouds, while structural changes has been investigated by visual comparison between the 2012 and 2015 photo mosaics. Moreover, a quality assessment of the results of UAV photogrammetry has been done by comparing the 3D SfM point clouds to TLS dataset. Result shows that the 2012 and 2015 SfM point clouds have 0.19 and 0.57 m difference compared to the TLS point cloud. Furthermore, topography, and structural changes reveal that the 2012-14 explosions were controlled by pre-existing structures. The volume of the 2012-14 explosions is 26.400 ± 1320 m3 DRE. In addition, we find a structurally delineated unstable block at the southern front of the dome which potentially collapses in the future. We concluded that the 2012-14 explosions occurred due to interaction between magma intrusion and rain water and were facilitated by pre-existing structures. The unstable block potentially leads to a rock avalanche hazard. Furthermore, our drone photogrammetry results show very promising and therefore we recommend to use drone for topography mapping in lava dome building volcanoes.
NASA Astrophysics Data System (ADS)
MacDonald, Alexander B.; Dadashazar, Hossein; Chuang, Patrick Y.; Crosbie, Ewan; Wang, Hailong; Wang, Zhen; Jonsson, Haflidi H.; Flagan, Richard C.; Seinfeld, John H.; Sorooshian, Armin
2018-04-01
This study uses airborne cloud water composition measurements to characterize the vertical structure of air-equivalent mass concentrations of water-soluble species in marine stratocumulus clouds off the California coast. A total of 385 cloud water samples were collected in the months of July and August between 2011 and 2016 and analyzed for water-soluble ionic and elemental composition. Three characteristic profiles emerge: (i) a reduction of concentration with in-cloud altitude for particulate species directly emitted from sources below cloud without in-cloud sources (e.g., Cl- and Na+), (ii) an increase of concentration with in-cloud altitude (e.g., NO2- and formate), and (iii) species exhibiting a peak in concentration in the middle of cloud (e.g., non-sea-salt SO42-, NO3-, and organic acids). Vertical profiles of rainout parameters such as loss frequency, lifetime, and change in concentration with respect to time show that the scavenging efficiency throughout the cloud depth depends strongly on the thickness of the cloud. Thin clouds exhibit a greater scavenging loss frequency at cloud top, while thick clouds have a greater scavenging loss frequency at cloud base. The implications of these results for treatment of wet scavenging in models are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, Alexander B.; Dadashazar, Hossein; Chuang, Patrick Y.
This study uses airborne cloud water composition measurements to characterize the vertical structure of air-equivalent mass concentrations of water-soluble species in marine stratocumulus clouds off the California coast. A total of 385 cloud water samples were collected in the months of July and August between 2011 and 2016 and analyzed for water-soluble ionic and elemental composition. Three characteristic profiles emerge: (i) a reduction of concentration with in-cloud altitude for particulate species directly emitted from sources below cloud without in-cloud sources (e.g., Cl-, Na+); (ii) an increase of concentration with in-cloud altitude (e.g., NO2-, formate); and (iii) species exhibiting a peakmore » in concentration in the middle of cloud (e.g., non-sea salt SO42-, NO3-, organic acids). Vertical profiles of rainout parameters such as loss frequency, lifetime, and change in concentration with respect to time show that the scavenging efficiency throughout the cloud depth depends strongly on the thickness of the cloud. Thin clouds exhibit a greater scavenging loss frequency at cloud top, while thick clouds have a greater scavenging loss frequency at cloud base. The implications of these results for treatment of wet scavenging in models are discussed.« less
Waves on the surface of the Orion molecular cloud.
Berné, Olivier; Marcelino, Núria; Cernicharo, José
2010-08-19
Massive stars influence their parental molecular cloud, and it has long been suspected that the development of hydrodynamical instabilities can compress or fragment the cloud. Identifying such instabilities has proved difficult. It has been suggested that elongated structures (such as the 'pillars of creation') and other shapes arise because of instabilities, but alternative explanations are available. One key signature of an instability is a wave-like structure in the gas, which has hitherto not been seen. Here we report the presence of 'waves' at the surface of the Orion molecular cloud near where massive stars are forming. The waves seem to be a Kelvin-Helmholtz instability that arises during the expansion of the nebula as gas heated and ionized by massive stars is blown over pre-existing molecular gas.
Cloud draft structure and trace gas transport
NASA Technical Reports Server (NTRS)
Scala, John R.; Tao, Wei-Kuo; Thompson, Anne M.; Simpson, Joanne; Garstang, Michael; Pickering, Kenneth E.; Browell, Edward V.; Sachse, Glen W.; Gregory, Gerald L.; Torres, Arnold L.
1990-01-01
During the second Amazon Boundary Layer Experiment (ABLE 2B), meteorological observations, chemical measurements, and model simulations are utilized in order to interpret convective cloud draft structure and to analyze its role in transport and vertical distribution of trace gases. One-dimensional photochemical model results suggest that the observed poststorm changes in ozone concentration can be attributed to convective transports rather than photochemical production and the results of a two-dimensional time-dependent cloud model simulation are presented for the May 6, 1987 squall system. The mesoscale convective system exhibited evidence of significant midlevel detrainment in addition to transports to anvil heights. Chemical measurements of O3 and CO obtained in the convective environment are used to predict photochemical production within the troposphere and to corroborate the cloud model results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Dong; Liu, Yangang
2014-12-18
Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost,more » allowing for more realistic representation of cloud radiation interactions in large-scale models.« less
Influence of cirrus clouds on weather and climate processes A global perspective
NASA Technical Reports Server (NTRS)
Liou, K.-N.
1986-01-01
Current understanding and knowledge of the composition and structure of cirrus clouds are reviewed and documented in this paper. In addition, the radiative properties of cirrus clouds as they relate to weather and climate processes are described in detail. To place the relevance and importance of cirrus composition, structure and radiative properties into a global perspective, pertinent results derived from simulation experiments utilizing models with varying degrees of complexity are presented; these have been carried out for the investigation of the influence of cirrus clouds on the thermodynamics and dynamics of the atmosphere. In light of these reviews, suggestions are outlined for cirrus-radiation research activities aimed toward the development and improvement of weather and climate models for a physical understanding of cause and effect relationships and for prediction purposes.
NASA Astrophysics Data System (ADS)
Haus, R.; Kappel, D.; Arnold, G.
2014-04-01
Thermal structure and cloud features in the atmosphere of Venus are investigated using spectroscopic nightside measurements recorded by the Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS) aboard ESA’s Venus Express mission in the moderate resolution infrared mapping channel (M-IR, 1-5 μm). New methodical approaches and retrieval results for the northern hemisphere have been recently described by Haus et al. (Haus, R., Kappel, D., Arnold, G. [2013]. Planet. Space Sci. 89, 77-101. http://dx.doi.org/10.1016/j.pss.2013.09.020). Now, southern hemisphere maps of mesospheric temperature and cloud parameter fields are presented that cover variations with altitude, latitude, local time, and mission time. Measurements from the entire usable data archive are utilized comprising radiation spectra recorded during eight Venus solar days between April 2006 and October 2008. Zonal averages of retrieved temperature altitude profiles in both hemispheres are very similar and give evidence of global N-S axial symmetry of atmospheric temperature structure. Cold collar and warmer polar vortex regions exhibit the strongest temperature variability with standard deviations up to 8.5 K at 75°S and 63 km altitude compared with about 1.0 K at low and mid latitudes above 75 km. The mesospheric temperature field strongly depends on local time. At altitudes above about 75 km, the atmosphere is warmer in the second half of night, while the dawn side at lower altitudes is usually colder than the dusk side by about 8 K. Local minimum temperature of 220 K occurs at 03:00 h local time at 65 km and 60°S. Temperature standard deviation at polar latitudes is particularly large near midnight. Temperature variability with solar longitude is forced by solar thermal tides with a dominating diurnal component. The influence of observed cloud parameter changes on retrieved mesospheric zonal average temperature structure is moderate and does not exceed 2-3 K at altitudes between 60 and 75 km. The mesospheric thermal structure was essentially stable with Julian date between 2006 and 2008. Global N-S axial symmetry is also observed in cloud structures. Cloud top altitude at 1 μm slowly decreases from 71 km at the equator to 70 km at 45-50° and rapidly drops poleward of 50°. It reaches 61 km over both poles. Average particle size in the vertical cloud column increases from mid latitudes toward the poles and also toward the equator resulting in minimum and maximum zonal average cloud opacities of about 32 and 42 and a planetary average of 36.5 at 1 μm. Zonal averages of cloud features are similar at different solar days, but variations with local time are very complex and inseparably associated with the superrotation of the clouds.
On the Quality of Point-Clouds Derived from Sfm-Photogrammetry Applied to UAS Imagery
NASA Astrophysics Data System (ADS)
Carbonneau, P.; James, T.
2014-12-01
Structure from Motion photogrammetry (SfM-photogrammetry) recently appeared in environmental sciences as an impressive tool allowing for the creation of topographic data from unstructured imagery. Several authors have tested the performance of SfM-photogrammetry vs that of TLS or dGPS. Whilst the initial results were very promising, there is currently a growing awareness that systematic deformations occur in DEMs and point-clouds derived from SfM-photogrammetry. Notably, some authors have identified a systematic doming manifest as an increasing error vs distance to the model centre. Simulation studies have confirmed that this error is due to errors in the calibration of camera distortions. This work aims to further investigate these effects in the presence of real data. We start with a dataset of 220 images acquired from a sUAS. After obtaining an initial self-calibration of the camera lens with Agisoft Photoscan, our method consists in applying systematic perturbations to 2 key lens parameters: Focal length and the k1 distortion parameter. For each perturbation, a point-cloud was produced and compared to LiDAR data. After deriving the mean and standard deviation of the error residuals (ɛ), a 2nd order polynomial surface was fitted to the errors point-cloud and the peak ɛ defined as the mathematical extrema of this surface. The results are presented in figure 1. This figure shows that lens perturbations can induce a range of errors with systematic behaviours. Peak ɛ is primarily controlled by K1 with a secondary control exerted by the focal length. These results allow us to state that: To limit the peak ɛ to 10cm, the K1 parameter must be calibrated to within 0.00025 and the focal length to within 2.5 pixels (≈10 µm). This level of calibration accuracy can only be achieved with proper design of image acquisition and control network geometry. Our main point is therefore that SfM is not a bypass to a rigorous and well-informed photogrammetric approach. Users of SfM-photogrammetry will still require basic training and knowledge in the fundamentals of photogrammetry. This is especially true for applications where very small topographic changes need to be detected or where gradient-sensitive processes need to be modelled.
Hubble Spots Northern Hemispheric Clouds on Uranus
NASA Technical Reports Server (NTRS)
1997-01-01
Using visible light, astronomers for the first time this century have detected clouds in the northern hemisphere of Uranus. The newest images, taken July 31 and Aug. 1, 1997 with NASA Hubble Space Telescope's Wide Field and Planetary Camera 2, show banded structure and multiple clouds. Using these images, Dr. Heidi Hammel (Massachusetts Institute of Technology) and colleagues Wes Lockwood (Lowell Observatory) and Kathy Rages (NASA Ames Research Center) plan to measure the wind speeds in the northern hemisphere for the first time.
Uranus is sometimes called the 'sideways' planet, because its rotation axis tipped more than 90 degrees from the planet's orbit around the Sun. The 'year' on Uranus lasts 84 Earth years, which creates extremely long seasons - winter in the northern hemisphere has lasted for nearly 20 years. Uranus has also been called bland and boring, because no clouds have been detectable in ground-based images of the planet. Even to the cameras of the Voyager spacecraft in 1986, Uranus presented a nearly uniform blank disk, and discrete clouds were detectable only in the southern hemisphere. Voyager flew over the planet's cloud tops near the dead of northern winter (when the northern hemisphere was completely shrouded in darkness).Spring has finally come to the northern hemisphere of Uranus. The newest images, both the visible-wavelength ones described here and those taken a few days earlier with the Near Infrared and Multi-Object Spectrometer (NICMOS) by Erich Karkoschka (University of Arizona), show a planet with banded structure and detectable clouds.Two images are shown here. The 'aqua' image (on the left) is taken at 5,470 Angstroms, which is near the human eye's peak response to wavelength. Color has been added to the image to show what a person on a spacecraft near Uranus might see. Little structure is evident at this wavelength, though with image-processing techniques, a small cloud can be seen near the planet's northern limb (rightmost edge). The 'red' image (on the right) is taken at 6,190 Angstroms, and is sensitive to absorption by methane molecules in the planet's atmosphere. The banded structure of Uranus is evident, and the small cloud near the northern limb is now visible.Scientists are expecting that the discrete clouds and banded structure may become even more pronounced as Uranus continues in its slow pace around the Sun. 'Some parts of Uranus haven't seen the Sun in decades,' says Dr. Hammel, 'and historical records suggest that we may see the development of more banded structure and patchy clouds as the planet's year progresses.'Some scientists have speculated that the winds of Uranus are not symmetric around the planet's equator, but no clouds were visible to test those theories. The new data will provide the opportunity to measure the northern winds. Hammel and colleagues expect to have results soon.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http:// oposite.stsci.edu/pubinfo/Formation of Spiral-Arm Spurs and Bound Clouds in Vertically Stratified Galactic Gas Disks
NASA Astrophysics Data System (ADS)
Kim, Woong-Tae; Ostriker, Eve C.
2006-07-01
We investigate the growth of spiral-arm substructure in vertically stratified, self-gravitating, galactic gas disks, using local numerical MHD simulations. Our new models extend our previous two-dimensional studies, which showed that a magnetized spiral shock in a thin disk can undergo magneto-Jeans instability (MJI), resulting in regularly spaced interarm spur structures and massive gravitationally bound fragments. Similar spur (or ``feather'') features have recently been seen in high-resolution observations of several galaxies. Here we consider two sets of numerical models: two-dimensional simulations that use a ``thick-disk'' gravitational kernel, and three-dimensional simulations with explicit vertical stratification. Both models adopt an isothermal equation of state with cs=7 km s-1. When disks are sufficiently magnetized and self-gravitating, the result in both sorts of models is the growth of spiral-arm substructure similar to that in our previous razor-thin models. Reduced self-gravity due to nonzero disk thickness increases the spur spacing to ~10 times the Jeans length at the arm peak. Bound clouds that form from spur fragmentation have masses ~(1-3)×107 Msolar each, similar to the largest observed GMCs. The mass-to-flux ratios and specific angular momenta of the bound condensations are lower than large-scale galactic values, as is true for observed GMCs. We find that unmagnetized or weakly magnetized two-dimensional models are unstable to the ``wiggle instability'' previously identified by Wada & Koda. However, our fully three-dimensional models do not show this effect. Nonsteady motions and strong vertical shear prevent coherent vortical structures from forming, evidently suppressing the wiggle instability. We also find no clear traces of Parker instability in the nonlinear spiral arm substructures that emerge, although conceivably Parker modes may help seed the MJI at early stages since azimuthal wavelengths are similar.
NASA Astrophysics Data System (ADS)
Zein-Sabatto, Saleh; Mikhail, Maged; Bodruzzaman, Mohammad; DeSimio, Martin; Derriso, Mark; Behbahani, Alireza
2012-06-01
It has been widely accepted that data fusion and information fusion methods can improve the accuracy and robustness of decision-making in structural health monitoring systems. It is arguably true nonetheless, that decision-level is equally beneficial when applied to integrated health monitoring systems. Several decisions at low-levels of abstraction may be produced by different decision-makers; however, decision-level fusion is required at the final stage of the process to provide accurate assessment about the health of the monitored system as a whole. An example of such integrated systems with complex decision-making scenarios is the integrated health monitoring of aircraft. Thorough understanding of the characteristics of the decision-fusion methodologies is a crucial step for successful implementation of such decision-fusion systems. In this paper, we have presented the major information fusion methodologies reported in the literature, i.e., probabilistic, evidential, and artificial intelligent based methods. The theoretical basis and characteristics of these methodologies are explained and their performances are analyzed. Second, candidate methods from the above fusion methodologies, i.e., Bayesian, Dempster-Shafer, and fuzzy logic algorithms are selected and their applications are extended to decisions fusion. Finally, fusion algorithms are developed based on the selected fusion methods and their performance are tested on decisions generated from synthetic data and from experimental data. Also in this paper, a modeling methodology, i.e. cloud model, for generating synthetic decisions is presented and used. Using the cloud model, both types of uncertainties; randomness and fuzziness, involved in real decision-making are modeled. Synthetic decisions are generated with an unbiased process and varying interaction complexities among decisions to provide for fair performance comparison of the selected decision-fusion algorithms. For verification purposes, implementation results of the developed fusion algorithms on structural health monitoring data collected from experimental tests are reported in this paper.
ERIC Educational Resources Information Center
Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen
2016-01-01
The present study compares the highly interactive cloud-classroom (HIC) system with traditional methods of teaching materials science that utilize crystal structure picture or real crystal structure model, in order to examine its learning effectiveness across three dimensions: knowledge, comprehension and application. The aim of this study was to…
Overview of Boundary Layer Clouds Using Satellite and Ground-Based Measurements
NASA Astrophysics Data System (ADS)
Xi, B.; Dong, X.; Wu, P.; Qiu, S.
2017-12-01
A comprehensive summary of boundary layer clouds properties based on our few recently studies will be presented. The analyses include the global cloud fractions and cloud macro/micro- physical properties based on satellite measurements using both CERES-MODIS and CloudSat/Caliposo data products,; the annual/seasonal/diurnal variations of stratocumulus clouds over different climate regions (mid-latitude land, mid-latitude ocean, and Arctic region) using DOE ARM ground-based measurements over Southern great plain (SGP), Azores (GRW), and North slope of Alaska (NSA) sites; the impact of environmental conditions to the formation and dissipation process of marine boundary layer clouds over Azores site; characterizing Arctice mixed-phase cloud structure and favorable environmental conditions for the formation/maintainess of mixed-phase clouds over NSA site. Though the presentation has widely spread topics, we will focus on the representation of the ground-based measurements over different climate regions; evaluation of satellite retrieved cloud properties using these ground-based measurements, and understanding the uncertainties of both satellite and ground-based retrievals and measurements.
Terrain Extraction by Integrating Terrestrial Laser Scanner Data and Spectral Information
NASA Astrophysics Data System (ADS)
Lau, C. L.; Halim, S.; Zulkepli, M.; Azwan, A. M.; Tang, W. L.; Chong, A. K.
2015-10-01
The extraction of true terrain points from unstructured laser point cloud data is an important process in order to produce an accurate digital terrain model (DTM). However, most of these spatial filtering methods just utilizing the geometrical data to discriminate the terrain points from nonterrain points. The point cloud filtering method also can be improved by using the spectral information available with some scanners. Therefore, the objective of this study is to investigate the effectiveness of using the three-channel (red, green and blue) of the colour image captured from built-in digital camera which is available in some Terrestrial Laser Scanner (TLS) for terrain extraction. In this study, the data acquisition was conducted at a mini replica landscape in Universiti Teknologi Malaysia (UTM), Skudai campus using Leica ScanStation C10. The spectral information of the coloured point clouds from selected sample classes are extracted for spectral analysis. The coloured point clouds which within the corresponding preset spectral threshold are identified as that specific feature point from the dataset. This process of terrain extraction is done through using developed Matlab coding. Result demonstrates that a higher spectral resolution passive image is required in order to improve the output. This is because low quality of the colour images captured by the sensor contributes to the low separability in spectral reflectance. In conclusion, this study shows that, spectral information is capable to be used as a parameter for terrain extraction.
Lidar Studies of Extinction in Clouds in the ECLIPS Project
NASA Technical Reports Server (NTRS)
Martin, C.; Platt, R.; Young, Stuart A.; Patterson, Graeme P.
1992-01-01
The Experimental Cloud Lidar Pilot Study (ECLIPS) project has now had two active phases in 1989 and 1991. A number of laboratories around the world have taken part in the study. The observations have yielded new data on cloud height and structure, and have yielded some useful new information on the retrieval of cloud optical properties, together with the uncertainties involved. Clouds have a major impact on the climate of the earth. They have the effect of reducing the mean surface temperature from 30 C for a cloudless planet to a value of about 15 C for present cloud conditions. However, it is not at all certain how clouds would react to a change in the planetary temperature in the event of climate change due to a radiative forcing from greenhouse gases. Clouds both reflect out sunlight (negative feedback) and enhance the greenhouse effect (positive feedback), but the ultimate sign of cloud feedback is unknown. Because of these uncertainties, campaigns to study clouds intensely were initiated. The International Satellite Cloud Climatology (ISCPP) and the FIRE Campaigns (cirrus and stratocumulus) are examples. The ECLIPS was set up similarly to the above experiments to obtain information specifically on cloud base, but also cloud top (where possible), optical properties, and cloud structure. ECLIPS was designed to allow as many laboratories as possible globally to take part to get the largest range of clouds. It involves observations with elastic backscatter lidar, supported by infrared fluxes at the ground and radiosonde data, as basic instrumentation. More complex experiments using beam filter radiometers, solar pyranometers, and satellite data and often associated with other campaigns were also encouraged to join ECLIPS. Two periods for observation were chosen, Sep. - Dec. 1989 and Apr. - Jul. 1992 into which investigators were requested to fit 30 days of observations. These would be either continuous, or arranged to coincide with NOAA satellite overpasses to obtain AVHRR data. The distribution of the ECLIPS international effort as in 1991 is shown. The main gaps in the global distribution are in the tropics and the Southern Hemisphere.
NASA Astrophysics Data System (ADS)
Boltnev, R. E.; Vasiliev, M. M.; Kononov, E. A.; Petrov, O. F.
2018-04-01
The dusty plasma structures in a glow discharge of helium in a tube cooled by superfluid helium at a temperature of 1.6 K and higher have been studied experimentally. The bimodal dust plasma formed by clouds of polydisperse cerium dioxide particles and polymer nanoparticles has been analyzed. We have observed wave oscillations in the cloud of polymer nanoparticles (with a size up to 100 nm), which existed in a narrow temperature range from 1.6 to 2.17 K. Vortices have been observed in the dusty plasma structures at helium temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cecchini, Micael A.; Machado, Luiz A. T.; Comstock, Jennifer M.
The remote atmosphere over the Amazon can be similar to oceanic regions in terms of aerosol conditions and cloud type formations. This is especially true during the wet season. The main aerosol-related disturbances over the Amazon have both natural sources, such as dust transport from Africa, and anthropogenic sources, such as biomass burning or urban pollution. The present work considers the impacts of the latter on the microphysical properties of warm-phase clouds by analyzing observations of the interactions between the Manaus pollution plume and its surroundings, as part of the GoAmazon2014/5 Experiment. The analyzed period corresponds to the wet seasonmore » (specifically from February to March 2014 and corresponding to the first Intensive Operating Period (IOP1) of GoAmazon2014/5). The droplet size distributions reported are in the range 1 µm ≤ D ≤ 50 µm in order to capture the processes leading up to the precipitation formation. The wet season largely presents a clean background atmosphere characterized by frequent rain showers. As such, the contrast between background clouds and those affected by the Manaus pollution can be observed and detailed. The focus is on the characteristics of the initial microphysical properties in cumulus clouds predominantly at their early stages. The pollution-affected clouds are found to have smaller effective diameters and higher droplet number concentrations. The differences range from 10 to 40 % for the effective diameter and are as high as 1000% for droplet concentration for the same vertical levels. The growth rates of droplets with altitude are slower for pollution-affected clouds (2.90 compared to 5.59 µm km –1), as explained by the absence of bigger droplets at the onset of cloud development. Clouds under background conditions have higher concentrations of larger droplets (> 20 µm) near the cloud base, which would contribute significantly to the growth rates through the collision–coalescence process. The overall shape of the droplet size distribution (DSD) does not appear to be predominantly determined by updraught strength, especially beyond the 20 µm range. The aerosol conditions play a major role in that case. However, the updraughts modulate the DSD concentrations and are responsible for the vertical transport of water in the cloud. The larger droplets found in background clouds are associated with weak water vapour competition and a bimodal distribution of droplet sizes in the lower levels of the cloud, which enables an earlier initiation of the collision–coalescence process. This paper shows that the pollution produced by Manaus significantly affects warm-phase microphysical properties of the surrounding clouds by changing the initial DSD formation. The corresponding effects on ice-phase processes and precipitation formation will be the focus of future endeavors.« less
Cecchini, Micael A.; Machado, Luiz A. T.; Comstock, Jennifer M.; ...
2016-06-09
The remote atmosphere over the Amazon can be similar to oceanic regions in terms of aerosol conditions and cloud type formations. This is especially true during the wet season. The main aerosol-related disturbances over the Amazon have both natural sources, such as dust transport from Africa, and anthropogenic sources, such as biomass burning or urban pollution. The present work considers the impacts of the latter on the microphysical properties of warm-phase clouds by analyzing observations of the interactions between the Manaus pollution plume and its surroundings, as part of the GoAmazon2014/5 Experiment. The analyzed period corresponds to the wet seasonmore » (specifically from February to March 2014 and corresponding to the first Intensive Operating Period (IOP1) of GoAmazon2014/5). The droplet size distributions reported are in the range 1 µm ≤ D ≤ 50 µm in order to capture the processes leading up to the precipitation formation. The wet season largely presents a clean background atmosphere characterized by frequent rain showers. As such, the contrast between background clouds and those affected by the Manaus pollution can be observed and detailed. The focus is on the characteristics of the initial microphysical properties in cumulus clouds predominantly at their early stages. The pollution-affected clouds are found to have smaller effective diameters and higher droplet number concentrations. The differences range from 10 to 40 % for the effective diameter and are as high as 1000% for droplet concentration for the same vertical levels. The growth rates of droplets with altitude are slower for pollution-affected clouds (2.90 compared to 5.59 µm km –1), as explained by the absence of bigger droplets at the onset of cloud development. Clouds under background conditions have higher concentrations of larger droplets (> 20 µm) near the cloud base, which would contribute significantly to the growth rates through the collision–coalescence process. The overall shape of the droplet size distribution (DSD) does not appear to be predominantly determined by updraught strength, especially beyond the 20 µm range. The aerosol conditions play a major role in that case. However, the updraughts modulate the DSD concentrations and are responsible for the vertical transport of water in the cloud. The larger droplets found in background clouds are associated with weak water vapour competition and a bimodal distribution of droplet sizes in the lower levels of the cloud, which enables an earlier initiation of the collision–coalescence process. This paper shows that the pollution produced by Manaus significantly affects warm-phase microphysical properties of the surrounding clouds by changing the initial DSD formation. The corresponding effects on ice-phase processes and precipitation formation will be the focus of future endeavors.« less
Virtual Sensors: Using Data Mining to Efficiently Estimate Spectra
NASA Technical Reports Server (NTRS)
Srivastava, Ashok; Oza, Nikunj; Stroeve, Julienne
2004-01-01
Detecting clouds within a satellite image is essential for retrieving surface geophysical parameters, such as albedo and temperature, from optical and thermal imagery because the retrieval methods tend to be valid for clear skies only. Thus, routine satellite data processing requires reliable automated cloud detection algorithms that are applicable to many surface types. Unfortunately, cloud detection over snow and ice is difficult due to the lack of spectral contrast between clouds and snow. Snow and clouds are both highly reflective in the visible wavelen,ats and often show little contrast in the thermal Infrared. However, at 1.6 microns, the spectral signatures of snow and clouds differ enough to allow improved snow/ice/cloud discrimination. The recent Terra and Aqua Moderate Resolution Imaging Spectro-Radiometer (MODIS) sensors have a channel (channel 6) at 1.6 microns. Presently the most comprehensive, long-term information on surface albedo and temperature over snow- and ice-covered surfaces comes from the Advanced Very High Resolution Radiometer ( AVHRR) sensor that has been providing imagery since July 1981. The earlier AVHRR sensors (e.g. AVHRR/2) did not however have a channel designed for discriminating clouds from snow, such as the 1.6 micron channel available on the more recent AVHRR/3 or the MODIS sensors. In the absence of the 1.6 micron channel, the AVHRR Polar Pathfinder (APP) product performs cloud detection using a combination of time-series analysis and multispectral threshold tests based on the satellite's measuring channels to produce a cloud mask. The method has been found to work reasonably well over sea ice, but not so well over the ice sheets. Thus, improving the cloud mask in the APP dataset would be extremely helpful toward increasing the accuracy of the albedo and temperature retrievals, as well as extending the time-series of albedo and temperature retrievals from the more recent sensors to the historical ones. In this work, we use data mining methods to construct a model of MODIS channel 6 as a function of other channels that are common to both MODIS and AVHRR. The idea is to use the model to generate the equivalent of MODIS channel 6 for AVHRR as a function of the AVHRR equivalents to MODIS channels. We call this a Virtual Sensor because it predicts unmeasured spectra. The goal is to use this virtual channel 6. to yield a cloud mask superior to what is currently used in APP . Our results show that several data mining methods such as multilayer perceptrons (MLPs), ensemble methods (e.g., bagging), and kernel methods (e.g., support vector machines) generate channel 6 for unseen MODIS images with high accuracy. Because the true channel 6 is not available for AVHRR images, we qualitatively assess the virtual channel 6 for several AVHRR images.
The evolution of Titan's mid-latitude clouds
Griffith, C.A.; Penteado, P.; Baines, K.; Drossart, P.; Barnes, J.; Bellucci, G.; Bibring, J.; Brown, R.; Buratti, B.; Capaccioni, F.; Cerroni, P.; Clark, R.; Combes, M.; Coradini, A.; Cruikshank, D.; Formisano, V.; Jaumann, R.; Langevin, Y.; Matson, D.; McCord, T.; Mennella, V.; Nelson, R.; Nicholson, P.; Sicardy, B.; Sotin, Christophe; Soderblom, L.A.; Kursinski, R.
2005-01-01
Spectra from Cassini's Visual and Infrared Mapping Spectrometer reveal that the horizontal structure, height, and optical depth of Titan's clouds are highly, dynamic. Vigorous cloud centers are seen to rise from the middle to the upper troposphere within 30 minutes and dissipate within the next hour. Their development indicates that Titan's clouds evolve convectively; dissipate through rain; and, over the next several hours, waft downwind to achieve their great longitude extents. These and other characteristics suggest that temperate clouds originate from circulation-induced convergence, in addition to a forcing at the surface associated with Saturn's tides, geology, and/or surface composition.
The Potentials of Using Cloud Computing in Schools: A Systematic Literature Review
ERIC Educational Resources Information Center
Hartmann, Simon Birk; Braae, Lotte Qulleq Nygaard; Pedersen, Sine; Khalid, Md. Saifuddin
2017-01-01
Cloud Computing (CC) refers to the physical structure of a communications network, where data is stored in large data centers and can be accessed anywhere, at any time, and from different devices. This systematic literature review identifies and categorizes the potential and barriers of cloud-based teaching in schools from an international…
NASA Astrophysics Data System (ADS)
Pugnaghi, Sergio; Guerrieri, Lorenzo; Corradini, Stefano; Merucci, Luca
2016-07-01
Volcanic plume removal (VPR) is a procedure developed to retrieve the ash optical depth, effective radius and mass, and sulfur dioxide mass contained in a volcanic cloud from the thermal radiance at 8.7, 11, and 12 µm. It is based on an estimation of a virtual image representing what the sensor would have seen in a multispectral thermal image if the volcanic cloud were not present. Ash and sulfur dioxide were retrieved by the first version of the VPR using a very simple atmospheric model that ignored the layer above the volcanic cloud. This new version takes into account the layer of atmosphere above the cloud as well as thermal radiance scattering along the line of sight of the sensor. In addition to improved results, the new version also offers an easier and faster preliminary preparation and includes other types of volcanic particles (andesite, obsidian, pumice, ice crystals, and water droplets). As in the previous version, a set of parameters regarding the volcanic area, particle types, and sensor is required to run the procedure. However, in the new version, only the mean plume temperature is required as input data. In this work, a set of parameters to compute the volcanic cloud transmittance in the three quoted bands, for all the aforementioned particles, for both Mt. Etna (Italy) and Eyjafjallajökull (Iceland) volcanoes, and for the Terra and Aqua MODIS instruments is presented. Three types of tests are carried out to verify the results of the improved VPR. The first uses all the radiative transfer simulations performed to estimate the above mentioned parameters. The second one makes use of two synthetic images, one for Mt. Etna and one for Eyjafjallajökull volcanoes. The third one compares VPR and Look-Up Table (LUT) retrievals analyzing the true image of Eyjafjallajökull volcano acquired by MODIS aboard the Aqua satellite on 11 May 2010 at 14:05 GMT.
NASA Astrophysics Data System (ADS)
Wei, Min; Xu, Caihong; Chen, Jianmin; Zhu, Chao; Li, Jiarong; Lv, Ganglin
2017-04-01
Bacteria are widely distributed in atmospheric aerosols and are indispensable components of clouds, playing an important role in the atmospheric hydrological cycle. However, limited information is available about the bacterial community structure and function, especially for the increasing air pollution in the North China Plain. Here, we present a comprehensive characterization of bacterial community composition, function, variation, and environmental influence for cloud water collected at Mt Tai from 24 July to 23 August 2014. Using Miseq 16S rRNA gene sequencing, the highly diverse bacterial community in cloud water and the predominant phyla of Proteobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes were investigated. Bacteria that survive at low temperature, radiation, and poor nutrient conditions were found in cloud water, suggesting adaption to an extreme environment. The bacterial gene functions predicted from the 16S rRNA gene using the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) suggested that the pathways related to metabolism and disease infections were significantly correlated with the predominant genera. The abundant genera Acinetobacter, Stenotrophomonas, Pseudomonas, and Empedobacter originated from a wide range of habitats including cloud condensation nuclei and ice nuclei active species, opportunistic pathogens, and functional species, demonstrating the importance of ecology and health in cloud water. Cluster analysis including hierarchical cluster (Hcluster) and principal coordinate analysis (PCoA) indicated a significant disparity between polluted and non-polluted samples. Linear discriminant analysis effect size (LEfSe) demonstrated that potential pathogens were enriched in the polluted cloud samples, whereas the diverse ecological function groups were significant in the non-polluted samples. Discrepant community structure determined by redundancy analysis (RDA) indicated that the major ions in cloud water and PM2. 5 in the atmosphere have a negative impact on bacteria, playing a vital role in shaping microbial community structure. The major ions might provide nutrition to bacteria and directly influence the bacterial community, whereas PM2. 5 in air has an indirect impact on bacterial community structure. During wet deposition, soluble particulate matter was dissolved in water droplets resulting in elevated concentration in cloud water. PM2. 5 was possibly associated with different origins and pathways of air mass as determined using source tracking by the backward trajectory, mainly related to long-range transport. This work enhanced our understanding of the characteristics of bacterial ecology in the atmospheric aqueous phase, highlighting the potential influence of environmental variables on the bacterial community in cloud processes. It may provide fundamental information of the bacterial community response in cloud water under increasing pollution. However, due to the limited sample size (13 samples) collected at the summit of Mt Tai, these issues need in-depth discussion. Further studies based on an annual series of field observation experiments and laboratory simulations will continue to track these issues.
NASA Astrophysics Data System (ADS)
Tremblin, P.; Minier, V.; Schneider, N.; Audit, E.; Hill, T.; Didelon, P.; Peretto, N.; Arzoumanian, D.; Motte, F.; Zavagno, A.; Bontemps, S.; Anderson, L. D.; André, Ph.; Bernard, J. P.; Csengeri, T.; Di Francesco, J.; Elia, D.; Hennemann, M.; Könyves, V.; Marston, A. P.; Nguyen Luong, Q.; Rivera-Ingraham, A.; Roussel, H.; Sousbie, T.; Spinoglio, L.; White, G. J.; Williams, J.
2013-12-01
Context. Herschel far-infrared imaging observations have revealed the density structure of the interface between H ii regions and molecular clouds in great detail. In particular, pillars and globules are present in many high-mass star-forming regions, such as the Eagle nebula (M 16) and the Rosette molecular cloud, and understanding their origin will help characterize triggered star formation. Aims: The formation mechanisms of these structures are still being debated. The initial morphology of the molecular cloud and its turbulent state are key parameters since they generate deformations and curvatures of the shell during the expansion of the H ii region. Recent numerical simulations have shown how pillars can arise from the collapse of the shell in on itself and how globules can be formed from the interplay of the turbulent molecular cloud and the ionization from massive stars. The goal here is to test this scenario through recent observations of two massive star-forming regions, M 16 and the Rosette molecular cloud. Methods: First, the column density structure of the interface between molecular clouds and associated H ii regions was characterized using column density maps obtained from far-infrared imaging of the Herschel HOBYS key programme. Then, the DisPerSe algorithm was used on these maps to detect the compressed layers around the ionized gas and pillars in different evolutionary states. Column density profiles were constructed. Finally, their velocity structure was investigated using CO data, and all observational signatures were tested against some distinct diagnostics established from simulations. Results: The column density profiles have revealed the importance of compression at the edge of the ionized gas. The velocity properties of the structures, i.e. pillars and globules, are very close to what we predict from the numerical simulations. We have identified a good candidate of a nascent pillar in the Rosette molecular cloud that presents the velocity pattern of the shell collapsing on itself, induced by a high local curvature. Globules have a bulk velocity dispersion that indicates the importance of the initial turbulence in their formation, as proposed from numerical simulations. Altogether, this study re-enforces the picture of pillar formation by shell collapse and globule formation by the ionization of highly turbulent clouds. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Retrievals of Cloud Droplet Size from the RSP Data: Validation Using in Situ Measurements
NASA Technical Reports Server (NTRS)
Alexandrov, Mikhail D.; Cairns, Brian; Sinclair, Kenneth; Wasilewski, Andrzej P.; Ziemba, Luke; Crosbie, Ewan; Hair, John; Hu, Yongxiang; Hostetler, Chris; Stamnes, Snorre
2016-01-01
We present comparisons of cloud droplet size distributions retrieved from the Research Scanning Polarimeter (RSP) data with correlative in situ measurements made during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES). This field experiment was based at St. Johns airport, Newfoundland, Canada with the latest deployment in May - June 2016. RSP was onboard the NASA C-130 aircraft together with an array of in situ and other remote sensing instrumentation. The RSP is an along-track scanner measuring polarized and total reflectances in9 spectral channels. Its unique high angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135 and 165 degrees. A parametric fitting algorithm applied to the polarized reflectances provides retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT), which allows us to retrieve the droplet size distribution (DSD) itself. The latter is important in the case of clouds with complex structure, which results in multi-modal DSDs. During NAAMES the aircraft performed a number of flight patterns specifically designed for comparison of remote sensing retrievals and in situ measurements. These patterns consisted of two flight segments above the same straight ground track. One of these segments was flown above clouds allowing for remote sensing measurements, while the other was at the cloud top where cloud droplets were sampled. We compare the DSDs retrieved from the RSP data with in situ measurements made by the Cloud Droplet Probe (CDP). The comparisons show generally good agreement with deviations explainable by the position of the aircraft within cloud and by presence of additional cloud layers in RSP view that do not contribute to the in situ DSDs. In the latter case the distributions retrieved from the RSP data were consistent with the multi-layer cloud structures observed in the correlative High Spectral Resolution Lidar (HSRL) profiles. The comparison results provide a rare validation of polarimetric droplet size retrieval techniques, which can be used for analysis of satellite data on global scale.
NASA Astrophysics Data System (ADS)
Sromovsky, L. A.; Fry, P. M.
2018-06-01
Ammonia gas has long been assumed to be the main source of condensables for the upper cloud layer on Jupiter, but distinctive spectral features associated with ammonia have been seen only rarely. Since both ammonia and NH4SH absorb in the 3 μm region, and widespread absorption in the 3 μm region was present (Sromovsky and Fry, 2010), identification of the 2 μm absorption feature of NH3 provided an opportunity to clearly establish its presence in Jovian clouds. Baines et al. (2002) succeeded in finding in Near Infrared Mapping Spectrometer (NIMS) observations one feature that had both 2 μm and 3 μm absorption, and many which were known to have absorption at 2.73 μm. They named these Spectrally Identifiable Ammonia Clouds (SIACs). They also argued that these were fresh ammonia clouds that would eventually succumb to some process that would obscure their absorption features. Detection of many more of the 2 μm features was later achieved by New Horizon's Linear Etalon Imaging Spectral Array (LEISA) instrument, which provided both the spatial and spectral resolution needed to identify these features. Here we report on the first quantitative modeling that uses NIMS spectra over a broad (1-5.2 μm) spectral range and LEISA spectra over a much narrower (1.25-2.5 μm) spectral range to constrain the cloud structure and composition of these rare cloud features and compare them to background clouds. We find that the absorption signature at 2 μm, which is well characterized in LEISA spectra, is relatively subtle and easily matched by model clouds containing spherical particles of ammonia ice with radii of 2-4 μm. The NIMS spectra, which cover both reflected sunlight as well as thermal emission regions are more difficult to model with cloud materials plausibly present in Jupiter's atmosphere. The best signal/noise spectra obtained from NIMS provide a relatively sparse sampling of the spectrum, which does not establish the detailed shape of the 3 μm absorption region. NIMS SIAC spectra with much denser spectral sampling are limited by much higher noise levels that degrade the features that are key to identifying cloud composition. The structure which best matches the wide range NIMS SIAC spectra contains two overlapping NH3 clouds with a bi-modal size distribution over an optically thick NH4SH cloud. The bi-modal distribution may be a result of modeling non-spherical, possibly fractal aggregate, particles with spheres.
NASA Technical Reports Server (NTRS)
Goldenberg, Stanley B.; Houze, Robert A., Jr.; Churchill, Dean D.
1990-01-01
The horizontal precipitation structure of cloud clusters observed over the South China Sea during the Winter Monsoon Experiment (WMONEX) is analyzed using a convective-stratiform technique (CST) developed by Adler and Negri (1988). The technique was modified by altering the method for identifying convective cells in the satellite data, accounting for the extremely cold cloud tops characteristic of the WMONEX region, and modifying the threshold infrared temperature for the boundary of the stratiform rain area. The precipitation analysis was extended to the entire history of the cloud cluster by applying the modified CST to IR imagery from geosynchronous-satellite observations. The ship and aircraft data from the later period of the cluster's lifetime make it possible to check the locations of convective and stratiform precipitation identified by the CST using in situ observations. The extended CST is considered to be effective for determining the climatology of the convective-stratiform structure of tropical cloud clusters.
A modeling analysis program for the JPL table mountain Io sodium cloud data
NASA Technical Reports Server (NTRS)
Smyth, William H.; Goldberg, Bruce A.
1988-01-01
Research in the third and final year of this project is divided into three main areas: (1) completion of data processing and calibration for 34 of the 1981 Region B/C images, selected from the massive JPL sodium cloud data set; (2) identification and examination of the basic features and observed changes in the morphological characteristics of the sodium cloud images; and (3) successful physical interpretation of these basic features and observed changes using the highly developed numerical sodium cloud model at AER. The modeling analysis has led to a number of definite conclusions regarding the local structure of Io's atmosphere, the gas escape mechanism at Io, and the presence of an east-west electric field and a System III longitudinal asymmetry in the plasma torus. Large scale stability, as well as some smaller scale time variability for both the sodium cloud and the structure of the plasma torus over a several year time period are also discussed.
A flux-limited treatment for the conductive evaporation of spherical interstellar gas clouds
NASA Technical Reports Server (NTRS)
Dalton, William W.; Balbus, Steven A.
1993-01-01
In this work, we present and analyze a new analytic solution for the saturated (flux-limited) thermal evaporation of a spherical cloud. This work is distinguished from earlier analytic studies by allowing the thermal conductivity to change continuously from a diffusive to a saturated form, in a manner usually employed only in numerical calculations. This closed form solution will be of interest as a computational benchmark. Using our calculated temperature profiles and mass-loss rates, we model the thermal evaporation of such a cloud under typical interstellar medium (ISM) conditions, with some restrictions. We examine the ionization structure of the cloud-ISM interface and evaluate column densities of carbon, nitrogen, oxygen, neon, and silicon ions toward the cloud. In accord with other investigations, we find that ionization equilibrium is far from satisfied under the assumed conditions. Since the inclusion of saturation effects in the heat flux narrows the thermal interface relative to its classical structure, we also find that saturation effects tend to lower predicted column densities.
Cirrus cloud spectra and layers observed during the FIRE and GASP projects
NASA Technical Reports Server (NTRS)
Flatau, Piotr J.; Gultepe, I.; Nastrom, G.; Cotton, William R.; Heymsfield, A. J.
1990-01-01
A general characterization is developed for cirrus clouds in terms of their spectra, shapes, optical thicknesses, and radiative properties for use in numerical models. Data sets from the Global Atmospheric Sampling Project (GASP) of the upper troposphere and the First ISCCP Regional Experiment (FIRE) are combined and analyzed to study general traits of cirrus clouds. A definition is given for 2D turbulence, and the GASP and FIRE data sets are examined with respect to cirrus layers and entrainment and to dominant turbulent scales. The approach employs conditional sampling in cloudy and clear air, power-spectral analysis, and mixing-line-type diagrams. Evidence is given for a well mixed cloud deck and for the tendency of cirrus to be formed in multilayer structures. The results are of use in mesoscale and global circulation models which predict cirrus, in small-scale cirrus modeling, and in studying the role of gravity waves in the horizontal structure of upper tropospheric clouds.
The first observed cloud echoes and microphysical parameter retrievals by China's 94-GHz cloud radar
NASA Astrophysics Data System (ADS)
Wu, Juxiu; Wei, Ming; Hang, Xin; Zhou, Jie; Zhang, Peichang; Li, Nan
2014-06-01
By using the cloud echoes first successfully observed by China's indigenous 94-GHz SKY cloud radar, the macrostructure and microphysical properties of drizzling stratocumulus clouds in Anhui Province on 8 June 2013 are analyzed, and the detection capability of this cloud radar is discussed. The results are as follows. (1) The cloud radar is able to observe the time-varying macroscopic and microphysical parameters of clouds, and it can reveal the microscopic structure and small-scale changes of clouds. (2) The velocity spectral width of cloud droplets is small, but the spectral width of the cloud containing both cloud droplets and drizzle is large. When the spectral width is more than 0.4 m s-1, the radar reflectivity factor is larger (over -10 dBZ). (3) The radar's sensitivity is comparatively higher because the minimum radar reflectivity factor is about -35 dBZ in this experiment, which exceeds the threshold for detecting the linear depolarized ratio (LDR) of stratocumulus (commonly -11 to -14 dBZ; decreases with increasing turbulence). (4) After distinguishing of cloud droplets from drizzle, cloud liquid water content and particle effective radius are retrieved. The liquid water content of drizzle is lower than that of cloud droplets at the same radar reflectivity factor.
Signatures of planets: Observations and modeling of structure in the zodiacal cloud and Kuiper disk
NASA Astrophysics Data System (ADS)
Holmes, Elizabeth Katherine
2002-12-01
There is a possible connection between structure in evolved circumstellar disks and the presence of planets, our own zodiacal cloud being a proven example. Asymmetries in such a disk could be diagnostic of planets which would be otherwise undetectable. Using COBE DIRBE observations, we link structure in the zodiacal cloud, namely the warp and offset of the cloud, to the presence of planets using secular perturbation theory. In addition, we obtain supplementary ISO observations and determine a scale factor for the data which we apply to calibrate the data to the observed COBE brightness. A Kuiper dust disk will have a resonant structure, with two concentrations in brightness along the ecliptic longitude arising because 10 15% of the Kuiper belt objects are in the 3:2 mean motion resonance with Neptune. We run numerical integrations of particles originating from source bodies trapped in the 3:2 resonance and we determine what percentage of particles remain in the resonance for a variety of particle and source body sizes. The dynamical evolution of the particles is followed from source to sink with Poynting- Robertson light drag, solar wind drag, radiation pressure, the Lorentz force, neutral interstellar gas drag, and the effects of planetary gravitational perturbations included. We then conduct an observational search in the 60 μm COBE data for the Kuiper disk, which is predicted to be, at most, a few percent of the brightness of the zodiacal cloud. By removing emission due to the background zodiacal cloud and the dust bands, we expect to see the trailing/leading signature of Earth's resonant ring. However, when subtracted from the data, we find that none of the empirical background zodiacal cloud models give the residuals predicted by theory. We conclude that a dynamical two-component (both inner and outer) zodiacal cloud model must be created to complete the search. Lastly, we extend our work outside the solar system and obtain upper limits on the flux around ten Vega-type stars using the Sub-millimeter Telescope Observatory in the 870 μm and 1300 μm wave bands, which will be used to determine the most promising candidates for future observations.
NASA Technical Reports Server (NTRS)
Ragent, Boris
1998-01-01
The results of the nephelometer experiment conducted aboard the Probe of the Galileo mission to Jupiter are presented. The tenuous clouds and sparse particulate matter in the relatively particle-free 5-micron "hot spot" region of the Probe's descent were documented from about 0.46 bars to about 12 bars. Three regions of apparent coherent structure were noted, in addition to many indications of extremely small particle concentrations along the descent path. From the first valid measurement at about 0.46 bars down to about 0.55 bars a feeble decaying lower portion of a cloud, corresponding with the predicted ammonia particle cloud, was encountered. A denser, but still very modest, particle structure was present in the pressure regime extending from about 0.76 to a distinctive base at 1.34 bars, and is compatible with the expected ammonium hydrosulfide cloud. No massive water cloud was encountered, although below the second structure, a small, vertically thin layer at about 1.65 bars may be detached from the cloud above, but may also be water condensation, compatible with reported measurements of water abundance from other Galileo Mission experiments. A third small signal region, extending from about 1.9 to 4.5 bars, exhibited quite weak but still distinctive structure, and, although the identification of the light scatterers in this region is uncertain, may also be a water cloud perhaps associated with lateral atmospheric motion and/or reduced to a small mass density by atmospheric subsidence or other explanations. Rough descriptions of the particle size distributions and cloud properties in these regions have been derived, although they may be imprecise because of the small signals and experimental difficulties. These descriptions document the small number densities of particles, the moderate particle sizes, generally in the slightly submicron to few micron range, and the resulting small optical depths, mass densities due to particles, column particle number loading and column mass loading in the atmosphere encountered by the Galileo Probe during its descent.
NASA Technical Reports Server (NTRS)
Goodman,Jindra; Ragent, Boris
1998-01-01
The results of the nephelometer experiment conducted aboard the Probe of the Galileo mission to Jupiter are presented. The tenuous clouds and sparse particulate matter in the relatively particle-free 5-micron "hot spot" region of the Probe's descent were documented from about 0.46 bars to about 12 bars. Three regions of apparent coherent structure were noted, in addition to many indications of extremely small particle concentrations along the descent path. From the first valid measurement at about 0.46 bars down to about 0.55 bars a feeble decaying lower portion of a cloud, corresponding with the predicted ammonia particle cloud, was encountered. A denser, but still very modest, particle structure was present in the pressure regime extending from about 0.76 to a distinctive base at 1.34 bars, and is compatible with the expected ammonium hydrosulfide cloud. No massive water cloud was encountered, although below the second structure, a small, vertically thin layer at about 1.65 bars may be detached from the cloud above, but may also be water condensation, compatible with reported measurements of water abundance from other Galileo Mission experiments. A third small signal region, extending from about 1.9 to 4.5 bars, exhibited quite weak but still distinctive structure, and, although the identification of the light scatterers in this region is uncertain, may also be a water cloud perhaps associated with lateral atmospheric motion and/or reduced to a small mass density by atmospheric subsidence or other explanations. Rough descriptions of the particle size distributions and cloud properties in these regions have been derived, although they may be imprecise because of the small signals and experimental difficulties. These descriptions document the small number densities of particles, the moderate particle sizes, generally in the slightly submicron to few micron range, and the resulting small optical depths, mass densities due to particles, column particle number loading and column mass loading in the atmosphere encountered by the Galileo Probe during its descent.
NASA Astrophysics Data System (ADS)
Velusamy, T.
2010-07-01
The 1.9 THz [CII] observations provide a powerful probe of warm diffuse clouds, because they can observe them in emission and are useful as a tracer of their molecular H2 not directly traced by CO or other means. HIFI observations of [CII] provide a high resolution of 12 arcsec, better than that for single dish CO (> 30 arcsec) maps, and much better than HI (>30 arcsec). Thus with HIFI we have an opportunity probe the small scale structures in diffuse clouds in the inner Galaxy at distances > 3 kpc. To study the structure of diffuse ISM gas at small scales we propose HIFI maps of 1.9 THz (158 micron) [CII] line emission in a selection of 16 lines of sight (LOSs) towards the inner Galaxy, which are also being observed as part of the GOT C+ survey of [CII] in the Galactic plane. GOT C+ provides mainly single point spectra without any spatial data. Maps of [CII] will constrain better the cloud properties and models when combining [CII] and HI data. The proposed OTF X map will be along the longitude and latitude centered on 18 selected GOT C+ LOS over a length of 3 arcmin in each direction, which is adequate enough to provide sufficient spatial information on the small scale structures at larger distances (>3 kpc) and to characterize the CII filling factor in the larger beams of the ancillary (HI, CO, and CI data). The [CI] 609 & 370micron and the 12CO(7-6) (which lies within the CI band) are excellent diagnostics of the physical conditions of transition clouds and PDRs. We will use the ratio of the [CI] lines to constrain the kinetic temperature and volume density of the CII/CI/CO transition zones in molecular clouds using radiative transfer codes. We also propose OTF X maps in both the [CI] lines for all CII target LOSs. We anticipate fully resolved structural data in [CII] on at least 300 velocity resolved clouds along with their [CI] emissions. We request a total of 33.2 hrs of HIFI observing time.
Surface tension and quasi-emulsion of cavitation bubble cloud.
Bai, Lixin; Chen, Xiaoguang; Zhu, Gang; Xu, Weilin; Lin, Weijun; Wu, Pengfei; Li, Chao; Xu, Delong; Yan, Jiuchun
2017-03-01
A quasi-emulsion phenomenon of cavitation structure in a thin liquid layer (the thin liquid layer is trapped between a radiating surface and a hard reflector) is investigated experimentally with high-speed photography. The transformation from cloud-in-water (c/w) emulsion to water-in-cloud (w/c) emulsion is related to the increase of cavitation bubble cloud. The acoustic field in the thin liquid layer is analyzed. It is found that the liquid region has higher acoustic pressure than the cloud region. The bubbles are pushed from liquid region to cloud region by the primary Bjerknes forces. The rate of change of CSF increased with the increase of CSF. The cavitation bubbles on the surface of cavitation cloud are attracted by the cavitation bubbles inside the cloud due to secondary Bjerknes forces. The existence of surface tension on the interface of liquid region and cloud region is proved. The formation mechanism of disc-shaped liquid region and cloud region are analysed by surface tension and incompressibility of cavitation bubble cloud. Copyright © 2016 Elsevier B.V. All rights reserved.
Assimilation of Satellite to Improve Cloud Simulation in Wrf Model
NASA Astrophysics Data System (ADS)
Park, Y. H.; Pour Biazar, A.; McNider, R. T.
2012-12-01
A simple approach has been introduced to improve cloud simulation spatially and temporally in a meteorological model. The first step for this approach is to use Geostationary Operational Environmental Satellite (GOES) observations to identify clouds and estimate the clouds structure. Then by comparing GOES observations to model cloud field, we identify areas in which model has under-predicted or over-predicted clouds. Next, by introducing subsidence in areas with over-prediction and lifting in areas with under-prediction, erroneous clouds are removed and new clouds are formed. The technique estimates a vertical velocity needed for the cloud correction and then uses a one dimensional variation schemes (1D_Var) to calculate the horizontal divergence components and the consequent horizontal wind components needed to sustain such vertical velocity. Finally, the new horizontal winds are provided as a nudging field to the model. This nudging provides the dynamical support needed to create/clear clouds in a sustainable manner. The technique was implemented and tested in the Weather Research and Forecast (WRF) Model and resulted in substantial improvement in model simulated clouds. Some of the results are presented here.
NASA Astrophysics Data System (ADS)
Jensen, M. P.; Miller, M. A.; Wang, J.
2017-12-01
The first Intensive Observation Period of the DOE Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) took place from 21 June through 20 July 2017 involving the deployment of the ARM Gulfstream-159 (G-1) aircraft with a suite of in situ cloud and aerosol instrumentation in the vicinity of the ARM Climate Research Facility Eastern North Atlantic (ENA) site on Graciosa Island, Azores. Here we present preliminary analysis of the thermodynamic characteristics of the marine boundary layer and the variability of cloud properties for a mixed cloud field including both stratiform cloud layers and deeper cumulus elements. Analysis combines in situ atmospheric state observations from the G-1 with radiosonde profiles and surface meteorology from the ENA site in order to characterize the thermodynamic structure of the marine boundary layer including the coupling state and stability. Cloud/drizzle droplet size distributions measured in situ are combined with remote sensing observations from a scanning cloud radar, and vertically pointing cloud radar and lidar provide quantification of the macrophysical and microphysical properties of the mixed cloud field.
An Examination of the Nature of Global MODIS Cloud Regimes
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji; Huffman, George J.
2014-01-01
We introduce global cloud regimes (previously also referred to as "weather states") derived from cloud retrievals that use measurements by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Aqua and Terra satellites. The regimes are obtained by applying clustering analysis on joint histograms of retrieved cloud top pressure and cloud optical thickness. By employing a compositing approach on data sets from satellites and other sources, we examine regime structural and thermodynamical characteristics. We establish that the MODIS cloud regimes tend to form in distinct dynamical and thermodynamical environments and have diverse profiles of cloud fraction and water content. When compositing radiative fluxes from the Clouds and the Earth's Radiant Energy System instrument and surface precipitation from the Global Precipitation Climatology Project, we find that regimes with a radiative warming effect on the atmosphere also produce the largest implied latent heat. Taken as a whole, the results of the study corroborate the usefulness of the cloud regime concept, reaffirm the fundamental nature of the regimes as appropriate building blocks for cloud system classification, clarify their association with standard cloud types, and underscore their distinct radiative and hydrological signatures.
NASA Astrophysics Data System (ADS)
Dzambo, Andrew M.; Turner, David D.
2016-10-01
Midlatitude cirrus cloud macrophysical and microphysical properties have been shown in previous studies to vary seasonally and in various large-scale dynamical regimes, but relative humidity with respect to ice (RHI) within cirrus clouds has not been studied extensively in this context. Using a combination of radiosonde and millimeter-wavelength cloud radar data, we identify 1076 cirrus clouds spanning a 7 year period from 2004 to 2011. These data are separated into five classes using a previously published algorithm that is based largely on synoptic conditions. Using these data and classification scheme, we find that RHI in cirrus clouds varies seasonally. Variations in cirrus cloud RHI exist within the prescribed classifications; however, most of the variations are within the measurement uncertainty. Additionally, with the exception of nonsummer class cirrus, these variations are not statistically significant. We also find that cirrus cloud occurrence is not necessarily correlated with higher observed values of RHI. The structure of RHI in cirrus clouds varies more in thicker clouds, which follows previous studies showing that macrophysical and microphysical variability increases in thicker cirrus clouds.
Marine boundary layer structure as observed by A-train satellites
Luo, Tao; Wang, Zhien; Zhang, Damao; ...
2016-05-13
The marine boundary layer (MBL) structure is important to the marine low cloud processes, and the exchange of heat, momentum, and moisture between oceans and the low atmosphere. This study examines the MBL structure over the eastern Pacific region and further explores the controlling factors of MBL structure over the global oceans with a new 4-year satellite-based data set. The MBL top (boundary layer height, BLH) and the mixing layer height (MLH) were identified using the MBL aerosol lidar backscattering from the CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations). Results showed that the MBL is generally decoupled with MLH ∕ BLHmore » ratio ranging from ∼ 0.5 to ∼ 0.8 over the eastern Pacific Ocean region. The MBL decoupling magnitude is mainly controlled by estimated inversion strength (EIS), which in turn controls the cloud top entrainment process. The systematic differences between drizzling and non-drizzling stratocumulus tops also show dependence on EIS. This may be related to the meso-scale circulations or gravity wave in the MBL. Further analysis indicates that the MBL shows a similar decoupled structure for clear-sky and cumulus-cloud-topped conditions, but is better mixed under stratiform cloud breakup and overcast conditions.« less
NASA Astrophysics Data System (ADS)
Irwin, P. G. J.; Teanby, N. A.; Davis, G. R.
2008-09-01
Uranus has a very high obliquity of 98 degrees and a very small amount of residual internal heat left over from its formation. Hence, the circulation of its atmosphere is strongly affected by seasonal changes in solar irradiation. Uranus reached its northern spring equinox in December 2007 and at the planet's last equinox in 1965 there were indications of a substantial change in the planet's appearance. Ground-based instrumentation has improved dramatically since 1965 and thus there has been great international interest in monitoring the cloud structure of Uranus through this equinox period to monitor any rapid variations that may occur this time. New near-infrared spectra of Uranus were observed in August/September 2006 and in June 2007 using the UIST instrument on the United Kingdom Infrared Telescope (UKIRT). Spectra (in Long Slit mode) were recorded between 1 and 2.5 microns with the slit aligned with the planet's central meridian to determine any north-south variations of Uranus' cloud structure. In addition, context images were also recorded to note the position of discrete mid-latitude clouds to ensure that these were not confused with any general latitudinal variation (Fig. 1). We here present retrievals of the latitudinal variation of Uranus' vertical cloud structure from these data using an optimal estimation retrieval model, NEMESIS[1], together with new methane absorption coefficients[2] and a Matrix Operator multiple scattering model. Apart from some small storms at both southern and northern mid-latitudes, some reaching the 200 mbar pressure level, indicating vigorous convection, we find that the data are generally best fitted either with two cloud layers, one at ~2 - 3 bars and a second deeper cloud layer at ~8 bars, or alternatively by a single extended cloud spanning this pressure range (Fig. 2.). In the bright band at 45ºS we find that the opacity in the 2 -3 bar region is increased, while that deeper levels decreased slightly[3]. Comparing observations between the two years we find that the clouds in the 2 - 3 bar region cleared slightly in the southern hemisphere and thickened in the northern hemisphere. New UKIRT/UIST observations, scheduled for July 2008, should confirm these changes.
NASA Astrophysics Data System (ADS)
Garate-Lopez, Itziar; Lebonnois, Sébastien
2017-04-01
A new simulation of Venus atmospheric circulation obtained with the LMD Venus GCM is described and the impact of cloud's latitudinal structure on the general circulation is analyzed. The model used here is based on that presented in Lebonnois et al. (2016). However, in the present simulation we consider the latitudinal variation of the cloud structure (Haus et al., 2014) both for the solar heating and to compute the infrared net-exchange rate matrix used in the radiative transfer module. The new cloud treatment affects mainly the balance in the angular momentum and the zonal wind distribution. Consequently, the agreement between the vertical profile of the modeled mean zonal wind and the profiles measured by different probes, is clearly improved from previous simulations in which zonal winds below the clouds were weak (roughly half the observed values). Moreover, the equatorial jet obtained at the base of the cloud deck is now more consistent with the observations. In Lebonnois et al. (2016) it was too strong compared to mid-latitudes, but in the present simulation the equatorial jet is less intense than the mid-latitude jets, in concordance with cloud-tracking measurements (Hueso et al., 2015). Since the atmospheric waves play a crucial role in the angular momentum budget of the Venus's atmospheric circulation, we analyze the wave activity by means of the Fast Fourier Transform technique studying the frequency spectrum of temperature, zonal and meridional wind fields. Modifications in the activity of the different types of waves present in the Venusian atmosphere compared to Lebonnois et al. (2016) are discussed, in terms of horizontal and vertical transport of the angular momentum by diurnal and semi-diurnal tides, barotropic and baroclinic waves, and Rossby and Kelvin type waves. Haus R., Kappel D. and Arnold G., 2014. Atmospheric thermal structure and cloud features in the southern hemisphere of Venus as retrieved from VIRTIS/VEX radiation measurements. Icarus 232, 232-248. Hueso R., Peralta J., Garate-Lopez I., et al., 2015. Six years of Venus winds at the upper cloud level from UV, visible and near infrared observations from VIRTIS on Venus express. Planet. Space Sci. 113-114, 78-99. Lebonnois S., Sugimoto N., and Gilli G., 2016. Wave analysis in the atmosphere of Venus below 100km altitude, simulated by the LMD Venus GCM. Icarus 278, 38-51.
NASA Astrophysics Data System (ADS)
Pearl, John C.; Smith, Michael D.; Conrath, Barney J.; Bandfield, Joshua L.; Christensen, Philip R.
2001-06-01
Successful operation of the Mars Global Surveyor spacecraft, beginning in September 1997 (Ls=184°), has permitted extensive observations over more than a Martian year. Initially, thin (normal optical depth <0.06 at 825 cm-1) ice clouds and hazes were widespread, showing a distinct latitudinal gradient. With the onset of a regional dust storm at Ls=224°, ice clouds vanished in the southern hemisphere, to reappear gradually after the decay of the storm. The zonally averaged cloud opacities show little difference between the beginning and end of the first Martian year. A broad low-latitude cloud belt with considerable longitudinal structure was present in early northern summer. Apparently characteristic of the northern summer season, it vanished between Ls=140° and 150°. The latitudinal extent of this feature is apparently controlled by the ascending branch of the Hadley circulation. The most opaque clouds (optical depth ~0.6) were found above the summits of major volcanic features; these showed spatial structure possibly associated with wave activity. Variety among low-lying late morning clouds suggests localized differences in circulation and microclimates. Limb observations showed extensive optically thin (optical depth <0.04) stratiform clouds at altitudes up to 55 km. Considerable latitude and altitude variations were evident in ice clouds in early northern spring (Ls=25°) near 30 km, thin clouds extended from just north of the equator to ~45°N, nearly to the north polar vortex. A water ice haze was present in the north polar night (Ls=30°) at altitudes up to 40 km. Because little dust was present this probably provided heterogeneous nucleation sites for the formation of CO2 clouds and snowfall at altitudes below ~20 km, where atmospheric temperatures dropped to the CO2 condensation point. The relatively invariant spectral shape of the water ice cloud feature over space and time indicates that ice particle radii are generally between 1 and 4 μm.
Studies of Dark Spots and Their Companion Clouds on the Ice Giant Planets
NASA Astrophysics Data System (ADS)
Bhure, Sakhee; Sankar, Ramanakumar; Hadland, Nathan; Palotai, Csaba J.; Le Beau, Raymond P.; Koutas, Nikko
2017-10-01
Observations of ice giant planets in our Solar System have shown several large-scale dark spots with varying lifespans. Some of these features were directly observed, others were diagnosed from their orographic companion clouds. Historically, numerical simulations have been able to model certain characteristics of these storms such as the shape variability of the Neptune Great Dark Spot (GDS-89) (Deng and Le Beau, 2006), but have not been able to match observed drift rates and lifespans using the standard zonal wind profiles (Hammel et al. 2009). Common amongst these studies has been the lack of condensable species in the atmosphere and an explicit treatment of cloud microphysics. Yet, observations show that dark spots can affect neighboring cloud features, such as in the case of bright companion clouds or the “Berg” on Uranus. An analysis of the cloud structure is therefore required to gain a better understanding of the underlying atmospheric physics and dynamics of these vortices.For our simulations, we use the Explicit Planetary Isentropic Coordinate (EPIC) general circulation model (Dowling et al. 1998, 2006) and adapt its jovian cloud microphysics module which successfully reproduced the cloud structure of jovian storms, such as the Great Red Spot and the Oval BA (Palotai and Dowling 2008, Palotai et al. 2014). EPIC was recently updated to account for the condensation of methane and hydrogen sulfide (Palotai et al. 2016), which allows us to account for both the high-altitude methane ice-cloud and the deep atmosphere hydrogen sulfide ice-cloud layers.In this work, we simulate large-scale vortices on Uranus and Neptune with varying cloud microphysical parameters such as the deep abundance and the ambient supersaturation. We examine the effect of cloud formation on their lifespan and drift rates to better understand the underlying processes which drive these storms.
A template-finding algorithm and a comprehensive benchmark for homology modeling of proteins
Vallat, Brinda Kizhakke; Pillardy, Jaroslaw; Elber, Ron
2010-01-01
The first step in homology modeling is to identify a template protein for the target sequence. The template structure is used in later phases of the calculation to construct an atomically detailed model for the target. We have built from the Protein Data Bank a large-scale learning set that includes tens of millions of pair matches that can be either a true template or a false one. Discriminatory learning (learning from positive and negative examples) is employed to train a decision tree. Each branch of the tree is a mathematical programming model. The decision tree is tested on an independent set from PDB entries and on the sequences of CASP7. It provides significant enrichment of true templates (between 50-100 percent) when compared to PSI-BLAST. The model is further verified by building atomically detailed structures for each of the tentative true templates with modeller. The probability that a true match does not yield an acceptable structural model (within 6Å RMSD from the native structure), decays linearly as a function of the TM structural-alignment score. PMID:18300226
NASA Technical Reports Server (NTRS)
Schlesinger, R. E.
1984-01-01
The present investigation is concerned with results from an initial set of comparative experiments in a project which utilize a three-dimensional convective storm model. The modeling results presented are related to four comparative experiments, designated Cases A through D. One of two scientific questions considered involves the dynamical processes, either near the cloud top or well within the cloud interior, which contribute to organize cloud thermal patterns such as those revealed by IR satellite imagery for some storms having strong internal cloud-scale rotation. The second question is concerned with differences, in cloud-top height and temperature field characteristics, between thunderstorms with and without significant internal cloud-scale rotation. The four experiments A-D are compared with regard to both interior and cloud-top configurations in the context of the second question. A particular strong-shear experiment, Case B, is analyzed to address question one.
Relating rainfall characteristics to cloud top temperatures at different scales
NASA Astrophysics Data System (ADS)
Klein, Cornelia; Belušić, Danijel; Taylor, Christopher
2017-04-01
Extreme rainfall from mesoscale convective systems (MCS) poses a threat to lives and livelihoods of the West African population through increasingly frequent devastating flooding and loss of crops. However, despite the significant impact of such extreme events, the dominant processes favouring their occurrence are still under debate. In the data-sparse West African region, rainfall radar data from the Tropical Rainfall Measuring Mission (TRMM) gives invaluable information on the distribution and frequency of extreme rainfall. The TRMM 2A25 product provides a 15-year dataset of snapshots of surface rainfall from 2-4 overpasses per day. Whilst this sampling captures the overall rainfall characteristics, it is neither long nor frequent enough to diagnose changes in MCS properties, which may be linked to the trend towards rainfall intensification in the region. On the other hand, Meteosat geostationary satellites provide long-term sub-hourly records of cloud top temperatures, raising the possibility of combining these with the high-quality rainfall data from TRMM. In this study, we relate TRMM 2A25 rainfall to Meteosat Second Generation (MSG) cloud top temperatures, which are available from 2004 at 15 minutes intervals, to get a more detailed picture of the structure of intense rainfall within the life cycle of MCS. We find TRMM rainfall intensities within an MCS to be strongly coupled with MSG cloud top temperatures: the probability for extreme rainfall increases from <10% for minimum temperatures warmer than -40°C to over 70% when temperatures drop below -70°C, confirming the potential in analysing cloud-top temperatures as a proxy for extreme rain. The sheer size of MCS raises the question which scales of sub-cloud structures are more likely to be associated with extreme rain than others. In the end, this information could help to associate scale changes in cloud top temperatures with processes that affect the probability of extreme rain. We use 2D continuous wavelets to decompose cloud top temperatures into power spectra at scales between 15 and 200km. From these, cloud sub-structures are identified as circular areas of respective scale with local power maxima in their centre. These areas are then mapped onto coinciding TRMM rainfall, allowing us to assign rainfall fields to sub-cloud features of different scales. We find a higher probability for extreme rainfall for cloud features above a scale of 30km, with features 100km contributing most to the number of extreme rainfall pixels. Over the average diurnal cycle, the number of smaller cloud features between 15-60km shows an increase between 15 - 1700UTC, gradually developing into larger ones. The maximum of extreme rainfall pixels around 1900UTC coincides with a peak for scales 100km, suggesting a dominant role of these scales for intense rain for the analysed cloud type. Our results demonstrate the suitability of 2D wavelet decomposition for the analysis of sub-cloud structures and their relation to rainfall characteristics, and help us to understand long-term changes in the properties of MCS.
NASA Astrophysics Data System (ADS)
Kelly, M. A.; Boldt, J.; Wilson, J. P.; Yee, J. H.; Stoffler, R.
2017-12-01
The multi-spectral STereo Atmospheric Remote Sensing (STARS) concept has the objective to provide high-spatial and -temporal-resolution observations of 3D cloud structures related to hurricane development and other severe weather events. The rapid evolution of severe weather demonstrates a critical need for mesoscale observations of severe weather dynamics, but such observations are rare, particularly over the ocean where extratropical and tropical cyclones can undergo explosive development. Coincident space-based measurements of wind velocity and cloud properties at the mesoscale remain a great challenge, but are critically needed to improve the understanding and prediction of severe weather and cyclogenesis. STARS employs a mature stereoscopic imaging technique on two satellites (e.g. two CubeSats, two hosted payloads) to simultaneously retrieve cloud motion vectors (CMVs), cloud-top temperatures (CTTs), and cloud geometric heights (CGHs) from multi-angle, multi-spectral observations of cloud features. STARS is a pushbroom system based on separate wide-field-of-view co-boresighted multi-spectral cameras in the visible, midwave infrared (MWIR), and longwave infrared (LWIR) with high spatial resolution (better than 1 km). The visible system is based on a pan-chromatic, low-light imager to resolve cloud structures under nighttime illumination down to ¼ moon. The MWIR instrument, which is being developed as a NASA ESTO Instrument Incubator Program (IIP) project, is based on recent advances in MWIR detector technology that requires only modest cooling. The STARS payload provides flexible options for spaceflight due to its low size, weight, power (SWaP) and very modest cooling requirements. STARS also meets AF operational requirements for cloud characterization and theater weather imagery. In this paper, an overview of the STARS concept, including the high-level sensor design, the concept of operations, and measurement capability will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, Stephen E.; Huang, Dong; Vladutescu, Daniela Viviana
This article describes the approach and presents initial results, for a period of several minutes in north central Oklahoma, of an examination of clouds by high resolution digital photography from the surface looking vertically upward. A commercially available camera having 35-mm equivalent focal length up to 1200 mm (nominal resolution as fine as 6 µrad, which corresponds to 9 mm for cloud height 1.5 km) is used to obtain a measure of zenith radiance of a 30 m × 30 m domain as a two-dimensional image consisting of 3456 × 3456 pixels (12 million pixels). Downwelling zenith radiance varies substantiallymore » within single images and between successive images obtained at 4-s intervals. Variation in zenith radiance found on scales down to about 10 cm is attributed to variation in cloud optical depth (COD). Attention here is directed primarily to optically thin clouds, COD less than about 2. A radiation transfer model used to relate downwelling zenith radiance to COD and to relate the counts in the camera image to zenith radiance, permits determination of COD on a pixel-by-pixel basis. COD for thin clouds determined in this way exhibits considerable variation, for example, an order of magnitude within 15 m, a factor of 2 within 4 m, and 25% (0.12 to 0.15) over 14 cm. In conclusion, this approach, which examines cloud structure on scales 3 to 5 orders of magnitude finer than satellite products, opens new avenues for examination of cloud structure and evolution.« less
Schwartz, Stephen E.; Huang, Dong; Vladutescu, Daniela Viviana
2017-03-08
This article describes the approach and presents initial results, for a period of several minutes in north central Oklahoma, of an examination of clouds by high resolution digital photography from the surface looking vertically upward. A commercially available camera having 35-mm equivalent focal length up to 1200 mm (nominal resolution as fine as 6 µrad, which corresponds to 9 mm for cloud height 1.5 km) is used to obtain a measure of zenith radiance of a 30 m × 30 m domain as a two-dimensional image consisting of 3456 × 3456 pixels (12 million pixels). Downwelling zenith radiance varies substantiallymore » within single images and between successive images obtained at 4-s intervals. Variation in zenith radiance found on scales down to about 10 cm is attributed to variation in cloud optical depth (COD). Attention here is directed primarily to optically thin clouds, COD less than about 2. A radiation transfer model used to relate downwelling zenith radiance to COD and to relate the counts in the camera image to zenith radiance, permits determination of COD on a pixel-by-pixel basis. COD for thin clouds determined in this way exhibits considerable variation, for example, an order of magnitude within 15 m, a factor of 2 within 4 m, and 25% (0.12 to 0.15) over 14 cm. In conclusion, this approach, which examines cloud structure on scales 3 to 5 orders of magnitude finer than satellite products, opens new avenues for examination of cloud structure and evolution.« less
NASA Astrophysics Data System (ADS)
Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.
2014-08-01
The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, are important characteristics in order to describe the impact of clouds on climate. In this work, several methods for estimating the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering the number and position of cloud layers, with a ground-based system that is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ in the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study, these methods are applied to 193 radiosonde profiles acquired at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site during all seasons of the year 2009 and endorsed by Geostationary Operational Environmental Satellite (GOES) images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The perfect agreement (i.e., when the whole CVS is estimated correctly) for the methods ranges between 26 and 64%; the methods show additional approximate agreement (i.e., when at least one cloud layer is assessed correctly) from 15 to 41%. Further tests and improvements are applied to one of these methods. In addition, we attempt to make this method suitable for low-resolution vertical profiles, like those from the outputs of reanalysis methods or from the World Meteorological Organization's (WMO) Global Telecommunication System. The perfect agreement, even when using low-resolution profiles, can be improved by up to 67% (plus 25% of the approximate agreement) if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.
NASA Astrophysics Data System (ADS)
Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.
2014-04-01
The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, is an important characteristic in order to describe the impact of clouds on climate. In this work several methods to estimate the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering number and position of cloud layers, with a ground based system which is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ on the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study these methods are applied to 193 radiosonde profiles acquired at the ARM Southern Great Plains site during all seasons of year 2009 and endorsed by GOES images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The perfect agreement (i.e. when the whole CVS is correctly estimated) for the methods ranges between 26-64%; the methods show additional approximate agreement (i.e. when at least one cloud layer is correctly assessed) from 15-41%. Further tests and improvements are applied on one of these methods. In addition, we attempt to make this method suitable for low resolution vertical profiles, like those from the outputs of reanalysis methods or from the WMO's Global Telecommunication System. The perfect agreement, even when using low resolution profiles, can be improved up to 67% (plus 25% of approximate agreement) if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.
NASA Technical Reports Server (NTRS)
Joiner, J.; Vasilkov, A.; Gupta, P.; Bhartia, P. K.; Veefkind, P.; Sneep, M.; de Haan, J.; Polonsky, I.; Spurr, R.
2012-01-01
The cloud Optical Centroid Pressure (OCP), also known as the effective cloud pressure, is a satellite-derived parameter that is commonly used in trace-gas retrievals to account for the effects of clouds on near-infrared through ultraviolet radiance measurements. Fast simulators are desirable to further expand the use of cloud OCP retrievals into the operational and climate communities for applications such as data assimilation and evaluation of cloud vertical structure in general circulation models. In this paper, we develop and validate fast simulators that provide estimates of the cloud OCP given a vertical profile of optical extinction. We use a pressure-weighting scheme where the weights depend upon optical parameters of clouds and/or aerosol. A cloud weighting function is easily extracted using this formulation. We then use fast simulators to compare two different satellite cloud OCP retrievals from the Ozone Monitoring Instrument (OMI) with estimates based on collocated cloud extinction profiles from a combination of CloudS at radar and MODIS visible radiance data. These comparisons are made over a wide range of conditions to provide a comprehensive validation of the OMI cloud OCP retrievals. We find generally good agreement between OMI cloud OCPs and those predicted by CloudSat. However, the OMI cloud OCPs from the two independent algorithms agree better with each other than either does with the estimates from CloudSat/MODIS. Differences between OMI cloud OCPs and those based on CloudSat/MODIS may result from undetected snow/ice at the surface, cloud 3-D effects, low altitude clouds missed by CloudSat, and the fact that CloudSat only observes a relatively small fraction of an OMI field-of-view.
NASA Technical Reports Server (NTRS)
Robertson, Franklin; Bacmeister, Julio; Bosilovich, Michael; Pittman, Jasna
2007-01-01
Validating water vapor and prognostic condensate in global models remains a challenging research task. Model parameterizations are still subject to a large number of tunable parameters; furthermore, accurate and representative in situ observations are very sparse, and satellite observations historically have significant quantitative uncertainties. Progress on improving cloud / hydrometeor fields in models stands to benefit greatly from the growing inventory ofA-Train data sets. ill the present study we are using a variety of complementary satellite retrievals of hydrometeors to examine condensate produced by the emerging NASA Modem Era Retrospective Analysis for Research and Applications, MERRA, and its associated atmospheric general circulation model GEOS5. Cloud and precipitation are generated by both grid-scale prognostic equations and by the Relaxed Arakawa-Schubert (RAS) diagnostic convective parameterization. The high frequency channels (89 to 183.3 GHz) from AMSU-B and MRS on NOAA polar orbiting satellites are being used to evaluate the climatology and variability of precipitating ice from tropical convective anvils. Vertical hydrometeor structure from the Tropical Rainfall Measuring Mission (TRMM) and CloudSat radars are used to develop statistics on vertical hydrometeor structure in order to better interpret the extensive high frequency passive microwave climatology. Cloud liquid and ice water path data retrieved from the Moderate Resolution Imaging Spectroradiometer, MODIS, are used to investigate relationships between upper level cloudiness and tropical deep convective anvils. Together these data are used to evaluate cloud / ice water path, gross aspects of vertical hydrometeor structure, and the relationship between cloud extent and surface precipitation that the MERRA reanalysis must capture.
Precision Spectral Variability of L Dwarfs from the Ground
NASA Astrophysics Data System (ADS)
Burgasser, Adam J.; Schlawin, Everett; Teske, Johanna K.; Karalidi, Theodora; Gizis, John
2017-01-01
L dwarf photospheres (1500 K < T < 2500 K) contain mineral and metal condensates, which appear to organize into cloud structures as inferred from observed periodic photometric variations with amplitudes of <1%-30%. Studying the vertical structure, composition, and long-term evolution of these clouds necessitates precision spectroscopic monitoring, until recently limited to space-based facilities. Building on techniques developed for ground-based exoplanet transit spectroscopy, we present a method for precision spectral monitoring of L dwarfs with nearby visual companions. Using IRTF/SpeX, we demonstrate <0.5% spectral variability precision across the 0.9-2.4 micron band, and present results for two known L5 dwarf variables, J0835-0819 and J1821+1414, both of which show evidence of 3D cloud structure similar to that seen in space-based observations. We describe a survey of 30 systems which would sample the full L dwarf sequence and allow characterization of temperature, surface gravity, metallicity, rotation period and orientation effects on cloud structure, composition and evolution.This research is supported by funding from the National Science Foundation under award No. AST-1517177, and the National Aeronautics and Space Administration under Grant No. NNX15AI75G.
Castellazzi, Giovanni; D’Altri, Antonio Maria; Bitelli, Gabriele; Selvaggi, Ilenia; Lambertini, Alessandro
2015-01-01
In this paper, a new semi-automatic procedure to transform three-dimensional point clouds of complex objects to three-dimensional finite element models is presented and validated. The procedure conceives of the point cloud as a stacking of point sections. The complexity of the clouds is arbitrary, since the procedure is designed for terrestrial laser scanner surveys applied to buildings with irregular geometry, such as historical buildings. The procedure aims at solving the problems connected to the generation of finite element models of these complex structures by constructing a fine discretized geometry with a reduced amount of time and ready to be used with structural analysis. If the starting clouds represent the inner and outer surfaces of the structure, the resulting finite element model will accurately capture the whole three-dimensional structure, producing a complex solid made by voxel elements. A comparison analysis with a CAD-based model is carried out on a historical building damaged by a seismic event. The results indicate that the proposed procedure is effective and obtains comparable models in a shorter time, with an increased level of automation. PMID:26225978
Optimally analyzing and implementing of bolt fittings in steel structure based on ANSYS
NASA Astrophysics Data System (ADS)
Han, Na; Song, Shuangyang; Cui, Yan; Wu, Yongchun
2018-03-01
ANSYS simulation software for its excellent performance become outstanding one in Computer-aided Engineering (CAE) family, it is committed to the innovation of engineering simulation to help users to shorten the design process. First, a typical procedure to implement CAE was design. The framework of structural numerical analysis on ANSYS Technology was proposed. Then, A optimally analyzing and implementing of bolt fittings in beam-column join of steel structure was implemented by ANSYS, which was display the cloud chart of XY-shear stress, the cloud chart of YZ-shear stress and the cloud chart of Y component of stress. Finally, ANSYS software simulating results was compared with the measured results by the experiment. The result of ANSYS simulating and analyzing is reliable, efficient and optical. In above process, a structural performance's numerical simulating and analyzing model were explored for engineering enterprises' practice.
NASA Astrophysics Data System (ADS)
Taylor, R.; Wünsch, R.; Palouš, J.
2018-05-01
Most detected neutral atomic hydrogen (HI) at low redshift is associated with optically bright galaxies. However, a handful of HI clouds are known which appear to be optically dark and have no nearby potential progenitor galaxies, making tidal debris an unlikely explanation. In particular, 6 clouds identified by the Arecibo Galaxy Environment Survey are interesting due to the combination of their small size, isolation, and especially their broad line widths atypical of other such clouds. A recent suggestion is that these clouds exist in pressure equilibrium with the intracluster medium, with the line width arising from turbulent internal motions. Here we explore that possibility by using the FLASH code to perform a series of 3D hydro simulations. Our clouds are modelled using spherical Gaussian density profiles, embedded in a hot, low-density gas representing the intracluster medium. The simulations account for heating and cooling of the gas, and we vary the structure and strength of their internal motions. We create synthetic HI spectra, and find that none of our simulations reproduce the observed cloud parameters for longer than ˜100 Myr : the clouds either collapse, disperse, or experience rapid heating which would cause ionisation and render them undetectable to HI surveys. While the turbulent motions required to explain the high line widths generate structures which appear to be inherently unstable, making this an unlikely explanation for the observed clouds, these simulations demonstrate the importance of including the intracluster medium in any model seeking to explain the existence of these objects.
Star formation induced by cloud-cloud collisions and galactic giant molecular cloud evolution
NASA Astrophysics Data System (ADS)
Kobayashi, Masato I. N.; Kobayashi, Hiroshi; Inutsuka, Shu-ichiro; Fukui, Yasuo
2018-05-01
Recent millimeter/submillimeter observations towards nearby galaxies have started to map the whole disk and to identify giant molecular clouds (GMCs) even in the regions between galactic spiral structures. Observed variations of GMC mass functions in different galactic environments indicates that massive GMCs preferentially reside along galactic spiral structures whereas inter-arm regions have many small GMCs. Based on the phase transition dynamics from magnetized warm neutral medium to molecular clouds, Kobayashi et al. (2017, ApJ, 836, 175) proposes a semi-analytical evolutionary description for GMC mass functions including a cloud-cloud collision (CCC) process. Their results show that CCC is less dominant in shaping the mass function of GMCs than the accretion of dense H I gas driven by the propagation of supersonic shock waves. However, their formulation does not take into account the possible enhancement of star formation by CCC. Millimeter/submillimeter observations within the Milky Way indicate the importance of CCC in the formation of star clusters and massive stars. In this article, we reformulate the time-evolution equation largely modified from Kobayashi et al. (2017, ApJ, 836, 175) so that we additionally compute star formation subsequently taking place in CCC clouds. Our results suggest that, although CCC events between smaller clouds are more frequent than the ones between massive GMCs, CCC-driven star formation is mostly driven by massive GMCs ≳ 10^{5.5} M_{⊙} (where M⊙ is the solar mass). The resultant cumulative CCC-driven star formation may amount to a few 10 percent of the total star formation in the Milky Way and nearby galaxies.
Clouds, Precipitation, and Marine Boundary Layer Structure during the MAGIC Field Campaign
Zhou, Xiaoli; Kollias, Pavlos; Lewis, Ernie R.
2015-03-01
The recent ship-based MAGIC (Marine ARM GCSS Pacific Cross-Section Intercomparison (GPCI) Investigation of Clouds) field campaign with the marine-capable Second ARM Mobile Facility (AMF2) deployed on the Horizon Lines cargo container M/V Spirit provided nearly 200 days of intraseasonal high-resolution observations of clouds, precipitation, and marine boundary layer (MBL) structure on multiple legs between Los Angeles, California, and Honolulu, Hawaii. During the deployment, MBL clouds exhibited a much higher frequency of occurrence than other cloud types and occurred more often in the warm season than in the cold season. MBL clouds demonstrated a propensity to produce precipitation, which often evaporatedmore » before reaching the ocean surface. The formation of stratocumulus is strongly correlated to a shallow MBL with a strong inversion and a weak transition, while cumulus formation is associated with a much weaker inversion and stronger transition. The estimated inversion strength is shown to depend seasonally on the potential temperature at 700 hPa. The location of the commencement of systematic MBL decoupling always occurred eastward of the locations of cloud breakup, and the systematic decoupling showed a strong moisture stratification. The entrainment of the dry warm air above the inversion appears to be the dominant factor triggering the systematic decoupling, while surface latent heat flux, precipitation, and diurnal circulation did not play major roles. MBL clouds broke up over a short spatial region due to the changes in the synoptic conditions, implying that in real atmospheric conditions the MBL clouds do not have enough time to evolve as in the idealized models. (auth)« less
Filamentary flow and magnetic geometry in evolving cluster-forming molecular cloud clumps
NASA Astrophysics Data System (ADS)
Klassen, Mikhail; Pudritz, Ralph E.; Kirk, Helen
2017-02-01
We present an analysis of the relationship between the orientation of magnetic fields and filaments that form in 3D magnetohydrodynamic simulations of cluster-forming, turbulent molecular cloud clumps. We examine simulated cloud clumps with size scales of L ˜ 2-4 pc and densities of n ˜ 400-1000 cm-3 with Alfvén Mach numbers near unity. We simulated two cloud clumps of different masses, one in virial equilibrium, the other strongly gravitationally bound, but with the same initial turbulent velocity field and similar mass-to-flux ratio. We apply various techniques to analyse the filamentary and magnetic structure of the resulting cloud, including the DISPERSE filament-finding algorithm in 3D. The largest structure that forms is a 1-2 parsec-long filament, with smaller connecting sub-filaments. We find that our simulated clouds, wherein magnetic forces and turbulence are comparable, coherent orientation of the magnetic field depends on the virial parameter. Sub-virial clumps undergo strong gravitational collapse and magnetic field lines are dragged with the accretion flow. We see evidence of filament-aligned flow and accretion flow on to the filament in the sub-virial cloud. Magnetic fields oriented more parallel in the sub-virial cloud and more perpendicular in the denser, marginally bound cloud. Radiative feedback from a 16 M⊙ star forming in a cluster in one of our simulation's ultimately results in the destruction of the main filament, the formation of an H II region, and the sweeping up of magnetic fields within an expanding shell at the edges of the H II region.
2015-01-01
field effective command and control sys- tems within the framework of current policies and processes. Cost Considerations in Cloud Computing ...www.rand.org/t/PE113 Finds that cloud provider costs can vary compared with tradi- tional information system alternatives because of different cost structures...for analysts evaluating new cloud investments. U.S. Army photo by Staff Sgt. Christopher Calvert FOCUS ON Capabilities Development and Acquisition
Do Clouds Compute? A Framework for Estimating the Value of Cloud Computing
NASA Astrophysics Data System (ADS)
Klems, Markus; Nimis, Jens; Tai, Stefan
On-demand provisioning of scalable and reliable compute services, along with a cost model that charges consumers based on actual service usage, has been an objective in distributed computing research and industry for a while. Cloud Computing promises to deliver on this objective: consumers are able to rent infrastructure in the Cloud as needed, deploy applications and store data, and access them via Web protocols on a pay-per-use basis. The acceptance of Cloud Computing, however, depends on the ability for Cloud Computing providers and consumers to implement a model for business value co-creation. Therefore, a systematic approach to measure costs and benefits of Cloud Computing is needed. In this paper, we discuss the need for valuation of Cloud Computing, identify key components, and structure these components in a framework. The framework assists decision makers in estimating Cloud Computing costs and to compare these costs to conventional IT solutions. We demonstrate by means of representative use cases how our framework can be applied to real world scenarios.
The registration of non-cooperative moving targets laser point cloud in different view point
NASA Astrophysics Data System (ADS)
Wang, Shuai; Sun, Huayan; Guo, Huichao
2018-01-01
Non-cooperative moving target multi-view cloud registration is the key technology of 3D reconstruction of laser threedimension imaging. The main problem is that the density changes greatly and noise exists under different acquisition conditions of point cloud. In this paper, firstly, the feature descriptor is used to find the most similar point cloud, and then based on the registration algorithm of region segmentation, the geometric structure of the point is extracted by the geometric similarity between point and point, The point cloud is divided into regions based on spectral clustering, feature descriptors are created for each region, searching to find the most similar regions in the most similar point of view cloud, and then aligning the pair of point clouds by aligning their minimum bounding boxes. Repeat the above steps again until registration of all point clouds is completed. Experiments show that this method is insensitive to the density of point clouds and performs well on the noise of laser three-dimension imaging.
Structure Line Detection from LIDAR Point Clouds Using Topological Elevation Analysis
NASA Astrophysics Data System (ADS)
Lo, C. Y.; Chen, L. C.
2012-07-01
Airborne LIDAR point clouds, which have considerable points on object surfaces, are essential to building modeling. In the last two decades, studies have developed different approaches to identify structure lines using two main approaches, data-driven and modeldriven. These studies have shown that automatic modeling processes depend on certain considerations, such as used thresholds, initial value, designed formulas, and predefined cues. Following the development of laser scanning systems, scanning rates have increased and can provide point clouds with higher point density. Therefore, this study proposes using topological elevation analysis (TEA) to detect structure lines instead of threshold-dependent concepts and predefined constraints. This analysis contains two parts: data pre-processing and structure line detection. To preserve the original elevation information, a pseudo-grid for generating digital surface models is produced during the first part. The highest point in each grid is set as the elevation value, and its original threedimensional position is preserved. In the second part, using TEA, the structure lines are identified based on the topology of local elevation changes in two directions. Because structure lines can contain certain geometric properties, their locations have small relieves in the radial direction and steep elevation changes in the circular direction. Following the proposed approach, TEA can be used to determine 3D line information without selecting thresholds. For validation, the TEA results are compared with those of the region growing approach. The results indicate that the proposed method can produce structure lines using dense point clouds.
NASA Astrophysics Data System (ADS)
Sugiyama, K.; Nakajima, K.; Odaka, M.; Kuramoto, K.; Hayashi, Y.-Y.
2014-02-01
A series of long-term numerical simulations of moist convection in Jupiter’s atmosphere is performed in order to investigate the idealized characteristics of the vertical structure of multi-composition clouds and the convective motions associated with them, varying the deep abundances of condensable gases and the autoconversion time scale, the latter being one of the most questionable parameters in cloud microphysical parameterization. The simulations are conducted using a two-dimensional cloud resolving model that explicitly represents the convective motion and microphysics of the three cloud components, H2O, NH3, and NH4SH imposing a body cooling that substitutes the net radiative cooling. The results are qualitatively similar to those reported in Sugiyama et al. (Sugiyama, K. et al. [2011]. Intermittent cumulonimbus activity breaking the three-layer cloud structure of Jupiter. Geophys. Res. Lett. 38, L13201. doi:10.1029/2011GL047878): stable layers associated with condensation and chemical reaction act as effective dynamical and compositional boundaries, intense cumulonimbus clouds develop with distinct temporal intermittency, and the active transport associated with these clouds results in the establishment of mean vertical profiles of condensates and condensable gases that are distinctly different from the hitherto accepted three-layered structure (e.g., Atreya, S.K., Romani, P.N. [1985]. Photochemistry and clouds of Jupiter, Saturn and Uranus. In: Recent Advances in Planetary Meteorology. Cambridge Univ. Press, London, pp. 17-68). Our results also demonstrate that the period of intermittent cloud activity is roughly proportional to the deep abundance of H2O gas. The autoconversion time scale does not strongly affect the results, except for the vertical profiles of the condensates. Changing the autoconversion time scale by a factor of 100 changes the intermittency period by a factor of less than two, although it causes a dramatic increase in the amount of condensates in the upper troposphere. The moist convection layer becomes potentially unstable with respect to an air parcel rising from below the H2O lifting condensation level (LCL) well before the development of cumulonimbus clouds. The instability accumulates until an appropriate trigger is provided by the H2O condensate that falls down through the H2O LCL; the H2O condensate drives a downward flow below the H2O LCL as a result of the latent cooling associated with the re-evaporation of the condensate, and the returning updrafts carry moist air from below to the moist convection layer. Active cloud development is terminated when the instability is completely exhausted. The period of intermittency is roughly equal to the time obtained by dividing the mean temperature increase, which is caused by active cumulonimbus development, by the body cooling rate.
Photoionisation modelling of the broad line region
NASA Astrophysics Data System (ADS)
King, Anthea
2016-08-01
Two of the most fundamental questions regarding the broad line region (BLR) are "what is its structure?" and "how is it moving?" Baldwin et al. (1995) showed that by summing over an ensemble of clouds at differing densities and distances from the ionising source we can easily and naturally produce a spectrum similar to what is observed for AGN. This approach is called the `locally optimally emitting clouds' (LOC) model. This approach can also explain the well-observed stratification of emission lines in the BLR (e.g. Clavel et al. 1991, Peterson et al. 1991, Kollatschny et al. 2001) and `breathing' of BLR with changes in the continuum luminosity (Netzer & Mor 1990, Peterson et al. 2014) and is therefore a generally accepted model of the BLR. However, LOC predictions require some assumptions to be made about the distribution of the clouds within the BLR. By comparing photoionization predictions, for a distribution of cloud properties, with observed spectra we can infer something about the structure of the BLR and distribution of clouds. I use existing reverberation mapping data to constrain the structure of the BLR by observing how individual line strengths and ratios of different lines change in high and low luminosity states. I will present my initial constraints and discuss the challenges associated with the method.
The Distribution of Mass Surface Densities in a High-mass Protocluster
NASA Astrophysics Data System (ADS)
Lim, Wanggi; Tan, Jonathan C.; Kainulainen, Jouni; Ma, Bo; Butler, Michael J.
2016-09-01
We study the probability distribution function (PDF) of mass surface densities, Σ, of infrared dark cloud (IRDC) G028.37+00.07 and its surrounding giant molecular cloud. This PDF constrains the physical processes, such as turbulence, magnetic fields, and self-gravity, that are expected to be controlling cloud structure and star formation activity. The chosen IRDC is of particular interest since it has almost 100,000 solar masses within a radius of 8 pc, making it one of the most massive, dense molecular structures known and is thus a potential site for the formation of a “super star cluster.” We study Σ in two ways. First, we use a combination of NIR and MIR extinction maps that are able to probe the bulk of the cloud structure up to Σ ˜ 1 g cm-2(A V ≃ 200 mag). Second, we study the FIR and submillimeter dust continuum emission from the cloud utilizing Herschel-PACS and SPIRE images and paying careful attention to the effects of foreground and background contamination. We find that the PDFs from both methods, applied over a ˜20‧(30 pc)-sized region that contains ≃1.5 × 105 M ⊙ and enclosing a minimum closed contour with Σ ≃ 0.013 g cm-2 (A V ≃ 3 mag), shows a lognormal shape with the peak measured at Σ ≃ 0.021 g cm-2 (A V ≃ 4.7 mag). There is tentative evidence for the presence of a high-Σ power-law tail that contains from ˜3% to 8% of the mass of the cloud material. We discuss the implications of these results for the physical processes occurring in this cloud.
NASA Astrophysics Data System (ADS)
Coddington, O.; Pilewskie, P.; Schmidt, S.
2013-12-01
The upwelling shortwave irradiance measured by the airborne Solar Spectral Flux Radiometer (SSFR) flying above a cloud and aerosol layer is influenced by the properties of the cloud and aerosol particles below, just as would the radiance measured from satellite. Unlike satellite measurements, those from aircraft provide the unique capability to fly a lower-level leg above the cloud, yet below the aerosol layer, to characterize the extinction of the aerosol layer and account for its impact on the measured cloud albedo. Previous work [Coddington et al., 2010] capitalized on this opportunity to test the effects of aerosol particles (or more appropriately, the effects of neglecting aerosols in forward modeling calculations) on cloud retrievals using data obtained during the Intercontinental Chemical Transport Experiment/Intercontinental Transport and Chemical Transformation of anthropogenic pollution (INTEX-A/ITCT) study. This work showed aerosols can cause a systematic bias in the cloud retrieval and that such a bias would need to be distinguished from a true aerosol indirect effect (i.e. the brightening of a cloud due to aerosol effects on cloud microphysics) as theorized by Haywood et al., [2004]. The effects of aerosols on clouds are typically neglected in forward modeling calculations because their pervasiveness, variable microphysical properties, loading, and lifetimes makes forward modeling calculations under all possible combinations completely impractical. Using a general inverse theory technique, which propagates separate contributions from measurement and forward modeling errors into probability distributions of retrieved cloud optical thickness and droplet effective radius, we have demonstrated how the aerosol presence can be introduced as a spectral systematic error in the distributions of the forward modeling solutions. The resultant uncertainty and bias in cloud properties induced by the aerosols is identified by the shape and peak of the posteriori retrieval distributions. In this work, we apply this general inverse theory approach to extend our analysis of the spectrally-dependent impacts of overlying aerosols on cloud properties over a broad range in cloud optical thickness and droplet effective radius. We investigate the relative impacts of this error source and compare and contrast results to biases and uncertainties in cloud properties induced by varying surface conditions (ocean, land, snow). We perform the analysis for two different measurement accuracies (3% and 0.3%) that are typical of current passive imagers, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) [Platnick et al., 2003], and that are expected for future passive imagers, such as the HyperSpectral Imager for Climate Science (HySICS) [Kopp et al., 2010]. Coddington, O., P. Pilewskie, et al., 2010, J. Geophys. Res., 115, doi: 10.1029/2009JD012829. Haywood, J. M., S. R. Osborne, and S. J. Abel, 2004, Q. J. R. Meteorol. Soc., 130, 779-800. Kopp, G., et al., 2010, Hyperspectral Imagery Radiometry Improvements for Visible and Near-Infrared Climate Studies, paper presented at 2010 Earth Science Technology Forum, Arlington, VA, USA. Platnick, S., et al., 2003, IEEE Trans. Geosci. Remote Sens., 41(2), 459- 473.
HOW GALACTIC ENVIRONMENT REGULATES STAR FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meidt, Sharon E.
2016-02-10
In a new simple model I reconcile two contradictory views on the factors that determine the rate at which molecular clouds form stars—internal structure versus external, environmental influences—providing a unified picture for the regulation of star formation in galaxies. In the presence of external pressure, the pressure gradient set up within a self-gravitating turbulent (isothermal) cloud leads to a non-uniform density distribution. Thus the local environment of a cloud influences its internal structure. In the simple equilibrium model, the fraction of gas at high density in the cloud interior is determined simply by the cloud surface density, which is itselfmore » inherited from the pressure in the immediate surroundings. This idea is tested using measurements of the properties of local clouds, which are found to show remarkable agreement with the simple equilibrium model. The model also naturally predicts the star formation relation observed on cloud scales and at the same time provides a mapping between this relation and the closer-to-linear molecular star formation relation measured on larger scales in galaxies. The key is that pressure regulates not only the molecular content of the ISM but also the cloud surface density. I provide a straightforward prescription for the pressure regulation of star formation that can be directly implemented in numerical models. Predictions for the dense gas fraction and star formation efficiency measured on large-scales within galaxies are also presented, establishing the basis for a new picture of star formation regulated by galactic environment.« less
Processing Uav and LIDAR Point Clouds in Grass GIS
NASA Astrophysics Data System (ADS)
Petras, V.; Petrasova, A.; Jeziorska, J.; Mitasova, H.
2016-06-01
Today's methods of acquiring Earth surface data, namely lidar and unmanned aerial vehicle (UAV) imagery, non-selectively collect or generate large amounts of points. Point clouds from different sources vary in their properties such as number of returns, density, or quality. We present a set of tools with applications for different types of points clouds obtained by a lidar scanner, structure from motion technique (SfM), and a low-cost 3D scanner. To take advantage of the vertical structure of multiple return lidar point clouds, we demonstrate tools to process them using 3D raster techniques which allow, for example, the development of custom vegetation classification methods. Dense point clouds obtained from UAV imagery, often containing redundant points, can be decimated using various techniques before further processing. We implemented and compared several decimation techniques in regard to their performance and the final digital surface model (DSM). Finally, we will describe the processing of a point cloud from a low-cost 3D scanner, namely Microsoft Kinect, and its application for interaction with physical models. All the presented tools are open source and integrated in GRASS GIS, a multi-purpose open source GIS with remote sensing capabilities. The tools integrate with other open source projects, specifically Point Data Abstraction Library (PDAL), Point Cloud Library (PCL), and OpenKinect libfreenect2 library to benefit from the open source point cloud ecosystem. The implementation in GRASS GIS ensures long term maintenance and reproducibility by the scientific community but also by the original authors themselves.
NASA Astrophysics Data System (ADS)
Yang, Z.; Wang, J.; Hyer, E. J.; Ichoku, C. M.
2012-12-01
A fully-coupled meteorology-chemistry-aerosol model, Weather Research and Forecasting model with Chemistry (WRF-Chem), is used to simulate the transport of smoke aerosol over the Central Africa during February 2008. Smoke emission used in this study is specified from the Fire Locating and Modeling of Burning Emissions (FLAMBE) database derived from Moderate Resolution Imaging Spectroradiometer (MODIS) fire products. Model performance is evaluated using MODIS true color images, measured Aerosol Optical Depth (AOD) from space-borne MODIS (550 nm) and ground-based AERONET (500 nm), and Cloud-Aerosol Lidar data with Orthogonal Polarization (CALIOP) level 1 and 2 products. The simulated smoke transport is in good agreement with the validation data. Analyzing from three smoke events, smoke is constrained in a narrow belt between the Equator and 10°N near the surface, with the interplay of trade winds, subtropical high, and ITCZ. At the 700 hpa level, smoke expands farther meridionally. Topography blocks the smoke transport to the southeast of study area, because of high mountains located near the Great Rift Valley region. The simulation with injection height of 650 m is consistent with CALIOP measurements. The particular phenomenon, aerosol above cloud, is studied statistically from CALIOP observations. The total percentage of aerosol above cloud is about 5%.
Climatic impact of volcanic eruptions
NASA Technical Reports Server (NTRS)
Rampino, Michael R.
1991-01-01
Studies have attempted to 'isolate' the volcanic signal in noisy temperature data. This assumes that it is possible to isolate a distinct volcanic signal in a record that may have a combination of forcings (ENSO, solar variability, random fluctuations, volcanism) that all interact. The key to discovering the greatest effects of volcanoes on short-term climate may be to concentrate on temperatures in regions where the effects of aerosol clouds may be amplified by perturbed atmospheric circulation patterns. This is especially true in subpolar and midlatitude areas affected by changes in the position of the polar front. Such climatic perturbation can be detected in proxy evidence such as decrease in tree-ring widths and frost rings, changes in the treeline, weather anomalies, severity of sea-ice in polar and subpolar regions, and poor grain yields and crop failures. In low latitudes, sudden temperature drops were correlated with the passage overhead of the volcanic dust cloud (Stothers, 1984). For some eruptions, such as Tambora, 1815, these kinds of proxy and anectdotal information were summarized in great detail in a number of papers and books (e.g., Post, 1978; Stothers, 1984; Stommel and Stommel, 1986; C. R. Harrington, in press). These studies lead to the general conclusion that regional effects on climate, sometimes quite severe, may be the major impact of large historical volcanic aerosol clouds.
Incorporation of a Cumulus Fraction Scheme in the GRAPES_Meso and Evaluation of Its Performance
NASA Astrophysics Data System (ADS)
Zheng, X.
2016-12-01
Accurate simulation of cloud cover fraction is a key and difficult issue in numerical modeling studies. Preliminary evaluations have indicated that cloud fraction is generally underestimated in GRAPES_Meso simulations, while the cloud fraction scheme (CFS) of ECMWF can provide more realistic results. Therefore, the ECMWF cumulus fraction scheme is introduced into GRAPES_Meso to replace the original CFS, and the model performance with the new CFS is evaluated based on simulated three-dimensional cloud fractions and surface temperature. Results indicate that the simulated cloud fractions increase and become more accurate with the new CFS; the simulation for vertical cloud structure has improved too; errors in surface temperature simulation have decreased. The above analysis and results suggest that the new CFS has a positive impact on cloud fraction and surface temperature simulation.
Origin and Evolution of Comet Clouds
NASA Astrophysics Data System (ADS)
Higuchi, Arika
2007-01-01
The Oort cloud (comet cloud) is a spherical comet reservoir surrounding a planetary system. We have investigated the comet cloud formation that consists of two dynamical stages of orbital evolution of planetesimals due to (1) planetary perturbation, and (2) the galactic tide. We investigated the first stage by using numerical calculations and obtained the probabilities of the fates of planetesimals as functions of the orbital parameters of the planets and planetesimals. We investigated the second stage by using the secular perturbation theory and showed the evolution of the structure of a comet cloud from a planetesimal disk. We found that (1) massive planets effectively produce comet cloud candidates by scattering and (2) many planetesimals with semimajor axes larger than 1,000 AU rise up their perihelion distances to the outside of the planetary region and become members of the Oort cloud in 5 Gyr.
NASA Technical Reports Server (NTRS)
Wiscombe, W.
1999-01-01
The purpose of this paper is discuss the concept of fractal dimension; multifractal statistics as an extension of this; the use of simple multifractal statistics (power spectrum, structure function) to characterize cloud liquid water data; and to understand the use of multifractal cloud liquid water models based on real data as input to Monte Carlo radiation models of shortwave radiation transfer in 3D clouds, and the consequences of this in two areas: the design of aircraft field programs to measure cloud absorptance; and the explanation of the famous "Landsat scale break" in measured radiance.
NASA Astrophysics Data System (ADS)
Charbonnier, P.; Chavant, P.; Foucher, P.; Muzet, V.; Prybyla, D.; Perrin, T.; Grussenmeyer, P.; Guillemin, S.
2013-07-01
With recent developments in the field of technology and computer science, conventional methods are being supplanted by laser scanning and digital photogrammetry. These two different surveying techniques generate 3-D models of real world objects or structures. In this paper, we consider the application of terrestrial Laser scanning (TLS) and photogrammetry to the surveying of canal tunnels. The inspection of such structures requires time, safe access, specific processing and professional operators. Therefore, a French partnership proposes to develop a dedicated equipment based on image processing for visual inspection of canal tunnels. A 3D model of the vault and side walls of the tunnel is constructed from images recorded onboard a boat moving inside the tunnel. To assess the accuracy of this photogrammetric model (PM), a reference model is build using static TLS. We here address the problem comparing the resulting point clouds. Difficulties arise because of the highly differentiated acquisition processes, which result in very different point densities. We propose a new tool, designed to compare differences between pairs of point cloud or surfaces (triangulated meshes). Moreover, dealing with huge datasets requires the implementation of appropriate structures and algorithms. Several techniques are presented : point-to-point, cloud-to-cloud and cloud-to-mesh. In addition farthest point resampling, octree structure and Hausdorff distance are adopted and described. Experimental results are shown for a 475 m long canal tunnel located in France.
1979-07-03
Range : 6 Million km. ( 3.72 million miles ) This photograph of Jupiter, shot from Voyager 2, shows the equator to the southern polar latitudes, near the Great Red Spot. The white oval that appears here is different from the one seen in a similiar position when voyager 1 passed years before. The region of white clouds now extends from east of The Red Spot and around it's northern boundary, preventing small cloud vortices from circling the feature. The disturbed region west of The Red Spot has also changed since Voyager1. It shows more small scale structure and cloud vortices being formed out of the wave structures.
NASA Astrophysics Data System (ADS)
Gumley, L.; Parker, D.; Flynn, B.; Holz, R.; Marais, W.
2011-12-01
SatCam is an application for iOS devices that allows users to collect observations of local cloud and surface conditions in coordination with an overpass of the Terra, Aqua, or NPP satellites. SatCam allows users to acquire images of sky conditions and ground conditions at their location anywhere in the world using the built-in iPhone or iPod Touch camera at the same time that the satellite is passing overhead and viewing their location. Immediately after the sky and ground observations are acquired, the application asks the user to rate the level of cloudiness in the sky (Completely Clear, Mostly Clear, Partly Cloudy, Overcast). For the ground observation, the user selects their assessment of the surface conditions (Urban, Green Vegetation, Brown Vegetation, Desert, Snow, Water). The sky condition and surface condition selections are stored along with the date, time, and geographic location for the images, and the images are uploaded to a central server. When the MODIS (Terra and Aqua) or VIIRS (NPP) imagery acquired over the user location becomes available, a MODIS or VIIRS true color image centered at the user's location is delivered back to the SatCam application on the user's iOS device. SSEC also proposes to develop a community driven SatCam website where users can share their observations and assessments of satellite cloud products in a collaborative environment. SSEC is developing a server side data analysis system to ingest the SatCam user observations, apply quality control, analyze the sky images for cloud cover, and collocate the observations with MODIS and VIIRS satellite products (e.g., cloud mask). For each observation that is collocated with a satellite observation, the server will determine whether the user scored a "hit", meaning their sky observation and sky assessment matched the automated cloud mask obtained from the satellite observation. The hit rate will be an objective assessment of the accuracy of the user's sky observations. Users with high hit rates will be identified automatically and their observations will be used globally to evaluate the performance of the MODIS cloud mask algorithm for Terra and Aqua and the VIIRS cloud mask algorithm for NPP. The user's assessment of the ground conditions will also be used to evaluate the cloud mask accuracy in selecting the correct surface type at the user's location, which is an important element in the decision path used internally by the cloud mask algorithm. This presentation will describe the SatCam application, how it is used, and show examples of SatCam observations.
QUANTIFYING OBSERVATIONAL PROJECTION EFFECTS USING MOLECULAR CLOUD SIMULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaumont, Christopher N.; Offner, Stella S.R.; Shetty, Rahul
2013-11-10
The physical properties of molecular clouds are often measured using spectral-line observations, which provide the only probes of the clouds' velocity structure. It is hard, though, to assess whether and to what extent intensity features in position-position-velocity (PPV) space correspond to 'real' density structures in position-position-position (PPP) space. In this paper, we create synthetic molecular cloud spectral-line maps of simulated molecular clouds, and present a new technique for measuring the reality of individual PPV structures. Using a dendrogram algorithm, we identify hierarchical structures in both PPP and PPV space. Our procedure projects density structures identified in PPP space into correspondingmore » intensity structures in PPV space and then measures the geometric overlap of the projected structures with structures identified from the synthetic observation. The fractional overlap between a PPP and PPV structure quantifies how well the synthetic observation recovers information about the three-dimensional structure. Applying this machinery to a set of synthetic observations of CO isotopes, we measure how well spectral-line measurements recover mass, size, velocity dispersion, and virial parameter for a simulated star-forming region. By disabling various steps of our analysis, we investigate how much opacity, chemistry, and gravity affect measurements of physical properties extracted from PPV cubes. For the simulations used here, which offer a decent, but not perfect, match to the properties of a star-forming region like Perseus, our results suggest that superposition induces a ∼40% uncertainty in masses, sizes, and velocity dispersions derived from {sup 13}CO (J = 1-0). As would be expected, superposition and confusion is worst in regions where the filling factor of emitting material is large. The virial parameter is most affected by superposition, such that estimates of the virial parameter derived from PPV and PPP information typically disagree by a factor of ∼2. This uncertainty makes it particularly difficult to judge whether gravitational or kinetic energy dominate a given region, since the majority of virial parameter measurements fall within a factor of two of the equipartition level α ∼ 2.« less
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.; Huang, Huo-Jin
1989-01-01
Data from the Special Sensor Microwave Imager/I on the DMSP satellite are used to study atmospheric moisture and cloud structure. Column-integrated water vapor and total liquid water retrievals are obtained using an algorithm based on a radiative model for brightness temperature (Wentz, 1983). The results from analyzing microwave and IR measurements are combined with independent global gridpoint analyses to study the distribution and structure of atmospheric moisture over oceanic regions.
Characterization of clouds in Titan's tropical atmosphere
Griffith, C.A.; Penteado, P.; Rodriguez, S.; Le, Mouelic S.; Baines, K.H.; Buratti, B.; Clark, R.; Nicholson, P.; Jaumann, R.; Sotin, Christophe
2009-01-01
Images of Titan's clouds, possible over the past 10 years, indicate primarily discrete convective methane clouds near the south and north poles and an immense stratiform cloud, likely composed of ethane, around the north pole. Here we present spectral images from Cassini's Visual Mapping Infrared Spectrometer that reveal the increasing presence of clouds in Titan's tropical atmosphere. Radiative transfer analyses indicate similarities between summer polar and tropical methane clouds. Like their southern counterparts, tropical clouds consist of particles exceeding 5 ??m. They display discrete structures suggestive of convective cumuli. They prevail at a specific latitude band between 8??-20?? S, indicative of a circulation origin and the beginning of a circulation turnover. Yet, unlike the high latitude clouds that often reach 45 km altitude, these discrete tropical clouds, so far, remain capped to altitudes below 26 km. Such low convective clouds are consistent with the highly stable atmospheric conditions measured at the Huygens landing site. Their characteristics suggest that Titan's tropical atmosphere has a dry climate unlike the south polar atmosphere, and despite the numerous washes that carve the tropical landscape. ?? 2009. The American Astronomical Society.
Atmospheric Science Data Center
2013-04-19
... into a moist layer of atmosphere. The particles become cloud condensation nuclei (CCN), which may either produce new cloud particles where ... visualization of the vertical structure of the condensation trails. It was created using a combination of red band data from ...
NASA Technical Reports Server (NTRS)
Ham, Seung-Hee; Sohn, Byung-Ju; Kato, Seiji; Satoh, Masaki
2013-01-01
The shape of the vertical profile of ice cloud layers is examined using 4 months of CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) global measurements taken on January, April, July, and October 2007. Ice clouds are selected using temperature profiles when the cloud base is located above the 253K temperature level. The obtained ice water content (IWC), effective radius, or extinction coefficient profiles are normalized by their layer mean values and are expressed in the normalized vertical coordinate, which is defined as 0 and 1 at the cloud base and top heights, respectively. Both CloudSat and CALIPSO observations show that the maximum in the IWC and extinction profiles shifts toward the cloud bottom, as the cloud depth increases. In addition, clouds with a base reaching the surface in a high-latitude region show that the maximum peak of the IWC and extinction profiles occurs near the surface, which is presumably due to snow precipitation. CloudSat measurements show that the seasonal difference in normalized cloud vertical profiles is not significant, whereas the normalized cloud vertical profile significantly varies depending on the cloud type and the presence of precipitation. It is further examined if the 7 day Nonhydrostatic Icosahedral Atmospheric Model (NICAM) simulation results from 25 December 2006 to 1 January 2007 generate similar cloud profile shapes. NICAM IWC profiles also show maximum peaks near the cloud bottom for thick cloud layers and maximum peaks at the cloud bottom for low-level clouds near the surface. It is inferred that oversized snow particles in the NICAM cloud scheme produce a more vertically inhomogeneous IWC profile than observations due to quick sedimentation.
The Transition from Diffuse to Dense Gas in Herschel Dust Emission Maps
NASA Astrophysics Data System (ADS)
Goldsmith, Paul
Dense cores in dark clouds are the sites where young stars form. These regions manifest as relatively small (<0.1pc) pockets of cold and dense gas. If we wish to understand the star formation process, we have to understand the physical conditions in dense cores. This has been a main aim of star formation research in the past decade. Today, we do indeed possess a good knowledge of the density and velocity structure of cores, as well as their chemical evolution and physical lifetime. However, we do not understand well how dense cores form out of the diffuse gas clouds surrounding them. It is crucial that we constrain the relationship between dense cores and their environment: if we only understand dense cores, we may be able to understand how individual stars form --- but we would not know how the star forming dense cores themselves come into existence. We therefore propose to obtain data sets that reveal both dense cores and the clouds containing them in the same map. Based on these maps, we will study how dense cores form out of their natal clouds. Since cores form stars, this knowledge is crucial for the development of a complete theoretical and observational understanding of the formation of stars and their planets, as envisioned in NASA's Strategic Science Plan. Fortunately, existing archival data allow to derive exactly the sort of maps we need for our analysis. Here, we describe a program that exclusively builds on PACS and SPIRE dust emission imaging data from the NASA-supported Herschel mission. The degree-sized wide-field Herschel maps of the nearby (<260pc) Polaris Flare and Aquila Rift clouds are ideal for our work. They permit to resolve dense cores (<0.1pc), while the maps also reveal large-scale cloud structure (5pc and larger). We will generate column density maps from these dust emission maps and then run a tree-based hierarchical multi-scale structure analysis on them. Only this procedure permits to exploit the full potential of the maps: we will characterize cloud structure over a vast range of spatial scales. This work has many advantages over previous studies, where information about dense cores and their environment was pieced together using a variety of methods an instruments. Now, the Herschel maps permit for the first time to characterize both molecular clouds and their cores in one shot in a single data set. We use these data to answer a variety of simple yet very important questions. First, we study whether dense cores have sharp boundaries. If such boundaries exist, they would indicate that dense cores have an individual identity well-separate from the near-fractal cloud structure on larger spatial scales. Second, we will --- in very approximate sense --- derive global density gradients for molecular clouds from radii <0.1pc to 5pc and larger. These "synoptic" density gradients provide a useful quantitative description of the relation between cloud material at very different spatial scales. Also, these measurements can be compared to synoptic density gradients derived in the same fashion for theoretical cloud models. Third, we study how dense cores are nested into the "clumps" forming molecular clouds, i.e., we study whether the most massive dense cores in a cloud (<0.1pc) reside in the most massive regions identified on lager spatial scale (1pc and larger). This will show how the properties of dense cores are influenced by their environment. Our study will derive unique constraints to cloud structure. But our small sample forbids to make strong statements. This pilot study does thus prepare future larger efforts. Our entire project builds on data reduction and analysis methods which our team has used in the past. This guarantees a swift completion of the project with predictable efficiency. We present pilot studies that demonstrate that the data and analysis methods are suited to tackle the science goals. This project is thus guaranteed to return significant results.
NASA Astrophysics Data System (ADS)
Kodama, C.; Noda, A. T.; Satoh, M.
2012-06-01
This study presents an assessment of three-dimensional structures of hydrometeors simulated by the NICAM, global nonhydrostatic atmospheric model without cumulus parameterization, using multiple satellite data sets. A satellite simulator package (COSP: the CFMIP Observation Simulator Package) is employed to consistently compare model output with ISCCP, CALIPSO, and CloudSat satellite observations. Special focus is placed on high thin clouds, which are not observable in the conventional ISCCP data set, but can be detected by the CALIPSO observations. For the control run, the NICAM simulation qualitatively captures the geographical distributions of the high, middle, and low clouds, even though the horizontal mesh spacing is as coarse as 14 km. The simulated low cloud is very close to that of the CALIPSO low cloud. Both the CloudSat observations and NICAM simulation show a boomerang-type pattern in the radar reflectivity-height histogram, suggesting that NICAM realistically simulates the deep cloud development process. A striking difference was found in the comparisons of high thin cirrus, showing overestimated cloud and higher cloud top in the model simulation. Several model sensitivity experiments are conducted with different cloud microphysical parameters to reduce the model-observation discrepancies in high thin cirrus. In addition, relationships among clouds, Hadley circulation, outgoing longwave radiation and precipitation are discussed through the sensitivity experiments.
Aerosol, cloud, and precipitation interactions in Eastern North Atlantic
NASA Astrophysics Data System (ADS)
Wang, J.; Wood, R.; Dong, X.
2017-12-01
With their extensive coverage, marine low clouds greatly impact global climate. Presently, marine low clouds are poorly represented in global climate models, and the response of marine low clouds to changes in atmospheric greenhouse gases and aerosols remains the major source of uncertainty in climate simulations. The Eastern North Atlantic (ENA) is a region of persistent but diverse subtropical marine boundary layer clouds, whose albedo and precipitation are highly susceptible to perturbations in aerosol properties. In addition, ENA is periodically impacted by anthropogenic aerosol both from North American and from continental Europe, making it an excellent location to study the CCN budget in a remote marine region periodically perturbed by anthropogenic emissions, and to investigate the impacts of long-range transport of aerosols on remote marine clouds. Aerosol and Cloud Experiments in Eastern North Atlantic (ACE-ENA), funded by DOE Atmospheric Radiation Measurement (ARM) program, is designed to improve the understanding of marine boundary CCN budget, cloud and drizzle microphysics, and the impact of aerosol on marine low cloud and precipitation in the ENA by combining airborne observations and long term surface based measurements. The study has two airborne deployments. The first deployment took place from June 15 to July 25, 2017, and the second one will take place from January 10 to February 20, 2018. Flights during the first deployment were carried out in the Azores, near the ARM ENA site on Graciosa Island. The long term measurements at the ENA site provide important Climatological context for the airborne observations during the two deployments, and the cloud structures provided by the scanning radars at the ENA site put the detailed in-situ measurements into mesoscale and cloud lifecycle contexts. Another important aspect of this study is to provide high quality in-situ measurements for validating and improving ground-based retrieval algorithms at the ENA site. This presentation will describe the setup and strategies of the study, early results from the first deployment on vertical structures and horizontal variabilities of aerosol properties, cloud and drizzle microphysics, and insights into the processes that drive the properties and interactions of aerosol and marine low clouds.
NASA Astrophysics Data System (ADS)
Hess, M. R.; Petrovic, V.; Kuester, F.
2017-08-01
Digital documentation of cultural heritage structures is increasingly more common through the application of different imaging techniques. Many works have focused on the application of laser scanning and photogrammetry techniques for the acquisition of threedimensional (3D) geometry detailing cultural heritage sites and structures. With an abundance of these 3D data assets, there must be a digital environment where these data can be visualized and analyzed. Presented here is a feedback driven visualization framework that seamlessly enables interactive exploration and manipulation of massive point cloud data. The focus of this work is on the classification of different building materials with the goal of building more accurate as-built information models of historical structures. User defined functions have been tested within the interactive point cloud visualization framework to evaluate automated and semi-automated classification of 3D point data. These functions include decisions based on observed color, laser intensity, normal vector or local surface geometry. Multiple case studies are presented here to demonstrate the flexibility and utility of the presented point cloud visualization framework to achieve classification objectives.
Analysis of interstellar cloud structure based on IRAS images
NASA Technical Reports Server (NTRS)
Scalo, John M.
1992-01-01
The goal of this project was to develop new tools for the analysis of the structure of densely sampled maps of interstellar star-forming regions. A particular emphasis was on the recognition and characterization of nested hierarchical structure and fractal irregularity, and their relation to the level of star formation activity. The panoramic IRAS images provided data with the required range in spatial scale, greater than a factor of 100, and in column density, greater than a factor of 50. In order to construct densely sampled column density maps of star-forming clouds, column density images of four nearby cloud complexes were constructed from IRAS data. The regions have various degrees of star formation activity, and most of them have probably not been affected much by the disruptive effects of young massive stars. The largest region, the Scorpius-Ophiuchus cloud complex, covers about 1000 square degrees (it was subdivided into a few smaller regions for analysis). Much of the work during the early part of the project focused on an 80 square degree region in the core of the Taurus complex, a well-studied region of low-mass star formation.