Nilsson, G E; Tottmar, O
1987-04-21
The effect of indole-3-acetaldehyde, 5-hydroxyindole-3-acetaldehyde, disulfiram, diethyldithiocarbamate, coprine, and 1-amino-cyclopropanol on tryptophan hydroxylase activity was studied in vitro using high performance liquid chromatography with electro-chemical detection. With the analytical method developed, 5-hydroxytryptophan, serotonin, and 5-hydroxyindole-3-acetic acid could be measured simultaneously. Indole-3-acetaldehyde (12-1200 microM) was found to cause a 6-33% inhibition of the enzyme. Dependent upon the nature of the sulfhydryl- or reducing-agent (dithiotreitol, glutathione, or ascorbate) present in the incubates, the degree of inhibition by disulfiram varied, probably due to the formation of various mixed disulfides. Also the presence of diethyldithiocarbamate (160-1600 microM) was found to inhibit tryptophan hydroxylase (28-91%), while 5-hydroxyindole-3-acetaldehyde, coprine, or 1-aminocyclopropanol appeared to have no effect on the enzyme activity.
On the role of brain serotonin in expression of genetic predisposition to catalepsy in animal models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popova, N.K.; Kulikov, A.V.
1995-06-19
The activity of the rate-limiting enzyme of serotonin biosynthesis, tryptophan hydroxylase, in the striatum but not in the hippocampus and midbrain of rats bred for predisposition to catalepsy was higher than in nonselected rats. Mice of the highly susceptible to catalepsy CBA strain also differed from other noncataleptic mouse strains by the highest tryptophan hydroxylase activity in the striatum. Inhibition of tryptophan hydroxylase with p-chlorophenylalanine and p-chloromethamphetamine drastically decreased immobility time in hereditary predisposed to catalepsy animals. A decrease in the {sup 3}H-ketanserin specific binding in the striatum of cataleptic rats and CBA mice was found. It was suggested thatmore » this decrease in 5-HT2A serotonin receptor density represented a down regulation of the receptors due to an activation of serotonergic transmission in striatum. It is suggested that hereditary catalepsy may be resulted from genetic changes in the regulation of serotonin metabolism in striatum. 32 refs., 6 figs.« less
[Changes in cerebra serotonin synthesis induced by insulin-dependent diabetes mellitus].
Manjarrez-Gutiérrez, G; Herrera-Márquez, J R; Molina-Hernández, A; Bueno-Santoyo, S; González-Ramírez, M; Hernández, J
1999-01-01
Evaluate if the rats with diabetes mellitus insulin-dependent have a minor activity of the serotonergic biosynthetic pathway through the decrease of the free fraction of L-tryptophan in plasma. Diabetes mellitus was induced in rats, and the brain serotonergic biosynthetic activity was evaluated at 7, 14, and 21 days after streptozotocin administration. The diabetic animals showed a general decrease in body weight. In plasma they had a decrease in the free fraction of L-tryptophan. Also, in the brain they show low levels of the amino acid, as well as decrease of the activity of the limiting enzyme tryptophan-5-hydroxylase and its product serotonin. Interestingly, the activity of the enzyme was higher in the brainstem from day 14, accompanied with an elevation of the neurotransmitter. The results confirm that diabetes mellitus insulin-depend induce chronic undernourishment. The low levels of L-tryptophan in blood of the diabetic animals suggest a minor transport of the amino acid to the brain and a decrease in serotonin synthesis, in cerebral cortex and hypothalamus. Besides, during the evolution of the disease, the activity of tryptophan hydroxylase was elevated, independently of L-tryptophan concentration in the brainstem of diabetic animals, suggesting a different response according to the brain region and possibly a different functional change, accompanied by an increase in the synthesis of the neurotransmitter.
Monteleone, Palmiero; Tortorella, Alfonso; Martiadis, Vassilis; Serino, Ismene; Di Filippo, Carmela; Maj, Mario
2007-06-21
Genes involved in serotonin transmission are likely involved in the biological predisposition to bulimia nervosa. We investigated whether the A218C polymorphism of the tryptophan-hydroxylase-1 gene was associated to bulimia nervosa and/or to some phenotypic aspects of the disorder. One hundred eighty Caucasian women (91 patients with bulimia nervosa and 89 healthy controls) were enrolled into the study. They underwent a blood sample collection for A218C polymorphism of the tryptophan-hydroxylase-1 genotyping and a clinical evaluation assessing comorbidity for Axis I and II psychiatric disorders, harm avoidance personality dimension and bulimic symptoms. The distribution of both tryptophan-hydroxylase-1 A218C genotypes and alleles did not significantly differ between patients and controls. Bulimic women with the AA genotype exhibited a more severe binge eating behavior and higher harm avoidance scores than those with CC genotype. These findings support the idea that tryptophan-hydroxylase-1 A218C polymorphism does not play a part in the genetic susceptibility to bulimia nervosa, but it seems to be involved in predisposing bulimic patients to a more disturbed eating behavior and higher harm avoidance.
Watanabe, T; Sadamoto, Hitoshi; Aonuma, H
2011-10-01
Serotonin (5-HT) modulates various aspects of behaviours such as aggressive behaviour and circadian behaviour in the cricket. To elucidate the molecular basis of the cricket 5-HT system, we identified 5-HT-related genes in the field cricket Gryllus bimaculatus DeGeer. Complementary DNA of tryptophan hydroxylase and phenylalanine-tryptophan hydroxylase, which convert tryptophan into 5-hydroxy-L-tryptophan (5-HTP), and that of aromatic L-amino acid decarboxylase, which converts 5-HTP into 5-HT, were isolated from a cricket brain cDNA library. In addition, four 5-HT receptor genes (5-HT(1A) , 5-HT(1B) , 5-HT(2α) , and 5-HT(7) ) were identified. Expression analysis of the tryptophan hydroxylase gene TRH and phenylalanine-tryptophan hydroxylase gene TPH, which are selectively involved in neuronal and peripheral 5-HT synthesis in Drosophila, suggested that two 5-HT synthesis pathways co-exist in the cricket neuronal tissues. The four 5-HT receptor genes were expressed in various tissues at differential expression levels, suggesting that the 5-HT system is widely distributed in the cricket. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.
Manjarrez-Gutiérrez, G; Rocío Herrera-Márquez, J R; Bueno-Santoyo, S; González-Ramírez, M; Hernández, J
2000-01-01
To investigate if the changes in the activity of the tryptophan-5-hydroxylase and in brain serotonin synthesis provoked by diabetes mellitus persist or return to normal in the diabetic rats submitted to treatment with insulin. Diabetes induced by the administration of streptozotocin in rats and their treatment with insulin was the paradigm used. At days 7, 14 and 21 of evolution, the brain serotonergic biosynthetic activity was evaluated. The diabetic rats showed a significant decrease of body weight. Also, they showed a low concentration of I-tryptophan, as well as a diminution in the activity of the key enzyme tryptophan-5-hydroxylase and its product serotonin in the cerebral cortex and brainstem. Interestingly, the activity of the enzyme was higher in the brainstem from day 14, accompanied with an elevation of the neurotransmitter. The diabetic rats submitted to treatment with insulin showed a complete physical recovery and a return to normal of plasma and brain I-tryptophan. The activity of the enzyme not only normalized but was elevated and with an increase of serotonin in the brainstem and cerebral cortex. The present findings confirm that diabetes mellitus produced a chronic anabolic deficit and a decrease in some brain regions of serotonin synthesis. Also, demonstrate that the diabetic rats under specific treatment with insulin had a complete physical recovery and a return to normal of the serotonin precursor in the blood and brain. However, the activity of the limiting enzyme TrpOH case was elevated with an increase of the neurotransmitter in all regions studied. Since the diabetic animal, insulin treated, does recover metabolically, the mechanism of activation of the serotonin biosynthetic path in the brain may not be dependent on the decreased availability of its precursor the free plasma I-tryptophan. Instead, it might be due to a change in the kinetics of tryptophan-5-hydroxylase, since its activity remains significantly increased in spite of plasma and brain normalization of its substrate. Altogether these changes in the biosynthesis of an important brain neurotransmitter may be of relevance in the pathophysiology of the psychoneurological complications in diabetic patients.
Origins of serotonin innervation of forebrain structures
NASA Technical Reports Server (NTRS)
Kellar, K. J.; Brown, P. A.; Madrid, J.; Bernstein, M.; Vernikos-Danellis, J.; Mehler, W. R.
1977-01-01
The tryptophan hydroxylase activity and high-affinity uptake of (3H) serotonin ((3H)5-HT) were measured in five discrete brain regions of rats following lesions of the dorsal or median raphe nuclei. Dorsal raphe lesions reduced enzyme and uptake activity in the striatum only. Median raphe lesions reduced activities in the hippocampus, septal area, frontal cortex, and, to a lesser extent, in the hypothalamus. These data are consistent with the suggestion that the dorsal and median raphe nuclei are the origins of two separate ascending serotonergic systems - one innervating striatal structures and the other mesolimbic structures, predominantly. In addition, the data suggest that measurements of high-affinity uptake of (3H)5-HT may be a more reliable index of innervation than either 5-HT content or tryptophan hydroxylase activity.
Rajathei, David Mary; Preethi, Jayakumar; Singh, Hemant K; Rajan, Koilmani Emmanuvel
2014-08-01
Tryptophan hydroxylase (TPH) catalyses l-tryptophan into 5-hydroxy-l-tryptophan, which is the first and rate-limiting step of serotonin (5-HT) biosynthesis. Earlier, we found that TPH2 up-regulated in the hippocampus of postnatal rats after the oral treatment of Bacopa monniera leaf extract containing the active compound bacosides. However, the knowledge about the interactions between bacosides with TPH is limited. In this study, we take advantage of in silico approach to understand the interaction of bacoside-TPH complex using three different docking algorithms such as HexDock, PatchDock and AutoDock. All these three algorithms showed that bacoside A and A3 well fit into the cavity consists of active sites. Further, our analysis revealed that major active compounds bacoside A3 and A interact with different residues of TPH through hydrogen bond. Interestingly, Tyr235, Thr265 and Glu317 are the key residues among them, but none of them are either at tryptophan or BH4 binding region. However, its note worthy to mention that Tyr 235 is a catalytic sensitive residue, Thr265 is present in the flexible loop region and Glu317 is known to interacts with Fe. Interactions with these residues may critically regulate TPH function and thus serotonin synthesis. Our study suggested that the interaction of bacosides (A3/A) with TPH might up-regulate its activity to elevate the biosynthesis of 5-HT, thereby enhances learning and memory formation.
Association between Tryptophan Hydroxylase 2 Gene Polymorphism and Completed Suicide
ERIC Educational Resources Information Center
Fudalej, Sylwia; Ilgen, Mark; Fudalej, Marcin; Kostrzewa, Grazyna; Barry, Kristen; Wojnar, Marcin; Krajewski, Pawel; Blow, Frederic; Ploski, Rafal
2010-01-01
The association between suicide and a single nucleotide polymorphism (rs1386483) was examined in the recently identified tryptophan hydroxylase 2 (TPH2) gene. Blood samples of 143 suicide victims and 162 age- and sex-matched controls were examined. The frequency of the TT genotype in the TPH2 polymorphism was higher in suicide victims than in…
Rastogi, R B; Singhal, R L
1976-09-01
In neonatal rats, administration of l-triiodothyronine (10 mug/100 g/day) for 30 days presented signs of hyperthyroidism which included accelerated development of a variety of physical and behavioral characteristics accompanying maturation. The spontaneous motor activity was increased by 69%. Exposure of developing rats to thyroid hormone significantly increased the endogenous concentration of striatal tyrosine and the activity of tyrosine hydroxylase as well as the levels of dopamine in several brain regions. The concentration of striatal homovanillic acid and 3,4-dihydroxyphenylacetic acid, the chief metabolites of dopamine, was also increased and the magnitude of change was greater than the rise in dopamine. Despite increases in the activity of tyrosine hydroxylase and the availability of the substrate tyrosine, the steady-state levels of norepinephrine remained unaltered in various regions of brain except in cerebellum. Futhermore, neonatal hyperthyroidism significantly increased the levels of midbrain tryptophan and tryptophan hydroxylase activity but produced no change in 5-hydroxytryptamine levels of several discrete brain regions, except hypothalamus and cerebellum where its concentration was slightly decreased. However, the 5-hydroxyindoleacetic acid levels were enhanced in hypothalamus, ponsmedulla, midbrain, striatum and hippocampus. The elevated levels of 5-hydroxyindoleacetic acid did not seem to be due to increased intraneuronal deamination of 5-hydroxytryptamine since monoamine oxidase activity was not affected in cerebral cortex and midbrain of hyperthyroid rats. The data demonstrate that hyperthyroidism significantly increased the synthesis as well as the utilization of catecholamines and 5-hydroxytryptamine in maturing brain. Since the mature brain is known to respond differently to thyroid hormone action than does the developing brain, the effect of L-triiodothyronine treatment on various putative neurohumors also was examined in adult rats. Whereas administration of l-triiodothyronine (10 mug/100 g/day) for 30 days to 120-day-old rats increased the levels of tyrosine by 23% and of tryptophan by 43%, no appreciable change was noted in tryptophan hydroxylase activity. In contrast to neonatal hyperthyroidism, excess of thyroid hormone in adult rats failed to produce any change in motor activity and tended to decrease striatal tyrosine hydroxylase activity only slightly. The concentration of dopamine remained unchanged in all regions of the brain except in midbrain where it rose by 19%. Whereas norepinephrine concentration was altered in hypothalamus, pons-medulla and midbrain, the levels of 5-hydroxytryptamine and its metabolite, 5-hydroxyindoleacetic acid, were significantly decreased in striatum and cerebellum. Since dopaminergic and noradrenergic neurons are the critical components of the motor system, the possibility exists that elevated behavioral activity in young L-triiodothyronine-treated animals might be associated with increased turnover of catecholamines in neuronal tissue.
ERIC Educational Resources Information Center
Leppanen, Jukka M.; Peltola, Mikko J.; Puura, Kaija; Mantymaa, Mirjami; Mononen, Nina; Lehtimaki, Terho
2011-01-01
Background: Allelic variation in the promoter region of a gene that encodes tryptophan hydroxylase isoform 2 (TPH2), a rate-limiting enzyme of serotonin synthesis in the central nervous system, has been associated with variations in cognitive function and vulnerability to affective spectrum disorders. Little is known about the effects of this gene…
Pavon, Jorge Alex; Eser, Bekir; Huynh, Michaela T.; Fitzpatrick, Paul F.
2010-01-01
Tryptophan hydroxylase (TrpH) uses a non-heme mononuclear iron center to catalyze the tetrahydropterin-dependent hydroxylation of tryptophan to 5-hydroxytryptophan. The reactions of the TrpH·Fe(II), TrpH·Fe(II)·tryptophan, TrpH·Fe(II)·6MePH4·tryptophan, and TrpH·Fe(II)·6MePH4·phenylalanine complexes with O2 were monitored by stopped-flow absorbance spectroscopy and rapid quench methods. The second-order rate constant for the oxidation of TrpH·Fe(II) has a value of 104 M−1s−1 irrespective of the presence of tryptophan. Stopped-flow absorbance analyses of the reaction of the TrpH·Fe(II)·6MePH4·tryptophan complex with oxygen are consistent with the initial step being reversible binding of oxygen, followed by the formation with a rate constant of 65 s−1 of an intermediate I that has maximal absorbance at 420 nm. The rate constant for decay of I, 4.4 s−1, matches that for formation of the 4a-hydroxypterin product monitored at 248 nm. Chemical-quench analyses show that 5-hydroxytryptophan forms with a rate constant of 1.3 s−1, and that overall turnover is limited by a subsequent slow step, presumably product release, with a rate constant of 0.2 s−1. All of the data with tryptophan as substrate can be described by a five-step mechanism. In contrast, with phenylalanine as substrate, the reaction can be described by three steps: a second-order reaction with oxygen to form I, decay of I as tyrosine forms, and slow product release. PMID:20687613
Osipova, Daria V; Kulikov, Alexander V; Popova, Nina K
2009-04-01
Tryptophan hydroxylase-2 (TPH2) is the rate-limiting enzyme of brain serotonin synthesis. The C1473G polymorphism in the mouse tryptophan hydroxylase-2 gene affects the enzyme's activity. In the present study, we investigated the linkage between the C1473G polymorphism, enzyme activity in the brain, and behavior in the forced swim, intermale aggression, and open field tests using mice of the C57BL/6 (C/C) and CC57BR/Mv (G/G) strains and the B6-1473C (C/C) and B6-1473G (G/G) lines created by three successive backcrossings on C57BL/6. Mice of the CC57BR/Mv strain had decreased brain enzyme activity, aggression intensity, and immobility in the forced swim test, but increased locomotor activity and time spent in the central part of the open field arena compared with animals of the C57BL/6 strain. Mice of the B6-1473G line homozygous for the 1473G allele had lower TPH2 activity in the brain, aggression intensity, and immobility time in the forced swim test compared with animals of the B6-1473C line homozygous for the 1473C allele. No differences were found between the B6-1473G and B6-1473C mice in locomotor activity and time spent in the central part of the arena in the open field test. Thus, the C1473G polymorphism is involved in the determination of TPH2 activity and is linked to aggression intensity and forced-swim immobility in mice. At the same time, the polymorphism does not affect locomotion and anxiety-related behavior in the open field test. The B6-1473C and B6-1473G mice represent a valuable experimental model for investigating molecular mechanisms of serotonin-related behavior.
Lack of Tryptophan Hydroxylase-1 in Mice Results in Gait Abnormalities
Suidan, Georgette L.; Vanderhorst, Veronique; Hampton, Thomas G.; Wong, Siu Ling; Voorhees, Jaymie R.; Wagner, Denisa D.
2013-01-01
The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (−/−) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system. PMID:23516593
Lack of tryptophan hydroxylase-1 in mice results in gait abnormalities.
Suidan, Georgette L; Duerschmied, Daniel; Dillon, Gregory M; Vanderhorst, Veronique; Hampton, Thomas G; Wong, Siu Ling; Voorhees, Jaymie R; Wagner, Denisa D
2013-01-01
The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (-/-) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system.
Schallreuter, Karin U; Salem, Mohamed A E L; Gibbons, Nick C J; Martinez, Aurora; Slominski, Radomir; Lüdemann, Jürgen; Rokos, Hartmut
2012-06-01
Vitiligo is characterized by a progressive loss of inherited skin color. The cause of the disease is still unknown. To date, there is accumulating in vivo and in vitro evidence for massive oxidative stress via hydrogen peroxide (H(2)O(2)) and peroxynitrite (ONOO(-)) in the skin of affected individuals. Autoimmune etiology is the favored theory. Since depletion of the essential amino acid L-tryptophan (Trp) affects immune response mechanisms, we here looked at epidermal Trp metabolism via tryptophan hydroxylase (TPH) with its downstream cascade, including serotonin and melatonin. Our in situ immunofluorescence and Western blot data reveal significantly lower TPH1 expression in patients with vitiligo. Expression is also low in melanocytes and keratinocytes under in vitro conditions. Although in vivo Fourier transform-Raman spectroscopy proves the presence of 5-hydroxytryptophan, epidermal TPH activity is completely absent. Regulation of TPH via microphthalmia-associated transcription factor and L-type calcium channels is severely affected. Moreover, dopa decarboxylase (DDC) expression is significantly lower, in association with decreased serotonin and melatonin levels. Computer simulation supports H(2)O(2)/ONOO(-)-mediated oxidation/nitration of TPH1 and DDC, affecting, in turn, enzyme functionality. Taken together, our data point to depletion of epidermal Trp by Fenton chemistry and exclude melatonin as a relevant contributor to epidermal redox balance and immune response in vitiligo.
Pavon, Jorge Alex; Fitzpatrick, Paul F.
2006-01-01
Phenylalanine hydroxylase (PheH) and tryptophan hydroxylase (TrpH) catalyze the aromatic hydroxylation of phenylalanine and tryptophan, forming tyrosine and 5-hydroxytryptophan, respectively. The reactions of PheH and TrpH have been investigated with [4-2H]-, [3,5-2H2]-, and 2H5-phenylalanine as substrates. All Dkcat values are normal with Δ117PheH, the catalytic core of rat phenylalanine hydroxylase, ranging from 1.12–1.41. In contrast, for Δ117PheH V379D, a mutant protein in which the stoichiometry between tetrahydropterin oxidation and amino acid hydroxylation is altered, the Dkcat value with [4-2H]-phenylalanine is 0.92 but is normal with [3,5-2H2]-phenylalanine. The ratio of tetrahydropterin oxidation to amino acid hydroxylation for Δ117PheH V379D shows a similar inverse isotope effect with [4-2H]-phenylalanine. Intramolecular isotope effects, determined from the deuterium contents of the tyrosine formed from [4-2H]-and [3,52H2]-phenylalanine, are identical for Δ117PheH and Δ117PheH V379D, suggesting that steps subsequent to oxygen addition are unaffected in the mutant protein. The inverse effects are consistent with the reaction of an activated ferryl-oxo species at the para position of the side chain of the amino acid to form a cationic intermediate. The normal effects on the Dkcat value for the wild-type enzyme are attributed to an isotope effect of 5.1 on the tautomerization of a dienone intermediate to tyrosine with a rate constant 6- to7-fold that for hydroxylation. In addition, there is a slight (∼34%) preference for the loss of the hydrogen originally at C4 of phenylalanine. With 2H5-indole-tryptophan as a substrate for Δ117PheH, the Dkcat value is 0.89, consistent with hydroxylation being rate-limiting in this case. When deuterated phenylalanines are used as substrates for TrpH, the Dkcat values are within error of those for Δ117PheH V379D. Overall, these results are consistent with the aromatic amino acid hydroxylases all sharing the same chemical mechanism, but with the isotope effect for hydroxylation by PheH being masked by tautomerization of an enedione intermediate to tyrosine. PMID:16953590
Regulation of embryonic neurotransmitter and tyrosine hydroxylase protein levels by ascorbic acid
Meredith, M. Elizabeth; May, James M.
2013-01-01
Scope: Ascorbic acid (ascorbate) is required to recycle tetrahydrobiopterin, which is necessary for neurotransmitter synthesis by the rate-limiting enzymes tyrosine and tryptophan hydroxylases. We sought to determine whether ascorbate might regulate embryonic brain cortex monoamine synthesis utilizing transgenic mouse models with varying intracellular ascorbate levels. Methods and Results: In embryos lacking the sodium-dependent vitamin C transporter 2 (SVCT2), very low levels of brain ascorbate decreased cortex levels of norepinephrine and dopamine by approximately 33%, but had no effect on cortex serotonin or its metabolite, 5-hydroxyindole acetic acid. This decrease in ascorbate also led to a decrease in protein levels of tyrosine hydroxylase, but not of tryptophan hydroxylase. Increased cortex ascorbate in embryos carrying extra copies of the SVCT2 resulted in increased levels of dopamine and its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), as well as serotonin and 5-hydroxyindole acetic acid. Conclusion: The dependence of embryonic brain cortex neurotransmitter synthesis and tyrosine hydroxylase expression on intracellular ascorbate emphasizes the importance of receiving adequate ascorbate during development. PMID:24095796
Petrassi, Mike; Barber, Rob; Be, Celine; Beach, Sarah; Cox, Brian; D’Souza, Anne-Marie; Duggan, Nick; Hussey, Martin; Fox, Roy; Hunt, Peter; Jarai, Gabor; Kosaka, Takatoshi; Oakley, Paul; Patel, Viral; Press, Neil; Rowlands, David; Scheufler, Clemens; Schmidt, Oliver; Srinivas, Honnappa; Turner, Mary; Turner, Rob; Westwick, John; Wolfreys, Alison; Pathan, Nuzhat; Watson, Simon; Thomas, Matthew
2017-01-01
Pulmonary arterial hypertension (PAH) has demonstrated multi-serotonin receptor dependent pathologies, characterized by increased tone (5-HT1B receptor) and complex lesions (SERT, 5-HT1B, 5-HT2B receptors) of the pulmonary vasculature together with right ventricular hypertrophy, ischemia and fibrosis (5-HT2B receptor). Selective inhibitors of individual signaling elements – SERT, 5-HT2A, 5HT2B, and combined 5-HT2A/B receptors, have all been tested clinically and failed. Thus, inhibition of tryptophan hydroxylase 1 (TPH1), the rate limiting step in 5-HT synthesis, has been suggested as a more broad, and thereby more effective, mode of 5-HT inhibition. However, selectivity over non-pathogenic enzyme family members, TPH2, phenylalanine hydroxylase, and tyrosine hydroxylase has hampered therapeutic development. Here we describe the site/sequence, biochemical, and biophysical characterization of a novel allosteric site on TPH1 through which selectivity over TPH2 and related aromatic amino acid hydroxylases is achieved. We demonstrate the mechanism of action by which novel compounds selectively inhibit TPH1 using surface plasma resonance and enzyme competition assays with both tryptophan ligand and BH4 co-factor. We demonstrate 15-fold greater potency within a human carcinoid cell line versus the most potent known TPH1/2 non-specific inhibitor. Lastly, we detail a novel canine in vivo system utilized to determine effective biologic inhibition of newly synthesized 5-HT. These findings are the first to demonstrate TPH1-selective inhibition and may pave the way to a truly effective means to reduce pathologic 5-HT and thereby treat complex remodeling diseases such as PAH. PMID:28529483
Gentile, Maria Teresa; Nawa, Yukino; Lunardi, Gianluigi; Florio, Tullio; Matsui, Hiroaki; Colucci-D'Amato, Luca
2012-12-01
Serotonin (5-HT) is a neurotransmitter involved in many aspects of the neuronal function. The synthesis of 5-HT is initiated by the hydroxylation of tryptophan, catalyzed by tryptophan hydroxylase (TPH). Two isoforms of TPH (TPH1 and TPH2) have been identified, with TPH2 almost exclusively expressed in the brain. Following TPH2 discovery, it was reported that polymorphisms of both gene and non-coding regions are associated with a spectrum of psychiatric disorders. Thus, insights into the mechanisms that specifically regulate TPH2 expression and its modulation by exogenous stimuli may represent a new therapeutic approach to modify serotonergic neurotransmission. To this aim, a CNS-originated cell line expressing TPH2 endogenously represents a valid model system. In this study, we report that TPH2 transcript and protein are modulated by neuronal differentiation in the cell line A1 mes-c-myc (A1). Moreover, we show luciferase activity driven by the human TPH2 promoter region and demonstrate that upon mutation of the NRSF/REST responsive element, the promoter activity strongly increases with cell differentiation. Our data suggest that A1 cells could represent a model system, allowing an insight into the mechanisms of regulation of TPH2 and to identify novel therapeutic targets in the development of drugs for the management of psychiatric disorders. © 2012 The Authors Journal of Neurochemistry © 2012 International Society for Neurochemistry.
Tryptophan Hydroxylase 2 Gene Polymorphism in Anxiety and Depressive Disorder in Kashmiri Population
Shoib, Sheikh; Shah, Tabindah; Mushtaq, Sahil
2014-01-01
Background: The gene of tryptophan hydroxylase is widely recognized as a major candidate gene in many psychiatric disorders. However, no study has been done which investigates tryptophan hydroxylase 2 gene polymorphism in anxiety and depressive disorders in Kashmiri population (India). Objectives: To study tryptophan hydroxylase 2 (TPH2) C 11993 A gene polymorphism in anxiety and depressive disorders. Method: Sixty patients of depression disorder, 60 patients of anxiety disorder and 40 unrelated healthy volunteers (control) were studied in a case control design. Polymorphism was determined using polymerase chain reaction (PCR) and agarose gel electrophoresis after digestion with HAP II enzyme. Genotypes and allele frequencies were compared using Chi-square tests, Fischer’s exact test, odds ratio, 95% confidence interval (C.I) and p-value of <0.05 was considered to be statistical significant. Results: The mean age ± SD of anxiety, depression and control group was 32.73±10.99, 32.20±10 and 29.75±10.12 respectively and the difference was found to be statistically non significant (p=0.349).The mean HAM-A (Hamilton rating scale for anxiety) score and HAM-D (Hamilton rating scale for depression) score was high in both groups (anxiety and depression) and found to be statistically significant (p=0.001).Depression group had AA genotype (55.2%) than control (37.5%) and was found to be statistically non significant (p=0.890).Comparison of allelic frequency revealed no association of A allele in anxiety group (76.67%) compared with control (75.5%) and was found to be statistically non significant (p= 0.866), OR 1.09 (0.56-2.11). Conclusion: TPH2C 11993 A gene was not found to be associated with major depressive disorder (MDD) and anxiety disorder in Kashmiri population. PMID:25121048
Pavon, Jorge Alex; Fitzpatrick, Paul F
2006-09-12
Phenylalanine hydroxylase (PheH) and tryptophan hydroxylase (TrpH) catalyze the aromatic hydroxylation of phenylalanine and tryptophan, forming tyrosine and 5-hydroxytryptophan, respectively. The reactions of PheH and TrpH have been investigated with [4-(2)H]-, [3,5-(2)H(2)]-, and (2)H(5)-phenylalanine as substrates. All (D)k(cat) values are normal with Delta117PheH, the catalytic core of rat phenylalanine hydroxylase, ranging from 1.12-1.41. In contrast, for Delta117PheH V379D, a mutant protein in which the stoichiometry between tetrahydropterin oxidation and amino acid hydroxylation is altered, the (D)k(cat) value with [4-(2)H]-phenylalanine is 0.92 but is normal with [3,5-(2)H(2)]-phenylalanine. The ratio of tetrahydropterin oxidation to amino acid hydroxylation for Delta117PheH V379D shows a similar inverse isotope effect with [4-(2)H]-phenylalanine. Intramolecular isotope effects, determined from the deuterium contents of the tyrosine formed from [4-(2)H]-and [3,5(2)H(2)]-phenylalanine, are identical for Delta117PheH and Delta117PheH V379D, suggesting that steps subsequent to oxygen addition are unaffected in the mutant protein. The inverse effects are consistent with the reaction of an activated ferryl-oxo species at the para position of the side chain of the amino acid to form a cationic intermediate. The normal effects on the (D)k(cat) value for the wild-type enzyme are attributed to an isotope effect of 5.1 on the tautomerization of a dienone intermediate to tyrosine with a rate constant 6- to7-fold that for hydroxylation. In addition, there is a slight ( approximately 34%) preference for the loss of the hydrogen originally at C4 of phenylalanine. With (2)H(5)-indole-tryptophan as a substrate for Delta117PheH, the (D)k(cat) value is 0.89, consistent with hydroxylation being rate-limiting in this case. When deuterated phenylalanines are used as substrates for TrpH, the (D)k(cat) values are within error of those for Delta117PheH V379D. Overall, these results are consistent with the aromatic amino acid hydroxylases all sharing the same chemical mechanism, but with the isotope effect for hydroxylation by PheH being masked by tautomerization of an enedione intermediate to tyrosine.
Stenfors, C; Ross, S B
2002-11-01
Inhibition of cAMP-dependent protein kinase (PKA) with N-[2-methylamino)ethyl]-5-isoquinolinesulfonamide (H-8) almost completely antagonized the increase in 5-HTP accumulation and 5-HIAA/5-HT ratio in hypothalamus induced by NAS-181, a 5-HT(1B) receptor antagonist, but had no effect when the mice were treated with NAS-181 together with WAY-100,635, a selective 5-HT(1A) receptor antagonist. Inhibition of Ca(2+)-calmodulin-dependent protein kinase (CaM kinase II) with the calmodulin antagonist N-(4-aminobutyl)-5-chloro-2-naphtalenesulfonamide (W-13) did not antagonise the effect of NAS-181 alone, but counteracted that evoked by the combined treatment with NAS-181 and WAY-100,635. The results indicate that activation of tryptophan hydroxylase by reducing the tone from terminal 5-HT(1B) receptors involves PKA whereas the depolarisation-induced activation of tryptophan hydroxylase involves CaM kinase II. The increase in the 5-HIAA/5-HT ratio may under the experimental conditions used suggest CaM kinase II-induced phosphorylation of synapsin I resulting in increased 5-HT release.
Estradiol or fluoxetine alters depressive behavior and tryptophan hydroxylase in rat raphe.
Yang, Fu-Zhong; Wu, Yan; Zhang, Wei-Guo; Cai, Yi-Yun; Shi, Shen-Xun
2010-03-10
The effects of 17beta-estradiol and fluoxetine on behavior of ovariectomized rats subjected to the forced swimming test and the expression of tryptophan hydroxylase (TPH) in dorsal and median raphe were investigated, respectively through time sampling technique of behavior scoring and immunohistochemistry. Both estradiol and fluoxetine increased swimming and decreased immobility in the forced swimming test. The forced swimming stress decreased integrated optical density of TPH-positive regions in dorsal and median raphe. Both estradiol and fluoxetine administration prevented integrated optical density of TPH-positive regions from being decreased by forced swimming stress. These observations suggest that both estradiol and fluoxetine have protective bearing on ovariectomized rats enduring forced swimming stress.
Biallelic Mutations in DNAJC12 Cause Hyperphenylalaninemia, Dystonia, and Intellectual Disability.
Anikster, Yair; Haack, Tobias B; Vilboux, Thierry; Pode-Shakked, Ben; Thöny, Beat; Shen, Nan; Guarani, Virginia; Meissner, Thomas; Mayatepek, Ertan; Trefz, Friedrich K; Marek-Yagel, Dina; Martinez, Aurora; Huttlin, Edward L; Paulo, Joao A; Berutti, Riccardo; Benoist, Jean-François; Imbard, Apolline; Dorboz, Imen; Heimer, Gali; Landau, Yuval; Ziv-Strasser, Limor; Malicdan, May Christine V; Gemperle-Britschgi, Corinne; Cremer, Kirsten; Engels, Hartmut; Meili, David; Keller, Irene; Bruggmann, Rémy; Strom, Tim M; Meitinger, Thomas; Mullikin, James C; Schwartz, Gerard; Ben-Zeev, Bruria; Gahl, William A; Harper, J Wade; Blau, Nenad; Hoffmann, Georg F; Prokisch, Holger; Opladen, Thomas; Schiff, Manuel
2017-02-02
Phenylketonuria (PKU, phenylalanine hydroxylase deficiency), an inborn error of metabolism, can be detected through newborn screening for hyperphenylalaninemia (HPA). Most individuals with HPA harbor mutations in the gene encoding phenylalanine hydroxylase (PAH), and a small proportion (2%) exhibit tetrahydrobiopterin (BH 4 ) deficiency with additional neurotransmitter (dopamine and serotonin) deficiency. Here we report six individuals from four unrelated families with HPA who exhibited progressive neurodevelopmental delay, dystonia, and a unique profile of neurotransmitter deficiencies without mutations in PAH or BH 4 metabolism disorder-related genes. In these six affected individuals, whole-exome sequencing (WES) identified biallelic mutations in DNAJC12, which encodes a heat shock co-chaperone family member that interacts with phenylalanine, tyrosine, and tryptophan hydroxylases catalyzing the BH 4 -activated conversion of phenylalanine into tyrosine, tyrosine into L-dopa (the precursor of dopamine), and tryptophan into 5-hydroxytryptophan (the precursor of serotonin), respectively. DNAJC12 was undetectable in fibroblasts from the individuals with null mutations. PAH enzyme activity was reduced in the presence of DNAJC12 mutations. Early treatment with BH 4 and/or neurotransmitter precursors had dramatic beneficial effects and resulted in the prevention of neurodevelopmental delay in the one individual treated before symptom onset. Thus, DNAJC12 deficiency is a preventable and treatable cause of intellectual disability that should be considered in the early differential diagnosis when screening results are positive for HPA. Sequencing of DNAJC12 may resolve any uncertainty and should be considered in all children with unresolved HPA. Copyright © 2017 American Society of Human Genetics. All rights reserved.
Cervo, Luigi; Canetta, Alessandro; Calcagno, Eleonora; Burbassi, Silvia; Sacchetti, Giuseppina; Caccia, Silvio; Fracasso, Claudia; Albani, Diego; Forloni, Gianluigi; Invernizzi, Roberto W
2005-09-07
Polymorphism of tryptophan hydroxylase, the rate-limiting enzyme in the synthesis of brain serotonin (5-HT), is associated with less synthesis of brain 5-HT in DBA/2J and BALB/c than in C57BL/6J and 129/Sv mice. We selected the forced swimming test, a mouse model used to assess the antidepressant potential of drugs, and neurochemical techniques to study strain differences in the response to citalopram, a selective 5-HT reuptake inhibitor. Citalopram reduced immobility time in C57BL/6J and 129/Sv mice but had no such effect in DBA/2J and BALB/c mice. The drug reduced accumulation of 5-hydroxytryptophan (5-HTP), an indicator of 5-HT synthesis, in C57BL/6J and 129/Sv mice but much less in DBA/2J and BALB/c mice. Pretreatment with tryptophan raised 5-HTP accumulation and reinstated the antidepressant-like effect of citalopram in DBA/2J and BALB/c mice, whereas pharmacological inhibition of 5-HT synthesis prevented the effect of citalopram in C57BL/6J and 129/Sv mice. Because there were no strain differences in catecholamine synthesis, locomotor activity, and brain levels of citalopram at the end of the behavioral test, the results suggest that the failure of citalopram to reduce immobility time in DBA/2J and BALB/c mice is attributable to genotype-dependent impairment of 5-HT synthesis. Interstrain comparisons could probably be a useful strategy for understanding the mechanisms underlying the response to selective serotonin reuptake inhibitors.
Bratland, Eirik; Magitta, Ng'weina Francis; Bøe Wolff, Anette Susanne; Ekern, Trude; Knappskog, Per Morten; Kämpe, Olle; Haavik, Jan; Husebye, Eystein Sverre
2013-06-01
Patients with autoimmune polyendocrine syndrome type 1 (APS-1) frequently have autoantibodies directed against the aromatic amino acid hydroxylases tryptophan hydroxylase (TPH) and tyrosine hydroxylase (TH). We aimed to characterize these autoantibodies with regard to their antigenic determinants, their influence on enzymatic activity and their clinical associations. In particular, we wanted to compare autoantibodies against the two different isoforms of TPH, which display different tissue distribution. Using sera from 48 Scandinavian APS-1 patients we identified 36 patients (75%) with antibodies against one or more of these three enzymes. Antibodies against TPH1, but not TPH2, were associated with malabsorption in the whole Scandinavian cohort, while TH antibodies were associated with dental enamel hypoplasia in Norwegian patients. Subsequent experiments with selected patient sera indicated that while the C-terminal domain was the immunodominant part of TPH1, the epitopes of TPH2 and TH were mainly located in the N-terminal regulatory domains. We also identified a TPH1 specific epitope involved in antibody mediated inhibition of enzyme activity, a finding that provides new insight into the enzymatic mechanisms of the aromatic amino acid hydroxylases and knowledge about structural determinants of enzyme autoantigens. In conclusion, TPH1, TPH2 and TH all have unique antigenic properties in spite of their structural similarity. Copyright © 2012 Elsevier GmbH. All rights reserved.
Kulikov, Alexander V; Tikhonova, Maria A; Osipova, Daria V; Kulikov, Victor A; Popova, Nina K
2011-10-01
Tryptophan hydroxylase-2 (TPH2) is the rate limiting enzyme of serotonin synthesis in the brain. The 1473G allele of the C1473G polymorphism in mTPH2 gene is associated with reduced enzyme activity and serotonin synthesis rate in the mouse brain. Here, the influence of the 1473G allele on the antidepressant effect of selective serotonin reuptake inhibitors (SSRIs), citalopram (2.5 or 5.0mg/kg) and paroxetine (5.0 or 10.0mg/kg), in the forced swim test was studied using B6-1473G and B6-1473C congenic mouse lines with the 1473G (decreased TPH2 activity) or 1473C (normal TPH2 activity) alleles, respectively, transferred to the genome of C57BL/6 mouse strain. Paroxetine (5.0 or 10.0mg/kg) and citalopram (2.5 or 5.0mg/kg) decreased immobility time in B6-1473C mice, while both doses of paroxetine and 2.5mg/kg of citaloprame did not alter immobility time in B6-1473G mice. However, 5.0mg/kg of citalopram reduced immobility in B6-1473G mice. The results provided genetic evidence of moderate association between 1473G allele and reduced sensitivity to SSRIs in mice. Copyright © 2011 Elsevier Inc. All rights reserved.
Bazovkina, Darya V; Lichman, Daria V; Kulikov, Alexander V
2015-03-04
Tryptophan hydroxylase-2 (Tph2) is the rate limiting enzyme of serotonin synthesis in the brain. The functional (C1473G) polymorphism in the mouse Tph2 gene affecting the enzymatic activity was suspected to be involved in behavioral actions of ethanol (EtOH). Congenic B6-1473C (C/C) and B6-1473G (G/G) lines bred from C57BL/6 mice were not different in EtOH-induced sleep time and hypothermia. B6-1473C mice displayed increased EtOH preference on the second and third days compared to that of the first day, but no differences in this parameter was found across genotypes. Both lines demonstrated the same responsiveness to hypothermic and hypnotic effect of acute EtOH treatment after repeated alcohol exposure. However, acute EtOH administration led to reduction of locomotor activity in B6-1473C, but not in B6-1473G animals and to increase of time spent in the center of open-field arena in B6-1473G, but not in B6-1473C mice. Thus, the present study indicates the involvement of C1473G polymorphism in mTph2 gene in the regulation of EtOH-induced effects on locomotor activity and anxiety-like behavior in mice. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Etiological classification of depression based on the enzymes of tryptophan metabolism.
Fukuda, Katsuhiko
2014-12-24
Viewed in terms of input and output, the mechanisms of depression are still akin to a black box. However, there must be main pivots for diverse types of depression. From recent therapeutic observations, both the serotonin (5-HT) and kynurenine pathways of tryptophan metabolism may be of particular importance to improved understanding of depression. Here, I propose an etiological classification of depression, based on key peripheral and central enzymes of tryptophan metabolism. Endogenous depression is caused by a larger genetic component than reactive depression. Besides enterochromaffin and mast cells, tryptophan hydroxylase 1 (TPH1), primarily expressed in the gastrointestinal tract, is also found in 5-hydroxytryptophan-producing cells (5-HTP cells) in normal intestinal enterocytes, which are thought to essentially shunt 5-HT production in 5-HT-producing cells. Genetic studies have reported an association between TPH1 and depression, or the responsiveness of depression to antidepressive medication. Therefore, it is possible that hypofunctional 5-HTP cells (reflecting TPH1 dysfunction) in the periphery lead to deficient brain 5-HT levels. Additionally,it has been reported that higher TPH2 expression in depressed suicides may reflect a homeostatic response to deficient 5-HT levels. Subsequently, endogenous depression may be caused by TPH1 dysfunction combined with compensatory TPH2 activation. Reactive depression results from life stresses and involves the hypothalamic-pituitary-adrenal axis, with resulting cortisol production inducing tryptophan 2,3-dioxygenase (TDO) activation. In secondary depression, caused by inflammation, infection, or oxidative stress, indoleamine 2,3-dioxygenase (IDO) is activated. In both reactive and secondary depression, the balance between 3-hydroxykynurenine (3-HK) and kynurenic acid may shift towards 3-HK production via kynurenine-3-monooxygenase (KMO) activation. By shifting the equilibrium position of key enzymes of tryptophan metabolism, the classical classification of depression can be reorganized, as below. Peripheral classification of depression by key enzymes: TPH1 dysfunction, TDO activation, IDO activation. Central classification: TPH2 activation, KMO activation. Etiological classification of depression expressed by peripheral (TPH1, TDO, IDO) and central (TPH2, KMO)enzymes of tryptophan metabolism may enable depression to be viewed as a clear box, with the inner components available for inspection and treatment.
L-dopa-induced desensitization depends on 5-hydroxytryptamine imbalance in hemiparkinsonian rats.
Kääriäinen, Tiina M; García-Horsman, Juan Arturo; Piltonen, Marjo; Männistö, Pekka T
2009-02-18
We have shown before that 2-week intrastriatal L-3,4-dihydroxyphenylalanine (L-dopa) infusion significantly decreased contralateral rotations induced by acute intraperitoneal L-dopa/carbidopa and increased striatal tryptophan hydroxylase in 6-hydroxydopamine-lesioned rats. Here, we examined the effect of acutely administered L-dopa (10 microg) into 6-hydroxydopamine-lesioned rat striata under the inhibition of tryptophan hydroxylase by 4-chloro-DL-phenylalanine. Acute intrastriatal L-dopa infusion significantly decreased contralateral rotations induced by intraperitoneal L-dopa/carbidopa (10/30 mg/kg) 1 and 7 days after intrastriatal L-dopa. This desensitization to L-dopa occurred only when there was a striatal 5-hydroxytryptamine (5-HT) imbalance, not when 5-HT levels in the intact and lesioned sides were similar, either very low (day 1 postinfusion) or similarly recovered (day 7 postinfusion). We conclude that 5-HT plays a significant role in the striatal dopaminergic imbalance that evokes the rotational behavior.
Martínez-Idárraga, Adriana; Riveros-Barrera, Irene; Sánchez, Ricardo; Jaramillo, Luis Eduardo; Calvo-Gómez, José Manuel; Yunis-Londoño, Juan José
Identify whether rs11179000, rs136494 and rs4570625 polymorphisms of the tryptophan hydroxylase 2 gene, are associated with a major depressive disorder in a sample of the Colombian population. Case-control study was conducted in which a comparison was made between subjects diagnosed with major depressive disorder at some point in adulthood or active symptoms at the time of evaluation, and subjects with no psychiatric disease. Subjects were studied in the Department of Psychiatry, Faculty of Medicine and the Institute of Genetics at the National University of Colombia. Polymorphisms were genotyped using Taqman probes in real time PCR. As well as studying the association between major depressive disorder and these (single nucleotide polymorphisms (SNPs), the association with other factors previously associated with depression were also analysed. No statistically significant association between genotypic and allelic frequencies of each polymorphism and major depressive disorder was found. Association between sex and complication during pregnancy / childbirth and major depressive disorder was observed. Association between sex and complication during pregnancy / childbirth and major depressive disorder was observed. There was no association between any polymorphism and major depressive disorder. Copyright © 2016 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
Meier, Marc A; Ottiger, Manuel; Vögeli, Alaadin; Steuer, Christian; Bernasconi, Luca; Thomann, Robert; Christ-Crain, Mirjam; Henzen, Christoph; Hoess, Claus; Zimmerli, Werner; Huber, Andreas; Mueller, Beat; Schuetz, Philipp
2017-06-01
Indoleamine 2,3-dioxygenase (IDO) metabolizes tryptophan to kynurenine. An increase of its activity is associated with severity in patients with pneumonia. In chronic obstructive pulmonary disease (COPD) patients, an elevation of serotonin has been reported. Experimental models showed that cigarette smoke inhibits monoamine oxidase (MAO) leading to higher levels of serotonin. We investigated the prognostic ability of tryptophan, serotonin, kynurenine, IDO, and tryptophan hydroxylase (TPH) to predict short- and long-term outcomes in patients with a COPD exacerbation. We measured tryptophan, serotonin, and kynurenine on admission plasma samples in patients with a COPD exacerbation from a previous trial by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). IDO and TPH were calculated as ratios of kynurenine over tryptophan, and serotonin over tryptophan, respectively. We studied their association with parameters measured in clinical routine at emergency department admission representing inflammation (C-reactive protein [CRP]), infection (procalcitonin [PCT]), oxygenation (SpO 2 ), as well as patients' clinical outcome, confirmed by structured phone interviews. Mortality in the 149 included patients was 53.7% within six years of follow-up. While IDO activity showed strong positive correlations, tryptophan was negatively correlated with CRP and PCT. For 30-day adverse outcome defined as death and/or intensive care unit (ICU) admission, a multivariate regression analysis adjusted for age and comorbidities found strong associations for IDO activity (adjusted odds ratios of 31.4 (95%CI 1.1-857), p = 0.041) and TPH (adjusted odds ratios 27.0 (95%CI 2.2-327), p = 0.010). TPH also showed a significant association with mortality at 18 months, (hazard ratio 2.61 (95%CI 1.2-5.8), p = 0.020). In hospitalized patients with a COPD exacerbation, higher IDO and TPH activities independently predicted adverse short-term outcomes and TPH levels were also predictive of 18-month mortality. Whether therapeutic modulation of the serotonin pathway has positive effects on outcome needs further investigation.
Sakowski, Stacey A; Geddes, Timothy J; Thomas, David M; Levi, Edi; Hatfield, James S; Kuhn, Donald M
2006-04-26
Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in the synthesis of the neurotransmitter serotonin. Once thought to be a single-gene product, TPH is now known to exist in two isoforms-TPH1 is found in the pineal and gut, and TPH2 is selectively expressed in brain. Heretofore, probes used for localization of TPH protein or mRNA could not distinguish between the TPH isoforms because of extensive homology shared by them at the nucleotide and amino acid level. We have produced monospecific polyclonal antibodies against TPH1 and TPH2 using peptide antigens from nonoverlapping sequences in the respective proteins. These antibodies allow the differentiation of TPH1 and TPH2 upon immunoblotting, immunoprecipitation, and immunocytochemical staining of tissue sections from brain and gut. TPH1 and TPH2 antibodies do not cross-react with either tyrosine hydroxylase or phenylalanine hydroxylase. Analysis of mouse tissues confirms that TPH1 is the predominant form expressed in pineal gland and in P815 mastocytoma cells with a molecular weight of 51 kDa. TPH2 is the predominant enzyme form expressed in brain extracts from mesencephalic tegmentum, striatum, and hippocampus with a molecular weight of 56 kDa. Antibody specificity against TPH1 and TPH2 is retained across mouse, rat, rabbit, primate, and human tissues. Antibodies that distinguish between the isoforms of TPH will allow studies of the differential regulation of their expression in brain and periphery.
Bazhenova, Ekaterina Y; Sinyakova, Nadezhda A; Kulikova, Elizabeth A; Kazarinova, Irina A; Bazovkina, Daria V; Gainetdinov, Raul R; Kulikov, Alexander V
2017-07-13
Selective serotonin reuptake inhibitors (SSRIs) are antidepressants that block serotonin transporter (SERT) and increase serotonin (5-HT) level in the synaptic cleft. The interaction between SERT and the key enzyme of 5-HT synthesis in the brain, tryptophan hydroxylase 2 (TPH2), is essential to maintain the brain 5-HT level. The G allele of C1473G polymorphism in Tph2 gene decreases enzyme activity by half in mouse brain. Here we studied effect of C1473G polymorphism on the reaction of brain 5-HT system to chronic fluoxetine treatment (120mg/l in drinking water, for 3 weeks) in adult males of the congenic B6-1473C and B6-1473G mouse lines with high and low enzyme activity, respectively. The polymorphism did not affect the levels of 5-HT, its metabolite, 5-hydroxyindoleacetic acid (5-HIAA) and Tph2 gene mRNA in the brain. Fluoxetine significantly attenuated 5-HT levels in the cortex and striatum, 5-HIAA concentrations in the cortex, hippocampus, striatum and midbrain, and Tph2 gene expression in the midbrain. However, we did not observed any effect of the genotype x treatment interaction on these neurochemical characteristics. Therefore, C1473G polymorphism does not seem to play an essential role in the reaction of the brain 5-HT system to chronic fluoxetine treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
Baskar, Kannan; Sur, Swastika; Selvaraj, Vithyalakashmi; Agrawal, Devendra K.
2015-01-01
Human coronary artery smooth muscle cells (HCASMCs) play an important role in the pathogenesis of coronary atherosclerosis and coronary artery diseases (CAD). Serotonin is a mediator known to produce vascular smooth muscle cell (VSMC) mitogenesis and contribute to coronary atherosclerosis. We hypothesize that the human coronary artery smooth muscle cell possesses certain functional constituents of the serotonergic system such as: tryptophan hydroxylase and serotonin transporter. Our aim was to examine the presence of functional tryptophan hydroxylase-1 (TPH1) and serotonin transporter (SERT) in HCASMCs. The mRNA transcripts by qPCR and protein expression by Western blot of TPH1 and SERT were examined. The specificity and accuracy of the primers were verified using DNA gel electrophoresis and sequencing of qPCR products. The functionality of SERT was examined using a fluorescence dye-based serotonin transporter assay. The enzymatic activity of TPH was evaluated using UPLC. The HCASMCs expressed both mRNA transcripts and protein of SERT and TPH. The qPCR showed a single melt curve peak for both transcripts and in sequence analysis the amplicons were aligned with the respective genes. SERT and TPH enzymatic activity was present in the HCASMCs. Taken together, both TPH and SERT are functionally expressed in HCASMCs. These findings are novel and represent an initial step in examining the clinical relevance of the serotonergic system in HCASMCs and its role in the pathogenesis of coronary atherosclerosis and CAD. PMID:25861735
Thomas, David M.; Angoa-Pérez, Mariana; Francescutti-Verbeem, Dina M.; Shah, Mrudang M.; Kuhn, Donald M.
2010-01-01
Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the striatum where long-term DA depletion and microglial activation are maximal. Endogenous DA has been implicated as a critical participant in METH-induced neurotoxicity, most likely as a substrate for non-enzymatic oxidation by METH-generated reactive oxygen species (ROS). The striatum is also extensively innervated by serotonin (5HT) nerve endings and this neurochemical system is modified by METH in much the same manner as seen in DA nerve endings (i.e., increased release of 5HT, loss of function in tryptophan hydroxylase and the serotonin transporter, long-term depletion of 5HT stores). 5HT can also be modified by ROS to form highly reactive species that damage neurons but its role in METH neurotoxicity has not been assessed. Increases in 5HT levels with 5HTP do not change METH-induced neurotoxicity to the DA nerve endings as revealed by reductions in DA, tyrosine hydroxylase and dopamine transporter levels. Partial reductions in 5HT with p-chlorophenylalanine (PCPA) are without effect on METH toxicity, despite the fact that PCPA largely prevents METH-induced hyperthermia. Mice lacking the gene for brain tryptophan hydroxylase 2 are devoid of brain 5HT and respond to METH in the same manner as wild-type controls, despite showing enhanced drug-induced hyperthermia. Taken together, the present results indicate that endogenous 5HT does not appear to play a role in METH-induced damage to DA nerve endings of the striatum. PMID:20722968
Thomas, David M; Angoa Pérez, Mariana; Francescutti-Verbeem, Dina M; Shah, Mrudang M; Kuhn, Donald M
2010-11-01
Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the striatum where long-term DA depletion and microglial activation are maximal. Endogenous DA has been implicated as a critical participant in METH-induced neurotoxicity, most likely as a substrate for non-enzymatic oxidation by METH-generated reactive oxygen species. The striatum is also extensively innervated by serotonin (5HT) nerve endings and this neurochemical system is modified by METH in much the same manner as seen in DA nerve endings (i.e., increased release of 5HT, loss of function in tryptophan hydroxylase and the serotonin transporter, long-term depletion of 5HT stores). 5HT can also be modified by reactive oxygen species to form highly reactive species that damage neurons but its role in METH neurotoxicity has not been assessed. Increases in 5HT levels with 5-hydroxytryptophan do not change METH-induced neurotoxicity to the DA nerve endings as revealed by reductions in DA, tyrosine hydroxylase and dopamine transporter levels. Partial reductions in 5HT with p-chlorophenylalanine are without effect on METH toxicity, despite the fact that p-chlorophenylalanine largely prevents METH-induced hyperthermia. Mice lacking the gene for brain tryptophan hydroxylase 2 are devoid of brain 5HT and respond to METH in the same manner as wild-type controls, despite showing enhanced drug-induced hyperthermia. Taken together, the present results indicate that endogenous 5HT does not appear to play a role in METH-induced damage to DA nerve endings of the striatum. © 2010 The Authors. Journal Compilation © 2010 International Society for Neurochemistry.
Winn, Shelley R; Scherer, Tanja; Thöny, Beat; Harding, Cary O
2016-01-01
Central nervous system (CNS) deficiencies of the monoamine neurotransmitters, dopamine and serotonin, have been implicated in the pathophysiology of neuropsychiatric dysfunction in phenylketonuria (PKU). Increased brain phenylalanine concentration likely competitively inhibits the activities of tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH), the rate limiting steps in dopamine and serotonin synthesis respectively. Tetrahydrobiopterin (BH4) is a required cofactor for TH and TPH activity. Our hypothesis was that treatment of hyperphenylalaninemic Pah(enu2/enu2) mice, a model of human PKU, with sapropterin dihydrochloride, a synthetic form of BH4, would stimulate TH and TPH activities leading to improved dopamine and serotonin synthesis despite persistently elevated brain phenylalanine. Sapropterin (20, 40, or 100mg/kg body weight in 1% ascorbic acid) was administered daily for 4 days by oral gavage to Pah(enu2/enu2) mice followed by measurement of brain biopterin, phenylalanine, tyrosine, tryptophan and monoamine neurotransmitter content. A significant increase in brain biopterin content was detected only in mice that had received the highest sapropterin dose, 100mg/kg. Blood and brain phenylalanine concentrations were unchanged by sapropterin therapy. Sapropterin therapy also did not alter the absolute amounts of dopamine and serotonin in brain but was associated with increased homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA), dopamine and serotonin metabolites respectively, in both wild type and Pah(enu2/enu2) mice. Oral sapropterin therapy likely does not directly affect central nervous system monoamine synthesis in either wild type or hyperphenylalaninemic mice but may stimulate synaptic neurotransmitter release and subsequent metabolism. Copyright © 2015 Elsevier Inc. All rights reserved.
Furmark, Tomas; Marteinsdottir, Ina; Frick, Andreas; Heurling, Kerstin; Tillfors, Maria; Appel, Lieuwe; Antoni, Gunnar; Hartvig, Per; Fischer, Håkan; Långström, Bengt; Eriksson, Elias; Fredrikson, Mats
2016-10-01
It is disputed whether anxiety disorders, like social anxiety disorder, are characterized by serotonin over- or underactivity. Here, we evaluated whether our recent finding of elevated neural serotonin synthesis rate in patients with social anxiety disorder could be reproduced in a separate cohort, and whether allelic variation in the tryptophan hydroxylase-2 (TPH2) G-703T polymorphism relates to differences in serotonin synthesis assessed with positron emission tomography. Eighteen social anxiety disorder patients and six healthy controls were scanned during 60 minutes in a resting state using positron emission tomography and 5-hydroxy-L-[β -(11)C]tryptophan, [(11)C]5-HTP, a substrate of the second enzymatic step in serotonin synthesis. Parametric images were generated, using the reference Patlak method, and analysed using Statistical Parametric Mapping (SPM8). Blood samples for genotyping of the TPH2 G-703T polymorphism were obtained from 16 social anxiety disorder patients (T carriers: n=5, GG carriers: n=11). A significantly elevated [(11)C]5-HTP accumulation rate, indicative of enhanced decarboxylase activity and thereby serotonin synthesis capacity, was detected in social anxiety disorder patients compared with controls in the hippocampus and basal ganglia nuclei and, at a more lenient (uncorrected) statistical threshold, in the amygdala and anterior cingulate cortex. In patients, the serotonin synthesis rate in the amygdala and anterior cingulate cortex was significantly elevated in TPH2 T carriers in comparison with GG homozygotes. Our results support that social anxiety disorder entails an overactive presynaptic serotonergic system that, in turn, seems functionally influenced by the TPH2 G-703T polymorphism in emotionally relevant brain regions. © The Author(s) 2016.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slotkin, Theodore A.; Seidler, Frederic J.
2008-12-01
Developmental exposure to organophosphates (OP) produces long-term changes in serotonin (5HT) synaptic function and associated behaviors, but there are disparities among the different OPs. We contrasted effects of chlorpyrifos and diazinon, as well as non-OP neurotoxicants (dieldrin, Ni{sup 2+}) using undifferentiated and differentiating PC12 cells, a well-established neurodevelopmental model. Agents were introduced at 30 {mu}M for 24 or 72 h, treatments devoid of cytotoxicity, and we evaluated the mRNAs encoding the proteins for 5HT biosynthesis, storage and degradation, as well as 5HT receptors. Chlorpyrifos and diazinon both induced tryptophan hydroxylase, the rate-limiting enzyme for 5HT biosynthesis, but chlorpyrifos had amore » greater effect, and both agents suppressed expression of 5HT transporter genes, effects that would tend to augment extracellular 5HT. However, whereas chlorpyrifos enhanced the expression of most 5HT receptor subtypes, diazinon evoked overall suppression. Dieldrin evoked even stronger induction of tryptophan hydroxylase, and displayed a pattern of receptor effects similar to that of diazinon, even though they come from different pesticide classes. In contrast, Ni{sup 2+} had completely distinct actions, suppressing tryptophan hydroxylase and enhancing the vesicular monoamine transporter, while also reducing 5HT receptor gene expression, effects that would tend to lower net 5HT function. Our findings provide some of the first evidence connecting the direct, initial mechanisms of developmental neurotoxicant action on specific transmitter pathways with their long-term effects on synaptic function and behavior, while also providing support for in vitro test systems as tools for establishing mechanisms and outcomes of related and unrelated neurotoxicants.« less
Physical Weight Loading Induces Expression of Tryptophan Hydroxylase 2 in the Brain Stem
Shim, Joon W.; Dodge, Todd R.; Hammond, Max A.; Wallace, Joseph M.; Zhou, Feng C.; Yokota, Hiroki
2014-01-01
Sustaining brain serotonin is essential in mental health. Physical activities can attenuate mental problems by enhancing serotonin signaling. However, such activity is not always possible in disabled individuals or patients with dementia. Knee loading, a form of physical activity, has been found to mimic effects of voluntary exercise. Focusing on serotonergic signaling, we addressed a question: Does local mechanical loading to the skeleton elevate expression of tryptophan hydroxylase 2 (tph2) that is a rate-limiting enzyme for brain serotonin? A 5 min knee loading was applied to mice using 1 N force at 5 Hz for 1,500 cycles. A 5-min treadmill running was used as an exercise (positive) control, and a 90-min tail suspension was used as a stress (negative) control. Expression of tph2 was determined 30 min – 2 h in three brain regions ––frontal cortex (FC), ventromedial hypothalamus (VMH), and brain stem (BS). We demonstrated for the first time that knee loading and treadmill exercise upregulated the mRNA level of tph2 in the BS, while tail suspension downregulated it. The protein level of tph2 in the BS was also upregulated by knee loading and downregulated by tail suspension. Furthermore, the downregulation of tph2 mRNA by tail suspension can be partially suppressed by pre-application of knee loading. The expression of tph2 in the FC and VMH was not significantly altered with knee loading. In this study we provided evidence that peripheral mechanical loading can activate central tph2 expression, suggesting that physical cues may mediate tph2-cathalyzed serotonergic signaling in the brain. PMID:24416346
Rietschel, M; Schorr, A; Albus, M; Franzek, E; Kreiner, R; Held, T; Knapp, M; Müller, D J; Schulze, T G; Propping, P; Maier, W; Nöthen, M M
2000-06-12
The tryptophan hydroxylase (TPH) gene encodes for the rate-limiting enzyme of the serotonin metabolism and, therefore, has to be considered a major candidate for association studies in affective disorders. Recently, an association between this gene and bipolar affective disorder has been reported in a French population. We sought to replicate this finding in a German sample. Allele frequencies of a biallelic polymorphism (A218C) of the TPH gene were determined in 95 bipolar I patients and their parents. Preferential transmission of alleles from heterozygous parents to bipolar offspring was tested with the "transmission disequilibrium test" (TDT), which eliminates the contribution of population stratification to an association finding. Our sample yielded a power >90% to detect the originally reported effect. Neither allele 218A nor allele 218C were preferentially transmitted from heterozygous parents to bipolar offspring. Our results, therefore, do not support the hypothesis that the TPH gene is involved in the etiology of bipolar disorder.
The ventrolateral medulla and medullary raphe in sudden unexpected death in epilepsy.
Patodia, Smriti; Somani, Alyma; O'Hare, Megan; Venkateswaran, Ranjana; Liu, Joan; Michalak, Zuzanna; Ellis, Matthew; Scheffer, Ingrid E; Diehl, Beate; Sisodiya, Sanjay M; Thom, Maria
2018-06-01
Sudden unexpected death in epilepsy (SUDEP) is a leading cause of premature death in patients with epilepsy. One hypothesis proposes that sudden death is mediated by post-ictal central respiratory depression, which could relate to underlying pathology in key respiratory nuclei and/or their neuromodulators. Our aim was to investigate neuronal populations in the ventrolateral medulla (which includes the putative human pre-Bötzinger complex) and the medullary raphe. Forty brainstems were studied comprising four groups: 14 SUDEP, six epilepsy controls, seven Dravet syndrome cases and 13 non-epilepsy controls. Serial sections through the medulla (from obex 1 to 10 mm) were stained for Nissl, somatostatin, neurokinin 1 receptor (for pre-Bötzinger complex neurons) and galanin, tryptophan hydroxylase and serotonin transporter (neuromodulatory systems). Using stereology total neuronal number and densities, with respect to obex level, were measured. Whole slide scanning image analysis was used to quantify immunolabelling indices as well as co-localization between markers. Significant findings included reduction in somatostatin neurons and neurokinin 1 receptor labelling in the ventrolateral medulla in sudden death in epilepsy compared to controls (P < 0.05). Galanin and tryptophan hydroxylase labelling was also reduced in sudden death cases and more significantly in the ventrolateral medulla region than the raphe (P < 0.005 and P < 0.05). With serotonin transporter, reduction in labelling in cases of sudden death in epilepsy was noted only in the raphe (P ≤ 0.01); however, co-localization with tryptophan hydroxylase was significantly reduced in the ventrolateral medulla. Epilepsy controls and cases with Dravet syndrome showed less significant alterations with differences from non-epilepsy controls noted only for somatostatin in the ventrolateral medulla (P < 0.05). Variations in labelling with respect to obex level were noted of potential relevance to the rostro-caudal organization of respiratory nuclear groups, including tryptophan hydroxylase, where the greatest statistical difference noted between all epilepsy cases and controls was at obex 9-10 mm (P = 0.034), the putative level of the pre-Bötzinger complex. Furthermore, there was evidence for variation with duration of epilepsy for somatostatin and neurokinin 1 receptor. Our findings suggest alteration to neuronal populations in the medulla in SUDEP with evidence for greater reduction in neuromodulatory neuropeptidergic and mono-aminergic systems, including for galanin, and serotonin. Other nuclei need to be investigated to evaluate if this is part of more widespread brainstem pathology. Our findings could be a result of previous seizures and may represent a pathological risk factor for SUDEP through impaired respiratory homeostasis during a seizure.
Polymorphism of the Tryptophan Hydroxylase 2 (TPH2) Gene Is Associated with Chimpanzee Neuroticism
Morimura, Naruki; Udono, Toshifumi; Hayasaka, Ikuo; Humle, Tatyana; Murayama, Yuichi; Ito, Shin'ichi; Inoue-Murayama, Miho
2011-01-01
In the brain, serotonin production is controlled by tryptophan hydroxylase 2 (TPH2), a genotype. Previous studies found that mutations on the TPH2 locus in humans were associated with depression and studies of mice and studies of rhesus macaques have shown that the TPH2 locus was involved with aggressive behavior. We previously reported a functional single nucleotide polymorphism (SNP) in the form of an amino acid substitution, Q468R, in the chimpanzee TPH2 gene coding region. In the present study we tested whether this SNP was associated with neuroticism in captive and wild-born chimpanzees living in Japan and Guinea, respectively. Even after correcting for multiple tests (Bonferroni p = 0.05/6 = 0.008), Q468R was significantly related to higher neuroticism (β = 0.372, p = 0.005). This study is the first to identify a genotype linked to a personality trait in chimpanzees. In light of the prior studies on humans, mice, and rhesus macaques, these findings suggest that the relationship between neuroticism and TPH2 has deep phylogenetic roots. PMID:21765945
Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism.
Patrick, Rhonda P; Ames, Bruce N
2014-06-01
Serotonin and vitamin D have been proposed to play a role in autism; however, no causal mechanism has been established. Here, we present evidence that vitamin D hormone (calcitriol) activates the transcription of the serotonin-synthesizing gene tryptophan hydroxylase 2 (TPH2) in the brain at a vitamin D response element (VDRE) and represses the transcription of TPH1 in tissues outside the blood-brain barrier at a distinct VDRE. The proposed mechanism explains 4 major characteristics associated with autism: the low concentrations of serotonin in the brain and its elevated concentrations in tissues outside the blood-brain barrier; the low concentrations of the vitamin D hormone precursor 25-hydroxyvitamin D [25(OH)D3]; the high male prevalence of autism; and the presence of maternal antibodies against fetal brain tissue. Two peptide hormones, oxytocin and vasopressin, are also associated with autism and genes encoding the oxytocin-neurophysin I preproprotein, the oxytocin receptor, and the arginine vasopressin receptor contain VDREs for activation. Supplementation with vitamin D and tryptophan is a practical and affordable solution to help prevent autism and possibly ameliorate some symptoms of the disorder. © FASEB.
Kanemaru, Kazuya; Nishi, Kyoko; Diksic, Mirko
2009-01-01
The neurotransmitter, serotonin, is involved in several brain functions, including both normal, physiological functions, and pathophysiological functions. Alterations in any of the normal parameters of serotonergic neurotransmission can produce several different psychiatric disorders, including major depression. In many instances, brain neurochemical variables are not able to be studied properly in humans, thus making the use of good animal models extremely valuable. One of these animal models is the Flinders Sensitive Line (FSL) of rats, which has face, predictive and constructive validities in relation to human depression. The objective of this study was to quantify the effect of the tryptophan hydroxylase (TPH) activation inhibitor, AGN-2979, on the FSL rats (rats with depression-like behaviour), and compare it to the effect on the Flinders Resistant Line (FRL) of rats used as the control rats. The effect was evaluated by measuring changes in regional serotonin synthesis in the vehicle treated rats (FSL-VEH and FRL-VEH) relative to those measured in the AGN-2979 treated rats (FSL-AGN and FRL-AGN). Regional serotonin synthesis was measured autoradiographically in more than thirty brain regions. The measurements were performed using α-[14C]methyl-L-tryptophan as the tracer. The results indicate that AGN-2979 did not produce a significant reduction of TPH activity in the AGN-2979 group relative to the vehicle group (a reduction would have been observed if there had been an activation of TPH by the experimental set up) in the FSL rats. On the other hand, there was a highly significant reduction of synthesis in the FRL rats treated by AGN-2979, relative to the vehicle group. Together, the results demonstrate that in the FSL rats, AGN-2979 does not affect serotonin synthesis. This suggests that there was no activation of TPH in the FSL rats during the experimental procedure, but such activation did occur in the FRL rats. Because of this finding, it could be hypothesised that TPH in the FSL rats cannot be easily activated. This may contribute to the development of depressive-like symptoms in the FSL rats (“depressed” rats), as they cannot easily modulate their need for elevated amounts of this neurotransmitter, and possibly other neurotransmitters. Further, because these rats represent a very good model of human depression, one can hypothesize that humans who do not have readily activated TPH may be more prone to develop depression. PMID:19463878
Fox, B G; Liu, Y; Dege, J E; Lipscomb, J D
1991-01-05
Kinetic, spectroscopic, and chemical evidence for the formation of specific catalytically essential complexes between the three protein components of the soluble form of methane monooxygenase from Methylosinus trichosporium OB3b is reported. The effects of the concentrations of the reductase and component B on the hydroxylation activity of the reconstituted enzyme system has been numerically simulated based on a kinetic model which assumes formation of multiple high affinity complexes with the hydroxylase component during catalysis. The formation of several of these complexes has been directly demonstrated. By using EPR spectroscopy, the binding of approximately 2 mol of component B/mol of hydroxylase (subunit structure (alpha beta gamma)2) is shown to significantly change the electronic environment of the mu-(H/R)-oxo-bridged binuclear iron cluster of the hydroxylase in both the mixed valent (Fe(II).Fe(III)) and fully reduced (Fe(II).Fe(II)) states. Protein-protein complexes between the reductase and component B as well as between the reductase and hydroxylase have been shown to form by monitoring quenching of the tryptophan fluorescence spectrum of either the component B (KD approximately 0.4 microM) or hydroxylase (two binding sites, KDa approximately 10 nM, KDb approximately 8 microM). The observed KD values are in agreement with the best fit values from the kinetic simulation. Through the use of the covalent zero length cross-linking reagent 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), the binding sites of the component B and reductase were shown to be on the hydroxylase alpha and beta subunits, respectively. The alpha and beta subunits of the hydroxylase are cross-linked by EDC suggesting that they are juxtaposed. EDC also caused the rapid loss of the ability of the monomeric component B to stimulate the hydroxylation reaction suggesting that cross-linking of reactive groups on the protein surface had occurred. This effect was inhibited by the presence of hydroxylase and was accompanied by a loss of the ability of the component B to bind to the hydroxylase. Thus, formation of a component B-hydroxylase complex is apparently required for effective catalysis linked to NADH oxidation. When present in concentrations greater than required to saturate the initial hydroxylase complex, component B inhibited both the rate of the enzymic reaction and the cross-linking of the reductase to the hydroxylase. This suggests that a second complex involving component B can form that negatively regulates catalysis by preventing formation of the reductase-hydroxylase complex.
Calcagno, E; Canetta, A; Guzzetti, S; Cervo, L; Invernizzi, R W
2007-11-01
We used the microdialysis technique to compare basal extracellular serotonin (5-HT) and the response to citalopram in different strains of mice with functionally different allelic forms of tryptophan hydroxylase-2 (TPH-2), the rate-limiting enzyme in brain 5-HT synthesis. DBA/2J, DBA/2N and BALB/c mice carrying the 1473G allele of TPH-2 had less dialysate 5-HT in the medial prefrontal cortex and dorsal hippocampus (DH) (20-40% reduction) than C57BL/6J and C57BL/6N mice carrying the 1473C allele. Extracellular 5-HT estimated by the zero-net flux method confirmed the result of conventional microdialysis. Citalopram, 1.25, 5 and 20 mg/kg, dose-dependently raised extracellular 5-HT in the medial prefrontal cortex of C57BL/6J mice, with maximum effect at 5 mg/kg, but had significantly less effect in DBA/2J and BALB/c mice and in the DH of DBA/2J mice. A tryptophan (TRP) load enhanced basal extracellular 5-HT in the medial prefrontal cortex of DBA/2J mice but did not affect citalopram's ability to raise cortical and hippocampal extracellular 5-HT. The impairment of 5-HT synthesis quite likely accounts for the reduction of basal 5-HT and the citalopram-induced rise in mice carrying the mutated enzyme. These findings might explain why DBA/2 and BALB/c mice do not respond to citalopram in the forced swimming test. Although TRP could be a useful strategy to improve the antidepressant effect of citalopram (Cervo et al. 2005), particularly in subjects with low 5-HT synthesis, the contribution of serotonergic and non-serotonergic mechanisms to TRP's effect remains to be elucidated.
Kulikov, A V; Osipova, D V; Naumenko, V S; Terenina, E; Mormède, P; Popova, N K
2012-07-15
The neurotransmitter serotonin (5-HT) is involved in the regulation of mouse intermale aggression. Previously, it was shown that intensity of mouse intermale aggression was positively associated with activity of the key enzyme of 5-HT synthesis - tryptophan hydroxylase 2 (TPH2) in mouse brain. The aim of the present study was to investigate the effect of pharmacological activation or inhibition of 5-HT synthesis in the brain on intermale aggression in two mouse strains differing in the TPH2 activity: C57BL/6J (B6, high TPH2 activity, high aggressiveness) and CC57BR/Mv (BR, low TPH2 activity, low aggressiveness). Administration of 5-HT precursor L-tryptophan (300 mg/kg, i.p.) to BR mice significantly increased the 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) levels in the midbrain as well as the number of attacks and their duration in the resident-intruder test. And vice versa, administration of TPH2 inhibitor p-chlorophenylalanine (pCPA) (300 mg/kg, i.p., for 3 consecutive days) to B6 mice dramatically reduced the 5-HT and 5-HIAA contents in brain structures and attenuated the frequency and the duration of aggressive attacks. At the same time, L-tryptophan or pCPA did not influence the percentage of aggressive mice and the attack latency reflecting the threshold of aggressive reaction. This result indicated that the intensity of intermale aggression, but not the threshold of aggressive reaction is positively dependent on 5-HT metabolism in mouse brain. Copyright © 2012 Elsevier B.V. All rights reserved.
Heredia, Dante J; Gershon, Michael D; Koh, Sang Don; Corrigan, Robert D; Okamoto, Takanubu; Smith, Terence K
2013-12-01
Although there is general agreement that mucosal 5-hydroxytryptamine (5-HT) can initiate peristaltic reflexes in the colon, recent studies have differed as to whether or not the role of mucosal 5-HT is critical. We therefore tested the hypothesis that the secretion of 5-HT from mucosal enterochromaffin (EC) cells is essential for the manifestation of murine colonic peristaltic reflexes. To do so, we analysed the mechanisms underlying faecal pellet propulsion in isolated colons of mice lacking tryptophan hydroxylase 1 (Tph1(-/-) mice), which is the rate-limiting enzyme in the biosynthesis of mucosal but not neuronal 5-HT. We used video analysis of faecal pellet propulsion, tension transducers to record colonic migrating motor complexes (CMMCs) and intracellular microelectrodes to record circular muscle activity occurring spontaneously or following intraluminal distension. When compared with control (Tph1(+/+)) mice, Tph1(-/-) animals exhibited: (1) an elongated colon; (2) larger faecal pellets; (3) orthograde propulsion followed by retropulsion (not observed in Tph1(+/+) colon); (4) slower in vitro propulsion of larger faecal pellets (28% of Tph1(+/+)); (5) CMMCs that infrequently propagated in an oral to anal direction because of impaired descending inhibition; (6) reduced CMMCs and inhibitory responses to intraluminal balloon distension; (7) an absence of reflex activity in response to mucosal stimulation. In addition, (8) thin pellets that propagated along the control colon failed to do so in Tph1(-/-) colon; and (9) the 5-HT3 receptor antagonist ondansetron, which reduced CMMCs and blocked their propagation in Tph1(+/+) mice, failed to alter CMMCs in Tph1(-/-) animals. Our observations suggest that mucosal 5-HT is essential for reflexes driven by mucosal stimulation and is also important for normal propagation of CMMCs and propulsion of pellets in the isolated colon.
Bazhenova, Ekaterina Y; Bazovkina, Daria V; Kulikova, Elizabeth A; Fursenko, Dariya V; Khotskin, Nikita V; Lichman, Daria V; Kulikov, Alexander V
2017-02-15
Neurotransmitter serotonin (5-HT) is involved in the regulation of stress response. Tryptophan hydroxylase-2 (TPH2) is the key enzyme of serotonin (5-HT) synthesis in the brain. C1473G polymorphism in Tph2 gene is the main factor defining the enzyme activity in the brain of laboratory mice. The effect of interaction between C1473G polymorphism and 30min restriction stress on the behavior in the open field test, c-Fos gene expression and 5-HT metabolism in the brain in adult male of B6-1473C and B6-1473G congenic mouse lines with high and low TPH2 activity was investigated. A significant effect of genotype x stress interaction on c-Fos mRNA in the hypothalamus (F 1,21 =10.66, p<0.001) and midbrain (F 1,21 =9.18, p<0.01) was observed. The stress-induced rise of c-Fos mRNA in these structures is more intensive in B6-1473G than in B6-1473C mice. A marked effect of genotype x stress interaction on 5-HT level in the cortex (F 1,18 =9.38, p<0.01) and 5-HIAA/5-HT turnover rate in the hypothalamus (F 1,18 =9.01, p<0.01) was revealed. The restriction significantly decreased 5-HT level in the cortex (p<0.01) and increased 5-HIAA/5-HT rate (p<0.001) in the hypothalamus in B6-1473C mice, but not in B6-1473G mice. The present result is the first experimental evidence that C1473G polymorphism is involved in the regulation of the reaction to emotional stress in mice. Copyright © 2017 Elsevier B.V. All rights reserved.
Bazovkina, D V; Tsybko, A S; Filimonova, E A; Ilchibaeva, T V; Naumenko, V S
2016-01-01
Tryptophan hydroxylase 2 (Tph-2) is the key enzyme in serotonin biosynthesis. Serotonin is one of the main neurotransmitters involved in the regulation of various physiological functions and behavior patterns. The influence of chronic ethanol consumption on the expression of the Bdnf, Bax, Bcl-xL, and CASP3 genes was studied in the brain structures of B6-1473C (C/C) and B6-1473G (G/G) mice that had been obtained on the base of the C57BL/6 strain. The strains differed in the genotype for the C1473G single nucleotide polymorphism in the Tph-2 gene and in Tph-2 enzyme activity. It was found that chronic alcohol treatment led to a significant increase in the expression of the Bdnf gene in the midbrain of B6-1473G mice, but not in B6-1473С. Chronic alcohol treatment considerably decreased the expression of the ultimate brain apoptosis effector, caspase 3, in the frontal cortex, but increased it in the hippocampus of B6-1473G mice. At the same time, chronic ethanol administration reduced the level of the antiapoptotic Bcl-xL mRNA in the midbrain of B6-1473C mice. Thus, the C1473G polymorphism in the Tph-2 gene considerably influenced the changes in the expression patterns of genes involved in the regulation of neurogenesis and neural apoptosis induced by chronic ethanol treatment.
Carli, Mirjana; Kostoula, Chrysaugi; Sacchetti, Giuseppina; Mainolfi, Pierangela; Anastasia, Alessia; Villani, Claudia; Invernizzi, Roberto William
2015-11-01
Variants of tryptophan hydroxylase-2 (Tph2), the gene encoding enzyme responsible for the synthesis of brain serotonin (5-HT), have been associated with neuropsychiatric disorders, substance abuse and addiction. This study assessed the effect of Tph2 gene deletion on motor behavior and found that motor activity induced by 2.5 and 5 mg/kg amphetamine was enhanced in Tph2(-/-) mice. Using the in vivo microdialysis technique we found that the ability of amphetamine to stimulate noradrenaline (NA) release in the striatum was reduced by about 50% in Tph2(-/-) mice while the release of dopamine (DA) was not affected. Tph2 deletion did not affect the release of NA and DA in the prefrontal cortex. The role of endogenous 5-HT in enhancing the effect of amphetamine was confirmed showing that treatment with the 5-HT precursor 5-hydroxytryptophan (10 mg/kg) restored tissue and extracellular levels of brain 5-HT and the effects of amphetamine on striatal NA release and motor activity in Tph2(-/-) mice. Treatment with the NA precursor dihydroxyphenylserine (400 mg/kg) was sufficient to restore the effect of amphetamine on striatal NA release and motor activity in Tph2(-/-) mice. These findings indicate that amphetamine-induced hyperactivity is attenuated by endogenous 5-HT through the inhibition of striatal NA release. Tph2(-/-) mice may be a useful preclinical model to assess the role of 5-HT-dependent mechanisms in the action of psychostimulants. Acute sensitivity to the motor effects of amphetamine has been associated to increased risk of psychostimulant abuse. Here, we show that deletion of Tph2, the gene responsible for brain 5-HT synthesis, enhances the motor effect of amphetamine in mice through the inhibition of striatal NA release. This suggests that Tph2(-/-) mice is a useful preclinical model to assess the role of 5-HT-dependent mechanisms in psychostimulants action. Tph2, tryptophan hydroxylase-2. © 2015 International Society for Neurochemistry.
Gross Margolis, Kara; Vittorio, Jennifer; Talavera, Maria; Gluck, Karen; Li, Zhishan; Iuga, Alina; Stevanovic, Korey; Saurman, Virginia; Israelyan, Narek; Welch, Martha G; Gershon, Michael D
2017-11-01
Necrotizing enterocolitis (NEC), a gastrointestinal inflammatory disease of unknown etiology that may also affect the liver, causes a great deal of morbidity and mortality in premature infants. We tested the hypothesis that signaling molecules, which are endogenous to the bowel, regulate the severity of intestinal and hepatic damage in an established murine NEC model. Specifically, we postulated that mucosal serotonin (5-HT), which is proinflammatory, would exacerbate experimental NEC and that oxytocin (OT), which is present in enteric neurons and is anti-inflammatory, would oppose it. Genetic deletion of the 5-HT transporter (SERT), which increases and prolongs effects of 5-HT, was found to increase the severity of systemic manifestations, intestinal inflammation, and associated hepatotoxicity of experimental NEC. In contrast, genetic deletion of tryptophan hydroxylase 1 (TPH1), which is responsible for 5-HT biosynthesis in enterochromaffin (EC) cells of the intestinal mucosa, and TPH inhibition with LP-920540 both decrease the severity of experimental NEC in the small intestine and liver. These observations suggest that 5-HT from EC cells helps to drive the inflammatory damage to the gut and liver that occurs in the murine NEC model. Administration of OT decreased, while the OT receptor antagonist atosiban exacerbated, the intestinal inflammation of experimental NEC. Data from the current investigation are consistent with the tested hypotheses-that the enteric signaling molecules, 5-HT (positively) and OT (negatively) regulate severity of inflammation in a mouse model of NEC. Moreover, we suggest that mucosally restricted inhibition of 5-HT biosynthesis and/or administration of OT may be useful in the treatment of NEC. NEW & NOTEWORTHY Serotonin (5-HT) and oxytocin reciprocally regulate the severity of intestinal inflammation and hepatotoxicity in a murine model of necrotizing enterocolitis (NEC). Selective depletion of mucosal 5-HT through genetic deletion or inhibition of tryptophan hydroxylase-1 ameliorates, while deletion of the 5-HT uptake transporter, which increases 5-HT availability, exacerbates the severity of NEC. In contrast, oxytocin reduces, while the oxytocin receptor antagonist atosiban enhances, NEC severity. Peripheral tryptophan hydroxylase inhibition may be useful in treatment of NEC. Copyright © 2017 the American Physiological Society.
Neuronal Tryptophan Hydroxylase Expression in BALB/cJ and C57Bl/6J Mice
Bach, Helene; Arango, Victoria; Huang, Yung-Yu; Leong, Sharlene; Mann, J. John; Underwood, Mark D.
2014-01-01
BALB/c is an inbred stress-sensitive mouse strain exhibiting low brain serotonin (5-HT) content and a 5-HT biosynthetic enzyme tryptophan hydroxylase (Tph2) variant reported to have lower catalytic activity compared to other inbred base strains. To evaluate other mechanisms that may explain low 5-HT, we compared BALB/cJ mice and a control inbred strain C57Bl/6J mice, for expression of Tph2 mRNA, TPH2 protein and regional levels of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA). Tph2 mRNA and TPH2 protein in brainstem dorsal raphe nuclei (DRN) was assayed by in situ hybridization and immunocytochemistry respectively. 5-HT and 5-HIAA were determined by high pressure liquid chromatography (HPLC). BALB/cJ mice had 20% less Tph2 mRNA and 28% fewer TPH2 immunolabeled neurons than C57Bl/6J mice (t = -2.59, p = 0.02). The largest difference in Tph2 transcript expression was in rostral DRN (t = 2.731, p = 0.008). 5-HT was 15% lower in the midbrain of BALB/cJ compared to C57Bl/6J mice (p < 0.05). The behavioral differences in BALB/cJ mice relative to the C57Bl/6J strain may be due in part, to fewer 5-HT neurons and lower Tph2 gene expression resulting in less 5-HT neurotransmission. Future studies quantifying expression per neuron are needed to determine whether less expression is explained by fewer neurons or also less expression per neuron, or both. PMID:21740442
Neuronal tryptophan hydroxylase expression in BALB/cJ and C57Bl/6J mice.
Bach, Helene; Arango, Victoria; Huang, Yung-Yu; Leong, Sharlene; Mann, J John; Underwood, Mark D
2011-09-01
BALB/c is an inbred stress-sensitive mouse strain exhibiting low brain serotonin (5-HT) content and a 5-HT biosynthetic enzyme tryptophan hydroxylase (Tph2) variant reported to have lower catalytic activity compared with other inbred base strains. To evaluate other mechanisms that may explain low 5-HT, we compared BALB/cJ mice and a control inbred strain C57Bl/6J mice, for expression of Tph2 mRNA, TPH2 protein and regional levels of 5-HT and its metabolite 5-hydroxyindoleacetic acid. Tph2 mRNA and TPH2 protein in brainstem dorsal raphe nuclei was assayed by in situ hybridization and immunocytochemistry respectively. 5-HT and 5-hydroxyindoleacetic acid were determined by HPLC. BALB/cJ mice had 20% less Tph2 mRNA and 28% fewer TPH2 immunolabeled neurons than C57Bl/6J mice (t = -2.59, p = 0.02). The largest difference in Tph2 transcript expression was in rostral dorsal raphe nuclei (t = 2.731, p = 0.008). 5-HT was 15% lower in the midbrain and 18% lower in the cerebral cortex of BALB/cJ compared with C57Bl/6J mice (p < 0.05). The behavioral differences in BALB/cJ mice relative to the C57Bl/6J strain may be due in part, to fewer 5-HT neurons and lower Tph2 gene expression resulting in less 5-HT neurotransmission. Future studies quantifying expression per neuron are needed to determine whether less expression is explained by fewer neurons or also less expression per neuron, or both. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.
Shishkina, Galina T; Kalinina, Tatyana S; Bulygina, Veta V; Lanshakov, Dmitry A; Babluk, Ekaterina V; Dygalo, Nikolay N
2015-01-01
Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT) neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg), and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg). Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons.
Kuhn, Donald M.; Sykes, Catherine E.; Geddes, Timothy J.; Jaunarajs, Karen L. Eskow; Bishop, Christopher
2010-01-01
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopamine neurons of the nigrostriatal system, resulting in severe motor disturbances. Although much less appreciated, non-motor symptoms are also very common in PD and many can be traced to serotonin neuronal deficits. Tryptophan hydroxylase 2 (TPH2), the rate-limiting enzyme in the serotonin biosynthesis, is a phenotypic marker for serotonin neurons and is known to be extremely labile to oxidation. Therefore, the oxidative processes that prevail in PD could cause TPH2 misfolding and modify 5HT neuronal function much as is seen in dopamine neurons. Oxidation of TPH2 inhibits enzyme activity and leads to the formation of high molecular weight aggregates in a dithiothreitol-reversible manner. Cysteine-scanning mutagenesis shows that as long as a single cysteine residue (out of a total of 13 per monomer) remains in TPH2, it cross-links upon oxidation and only cysteine-less mutants are resistant to this effect. The effects of oxidants on TPH2 catalytic function and cross-linking are also observed in intact TPH2-expressing HEK293 cells. Oxidation shifts TPH2 from the soluble compartment into membrane fractions and large inclusion bodies. Sequential non-reducing/reducing two-dimensional SDS-PAGE and immunoblotting confirmed that TPH2 was one of a small number of cytosolic proteins that form disulfide-bonded aggregates. The propensity of TPH2 to misfold upon oxidation of its cysteine residues is responsible for its catalytic lability and may be related to loss of serotonin neuronal function in PD and the emergence of non-motor (psychiatric) symptoms. PMID:21105877
Neuronal serotonin regulates growth of the intestinal mucosa in mice.
Gross, Erica R; Gershon, Michael D; Margolis, Kara G; Gertsberg, Zoya V; Li, Zhishan; Cowles, Robert A
2012-08-01
The enteric abundance of serotonin (5-HT), its ability to promote proliferation of neural precursors, and reports that 5-HT antagonists affect crypt epithelial proliferation led us to investigate whether 5-HT affects growth and maintenance of the intestinal mucosa in mice. cMice that lack the serotonin re-uptake transporter (SERTKO mice) and wild-type mice were given injections of selective serotonin re-uptake inhibitors (gain-of-function models). We also analyzed mice that lack tryptophan hydroxylase-1 (TPH1KO mice, which lack mucosal but not neuronal 5-HT) and mice deficient in tryptophan hydroxylase-2 (TPH2KO mice, which lack neuronal but not mucosal 5-HT) (loss-of-function models). Wild-type and SERTKO mice were given ketanserin (an antagonist of the 5-HT receptor, 5-HT(2A)) or scopolamine (an antagonist of the muscarinic receptor). 5-HT(2A) receptors and choline acetyltransferase were localized by immunocytochemical analysis. Growth of the mucosa and proliferation of mucosal cells were significantly greater in SERTKO mice and in mice given selective serotonin re-uptake inhibitors than in wild-type mice, but were diminished in TPH2KO (but not in TPH1KO) mice. Ketanserin and scopolamine each prevented the ability of SERT knockout or inhibition to increase mucosal growth and proliferation. Cholinergic submucosal neurons reacted with antibodies against 5-HT(2A). 5-HT promotes growth and turnover of the intestinal mucosal epithelium. Surprisingly, these processes appear to be mediated by neuronal, rather than mucosal, 5-HT. The 5-HT(2A) receptor activates cholinergic neurons, which provide a muscarinic innervation to epithelial effectors. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
We have observed that lactating mouse dams nursed 4 times per day (4X) maintained lactation, but had lower milk yields by the weigh-suckle-weigh method, than dams nursed ad libitum (AL). Therefore, we hypothesized that decreased nursing frequency would also decrease lactation persistence, increase m...
Wan, Oi Wan; Shin, Eunju; Mattsson, Bengt; Caudal, Dorian; Svenningsson, Per; Björklund, Anders
2016-05-23
We studied the impact of α-synuclein overexpression in brainstem serotonin neurons using a novel vector construct where the expression of human wildtype α-synuclein is driven by the tryptophan hydroxylase promoter, allowing expression of α-synuclein at elevated levels, and with high selectivity, in serotonergic neurons. α-Synuclein induced degenerative changes in axons and dendrites, displaying a distorted appearance, suggesting accumulation and aggregation of α-synuclein as a result of impaired axonal transport, accompanied by a 40% loss of terminals, as assessed in the hippocampus. Tissue levels of serotonin and its major metabolite 5-HIAA remained largely unaltered, and the performance of the α-synuclein overexpressing rats in tests of spatial learning (water maze), anxiety related behavior (elevated plus maze) and depressive-like behavior (forced swim test) was not different from control, suggesting that the impact of the developing axonal pathology on serotonin neurotransmission was relatively mild. Overexpression of α-synuclein in the raphe nuclei, combined with overexpression in basal forebrain cholinergic neurons, resulted in more pronounced axonal pathology and significant impairment in the elevated plus maze. We conclude that α-synuclein pathology in serotonergic or cholinergic neurons alone is not sufficient to impair non-motor behaviors, but that it is their simultaneous involvement that determines severity of such symptoms.
Heredia, Dante J; Gershon, Michael D; Koh, Sang Don; Corrigan, Robert D; Okamoto, Takanubu; Smith, Terence K
2013-01-01
Although there is general agreement that mucosal 5-hydroxytryptamine (5-HT) can initiate peristaltic reflexes in the colon, recent studies have differed as to whether or not the role of mucosal 5-HT is critical. We therefore tested the hypothesis that the secretion of 5-HT from mucosal enterochromaffin (EC) cells is essential for the manifestation of murine colonic peristaltic reflexes. To do so, we analysed the mechanisms underlying faecal pellet propulsion in isolated colons of mice lacking tryptophan hydroxylase 1 (Tph1−/− mice), which is the rate-limiting enzyme in the biosynthesis of mucosal but not neuronal 5-HT. We used video analysis of faecal pellet propulsion, tension transducers to record colonic migrating motor complexes (CMMCs) and intracellular microelectrodes to record circular muscle activity occurring spontaneously or following intraluminal distension. When compared with control (Tph1+/+) mice, Tph1−/− animals exhibited: (1) an elongated colon; (2) larger faecal pellets; (3) orthograde propulsion followed by retropulsion (not observed in Tph1+/+ colon); (4) slower in vitro propulsion of larger faecal pellets (28% of Tph1+/+); (5) CMMCs that infrequently propagated in an oral to anal direction because of impaired descending inhibition; (6) reduced CMMCs and inhibitory responses to intraluminal balloon distension; (7) an absence of reflex activity in response to mucosal stimulation. In addition, (8) thin pellets that propagated along the control colon failed to do so in Tph1−/− colon; and (9) the 5-HT3 receptor antagonist ondansetron, which reduced CMMCs and blocked their propagation in Tph1+/+ mice, failed to alter CMMCs in Tph1−/− animals. Our observations suggest that mucosal 5-HT is essential for reflexes driven by mucosal stimulation and is also important for normal propagation of CMMCs and propulsion of pellets in the isolated colon. PMID:24127620
Donner, Nina C; Handa, Robert J
2009-01-01
Dysfunctions of the brain serotonin (5-HT) system are often associated with affective disorders, such as depression. The raphe nuclei target the limbic system and most forebrain areas and constitute the main source of 5-HT in the brain. All 5-HT neurons express tryptophan hydroxylase-2 (TPH2), the brain specific, rate-limiting enzyme for 5-HT synthesis. ERbeta agonists have been shown to attenuate anxiety-and despair-like behaviors in rodent models. Therefore, we tested the hypothesis that ERbeta may contribute to the regulation of gene expression in 5-HT neurons of the dorsal raphe nuclei (DRN) by examining the effects of systemic and local application of the selective ERbeta agonist diarylpropionitrile (DPN) on tph2 mRNA expression. Ovariectomized (OVX) female rats were injected subcutaneously (s.c.) with DPN or vehicle once daily for 8 days. In situ hybridization revealed that systemic DPN-treatment elevated basal tph2 mRNA expression in the caudal and mid-dorsal DRN. Behavioral testing of all animals in the open field (OF) and on the elevated plus maze (EPM) on days 6 and 7 of treatment confirmed the anxiolytic nature of ERbeta activation. Another cohort of female OVX rats was stereotaxically implanted bilaterally with hormone-containing wax pellets flanking the DRN. Pellets contained either 17-beta-estradiol (E), DPN, or no hormone. Both DPN and E significantly enhanced tph2 mRNA expression in the mid-dorsal DRN. DPN also increased tph2 mRNA in the caudal DRN. DPN- and E-treated rats displayed a more active stress-coping behavior in the forced-swim test (FST). No behavioral differences were found in the OF or on the EPM. These data indicate that ERbeta acts at the level of the rat DRN to modulate tph2 mRNA expression and thereby influence 5-HT synthesis in DRN subregions. Our results also suggest that local activation of ERbeta neurons in the DRN may be sufficient to decrease despair-like behavior, but not anxiolytic behaviors. PMID:19559077
Markett, Sebastian; de Reus, Marcel A; Reuter, Martin; Montag, Christian; Weber, Bernd; Schoene-Bake, Jan-Christoph; van den Heuvel, Martijn P
2017-03-01
The rich club comprises a densely mutually connected set of hub regions in the brain, thought to serve as a processing and integration core. We assessed the impact of normal variation of the tryptophane hydroxylase 2 gene's promotor region (TPH2 rs4570625) on structural connectivity of the rich club pathways by means of a candidate gene association design. Tryptophane hydroxylase 2 (TPH2) is a rate-limiting enzyme in the biosynthesis of serotonin and is known to inhibit, in addition to its role as a trans-synaptic messenger, axonal and dendritic growth. The TPH2 T-variant has been associated with reduced mRNA expression and reduced serotonin levels, which may particularly influence the development of macroscale anatomical connectivity. Here, we show larger mean connectivity in the rich club in carriers of the T-variant, suggesting potential effects of upregulation of neural connectivity growth in this central core system. In addition, by edge-removal statistics, we show that the TPH2-associated higher levels of rich club connectivity are of importance for the functioning of the total structural network. The observed association is speculated to result from an effect of serotonin levels on brain development, potentially leading to stronger structural connectivity in heavily interconnected hubs. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Roberts, Kenneth M; Khan, Crystal A; Hinck, Cynthia S; Fitzpatrick, Paul F
2014-12-16
Phenylalanine hydroxylase (PheH), a liver enzyme that catalyzes the hydroxylation of excess phenylalanine in the diet to tyrosine, is activated by phenylalanine. The lack of activity at low levels of phenylalanine has been attributed to the N-terminus of the protein's regulatory domain acting as an inhibitory peptide by blocking substrate access to the active site. The location of the site at which phenylalanine binds to activate the enzyme is unknown, and both the active site in the catalytic domain and a separate site in the N-terminal regulatory domain have been proposed. Binding of catecholamines to the active-site iron was used to probe the accessibility of the active site. Removal of the regulatory domain increases the rate constants for association of several catecholamines with the wild-type enzyme by ∼2-fold. Binding of phenylalanine in the active site is effectively abolished by mutating the active-site residue Arg270 to lysine. The k(cat)/K(phe) value is down 10⁴ for the mutant enzyme, and the K(m) value for phenylalanine for the mutant enzyme is >0.5 M. Incubation of the R270K enzyme with phenylalanine also results in a 2-fold increase in the rate constants for catecholamine binding. The change in the tryptophan fluorescence emission spectrum seen in the wild-type enzyme upon activation by phenylalanine is also seen with the R270K mutant enzyme in the presence of phenylalanine. Both results establish that activation of PheH by phenylalanine does not require binding of the amino acid in the active site. This is consistent with a separate allosteric site, likely in the regulatory domain.
Activation of Phenylalanine Hydroxylase by Phenylalanine Does Not Require Binding in the Active Site
2015-01-01
Phenylalanine hydroxylase (PheH), a liver enzyme that catalyzes the hydroxylation of excess phenylalanine in the diet to tyrosine, is activated by phenylalanine. The lack of activity at low levels of phenylalanine has been attributed to the N-terminus of the protein’s regulatory domain acting as an inhibitory peptide by blocking substrate access to the active site. The location of the site at which phenylalanine binds to activate the enzyme is unknown, and both the active site in the catalytic domain and a separate site in the N-terminal regulatory domain have been proposed. Binding of catecholamines to the active-site iron was used to probe the accessibility of the active site. Removal of the regulatory domain increases the rate constants for association of several catecholamines with the wild-type enzyme by ∼2-fold. Binding of phenylalanine in the active site is effectively abolished by mutating the active-site residue Arg270 to lysine. The kcat/Kphe value is down 104 for the mutant enzyme, and the Km value for phenylalanine for the mutant enzyme is >0.5 M. Incubation of the R270K enzyme with phenylalanine also results in a 2-fold increase in the rate constants for catecholamine binding. The change in the tryptophan fluorescence emission spectrum seen in the wild-type enzyme upon activation by phenylalanine is also seen with the R270K mutant enzyme in the presence of phenylalanine. Both results establish that activation of PheH by phenylalanine does not require binding of the amino acid in the active site. This is consistent with a separate allosteric site, likely in the regulatory domain. PMID:25453233
Effects of dietary amino acids, carbohydrates, and choline on neurotransmitter synthesis
NASA Technical Reports Server (NTRS)
Wurtman, Richard J.
1988-01-01
The ability of a meal to increase or decrease brain neurotransmitter synthesis has been studied. It is concluded that brain serotonin synthesis is directly controlled by the proportions of carbohydrate to protein in meals and snacks that increase or decrease brain tryptophan levels, thereby changing the substrate saturation of tryptophan hydroxylase and the rate of serotonin synthesis. The ability of serotoninergic neurons to have their output coupled to dietary macronutrients enables them to function as sensors of peripheral metabolism, and to subserve an important role in the control of appetite. The robust and selective responses of catecholaminergic and cholinergic neurons to supplemental tyrosine and choline suggest that these compounds may become useful as a new type of drug for treating deseases or conditions in which adequate quantities of the transmitter would otherwise be unavailable.
Effect of diet on serotonergic neurotransmission in depression.
Shabbir, Faisal; Patel, Akash; Mattison, Charles; Bose, Sumit; Krishnamohan, Raathathulaksi; Sweeney, Emily; Sandhu, Sarina; Nel, Wynand; Rais, Afsha; Sandhu, Ranbir; Ngu, Nguasaah; Sharma, Sushil
2013-02-01
Depression is characterized by sadness, purposelessness, irritability, and impaired body functions. Depression causes severe symptoms for several weeks, and dysthymia, which may cause chronic, low-grade symptoms. Treatment of depression involves psychotherapy, medications, or phototherapy. Clinical and experimental evidence indicates that an appropriate diet can reduce symptoms of depression. The neurotransmitter, serotonin (5-HT), synthesized in the brain, plays an important role in mood alleviation, satiety, and sleep regulation. Although certain fruits and vegetables are rich in 5-HT, it is not easily accessible to the CNS due to blood brain barrier. However the serotonin precursor, tryptophan, can readily pass through the blood brain barrier. Tryptophan is converted to 5-HT by tryptophan hydroxylase and 5-HTP decarboxylase, respectively, in the presence of pyridoxal phosphate, derived from vitamin B(6). Hence diets poor in tryptophan may induce depression as this essential amino acid is not naturally abundant even in protein-rich foods. Tryptophan-rich diet is important in patients susceptible to depression such as certain females during pre and postmenstrual phase, post-traumatic stress disorder, chronic pain, cancer, epilepsy, Parkinson's disease, Alzheimer's disease, schizophrenia, and drug addiction. Carbohydrate-rich diet triggers insulin response to enhance the bioavailability of tryptophan in the CNS which is responsible for increased craving of carbohydrate diets. Although serotonin reuptake inhibitors (SSRIs) are prescribed to obese patients with depressive symptoms, these agents are incapable of precisely regulating the CNS serotonin and may cause life-threatening adverse effects in the presence of monoamine oxidase inhibitors. However, CNS serotonin synthesis can be controlled by proper intake of tryptophan-rich diet. This report highlights the clinical significance of tryptophan-rich diet and vitamin B(6) to boost serotonergic neurotransmission in depression observed in various neurodegenerative diseases. However pharmacological interventions to modulate serotonergic neurotransmission in depression, remains clinically significant. Depression may involve several other molecular mechanisms as discussed briefly in this report. Copyright © 2012 Elsevier Ltd. All rights reserved.
Faulkner, Paul; Mancinelli, Federico; Lockwood, Patricia L; Matarin, Mar; Dolan, Raymond J; Wood, Nick W; Dayan, Peter; Roiser, Jonathan P
2017-01-01
The effects of acute tryptophan depletion on human decision-making suggest that serotonin modulates the processing of rewards and punishments. However, few studies have assessed which of the many types of serotonin receptors are responsible. Using a within-subject, double-blind, sham-controlled design in 26 subjects, we examined whether individual differences in serotonin system gene transcription, measured in peripheral blood, predicted the effect of acute tryptophan depletion on decision-making. Participants performed a task in which they chose between successive pairs of fixed, lower-stakes (control) and variable, higher-stakes (experimental) gambles, each involving wins or losses. In 21 participants, mRNA from 9 serotonin system genes was measured in whole blood prior to acute tryptophan depletion: 5-HT1B, 5-HT1F, 5-HT2A, 5-HT2B, 5-HT3A, 5-HT3E, 5-HT7 (serotonin receptors), 5-HTT (the serotonin transporter), and tryptophan hydroxylase 1. Acute tryptophan depletion did not significantly influence participants' sensitivity to probability, wins, or losses, although there was a trend for a lower tendency to choose experimental gambles overall following depletion. Significant positive correlations, which survived correction for multiple comparisons, were detected between baseline 5-HT1B mRNA levels and acute tryptophan depletion-induced increases in both the overall tendency to choose the experimental gamble and sensitivity to wins. No significant relationship was observed with any other peripheral serotonin system markers. Computational analyses of decision-making data provided results consistent with these findings. These results suggest that the 5-HT1B receptor may modulate the effects of acute tryptophan depletion on risky decision-making. Peripheral levels of serotonin markers may predict response to treatments that act upon the serotonin system, such as selective serotonin reuptake inhibitors. © The Author 2016. Published by Oxford University Press on behalf of CINP.
Kalinina, Tatyana S.; Bulygina, Veta V.; Lanshakov, Dmitry A.; Babluk, Ekaterina V.
2015-01-01
Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT) neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg), and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg). Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons. PMID:26624017
Brown, Philip M.; Drossman, Douglas A.; Wood, Alastair J. J.; Cline, Gary A.; Frazier, Kenny S.; Jackson, Jessica I.; Bronner, Johanna; Freiman, Joel; Zambrowicz, Brian; Sands, Arthur; Gershon, Michael D.
2016-01-01
BACKGROUND & AIMS Serotonin (5-hydroxytryptamine [5-HT]) has an important role in gastrointestinal function. LX1031 is an oral, locally acting, small molecule inhibitor of tryptophan hydroxylase (TPH). Local inhibition of TPH in the gastrointestinal tract might reduce mucosal production of serotonin (5-HT) and be used to treat patients with nonconstipating irritable bowel syndrome (IBS). METHODS We evaluated 2 dose levels of LX1031 (250 mg or 1000 mg, given 4 times/day) in a 28-day, multicenter, randomized, double-blind, placebo-controlled study of 155 patients with nonconstipating IBS. 5-hydroxyindoleacetic acid (5-HIAA), a biomarker of pharmacodynamic activity, was measured in urine samples at baseline (24 hours after LX1031 administration), and at weeks 4 and 6 (n = 76). RESULTS Each dose of LX1031 was safe and well-tolerated. The primary efficacy end point, relief of IBS pain and discomfort, improved significantly in patients given 1000 mg LX1031 (25.5%), compared with those given placebo, at week 1 (P = .018); with nonsignificant improvements at weeks 2, 3, and 4 (17.9%, 16.3%, and 11.6%, respectively). Symptom improvement correlated with a dose-dependent reduction in 5-HIAA, a marker for TPH inhibition, from baseline until week 4. This suggests the efficacy of LX1031 is related to the extent of inhibition of 5-HT biosynthesis. Stool consistency significantly improved, compared with the group given placebo, at weeks 1 and 4 (P < .01) and at week 2 (P < .001). CONCLUSIONS In a phase 2 study, LX1031 was well tolerated, relieving symptoms and increasing stool consistency in patients with nonconstipating IBS. Symptom relief was associated with reduced levels of 5-HIAA in urine samples. This marker might be used to identify patients with nonconstipating IBS who respond to inhibitors of 5-HT synthesis. PMID:21684281
Guzzetti, Sara; Calcagno, Eleonora; Canetta, Alessandro; Sacchetti, Giuseppina; Fracasso, Claudia; Caccia, Silvio; Cervo, Luigi; Invernizzi, Roberto W
2008-10-10
We studied the antidepressant-like effect of paroxetine in strains of mice carrying different isoforms of tryptophan hydroxylase-2 (TPH-2), the enzyme responsible for the synthesis of brain serotonin (5-HT). The effect of paroxetine alone and in combination with pharmacological treatments enhancing or lowering 5-HT synthesis or melatonin was assessed in the forced swimming test in mice carrying allelic variants of TPH-2 (1473C in C57BL/6 and 1473G in DBA/2 and BALB/c). Changes in brain 5-hydroxytryptophan (5-HTP) accumulation and melatonin levels were measured by high-performance liquid chromatography. Paroxetine (2.5 and 5 mg/kg) reduced immobility time in C57BL/6J and C57BL/6N mice but had no such effect in DBA/2J, DBA/2N and BALB/c mice, even at 10 mg/kg. Enhancing 5-HT synthesis with tryptophan reinstated the antidepressant-like effect of paroxetine in DBA/2J, DBA/2N and BALB/c mice whereas inhibition of 5-HT synthesis prevented the effect of paroxetine in C57BL/6N mice. The response to paroxetine was not associated with changes in locomotor activity, brain melatonin or brain levels of the drug measured at the end of the behavioral test. These results support the importance of 5-HT synthesis in the response to SSRIs and suggest that melatonin does not contribute to the ability of tryptophan to rescue the antidepressant-like effect of paroxetine.
Perez-Rodriguez, M. Mercedes; Weinstein, Shauna; New, Antonia S.; Bevilacqua, Laura; Yuan, Qiaoping; Zhou, Zhifeng; Hodgkinson, Colin; Goodman, Marianne; Koenigsberg, Harold W.; Goldman, David; Siever, Larry J.
2010-01-01
Background There is decreased serotonergic function in impulsive aggression and borderline personality disorder (BPD), and genetic association studies suggest a role of serotonergic genes in impulsive aggression and BPD. Only one study has analyzed the association between the tryptophan-hydroxylase 2 (TPH2) gene and BPD. A TPH2 “risk” haplotype has been described that is associated with anxiety, depression and suicidal behavior. Methods We assessed the relationship between the previously identified “risk” haplotype at the TPH2 locus and BPD diagnosis, impulsive aggression, affective lability, and suicidal/parasuicidal behaviors, in a well-characterized clinical sample of 103 healthy controls (HCs) and 251 patients with personality disorders (109 with BPD). A logistic regression including measures of depression, affective lability and aggression scores in predicting “risk” haplotype was conducted. Results The prevalence of the “risk” haplotype was significantly higher in patients with BPD compared to HCs. Those with the “risk” haplotype have higher aggression and affect lability scores and more suicidal/parasuicidal behaviors than those without it. In the logistic regression model, affect lability was the only significant predictor and it correctly classified 83.1% of the subjects as “risk” or “non-risk” haplotype carriers. Conclusions We found an association between the previously described TPH2 “risk” haplotype and BPD diagnosis, affective lability, suicidal/parasuicidal behavior, and aggression scores. PMID:20451217
Boosting serotonin in the brain: is it time to revamp the treatment of depression?
Torrente, Mariana P; Gelenberg, Alan J; Vrana, Kent E
2012-05-01
Abnormalities in serotonin systems are presumably linked to various psychiatric disorders including schizophrenia and depression. Medications intended for these disorders aim to either block the reuptake or the degradation of this neurotransmitter. In an alternative approach, efforts have been made to enhance serotonin levels through dietary manipulation of precursor levels with modest clinical success. In the last 30 years, there has been little improvement in the pharmaceutical management of depression, and now is the time to revisit therapeutic strategies for the treatment of this disease. Tryptophan hydroxylase (TPH) catalyzes the first and rate-limiting step in the biosynthesis of serotonin. A recently discovered isoform, TPH2, is responsible for serotonin biosynthesis in the brain. Learning how to activate this enzyme (and its polymorphic versions) may lead to a new, more selective generation of antidepressants, able to regulate the levels of serotonin in the brain with fewer side effects.
Saito, Y; Ito, M; Ozawa, Y; Obonai, T; Kobayashi, Y; Washizawa, K; Ohsone, Y; Takami, T; Oku, K; Takashima, S
1999-06-01
We examined neuropathologically and immunohistochemically the respiratory centers in the brainstem of two patients with Joubert syndrome (JS), three patients with congenital central hypoventilation syndrome (CCHS) and a patient with apneustic breathing (prolonged inspiratory pause) due to unknown etiology. Immunoreactivity (IR) of tryptophan hydroxylase (TPH) was decreased in the dorsal raphe nuclei of two patients with JS compared with age-matched controls, as well as in two patients with Dandy-Walker malformation. The two JS patients showed vermian defect and elongated cerebellar peduncles, and peculiar vascularities in the midline of the whole brainstem were also noted in one of these patients. These findings, as a whole, confirm that the midline structures of brainstem are disordered both structurally and functionally in JS, conceivably resulting in respiratory patterns and psychomotor deficits. IR of serotonin 1A receptor showed no significant changes in the medulla oblongata of these patients, however. In the parabrachial complex, IR of substance P was increased in two patients with CCHS, and one with apneustic breathing. IR of tyrosine hydroxylase was also increased in the latter. The brainstem of these patients showed reactive astrogliosis. These findings suggest preceding hypoxic episodes as well as an increased activity in the parabrachial complex which plays an important role in conducting the driving force to the medullary respiratory neurons from ascending sensory pathways.
Pandey, Shiv S.; Singh, Sucheta; Babu, C. S. Vivek; Shanker, Karuna; Srivastava, N. K.; Shukla, Ashutosh K.; Kalra, Alok
2016-01-01
Not much is known about the mechanism of endophyte-mediated induction of secondary metabolite production in Catharanthus roseus. In the present study two fungal endophytes, Curvularia sp. CATDLF5 and Choanephora infundibulifera CATDLF6 were isolated from the leaves of the plant that were found to enhance vindoline content by 229–403%. The isolated endophytes did not affect the primary metabolism of the plant as the maximum quantum efficiency of PSII, net CO2 assimilation, plant biomass and starch content of endophyte-inoculated plants was similar to endophyte-free control plants. Expression of terpenoid indole alkaloid (TIA) pathway genes, geraniol 10-hydroxylase (G10H), tryptophan decarboxylase (TDC), strictosidine synthase (STR), 16-hydoxytabersonine-O-methyltransferase (16OMT), desacetoxyvindoline-4-hydroxylase (D4H), deacetylvindoline-4-O-acetyltransferase (DAT) were upregulated in endophyte-inoculated plants. Endophyte inoculation upregulated the expression of the gene for transcriptional activator octadecanoid-responsive Catharanthus AP2-domain protein (ORCA3) and downregulated the expression of Cys2/His2-type zinc finger protein family transcriptional repressors (ZCTs). The gene for the vacuolar class III peroxidase (PRX1), responsible for coupling vindoline and catharanthine, was upregulated in endophyte-inoculated plants. These endophytes may enhance vindoline production by modulating the expression of key structural and regulatory genes of vindoline biosynthesis without affecting the primary metabolism of the host plant. PMID:27220774
Lindgren, N; Xu, Z Q; Lindskog, M; Herrera-Marschitz, M; Goiny, M; Haycock, J; Goldstein, M; Hökfelt, T; Fisone, G
2000-06-01
The activity of tyrosine hydroxylase, the rate-limiting enzyme in the biosynthesis of dopamine, is stimulated by phosphorylation. In this study, we examined the effects of activation of NMDA receptors on the state of phosphorylation and activity of tyrosine hydroxylase in rat striatal slices. NMDA produced a time-and concentration-dependent increase in the levels of phospho-Ser(19)-tyrosine hydroxylase in nigrostriatal nerve terminals. This increase was not associated with any changes in the basal activity of tyrosine hydroxylase, measured as DOPA accumulation. Forskolin, an activator of adenylyl cyclase, stimulated tyrosine hydroxylase phosphorylation at Ser(40) and caused a significant increase in DOPA accumulation. NMDA reduced forskolin-mediated increases in both Ser(40) phosphorylation and DOPA accumulation. In addition, NMDA reduced the increase in phospho-Ser(40)-tyrosine hydroxylase produced by okadaic acid, an inhibitor of protein phosphatase 1 and 2A, but not by a cyclic AMP analogue, 8-bromo-cyclic AMP. These results indicate that, in the striatum, glutamate decreases tyrosine hydroxylase phosphorylation at Ser(40) via activation of NMDA receptors by reducing cyclic AMP production. They also provide a mechanism for the demonstrated ability of NMDA to decrease tyrosine hydroxylase activity and dopamine synthesis.
Iyilikci, Onur; Baxter, Samantha; Balthazart, Jacques; Ball, Gregory F.
2014-01-01
Monoaminergic neurotransmitters regulate different components of sexual behaviors, but how the different monoaminergic cell groups selectively regulate these behaviors is not well understood. We examined the potential contribution of these different cell groups in the control of different aspects of sexual behaviors in male and female quail. We used double-label immunohistochemistry, labeling the protein product of the immediate early gene, Fos, along with tyrosine hydroxylase (TH) or tryptophan hydroxylase (TPH), markers for catecholaminergic or indolaminergic cells, respectively. Rhythmic Cloacal Sphincter Movements (RCSM) were recorded as a measure of male appetitive sexual behavior. Consummatory sexual behaviors were evaluated based on the species-typical copulation sequence. Enhanced Fos expression in the medial preoptic nucleus and bed nucleus of the stria terminalis was observed in association with both physical and visual contact to the opposite sex for males, but not for females. Fos induction associated with physical contact was observed in the ventral tegmental area and anterior periaqueductal gray in both sexes. In males only, the number of Fos-immunoreactive (ir) cells increased in the visual contact condition in these two dopaminergic cell groups, however no significant effect was observed for double-labeled TH-Fos-ir cells. In addition, consummatory but not appetitive sexual behavior increased Fos expression in TPH-ir cells in the raphe pallidus of males. This increase following physical but not visual contact agrees with the notion that activation of the serotoninergic system is implicated in the development of sexual satiation but not activated by simply viewing a female, in contrast to the dopaminergic system. PMID:24512065
Li, Y W; Bayliss, D A
1998-06-01
1. We studied electrophysiological properties, synaptic transmission and modulation by 5-hydroxytryptamine (5-HT) of caudal raphe neurons using whole-cell recording in a neonatal rat brain slice preparation; recorded neurons were identified as serotonergic by post-hoc immunohistochemical detection of tryptophan hydroxylase, the 5-HT-synthesizing enzyme. 2. Serotonergic neurons fired spontaneously (approximately 1 Hz), with maximal steady state firing rates of < 4 Hz. 5-Hydroxytryptamine caused hyperpolarization and cessation of spike activity in these neurons by activating inwardly rectifying K+ conductance via somatodendritic 5-HT1A receptors. 3. Unitary glutamatergic excitatory post-synaptic potentials (EPSP) and currents (EPSC) were evoked in serotonergic neurons by local electrical stimulation. Evoked EPSC were potently inhibited by 5-HT, an effect mediated by presynaptic 5-HT1B receptors. 4. In conclusion, serotonergic caudal raphe neurons are spontaneously active in vitro; they receive prominent glutamatergic synaptic inputs. 5-Hydroxytryptamine regulates serotonergic neuronal activity of the caudal raphe by decreasing spontaneous activity via somatodendritic 5-HT1A receptors and by inhibiting excitatory synaptic transmission onto these neurons via presynaptic 5-HT1B receptors. These local modulatory mechanisms provide multiple levels of feedback autoregulation of serotonergic raphe neurons by 5-HT.
Patrick, Rhonda P; Ames, Bruce N
2015-06-01
Serotonin regulates a wide variety of brain functions and behaviors. Here, we synthesize previous findings that serotonin regulates executive function, sensory gating, and social behavior and that attention deficit hyperactivity disorder, bipolar disorder, schizophrenia, and impulsive behavior all share in common defects in these functions. It has remained unclear why supplementation with omega-3 fatty acids and vitamin D improve cognitive function and behavior in these brain disorders. Here, we propose mechanisms by which serotonin synthesis, release, and function in the brain are modulated by vitamin D and the 2 marine omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Brain serotonin is synthesized from tryptophan by tryptophan hydroxylase 2, which is transcriptionally activated by vitamin D hormone. Inadequate levels of vitamin D (∼70% of the population) and omega-3 fatty acids are common, suggesting that brain serotonin synthesis is not optimal. We propose mechanisms by which EPA increases serotonin release from presynaptic neurons by reducing E2 series prostaglandins and DHA influences serotonin receptor action by increasing cell membrane fluidity in postsynaptic neurons. We propose a model whereby insufficient levels of vitamin D, EPA, or DHA, in combination with genetic factors and at key periods during development, would lead to dysfunctional serotonin activation and function and may be one underlying mechanism that contributes to neuropsychiatric disorders and depression. This model suggests that optimizing vitamin D and marine omega-3 fatty acid intake may help prevent and modulate the severity of brain dysfunction. © FASEB.
Crozier, Karen R; Moran, Graham R
2007-02-01
Kynurenine 3-monooxygenase (KMO) is an NADPH-dependent flavoprotein hydroxylase that catalyzes the conversion of l-Kynurenine (L-Kyn) to 3-hydroxykynurenine (3OHKyn). The reaction is central to the tryptophan degradative pathway and takes place within microglial cells defining cellular concentrations of the N-methyl-d-aspatate (NMDA) receptor agonist quinolinate and antagonist kynurenate. The influence over the cellular concentrations of these NMDA receptor effectors makes KMO an attractive target for the treatment of ischemic stroke. Pseudomonas fluorescens str 17400, expresses five activities of tryptophan catabolism including that of KMO. The KMO gene from P. fluorescens was cloned into the pET-17b plasmid using incorporated NdeI and XhoI restriction sites. This construct yielded PfKMO to 20% of total cell protein after 12h of expression at 22 degrees C without induction by isopropyl-beta-thiogalactopyranoside (IPTG). The enzyme could be readily purified using ammonium sulfate fractionation and ion exchange chromatography, resulting in pure KMO with a turnover number of 5.0 s(-1). PfKMO activity was dependent on the reduction state of the enzyme. Preparation and storage benefited from the presence of a reductant such as dithiothreitol or beta-mercaptoethanol. The loss of activity was found to be directly related to the oxidation of thiols as measured by dinitrothiobenzoate assay. Steady-state assays monitoring the consumption of dioxygen were used to measure apparent kinetic parameters and ligand perturbation of flavin fluorescence was used to determine a Kd value for both L-Kyn and the inhibitor m-nitrobenzoylalanine. PfKMO is offered as prototypical bacterial form of the enzyme to serve as a viable platform on which to base future KMO studies.
Cilia, Roberto; Benfante, Roberta; Asselta, Rosanna; Marabini, Laura; Cereda, Emanuele; Siri, Chiara; Pezzoli, Gianni; Goldwurm, Stefano; Fornasari, Diego
2016-08-01
Impulse control disorders and compulsive medication intake may occur in a minority of patients with Parkinson's disease (PD). We hypothesize that genetic polymorphisms associated with addiction in the general population may increase the risk for addictive behaviors also in PD. Sixteen polymorphisms in candidate genes belonging to five neurotransmitter systems (dopaminergic, catecholaminergic, serotonergic, glutamatergic, opioidergic) and the BDNF were screened in 154 PD patients with addictive behaviors and 288 PD control subjects. Multivariate analysis investigated clinical and genetic predictors of outcome (remission vs. persistence/relapse) after 1 year and at the last follow-up (5.1 ± 2.5 years). Addictive behaviors were associated with tryptophan hydroxylase type 2 (TPH2) and dopamine transporter gene variants. A subsequent analysis within the group of cases showed a robust association between TPH2 genotype and the severity of addictive behaviors, which survived Bonferroni correction for multiple testing. At multivariate analysis, TPH2 genotype resulted the strongest predictor of no remission at the last follow-up (OR[95%CI], 7.4[3.27-16.78] and 13.2[3.89-44.98] in heterozygous and homozygous carriers, respectively, p < 0.001). The extent of medication dose reduction was not a predictor. TPH2 haplotype analysis confirmed the association with more severe symptoms and lower remission rates in the short- and the long-term (p < 0.005 for all analyses). The serotonergic system is likely to be involved in the pathophysiology of addictive behaviors in PD, modulating the severity of symptoms and the rate of remission at follow-up. If confirmed in larger independent cohorts, TPH2 genotype may become a useful biomarker for the identification of at-risk individuals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yang, Fu-zhong; Wu, Yan; Zhang, Wei-guo; Cai, Yi-yun; Shi, Shen-xun
2010-07-20
To investigate the effect of estradiol (E2) on tryptophan hydroxylase (TPH) and 5-hydroxytryptamine (5-HT) content in raphe nuclei of rats under forced swimming stress and explore the role of estrogen and stress in disease mechanism of depression in women. At Week 3 post-ovariectomy, 35 ovariectomized (OVX) female SD rats were randomly divided into 5 groups (n = 7): non-stress group, control group, estradiol (E2) group and fluoxetine (FLX) group and E2 plus FLX group. Animals were administered with different drugs for 2 weeks. At Day 14, animals except those in the non-stress group were subjected to the 15 min forced swimming test (FST). At 2 hours post-FST, all animals including those in the non-stress group were perfused with 4% paraformaldehyde and brains removed for TPH and 5-HT immunofluorescence staining. We compared the content of TPH and 5-HT by observing and calculating the integrated optical density (IOD) of immunofluorescent-positive signals in raphe nuclei. (1) The IOD value of TPH- and 5-HT-positive region in raphe nuclei of rats in the control group was significantly lower than that of the non-stress group (P < 0.01); (2) the IOD value of TPH- and 5-HT-positive region in raphe nuclei of rats in the E2, FLX and E2 plus FLX groups was significantly higher than that in the control group (P < 0.05). Forced swimming stress can decrease the TPH and 5-HT content in raphe nuclei. Such changes can be prevented by a pre-administration of estradiol. Similar results are observed with antidepressant fluoxetine. These effects may underlie the role of estradiol and stress in the disease mechanism of depression in women.
Meerhoff, Gideon F.
2014-01-01
The antidepressant drug fluoxetine (Prozac) has been increasingly prescribed to children and adolescents with depressive disorders despite a lack of thorough understanding of its therapeutic effects in the paediatric population and of its putative neurodevelopmental effects. Within the framework of PRIOMEDCHILD ERA-NET, we investigated; a) effects of chronic fluoxetine treatment on adult hippocampal neurogenesis, a structural readout relevant for antidepressant action and hippocampal development; b) effects on tryptophan hydroxylase (TPH) expression, a measure of serotonin synthesis; c) whether treatment effects during adolescence differed from treatment at an adult age, and d) whether they were subregion-specific. Stereological quantification of the number of proliferating (Ki-67+) cells and of the number of young migratory neurons (doublecortin+), revealed a significant age-by-treatment interaction effect, indicating that fluoxetine affects both proliferation and neurogenesis in adolescent-treated rats differently than it does in adult-treated rats. In terms of subregional differences, fluoxetine enhanced proliferation mainly in the dorsal parts of the hippocampus, and neurogenesis in both the suprapyramidal and infrapyramidal blades of the dentate gyrus in adolescent-treated rats, while no such differences were seen in adult-treated rats. Fluoxetine exerted similar age-by-treatment interaction effects on TPH cells mainly in the ventral portion of the dorsal raphe nucleus. We conclude that fluoxetine exerts divergent effects on structural plasticity and serotonin synthesis in adolescent versus adult-treated rats. These preliminary data indicate a differential sensitivity of the adolescent brain to this drug and thus warrant further research into their behavioural and translational aspects. Together with recent related findings, they further call for caution in prescribing these drugs to the adolescent population. PMID:24827731
Klomp, Anne; Václavů, Lena; Meerhoff, Gideon F; Reneman, Liesbeth; Lucassen, Paul J
2014-01-01
The antidepressant drug fluoxetine (Prozac) has been increasingly prescribed to children and adolescents with depressive disorders despite a lack of thorough understanding of its therapeutic effects in the paediatric population and of its putative neurodevelopmental effects. Within the framework of PRIOMEDCHILD ERA-NET, we investigated; a) effects of chronic fluoxetine treatment on adult hippocampal neurogenesis, a structural readout relevant for antidepressant action and hippocampal development; b) effects on tryptophan hydroxylase (TPH) expression, a measure of serotonin synthesis; c) whether treatment effects during adolescence differed from treatment at an adult age, and d) whether they were subregion-specific. Stereological quantification of the number of proliferating (Ki-67+) cells and of the number of young migratory neurons (doublecortin+), revealed a significant age-by-treatment interaction effect, indicating that fluoxetine affects both proliferation and neurogenesis in adolescent-treated rats differently than it does in adult-treated rats. In terms of subregional differences, fluoxetine enhanced proliferation mainly in the dorsal parts of the hippocampus, and neurogenesis in both the suprapyramidal and infrapyramidal blades of the dentate gyrus in adolescent-treated rats, while no such differences were seen in adult-treated rats. Fluoxetine exerted similar age-by-treatment interaction effects on TPH cells mainly in the ventral portion of the dorsal raphe nucleus. We conclude that fluoxetine exerts divergent effects on structural plasticity and serotonin synthesis in adolescent versus adult-treated rats. These preliminary data indicate a differential sensitivity of the adolescent brain to this drug and thus warrant further research into their behavioural and translational aspects. Together with recent related findings, they further call for caution in prescribing these drugs to the adolescent population.
Identification and optimization of tyrosine hydroxylase activity in Mucuna pruriens DC. var. utilis.
Luthra, Pratibha Mehta; Singh, Satendra
2010-05-01
Tyrosine hydroxylase, an iron containing tetrahydrobiopterin dependent monooxygenase (tyrosine 3-monooxygenase; EC 1.14.16.2), catalyzes the rate-limiting step in which L: -dopa is formed from the substrate L-tyrosine. L-Dopa concentration and activity of L-tyrosine hydroxylase enzyme were measured in roots, stem, leaves, pods, and immature seeds of Mucuna pruriens. Immature seeds contained maximum L-dopa content and mature leaves possessed maximum catalytic activity of tyrosine hydroxylase. Tyrosine hydroxylase from leaf homogenate was characterized as a 55 kDa protein by SDS-PAGE and Western-blot analysis with monoclonal mouse IgG2a tyrosine hydroxylase antibody. The conditions for maximum tyrosine hydroxylase activity from the leaf extract were optimized with respect to temperature, pH, cofactor 6-MPH(4), and divalent metal ions. The tyrosine hydroxylase from leaf extract possessed a K (m) value of 808.63 microM for L-tyrosine at 37 degrees C and pH 6.0. The activity of the enzyme was slightly inhibited at 2,000 microM L-tyrosine. Higher concentrations of the cofactor 6-MPH(4), however, completely inhibited the synthesis of L-dopa. Tyrosine hydroxylase converted specific monophenols such as L-tyrosine (808.63 microM) and tyramine (K (m) 1.1 mM) to diphenols L-dopa and dopamine, respectively. Fe(II) activated the enzyme while higher concentration of other divalent metals reduced its activity. For the first time, tyrosine hydroxylase from M. pruriens is being reported in this study.
RAGAN, C. M.; LONSTEIN, J. S.
2014-01-01
In female mammals, the postpartum period involves dramatic shifts in many socioemotional behaviors. This includes a suppression of anxiety-related behaviors that requires recent physical contact with offspring. Factors contributing to differences among females in their susceptibility to the anxiety-modulating effect of offspring contact are unknown, but could include their innate anxiety and brain monoaminergic activity. Anxiety behavior was assessed in a large group of nulliparous female rats and the least-anxious and most-anxious tertiles were mated. Anxiety was assessed again postpartum after females were permitted or prevented from contacting their offspring 4 h before testing. Levels of dopamine β-hydroxylase (DBH, norepinephrine synthesizing enzyme) and tryptophan hydroxylase- 2 (TPH2, serotonin synthesizing enzyme) were measured in the brainstem and dorsal raphe, respectively. It was found that anxiety-related behavior in the two groups did not differ when dams were permitted contact with offspring before testing. Removal of the offspring before testing, however, differentially affected anxiety based on dams’ innate anxiety. Specifically, dams reverted back to their pre-mating levels of anxiety such that offspring removal slightly increased anxiety in the most-anxious females but greatly lowered anxiety in the least-anxious females. This reduction in anxiety in the least-anxious females after litter removal was associated with lower brainstem DBH. There was no relationship between females’ anxiety and dorsal raphe TPH2. Thus, a primary effect of recent contact with offspring on anxiety-related behavior in postpartum rats is to shift females away from their innate anxiety to a more moderate level of responding. This effect is particularly true for females with the lowest anxiety, may be mediated by central noradrenergic systems, and has implications for their ability to attend to their offspring. PMID:24161285
Tryptophan biosynthetic enzymes of Staphylococcus aureus.
Proctor, A R; Kloos, W E
1973-04-01
Tryptophan biosynthetic enzymes were assayed in various tryptophan mutants of Staphylococcus aureus strain 655 and the wild-type parent. All mutants, except trpB mutants, lacked only the activity corresponding to the particular biosynthetic block, as suggested previously by analysis of accumulated intermediates and auxonography. Tryptophan synthetase A was not detected in extracts of either trpA or trpB mutants but appeared normal in other mutants. Mutants in certain other classes exhibited partial loss of another particular tryptophan enzyme activity. Tryptophan synthetase B activity was not detected in cell extract preparations but was detected in whole cells. The original map order proposed for the S. aureus tryptophan gene cluster was clarified by the definition of trpD (phosphoribosyl transferase(-)) and trpF (phosphoribosyl anthranilate isomerase(-)) mutants. These mutants were previously unresolved and designated as trp(DF) mutants (anthranilate accumulators). Phosphoribosyl anthranilate isomerase and indole-3-glycerol phosphate synthetase enzymes were separable by molecular sieve chromatography, suggesting that these functions are coded by separate loci. Molecular sieve chromatography failed to reveal aggregates involving anthranilate synthetase, phosphoribosyl transferase, phosphoribosyl anthranilate isomerase, and indole-3-glycerol phosphate synthetase, and this procedure provided an estimate of the molecular weights of these enzymes. Tryptophan was shown to repress synthesis of all six tryptophan biosynthetic enzymes, and derepression of all six activities was incident upon tryptophan starvation. Tryptophan inhibited the activity of anthranilate synthetase, the first enzyme of the pathway.
Involvement of the Kynurenine Pathway in Human Glioma Pathophysiology
Adams, Seray; Teo, Charles; McDonald, Kerrie L.; Zinger, Anna; Bustamante, Sonia; Lim, Chai K.; Sundaram, Gayathri; Braidy, Nady; Brew, Bruce J.; Guillemin, Gilles J.
2014-01-01
The kynurenine pathway (KP) is the principal route of L-tryptophan (TRP) catabolism leading to the production of kynurenine (KYN), the neuroprotectants, kynurenic acid (KYNA) and picolinic acid (PIC), the excitotoxin, quinolinic acid (QUIN) and the essential pyridine nucleotide, nicotinamide adenine dinucleotide (NAD+). The enzymes indoleamine 2,3-dioxygenase-1 (IDO-1), indoleamine 2,3-dioxygenase-2 (IDO-2) and tryptophan 2,3-dioxygenase (TDO-2) initiate the first step of the KP. IDO-1 and TDO-2 induction in tumors are crucial mechanisms implicated to play pivotal roles in suppressing anti-tumor immunity. Here, we report the first comprehensive characterisation of the KP in 1) cultured human glioma cells and 2) plasma from patients with glioblastoma (GBM). Our data revealed that interferon-gamma (IFN-γ) stimulation significantly potentiated the expression of the KP enzymes, IDO-1 IDO-2, kynureninase (KYNU), kynurenine hydroxylase (KMO) and significantly down-regulated 2-amino-3-carboxymuconate semialdehyde decarboxylase (ACMSD) and kynurenine aminotransferase-I (KAT-I) expression in cultured human glioma cells. This significantly increased KP activity but significantly lowered the KYNA/KYN neuroprotective ratio in human cultured glioma cells. KP activation (KYN/TRP) was significantly higher, whereas the concentrations of the neuroreactive KP metabolites TRP, KYNA, QUIN and PIC and the KYNA/KYN ratio were significantly lower in GBM patient plasma (n = 18) compared to controls. These results provide further evidence for the involvement of the KP in glioma pathophysiology and highlight a potential role of KP products as novel and highly attractive therapeutic targets to evaluate for the treatment of brain tumors, aimed at restoring anti-tumor immunity and reducing the capacity for malignant cells to produce NAD+, which is necessary for energy production and DNA repair. PMID:25415278
Sainio, E L
1997-09-01
In this study, our previous finding that nicotinic acid activates tryptophan 2,3-dioxygenase as strongly as tryptophan was investigated in further detail. This study focused on the role of the adrenals in the activation process. Adrenalectomy abolished the activation due to nicotinic acid, but not the activation caused by tryptophan. The role of corticoids and/or adrenomedullary hormones in the enzyme activation was studied, by supplementing these hormones in adrenalectomized rats using minipumps implanted under the skin. The results showed that the enhanced activity of tryptophan 2,3-dioxygenase caused by nicotinic acid was partly restored by adrenaline following adrenalectomy but not by corticosterone supplementation. The results were supported by further experiments in which the rats were treated with adrenaline or corticosterone intraperitoneally before nicotinic acid administration. The conclusion that adrenaline participates in the regulation of tryptophan 2,3-dioxygenase should promote further study to determine whether adrenaline is a general modulator of this enzyme. This experimental model generated new information on the activation mechanism of tryptophan 2,3-dioxygenase by nicotinic acid.
[Prolyl hydroxylase activity in liver specimens in chronic liver diseases (author's transl)].
Langness, U; Clausnitzer, H; Verspohl, M; Grasedyck, K
1978-08-25
100 patients were laparoscopied, liver tissue specimens taken from atypically altered areas. Prolyl hydroxylase was determined in the specimen, in parallel tissue was examined by light microscope. 8 groups of patients could be differentiated: Patients 1. with active, 2, with inactive cirrhosis, 3. with fatty infiltrations, 4. with fatty infiltration and mesenchymal reaction, 5. with aggressive, 6. with persistent, 7. with reactive hepatitis, 8. patients without histological changes. In the case of connective tissue increase in the liver prolyl hydroxylase activities were statistically significant above normal. In addition, there was a statistically significant difference between the enzyme activities of each group. A correlation could be found between prolyl hydroxylase activity and morphologically estimated connective tissue formation, but not the serum enzyme activities usually determined in liver diseases. Therefore, could be concluded that prolyl hydroxylase activity is an index of actual collagen biosynthesis in chronic liver diseases.
Martin, M; Kopaliani, I; Jannasch, A; Mund, C; Todorov, V; Henle, T; Deussen, A
2015-12-01
Angiotensin-converting enzyme inhibitors are treatment of choice in hypertensive patients. Clinically used inhibitors exhibit a structural similarity to naturally occurring peptides. This study evaluated antihypertensive and cardioprotective effects of ACE-inhibiting peptides derived from food proteins in spontaneously hypertensive rats. Isoleucine-tryptophan (in vitro IC50 for ACE = 0.7 μm), a whey protein hydrolysate containing an augmented fraction of isoleucine-tryptophan, or captopril was given to spontaneously hypertensive rats (n = 60) over 14 weeks. Two further groups, receiving either no supplement (Placebo) or intact whey protein, served as controls. Systolic blood pressure age-dependently increased in the Placebo group, whereas the blood pressure rise was effectively blunted by isoleucine-tryptophan, whey protein hydrolysate and captopril (-42 ± 3, -38 ± 5, -55 ± 4 mm Hg vs. Placebo). At study end, myocardial mass was lower in isoleucine-tryptophan and captopril groups but only partially in the hydrolysate group. Coronary flow reserve (1 μm adenosine) was improved in isoleucine-tryptophan and captopril groups. Plasma ACE activity was significantly decreased in isoleucine-tryptophan, hydrolysate and captopril groups, but in aortic tissue only after isoleucine-tryptophan or captopril treatment. This was associated with lowered expression and activity of matrix metalloproteinase-2. Following isoleucine-tryptophan and captopril treatments, gene expression of renin was significantly increased indicating an active feedback within renin-angiotensin system. Whey protein hydrolysate and isoleucine-tryptophan powerfully inhibit plasma ACE resulting in antihypertensive effects. Moreover, isoleucine-tryptophan blunts tissue ACE activity, reduces matrix metalloproteinase-2 activity and improves coronary flow reserve. Thus, whey protein hydrolysate and particularly isoleucine-tryptophan may serve as innovative food additives with the goal of attenuating hypertension. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Majeed, Zana R.; Abdeljaber, Esraa; Soveland, Robin; Cornwell, Kristin; Bankemper, Aubrey; Koch, Felicitas; Cooper, Robin L.
2016-01-01
Serotonin modulates various physiological processes and behaviors. This study investigates the role of 5-HT in locomotion and feeding behaviors as well as in modulation of sensory-motor circuits. The 5-HT biosynthesis was dysregulated by feeding Drosophila larvae 5-HT, a 5-HT precursor, or an inhibitor of tryptophan hydroxylase during early stages of development. The effects of feeding fluoxetine, a selective serotonin reuptake inhibitor, during early second instars were also examined. 5-HT receptor subtypes were manipulated using RNA interference mediated knockdown and 5-HT receptor insertional mutations. Moreover, synaptic transmission at 5-HT neurons was blocked or enhanced in both larvae and adult flies. The results demonstrate that disruption of components within the 5-HT system significantly impairs locomotion and feeding behaviors in larvae. Acute activation of 5-HT neurons disrupts normal locomotion activity in adult flies. To determine which 5-HT receptor subtype modulates the evoked sensory-motor activity, pharmacological agents were used. In addition, the activity of 5-HT neurons was enhanced by expressing and activating TrpA1 channels or channelrhodopsin-2 while recording the evoked excitatory postsynaptic potentials (EPSPs) in muscle fibers. 5-HT2 receptor activation mediates a modulatory role in a sensory-motor circuit, and the activation of 5-HT neurons can suppress the neural circuit activity, while fluoxetine can significantly decrease the sensory-motor activity. PMID:26989517
Adori, Csaba; Zelena, Dóra; Tímár, Júlia; Gyarmati, Zsuzsa; Domokos, Agnes; Sobor, Melinda; Fürst, Zsuzsanna; Makara, Gábor; Bagdy, György
2010-01-20
The recreational party drug "ecstasy" (3,4-methylenedioxymethamphetamine MDMA) is particularly popular among young adults who are in the childbearing age and thus there is a substantial risk of prenatal MDMA exposure. We applied an intermittent treatment protocol with an early first injection on pregnant Wistar rats (15 mg/kg MDMA s.c. on the E4, E11 and E18 days of gestation) to examine the potential physiological, endocrine and behavioral effects on adult male and female offspring. Prenatal MDMA-treatment provoked reduced body weight of offspring from the birth as far as the adulthood. Adult MDMA-offspring had a reduced blood-glucose concentration and hematocrit, altered relative spleen and thymus weight, had lower performance on wire suspension test and on the first trial of rotarod test. In contrast, no alteration in the locomotor activity was found. Anxiety and depression related behavioral parameters in elevated plus maze, sucrose preference or forced swimming tests were normal. MDMA-offspring had elevated concentration of the ACTH-precursor proopiomelanocortin and male MDMA-offspring exhibited elevated blood corticosterone concentration. No significant alteration was detected in the serotonergic marker tryptophan-hydroxylase and the catcholaminergic marker tyrosine-hydroxylase immunoreactive fiber densities in MDMA-offspring. The mothers exhibited reduced densities of serotonergic but not catecholaminergic fibers after the MDMA treatment. Our findings suggest that an intermittent prenatal MDMA exposure with an early first injection and a relatively low cumulative dose provokes mild but significant alterations in physical-physiological parameters and reduces motor skill learning in adulthood. In contrast, these adult offspring do not produce anxiety or depression like behavior.
Regulation of hepatic 7 alpha-hydroxylase expression by dietary psyllium in the hamster.
Horton, J D; Cuthbert, J A; Spady, D K
1994-01-01
Soluble fiber consistently lowers plasma total and low density lipoprotein (LDL)-cholesterol concentrations in humans and various animal models including the hamster; however, the mechanism of this effect remains incompletely defined. We performed studies to determine the activity of dietary psyllium on hepatic 7 alpha-hydroxylase, 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase and LDL receptor expression in the hamster. In animals fed a cholesterol-free semisynthetic diet containing 7.5% cellulose (avicel) as a fiber source, substitution of psyllium for avicel increased hepatic 7 alpha-hydroxylase activity and mRNA levels by 3-4-fold. Comparable effects on 7 alpha-hydroxylase expression were observed with 1% cholestyramine. Psyllium also increased hepatic 7 alpha-hydroxylase activity and mRNA in animals fed a diet enriched with cholesterol and triglyceride. Activation of 7 alpha-hydroxylase was associated with an increase in hepatic cholesterol synthesis that was apparently not fully compensatory since the cholesterol content of the liver declined. Although dietary psyllium did not increase hepatic LDL receptor expression in animals fed the cholesterol-free, very-low-fat diet, it did increase (or at least restore) receptor expression that had been downregulated by dietary cholesterol and triglyceride. Thus, 7.5% dietary psyllium produced effects on hepatic 7 alpha-hydroxylase and LDL metabolism that were similar to those of 1% cholestyramine. Induction of hepatic 7 alpha-hydroxylase activity by dietary psyllium may account, in large part, for the hypocholesterolemic effect of this soluble fiber. Images PMID:8182140
Mirkovic, Bojan; Laurent, Claudine; Podlipski, Marc-Antoine; Frebourg, Thierry; Cohen, David; Gerardin, Priscille
2016-01-01
Suicidal behaviors (SBs), which range from suicidal ideation to suicide attempts and completed suicide, represent a fatal dimension of mental ill-health. The involvement of genetic risk factors in SB is supported by family, twin, and adoption studies. The aim of this paper is to review recent genetic association studies in SBs including (i) case–control studies, (ii) family-based association studies, and (iii) genome-wide association studies (GWAS). Various studies on genetic associations have tended to suggest that a number of genes [e.g., tryptophan hydroxylase, serotonin receptors and transporters, or brain-derived neurotrophic factors (BDNFs)] are linked to SBs, but these findings are not consistently supported by the results obtained. Although the candidate–gene approach is useful, it is hampered by the present state of knowledge concerning the pathophysiology of diseases. Interpretations of GWAS results are mostly hindered by a lack of annotation describing the functions of most variation throughout the genome. Association studies have addressed a wide range of single-nucleotide polymorphisms in numerous genes. We have included 104 such studies, of which 10 are family-based association studies and 11 are GWAS. Numerous meta-analyses of case–control studies have shown significant associations of SB with variants in the serotonin transporter gene (5-HTT or SLC6A4) and the tryptophan hydroxylase 1 gene (TPH1), but others report contradictory results. The gene encoding BDNF and its receptor (NTRK2) are also promising candidates. Only two of the GWAS showed any significant associations. Several pathways are mentioned in an attempt to understand the lack of reproducibility and the disappointing results. Consequently, we review and discuss here the following aspects: (i) sample characteristics and confounding factors; (ii) statistical limits; (iii) gene–gene interactions; (iv) gene, environment, and by time interactions; and (v) technological and theoretical limits. PMID:27721799
Verma, Priyanka; Anjum, Shahin; Khan, Shamshad Ahmad; Roy, Sudeep; Odstrcilik, Jan; Mathur, Ajay Kumar
2016-03-01
Artificial neural network based modeling is a generic approach to understand and correlate different complex parameters of biological systems for improving the desired output. In addition, some new inferences can also be predicted in a shorter time with less cost and labor. As terpenoid indole alkaloid pathway in Vinca minor is very less investigated or elucidated, a strategy of elicitation with hydroxylase and acetyltransferase along with incorporation of various precursors from primary shikimate and secoiridoid pools via simultaneous employment of cyclooxygenase inhibitor was performed in the hairy roots of V. minor. This led to the increment in biomass accumulation, total alkaloid concentration, and vincamine production in selected treatments. The resultant experimental values were correlated with algorithm approaches of artificial neural network that assisted in finding the yield of vincamine, alkaloids, and growth kinetics using number of elicits. The inputs were the hydroxylase/acetyltransferase elicitors and cyclooxygenase inhibitor along with various precursors from shikimate and secoiridoid pools and the outputs were growth index (GI), alkaloids, and vincamine. The approach incorporates two MATLAB codes; GRNN and FFBPNN. Growth kinetic studies revealed that shikimate and tryptophan supplementation triggers biomass accumulation (GI = 440.2 to 540.5); while maximum alkaloid (3.7 % dry wt.) and vincamine production (0.017 ± 0.001 % dry wt.) was obtained on supplementation of secologanin along with tryptophan, naproxen, hydrogen peroxide, and acetic anhydride. The study shows that experimental and predicted values strongly correlate each other. The correlation coefficient for growth index (GI), alkaloids, and vincamine was found to be 0.9997, 0.9980, 0.9511 in GRNN and 0.9725, 0.9444, 0.9422 in FFBPNN, respectively. GRNN provided greater similarity between the target and predicted dataset in comparison to FFBPNN. The findings can provide future insights to calculate growth index, alkaloids, and vincamine in combination to different elicits.
Telotristat Ethyl, a Tryptophan Hydroxylase Inhibitor for the Treatment of Carcinoid Syndrome.
Kulke, Matthew H; Hörsch, Dieter; Caplin, Martyn E; Anthony, Lowell B; Bergsland, Emily; Öberg, Kjell; Welin, Staffan; Warner, Richard R P; Lombard-Bohas, Catherine; Kunz, Pamela L; Grande, Enrique; Valle, Juan W; Fleming, Douglas; Lapuerta, Pablo; Banks, Phillip; Jackson, Shanna; Zambrowicz, Brian; Sands, Arthur T; Pavel, Marianne
2017-01-01
Purpose Preliminary studies suggested that telotristat ethyl, a tryptophan hydroxylase inhibitor, reduces bowel movement (BM) frequency in patients with carcinoid syndrome. This placebo-controlled phase III study evaluated telotristat ethyl in this setting. Patients and Methods Patients (N = 135) experiencing four or more BMs per day despite stable-dose somatostatin analog therapy received (1:1:1) placebo, telotristat ethyl 250 mg, or telotristat ethyl 500 mg three times per day orally during a 12-week double-blind treatment period. The primary end point was change from baseline in BM frequency. In an open-label extension, 115 patients subsequently received telotristat ethyl 500 mg. Results Estimated differences in BM frequency per day versus placebo averaged over 12 weeks were -0.81 for telotristat ethyl 250 mg ( P < .001) and ‒0.69 for telotristat ethyl 500 mg ( P < .001). At week 12, mean BM frequency reductions per day for placebo, telotristat ethyl 250 mg, and telotristat ethyl 500 mg were -0.9, -1.7, and -2.1, respectively. Responses, predefined as a BM frequency reduction ≥ 30% from baseline for ≥ 50% of the double-blind treatment period, were observed in 20%, 44%, and 42% of patients given placebo, telotristat ethyl 250 mg, and telotristat ethyl 500 mg, respectively. Both telotristat ethyl dosages significantly reduced mean urinary 5-hydroxyindole acetic acid versus placebo at week 12 ( P < .001). Mild nausea and asymptomatic increases in gamma-glutamyl transferase were observed in some patients receiving telotristat ethyl. Follow-up of patients during the open-label extension revealed no new safety signals and suggested sustained BM responses to treatment. Conclusion Among patients with carcinoid syndrome not adequately controlled by somatostatin analogs, treatment with telotristat ethyl was generally safe and well tolerated and resulted in significant reductions in BM frequency and urinary 5-hydroxyindole acetic acid.
Autoantibodies to human tryptophan hydroxylase and aromatic L-amino acid decarboxylase.
Dal Pra, Chiara; Chen, Shu; Betterle, Corrado; Zanchetta, Renato; McGrath, Vivienne; Furmaniak, Jadwiga; Rees Smith, Bernard
2004-03-01
To assess the prevalence of autoantibodies (Abs) to tryptophan hydroxylase (TPH) and aromatic l-amino acid decarboxylase (AADC) in patients with different autoimmune diseases and to analyse their respective epitopes. TPH and AADC Abs were measured in an immunoprecipitation assay using (35)S-labelled full-length and fragments of TPH and AADC. Patients with different autoimmune adrenal diseases (n=84), non-adrenal autoimmune diseases (n=37), idiopathic vitiligo (n=8) and 56 healthy blood donors were studied. Fourteen of twenty-three (61%) of patients with autoimmune polyglandular syndrome (APS) type I and 1/34 (3%) of patients with isolated Addison's disease (AD) were positive for TPH Abs. None of the patients with APS type II (n=27), coeliac disease (n=10), autoimmune thyroid disease (AITD) (n=11), type 1 diabetes mellitus (DM) (n=16) or idiopathic vitiligo (n=8) was positive for TPH Abs. AADC Abs were detected in 12/23 (52%) patients with APS type I, in 1/29 (3%) patients with APS type II and 1/34 (3%) patients with isolated AD. None of the patients with coeliac disease, type 1 DM, AITD or idiopathic vitiligo was positive for AADC Abs. TPH Abs were found to interact with the C-terminal amino acids (aa) 308-423, central aa 164-205 and N-terminal aa 1-105 of the TPH molecule. AADC Ab binding epitopes were within the C-terminal aa 382-483, the central aa 243-381 and the N-terminal aa 1-167. Our study suggests that TPH Abs and AADC Abs react with several different epitopes and that different epitopes are recognized by different sera. The prevalence of TPH Abs and AADC Abs in patients with APS type I in our study is in agreement with previous reports. TPH Abs and AADC Abs were found very rarely in patients with other forms of autoimmune adrenal disease and were not detected in patients with non-adrenal autoimmune diseases.
Gozal, Evelyne; Shah, Zahoor A; Pequignot, Jean-Marc; Pequignot, Jacqueline; Sachleben, Leroy R; Czyzyk-Krzeska, Maria F; Li, Richard C; Guo, Shang-Z; Gozal, David
2005-08-01
Tyrosine hydroxylase, a hypoxia-regulated gene, may be involved in tissue adaptation to hypoxia. Intermittent hypoxia, a characteristic feature of sleep apnea, leads to significant memory deficits, as well as to cortex and hippocampal apoptosis that are absent after sustained hypoxia. To examine the hypothesis that sustained and intermittent hypoxia induce different catecholaminergic responses, changes in tyrosine hydroxylase mRNA, protein expression, and activity were compared in various brain regions of male rats exposed for 6 h, 1 day, 3 days, and 7 days to sustained hypoxia (10% O(2)), intermittent hypoxia (alternating room air and 10% O(2)), or normoxia. Tyrosine hydroxylase activity, measured at 7 days, increased in the cortex as follows: sustained > intermittent > normoxia. Furthermore, activity decreased in the brain stem and was unchanged in other brain regions of sustained hypoxia-exposed rats, as well as in all regions from animals exposed to intermittent hypoxia, suggesting stimulus-specific and heterotopic catecholamine regulation. In the cortex, tyrosine hydroxylase mRNA expression was increased, whereas protein expression remained unchanged. In addition, significant differences in the time course of cortical Ser(40) tyrosine hydroxylase phosphorylation were present in the cortex, suggesting that intermittent and sustained hypoxia-induced enzymatic activity differences are related to different phosphorylation patterns. We conclude that long-term hypoxia induces site-specific changes in tyrosine hydroxylase activity and that intermittent hypoxia elicits reduced tyrosine hydroxylase recruitment and phosphorylation compared with sustained hypoxia. Such changes may not only account for differences in enzyme activity but also suggest that, with differential regional brain susceptibility to hypoxia, recruitment of different mechanisms in response to hypoxia will elicit region-specific modulation of catecholamine response.
Machida, Takuji; Takano, Yuho; Iizuka, Kenji; Machida, Maiko; Hirafuji, Masahiko
2017-03-01
This study aimed to investigate the acute and chronic effect of methotrexate on the intestinal substance P metabolism after a single administration to rats. Methotrexate caused a significant increase in the number of substance P-containing cells in the ileal mucosa both at 24 and 96 h. Most of enterochromaffin cells expressing l-tryptophan hydroxylase contained substance P. The expression of Tac1 mRNA was increased by methotrexate at 24 h, but not at 96 h. Thus, methotrexate causes acute hyperplasia of enterochromaffin cells in the intestinal mucosa of rats with a transient increase in the production of substance P. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Serum Analysis of Tryptophan Catabolism Pathway: Correlation with Crohn’s Disease Activity
Gupta, Nitin K; Thaker, Ameet I; Kanuri, Navya; Riehl, Terrence E; Rowley, Christopher W; Stenson, William F; Ciorba, Matthew A
2011-01-01
BACKGROUND Indoleamine 2,3 dioxygenase 1 (IDO1) is a tryptophan catabolizing enzyme with immunotolerance promoting functions. We sought to determine if increased gut expression of IDO1 in Crohn’s disease (CD) would result in detectable changes in serum levels of tryptophan and the initial IDO1 pathway catabolite, kynurenine. METHODS Individuals were prospectively enrolled through the Washington University Digestive Diseases Research Center. Montreal classification was used for disease phenotyping. Disease severity was categorized by physician’s global assessment. Serum tryptophan and kynurenine were measured by high pressure liquid chromatography. IDO1 immunohistochemical staining was performed on formalin-fixed tissue blocks. RESULTS 25 CD patients and 11 controls were enrolled. 8 CD patients had serum collected at two different time points and levels of disease activity. Strong IDO1 expression exists in both the lamina propria and epithelium during active CD compared to controls. Suppressed serum tryptophan levels and an elevated kynurenine/tryptophan (K/T) ratio were found in individuals with active CD as compared to those in remission or the control population. K/T ratios correlated positively with disease activity as well as with C-reactive protein and erythrocyte sedimentation rate. In the subgroup of CD patients with two serum measurements, tryptophan levels elevated while kynurenine levels and the K/T ratio lowered as the disease activity lessened. CONCLUSIONS IDO1 expression in Crohn’s disease is associated with lower serum tryptophan and an elevated K/T ratio. These levels may serve a reasonable objective marker of gut mucosal immune activation and surrogate for Crohn’s Disease activity. PMID:21823214
Bipath, Priyesh; Levay, Peter F; Viljoen, Margaretha
2016-02-17
The essential amino acid tryptophan cannot be synthesised in the body and must be acquired through dietary intake. Oxidation of tryptophan, due to immune induction of the enzyme indoleamine 2,3-dioxygenase (IDO), is considered to be the main cause of tryptophan depletion in HIV infection and AIDS. We examined plasma tryptophan levels in a low-income sub-Saharan HIV-infected population and compared it to that of developed countries. Tryptophan levels were further examined in context of the general nutritional and inflammatory status. This cross-sectional study included 105 HIV-positive patients recruited from the Kalafong Hospital in Pretoria, South Africa, and 60 HIV-negative controls. Patient tryptophan levels were in general markedly lower than those reported for developed countries. In contrast to reports from developed countries that showed tryptophan levels on average to be 18.8 % lower than their control values, tryptophan levels in our study were 44.1 % lower than our controls (24.4 ± 4.1 vs. 43.6 ± 11.9 μmol/l; p < 0.001). Tryptophan levels correlated with both CD4 counts (r = 0.341; p = 0.004) and with pro-inflammatory activity as indicated by neopterin levels (r = -0.399; p = 0.0001). Nutritional indicators such as albumin and haemoglobin correlated positively with tryptophan and negatively with the pro-inflammatory indicators neopterin, interleukin 6 and C-reactive protein. The most probable causes of the lower tryptophan levels seen in our population are food insecurity and higher levels of inflammatory activity. We contend that inflammation-induced tryptophan depletion forms part of a much wider effect of pro-inflammatory activity on the nutritional profile of HIV-infected patients.
Janecka, Magdalena; Marzi, Sarah J.; Parsons, Michael J.; Liu, Lin; Paya-Cano, Jose L.; Smith, Rebecca G.; Fernandes, Cathy; Schalkwyk, Leonard C.
2017-01-01
Although the search for quantitative trait loci for behaviour remains a considerable challenge, the complicated genetic architecture of quantitative traits is beginning to be understood. The current project utilised heterogeneous stock (HS) male mice (n = 580) to investigate the genetic basis for brain weights, activity, anxiety and cognitive phenotypes. We identified 126 single nucleotide polymorphisms (SNPs) in genes involved in regulation of neurotransmitter systems, nerve growth/death and gene expression, and subsequently investigated their associations with changes in behaviour and/or brain weights in our sample. We found significant associations between four SNP-phenotype pairs, after controlling for multiple testing. Specificity protein 2 (Sp2, rs3708840), tryptophan hydroxylase 1 (Tph1, rs262731280) and serotonin receptor 3A (Htr3a, rs50670893) were associated with activity/anxiety behaviours, and microtubule-associated protein 2 (Map2, rs13475902) was associated with cognitive performance. All these genes except for Tph1 were expressed in the brain above the array median, and remained significantly associated with relevant behaviours after controlling for the family structure. Additionally, we found evidence for a correlation between Htr3a expression and activity. We discuss our findings in the light of the advantages and limitations of currently available mouse genetic tools, suggesting further directions for association studies in rodents. PMID:28145470
McCormick, Michael S.; Lippard, Stephen J.
2011-01-01
In all structurally characterized bacterial multicomponent monooxygenase (BMM) hydroxylase proteins, a series of hydrophobic cavities in the α-subunit trace a conserved path from the protein exterior to the carboxylate-bridged diiron active site. The present study examines these cavities as a potential route for dioxygen transport to the active site by crystallographic characterization of a xenon-pressurized sample of the hydroxylase component of phenol hydroxylase from Pseudomonas sp. OX1. Computational analyses of the hydrophobic cavities in the hydroxylase α-subunits of phenol hydroxylase (PHH), toluene/o-xylene monooxygenase (ToMOH), and soluble methane monooxygenase (sMMOH) are also presented. The results, together with previous findings from crystallographic studies of xenon-pressurized sMMO hydroxylase, clearly identify the propensity for these cavities to bind hydrophobic gas molecules in the protein interior. This proposed functional role is supported by recent stopped flow kinetic studies of ToMOH variants (Song, et al., 2011). In addition to information about the Xe sites, the structure determination revealed significantly reduced regulatory protein binding to the hydroxylase in comparison to the previously reported structure of PHH, as well as the presence of a newly identified metal binding site in the α-subunit that adopts a linear coordination environment consistent with Cu(I), and a glycerol molecule bound to Fe1 in a fashion that is unique among hydrocarbon-diiron site adducts reported to date in BMM hydroxylase structures. Finally, a comparative analysis of the α-subunit structures of MMOH, ToMOH, and PHH details proposed routes for the other three BMM substrates, the hydrocarbon, electrons, and protons, comprising cavities, channels, hydrogen-bonding networks, and pores in the structures of their α-subunits. PMID:22136180
Prolyl hydroxylase activity in serum and rectal mucosa in inflammatory bowel disease.
Farthing, M F; Dick, A P; Heslop, G; Levene, C I
1978-01-01
Prolyl hydroxylase activity in rectal mucosa was found to be significantly greater in 11 patients with Crohn's disease than in 11 control subjects with the irritable bowel syndrome and 16 patients with ulcerative colitis (P less than 0.005). Seven of the patients with Crohn's disease had a histologically normal rectum. This abnormality in apparently normal mucosa supports the concept that Crohn's disease is a 'continuous' disease of the gastrointestinal tract. Although there was no significant difference in prolyl hydroxylase activity between control subjects and patients with ulcerative colitis, those patients with quiescent disease tended to have lower values than those with active mucosal inflammation. Prolyl hydroxylase activity could not, however, be detected in the sera of either healthy control subjects or patients with inflammatory bowel disease. PMID:210089
Complexation of cytochrome P-450 isozymes in hepatic microsomes from SKF 525-A-induced rats.
Murray, M
1988-05-01
Potassium ferricyanide-elicited reactivation of steroid hydroxylase activities, in hepatic microsomes from SKF 525-A-induced male rats, was used as an indicator of complex formation between individual cytochrome P-450 isozymes and the SKF 525-A metabolite. Induction of male rats with SKF 525-A (50 mg/kg for three days) led to apparent increases in androst-4-ene-3,17-dione 16 beta- and 6 beta-hydroxylation to 6.7- and 3-fold of control activities. Steroid 7 alpha-hydroxylase activity was decreased to 0.8-fold of control and 16 alpha-hydroxylation was unchanged. Ferricyanide-elicited dissociation of the SKF 525-A metabolite-P-450 complex revealed an even greater induction of 16 beta- and 6 beta-hydroxylase activities (to 1.8- and 1.6-fold of activities in the absence of ferricyanide). Androst-4-ene-3,17-dione 16 alpha-hydroxylase activity increased 2-fold after ferricyanide but 7 alpha-hydroxylase activity was unaltered. An antibody directed against the male-specific cytochrome P-450 UT-A decreased androst-4-ene-3,17-dione 16 alpha-hydroxylase activity to 13% of control in hepatic microsomes from untreated rats. In contrast, 16 alpha-hydroxylase activity in microsomes from SKF 525-A-induced rats, before and after dissociation with ferricyanide, was reduced by anti UT-A IgG to 32 and 19% of the respective uninhibited controls. Considered together, these observations strongly suggest that the phenobarbital-inducible cytochrome P-450 isozymes PB-B and PCN-E are present in an inactive complexed state in microsomes from SKF 525-A-induced rat liver. Further, the increased susceptibility of androst-4-ene-3,17-dione 16 alpha-hydroxylase activity to inhibition by an antibody to cytochrome P-450 UT-A, following ferricyanide treatment of microsomes, suggests that this male sexually differentiated enzyme is also complexed after in vivo SKF 525-A dosage. In contrast, the constitutive isozyme cytochrome P-450 UT-F, which is active in steroid 7 alpha-hydroxylation, does not appear to be complexed to any extent in microsomes from SKF 525-A-induced rats.
Acute tryptophan pretreatment protects against behavioral changes caused by cerebral ischemia.
Carney, J M
1986-05-15
Male gerbils (Meronies ungulata) were treated with various doses of tryptophan and the changes in spontaneous motor activity determined. Tryptophan decreased behavior at a dose of 200 mg/kg. Cerebral ischemia was produced by bilateral carotid occlusion for 5 min. This duration of ischemia produced a large increase in activity at both 6 h and 24 h postischemia. Tryptophan (200 mg/kg) prevented the ischemia-induced increases in locomotor activity. These data suggest that dietary amino acids may play a role in determining the effects of ischemia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanderson, J.T.; Giesy, J.P.; Janz, D.M.
In a continuing effort to evaluate biomarkers of exposure of great blue herons (Ardea herodias) to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related halogenated aromatic hydrocarbons, the authors examined the effect of TCDD on hepatic microsomal testosterone hydroxylase activities. Heron embryos were exposed in ovo to 2 {micro}g TCDD/kg egg (or corn oil vehicle) and sacrificed at hatch or 7 d posthatch. Adult herons were exposed intraperitoneally to 20 {micro}g TCDD/kg and sacrificed 2 weeks later. The sex of the birds was known for the adults only. Hepatic microsomes of herons of each age group were able to hydroxylate testosterone at the 2{beta},more » 6{beta}, 15{alpha}, 16{alpha}, or 16{beta} positions. In 7-d-old chicks, an additional unidentified compound was formed. The age of the untreated herons had a strong influence on the activities of the five hydroxylases, with changes of up to 17-fold. The TCDD significantly induced 2{beta}-, 6{beta}, and 15{alpha}-testosterone hydroxylase activities in the adult females, 15{alpha} in the adult males, and 6{beta}-testosterone hydroxylase activity in the hatchlings. In the 7-d-old chicks, induction was no longer apparent. A significant correlation existed between hepatic microsomal ethoxyresorufin O-deethylase (EROD) and 6{beta}-testosterone hydroxylase activity in hatchlings and adult female herons. The TCDD-induced changes in testosterone hydroxylase activities occurred at doses that resulted in tissue concentrations and levels of EROD induction that were environmentally relevant, but did not result in overt toxicities.« less
Tsao, D D; Wang, S G; Lynn, B D; Nagy, J I
2017-06-01
Gap junctions between cells in the pineal gland have been described ultrastructurally, but their connexin constituents have not been fully characterized. We used immunofluorescence in combination with markers of pineal cells to document the cellular localization of connexin43 (Cx43). Immunofluorescence labelling of Cx43 with several different antibodies was widely distributed throughout the pineal, whereas another connexin examined, connexin26, was not found in pineal but only in surrounding leptomeninges. Labelling apparently associated with plasma membranes was visualized either as fine Cx43-puncta (1-2 μm) or as unusually large pools of Cx43 ranging up to 4-7 μm in diameter or length. These puncta and pools were highly concentrated in perivascular spaces, where they were associated with numerous cells devoid of labelling for markers of pinealocytes (e.g. tryptophan hydroxylase and serotonin), and where they were minimally associated with blood vessels and lacked association with resident macrophages. Astrocytes labelled for glial fibrillary acidic protein were largely restricted to the anterior pole of the pineal gland, where they displayed only fine and sparse Cx43-puncta along their processes. Labelling for Cx43 was localized largely though not exclusively to the somata and long processes of a subpopulation of perivascular interstitial cells that were immunopositive for calbindin-D28K. These cells were often located among dense bundles or termination areas of sympathetic fibres labelled for tyrosine hydroxylase or serotonin. The results indicate that interstitial cells form abundant gap junctions composed of Cx43, and suggest that gap junction-mediated intracellular communication by these cells supports the activities of pinealocytes. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Biney, Robert P; Benneh, Charles K; Ameyaw, Elvis O; Boakye-Gyasi, Eric; Woode, Eric
2016-05-26
Xylopia aethiopica has been used traditionally to treat some central nervous system disorders including epilepsy. Despite the central analgesic and sedative effects, there is little evidence for its traditional use for CNS disorders. This study thus assessed the antidepressant potential of Xylopia aethiopica ethanolic fruit extract (XAE). Antidepressant effect was assessed in the forced swim test (FST) and tail suspension test (TST) models in mice. The role of monoamines in the antidepressant effects of XAE was evaluated by selective depletion of serotonin and noradrenaline, whereas involvement of NMDA/nitric oxide was assessed with NMDA receptor co-modulators; d-serine and d-cycloserine and NOS inhibitor, l-NAME. Xylopia aethiopica (30, 100, 300mgkg(-1)) dose dependently reduced immobility in both FST and TST. The reduced immobility was reversed after 5-hydroxytryptamine (5-HT) depletion with tryptophan hydroxylase inhibitor-p-chlorophenylalanine (pCPA) and after monoamine depletion with vesicular monoamine transporter inhibitor-reserpine. The observed antidepressant effect was not affected by catecholamine depletion with the tyrosine hydroxylase inhibitor, α-methyl-p-tyrosine (AMPT). Similarly XAE did not potentiate the toxicity of a sub-lethal dose of noradrenaline. XAE had a synergistic effect with the glycineB receptor partial agonist, d-cycloserine and nitric oxide synthase inhibitor, l-NAME. However established antidepressant effects of XAE were abolished by NMDA and NOS activation with d-serine and l-arginine. This study shows that Xylopia aethiopica has antidepressant potential largely due to effects on 5-HT neurotransmission with possible glutamatergic effect through the glycineB co-binding site and nitric oxide synthase inhibition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Zhao, X; Seese, R R; Yun, K; Peng, T; Wang, Z
2013-08-29
There is high comorbidity between stress-related psychiatric disorders and addiction, suggesting they may share one or more common neurobiological mechanisms. Because of its role in both depressive and addictive behaviors, the galanin system is a strong candidate for such a mechanism. In this study, we tested if galanin and its receptors are involved in stress-associated behaviors and drug addiction. Mice were exposed to 21 days of chronic restraint stress (CRS); subsequently, mRNA levels of galanin, galanin receptors (GalRs), the rate-limiting enzymes for the synthesis of monoamines, and monoamine autoreceptors were measured in the nucleus accumbens by a quantitative real-time polymerase chain reaction. Moreover, we tested the effects of this stress on morphine-induced addictive behaviors. We found that CRS induced anxiety and depression-like behaviors, impaired the formation and facilitated the extinction process in morphine-induced conditioned place preference (CPP), and also blocked morphine-induced behavioral sensitization. These behavioral results were accompanied by a CRS-dependent increase in the mRNA expression of galanin, GalR1, tyrosine hydroxylase (TH), tryptophan hydroxylase 2, and 5-HT1B receptor. Interestingly, treatment with a commonly used antidepressant, fluoxetine, normalized the CRS-induced behavioral changes based on reversing the higher expression of galanin and TH while increasing the expression of GalR2 and α2A-adrenceptor. These results indicate that activating the galanin system, with corresponding changes to noradrenergic systems, following chronic stress may modulate stress-associated behaviors and opiate addiction. Our findings suggest that galanin and GalRs are worthy of further exploration as potential therapeutic targets to treat stress-related disorders and drug addiction. Copyright © 2013 IBRO. All rights reserved.
NASA Astrophysics Data System (ADS)
Popova, Nina; Shenkman, Boris; Naumenko, Vladimir; Kulikov, Alexander; Kondaurova, Elena; Tsybko, Anton; Kulikova, Elisabeth; Krasnov, I. B.; Bazhenova, Ekaterina; Sinyakova, Nadezhda
The effect of long-term spaceflight on the central nervous system represents important but yet undeveloped problem. The aim of our work was to study the effect of 30-days spaceflight of mice on Russian biosatellite BION-M1 on the expression in the brain regions of key genes of a) serotonin (5-HT) system (main enzymes in 5-HT metabolism - tryptophan hydroxylase-2 (TPH-2), monoamine oxydase A (MAO A), 5-HT1A, 5-HT2A and 5-HT3 receptors); b) pivotal enzymes in DA metabolism (tyrosine hydroxylase, COMT, MAO A, MAO B) and D1, D2 receptors. Decreased expression of genes encoding the 5-HT catabolism (MAO A) and 5-HT2A receptor in some brain regions was shown. There were no differences between “spaceflight” and control mice in the expression of TPH-2 and 5-HT1A, 5-HT3 receptor genes. Significant changes were found in genetic control of DA system. Long-term spaceflight decreased the expression of genes encoding the enzyme in DA synthesis (tyrosine hydroxylase in s.nigra), DA metabolism (MAO B in the midbrain and COMT in the striatum), and D1 receptor in hypothalamus. These data suggested that 1) microgravity affected genetic control of 5-HT and especially the nigrostriatal DA system implicated in the central regulation of muscular tonus and movement, 2) the decrease in the expression of genes encoding key enzyme in DA synthesis, DA degradation and D1 receptor contributes to the movement impairment and dyskinesia produced by the spaceflight. The study was supported by Russian Foundation for Basic Research grant No. 14-04-00173.
MacEachern, Sarah J; Keenan, Catherine M; Papakonstantinou, Evangelia; Sharkey, Keith A; Patel, Bhavik Anil
2018-05-01
Inflammatory bowel disease (IBD) is characterized by pain, bleeding, cramping and altered gastrointestinal (GI) function. Changes in mucosal 5-HT (serotonin) signalling occur in animal models of colitis and in humans suffering from IBD. Melatonin is co-released with 5-HT from the mucosa and has a wide variety of actions in the GI tract. Here, we examined how melatonin signalling is affected by colitis and determined how this relates to 5-HT signalling. Using electroanalytical approaches, we investigated how 5-HT release, reuptake and availability as well as melatonin availability are altered in dextran sodium sulfate (DSS)-induced colitis in mice. Studies were conducted to explore if melatonin treatment during active colitis could reduce the severity of colitis. We observed an increase in 5-HT and a decrease in melatonin availability in DSS-induced colitis. A significant reduction in 5-HT reuptake was observed in DSS-induced colitis animals. A reduction in the content of 5-HT was observed, but no difference in tryptophan levels were observed. A reduction in deoxycholic acid-stimulated 5-HT availability and a significant reduction in mechanically-stimulated 5-HT and melatonin availability were observed in DSS-induced colitis. Orally or rectally administered melatonin once colitis was established did not significantly suppress inflammation. Our data suggest that DSS-induced colitis results in a reduction in melatonin availability and an increase in 5-HT availability, due to a reduction/loss of tryptophan hydroxylase 1 enzyme, 5-HT content and 5-HT transporters. Mechanosensory release was more susceptible to inflammation when compared with chemosensory release. © 2018 The British Pharmacological Society.
Kramer, A C; Mirto, A J; Austin, K J; Roselli, C E; Alexander, B M
2017-12-01
Dopamine synthesis in the ventral tegmental area (VTA) is necessary for the reinforcement of sexual behavior. The objective of this study determined if sexual stimuli initiates reward, and whether reward is attenuated in sexually inactive rams. Sexually active rams were exposed to urine from estrous (n=4) or ovariectomized (n=3) ewes with inactive rams (n=3) exposed to urine from estrous ewes. Following exposure, rams were exsanguinated and brains perfused. Alternating sections of the VTA were stained for Fos related antigens (FRA), tyrosine hydroxylase, and dopamine beta-hydroxylase activity. Forebrain tissue, mid-sagittal ventral to the anterior corpus callosum, was stained for dopamine D 2 receptors. Concentrations of cortisol was determined prior to and following exposure. Exposure to ovariectomized-ewe urine in sexually active rams did not influence (P=0.6) FRA expression, but fewer (P<0.05) neurons were positive for tyrosine hydroxylase in the VTA. Sexually inactive rams had fewer (P<0.05) FRA and tyrosine hydroxylase positive neurons in the VTA than sexually active rams following exposure to estrous ewe urine. VTA neurons staining positive for dopamine beta-hydroxylase did not differ by sexual activity (P=0.44) or urine exposure (P=0.07). Exposure to stimulus did not influence (P=0.46) numbers of forebrain neurons staining positive for dopamine D2 receptors in sexually active rams, but fewer (P=0.04) neurons stain positive in inactive rams. Serum concentrations of cortisol did not differ (P≥0.52) among rams prior to or following stimulus. In conclusion sexual inactivity is unlikely due to stress, but may be partially a result of decreased tyrosine hydroxylase and/or the response to dopamine. Copyright © 2017 Elsevier B.V. All rights reserved.
Glucose-based microbial production of the hormone melatonin in yeast Saccharomyces cerevisiae.
Germann, Susanne M; Baallal Jacobsen, Simo A; Schneider, Konstantin; Harrison, Scott J; Jensen, Niels B; Chen, Xiao; Stahlhut, Steen G; Borodina, Irina; Luo, Hao; Zhu, Jiangfeng; Maury, Jérôme; Forster, Jochen
2016-05-01
Melatonin is a natural mammalian hormone that plays an important role in regulating the circadian cycle in humans. It is a clinically effective drug exhibiting positive effects as a sleep aid and a powerful antioxidant used as a dietary supplement. Commercial melatonin production is predominantly performed by complex chemical synthesis. In this study, we demonstrate microbial production of melatonin and related compounds, such as serotonin and N-acetylserotonin. We generated Saccharomyces cerevisiae strains that comprise heterologous genes encoding one or more variants of an L-tryptophan hydroxylase, a 5-hydroxy-L-tryptophan decarboxylase, a serotonin acetyltransferase, an acetylserotonin O-methyltransferase, and means for providing the cofactor tetrahydrobiopterin via heterologous biosynthesis and recycling pathways. We thereby achieved de novo melatonin biosynthesis from glucose. We furthermore accomplished increased product titers by altering expression levels of selected pathway enzymes and boosting co-factor supply. The final yeast strain produced melatonin at a titer of 14.50 ± 0.57 mg L(-1) in a 76h fermentation using simulated fed-batch medium with glucose as sole carbon source. Our study lays the basis for further developing a yeast cell factory for biological production of melatonin. © 2015 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chu, Ling-yun; Chang, Tzu-Ching; Kuo, Cheng-Chin; Wu, Kenneth K.
2014-01-01
Quiescent fibroblasts possess unique genetic program and exhibit high metabolic activity distinct from proliferative fibroblasts. In response to inflammatory stimulation, quiescent fibroblasts are more active in expressing cyclooxygenase-2 and other proinflammatory genes than proliferative fibroblasts. The underlying transcriptional mechanism is unclear. Here we show that phorbol 12-myristate 13-acetate (PMA) and cytokines increased p300 histone acetyltransferase activity to a higher magnitude (> 2 fold) in quiescent fibroblasts than in proliferative fibroblasts. Binding of p300 to cyclooxygenase-2 promoter was reduced in proliferative fibroblasts. By ultrahigh-performance liquid chromatography coupled with a quadrupole time of flight mass spectrometer and enzyme-immunoassay, we found that production of 5-methoxytryptophan was 2–3 folds higher in proliferative fibroblasts than that in quiescent fibroblasts. Addition of 5-methoxytryptophan and its metabolic precursor, 5-hydroxytryptophan, to quiescent fibroblasts suppressed PMA-induced p300 histone acetyltransferase activity and cyclooxygenase-2 expression to the level of proliferative fibroblasts. Silencing of tryptophan hydroxylase-1 or hydroxyindole O-methyltransferase in proliferative fibroblasts with siRNA resulted in elevation of PMA-induced p300 histone acetyltransferase activity to the level of that in quiescent fibroblasts, which was rescued by addition of 5-hydroxytryptophan or 5-methoxytryptophan. Our findings indicate that robust inflammatory gene expression in quiescent fibroblasts vs. proliferative fibroblasts is attributed to uncontrolled p300 histone acetyltransferase activation due to deficiency of 5-methoxytryptophan production. 5-methoxytryptophan thus is a potential valuable lead compound for new anti-inflammatory drug development. PMID:24523905
Tryptophan Metabolism and White Matter Integrity in Schizophrenia
Chiappelli, Joshua; Postolache, Teodor T; Kochunov, Peter; Rowland, Laura M; Wijtenburg, S Andrea; Shukla, Dinesh K; Tagamets, Malle; Du, Xiaoming; Savransky, Anya; Lowry, Christopher A; Can, Adem; Fuchs, Dietmar; Hong, L Elliot
2016-01-01
Schizophrenia is associated with abnormalities in the structure and functioning of white matter, but the underlying neuropathology is unclear. We hypothesized that increased tryptophan degradation in the kynurenine pathway could be associated with white matter microstructure and biochemistry, potentially contributing to white matter abnormalities in schizophrenia. To test this, fasting plasma samples were obtained from 37 schizophrenia patients and 38 healthy controls and levels of total tryptophan and its metabolite kynurenine were assessed. The ratio of kynurenine to tryptophan was used as an index of tryptophan catabolic activity in this pathway. White matter structure and function were assessed by diffusion tensor imaging (DTI) and 1H magnetic resonance spectroscopy (MRS). Tryptophan levels were significantly lower (p<0.001), and kynurenine/tryptophan ratios were correspondingly higher (p=0.018) in patients compared with controls. In patients, lower plasma tryptophan levels corresponded to lower structural integrity (DTI fractional anisotropy) (r=0.347, p=0.038). In both patients and controls, the kynurenine/tryptophan ratio was inversely correlated with frontal white matter glutamate level (r=−0.391 and −0.350 respectively, p=0.024 and 0.036). These results provide initial evidence implicating abnormal tryptophan/kynurenine pathway activity in changes to white matter integrity and white matter glutamate in schizophrenia. PMID:27143602
Liu, Yan; Jiang, Yun’ai; Si, Yunxia; Kim, Ji-Young; Chen, Zhou-Feng; Rao, Yi
2014-01-01
To whom should a male directs his mating? While it is a critical social interaction, little is known about molecular and cellular mechanisms controlling mammalian sexual preference. Here we report that the neurotransmitter 5-HT is required for male sexual preference. Male mice lacking central serotonergic neurons lost sexual preference but were not generally defective in olfaction. A role for 5-hydroxytryptamine (5-HT) was demonstrated by the phenotype of mice unable to synthesize 5-HT in the brain when lacking tryptophan hydroxylase 2 (Tph2). 5-hydroxytryptophan (5-HTP) injection rescued the phenotype of adult Tph2 knockout mice within 35 minutes. These results indicate that 5-HT and serotonergic neurons in the adult brain regulate mammalian sexual preference. PMID:21441904
Role for tryptophan in regulation of protein synthesis in porcine muscle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, F.D.; Smith, T.K.; Bayley, H.S.
1988-04-01
Experiments were conducted to determine the effect of varying concentrations of dietary tryptophan on growth rate and protein synthesis in edible muscle tissues of growing swine. A total of 45 immature swine (initial weight approximately 24 kg) were fed corn-gelatin diets containing 0.5 (n = 8), 0.8 (n = 10), 1.3 (n = 10), 1.5 (n = 7) or 2.0 (n = 10) g tryptophan/kg diet for 35 d. Animals fed 0.5 and 0.8 g tryptophan/kg grew more slowly, consumed less feed and had a lower efficiency of feed utilization than animals fed higher concentrations of tryptophan. Thirty similar animalsmore » were used in a second experiment. Diets containing 0.5, 0.8, 1.0, 1.5 or 2.0 g tryptophan/kg diet (n = 6) were fed for 14 d, after which all animals were killed and samples were taken of longissimus dorsi, triceps brachii and biceps femoris. Protein synthetic activity was determined by monitoring the incorporation of (/sup 14/C)phenylalanine into protein in vitro. There was no significant difference in synthetic activity between different muscle types. There was no effect of diet on the activity of the muscle soluble protein fraction. The activity of the muscle ribosomal fraction, however, was positively correlated with increasing concentrations of dietary tryptophan. It was concluded that tryptophan has the potential to regulate muscle protein synthesis in a manner beyond serving simply as a component of protein.« less
Velykyĭ, M M; Apukhovs'ka, L I; Vasylevs'ka, V M; Lotots'ka, O Iu; Besusiak, A I; Khomenko, A V
2010-01-01
It is shown, that hepatocytes contain two (microsomal and mitochondrial) vitamin D3 25-hydroxylase enzymes, which differ as to their activity and function with maximal activity at different concentrations to substrate, namely at 15 microM and 100 microM of vitamin D3, accordingly. Activity of vitamin D3 25-hydroxylase enzymes of hepatocytes is regulated by cholecalciferol and alpha-tocopherol. The general and microsomal vitamin D3 25-hydroxylase enzymes activity of hepatocytes is lowered, but mitochondrial isoform is increased under D-hypervitaminosis conditions. Vitamin E increases microsomal vitamin D3 25-hydroxylase activity and decreases mitochondrial isoform activity of rats hepatocytes under D-hypervitaminosis conditions. It is established that D-hypervitaminosis is accompanied by expressed hypercalcemia and hyperphosphatemia, by decreased contents of mineral components in the bone tissue and high activity of alkaline phosphatase in the blood serum. The physiological doses of vitamin E under these conditions normalized the mineral metabolism, contents of calcium, phosphates and activity of alkaline phosphatase isoform in the blood serum.
Huang, Carol
2013-03-01
Abstract β-Cell mass increases during pregnancy in adaptation to the insulin resistance of pregnancy. This increase is accompanied by an increase in β-cell proliferation, a process that requires intact prolactin receptor (Prlr) signalling. Previously, it was found that during pregnancy, heterozygous prolactin receptor-null (Prlr(+/-)) mice had lower number of β-cells, lower serum insulin and higher blood glucose levels than wild-type (Prlr(+/+)) mice. An unexpected observation was that the glucose homeostasis of the experimental mouse depends on the genotype of her mother, such that within the Prlr(+/+) group, the Prlr(+/+) offspring derived from Prlr(+/+) mothers (Prlr(+/+(+/+))) had higher β-cell mass and lower blood glucose than those derived from Prlr(+/-) mothers (Prlr(+/+(+/-))). Pathways that are known to regulate β-cell proliferation during pregnancy include insulin receptor substrate-2, Akt, menin, the serotonin synthetic enzyme tryptophan hydroxylase-1, Forkhead box M1 and Forkhead box D3. The aim of the present study was to determine whether dysregulation in these signalling molecules in the islets could explain the maternal effect on the phenotype of the offspring. It was found that the pregnancy-induced increases in insulin receptor substrate-2 and Akt expression in the islets were attenuated in the Prlr(+/+(+/-)) mice in comparison to the Prlr(+/+(+/+)) mice. The expression of Forkhead box D3, which plays a permissive role for β-cell proliferation during pregnancy, was also lower in the Prlr(+/+(+/-)) mice. In contrast, the pregnancy-induced increases in phospho-Jak2, tryptophan hydroxylase-1 and FoxM1, as well as the pregnancy-associated reduction in menin expression, were comparable between the two groups. There was also no difference in expression levels of genes that regulate insulin synthesis and secretion (i.e. glucose transporter 2, glucokinase and pancreatic and duodenal homeobox-1) between these two groups. Taken together, these results suggest that the in utero environment of the Prlr(+/-) mother confers long-term changes in the pancreatic islets of her offspring such that when the offspring themselves became pregnant, they cannot adapt to the increased insulin demands of their own pregnancy.
Inhibition of Tryptophan on AA 2024 in Chloride-Containing Solutions
NASA Astrophysics Data System (ADS)
Li, Xing; Xiang, Bin; Zuo, Xiu-Li; Wang, Qin; Wei, Zi-Dong
2011-03-01
The inhibitory effects of tryptophan on the corrosion of AA 2024 in 1 M HCl, 20% (wt.%) CaCl2, and 3.5% (wt.%) NaCl solutions were investigated via polarization techniques, electrochemical impedance spectroscopy, and weight loss methods. The scanning electron microscope technique was employed to observe corrosion morphology. The results suggest that AA 2024 was corroded in these three corrosive media to some extent and that tryptophan can significantly inhibit the corrosion of aluminum alloys. The inhibition efficiency (η) increased with increasing concentrations of tryptophan, and the best inhibition efficiency exhibited was about 87% in 1 M HCl solution with 0.008 M tryptophan. Tryptophan acted as a cathodic corrosion inhibitor and affected the hydrogen evolution reaction, which was the main electrode reaction in the 1 M HCl solution. In solutions with 20% CaCl2 and 3.5% NaCl, tryptophan was adsorbed onto anodic areas, thus increasing the activation energy of the interface reaction as an anodic corrosion inhibitor. The Dmol3 program of Material Studio 4.0 was used to obtain the optimized geometry of the tryptophan inhibitor and some quantum-chemical parameters. Front orbital distributions and Fukui indices indicate that the molecular active reaction zones were located in the indole ring of tryptophan.
Oxenkrug, Gregory F.
2011-01-01
The original 1969 Lancet paper proposed, “in depression the activity of liver tryptophan-pyrrolase is stimulated by raised blood corticosteroids levels, and metabolism of tryptophan is shunted away from serotonin production, and towards kynurenine production.” Discovery of neurotropic activity of kynurenines suggested that up-regulation of the tryptophan-kynurenine pathway not only augmented serotonin deficiency but also underlined depression-associated anxiety, psychosis and cognitive decline. The present review of genetic and hormonal factors regulating kynurenine pathway of tryptophan metabolism suggests that this pathway mediates both genetic and environmental mechanisms of depression. Rate-limiting enzymes of kynurenine formation, tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) are activated by stress hormones (TDO) and/or by pro-inflammatory cytokines (IDO). Simultaneous presence of high producers alleles of proinflammatory cytokines genes (e.g., interferon-gamma and tumor necrosis factor-alpha) determines the genetic predisposition to depression via up-regulation of IDO while impact of environmental stresses is mediated via hormonal activation of TDO. Tryptophan-kynurenine pathway represents a major meeting point of gene-environment interaction in depression and a new target for pharmacological intervention. PMID:20686200
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, F.D.; Smith, T.K.; Bayley, H.S.
Experiments were conducted to determine the effect of varying concentrations of dietary tryptophan on growth rate and protein synthesis in edible muscle tissues of growing swine. A total of 45 immature swine (initial weight approximately 24 kg) were fed corn-gelatin diets containing 0.5 (n = 8), 0.8 (n = 10), 1.3 (n = 10), 1.5 (n = 7) or 2.0 (n = 10) g tryptophan/kg diet for 35 d. Animals fed 0.5 and 0.8 g tryptophan/kg grew more slowly, consumed less feed and had a lower efficiency of feed utilization than animals fed higher concentrations of tryptophan. Thirty similar animalsmore » were used in a second experiment. Diets containing 0.5, 0.8, 1.0, 1.5 or 2.0 g tryptophan/kg diet (n = 6) were fed for 14 d, after which all animals were killed and samples were taken of longissimus dorsi, triceps brachii and biceps femoris. Protein synthetic activity was determined by monitoring the incorporation of (/sup 14/C)phenylalanine into protein in vitro. There was no significant difference in synthetic activity between different muscle types. There was no effect of diet on the activity of the muscle soluble protein fraction. The activity of the muscle ribosomal fraction, however, was positively correlated with increasing concentrations of dietary tryptophan. It was concluded that tryptophan has the potential to regulate muscle protein synthesis in a manner beyond serving simply as a component of protein.« less
Stoltenberg, Scott F.; Nag, Parthasarathi
2010-01-01
Despite more than a decade of empirical work on the role of genetic polymorphisms in the serotonin system on behavior, the details across levels of analysis are not well understood. We describe a mathematical model of the genetic control of presynaptic serotonergic function that is based on control theory, implemented using systems of differential equations, and focused on better characterizing pathways from genes to behavior. We present the results of model validation tests that include the comparison of simulation outcomes with empirical data on genetic effects on brain response to affective stimuli and on impulsivity. Patterns of simulated neural firing were consistent with recent findings of additive effects of serotonin transporter and tryptophan hydroxylase-2 polymorphisms on brain activation. In addition, simulated levels of cerebral spinal fluid 5-hydroxyindoleacetic acid (CSF 5-HIAA) were negatively correlated with Barratt Impulsiveness Scale (Version 11) Total scores in college students (r = −.22, p = .002, N = 187), which is consistent with the well-established negative correlation between CSF 5-HIAA and impulsivity. The results of the validation tests suggest that the model captures important aspects of the genetic control of presynaptic serotonergic function and behavior via brain activation. The proposed model can be: (1) extended to include other system components, neurotransmitter systems, behaviors and environmental influences; (2) used to generate testable hypotheses. PMID:20111992
Levitin, Anastasia; Yanofsky, Charles
2010-01-01
Tryptophan, phenylalanine, tyrosine, and several other metabolites are all synthesized from a common precursor, chorismic acid. Since tryptophan is a product of an energetically expensive biosynthetic pathway, bacteria have developed sensing mechanisms to downregulate synthesis of the enzymes of tryptophan formation when synthesis of the amino acid is not needed. In Bacillus subtilis and some other Gram-positive bacteria, trp operon expression is regulated by two proteins, TRAP (the tryptophan-activated RNA binding protein) and AT (the anti-TRAP protein). TRAP is activated by bound tryptophan, and AT synthesis is increased upon accumulation of uncharged tRNATrp. Tryptophan-activated TRAP binds to trp operon leader RNA, generating a terminator structure that promotes transcription termination. AT binds to tryptophan-activated TRAP, inhibiting its RNA binding ability. In B. subtilis, AT synthesis is upregulated both transcriptionally and translationally in response to the accumulation of uncharged tRNATrp. In this paper, we focus on explaining the differences in organization and regulatory functions of the at operon's leader peptide-coding region, rtpLP, of B. subtilis and Bacillus licheniformis. Our objective was to correlate the greater growth sensitivity of B. licheniformis to tryptophan starvation with the spacing of the three Trp codons in its at operon leader peptide-coding region. Our findings suggest that the Trp codon location in rtpLP of B. licheniformis is designed to allow a mild charged-tRNATrp deficiency to expose the Shine-Dalgarno sequence and start codon for the AT protein, leading to increased AT synthesis. PMID:20061467
Laureano-Melo, Roberto; Império, Güínever Eustáquio do; da Silva-Almeida, Claudio; Kluck, George Eduardo Gabriel; Cruz Seara, Fernando de Azevedo; da Rocha, Fábio Fagundes; da Silveira, Anderson Luiz Bezerra; Reis, Luís Carlos; Ortiga-Carvalho, Tania Maria; da Silva Côrtes, Wellington
2015-11-01
Selenium is a micronutrient which is part of selenoprotein molecules and participates in a vast number of physiological roles and, among them,we have fetal and neonatal development. Therefore, the aimof this studywas to evaluate possible behavioral changes in offspring of female rats supplemented during pregnancy and lactation with sodium selenite. To address that, we treated two groups of female rats by saline or sodium selenite at a dose of 1mg/kg through oral route and performed neurochemical and behavioral tests. In the offspring, the thyroid profile and hippocampal neurochemistrywere evaluated. Behavioral testswere performed in pups both during childhood and adulthood. We found out that selenium (Se) supplementation increased serum levels of triiodothyronine (25%, p b 0.001) and thyroxine (18%, p b 0.05) and promoted a tryptophan hydroxylase 2 (TPH 2) expression decrease (17%, p b 0.01) and tyrosine hydroxylase (TH) expression increase (202%, p b 0.01) in the hippocampus. The cholinesterase activity was decreased (28%, p b 0.01) in Se supplemented rats, suggesting a neurochemical modulation in the hippocampal activity. During childhood, the Sesupplemented offspring had a reduction in anxiety-like behavior both in elevated plus maze test and in light–dark box test. In adulthood, Se-treated pups had an increase in the locomotor activity (36%, p b 0.05) and in rearing episodes (77%, p b 0.001) in the open field test, while in the elevated plus maze test they also exhibited an increase in the time spent in the open arms (243%, p b 0.01). For the object recognition test, Se-treated offspring showed increase in the absolute (230.16%, p b 0.05) and relative index discrimination (234%, p b 0.05). These results demonstrate that maternal supplementation by sodium selenite promoted psychobiological changes both during childhood and adulthood. Therefore, the behavioral profile observed possibly can be explained by neurochemical changes induced by thyroid hormones during the critical period of the central nervous system ontogeny.
Lignans from Carthamus tinctorius suppress tryptophan breakdown via indoleamine 2,3-dioxygenase
Kuehnl, Susanne; Schroecksnadel, Sebastian; Temml, Veronika; Gostner, Johanna M.; Schennach, Harald; Schuster, Daniela; Schwaiger, Stefan; Rollinger, Judith M.; Fuchs, Dietmar; Stuppner, Hermann
2013-01-01
Seed extracts of Carthamus tinctorius L. (Asteraceae), safflower, have been traditionally used to treat coronary disease, thrombotic disorders, and menstrual problems but also against cancer and depression. A possible effect of C. tinctorius compounds on tryptophan-degrading activity of enzyme indoleamine 2,3-dioxygenase (IDO) could explain many of its activities. To test for an effect of C. tinctorius extracts and isolated compounds on cytokine-induced IDO activity in immunocompetent cells in vitro methanol and ethylacetate seed extracts were prepared from cold pressed seed cakes of C. tinctorius and three lignan derivatives, trachelogenin, arctigenin and matairesinol were isolated. The influence on tryptophan breakdown was investigated in peripheral blood mononuclear cells (PBMCs). Effects were compared to neopterin production in the same cellular assay. Both seed extracts suppressed tryptophan breakdown in stimulated PBMC. The three structurally closely related isolates exerted differing suppressive activity on PBMC: arctigenin (IC50 26.5 μM) and trachelogenin (IC50 of 57.4 μM) showed higher activity than matairesinol (IC50 >200 μM) to inhibit tryptophan breakdown. Effects on neopterin production were similar albeit generally less strong. Data show an immunosuppressive property of compounds which slows down IDO activity. The in vitro results support the view that some of the anti-inflammatory, anti-cancer and antidepressant properties of C. tinctorius lignans might relate to their suppressive influence on tryptophan breakdown. PMID:23867649
Apukhovs'ka, L I; Velykyĭ, M M; Lotots'ka, O Iu; Khomenko, A V
2009-01-01
It is established, that dose-dependent influence of vitamin E on vitamin D3 metabolism, is conditioned by degree of cholecalciferol sufficiency. Under a condition of D-hypovitaminosis, contents of 25OHD3 in blood serum is 2-fold reduced and vitamin D3 25-hydroxylase enzymes activity increased in rat hepatocytes. Vitamin E (0.726-7.26 IU) significantly stimulated the effect of vitamin D3 (40 IU) in animals with D-hypovitaminosis and led to further increase of 25OHD3 content in the blood serum and activity of vitamin D3 25-hydroxylase enzymes in hepatocytes. In D-hypervitaminosis the contents of 25OHD3 in blood serum was more than 3-fold increased and vitamin D3 25-hydroxylase enzymes activity was inhibited. Vitamin E (0,726-7,26 IU) lowered the vitamin D toxicity, decreased contents of 25OHD3 in blood serum and activity of vitamin D3 25-hydroxylase enzymes in hepatocytes. High doses of vitamin E (36.3 IU) under these conditions demonstrated negative effect on vitamin D3 metabolism. The mechanism of vitaminE participation in the vitamin D3 metabolism under D-hypovitaminosis and D-hypervitaminosis may be its influence on the activity of different vitamin D3 25-hydroxylase systems of hepatocytes.
The role of the serotonergic system in suicidal behavior
Sadkowski, Marta; Dennis, Brittany; Clayden, Robert C; ElSheikh, Wala; Rangarajan, Sumathy; DeJesus, Jane; Samaan, Zainab
2013-01-01
Serotonin is a widely investigated neurotransmitter in several psychopathologies, including suicidal behavior (SB); however, its role extends to several physiological functions involving the nervous system, as well as the gastrointestinal and cardiovascular systems. This review summarizes recent research into ten serotonergic genes related to SB. These genes – TPH1, TPH2, SLC6A4, SLC18A2, HTR1A, HTR1B, HTR2A, DDC, MAOA, and MAOB – encode proteins that are vital to serotonergic function: tryptophan hydroxylase; the serotonin transporter 5-HTT; the vesicular transporter VMAT2; the HTR1A, HTR1B, and HTR2A receptors; the L-amino acid decarboxylase; and the monoamine oxidases. This review employed a systematic search strategy and a narrative research methodology to disseminate the current literature investigating the link between SB and serotonin. PMID:24235834
Danecka, Marta K; Woidy, Mathias; Zschocke, Johannes; Feillet, François; Muntau, Ania C; Gersting, Søren W
2015-03-01
In phenylketonuria, genetic heterogeneity, frequent compound heterozygosity, and the lack of functional data for phenylalanine hydroxylase genotypes hamper reliable phenotype prediction and individualised treatment. A literature search revealed 690 different phenylalanine hydroxylase genotypes in 3066 phenylketonuria patients from Europe and the Middle East. We determined phenylalanine hydroxylase function of 30 frequent homozygous and compound heterozygous genotypes covering 55% of the study population, generated activity landscapes, and assessed the phenylalanine hydroxylase working range in the metabolic (phenylalanine) and therapeutic (tetrahydrobiopterin) space. Shared patterns in genotype-specific functional landscapes were linked to biochemical and pharmacological phenotypes, where (1) residual activity below 3.5% was associated with classical phenylketonuria unresponsive to pharmacological treatment; (2) lack of defined peak activity induced loss of response to tetrahydrobiopterin; (3) a higher cofactor need was linked to inconsistent clinical phenotypes and low rates of tetrahydrobiopterin response; and (4) residual activity above 5%, a defined peak of activity, and a normal cofactor need were associated with pharmacologically treatable mild phenotypes. In addition, we provide a web application for retrieving country-specific information on genotypes and genotype-specific phenylalanine hydroxylase function that warrants continuous extension, updates, and research on demand. The combination of genotype-specific functional analyses with biochemical, clinical, and therapeutic data of individual patients may serve as a powerful tool to enable phenotype prediction and to establish personalised medicine strategies for dietary regimens and pharmacological treatment in phenylketonuria. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Neurotransmitter Systems in a Mild Blast Traumatic Brain Injury Model: Catecholamines and Serotonin.
Kawa, Lizan; Arborelius, Ulf P; Yoshitake, Takashi; Kehr, Jan; Hökfelt, Tomas; Risling, Mårten; Agoston, Denes
2015-08-15
Exposure to improvised explosive devices can result in a unique form of traumatic brain injury--blast-induced traumatic brain injury (bTBI). At the mild end of the spectrum (mild bTBI [mbTBI]), there are cognitive and mood disturbances. Similar symptoms have been observed in post-traumatic stress disorder caused by exposure to extreme psychological stress without physical injury. A role of the monoaminergic system in mood regulation and stress is well established but its involvement in mbTBI is not well understood. To address this gap, we used a rodent model of mbTBI and detected a decrease in immobility behavior in the forced swim test at 1 d post-exposure, coupled with an increase in climbing behavior, but not after 14 d or later, possibly indicating a transient increase in anxiety-like behavior. Using in situ hybridization, we found elevated messenger ribonucleic acid levels of both tyrosine hydroxylase and tryptophan hydroxylase 2 in the locus coeruleus and the dorsal raphe nucleus, respectively, as early as 2 h post-exposure. High-performance liquid chromatography analysis 1 d post-exposure primarily showed elevated noradrenaline levels in several forebrain regions. Taken together, we report that exposure to mild blast results in transient changes in both anxiety-like behavior and brain region-specific molecular changes, implicating the monoaminergic system in the pathobiology of mbTBI.
Vico, Pedro; Cauet, Gilles; Rose, Ken; Lathe, Richard; Degryse, Eric
2002-07-01
We have engineered recombinant yeast to perform stereospecific hydroxylation of dehydroepiandrosterone (DHEA). This mammalian pro-hormone promotes brain and immune function; hydroxylation at the 7alpha position by P450 CYP7B is the major pathway of metabolic activation. We have sought to activate DHEA via yeast expression of rat CYP7B enzyme. Saccharomyces cerevisiae was found to metabolize DHEA by 3beta-acetylation; this was abolished by mutation at atf2. DHEA was also toxic, blocking tryptophan (trp) uptake: prototrophic strains were DHEA-resistant. In TRP(+) atf2 strains DHEA was then converted to androstene-3beta,17beta-diol (A/enediol) by an endogenous 17beta-hydroxysteroid dehydrogenase (17betaHSD). Seven yeast polypeptides similar to human 17betaHSDs were identified: when expressed in yeast, only AYR1 (1-acyl dihydroxyacetone phosphate reductase) increased A/enediol accumulation, while the hydroxyacyl-CoA dehydrogenase Fox2p, highly homologous to human 17betaHSD4, oxidized A/enediol to DHEA. The presence of endogenous yeast enzymes metabolizing steroids may relate to fungal pathogenesis. Disruption of AYR1 eliminated reductive 17betaHSD activity, and expression of CYP7B on the combination background (atf2, ayr1, TRP(+)) permitted efficient (>98%) bioconversion of DHEA to 7alpha-hydroxyDHEA, a product of potential medical utility. Copyright 2002 John Wiley & Sons, Ltd.
Toshchakova, Valentina A.; Bakhtiari, Yalda; Kulikov, Alexander V.; Gusev, Sergey I.; Trofimova, Marina V.; Fedorenko, Olga Yu.; Mikhalitskaya, Ekaterina V.; Popova, Nina K.; Bokhan, Nikolay A.; Hovens, Johannes E.; Loonen, Anton J.M.; Wilffert, Bob; Ivanova, Svetlana A.
2018-01-01
Background Human aggression is a heterogeneous behavior with biological, psychological, and social backgrounds. As the biological mechanisms that regulate aggression are components of both reward-seeking and adversity-fleeing behavior, these phenomena are difficult to disentangle into separate neurochemical processes. Nevertheless, evidence exists linking some forms of aggression to aberrant serotonergic neurotransmission. We determined possible associations between 6 serotonergic neurotransmission-related gene variants and severe criminal offenses. Methods Male Russian prisoners who were convicted for murder (n = 117) or theft (n = 77) were genotyped for variants of the serotonin transporter (5HTTLPR), tryptophan hydroxylase, tryptophan-2,3-dioxygenase, or type 2C (5-HT2C) receptor genes and compared with general-population male controls (n = 161). Prisoners were psychologically phenotyped using the Buss-Durkee Hostility Inventory and the Beck Depression Inventory. Results No differences were found between murderers and thieves either concerning genotypes or concerning psychological measures. Comparison of polymorphism distribution between groups of prisoners and controls revealed highly significant associations of 5HTTLPR and 5-HTR2C (rs6318) gene polymorphisms with being convicted for criminal behavior. Conclusions The lack of biological differences between the 2 groups of prisoners indicates that the studied 5HT-related genes do not differentiate between the types of crimes committed. PMID:29621775
Thien, Tran Vu; Anh, Hoang Ngoc; Trang, Nguyen Thi Thuy; Trung, Phung Van; Khoa, Nguyen Cuu; Osipov, A V; Dubovskii, P V; Ivanov, I A; Arseniev, A S; Tsetlin, V I; Utkin, Yu N
2017-09-01
Low-molecular-weight compounds with anticoagulant activity were isolated from the scorpion Heterometrus laoticus venom. The determination of the structure of the isolated compounds by nuclear magnetic resonance and mass spectrometry showed that one of the isolated compounds is adenosine, and the other two are dipeptides leucyl-tryptophan and isoleucyl-tryptophan. The anticoagulant properties of adenosine, which is an inhibitor of platelet aggregation, is well known, but its presence in scorpion venom is shown for the first time. The ability of leucyl-tryptophan and isoleucyl-tryptophan to slow down blood clotting and their presence in scorpion venom are also established for the first time.
Struntz, Katelyn H; Siegel, Jessica A
2018-08-01
Methamphetamine (MA) is a psychomotor stimulant drug that can alter behavior, the stress response system, and the dopaminergic system. The effects of MA can be modulated by age, however relatively little research has examined the acute effects of MA in adolescents and how the effects compare to those found in adults. The hippocampal dopamine system is altered by MA exposure and can modulate anxiety-like behavior, but the effects of MA on the hippocampal dopamine system have not been well studied, especially in adolescent animals. In order to assess potential age differences in the effects of MA exposure, this research examined the effects of acute MA exposure on locomotor and anxiety-like behavior in the open field test, plasma corticosterone levels, and hippocampal total tyrosine hydroxylase and phosphorylated tyrosine hydroxylase levels in adolescent and adult male C57BL/6 J mice. Tyrosine hydroxylase is the rate limiting enzyme in the synthesis of dopamine and was used as a marker of the hippocampal dopaminergic system. Mice were exposed to saline or 4 mg/kg MA and locomotor and anxiety-like behavior were measured in the open field test. Serum and brains were collected immediately after testing and plasma corticosterone and hippocampal total tyrosine hydroxylase and phosphorylated tyrosine hydroxylase levels measured. MA-exposed mice showed increased locomotor activity and anxiety-like behavior in the open field test compared with saline controls, regardless of age. There was no effect of MA on plasma corticosterone levels or hippocampal total tyrosine hydroxylase or phosphorylated tyrosine hydroxylase levels in either adolescent or adult mice. These data suggest that acute MA exposure during adolescence and adulthood increases locomotor activity and anxiety-like behavior but does not alter plasma corticosterone levels or hippocampal total tyrosine hydroxylase or phosphorylated tyrosine hydroxylase levels, and that these effects are not modulated by age. Copyright © 2018 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Cinnamic acid 4-hydroxylase (C4H) is the first hydroxylase enzyme of the phenylpropanoid pathway, and its content and activity affects the lignin synthesis. In this study, we isolated a C4H gene SbC4H1 from the suppression subtractive hybridization library of brown midrib (bmr) mutants of Sorghum b...
Hlouchova, Klara; Rudolph, Johannes; Pietari, Jaana M.H.; Behlen, Linda S.; Copley, Shelley D.
2014-01-01
Several strains of Sphingobium chlorophenolicum have been isolated from soil that was heavily contaminated with pentachlorophenol (PCP), a toxic pesticide introduced in the 1930s. S. chlorophenolicum appears to have assembled a poorly functioning pathway for degradation of PCP by patching enzymes recruited via two independent horizontal gene transfer events into an existing metabolic pathway. Flux through the pathway is limited by PCP hydroxylase. PCP hydroxylase is a dimeric protein that belongs to the family of flavin-dependent phenol hydroxylases. In the presence of NADPH, PCP hydroxylase converts PCP to tetrachlorobenzoquinone (TCBQ). The kcat for PCP (0.024 s−1) is very low, suggesting that the enzyme is not well evolved for turnover of this substrate. Structure/activity studies reveal that substrate binding and activity are enhanced by a low pKa for the phenolic proton, increased hydrophobicity, and the presence of a substituent ortho to the hydroxyl group of the phenol. PCP hydroxylase exhibits substantial uncoupling; the C4a-hydroxyflavin intermediate, instead of hydroxylating the substrate, can decompose to produce H2O2 in a futile cycle that consumes NADPH. The extent of uncoupling varies from 0 – 100% with different substrates. Uncoupling is increased by the presence of bulky substituents in the 3-, 4-, or 5-position, and lessened by the presence of a chlorine in the ortho position. The effectiveness of PCP hydroxylase is additionally hindered by its promiscuous activity with TCHQ, a downstream metabolite in the degradation pathway. The conversion of TCHQ to TCBQ reverses flux through the pathway. Substantial uncoupling also occurs during the reaction with TCHQ. PMID:22482720
Matsui, Daisuke; Okazaki, Seiji; Matsuda, Motoki; Asano, Yasuhisa
2015-02-20
Microbial NAD(+)-dependent L-tryptophan dehydrogenase (TrpDH, EC1.4.1.19), which catalyzes the reversible oxidative deamination and the reductive amination between L-tryptophan and indole-3-pyruvic acid, was found in the scytonemin biosynthetic pathway of Nostoc punctiforme ATCC29133. The TrpDH exhibited high specificity toward L-tryptophan, but its instability was a drawback for L-tryptophan determination. The mutant enzyme TrpDH L59F/D168G/A234D/I296N with thermal stability was obtained by screening of Escherichia coli transformants harboring various mutant genes, which were generated by error-prone PCR using complementation in an L-tryptophan auxotroph of E. coli. The specific activity and stability of this mutant enzyme were higher than those of the wild type enzyme. We also revealed here that in these four mutation points, the two amino acid residues Asp168 and Ile296 contributed to increase the enzyme stability, and the Leu59, Ala234 residues to increase its specific activity. Growth of the strain harboring the gene of above 4 point mutated enzyme was accelerated by the enhanced performance. In the present study, we demonstrated that TrpDH L59F/D168G/A234D/I296N was available for determination of L-tryptophan in human plasma. Copyright © 2015 Elsevier B.V. All rights reserved.
A review of the immunomodulatory role of dietary tryptophan in livestock and poultry.
Bai, Miaomiao; Liu, Hongnan; Xu, Kang; Oso, Abimbola Oladele; Wu, Xin; Liu, Gang; Tossou, Myrlene Carine B; Al-Dhabi, Naif Abdullah; Duraipandiyan, Veeramuthu; Xi, Qianyun; Yin, Yinlong
2017-01-01
Tryptophan, a nutritionally essential amino acid, is active in the regulation of immune responses in animals. The products of tryptophan metabolism, such as indoleamine 2,3-dioxygenase, kynurenine, quinolinic acid, and melatonin, may improve immunity in an organism and induce anti-inflammatory responses. The immune tolerance processes mediated by tryptophan metabolites are not well understood. Recent studies have reported that the enzymes that break down tryptophan through the kynurenine metabolic pathway are found in numerous cell types, including immunocytes. Moreover, some tryptophan metabolites have been shown to play a role in the inhibition of T lymphocyte proliferation, elevation of immunoglobulin levels in the blood, and promotion of antigen-presenting organization in tissues. This review summarizes the effects and mechanisms of tryptophan and metabolites in immune functions in livestock and poultry. It also highlights the areas in which our understanding of the role(s) of tryptophan is incomplete and suggests possible future research that might prove of benefit to livestock and poultry producers.
Requirement for tryptophan by milkfish (Chanos chanos Forsskal) juveniles.
Coloso, R M; Tiro, L B; Benitez, L V
1992-05-01
Groups of milkfish juveniles (mean initial weight 7.7 g) were fed semipurified diets containing 0.9, 1.4, 2.1, 3.1, 4.1 and 6.1 g tryptophan/kg dry diet for 12 weeks. The mean crude protein content of the diets (containing white fishmeal, gelatin and free amino acid mixture to simulate the pattern of hydrolysed milkfish protein) was 49%. On the basis of the growth response, the tryptophan requirement of milkfish juveniles was estimated to be 3.1 g/kg diet. Fish fed low levels of tryptophan exhibited low weight gains and poor feed conversion ratios. Survival (92-100%) was consistently high in all treatments. Fish fed diets containing tryptophan levels greater than 3.1 g/kg had slightly lower survival rates. The activity of hepatic tryptophan pyrrolase showed no significant differences with increasing dietary tryptophan levels. No nutritional deficiency signs were observed other than the depression in growth rates in fish given the tryptophan deficient diets.
Lewandowski, M; Chui, Y C; Levi, P; Hodgson, E
1991-02-01
A simple and sensitive method for the separation of 14C-labelled acetanilide, 4-hydroxyacetanilide, 3-hydroxyacetanilide and 2-hydroxyacetanilide was developed using thin-layer chromatography. This separation is the basis for the assay of acetanilide 4-hydroxylase and acetanilide 2-hydroxylase activity in liver microsomes from DBA2/N male mice that had been treated with phenobarbital, 3-methylcholanthrene, isosafrole or n-butylbenzodioxole. Microsomes were incubated with [14C]acetanilide and extracted with benzene and ethyl acetate. The extract was applied to silica gel plates and developed with a hexane/isopropanol/ammonium hydroxide/water solvent system. The radiolabelled phenolic metabolites and the parent compound were detected using a Berthold Automatic TLC Linear Analyzer. Although the 4-hydroxylated metabolite was the primary product detected, this method can be used to detect other phenolic metabolites.
Morecroft, Ian; White, Katie; Caruso, Paola; Nilsen, Margaret; Loughlin, Lynn; Alba, Raul; Reynolds, Paul N; Danilov, Sergei M; Baker, Andrew H; MacLean, Margaret R
2012-01-01
Serotonin is produced by pulmonary arterial endothelial cells (PAEC) via tryptophan hydroxylase-1 (Tph1). Pathologically, serotonin acts on underlying pulmonary arterial cells, contributing to vascular remodeling associated with pulmonary arterial hypertension (PAH). The effects of hypoxia on PAEC-Tph1 activity are unknown. We investigated the potential of a gene therapy approach to PAH using selective inhibition of PAEC-Tph1 in vivo in a hypoxic model of PAH. We exposed cultured bovine pulmonary arterial smooth muscle cells (bPASMCs) to conditioned media from human PAECs (hPAECs) before and after hypoxic exposure. Serotonin levels were increased in hypoxic PAEC media. Conditioned media evoked bPASMC proliferation, which was greater with hypoxic PAEC media, via a serotonin-dependent mechanism. In vivo, adenoviral vectors targeted to PAECs (utilizing bispecific antibody to angiotensin-converting enzyme (ACE) as the selective targeting system) were used to deliver small hairpin Tph1 RNA sequences in rats. Hypoxic rats developed PAH and increased lung Tph1. PAEC-Tph1 expression and development of PAH were attenuated by our PAEC-Tph1 gene knockdown strategy. These results demonstrate that hypoxia induces Tph1 activity and selective knockdown of PAEC-Tph1 attenuates hypoxia-induced PAH in rats. Further investigation of pulmonary endothelial-specific Tph1 inhibition via gene interventions is warranted. PMID:22525513
YE, MENG-FEI; LIU, ZHENG; LOU, SHU-FANG; CHEN, ZHEN-YONG; YU, AI-YUE; LIU, CHUN-YAN; YU, CHAO-YANG; ZHANG, HUA-FANG; ZHANG, JIAN
2015-01-01
Flos albiziae (FA) is reportedly used for treatment of insomnia and anxiety in traditional medicine. The hypnotic effect of an extract of FA (FAE) and its constituent quercetin [2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one, QR] was examined in mice. QR is a widely distributed natural flavonoid abundant in FA flowers and other tissues. The possible mechanisms underlying the hypnotic effects of FAE and QR were investigated using behavioral pharmacology. FAE and QR significantly potentiated pentobarbital-induced [50 mg/kg, intraperitoneal (ip)] sleep (prolonged sleeping time; shortened sleep latency) in a dose-dependent manner, and these effects were augmented by administration of 5-hydroxytryptophan (5-HTP), a precursor of 5-hydroxytryptamine. With a sub-hypnotic dose of pentobarbital (28 mg/kg, ip), FAE and QR significantly increased the rate of sleep onset and were synergistic with 5-HTP (2.5 mg/kg, ip). Pretreatment with p-chlorophenylalanine, an inhibitor of tryptophan hydroxylase, significantly decreased sleeping time and prolonged sleep latency in pentobarbital-treated mice, whereas FAE and QR significantly reversed this effect. Data show that FAE and QR have hypnotic activity, possibly mediated by the serotonergic system. The present study offers a rationale for the use of FA in treating sleep disorders associated with serotonin system dysfunction. PMID:26623026
Molitor, Christian; Mauracher, Stephan Gerhard
2016-01-01
Tyrosinases and catechol oxidases belong to the family of polyphenol oxidases (PPOs). Tyrosinases catalyze the o-hydroxylation and oxidation of phenolic compounds, whereas catechol oxidases were so far defined to lack the hydroxylation activity and catalyze solely the oxidation of o-diphenolic compounds. Aurone synthase from Coreopsis grandiflora (AUS1) is a specialized plant PPO involved in the anabolic pathway of aurones. We present, to our knowledge, the first crystal structures of a latent plant PPO, its mature active and inactive form, caused by a sulfation of a copper binding histidine. Analysis of the latent proenzyme’s interface between the shielding C-terminal domain and the main core provides insights into its activation mechanisms. As AUS1 did not accept common tyrosinase substrates (tyrosine and tyramine), the enzyme is classified as a catechol oxidase. However, AUS1 showed hydroxylase activity toward its natural substrate (isoliquiritigenin), revealing that the hydroxylase activity is not correlated with the acceptance of common tyrosinase substrates. Therefore, we propose that the hydroxylase reaction is a general functionality of PPOs. Molecular dynamics simulations of docked substrate–enzyme complexes were performed, and a key residue was identified that influences the plant PPO’s acceptance or rejection of tyramine. Based on the evidenced hydroxylase activity and the interactions of specific residues with the substrates during the molecular dynamics simulations, a novel catalytic reaction mechanism for plant PPOs is proposed. The presented results strongly suggest that the physiological role of plant catechol oxidases were previously underestimated, as they might hydroxylate their—so far unknown—natural substrates in vivo. PMID:26976571
Larimore, F S; Roon, R J
1978-02-07
The general amino acid transport system of Saccharomyces cerevisiae functions in the uptake of neutral, basic, and acidic amino acids. The amino acid analogue N-delta-chloroacetyl-L-ornithine (NCAO) has been tested as potential site specific reagent for this system. L-Tryptophan, which is transported exclusively by the general transport system, was used as a substrate. In the presence of glucose as an energy source, NCAO inhibited tryptophan transport competitively (Ki = 80 micrometer) during short time intervals (1-2 min), but adding 100 micrometer NCAO to a yeast cell suspension resulted in a time-dependent activation of tryptophan transport during the first 15 min of treatment. Following the activation a time-dependent decay of tryptophan transport activity occurred. Approximately 80% inactivation of the system was observed after 90 min. When a yeast cell suspension was treated with NCAO in the absence of an energy source, an 80% inactivation of tryptophan transport occurred in 90 min. The inactivation was noncompetitive (Ki congruent to 60 micrometer) and could not be reversed by the removal of the NCAO. Addition of a five-fold excess of L-lysine during NCAO treatment or prevented inactivation of tryptophan transport. Under parallel conditions of incubation, other closely related transport systems were not inhibited by NCAO.
Evidence for a central 5-hydroxytryptamine receptor stimulation by lysergic acid diethylamide
Andén, N.-E.; Corrodi, H.; Fuxe, K.; Hökfelt, T.
1968-01-01
1. Lysergic acid diethylamide (LSD) and the 5-hydroxytryptamine (5-HT) precursor, 5-hydroxytryptophan produced similar functional effects in rat spinal cord and brain to the 5-hydroxytryptamine precursor 5-hydroxytryptophan, which indicates that LSD stimulates central 5-HT receptors. 2. By means of combined histochemical and biochemical techniques it was found that LSD reduced the turnover rate of brain and spinal cord 5-HT, studied after inhibition of the tryptophan hydroxylase by α-propyldopacetamide. The turnover of brain noradrenaline but not dopamine was somewhat accelerated. 3. The functional and chemical effects by LSD were related to dose and to time. They were not observed after the LSD analogues 2-bromo-LSD and methylsergide. 4. The retardation of the 5-HT turnover by LSD may be due to negative feed-back mechanisms evoked by direct stimulation of the central 5-HT receptors. ImagesFIG. 1FIG. 2 PMID:5302837
NAD+ protects against EAE by regulating CD4+ T-cell differentiation
Tullius, Stefan G.; Biefer, Hector Rodriguez Cetina; Li, Suyan; Trachtenberg, Alexander J.; Edtinger, Karoline; Quante, Markus; Krenzien, Felix; Uehara, Hirofumi; Yang, Xiaoyong; Kissick, Haydn T.; Kuo, Winston P.; Ghiran, Ionita; de la Fuente, Miguel A.; Arredouani, Mohamed S.; Camacho, Virginia; Tigges, John C.; Toxavidis, Vasilis; El Fatimy, Rachid; Smith, Brian D.; Vasudevan, Anju; ElKhal, Abdallah
2014-01-01
CD4+ T cells are involved in the development of autoimmunity, including multiple sclerosis (MS). Here we show that nicotinamide adenine dinucleotide (NAD+) blocks experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, by inducing immune homeostasis through CD4+IFNγ+IL-10+ T cells and reverses disease progression by restoring tissue integrity via remyelination and neuroregeneration. We show that NAD+ regulates CD4+ T-cell differentiation through tryptophan hydroxylase-1 (Tph1), independently of well-established transcription factors. In the presence of NAD+, the frequency of T-bet−/− CD4+IFNγ+ T cells was twofold higher than wild-type CD4+ T cells cultured in conventional T helper 1 polarizing conditions. Our findings unravel a new pathway orchestrating CD4+ T-cell differentiation and demonstrate that NAD+ may serve as a powerful therapeutic agent for the treatment of autoimmune and other diseases. PMID:25290058
Mas, Sergi; Blázquez, Ana; Rodríguez, Natalia; Boloc, Daniel; Lafuente, Amalia; Arnaiz, Joan A; Lázaro, Luisa; Gassó, Patricia
2016-11-01
Pharmacogenetic studies of fluoxetine in children and adolescents are scarce. After reporting the effect of genetic variants in genes related to the fluoxetine pharmacokinetics on clinical response in a pediatric population, we now evaluate the impact of genetic markers involved in its pharmacodynamics. The assessment was performed in 83 patients after 12 weeks of fluoxetine treatment. The genetic association analysis included a total of 316 validated single nucleotide polymorphisms in 45 candidate genes involved in six different pathways. Clinical improvement after treatment with fluoxetine in our pediatric population was associated significantly with two polymorphisms located in genes related to the serotonergic system: the 5-hydroxytryptamine receptor 1B (HTR1B) and the tryptophan 5-hydroxylase 2 (TPH2). Although a wide range of candidate genes related to different pathways were assessed, the results show that genetic markers directly related to serotonin have an important effect on fluoxetine response.
[Effect of bemethyl on cytochrome P-450-dependent monoxygenases in the human liver and lymphocytes].
Sorokina, E A; Sibiriak, S V; Sergeeva, S A
2002-01-01
Effects of the actoprotector bemithyl (50 mg/kg, p.o.) upon a single or five-fold administration on the cytochrome P-450 and b5 content and the isoform-specific and nonspecific monooxygenase activity [aminopyrine-N-demethylase, aniline-p-hydroxylase, 4-nitroanisole-o-demethylase,2,5-diphenyloxazole-p-hydroxylase, 7-ethoxyresorufin-o-deethylase (EROD), benzyloxyresorufin-o-debenzylase (BROD)] in rat liver were evaluated. In addition, the influence of bemithyl (0.(1)-100 microM) on the development of EROD and BROD activity was studied on the mitogen-stimulated human lymphocytes in vitro. Administered in rats, bemithyl exhibited the properties of a cytochrome P-450 inductor of the mixed type, which was manifested by an increase in the total cytochrome P-450 content in liver microsomes and in the monooxygenase activity related to both Ah-receptor-dependent and -independent isoforms (except for the aniline-p-hydroxylase activity). The induction of the monooxygenase activity realized by Ah-receptor-dependent isoforms (4-nitroanisole-o-demethylase, 2,5-diphenyloxazole-p-hydroxylase, and EROD activity) was more pronounced, reaching maximum upon a single drug administration. Acting upon the human lymphocytes in vitro, high concentrations of bemithyl increased expression of the EROD activity, while low drug concentrations stimulated the BROD activity.
CINNAMIC ACID HYDROXYLASE IN SPINACH,
An acetone precipitate from an extract of spinach leaves catalysed the hydroxylation of trans- cinnamic acid to p-coumaric acid . The enzyme was...and addition of L-phenylalanine inhibited cinnamic acid hydroxylase activity. (Author)...Tetrahydrofolic acid and a reduced pyridine nucleotide coenzyme were necessary for maximum activity. Aminopterin was a potent inhibitor of the hydroxylating
[Acute tryptophan depletion in eating disorders].
Díaz-Marsa, M; Lozano, C; Herranz, A S; Asensio-Vegas, M J; Martín, O; Revert, L; Saiz-Ruiz, J; Carrasco, J L
2006-01-01
This work describes the rational bases justifying the use of acute tryptophan depletion technique in eating disorders (ED) and the methods and design used in our studies. Tryptophan depletion technique has been described and used in previous studies safely and makes it possible to evaluate the brain serotonin activity. Therefore it is used in the investigation of hypotheses on serotonergic deficiency in eating disorders. Furthermore, and given the relationship of the dysfunctions of serotonin activity with impulsive symptoms, the technique may be useful in biological differentiation of different subtypes, that is restrictive and bulimic, of ED. 57 female patients with DSM-IV eating disorders and 20 female controls were investigated with the tryptophan depletion test. A tryptophan-free amino acid solution was administered orally after a two-day low tryptophan diet to patients and controls. Free plasma tryptophan was measured at two and five hours following administration of the drink. Eating and emotional responses were measured with specific scales for five hours following the depletion. A study of the basic characteristics of the personality and impulsivity traits was also done. Relationship of the response to the test with the different clinical subtypes and with the temperamental and impulsive characteristics of the patients was studied. The test was effective in considerably reducing plasma tryptophan in five hours from baseline levels (76%) in the global sample. The test was well tolerated and no severe adverse effects were reported. Two patients withdrew from the test due to gastric intolerance. The tryptophan depletion test could be of value to study involvement of serotonin deficits in the symptomatology and pathophysiology of eating disorders.
Jiang, Bo; Xiong, Zhe; Yang, Jun; Wang, Wei; Wang, Yue; Hu, Zhuang-Li; Wang, Fang; Chen, Jian-Guo
2012-01-01
BACKGROUND AND PURPOSE Ginsenoside Rg1 (Rg1) is one of the major bioactive ingredients of Panax ginseng with little toxicity and has been shown to have neuroprotective effects. In this study, we investigated the antidepressant-like effect of Rg1 in models of depression in mice. EXPERIMENTAL APPROACH The effects of Rg1 were assessed in the forced swimming test (FST) and tail suspension test (TST) in mice. Rg1 was also investigated in the chronic mild stress (CMS) mouse model of depression with imipramine as the positive control. Changes in hippocampal neurogenesis and spine density, the brain-derived neurotrophic factor (BDNF) signalling pathway, and serum corticosterone level after chronic stress and Rg1 treatment were then investigated. The tryptophan hydroxylase inhibitor and the tyrosine kinase B inhibitor were also used to explore the antidepressive mechanisms of Rg1. KEY RESULTS Ginsenoside Rg1 exhibited antidepressant-like activity in the FST and TST in mice without affecting locomotor activity. It was also effective in the CMS model of depression. Furthermore, Rg1 up-regulated the BDNF signalling pathway in the hippocampus and down-regulated serum corticosterone level during the CMS procedure. In addition, Rg1 was able to reverse the decrease in dendritic spine density and hippocampal neurogenesis caused by CMS. However, Rg1 had no discernable effect on the monoaminergic system. CONCLUSIONS AND IMPLICATIONS Our results provide the first evidence that Rg1 has antidepressant activity via activation of the BDNF signalling pathway and up-regulation of hippocampal neurogenesis. PMID:22335772
Shak, S; Goldstein, I M
1985-09-01
Human polymorphonuclear leukocytes (PMN) not only synthesize and respond to leukotriene B4 (LTB4), but also catabolize this mediator of inflammation rapidly and specifically by omega-oxidation. To characterize the enzyme(s) responsible for omega-oxidation of LTB4, human PMN were disrupted by sonication and subjected to differential centrifugation to yield membrane, granule, and cytosol fractions (identified by biochemical markers). LTB4 omega-hydroxylase activity was concentrated (together with NADPH cytochrome c reductase activity) only in the membrane fraction (specific activity increased 10-fold as compared to whole sonicates, 41% recovery). Negligible activity was detected in granule or cytosol fractions. LTB4 omega-hydroxylase activity in isolated PMN membranes was linear with respect to duration of incubation and protein concentration, was maximal at pH 7.4, had a Km for LTB4 of 0.6 microM, and was dependent on oxygen and on reduced pyridine nucleotides (apparent Km for NADPH = 0.5 microM; apparent Km for NADH = 223 microM). The LTB4 omega-hydroxylase was inhibited significantly by carbon monoxide, ferricytochrome c, SKF-525A, and Triton X-100, but was not affected by alpha-naphthoflavone, azide, cyanide, catalase, and superoxide dismutase. Finally, isolated PMN membranes exhibited a carbon monoxide difference spectrum with a peak at 452 nm. Thus, we have partially purified the LTB4 omega-hydroxylase in human PMN and identified the enzyme as a membrane-associated, NADPH-dependent cytochrome P-450.
Immunomodulatory properties of cacao extracts – potential consequences for medical applications
Becker, Kathrin; Geisler, Simon; Ueberall, Florian; Fuchs, Dietmar; Gostner, Johanna M.
2013-01-01
Anti-inflammatory properties of cacao, fruits of Theobroma cacao L. (Sterculiaceae), are well documented, and therapeutic applications are described for gastrointestinal, nervous, and cardiovascular abnormalities. Most, if not all of these disease conditions involve inflammation or immune activation processes. The pro-inflammatory cytokine interferon-γ (IFN-γ) and related biochemical pathways like tryptophan breakdown by indoleamine 2,3-dioxygenase (IDO) and neopterin formation are deeply involved in their pathogenesis. Neopterin concentrations and the kynurenine to tryptophan ratio (Kyn/Trp, an estimate of IDO activity) are elevated in a significant proportion of patients with virus infections, cancer, autoimmune syndrome, neurodegeneration, and coronary artery disease. Moreover, higher neopterin and Kyn/Trp concentrations are indicative for poor prognosis. When investigating the effect of aqueous or ethanolic extracts of cacao on IFN-γ, neopterin and Kyn/Trp concentrations in mitogen-stimulated human peripheral blood mononuclear cells, breakdown of tryptophan by IDO, and formation of neopterin and IFN-γ were dose-dependently suppressed. The effects observed in the cell-based assays are associated with the antioxidant activity of the cacao extracts as determined by the cell-free oxygen radical absorption capacity assay. The influence of cacao extracts on IDO activity could be of particular relevance for some of the beneficial health effects ascribed to cacao: tryptophan breakdown by IDO is strongly involved in immunoregulation, and the diminished availability of tryptophan limits the biosynthesis of neurotransmitter serotonin. The inhibition of tryptophan breakdown by cacao constituents could thus be relevant not only for immune system restoration in patients, but also contribute to mood elevation and thereby improve quality of life. However, the available data thus far are merely in vitro only and future studies need to investigate the influence of cacao on tryptophan metabolism in vivo. PMID:24376420
Genetics Home Reference: dopamine beta-hydroxylase deficiency
... deficiency Sources for This Page Cubells JF, Zabetian CP. Human genetics of plasma dopamine beta-hydroxylase activity: ... 16. Review. Citation on PubMed Kim CH, Zabetian CP, Cubells JF, Cho S, Biaggioni I, Cohen BM, Robertson ...
Fernandes, Joylee; Mudgal, Jayesh; Rao, Chamallamudi Mallikarjuna; Arora, Devinder; Basu Mallik, Sanchari; Pai, K S R; Nampoothiri, Madhavan
2018-06-01
Neuroinflammation plays an important role in the pathophysiology of Alzheimer's disease. Neurokinin substance P is a key mediator which modulates neuroinflammation through neurokinin receptor. Involvement of substance P in Alzheimer's disease is still plausible and various controversies exist in this hypothesis. Preventing the deleterious effects of substance P using N-acetyl-L-tryptophan, a substance P antagonist could be a promising therapeutic strategy. This study was aimed to evaluate the effect of N-acetyl-L-tryptophan on aluminum induced spatial memory alterations in rats. Memory impairment was induced using aluminum chloride (AlCl 3 ) at a dose of 10 mg/kg for 42 d. After induction of dementia, rats were exposed to 30 and 50 mg/kg of N-acetyl-L-tryptophan for 28 d. Spatial memory alterations were measured using Morris water maze. Acetylcholinesterase activity and antioxidant enzyme glutathione level were assessed in hippocampus, frontal cortex and striatum. The higher dose of N-acetyl-L-tryptophan (50 mg/kg) significantly improved the aluminum induced memory alterations. N-acetyl-L-tryptophan exposure resulted in significant increase in acetylcholinesterase activity and glutathione level in hippocampus. The neuroprotective effect of N-acetyl-L-tryptophan could be due to its ability to block substance P mediated neuroinflammation, reduction in oxidative stress and anti-apoptotic properties. To conclude, N-acetyl-L-tryptophan may be considered as a novel neuroprotective therapy in Alzheimer's disease.
Long-Term Behavioral Recovery in Parkinsonian Rats by an HSV Vector Expressing Tyrosine Hydroxylase
Naegele, Janice R.; O’Malley, Karen L.; Geller, Alfred I.
2006-01-01
One therapeutic approach to treating Parkinson’s disease is to convert endogenous striatal cells into levo-3,4-dihydroxyphenylalanine (l-dopa)–producing cells. A defective herpes simplex virus type 1 vector expressing human tyrosine hydroxylase was delivered into the partially denervated striatum of 6-hydroxydopamine–lesioned rats, used as a model of Parkinson’s disease. Efficient behavioral and biochemical recovery was maintained for 1 year after gene transfer. Biochemical recovery included increases in both striatal tyrosine hydroxylase enzyme activity and in extracellular dopamine concentrations. Persistence of human tyrosine hydroxylase was revealed by expression of RNA and immunoreactivity. PMID:7669103
Jensen, Jesper Bornø; du Jardin, Kristian Gaarn; Song, Dekun; Budac, David; Smagin, Gennady; Sanchez, Connie; Pehrson, Alan Lars
2014-01-01
Depressed patients suffer from cognitive dysfunction, including memory deficits. Acute serotonin (5-HT) depletion impairs memory and mood in vulnerable patients. The investigational multimodal acting antidepressant vortioxetine is a 5-HT3, 5-HT7 and 5-HT1D receptor antagonist, 5-HT1B receptor partial agonist, 5-HT1A receptor agonist and 5-HT transporter (SERT) inhibitor that enhances memory in normal rats in novel object recognition (NOR) and conditioned fear (Mørk et al., 2013). We hypothesized that vortioxetine's 5-HT receptor mechanisms are involved in its memory effects, and therefore investigated these effects in 5-HT depleted rats. Four injections of the irreversible tryptophan hydroxylase inhibitor 4-chloro-dl-phenylalanine methyl ester hydrochloride (PCPA, 86mg/kg, s.c.) induced 5-HT depletion, as measured in hippocampal homogenate and microdialysate. The effects of acute challenge with vortioxetine or the 5-HT releaser fenfluramine on extracellular 5-HT were measured in PCPA-treated and control rats. PCPA's effects on NOR and spontaneous alternation (SA) performance were assessed along with the effects of acute treatment with 5-hydroxy-l-tryptophan (5-HTP), vortioxetine, the selective 5-HT reuptake inhibitor escitalopram, or the 5-HT norepinephrine reuptake inhibitor duloxetine. SERT occupancies were estimated by ex vivo autoradiography. PCPA depleted central 5-HT by >90% in tissue and microdialysate, and impaired NOR and SA performance. Restoring central 5-HT with 5-HTP reversed these deficits. At similar SERT occupancies (>90%) vortioxetine, but not escitalopram or duloxetine, restored memory performance. Acute fenfluramine significantly increased extracellular 5-HT in control and PCPA-treated rats, while vortioxetine did so only in control rats. Thus, vortioxetine restores 5-HT depletion impaired memory performance in rats through one or more of its receptor activities. © 2013 Published by Elsevier B.V. and ECNP.
Drsata, Jaroslav
2003-01-01
Transamination of tryptophan belongs to minor pathways of amino acid metabolism. The present paper describes conditions for application of dinitrophenylhydrazine method, originally prepared for alanine aminortansferase and aspartate aminotransferase assay, to the measurement of tryptophan transamination catalysed by any of the enzymes mentioned above. The method was tested using purified pig heart AST. While the free enzyme showed a characteristic absorption profile with the maxima at 360 and 430 nm, the course of transamination of tryptophan was confirmed by the measurement of UV-VIS spectral changes of the coenzyme in the active site of the enzyme in the presence of the amino acid substrate only, when tryptophan caused a shift of the peak from 360 nm to 330 nm due to a change of the pyridoxal form to the pyridoxamine form (= the first step of ping-pong transaminating reaction). A general limitation of dinitrophenylhydrazine method is the interference of hydrazones formed from the coenzyme pyridoxal-5'-phosphate and from the oxo- substrate 2-oxoglutarate, showing the absorption maxima at 492 nm and 388 nm, respectively with the hydrazones formed by the oxo- products (pyruvate and/or oxaloacetate in the case of ALT/AST, the absorption maxima at 443 nm in our measurements). In the case of tryptophan transamination, indolepyruvate as the oxo- product of a catalysed reaction forms dinitrophenylhydrazone, which has, besides a maximum at 435 nm, a distinct peak at 542 nm, convenient for the product concentration measurement. This is favourable for resolution from other (interfering) hydrazones. Suitable conditions for tryptophan transamination in tissue and enzyme preparations were found. Reaching optimal conditions for tryptophan transamination measurements in vitro is generally limited by low solubility of the amino acid in water solutions: With AST preparation, the velocity of catalysed reaction at 5-50 x 10(-3) M tryptophan concentration was of 1st order to the amino acid substrate. Km for tryptophan was found > or = 2 x 10(-1) M. Therefore the enzyme activity measurement at two different tryptophan concentrations is recommended for unknown samples. Tryptophan transamination by purified pig AST was compared with that catalysed by preparations obtained from mammalian tissues.
Oyekan, A O; Youseff, T; Fulton, D; Quilley, J; McGiff, J C
1999-10-01
Renal function is perturbed by inhibition of nitric oxide synthase (NOS). To probe the basis of this effect, we characterized the effects of nitric oxide (NO), a known suppressor of cytochrome P450 (CYP) enzymes, on metabolism of arachidonic acid (AA), the expression of omega-hydroxylase, and the efflux of 20-hydroxyeicosatetraenoic acid (20-HETE) from the isolated kidney. The capacity to convert [(14)C]AA to HETEs and epoxides (EETs) was greater in cortical microsomes than in medullary microsomes. Sodium nitroprusside (10-100 microM), an NO donor, inhibited renal microsomal conversion of [(14)C]AA to HETEs and EETs in a dose-dependent manner. 8-bromo cGMP (100 microM), the cell-permeable analogue of cGMP, did not affect conversion of [(14)C]AA. Inhibition of NOS with N(omega)-nitro-L-arginine-methyl ester (L-NAME) significantly increased conversion of [(14)C]AA to HETE and greatly increased the expression of omega-hydroxylase protein, but this treatment had only a modest effect on epoxygenase activity. L-NAME induced a 4-fold increase in renal efflux of 20-HETE, as did L-nitroarginine. Oral treatment with 2% sodium chloride (NaCl) for 7 days increased renal epoxygenase activity, both in the cortex and the medulla. In contrast, cortical omega-hydroxylase activity was reduced by treatment with 2% NaCl. Coadministration of L-NAME and 2% NaCl decreased conversion of [(14)C]AA to HETEs without affecting epoxygenase activity. Thus, inhibition of NOS increased omega-hydroxylase activity, CYP4A expression, and renal efflux of 20-HETE, whereas 2% NaCl stimulated epoxygenase activity.
Koh, Kyung Bong; Kim, Chan Hyung; Choi, Eun Hee; Lee, Young-joon; Seo, Won Youl
2012-05-01
Aggression and anger have been linked with depression, and anger suppression has been linked with somatic symptoms of somatoform disorders. However, the relationship between aggression or anger and genes in patients with depression and somatoform disorders has not been clearly elucidated. The objective of this study was to examine the effect of serotonin-related gene polymorphism on aggression in depressive disorders and somatoform disorders. A serotonin-related polymorphic marker was assessed by using single nucleotide polymorphism (SNP) genotyping. 106 outpatients with major depressive disorder (MDD), 102 outpatients with undifferentiated somatoform disorder, and 133 healthy subjects were enrolled between October 2005 and May 2008. Diagnoses were made according to the Korean version of the Structured Clinical Interview Schedule for DSM-IV. The allele and genotype frequencies of tryptophan hydroxylase-1 (TPH1) A218C were compared between groups. The Hamilton Depression Rating Scale and the Aggression Questionnaire were used for psychological assessment. Each of the 2 disorder groups scored significantly higher on all the Aggression Questionnaire subscales and on the total Aggression Questionnaire score than the healthy subjects (P < .001). Patients with MDD had significantly higher frequencies of TPH1 C allele (P = .0002) and CC homozygote (P = .0003) than healthy subjects, regardless of sex and age. However, no significant differences were found in TPH1 C allele and CC homozygote frequencies between the undifferentiated somatoform disorder patients and the healthy subjects. TPH1 CC homozygote in the MDD group scored significantly higher in terms of verbal aggression (P = .03) and total Aggression Questionnaire score (P = .04) than A-carrier genotypes, regardless of sex and age. However, no significant differences were found in the scores of all the Aggression Questionnaire subscales and the total Aggression Questionnaire score between TPH1 CC homozygote and A-carrier genotypes in the undifferentiated somatoform disorder group and the control group, respectively. Aggression in MDD patients is more susceptible to an excess of TPH1 CC homozygote than in undifferentiated somatoform disorder patients, though the 2 disorders are high risk groups for aggression. In addition, TPH1 gene is most likely to have a shared effect on aggression and MDD. © Copyright 2012 Physicians Postgraduate Press, Inc.
Maeda, Toshihisa; Miura, Yasushi; Fukuda, Koji; Hayashi, Shinya; Kurosaka, Masahiro
2015-10-01
Decoy receptor 3 (DcR3) is expressed in rheumatoid arthritis fibroblast‑like synoviocytes (RA‑FLS) and downregulates the expression of tryptophan hydroxylase 1 (TPH1), which is the rate‑limiting enzyme in serotonin synthesis. The aim of the present study was to determine the specificity of the effects of DcR3 on TPH1 in RA‑FLS, and therefore determine whether DcR3 had the potential to modulate the pathogenesis of RA. The present study also aimed to compare the effects of DcR3 and inflammatory cytokines on the expression of TPH1 in RA‑FLS and osteoarthritis (OA)‑FLS. Primary cultured RA‑ or OA‑FLS were incubated with 1.0 µg/ml DcR3‑Fc protein or 1.0 µg/ml control immunoglobulin G (IgG)1 for 12 h, or with 1.0 ng/ml tumor necrosis factor (TNF)α, 1.0 ng/ml interleukin (IL)‑1β or serum‑free Opti‑MEM only, for 24 h. The relative mRNA expression levels of TPH1 were subsequently quantified using reverse transcription‑polymerase chain reaction. The expression of serotonin in RA or OA synovial tissue was detected using immunohistochemistry. The mRNA expression of TPH1 was observed in both RA‑ and OA‑FLS and was significantly decreased following treatment with DcR3 in the RA‑FLS, however, not in the OA‑FLS. The mRNA expression of TPH1 was significantly decreased following treatment with TNFα or IL‑1β in both the RA‑ and OA‑FLS. The expression of serotonin in the multi‑layered lining synovial cells of RA and the outer layer lining synovial cells of OA was detected using immunohistochemistry. The present study is the first, to the best of our knowledge, to demonstrate that the expression of TPH1 in FLS is downregulated by inflammatory cytokines, and that DcR3 suppressed the expression of TPH1 in RA‑FLS in a disease‑specific manner. These results suggested that synovial serotonin may be involved in the pathogenesis of RA, and that TPH1 and DcR3 may be potential therapeutic targets for the treatment of RA.
Kurup, Ravi Kumar; Kurup, Parameswara Achutha
2002-10-01
Previous work from our laboratory has demonstrated the presence of endogenous strychnine in the mammalian brain and human serum samples. The present study examines the role of strychnine in neuropsychiatric disorders. Strychnine is synthesized from tryptophan. The blood levels of tyrosine, tryptophan, and strychnine were studied as also RBC membrane Na(+)-K+ ATPase activity. It was found that serum tyrosine levels were reduced and that tryptophan levels were elevated in all neuropsychiatric disorders studied with a reduction in RBC Na(+)-K+ ATPase activity. Strychnine was present in significant amounts in the serum of patients with epilepsy, Parkinson's disease, and manic depressive psychosis. The presence of strychnine in significant amounts could be related to elevated tryptophan levels, suggesting the synthesis of these alkaloids from tryptophan. Na(+)-K+ ATPase inhibition present in most of the disorders could be related to increased depolarizing strychninergic transmission. The role of strychnine in the pathogenesis of these disorders, in the setting of membrane Na(+)-K+ ATPase inhibition, is discussed.
Schank, J R; Nelson, B S; Damadzic, R; Tapocik, J D; Yao, M; King, C E; Rowe, K E; Cheng, K; Rice, K C; Heilig, M
2015-12-01
Substance P (SP) and its cognate neurokinin-1 receptor (NK1R) are involved in alcohol-related behaviors. We have previously reported that NK1R antagonism attenuates stress-induced reinstatement of alcohol seeking and suppresses escalated alcohol self-administration, but does not affect primary reinforcement or cue-induced reinstatement. Here, we administered an NK1R antagonist or vehicle prior to footshock-induced reinstatement of alcohol seeking, and mapped the resulting neuronal activation using Fos immunohistochemistry. As expected, vehicle treated animals exposed to footshock showed induction of Fos immunoreactivity in several regions of the brain stress circuitry, including the amygdala (AMG), nucleus accumbens (NAC), dorsal raphe nucleus (DR), prefrontal cortex (PFC), and bed nucleus of the stria terminalis (BNST). NK1R antagonism selectively suppressed the stress-induced increase in Fos in the DR and NAC shell. In the DR, Fos-induction by stress largely overlapped with tryptophan hydroxylase (TrpH), indicating activation of serotonergic neurons. Of NAC shell neurons activated during stress-induced reinstatement of alcohol seeking, about 30% co-expressed dynorphin (DYN), while 70% co-expressed enkephalin (ENK). Few (<1%) activated NAC shell neurons coexpressed choline acetyltransferase (ChAT), which labels the cholinergic interneurons of this region. Infusion of the NK1R antagonist L822429 into the NAC shell blocked stress-induced reinstatement of alcohol seeking. In contrast, L822429 infusion into the DR had no effect, suggesting that the influence of NK1R signaling on neuronal activity in the DR is indirect. Taken together, our results outline a potential pathway through which endogenous NK1R activation mediates stress-induced alcohol seeking. Copyright © 2015 Elsevier Ltd. All rights reserved.
Erge, D; Schumann, B; Gröger, D
1984-01-01
L-Tryptophan did not exert any influence on peptide alkaloid formation in an ergotamine and in an ergosine-accumulating C. purpurea strain. A different picture was observed in a series of related C. purpurea strains. Tryptophan showed a slight stimulatory effect on the ergotoxine producer Pepty 695/S. A blocked mutant of it, designated as Pepty 695/ch which was able to accumulate secoclavines gave similar results. In a high-yielding elymoclavine strain Pepty 695/e, the progeny of the former one, tryptophan up to a concentration of 25 mM stimulated remarkably clavine biosynthesis. Furthermore, tryptophan could overcome the block of synthesis by inorganic phosphate. Increased specific activities of chanoclavine cyclase but not DMAT synthetase were observed in cultures of strain Pepty 695/e supplemented with tryptophan. 5-Methyltryptophan and bioisosteres of tryptophan were ineffective in alkaloid stimulation. These results are compared with those obtained with the grass ergot strain SD 58 and discussed with the relation to other induction phenomena.
Gairhe, Salina; Bauer, Natalie N; Gebb, Sarah A; McMurtry, Ivan F
2012-11-01
Myoendothelial gap junctional signaling mediates pulmonary arterial endothelial cell (PAEC)-induced activation of latent TGF-β and differentiation of cocultured pulmonary arterial smooth muscle cells (PASMCs), but the nature of the signal passing from PAECs to PASMCs through the gap junctions is unknown. Because PAECs but not PASMCs synthesize serotonin, and serotonin can pass through gap junctions, we hypothesized that the monoamine is the intercellular signal. We aimed to determine whether PAEC-derived serotonin mediates PAEC-induced myoendothelial gap junction-dependent activation of TGF-β signaling and differentiation of PASMCs. Rat PAECs and PASMCs were monocultured or cocultured with (touch) or without (no-touch) direct cell-cell contact. In all cases, tryptophan hydroxylase 1 (Tph1) transcripts were expressed predominantly in PAECs. Serotonin was detected by immunostaining in both PAECs and PASMCs in PAEC/PASMC touch coculture but was not found in PASMCs in either PAEC/PASMC no-touch coculture or in PASMC/PASMC touch coculture. Furthermore, inhibition of gap junctions but not of the serotonin transporter in PAEC/PASMC touch coculture prevented serotonin transfer from PAECs to PASMCs. Inhibition of serotonin synthesis pharmacologically or by small interfering RNAs to Tph1 in PAECs inhibited the PAEC-induced activation of TGF-β signaling and differentiation of PASMCs. We concluded that serotonin synthesized by PAECs is transferred through myoendothelial gap junctions into PASMCs, where it activates TGF-β signaling and induces a more differentiated phenotype. This finding suggests a novel role of gap junction-mediated intercellular serotonin signaling in regulation of PASMC phenotype.
Liu, Huiying; Xing, Rong; Cheng, Xuefang; Li, Qingran; Liu, Fang; Ye, Hui; Zhao, Min; Wang, Hong; Wang, Guangji; Hao, Haiping
2016-09-20
Tryptophan metabolism is essential in diverse kinds of tumors via regulating tumor immunology. However, the direct role of tryptophan metabolism and its signaling pathway in cancer cells remain largely elusive. Here, we establish a mechanistic link from L-type amino acid transporter 1 (LAT1) mediated transport of tryptophan and the subsequent de-novo NAD+ synthesis to SIRT1-FOXO1 regulated apoptotic signaling in A549 cells in response to NQO1 activation. In response to NQO1 activation, SIRT1 is repressed leading to the increased cellular accumulation of acetylated FOXO1 that transcriptionally activates apoptotic signaling. Decreased uptake of tryptophan due to the downregulation of LAT1 coordinates with PARP-1 hyperactivation to induce rapid depletion of NAD+ pool. Particularly, the LAT1-NAD+-SIRT1 signaling is activated in tumor tissues of patients with non-small cell lung cancer. Because NQO1 activation is characterized with oxidative challenge induced DNA damage, these results suggest that LAT1 and de-novo NAD+ synthesis in NSCLC cells may play essential roles in sensing excessive oxidative stress.
Jin, Un-Ho; Lee, Syng-Ook; Sridharan, Gautham; Lee, Kyongbum; Davidson, Laurie A.; Jayaraman, Arul; Chapkin, Robert S.; Alaniz, Robert
2014-01-01
The tryptophan metabolites indole, indole-3-acetate, and tryptamine were identified in mouse cecal extracts and fecal pellets by mass spectrometry. The aryl hydrocarbon receptor (AHR) agonist and antagonist activities of these microbiota-derived compounds were investigated in CaCo-2 intestinal cells as a model for understanding their interactions with colonic tissue, which is highly aryl hydrocarbon (Ah)–responsive. Activation of Ah-responsive genes demonstrated that tryptamine and indole 3-acetate were AHR agonists, whereas indole was an AHR antagonist that inhibited TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin)–induced CYP1A1 expression. In contrast, the tryptophan metabolites exhibited minimal anti-inflammatory activities, whereas TCDD decreased phorbol ester-induced CXCR4 [chemokine (C-X-C motif) receptor 4] gene expression, and this response was AHR dependent. These results demonstrate that the tryptophan metabolites indole, tryptamine, and indole-3-acetate modulate AHR-mediated responses in CaCo-2 cells, and concentrations of indole that exhibit AHR antagonist activity (100–250 μM) are detected in the intestinal microbiome. PMID:24563545
Treadmill exercise alleviates depressive symptoms in rotenone-induced Parkinson disease rats
Shin, Mal-Soon; Kim, Tae-Woon; Lee, Jae-Min; Sung, Yun-Hee; Lim, Baek-Vin
2017-01-01
Parkinson disease (PD) is characterized by selective loss of the dopaminergic neurons. The symptoms of depression following PD are closely associated with reduced activity of the serotonergic system in the dorsal raphe. We explored the antidepressive effect of exercise and its possible mechanism using the rotenone-induced PD rats. PD rats were induced by subcutaneously injection with rotenone for 14 days. The rats in the exercise groups were made to run on a treadmill for 30 min once a day during 14 consecutive days. Forced swimming test, immunohistochemistry for serotonin (5-hydroxytryptamine, 5-HT), tryptophan hydroxylase (TPH), and western blot for serotonin 1A (5-HT1A) receptor were conducted. Injection of rotenone induced PD rats. PD rats showed depressive state and treadmill exercise ameliorated this depressive state. 5-HT, TPH, and 5-HT1A receptor expressions in the dorsal raphe were suppressed by rotenone injection and treadmill exercise increased the expressions of 5-HT, TPH, and 5-HT1A receptor in the rotenone-injected rats. The present results show that treadmill exercise ameliorated depressive symptoms in the rotenone-induced PD rats. The antidepressive effect of treadmill exercise might be ascribed to the enhancement of serotonergic function through upregulation of 5-HT1A expression in the dorsal raphe. PMID:28503522
Treadmill exercise alleviates depressive symptoms in rotenone-induced Parkinson disease rats.
Shin, Mal-Soon; Kim, Tae-Woon; Lee, Jae-Min; Sung, Yun-Hee; Lim, Baek-Vin
2017-04-01
Parkinson disease (PD) is characterized by selective loss of the dopaminergic neurons. The symptoms of depression following PD are closely associated with reduced activity of the serotonergic system in the dorsal raphe. We explored the antidepressive effect of exercise and its possible mechanism using the rotenone-induced PD rats. PD rats were induced by subcutaneously injection with rotenone for 14 days. The rats in the exercise groups were made to run on a treadmill for 30 min once a day during 14 consecutive days. Forced swimming test, immunohistochemistry for serotonin (5-hydroxytryptamine, 5-HT), tryptophan hydroxylase (TPH), and western blot for serotonin 1A (5-HT1A) receptor were conducted. Injection of rotenone induced PD rats. PD rats showed depressive state and treadmill exercise ameliorated this depressive state. 5-HT, TPH, and 5-HT1A receptor expressions in the dorsal raphe were suppressed by rotenone injection and treadmill exercise increased the expressions of 5-HT, TPH, and 5-HT1A receptor in the rotenone-injected rats. The present results show that treadmill exercise ameliorated depressive symptoms in the rotenone-induced PD rats. The antidepressive effect of treadmill exercise might be ascribed to the enhancement of serotonergic function through upregulation of 5-HT1A expression in the dorsal raphe.
The timing and location of GDNF expression determines enteric nervous system structure and function
Wang, Hongtao; Hughes, Inna; Planer, William; Parsadanian, Alexander; Grider, John R.; Vohra, Bhupinder P.S.; Keller-Peck, Cynthia; Heuckeroth, Robert O.
2010-01-01
Ret signaling is critical for formation of the enteric nervous system (ENS) because Ret activation promotes ENS precursor survival, proliferation, and migration and provides trophic support for mature enteric neurons. While these roles are well established, we now provide evidence that increasing levels of the Ret ligand GDNF in mice causes alterations in ENS structure and function that are critically dependent on the time and location of increased GDNF availability. This is demonstrated using two different strains of transgenic mice and by injecting newborn mice with GDNF. Furthermore, because different subclasses of ENS precursors withdraw from the cell cycle at different times during development, increases in GDNF at specific times alter the ratio of neuronal subclasses in the mature ENS. In addition, we confirm that esophageal neurons are GDNF responsive and demonstrate that the location of GDNF production influences neuronal process projection for NADPH diaphorase expressing, but not acetylcholinesterase, choline acetyltransferase, or tryptophan hydroxylase expressing small bowel myenteric neurons. We further demonstrate that changes in GDNF availability influence intestinal function in vitro and in vivo. Thus, changes in GDNF expression can create a wide variety of alterations in ENS structure and function and may in part contribute to human motility disorders. PMID:20107080
Wang, Hongtao; Hughes, Inna; Planer, William; Parsadanian, Alexander; Grider, John R; Vohra, Bhupinder P S; Keller-Peck, Cynthia; Heuckeroth, Robert O
2010-01-27
Ret signaling is critical for formation of the enteric nervous system (ENS) because Ret activation promotes ENS precursor survival, proliferation, and migration and provides trophic support for mature enteric neurons. Although these roles are well established, we now provide evidence that increasing levels of the Ret ligand glial cell line-derived neurotrophic factor (GDNF) in mice causes alterations in ENS structure and function that are critically dependent on the time and location of increased GDNF availability. This is demonstrated using two different strains of transgenic mice and by injecting newborn mice with GDNF. Furthermore, because different subclasses of ENS precursors withdraw from the cell cycle at different times during development, increases in GDNF at specific times alter the ratio of neuronal subclasses in the mature ENS. In addition, we confirm that esophageal neurons are GDNF responsive and demonstrate that the location of GDNF production influences neuronal process projection for NADPH diaphorase-expressing, but not acetylcholinesterase-, choline acetyltransferase-, or tryptophan hydroxylase-expressing, small bowel myenteric neurons. We further demonstrate that changes in GDNF availability influence intestinal function in vitro and in vivo. Thus, changes in GDNF expression can create a wide variety of alterations in ENS structure and function and may in part contribute to human motility disorders.
NASA Astrophysics Data System (ADS)
Aghapoor, Kioumars; Amini, Mostafa M.; Jadidi, Khosrow; Mohsenzadeh, Farshid; Darabi, Hossein Reza; Sayahi, Hani; Jalali, Mohammad Reza
2015-11-01
L-tryptophan is adsorbed on the titania surface of Ti/MCM-41 (L-tryp≡Ti/MCM-41) as a novel material via two steps. Ti/MCM-41 was first prepared by grafting TiCl4 on activated MCM-41 mesoporous silica in an anhydrous THF. Subsequent adsorption of L-tryptophan on the surface of grafted Ti sites from an aqueous solution afforded L-tryp≡Ti/MCM-41. Characterization of the material was carried out with thermogravimetric and differential thermogravimetric analyses, powder X-ray diffraction, BET and BJH nitrogen adsorption-desorption methods, Fourier transform infrared, UV-Visible, and energy dispersive X-ray spectroscopes. The results indicate that the adsorption of L-tryptophan on the surface of Ti/MCM-41 occurred. L-tryp≡Ti/MCM-41 was applied successfully as a heterogeneous catalyst for the ring opening of styrene oxide with aniline derivatives and demonstrated high to excellent activity and regioselectivity under microwave irradiation and solvent-free conditions. This thermal-resistant catalyst can be recycled at least five times without appreciable loss of activity, which confirms the strong adsorption of L-tryptophan on Ti/MCM-41.
Fu, Jian; Taubman, Mark B.
2010-01-01
The egg-laying abnormal-9 (EGLN) prolyl hydroxylases have been shown to regulate the stability and thereby the activity of the α subunits of hypoxia-inducible factor (HIF) through its ability to catalyze their hydroxylation. We have previously shown that EGLN3 promotes differentiation of C2C12 skeletal myoblasts. However, the mechanism underlying this effect remains to be fully elucidated. Here, we report that exposure of C2C12 cells to dimethyl oxalylglycine (DMOG), desferrioxamine, and hypoxia, all inhibitors of prolyl hydroxylase activity, led to repression of C2C12 myogenic differentiation. Inactivation of HIF by expression of a HIF dominant-negative mutant or deletion of HIF-1α by RNA interference did not affect the inhibitory effect of DMOG, suggesting that the effect of DMOG is HIF-independent. Pharmacologic inactivation of EGLN3 hydroxylase resulted in activation of the canonical NF-κB pathway. The inhibitory effect of DMOG on myogenic differentiation was markedly impaired in C2C12 cells expressing a dominant-negative mutant of IκBα. Exogenous expression of wild-type EGLN3, but not its catalytically inactive mutant, significantly inhibited NF-κB activation induced by overexpressed TRAF2 or IκB kinase 2. In contrast, deletion of EGLN3 by small interfering RNAs led to activation of NF-κB. These data suggest that EGLN3 is a negative regulator of NF-κB, and its prolyl hydroxylase activity is required for this effect. Furthermore, wild-type EGLN3, but not its catalytically inactive mutant, potentiated myogenic differentiation. This study demonstrates a novel role for EGLN3 in the regulation of NF-κB and suggests that it is involved in mediating myogenic differentiation, which is HIF-independent. PMID:20089853
Stringency of the 2-His–1-Asp Active-Site Motif in Prolyl 4-Hydroxylase
Gorres, Kelly L.; Pua, Khian Hong; Raines, Ronald T.
2009-01-01
The non-heme iron(II) dioxygenase family of enzymes contain a common 2-His–1-carboxylate iron-binding motif. These enzymes catalyze a wide variety of oxidative reactions, such as the hydroxylation of aliphatic C–H bonds. Prolyl 4-hydroxylase (P4H) is an α-ketoglutarate-dependent iron(II) dioxygenase that catalyzes the post-translational hydroxylation of proline residues in protocollagen strands, stabilizing the ensuing triple helix. Human P4H residues His412, Asp414, and His483 have been identified as an iron-coordinating 2-His–1-carboxylate motif. Enzymes that catalyze oxidative halogenation do so by a mechanism similar to that of P4H. These halogenases retain the active-site histidine residues, but the carboxylate ligand is replaced with a halide ion. We replaced Asp414 of P4H with alanine (to mimic the active site of a halogenase) and with glycine. These substitutions do not, however, convert P4H into a halogenase. Moreover, the hydroxylase activity of D414A P4H cannot be rescued with small molecules. In addition, rearranging the two His and one Asp residues in the active site eliminates hydroxylase activity. Our results demonstrate a high stringency for the iron-binding residues in the P4H active site. We conclude that P4H, which catalyzes an especially demanding chemical transformation, is recalcitrant to change. PMID:19890397
[Effect of space flight on the Kosmos-1129 biosatellite on enzyme activity of the rat liver].
Nemeth, S; Tigranian, R A
1983-01-01
After the 18.5 day Cosmos-1129 flight the activity of 7 glucocorticoid-stimulated enzymes of the rat liver was measured. Immediately postflight the activity of tyrosine aminotransferase, tryptophan pyrolase and serine dehydrogenase increased. These enzymes rapidly (within several hours) react to increased glucocorticoids. The activity of aspartate and alanine aminotransferases also increased. These enzymes require many days of a continuous effect of glucocorticoids. The glycogen concentration in the rat liver also grew. At R + 6 the activity of tryptophan pyrolase and serine dehydrogenase decreased and that of the other enzymes returned to normal. The immobilization stress applied postflight led to an increased activity of tyrosine aminotransferase and tryptophan pyrolase. This study gives evidence that after space flight rats are in an acute stress state, evidently, produced by the biosatellite recovery.
Effects of a tryptophan supplemented diet and U.V. radiation on the rat lens.
Mathur, R L; Sahai, P
1990-01-01
Rats maintained on a tryptophan supplemented diet and exposed to U.V. radiation showed decreased concentration of ascorbic acid in serum. In the lens, a small increase in the urea-mercaptoethanol soluble fraction was observed suggesting some oxidation of P-SH groups. The decreased concentrations of lens glutathione and ascorbic acid were accompanied with increased concentration of malondialdehyde suggesting increased oxidative stress. The activities of glutathione peroxidase decreased by about 40%. Though the activity of glutathione reductase decreased by about 58%, addition of FAD in the enzyme assay system showed restoration of lost activity. Additive effect of raised serum tryptophan concentration and ultraviolet radiation in causing damage to the eye lens is suggested.
TRYPTOPHANASE-TRYPTOPHAN SYNTHETASE SYSTEMS IN ESCHERICHIA COLI I.
Freundlich, Martin; Lichstein, Herman C.
1962-01-01
Freundlich, Martin (University of Minnesota, Minneapolis) and Herman C. Lichstein. Tryptophanase-tryptophan synthetase systems in Escherichia coli. I. Effect of tryptophan and related compounds. J. Bacteriol. 84:979–987. 1962.—The effect of tryptophan and related compounds on tryptophanase and tryptophan synthetase formation in Escherichia coli was determined. Several of these compounds stimulated the formation of tryptophanase while concomitantly decreasing the production of synthetase. A number of tryptophan analogues were found to inhibit growth. The possible mode of action of these substances was examined further. 5-Hydroxytryptophan greatly inhibited the formation of synthetase and also reduced growth. Its inhibitory action on growth was attributed, at least partially, to the false feedback inhibition of anthranilic acid formation. Tryptamine was found to be a potent inhibitor of the activity of synthetase, as well as of the enzyme(s) involved in the synthesis of anthranilic acid from shikimic acid. However, growth reduction was only partially reversed by tryptophan. Indole-3-acetic acid and indole-3-propionic acid decreased growth and increased the formation of synthetase six- to eightfold. The action of these compounds was ascribed to their ability to block the endogenous formation of tryptophan. PMID:13959621
USDA-ARS?s Scientific Manuscript database
The effects of azole-type P450 inhibitors and two metabolism-resistant ABA analogs on in vitro ABA 8'-hydroxylase activity, in planta ABA metabolism, endogenous ABA content, and tuber meristem dormancy duration were examined in potato (Solanum tuberosum L. cv. Russet Burbank). When functionally expr...
Alkane hydroxylase genes in psychrophile genomes and the potential for cold active catalysis.
Bowman, Jeff S; Deming, Jody W
2014-12-16
Psychrophiles are presumed to play a large role in the catabolism of alkanes and other components of crude oil in natural low temperature environments. In this study we analyzed the functional diversity of genes for alkane hydroxylases, the enzymes responsible for converting alkanes to more labile alcohols, as found in the genomes of nineteen psychrophiles for which alkane degradation has not been reported. To identify possible mechanisms of low temperature optimization we compared putative alkane hydroxylases from these psychrophiles with homologues from nineteen taxonomically related mesophilic strains. Seven of the analyzed psychrophile genomes contained a total of 27 candidate alkane hydroxylase genes, only two of which are currently annotated as alkane hydroxylase. These candidates were mostly related to the AlkB and cytochrome p450 alkane hydroxylases, but several homologues of the LadA and AlmA enzymes, significant for their ability to degrade long-chain alkanes, were also detected. These putative alkane hydroxylases showed significant differences in primary structure from their mesophile homologues, with preferences for specific amino acids and increased flexibility on loops, bends, and α-helices. A focused analysis on psychrophile genomes led to discovery of numerous candidate alkane hydroxylase genes not currently annotated as alkane hydroxylase. Gene products show signs of optimization to low temperature, including regions of increased flexibility and amino acid preferences typical of psychrophilic proteins. These findings are consistent with observations of microbial degradation of crude oil in cold environments and identify proteins that can be targeted in rate studies and in the design of molecular tools for low temperature bioremediation.
[Tyrosine hydroxylase in telencephalon and diencephalon of Rhodeus sericeus (Cyprinidae)].
Pushchina, E V
2009-01-01
Immunohistochemical labeling of tyrosine hydroxylase was used to demonstrate catecholaminergic neuronal populations in the telencephalon and diencephalonof adult cypryniform fish Rhodeus sericeus. Various immunoreactive cell populations have been found in the telencephalon (ventral, central and lateral nuclei of ventral telencephalic area). Immunoreactive cells and fibers were discovered in dorsal nucleus of ventral telencephalic area and supracomissural nucleus in the caudal part of the telencephalon. In the diencephalon, periventricular nuclei (preoptic, periventricular nucleus of posterior tuberculum and periventricular organ) contained considerable TH-ergic cells. High activity of tyrosine hydroxylase was revealed in the pretectal, ventro-medial, ventro-lateral and suprachiasmatic nuclei. Periventricular hypothalamic nuclei also displayed high activity of tyrosine hydroxylase. Pseudounipolar neurons prevailed in all TH-immunereactive structures of the telencephalon and diencephalon: numerous bipolar liquor-contacting cells were discovered in the periventricular nuclei. Large pear-shaped cells and bipolar TH-ergic cells were found in posterior tuberculum. These cells may be functionally related to the dopamine-acquiring system.
Weis, MaryAnn; Rai, Jyoti; Hudson, David M.; Dimori, Milena; Zimmerman, Sarah M.; Hogue, William R.; Swain, Frances L.; Burdine, Marie S.; Mackintosh, Samuel G.; Tackett, Alan J.; Suva, Larry J.; Eyre, David R.
2016-01-01
Collagen is a major component of the extracellular matrix and its integrity is essential for connective tissue and organ function. The importance of proteins involved in intracellular collagen post-translational modification, folding and transport was recently highlighted from studies on recessive forms of osteogenesis imperfecta (OI). Here we describe the critical role of SC65 (Synaptonemal Complex 65, P3H4), a leprecan-family member, as part of an endoplasmic reticulum (ER) complex with prolyl 3-hydroxylase 3. This complex affects the activity of lysyl-hydroxylase 1 potentially through interactions with the enzyme and/or cyclophilin B. Loss of Sc65 in the mouse results in instability of this complex, altered collagen lysine hydroxylation and cross-linking leading to connective tissue defects that include low bone mass and skin fragility. This is the first indication of a prolyl-hydroxylase complex in the ER controlling lysyl-hydroxylase activity during collagen synthesis. PMID:27119146
Aniline Is an Inducer, and Not a Precursor, for Indole Derivatives in Rubrivivax benzoatilyticus JA2
Mohammed, Mujahid; Ch, Sasikala; Ch, Ramana V.
2014-01-01
Rubrivivax benzoatilyticus JA2 and other anoxygenic photosynthetic bacteria produce indole derivatives when exposed to aniline, a xenobiotic compound. Though this phenomenon has been reported previously, the role of aniline in the production of indoles is still a biochemical riddle. The present study aims at understanding the specific role of aniline (as precursor or stimulator) in the production of indoles and elucidating the biochemical pathway of indoles in aniline-exposed cells by using stable isotope approaches. Metabolic profiling revealed tryptophan accumulation only in aniline exposed cells along with indole 3-acetic acid (IAA) and indole 3-aldehyde (IAld), the two major catabolites of tryptophan. Deuterium labelled aniline feeding studies revealed that aniline is not a precursor of indoles in strain JA2. Further, production of indoles only in aniline-exposed cells suggests that aniline is an indoles stimulator. In addition, production of indoles depended on the presence of a carbon source, and production enhanced when carbon sources were added to the culture. Isotope labelled fumarate feeding identified, fumarate as the precursor of indole, indicating de novo synthesis of indoles. Glyphosate (shikimate pathway inhibitor) inhibited the indoles production, accumulation of tryptophan, IAA and IAld indicating that indoles synthesis in strain JA2 occurs via the de novo shikimate pathway. The up-regulation of anthranilate synthase gene and induction of anthranilate synthase activity correlated well with tryptophan production in strain JA2. Induction of tryptophan aminotransferase and tryptophan 2-monooxygenase activities corroborated well with IAA levels, suggesting that tryptophan catabolism occurs simultaneously in aniline exposed cells. Our study demonstrates that aniline (stress) stimulates tryptophan/indoles synthesis via the shikimate pathway by possibly modulating the metabolic pathway. PMID:24533057
Mujahid, Mohammed; Sasikala, Ch; Ramana, Ch V
2014-01-01
Rubrivivax benzoatilyticus JA2 and other anoxygenic photosynthetic bacteria produce indole derivatives when exposed to aniline, a xenobiotic compound. Though this phenomenon has been reported previously, the role of aniline in the production of indoles is still a biochemical riddle. The present study aims at understanding the specific role of aniline (as precursor or stimulator) in the production of indoles and elucidating the biochemical pathway of indoles in aniline-exposed cells by using stable isotope approaches. Metabolic profiling revealed tryptophan accumulation only in aniline exposed cells along with indole 3-acetic acid (IAA) and indole 3-aldehyde (IAld), the two major catabolites of tryptophan. Deuterium labelled aniline feeding studies revealed that aniline is not a precursor of indoles in strain JA2. Further, production of indoles only in aniline-exposed cells suggests that aniline is an indoles stimulator. In addition, production of indoles depended on the presence of a carbon source, and production enhanced when carbon sources were added to the culture. Isotope labelled fumarate feeding identified, fumarate as the precursor of indole, indicating de novo synthesis of indoles. Glyphosate (shikimate pathway inhibitor) inhibited the indoles production, accumulation of tryptophan, IAA and IAld indicating that indoles synthesis in strain JA2 occurs via the de novo shikimate pathway. The up-regulation of anthranilate synthase gene and induction of anthranilate synthase activity correlated well with tryptophan production in strain JA2. Induction of tryptophan aminotransferase and tryptophan 2-monooxygenase activities corroborated well with IAA levels, suggesting that tryptophan catabolism occurs simultaneously in aniline exposed cells. Our study demonstrates that aniline (stress) stimulates tryptophan/indoles synthesis via the shikimate pathway by possibly modulating the metabolic pathway.
Marco, Rossella De; Gentilucci, Luca
2017-11-01
Recently, a new family of opioid peptides containing tryptophan came to the spotlight for the absence of the fundamental protonable tyramine 'message' pharmacophore. Structure-activity relationship investigations led to diverse compounds, characterized by different selectivity profiles and agonist or antagonist effects. Substitution at the indole of Trp clearly impacted peripheral/central antinociceptivity. These peculiarities prompted to gather all the compounds in a new class, and to coin the definition 'Tryptophan-Containing Non-Cationizable Opioid Peptides', in short 'TryCoNCOPs'. Molecular docking analysis suggested that the TryCoNCOPs can still interact with the receptors in an agonist-like fashion. However, most TryCoNCOPs showed significant differences between the in vitro and in vivo activities, suggesting that opioid activity may be elicited also via alternative mechanisms.
Jaeger; Lindow; Miller; Clark; Firestone
1999-06-01
We developed a technique to map the availability of sugars and amino acids along live roots in an intact soil-root matrix with native microbial soil flora and fauna present. It will allow us to study interactions between root exudates and soil microorganisms at the fine spatial scale necessary to evaluate mechanisms of nitrogen cycling in the rhizosphere. Erwinia herbicola 299R harboring a promoterless ice nucleation reporter gene, driven by either of two nutrient-responsive promoters, was used as a biosensor. Strain 299RTice exhibits tryptophan-dependent ice nucleation activity, while strain 299R(p61RYice) expresses ice nucleation activity proportional to sucrose concentration in its environment. Both biosensors exhibited up to 100-fold differences in ice nucleation activity in response to varying substrate abundance in culture. The biosensors were introduced into the rhizosphere of the annual grass Avena barbata and, as a control, into bulk soil. Neither strain exhibited significant ice nucleation activity in the bulk soil. Both tryptophan and sucrose were detected in the rhizosphere, but they showed different spatial patterns. Tryptophan was apparently most abundant in soil around roots 12 to 16 cm from the tip, while sucrose was most abundant in soil near the root tip. The largest numbers of bacteria (determined by acridine orange staining and direct microscopy) occurred near root sections with the highest apparent sucrose or tryptophan exudation. High sucrose availability at the root tip is consistent with leakage of photosynthate from immature, rapidly growing root tissues, while tryptophan loss from older root sections may result from lateral root perforation of the root epidermis.
Weber, Tillmann; Vogt, Miriam A; Gartside, Sarah E; Berger, Stefan M; Lujan, Rafael; Lau, Thorsten; Herrmann, Elke; Sprengel, Rolf; Bartsch, Dusan; Gass, Peter
2015-05-01
Both the glutamatergic and serotonergic (5-HT) systems are implicated in the modulation of mood and anxiety. Descending cortical glutamatergic neurons regulate 5-HT neuronal activity in the midbrain raphe nuclei through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors. To analyze the functional role of GLUA1-containing AMPA receptors in serotonergic neurons, we used the Cre-ERT2/loxP-system for the conditional inactivation of the GLUA1-encoding Gria1 gene selectively in 5-HT neurons of adult mice. These Gria1(5-HT-/-) mice exhibited a distinct anxiety phenotype but showed no alterations in locomotion, depression-like behavior, or learning and memory. Increased anxiety-related behavior was associated with significant decreases in tryptophan hydroxylase 2 (TPH2) expression and activity, and subsequent reductions in tissue levels of 5-HT, its metabolite 5-hydroxyindoleacetic acid (5-HIAA), and norepinephrine in the raphe nuclei. However, TPH2 expression and activity as well as monoamine levels were unchanged in the projection areas of 5-HT neurons. Extracellular electrophysiological recordings of 5-HT neurons revealed that, while α1-adrenoceptor-mediated excitation was unchanged, excitatory responses to AMPA were enhanced and the 5-HT1A autoreceptor-mediated inhibitory response to 5-HT was attenuated in Gria1(5-HT-/-) mice. Our data show that a loss of GLUA1 protein in 5-HT neurons enhances AMPA receptor function and leads to multiple local molecular and neurochemical changes in the raphe nuclei that dysregulate 5-HT neuronal activity and induce anxiety-like behavior.
Liu, Feng-Guo; Hu, Wen-Feng; Wang, Ji-Li; Wang, Peng; Gong, Yu; Tong, Li-Juan; Jiang, Bo; Zhang, Wei; Qin, Yi-Bin; Chen, Zhuo
2017-01-01
Abstract Background: Z-guggulsterone, an active compound extracted from the gum resin of the tree Commiphora mukul, has been shown to improve animal memory deficits via activating the brain-derived neurotrophic factor signaling pathway. Here, we investigated the antidepressant-like effect of Z-guggulsterone in a chronic unpredictable stress mouse model of depression. Methods: The effects of Z-guggulsterone were assessed in mice with the tail suspension test and forced swimming test. Z-guggulsterone was also investigated in the chronic unpredictable stress model of depression with fluoxetine as the positive control. Changes in hippocampal neurogenesis as well as the brain-derived neurotrophic factor signaling pathway after chronic unpredictable stress/Z-guggulsterone treatment were investigated. The tryptophan hydroxylase inhibitor and the tyrosine kinase B inhibitor were also used to explore the antidepressant-like mechanisms of Z-guggulsterone. Results: Z-guggulsterone (10, 30 mg/kg) administration protected the mice against the chronic unpredictable stress-induced increases in the immobile time in the tail suspension test and forced swimming test and also reversed the reduction in sucrose intake in sucrose preference experiment. Z-guggulsterone (10, 30 mg/kg) administration prevented the reductions in brain-derived neurotrophic factor protein expression levels as well as the phosphorylation levels of cAMP response element binding protein, extracellular signal-regulated kinase 1/2, and protein kinase B in the hippocampus and cortex induced by chronic unpredictable stress. Z-guggulsterone (10, 30 mg/kg) treatment also improved hippocampal neurogenesis in chronic unpredictable stress-treated mice. Blockade of the brain-derived neurotrophic factor signal, but not the monoaminergic system, attenuated the antidepressant-like effects of Z-guggulsterone. Conclusions: Z-guggulsterone exhibits antidepressant activity via activation of the brain-derived neurotrophic factor signaling pathway and upregulation of hippocampal neurogenesis. PMID:28339691
Cheng, Xuefang; Li, Qingran; Liu, Fang; Ye, Hui; Zhao, Min; Wang, Hong; Wang, Guangji; Hao, Haiping
2016-01-01
Tryptophan metabolism is essential in diverse kinds of tumors via regulating tumor immunology. However, the direct role of tryptophan metabolism and its signaling pathway in cancer cells remain largely elusive. Here, we establish a mechanistic link from L-type amino acid transporter 1 (LAT1) mediated transport of tryptophan and the subsequent de-novo NAD+ synthesis to SIRT1-FOXO1 regulated apoptotic signaling in A549 cells in response to NQO1 activation. In response to NQO1 activation, SIRT1 is repressed leading to the increased cellular accumulation of acetylated FOXO1 that transcriptionally activates apoptotic signaling. Decreased uptake of tryptophan due to the downregulation of LAT1 coordinates with PARP-1 hyperactivation to induce rapid depletion of NAD+ pool. Particularly, the LAT1-NAD+-SIRT1 signaling is activated in tumor tissues of patients with non-small cell lung cancer. Because NQO1 activation is characterized with oxidative challenge induced DNA damage, these results suggest that LAT1 and de-novo NAD+ synthesis in NSCLC cells may play essential roles in sensing excessive oxidative stress. PMID:27566573
24-Hydroxylase in Cancer: Impact on Vitamin D-based Anticancer Therapeutics
Luo, Wei; Hershberger, Pamela A.; Trump, Donald L.; Johnson, Candace S.
2013-01-01
The active vitamin D hormone 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) plays a major role in regulating calcium homeostasis and bone mineralization. 1,25(OH)2D3 also modulates cellular proliferation and differentiation in a variety of cell types. 24-hydroxylase, encoded by the CYP24A1 gene, is the key enzyme which converts 1,25(OH)2D3 to less active calcitroic acid. Nearly all cell types express 24-hydroxylase, the highest activity being observed in the kidney. There is increasing evidence linking the incidence and prognosis of certain cancers to low serum 25 (OH)D3 levels and high expression of vitamin D 24-hydroxylase supporting the idea that elevated CYP24A1 expression may stimulate degradation of vitamin D metabolites including 25-(OH)D3 and 1,25(OH)2D3. The over expression of CYP24A1 in cancer cells may be a factor affecting 1,25(OH)2D3 bioavailability and anti-proliferative activity pre-clinically and clinically. The combination of 1,25(OH)2D3 with CYP24A1 inhibitors enhances 1,25(OH)2D3 mediated signaling and anti-proliferative effects and may be useful in overcoming effects of aberrant CYP24 expression. PMID:23059474
Soga, Tomoko; Teo, Chuin Hau; Cham, Kai Lin; Idris, Marshita Mohd; Parhar, Ishwar S
2015-01-01
Social isolation in early life deregulates the serotonergic system of the brain, compromising reproductive function. Gonadotropin-inhibitory hormone (GnIH) neurons in the dorsomedial hypothalamic nucleus are critical to the inhibitory regulation of gonadotropin-releasing hormone neuronal activity in the brain and release of luteinizing hormone by the pituitary gland. Although GnIH responds to stress, the role of GnIH in social isolation-induced deregulation of the serotonin system and reproductive function remains unclear. We investigated the effect of social isolation in early life on the serotonergic-GnIH neuronal system using enhanced green fluorescent protein (EGFP)-tagged GnIH transgenic rats. Socially isolated rats were observed for anxious and depressive behaviors. Using immunohistochemistry, we examined c-Fos protein expression in EGFP-GnIH neurons in 9-week-old adult male rats after 6 weeks post-weaning isolation or group housing. We also inspected serotonergic fiber juxtapositions in EGFP-GnIH neurons in control and socially isolated male rats. Socially isolated rats exhibited anxious and depressive behaviors. The total number of EGFP-GnIH neurons was the same in control and socially isolated rats, but c-Fos expression in GnIH neurons was significantly reduced in socially isolated rats. Serotonin fiber juxtapositions on EGFP-GnIH neurons were also lower in socially isolated rats. In addition, levels of tryptophan hydroxylase mRNA expression in the dorsal raphe nucleus were significantly attenuated in these rats. These results suggest that social isolation in early-life results in lower serotonin levels, which reduce GnIH neuronal activity and may lead to reproductive failure.
Gwynne, William D; Hallett, Robin M; Girgis-Gabardo, Adele; Bojovic, Bojana; Dvorkin-Gheva, Anna; Aarts, Craig; Dias, Kay; Bane, Anita; Hassell, John A
2017-01-01
Breast tumors comprise an infrequent tumor cell population, termed breast tumor initiating cells (BTIC), which sustain tumor growth, seed metastases and resist cytotoxic therapies. Hence therapies are needed to target BTIC to provide more durable breast cancer remissions than are currently achieved. We previously reported that serotonergic system antagonists abrogated the activity of mouse BTIC resident in the mammary tumors of a HER2-overexpressing model of breast cancer. Here we report that antagonists of serotonin (5-hydroxytryptamine; 5-HT) biosynthesis and activity, including US Federal Food and Drug Administration (FDA)-approved antidepressants, targeted BTIC resident in numerous breast tumor cell lines regardless of their clinical or molecular subtype. Notably, inhibitors of tryptophan hydroxylase 1 (TPH1), required for 5-HT biosynthesis in select non-neuronal cells, the serotonin reuptake transporter (SERT) and several 5-HT receptors compromised BTIC activity as assessed by functional sphere-forming assays. Consistent with these findings, human breast tumor cells express TPH1, 5-HT and SERT independent of their molecular or clinical subtype. Exposure of breast tumor cells ex vivo to sertraline (Zoloft), a selective serotonin reuptake inhibitor (SSRI), reduced BTIC frequency as determined by transplanting drug-treated tumor cells into immune-compromised mice. Moreover, another SSRI (vilazodone; Viibryd) synergized with chemotherapy to shrink breast tumor xenografts in immune-compromised mice by inhibiting tumor cell proliferation and inducing their apoptosis. Collectively our data suggest that antidepressants in combination with cytotoxic anticancer therapies may be an appropriate treatment regimen for testing in clinical trials. PMID:28404880
Gwynne, William D; Hallett, Robin M; Girgis-Gabardo, Adele; Bojovic, Bojana; Dvorkin-Gheva, Anna; Aarts, Craig; Dias, Kay; Bane, Anita; Hassell, John A
2017-05-09
Breast tumors comprise an infrequent tumor cell population, termed breast tumor initiating cells (BTIC), which sustain tumor growth, seed metastases and resist cytotoxic therapies. Hence therapies are needed to target BTIC to provide more durable breast cancer remissions than are currently achieved. We previously reported that serotonergic system antagonists abrogated the activity of mouse BTIC resident in the mammary tumors of a HER2-overexpressing model of breast cancer. Here we report that antagonists of serotonin (5-hydroxytryptamine; 5-HT) biosynthesis and activity, including US Federal Food and Drug Administration (FDA)-approved antidepressants, targeted BTIC resident in numerous breast tumor cell lines regardless of their clinical or molecular subtype. Notably, inhibitors of tryptophan hydroxylase 1 (TPH1), required for 5-HT biosynthesis in select non-neuronal cells, the serotonin reuptake transporter (SERT) and several 5-HT receptors compromised BTIC activity as assessed by functional sphere-forming assays. Consistent with these findings, human breast tumor cells express TPH1, 5-HT and SERT independent of their molecular or clinical subtype. Exposure of breast tumor cells ex vivo to sertraline (Zoloft), a selective serotonin reuptake inhibitor (SSRI), reduced BTIC frequency as determined by transplanting drug-treated tumor cells into immune-compromised mice. Moreover, another SSRI (vilazodone; Viibryd) synergized with chemotherapy to shrink breast tumor xenografts in immune-compromised mice by inhibiting tumor cell proliferation and inducing their apoptosis. Collectively our data suggest that antidepressants in combination with cytotoxic anticancer therapies may be an appropriate treatment regimen for testing in clinical trials.
The Mechanisms and Effects of the Plant Activation of Chemicals in the Environment
1991-12-02
amino- Uilich et al., 1973; Raz- fluorene-N-hydroxylase. zouk et al., 1980 * Did not inhibit the TXI cell activation of m-PDA, howev- Wagner et al...P450 in mammals and Goujon et al., 1972, Car- yeast. Inhibited 2-AF hydroxylase. ratore et al., 1986; Raz- zouk et al., 1980 i Did not inhibit the TXI...Activation of 2-aminofluorene by cultured plant cells. Science 219:1427-1429 Poulsen LL, R.M. Hyslop , D.M. Ziegler. 1974. S-oxidation of
McCoy, G D
1980-03-01
The aniline hydroxylase activity of microsomes isolated from hamster liver can be differentiated kinetically into high affinity (low K(m), form I) and low affinity (high K(m), form II) forms. Microsomes isolated from uninduced animals contain slightly more form I activity. The activity of the low affinity form (form II) is preferentially enhanced by Aroclor or 3-methylcholanthrene treatment, while phenobarbital treatment increases the activity of both forms. Chronic ethanol consumption results in enhancement of only the high affinity form (form I).
Tryptophan levels, excessive exercise, and nutritional status in anorexia nervosa.
Favaro, A; Caregaro, L; Burlina, A B; Santonastaso, P
2000-01-01
It has been hypothesized that reduced dietary availability of tryptophan may be the cause of impaired serotonin activity in underweight anorexics. The study reported here evaluated the relationship between tryptophan availability in the blood and nutritional status in anorexia nervosa. The total amount of tryptophan and the ratio between tryptophan and other large neutral amino acids (TRP/LNAA) were assessed in a sample of 16 starving anorexic patients. Body weight and composition and energy intake were evaluated in all patients. All subjects also completed self-reported questionnaires such as the Hopkins Symptom Checklist and Eating Disorders Inventory (EDI). The TRP/LNAA ratio seems to be higher in patients with a more severe catabolic status. It is, in fact, significantly inversely correlated with body mass index, body fat, muscle mass, daily energy intake, and daily tryptophan intake. The TRP/LNAA ratio also correlates with growth hormone and the EDI drive for thinness. Patients who exercise excessively had significantly higher TRP/LNAA ratios. In starving anorexic patients, the TRP/LNAA ratio does not seem to be determined by the content of tryptophan in the diet, but it correlates with measures of catabolism. The relationship of the TRP/LNAA ratio to excessive exercise and starvation indicates the importance of further investigations exploring the role of tryptophan availability in maintaining anorexia nervosa.
Pacary, Emilie; Petit, Edwige; Bernaudin, Myriam
2008-12-12
This study demonstrates that a prolyl hydroxylase inhibitor, FG-0041, is able, in combination with the ROCK inhibitor, Y-27632, to initiate differentiation of mesenchymal stem cells (MSCs) into neuron-like cells. FG-0041/Y-27632 co-treatment provokes morphological changes into neuron-like cells, increases neuronal marker expression and provokes modifications of cell cycle-related gene expression consistent with a cell cycle arrest of MSC, three events showing the engagement of MSC towards the neuronal lineage. Moreover, as we observed in our previous studies with cobalt chloride and desferroxamine, the activation of HIF-1 by this prolyl hydroxylase inhibitor is potentiated by Y-27632 which could explain at least in part the effect of this co-treatment on MSC neuronal differentiation. In addition, we show that this co-treatment enhances neurite outgrowth and tyrosine hydroxylase expression in PC12 cells. Altogether, these results evidence that concomitant inhibition of prolyl hydroxylases and ROCK represents a relevant protocol to initiate neuronal differentiation.
Gostner, Johanna M; Schroecksnadel, Sebastian; Jenny, Marcel; Klein, Angela; Ueberall, Florian; Schennach, Harald; Fuchs, Dietmar
2015-01-01
Coffee consumption is considered to exert an influence on mood, the immune system, cardiovascular disease, and cancer development, but the mechanisms of action of coffee and its compounds are only partly known and understood. Immunomodulatory effects of filtered extracts of coffee and decaffeinated coffee as well as coffee compounds were investigated in human peripheral blood mononuclear cells (PBMCs) stimulated with mitogen phytohemagglutinin (PHA). The activation of PBMCs was monitored by the breakdown of tryptophan to kynurenine via enzyme indoleamine 2,3-dioxygenase (IDO) and the production of the immune activation marker neopterin by GTP-cyclohydrolase I (GCH1). Both of these biochemical pathways are induced during cellular immune activation in response to the Th1-type cytokine interferon-γ (IFN-γ). Filtered extracts of coffee and decaffeinated coffee both suppressed tryptophan breakdown and neopterin formation in mitogen-stimulated PBMCs efficiently and in a dose-dependent manner. Of 4 coffee compounds tested individually, only gallic acid and less strong also caffeic acid had a consistent suppressive influence but also affected cell viability, whereas pure caffeine and chlorogenic acid exerted no relevant effect in the PBMC assay. The parallel influence of extracts on tryptophan breakdown and neopterin production shows an anti-inflammatory and immunosuppressive property of coffee extracts and some of its compounds. When extrapolating the in vitro results to in vivo, IFN-γ-mediated breakdown of tryptophan could be counteracted by the consumption of coffee or decaffeinated coffee. This may increase tryptophan availability for the biosynthesis of the neurotransmitter 5-hydroxytryptamine (serotonin) and thereby improve mood and quality of life.
Coupling Oxygen Consumption with Hydrocarbon Oxidation in Bacterial Multicomponent Monooxygenases.
Wang, Weixue; Liang, Alexandria D; Lippard, Stephen J
2015-09-15
A fundamental goal in catalysis is the coupling of multiple reactions to yield a desired product. Enzymes have evolved elegant approaches to address this grand challenge. A salient example is the biological conversion of methane to methanol catalyzed by soluble methane monooxygenase (sMMO), a member of the bacterial multicomponent monooxygenase (BMM) superfamily. sMMO is a dynamic protein complex of three components: a hydroxylase, a reductase, and a regulatory protein. The active site, a carboxylate-rich non-heme diiron center, is buried inside the 251 kDa hydroxylase component. The enzyme processes four substrates: O2, protons, electrons, and methane. To couple O2 activation to methane oxidation, timely control of substrate access to the active site is critical. Recent studies of sMMO, as well as its homologues in the BMM superfamily, have begun to unravel the mechanism. The emerging and unifying picture reveals that each substrate gains access to the active site along a specific pathway through the hydroxylase. Electrons and protons are delivered via a three-amino-acid pore located adjacent to the diiron center; O2 migrates via a series of hydrophobic cavities; and hydrocarbon substrates reach the active site through a channel or linked set of cavities. The gating of these pathways mediates entry of each substrate to the diiron active site in a timed sequence and is coordinated by dynamic interactions with the other component proteins. The result is coupling of dioxygen consumption with hydrocarbon oxidation, avoiding unproductive oxidation of the reductant rather than the desired hydrocarbon. To initiate catalysis, the reductase delivers two electrons to the diiron(III) center by binding over the pore of the hydroxylase. The regulatory component then displaces the reductase, docking onto the same surface of the hydroxylase. Formation of the hydroxylase-regulatory component complex (i) induces conformational changes of pore residues that may bring protons to the active site; (ii) connects hydrophobic cavities in the hydroxylase leading from the exterior to the diiron active site, providing a pathway for O2 and methane, in the case of sMMO, to the reduced diiron center for O2 activation and substrate hydroxylation; (iii) closes the pore, as well as a channel in the case of four-component BMM enzymes, restricting proton access to the diiron center during formation of "Fe2O2" intermediates required for hydrocarbon oxidation; and (iv) inhibits undesired electron transfer to the Fe2O2 intermediates by blocking reductase binding during O2 activation. This mechanism is quite different from that adopted by cytochromes P450, a large class of heme-containing monooxygenases that catalyze reactions very similar to those catalyzed by the BMM enzymes. Understanding the timed enzyme control of substrate access has implications for designing artificial catalysts. To achieve multiple turnovers and tight coupling, synthetic models must also control substrate access, a major challenge considering that nature requires large, multimeric, dynamic protein complexes to accomplish this feat.
Maternal drug abuse and human term placental xenobiotic and steroid metabolizing enzymes in vitro.
Paakki, P; Stockmann, H; Kantola, M; Wagner, P; Lauper, U; Huch, R; Elovaara, E; Kirkinen, P; Pasanen, M
2000-02-01
We evaluated the impact of maternal drug abuse at term on human placental cytochrome P450 (CYP)-mediated (Phase I) xenobiotic and steroid-metabolizing activities [aromatase, 7-ethoxyresorufin O-deethylase (EROD), 7-ethoxycoumarin O-deethylase (ECOD), pyrene 1-hydroxylase (P1OH), and testosterone hydroxylase], and androstenedione-forming isomerase, NADPH quinone oxidoreductase (Phase II), UDP-glucuronosyltransferase (UGT), and glutathione S-transferase (GST) activities in vitro. Overall, the formation of androstenedione, P1OH, and testosterone hydroxylase was statistically significant between control and drug-abusing subjects; we observed no significant differences in any other of the phase I and II activities. In placentas from drug-abusing mothers, we found significant correlations between ECOD and P1OH activities (p < 0. 001), but not between ECOD and aromatase or P1OH and EROD activities; we also found significant correlations between blood cotinine and UGT activities (p < 0.01). In contrast, in controls (mothers who did not abuse drugs but did smoke cigarettes), the P1OH activity correlated with ECOD, EROD (p < 0.001), and testosterone hydroxylase (p < 0.001) activities. Our results (wider variation in ECOD activity among tissue from drug-abusing mothers and the significant correlation between P1OH and ECOD activities, but not with aromatase or EROD activities) indicate that maternal drug abuse results in an additive effect in enhancing placental xenobiotic metabolizing enzymes when the mother also smokes cigarettes; this may be due to enhancing a "silent" CYP form, or a new placental CYP form may be activated. The change in the steroid metabolism profile in vitro suggests that maternal drug abuse may alter normal hormonal homeostasis during pregnancy.
Associations between serotonin-related gene polymorphisms and panic disorder.
Maron, Eduard; Lang, Aavo; Tasa, Gunnar; Liivlaid, Liivi; Tõru, Innar; Must, Anne; Vasar, Veiko; Shlik, Jakov
2005-06-01
Studies suggest that vulnerability to panic attacks and panic disorder (PD) may be related to a deficient serotonin (5-HT) neurotransmission. In the present case-control study we investigated possible associations between PD phenotype and five candidate polymorphisms including 5-HT transporter (5-HTTLPR and VNTR), monoamine oxidase A (MAOA promoter region), tryptophan hydroxylase 1 (TPH1 218A/C) and 5-HT1B receptor (5-HT1BR 861G/C) genes. The study sample consisted of 158 patients with PD and 215 healthy control subjects. The analysis showed higher frequencies of LL genotype (p = 0.016) and L allele variant (p = 0.007) of 5-HTTLPR in the patients. No significant associations were observed between PD and other candidate gene polymorphisms. However, a higher frequency of longer allele genotypes of the MAOA promoter region was observed in female PD patients with agoraphobia than in female controls (p = 0.016). These findings indicate that genetic variants conceivably related to lower 5-HT neurotransmission may be involved in the development of PD.
How applicable is the general adaptation syndrome to the unicellular Tetrahymena?
Csaba, György; Pállinger, Eva
2009-01-01
Hormone receptors, hormones and signal transduction pathways characteristic of higher vertebrates can be observed also in the unicellular Tetrahymena. Previous work showed that stress conditions (starvation, high temperature, high salt concentration, formaldehyde or alcohol treatment) elevated the intracellular level of four hormones (ACTH, endorphin, serotonin and T(3)). Here, the effect of other stressors (CuSO4 poisoning, tryptophan hydroxylase inhibitor parachlorophenylalanine (PCPA) treatment) on the same and other hormones (epinephrine, insulin, histamine) was studied, using immunocytochemistry and flow cytometric analysis. It was found, that each effect increased the intracellular hormone contents, but some hormones (histamine, T(3)) were less reactive. Insulin--which is a life-saving factor for Tetrahymena--itself provoked elevation of hormone amounts in association with a stressor, further increased the level of hormones. It was concluded that the ancestor of Selye's General Adaptation Syndrome (GAS) can be found already at unicellular level, and this possibly has a life saving function. Copyright 2008 John Wiley & Sons, Ltd.
Ishikawa, Yoshihiro; Bächinger, Hans Peter
2013-11-01
Collagen biosynthesis occurs in the rough endoplasmic reticulum, and many molecular chaperones and folding enzymes are involved in this process. The folding mechanism of type I procollagen has been well characterized, and protein disulfide isomerase (PDI) has been suggested as a key player in the formation of the correct disulfide bonds in the noncollagenous carboxyl-terminal and amino-terminal propeptides. Prolyl 3-hydroxylase 1 (P3H1) forms a hetero-trimeric complex with cartilage-associated protein and cyclophilin B (CypB). This complex is a multifunctional complex acting as a prolyl 3-hydroxylase, a peptidyl prolyl cis-trans isomerase, and a molecular chaperone. Two major domains are predicted from the primary sequence of P3H1: an amino-terminal domain and a carboxyl-terminal domain corresponding to the 2-oxoglutarate- and iron-dependent dioxygenase domains similar to the α-subunit of prolyl 4-hydroxylase and lysyl hydroxylases. The amino-terminal domain contains four CXXXC sequence repeats. The primary sequence of cartilage-associated protein is homologous to the amino-terminal domain of P3H1 and also contains four CXXXC sequence repeats. However, the function of the CXXXC sequence repeats is not known. Several publications have reported that short peptides containing a CXC or a CXXC sequence show oxido-reductase activity similar to PDI in vitro. We hypothesize that CXXXC motifs have oxido-reductase activity similar to the CXXC motif in PDI. We have tested the enzyme activities on model substrates in vitro using a GCRALCG peptide and the P3H1 complex. Our results suggest that this complex could function as a disulfide isomerase in the rough endoplasmic reticulum.
NASA Astrophysics Data System (ADS)
Sordillo, Laura A.; Zhang, Lin; Shi, Lingyan; Sriramoju, Vidyasagar; Sordillo, Peter P.; Alfano, Robert R.
2018-02-01
Under stress conditions, pro-inflammatory cytokines, such as tumor necrosis factor-alpha, interleukin-1 beta, interleukin 6 and interferon gamma are released. It is known that these cytokines stimulate indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO), which increase tryptophan metabolism through the kynurenine pathway, and that this can cause increased production of neurotoxic compounds. Brain tissues from Alzheimer's disease patients and agematched controls were investigated using label-free fluorescence spectroscopy. Tryptophan (exc. 280/ em. 340 nm) and its metabolites (N-formyl-L-kynurenine (exc. 325/em. 434 nm), kynurenine (exc. 365/em. 480 nm) and kynurenic acid (exc. 330/em. 390 nm)) have distinct spectral profiles. Preliminary results show a difference in the optical signatures in three important areas of the brain (hippocampus, BA 9, BA 17) between patients with Alzheimer's disease and agedmatched controls (normal), and a marked relative increase in tryptophan in the Alzheimer's patients. Thus determinations of tryptophan to tryptophan metabolite ratios could potentially be used to measure IDO and TDO activity and the degree of inflammation in the brain. This label-free optical technique may be useful in the study of Alzheimer's and other neurodegenerative diseases.
Hansdottir, Sif; Monick, Martha M; Hinde, Sara L; Lovan, Nina; Look, Dwight C; Hunninghake, Gary W
2008-11-15
The role of vitamin D in innate immunity is increasingly recognized. Recent work has identified a number of tissues that express the enzyme 1alpha-hydroxylase and are able to activate vitamin D. This locally produced vitamin D is believed to have important immunomodulatory effects. In this paper, we show that primary lung epithelial cells express high baseline levels of activating 1alpha-hydroxylase and low levels of inactivating 24-hydroxylase. The result of this enzyme expression is that airway epithelial cells constitutively convert inactive 25-dihydroxyvitamin D(3) to the active 1,25-dihydroxyvitamin D(3). Active vitamin D that is generated by lung epithelium leads to increased expression of vitamin D-regulated genes with important innate immune functions. These include the cathelicidin antimicrobial peptide gene and the TLR coreceptor CD14. dsRNA increases the expression of 1alpha-hydroxylase, augments the production of active vitamin D, and synergizes with vitamin D to increase expression of cathelicidin. In contrast to induction of the antimicrobial peptide, vitamin D attenuates dsRNA-induced expression of the NF-kappaB-driven gene IL-8. We conclude that primary epithelial cells generate active vitamin D, which then influences the expression of vitamin D-driven genes that play a major role in host defense. Furthermore, the presence of vitamin D alters induction of antimicrobial peptides and inflammatory cytokines in response to viruses. These observations suggest a novel mechanism by which local conversion of inactive to active vitamin D alters immune function in the lung.
Serotonin-containing neurons in basal insects: In search of ground patterns among tetraconata.
Stemme, Torben; Stern, Michael; Bicker, Gerd
2017-01-01
The ventral nerve cord of Tetraconata contains a comparably low number of serotonin-immunoreactive neurons, facilitating individual identification of cells and their characteristic neurite morphology. This offers the rather unique possibility of establishing homologies at the single cell level. Because phylogenetic relationships within Tetraconata are still discussed controversially, comparisons of individually identifiable neurons can help to unravel these issues. Serotonin immunoreactivity has been investigated in numerous tetraconate taxa, leading to reconstructions of hypothetical ground patterns for major lineages. However, detailed descriptions of basal insects are still missing, but are crucial for meaningful evolutionary considerations. We investigated the morphology of individually identifiable serotonin-immunoreactive neurons in the ventral nerve cord of Zygentoma (Thermobia domestica, Lepisma saccharina, Atelura formicaria) and Archaeognatha (Machilis germanica, Dilta hibernica). To improve immunocytochemical resolution, we also performed preincubation experiments with 5-hydroxy-L-tryptophan and serotonin. Additionally, we checked for immunolabeling of tryptophan hydroxylase, an enzyme associated with the synthesis of serotonin. Besides the generally identified groups of anterolateral, medial, and posterolateral neurons within each ganglion of the ventral nerve cord, we identified several other immunoreactive cells, which seem to have no correspondence in other tetraconates. Furthermore, we show that not all immunoreactive neurons produce serotonin, but have the capability for serotonin uptake. Comparisons with the patterns of serotonin-containing neurons in major tetraconate taxa suggest a close phylogenetic relationship of Remipedia, Cephalocarida, and Hexapoda, supporting the Miracrustacea hypothesis. J. Comp. Neurol., 2016. © 2016 Wiley Periodicals, Inc. J. Comp. Neurol. 525:79-115, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Gomez-Gomez, Alex; Marcos, Josep; Aguilera, Paula; To-Figueras, Jordi; Pozo, Oscar J
2017-08-15
Acute intermittent porphyria (AIP) is a rare metabolic disorder due to a deficiency of porphobilinogen deaminase, the third enzyme of the heme biosynthetic pathway. This low enzymatic activity may predispose to the appearance of acute neurological attacks. Seminal studies suggested that AIP was associated with changes in tryptophan homeostasis with inconclusive results. Therefore, the aim of this study was to analyze the urinary metabolome of AIP patients focusing on tryptophan metabolism using state-of-the-art technology. This was a case-control study including a group of 25 AIP patients with active biochemical disease and increased excretion of heme-precursors and 25 healthy controls. Tryptophan and related compounds and metabolites including: large neutral amino acids (LNAAs), serotonin, kynurenine, kynurenic acid and anthranilic acid were quantified in urine by liquid chromatography tandem-mass spectrometry (LC-MS/MS). Twenty-nine biological markers (including metabolic ratios and absolute concentrations) were compared between patients and controls. Significant differences were found in the tryptophan-kynurenine metabolic pathway. Compared to controls, AIP patients showed: (a) increased urinary excretion of kynurenine and anthranilic acid (P<0.005); (b): elevation of the kynurenine/tryptophan ratio (P<0.001) and (c): decrease of the kynurenic acid/kynurenine ratio (P=0.001). In contrast, no differences were found in the serotonin metabolic pathway independently of the markers and ratios used. The results of the study demonstrate that there is an imbalance in the kynurenine metabolic pathway in AIP patients, with an increase of the kynurenine/tryptophan ratio in urine and a reduction of the kynurenic acid/kynurenine ratio. The modified ratios suggest induction of indoleamine 2,3-deoxygenase and decreased activity of kynurenine aminotransferase in the liver. The results confirm that LC-MS/MS is useful for the characterization of the urinary metabolome of hepatic porphyrias. Copyright © 2017. Published by Elsevier B.V.
Kosek, Margaret N; Mduma, Estomih; Kosek, Peter S; Lee, Gwenyth O; Svensen, Erling; Pan, William K Y; Olortegui, Maribel Paredes; Bream, Jay H; Patil, Crystal; Asayag, Cesar Ramal; Sanchez, Graciela Meza; Caulfield, Laura E; Gratz, Jean; Yori, Pablo Peñataro
2016-10-05
Early childhood enteric infections have adverse impacts on child growth and can inhibit normal mucosal responses to oral vaccines, two critical components of environmental enteropathy. To evaluate the role of indoleamine 2,3-dioxygenase 1 (IDO1) activity and its relationship with these outcomes, we measured tryptophan and the kynurenine-tryptophan ratio (KTR) in two longitudinal birth cohorts with a high prevalence of stunting. Children in rural Peru and Tanzania (N = 494) contributed 1,251 plasma samples at 3, 7, 15, and 24 months of age and monthly anthropometrics from 0 to 36 months of age. Tryptophan concentrations were directly associated with linear growth from 1 to 8 months after biomarker assessment. A 1-SD increase in tryptophan concentration was associated with a gain in length-for-age Z-score (LAZ) of 0.17 over the next 6 months in Peru (95% confidence interval [CI] = 0.11-0.23, P < 0.001) and a gain in LAZ of 0.13 Z-scores in Tanzania (95% CI = 0.03-0.22, P = 0.009). Vaccine responsiveness data were available for Peru only. An increase in kynurenine by 1 μM was associated with a 1.63 (95% CI = 1.13-2.34) increase in the odds of failure to poliovirus type 1, but there was no association with tetanus vaccine response. A KTR of 52 was 76% sensitive and 50% specific in predicting failure of response to serotype 1 of the oral polio vaccine. KTR was associated with systemic markers of inflammation, but also interleukin-10, supporting the association between IDO1 activity and immunotolerance. These results strongly suggest that the activity of IDO1 is implicated in the pathophysiology of environmental enteropathy, and demonstrates the utility of tryptophan and kynurenine as biomarkers for this syndrome, particularly in identifying those at risk for hyporesponsivity to oral vaccines. © The American Society of Tropical Medicine and Hygiene.
Kosek, Margaret N.; Mduma, Estomih; Kosek, Peter S.; Lee, Gwenyth O.; Svensen, Erling; Pan, William K. Y.; Olortegui, Maribel Paredes; Bream, Jay H.; Patil, Crystal; Asayag, Cesar Ramal; Sanchez, Graciela Meza; Caulfield, Laura E.; Gratz, Jean; Yori, Pablo Peñataro
2016-01-01
Early childhood enteric infections have adverse impacts on child growth and can inhibit normal mucosal responses to oral vaccines, two critical components of environmental enteropathy. To evaluate the role of indoleamine 2,3-dioxygenase 1 (IDO1) activity and its relationship with these outcomes, we measured tryptophan and the kynurenine–tryptophan ratio (KTR) in two longitudinal birth cohorts with a high prevalence of stunting. Children in rural Peru and Tanzania (N = 494) contributed 1,251 plasma samples at 3, 7, 15, and 24 months of age and monthly anthropometrics from 0 to 36 months of age. Tryptophan concentrations were directly associated with linear growth from 1 to 8 months after biomarker assessment. A 1-SD increase in tryptophan concentration was associated with a gain in length-for-age Z-score (LAZ) of 0.17 over the next 6 months in Peru (95% confidence interval [CI] = 0.11–0.23, P < 0.001) and a gain in LAZ of 0.13 Z-scores in Tanzania (95% CI = 0.03–0.22, P = 0.009). Vaccine responsiveness data were available for Peru only. An increase in kynurenine by 1 μM was associated with a 1.63 (95% CI = 1.13–2.34) increase in the odds of failure to poliovirus type 1, but there was no association with tetanus vaccine response. A KTR of 52 was 76% sensitive and 50% specific in predicting failure of response to serotype 1 of the oral polio vaccine. KTR was associated with systemic markers of inflammation, but also interleukin-10, supporting the association between IDO1 activity and immunotolerance. These results strongly suggest that the activity of IDO1 is implicated in the pathophysiology of environmental enteropathy, and demonstrates the utility of tryptophan and kynurenine as biomarkers for this syndrome, particularly in identifying those at risk for hyporesponsivity to oral vaccines. PMID:27503512
Naumenko, V S; Kondaurova, E M; Bazovkina, D V; Tsybko, A S; Tikhonova, M A; Kulikov, A V; Popova, N K
2012-07-12
The effect of brain-derived neurotrophic factor (BDNF) on depressive-like behavior and serotonin (5-HT) system in the brain of antidepressant sensitive cataleptics (ASC)/Icg mouse strain, characterized by depressive-like behavior, in comparison with the parental nondepressive CBA/Lac mouse strain was examined. Significant decrease of catalepsy and tail suspension test (TST) immobility was shown 17days after acute central BDNF administration (300ng i.c.v.) in ASC mice. In CBA mouse strain, BDNF moderately decreased catalepsy without any effect on TST immobility time. Significant difference between ASC and CBA mice in the effect of BDNF on 5-HT system was revealed. It was shown that central administration of BDNF led to increase of 5-HT(1A) receptor gene expression but not 5-HT(1A) functional activity in ASC mice. Increased tryptophan hydroxylase-2 (Tph-2) and 5-HT(2A) receptor genes expression accompanied by 5-HT(2A) receptor sensitization was shown in BDNF-treated ASC but not in CBA mouse strain, suggesting BDNF-induced increase of the brain 5-HT system functional activity and activation of neurogenesis in "depressive" ASC mice. There were no changes found in the 5-HT transporter mRNA level in BDNF-treated ASC and CBA mice. In conclusion, central administration of BDNF produced prolonged ameliorative effect on depressive-like behavior accompanied by increase of the Tph-2, 5-HT(1A) and 5-HT(2A) genes expression and 5-HT(2A) receptor functional activity in animal model of hereditary behavior disorders. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Experimental Evidence and In Silico Identification of Tryptophan Decarboxylase in Citrus Genus.
De Masi, Luigi; Castaldo, Domenico; Pignone, Domenico; Servillo, Luigi; Facchiano, Angelo
2017-02-11
Plant tryptophan decarboxylase (TDC) converts tryptophan into tryptamine, precursor of indolealkylamine alkaloids. The recent finding of tryptamine metabolites in Citrus plants leads to hypothesize the existence of TDC activity in this genus. Here, we report for the first time that, in Citrus x limon seedlings, deuterium labeled tryptophan is decarboxylated into tryptamine, from which successively deuterated N , N , N -trimethyltryptamine is formed. These results give an evidence of the occurrence of the TDC activity and the successive methylation pathway of the tryptamine produced from the tryptophan decarboxylation. In addition, with the aim to identify the genetic basis for the presence of TDC, we carried out a sequence similarity search for TDC in the Citrus genomes using as a probe the TDC sequence reported for the plant Catharanthus roseus . We analyzed the genomes of both Citrus clementina and Citrus sinensis , available in public database, and identified putative protein sequences of aromatic l-amino acid decarboxylase. Similarly, 42 aromatic l-amino acid decarboxylase sequences from 23 plant species were extracted from public databases. Potential sequence signatures for functional TDC were then identified. With this research, we propose for the first time a putative protein sequence for TDC in the genus Citrus .
Bellward, G D; Gontovnick, L S; Otten, M
1977-01-01
Methadone-HCl added to the drinking water of adult female Wistar rats for 4 weeks produced an increase in the aryl hydrocarbon hydroxylase activity of the hepatic microsomal fraction to 222% of control levels. No change was seen in epoxide hydrase activity. In contrast, when male rats were treated similarly, there was an increase in epoxide hydrase activity to 212% of controls with no change in aryl hydrocarbon hydroxylase activity. No such changes were observed when the subcutaneous route of administration or chronic, low-dose, intraperitoneal injections were used. There were no differences in hepatic cytochrome P-450 or protein concentrations in treated animals as compared to their respective control groups. Control studies were carried out with quinine sulfate in the drinking water to decrease water intake to the level of the methadone-treated group. No elevation in either enzyme activity occurred in this control group. Similarly, paired-feeding studies showed the elevation of enzyme activity to be due to the methadone, not food deprivation. The effects of concurrent therapy of methadone with phenobarbital sodium or 3-methylcholanthrene were compared.
Modulation of IAA production in cyanobacteria by tryptophan and light.
Prasanna, Radha; Joshi, Monica; Rana, Anuj; Nain, Lata
2010-01-01
Cyanobacteria represent less a investigated group of prokaryote, in terms of their plant growth promoting potential, especially in relation to the production of phytohormones. The present investigation was aimed towards analyzing growth kinetics, indole acetic acid (IAA) production and acetylene reduction activity (ARA) as an index of nitrogen fixation in two selected cyanobacterial strains belonging to the genus Anabaena, as influenced by tryptophan supplementation and light:dark conditions. Interesting observations were recorded in terms of enhancement of IAA production accompanied by protein and chlorophyll accumulation in the two cyanobacterial strains grown in media without tryptophan and incubated under light:dark or continuous light conditions. Colorimetric and chromatographic analyses supported the observations that tryptophan is not essential as a precursor for IAA biosynthesis in these cyanobacteria. Further study is in progress to identify genes involved in the tryptophan independent pathway for IAA biosynthesis.
Melatonin and its precursors scavenge nitric oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noda, Y.; Mori, A.; Liburdy, R.
Nitric oxide (NO) scavenging activity of melatonin, N-acetyl-5-hydroxytryptamine, serotonin, 5-hydroxytryptophan and L-tryptophan was examined by the Griess reaction using flow injection analysis. 1-Hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene(NOC-7) was used as NO generator. The Griess reagent stoichiometrically reacts with NO2-, which was converted by a cadmium-copper reduction column from the stable end products of NO oxidation. Except for tryptophan, all the compounds examined scavenged NO in a dose-dependent manner. Melatonin, which has a methoxy group in the 5-position and an acetyl side chain, exhibited the most potent scavenging activity among the compounds tested. Serotonin, N-acetyl-5-hydroxytryptamine, and 5-hydroxytryptophan, respectively, showed moderate scavenging activity compared to melatonin.more » Tryptophan, which has neither a methoxy nor a hydroxyl group in the 5-position, exhibited the least NO scavenging activity.« less
Effect of coexposure to asbestos and kerosene soot on pulmonary drug-metabolizing enzyme system.
Arif, J M; Khan, S G; Mahmood, N; Aslam, M; Rahman, Q
1994-01-01
This article reports the effect of coexposure to Indian chrysotile asbestos (5 mg/rat) and kerosene soot (5 mg/rat) on the pulmonary phase I and phase II drug-metabolizing enzymes 1, 4, 8, 16, 30, 90, and 150 days after a single intratracheal inoculation. Exposure to soot resulted in a significant induction of the pulmonary microsomal cytochrome P450 and the activity of dependent monooxygenase, benzo(a)pyrene (B[a]P) hydroxylase, and epoxide hydrase at all time intervals. On the other hand, the cytosolic glutathione S-transferase (GST) activity was induced at days 1, 4, 8, 16, and 30 after exposure, followed by inhibition in the enzyme activity. In contrast, chrysotile exposure depleted cytochrome P450, B[a]P hydroxylase, epoxide hydrase, and GST at initial stages, while all these parameters except GST were induced at later stages. However, coexposure to chrysotile and soot led to a significant inhibition in the cytochrome P450 levels, activities of B[a]P hydroxylase, epoxide hydrase, and GST at initial stages of exposure. At advanced stages, however, an additional increase in cytochrome P450, B[a]P hydroxylase, and epoxide hydrase but a decrease in GST was observed. These results clearly show that the intratracheal coexposure to high levels of asbestos and kerosene soot alters the metabolic activity of the lung, which is turn may retain toxins in the system for a longer period, resulting in adverse pathological disorders. PMID:7882926
Orthogonal use of a human tRNA synthetase active site to achieve multifunctionality.
Zhou, Quansheng; Kapoor, Mili; Guo, Min; Belani, Rajesh; Xu, Xiaoling; Kiosses, William B; Hanan, Melanie; Park, Chulho; Armour, Eva; Do, Minh-Ha; Nangle, Leslie A; Schimmel, Paul; Yang, Xiang-Lei
2010-01-01
Protein multifunctionality is an emerging explanation for the complexity of higher organisms. In this regard, aminoacyl tRNA synthetases catalyze amino acid activation for protein synthesis, but some also act in pathways for inflammation, angiogenesis and apoptosis. It is unclear how these multiple functions evolved and how they relate to the active site. Here structural modeling analysis, mutagenesis and cell-based functional studies show that the potent angiostatic, natural fragment of human tryptophanyl-tRNA synthetase (TrpRS) associates via tryptophan side chains that protrude from its cognate cellular receptor vascular endothelial cadherin (VE-cadherin). VE-cadherin's tryptophan side chains fit into the tryptophan-specific active site of the synthetase. Thus, specific side chains of the receptor mimic amino acid substrates and expand the functionality of the active site of the synthetase. We propose that orthogonal use of the same active site may be a general way to develop multifunctionality of human tRNA synthetases and other proteins.
Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice
Suidan, Georgette L.; Demers, Melanie; Herr, Nadine; Carbo, Carla; Brill, Alexander; Cifuni, Stephen M.; Mauler, Maximilian; Cicko, Sanja; Bader, Michael; Idzko, Marco; Bode, Christoph
2013-01-01
The majority of peripheral serotonin is stored in platelets, which secrete it on activation. Serotonin releases Weibel-Palade bodies (WPBs) and we asked whether absence of platelet serotonin affects neutrophil recruitment in inflammatory responses. Tryptophan hydroxylase (Tph)1–deficient mice, lacking non-neuronal serotonin, showed mild leukocytosis compared with wild-type (WT), primarily driven by an elevated neutrophil count. Despite this, 50% fewer leukocytes rolled on unstimulated mesenteric venous endothelium of Tph1−/− mice. The velocity of rolling leukocytes was higher in Tph1−/− mice, indicating fewer selectin-mediated interactions with endothelium. Stimulation of endothelium with histamine, a secretagogue of WPBs, or injection of serotonin normalized the rolling in Tph1−/− mice. Diminished rolling in Tph1−/− mice resulted in reduced firm adhesion of leukocytes after lipopolysaccharide treatment. Blocking platelet serotonin uptake with fluoxetine in WT mice reduced serum serotonin by > 80% and similarly reduced leukocyte rolling and adhesion. Four hours after inflammatory stimulation, neutrophil extravasation into lung, peritoneum, and skin wounds was reduced in Tph1−/− mice, whereas in vitro neutrophil chemotaxis was independent of serotonin. Survival of lipopolysaccharide-induced endotoxic shock was improved in Tph1−/− mice. In conclusion, platelet serotonin promotes the recruitment of neutrophils in acute inflammation, supporting an important role for platelet serotonin in innate immunity. PMID:23243271
Latapy, Camille; Rioux, Véronique; Guitton, Matthieu J.; Beaulieu, Jean-Martin
2012-01-01
Serotonin (5-HT) neurotransmission is thought to underlie mental illnesses, such as bipolar disorder, depression, autism and schizophrenia. Independent studies have indicated that 5-HT or drugs acting on 5-HT neurotransmission regulate the serine/threonine kinase glycogen synthase kinase 3β (GSK3β). Furthermore, GSK3β inhibition rescues behavioural abnormalities in 5-HT-deficient mice with a loss-of-function mutation equivalent to the human variant (R441H) of tryptophan hydroxylase 2. In an effort to define neuroanatomical correlates of GSK3β activity in the regulation of behaviour, we generated CamKIIcre-floxGSK3β mice in which the gsk3b gene is postnatally inactivated in forebrain pyramidal neurons. Behavioural characterization showed that suppression of GSK3β in these brain areas has anxiolytic and pro-social effects. However, while a global reduction of GSK2β expression reduced responsiveness to amphetamine and increased resilience to social defeat, these behavioural effects were not found in CamKIIcre-floxGSK3β mice. These findings demonstrate a dissociation of behavioural effects related to GSK3 inhibition, with forebrain GSK3β being involved in the regulation of anxiety and sociability while social preference, resilience and responsiveness to psychostimulants would involve a function of this kinase in subcortical areas such as the hippocampus and striatum. PMID:22826345
Tarfarosh, Shah Faisal Ahmad; Dar, Mohammad Maqbool; Hussain, Arshad; Shoib, Sheikh; Shah, Tabindah; Shah, Sahil; Manzoor, Mushbiq
2016-01-01
Background The progress that man has made in all domains of life, during all these years of reign over the earth, is utterly remarkable. However, it always came at a price. Each epoch of progress has seen human beings inflicted with trauma and cynical consequences. During the last two decades, Kashmiri (Indian) people have experienced continuous violence, a reign of terror, and political turmoil. Each of these disastrous events has contributed to the increase in psychiatric disorders in this part of the world, especially major depressive disorders. We can observe that besides the environmental influences, gene polymorphism also plays a crucial role in the development of depressive disorders. The role of Tryptophan Hydroxylase 1 (TPH1) gene is implicated in various psychiatric disorders, including depression. However, no study has investigated TPH1 A779C gene polymorphism in depressive disorders in a distressed society like Kashmir (India). Aims To study TPH1 A779C single nucleotide polymorphism in depressive disorders in Kashmiri (Indian) population. Materials and Methods Two hundred and forty patients diagnosed with depressive disorder, and 160 unrelated healthy volunteers (control), were studied in a case-control study design. Polymorphism was determined using polymerase chain reaction (PCR) and agarose gel electrophoresis, after digestion with HAP II enzyme. Genotypes and allele frequencies were compared using Chi-square tests, Fisher’s exact test, odds ratio, 95% confidence interval (C.I.) and a p-value of <0.05 was considered to be statistically significant. Results The mean age ± standard deviation (SD) of depression and control group was 32.02±10.99 and 31.75±9.93, respectively (p= 0.512). It was found that the patients from depression group had AA genotype (51.7%) in comparison to control group (17.5%) and these results were statistically significant (p≤0.0001). Calculation of allelic frequency revealed a stronger association of A allele with depression group (70.83%) than with the control group (41.25%), and it was also found to be statistically significant (p≤0.0001) with C.I. of 3.459 (1.909-6.266). Conclusion TPH1 A779C A gene was found to be associated with a major depressive disorder (MDD) in Kashmiri (Indian) population. There were high HAM-A as well as HAM-D scores in depressive patients of Kashmir (India). PMID:27672527
Palacios, Oskar A; Gomez-Anduro, Gracia; Bashan, Yoav; de-Bashan, Luz E
2016-06-01
During synthetic mutualistic interactions between the microalga Chlorella sorokiniana and the plant growth-promoting bacterium (PGPB) Azospirillum brasilense, mutual exchange of resources involved in producing and releasing the phytohormone indole-3-acetic acid (IAA) by the bacterium, using tryptophan and thiamine released by the microalga, were measured. Although increased activities of tryptophan synthase in C. sorokiniana and indole pyruvate decarboxylase (IPDC) in A. brasilense were observed, we could not detect tryptophan or IAA in the culture medium when both organisms were co-immobilized. This indicates that no extra tryptophan or IAA is produced, apart from the quantities required to sustain the interaction. Over-expression of the ipdC gene occurs at different incubation times: after 48 h, when A. brasilense was immobilized alone and grown in exudates of C. sorokiniana and at 96 h, when A. brasilense was co-immobilized with the microalga. When A. brasilense was cultured in exudates of C. sorokiniana, increased expression of the ipdC gene, corresponding increase in activity of IPDC encoded by the ipdC gene, and increase in IAA production were measured during the first 48 h of incubation. IAA production and release by A. brasilense was found only when tryptophan and thiamine were present in a synthetic growth medium (SGM). The absence of thiamine in SGM yielded no detectable IAA. In summary, this study demonstrates that C. sorokiniana can exude sufficient tryptophan and thiamine to allow IAA production by a PGPB during their interaction. Thiamine is essential for IAA production by A. brasilense and these three metabolites are part of a communication between the two microorganisms. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Markus, C Rob; Olivier, Berend; de Haan, Edward H F
2002-06-01
Cognitive performance often declines under chronic stress exposure. The negative effect of chronic stress on performance may be mediated by reduced brain serotonin function. The uptake of the serotonin precursor tryptophan into the brain depends on nutrients that influence the availability of tryptophan by changing the ratio of plasma tryptophan to the sum of the other large neutral amino acids (Trp-LNAA ratio). In addition, a diet-induced increase in tryptophan may increase brain serotonergic activity levels and improve cognitive performance, particularly in high stress-vulnerable subjects. We tested whether alpha-lactalbumin, a whey protein with a high tryptophan content, would increase the plasma Trp-LNAA ratio and improve cognitive performance in high stress- vulnerable subjects. Twenty-three high stress-vulnerable subjects and 29 low stress-vulnerable subjects participated in a double-blind, placebo-controlled, crossover study. All subjects conducted a memory-scanning task after the intake of a diet enriched with either alpha-lactalbumin (alpha-lactalbumin diet) or sodium caseinate (control diet). Blood samples were taken to measure the effect of dietary manipulation on the plasma Trp-LNAA ratio. A significantly greater increase in the plasma Trp-LNAA ratio after consumption of the alpha-lactalbumin diet than after the control diet (P = 0.0001) was observed; memory scanning improved significantly only in the high stress-vulnerable subjects (P = 0.019). Because an increase in the plasma Trp-LNAA ratio is considered to be an indirect indication of increased brain serotonin function, the results suggest that dietary protein rich in alpha-lactalbumin improves cognitive performance in stress-vulnerable subjects via increased brain tryptophan and serotonin activities.
Fluorescence studies on native and bound to trifluraline soy bean Lb"a" in the enhanced N2 fixation.
Kolev, K; Dolashka-Angelova, P
2001-10-01
The differences in the tryptophan (Trp) fluorescence of native (control) Lb"a" and experimental substance isolated from nodules of the Williams' soy beans variety treated with trifluraline at a concentration of 2.1 x 10(-10) M have been studied. A positively charged environment has been proved for the tryptophans of the native Lb"a" and a negative one for the tryptophans of the experimental Lb"a". The difference in the tryptophan emission spectra at lambdaex = 280 and 300 nm may be assigned to conformational alterations occurring in the experimental Lb"a". This is also confirmed by the greater energy transfer from tyrosine to tryptophan in the experimental Lb"a"--30% compared to the 10% in the native Lb"a". The value of the constant of acrylamide quenching (Ksv = 2.77 M(-1)) shows that the tryptophans are buried more deeply in the experimental Lb"a" than in the native Lb"a" (Ksv = 4 M(-1)). They are substantially lower than Ksv of the standard compound N-Ac-Trp-NH2 (16.30 M(-1)). The activation energy (Ea) of the thermal quenching of tryptophan fluorescence is higher for the experimental Lb"a" (37 kJ mol(-1)) as compared to the standard compound N-Ac-Trp-NH2 (24 kJ mol(-1)) and the native Lb "a" (32 kJ mol(-1)). The dissociation constant of the complex of trifluraline with Lb "a" (6.32 x 10(-11) M) has been determined as well as the stoichiometric ratio trifluraline/Lb"a" (1:1). The estimated nitrogenase activity (microM/gfrw h) and the total Lb (mg/gfrw) for trifluraline are higher as compared to those for the control.
NASA Astrophysics Data System (ADS)
Kolev, Kolyo; Dolashka-Angelova, Pavlina
2001-10-01
The differences in the tryptophan (Trp) fluorescence of native (control) Lb "a" and experimental substance isolated from nodules of the 'Williams' soy beans variety treated with trifluraline at a concentration of 2.1×10 -10 M have been studied. A positively charged environment has been proved for the tryptophans of the native Lb "a" and a negative one for the tryptophans of the experimental Lb "a". The difference in the tryptophan emission spectra at λex=280 and 300 nm may be assigned to conformational alterations occurring in the experimental Lb "a". This is also confirmed by the greater energy transfer from tyrosine to tryptophan in the experimental Lb "a"—30% compared to the 10% in the native Lb "a". The value of the constant of acrylamide quenching ( Ksv=2.77 M -1) shows that the tryptophans are buried more deeply in the experimental Lb "a" than in the native Lb "a" ( Ksv=4 M -1). They are substantially lower than Ksv of the standard compound N-Ac-Trp-NH 2 (16.30 M -1). The activation energy ( Ea) of the thermal quenching of tryptophan fluorescence is higher for the experimental Lb "a" (37 kJ mol -1) as compared to the standard compound N-Ac-Trp-NH 2 (24 kJ mol -1) and the native Lb "a" (32 kJ mol -1). The dissociation constant of the complex of trifluraline with Lb "a" (6.32×10 -11 M) has been determined as well as the stoichiometric ratio trifluraline/Lb "a" (1:1). The estimated nitrogenase activity (μM/gfrw h) and the total Lb (mg/gfrw) for trifluraline are higher as compared to those for the control.
Trotter, Paula Diane; McGlone, Francis; McKie, Shane; McFarquhar, Martyn; Elliott, Rebecca; Walker, Susannah Claire; Deakin, John Francis William
2016-08-01
C-tactile afferents (CTs) are slowly conducting nerve fibres, present only in hairy skin. They are optimally activated by slow, gentle stroking touch, such as those experienced during a caress. CT stimulation activates affective processing brain regions, alluding to their role in affective touch perception. We tested a theory that CT-activating touch engages the pro-social functions of serotonin, by determining whether reducing serotonin, through acute tryptophan depletion, diminishes subjective pleasantness and affective brain responses to gentle touch. A tryptophan depleting amino acid drink was administered to 16 healthy females, with a further 14 receiving a control drink. After 4 h, participants underwent an fMRI scan, during which time CT-innervated forearm skin and CT non-innervated finger skin was stroked with three brushes of differing texture, at CT-optimal force and velocity. Pleasantness ratings were obtained post scanning. The control group showed a greater response in ipsilateral orbitofrontal cortex to CT-activating forearm touch compared to touch to the finger where CTs are absent. This differential response was not present in the tryptophan depleted group. This interaction effect was significant. In addition, control participants showed a differential primary somatosensory cortex response to brush texture applied to the finger, a purely discriminatory touch response, which was not observed in the tryptophan depleted group. This interaction effect was also significant. Pleasantness ratings were similar across treatment groups. These results implicate serotonin in the differentiation between CT-activating and purely discriminatory touch responses. Such effects could contribute to some of the social abnormalities seen in psychiatric disorders associated with abnormal serotonin function. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
A Cell surface β-Hydroxylase is a biomarker and therapeutic target for hepatocellular carcinoma
Aihara, Arihiro; Huang, Chiung-Kuei; Olsen, Mark J.; Lin, Qiushi; Chung, Waihong; Tang, Qi; Dong, Xiaoqun; Wands, Jack R.
2014-01-01
Hepatocellular carcinoma (HCC) has a poor prognosis due to widespread intrahepatic and extrahepatic metastases. There is an urgent need to understand signaling cascades that promote disease progression. Aspartyl-(Asparaginyl)-β-hydroxylase (ASPH) is a cell surface enzyme that generates enhanced cell motility, migration, invasion and metastatic spread in HCC. We hypothesize that inhibition of its enzymatic activity could have antitumor effects. Small molecule inhibitors (SMIs) were developed based on the crystal structure of the ASPH catalytic site followed by computer assisted drug design. Candidate compounds were tested for inhibition of β-hydroxylase activity and selected for their capability to modulate cell proliferation, migration, invasion and colony formation in vitro and to inhibit HCC tumor growth in vivo using orthotopic and subcutaneous murine models. The biologic effects of SMIs on the Notch signaling cascade were evaluated. The SMI inhibitor MO-I-1100 was selected since it reduced ASPH enzymatic activity by 80% and suppressed HCC cell migration, invasion and anchorage independent growth. Furthermore, substantial inhibition of HCC tumor growth and progression was observed in both animal models. The mechanism(s) for this antitumor effect was associated with reduced activation of Notch signaling both in vitro and in vivo. Conclusions These studies suggest that the enzymatic activity of ASPH was important for hepatic oncogenesis. Reduced β-hydroxylase activity generated by the SMI MO-I-1100 led to antitumor effects through inhibiting Notch signaling cascade in HCC. ASPH promotes the generation of an HCC malignant phenotype and represents an attractive molecular target for therapy of this fatal disease. PMID:24954865
[Medullary layer activity of the rat adrenals after a flight on the Kosmos-1129 biosatellite].
Kvetnanský, R; Blazicek, P; Tigranian, R A
1982-01-01
After a 18.5-day space flight on Cosmos-1129 rat adrenals were investigated for the concentration of catecholamines and activity of enzymes involved in their synthesis, i.e. tyrosine hydroxylase, dopamine-beta-hydroxylase, and phenyl ethanol amine-N-methyl transferase. It was found that inflight the sympatho-adreno-medullary system of rats was not exposed to a prolonged or strong stressogenic effect. Postflight the rats showed an increased reactivity to the immobilization stress.
2016-01-01
Liver phenylalanine hydroxylase is allosterically activated by phenylalanine. The structural changes that accompany activation have not been identified, but recent studies of the effects of phenylalanine on the isolated regulatory domain of the enzyme support a model in which phenylalanine binding promotes regulatory domain dimerization. Such a model predicts that compounds that stabilize the regulatory domain dimer will also activate the enzyme. Nuclear magnetic resonance spectroscopy and analytical ultracentrifugation were used to determine the ability of different amino acids and phenylalanine analogues to stabilize the regulatory domain dimer. The abilities of these compounds to activate the enzyme were analyzed by measuring their effects on the fluorescence change that accompanies activation and on the activity directly. At concentrations of 10–50 mM, d-phenylalanine, l-methionine, l-norleucine, and (S)-2-amino-3-phenyl-1-propanol were able to activate the enzyme to the same extent as 1 mM l-phenylalanine. Lower levels of activation were seen with l-4-aminophenylalanine, l-leucine, l-isoleucine, and 3-phenylpropionate. The ability of these compounds to stabilize the regulatory domain dimer agreed with their ability to activate the enzyme. These results support a model in which allosteric activation of phenylalanine hydroxylase is linked to dimerization of regulatory domains. PMID:26252467
Badawy, Abdulla A-B; Bano, Samina
2016-01-01
Rat liver tryptophan (Trp), kynurenine pathway metabolites, and enzymes deduced from product/substrate ratios were assessed following acute and/or chronic administration of kynurenic acid (KA), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid (3-HAA), Trp, and the kynureni-nase inhibitors benserazide (BSZ) and carbidopa (CBD). KA activated Trp 2,3-dioxygenase (TDO), possibly by increasing liver 3-HAA, but inhibited kynurenine aminotransferase (KAT) and kynureninase activities with 3-HK as substrate. 3-HK inhibited kynureninase activity from 3-HK. 3-HAA stimulated TDO, but inhibited kynureninase activity from K and 3-HK. Trp (50 mg/kg) increased kynurenine metabolite concentrations and KAT from K, and exerted a temporary stimulation of TDO. The kynureninase inhibitors BSZ and CBD also inhibited KAT, but stimulated TDO. BSZ abolished or strongly inhibited the Trp-induced increases in liver Trp and kynurenine metabolites. The potential effects of these changes in conditions of immune activation, schizophrenia, and other disease states are discussed.
Yu, Bingwu; Ruppert, Martin; Stöckigt, Joachim
2002-08-01
Microsomal preparations from cell suspension cultures of the Indian plant Rauvolfia serpentina catalyze the hydroxylation of deoxysarpagine under formation of sarpagine. The newly discovered enzyme is dependent on NADPH and oxygen. It can be inhibited by typical cytochrome P450 inhibitors such as cytochrome c, ketoconazole, metyrapone, tetcyclacis and carbon monoxide. The CO-effect is reversible with light (450 nm). The data indicate that deoxysarpagine hydroxylase is a novel cytochrome P450-dependent monooxygenase. A pH optimum of 8.0 and a temperature optimum of 35 degrees C were determined. K(m) values were 25 microM for NADPH and 7.4 microM for deoxysarpagine. Deoxysarpagine hydroxylase activity was stable in presence of 20% sucrose at -25 degrees C for >3 months. The analysis of presence of the hydroxylase in nine cell cultures of seven different families indicates a very limited taxonomic distribution of this enzyme.
Sherchand, Shardulendra P.; Ibana, Joyce A.; Zea, Arnold H.; Quayle, Alison J.; Aiyar, Ashok
2016-01-01
Chlamydia trachomatis is an obligate intracellular pathogen that requires specific essential nutrients from the host cell, one of which is the amino acid tryptophan. In this context interferon gamma (IFNγ) is the major host protective cytokine against chlamydial infections because it induces the expression of the host enzyme, indoleamine 2,3-dioxygenase 1, that degrades tryptophan, thereby restricting bacterial replication. The mechanism by which IFNγ acts has been dissected in vitro using epithelial cell-lines such as HeLa, HEp-2, or the primary-like endocervical cell-line A2EN. All these cell-lines express the high-risk human papillomavirus oncogenes E6 & E7. While screening cell-lines to identify those suitable for C. trachomatis co-infections with other genital pathogens, we unexpectedly found that tryptophan starvation did not completely block chlamydial development in cell-lines that were HR-HPV negative, such as C33A and 293. Therefore, we tested the hypothesis that HR-HPV oncogenes modulate the effect of tryptophan starvation on chlamydial development by comparing chlamydial development in HeLa and C33A cell-lines that were both derived from cervical carcinomas. Our results indicate that during tryptophan depletion, unlike HeLa, C33A cells generate sufficient intracellular tryptophan via proteasomal activity to permit C. trachomatis replication. By generating stable derivatives of C33A that expressed HPV16 E6, E7 or E6 & E7, we found that E6 expression alone was sufficient to convert C33A cells to behave like HeLa during tryptophan starvation. The reduced tryptophan levels in HeLa cells have a biological consequence; akin to the previously described effect of IFNγ, tryptophan starvation protects C. trachomatis from clearance by doxycycline in HeLa but not C33A cells. Curiously, when compared to the known Homo sapiens proteome, the representation of tryptophan in the HR-HPV E6 & E6AP degradome is substantially lower, possibly providing a mechanism that underlies the lowered intracellular free tryptophan levels in E6-expressing cells during starvation. PMID:27658027
Lee, Keon-Joo; Cho, Joo-Youn; Lee, Soon-Tae; Kim, Hwa Suk; Shim, Jun Hwa; Lee, Sang Kun; Kim, Manho
2017-01-01
Tryptophan metabolites regulate a variety of physiological processes, and their downstream metabolites enter the kynurenine pathway. Age-related changes of metabolites and activities of associated enzymes in this pathway are suggestable and would be potential intervention targets. Blood levels of serum tryptophan metabolites in C57BL/6 mice of different ages, ranging from 6 weeks to 10 months, were assessed using high-performance liquid chromatography, and the enzyme activities for each metabolic step were estimated using the ratio of appropriate metabolite levels. Mice were subjected to voluntary chronic aerobic exercise or high-fat diet to assess their ability to rescue age-related alterations in the kynurenine pathway. The ratio of serum kynurenic acid (KYNA) to 3-hydroxylkynurenine (3-HK) decreased with advancing age. Voluntary chronic aerobic exercise and high-fat diet rescued the decreased KYNA/3-HK ratio in the 6-month-old and 8-month-old mice groups. Tryptophan metabolites and their associated enzyme activities were significantly altered during aging, and the KYNA/3-HK ratio was a meaningful indicator of aging. Exercise and high-fat diet could potentially recover the reduction of the KYNA/3-HK ratio in the elderly. PMID:28680298
NASA Technical Reports Server (NTRS)
Blee, K.; Choi, J. W.; O'Connell, A. P.; Jupe, S. C.; Schuch, W.; Lewis, N. G.; Bolwell, G. P.
2001-01-01
A number of plant species contain the class II of genes encoding the cytochrome P450, CYP73, the cognate protein of which cinnamic acid 4-hydroxylase, is the second enzyme of the phenylpropanoid pathway. In order to begin to determine possible functionality, tobacco has been transformed with a truncated French bean class II cinnamate hydroxylase (CYP73A15) in the sense and antisense orientations. Signals for C4H protein could be detected in vascular tissue from wild-type plants using heterologous probes. The transformed plants showed a normal phenotype, even though detectable C4H protein was much reduced in tissue prints. Young propagated transformants displayed a range of reduced C4H activities, as well as either reduced or no phloroglucinol-stainable lignin. However, all mature tobacco plants showed the accumulation of lignin, even though its deposition was apparently delayed. This was not due to induction of tyrosine ammonia-lyase activity, which was not detected, but instead it is presumed due to sufficient C4H residual activity. Analysis of the lignin content of the plants showed reductions of up to 30% with a slightly reduced syringyl to guaiacyl ratio as compared to wild type. This reduction level was favourable in comparison with some other targets in the lignification pathway that have been manipulated including that of class I cinnamate 4-hydroxylase. It is proposed that the class II cinnamate 4-hydroxylase might also function in lignification in a number of species including French bean and tobacco, based on these data.
Wang, Qi; Zhang, Wu; Li, Hao; Aprecio, Raydolf; Wu, Wan; Lin, Yiqiao; Li, Yiming
2013-01-01
Vitamin D and its metabolites have been recognized as key determinants in innate immune modulation. In this study, we investigated the regulation of antibacterial functions of oral keratinocyte cells by 25-hydroxyvitamin D3 (25VD3). OKF6/TERT2 cells, an immortalized human oral keratinocyte cell line, were transfected with or without 24-hydroxylase small interfering RNA (siRNA) and incubated with different amounts of 25VD3. These epithelial cells expressed high levels of inactivating 24-hydroxylase (CYP24A1) and relatively low levels of activating 1α-hydroxylase (CYP27B1) in the presence of 25VD3. 25VD3 influenced the expression of vitamin D-driven genes and cathelicidin in a dose-related manner. SiRNA specific to 24-hydroxylase augmented the cathelicidin production and subseqently influenced the antibacterial activity on multispecies of oral pathogens. These observations suggest that 25VD3 is capable of stimulating cathelicidin production and modulating antibacterial function upon CYP24A1 knochdown in oral epithelial cells, and indicate novel mechanisms that 25VD3 may enhance antibacterial ability in oral keratinocytes. Copyright © 2013 Elsevier Inc. All rights reserved.
Torda, T; Kvetnansky, R; Tigranian, R A; Chulman, J; Genin, A M
1981-01-01
In the hypothalamus of the weightless and centrifuged rats flown for 18.5 days on board the biosatellite Cosmos-936 the noradrenaline concentration and activity of the enzymes involved in the catecholamine synthesis and degradation were measured. It was found that under the space flight influence the noradrenaline concentration and tyrosine hydroxylase, dopamine-beta-hydroxylase and monoamine oxidase activities remained unaltered. These findings indicate that a prolonged exposure to weightlessness was not a stressogenic agent that could activate the adrenergic system in the rat hypothalamus.
Meesapyodsuk, Dauenpen; Qiu, Xiao
2008-07-01
Claviceps purpurea, a fungal pathogen responsible for ergot diseases in many agriculturally important cereal crops, produces high levels of ricinoleic acid (12-hydroxyoctadec-cis-9-enoic acid) in its sclerotia. It has been believed for many years that the biosynthesis of this fatty acid in C. purpurea involves a hydration process with linoleic acid as the substrate. Using degenerate polymerase chain reaction, we cloned a gene from the sclerotia encoding an enzyme (CpFAH) that has high sequence similarity to the C. purpurea oleate desaturase, but only low similarity to plant oleate hydroxylases. Functional analysis of CpFAH in yeast (Saccharomyces cerevisiae) indicated it acted predominantly as a hydroxylase, introducing hydroxyl groups at the 12-position of oleic acid and palmitoleic acid. As well, it showed Delta(12) desaturase activities on 16C and 18C monounsaturated fatty acids and, to a much lesser extent, omega(3) desaturase activities on ricinoleic acid. Heterologous expression of CpFAH under the guidance of a seed-specific promoter in Arabidopsis (Arabidopsis thaliana) wild-type and mutant (fad2/fae1) plants resulted in the accumulation of relatively higher levels of hydroxyl fatty acids in seeds. These data indicate that the biosynthesis of ricinoleic acid in C. purpurea is catalyzed by the fungal desaturase-like hydroxylase, and CpFAH, the first Delta(12) oleate hydroxylase of nonplant origin, is a good candidate for the transgenic production of hydroxyl fatty acids in oilseed crops.
Soga, Tomoko; Teo, Chuin Hau; Cham, Kai Lin; Idris, Marshita Mohd; Parhar, Ishwar S.
2015-01-01
Social isolation in early life deregulates the serotonergic system of the brain, compromising reproductive function. Gonadotropin-inhibitory hormone (GnIH) neurons in the dorsomedial hypothalamic nucleus are critical to the inhibitory regulation of gonadotropin-releasing hormone neuronal activity in the brain and release of luteinizing hormone by the pituitary gland. Although GnIH responds to stress, the role of GnIH in social isolation-induced deregulation of the serotonin system and reproductive function remains unclear. We investigated the effect of social isolation in early life on the serotonergic–GnIH neuronal system using enhanced green fluorescent protein (EGFP)-tagged GnIH transgenic rats. Socially isolated rats were observed for anxious and depressive behaviors. Using immunohistochemistry, we examined c-Fos protein expression in EGFP–GnIH neurons in 9-week-old adult male rats after 6 weeks post-weaning isolation or group housing. We also inspected serotonergic fiber juxtapositions in EGFP–GnIH neurons in control and socially isolated male rats. Socially isolated rats exhibited anxious and depressive behaviors. The total number of EGFP–GnIH neurons was the same in control and socially isolated rats, but c-Fos expression in GnIH neurons was significantly reduced in socially isolated rats. Serotonin fiber juxtapositions on EGFP–GnIH neurons were also lower in socially isolated rats. In addition, levels of tryptophan hydroxylase mRNA expression in the dorsal raphe nucleus were significantly attenuated in these rats. These results suggest that social isolation in early-life results in lower serotonin levels, which reduce GnIH neuronal activity and may lead to reproductive failure. PMID:26617573
Kannen, Vinicius; Sakita, Juliana Y; Carneiro, Zumira A; Bader, Michael; Alenina, Natalia; Teixeira, Regina R; de Oliveira, Enio C; Brunaldi, Mariângela O; Gasparotto, Bianca; Sartori, Daniela C; Fernandes, Cleverson R; Silva, João S; Andrade, Marcus V; Silva, Wilson A; Uyemura, Sergio A; Garcia, Sérgio B
2018-06-01
Trypanosoma cruzi (T. cruzi) infects millions of Latin Americans each year and can induce chagasic megacolon. Little is known about how serotonin (5-HT) modulates this condition. Aim We investigated whether 5-HT synthesis alters T. cruzi infection in the colon. Forty-eight paraffin-embedded samples from normal colon and chagasic megacolon were histopathologically analyzed (173/2009). Tryptophan hydroxylase 1 (Tph1) knockout (KO) mice and c-Kit W-sh mice underwent T. cruzi infection together with their wild-type counterparts. Also, mice underwent different drug treatments (16.1.1064.60.3). In both humans and experimental mouse models, the serotonergic system was activated by T. cruzi infection (p < 0.05). While treating Tph1KO mice with 5-HT did not significantly increase parasitemia in the colon (p > 0.05), rescuing its synthesis promoted trypanosomiasis (p < 0.01). T. cruzi-related 5-HT release (p < 0.05) seemed not only to increase inflammatory signaling, but also to enlarge the pericryptal macrophage and mast cell populations (p < 0.01). Knocking out mast cells reduced trypanosomiasis (p < 0.01), although it did not further alter the neuroendocrine cell number and Tph1 expression (p > 0.05). Further experimentation revealed that pharmacologically inhibiting mast cell activity reduced colonic infection (p < 0.01). A similar finding was achieved when 5-HT synthesis was blocked in c-Kit W-sh mice (p > 0.05). However, inhibiting mast cell activity in Tph1KO mice increased colonic trypanosomiasis (p < 0.01). We show that mast cells may modulate the T. cruzi-related increase of 5-HT synthesis in the intestinal colon.
Age-dependent effects of initial exposure to nicotine on serotonin neurons.
Bang, S J; Commons, K G
2011-04-14
Adolescence is a critical vulnerable period during which exposure to nicotine greatly enhances the possibility to develop drug addiction. Growing evidence suggests that serotonergic (5-HT) neurotransmission may contribute to the initiation and maintenance of addictive behavior. As the dorsal raphe (DR) and median raphe (MnR) nuclei are the primary 5-HT source to the forebrain, the current study tested the hypothesis that there are age-dependent effects of acute nicotine administration on activation of 5-HT neurons within these regions. Both adolescent (Postnatal day 30) and adult (Postnatal day 70) male Sprague-Dawley rats received subcutaneous injection of either saline or nicotine (0.2, 0.4, or 0.8 mg/kg). Subsequently, the number of 5-HT cells that were double-labeled for Fos and tryptophan hydroxylase was counted in seven subregions within the DR and the entire MnR. The results show that acute nicotine injection induces Fos expression in 5-HT neurons in a region-specific manner. In addition, adolescents show broader regional activations at either a lower (0.2 mg/kg) and a higher (0.8 mg/kg) dose of nicotine, displaying a unique U-shape response curve across doses. In contrast, 5-HT cells with activated Fos expression were restricted to fewer regions in adults, and the patterns of expression were more consistent across doses. The results reveal dose-dependent effects of nicotine during adolescence with apparent sensitization at different ends of the dosage spectrum examined compared to adults. These data indicate that initial exposure to nicotine may have unique effects in adolescence on the ascending 5-HT system, with the potential for consequences on the affective-motivational qualities of the drug and the subsequent propensity for repeated use. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Age-Dependent Effects of Initial Exposure to Nicotine on Serotonin Neurons
Bang, Sun Jung; Commons, Kathryn G.
2011-01-01
Adolescence is a critical vulnerable period during which exposure to nicotine greatly enhances the possibility to develop drug addiction. Growing evidence suggests that serotonergic (5-HT) neurotransmission may contribute to the initiation and maintenance of addictive behavior. As the dorsal raphe (DR) and median raphe (MnR) nuclei are the primary 5-HT source to the forebrain, the current study tested the hypothesis that there are age-dependent effects of acute nicotine administration on activation of 5-HT neurons within these regions. Both adolescent (Postnatal day 30) and adult (Postnatal day 70) male Sprague-Dawley rats received subcutaneous injection of either saline or nicotine (0.2, 0.4, or 0.8 mg/kg). Subsequently, the number of 5-HT cells that were double-labeled for Fos and tryptophan hydroxylase was counted in 7 subregions within the DR and the entire MnR. The results show that acute nicotine injection induces Fos expression in 5-HT neurons in a region-specific manner. In addition, adolescents show broader regional activations at either a lower (0.2 mg/kg) and a higher (0.8 mg/kg) dose of nicotine, displaying a unique U-shape response curve across doses. In contrast, 5-HT cells with activated Fos expression were restricted to fewer regions in adults, and the patterns of expression were more consistent across doses. The results reveal dose-dependent effects of nicotine during adolescence with apparent sensitization at different ends of the dosage spectrum examined compared to adults. These data indicate that initial exposure to nicotine may have unique effects in adolescence on the ascending 5-HT system, with the potential for consequences on the affective-motivational qualities of the drug and the subsequent propensity for repeated use. PMID:21277949
Frontera, Jimena Laura; Gonzalez Pini, Victoria María; Messore, Fernando Luis; Brusco, Alicia
2018-05-16
The endocannabinoid (eCB) system is involved in the modulation of the reward system and participates in the reinforcing effects of different drugs of abuse, including alcohol. The most abundant receptor of the eCB system in the central nervous system is the CB1 receptor (CB1R), which is predominantly expressed in areas involved in drug addiction, such as the nucleus accumbens, the ventral tegmental area, the substantia nigra and the raphe nucleus. CB1R is expressed in early stages during development, and reaches maximum levels during early adolescence. In addition, cannabinoid receptor 2 has been found expressed also in the central nervous system at postsynaptic level. In order to analyze the participation of the eCB system on ethanol (EtOH) preference, mice were exposed to cannabinoid agonist WIN 55,212-2 (WIN) for 5 consecutive days during early adolescence. Anxiety tests were performed the day after WIN treatment withdrawal, and EtOH preference was measured throughout adolescence. Mice exposed to WIN during early adolescence exhibited a significant increase in EtOH intake and preference after treatment. Moreover, WIN exposure during early adolescence induced an anxiogenic effect. Morphometric analysis revealed higher dendritic ramifications and fewer dendritic spines in neurons of the substantia nigra pars compacta in WIN-treated mice. On the other hand, immunohistochemical analysis revealed an increase in the number of tryptophan hydroxylase-expressing neurons in the dorsal raphe nucleus but no differences were found in the ventral tegmental area or substantia nigra pars compacta for tyrosine hydroxylase-expressing neurons. These results demonstrate that exposure to WIN in early adolescence can affect neural development and induce alcohol preference and anxiety-like behavior during late adolescence. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bevilaqua, Fernanda; Mocelin, Ricieri; Grimm, Celso; da Silva Junior, Nairo Stefanello; Buzetto, Thales Luis Brust; Conterato, Greicy M Marafiga; Roman, Walter Antonio; Piato, Angelo L
2016-01-01
The traditional uses of Alpinia zerumbet (Pers.) B.L.Burtt & R.m.SM (Zingiberaceae), popularly known as colonia or pacová, suggest that the species has antihypertensive, diuretic, and sedative properties. We previously reported that an ethanol extract of Alpinia zerumbet (HEA) significantly reduced the immobility time in the tail suspension test (TST), similar to the tricyclic antidepressant imipramine. Moreover, HEA presented antioxidant and anxiolytic-like effects in mice. The objective of this study is to investigate the involvement of monoaminergic and glutamatergic systems in the antidepressant-like effects of this species. A hydroethanolic extract prepared with the leaves of A. zerumbet was assayed in the TST in male Swiss mice (800 mg/kg, p.o.). Synthesis inhibitors (AMPT, inhibitor of tyrosine hydroxylase, 100 mg/kg, i.p.; and PCPA, irreversible tryptophan hydroxylase inhibitor, 100 mg/kg, i.p.) and a specific glutamate antagonist (AMPA receptor antagonist NBQX, 10 mg/kg, i.p.) were used prior testing. Pre-treatment with the noradrenergic/dopaminergic inhibitor AMPT fully abolished the anti-immobility effects of HEA, with the two-way ANOVA yielding a significant interaction between pre-treatment and treatment (F1,32 = 10.0, p < 0.01); no interaction was observed with the serotonergic inhibitor PCPA (F1,32 = 0.33, p > 0.05) or NBQX (F1,32 = 0.21, p > 0.05). These results indicated that HEA most likely acts through the dopaminergic and/or noradrenergic system but not through the serotoninergic or glutamatergic systems. This study reinforces the idea that the available biodiversity in Brazil can serve as a basis for innovation in the development of new drugs.
Differential behavioral sensitivity to carbon dioxide (CO2) inhalation in rats
Winter, Andrew; Ahlbrand, Rebecca; Naik, Devanshi; Sah, Renu
2017-01-01
Inhalation of carbon dioxide (CO2) is frequently employed as a biological challenge to evoke intense fear and anxiety. In individuals with panic disorder, CO2 reliably evokes panic attacks. Sensitivity to CO2 is highly heterogeneous among individuals, and although a genetic component is implicated, underlying mechanisms are not clear. Preclinical models that can simulate differential responsivity to CO2 are therefore relevant. In the current study we investigated CO2-evoked behavioral responses in four different rat strains: Sprague-Dawley (SD), Wistar (W), Long Evans (LE) and Wistar-Kyoto, (WK) rats. We also assessed tryptophan hydroxylase 2 (TPH-2)-positive serotonergic neurons in anxiety/panic regulatory subdivisions of the dorsal raphe nucleus (DR), as well as dopamine β hydroxylase (DβH)-positive noradrenergic neurons in the locus coeruleus, implicated in central CO2-chemosensitivity. Behavioral responsivity to CO2 inhalation varied between strains. CO2-evoked immobility was significantly higher in LE and WK rats as compared with W and SD cohorts. Differences were also observed in CO2-evoked rearing and grooming behaviors. Exposure to CO2 did not produce conditioned behavioral responses upon re-exposure to CO2 context in any strain. Reduced TPH-2 positive cell counts were observed specifically in the panic-regulatory dorsal raphe ventrolateral (DRVL)-ventrolateral periaqueductal grey (VLPAG) subdivision in CO2-sensitive strains. Conversely, DβH positive cell counts within the LC were significantly higher in CO2-sensitive strains. Collectively, our data provide evidence for strain dependent, differential CO2-sensitivity and potential differences in monoaminergic systems regulating panic and anxiety. Comparative studies between CO2-vulnerable and resistant strains may facilitate the mechanistic understanding of differential CO2-sensitivity in the development of panic and anxiety disorders. PMID:28087339
Sudhakumari, Cheni-Chery; Anitha, Arumugam; Murugananthkumar, Raju; Tiwari, Dinesh Kumar; Bhasker, Dharavath; Senthilkumaran, Balasubramanian; Dutta-Gupta, Aparna
2017-09-15
Neuropeptide-Y (NPY) has diverse physiological functions which are extensively studied in vertebrates. However, regulatory role of NPY in relation to brain ontogeny and recrudescence with reference to reproduction is less understood in fish. Present report for the first time evaluated the significance of NPY by transient esiRNA silencing and also analyzed its expression during brain development and gonadal recrudescence in the catfish, Clarias gariepinus. As a first step, full-length cDNA of NPY was cloned from adult catfish brain, which shared high homology with its counterparts from other teleosts upon phylogenetic analysis. Tissue distribution revealed dominant expression of NPY in brain and testis. NPY expression increased during brain development wherein the levels were higher in 100 and 150days post hatch females than the respective age-matched males. Seasonal cycle analysis showed high expression of NPY in brain during pre-spawning phase in comparison with other reproductive phases. Localization studies exhibited the presence of NPY, abundantly, in the regions of preoptic area, hypothalamus and pituitary. Transient silencing of NPY-esiRNA directly into the brain significantly decreased NPY expression in both the male and female brain of catfish which further resulted in significant decrease of transcripts of tryptophan hydroxylase 2, catfish gonadotropin-releasing hormone (cfGnRH), tyrosine hydroxylase and 3β-hydroxysteroid dehydrogenase in brain and luteinizing hormone-β/gonadotropin-II (lh-β/GTH-II) in pituitary exhibiting its influence on gonadal axis. In addition, significant decrease of several ovary-related transcripts was observed in NPY-esiRNA silenced female catfish, indicating the plausible role of NPY in ovary through cfGnRH-GTH axis. Copyright © 2017 Elsevier Inc. All rights reserved.
The effects of Urtica dioica L. leaf extract on aniline 4-hydroxylase in mice.
Ozen, Tevfik; Korkmaz, Halil
2009-01-01
The effects of hydroalcoholic (80% ethanol-20% water) extract of Urtica dioica L. on microsomal aniline 4-hydroxylase (A4H) were investigated in the liver of Swiss albino mice (8- 10-weeks-old) treated with two doses (50 and 100 mg/kg body weight, given orally for 14 days ). The activities of A4H showed a significant increase in the liver at both dose levels of extract treatment. The hydroalcoholic extract of Urtica dioica induced the activities of A4H that had been increased by treatment of metal ions (Mg2+ and Ca2+) and the mixture of cofactors (NADH and NADPH). At saturated concentration of cofactor, microsomal A4H exhibited significantly even higher activities in the presence of the mixture of cofactors than NADPH and NADH. Mg2+ and Ca2+ ions acted as stimulants in vitro. The present results suggest that the hydroalcoholic extract of Urtica dioica may have modalatory effect on aniline hydroxylase at least in part and enhance the activity of A4H adding metals ions and cofactors.
Archetypal tryptophan-rich antimicrobial peptides: properties and applications.
Shagaghi, Nadin; Palombo, Enzo A; Clayton, Andrew H A; Bhave, Mrinal
2016-02-01
Drug-resistant microorganisms ('superbugs') present a serious challenge to the success of antimicrobial treatments. Subsequently, there is a crucial need for novel bio-control agents. Many antimicrobial peptides (AMPs) show a broad-spectrum activity against bacteria, fungi or viruses and are strong candidates to complement or substitute current antimicrobial agents. Some AMPs are also effective against protozoa or cancer cells. The tryptophan (Trp)-rich peptides (TRPs) are a subset of AMPs that display potent antimicrobial activity, credited to the unique biochemical properties of tryptophan that allow it to insert into biological membranes. Further, many Trp-rich AMPs cross bacterial membranes without compromising their integrity and act intracellularly, suggesting interactions with nucleic acids and enzymes. In this work, we overview some archetypal TRPs derived from natural sources, i.e., indolicidin, tritrpticin and lactoferricin, summarising their biochemical properties, structures, antimicrobial activities, mechanistic studies and potential applications.
Li, Jun; Dangott, Lawrence J.; Fitzpatrick, Paul F.
2010-01-01
Phenylalanine acts as an allosteric activator of the tetrahydropterin-dependent enzyme phenylalanine hydroxylase. Hydrogen/deuterium exchange monitored by mass spectrometry has been used to gain insight into local conformational changes accompanying activation of rat phenylalanine hydroxylase by phenylalanine. Peptides in the regulatory and catalytic domains that lie in the interface between these two domains show large increases in the extent of deuterium incorporation from solvent in the presence of phenylalanine. In contrast, the effects of phenylalanine on the exchange kinetics of a mutant enzyme lacking the regulatory domain are limited to peptides surrounding the binding site for the amino acid substrate. These results support a model in which the N-terminus of the protein acts as an inhibitory peptide, with phenylalanine binding causing a conformational change in the regulatory domain that alters the interaction between the catalytic and regulatory domains. PMID:20307070
Fossbakk, Agnete; Kleppe, Rune; Knappskog, Per M; Martinez, Aurora; Haavik, Jan
2014-01-01
Congenital tyrosine hydroxylase deficiency (THD) is found in autosomal-recessive Dopa-responsive dystonia and related neurological syndromes. The clinical manifestations of THD are variable, ranging from early-onset lethal disease to mild Parkinson disease-like symptoms appearing in adolescence. Until 2014, approximately 70 THD patients with a total of 40 different disease-related missense mutations, five nonsense mutations, and three mutations in the promoter region of the tyrosine hydroxylase (TH) gene have been reported. We collected clinical and biochemical data in the literature for all variants, and also generated mutant forms of TH variants previously not studied (N = 23). We compared the in vitro solubility, thermal stability, and kinetic properties of the TH variants to determine the cause(s) of their impaired enzyme activity, and found great heterogeneity in all these properties among the mutated forms. Some TH variants had specific kinetic anomalies and phenylalanine hydroxylase, and Dopa oxidase activities were measured for variants that showed signs of altered substrate binding. p.Arg233His, p.Gly247Ser, and p.Phe375Leu had shifted substrate specificity from tyrosine to phenylalanine and Dopa, whereas p.Cys359Phe had an impaired activity toward these substrates. The new data about pathogenic mechanisms presented are expected to contribute to develop individualized therapy for THD patients. PMID:24753243
The Interactions Between Kynurenine, Folate, Methionine and Pteridine Pathways in Obesity.
Engin, Ayse Basak; Engin, Atilla
2017-01-01
Obesity activates both innate and adaptive immune responses in adipose tissue. Elevated levels of eosinophils with depression of monocyte and neutrophil indicate the deficiencies in the immune system of morbidly obese individuals. Actually, adipose tissue macrophages are functional antigen-presenting cells that promote the proliferation of interferon-gamma (IFN-gamma)-producing CD4+ T cells in adipose tissue of obese subjects. Eventually, diet-induced obesity is associated with the loss of tissue homeostasis and development of type 1 inflammatory responses in visceral adipose tissue. Activity of inducible indoleamine 2,3-dioxygenase-1 (IDO-1) plays a major role under pro-inflammatory, IFN-gamma dominated settings. One of the two rate-limiting enzymes which can metabolize tryptophan to kynurenine is IDO-1. Tumor necrosis factor-alpha (TNF-alpha) correlates with IDO-1 in adipose compartments. Actually, IDO-1-mediated tryptophan catabolism due to chronic immune activation is the cause of reduced tryptophan plasma levels and be considered as the driving force for food intake in morbidly obese patients. Thus, decrease in plasma tryptophan levels and subsequent reduction in serotonin (5-HT) production provokes satiety dysregulation that leads to increased caloric uptake and obesity. However, after bariatric surgery, weight reduction does not lead to normalization of IDO-1 activity. Furthermore, there is a connection between arginine and tryptophan metabolic pathways in the generation of reactive nitrogen intermediates. Hence, abdominal obesity is associated with vascular endothelial dysfunction and reduced nitric oxide (NO) availability. IFN-gamma-induced activation of the inducible nitric oxide synthase (iNOS) and dissociation of endothelial adenosine monophosphate activated protein kinase (AMPK)- phosphoinositide 3-kinase (PI3K)-protein kinase B (Akt)- endothelial NO synthase (eNOS) pathway enhances oxidative stress production secondary to high-fat diet. Thus, reduced endothelial NO availability correlates with the increase in plasma non-esterified fatty acids and triglycerides levels. Additionally, in obese patients, folate-deficiency leads to hyperhomocysteinemia. Folic acid confers protection against hyperhomocysteinemia-induced oxidative stress.
Laporta, Jimena; Keil, Kimberly P.; Vezina, Chad M.; Hernandez, Laura L.
2014-01-01
Lactation is characterized by massive transcellular flux of calcium, from the basolateral side of the mammary alveolar epithelium (blood) into the ductal lumen (milk). Regulation of calcium transport during lactation is critical for maternal and neonatal health. The monoamine serotonin (5-HT) is synthesized by the mammary gland and functions as a homeostatic regulation of lactation. Genetic ablation of tryptophan hydroxylase 1 (Tph1), which encodes the rate-limiting enzyme in non-neuronal serotonin synthesis, causes a deficiency in circulating serotonin. As a consequence maternal calcium concentrations decrease, mammary epithelial cell morphology is altered, and cell proliferation is decreased during lactation. Here we demonstrate that serotonin deficiency decreases the expression and disrupts the normal localization of calcium transporters located in the apical (PMCA2) and basolateral (CaSR, ORAI-1) membranes of the lactating mammary gland. In addition, serotonin deficiency decreases the mRNA expression of calcium transporters located in intracellular compartments (SERCA2, SPCA1 and 2). Mammary expression of serotonin receptor isoform 2b and its downstream pathways (PLCβ3, PKC and MAP-ERK1/2) are also decreased by serotonin deficiency, which might explain the numerous phenotypic alterations described above. In most cases, addition of exogenous 5-hydroxy-L-tryptophan to the Tph1 deficient mice rescued the phenotype. Our data supports the hypothesis that serotonin is necessary for proper mammary gland structure and function, to regulate blood and mammary epithelial cell transport of calcium during lactation. These findings can be applicable to the treatment of lactation-induced hypocalcemia in dairy cows and can have profound implications in humans, given the wide-spread use of selective serotonin reuptake inhibitors as antidepressants during pregnancy and lactation. PMID:25299122
Serotonergic regulation of distention-induced ATP release from the urothelium.
Matsumoto-Miyai, Kazumasa; Yamada, Erika; Shinzawa, Eriko; Koyama, Yoshihisa; Shimada, Shoichi; Yoshizumi, Masaru; Kawatani, Masahito
2016-04-01
Serotonin [5-hydroxytryptamine (5-HT)] is involved in both motor and sensory functions in hollow organs, especially in the gastrointestinal tract. However, the involvement of 5-HT in visceral sensation of the urinary bladder remains unknown. Because distention-induced ATP release from the urothelium plays an essential role in visceral sensation of the urinary bladder, we investigated the regulation of urothelial ATP release by the 5-HT signaling system. RT-PCR and immunohistochemical analyses of the urothelium revealed specific expression of 5-HT 1D and 5-HT 4 receptors. The addition of 5-HT did not affect urothelial ATP release without bladder distention, but it significantly reduced distention-induced ATP release by physiological pressure during urine storage (5 cmH 2 O). The inhibitory effect of 5-HT on distention-elicited ATP release was blocked by preincubation with the 5-HT 1B/1D antagonist GR-127935 but not by the 5-HT 4 antagonist SB-204070. mRNA encoding tryptophan hydroxylase 1 was detected in the urinary bladder by nested RT-PCR amplification, and l-tryptophan or the selective serotonin reuptake inhibitor citalopram also inhibited ATP release, indicating that 5-HT is endogenously synthesized and released in the urinary bladder. The addition of GR-127935 significantly enhanced the distention-elicited ATP release 40 min after distention, whereas SB-204070 reduced the amount of ATP release 20 min after distention. These data suggest that 5-HT 4 facilitates the distention-induced ATP release at an earlier stage, whereas 5-HT 1D inhibits ATP release at a later stage. The net inhibitory effect of 5-HT indicates that the action of 5-HT on the urothelium is mediated predominantly by 5-HT 1D . Copyright © 2016 the American Physiological Society.
Zhang, Yuqi; Chang, Zaohuo; Chen, Jionghua; Ling, Yang; Liu, Xiaowei; Feng, Zhang; Chen, Caixia; Xia, Minghua; Zhao, Xingfu; Ying, Wang; Qing, Xu; Li, Guilin; Zhang, Changsong
2015-08-01
Tryptophan hydroxylase-2 (TPH2) contributes to alterations in the function of neuronal serotonin (5-HT), which are associated with various psychopathologies, including major depressive disorder (MDD) or suicidal behavior. The methylation of a single CpG site in the promoter region of TPH2 affects gene expression. Suicide and MDD are strongly associated and genetic factors are at least partially responsible for the variability in suicide risk. The aim of the present study was to investigate whether variations in TPH2 methylation in peripheral blood samples may predispose patients with MDD to suicide attempts. TPH2 mRNA expression levels differed significantly between 50 patients with MDD who had attempted suicide (MDD + suicide group) and 75 control patients with MDD (MDD group); TPH2 expression levels were significantly decreased (P=0.0005) in the patients who had attempted suicide. Furthermore, the frequency of TPH2 methylation was 36.0% in the MDD + suicide group, while it was 13.0% in the MDD group. The results of the present study demonstrated that methylation in the promoter region of TPH2 significantly affected the mRNA expression levels of TPH2, thus suggesting that methylation of the TPH2 promoter may silence TPH2 mRNA expression in MDD patients with or without suicidal behavior. In addition, there was a significant correlation between the methylation status of the TPH2 promoter and depression, hopelessness and cognitive impairment in the MDD + suicide group. In conclusion, the present study demonstrated that TPH2 expression was regulated by DNA methylation of the TPH2 promoter region in patients with MDD.
Hypothalamic digoxin, hemispheric chemical dominance, and spirituality.
Kurup, Ravi Kumar; Kurup, Parameswara Achutha
2003-03-01
The isoprenoid pathway was assessed in atheistic and spiritually inclined individuals. The pathway was also assessed in individuals with differing hemispheric dominance to assess whether hemispheric dominance has a correlation with spiritual and atheistic tendency. HMG CoA reductase activity, serum digoxin, RBC membrane Na(+)-K+ ATPase activity, serum magnesium, and tyrosine/tryptophan catabolic patterns were assessed in spiritual/atheistic individuals and in those differing hemispheric dominance. In spiritually-inclined individuals, there was increased digoxin synthesis, decreased membrane Na(+)-K+ ATPase activity, increased tryptophan catabolites (serotonin, quinolinic acid, and nicotine), and decreased tyrosine catabolites (dopamine, noradrenaline, and morphine). The pattern in spiritually-inclined individuals correlated with right hemispheric chemical dominance. In atheistic individuals there was decreased digoxin synthesis, increased membrane Na(+)-K+ ATPase activity, decreased tryptophan catabolities (serotonin, quinolinic acid, and nicotine), and increased tyrosine catabolites (dopamine, noradrenaline, and morphine). This pattern in atheistic individuals correlated with that obtained in left hemispheric chemical dominance. Hemispheric chemical dominance and hypothalamic digoxin could regulate the predisposition to spirituality or atheism.
2012-01-01
Placebo-Controlled Trial of the Dopamine Beta Hydroxylase (DBH) Inhibitor, Nepicastat, for the Treatment of PTSD in Operation Iraqi Freedom (OIF...Operation Enduring Freedom (OEF) Veterans 1 A Randomized, Placebo-Controlled Trial of the Dopamine -?-Hydroxylase (DBH) Inhibitor, Nepicastat for the...Reduction: Predeployment Stress Inoculation Training 1 Combat, Sexual Assault, and Post-Traumatic Stress in OIF/OEF Military Women 1 Comparing
Disturbed tryptophan metabolism in cardiovascular disease.
Mangge, H; Stelzer, I; Reininghaus, E Z; Weghuber, D; Postolache, T T; Fuchs, D
2014-06-01
Atherosclerosis (AS), a major pathologic consequence of obesity, is the main etiological factor of cardiovascular disease (CVD), which is the most common cause of death in the western world. A systemic chronic low grade immune- mediated inflammation (scLGI) is substantially implicated in AS and its consequences. In particular, proinflammatory cytokines play a major role, with Th1-type cytokine interferon-γ (IFN-γ) being a key mediator. Among various other molecular and cellular effects, IFN-γ activates the enzyme indoleamine 2,3-dioxygenase (IDO) in monocyte-derived macrophages, dendritic, and other cells, which, in turn, decreases serum levels of the essential amino acid tryptophan (TRP). Thus, people with CVD often have increased serum kynurenine to tryptophan ratios (KYN/TRP), a result of an increased TRP breakdown. Importantly, increased KYN/TRP is associated with a higher likelihood of fatal cardiovascular events. A scLGI with increased production of the proinflammatory adipokine leptin, in combination with IFN-γ and interleukin-6 (IL-6), represents another central link between obesity, AS, and CVD. Leptin has also been shown to contribute to Th1-type immunity shifting, with abdominal fat being thus a direct contributor to KYN/TRP ratio. However, TRP is not only an important source for protein production but also for the generation of one of the most important neurotransmitters, 5-hydroxytryptamine (serotonin), by the tetrahydrobiopterin-dependent TRP 5-hydroxylase. In prolonged states of scLGI, availability of free serum TRP is strongly diminished, affecting serotonin synthesis, particularly in the brain. Additionally, accumulation of neurotoxic KYN metabolites such as quinolinic acid produced by microglia, can contribute to the development of depression via NMDA glutamatergic stimulation. Depression had been reported to be associated with CVD endpoints, but it most likely represents only a secondary loop connecting excess adipose tissue, scLGI and cardiovascular morbidity and mortality. Accelerated catabolism of TRP is further involved in the pathogenesis of the anemia of scLGI. The pro-inflammatory cytokine IFN-γ suppresses growth and differentiation of erythroid progenitor cells, and the depletion of TRP limits protein synthesis and thus hemoglobin production, and, through reduction in oxygen supply, may contribute to ischemic vascular disease. In this review we discuss the impact of TRP breakdown and the related complex mechanisms on the prognosis and individual course of CVD. Measurement of TRP, KYN concentrations, and calculation of the KYN/TRYP ratio will contribute to a better understanding of the interplay between inflammation, metabolic syndrome, mood disturbance, and anemia, all previously described as significant predictors of an unfavorable outcome in patients with CVD. The review leads to a novel framework for successful therapeutic modification of several cardinal pathophysiological processes leading to adverse cardiovascular outcome.
Ng, L K; Lamprecht, F; Williams, R B; Kopin, I J
1973-06-29
Serum dopamine beta-hydroxylase activity, a useful biochemical index of peripheral sympathetic nervous activity, was measured in rats treated with Delta(9)-tetrahydrocannabinol or ethanol or both substances. After 7 days of treatment with either substance, serum dopamine beta-hydroxylase activity decreased significantly. Combined treatment with both agents enhanced the effects of each given alone. In rats subjected to immobilization stress, treatment with Delta(9)- tetrahydrocannabinol appeared to potentiate the stress-induced increase in serum enzyme activity. Treatment with ethanol, with or without Delta(9)-tetrahydrocannabinol, effectively blocked this increase in enzyme activity. These results show that both substances have significant effects on the sympathetic nervous system which are critically influenced by environmental setting.
The effects of glycogen synthase kinase-3beta in serotonin neurons.
Zhou, Wenjun; Chen, Ligong; Paul, Jodi; Yang, Sufen; Li, Fuzeng; Sampson, Karen; Woodgett, Jim R; Beaulieu, Jean Martin; Gamble, Karen L; Li, Xiaohua
2012-01-01
Glycogen synthase kinase-3 (GSK3) is a constitutively active protein kinase in brain. Increasing evidence has shown that GSK3 acts as a modulator in the serotonin neurotransmission system, including direct interaction with serotonin 1B (5-HT1B) receptors in a highly selective manner and prominent modulating effect on 5-HT1B receptor activity. In this study, we utilized the serotonin neuron-selective GSK3β knockout (snGSK3β-KO) mice to test if GSK3β in serotonin neurons selectively modulates 5-HT1B autoreceptor activity and function. The snGSK3β-KO mice were generated by crossbreeding GSK3β-floxed mice and ePet1-Cre mice. These mice had normal growth and physiological characteristics, similar numbers of tryptophan hydroxylase-2 (TpH2)-expressing serotonin neurons, and the same brain serotonin content as in littermate wild type mice. However, the expression of GSK3β in snGSK3β-KO mice was diminished in TpH2-expressing serotonin neurons. Compared to littermate wild type mice, snGSK3β-KO mice had a reduced response to the 5-HT1B receptor agonist anpirtoline in the regulation of serotonergic neuron firing, cAMP production, and serotonin release, whereas these animals displayed a normal response to the 5-HT1A receptor agonist 8-OH-DPAT. The effect of anpirtoline on the horizontal, center, and vertical activities in the open field test was differentially affected by GSK3β depletion in serotonin neurons, wherein vertical activity, but not horizontal activity, was significantly altered in snGSK3β-KO mice. In addition, there was an enhanced anti-immobility response to anpirtoline in the tail suspension test in snGSK3β-KO mice. Therefore, results of this study demonstrated a serotonin neuron-targeting function of GSK3β by regulating 5-HT1B autoreceptors, which impacts serotonergic neuron firing, serotonin release, and serotonin-regulated behaviors.
Cash, Michael T; Miles, Edith W; Phillips, Robert S
2004-12-15
The bacterial tryptophan synthase alpha(2)beta(2) complex catalyzes the final reactions in the biosynthesis of L-tryptophan. Indole is produced at the active site of the alpha-subunit and is transferred through a 25-30 A tunnel to the beta-active site, where it reacts with an aminoacrylate intermediate. Lane and Kirschner proposed a two-step nucleophilic addition-tautomerization mechanism for the reaction of indole with the aminoacrylate intermediate, based on the absence of an observed kinetic isotope effect (KIE) when 3-[(2)H]indole reacts with the aminoacrylate intermediate. We have now observed a KIE of 1.4-2.0 in the reaction of 3-[(2)H]indole with the aminoacrylate intermediate in the presence of monovalent cations, but not when an alpha-subunit ligand, disodium alpha-glycerophosphate (Na(2)GP), is present. Rapid-scanning stopped flow kinetic studies were performed of the reaction of indole and 3-[(2)H]indole with tryptophan synthase preincubated with L-serine, following the decay of the aminoacrylate intermediate at 350 nm, the formation of the quinonoid intermediate at 476 nm, and the formation of the L-Trp external aldimine at 423 nm. The addition of Na(2)GP dramatically slows the rate of reaction of indole with the alpha-aminoacrylate intermediate. A primary KIE is not observed in the reaction of 3-[(2)H]indole with the aminoacrylate complex of tryptophan synthase in the presence of Na(2)GP, suggesting binding of indole with tryptophan synthase is rate limiting under these conditions. The reaction of 2-methylindole does not show a KIE, either in the presence of Na(+) or Na(2)GP. These results support the previously proposed mechanism for the beta-reaction of tryptophan synthase, but suggest that the rate limiting step in quinonoid intermediate formation from indole and the aminoacrylate intermediate is deprotonation.
Fernández-Espejo, Emilio; Bis-Humbert, Cristian
2018-06-06
3-iodo-l-tyrosine might play a role in Parkinson's disease since this molecule is able, at high concentration, to inhibit tyrosine-hydroxylase activity, the rate-limiting enzyme in dopamine biosynthesis. The possible Parkinson-like effects of 3-iodo-l-tyrosine were tested on three experimental approaches in mice: cultured substantia nigra neurons, the enteric nervous system of the jejunum after intra-peritoneal infusions, and the nigrostriatal system following unilateral intrabrain injections. 3-iodo-l-tyrosine, a physiological molecule, was used at concentrations higher than its serum levels in humans. Parkinson-like signs were evaluated through abnormal aggregation of α-synuclein and tyrosine-hydroxylase, loss of tyrosine-hydroxylase-expressing and striatum-projecting neurons and fibers, reduced tyrosine-hydroxylase density, and Parkinson-like motor and non-motor deficits. The retrograde tracer FluoroGold was used in the brain model. The findings revealed that excess amounts of 3-iodo-l-tyrosine induce Parkinson-like effects in the three experimental approaches. Thus, culture neurons of substantia nigra show, after 3-iodo-l-tyrosine exposure, intracytoplasmic inclusions that express α-synuclein and tyrosine-hydroxylase. Intra-peritoneal infusions of 3-iodo-l-tyrosine cause, in the long-term, α-synuclein aggregation, thicker α-synuclein-positive fibers, and loss of tyrosine-hydroxylase-positive cells and fibers in intramural plexuses and ganglia of the jejunum. Infusion of 3-iodo-l-tyrosine into the left dorsal striata of mice damages the nigrostriatal system, as revealed through lower striatal tyrosine-hydroxylase density, reduced number of tyrosine-hydroxylase-expressing and striatum-projecting neurons in the left substantia nigra, as well as the emergence of Parkinson-like behavioral deficits such as akinesia, bradykinesia, motor disbalance, and locomotion directional bias. In conclusion, excess amounts of 3-iodo-l-tyrosine induce Parkinson-like features in cellular, enteric and brain approaches of Parkinsonism in mice. Copyright © 2018 Elsevier B.V. All rights reserved.
Deficiency in methionine, tryptophan, isoleucine, or choline induces apoptosis in cultured cells.
Yen, Chi-Liang E; Mar, Mei-Heng; Craciunescu, Corneliu N; Edwards, Lloyd J; Zeisel, Steven H
2002-07-01
Cells in culture die by apoptosis when deprived of the essential nutrient choline. We now report that cells (both proliferating PC12 cells and postmitotic neurons isolated from fetal rat brains) undergo apoptosis when deprived of other individual essential nutrients (methionine, tryptophan or isoleucine). In PC12 cells, deficiencies of each nutrient independently led to ceramide accumulation and to caspase activation, both recognized signals of several apoptotic pathways. A similar profile of caspases was activated in PC12 cells deprived of choline, methionine, tryptophan or isoleucine. More than one caspase was involved and these caspases appeared to transmit parallel signals for apoptosis induction because only broad-spectrum caspase inhibitors, but not inhibitors for specific individual caspases inhibited apoptosis in choline- or methionine-deprived cells. The induction of these caspase-dependent apoptosis pathways likely did not involve the same upstream signals. Choline deficiency perturbed choline metabolism but did not affect protein synthesis, whereas amino acid deficiencies inhibited protein synthesis but did not perturb choline metabolism. In addition, a subclone of PC12 cells that was resistant to choline deficiency-induced apoptosis was not resistant to tryptophan deficiency-induced apoptosis. These observations suggest that deficiency of each studied nutrient activates different pathways for signaling apoptosis that ultimately converge on a common execution pathway.
Vuica, Ana; Ferhatović Hamzić, Lejla; Vukojević, Katarina; Jerić, Milka; Puljak, Livia; Grković, Ivica; Filipović, Natalija
2015-12-01
Diabetes mellitus (DM) is a metabolic disorder associated with serious liver complications. As a metabolic chronic disease, DM is very common in the elderly. Recent studies suggest ameliorating effects of vitamin D on metabolic and oxidative stress in the liver tissue in an experimental model of DM. The aim of this study was to investigate the expression of vitamin D receptors (VDRs) and 1α-hydroxylase, the key enzyme for the production of active vitamin D form (calcitriol) in the liver during long-term diabetes mellitus type 1 (DM1) in aging rats. We performed immunohistochemical analysis of liver expression of 1α-hydroxylase and VDRs during aging in long-term streptozotocin-induced DM1. 1α-Hydroxylase was identified in the monocyte/macrophage system of the liver. In addition to the nuclear expression, we also observed the expression of VDR in membranes of lipid droplets within hepatocytes. Aging and long-term DM1 resulted in significant increases in the number of 1α-hydroxylase immunoreactive cells, as well as the percentage of strongly positive VDR hepatocytes. In conclusion, the liver has the capacity for active vitamin D synthesis in its monocyte/macrophage system that is substantially increased in aging and long-term diabetes mellitus. These conditions are also characterized by significant increases in vitamin D receptor expression in hepatocytes. The present study suggests that VDR signaling system could be a potential target in prevention of liver complications caused by diabetes and aging. Copyright © 2015 Elsevier Inc. All rights reserved.
Sadiku, Pranvera; Willson, Joseph A; Dickinson, Rebecca S; Murphy, Fiona; Harris, Alison J; Lewis, Amy; Sammut, David; Mirchandani, Ananda S; Ryan, Eilise; Watts, Emily R; Thompson, A A Roger; Marriott, Helen M; Dockrell, David H; Taylor, Cormac T; Schneider, Martin; Maxwell, Patrick H; Chilvers, Edwin R; Mazzone, Massimilliano; Moral, Veronica; Pugh, Chris W; Ratcliffe, Peter J; Schofield, Christopher J; Ghesquiere, Bart; Carmeliet, Peter; Whyte, Moira Kb; Walmsley, Sarah R
2017-09-01
Fully activated innate immune cells are required for effective responses to infection, but their prompt deactivation and removal are essential for limiting tissue damage. Here, we have identified a critical role for the prolyl hydroxylase enzyme Phd2 in maintaining the balance between appropriate, predominantly neutrophil-mediated pathogen clearance and resolution of the innate immune response. We demonstrate that myeloid-specific loss of Phd2 resulted in an exaggerated inflammatory response to Streptococcus pneumonia, with increases in neutrophil motility, functional capacity, and survival. These enhanced neutrophil responses were dependent upon increases in glycolytic flux and glycogen stores. Systemic administration of a HIF-prolyl hydroxylase inhibitor replicated the Phd2-deficient phenotype of delayed inflammation resolution. Together, these data identify Phd2 as the dominant HIF-hydroxylase in neutrophils under normoxic conditions and link intrinsic regulation of glycolysis and glycogen stores to the resolution of neutrophil-mediated inflammatory responses. These results demonstrate the therapeutic potential of targeting metabolic pathways in the treatment of inflammatory disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gan, L.S.
A series of aryl acetylenes and aryl olefins have been examined as substrates and inhibitors of cytochrome P-450 dependent monooxygenases in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene (EP), 3-ethynylperylene (EPL), cis- and trans-1-(2-bromo-vinyl)pyrene (c-BVP and t-BVP), and 1-allylpyrene (AP) serve as mechanism-based irreversible inactivators (suicide inhibitors) of benzo(a)pyrene (BP) hydroxylase, while 1-vinyl-pyrene (VP) and phenyl 1-pyrenyl acetylene (PPA) do not cause a detectable suicide inhibition of the BP hydroxylase. The mechanism-based loss of BP hydroxylase activity caused by the aryl acetylenes is not accompanied by a corresponding loss of the P-450 content of the microsomes. In themore » presence of NADPH, /sup 3/H-labeled EP covalently attached to P-450 isozymes with a measured stoichiometry of one mole of EP per mole of the P-450 heme. The results of the effects of these aryl derivatives in the mammalian cell-mediated mutagenesis assay and toxicity assay show that none of the compounds examined nor any of the their metabolites produced in the incubation system are cytotoxic to V79 cells.« less
Common variants in the TPH2 promoter confer susceptibility to paranoid schizophrenia.
Yi, Zhenghui; Zhang, Chen; Lu, Weihong; Song, Lisheng; Liu, Dentang; Xu, Yifeng; Fang, Yiru
2012-07-01
Serotonergic system-related genes may be good candidates in investigating the genetic basis of schizophrenia. Our previous study suggested that promoter region of tryptophan hydroxylase 2 gene (TPH2) may confer the susceptibility to paranoid schizophrenia. In this study, we investigated whether common variants within TPH2 promoter may predispose to paranoid schizophrenia in Han Chinese. A total of 509 patients who met DSM-IV criteria for paranoid schizophrenia and 510 matched healthy controls were recruited for this study. Five polymorphisms within TPH2 promoter region were tested. No statistically significant differences were found in allele or genotype frequencies between schizophrenic patients and healthy controls. The frequency of the rs4448731T-rs6582071A-rs7963803A-rs4570625T-rs11178997A haplotype was significantly higher in cases compared to the controls (P = 0.003; OR = 1.49; 95% CI, 1.15-1.95). Our results suggest that the common variants within TPH2 promoter are associated with paranoid schizophrenia in Han Chinese. Further studies in larger samples are warranted to elucidate the role of TPH2 in the etiology of paranoid schizophrenia.
24-Hydroxylase: potential key regulator in hypervitaminosis D3 in growing dogs.
Tryfonidou, M A; Oosterlaken-Dijksterhuis, M A; Mol, J A; van den Ingh, T S G A M; van den Brom, W E; Hazewinkel, H A W
2003-03-01
A group of growing dogs supplemented with cholecalciferol (vitamin D(3); HVitD) was studied vs. a control group (CVitD; 54,000 vs. 470 IU vitamin D(3)/kg diet, respectively) from 3 to 21 wk of age. There were no differences in plasma levels of P(i) and growth-regulating hormones between groups and no signs of vitamin D(3) intoxication in HVitD. For the duration of the study in HVitD vs. CVitD, plasma 25-hydroxycholecalciferol levels increased 30- to 75-fold; plasma 24,25-dihydroxycholecalciferol levels increased 12- to 16-fold and were accompanied by increased renal 24-hydroxylase gene expression, indicating increased renal 24-hydroxylase activity. Although the synthesis of 1,25-dihydroxycholecalciferol [1,25(OH)(2)D(3)] was increased in HVitD vs. CVitD (demonstrated by [(3)H]1,25(OH)(2)D(3) and increased renal 1alpha-hydroxylase gene expression), plasma 1,25(OH)(2)D(3) levels decreased by 40% as a result of the even more increased metabolic clearance of 1,25(OH)(2)D(3) (demonstrated by [(3)H]1,25(OH)(2)D(3) and increased gene expression of intestinal and renal 24-hydroxylase). A shift of the Ca set point for parathyroid hormone to the left indicated increased sensitivity of the chief cells. Effective counterbalance was provided by hypoparathyroidism, hypercalcitoninism, and the key regulator 24-hydroxylase, preventing the development of vitamin D(3) toxicosis.
Drevytska, T; Gonchar, E; Okhai, I; Lynnyk, O; Mankovska, I; Klionsky, D; Dosenko, V
2018-06-01
The aim of this study was to investigate the molecular mechanisms underlying the protective effects of hypoxia-inducible factor (HIF) signaling pathway activation in cardiomyocytes under anoxia-reoxygenation (A/R) injury. In this study, rat neonatal cardiomyocytes were pretreated with anti-Hif3A/Hif-3α siRNA or HIF-prolyl hydroxylase inhibitor prior to A/R injury. Our results showed that both HIF3A silencing and HIF-prolyl hydroxylase inhibition effectively increased the cell viability during A/R, led to changes in mRNA expression of HIF1-target genes, and reduced the loss of mitochondrial membrane potential (Δψ m ). Furthermore, application of anti-Hif3a siRNA led to an increase in mRNA expression of Epo, Igf1, Slc2a1/Glut-1, and Slc2a4/Glut-4. Similar results were observed with HIF-prolyl hydroxylase inhibition, which additionally upregulated the mRNA expression of Epor, Tert, and Pdk1. Hif3a RNA-interference and application of HIF-prolyl hydroxylase inhibitor during A/R modelling led to an increase of Δψ m on 11.5 and 11.9 mV respectively, compared to the control groups. Thus, Hif3a RNA interference and HIF-prolyl hydroxylase inhibition protect cardiomyocytes against A/R injury via the HIF signaling pathway. Copyright © 2018 Elsevier Inc. All rights reserved.
Tryptophan circuit in fatigue: From blood to brain and cognition.
Yamashita, Masatoshi; Yamamoto, Takanobu
2017-11-15
Brain tryptophan and its neuroactive metabolites play key roles in central fatigue. However, previous brain function analysis targets may have included both glia and neurons together. Here, we clarified the fatigue-cognitive circuit of the central-peripheral linkage, including the role of glial-neuronal interaction in cognition. Using a rat model of central fatigue induced by chronic sleep disorder (CFSD), we isolated presynaptic terminals and oligodendrocytes. Results showed that compared to control group, presynaptic levels of tryptophan, kynurenine, and kynurenic acid, but not serotonin, in the CFSD group were higher in the hypothalamus and hippocampus. Moreover, CFSD group had higher oligodendrocytic levels of tryptophan, and impaired spatial cognitive memory accuracy and increased hyperactivity and impulsivity. These findings suggest that dynamic change in glial-neuronal interactions within the hypothalamus-hippocampal circuit causes central fatigue, and increased tryptophan-kynurenic acid pathway activity in this circuit causes reduced cognitive function. Additionally, CFSD group had 1.5 times higher plasma levels of tryptophan and kynurenine. Furthermore, in rats undergoing intraperitoneal administration of kynurenine (100mg/kg) versus vehicle, kynurenine-treated rats showed enhanced production of kynurenic acid in the hippocampus, with suppressed recall of retained spatial cognitive memory. The study revealed that uptake of periphery-derived kynurenine and tryptophan into the brain enhances kynurenic acid production in the brain, and the three factors produce amplification effect involved in the role of central-peripheral linkage in central fatigue, triggering cognitive dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.
Taher, Yousef A; Piavaux, Benoit J A; Gras, Reneé; van Esch, Betty C A M; Hofman, Gerard A; Bloksma, Nanne; Henricks, Paul A J; van Oosterhout, Antoon J M
2008-04-01
The tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO) has been implicated in immune suppression and tolerance induction. We examined (1) whether IDO activity is required during tolerance induction by allergen immunotherapy or for the subsequent suppressive effects on asthma manifestations and (2) whether tryptophan depletion or generation of its downstream metabolites is involved. Ovalbumin (OVA)-sensitized and OVA-challenged BALB/c mice that display increased airway responsiveness to methacholine, serum OVA-specific IgE levels, bronchoalveolar eosinophilia, and TH2 cytokine levels were used as a model of allergic asthma. Sensitized mice received subcutaneous optimal (1 mg) or suboptimal (100 microg) OVA immunotherapy. Inhibition of IDO by 1-methyl-DL-tryptophan during immunotherapy, but not during inhalation challenge, partially reversed the suppressive effects of immunotherapy on airway eosinophilia and TH2 cytokine levels, whereas airway hyperresponsiveness and serum OVA-specific IgE levels remained suppressed. Administration of tryptophan during immunotherapy failed to abrogate its beneficial effects toward allergic airway inflammation. Interestingly, administration of tryptophan or its metabolites, kynurenine, 3-hydroxykynurenine, and xanthurenic acid, but not 3-hydroxyanthranilinic acid, quinolinic acid, and kynurenic acid, during suboptimal immunotherapy potentiated the reduction of eosinophilia. These effects coincided with reduced TH2 cytokine levels in bronchoalveolar lavage fluid, but no effects on IgE levels were detected. During immunotherapy, the tryptophan metabolites kynurenine, 3-hydroxykynurenine, and xanthurenic acid generated through IDO contribute to tolerance induction regarding TH2-dependent allergic airway inflammation.
Targeting Tryptophan Catabolism: A Novel Method to Block Triple-Negative Breast Cancer Metastasis
2016-04-01
in many immune cell types and its activation decreases T-cell activity leading to tumor immune escape. Since the rate limiting enzyme TDO2 increases...What were the major goals of the project? Our overall goals were to test the hypotheses that the ability to upregulate kynurenine via the enzyme TDO2...discipline(s) of the project? " o This research is strongly suggesting that TDO2 is likely the primary enzyme that catabolizes tryptophan that should
Zhang, Nan; Han, Zhentai; Sun, Guiling; Hoffman, Angela; Wilson, Iain W; Yang, Yanfang; Gao, Qian; Wu, Jianqiang; Xie, Dan; Dai, Jungui; Qiu, Deyou
2014-01-17
Taxol is a well-known effective anticancer compound. Due to the inability to synthesize sufficient quantities of taxol to satisfy commercial demand, a biotechnological approach for a large-scale cell or cell-free system for its production is highly desirable. Several important genes in taxol biosynthesis are currently still unknown and have been shown to be difficult to isolate directly from Taxus, including the gene encoding taxoid 9α-hydroxylase. Ginkgo biloba suspension cells exhibit taxoid hydroxylation activity and provides an alternate means of identifying genes encoding enzymes with taxoid 9α-hydroxylation activity. Through analysis of high throughput RNA sequencing data from G. biloba, we identified two candidate genes with high similarity to Taxus CYP450s. Using in vitro cell-free protein synthesis assays and LC-MS analysis, we show that one candidate that belongs to the CYP716B, a subfamily whose biochemical functions have not been previously studied, possessed 9α-hydroxylation activity. This work will aid future identification of the taxoid 9α-hydroxylase gene from Taxus sp. Copyright © 2013 Elsevier Inc. All rights reserved.
Bilderbeck, Amy C.; Brown, Gordon D. A.; Read, Judi; Woolrich, Mark; Cowen, Phillip J.; Behrens, Tim E. J.
2014-01-01
How do people sustain resources for the benefit of individuals and communities and avoid the tragedy of the commons, in which shared resources become exhausted? In the present study, we examined the role of serotonin activity and social norms in the management of depletable resources. Healthy adults, alongside social partners, completed a multiplayer resource-dilemma game in which they repeatedly harvested from a partially replenishable monetary resource. Dietary tryptophan depletion, leading to reduced serotonin activity, was associated with aggressive harvesting strategies and disrupted use of the social norms given by distributions of other players’ harvests. Tryptophan-depleted participants more frequently exhausted the resource completely and also accumulated fewer rewards than participants who were not tryptophan depleted. Our findings show that rank-based social comparisons are crucial to the management of depletable resources, and that serotonin mediates responses to social norms. PMID:24815611
Crystal Structure of the Ectoine Hydroxylase, a Snapshot of the Active Site*
Höppner, Astrid; Widderich, Nils; Lenders, Michael; Bremer, Erhard; Smits, Sander H. J.
2014-01-01
Ectoine and its derivative 5-hydroxyectoine are compatible solutes that are widely synthesized by bacteria to cope physiologically with osmotic stress. They also serve as chemical chaperones and maintain the functionality of macromolecules. 5-Hydroxyectoine is produced from ectoine through a stereo-specific hydroxylation, an enzymatic reaction catalyzed by the ectoine hydroxylase (EctD). The EctD protein is a member of the non-heme-containing iron(II) and 2-oxoglutarate-dependent dioxygenase superfamily and is evolutionarily well conserved. We studied the ectoine hydroxylase from the cold-adapted marine ultra-microbacterium Sphingopyxis alaskensis (Sa) and found that the purified SaEctD protein is a homodimer in solution. We determined the SaEctD crystal structure in its apo-form, complexed with the iron catalyst, and in a form that contained iron, the co-substrate 2-oxoglutarate, and the reaction product of EctD, 5-hydroxyectoine. The iron and 2-oxoglutarate ligands are bound within the EctD active site in a fashion similar to that found in other members of the dioxygenase superfamily. 5-Hydroxyectoine, however, is coordinated by EctD in manner different from that found in high affinity solute receptor proteins operating in conjunction with microbial import systems for ectoines. Our crystallographic analysis provides a detailed view into the active site of the ectoine hydroxylase and exposes an intricate network of interactions between the enzyme and its ligands that collectively ensure the hydroxylation of the ectoine substrate in a position- and stereo-specific manner. PMID:25172507
Avgustinovich, D F; Lipina, T V; Alekseenko, O V; Amstislavskaia, T G; Kudriatseva, N N
1998-01-01
Anxiety was estimated in intact male mice of C57BL/6J (C57) and (CBA) and CBA/Lac (CBA) strains and in males of both strains after the repeated experience of social defeats (losers) in 10 daily aggressive confrontations. A plus-maze test for behavior in a novel situation and a partition test for communicative activity were applied. Tryptophan hydroxylase (TPH) activity, 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels were measured in the midbrain, hypothalamus, amygdala, hippocampus, and striatum in losers and controls (5 days of individual housing of intact animals). Intact C57 mice which demonstrated active avoidance in the maze had reduced TPH activity in the all studied brain regions compared to the intact CBA mice with passive behavior. The 5-HT catabolism in intact C57 was lower in the midbrain and hypothalamus and higher in amygdala, hippocampus, and striatum than in CBA mice. Chronic social stress led to expressed anxiety revealed by both tests in C57 losers in contrast to CBA ones. This anxiety was accompanied by an increase in 5-HIAA level and 5-HIAA/5-HT ratio in the midbrain as well as by an increase in 5-HT level and decrease in 5-HIAA level and 5-HIAA/5-HT ratio in the hippocampus of C57 losers in comparison with the controls. Flesinoxan (0.5 mg/kg, i.p.), 5-HT1A receptor agonist, changed the communicative behavior of controls but was ineffective in losers. Thus, a decrease in sensitivity of 5-HT1A receptors was suggested in stress-induced anxiety of C57 losers. The less expressed anxiety in CBA losers was associated with less expressed changes in serotonergic metabolism. It is concluded that serotonergic mechanisms of pathological anxiety induced by the long-term social stress and those of natural anxiety in intact mice are different.
Prediction and prevention of suicide in patients with unipolar depression and anxiety
Gonda, Xenia; Fountoulakis, Konstantinos N; Kaprinis, George; Rihmer, Zoltan
2007-01-01
Epidemiological data suggest that between 59 and 87% of suicide victims suffered from major depression while up to 15% of these patients will eventually commit suicide. Male gender, previous suicide attempt(s), comorbid mental disorders, adverse life-situations, acute psycho-social stressors etc. also constitute robust risk factors. Anxiety and minor depression present with a low to moderate increase in suicide risk but anxiety-depression comorbidity increases this risk dramatically Contrary to the traditional psychoanalytic approach which considers suicide as a retrospective murder or an aggression turned in-wards, more recent studies suggest that the motivations to commit suicide may vary and are often too obscure. Neurobiological data suggest that low brain serotonin activity might play a key role along with the tryptophan hydroxylase gene. Social factors include social support networks, religion etc. It is proven that most suicide victims had asked for professional help just before committing suicide, however they were either not diagnosed (particularly males) or the treatment they received was inappropriate or inadequate. The conclusion is that promoting suicide prevention requires the improving of training and skills of both psychiatrists and many non-psychiatrists and especially GPs in recognizing and treating depression and anxiety. A shift of focus of attention is required in primary care to detect potentially suicidal patients presenting with psychological problems. The proper use of antidepressants, after a careful diagnostic evaluation, is important and recent studies suggest that successful acute and long-term antidepressant pharmacotherapy reduces suicide morbidity and mortality. PMID:17803824
Central adiponectin administration reveals new regulatory mechanisms of bone metabolism in mice
Wu, Yuwei; Tu, Qisheng; Valverde, Paloma; Zhang, Jin; Murray, Dana; Dong, Lily Q.; Cheng, Jessica; Jiang, Hua; Rios, Maribel; Morgan, Elise; Tang, Zhihui
2014-01-01
Adiponectin (APN), the most abundant adipocyte-secreted adipokine, regulates energy homeostasis and exerts well-characterized insulin-sensitizing properties. The peripheral or central effects of APN regulating bone metabolism are beginning to be explored but are still not clearly understood. In the present study, we found that APN-knockout (APN-KO) mice fed a normal diet exhibited decreased trabecular structure and mineralization and increased bone marrow adiposity compared with wild-type (WT) mice. APN intracerebroventricular infusions decreased uncoupling protein 1 (UCP1) expression in brown adipose tissue, epinephrine and norepinephrine serum levels, and osteoclast numbers, whereas osteoblast osteogenic marker expression and trabecular bone mass increased in APN-KO and WT mice. In addition, centrally administered APN increased hypothalamic tryptophan hydroxylase 2 (TPH2), cocaine- and amphetamine-regulated transcript (CART), and 5-hydroxytryptamine (serotonin) receptor 2C (Htr2C) expressions but decreased hypothalamic cannabinoid receptor-1 expression. Treatment of immortalized mouse neurons with APN demonstrated that APN-mediated effects on TPH2, CART, and Htr2C expression levels were abolished by downregulating adaptor protein containing pleckstrin homology domain, phosphotyrosine domain, and leucine zipper motif (APPL)-1 expression. Pharmacological increase in sympathetic activity stimulated adipogenic differentiation of bone marrow stromal cells (BMSC) and reversed APN-induced expression of the lysine-specific demethylases involved in regulating their commitment to the osteoblastic lineage. In conclusion, we found that APN regulates bone metabolism via central and peripheral mechanisms to decrease sympathetic tone, inhibit osteoclastic differentiation, and promote osteoblastic commitment of BMSC. PMID:24780611
Jia, Longgang; Dong, Jianzhang; Wang, Ruijie; Mao, Shuhong; Lu, Fuping; Singh, Suren; Wang, Zhengxiang; Liu, Xiaoguang
2017-08-01
Penicillium raistrickii ATCC 10490 is used for the commercial preparation of 15α-13-methy-estr-4-ene-3,17-dione, a key intermediate in the synthesis of gestodene, which is a major component of third-generation contraceptive pills. Although it was previously shown that a cytochrome P450 enzyme in P. raistrickii is involved in steroid 15α-hydroxylation, the gene encoding the steroid 15α-hydroxylase remained unknown. In this study, we report the cloning and characterization of the 15α-hydroxylase gene from P. raistrickii ATCC 10490 by combining transcriptomic profiling with functional heterologous expression in Saccharomyces cerevisiae. The full-length open reading frame (ORF) of the 15α-hydroxylase gene P450pra is 1563 bp and predicted to encode a cytochrome P450 protein of 520 amino acids. Targeted gene deletion revealed that P450pra is solely responsible for 15α-hydroxylation activity on 13-methy-estr-4-ene-3,17-dione in P. raistrickii ATCC 10490. The identification of the 15α-hydroxylase gene from P. raistrickii should help elucidate the molecular basis of regio- and stereo-specificity of steroid 15α-hydroxylation and aid in the engineering of more efficient industrial strains for useful steroid 15α-hydroxylation reactions.
Immunomodulatory constituents from an ascomycete, Microascus tardifaciens.
Fujimoto, H; Fujimaki, T; Okuyama, E; Yamazaki, M
1999-10-01
Fractionation guided by the immunosuppressive activity of the defatted AcOEt extract of an Ascomycete, Microascus tardifaciens, afforded eight constituents, questin (emodin 8-O-methylether) (1), rubrocristin (2), 5,7-dihydroxy-4-methylphthalide (3), cladosporin (asperentin) (4), cladosporin 8-O-methylether (5), tradioxopiperazine A [cyclo-L-alanyl-5-isopentenyl-2-(1',1'-dimethylallyl)-L-tryptophan] (6), tradioxopiperazine B [cyclo-L-alanyl-7-isopentenyl-2-(1',1'-dimethylallyl)-L-tryptophan] (7), and asperflavin (8), among which 6 and 7 were new compounds. Compounds 1 and 2 showed considerably high immunosuppressive activity, 6 was moderate and, 3, 4, 5, 7 and 8 showed low activity.
A Connective Tissue Disorder Caused by Mutations of the Lysyl Hydroxylase 3 Gene
Salo, Antti M.; Cox, Helen; Farndon, Peter; Moss, Celia; Grindulis, Helen; Risteli, Maija; Robins, Simon P.; Myllylä, Raili
2008-01-01
Lysyl hydroxylase 3 (LH3, encoded by PLOD3) is a multifunctional enzyme capable of catalyzing hydroxylation of lysyl residues and O-glycosylation of hydroxylysyl residues producing either monosaccharide (Gal) or disaccharide (Glc-Gal) derivatives, reactions that form part of the many posttranslational modifications required during collagen biosynthesis. Animal studies have confirmed the importance of LH3, particularly in biosynthesis of the highly glycosylated type IV and VI collagens, but to date, the functional significance in vivo of this enzyme in man is predominantly unknown. We report here a human disorder of LH3 presenting as a compound heterozygote with recessive inheritance. One mutation dramatically reduced the sugar-transfer activity of LH3, whereas another abrogated lysyl hydroxylase activity; these changes were accompanied by reduced LH3 protein levels in cells. The disorder has a unique phenotype causing severe morbidity as a result of features that overlap with a number of known collagen disorders. PMID:18834968
Karu, Naama; McKercher, Charlotte; Nichols, David S; Davies, Noel; Shellie, Robert A; Hilder, Emily F; Jose, Matthew D
2016-11-10
Adults with chronic kidney disease (CKD) exhibit alterations in tryptophan metabolism, mainly via the kynurenine pathway, due to higher enzymatic activity induced mainly by inflammation. Indoles produced by gut-microflora are another group of tryptophan metabolites related to inflammation and conditions accompanying CKD. Disruptions in tryptophan metabolism have been associated with various neurological and psychological disorders. A high proportion of CKD patients self-report symptoms of depression and/or anxiety and decline in cognitive functioning. This pilot study examines tryptophan metabolism in CKD and explores associations with psychological and cognitive functioning. Twenty-seven adults with CKD were part of 49 patients recruited to participate in a prospective pilot study, initially with an eGFR of 15-29 mL/min/1.73 m 2 . Only participants with viable blood samples and complete psychological/cognitive data at a 2-year follow-up were included in the reported cross-sectional study. Serum samples were analysed by Liquid Chromatography coupled to Mass Spectrometry, for tryptophan, ten of its metabolites, the inflammation marker neopterin and the hypothalamic-pituitary-adrenal (HPA) axis marker cortisol. The tryptophan breakdown index (kynurenine / tryptophan) correlated with neopterin (Pearson R = 0.51 P = 0.006) but not with cortisol. Neopterin levels also correlated with indoxyl sulfate (R = 0.68, P < 0.0001) and 5 metabolites of tryptophan (R range 0.5-0.7, all P ≤ 0.01), which were all negatively related to eGFR (P < 0.05). Higher levels of kynurenic acid were associated with lower cognitive functioning (Spearman R = -0.39, P < 0.05), while indole-3 acetic acid (IAA) was correlated with anxiety and depression (R = 0.52 and P = 0.005, R = 0.39 and P < 0.05, respectively). The results of this preliminary study suggest the involvement of inflammation in tryptophan breakdown via the kynurenine pathway, yet without sparing tryptophan metabolism through the 5-HT (serotonin) pathway in CKD patients. The multiple moderate associations between indole-3 acetic acid and psychological measures were a novel finding. The presented pilot data necessitate further exploration of these associations within a large prospective cohort to assess the broader significance of these findings.
Demoto, Yoshihiko; Okada, Go; Okamoto, Yasumasa; Kunisato, Yoshihiko; Aoyama, Shiori; Onoda, Keiichi; Munakata, Ayumi; Nomura, Michio; Tanaka, Saori C; Schweighofer, Nicolas; Doya, Kenji; Yamawaki, Shigeto
2012-01-01
In general, humans tend to discount the value of delayed reward. An increase in the rate of discounting leads to an inability to select a delayed reward over a smaller immediate reward (reward-delay impulsivity). Although deficits in the serotonergic system are implicated in this reward-delay impulsivity, there is individual variation in response to serotonin depletion. The aim of the present study was to investigate whether the effects of serotonin depletion on the ability to evaluate future reward are affected by individual personality traits or brain activation. Personality traits were assessed using the NEO-Five Factor Inventory and Temperament and Character Inventory. The central serotonergic levels of 16 healthy volunteers were manipulated by dietary tryptophan depletion. Subjects performed a delayed reward choice task that required the continuous estimation of reward value during functional magnetic resonance imaging scanning. Discounting rates were increased in 9 participants, but were unchanged or decreased in 7 participants in response to tryptophan depletion. Participants whose discounting rate was increased by tryptophan depletion had significantly higher neuroticism and lower self-directedness. Furthermore, tryptophan depletion differentially affected the groups in terms of hemodynamic responses to the value of predicted future reward in the right insula. These results suggest that individuals who have high neuroticism and low self-directedness as personality traits are particularly vulnerable to the effect of low serotonin on future reward evaluation accompanied by altered brain activation patterns. Copyright © 2012 S. Karger AG, Basel.
Genetic deficiency of indoleamine 2,3-dioxygenase promotes gut microbiota-mediated metabolic health.
Laurans, Ludivine; Venteclef, Nicolas; Haddad, Yacine; Chajadine, Mouna; Alzaid, Fawaz; Metghalchi, Sarvenaz; Sovran, Bruno; Denis, Raphael G P; Dairou, Julien; Cardellini, Marina; Moreno-Navarrete, Jose-Maria; Straub, Marjolene; Jegou, Sarah; McQuitty, Claire; Viel, Thomas; Esposito, Bruno; Tavitian, Bertrand; Callebert, Jacques; Luquet, Serge H; Federici, Massimo; Fernandez-Real, José Manuel; Burcelin, Remy; Launay, Jean-Marie; Tedgui, Alain; Mallat, Ziad; Sokol, Harry; Taleb, Soraya
2018-06-25
The association between altered gut microbiota, intestinal permeability, inflammation and cardiometabolic diseases is becoming increasingly clear but remains poorly understood 1,2 . Indoleamine 2,3-dioxygenase is an enzyme induced in many types of immune cells, including macrophages in response to inflammatory stimuli, and catalyzes the degradation of tryptophan along the kynurenine pathway. Indoleamine 2,3-dioxygenase activity is better known for its suppression of effector T cell immunity and its activation of regulatory T cells 3,4 . However, high indoleamine 2,3-dioxygenase activity predicts worse cardiovascular outcome 5-9 and may promote atherosclerosis and vascular inflammation 6 , suggesting a more complex role in chronic inflammatory settings. Indoleamine 2,3-dioxygenase activity is also increased in obesity 10-13 , yet its role in metabolic disease is still unexplored. Here, we show that obesity is associated with an increase of intestinal indoleamine 2,3-dioxygenase activity, which shifts tryptophan metabolism from indole derivative and interleukin-22 production toward kynurenine production. Indoleamine 2,3-dioxygenase deletion or inhibition improves insulin sensitivity, preserves the gut mucosal barrier, decreases endotoxemia and chronic inflammation, and regulates lipid metabolism in liver and adipose tissues. These beneficial effects are due to rewiring of tryptophan metabolism toward a microbiota-dependent production of interleukin-22 and are abrogated after treatment with a neutralizing anti-interleukin-22 antibody. In summary, we identify an unexpected function of indoleamine 2,3-dioxygenase in the fine tuning of intestinal tryptophan metabolism with major consequences on microbiota-dependent control of metabolic disease, which suggests indoleamine 2,3-dioxygenase as a potential therapeutic target.
Yamakura, F; Matsumoto, T; Fujimura, T; Taka, H; Murayama, K; Imai, T; Uchida, K
2001-07-09
Human recombinant Cu,Zn-SOD was reacted with peroxynitrite in a reaction mixture containing 150 mM potassium phosphate buffer (pH 7.4) 25 mM sodium bicarbonate, and 0.1 mM diethylenetriamine pentaacetic acid. Disappearance of fluorescence emission at 350 nm, which could be attributed to modification of a single tryptophan residue, was observed in the modified enzyme with a pH optimum of around 8.4. A fluorescence decrease with the same pH optimum was also observed without sodium bicarbonate, but with less efficiency. Amino acid contents of the modified enzyme showed no significant difference in all amino acids except the loss of a single tryptophan residue of the enzyme. The peroxynitrite-modified enzyme showed an increase in optical absorption around 350 nm and 30% reduced enzyme activity based on the copper contents. The modified enzyme showed the same electron paramagnetic resonance spectrum as that of the control enzyme. The modified Cu,Zn-SOD showed a single protein band in sodium dodecyl sulfate--polyacrylamide gel electrophoresis (SDS--PAGE) and five protein bands in non-denaturing PAGE. From this evidence, we conclude that nitration and/or oxidation of the single tryptophan 32 and partial inactivation of the enzyme activity of Cu,Zn-SOD is caused by a peroxynitrite-carbon dioxide adduct without perturbation of the active site copper integrity.
Singh, Neha; Dalal, Vikram; Kumar, Pravindra
2018-03-01
Human α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (hACMSD) is a zinc containing amidohydrolase which is a vital enzyme of the kynurenine pathway in tryptophan metabolism. It prevents the accumulation of quinolinic acid (QA) and helps in the maintenance of basal Trp-niacin ratio. To assess the structure based inhibitory action of PAEs such as DMP, DEP, DBP, DIBP, DEHP and their metabolites, these were docked into the active site cavity of hACMSD. Docking results show that the binding affinities of PAEs lie in the comparable range (-4.9 kca/mol-7.48kcal/mol) with Dipicolinic acid (-6.21kcal/mol), a substrate analogue of hACMSD. PAEs interact with the key residues such as Arg47 and Trp191 and lie within the 4Å vicinity of zinc metal at the active site of hACMSD. Dynamics and stability of the PAEs-hACMSD complexes were determined by performing molecular dynamics simulations using GROMACS 5.14. Binding free energy calculations of the PAEs-hACMSD complexes were estimated by using MMPBSA method. The results emphasize that PAEs can structurally mimic the binding pattern of tryptophan metabolites to hACMSD, which further leads to inhibition of its activity and accumulation of the quinolate in the kynurenine pathway of tryptophan metabolism. Copyright © 2017 Elsevier B.V. All rights reserved.
Eddy, Matthew T; Gao, Zhan-Guo; Mannes, Philip; Patel, Nilkanth; Jacobson, Kenneth A; Katritch, Vsevolod; Stevens, Raymond C; Wüthrich, Kurt
2018-06-20
Tryptophan indole 15 N- 1 H signals are well separated in nuclear magnetic resonance (NMR) spectra of proteins. Assignment of the indole 15 N- 1 H signals therefore enables one to obtain site-specific information on complex proteins in supramacromolecular systems, even when extensive assignment of backbone 15 N- 1 H resonances is challenging. Here we exploit the unique indole 15 N- 1 H chemical shift by introducing extrinsic tryptophan reporter residues at judiciously chosen locations in a membrane protein for increased coverage of structure and function by NMR. We demonstrate this approach with three variants of the human A 2A adenosine receptor (A 2A AR), a class A G protein-coupled receptor, each containing a single extrinsic tryptophan near the receptor intracellular surface, in helix V, VI, or VII, respectively. We show that the native A 2A AR global protein fold and ligand binding activity are preserved in these A 2A AR variants. The indole 15 N- 1 H signals from the extrinsic tryptophan reporter residues show different responses to variable efficacy of drugs bound to the receptor orthosteric cavity, and the indole 15 N- 1 H chemical shift of the tryptophan introduced at the intracellular end of helix VI is sensitive to conformational changes resulting from interactions with a polypeptide from the carboxy terminus of the Gα S intracellular partner protein. Introducing extrinsic tryptophans into proteins in complex supramolecular systems thus opens new avenues for NMR investigations in solution.
Komnenov, Dragana; Solarewicz, Julia Z; Afzal, Fareeza; Nantwi, Kwaku D; Kuhn, Donald M; Mateika, Jason H
2016-08-01
We examined the effect of repeated daily exposure to intermittent hypoxia (IH) on the recovery of respiratory and limb motor function in mice genetically depleted of central nervous system serotonin. Electroencephalography, diaphragm activity, ventilation, core body temperature, and limb mobility were measured in spontaneously breathing wild-type (Tph2(+/+)) and tryptophan hydroxylase 2 knockout (Tph2(-/-)) mice. Following a C2 hemisection, the mice were exposed daily to IH (i.e., twelve 4-min episodes of 10% oxygen interspersed with 4-min normoxic periods followed by a 90-min end-recovery period) or normoxia (i.e., sham protocol, 21% oxygen) for 10 consecutive days. Diaphragm activity recovered to prehemisection levels in the Tph2(+/+) and Tph2(-/-) mice following exposure to IH but not normoxia [Tph2(+/+) 1.3 ± 0.2 (SE) vs. 0.3 ± 0.2; Tph2(-/-) 1.06 ± 0.1 vs. 0.3 ± 0.1, standardized to prehemisection values, P < 0.01]. Likewise, recovery of tidal volume and breathing frequency was evident, although breathing frequency values did not return to prehemisection levels within the time frame of the protocol. Partial recovery of limb motor function was also evident 2 wk after spinal cord hemisection. However, recovery was not dependent on IH or the presence of serotonin in the central nervous system. We conclude that IH promotes recovery of respiratory function but not basic motor tasks. Moreover, we conclude that spontaneous or treatment-induced recovery of respiratory and motor limb function is not dependent on serotonin in the central nervous system in a mouse model of spinal cord injury.
Gien, Jason; Roe, Gates; Isenberg, Nicole; Kailey, Jenai; Abman, Steven H.
2013-01-01
Although past studies demonstrate that altered serotonin (5-HT) signaling is present in adults with idiopathic pulmonary arterial hypertension, whether serotonin contributes to the pathogenesis of persistent pulmonary hypertension of the newborn (PPHN) is unknown. We hypothesized that 5-HT contributes to increased pulmonary vascular resistance (PVR) in a sheep model of PPHN and that selective 5-HT reuptake inhibitor (SSRI) treatment increases PVR in this model. We studied the hemodynamic effects of 5-HT, ketanserin (5-HT2A receptor antagonist), and sertraline, an SSRI, on pulmonary hemodynamics of the late gestation fetal sheep with PPHN caused by prolonged constriction of the ductus arteriosis. Brief intrapulmonary infusions of 5-HT increased PVR from 1.0 ± 0.07 (baseline) to 1.4 ± 0.22 mmHg/ml per minute of treatment (P < 0.05). Ketanserin decreased PVR from 1.1 ± 0.15 (baseline) to 0.82 ± 0.09 mmHg/ml per minute of treatment (P < 0.05). Sertraline increased PVR from 1.1 ± 0.17 (baseline) to 1.4 ± 0.17 mmHg/ml per minute of treatment (P = 0.01). In addition, we studied 5-HT production and activity in vitro in experimental PPHN. Compared with controls, pulmonary artery endothelial cells from fetal sheep with PPHN exhibited increased expression of tryptophan hydroxylase 1 and 5-HT production by twofold and 56%, respectively. Compared with controls, 5-HT2A R expression was increased in lung homogenates and pulmonary artery smooth muscle cell lysates by 35% and 32%, respectively. We concluded that increased 5-HT contributes to high PVR in experimental PPHN through activation of the 5-HT2A receptor and that SSRI infusion further increases PVR in this model. PMID:23605003
Commons, Kathryn G.
2008-01-01
Nicotinic acetylcholine receptors containing the alpha4 and beta2 subunits constitute the most abundant high-affinity binding site of nicotine in the brain and are critical for the addictive qualities of nicotine. Serotonin neurotransmission is thought to be an important contributor to nicotine addiction. Therefore in this study it was examined how alpha4-containing receptors are positioned to modulate the function of serotonin neurons using ultrastructural analysis of immunolabeling for the alpha4 receptor subunit in the dorsal raphe nucleus (DR), a primary source of forebrain serotonin in the rat. Of 150 profiles labeled for the alpha4 subunit, 140 or 93% consisted of either soma or dendrites, these were often small-caliber (distal) dendrites <1.5 um in diameter (63/150 or 42%). The majority (107/150 or 71%) of profiles containing labeling for alpha4 were dually labeled for the synthetic enzyme for serotonin, tryptophan hydroxylase (TPH). Within dendrites immunogold labeling for alpha4 was present on the plasma membrane or near postsynaptic densities. However, labeling for alpha4 was commonly localized to the cytoplasmic compartment often associated with smooth endoplasmic reticulum, plausibly representing receptors in transit to or from the plasma membrane. Previous studies have suggested that nicotine presynaptically regulates activity onto serotonin neurons, however alpha4 immunolabeling was detected in only 10 axons in the DR or 7% of profiles sampled. This finding suggest that alpha4 containing receptors are minor contributors to presynaptic regulation of synaptic activity onto serotonin neurons, but rather alpha4 containing receptors are positioned to influence serotonin neurons directly at postsynaptic sites. PMID:18403129
Malakyan, Margarita; Babayan, Nelly; Grigoryan, Ruzanna; Sarkisyan, Natalya; Tonoyan, Vahan; Tadevosyan, Davit; Matosyan, Vladimir; Aroutiounian, Rouben; Arakelyan, Arsen
2016-01-01
Schiff bases and their metal-complexes are versatile compounds exhibiting a broad range of biological activities and thus actively used in the drug development process. The aim of the present study was the synthesis and characterization of new Schiff bases and their copper (II) complexes, derived from L-tryptophan and isomeric (2-; 3-; 4-) pyridinecarboxaldehydes, as well as the assessment of their toxicity in vitro . The optimal conditions of the Schiff base synthesis resulting in up to 75-85% yield of target products were identified. The structure-activity relationship analysis indicated that the location of the carboxaldehyde group at 2-, 3- or 4-position with regard to nitrogen of the pyridine ring in aldehyde component of the L-tryptophan derivative Schiff bases and corresponding copper complexes essentially change the biological activity of the compounds. The carboxaldehyde group at 2- and 4-positions leads to the higher cytotoxic activity, than that of at 3-position, and the presence of the copper in the complexes increases the cytotoxicity. Based on toxicity classification data, the compounds with non-toxic profile were identified, which can be used as new entities in the drug development process using Schiff base scaffold.
Malakyan, Margarita; Babayan, Nelly; Grigoryan, Ruzanna; Sarkisyan, Natalya; Tonoyan, Vahan; Tadevosyan, Davit; Matosyan, Vladimir; Aroutiounian, Rouben; Arakelyan, Arsen
2016-01-01
Schiff bases and their metal-complexes are versatile compounds exhibiting a broad range of biological activities and thus actively used in the drug development process. The aim of the present study was the synthesis and characterization of new Schiff bases and their copper (II) complexes, derived from L-tryptophan and isomeric (2-; 3-; 4-) pyridinecarboxaldehydes, as well as the assessment of their toxicity in vitro. The optimal conditions of the Schiff base synthesis resulting in up to 75-85% yield of target products were identified. The structure-activity relationship analysis indicated that the location of the carboxaldehyde group at 2-, 3- or 4-position with regard to nitrogen of the pyridine ring in aldehyde component of the L-tryptophan derivative Schiff bases and corresponding copper complexes essentially change the biological activity of the compounds. The carboxaldehyde group at 2- and 4-positions leads to the higher cytotoxic activity, than that of at 3-position, and the presence of the copper in the complexes increases the cytotoxicity. Based on toxicity classification data, the compounds with non-toxic profile were identified, which can be used as new entities in the drug development process using Schiff base scaffold. PMID:28344771
USDA-ARS?s Scientific Manuscript database
Biologically-active vitamin D (1,25(OH)2D) is synthetized from inactive prohormone 25(OH)D by the enzyme CYP27B1 1-a-hydroxylase in kidney and several extra-renal tissues including breast. While the development of breast cancer has been linked to inadequate vitamin D status, the importance of bioac...
Perez, Dale M.; Richards, Mark P.; Parker, Robert S.; Berres, Mark E.; Wright, Aaron T.; Sifri, Mamduh; Sadler, Natalie C; Tatiyaborworntham, Nantawat; Li, Na
2016-01-01
Turkeys and chickens reared to 5 weeks of age and fed diets with feedstuffs low in endogenous tocopherols were examined. Treatments included feed supplemented with RRR (natural source vitamin E) alpha tocopheryl acetate (AcT, 35 mg/kg feed) and all-racemic (synthetic vitamin E) AcT (10 and 58 mg/kg feed). Alpha tocopherol hydroxylase activity was greater in liver microsomes prepared from turkeys compared to that from chickens (p < 0.01). Alpha and gamma tocopherol metabolites were higher in turkey bile than in chicken when assessing the RRR AcT diet and the all-racemic AcT diet at 58 mg/kg feed (p < 0.01). Turkey cytochrome P450 2C29 was increased relative to its chicken ortholog on the basis of RNA-Seq transcript abundance (p < 0.001) and activity-based protein profiling (p < 0.01) of liver tissue. Alpha tocopherol concentrations in plasma, liver, and muscle from turkey were lower than the respective tissues from chicken (p < 0.05). Lipid oxidation was greater in turkey thigh than in chicken (p < 0.05). These results suggest that elevated tocopherol metabolism by cytochrome P450 hydroxylase(s) in turkeys contributes to the decreased accumulation of alpha tocopherol in turkey tissues compared to that of chickens. PMID:26653675
Fan, Aili; Zocher, Georg; Stec, Edyta; Stehle, Thilo; Li, Shu-Ming
2015-01-01
The tryptophan prenyltransferases FgaPT2 and 7-DMATS (7-dimethylallyl tryptophan synthase) from Aspergillus fumigatus catalyze C4- and C7-prenylation of the indole ring, respectively. 7-DMATS was found to accept l-tyrosine as substrate as well and converted it to an O-prenylated derivative. An acceptance of l-tyrosine by FgaPT2 was also observed in this study. Interestingly, isolation and structure elucidation revealed the identification of a C3-prenylated l-tyrosine as enzyme product. Molecular modeling and site-directed mutagenesis led to creation of a mutant FgaPT2_K174F, which showed much higher specificity toward l-tyrosine than l-tryptophan. Its catalytic efficiency toward l-tyrosine was found to be 4.9-fold in comparison with that of non-mutated FgaPT2, whereas the activity toward l-tryptophan was less than 0.4% of that of the wild-type. To the best of our knowledge, this is the first report on an enzymatic C-prenylation of l-tyrosine as free amino acid and altering the substrate preference of a prenyltransferase by mutagenesis. PMID:25477507
Glucocorticoids Inhibit Basal and Hormone-Induced Serotonin Synthesis in Pancreatic Beta Cells
Hasni Ebou, Moina; Singh-Estivalet, Amrit; Launay, Jean-Marie; Callebert, Jacques; Tronche, François; Ferré, Pascal; Gautier, Jean-François; Guillemain, Ghislaine; Bréant, Bernadette
2016-01-01
Diabetes is a major complication of chronic Glucocorticoids (GCs) treatment. GCs induce insulin resistance and also inhibit insulin secretion from pancreatic beta cells. Yet, a full understanding of this negative regulation remains to be deciphered. In the present study, we investigated whether GCs could inhibit serotonin synthesis in beta cell since this neurotransmitter has been shown to be involved in the regulation of insulin secretion. To this aim, serotonin synthesis was evaluated in vitro after treatment with GCs of either islets from CD1 mice or MIN6 cells, a beta-cell line. We also explored the effect of GCs on the stimulation of serotonin synthesis by several hormones such as prolactin and GLP 1. We finally studied this regulation in islet in two in vivo models: mice treated with GCs and with liraglutide, a GLP1 analog, and mice deleted for the glucocorticoid receptor in the pancreas. We showed in isolated islets and MIN6 cells that GCs decreased expression and activity of the two key enzymes of serotonin synthesis, Tryptophan Hydroxylase 1 (Tph1) and 2 (Tph2), leading to reduced serotonin contents. GCs also blocked the induction of serotonin synthesis by prolactin or by a previously unknown serotonin activator, the GLP-1 analog exendin-4. In vivo, activation of the Glucagon-like-Peptide-1 receptor with liraglutide during 4 weeks increased islet serotonin contents and GCs treatment prevented this increase. Finally, islets from mice deleted for the GR in the pancreas displayed an increased expression of Tph1 and Tph2 and a strong increased serotonin content per islet. In conclusion, our results demonstrate an original inhibition of serotonin synthesis by GCs, both in basal condition and after stimulation by prolactin or activators of the GLP-1 receptor. This regulation may contribute to the deleterious effects of GCs on beta cells. PMID:26901633
Sadaf, Sufia; Birman, Serge; Hasan, Gaiti
2012-01-01
Background Flight is an integral component of many complex behavioral patterns in insects. The giant fiber circuit has been well studied in several insects including Drosophila. However, components of the insect flight circuit that respond to an air-puff stimulus and comprise the flight central pattern generator are poorly defined. Aminergic neurons have been implicated in locust, moth and Drosophila flight. Here we have investigated the requirement of neuronal activity in serotonergic neurons, during development and in adults, on air-puff induced flight in Drosophila. Methodology/Principal Findings To target serotonergic neurons specifically, a Drosophila strain that contains regulatory regions from the TRH (Tryptophan Hydroxylase) gene linked to the yeast transcription factor GAL4 was used. By blocking synaptic transmission from serotonergic neurons with a tetanus toxin transgene or by hyperpolarisation with Kir2.1, close to 50% adults became flightless. Temporal expression of a temperature sensitive Dynamin mutant transgene (Shits) suggests that synaptic function in serotonergic neurons is required both during development and in adults. Depletion of IP3R in serotonergic neurons via RNAi did not affect flight. Interestingly, at all stages a partial requirement for synaptic activity in serotonergic neurons was observed. The status of serotonergic neurons was investigated in the central nervous system of larvae and adults expressing tetanus toxin. A small but significant reduction was observed in serotonergic cell number in adult second thoracic segments from flightless tetanus toxin expressing animals. Conclusions These studies show that loss of synaptic activity in serotonergic neurons causes a flight deficit. The temporal focus of the flight deficit is during pupal development and in adults. The cause of the flight deficit is likely to be loss of neurons and reduced synaptic function. Based on the partial phenotypes, serotonergic neurons appear to be modulatory, rather than an intrinsic part of the flight circuit. PMID:23029511
Hautala, T; Heikkinen, J; Kivirikko, K I; Myllylä, R
1992-01-01
The levels of lysine hydroxylase protein and the levels of the mRNAs for lysine hydroxylase and the alpha- and beta-subunits of proline 4-hydroxylase were measured in cultured human skin fibroblasts treated with 1 mM-minoxidil. The data demonstrate that minoxidil decreases the amount of lysine hydroxylase protein, this being due to a decrease in the level of lysine hydroxylase mRNA. The effect of minoxidil appears to be highly specific, as no changes were observed in the amounts of mRNAs for the alpha- and beta-subunits of proline 4-hydroxylase. Images Fig. 1. Fig. 2. Fig. 3. PMID:1314568
2015-01-01
Two single-tryptophan variants were generated in a thermophilic alcohol dehydrogenase with the goal of correlating temperature-dependent changes in local fluorescence with the previously demonstrated catalytic break at ca. 30 °C (Kohen et al., Nature1999, 399, 496). One tryptophan variant, W87in, resides at the active site within van der Waals contact of bound alcohol substrate; the other variant, W167in, is a remote-site surface reporter located >25 Å from the active site. Picosecond-resolved fluorescence measurements were used to analyze fluorescence lifetimes, time-dependent Stokes shifts, and the extent of collisional quenching at Trp87 and Trp167 as a function of temperature. A subnanosecond fluorescence decay rate constant has been detected for W87in that is ascribed to the proximity of the active site Zn2+ and shows a break in behavior at 30 °C. For the remainder of the reported lifetime measurements, there is no detectable break between 10 and 50 °C, in contrast with previously reported hydrogen/deuterium exchange experiments that revealed a temperature-dependent break analogous to catalysis (Liang et al., Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 9556). We conclude that the motions that lead to the rigidification of ht-ADH below 30 °C are likely to be dominated by global processes slower than the picosecond to nanosecond motions measured herein. In the case of collisional quenching of fluorescence by acrylamide, W87in and W167in behave in a similar manner that resembles free tryptophan in water. Stokes shift measurements, by contrast, show distinctive behaviors in which the active-site tryptophan relaxation is highly temperature-dependent, whereas the solvent-exposed tryptophan’s dynamics are temperature-independent. These data are concluded to reflect a significantly constrained environment surrounding the active site Trp87 that both increases the magnitude of the Stokes shift and its temperature-dependence. The results are discussed in the context of spatially distinct differences in enthalpic barriers for protein conformational sampling that may be related to catalysis. PMID:24892947
Mechanism-based inactivation of benzo(a)pyrene hydroxylase by aryl acetylenes and aryl olefins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gan, L.S.; Lu, J.Y.L.; Alworth, W.L.
A series of aryl acetylenes and aryl olefins have been examined as substrates and inhibitors of cytochrome P-450 dependent monooxgenases in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene, 3-ethynylperylene, 2-ethynylfluorene, methyl 1-pyrenyl acetylene, cis- and trans-1-(2-bromovinyl)pyrene, and 1-allylpyrene serve as mechanism-based irreversible inactivators (suicide inhibitors) of benzo(a)pyrene hydroxylase, while 1-vinylpyrene and phenyl 1-pyrenyl acetylene do not cause a detectable suicide inhibition of benzo(a)pyrene hydroxylase. The mechanism-based loss of benzo(a)pyrene hydroxylase caused by the aryl acetylenes is not accompanied by a corresponding loss of the P-450 content of the microsomes (suicide destruction). The suicide inhibition by these aryl acetylenesmore » therefore does not involve covalent binding to the heme moiety of the monooxygenase. Nevertheless, in the presence of NADPH, /sup 3/H-labeled 1-ethynylpyrene becomes covalently attached to the cytochrome P-450 protein; the measured stoichiometry of binding is one 1-ethynylpyrene per P-450 heme unit. The authors conclude that the inhibition of benzo(a)pyrene hydroxylase produced by 1-ethynylpyrene may be related to the mechanism of suicide inhibition of P-450 activity by chloramphenicol rather than the mechanism of suicide destruction of P-450 previously described for acetylene and propyne.« less
Function of the tryptophan metabolite, L-kynurenine, in human corneal endothelial cells
Lahdou, Imad; Scheuerle, Alexander; Höftberger, Romana; Aboul-Enein, Fahmy
2009-01-01
Purpose Penetrating keratoplasty has been the mainstay for the treatment of blindness and is the most common form of tissue transplantation worldwide. Due to significant rates of rejection, treatment of immunological transplant reactions is of wide interest. Recently in a mouse model, the overexpression of indoeleamine 2,3 dioxigenase (IDO) was led to an extension in corneal allograft survival. L-kynurenine is a tryptophan metabolite, which may render activated T-cells apoptotic and therefore might modulate an allogenous transplant reaction. The function of L-kynurenine in the human cornea remains unclear. We analyzed the expression levels of IDO in human corneal endothelial cells (HCECs) and downstream tryptophan/kynurenine mechanisms in cell culture. Methods An immunological activation profile was determined in proliferation assays of monocytes from healthy donors. Reversed-phase high pressure liquid chromatography (HPLC), western blot, real time polymerase chain reaction (PCR), and microarray analyses were used. The expression of IDO and immunological infiltration of rejected human corneal allografts (n=12) were analyzed by immunohistochemistry. Results We found IDO and an associated tryptophan/kynurenine transporter protein exchange mechanism upregulated by inflammatory cytokines in HCECs. The inhibition of T-cell proliferation might depend on rapid delivery of the tryptophan metabolite, L-kynurenine, to the local corneal environment. Microarray analysis gives evidence that the large amino acid transporter 1 (LAT1) transporter protein is responsible for this mechanism. Conclusions Our data support that adequate levels of functional L-kynurenine might contribute to the maintenance of a relative immune privilege in the ocular anterior chamber, thereby contributing to the preservation of corneal allogeneic cells. PMID:19597571
Carlson, G P; Dziezak, J D; Johnson, K M
1979-07-01
1,2,4-Trichlorobenzene, 1,3,5-trichlorobenzene, hexachlorobenzene, 1,2,4-tribromobenzene, 1,3,5-tribromobenzene and hexabromobenzene were compared for their abilities to induce acetanilide esterase, acentailide hydroxylase and procaine esterase. Except for hexabromobenzene all induced acetanilide esterase whereas the hydroxylation of acetanilide was seen only with the fully halogenated benzenes and with 1,3,5-tribromobenzene. Hepatic procaine esterase activity was increased by the three chlorinated benzenes and 1,2,4-tribromobenzene.
Werner-Felmayer, G; Werner, E R; Fuchs, D; Hausen, A; Reibnegger, G; Wachter, H
1990-05-15
Determination of neopterin [D-erythro-6-(1',2',3'-trihydroxypropyl)pterin] in body fluids is a powerful diagnostic tool in a variety of diseases in which activation of cellular immune mechanisms is involved, such as certain malignancies, allograft rejection, and autoimmune and infectious diseases. In vitro, neopterin is released into the supernatant by peripheral blood-derived monocytes/macrophages upon stimulation with gamma-interferon. In parallel, cleavage of tryptophan by indoleamine 2,3-dioxygenase is induced. We report here that the human myelomonocytic cell line THP-1 forms neopterin and degrades tryptophan upon treatment with gamma-interferon. Like in macrophages alpha-interferon and beta-interferon induce these pathways only to a much smaller degree. The action of interferons is enhanced by cotreatment with tumor necrosis factor alpha, lipopolysaccharide, or dexamethasone. gamma-Interferon-induced neopterin formation and indoleamine 2,3-dioxygenase activity are increased by raising extracellular tryptophan concentrations. The pattern of intracellularly formed pteridines upon stimulation with gamma-interferon shows the unique characteristics of human monocytes/macrophages. Neopterin, monapterin, and biopterin are produced in a 50:2:1 ratio. Thus, the THP-1 cell line provides a permanent, easily accessible in vitro system for studying the induction and mechanism of neopterin formation.
Jenny, M; Santer, E; Klein, A; Ledochowski, M; Schennach, H; Ueberall, F; Fuchs, D
2009-03-18
The fruits of Theobroma cacao L. (Sterculiaceae) have been used as food and a remedy for more than 4000 years. Today, about 100 therapeutic applications of cacao are described involving the gastrointestinal, nervous, cardiovascular and immune systems. Pro-inflammatory cytokine interferon-gamma and related biochemical pathways like tryptophan degradation by indoleamine 2,3-dioxygenase and neopterin formation are closely associated with the pathogenesis of such disorders. To determine the anti-inflammatory effect of cacao extracts on interferon-gamma and biochemical consequences in immunocompetent cells. Effects of aqueous or ethanolic extracts of cacao were examined on mitogen-induced human peripheral blood mononuclear cells (PBMC) of healthy donors and on lipopolysaccharide-stimulated myelomonocytic THP-1 cells. Antioxidant activity of extracts was determined by oxygen radical absorption capacity (ORAC) assay. In mitogen-stimulated PBMC, enhanced degradation of tryptophan, formation of neopterin and interferon-gamma were almost completely suppressed by the cacao extracts at doses of > or = 5 microg/mL. Cacao extracts had no effect on tryptophan degradation in lipopolysaccharide-stimulated THP-1 cells. There is a significant suppressive effect of cacao extracts on pro-inflammatory pathways in activated T-cells. Particularly the influence on indoleamine 2,3-dioxygenase could relate to some of the beneficial health effects ascribed to cacao.
Gómez-Valadés, A G; Molas, M; Vidal-Alabró, A; Bermúdez, J; Bartrons, R; Perales, J C
2005-01-20
Inefficient gene transfer and poor stability in physiological medium are important shortcomings for receptor-mediated gene transfer vectors. Here, we evaluate vectors formulated with random copolymers of L-lysine/L-serine (3:1) and L-lysine/L-tryptophan (4:1), focusing on both their biophysical and functional characterization. By means of dynamic light scattering (DLS) and transmission electron microscopy (TEM), we demonstrate that poly-L-lysine (pK), poly-L-lysine-L-tryptophan (pKW) and poly-L-lysine-L-serine (pKS) are able to form compacted, small particles when mixed with plasmid DNA in the absence of salt. Upon dilution in physiological medium, copolymers of both lys/ser and lys/trp do not aggregate, in contrast with poly-L-lysine DNA complexes as determined by scattering, DLS and TEM measurements. Tight packing, as demonstrated by resistance to heparin, SDS and trypsin treatments, is also featured in tryptophan-containing complexes. Successful receptor-mediated endocytosis gene transfer using galactosylated copolymers into cells expressing the asiagloglycoprotein receptor correlated with lack of aggregation. Particles obtained using galactosylated poly-L-lysine-L-tryptophan (Gal-pKW) copolymer demonstrated specific receptor-mediated gene transfer since reporter gene activity dropped in the presence of an excess ligand in the culture medium during transfection. Although copolymers of galactosylated poly-L-lysine-L-serine (Gal-pKS) do not aggregate in the presence of salt, they are not able to internalize in a specific receptor-mediated endocytosis fashion. The introduction of bulky aromatic/hydrophobic (tryptophan) or hydrophillic (serine) moieties into the positively charged vectors allows the compacted particles to disperse into salt-containing medium avoiding salt-induced aggregation. Moreover, tryptophan-containing particles are able to mediate specific gene transfer via receptor-mediated endocytosis.
Hassan, T U; Bano, A
2016-09-01
The present investigation evaluated the role of Stenotrophomonas maltophilia and its IAA-deficient mutant on soil health and plant growth under salinity stress in the presence of tryptophan. In the first phase, S. maltophilia isolated from roots of the halo- phytic herb, Cenchrus ciliaris was used as bio-inoculant on wheat grown in saline sodic soil. A field experiment was conducted at Soil Salinity Research Institute during 2010-2011. Treatments included seed inoculation with S. maltophilia with or without tryptophan; uninoculated untreated plants were taken as control. An aqueous solution of tryptophan was added to rhizosphere soil at 1 μg l(_1) after seed germination. Inoculation with S. maltophilia significantly increased soil organic matter, enhanced (20-30%) availability of P, K, Ca and NO3 -N and decreased Na content and electrical conductivity of rhizosphere soil. Plant height, fresh weight, proline and phytohormone content of leaves were increased 30-40% over the control. Activities of superoxide dismutase (SOD) and peroxidase (POD) were 40-50% higher than control. Addition of tryptophan further augmented (10-15%) growth parameters, whereas NO3 -N, P, K and Ca content, proline content and SOD and POD increased 20-30%. In a second phase, indoleacetic acid (IAA)-deficient mutants of S. maltophilia were constructed and evaluated for conversion of tryptophan to IAA at the University of Calgary, Canada, during 2013-2014. About 1800 trans-conjugants were constructed that were unable to produce IAA in the presence of tryptophan. The results suggest that tryptophan assisted S. maltophilia in the amelioration of salt stress, and that IAA played positive role in induction of salt tolerance. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
Tryptophan derivatives regulate the transcription of Oct4 in stem-like cancer cells.
Cheng, Jie; Li, Wenxin; Kang, Bo; Zhou, Yanwen; Song, Jiasheng; Dan, Songsong; Yang, Ying; Zhang, Xiaoqian; Li, Jingchao; Yin, Shengyong; Cao, Hongcui; Yao, Hangping; Zhu, Chenggang; Yi, Wen; Zhao, Qingwei; Xu, Xiaowei; Zheng, Min; Zheng, Shusen; Li, Lanjuan; Shen, Binghui; Wang, Ying-Jie
2015-06-10
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to environmental toxicants, is increasingly recognized as a key player in embryogenesis and tumorigenesis. Here we show that a variety of tryptophan derivatives that act as endogenous AhR ligands can affect the transcription level of the master pluripotency factor Oct4. Among them, ITE enhances the binding of the AhR to the promoter of Oct4 and suppresses its transcription. Reduction of endogenous ITE levels in cancer cells by tryptophan deprivation or hypoxia leads to Oct4 elevation, which can be reverted by administration with synthetic ITE. Consequently, synthetic ITE induces the differentiation of stem-like cancer cells and reduces their tumorigenic potential in both subcutaneous and orthotopic xenograft tumour models. Thus, our results reveal a role of tryptophan derivatives and the AhR signalling pathway in regulating cancer cell stemness and open a new therapeutic avenue to target stem-like cancer cells.
Tryptophan derivatives regulate the transcription of Oct4 in stem-like cancer cells
Cheng, Jie; Li, Wenxin; Kang, Bo; Zhou, Yanwen; Song, Jiasheng; Dan, Songsong; Yang, Ying; Zhang, Xiaoqian; Li, Jingchao; Yin, Shengyong; Cao, Hongcui; Yao, Hangping; Zhu, Chenggang; Yi, Wen; Zhao, Qingwei; Xu, Xiaowei; Zheng, Min; Zheng, Shusen; Li, Lanjuan; Shen, Binghui; Wang, Ying-Jie
2015-01-01
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to environmental toxicants, is increasingly recognized as a key player in embryogenesis and tumorigenesis. Here we show that a variety of tryptophan derivatives that act as endogenous AhR ligands can affect the transcription level of the master pluripotency factor Oct4. Among them, ITE enhances the binding of the AhR to the promoter of Oct4 and suppresses its transcription. Reduction of endogenous ITE levels in cancer cells by tryptophan deprivation or hypoxia leads to Oct4 elevation, which can be reverted by administration with synthetic ITE. Consequently, synthetic ITE induces the differentiation of stem-like cancer cells and reduces their tumorigenic potential in both subcutaneous and orthotopic xenograft tumour models. Thus, our results reveal a role of tryptophan derivatives and the AhR signalling pathway in regulating cancer cell stemness and open a new therapeutic avenue to target stem-like cancer cells. PMID:26059097
Efanov, Alexander M.; Fang, Xiankang; Beavers, Lisa S.; Wang, Xuesong; Wang, Jingru; Gonzalez Valcarcel, Isabel C.; Ma, Tianwei
2016-01-01
GPR142, a putative amino acid receptor, is expressed in pancreatic islets and the gastrointestinal tract, but the ligand affinity and physiological role of this receptor remain obscure. In this study, we show that in addition to L-Tryptophan, GPR142 signaling is also activated by L-Phenylalanine but not by other naturally occurring amino acids. Furthermore, we show that Tryptophan and a synthetic GPR142 agonist increase insulin and incretin hormones and improve glucose disposal in mice in a GPR142-dependent manner. In contrast, Phenylalanine improves in vivo glucose disposal independently of GPR142. Noteworthy, refeeding-induced elevations in insulin and glucose-dependent insulinotropic polypeptide are blunted in Gpr142 null mice. In conclusion, these findings demonstrate GPR142 is a Tryptophan receptor critically required for insulin and incretin hormone regulation and suggest GPR142 agonists may be effective therapies that leverage amino acid sensing pathways for the treatment of type 2 diabetes. PMID:27322810
Pallu, Stéphane; Rochefort, Gael Y.; Jaffre, Christelle; Refregiers, Matthieu; Maurel, Delphine B.; Benaitreau, Delphine; Lespessailles, Eric; Jamme, Frédéric; Chappard, Christine; Benhamou, Claude-Laurent
2012-01-01
Alcohol induced osteoporosis is characterized by a bone mass decrease and microarchitecture alterations. Having observed an excess in osteocyte apoptosis, we aimed to assess the bone tissue biochemistry, particularly in the osteocyte and its environment. For this purpose, we used a model of alcohol induced osteoporosis in rats. Bone sections of cortical bone were investigated using synchrotron UV-microspectrofluorescence at subcellular resolution. We show that bone present three fluorescence peaks at 305, 333 and 385 nm, respectively corresponding to tyrosine, tryptophan and collagen. We have determined that tyrosine/collagen and tryptophan/collagen ratios were higher in the strong alcohol consumption group. Tryptophan is related to the serotonin metabolism involved in bone formation, while tyrosine is involved in the activity of tyrosine kinases and phosphatases in osteocytes. Our experiment represents the first combined synchrotron UV microspectroscopy analysis of bone tissue with a quantitative biochemical characterization in the osteocyte and surrounding matrix performed separately. PMID:22937127
Hypothalamic digoxin, hemispheric chemical dominance, and creativity.
Kurup, Ravi Kumar; Kurup, Parameswara Achutha
2003-04-01
The human hypothalamus produces an endogenous membrane Na(+)-K+ ATPase inhibitor, digoxin, which regulates neuronal transmission. The digoxin status and neurotransmitter patterns were studied in creative and non-creative individuals, as well as in individuals with differing hemispheric dominance, in order to find out the role of cerebral dominance in this respect. The activity of HMG CoA reductase and serum levels of digoxin, magnesium, tryptophan catabolites, and tyrosine catabolites were measured in creative/non-creative individuals, and in individuals with differing hemispheric dominance. In creative individuals there was increased digoxin synthesis, decreased membrane Na(+)-K+ ATPase activity, increased tryptophan catabolites (serotonin, quinolinic acid, and nicotine), and decreased tyrosine catabolites (dopamine, noradrenaline, and morphine). The pattern in creative individuals correlated with right hemispheric dominance. In non-creative individuals there was decreased digoxin synthesis, increased membrane Na(+)-K+ ATPase activity, decreased tryptophan catabolites (serotonin, quinolinic acid, and nicotine), and increased tyrosine catabolites (dopamine, noradrenaline, and morphine). This pattern in non-creative individuals correlated with that obtained in left hemispheric chemical dominance. Hemispheric chemical dominance and hypothalamic digoxin could regulate the predisposition to creative tendency.
Meller, E; Friedman, E
1982-03-01
The effects of molindone (2.5, 10 and 40 mg/kg) on striatal tyrosine hydroxylase activity and dopamine (DA), 3,4-dihydroxyphenylacetic acid and homovanillic acid levels were measured as a function of time (0-72 hr). Whereas a dose of 2.5 mg/kg produced effects typical of DA receptor blockade (activation of synaptosomal tyrosine hydroxylase, increased DA metabolite levels and unchanged DA levels), a dose of 40 mg/kg produced opposite effects (decreased tyrosine hydroxylase activity and metabolite concentrations and elevated DA levels). A dose of 10 mg/kg elicited intermediate effects. The atypical effects of both higher doses were long-lasting (less than 72 hr). Molindone at doses of 10 or 40 mg/kg, but nor 2.5 mg/kg, selectively, irreversibly and dose-dependently inhibited type A monoamine oxidase. This inhibition appeared to be due to a metabolite, inasmuch as the drug itself inhibited monoamine oxidase (reversibly) only at high concentrations (less than or equal to 10(-4) M). The heretofore unsuspected inhibition of monoamine oxidase by molindone provided a consistent mechanistic interpretation of the differential dose- and time-dependent effects of the drug on dopaminergic neuronal activity. This mechanism may also serve to explain the reported efficacy of molindone in animal tests for antidepressant activity as well as its inability to produce increased DA receptor binding after chronic treatment.
Murad, S; Strycharz, G D; Kishimoto, Y
1976-09-10
Rat brain postnuclear preparations catalyzed the alpha-hydroxylation of nervonic acid with an apparent Km of 3 muM. Evidence has been presented which suggests that nervonic acid in the brain is hydroxylated by the same enzyme system which hydroxylates lignoceric acid. The hydroxylase activity in brains of normal (euthyroid) rats increased rapidly from a low in the period immediately following birth to a maximum at the 23rd day and then declined to a low level characteristic of the mature brain. Neonatal hypothyroidism retarded the development of the activity and shifted its peak to the 39th day after birth. Conversely, neonatal hyperthyroidism accelerated the entire developmental pattern and shifted the peak to the 16th day after birth. The hydroxylase activity in mouse brain was also increased by thyroid hormone administration from the 13th through the 18th day after birth. Unlike normal mice, the low activity in jimpy mice was not affected by this treatment. It is concluded that thyroid hormones play an important role in the control of brain fatty acid alpha-hydroxylation. The stimulation of alpha-hydroxy fatty acid synthesis in response to hyperthyroidism during the early postnatal period may be one of the major effects of thyroid hormones in accelerating myelination of the central nervous system.
A search for association between schizophrenia and dopamine-related alleles.
Jönsson, E; Brené, S; Geijer, T; Terenius, L; Tylec, A; Persson, M L; Sedvall, G
1996-01-01
Dopamine receptor dysfunction and altered tyrosine hydroxylase activity have both been implicated in the pathophysiology of schizophrenia. Schizophrenic patients and control subjects were examined for allele frequencies in the tyrosine hydroxylase and dopamine D2 and D4 receptor genes. No significant differences of allele or genotype frequencies were found between the two groups after adjustment for multiple comparisons. Neither were any significant relationships observed between allele frequencies and a number of clinical variables within the schizophrenic subsample. When no adjustment was made for multiple testing a few significant tendencies were obtained which warrant further research in extended patient and control materials. The results are compatible with the view that the tyrosine hydroxylase, dopamine receptor D2 and D4 gene polymorphisms examined are not of major importance in the aetiology or pathophysiology of schizophrenia.
Curzon, G; Fernando, J C
1976-12-01
1 Aminophylline and other methylxanthines increase brain tryptophan and hence 5-hydroxytryptamine turnover. The mechanism of this effect of aminophylline was investigated. 2 At lower doses (greater than 100 mg/kg i.p.) the brain tryptophan increase could be explained by the lipolytic action of the drug, i.e. increased plasma unesterified fatty acid freeing plasma tryptophan from protein binding so that it became available to the brain. 3 Plasma unesterified fatty acid did not increase when aminophylline (109 mg/kg i.p.) was given to nicotinamide-treated rats but as both plasma total and free tryptophan rose, a tryptophan increase in the brain still occurred. 4 The rise in brain tryptophan concentration following the injection of a higher dose of the drug (150 mg/kg i.p.) could no longer be explained by a rise of plasma free tryptophan as the ratio of brain tryptophan to plasma free tryptophan rose considerably. Plasma total tryptophan fell and the plasma insulin concentration rose. 5 The increase of brain tryptophan concentration after injection of 150 mg/kg aminophylline appeared specific for this amino acid as brain tyrosine and phenyllanine did not increase. However as their plasma concentrations fell the brain/plasma ratio for all three amino acids rose. 6 The higher dose of aminophylline increased the muscle concentration of tryptophan but that of tyrosine fell and that of phenylalanine remained unaltered. The liver concentrations were not affected. 7 The aminophylline-induced increase of the ratio of brain tryptophan of plasma free tryptophan no longer occurred when the drug was given to animals injected with the beta-adrenoreceptor blocking agent propranolol or the diabetogenic agent streptozotocin. 8 The changes in brain tryptophan upon aminophylline injection may be explained by (a) increased availability of plasma tryptophan to the brain due to increased lipolysis and (b) increased effectiveness of uptake of tryptophan by the brain due to increased insulin secretion.
Rawel, Harshadrai M; Frey, Simone K; Meidtner, Karina; Kroll, Jürgen; Schweigert, Florian J
2006-08-01
The noncovalent binding of selected phenolic compounds (chlorogenic-, ferulic-, gallic acid, quercetin, rutin, and isoquercetin) to proteins (HSA, BSA, soy glycinin, and lysozyme) was studied by an indirect method applying the quenching of intrinsic tryptophan fluorescence. From the data obtained, the binding constants were calculated by nonlinear regression (one site binding; y = Bx/k + x). It has been reported that tannins inhibit human salivary amylase and that these complexes may reduce the development of cariogenic plaques. Further, amylase contains two tryptophan residues in its active site. Therefore, in a second part of the study involving 31 human subjects, evidence was sought for noncovalent interactions between the phenols of green tea and saliva proteins as measured by the fluorescence intensity. Amylase activity was determined before and after the addition of green tea to saliva of 31 subjects. Forty percent of the subjects showed an increase in amylase activity contrary to studies reporting only a decrease in activity. The interactions of tannin with amylase result in a decrease of its activity. It still remains to be elucidated why amylase does not react uniformly under conditions of applying green tea to saliva. Further, in terms of using phenols as caries inhibitors this finding should be of importance.
A Jerte Valley Cherry-Based Product as a Supply of Tryptophan
Garrido, María; Espino, Javier; Toribio-Delgado, Antonio F.; Cubero, Javier; Maynar-Mariño, Juan I.; Barriga, Carmen; Paredes, Sergio D.; Rodríguez, Ana B.
2012-01-01
L-Tryptophan (tryptophan) is an essential amino acid in humans. It has important roles as a precursor of different bioactive compounds. Based on previous studies in which tryptophan has been shown to be present in fresh cherries, the aim of the present work was to analyze the tryptophan content of a Jerte Valley cherry-based product. A previously optimized method of analysis of tryptophan was used, ie, high-performance liquid chromatography with fluorescence detection (HPLC/FL). As expected, HPLC/FL technique permitted to detect and quantify the tryptophan content in a different matrix rather than fresh cherries. In fact, the Jerte Valley cherry-based product contained 69.54 ± 10.64 ppm of tryptophan, thereby showing that this product is a good source of tryptophan. In summary, it has been proven that the Jerte Valley cherry-based product is rich in tryptophan and may be indicated as a supply of this essential amino acid as well as having potential health benefits for conditions where tryptophan is necessary. PMID:22553424
Electronic structure description of the cis-MoOS unit in models for molybdenum hydroxylases.
Doonan, Christian J; Rubie, Nick D; Peariso, Katrina; Harris, Hugh H; Knottenbelt, Sushilla Z; George, Graham N; Young, Charles G; Kirk, Martin L
2008-01-09
The molybdenum hydroxylases catalyze the oxidation of numerous aromatic heterocycles and simple organics and, unlike other hydroxylases, utilize water as the source of oxygen incorporated into the product. The electronic structures of the cis-MoOS units in CoCp2[TpiPrMoVOS(OPh)] and TpiPrMoVIOS(OPh) (TpiPr = hydrotris(3-isopropylpyrazol-1-yl)borate), new models for molybdenum hydroxylases, have been studied in detail using S K-edge X-ray absorption spectroscopy, vibrational spectroscopy, and detailed bonding calculations. The results show a highly delocalized Mo=S pi* LUMO redox orbital that is formally Mo(dxy) with approximately 35% sulfido ligand character. Vibrational spectroscopy has been used to quantitate Mo-Ssulfido bond order changes in the cis-MoOS units as a function of redox state. Results support a redox active molecular orbital that has a profound influence on MoOS bonding through changes to the relative electro/nucleophilicity of the terminal sulfido ligand accompanying oxidation state changes. The bonding description for these model cis-MoOS systems supports enzyme mechanisms that are under orbital control and dominantly influenced by the unique electronic structure of the cis-MoOS site. The electronic structure of the oxidized enzyme site is postulated to play a role in polarizing a substrate carbon center for nucleophilic attack by metal activated water and acting as an electron sink in the two-electron oxidation of substrates.
Somerville, Chris; Broun, Pierre; van de Loo, Frank
2001-01-01
This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.
Immune biomarkers in older adults: Role of physical activity.
Valdiglesias, Vanessa; Sánchez-Flores, María; Maseda, Ana; Lorenzo-López, Laura; Marcos-Pérez, Diego; López-Cortón, Ana; Strasser, Barbara; Fuchs, Dietmar; Laffon, Blanca; Millán-Calenti, José C; Pásaro, Eduardo
2017-01-01
Aging is associated with a decline in the normal functioning of the immune system. Several studies described the relationship between immunological alterations, including immunosenescence and inflammation, and aging or age-related outcomes, such as sarcopenia, depression, and neurodegenerative disorders. Physical activity is known to improve muscle function and to exert a number of benefits on older adult health, including reduced risk for heart and metabolic system chronic diseases. However, the positive influence of physical activity on the immune system has not been elucidated. In order to shed light on the role of physical activity in immune responses of older individuals, a number of immunological parameters comprising % lymphocyte subsets (CD3 + , CD4 + , CD8 + , CD19 + , and CD16 + 56 + ) and serum levels of neopterin and tryptophan metabolism products were evaluated in peripheral blood samples of older adults performing normal (N = 170) or reduced (N = 89) physical activity. In addition, the potential influence of other clinical and epidemiological factors was also considered. Results showed that subjects with reduced physical activity displayed significantly higher levels of CD4 + /CD8 + ratio, kynurenine/tryptophan ratio, and serum neopterin, along with lower %CD19 + cells and tryptophan concentrations. Further, some immunological biomarkers were associated with cognitive impairment and functional status. These data contribute to reinforce the postulation that physical activity supports healthy aging, particularly by helping to protect the immunological system from aging-related changes.
Estrogen-2-hydroxylase in the brain of the male African catfish, Clarias gariepinus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timmers, R.J.; Granneman, J.C.; Lambert, J.G.
1988-11-01
Estrogen-2-hydroxylase activity, involved in the biosynthesis of catecholestrogens, was localized in the brain of the male African catfish, Clarias gariepinus, by means of a radiometric assay using (2-TH)estradiol as substrate. Fore- and midbrain were divided in 18, 500-microns thick, transverse sections from which small defined areas were punched out and assayed. The estrogen-2-hydroxylase activity was calculated from the release of tritium during hydroxylation, and expressed in femtomole catecholestradiol.milligram-1 tissue.hour-1. The enzyme could be demonstrated throughout the brain. A high activity (greater than 350 fmol) was observed in the telencephalon, in particularly the rostral part and the area ventralis pars dorsalis;more » in the diencephalon in the preoptic region, including the magnocellular part of the preoptic nucleus and the rostral part of the anterior periventricular nucleus; and in the area tuberalis, including the nucleus lateralis tuberis, the rostral part of the nucleus anterior tuberis, the caudal part of the nucleus posterior periventricularis, and in the nucleus recessus posterioris. Also a high activity was detected in the mesencephalic tectum opticum and the dorsolateral part of the torus semicircularis. The ventral mesencephalon showed a moderate (200-350 fmol) to low (less than 200 fmol) activity, whereas the lowest activity was found in the hindbrain (118 fmol). The significance of the biosynthesis of catecholestrogens in the brain is discussed in light of the negative feedback mechanism of gonadal steroids on gonadotropin release.« less
Paris, F; Gaspari, L; Mbou, F; Philibert, P; Audran, F; Morel, Y; Biason-Lauber, A; Sultan, C
2016-03-01
Pubertal gynecomastia is a common condition observed in up to 65% of adolescent males. It is usually idiopathic and tends to regress within 1-2 years. In this descriptive cross-sectional study, we investigated 25 adolescent males with prominent (>B3) and/or persistent (>2 years) pubertal gynecomastia (P/PPG) to determine whether a hormonal/genetic defect might underline this condition. Endocrine investigation revealed the absence of hormonal disturbance for 18 boys (72%). Three patients presented Klinefelter syndrome and three a partial androgen insensitivity syndrome (PAIS) as a result of p.Ala646Asp and p.Ala45Gly mutations of the androgen receptor gene. The last patient showed a 17α-hydroxylase/17,20-lyase deficiency as a result of a compound heterozygous mutation of the CYP17A1 gene leading to p.Pro35Thr(P35T) and p.Arg239Stop(R239X) in the P450c17 protein. Enzymatic activity was analyzed: the mutant protein bearing the premature stop codon R239X showed a complete loss of 17α-hydroxylase and 17,20-lyase activity. The mutant P35T seemed to retain 15-20% of 17α-hydroxylase and about 8-10% of 17,20-lyase activity. This work demonstrates that P/PPG had an endocrine/genetic cause in 28% of our cases. PAIS may be expressed only by isolated gynecomastia as well as by 17α-hydroxylase/17,20-lyase deficiency. Isolated P/PPG is not always a 'physiological' condition and should thus be investigated through adequate endocrine and genetic investigations, even though larger studies are needed to better determine the real prevalence of genetic defects in such patients. © 2016 American Society of Andrology and European Academy of Andrology.
Kaneko, Miyuki; Itoh, Hironori; Ueguchi-Tanaka, Miyako; Ashikari, Motoyuki; Matsuoka, Makoto
2002-01-01
We recently isolated two genes (OsGA3ox1 and OsGA3ox2) from rice (Oryza sativa) encoding 3β-hydroxylase, which catalyzes the final step of active gibberellin (GA) biosynthesis (H. Itoh, M. Ueguchi-Tanaka, N. Sentoku, H. Kitano, M. Matsuoka, M. Kobayashi [2001] Proc Natl Acad Sci USA 98: 8909–8914). Using these cloned cDNAs, we analyzed the temporal and spatial expression patterns of the 3β-hydroxylase genes and also an α-amylase gene (RAmy1A) during rice seed germination to investigate the relationship between GA biosynthesis and α-amylase expression. Northern-blot analyses revealed that RAmy1A expression in the embryo occurs before the induction of 3β-hydroxylase expression, whereas in the endosperm, a high level of RAmy1A expression occurs 1 to 2 d after the peak of OsGA3ox2 expression and only in the absence of uniconazol. Based on the analysis of an OsGA3ox2 null mutant (d18-Akibare dwarf), we determined that 3β-hydroxylase produced by OsGA3ox2 is important for the induction of RAmy1A expression and that the OsGA3ox1 product is not essential for α-amylase induction. The expression of OsGA3ox2 was localized to the shoot region and epithelium of the embryo, strongly suggesting that active GA biosynthesis occurs in these two regions. The synthesis of active GA in the epithelium is important for α-amylase expression in the endosperm, because an embryonic mutant defective in shoot formation, but which developed epithelium cells, induced α-amylase expression in the endosperm, whereas a mutant defective in epithelium development did not. PMID:11950975
NASA Astrophysics Data System (ADS)
Aksenova, N. A.; Vyzhlova, E. N.; Malinovskaya, V. V.; Parfenov, V. V.; Solov'eva, A. B.; Timashev, P. S.
2013-08-01
It is shown that model reactions of photosensitized oxidation of anthracene and tryptophan can be used for evaluation and comparison of antioxidant activity of various classes of compounds. Inhibition of the oxidation of substrates in the presence of the familiar antioxidants tocopherol (vitamin E), ascorbic acid (vitamin C), and mixtures of these vitamins with methionine, and in the presence of reputed antioxidants dihydroquercetin and taurine, are considered. It is concluded that all of the above compounds except for taurine have antioxidant properties; i.e., they reduce the rate constants of the photosensitized oxidation of anthracene and tryptophan. It is found that the inhibition of oxidation is associated with the interaction between antioxidants and singlet oxygen. Analysis of the kinetic dependences of the photosensitized oxidation of substrates in the presence of antioxidants reveals that a mixture of vitamins inhibits the process most efficiently, and inhibition occurs at the initial stages due to more active interaction between singlet oxygen and vitamin C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hincal, F.
Aryl hydrocarbon hydroxylase (AHH) activities were determined in placental tissues of 152 nonsmoker or exsmoker women who live in Ankara and 125 nonsmoker women who live in areas surrounding Ankara. Levels of AHH were also determined in the placentas of 52 cigarette smokers. The mean AHH activity in the Ankara group was 11.17 +/- 5.41; in the control group, 6.44 +/- 5.48; and for smokers, 45.68 +/- 53.36, which indicates significant differences (p < .001). There was a strong correlation (r = 0.89) between the AHH activities of individuals who live in Ankara and smoke content of the air. Placentalmore » AHH activity did not show any relation to the age, nutritional and dietary habits, factors of indoor pollution, duration of pregnancy, nor did the weight, length and Apgar score of the babies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciudad-Roberts, Andrés; Duart-Castells, Leticia; Camarasa, Jorge
A new family of psychostimulants, under the name of cathinones, has broken into the market in the last decade. In light of the fact that around 95% of cathinone consumers have been reported to combine them with alcoholic drinks, we sought to study the consequences of the concomitant administration of ethanol on mephedrone -induced neurotoxicity. Adolescent male Swiss-CD1 mice were administered four times in one day, every 2 h, with saline, mephedrone (25 mg/kg), ethanol (2; 1.5; 1.5; 1 g/kg) and their combination at a room temperature of 26 ± 2 °C. The combination with ethanol impaired mephedrone-induced decreases inmore » dopamine transporter and tyrosine hydroxylase in the frontal cortex; and in serotonin transporter and tryptophan hydroxylase in the hippocampus by approximately 2-fold, 7 days post-treatment. Furthermore, these decreases correlated with a 2-fold increase in lipid peroxidation, measured as concentration of malondialdehyde (MDA), 24 h post-treatment, and were accompanied by changes in oxidative stress-related enzymes. Ethanol also notably potentiated mephedrone-induced negative effects on learning and memory, as well as hippocampal neurogenesis, measured through the Morris water maze (MWM) and 5-bromo-2′-deoxyuridine staining, respectively. These results are of special significance, since alcohol is widely co-abused with amphetamine derivatives such as mephedrone, especially during adolescence, a crucial stage in brain maturation. Given that the hippocampus is greatly involved in learning and memory processes, normal brain development in young adults could be affected with permanent behavioral consequences after this type of drug co-abuse. - Highlights: • Mice were administered a binge regimen of mephedrone plus/minus ethanol. • Ethanol exacerbated mephedrone-induced changes in 5-HT and DA function markers. • Neurochemical alterations were accompanied by an increase in oxidative stress. • Ethanol potentiated mephedrone-induced learning deficits and decreased neurogenesis.« less
Neuronal changes and oxidative stress in adolescent rats after repeated exposure to mephedrone
DOE Office of Scientific and Technical Information (OSTI.GOV)
López-Arnau, Raúl; Martínez-Clemente, José; Institute of Biomedicine
Mephedrone is a new designer drug of abuse. We have investigated the neurochemical/enzymatic changes after mephedrone administration to adolescent rats (3 × 25 mg/kg, s.c. in a day, with a 2 h interval between doses, for two days) at high ambient temperature (26 ± 2 °C), a schedule that intends to model human recreational abuse. In addition, we have studied the effect of mephedrone in spatial learning and memory. The drug caused a transient decrease in weight gain. After the first dose, animals showed hypothermia but, after the subsequent doses, temperature raised over the values of saline-treated group. We observedmore » the development of tolerance to these thermoregulatory effects of mephedrone. Mephedrone induced a reduction of the densities of dopamine (30% in the frontal cortex) and serotonin (40% in the frontal cortex and the hippocampus and 48% in the striatum) transporters without microgliosis. These deficits were also accompanied by a parallel decrease in the expression of tyrosine hydroxylase and tryptophan hydroxylase 2. These changes matched with a down-regulation of D{sub 2} dopamine receptors in the striatum. Mephedrone also induced an oxidative stress evidenced by an increase of lipid peroxidation in the frontal cortex, and accompanied by a rise in glutathione peroxidase levels in all studied brain areas. Drug-treated animals displayed an impairment of the reference memory in the Morris water maze one week beyond the cessation of drug exposure, while the spatial learning process seems to be preserved. These findings raise concerns about the neuronal long-term effects of mephedrone. - Highlights: • We studied the dopaminergic and serotonergic neurotoxicity of mephedrone in rats. • Mephedrone induced a transient hypothermia following sustained hyperthermia. • In a weekend consumption pattern, mephedrone induced selective neurotoxicity. • Mephedrone generated oxidative stress. • Mephedrone induced an impairment in memory function.« less
Ebenezer, Philip J; Wilson, C Brad; Wilson, Leslie D; Nair, Anand R; J, Francis
2016-01-01
Post-traumatic stress disorder (PTSD) is a trauma and stressor-related disorder that results in a prolonged stress response. It is associated with increased oxidative stress and inflammation in the prefrontal cortex (PFC) and hippocampus (HC). The only approved therapy for PTSD is selective serotonin re-uptake inhibitors (SSRIs), but their efficacy is marginal. Recently, we demonstrated that over-production of norepinephrine (NE) as the possible reason for the lack of efficacy of SSRIs. Hence, there is a need for novel therapeutic approaches for the treatment of PTSD. In this study, we investigated the anti-inflammatory role of blueberries in modulating inflammatory markers and neurotransmitter levels in PTSD. Rats were fed either a blueberry enriched (2%) or a control diet. Rats were exposed to cats for one hour on days 1 and 11 of a 31-day schedule to simulate traumatic conditions. The rats were also subjected to psychosocial stress via daily cage cohort changes. At the end of the study, the rats were euthanized and the PFC and HC were isolated. Monoamines were measured by high-performance liquid chromatography. Reactive oxygen species (ROS), gene and protein expression levels of inflammatory cytokines were also measured. In our PTSD model, NE levels were increased and 5-HT levels were decreased when compared to control. In contrast, a blueberry enriched diet increased 5-HT without affecting NE levels. The rate limiting enzymes tyrosine hydroxylase and tryptophan hydroxylase were also studied and they confirmed our findings. The enhanced levels free radicals, gene and protein expression of inflammatory cytokines seen in the PTSD group were normalized with a blueberry enriched diet. Decreased anxiety in this group was shown by improved performance on the elevated plus-maze. These findings indicate blueberries can attenuate oxidative stress and inflammation and restore neurotransmitter imbalances in a rat model of PTSD.
Ebenezer, Philip J.; Wilson, C. Brad; Wilson, Leslie D.; Nair, Anand R.; J, Francis
2016-01-01
Post-traumatic stress disorder (PTSD) is a trauma and stressor-related disorder that results in a prolonged stress response. It is associated with increased oxidative stress and inflammation in the prefrontal cortex (PFC) and hippocampus (HC). The only approved therapy for PTSD is selective serotonin re-uptake inhibitors (SSRIs), but their efficacy is marginal. Recently, we demonstrated that over-production of norepinephrine (NE) as the possible reason for the lack of efficacy of SSRIs. Hence, there is a need for novel therapeutic approaches for the treatment of PTSD. In this study, we investigated the anti-inflammatory role of blueberries in modulating inflammatory markers and neurotransmitter levels in PTSD. Rats were fed either a blueberry enriched (2%) or a control diet. Rats were exposed to cats for one hour on days 1 and 11 of a 31-day schedule to simulate traumatic conditions. The rats were also subjected to psychosocial stress via daily cage cohort changes. At the end of the study, the rats were euthanized and the PFC and HC were isolated. Monoamines were measured by high-performance liquid chromatography. Reactive oxygen species (ROS), gene and protein expression levels of inflammatory cytokines were also measured. In our PTSD model, NE levels were increased and 5-HT levels were decreased when compared to control. In contrast, a blueberry enriched diet increased 5-HT without affecting NE levels. The rate limiting enzymes tyrosine hydroxylase and tryptophan hydroxylase were also studied and they confirmed our findings. The enhanced levels free radicals, gene and protein expression of inflammatory cytokines seen in the PTSD group were normalized with a blueberry enriched diet. Decreased anxiety in this group was shown by improved performance on the elevated plus-maze. These findings indicate blueberries can attenuate oxidative stress and inflammation and restore neurotransmitter imbalances in a rat model of PTSD. PMID:27603014
Genetics of Aggression in Alzheimer’s Disease (AD)
Lukiw, Walter J.; Rogaev, Evgeny I.
2017-01-01
Alzheimer’s disease (AD) is a terminal, age-related neurological syndrome exhibiting progressive cognitive and memory decline, however AD patients in addition exhibit ancillary neuropsychiatric symptoms (NPSs) and these include aggression. In this communication we provide recent evidence for the mis-regulation of a small family of genes expressed in the human hippocampus that appear to be significantly involved in expression patterns common to both AD and aggression. DNA array- and mRNA transcriptome-based gene expression analysis and candidate gene association and/or genome-wide association studies (CGAS, GWAS) of aggressive attributes in humans have revealed a surprisingly small subset of six brain genes that are also strongly associated with altered gene expression patterns in AD. These genes encoded on five different chromosomes (chr) include the androgen receptor (AR; chrXq12), brain-derived neurotrophic factor (BDNF; chr11p14.1), catechol-O-methyl transferase (COMT; chr22q11.21), neuronal specific nitric oxide synthase (NOS1; chr12q24.22), dopamine beta-hydroxylase (DBH chr9q34.2) and tryptophan hydroxylase (TPH1, chr11p15.1 and TPH2, chr12q21.1). Interestingly, (i) the expression of three of these six genes (COMT, DBH, NOS1) are highly variable; (ii) three of these six genes (COMT, DBH, TPH1) are involved in DA or serotonin metabolism, biosynthesis and/or neurotransmission; and (iii) five of these six genes (AR, BDNF, COMT, DBH, NOS1) have been implicated in the development, onset and/or propagation of schizophrenia. The magnitude of the expression of genes implicated in aggressive behavior appears to be more pronounced in the later stages of AD when compared to MCI. These recent genetic data further indicate that the extent of cognitive impairment may have some bearing on the degree of aggression which accompanies the AD phenotype. PMID:28443016
Kolet, Swati P; Haldar, Saikat; Niloferjahan, Siddiqui; Thulasiram, Hirekodathakallu V
2014-07-01
Transformation of testosterone and progesterone into synthetically challenging 14α-hydroxy derivatives was achieved by using fungal strain Mucor hiemalis. Prolonged incubation led to the formation of corresponding 6β/7α,14α-dihydroxy metabolites. The position and stereochemistry of newly introduced hydroxyl group was determined by detailed spectroscopic analyses. The time course experiment indicated that fungal strain initiated transformation by hydroxylation at 14α-position followed by at 6β- or 7α-positions. Studies using cell-free extracts suggest that the 14α-hydroxylase activity is NADPH dependent and belongs to the cytochrome P450 family. Copyright © 2014 Elsevier Inc. All rights reserved.
Molin, Arnaud; Wiedemann, Arnaud; Demers, Nick; Kaufmann, Martin; Do Cao, Jérémy; Mainard, Laurent; Dousset, Brigitte; Journeau, Pierre; Abeguile, Geneviève; Coudray, Nadia; Mittre, Hervé; Richard, Nicolas; Weryha, Georges; Sorlin, Arthur; Jones, Glenville; Kottler, Marie-Laure; Feillet, Francois
2017-09-01
Vitamin D requires a two-step activation by hydroxylation: The first step is catalyzed by hepatic 25-hydroxylase (CYP2R1, 11p15.2) and the second one is catalyzed by renal 1α-hydroxylase (CYP27B1, 12q13.1), which produces the active hormonal form of 1,25-(OH) 2 D. Mutations of CYP2R1 have been associated with vitamin D-dependent rickets type 1B (VDDR1B), a very rare condition that has only been reported to affect 4 families to date. We describe 7 patients from 2 unrelated families who presented with homozygous loss-of-function mutations of CYP2R1. Heterozygous mutations were present in their normal parents. We identified a new c.124_138delinsCGG (p.Gly42_Leu46delinsArg) variation and the previously published c.296T>C (p.Leu99Pro) mutation. Functional in vitro studies confirmed loss-of-function enzymatic activity in both cases. We discuss the difficulties in establishing the correct diagnosis and the specific biochemical pattern, namely, very low 25-OH-D suggestive of classical vitamin D deficiency, in the face of normal/high concentrations of 1,25-(OH) 2 D. Siblings exhibited the three stages of rickets based on biochemical and radiographic findings. Interestingly, adult patients were able to maintain normal mineral metabolism without vitamin D supplementation. One index case presented with a partial improvement with 1alfa-hydroxyvitamin D 3 or alfacalcidol (1α-OH-D 3 ) treatment, and we observed a dramatic increase in the 1,25-(OH) 2 D serum concentration, which indicated the role of accessory 25-hydroxylase enzymes. Lastly, in patients who received calcifediol (25-OH-D 3 ), we documented normal 24-hydroxylase activity (CYP24A1). For the first time, and according to the concept of personalized medicine, we demonstrate dramatic improvements in patients who were given 25-OH-D therapy (clinical symptoms, biochemical data, and bone densitometry). In conclusion, the current study further expands the CYP2R1 mutation spectrum. We note that VDDR1B could be easily mistaken for classical vitamin D deficiency. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.
Pneumocandin biosynthesis: involvement of a trans-selective proline hydroxylase.
Houwaart, Stefanie; Youssar, Loubna; Hüttel, Wolfgang
2014-11-03
Echinocandins are cyclic nonribosomal hexapeptides based mostly on nonproteinogenic amino acids and displaying strong antifungal activity. Despite previous studies on their biosynthesis by fungi, the origin of three amino acids, trans-4- and trans-3-hydroxyproline, as well as trans-3-hydroxy-4-methylproline, is still unknown. Here we describe the identification, overexpression, and characterization of GloF, the first eukaryotic α-ketoglutarate/Fe(II) -dependent proline hydroxylase from the pneumocandin biosynthesis cluster of the fungus Glarea lozoyensis ATCC 74030. In in vitro transformations with L-proline, GloF generates trans-4- and trans-3-hydroxyproline simultaneously in a ratio of 8:1; the latter reaction was previously unknown for proline hydroxylase catalysis. trans-4-Methyl-L-proline is converted into the corresponding trans-3-hydroxyproline. All three hydroxyprolines required for the biosynthesis of the echinocandins pneumocandins A0 and B0 in G. lozoyensis are thus provided by GloF. Sequence analyses revealed that GloF is not related to bacterial proline hydroxylases, and none of the putative proteins with high sequence similarity in the databases has been characterized so far. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Point mutation of Arg440 to his in cytochrome P450c17 causes severe 17{alpha}-hydroxylase deficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fardella, C.E.; Hum, D.W.; Miller, W.L.
Genetic disorders in the gene encoding P450c17 cause 17{alpha}-hydroxylase deficiency. The consequent defects in the synthesis of cortisol and sex steroids cause sexual infantilism and a female phenotype in both genetic sexes as well as mineralorcorticoid excess and hypertension. A 15-yr-old patient from Germany was seen for absent pubertal development and mild hypertension with hypokalemia, high concentrations of 17-deoxysteroids, and hypergonadotropic hypogonadism. Analysis of her P450c17 gene by polymerase chain reaction amplification and direct sequencing showed mutation of codon 440 from CGC (Arg) to CAC (His). Expression of a vector encoding this mutated form of P450c17 in transfected nonsteroidogenic COS-1more » cells showed that the mutant P450c17 protein was produced, but it lacked both 17{alpha}-hydroxylase and 17,20-lyase activities. To date, 15 different P450c17 mutations have been described in 23 patients with 17{alpha}-hydroxylase deficiency, indicating that mutations in this gene are due to random events. 36 refs., 3 figs., 2 tabs.« less
Xu, X M; Ding, M; Pang, H; Wang, B J
2014-03-12
In the last years, serotonin (5-HT) has been related with the pathophysiology of several psychiatric disorders, including schizophrenia. Thus, genes related to the serotonergic (5-HTergic) system are good candidate genes for schizophrenia. The rate-limiting enzyme of 5-HT synthesis is tryptophan hydroxylase 2 (TPH2). Single nucleotide polymorphisms (SNPs) in the regulatory regions of TPH2 gene may affect gene expression and biosynthesis of 5-HT triggering to various neuropsychiatric disorders related to 5-HT dysfunction. The present study explored the association of SNPs within the TPH2 gene with paranoid schizophrenia in Han Chinese. A total of 164 patients with schizophrenia and 244 healthy controls were genotyped for six TPH2 SNPs (rs4570625, rs11178997, rs11178998, rs41317118, rs17110747, and rs41317114). Significant group differences were observed in the allele and genotype frequencies of rs4570625 and in the frequencies of GTA and TTA haplotypes corresponding to rs4570625-rs11178997-rs11178998. Our findings suggest that common genetic variations of TPH2 are likely to contribute to genetic susceptibility to paranoid schizophrenia in Han Chinese. Further studies in larger samples are needed to replicate this association.
Convergence of the Insulin and Serotonin Programs in the Pancreatic β-Cell
Ohta, Yasuharu; Kosaka, Yasuhiro; Kishimoto, Nina; Wang, Juehu; Smith, Stuart B.; Honig, Gerard; Kim, Hail; Gasa, Rosa M.; Neubauer, Nicole; Liou, Angela; Tecott, Laurence H.; Deneris, Evan S.; German, Michael S.
2011-01-01
OBJECTIVE Despite their origins in different germ layers, pancreatic islet cells share many common developmental features with neurons, especially serotonin-producing neurons in the hindbrain. Therefore, we tested whether these developmental parallels have functional consequences. RESEARCH DESIGN AND METHODS We used transcriptional profiling, immunohistochemistry, DNA-binding analyses, and mouse genetic models to assess the expression and function of key serotonergic genes in the pancreas. RESULTS We found that islet cells expressed the genes encoding all of the products necessary for synthesizing, packaging, and secreting serotonin, including both isoforms of the serotonin synthetic enzyme tryptophan hydroxylase and the archetypal serotonergic transcription factor Pet1. As in serotonergic neurons, Pet1 expression in islets required homeodomain transcription factor Nkx2.2 but not Nkx6.1. In β-cells, Pet1 bound to the serotonergic genes but also to a conserved insulin gene regulatory element. Mice lacking Pet1 displayed reduced insulin production and secretion and impaired glucose tolerance. CONCLUSIONS These studies demonstrate that a common transcriptional cascade drives the differentiation of β-cells and serotonergic neurons and imparts the shared ability to produce serotonin. The interrelated biology of these two cell types has important implications for the pathology and treatment of diabetes. PMID:22013016
[Difference in target antigens between central tolerance and peripheral tolerance deficiencies].
Chida, Natsuko; Kobayashi, Ichiro
2015-01-01
Failure of the immunotolerance mechanisms causes multiple organ-specific autoimmune disorders. Mutations of autoimmune regulator (AIRE) gene result in central immunotolerance deficiency named autoimmune polyendocrinopathy, candidiasis, ectodermal dystrophy (APECED). Mutations of FOXP3 genes cause regulatory T cell (Treg) deficiency named immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. Because T cell tolerance influences B cell tolerance, autoantibodies seem to reflect the presence of autoreactive T cells with the same antigen specificity. To date many differences in both clinical features and autoantibody profiles have been described between APECED and IPEX syndrome. In addition to the differences in target organs, we have found differences in the target antigens in the same organ, small intestine, between both disorders; anti-autoimmune enteropathy-related 75 kDa antigen (AIE-75) antibodies are specific to IPEX syndrome, whereas anti-tryptophan hydroxylase-1 (TPH-1) antibodies are specific to APECED. These facts suggest that immunotolerance to AIE-75 depends on the Treg, whereas the tolerance to TPH-1 depends on the central mechanisms. Furthermore, given the earlier onset and more serious clinical features of IPEX syndrome than APECED, physiological roles of Aire on the selection of Treg may be, if present, limited.
Lemay, Francis; Doré, François Y; Beaulieu, Jean-Martin
2015-11-16
Polymorphisms in the gene encoding the brain serotonin synthesis enzyme Tph2 have been identified in mental illnesses, with co-morbidity of substance use disorder. However, little is known about the impact of Tph2 gene variants on addiction. Mice expressing a human Tph2 loss of function variant were used to investigate consequences of aversive conditions on ethanol intake. Mice were familiarized either with ethanol or a solution containing both ethanol and the bittering agent quinine. Effect of familiarization to ethanol or an ethanol-quinine solution was then evaluated using a two-bottles preference test in Tph2-KI and control littermates. Mice from both genotypes displayed similar levels of ethanol consumption and quinine avoidance when habituated to ethanol alone. In contrast, addition of quinine to ethanol during the familiarization period resulted in a reduction of avoidance for the quinine-ethanol solution only in mutant mice. These results indicate that loss of function mutation in Tph2 results in greater motivation for ethanol consumption under aversive conditions and may confer enhanced sensitivity to alcohol use disorder. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Convergence of the insulin and serotonin programs in the pancreatic β-cell.
Ohta, Yasuharu; Kosaka, Yasuhiro; Kishimoto, Nina; Wang, Juehu; Smith, Stuart B; Honig, Gerard; Kim, Hail; Gasa, Rosa M; Neubauer, Nicole; Liou, Angela; Tecott, Laurence H; Deneris, Evan S; German, Michael S
2011-12-01
Despite their origins in different germ layers, pancreatic islet cells share many common developmental features with neurons, especially serotonin-producing neurons in the hindbrain. Therefore, we tested whether these developmental parallels have functional consequences. We used transcriptional profiling, immunohistochemistry, DNA-binding analyses, and mouse genetic models to assess the expression and function of key serotonergic genes in the pancreas. We found that islet cells expressed the genes encoding all of the products necessary for synthesizing, packaging, and secreting serotonin, including both isoforms of the serotonin synthetic enzyme tryptophan hydroxylase and the archetypal serotonergic transcription factor Pet1. As in serotonergic neurons, Pet1 expression in islets required homeodomain transcription factor Nkx2.2 but not Nkx6.1. In β-cells, Pet1 bound to the serotonergic genes but also to a conserved insulin gene regulatory element. Mice lacking Pet1 displayed reduced insulin production and secretion and impaired glucose tolerance. These studies demonstrate that a common transcriptional cascade drives the differentiation of β-cells and serotonergic neurons and imparts the shared ability to produce serotonin. The interrelated biology of these two cell types has important implications for the pathology and treatment of diabetes.
Häring, Martin; Enk, Vanessa; Aparisi Rey, Alejandro; Loch, Sebastian; Ruiz de Azua, Inigo; Weber, Tillmann; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat
2015-01-01
The endocannabinoid (eCB) system possesses neuromodulatory functions by influencing the release of various neurotransmitters, including γ-aminobutyric acid (GABA) and glutamate. A functional interaction between eCBs and the serotonergic system has already been suggested. Previously, we showed that cannabinoid type-1 (CB1) receptor mRNA and protein are localized in serotonergic neurons of the raphe nuclei, implying that the eCB system can modulate serotonergic functions. In order to substantiate the physiological role of the CB1 receptor in serotonergic neurons of the raphe nuclei, we generated serotonergic 5-hydroxytryptamine (5-HT) neuron-specific CB1 receptor-deficient mice, using the Cre/loxP system with a tamoxifen-inducible Cre recombinase under the control of the regulatory sequences of the tryptophan hydroxylase 2 gene (TPH2-CreERT2), thus, restricting the recombination to 5-HT neurons of the central nervous system (CNS). Applying several different behavioral paradigms, we revealed that mice lacking the CB1 receptor in serotonergic neurons are more anxious and less sociable than control littermates. Thus, we were able to show that functional CB1 receptor signaling in central serotonergic neurons modulates distinct behaviors in mice. PMID:26388750
Thompson, Jacqueline R; Valleau, Jeanette C; Barling, Ashley N; Franco, Juliana G; DeCapo, Madison; Bagley, Jennifer L; Sullivan, Elinor L
2017-01-01
Perinatal exposure to maternal obesity and high-fat diet (HFD) consumption not only poses metabolic risks to offspring but also impacts brain development and mental health. Using a non-human primate model, we observed a persistent increase in anxiety in juvenile offspring exposed to a maternal HFD. Postweaning HFD consumption also increased anxiety and independently increased stereotypic behaviors. These behavioral changes were associated with modified cortisol stress response and impairments in the development of the central serotonin synthesis, with altered tryptophan hydroxylase-2 mRNA expression in the dorsal and median raphe. Postweaning HFD consumption decreased serotonergic immunoreactivity in area 10 of the prefrontal cortex. These results suggest that perinatal exposure to HFD consumption programs development of the brain and endocrine system, leading to behavioral impairments associated with mental health and neurodevelopmental disorders. Also, an early nutritional intervention (consumption of the control diet at weaning) was not sufficient to ameliorate many of the behavioral changes, such as increased anxiety, that were induced by maternal HFD consumption. Given the level of dietary fat consumption and maternal obesity in developed nations these findings have important implications for the mental health of future generations.
Thompson, Jacqueline R.; Valleau, Jeanette C.; Barling, Ashley N.; Franco, Juliana G.; DeCapo, Madison; Bagley, Jennifer L.; Sullivan, Elinor L.
2017-01-01
Perinatal exposure to maternal obesity and high-fat diet (HFD) consumption not only poses metabolic risks to offspring but also impacts brain development and mental health. Using a non-human primate model, we observed a persistent increase in anxiety in juvenile offspring exposed to a maternal HFD. Postweaning HFD consumption also increased anxiety and independently increased stereotypic behaviors. These behavioral changes were associated with modified cortisol stress response and impairments in the development of the central serotonin synthesis, with altered tryptophan hydroxylase-2 mRNA expression in the dorsal and median raphe. Postweaning HFD consumption decreased serotonergic immunoreactivity in area 10 of the prefrontal cortex. These results suggest that perinatal exposure to HFD consumption programs development of the brain and endocrine system, leading to behavioral impairments associated with mental health and neurodevelopmental disorders. Also, an early nutritional intervention (consumption of the control diet at weaning) was not sufficient to ameliorate many of the behavioral changes, such as increased anxiety, that were induced by maternal HFD consumption. Given the level of dietary fat consumption and maternal obesity in developed nations these findings have important implications for the mental health of future generations. PMID:28785241
TPH2 polymorphisms and alcohol-related suicide.
Zupanc, Tomaž; Pregelj, Peter; Tomori, Martina; Komel, Radovan; Paska, Alja Videtič
2011-02-18
Substantial evidence from family, twin, and adoption studies corroborates implication of genetic and environmental factors, as well as their interactions, on suicidal behavior and alcoholism risk. Serotonergic disfunction seems to be involved in the pathophysiology of substance abuse, and has also an important role in suicidal behavior. Recent studies of the tryptophan hydroxylase 2 showed mild or no association with suicide and alcohol-related suicide. We performed SNP and alcohol analysis on 388 suicide victims and 227 controls. The results showed association between suicide (Pχ²=0.043) and alcohol-related suicide (Pχ²=0.021) for SNP Rs1843809. A tendency for association was determined also for polymorphism Rs1386493 (Pχ²=0.055) and alcohol-related suicide. Data acquired from psychological autopsies in a subsample of suicide victims (n=79) determined more impulsive behavior (Pχ²=0.016) and verbal aggressive behavior (Pχ²=0.025) in the subgroup with alcohol misuse or dependency. In conclusion, our results suggest implication of polymorphisms in suicide and alcohol-related suicide, but further studies are needed to clarify the interplay among serotonergic system disfunction, suicide, alcohol dependence, impulsivity and the role of TPH2 enzyme. © 2010 Elsevier Ireland Ltd. All rights reserved.
Kang, Kiyoon; Kim, Young-Soon; Park, Sangkyu; Back, Kyoungwhan
2009-01-01
Serotonin, which is well known as a pineal hormone in mammals, plays a key role in conditions such as mood, eating disorders, and alcoholism. In plants, although serotonin has been suggested to be involved in several physiological roles, including flowering, morphogenesis, and adaptation to environmental changes, its regulation and functional roles are as yet not characterized at the molecular level. In this study, we found that serotonin is greatly accumulated in rice (Oryza sativa) leaves undergoing senescence induced by either nutrient deprivation or detachment, and its synthesis is closely coupled with transcriptional and enzymatic induction of the tryptophan biosynthetic genes as well as tryptophan decarboxylase (TDC). Transgenic rice plants that overexpressed TDC accumulated higher levels of serotonin than the wild type and showed delayed senescence of rice leaves. However, transgenic rice plants, in which expression of TDC was suppressed through an RNA interference (RNAi) system, produced less serotonin and senesced faster than the wild type, suggesting that serotonin is involved in attenuating leaf senescence. The senescence-retarding activity of serotonin is associated with its high antioxidant activity compared to either tryptophan or chlorogenic acid. Results of TDC overexpression and TDC RNAi plants suggest that TDC plays a rate-limiting role for serotonin accumulation, but the synthesis of serotonin depends on an absolute amount of tryptophan accumulation by the coordinate induction of the tryptophan biosynthetic genes. In addition, immunolocalization analysis revealed that serotonin was abundant in the vascular parenchyma cells, including companion cells and xylem-parenchyma cells, suggestive of its involvement in maintaining the cellular integrity of these cells for facilitating efficient nutrient recycling from senescing leaves to sink tissues during senescence. PMID:19439571
Kadej, Agnieszka; Kuczer, Mariola; Czarniewska, Elżbieta; Urbański, Arkadiusz; Rosiński, Grzegorz; Kowalik-Jankowska, Teresa
2016-10-01
Copper(II) complex formation processes between the alloferon 1 (Allo1) (HGVSGHGQHGVHG) analogues where the tryptophan residue is introducing in the place His residue H1W, H6W, H9W and H12W have been studied by potentiometric, UV-visible, CD and EPR spectroscopic, and MS methods. For all analogues of alloferon 1 complex speciation have been obtained for a 1:1 metal-to-ligand molar ratio and 2:1 of H1W because of precipitation at higher (2:1, 3:1 and 4:1) ratios. At physiological pH7.4 and a 1:1 metal-to-ligand molar ratio the tryptophan analogues of alloferon 1 form the CuH -1 L and/or CuH -2 L complexes with the 4N binding mode. The introduction of tryptophan in place of histidine residues changes the distribution diagram of the complexes formed with the change of pH and their stability constants compared to the respective substituted alanine analogues of alloferon 1. The CuH -1 L, CuH -2 L and CuH -3 L complexes of the tryptophan analogues are more stable from 1 to 5 log units in comparison to those of the alanine analogues. This stabilization of the complexes may result from cation(Cu(II))-π and indole/imidazole ring interactions. The induction of apoptosis in vivo, in Tenebrio molitor cells by the ligands and their copper(II) complexes at pH7.4 was studied. The biological results show that copper(II) ions in vivo did not cause any apparent apoptotic features. The most active were the H12W peptide and Cu(II)-H12W complex formed at pH7.4. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, Chao-Chuan; Lin, Hui-Ching; Chan, Yun-Han; Gean, Po-Wu; Yang, Yen Kung; Chen, Po See
2013-10-01
Accumulating evidence suggests that dysfunction of the amygdala is related to abnormal fear processing, anxiety, and social behaviors noted in autistic spectrum disorders (ASDs). In addition, studies have shown that disrupted brain serotonin homeostasis is linked to ASD. With a valproate (VPA)-induced rat ASD model, we investigated the possible role of amygdala serotonin homeostasis in autistic phenotypes and further explored the underlying mechanism. We first discovered that the distribution of tryptophan hydroxylase immunoreactivity in the caudal raphe system was modulated on postnatal day (PD) 28 of the VPA-exposed offspring. Then, we found a significantly higher serotonin transporter availability in the amygdala of the VPA-exposed offspring on PD 56 by using single photon emission computed tomography and computed tomography co-registration following injection of (123)I-labeled 2-((2-(dimethylamino)methyl)phenyl)thio)-5-iodophenylamine((123)I[ADAM]). Furthermore, treatment with 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a 5-HT1A receptor agonist, increased social interaction and improved fear memory extinction in the VPA-exposed offspring. 8-OH-DPAT treatment also reversed the characteristics of miniature excitatory post-synaptic currents as well as paired pulse facilitation observed in lateral amygdala slices. These results provided further evidence to support the role of the amygdala in characteristic behavioral changes in the rat ASD model. The serotonergic projections that modulate the amygdala function might play a certain role in the development and treatment of behavioral symptoms exhibited in individuals with ASD.
Gutknecht, Lise; Popp, Sandy; Waider, Jonas; Sommerlandt, Frank M J; Göppner, Corinna; Post, Antonia; Reif, Andreas; van den Hove, Daniel; Strekalova, Tatyana; Schmitt, Angelika; Colaςo, Maria B N; Sommer, Claudia; Palme, Rupert; Lesch, Klaus-Peter
2015-07-01
While brain serotonin (5-HT) function is implicated in gene-by-environment interaction (GxE) impacting the vulnerability-resilience continuum in neuropsychiatric disorders, it remains elusive how the interplay of altered 5-HT synthesis and environmental stressors is linked to failure in emotion regulation. Here, we investigated the effect of constitutively impaired 5-HT synthesis on behavioral and neuroendocrine responses to unpredictable chronic mild stress (CMS) using a mouse model of brain 5-HT deficiency resulting from targeted inactivation of the tryptophan hydroxylase-2 (Tph2) gene. Locomotor activity and anxiety- and depression-like behavior as well as conditioned fear responses were differentially affected by Tph2 genotype, sex, and CMS. Tph2 null mutants (Tph2(-/-)) displayed increased general metabolism, marginally reduced anxiety- and depression-like behavior but strikingly increased conditioned fear responses. Behavioral modifications were associated with sex-specific hypothalamic-pituitary-adrenocortical (HPA) system alterations as indicated by plasma corticosterone and fecal corticosterone metabolite concentrations. Tph2(-/-) males displayed increased impulsivity and high aggressiveness. Tph2(-/-) females displayed greater emotional reactivity to aversive conditions as reflected by changes in behaviors at baseline including increased freezing and decreased locomotion in novel environments. However, both Tph2(-/-) male and female mice were resilient to CMS-induced hyperlocomotion, while CMS intensified conditioned fear responses in a GxE-dependent manner. Our results indicate that 5-HT mediates behavioral responses to environmental adversity by facilitating the encoding of stress effects leading to increased vulnerability for negative emotionality.
Chiba, Takeshi; Maeda, Tomoji; Kimura, Soichiro; Morimoto, Yasunori; Sanbe, Atsushi; Ueda, Hideo; Kudo, Kenzo
2015-11-05
Selective serotonin reuptake inhibitors (SSRIs) are widely used as a first-line therapy in postpartum depression. The objective of this study was to determine the mechanism underlying the inhibitory effects of the SSRI, fluvoxamine, on β-casein expression, an indicator of lactation, in MCF-12A human mammary epithelial cells. Expression levels of serotonin (5-hydroxytryptamine; 5-HT) transporter, an SSRI target protein, and tryptophan hydroxylase 1, a rate-limiting enzyme in 5-HT biosynthesis, were increased in MCF-12A cells by prolactin treatment. Treatment with 1 μM fluvoxamine for 72 h significantly decreased protein levels of β-casein and phosphorylated signal transducer and activator transcription 5 (pSTAT5). Extracellular 5-HT levels were significantly increased after exposure to 1 μM fluvoxamine, in comparison with those of untreated and vehicle-treated cells; however, extracellular 5-HT had little effect on the decrease in β-casein expression. Expression of glucose-related protein 78/binding immunoglobulin protein, a regulator of endoplasmic reticulum (ER) stress, was significantly increased after treatment with 1 μM fluvoxamine for 48 h. Exposure to tunicamycin, an inducer of ER stress, also decreased expression of β-casein and pSTAT5 in a manner similar to fluvoxamine. Our results indicate that fluvoxamine suppresses β-casein expression in MCF-12A cells via inhibition of STAT5 phosphorylation caused by induction of ER stress. Further studies are required to confirm the effect of fluvoxamine on the function of mammary epithelial cells. Copyright © 2015 Elsevier B.V. All rights reserved.
Central adiponectin administration reveals new regulatory mechanisms of bone metabolism in mice.
Wu, Yuwei; Tu, Qisheng; Valverde, Paloma; Zhang, Jin; Murray, Dana; Dong, Lily Q; Cheng, Jessica; Jiang, Hua; Rios, Maribel; Morgan, Elise; Tang, Zhihui; Chen, Jake
2014-06-15
Adiponectin (APN), the most abundant adipocyte-secreted adipokine, regulates energy homeostasis and exerts well-characterized insulin-sensitizing properties. The peripheral or central effects of APN regulating bone metabolism are beginning to be explored but are still not clearly understood. In the present study, we found that APN-knockout (APN-KO) mice fed a normal diet exhibited decreased trabecular structure and mineralization and increased bone marrow adiposity compared with wild-type (WT) mice. APN intracerebroventricular infusions decreased uncoupling protein 1 (UCP1) expression in brown adipose tissue, epinephrine and norepinephrine serum levels, and osteoclast numbers, whereas osteoblast osteogenic marker expression and trabecular bone mass increased in APN-KO and WT mice. In addition, centrally administered APN increased hypothalamic tryptophan hydroxylase 2 (TPH2), cocaine- and amphetamine-regulated transcript (CART), and 5-hydroxytryptamine (serotonin) receptor 2C (Htr2C) expressions but decreased hypothalamic cannabinoid receptor-1 expression. Treatment of immortalized mouse neurons with APN demonstrated that APN-mediated effects on TPH2, CART, and Htr2C expression levels were abolished by downregulating adaptor protein containing pleckstrin homology domain, phosphotyrosine domain, and leucine zipper motif (APPL)-1 expression. Pharmacological increase in sympathetic activity stimulated adipogenic differentiation of bone marrow stromal cells (BMSC) and reversed APN-induced expression of the lysine-specific demethylases involved in regulating their commitment to the osteoblastic lineage. In conclusion, we found that APN regulates bone metabolism via central and peripheral mechanisms to decrease sympathetic tone, inhibit osteoclastic differentiation, and promote osteoblastic commitment of BMSC. Copyright © 2014 the American Physiological Society.
Espinosa-Raya, Judith; Neri-Gómez, Teresa; Orozco-Suárez, Sandra; Campos, María G; Guerra-Araiza, Christian
2012-01-01
Hormone replacement therapy (HRT) may be prescribed to prevent the symptoms of menopause. This therapy may include estrogenic and/or progestin components and may increase the incidence of endometrial and breast cancers. Tibolone (TIB), which is also made up of estrogen and progestin components, is often used to reduce the impact of HRT. However, the effect of TIB on the processes of learning, memory and anxiety has yet to be fully elucidated. The aim of this study was to evaluate the long-term effect on learning, memory processes and anxiety in ovariectomized rats caused by different doses of TIB (0 mg/kg, 0.01 mg/kg, 0.1 mg/kg 1.0 mg/kg and 10 mg/kg, administered daily via the oral route for 18 weeks). Two behavioral animal models, the autoshaping and T maze models were employed. The concentrations of acetyl choline transferase (ChAT) and tryptophan hydroxylase (TPH) in the hippocampus were directly measured by Western blot. No significant changes were observed in the autoshaping model and spontaneous activity test. In the T maze, increased latency was observed with TIB doses of 1 and 10 mg/kg compared to the vehicle. We observed that the ChAT content decreased with increasing doses of TIB, whereas TPH content increased with doses of 1 and 10 mg/kg of TIB. These data indicate that high doses of TIB improved emotional learning, which may be related to the modulation of the cholinergic and serotonergic systems by TIB. Copyright © 2011 Elsevier Inc. All rights reserved.
Sequence-based screening for self-sufficient P450 monooxygenase from a metagenome library.
Kim, B S; Kim, S Y; Park, J; Park, W; Hwang, K Y; Yoon, Y J; Oh, W K; Kim, B Y; Ahn, J S
2007-05-01
Cytochrome P450 monooxygenases (CYPs) are useful catalysts for oxidation reactions. Self-sufficient CYPs harbour a reductive domain covalently connected to a P450 domain and are known for their robust catalytic activity with great potential as biocatalysts. In an effort to expand genetic sources of self-sufficient CYPs, we devised a sequence-based screening system to identify them in a soil metagenome. We constructed a soil metagenome library and performed sequence-based screening for self-sufficient CYP genes. A new CYP gene, syk181, was identified from the metagenome library. Phylogenetic analysis revealed that SYK181 formed a distinct phylogenic line with 46% amino-acid-sequence identity to CYP102A1 which has been extensively studied as a fatty acid hydroxylase. The heterologously expressed SYK181 showed significant hydroxylase activity towards naphthalene and phenanthrene as well as towards fatty acids. Sequence-based screening of metagenome libraries is expected to be a useful approach for searching self-sufficient CYP genes. The translated product of syk181 shows self-sufficient hydroxylase activity towards fatty acids and aromatic compounds. SYK181 is the first self-sufficient CYP obtained directly from a metagenome library. The genetic and biochemical information on SYK181 are expected to be helpful for engineering self-sufficient CYPs with broader catalytic activities towards various substrates, which would be useful for bioconversion of natural products and biodegradation of organic chemicals.
Ishikawa, Yoshihiro; Wirz, Jackie; Vranka, Janice A; Nagata, Kazuhiro; Bächinger, Hans Peter
2009-06-26
The rough endoplasmic reticulum-resident protein complex consisting of prolyl 3-hydroxylase 1 (P3H1), cartilage-associated protein (CRTAP), and cyclophilin B (CypB) can be isolated from chick embryos on a gelatin-Sepharose column, indicating some involvement in the biosynthesis of procollagens. Prolyl 3-hydroxylase 1 modifies a single proline residue in the alpha chains of type I, II, and III collagens to (3S)-hydroxyproline. The peptidyl-prolyl cis-trans isomerase activity of cyclophilin B was shown previously to catalyze the rate of triple helix formation. Here we show that cyclophilin B in the complex shows peptidyl-prolyl cis-trans isomerase activity and that the P3H1.CRTAP.CypB complex has another important function: it acts as a chaperone molecule when tested with two classical chaperone assays. The P3H1.CRTAP.CypB complex inhibited the thermal aggregation of citrate synthase and was active in the denatured rhodanese refolding and aggregation assay. The chaperone activity of the complex was higher than that of protein-disulfide isomerase, a well characterized chaperone. The P3H1.CRTAP.CypB complex also delayed the in vitro fibril formation of type I collagen, indicating that this complex is also able to interact with triple helical collagen and acts as a collagen chaperone.
Ishikawa, Yoshihiro; Wirz, Jackie; Vranka, Janice A.; Nagata, Kazuhiro; Bächinger, Hans Peter
2009-01-01
The rough endoplasmic reticulum-resident protein complex consisting of prolyl 3-hydroxylase 1 (P3H1), cartilage-associated protein (CRTAP), and cyclophilin B (CypB) can be isolated from chick embryos on a gelatin-Sepharose column, indicating some involvement in the biosynthesis of procollagens. Prolyl 3-hydroxylase 1 modifies a single proline residue in the α chains of type I, II, and III collagens to (3S)-hydroxyproline. The peptidyl-prolyl cis-trans isomerase activity of cyclophilin B was shown previously to catalyze the rate of triple helix formation. Here we show that cyclophilin B in the complex shows peptidyl-prolyl cis-trans isomerase activity and that the P3H1·CRTAP·CypB complex has another important function: it acts as a chaperone molecule when tested with two classical chaperone assays. The P3H1·CRTAP·CypB complex inhibited the thermal aggregation of citrate synthase and was active in the denatured rhodanese refolding and aggregation assay. The chaperone activity of the complex was higher than that of protein-disulfide isomerase, a well characterized chaperone. The P3H1·CRTAP·CypB complex also delayed the in vitro fibril formation of type I collagen, indicating that this complex is also able to interact with triple helical collagen and acts as a collagen chaperone. PMID:19419969
Haugen, Martin; Dammen, Rikard; Svejda, Bernhard; Gustafsson, Bjorn I; Pfragner, Roswitha; Modlin, Irvin; Kidd, Mark
2012-11-15
The chemomechanosensory function of the gut enterochromaffin (EC) cell enables it to respond to dietary agents and mechanical stretch. We hypothesized that the EC cell, which also sensed alterations in luminal or mucosal oxygen level, was physiologically sensitive to fluctuations in O(2). Given that low oxygen levels induce 5-HT production and secretion through a hypoxia inducible factor 1α (HIF-1α)-dependent pathway, we also hypothesized that increasing O(2) would reduce 5-HT production and secretion. Isolated normal EC cells as well as the well-characterized EC cell model KRJ-I were used to examine HIF signaling (luciferase-assays), hypoxia transcriptional response element (HRE)-mediated transcription (PCR), signaling pathways (Western blot), and 5-HT release (ELISA) during exposure to different oxygen levels. Normal EC cells and KRJ-I cells express HIF-1α, and transient transfection with Renilla luciferase under HRE control identified a hypoxia-mediated pathway in these cells. PCR confirmed activation of HIF-downstream targets, GLUT1, IGF2, and VEGF under reduced O(2) levels (0.5%). Reducing O(2) also elevated 5-HT secretion (2-3.2-fold) as well as protein levels of HIF-1α (1.7-3-fold). Increasing O(2) to 100% inhibited HRE-mediated signaling, transcription, reduced 5-HT secretion, and significantly lowered HIF-1α levels (∼75% of control). NF-κB signaling was also elevated during hypoxia (1.2-1.6-fold), but no significant changes were noted in PKA/cAMP. We concluded that gut EC cells are oxygen responsive, and alterations in O(2) levels differentially activate HIF-1α and tryptophan hydroxylase 1, as well as NF-κB signaling. This results in alterations in 5-HT production and secretion and identifies that the chemomechanosensory role of EC cells extends to oxygen sensing.
Cubero, Javier; Chanclón, Belen; Sánchez, Soledad; Rivero, Montserrat; Rodríguez, Ana Beatriz; Barriga, Carmen
2009-12-01
The present study evaluated whether the administration of cereals enriched with nutrients that are facilitators of sleep could help improve the sleep of infants who had sleep disorders at night time. Thirty infants aged 8-16 months with sleep disorders involving at least three nocturnal waking episodes took part in the study. They were given a night-time 'sleep facilitating cereal' product containing 225 mg tryptophan, 5.3 mg adenosine-5'-P, and 6.3 mg uridine-5'-P per 100 g of product. These cereals were given in a double-blind procedure lasting 5 weeks, with ingestion of the cereal between 18:00 and 06:00. In the control week, the children received a standard cereal (75 mg tryptophan/100 g product without nucleotides) dissolved in a standard formula milk (231.5 mg tryptophan, 2.6 mg adenosine-5'-P, 5 mg uridine-5'-P, per 100 g product). In one experimental week, the children received the night-time sleep facilitating cereal together with the standard formula milk. In another week, they received the sleep facilitating cereal together with a night milk specially formulated to attain the sleep rhythm (480 mg tryptophan, 8.8 mg uridine-5'-P, and 7.6 mg adenosine-5'-P per 100 g product). The three experimental weeks were separated by two wash-out weeks in which the milk and cereal administered was identical in composition to that of the control week. All the infants received a programmed writer actimeter which they wore continually, attached to their ankles, to record their motor activity. The recorded activity was used to calculate information about the time in bed, assumed sleep, actual sleep, sleep efficiency, sleep latency, immobility, and total activity. The infants receiving the enriched cereal during the time of darkness showed improvements in their sleep parameters, regardless of whether the milk they took at night was standard or enriched with tryptophan, adenosine-5'-P, and uridine-5'-P. In summary, the administration of enriched cereals led to an improvement in sleep, regardless of the type of infant milk used. These results support the concept of chrononutrition since they confirm that the sleep/wake rhythm can be influenced by diet.
Yang, Seung-Hwan; Choi, Dongsu
2006-11-24
Ethylene and submergence enhance stem elongation of deepwater rice, at least in part, by reducing in the internode the endogenous abscisic acid (ABA) content and increasing the level of gibberellin A1 (GA1). We cloned and characterized the CYP707A5 and CYP707A6 genes, which encode putative ABA 8'-hydroxylase, the enzyme that catalyzes the oxidation of ABA. Expression of CYP707A5 was upregulated significantly by ethylene treatment, whereas that of CYP707A6 was not altered. Recombinant proteins from both genes expressed in yeast cells showed activity of ABA 8'-hydroxylase. This finding indicates that CYP707A5 may play a role in ABA catabolism during submergence- or ethylene-induced stem elongation in deepwater rice. Taken together, these results provide links between the molecular mechanisms and physiological phenomena of submergence- and ethylene-induced stem elongation in deepwater rice.
Wright, W W; Owen, C S; Vanderkooi, J M
1992-07-21
The influence of the protein matrix on the reactivity of external molecules with a species buried within the protein interior is considered in two general ways: (1) there may be structural fluctuations that allow for the diffusive penetration of the small molecules and/or (2) the external molecule may react over a distance. As a means to study the protein matrix, a reactive species within the protein can be formed by exciting tryptophan to the triplet state, and then the reaction of the triplet-state molecule with an external molecule can be monitored by a decrease in phosphorescence. In this work, the quenching ability (i.e., reactivity) was examined for H2S, CS2, and NO2- acting on tryptophan phosphorescence in parvalbumin, azurin, horse liver alcohol dehydrogenase, and alkaline phosphatase. A comparison of charged versus uncharged quenchers (H2S vs SH- and CS2 vs NO2-) reveals that the uncharged molecules are much more effective than charged species in quenching the phosphorescence of fully buried tryptophan, whereas the quenching for exposed tryptophan is relatively independent of the charge of the quencher. This is consistent with the view that uncharged triatomic molecules can penetrate the protein matrix to some extent. The energies of activation of the quenching reaction are low for the charged quenchers and higher for the uncharged CS2. A model is presented in which the quenchability of a buried tryptophan is inversely related to the distance from the surface when diffusion through the protein is the rate-limiting step.(ABSTRACT TRUNCATED AT 250 WORDS)
IDO inhibits a tryptophan sufficiency signal that stimulates mTOR
Metz, Richard; Rust, Sonja; DuHadaway, James B.; Mautino, Mario R.; Munn, David H.; Vahanian, Nicholas N.; Link, Charles J.; Prendergast, George C.
2012-01-01
Tryptophan catabolism by indoleamine 2,3-dioxygenase (IDO) alters inflammation and favors T-cell tolerance in cancer, but the underlying molecular mechanisms remain poorly understood. The integrated stress response kinase GCN2, a sensor of uncharged tRNA that is activated by amino acid deprivation, is recognized as an important effector of the IDO pathway. However, in a mouse model of inflammatory carcinogenesis, ablation of Gcn2 did not promote resistance against tumor development like the absence of IDO does, implying the existence of additional cancer-relevant pathways that operate downstream of IDO. Addressing this gap in knowledge, we report that the IDO-mediated catabolism of tryptophan also inhibits the immunoregulatory kinases mTOR and PKC-Θ, along with the induction of autophagy. These effects were relieved specifically by tryptophan but also by the experimental agent 1-methyl-D-tryptophan (D-1MT, also known as NLG8189), the latter of which reversed the inhibitory signals generated by IDO with higher potency. Taken together, our results implicate mTOR and PKC-Θ in IDO-mediated immunosuppressive signaling, and they provide timely insights into the unique mechanism of action of D-1MT as compared with traditional biochemical inhibitors of IDO. These findings are important translationally, because they suggest broader clinical uses for D-1MT against cancers that overexpress any tryptophan catabolic enzyme (IDO, IDO2 or TDO). Moreover, they define mTOR and PKC-Θ as candidate pharmacodynamic markers for D-1MT responses in patients recruited to ongoing phase IB/II cancer trials, addressing a current clinical need. PMID:23264892
TRYPTOPHAN SYNTHETASE LEVELS IN ESCHERICHIA COLI, SHIGELLA DYSENTERIAE, AND TRANSDUCTION HYBRIDS
Eisenstein, Richard B.; Yanofsky, Charles
1962-01-01
Eisenstein, Richard B. (Western Reserve University, Cleveland, Ohio) and Charles Yanofsky. Tryptophan synthetase levels in Escherichia coli, Shigella dysenteriae, and transduction hybrids. J. Bacteriol. 83:193–204. 1962—Shigella dysenteriae and Escherichia coli, strains K-12 and B, were found to produce low levels of tryptophan synthetase, although some hybrids, formed by the introduction of the gene cluster concerned with tryptophan synthesis from S. dysenteriae into E. coli, produced high levels of this enzyme system. A revertant obtained from a tryptophan-requiring mutant also formed high levels of tryptophan synthetase. The gene or genes responsible for high enzyme production in these strains was shown to be linked to the cluster of genes concerned with tryptophan synthesis. The cause of high enzyme production was investigated. Various lines of evidence, including stimulation of growth by tryptophan precursors, sensitivity to inhibition by 5-methyltryptophan, absence of accumulation of tryptophan, and repression of enzyme formation by anthranilic acid and tryptophan, suggested that high enzyme production in the strains examined results from a partial block in the tryptophan pathway and not from resistance to repression by tryptophan. The conversion of shikimic acid-5-phosphate to anthranilic acid appears to be the partially blocked reaction in the strains studied. PMID:13889700
Jaiswal, A K; Nebert, D W; Eisen, H W
1985-08-01
The human MCF-7 and the mouse Hepa-1 cell culture lines were compared for aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase inducibility by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and benzo[a]anthracene (BA) and TCDD- and BA-specific binding in the cytosol and nucleus. The effective concentration of BA in the growth medium required to induce either enzyme to 50% of its maximally inducible activity (EC50) was the same (5-11 microM) in both MCF-7 and Hepa-1 cells. On the other hand, the EC50 for TCDD in MCF-7 cells (5-25 nM) was more than 40-fold greater than that in Hepa-1 cells (0.4 to 0.6 nM). P1-450- and P3-450-specific mouse cDNA probes were used to quantitate mRNA induction in the Hepa-1 cell line. P1-450 mRNA was induced markedly by TCDD and benzo[a] anthracene, whereas P3-450 mRNA was induced negligibly. A P1-450-specific human cDNA probe was used to quantitate P1-450 mRNA induction in the MCF-7 cell line. Aryl hydrocarbon hydroxylase inducibility by TCDD or BA always paralleled P1-450 mRNA inducibility in either the mouse or human line. Although the cytosolic Ah receptor in Hepa-1 cells was easily detected by sucrose density gradient centrifugation, gel permeation chromatography, and anion-exchange high-performance liquid chromatography, the cytosolic receptor cannot be detected in MCF-7 cells. Following in vivo exposure of cultures to radiolabeled TCDD, the intranuclear concentration of inducer-receptor complex was at least fifty times greater in Hepa-1 than MCF-7 cultures. The complete lack of measurable cytosolic receptor and almost totally absent inducer-receptor complex in the nucleus of MCF-7 cells was, therefore, out of proportion to its capacity for aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase inducibility. This MCF-7 line should provide an interesting model for a better understanding of the mechanisms of drug-metabolizing enzyme induction by polycyclic aromatic compounds, including the Ah receptor-mediated mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carra,J.; McHugh, C.; Mulligan, S.
2007-01-01
We found that amide ligands can bind weakly but specifically to the ricin active site, producing significant shifts in positions of the critical active site residues Arg180 and Tyr80. These results indicate that fragment-based drug discovery methods are capable of identifying minimal bonding determinants of active-site side-chain rearrangements and the mechanistic origins of spectroscopic shifts. Our results suggest that tryptophan fluorescence provides a sensitive probe for the geometric relationship of arginine-tryptophan pairs, which often have significant roles in protein function. Using the unusual characteristics of the RTA system, we measured the still controversial thermodynamic changes of site-specific urea binding tomore » a protein, results that are relevant to understanding the physical mechanisms of protein denaturation.« less
Hypothalamic digoxin, hemispheric chemical dominance, and eating behavior.
Kurup, Ravi Kumar; Kurup, Parameswara Achutha
2003-08-01
The isoprenoid pathway produces an endogenous membrane Na+-K+ ATPase inhibitor, digoxin, which can regulate neurotransmitter and amino acid transport. Digoxin synthesis and neurotransmitter patterns were assessed in eating disorders. The patterns were compared in those with right hemispheric and left hemispheric dominance. The serum HMG CoA reductase activity, RBC membrane Na+-K+ ATPase activity, serum digoxin, magnesium, tryptophan catabolites (serotonin, quinolinic acid, strychnine, and nicotine), and tyrosine catabolites (morphine, dopamine, and noradrenaline) were measured in anorexia nervosa, bulimia nervosa, right hemispheric dominant, left hemispheric dominant, and bihemispheric dominant individuals. Digoxin synthesis was increased with upregulated tryptophan catabolism and downregulated tyrosine catabolism in those with anorexia nervosa and right hemispheric chemical dominance. Digoxin synthesis was reduced with downregulated tryptophan catabolism and upregulated tyrosine catabolism in those with bulimia nervosa and left hemispheric chemical dominance. The membrane Na+-K+ ATPase activity and serum magnesium were decreased in anorexia nervosa and right hemispheric chemical dominance while they were increased in bulimia nervosa and left hemispheric chemical dominance. Hypothalamic digoxin and hemispheric chemical dominance play a central role in the regulation of eating behavior. Anorexia nervosa represents the right hemispheric chemically dominant/hyperdigoxinemic state and bulimia nervosa the left hemispheric chemically dominant/hypodigoxinemic state.
Zinkevičienė, Auksė; Kainov, Denis; Girkontaitė, Irutė; Lastauskienė, Eglė; Kvedarienė, Violeta; Fu, Yu; Anders, Simon; Velagapudi, Vidya
2016-01-01
Allergic contact dermatitis (ACD) is an inflammatory skin disease caused by repeated skin exposure to contact allergens. The severity and duration of this disease are associated with many different factors. Some of these factors may represent markers for monitoring disease activity and the individual response to an intervention. We used a targeted metabolomics approach to find such factors in the serum of individuals with ACD. Metabolomics profiles were examined and compared in the acute phase of the disease and also in the absence of disease activity. Our study identified a significant remission phase of ACD-associated systemic biochemical shifts in 2 metabolic pathways: tryptophan-kynurenine and phenylalanine-tyrosine. Although the responsible mechanisms are unclear, these results suggest that the remission phase of ACD is linked to tryptophan metabolism via kynurenine and phenylalanine-tyrosine pathways. However, further replication studies with a larger number of subjects and their subgroups are necessary to validate our results. These studies may provide a new perspective with which to understand the mechanism of and find potential biomarkers of ACD, as well as a new reference for personalized treatment. © 2016 S. Karger AG, Basel.
Dhayat, Nasser A; Dick, Bernhard; Frey, Brigitte M; d'Uscio, Claudia H; Vogt, Bruno; Flück, Christa E
2017-01-01
The steroid profile changes dramatically from prenatal to postnatal life. Recently, a novel backdoor pathway for androgen biosynthesis has been discovered. However, its role remains elusive. Therefore, we investigated androgen production from birth to one year of life with a focus on minipuberty and on production of androgens through the backdoor pathway. Additionally, we assessed the development of the specific steroid enzyme activities in early life. To do so, we collected urine specimens from diapers in 43 healthy newborns (22 females) at 13 time points from birth to one year of age in an ambulatory setting, and performed in house GC-MS steroid profiling for 67 steroid metabolites. Data were analyzed for androgen production through the classic and backdoor pathway and calculations of diagnostic ratios for steroid enzyme activities were performed. Analysis revealed that during minipuberty androgen production is much higher in boys than in girls (e.g. androsterone (An)), originates largely from the testis (An boys -An girls ), and uses predominantly the alternative backdoor pathway (An/Et; Δ5<Δ4 lyase activity). Modelling of steroid enzyme activities showed age-related effects for 21-, 11-, 17-hydroxylase and P450 oxidoreductase activities as well as 3β-hydroxysteroid dehydrogenase, 11β-hydroxylase type 1/2 and 5α-reductase activities. Sex-related characteristics were found for 21-hydroxylase and 5α-reductase activities. Overall, our study shows that androgen biosynthesis during minipuberty favors the backdoor pathway over the classic pathway. Calculations of specific diagnostic ratios for enzyme activities seem to allow the diagnosis of specific steroid disorders from the urinary steroid metabolome. Copyright © 2016 Elsevier Ltd. All rights reserved.
Xie, Zhouling; Feng, Sen; Wang, Ying; Cao, Chen; Huang, Jing; Chen, Yahui; Kong, Yi; Li, Zhiyu
2015-09-18
pENW, a three mer peptide derived from Agkistrodon acutus Guenther venom, has been found to be an antagonist of the GPIIb/IIIa receptor and shows antiplatelet aggregation activity. Based on pENW and a GPIIb/IIIa inhibitor Tirofiban, a series of tryptophan derivatives were designed, synthesized and evaluated for their antiplatelet aggregation activity induced by ADP. The most potent compound 87 was also tested for the bleeding time and antithrombotic activity in vivo in comparison with Tirofiban. The results indicated that 87 shows similar antiplatelet aggregation activity as Tirofiban to the aggregation of platelet induced by all of the four agonists, but has lower bleeding risk than Tirofiban, representing a promising lead compound for further study. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Purification and properties of the hydroxylase component of methane monooxygenase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, R.N.; Savas, J.C.
Methane monooxygenase from Methylobacterium sp. strain CRL-26 which catalyzes the oxygenation of hydrocarbons was resolved into two components, a hydroxylase and a flavoprotein. An anaerobic procedure was developed for the purification of the hydroxylase to homogeneity. The molecular weight of the hydroxylase as determined by gel filtration was 220,000, and that determined by sedimentation equilibrium analysis was about 225,000. The purified hydroxylase contained three nonidentical subunits with molecular weights of about 55,000, 40,000, and 20,000, in equal amounts as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that it is an ..cap alpha../sub 2/..beta gamma.. protein. Optical absorption spectra revealedmore » peaks near 408 and 280 nm, and fluorescence spectra revealed emission peaks at 490 and 630 nm. The purified hydroxylase contained 2.8 +/- 0.2 mol of iron and 0.5 +/- 0.1 mol of zinc per mol of protein but negligible amounts of acid-labile sulfide. The antisera prepared against the hydroxylase showed cross-reactivity with hydroxylase components in soluble extracts from other methanotrophs.« less
Carotenoid Biosynthesis in the Primitive Red Alga Cyanidioschyzon merolae▿
Cunningham, Francis X.; Lee, Hansel; Gantt, Elisabeth
2007-01-01
Cyanidioschyzon merolae is considered to be one of the most primitive of eukaryotic photosynthetic organisms. To obtain insights into the origin and evolution of the pathway of carotenoid biosynthesis in eukaryotic plants, the carotenoid content of C. merolae was ascertained, genes encoding enzymes of carotenoid biosynthesis in this unicellular red alga were identified, and the activities of two candidate pathway enzymes of particular interest, lycopene cyclase and β-carotene hydroxylase, were examined. C. merolae contains perhaps the simplest assortment of chlorophylls and carotenoids found in any eukaryotic photosynthetic organism: chlorophyll a, β-carotene, and zeaxanthin. Carotenoids with ɛ-rings (e.g., lutein), found in many other red algae and in green algae and land plants, were not detected, and the lycopene cyclase of C. merolae quite specifically produced only β-ringed carotenoids when provided with lycopene as the substrate in Escherichia coli. Lycopene β-ring cyclases from several bacteria, cyanobacteria, and land plants also proved to be high-fidelity enzymes, whereas the structurally related ɛ-ring cyclases from several plant species were found to be less specific, yielding products with β-rings as well as ɛ-rings. C. merolae lacks orthologs of genes that encode the two types of β-carotene hydroxylase found in land plants, one a nonheme diiron oxygenase and the other a cytochrome P450. A C. merolae chloroplast gene specifies a polypeptide similar to members of a third class of β-carotene hydroxylases, common in cyanobacteria, but this gene did not produce an active enzyme when expressed in E. coli. The identity of the C. merolae β-carotene hydroxylase therefore remains uncertain. PMID:17085635
Csernetics, Árpád; Tóth, Eszter; Farkas, Anita; Nagy, Gábor; Bencsik, Ottó; Vágvölgyi, Csaba; Papp, Tamás
2015-02-01
Carotenoids are natural pigments that act as powerful antioxidants and have various beneficial effects on human and animal health. Mucor circinelloides (Mucoromycotina) is a carotenoid producing zygomycetes fungus, which accumulates β-carotene as the main carotenoid but also able to produce the hydroxylated derivatives of β-carotene (i.e. zeaxanthin and β-cryptoxanthin) in low amount. These xanthophylls, together with the ketolated derivatives of β-carotene (such as canthaxanthin, echinenone and astaxanthin) have better antioxidant activity than β-carotene. In this study our aim was to modify and enhance the xanthophyll production of the M. circinelloides by expression of heterologous genes responsible for the astaxanthin biosynthesis. The crtS and crtR genes, encoding the cytochrome-P450 hydroxylase and reductase, respectively, of wild-type and astaxanthin overproducing mutant Xanthophyllomyces dendrorhous strains were amplified from cDNA and the nucleotide and the deduced amino acid sequences were compared to each other. Introduction of the crtS on autonomously replicating plasmid in the wild-type M. circinelloides resulted enhanced zeaxanthin and β-cryptoxanthin accumulation and the presence of canthaxanthin, echinenone and astaxanthin in low amount; the β-carotene hydroxylase and ketolase activity of the X. dendrorhous cytochrome-P450 hydroxylase in M. circinelloides was verified. Increased canthaxanthin and echinenone production was observed by expression of the gene in a canthaxanthin producing mutant M. circinelloides. Co-expression of the crtR and crtS genes led to increase in the total carotenoid and slight change in xanthophyll accumulation in comparison with transformants harbouring the single crtS gene.
Alonso, Hernan; Roujeinikova, Anna
2012-11-01
The alkane hydroxylase system of Pseudomonas putida GPo1 allows it to use alkanes as the sole source of carbon and energy. Bacterial alkane hydroxylases have tremendous potential as biocatalysts for the stereo- and regioselective transformation of a wide range of chemically inert unreactive alkanes into valuable reactive chemical precursors. We have produced and characterized the first 2-dimensional crystals of the integral membrane component of the P. putida alkane hydroxylase system, the nonheme di-iron alkane monooxygenase AlkB. Our analysis reveals for the first time that AlkB reconstituted into a lipid bilayer forms trimers. Addition of detergents that do not disrupt the AlkB oligomeric state (decyl maltose neopentyl glycol [DMNG], lauryl maltose neopentyl glycol [LMNG], and octaethylene glycol monododecyl ether [C(12)E(8)]) preserved its activity at a level close to that of the detergent-free control sample. In contrast, the monomeric form of AlkB produced by purification in n-decyl-β-D-maltopyranoside (DM), n-dodecyl-β-D-maltopyranoside (DDM), octyl glucose neopentyl glycol (OGNG), and n-dodecyl-N,N-dimethylamine-N-oxide (LDAO) was largely inactive. This is the first indication that the physiologically active form of membrane-embedded AlkB may be a multimer. We present for the first time experimental evidence that 1-octyne acts as a mechanism-based inhibitor of AlkB. Therefore, despite the lack of any significant full-length sequence similarity with members of other monooxygenase classes that catalyze the terminal oxidation of alkanes, AlkB is likely to share a similar catalytic mechanism.
Curzon, G.; Knott, P.J.
1974-01-01
1 The effects on tryptophan distribution and metabolism of drugs altering plasma unesterified fatty acid (UFA) concentration were investigated in the rat. 2 UFA and plasma free (i.e. ultrafilterable) tryptophan altered in the same direction. 3 Catecholamines and L-DOPA increased both plasma UFA and free tryptophan. L-DOPA also increased brain tryptophan and 5-hydroxyindoleacetic acid (5-HIAA) but decreased brain 5-hydroxytryptamine (5-HT). 4 Aminophylline increased plasma UFA and free tryptophan and also brain tryptophan, 5-HT and 5-HIAA. Food deprivation had qualitatively similar effects. 5 Insulin decreased plasma UFA and free tryptophan in both fed and food-deprived rats. However, while in fed rats these changes were associated with small decreases of brain indoles, in food-deprived animals small increases occurred. 6 Nicotinic acid had only small effects in fed rats but it opposed both the UFA and indole changes in food-deprived animals. Total plasma tryptophan increased in nicotinic acid treated, food-deprived rats. 7 There was a tendency towards inverse relations between changes of plasma free and total tryptophan. 8 The results suggest that drugs which influence plasma UFA through actions on cyclic AMP thereby alter the binding of tryptophan to plasma protein and that this leads to altered distribution and metabolism of tryptophan. PMID:4371899
Baldi, Bruce G.; Maher, Barbara R.; Slovin, Janet Pernise; Cohen, Jerry D.
1991-01-01
We present evidence that the role of tryptophan and other potential intermediates in the pathways that could lead to indole derivatives needs to be reexamined. Two lines of Lemna gibba were tested for uptake of [15N-indole]-labeled tryptophan isomers and incorporation of that label into free indole-3-acetic acid (IAA). Both lines required levels of l-[15N]tryptophan 2 to 3 orders of magnitude over endogenous levels in order to obtain measurable incorporation of label into IAA. Labeled l-tryptophan was extractable from plant tissue after feeding and showed no measurable isomerization into d-tryptophan. d-[15N]tryptophan supplied to Lemna at rates of approximately 400 times excess of endogenous d-tryptophan levels (to yield an isotopic enrichment equal to that which allowed detection of the incorporation of l-tryptophan into IAA), did not result in measurable incorporation of label into free IAA. These results demonstrate that l-tryptophan is a more direct precursor to IAA than the d isomer and suggest (a) that the availability of tryptophan in vivo is not a limiting factor in the biosynthesis of IAA, thus implying that other regulatory mechanisms are in operation and (b) that l-tryptophan also may not be a primary precursor to IAA in plants. PMID:16668112
Shetty, A. S.; Gaertner, F. H.
1973-01-01
(i) Saccharomyces cerevisiae grown in the presence of 1.0 mM l-tryptophan slowly excreted fluorescent material that was chromatographically identifiable as 3-hydroxyanthranilate but did not excrete detectable amounts of anthranilate nor rapidly deplete the medium of l-tryptophan. Under similar growth conditions, Neurospora crassa rapidly excretes anthranilate and rapidly depletes the medium of l-tryptophan. (ii) Chromatographic analysis of crude extracts from yeast revealed a single kynureninase-type enzyme whose synthesis was not measurably affected by the presence of tryptophan in the medium. Previous studies have provided evidence for two kynureninase-type enzymes in N. crassa, an inducible kynureninase and a constitutive hydroxykynureninase. (iii) Kinetic analysis of the partially purified yeast enzyme provided Michaelis constants for l-3-hydroxykynurenine and l-kynurenine of 6.7 × 10−6 and 5.4 × 10−4 M, respectively. This and other kinetic properties of the yeast enzyme are comparable to those reported for the constitutive enzyme from N. crassa. (iv) These findings suggest that S. cerevisiae has in common with N. crassa the biosynthetic enzyme hydroxykynureninase but lacks the catabolic enzyme kynureninase. Therefore, it can be predicted that, unlike N. crassa, S. cerevisiae does not carry out the tryptophan-anthranilate cycle. Distinct kynureninase-type enzymes may exist in other microorganisms and in mammals. PMID:4266242
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, M.L.; Hsu, P.Y.; DeMoss, J.A.
1986-05-01
Tryptophan synthase (TS), which catalyzes the final step of tryptophan biosynthesis, is a multifunctional protein requiring pyridoxal phosphate (B6P) for two of its three distinct enzyme activities. TS from Neurospora has a blocked N-terminal, is a homodimer of 150 KDa and binds one mole of B6P per mole of subunit. The authors shown the N-terminal residue to be acyl-serine. The B6P-active site of holoenzyme was labelled by reduction of the B6P-Schiff base with (/sup 3/H)-NaBH/sub 4/, and resulted in a proportionate loss of activity in the two B6P-requiring reactions. SDS-polyacrylamide gel electrophoresis of CNBr-generated peptides showed the labelled, active sitemore » peptide to be 6 KDa. The sequence of this peptide, purified to apparent homogeneity by a combination of C-18 reversed phase and TSK gel filtration HPLC is: gly-arg-pro-gly-gln-leu-his-lys-ala-glu-arg-leu-thr-glu-tyr-ala-gly-gly-ala-gln-ile-xxx-leu-lys-arg-glu-asp-leu-asn-his-xxx-gly-xxx-his-/sub ***/-ile-asn-asn-ala-leu. Although four residues (xxx, /sub ***/) are unidentified, this peptide is minimally 78% homologous with the corresponding peptide from yeast TS, in which residue (/sub ***/) is the lysine that binds B6P.« less
Consumption of peptide-included and free tryptophan induced by peroxyl radicals: A kinetic study.
Fuentes, E; López-Alarcón, C
2014-10-01
It is well-known that tryptophan residues are efficiently oxidized by peroxyl radicals, generating kynurenine, and N-formyl kynurenine as well as hydroperoxide derivatives as products. In the present work we studied the kinetic of such reaction employing free and peptide-included tryptophan. Two azocompounds were used to produce peroxyl radicals: AAPH (2,2'-Azobis(2-methylpropionamidine) dihydrochloride) and ABCVA (4,4'-Azobis(4-cyanovaleric acid)), which generate cationic and anionic peroxyl radicals, respectively. Tryptophan consumption was assessed by fluorescence spectroscopy and the reactions were carried out in phosphate buffer (75mM, pH 7.4) at 45°C. Only a slight effect of the peroxyl radical charge was evidenced on the consumption of free tryptophan and the dipeptide Gly-Trp. Employing AAPH as peroxyl radical source, at low free tryptophan concentrations (1-10µM) near 0.3 mol of tryptophan were consumed per each mol of peroxyl radicals introduced into the system. However, at high free tryptophan concentrations (100µM-1mM) such stoichiometry increased in a tryptophan concentration-way. At 1mM three moles of tryptophan were consumed per mol of AAPH-derived peroxyl radicals, evidencing the presence of chain reactions. A similar behavior was observed when di and tri-peptides (Gly-Trp, Trp-Gly, Gly-Trp-Gly, Trp-Ala, Ala-Trp-Ala) were studied. Nonetheless, at low initial concentration (5µM), the initial consumption rate of tryptophan included in the peptides was two times higher than free tryptophan. In contrast, at high concentration (1mM) free and peptide-included tryptophan showed similar initial consumption rates. These results could be explained considering a disproportionation process of tryptophanyl radicals at low free tryptophan concentrations, a process that would be inhibited when tryptophan is included in peptides. Copyright © 2014. Published by Elsevier Inc.
Liu, G; Gelboin, H V; Myers, M J
1991-02-01
The role of P450 IA2 in the hydroxylation of acetanilide was examined using an inhibitory monoclonal antibody (MAb) 1-7-1 and vaccinia cDNA expression producing murine P450 IA1 (mIA1), murine P450 IA2 (mIA2), or human P450 IA2 (hIA2). Acetanilide hydroxylase (AcOH) activity was measured using an HPLC method with more than 500-fold greater sensitivity than previously described procedures. This method, which does not require the use of radioactive acetanilide, was achieved by optimizing both the gradient system and the amount of enzyme needed to achieve detection by uv light. MAb 1-7-1 inhibits up to 80% of the AcOH activity in both rat liver microsomes and cDNA expressed mouse and human P450 IA2. MAb 1-7-1, which recognizes both P450 IA1 and P450 IA2, completely inhibits the aryl hydrocarbon hydroxylase (AHH) activity of cDNA expressed in IA1. The inhibition of only 80% of the AHH activity present in MC liver microsomes by MAb 1-7-1 suggests that additional P450 forms are contributing to the overall AHH activity present in methylcholanthrene (MC)-liver microsomes as MAb 1-7-1 almost completely inhibits the AHH activity of expressed mIA1. Maximal inhibition of IA2 by 1-7-1 results in an 80% decrease in acetanilide hydroxylase activity in both liver microsomes and expressed mouse and human IA2. The capacity of MAb 1-7-1 to produce identical levels of inhibition of acetanilide hydroxylase activity in rat MC microsomes (80%) and in expressed mouse (81%) and human P450 IA2 (80%) strongly suggests that P450 IA2 is the major and perhaps the only enzyme responsible for the metabolism of acetanilide. These results demonstrate the complementary utility of monoclonal antibodies and cDNA expression for defining the contribution of specific P450 enzymes to the metabolism of a given substrate. This complementary approach allows for a more precise determination of the inhibitory capacity of MAb with respect to the metabolic capacity of the target P450.
Tryptophan and kynurenine determination in human hair by liquid chromatography.
Dario, Michelli F; Freire, Thamires Batello; Pinto, Claudinéia Aparecida Sales de Oliveira; Prado, María Segunda Aurora; Baby, André R; Velasco, Maria Valéria R
2017-10-15
Tryptophan, an amino acid found in hair proteinaceous structure is used as a marker of hair photodegradation. Also, protein loss caused by several chemical/physical treatments can be inferred by tryptophan quantification. Kynurenine is a photo-oxidation product of tryptophan, expected to be detected when hair is exposed mainly to UVB (290-320nm) radiation range. Tryptophan from hair is usually quantified directly as a solid or after alkaline hydrolysis, spectrofluorimetrically. However, these types of measure are not sufficiently specific and present several interfering substances. Thus, this work aimed to propose a quantification method for both tryptophan and kynurenine in hair samples, after alkali hydrolysis process, by using high-performance liquid chromatography (HPLC) with fluorimetric and UV detection. The tryptophan and kynurenine quantification method was developed and validated. Black, white, bleached and dyed (blond and auburn) hair tresses were used in this study. Tryptophan and kynurenine were separated within ∼9min by HPLC. Both black and white virgin hair samples presented similar concentrations of tryptophan, while bleaching caused a reduction in the tryptophan content as well as dyeing process. Unexpectedly, UV/vis radiation did not promote significantly the conversion of tryptophan into its photo-oxidation product and consequently, kynurenine was not detected. Thus, this works presented an acceptable method for quantification of tryptophan and its photooxidation metabolite kynurenine in hair samples. Also, the results indicated that bleaching and dyeing processes promoted protein/amino acids loss but tryptophan is not extensively degraded in human hair by solar radiation. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Anterola, Aldwin M.; Jeon, Jae-Heung; Davin, Laurence B.; Lewis, Norman G.
2002-01-01
Transcriptional profiling of the phenylpropanoid pathway in Pinus taeda cell suspension cultures was carried out using quantitative real time PCR analyses of all known genes involved in the biosynthesis of the two monolignols, p-coumaryl and coniferyl alcohols (lignin/lignan precursors). When the cells were transferred to a medium containing 8% sucrose and 20 mm potassium iodide, the monolignol/phenylpropanoid pathway was induced, and transcript levels for phenylalanine ammonia lyase, cinnamate 4-hydroxylase, p-coumarate 3-hydroxylase, 4-coumarate:CoA ligase, caffeoyl-CoA O-methyltransferase, cinnamoyl-CoA reductase, and cinnamyl alcohol dehydrogenase were coordinately up-regulated. Provision of increasing levels of exogenously supplied Phe to saturating levels (40 mm) to the induction medium resulted in further up-regulation of their transcript levels in the P. taeda cell cultures; this in turn was accompanied by considerable increases in both p-coumaryl and coniferyl alcohol formation and excretion. By contrast, transcript levels for both cinnamate 4-hydroxylase and p-coumarate 3-hydroxylase were only slightly up-regulated. These data, when considered together with metabolic profiling results and genetic manipulation of various plant species, reveal that carbon allocation to the pathway and its differential distribution into the two monolignols is controlled by Phe supply and differential modulation of cinnamate 4-hydroxylase and p-coumarate 3-hydroxylase activities, respectively. The coordinated up-regulation of phenylalanine ammonia lyase, 4-coumarate:CoA ligase, caffeoyl-CoA O-methyltransferase, cinnamoyl-CoA reductase and cinnamyl alcohol dehydrogenase in the presence of increasing concentrations of Phe also indicates that these steps are not truly rate-limiting, because they are modulated according to metabolic demand. Finally, the transcript profile of a putative acid/ester O-methyltransferase, proposed as an alternative catalyst for O-methylation leading to coniferyl alcohol, was not up-regulated under any of the conditions employed, suggesting that it is not, in fact, involved in monolignol biosynthesis.
Anterola, Aldwin M; Jeon, Jae-Heung; Davin, Laurence B; Lewis, Norman G
2002-05-24
Transcriptional profiling of the phenylpropanoid pathway in Pinus taeda cell suspension cultures was carried out using quantitative real time PCR analyses of all known genes involved in the biosynthesis of the two monolignols, p-coumaryl and coniferyl alcohols (lignin/lignan precursors). When the cells were transferred to a medium containing 8% sucrose and 20 mm potassium iodide, the monolignol/phenylpropanoid pathway was induced, and transcript levels for phenylalanine ammonia lyase, cinnamate 4-hydroxylase, p-coumarate 3-hydroxylase, 4-coumarate:CoA ligase, caffeoyl-CoA O-methyltransferase, cinnamoyl-CoA reductase, and cinnamyl alcohol dehydrogenase were coordinately up-regulated. Provision of increasing levels of exogenously supplied Phe to saturating levels (40 mm) to the induction medium resulted in further up-regulation of their transcript levels in the P. taeda cell cultures; this in turn was accompanied by considerable increases in both p-coumaryl and coniferyl alcohol formation and excretion. By contrast, transcript levels for both cinnamate 4-hydroxylase and p-coumarate 3-hydroxylase were only slightly up-regulated. These data, when considered together with metabolic profiling results and genetic manipulation of various plant species, reveal that carbon allocation to the pathway and its differential distribution into the two monolignols is controlled by Phe supply and differential modulation of cinnamate 4-hydroxylase and p-coumarate 3-hydroxylase activities, respectively. The coordinated up-regulation of phenylalanine ammonia lyase, 4-coumarate:CoA ligase, caffeoyl-CoA O-methyltransferase, cinnamoyl-CoA reductase and cinnamyl alcohol dehydrogenase in the presence of increasing concentrations of Phe also indicates that these steps are not truly rate-limiting, because they are modulated according to metabolic demand. Finally, the transcript profile of a putative acid/ester O-methyltransferase, proposed as an alternative catalyst for O-methylation leading to coniferyl alcohol, was not up-regulated under any of the conditions employed, suggesting that it is not, in fact, involved in monolignol biosynthesis.
Ishiguro, Kanako; Taniguchi, Masumi; Tanaka, Yoshikazu
2012-05-01
The enzymes flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) play an important role in flower color by determining the B-ring hydroxylation pattern of anthocyanins, the major floral pigments. F3'5'H is necessary for biosynthesis of the delphinidin-based anthocyanins that confer a violet or blue color to most plants. Antirrhinum majus does not produce delphinidin and lacks violet flower colour while A. kelloggii produces violet flowers containing delphinidin. To understand the cause of this inter-specific difference in the Antirrhinum genus, we isolated one F3'H and two F3'5'H homologues from the A. kelloggii petal cDNA library. Their amino acid sequences showed high identities to F3'Hs and F3'5'Hs of closely related species. Transgenic petunia expressing these genes had elevated amounts of cyanidin and delphinidin respectively, and flower color changes in the transgenics reflected the type of accumulated anthocyanidins. The results indicate that the homologs encode F3'H and F3'5'H, respectively, and that the ancestor of A. majus lost F3'5'H activity after its speciation from the ancestor of A. kelloggii.
Ward, Robert; Sreenivas, Shubha; Read, Judi; Saunders, Kate E A; Rogers, Robert D
2017-07-01
Serotonergic mechanisms mediate the expression of personality traits (such as impulsivity, aggression and anxiety) that are linked to vulnerability to psychological illnesses, and modulate the identification of emotional expressions in the face as well as learning about broader classes of appetitive and aversive signals. Faces with neutral expressions signal a variety of socially relevant information, such that inferences about the big five personality traits, including Neuroticism, Extraversion and Agreeableness, can be accurately made on the basis of emotionally neutral facial photographs. Given the close link between Neuroticism and psychological distress, we investigated the effects of diminished central serotonin activity (achieved by tryptophan depletion) upon the accuracy of 52 healthy (non-clinical) adults' discriminations of personality from facial characteristics. All participants were able to discriminate reliably four of the big five traits. However, the tryptophan-depleted participants were specifically less accurate in discriminating Neuroticism than the matched non-depleted participants. These data suggest that central serotonin activity modulates the identification of not only negative facial emotional expression but also a broader class of signals about personality characteristics linked to psychological distress.
Stochastic thermodynamics of a chemical nanomachine: The channeling enzyme tryptophan synthase.
Loutchko, Dimitri; Eisbach, Maximilian; Mikhailov, Alexander S
2017-01-14
The enzyme tryptophan synthase is characterized by a complex pattern of allosteric interactions that regulate the catalytic activity of its two subunits and opening or closing of their ligand gates. As a single macromolecule, it implements 13 different reaction steps, with an intermediate product directly channeled from one subunit to another. Based on experimental data, a stochastic model for the operation of tryptophan synthase has been earlier constructed [D. Loutchko, D. Gonze, and A. S. Mikhailov, J. Phys. Chem. B 120, 2179 (2016)]. Here, this model is used to consider stochastic thermodynamics of such a chemical nanomachine. The Gibbs energy landscape of the internal molecular states is determined, the production of entropy and its flow within the enzyme are analyzed, and the information exchange between the subunits resulting from allosteric cross-regulations and channeling is discussed.
Pham, T H; Mendez-David, I; Defaix, C; Guiard, B P; Tritschler, L; David, D J; Gardier, A M
2017-01-01
Unlike classic serotonergic antidepressant drugs, ketamine, an NMDA receptor antagonist, exhibits a rapid and persistent antidepressant (AD) activity, at sub-anaesthetic doses in treatment-resistant depressed patients and in preclinical studies in rodents. The mechanisms mediating this activity are unclear. Here, we assessed the role of the brain serotonergic system in the AD-like activity of an acute sub-anaesthetic ketamine dose. We compared ketamine and fluoxetine responses in several behavioral tests currently used to predict anxiolytic/antidepressant-like potential in rodents. We also measured their effects on extracellular serotonin levels [5-HT] ext in the medial prefrontal cortex (mPFCx) and brainstem dorsal raphe nucleus (DRN), a serotonergic nucleus involved in emotional behavior, and on 5-HT cell firing in the DRN in highly anxious BALB/cJ mice. Ketamine (10 mg/kg i.p.) had no anxiolytic-like effect, but displayed a long lasting AD-like activity, i.e., 24 h post-administration, compared to fluoxetine (18 mg/kg i.p.). Ketamine (144%) and fluoxetine (171%) increased mPFCx [5-HT] ext compared to vehicle. Ketamine-induced AD-like effect was abolished by a tryptophan hydroxylase inhibitor, para-chlorophenylalanine (PCPA) pointing out the role of the 5-HT system in its behavioral activity. Interestingly, increase in cortical [5-HT] ext following intra-mPFCx ketamine bilateral injection (0.25 μg/side) was correlated with its AD-like activity as measured on swimming duration in the FST in the same mice. Furthermore, pre-treatment with a selective AMPA receptor antagonist (intra-DRN NBQX) blunted the effects of intra-mPFCx ketamine on both the swimming duration in the FST and mPFCx [5-HT] ext suggesting that the AD-like activity of ketamine required activation of DRN AMPA receptors and recruited the prefrontal cortex/brainstem DRN neural circuit in BALB/c mice. These results confirm a key role of cortical 5-HT release in ketamine's AD-like activity following the blockade of glutamatergic NMDA receptors. Tight interactions between mPFCx glutamatergic and serotonergic systems may explain the differences in this activity between ketamine and fluoxetine in vivo. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'. Copyright © 2016. Published by Elsevier Ltd.
Iwasaki, M; Juvonen, R; Lindberg, R; Negishi, M
1991-02-25
The identities of the amino acid at position 209 are most critical in determining specific coumarin 7- and steroid 15 alpha-hydroxylase activity in P450coh and P450(15)alpha, respectively. This system, therefore, provides us with an excellent model to study the structural basis for P450 specificity as a monooxygenase. We expressed in Saccharomyces cerevisiae a series of the mutated P450s in which residue 209 was substituted with the various amino acids and characterized the spectral property and hydroxylase activity of these mutated P450s. The positioning of a hydrophobic residue including Phe, Leu, and Val at position 209 resulted in shifting the P450 to the high-spin state, while a charged amino acid such as Lys or Asp produced the low-spin form. Moreover, a P450 with Asn or Gly in this position exhibited spectra indicating a mixture of the high- and low-spin forms. This spin alteration, depending upon the hydrophobicity and size of residue at position 209, indicates that this position is likely to reside close to the sixth axial ligand on the distal surface of the heme in these P450s. This proximity of residue 209 to the ligand may explain the critical role of this residue in determining the hydroxylase specificity and activity of these P450s.
Hannemann, Frank; Virus, Cornelia; Bernhardt, Rita
2006-06-25
The 15beta-hydroxylase (CYP106A2) from Bacillus megaterium, one of the few bacterial steroid hydroxylases, which has been isolated and characterized so far, catalyses the 15beta-hydroxylation of a variety of steroids. The enzyme can be supported in its activity with adrenodoxin (Adx) and adrenodoxin reductase (AdR) from bovine adrenals, supplying this enzyme with the reducing equivalents necessary for steroid hydroxylation activity. This three-component electron transfer chain was implemented in Escherichia coli by coexpression of the corresponding coding sequences from two plasmids, containing different selection markers and compatible origins of replication. The cDNAs of AdR and Adx on the first plasmid were separated by a ribosome binding sequence, with the reductase preceding the ferredoxin. The second plasmid for CYP106A2 expression was constructed with all features necessary for a molecular evolution approach. The transformed bacteria show the inducible ability to efficiently convert 11-deoxycorticosterone (DOC) to 15beta-DOC at an average rate of 1 mM/d in culture volumes of 300 ml. The steroid conversion system was downscaled to the microtiter plate format and a robot set-up was developed for a fluorescence-based conversion assay as well as a CO difference spectroscopy assay, which enables the screening for enzyme variants with higher activity and stability.
Pribat, Anne; Noiriel, Alexandre; Morse, Alison M.; Davis, John M.; Fouquet, Romain; Loizeau, Karen; Ravanel, Stéphane; Frank, Wolfgang; Haas, Richard; Reski, Ralf; Bedair, Mohamed; Sumner, Lloyd W.; Hanson, Andrew D.
2010-01-01
Tetrahydropterin-dependent aromatic amino acid hydroxylases (AAHs) are known from animals and microbes but not plants. A survey of genomes and ESTs revealed AAH-like sequences in gymnosperms, mosses, and algae. Analysis of full-length AAH cDNAs from Pinus taeda, Physcomitrella patens, and Chlamydomonas reinhardtii indicated that the encoded proteins form a distinct clade within the AAH family. These proteins were shown to have Phe hydroxylase activity by functional complementation of an Escherichia coli Tyr auxotroph and by enzyme assays. The P. taeda and P. patens AAHs were specific for Phe, required iron, showed Michaelian kinetics, and were active as monomers. Uniquely, they preferred 10-formyltetrahydrofolate to any physiological tetrahydropterin as cofactor and, consistent with preferring a folate cofactor, retained activity in complementation tests with tetrahydropterin-depleted E. coli host strains. Targeting assays in Arabidopsis thaliana mesophyll protoplasts using green fluorescent protein fusions, and import assays with purified Pisum sativum chloroplasts, indicated chloroplastic localization. Targeting assays further indicated that pterin-4a-carbinolamine dehydratase, which regenerates the AAH cofactor, is also chloroplastic. Ablating the single AAH gene in P. patens caused accumulation of Phe and caffeic acid esters. These data show that nonflowering plants have functional plastidial AAHs, establish an unprecedented electron donor role for a folate, and uncover a novel link between folate and aromatic metabolism. PMID:20959559
Subbiah, Rajesh N; Kondo, Mari; Campbell, Terence J; Vandenberg, Jamie I
2005-01-01
Inherited mutations or drug-induced block of voltage-gated ion channels, including the human ether-à-go-go-related gene (HERG) K+ channel, are significant causes of malignant arrhythmias and sudden death. The fourth transmembrane domain (S4) of these channels contains multiple positive charges that move across the membrane electric field in response to changes in transmembrane voltage. In HERG K+ channels, the movement of the S4 domain across the transmembrane electric field is particularly slow. To examine the basis of the slow movement of the HERG S4 domain and specifically to probe the relationship between the S4 domain with the lipid bilayer and rest of the channel protein, we individually mutated each of the S4 amino acids in HERG (L524–L539) to tryptophan, and characterized the activation and deactivation properties of the mutant channels in Xenopus oocytes, using two-electrode voltage-clamp methods. Tryptophan has a large bulky hydrophobic sidechain and so should be tolerated at positions that interact with lipid, but not at positions involved in close protein–protein interactions. Significantly, we found that all S4 tryptophan mutants were functional. These data indicate that the S4 domain is loosely packed within the rest of the voltage sensor domain and is likely to be lipid exposed. Further, we identified residues K525, R528 and K538 as being the most important for slow activation of the channels. PMID:16166152
Liu, Xinyu; Walsh, Christopher T.
2009-01-01
The fungal neurotoxin α-cyclopiazonic acid (CPA), a nanomolar inhibitor of Ca2+-ATPase with a unique pentacyclic indole tetramic acid scaffold is assembled by a three enzyme pathway CpaS, CpaD and CpaO in Aspergillus sp. We recently characterized the first pathway-specific enzyme CpaS, a hybrid two module polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) that generates cyclo-acetoacetyl-L-tryptophan (cAATrp). Here we report the characterization of the second pathway-specific enzyme CpaD that regiospecifically dimethylallylates cAATrp to form β-cyclopiazonic acid. By exploring the tryptophan and tetramate moieties of cAATrp, we demonstrate that CpaD discriminates against free Trp but accepts tryptophan-containing thiohydantoins, diketopiperazines and linear peptides as substrates for C4-prenylation and also acts as regiospecific O-dimethylallyltransferase (DMAT) on a tyrosine-derived tetramic acid. Comparative evaluation of CpaDs from A. oryzae RIB40 and A. flavus NRRL3357 indicated the importance of the N-terminal region for its activity. Sequence alignment of CpaD with eleven homologous fungal Trp-DMATs revealed five regions of conservation suggesting the presense of critical motifs that could be diagonostic for discovering additional Trp-DMATs. Subsequent site-directed mutagenesis studies identified five polar/charged residues and five tyrosine residues within these motifs that are critical for CpaD activity. This motif characerization will enable a gene probe-based approach to discover additional biosynthetic Trp-DMATs. PMID:19877600
Isotopic exchange of hydrogen in aromatic amino acids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pshenichnikova, A.B.; Karnaukhova, E.N.; Mitsner, B.I.
The kinetics of the isotopic replacement of hydrogen in the aromatic amino acids L-tryptophan, L-tyrosine, and L-phenylalanine in solutions of deuterochloric and deuterosulfuric acids in deuterium oxide were investigated by PMR spectroscopy. The reactions were shown to be of first orders with respect both to the concentration of the substrate and to the activity of the deuterium ion. The isotopic effects of hydrogen and the values of the activation energy of H-D exchange in different positions of the aromatic ring in tryptophan and tyrosine were determined. The effect of properties of the medium on the rate of the isotopic exchangemore » of hydrogen is discussed. 17 refs., 2 figs., 2 tabs.« less
SUPPRESSION OF HIF-1α TRANSCRIPTIONAL ACTIVITY BY THE HIF PROLYL HYDROXYLASE EGLN1*
To, Kenneth K. W.; Huang, L. Eric
2005-01-01
The cellular response to hypoxia is, at least in part, mediated by the transcriptional regulation of hypoxia-responsive genes involved in balancing the intracellular ATP production and consumption. Recent evidence suggests that the transcription factor, HIF-1α, functions as a master regulator of oxygen homeostasis by controlling a broad range of cellular events in hypoxia. In normoxia, HIF-1α is targeted for destruction via prolyl hydroxylation, an oxygen-dependent modification that signals for recognition by the E3 ubiquitin ligase complex containing the von Hippel-Lindau tumor suppressor (VHL). Three HIF prolyl hydroxylases (EGLN1, EGLN2, and EGLN3) have been identified in mammals, among which, EGLN1 and EGLN3, are hypoxia-inducible at their mRNA levels in a HIF-1α-dependent manner. In this study, we demonstrate that apart from promoting HIF-1α proteolysis in normoxia, EGLN1 specifically represses HIF-1α transcriptional activity in hypoxia. Ectopic expression of EGLN1 inhibited HIF-1α transcriptional activity without altering its protein levels in a VHL-deficient cell line, indicating a discrete activity of EGLN1 in transcriptional repression. Conversely, silencing of EGLN1 expression augmented HIF-1α transcriptional activity and its target gene expression in hypoxia. Hence, we propose that the accumulated EGLN1 in hypoxia acts as a negative-feedback mechanism to modulate HIF-1α target gene expression. Our finding also provides new insight into the pharmacological manipulation of the HIF prolyl hydroxylase for ischemic diseases. PMID:16157596
Green, A R; Youdim, M B
1975-01-01
1 The effect of various doses of tranylcypromine on the degree of inhibition of rat brain monoamine oxidase (MAO) using 5-hydroxytryptamine (5-HT), dopamine and phenylethylamine as substrates has been examined 120 min after injection of the inhibitor. The concentration of brain 5-HT was also examined both after tranylcypromine alone and also when L-tryptophan (100 mg/kg) had been given 30 min after the tranylcypromine. 2 All doses of tranylcypromine greater than 2.5 mg/kg totally inhibited MAO oxidation of 5-HT, phenylethylamine and dopamine as measured in vitro and produced a similar rise of brain 5-HT in vivo. When tryptophan was also given, there was a further rise of brain 5-HT, which was comparable after all doses of tranylcypromine above 2.5 mg/kg and the characteristic syndrome of hyperactivity made is appearance. 3 Clorgyline (a "Type A" MAO inhibitor), in doses up to 10 mg/kg, did not totally inhibit MAO activity towards phenylethylamine although it did inhibit 5-HT oxidation by 100%. Deprenil (a "Type B" MAO inhibitor) at doses up to 10 mg/kg did not fully inhibit 5-HT oxidation although phenylethylamine oxidation was inhibited almost completely. Administration of either compound alone did not produce as great an accumulation of brain 5-HT as that seen after tranylcypromine (2.5 mg/kg) and subsequent administration of tryptophan did not cause hyperactivity or the rise of brain 5-HT seen after tranylcypromine (2.5 mg/kg) plus tryptophan. 4 Administration of clorgyline plus deprenil (2.5 mg/kg of each) almost totally inhibited oxidation of both 5-HT and phenylethylamine; subsequent tryptophan administration resulted in a rise of brain 5-HT nearly as great as that seen following tranylcypromine (2.5 mg/kg) plus tryptophan and the animals became hyperactive. 5 No evidence was found pointing to the formation of any other 5-substituted indole in the brain following tranylcypromine plus L-tryptophan administration as suggested by others. 6 It is concluded that while 5-HT may normally be metabolized in the brain by "Tye A" MAO in vivo, when this form is inhibited, 5-HT can still be metabolized by "Type B" enzyme. It is only when both forms are almost totally inhibited that the largest rise of brain 5-HT is seen and subsequent tryptophan administration produces the hyperactivity syndrome. PMID:1203627
Markus, C Rob; Firk, Christine; Gerhardt, Cindy; Kloek, Joris; Smolders, Gertjan F
2008-11-01
Reduced brain serotonin function is acknowledged as a vulnerability factor for affective disturbances. Since the production of serotonin is limited by the availability of its plasma dietary amino acid precursor tryptophan (TRP), the beneficial effects of tryptophan-rich alpha-lactalbumin whey protein (ALAC) have recently been studied. The effects of ALAC remain rather modest, and alternative protein sources of tryptophan may be more effective. We tested whether hydrolyzed protein (HPROT) has greater effects on the plasma TRP/large neutral amino acids (LNAA) ratio and mood than intact ALAC protein in healthy volunteers. In a double-blind, randomized cross-over study, plasma amino acids and mood were repeatedly measured in 18 healthy subjects before and after intake of ALAC and HPROT as well as after placebo protein, pure tryptophan, and a tryptophan-containing synthetic peptide. Except for the placebo protein, all interventions contained 0.8 g TRP. Significantly faster and greater increases in plasma TRP/LNAA were found after HPROT than after ALAC. In addition, the effects of HPROT on plasma TRP/LNAA were comparable with the effects of the tryptophan-containing synthetic peptide and even exceeded the effect of pure tryptophan. Sixty minutes after intake, mood was improved only following intake of HPROT and pure tryptophan, whereas longer-lasting mood effects were only found after intake of HPROT. The use of a tryptophan-rich hydrolyzed protein source may be more adequate to increase brain tryptophan and 5-HT function compared with intact alpha-lactalbumin protein or pure tryptophan.
Korner, Germaine; Noain, Daniela; Ying, Ming; Hole, Magnus; Flydal, Marte I; Scherer, Tanja; Allegri, Gabriella; Rassi, Anahita; Fingerhut, Ralph; Becu-Villalobos, Damasia; Pillai, Samyuktha; Wueest, Stephan; Konrad, Daniel; Lauber-Biason, Anna; Baumann, Christian R; Bindoff, Laurence A; Martinez, Aurora; Thöny, Beat
2015-10-01
Tyrosine hydroxylase catalyses the hydroxylation of L-tyrosine to l-DOPA, the rate-limiting step in the synthesis of catecholamines. Mutations in the TH gene encoding tyrosine hydroxylase are associated with the autosomal recessive disorder tyrosine hydroxylase deficiency, which manifests phenotypes varying from infantile parkinsonism and DOPA-responsive dystonia, also termed type A, to complex encephalopathy with perinatal onset, termed type B. We generated homozygous Th knock-in mice with the mutation Th-p.R203H, equivalent to the most recurrent human mutation associated with type B tyrosine hydroxylase deficiency (TH-p.R233H), often unresponsive to l-DOPA treatment. The Th knock-in mice showed normal survival and food intake, but hypotension, hypokinesia, reduced motor coordination, wide-based gate and catalepsy. This phenotype was associated with a gradual loss of central catecholamines and the serious manifestations of motor impairment presented diurnal fluctuation but did not improve with standard l-DOPA treatment. The mutant tyrosine hydroxylase enzyme was unstable and exhibited deficient stabilization by catecholamines, leading to decline of brain tyrosine hydroxylase-immunoreactivity in the Th knock-in mice. In fact the substantia nigra presented an almost normal level of mutant tyrosine hydroxylase protein but distinct absence of the enzyme was observed in the striatum, indicating a mutation-associated mislocalization of tyrosine hydroxylase in the nigrostriatal pathway. This hypomorphic mouse model thus provides understanding on pathomechanisms in type B tyrosine hydroxylase deficiency and a platform for the evaluation of novel therapeutics for movement disorders with loss of dopaminergic input to the striatum. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dawoodji, Amina; Chen, Ji-Li; Shepherd, Dawn; Dalin, Frida; Tarlton, Andrea; Alimohammadi, Mohammad; Penna-Martinez, Marissa; Meyer, Gesine; Mitchell, Anna L; Gan, Earn H; Bratland, Eirik; Bensing, Sophie; Husebye, Eystein; Pearce, Simon H.; Badenhoop, Klaus; Kämpe, Olle; Cerundolo, Vincenzo
2016-01-01
The mechanisms behind the destruction of the adrenal glands in autoimmune Addison’s disease remain unclear. Autoantibodies against steroid 21-hydroxylase, an intracellular key enzyme of the adrenal cortex, are found in over 90% of patients, but these autoantibodies are not thought to mediate the disease. Here we demonstrate highly frequent 21-hydroxylase specific T cells detectable in 20 patients with Addison’s disease. Using overlapping 18aa peptides spanning the full length of 21-hydroxylase, we identified immunodominant CD8+ and CD4+ T cell responses in a large proportion of Addison’s patients both ex-vivo and after in-vitro culture of peripheral blood lymphocytes up to 20 years after diagnosis. In a large proportion of patients, CD8+ 21-hydroxylase specific T cells and CD4+ 21-hydroxylase specific T cells were very abundant and detectable in ex-vivo assays. HLA class-I tetramer-guided isolation of 21-hydroxylase specific CD8+ T cells showed their ability to lyse 21-hydroxylase positive target cells, consistent with a potential mechanism for disease pathogenesis. These data indicate strong cytotoxic T lymphocyte responses to 21-hydroxylase often occur in-vivo, and that reactive cytotoxic T lymphocytes have substantial proliferative and cytolytic potential. These results have implications for earlier diagnosis of adrenal failure and ultimately a potential target for therapeutic intervention and induction of immunity against adrenal cortex cancer. PMID:25063864
PHD3-mediated prolyl hydroxylation of nonmuscle actin impairs polymerization and cell motility
Luo, Weibo; Lin, Benjamin; Wang, Yingfei; Zhong, Jun; O'Meally, Robert; Cole, Robert N.; Pandey, Akhilesh; Levchenko, Andre; Semenza, Gregg L.
2014-01-01
Actin filaments play an essential role in cell movement, and many posttranslational modifications regulate actin filament assembly. Here we report that prolyl hydroxylase 3 (PHD3) interacts with nonmuscle actin in human cells and catalyzes hydroxylation of actin at proline residues 307 and 322. Blocking PHD3 expression or catalytic activity by short hairpin RNA knockdown or pharmacological inhibition, respectively, decreased actin prolyl hydroxylation. PHD3 knockdown increased filamentous F-actin assembly, which was reversed by PHD3 overexpression. PHD3 knockdown increased cell velocity and migration distance. Inhibition of PHD3 prolyl hydroxylase activity by dimethyloxalylglycine also increased actin polymerization and cell migration. These data reveal a novel role for PHD3 as a negative regulator of cell motility through posttranslational modification of nonmuscle actins. PMID:25079693
Mahmoud, Soheil S; Williams, Matthew; Croteau, Rodney
2004-03-01
cDNA clones encoding limonene synthase and limonene-3-hydroxylase, both driven by the CaMV 35S promoter, were independently transformed into peppermint (Menthaxpiperita) to alter the production and disposition of (-)-limonene, the first committed intermediate of essential oil biosynthesis in this species. Although both genes were constitutively expressed in leaves of transformed plants, the corresponding enzyme activities were not significantly increased in the glandular trichome sites of essential oil biosynthesis; thus, there was no effect on oil yield or composition in the regenerated plants. Cosuppression of the hydroxylase gene, however, resulted in the accumulation of limonene (up to 80% of the essential oil compared to about 2% of the oil in wild type plants), without influence on oil yield. These results indicate that limonene does not impose negative feedback on the synthase, or apparently influence other enzymes of monoterpene biosynthesis in peppermint, and suggests that pathway engineering can be employed to significantly alter essential oil composition without adverse metabolic consequences.
MAP kinase-independent signaling in angiotensin II regulation of neuromodulation in SHR neurons.
Yang, H; Raizada, M K
1998-09-01
Angiotensin II (Ang II), via its interaction with the angiotensin type 1 (AT1) receptor subtype, causes enhanced stimulation of norepinephrine (NE) neuromodulation. This involves increased transcription of NE transporter, tyrosine hydroxylase, and dopamine ss-hydroxylase genes in Wistar-Kyoto rat (WKY) brain neurons. AT1 receptor-mediated regulation of certain signaling events (such as activation of the Ras-Raf-1-mitogen activated protein (MAP) kinase signaling pathway, nuclear translocation of transcription factors such as Fos and Jun, and the interactions of these factors with AP-1 binding sites) is involved in this NE neuromodulation (Lu et al. J Cell Biol. 1996;135:1609-1617). The aim of this study was to compare the signal transduction mechanism of Ang II regulation of NE neuromodulation in WKY and spontaneously hypertensive rat (SHR) brain neurons, in view of the fact that AT1 receptor expression and Ang II stimulation of NE neuromodulation are higher in SHR neurons compared with WKY neurons. Despite this hyperactivity, Ang II stimulation of Ras, Raf-1, and MAP kinase activities was comparable between the neurons from WKY and SHR. Similarly, central injections of Ang II caused a comparable stimulation of MAP kinase in the hypothalamic and brain stem areas of adult WKY and SHR. Inhibition of MAP kinase by either an MAP kinase kinase inhibitor (PD98059) or an MAP kinase antisense oligonucleotide completely attenuated the stimulatory effects of Ang II on [3H]-NE uptake, NE transporter mRNA, and tyrosine hydroxylase mRNA levels in WKY neurons. These treatments resulted in only 43% to 50% inhibition of [3H]-NE uptake and NE transporter and tyrosine hydroxylase mRNAs in SHR neurons. Thus, Ang II stimulation of NE neuromodulation was completely blocked by MAP kinase inhibition in WKY neurons and only partially blocked in the SHR neurons. These observations suggest the presence of an additional signal transduction pathway involved in NE neuromodulation in SHR neurons that is independent of the MAP kinase pathway.
The damaging effect of UV-C irradiation on lens alpha-crystallin.
Fujii, Noriko; Uchida, Hiroki; Saito, Takeshi
2004-11-02
To evaluate the effect of UV-C irradiation on the structural properties of alpha-crystallin and its chaperone activity. alpha- and betaL-crystallins were isolated from bovine lenses using gel chromatography. The purified alpha-crystallin was subjected to UV-C irradiation (254 nm; 1, 2, 5, 10, 20, 50 J/cm2). We measured the tryptophan fluorescence, circular dichroism (CD) spectroscopy in the far UV, and the chaperone activity of both irradiated and non-irradiated alpha-crystallin. The tryptophan fluorescence of alpha-crystallin decreased, whereas the N-formylkynurenine fluorescence increased markedly with increasing doses of UV-C irradiation. Both the oxidation of Met1 and the racemization of Asp151 of alphaA-crystallin increased at a dose of 1-2 J/cm2 and then gradually decreased. The CD spectrum showed that the secondary structure of alpha-crystallin altered with increasing radiation dose, and almost all of the beta-sheet structure was lost at doses above 50 J/cm2. The chaperone activity of alpha-crystallin irradiated with doses under 5 J/cm2 remained intact. However, it was reduced to only 40% after irradiation at 10 J/cm2. Our study suggests that photo-oxidation of tryptophan residues in alpha-crystallin may be one of the events that affects the three-dimensional packing array and chaperone activity of this lens protein.
Mesenchymal Stromal Cells Disrupt mTOR-Signaling and Aerobic Glycolysis During T-Cell Activation.
Böttcher, Martin; Hofmann, Andreas D; Bruns, Heiko; Haibach, Martina; Loschinski, Romy; Saul, Domenica; Mackensen, Andreas; Le Blanc, Katarina; Jitschin, Regina; Mougiakakos, Dimitrios
2016-02-01
Mesenchymal stromal cells (MSCs) possess numerous regenerative and immune modulating functions. Transplantation across histocompatibility barriers is feasible due to their hypo-immunogenicity. MSCs have emerged as promising tools for treating graft-versus-host disease following allogeneic stem cell transplantation. It is well established that their clinical efficacy is substantially attributed to fine-tuning of T-cell responses. At the same time, increasing evidence suggests that metabolic processes control T-cell function and fate. Here, we investigated the MSCs' impact on the metabolic framework of activated T-cells. In fact, MSCs led to mitigated mTOR signaling. This phenomenon was accompanied by a weaker glycolytic response (including glucose uptake, glycolytic rate, and upregulation of glycolytic machinery) toward T-cell activating stimuli. Notably, MSCs express indoleamine-2,3-dioxygenase (IDO), which mediates T-cell suppressive tryptophan catabolism. Our observations suggest that IDO-induced tryptophan depletion interferes with a tryptophan-sufficiency signal that promotes cellular mTOR activation. Despite an immediate suppression of T-cell responses, MSCs foster a metabolically quiescent T-cell phenotype characterized by reduced mTOR signaling and glycolysis, increased autophagy, and lower oxidative stress levels. In fact, those features have previously been shown to promote generation of long-lived memory cells and it remains to be elucidated how MSC-induced metabolic effects shape in vivo T-cell immunity. © 2015 AlphaMed Press.
Volatile anesthetics affect nutrient availability in yeast.
Palmer, Laura K; Wolfe, Darren; Keeley, Jessica L; Keil, Ralph L
2002-01-01
Volatile anesthetics affect all cells and tissues tested, but their mechanisms and sites of action remain unknown. To gain insight into the cellular activities of anesthetics, we have isolated genes that, when overexpressed, render Saccharomyces cerevisiae resistant to the volatile anesthetic isoflurane. One of these genes, WAK3/TAT1, encodes a permease that transports amino acids including leucine and tryptophan, for which our wild-type strain is auxotrophic. This suggests that availability of amino acids may play a key role in anesthetic response. Multiple lines of evidence support this proposal: (i) Deletion or overexpression of permeases that transport leucine and/or tryptophan alters anesthetic response; (ii) prototrophic strains are anesthetic resistant; (iii) altered concentrations of leucine and tryptophan in the medium affect anesthetic response; and (iv) uptake of leucine and tryptophan is inhibited during anesthetic exposure. Not all amino acids are critical for this response since we find that overexpression of the lysine permease does not affect anesthetic sensitivity. These findings are consistent with models in which anesthetics have a physiologically important effect on availability of specific amino acids by altering function of their permeases. In addition, we show that there is a relationship between nutrient availability and ubiquitin metabolism in this response. PMID:12072454
Wilson, V S; LeBlanc, G A
2000-03-01
Hepatic biotransformation processes can be modulated by chemical exposure and these alterations can impact the biotransformation of endogenous substrates. Furthermore, chemically mediated alterations in the biotransformation of endogenous steroid hormones have been implicated as a mechanism by which steroid hormone homeostasis can be disrupted. The fungicide ketoconazole has been shown to lower serum testosterone levels and alter both gonadal synthesis and hepatic inactivation of testosterone. The present study examined whether the effects of ketoconazole on the hepatic biotransformation of testosterone contribute to its lowering of serum testosterone levels. Results also were used to validate further the use of the androgen-regulated hepatic testosterone 6alpha/15alpha-hydroxylase ratio as an indicator of androgen status. Male CD-1 mice were fed from 0 to 160 mg/kg ketoconazole in honey. Four h after the initial treatment, serum testosterone levels, gonadal testosterone secretion, and hepatic testosterone hydroxylase activity decreased, and the hepatic testosterone 6alpha/15alpha-hydroxylase ratio increased in a dose-dependent manner. Immunoblot analysis indicated that the transient decline in hepatic biotransformation was not due to reduced P450 protein levels. Rather, hepatic testosterone biotransformation activities were found to be differentially susceptible to direct inhibition by ketoconazole. Differential inhibition was also responsible for the increase seen in the 6alpha/15alpha-hydroxylase ratio. The changes in serum testosterone levels could be explained by decreased gonadal synthesis of testosterone and were not impacted by decreased hepatic biotransformation of testosterone. These results demonstrate that changes in the hepatic hydroxylation of testosterone by ketoconazole, and perhaps other chemicals, have little or no influence serum testosterone levels.
Brozek, Wolfgang; Manhardt, Teresa; Kállay, Enikö; Peterlik, Meinrad; Cross, Heide S
2012-07-26
Previous studies on the significance of vitamin D insufficiency and chronic inflammation in colorectal cancer development clearly indicated that maintenance of cellular homeostasis in the large intestinal epithelium requires balanced interaction of 1,25-(OH)2D3 and prostaglandin cellular signaling networks. The present study addresses the question how colorectal cancer pathogenesis depends on alterations of activities of vitamin D hydroxylases, i.e., CYP27B1-encoded 25-hydroxyvitamin D-1a-hydroxylase and CYP24A1-encoded 25-hydroxyvitamin D-24-hydroxylase, and inflammation-induced cyclooxygenase-2 (COX-2). Data from 105 cancer patients on CYP27B1, VDR, CYP24A1, and COX-2 mRNA expression in relation to tumor grade, anatomical location, gender and age were fit into a multivariate model of exploratory factor analysis. Nearly identical results were obtained by the principal factor and the maximum likelihood method, and these were confirmed by hierarchical cluster analysis: Within the eight mutually dependent variables studied four independent constellations were found that identify different features of colorectal cancer pathogenesis: (i) Escape of COX-2 activity from restraints by the CYP27B1/VDR system can initiate cancer growth anywhere in the colorectum regardless of age and gender; (ii) variations in COX-2 expression are mainly responsible for differences in cancer incidence in relation to tumor location; (iii) advancing age has a strong gender-specific influence on cancer incidence; (iv) progression from well differentiated to undifferentiated cancer is solely associated with a rise in CYP24A1 expression.
Brozek, Wolfgang; Manhardt, Teresa; Kállay, Enikö; Peterlik, Meinrad; Cross, Heide S.
2012-01-01
Previous studies on the significance of vitamin D insufficiency and chronic inflammation in colorectal cancer development clearly indicated that maintenance of cellular homeostasis in the large intestinal epithelium requires balanced interaction of 1,25-(OH)2D3 and prostaglandin cellular signaling networks. The present study addresses the question how colorectal cancer pathogenesis depends on alterations of activities of vitamin D hydroxylases, i.e., CYP27B1-encoded 25-hydroxyvitamin D-1α-hydroxylase and CYP24A1-encoded 25-hydroxyvitamin D-24-hydroxylase, and inflammation-induced cyclooxygenase-2 (COX-2). Data from 105 cancer patients on CYP27B1, VDR, CYP24A1, and COX-2 mRNA expression in relation to tumor grade, anatomical location, gender and age were fit into a multivariate model of exploratory factor analysis. Nearly identical results were obtained by the principal factor and the maximum likelihood method, and these were confirmed by hierarchical cluster analysis: Within the eight mutually dependent variables studied four independent constellations were found that identify different features of colorectal cancer pathogenesis: (i) Escape of COX-2 activity from restraints by the CYP27B1/VDR system can initiate cancer growth anywhere in the colorectum regardless of age and gender; (ii) variations in COX-2 expression are mainly responsible for differences in cancer incidence in relation to tumor location; (iii) advancing age has a strong gender-specific influence on cancer incidence; (iv) progression from well differentiated to undifferentiated cancer is solely associated with a rise in CYP24A1 expression. PMID:24213465
Alonso, Hernan
2012-01-01
The alkane hydroxylase system of Pseudomonas putida GPo1 allows it to use alkanes as the sole source of carbon and energy. Bacterial alkane hydroxylases have tremendous potential as biocatalysts for the stereo- and regioselective transformation of a wide range of chemically inert unreactive alkanes into valuable reactive chemical precursors. We have produced and characterized the first 2-dimensional crystals of the integral membrane component of the P. putida alkane hydroxylase system, the nonheme di-iron alkane monooxygenase AlkB. Our analysis reveals for the first time that AlkB reconstituted into a lipid bilayer forms trimers. Addition of detergents that do not disrupt the AlkB oligomeric state (decyl maltose neopentyl glycol [DMNG], lauryl maltose neopentyl glycol [LMNG], and octaethylene glycol monododecyl ether [C12E8]) preserved its activity at a level close to that of the detergent-free control sample. In contrast, the monomeric form of AlkB produced by purification in n-decyl-β-d-maltopyranoside (DM), n-dodecyl-β-d-maltopyranoside (DDM), octyl glucose neopentyl glycol (OGNG), and n-dodecyl-N,N-dimethylamine-N-oxide (LDAO) was largely inactive. This is the first indication that the physiologically active form of membrane-embedded AlkB may be a multimer. We present for the first time experimental evidence that 1-octyne acts as a mechanism-based inhibitor of AlkB. Therefore, despite the lack of any significant full-length sequence similarity with members of other monooxygenase classes that catalyze the terminal oxidation of alkanes, AlkB is likely to share a similar catalytic mechanism. PMID:22941083
Ariyoshi, Y.; Takeuchi, H.
1982-01-01
1 Inhibitory effects of N-beta-phenylpropionyl-L-tyrosine, N-beta-phenylpropionyl-L-tryptophan and their derivatives on an identifiable giant neurone, TAN (tonically autoactive neurone) of an African giant snail (Achatina fulica Férussac) were examined in an attempt to elucidate which structural features are necessary to produce the effect. 2 Of the compounds examined, N-beta-cyclohexylpropionyl-L-tyrosine showed the strongest effect. Its critical concentration (c.c.) was 3 X 10(-8)-10(-7)M, about ten times lower than that of N-beta-phenylpropionyl-L-tyrosine (c.c., 3 X 10(-7)-10(-6)M). N-beta-cyclohexylpropionyl-L-tryptophan (c.c., 10(-6)M) had an effect almost similar to that of N-beta-phenylpropionyl-L-tryptophan (c.c., 10(-6)M). 3 N-beta-Phenylpropionyl-N-methyl-L-tyrosine had no effect at a high concentration. 4 Effects of N-beta-phenylpropionyl-L-tyrosine amide (c.c., 3 X 10(-7)-10(-6)M) and N-beta-phenylpropionyl-L-tryptophan amide (c.c., 10(-6)M) were very similar to those of N-beta-phenylpropionyl-L-tyrosine and N-beta-phenylpropionyl-L-tryptophan respectively. 5 N-beta-Phenylpropionyl-p-amino-L-phenylalanine (c.c., 3 X 10(-5)-10(-4)M) and N-beta-phenylpropionyl-p-chloro-L-phenylalanine (c.c., 10(-4)M) had only a weak effect. 6 It is proposed that the structural features producing the effect are as follows: the active compound has a phenyl or a cyclohexyl group (hydrophobic binding group), after a suitable distance a peptide bond (proton donor and proton acceptor), adjacently a carbonyl group (proton acceptor), and a phenolic hydroxyl or an indolyl imino group (proton donor) in the molecule. PMID:7150871
Hindbrain Catecholamine Neurons Activate Orexin Neurons During Systemic Glucoprivation in Male Rats.
Li, Ai-Jun; Wang, Qing; Elsarelli, Megan M; Brown, R Lane; Ritter, Sue
2015-08-01
Hindbrain catecholamine neurons are required for elicitation of feeding responses to glucose deficit, but the forebrain circuitry required for these responses is incompletely understood. Here we examined interactions of catecholamine and orexin neurons in eliciting glucoprivic feeding. Orexin neurons, located in the perifornical lateral hypothalamus (PeFLH), are heavily innervated by hindbrain catecholamine neurons, stimulate food intake, and increase arousal and behavioral activation. Orexin neurons may therefore contribute importantly to appetitive responses, such as food seeking, during glucoprivation. Retrograde tracing results showed that nearly all innervation of the PeFLH from the hindbrain originated from catecholamine neurons and some raphe nuclei. Results also suggested that many catecholamine neurons project collaterally to the PeFLH and paraventricular hypothalamic nucleus. Systemic administration of the antiglycolytic agent, 2-deoxy-D-glucose, increased food intake and c-Fos expression in orexin neurons. Both responses were eliminated by a lesion of catecholamine neurons innervating orexin neurons using the retrogradely transported immunotoxin, anti-dopamine-β-hydroxylase saporin, which is specifically internalized by dopamine-β-hydroxylase-expressing catecholamine neurons. Using designer receptors exclusively activated by designer drugs in transgenic rats expressing Cre recombinase under the control of tyrosine hydroxylase promoter, catecholamine neurons in cell groups A1 and C1 of the ventrolateral medulla were activated selectively by peripheral injection of clozapine-N-oxide. Clozapine-N-oxide injection increased food intake and c-Fos expression in PeFLH orexin neurons as well as in paraventricular hypothalamic nucleus neurons. In summary, catecholamine neurons are required for the activation of orexin neurons during glucoprivation. Activation of orexin neurons may contribute to appetitive responses required for glucoprivic feeding.
The upregulation of immune responses in tyrosine hydroxylase (TH) silenced Litopenaeus vannamei.
Mapanao, Ratchaneegorn; Chang, Chin-Chyuan; Cheng, Winton
2017-02-01
Catecholamines (CAs) play a crucial role in maintaining physiological and immune homeostasis in invertebrates and vertebrates under stressful conditions. Tyrosine hydroxylase (TH) is the first and rate-limiting enzyme in CA synthesis. To develop an effective CA-related immunological defense system against stress and pathogen infection, various criteria, were evaluated in TH double-stranded (ds) RNA-injected white shrimp, Litopenaeus vannamei. Specifically, the relative transcript quantification of TH, dopamine β-hydroxylase (DBH), crustacean hyperglycemic hormone (CHH), and other immune-related genes; TH activity in the haemolymph; and the estimation of l-dihydroxyphenylalanine (l-DOPA), glucose, and lactate levels in the haemolymph were examined. TH depletion revealed a significant increase in the total haemocyte count; granular cells; semigranular cells; respiratory bursts (RBs, release of superoxide anion); superoxide dismutase (SOD) activity; phagocytic activity and clearance efficiency; and the expression of lipopolysaccharide and β-1,3-glucan-binding protein and peroxinectin, SOD, crustin, and lysozyme genes. In addition, the reduction of TH gene expression and activity was accompanied by a decline of phenoloxidase (PO) activity per granulocyte, lower glucose and lactate levels, and significantly low expression of DBH and CHH genes. However, the number of hyaline cells, activity of PO, RBs per haemocyte, and expression of POI and POII genes were not significantly different in the LvTH-silenced shrimp. Notably, the survival ratio of LvTH-silenced shrimp was significantly higher than that of shrimp injected with diethyl pyrocarbonate-water and nontargeting dsRNA when challenged with Vibrio alginolyticus. Therefore, the depletion of TH can enhance disease resistance in shrimp by upregulating specific immune parameters but downregulating the levels of carbohydrate metabolites. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hsiao, Chih Yin; Tsai, Hsin Chun; Chi, Mei Hung; Chen, Kao Chin; Chen, Po See; Lee, I Hui; Yeh, Tzung Lieh; Yang, Yen Kuang
2016-01-01
Abstract The aim of this study was to investigate the influence of serotonin on anxiety and autonomic nervous system (ANS) function; the correlation between subjective anxiety rating and changes of ANS function following tryptophan depletion (TD) in healthy volunteers was examined. Twenty-eight healthy participants, consisting of 15 females and 13 males, with an average age of 33.3 years, were recruited. Baseline Chinese Symptom Checklist-90-Revised and ANS function measurements were taken. TD was carried out on the testing day, and participants provided blood samples right before and 5 hours after TD. ANS function, somatic symptoms, and Visual Analogue Scales (VASs) were determined after TD. Wilcoxon signed rank test and Spearman ρ correlation were adapted for analyses of the results. The TD procedure reduced total and free plasma tryptophan effectively. After TD, the sympathetic nervous activity increased and parasympathetic nervous activity decreased. Baseline anxiety ratings positively correlated with post-TD changes in sympathetic nervous activity, VAS ratings, and physical symptoms. However, a negative correlation with post-TD changes in parasympathetic nervous activity was found. The change in ANS function after TD was associated with the severity of anxiety in healthy volunteers. This supports the fact that the effect of anxiety on heart rate variability is related to serotonin vulnerability. Furthermore, it also shows that the subjective anxiety rating has a biological basis related to serotonin. PMID:27175645
Hsiao, Chih Yin; Tsai, Hsin Chun; Chi, Mei Hung; Chen, Kao Chin; Chen, Po See; Lee, I Hui; Yeh, Tzung Lieh; Yang, Yen Kuang
2016-05-01
The aim of this study was to investigate the influence of serotonin on anxiety and autonomic nervous system (ANS) function; the correlation between subjective anxiety rating and changes of ANS function following tryptophan depletion (TD) in healthy volunteers was examined. Twenty-eight healthy participants, consisting of 15 females and 13 males, with an average age of 33.3 years, were recruited.Baseline Chinese Symptom Checklist-90-Revised and ANS function measurements were taken. TD was carried out on the testing day, and participants provided blood samples right before and 5 hours after TD. ANS function, somatic symptoms, and Visual Analogue Scales (VASs) were determined after TD. Wilcoxon signed rank test and Spearman ρ correlation were adapted for analyses of the results.The TD procedure reduced total and free plasma tryptophan effectively. After TD, the sympathetic nervous activity increased and parasympathetic nervous activity decreased. Baseline anxiety ratings positively correlated with post-TD changes in sympathetic nervous activity, VAS ratings, and physical symptoms. However, a negative correlation with post-TD changes in parasympathetic nervous activity was found.The change in ANS function after TD was associated with the severity of anxiety in healthy volunteers. This supports the fact that the effect of anxiety on heart rate variability is related to serotonin vulnerability. Furthermore, it also shows that the subjective anxiety rating has a biological basis related to serotonin.
Tryptophan promotes morphological and physiological differentiation in Streptomyces coelicolor.
Palazzotto, Emilia; Renzone, Giovanni; Fontana, Pietro; Botta, Luigi; Scaloni, Andrea; Puglia, Anna Maria; Gallo, Giuseppe
2015-12-01
The molecular mechanisms regulating tryptophan biosynthesis in actinomycetes are poorly understood; similarly, the possible roles of tryptophan in the differentiation program of microorganism life-cycle are still underexplored. To unveil the possible regulatory effect of this amino acid on gene expression, an integrated study based on quantitative teverse transcription-PCR (qRT-PCR) and proteomic approaches was performed on the actinomycete model Streptomyces coelicolor. Comparative analyses on the microorganism growth in a minimal medium with or without tryptophan supplementation showed that biosynthetic trp gene expression in S. coelicolor is not subjected to a negative regulation by the presence of the end product. Conversely, tryptophan specifically induces the transcription of trp genes present in the biosynthetic gene cluster of the calcium-dependent antibiotic (CDA), a lipopeptide containing D- and L-tryptophan residues. In addition, tryptophan stimulates the transcription of the CDA gene cluster regulator cdaR and, coherently, CDA production. Surprisingly, tryptophan also promotes the production of actinorhodin, another antibiotic that does not contain this amino acid in its structure. Combined 2D-DIGE and nano liquid chromatography electrospray linear ion trap tandem mass spectrometry (LC-ESI-LIT-MS/MS) analyses revealed that tryptophan exerts a growth-stage-dependent global effect on S. coelicolor proteome, stimulating anabolic pathways and promoting the accumulation of key factors associated with morphological and physiological differentiation at the late growth stages. Phenotypic observations by scanning electron microscopy and spore production assays demonstrated an increased sporulation in the presence of tryptophan. Transcriptional analysis of catabolic genes kynA and kynB suggested that the actinomycete also uses tryptophan as a carbon and nitrogen source. In conclusion, this study originally provides the molecular basis underlying the stimulatory effect of tryptophan on the production of antibiotics and morphological development program of this actinomycete.
Li, Z; Meighen, E A
1994-09-01
Bacterial luciferase, which catalyzes the bioluminescence reaction in luminous bacteria, consists of two nonidentical polypeptides, α and β. Eight mutants of luciferase with each of the tryptophans replaced by tyrosine were generated by site-directed mutagenesis and purified to homogeneity. The steady-state tryptophan fluorescence and low-temperature phosphorescence spectroscopic properties of these mutants were characterized. In some instances, mutation of only a single tryptophan residue resulted in large spectral changes. The tryptophan residues conserved in both the α and the β subunits exhibited distinct fluorescence emission properties, suggesting that these tryptophans have different local enviroments. The low-temperature phosphorescence data suggest that the tryptophans conserved in bot the α and the β subunits are not located at the subunit interface and/or involved in subunit interactions. The differences in the spectral properties of the mutants have provided useful information on the local environment of the individual tryptophan residues as well as on the quaternary structure of the protein.
Eleftheriadis, Theodoros; Pissas, Georgios; Liakopoulos, Vassilios; Stefanidis, Ioannis
2018-07-01
It is generally hypothesized in the literature that indoleamine 2,3‑dioxygenase (IDO), by degrading L‑tryptophan along the kynurenine pathway, suppresses CD4+ T‑cell function by inducing apoptosis, inhibiting proliferation and promoting differentiation towards a regulatory phenotype. These effects are either accompanied or directly lead to alterations in cell metabolism. The present study evaluated the pathways that govern the effect of IDO on the utilization of the three main energy sources in CD4+ T‑cells. Two‑way mixed lymphocyte reactions were performed with or without oleate and/or the IDO inhibitor 1‑methyl‑DL‑tryptophan. In addition, isolated CD4+ T‑cells cultured in an oleate‑containing medium were activated in the presence or not of the general control nonderepressible 2 kinase (GCN2K) activator tryptophanol. L‑tryptophan, glucose and free fatty acid consumption, cell proliferation, apoptosis and the levels of key proteins involved in IDO‑mediated signal transduction, and glucose, glutamine and free fatty acid utilization were assessed. The results indicate that IDO decreased glycolysis and glutaminolysis by activating GCN2K, resulting in activation of AMP‑activated protein kinase (AMPK). In parallel with AMPK activation, IDO‑induced activation of aryl hydrocarbon receptor increased the expression of all carnitine palmitoyltransferase I isoenzymes, leading ultimately to increased free fatty acid oxidation and preservation of CD4+ T‑cell survival and proliferation. Thus, contrary to what is generally hypothesized, in a normal environment containing fatty acids, the immunosuppressive effect of IDO may not be due to a decrease in CD4+ T‑cell survival and proliferation, since IDO supplies the required energy for cell survival and proliferation by increasing free fatty acid oxidation.
Acosta-Andrade, Carlos; Lambertos, Ana; Urdiales, José L; Sánchez-Jiménez, Francisca; Peñafiel, Rafael; Fajardo, Ignacio
2016-10-01
Antizymes and antizyme inhibitors are key regulatory proteins of polyamine levels by affecting ornithine decarboxylase and polyamine uptake. Our previous studies indicated a metabolic interplay among polyamines, histamine and serotonin in mast cells, and demonstrated that polyamines are present in mast cell secretory granules, being important for histamine storage and serotonin levels. Recently, the novel antizyme inhibitor-2 (AZIN2) was proposed as a local regulator of polyamine biosynthesis in association with mast cell serotonin-containing granules. To gain insight into the role of AZIN2 in the biosynthesis and storage of serotonin and histamine, we have generated bone marrow derived mast cells (BMMCs) from both wild-type and transgenic Azin2 hypomorphic mice, and have analyzed polyamines, serotonin and histamine contents, and some elements of their metabolisms. Azin2 hypomorphic BMMCs did not show major mast cell phenotypic alterations as judged by morphology and specific mast cell proteases. However, compared to wild-type controls, these cells showed reduced spermidine and spermine levels, and diminished growth rate. Serotonin levels were also reduced, whereas histamine levels tended to increase. Accordingly, tryptophan hydroxylase-1 (TPH1; the key enzyme for serotonin biosynthesis) mRNA expression and protein levels were reduced, whereas histidine decarboxylase (the enzyme responsible for histamine biosynthesis) enzymatic activity was increased. Furthermore, microphtalmia-associated transcription factor, an element involved in the regulation of Tph1 expression, was reduced. Taken together, our results show, for the first time, an element of polyamine metabolism -AZIN2-, so far described as exclusively devoted to the control of polyamine concentrations, involved in regulating the biosynthesis and content of other amines like serotonin and histamine.
Naumenko, Vladimir S; Bazovkina, Daria V; Semenova, Alina A; Tsybko, Anton S; Il'chibaeva, Tatyana V; Kondaurova, Elena M; Popova, Nina K
2013-12-01
The effect of glial cell line-derived neurotrophic factor (GDNF) on behavior and on the serotonin (5-HT) system of a mouse strain predisposed to depressive-like behavior, ASC/Icg (Antidepressant Sensitive Cataleptics), in comparison with the parental "nondepressive" CBA/Lac mice was studied. Within 7 days after acute administration, GDNF (800 ng, i.c.v.) decreased cataleptic immobility but increased depressive-like behavioral traits in both investigated mouse strains and produced anxiolytic effects in ASC mice. The expression of the gene encoding the key enzyme for 5-HT biosynthesis in the brain, tryptophan hydroxylase-2 (Tph-2), and 5-HT1A receptor gene in the midbrain as well as 5-HT2A receptor gene in the frontal cortex were increased in GDNF-treated ASC mice. At the same time, GDNF decreased 5-HT1A and 5-HT2A receptor gene expression in the hippocampus of ASC mice. GDNF failed to change Tph2, 5-HT1A , or 5-HT2A receptor mRNA levels in CBA mice as well as 5-HT transporter gene expression and 5-HT1A and 5-HT2A receptor functional activity in both investigated mouse strains. The results show 1) a GDNF-induced increase in the expression of key genes of the brain 5-HT system, Tph2, 5-HT1A , and 5-HT2A receptors, and 2) significant genotype-dependent differences in the 5-HT system response to GDNF treatment. The data suggest that genetically defined cross-talk between neurotrophic factors and the brain 5-HT system underlies the variability in behavioral response to GDNF. Copyright © 2013 Wiley Periodicals, Inc.
Schneider, Robert W.; Tobia, Christine M.; Commons, Kathryn G.
2015-01-01
Arousal from sleep is a critical defense mechanism when infants are exposed to hypoxia, and an arousal deficit has been postulated as contributing to the etiology of the sudden infant death syndrome (SIDS). The brainstems of SIDS infants are deficient in serotonin (5-HT) and tryptophan hydroxylase (TPH) and have decreased binding to 5-HT receptors. This study explores a possible connection between medullary 5-HT neuronal activity and arousal from sleep in response to hypoxia. Medullary raphe 5-HT neurons were eliminated from neonatal rat pups with intracisterna magna (CM) injections of 5,7-dihydroxytryptamine (DHT) at P2-P3. Each pup was then exposed to four episodes of hypoxia during sleep at three developmental ages (P5, P15, and P25) to produce an arousal response. Arousal, heart rate, and respiratory rate responses of DHT-injected pups were compared with pups that received CM artificial cerebrospinal fluid (aCSF) and those that received DHT but did not have a significant reduction in medullary 5-HT neurons. During each hypoxia exposure, the time to arousal from the onset of hypoxia (latency) was measured together with continuous measurements of heart and respiratory rates, oxyhemoglobin saturation, and chamber oxygen concentration. DHT-injected pups with significant losses of medullary 5-HT neurons exhibited significantly longer arousal latencies and decreased respiratory rate responses to hypoxia compared with controls. These results support the hypothesis that in newborn and young rat pups, 5-HT neurons located in the medullary raphe contribute to the arousal response to hypoxia. Thus alterations medullary 5-HT mechanisms might contribute to an arousal deficit and contribute to death in SIDS infants. PMID:26702023
Hahn, Tim; Heinzel, Sebastian; Notebaert, Karolien; Dresler, Thomas; Reif, Andreas; Lesch, Klaus-Peter; Jakob, Peter M; Windmann, Sabine; Fallgatter, Andreas J
2013-11-01
Gray's Reinforcement Sensitivity Theory (RST) has developed into one of the most prominent personality theories of the last decades. The RST postulates a Behavioral Inhibition System (BIS) modulating the reaction to stimuli indicating aversive events. A number of psychiatric disorders including depression, anxiety disorders, and psychosomatic illnesses have been associated with extreme BIS responsiveness. In recent years, neuroimaging studies have implicated the amygdala-septo-hippocampal circuit as an important neural substrate of the BIS. However, the neurogenetic basis of the regulation of this behaviorally and clinically essential system remains unclear. Investigating the effects of two functional genetic polymorphisms (tryptophan hydroxylase-2, G-703T, and serotonin transporter, serotonin transporter gene-linked polymorphic region) in 89 human participants, we find significantly different patterns of associations between BIS scores and amygdala-hippocampus connectivity during loss anticipation for genotype groups regarding both polymorphisms. Specifically, the correlation between amygdala-hippocampus connectivity and Gray's trait anxiety scores is positive in individuals homozygous for the TPH2 G-allele, while carriers of at least one T-allele show a negative association. Likewise, individuals homozygous for the 5-HTTLPR L(A) variant display a positive association while carriers of the S/L(G) allele show a trend towards a negative association. Thus, we show converging evidence of different neural implementation of the BIS depending on genotype-dependent levels of serotonin. We provide evidence suggesting that genotype-dependent serotonin levels and thus putative changes in the efficiency of serotonergic neurotransmission might not only alter brain activation levels directly, but also more fundamentally impact the neural implementation of personality traits. We outline the direct clinical implications arising from this finding and discuss the complex interplay of neural responses, genes and personality traits in this context. Copyright © 2013 Elsevier Inc. All rights reserved.
Angoa-Pérez, Mariana; Kane, Michael J.; Herrera-Mundo, Nieves; Francescutti, Dina M.; Kuhn, Donald M.
2013-01-01
Aims Mephedrone is a stimulant drug of abuse with close structural and mechanistic similarities to methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA). Although mephedrone does not damage dopamine nerve endings it increases the neurotoxicity of amphetamine, methamphetamine and MDMA. The effects of mephedrone on serotonin (5HT) nerve endings are not fully understood, with some investigators reporting damage while others conclude it does not. Presently, we investigate if mephedrone given alone or with methamphetamine or MDMA damages 5HT nerve endings of the hippocampus. Main methods The status of 5HT nerve endings in hippocampus of female C57BL mice was assessed through measures of 5HT by HPLC and by immunoblot analysis of serotonin transporter (SERT) and tryptophan hydroxylase 2 (TPH2), selective markers of 5HT nerve endings. Astrocytosis was assessed through measures of glial fibrillary acidic protein (GFAP) (immunoblotting) and microglial activation was determined by histochemical staining with Isolectin B4. Key findings Mephedrone alone did not cause persistent reductions in the levels of 5HT, SERT or TPH2. Methamphetamine and MDMA alone caused mild reductions in 5HT but did not change SERT and TPH2 levels. Combined treatment with mephedrone and methamphetamine or MDMA did not change the status of 5HT nerve endings to an extent that was different from either drug alone. Significance Mephedrone does not cause toxicity to 5HT nerve endings of the hippocampus. When co-administered with methamphetamine or MDMA, drugs that are often co-abused with mephedrone by humans, toxicity is not increased as is the case for dopamine nerve endings when these drugs are taken together. PMID:23892197
Bai, Yang; Wang, Han-Ming; Liu, Ming; Wang, Yun; Lian, Guo-Chao; Zhang, Xin-Hua; Kang, Jian; Wang, Huai-Liang
2014-02-01
The present study was performed to investigate the effects of 4-chloro-DL-phenylalanine (PCPA), a tryptophan hydroxylase (Tph) inhibitor (TphI), on pulmonary vascular remodeling and lung inflammation in monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) in rats. Animal models of PAH were established using Sprague-Dawley (SD) rats by a single intraperitoneal injection of MCT (60 mg/kg). PCPA (50 or 100 mg/kg/day) was administered to the rats with PAH. On day 22, hemodynamic measurements and morphological observations of the lung tissues were performed. The levels of Tph-1 and serotonin transporter (SERT) in the lungs were analyzed by immunohistochemistry and western blot analysis. The expression of matrix metalloproteinase (MMP)-2 and MMP-9, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 and inflammatory cytokines were assayed by western blot analysis. The activity of MMP-2 and MMP-9 was evaluated by gelatin zymography (GZ). MCT markedly promoted PAH, increased the right ventricular hypertrophy index, pulmonary vascular remodeling, lung inflammation and mortality, which was associated with the increased expression of Tph-1, SERT, MMP-2/-9, TIMP-1/-2 and inflammatory cytokines. PCPA markedly attenuated MCT-induced pulmonary vascular remodeling and lung inflammation, inhibited the expression of Tph-1 and SERT and suppressed the expression of MMP-2/-9, TIMP-1/-2, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and intercellular adhesion molecule-1 (ICAM-1). These findings suggest that the amelioration of MCT-induced pulmonary vascular remodeling and lung inflammation by PCPA is associated with the downregulation of Tph-1, SERT, MMP/TIMP and inflammatory cytokine expression in rats.
Highly sensitive assay for tyrosine hydroxylase activity by high-performance liquid chromatography.
Nagatsu, T; Oka, K; Kato, T
1979-07-21
A highly sensitive assay for tyrosine hydroxylase (TH) activity by high-performance liquid chromatography (HPLC) with amperometric detection was devised based on the rapid isolation of enzymatically formed DOPA by a double-column procedure, the columns fitted together sequentially (the top column of Amberlite CG-50 and the bottom column of aluminium oxide). DOPA was adsorbed on the second aluminium oxide column, then eluted with 0.5 M hydrochloric acid, and assayed by HPLC with amperometric detection. D-Tyrosine was used for the control. alpha-Methyldopa was added to the incubation mixture as an internal standard after incubation. This assay was more sensitive than radioassays and 5 pmol of DOPA formed enzymatically could be measured in the presence of saturating concentrations of tyrosine and 6-methyltetrahydropterin. The TH activity in 2 mg of human putamen could be easily measured, and this method was found to be particularly suitable for the assay of TH activity in a small number of nuclei from animal and human brain.
Aik, WeiShen; Che, Ka Hing; Li, Xuan Shirley; Kristensen, Jan B. L.; King, Oliver N. F.; Chan, Mun Chiang; Yeoh, Kar Kheng; Choi, Hwanho; Walport, Louise J.; Thinnes, Cyrille C.; Bush, Jacob T.; Lejeune, Clarisse; Rydzik, Anna M.; Rose, Nathan R.; Bagg, Eleanor A.; McDonough, Michael A.; Krojer, Tobias; Yue, Wyatt W.; Ng, Stanley S.; Olsen, Lars; Brennan, Paul E.; Oppermann, Udo; Muller-Knapp, Susanne; Klose, Robert J.; Ratcliffe, Peter J.; Schofield, Christopher J.; Kawamura, Akane
2015-01-01
2-Oxoglutarate and iron dependent oxygenases are therapeutic targets for human diseases. Using a representative 2OG oxygenase panel, we compare the inhibitory activities of 5-carboxy-8-hydroxyquinoline (IOX1) and 4-carboxy-8-hydroxyquinoline (4C8HQ) with that of two other commonly used 2OG oxygenase inhibitors, N-oxalylglycine (NOG) and 2,4-pyridinedicarboxylic acid (2,4-PDCA). The results reveal that IOX1 has a broad spectrum of activity, as demonstrated by the inhibition of transcription factor hydroxylases, representatives of all 2OG dependent histone demethylase subfamilies, nucleic acid demethylases and γ-butyrobetaine hydroxylase. Cellular assays show that, unlike NOG and 2,4-PDCA, IOX1 is active against both cytosolic and nuclear 2OG oxygenases without ester derivatisation. Unexpectedly, crystallographic studies on these oxygenases demonstrate that IOX1, but not 4C8HQ, can cause translocation of the active site metal, revealing a rare example of protein ligand-induced metal movement PMID:26682036
NASA Astrophysics Data System (ADS)
Kvetňanský, R.; Vigaš, M.; Németh, Š.; Macho, L.; Tigranyan, R. A.
The indicators of adrenomedullary activity (catecholamine content (CA) and the activity of the catecholamine-synthesizing enzymes tyrosine hydroxylase (TH) and dopamine-β-hydroxylase (DBH)) were measured in the adrenal glands of rats living in a state of weightlessness for 18.5-19.5 days on board the biosatellites COSMOS 936 and COSMOS 1129. None of these indicators was significantly changed by space flight, neither in the group living in a state of weightlessness nor in the group living in a centrifuge on board the spacecraft and exposed to artificial gravity of 1 g (COSMOS 936). Animals exposed after space flight to repeated immobilization stress on Earth showed a significant decrease of adrenal adrenaline and an appreciable increase in adrenal TH activity compared to stressed animals which were not in space. These results suggest that a prolonged state of weightlessness during space flight does not by itself represent an intensive stressful stimulus for the adrenomedullary system but potentiates the response of cosmonauts to stress after return to Earth.
Logan, Ryan W; Parekh, Puja K; Kaplan, Gabrielle N; Becker-Krail, Darius D; Williams, Wilbur P; Yamaguchi, Shintaro; Yoshino, Jun; Shelton, Micah A; Zhu, Xiyu; Zhang, Hui; Waplinger, Spencer; Fitzgerald, Ethan; Oliver-Smith, Jeffrey; Sundarvelu, Poornima; Enwright, John F; Huang, Yanhua H; McClung, Colleen A
2018-05-04
The diurnal regulation of dopamine is important for normal physiology and diseases such as addiction. Here we find a novel role for the CLOCK protein to antagonize CREB-mediated transcriptional activity at the tyrosine hydroxylase (TH) promoter, which is mediated by the interaction with the metabolic sensing protein, Sirtuin 1 (SIRT1). Additionally, we demonstrate that the transcriptional activity of TH is modulated by the cellular redox state, and daily rhythms of redox balance in the ventral tegmental area (VTA), along with TH transcription, are highly disrupted following chronic cocaine administration. Furthermore, CLOCK and SIRT1 are important for regulating cocaine reward and dopaminergic (DAergic) activity, with interesting differences depending on whether DAergic activity is in a heightened state and if there is a functional CLOCK protein. Taken together, we find that rhythms in cellular metabolism and circadian proteins work together to regulate dopamine synthesis and the reward value for drugs of abuse.
Gigliucci, Valentina; Buckley, Kathleen Niamh; Nunan, John; O'Shea, Karen; Harkin, Andrew
2010-02-01
The present study determined regional serotonin (5-HT) synthesis and metabolism changes associated with the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine (L-NA) and the influence of 5-HT receptor blockade in the antidepressant-like actions of L-NA in the forced swimming test (FST). Regional effects of L-NA (5,10 and 20mg/kg i.p.) on tryptophan hydroxylase (TPH) activity, the rate limiting enzyme for 5-HT synthesis, were determined by measuring accumulation of the transient intermediate 5-hydoxytryptophan (5-HTP) following in vivo administration of the amino acid decarboxylase inhibitor, NSD 1015 (100mg/kg). L-NA (5-20mg/kg) dose dependently increased 5-HTP accumulation, particularly in the amygdaloid cortex, following exposure to the FST. L-NA also provoked an increase in regional brain 5-HIAA concentrations and in the 5-HIAA:5-HT metabolism ratio. Co-treatment with NSD-1015 failed to consistently modify the antidepressant-like effects of L-NA in the FST. Sub-active doses of L-NA (1mg/kg) and the 5-HT re-uptake inhibitor fluoxetine (2.5mg/kg) acted synergistically to increase swimming in the test. Co-treatment with the non-selective 5-HT receptor antagonist metergoline (1, 2 and 4mg/kg), attenuated the L-NA (20mg/kg)-induced reduction in immobility and increase in swimming behaviours. Metergoline alone however provoked an increase in immobility and reduction in swimming behaviours in the test. A similar response was obtained following co-treatment with the preferential 5-HT(2A) receptor antagonist ketanserin (5mg/kg) and the 5-HT(2C) receptor antagonist RO-430440 (5mg/kg). Co-treatment with the 5-HT(1A) receptor antagonist WAY 100635 (0.3mg/kg) or the 5-HT(1B) receptor antagonist GR 127935 (4mg/kg) failed to influence the antidepressant-like activity of L-NA. Taken together these data provide further support for a role for 5-HT in the antidepressant-like properties of NOS inhibitors. Copyright 2009 Elsevier Inc. All rights reserved.
Neal, Kathleen B; Parry, Laura J; Bornstein, Joel C
2009-01-01
Serotonin (5-HT) powerfully affects small intestinal motility and 5-HT-immunoreactive (IR) neurones are highly conserved between species. 5-HT synthesis in central neurones and gastrointestinal mucosa depends on tissue-specific isoforms of the enzyme tryptophan hydroxylase (TPH). RT-PCR identified strain-specific expression of a polymorphism (1473C/G) of the tph2 gene in longitudinal muscle–myenteric plexus preparations of C57Bl/6 and Balb/c mice. The former expressed the high-activity C allele, the latter the low-activity G allele. Confocal microscopy was used to examine close contacts between 5-HT-IR varicosities and myenteric neurones immunoreactive for neuronal nitric oxide synthase (NOS) or calretinin in these two strains. Significantly more close contacts were identified to NOS- (P < 0.05) and calretinin-IR (P < 0.01) neurones in C57Bl/6 jejunum (NOS 1.6 ± 0.3, n= 52; calretinin 5.2 ± 0.4, n= 54), than Balb/c jejunum (NOS 0.9 ± 0.2, n= 78; calretinin 3.5 ± 0.3, n= 98). Propagating contractile complexes (PCCs) were identified in the isolated jejunum by constructing spatiotemporal maps from video recordings of cannulated segments in vitro. These clusters of contractions usually arose towards the anal end and propagated orally. Regular PCCs were initiated at intraluminal pressures of 6 cmH2O, and abolished by tetrodotoxin (1 μm). Jejunal PCCs from C57Bl/6 mice were suppressed by a combination of granisetron (1 μm, 5-HT3 antagonist) and SB207266 (10 nm, 5-HT4 antagonist), but PCCs from Balb/c mice were unaffected. There were, however, no strain-specific differences in sensitivity of longitudinal muscle contractions to exogenous 5-HT or blockade of 5-HT3 and 5-HT4 receptors. These data associate a genetic difference with significant structural and functional consequences for enteric neural serotonergic pathways in the jejunum. PMID:19064621
Purinergic receptor immunoreactivity in the rostral ventromedial medulla.
Close, L N; Cetas, J S; Heinricher, M M; Selden, N R
2009-01-23
The rostral ventromedial medulla (RVM) has long been recognized to play a pivotal role in nociceptive modulation. Pro-nociception within the RVM is associated with a distinct functional class of neurons, ON-cells that begin to discharge immediately before nocifensive reflexes. Anti-nociceptive function within the RVM, including the analgesic response to opiates, is associated with another distinct class, OFF-cells, which pause immediately prior to nocifensive reflexes. A third class of RVM neurons, NEUTRAL-cells, does not alter firing in association with nocifensive reflexes. ON-, OFF- and NEUTRAL-cells show differential responsiveness to various behaviorally relevant neuromodulators, including purinergic ligands. Iontophoresis of semi-selective P2X ligands, which are associated with nociceptive transmission in the spinal cord and dorsal root ganglia, preferentially activate ON-cells. By contrast, P2Y ligands activate OFF-cells and P1 ligands suppress the firing of NEUTRAL cells. The current study investigates the distribution of P2X, P2Y and P1 receptor immunoreactivity in RVM neurons of Sprague-Dawley rats. Co-localization with tryptophan hydroxylase (TPH), a well-established marker for serotonergic neurons was also studied. Immunoreactivity for the four purinergic receptor subtypes examined was abundant in all anatomical subdivisions of the RVM. By contrast, TPH-immunoreactivity was restricted to a relatively small subset of RVM neurons concentrated in the nucleus raphe magnus and pallidus, as expected. There was a significant degree of co-localization of each purinergic receptor subtype with TPH-immunoreactivity. This co-localization was most pronounced for P2Y1 receptor immunoreactivity, although this was the least abundant among the different purinergic receptor subtypes examined. Immunoreactivity for multiple purinergic receptor subtypes was often co-localized in single neurons. These results confirm the physiological finding that purinergic receptors are widely expressed in the RVM. Purinergic neurotransmission in this region may play an important role in nociception and/or nociceptive modulation, as at other levels of the neuraxis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsukiyama, Fuyo; Nakai, Yumi; Yoshida, Masataka
Catechins have recently been reported to increase the cellular content of the hypoxia-inducible factor (HIF)-1{alpha} within mammalian cells. These catechins have a gallate moiety as a common structure. We now report that n-propyl gallate (nPG) also increases the HIF-1{alpha} protein in the rat heart-derived H9c2 cells. The increase was dose-dependent and reached a maximum at 2-4 h after the addition of nPG to the cells. nPG did not change the HIF-1{alpha} mRNA level, showing that the increase is a posttranscriptional event. Although nPG did not inhibit the HIF prolyl hydroxylase, gallate, the hydrolysis product of nPG, inhibited the enzyme completelymore » at submillimolar concentrations. Model building studies on the human HIF prolyl hydroxylase 2 showed that the two phenolate oxygen atoms of gallate form a chelate with the active site Fe{sup 2+}, while the carboxyl group of gallate forms a strong ionic/hydrogen bonding interaction with Arg383, explaining why nPG, which has an esterified carboxyl group, is unable to inhibit the hydroxylase. Together with the observation that gallate was detected in the H9c2 cells treated with nPG, these results suggest that nPG incorporated into the cells is hydrolyzed and the released gallate inhibits the HIF prolyl hydroxylase, thereby reducing the HIF degradation rate and increasing the HIF-1{alpha} content.« less
Production of hydroxylated fatty acids in genetically modified plants
Somerville, Chris [Portola Valley, CA; Broun, Pierre [Burlingame, CA; van de Loo, Frank [Weston, AU; Boddupalli, Sekhar S [Manchester, MI
2011-08-23
This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.
Production of hydroxylated fatty acids in genetically modified plants
Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.
2005-08-30
This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.
Dawoodji, Amina; Chen, Ji-Li; Shepherd, Dawn; Dalin, Frida; Tarlton, Andrea; Alimohammadi, Mohammad; Penna-Martinez, Marissa; Meyer, Gesine; Mitchell, Anna L; Gan, Earn H; Bratland, Eirik; Bensing, Sophie; Husebye, Eystein S; Pearce, Simon H; Badenhoop, Klaus; Kämpe, Olle; Cerundolo, Vincenzo
2014-09-01
The mechanisms behind destruction of the adrenal glands in autoimmune Addison's disease remain unclear. Autoantibodies against steroid 21-hydroxylase, an intracellular key enzyme of the adrenal cortex, are found in >90% of patients, but these autoantibodies are not thought to mediate the disease. In this article, we demonstrate highly frequent 21-hydroxylase-specific T cells detectable in 20 patients with Addison's disease. Using overlapping 18-aa peptides spanning the full length of 21-hydroxylase, we identified immunodominant CD8(+) and CD4(+) T cell responses in a large proportion of Addison's patients both ex vivo and after in vitro culture of PBLs ≤20 y after diagnosis. In a large proportion of patients, CD8(+) and CD4(+) 21-hydroxylase-specific T cells were very abundant and detectable in ex vivo assays. HLA class I tetramer-guided isolation of 21-hydroxylase-specific CD8(+) T cells showed their ability to lyse 21-hydroxylase-positive target cells, consistent with a potential mechanism for disease pathogenesis. These data indicate that strong CTL responses to 21-hydroxylase often occur in vivo, and that reactive CTLs have substantial proliferative and cytolytic potential. These results have implications for earlier diagnosis of adrenal failure and ultimately a potential target for therapeutic intervention and induction of immunity against adrenal cortex cancer. Copyright © 2014 by The American Association of Immunologists, Inc.
In vitro differentiation of quail neural crest cells into sensory-like neuroblasts
NASA Technical Reports Server (NTRS)
Sieber-Blum, Maya; Kumar, Sanjiv R.; Riley, Danny A.
1988-01-01
Data are presented that demonstrate the ability of quail neural-crest embrionic cells grown as primary culture to differentiate in vitro into sensorylike neuroblasts. After 7-14 days of growth as primary culture, many of the putative sensory neuroblasts displayed substance P (SP)-like immunoreactivity and some exhibited histochemical carbonic anhydrase activity. Double staining experiments showed that the SP-like immunoreactive neuroblasts did not contain detectable levels of tyrosine hydroxylase or dopamine-beta-hydroxylase. The neuronal nature of the cultured sensorylike neuroblasts was further documented by double labeling for antibodies against the 68 kDa neurofilament polypeptide and substance P.
The effects of estrus cycle on drug metabolism in the rat.
Brandstetter, Y; Kaplanski, J; Leibson, V; Ben-Zvi, Z
1986-01-01
The effect of the female rat estral cycle on microsomal drug metabolism in-vivo and in-vitro has been studied. Two microsomal enzymes, aminopyrine-N-demethylase and aniline hydroxylase showed a greater specific activity (p less than 0.01) in the diestrus phase of the estral cycle while the oxidative enzyme aryl hydrocarbon hydroxylase and the conjugative enzyme, glucuronyl transferase, were not affected. In vivo studies which included theophylline and antipyrine metabolism, and hexobarbital sleeping times showed no difference between the different phases of the estral cycle. Conflicting evidence about the effect of steroid sex hormones on hepatic drug metabolism is discussed.
XAFS of human tyrosine hydroxylase
NASA Astrophysics Data System (ADS)
Meyer, W.; Haavik, J.; Winkler, H.; Trautwein, A. X.; Nolting, H.-F.
1995-02-01
Tyrosine hydroxylase (TH) catalyses the rate-limiting step (hydroxylation of tyrosine to form dihydroxyphenylalanine) in the biosynthetic pathway leading to the catecholamines dopamine, noradrenaline and adrenaline. The human enzyme (hTH) is present in four isoforms, generated by splicing of pre-mRNA. The purified apoenzyme (metal free) binds stoichiometric amounts of iron. The incorporation of Fe(II) results in a rapid and up to 40-fold increase of activity [1]. Besides the coordination of the metal centers in native enzyme we studied the purported inhibition of TH by its immediate products. So we analysed Fe-hTH isoform 1 native as well as oxidized with dopamine and Co-hTH isoform 2.
Pharmacogenetics of Antidepressants
Crisafulli, Concetta; Fabbri, Chiara; Porcelli, Stefano; Drago, Antonio; Spina, Edoardo; De Ronchi, Diana; Serretti, Alessandro
2010-01-01
Up to 60% of depressed patients do not respond completely to antidepressants (ADs) and up to 30% do not respond at all. Genetic factors contribute for about 50% of the AD response. During the recent years the possible influence of a set of candidate genes as genetic predictors of AD response efficacy was investigated by us and others. They include the cytochrome P450 superfamily, the P-glycoprotein (ABCB1), the tryptophan hydroxylase, the catechol-O-methyltransferase, the monoamine oxidase A, the serotonin transporter (5-HTTLPR), the norepinephrine transporter, the dopamine transporter, variants in the 5-hydroxytryptamine receptors (5-HT1A, 5-HT2A, 5-HT3A, 5-HT3B, and 5-HT6), adrenoreceptor beta-1 and alpha-2, the dopamine receptors (D2), the G protein beta 3 subunit, the corticotropin releasing hormone receptors (CRHR1 and CRHR2), the glucocorticoid receptors, the c-AMP response-element binding, and the brain-derived neurotrophic factor. Marginal associations were reported for angiotensin I converting enzyme, circadian locomotor output cycles kaput protein, glutamatergic system, nitric oxide synthase, and interleukin 1-beta gene. In conclusion, gene variants seem to influence human behavior, liability to disorders and treatment response. Nonetheless, gene × environment interactions have been hypothesized to modulate several of these effects. PMID:21687501
Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency
Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei
2015-01-01
Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states. PMID:26154191
Lei, Qiong; Wang, Lin; Tan, Dun-Xian; Zhao, Yu; Zheng, Xiao-Dong; Chen, Hao; Li, Qing-Tian; Zuo, Bi-Xiao; Kong, Jin
2013-11-01
Melatonin is present in many edible fruits; however, the presence of melatonin in apple has not previously been reported. In this study, the genes for melatonin synthetic enzymes including tryptophan decarboxylase, tryptamine 5-hydroxylase (T5H), arylalkylamine N-acetyltransferase, and N-acetylserotonin methyltransferase were identified in 'Red Fuji' apple. Each gene has several homologous genes. Sequence analysis shows that these genes have little homology with those of animals and they only have limited homology with known genes of rice melatonin synthetic enzymes. Multiple origins of melatonin synthetic genes during the evolution are expected. The expression of these genes is fully coordinated with melatonin production in apple development. Melatonin levels in apple exhibit an inverse relationship with the content of malondialdehyde, a product of lipid peroxidation. Two major melatonin synthetic peaks appeared on July 17 and on October 8 in both unbagged and bagged apple samples. At the periods mentioned above, apples experienced rapid expansion and increased respiration. These episodes significantly elevate reactive oxygen species production in the apple. Current data further confirmed that melatonin produced in apple was used to neutralize the toxic oxidants and protect the developing apple against oxidative stress. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Electrochemical quantification of serotonin in the live embryonic zebrafish intestine
Njagi, John; Ball, Michael; Best, Marc; Wallace, Kenneth N.; Andreescu, Silvana
2010-01-01
We monitored real-time in vivo levels of serotonin release in the digestive system of intact zebrafish embryos during early development (5 dpf) using differential pulse voltammetry with implanted carbon fiber microelectrodes modified with carbon nanotubes dispersed in nafion. A detection limit of 1 nM, a linear range between 5 to 200 nM and a sensitivity of 83.65 nA·μM−1 were recorded. The microelectrodes were implanted at various locations in the intestine of zebrafish embryos. Serotonin levels of up to 29.9(±1.13) nM were measured in vivo in normal physiological conditions. Measurements were performed in intact live embryos without additional perturbation beyond electrode insertion. The sensor was able to quantify pharmacological alterations in serotonin release and provide the longitudinal distribution of this neurotransmitter along the intestine with high spatial resolution. In the presence of fluvoxamine, a selective serotonin reuptake inhibitor (SSRI), concentrations of 54.1(±1.05) nM were recorded while in the presence of p-chloro-phenylalanine (PCPA), a tryptophan hydroxylase inhibitor, the serotonin levels decreased to 7.2(±0.45) nM. The variation of serotonin levels was correlated with immunohistochemical analysis. We have demonstrated the first use of electrochemical microsensors for in vivo monitoring of intestinal serotonin levels in intact zebrafish embryos. PMID:20148518
Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency.
Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei
2015-07-08
Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer's disease and Parkinson's disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.
Interplay between the key proteins of serotonin system in SSRI antidepressants efficacy.
Kulikov, Alexander V; Gainetdinov, Raul R; Ponimaskin, Evgeni; Kalueff, Allan V; Naumenko, Vladimir S; Popova, Nina K
2018-04-01
Selective serotonin reuptake inhibitors (SSRIs) are the most effective and most used antidepressant drugs. Acting by inhibiting serotonin (5-HT) transporter, SSRIs display a typical 3-4-week delay in their therapeutic effects, with nearly 40% of depressed patients remaining treatment-resistant. Recent evidence suggests complex interplay between 5-HT receptors and key proteins of 5-HT metabolism in molecular mechanisms of such delay and resistance to SSRIs. Area covered: This paper concentrates on the interplay between 5-HT receptors in the delay of therapeutic effect of SSRIs, and the interaction between tryptophan hydroxylase 2 and 5-HT transporter in the SSRI resistance. Specifically, it discusses: (1) the data on the association between antidepressant drug efficacy and genetically defined characteristics of key proteins in the 5-HT signaling (TPH2, MAOA, SERT and 5-HT 1A receptor), (2) the effect of dimerization of 5-HT 7 and 5-HT 1A receptors on the internalization and functioning of 5-HT 1A presynaptic receptors, (3) the role of Tph2 deficiency in the resistance to SSRIs treatment. We shift the emphasis from individual proteins to their interactions in explaining antidepressant action of SSRI. Expert opinion: These interactions should be considered when developing more effective antidepressant drugs as well as for predicting and improving the efficacy of antidepressant therapies.
Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency
NASA Astrophysics Data System (ADS)
Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei
2015-07-01
Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.
Masab, Muhammad; Saif, Muhammad Wasif
2017-12-01
Metastatic neuroendocrine tumors (NETs) are associated with carcinoid syndrome that is typically characterized by diarrhea, cutaneous flushing and bronchospasm. Treatment with somatostatin analogues (SSA) improves the symptom burden but a significant proportion of patients stop responding to SSA therapy eventually. Novel agents with the potential to effectively control the symptoms are urgently needed. This article reviews an in-depth analysis of the phase I-III clinical trials determining the clinical rationale for the use of tryptophan hydroxylase inhibitor, telotristat ethyl in patients with well-differentiated metastatic NETs and uncontrolled carcinoid syndrome. Telotristat ethyl has already been approved for the treatment of inadequately controlled carcinoid syndrome symptoms in metastatic NET patients on SSA therapy. Results from multiple phase I-III clinical studies of telotristat ethyl therapy have reported a significant decrease in the daily bowel movement frequency, increase in quality of life and the subsequent decrease in annual health costs related to carcinoid syndrome symptoms in NET patients. The associated decrease in urinary 5-hydroxyindoleacetic acid (u5-HIAA) provides evidence that telotristat ethyl effectively decreases serotonin production, and therefore, offers a rationale to investigate this agent to mitigate serotonin-mediated complications in this patient population, especially cardiac valvular disease or mesenteric fibrosis.
Central Interleukin-1β Suppresses the Nocturnal Secretion of Melatonin
Herman, A. P.; Bochenek, J.; Król, K.; Krawczyńska, A.; Antushevich, H.; Pawlina, B.; Herman, A.; Romanowicz, K.; Tomaszewska-Zaremba, D.
2016-01-01
In vertebrates, numerous processes occur in a rhythmic manner. The hormonal signal reliably reflecting the environmental light conditions is melatonin. Nocturnal melatonin secretion patterns could be disturbed in pathophysiological states, including inflammation, Alzheimer's disease, and depression. All of these states share common elements in their aetiology, including the overexpression of interleukin- (IL-) 1β in the central nervous system. Therefore, the present study was designed to determine the effect of the central injection of exogenous IL-1β on melatonin release and on the expression of the enzymes of the melatonin biosynthetic pathway in the pineal gland of ewe. It was found that intracerebroventricular injections of IL-1β (50 µg/animal) suppressed (P < 0.05) nocturnal melatonin secretion in sheep regardless of the photoperiod. This may have resulted from decreased (P < 0.05) synthesis of the melatonin intermediate serotonin, which may have resulted, at least partially, from a reduced expression of tryptophan hydroxylase. IL-1β also inhibited (P < 0.05) the expression of the melatonin rhythm enzyme arylalkylamine-N-acetyltransferase and hydroxyindole-O-methyltransferase. However, the ability of IL-1β to affect the expression of these enzymes was dependent upon the photoperiod. Our study may shed new light on the role of central IL-1β in the aetiology of disruptions in melatonin secretion. PMID:27212805
Palomares, Arturo R; Lendínez-Ramírez, Ana M; Pérez-Nevot, Beatriz; Cortés-Rodríguez, Miriam; Martínez, Francisco; Garrido, Nicolás; Ruiz-Galdón, Maximiliano; Reyes-Engel, Armando
2013-06-01
To explore whether serotonin-related gene polymorphisms influence clinical outcomes of IVF treatment in recipients using donated oocytes. Nested case-control study. University-affiliated infertility clinic. Two hundred forty-five women undergoing IVF treatment with donated oocytes. None. Genotype and haplotype analysis of the serotonin transporter-linked polymorphic region (5-HTTLPR), rs1800532, rs6295, rs6313, and rs3813929, between recipients grouped according to the results of the oocyte donation for IVF treatment. No differences were found between genotype distribution of the tryptophan hydroxylase 1, serotonin receptor 2A, and serotonin receptor 2C polymorphisms. Recipients carrying the LL genotype for 5-HTTLPR had lower clinical pregnancy rates (PR) and higher biochemical pregnancy loss (BPL) events. Lower implantation rates were found in CC carriers for 5-HT1A.rs6295 who also presented higher BPL rates. A lower incidence of clinical pregnancy was observed for LC haplotypes, corresponding to an increase in BPL rates. A strong association was found between early pregnancy loss and recipients carrying the 5-HTTLPR and rs6295 genetic variants. Identifying biological processes involving serotonin and embryo implantation may help to understand the dynamics of the maternal-embryo dialogue. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Angoa-Pérez, Mariana; Kane, Michael J; Briggs, Denise I; Sykes, Catherine E; Shah, Mrudang M; Francescutti, Dina M; Rosenberg, David R; Thomas, David M; Kuhn, Donald M
2012-06-01
Neuropsychiatric disorders characterized by behavioral disinhibition, including disorders of compulsivity (e.g. obsessive-compulsive disorder; OCD) and impulse-control (e.g. impulsive aggression), are severe, highly prevalent and chronically disabling. Treatment options for these diseases are extremely limited. The pathophysiological bases of disorders of behavioral disinhibition are poorly understood but it has been suggested that serotonin dysfunction may play a role. Mice lacking the gene encoding brain tryptophan hydroxylase 2 (Tph2-/-), the initial and rate-limiting enzyme in the synthesis of serotonin, were tested in numerous behavioral assays that are well known for their utility in modeling human neuropsychiatric diseases. Mice lacking Tph2 (and brain 5HT) show intense compulsive and impulsive behaviors to include extreme aggression. The impulsivity is motor in form and not cognitive because Tph2-/- mice show normal acquisition and reversal learning on a spatial learning task. Restoration of 5HT levels by treatment of Tph2-/- mice with its immediate precursor 5-hydroxytryptophan attenuated compulsive and impulsive-aggressive behaviors. Surprisingly, in Tph2-/- mice, the lack of 5HT was not associated with anxiety-like behaviors. The results indicate that 5HT mediates behavioral disinhibition in the mammalian brain independent of anxiogenesis. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.
Biotransformation of indole derivatives by mycelial cultures.
Alarcón, Julio; Cid, Eliseo; Lillo, Luis; Céspedesa, Carlos; Aguila, Sergio; Alderete, Joel B
2008-01-01
Biotransformation of tryptophan to tryptamine and 3-methyl-indole by Psilocybe coprophila was performed. On the other hand, Aspergillus niger was able to transform tryptophan to 5-hydroxy-tryptophan. P. coprophila biotransformed 5-hydroxy-tryptophan to 5-hydroxytryptamine. These results prove once more that fungi are good tools to establish hydroxyindole derivatives.
[Immunological aspects of depressive disorders].
Müller, N; Schwarz, M J
2007-11-01
Beside the monoaminergic deficiency concept as a pathophysiological correlate of depressive disorder, the role of increased glutamatergic neurotransmission is increasingly being discussed. Causes and interactions of these neurotransmitter disturbances are not fully understood to date. This review presents a concept integrating actual findings of the neurotransmitter dysregulations with immunological and morphological findings in depressive disorder. Several intertwined mechanisms seem to be important: The common cause of serotonin deficiency and increased glutamatergic neurotransmission seems to be the increase of proinflammatory cytokines. Immune activation with increased production of proinflammatory cytokines activate the tryptophan- and serotonin-degradating enzyme indolamine-2,3-dioxygenase (IDO). The increased consumption of serotonin and its precursor tryptophan due to IDO activation may explain the reduced availability of serotonin in depression. In inflammatory somatic disorders, depressive mood is associated with an increase of proinflammatory cytokines and increased consumption of tryptophan. This activation of IDO by proinflammatory cytokines leads to the production of glutamatergic agonists. In the CNS, IDO is activated during inflammatory processes primarily in microglial cells. Therefore the astrocyte:microglial balance in depression is important. The observed decrease of astrocytes in the CNS of depressive patients may contribute to a regulatory fault in the activity of IDO in microglial cells but also can cause an alteration of the glutamatergic neurotransmission. By this mechanism, the dysbalance of the immune response and the astrocyte:microglia dysbalance may contribute to serotonergic deficiency and glutamatergic overproduction in depression. The further search for new antidepressant therapeutic mechanisms should take into regard anti-inflammatory substances, e.g. cyclo-oxygenase-2 (COX-2)-inhibitors.
Donley, David W; Olson, Andrew R; Raisbeck, Merl F; Fox, Jonathan H; Gigley, Jason P
2016-01-01
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a polyglutamine-repeat expansion in the huntingtin protein. Activation of the kynurenine pathway of tryptophan degradation is implicated in the pathogenesis of HD. Indoleamine-2,3-dioxygenase (IDO) catalyzes the oxidation of tryptophan to kynurenine, the first step in this pathway. The prevalent, neuroinvasive protozoal pathogen Toxoplasma gondii (T. gondii) results in clinically silent life-long infection in immune-competent individuals. T. gondii infection results in activation of IDO which provides some protection against the parasite by depleting tryptophan which the parasite cannot synthesize. The kynurenine pathway may therefore represent a point of synergism between HD and T. gondii infection. We show here that IDO activity is elevated at least four-fold in frontal cortex and striata of non-infected N171-82Q HD mice at 14-weeks corresponding to early-advanced HD. T. gondii infection at 5 weeks resulted in elevation of cortical IDO activity in HD mice. HD-infected mice died significantly earlier than wild-type infected and HD control mice. Prior to death, infected HD mice demonstrated decreased CD8+ T-lymphocyte proliferation in brain and spleen compared to wild-type infected mice. We demonstrate for the first time that HD mice have an altered response to an infectious agent that is characterized by premature mortality, altered immune responses and early activation of IDO. Findings are relevant to understanding how T. gondii infection may interact with pathways mediating neurodegeneration in HD.
Immunomodulatory Effects of the Mycosporine-Like Amino Acids Shinorine and Porphyra-334
Becker, Kathrin; Hartmann, Anja; Ganzera, Markus; Fuchs, Dietmar; Gostner, Johanna M.
2016-01-01
Mycosporine-like amino acids (MAAs) are secondary metabolites, produced by a large variety of microorganisms including algae, cyanobacteria, lichen and fungi. MAAs act as UV-absorbers and photo-protectants. MAAs are suggested to exert pharmaceutical relevant bioactivities in the human system. We particularly focused on their effect on defence and regulatory pathways that are active in inflamed environments. The MAAs shinorine and porphyra-334 were isolated and purified from the red algae Porphyra sp. using chromatographic methods. The effect of MAAs on central signaling cascades, such as transcription factor nuclear factor kappa b (NF-κB) activation, as well as tryptophan metabolism, was investigated in human myelomonocytic THP-1 and THP-1-Blue cells. Cells were exposed to the MAAs in the presence or absence of lipopolysaccharide (LPS). NF-κB activity and the activity of tryptophan degrading enzyme indoleamine 2,3-dioxygenase (IDO-1) were used as readout. Compounds were tested in the concentration range from 12.5 to 200 µg/mL. Both MAAs were able to induce NF-κB activity in unstimulated THP-1-Blue cells, whereby the increase was dose-dependent and more pronounced with shinorine treatment. While shinorine also slightly superinduced NF-κB in LPS-stimulated cells, porphyra-334 reduced NF-κB activity in this inflammatory background. Modulation of tryptophan metabolism was moderate, suppressive in stimulated cells with the lower treatment concentration of both MAAs and with the unstimulated cells upon porphyra-334 treatment. Inflammatory pathways are affected by MAAs, but despite the structural similarity, diverse effects were observed. PMID:27338421
Donley, David W.; Olson, Andrew R.; Raisbeck, Merl F.; Fox, Jonathan H.; Gigley, Jason P.
2016-01-01
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a polyglutamine-repeat expansion in the huntingtin protein. Activation of the kynurenine pathway of tryptophan degradation is implicated in the pathogenesis of HD. Indoleamine-2,3-dioxygenase (IDO) catalyzes the oxidation of tryptophan to kynurenine, the first step in this pathway. The prevalent, neuroinvasive protozoal pathogen Toxoplasma gondii (T. gondii) results in clinically silent life-long infection in immune-competent individuals. T. gondii infection results in activation of IDO which provides some protection against the parasite by depleting tryptophan which the parasite cannot synthesize. The kynurenine pathway may therefore represent a point of synergism between HD and T. gondii infection. We show here that IDO activity is elevated at least four-fold in frontal cortex and striata of non-infected N171-82Q HD mice at 14-weeks corresponding to early–advanced HD. T. gondii infection at 5 weeks resulted in elevation of cortical IDO activity in HD mice. HD-infected mice died significantly earlier than wild-type infected and HD control mice. Prior to death, infected HD mice demonstrated decreased CD8+ T-lymphocyte proliferation in brain and spleen compared to wild-type infected mice. We demonstrate for the first time that HD mice have an altered response to an infectious agent that is characterized by premature mortality, altered immune responses and early activation of IDO. Findings are relevant to understanding how T. gondii infection may interact with pathways mediating neurodegeneration in HD. PMID:27611938
Isoform of castor oleate hydroxylase
Shanklin, John; Whittle, Edward J.
2005-12-13
The present invention relates to oleate hydroxylase genes, proteins, and methods of their use. The present invention also relates to methods of using the oleate hydroxylase genes and proteins, including in their expression in transgenic organisms and in the production of hydroxylated fatty acids.
Palacios, Oskar A; Choix, Francisco J; Bashan, Yoav; de-Bashan, Luz E
2016-06-01
This study measured the relations between tryptophan production, the phytohormone indole-3-acetic acid (IAA) and the metabolism and accumulation of starch during synthetic mutualism between the microalgae Chlorella sorokiniana and the microalgae growth-promoting bacteria Azospirillum brasilense, created by co-immobilization in alginate beads. Experiments used two wild-type A. brasilense strains (Cd and Sp6) and an IAA-attenuated mutant (SpM7918) grown under nitrogen-replete and nitrogen-starved conditions tested under dark, heterotrophic and aerobic growth conditions. Under all incubating conditions, C. sorokiniana, but not A. brasilense, produced tryptophan. A significant correlation between IAA-production by A. brasilense and starch accumulation in C. sorokiniana was found, since the IAA-attenuated mutant was not producing increased starch levels. The highest ADP-glucose pyrophosphorylase (AGPase) activity, starch content and glucose uptake were found during the interaction of A. brasilense wild type strains with the microalgae. When the microalgae were grown alone, they produced only small amounts of starch. Supplementation with synthetic IAA to C. sorokiniana grown alone enhanced the above parameters, but only transiently. Activity of α-amylase decreased under nitrogen-replete conditions, but increased under nitrogen-starved conditions. In summary, this study demonstrated that, during synthetic mutualism, the exchange of tryptophan and IAA between the partners is a mechanism that governs several changes in starch metabolism of C. sorokiniana, yielding an increase in starch content. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Molecular Cloning and Analysis of the Tryptophan oxygenase Gene in the Silkworm, Bombyx mori
Yan, Liu; Zhi-Qi, Meng; Bao-Long, Niu; Li-Hua, He; Hong-Biao, Weng; Wei-Feng, Shen
2008-01-01
A Bombyx mori L. (Lepidoptera: Bombycidae) gene encoding tryptophan oxygenase has been molecularly cloned and analyzed. The tryptophan oxygenase cDNA had 1374 nucleotides that encoded a 401 amino acid protein with an estimated molecular mass of 46.47 kDa and a PI of 5.88. RT-PCR analysis showed that the B. mori tryptophan oxygenase gene was transcribed in all examined stages. Tryptophan oxygenase proteins are relatively well conserved among different orders of arthropods. PMID:20331401
Overlapping the Tryptophan Catabolite (TRYCAT) and Melatoninergic Pathways in Alzheimer's Disease.
Maes, Michael; Anderson, George
2016-01-01
Activation of the trptophan catabolite (TRYCAT) pathways by oxidative and nitrosative stress and proinflammatory cytokine-driven indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) leads to the synthesis of a number of neuroregulatory TRYCATs, such as kynurenic acid and quinolinic acid. Such TRYCATs have significant impacts on neuronal functioning and survival contributing to the changes seen in Alzheimer's disease (AD), including in its association with depression as well as alterations in the reactivity of immune and glia cells. By decreasing the availability of tryptophan for serotonin synthesis, such IDO and TDO-driven TRYCATs, also decrease the availability of serotonin for N-acetylserotonin (NAS) and melatonin synthesis. The loss of NAS and melatonin has significant consequences for the etiology, course and treatment of AD, including via interactions with altered TRYCATs, but also by changing the levels of trophic support and modulating the patterning of immune activity. In this review, we look at how such interactions of the TRYCAT and melatoninergic pathways link a plethora of previously diffuse data in AD as well as the treatment implications and future research directions that such data would suggest.
Interaction of MreB-derived antimicrobial peptides with membranes.
Saikia, Karabi; Chaudhary, Nitin
2018-03-25
Antimicrobial peptides are critical components of defense systems in living forms. The activity is conferred largely by the selective membrane-permeabilizing ability. In our earlier work, we derived potent antimicrobial peptides from the 9-residue long, N-terminal amphipathic helix of E. coli MreB protein. The peptides display broad-spectrum activity, killing not only Gram-positive and Gram-negative bacteria but opportunistic fungus, Candida albicans as well. These results proved that membrane-binding stretches of bacterial proteins could turn out to be self-harming when applied from outside. Here, we studied the membrane-binding and membrane-perturbing potential of these peptides. Steady-state tryptophan fluorescence studies with tryptophan extended peptides, WMreB 1-9 and its N-terminal acetylated analog, Ac-WMreB 1-9 show preferential binding to negatively-charged liposomes. Both the peptides cause permeabilization of E. coli inner and outer-membranes. Tryptophan-lacking peptides, though permeabilize the outer-membrane efficiently, little permeabilization of the inner-membrane is observed. These data attest membrane-destabilization as the mechanism of rapid bacterial killing. This study is expected to motivate the research in identifying microbes' self-sequences to combat them. Copyright © 2018 Elsevier Inc. All rights reserved.
Placenta-specific Methylation of the Vitamin D 24-Hydroxylase Gene
Novakovic, Boris; Sibson, Mandy; Ng, Hong Kiat; Manuelpillai, Ursula; Rakyan, Vardhman; Down, Thomas; Beck, Stephan; Fournier, Thierry; Evain-Brion, Danielle; Dimitriadis, Eva; Craig, Jeffrey M.; Morley, Ruth; Saffery, Richard
2009-01-01
Plasma concentrations of biologically active vitamin D (1,25-(OH)2D) are tightly controlled via feedback regulation of renal 1α-hydroxylase (CYP27B1; positive) and 24-hydroxylase (CYP24A1; catabolic) enzymes. In pregnancy, this regulation is uncoupled, and 1,25-(OH)2D levels are significantly elevated, suggesting a role in pregnancy progression. Epigenetic regulation of CYP27B1 and CYP24A1 has previously been described in cell and animal models, and despite emerging evidence for a critical role of epigenetics in placentation generally, little is known about the regulation of enzymes modulating vitamin D homeostasis at the fetomaternal interface. In this study, we investigated the methylation status of genes regulating vitamin D bioavailability and activity in the placenta. No methylation of the VDR (vitamin D receptor) and CYP27B1 genes was found in any placental tissues. In contrast, the CYP24A1 gene is methylated in human placenta, purified cytotrophoblasts, and primary and cultured chorionic villus sampling tissue. No methylation was detected in any somatic human tissue tested. Methylation was also evident in marmoset and mouse placental tissue. All three genes were hypermethylated in choriocarcinoma cell lines, highlighting the role of vitamin D deregulation in this cancer. Gene expression analysis confirmed a reduced capacity for CYP24A1 induction with promoter methylation in primary cells and in vitro reporter analysis demonstrated that promoter methylation directly down-regulates basal promoter activity and abolishes vitamin D-mediated feedback activation. This study strongly suggests that epigenetic decoupling of vitamin D feedback catabolism plays an important role in maximizing active vitamin D bioavailability at the fetomaternal interface. PMID:19237542
King, D K; Shapiro, B H
1981-09-01
1 Normal males of the testicular feminized strain of mice (Tfm) had longer hexobarbitone-induced sleeping times than females, and hepatic hexobarbitone hydroxylase activity different in that the Km was higher and the Vmax lower in the male. 2 Castration and androgen replacement studies indicated that testicular androgens were responsible for the sexual differences in drug metabolism found in this mouse strain. 3 Hepatic hexobarbitone metabolism and action were feminized in the intact, androgen-insensitive, genetically male Tfm mouse. Furthermore, hexobarbitone hydroxylase activities were less responsive to large doses of testosterone in Tfm mice than in normal males. 4 The Tfm mouse with a deficiency in androgen receptors responded to the enzyme-inductive effects of phenobarbitone and softwood bedding, indicating that these inducers do not act through the androgen receptors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzpatrick, Susan F.; Fábián, Zsolt; Schaible, Bettina
Hepatocyte death is an important contributing factor in a number of diseases of the liver. PHD1 confers hypoxic sensitivity upon transcription factors including the hypoxia inducible factor (HIF) and nuclear factor-kappaB (NF-κB). Reduced PHD1 activity is linked to decreased apoptosis. Here, we investigated the underlying mechanism(s) in hepatocytes. Basal NF-κB activity was elevated in PHD1{sup −/−} hepatocytes compared to wild type controls. ChIP-seq analysis confirmed enhanced binding of NF-κB to chromatin in regions proximal to the promoters of genes involved in the regulation of apoptosis. Inhibition of NF-κB (but not knock-out of HIF-1 or HIF-2) reversed the anti-apoptotic effects ofmore » pharmacologic hydroxylase inhibition. We hypothesize that PHD1 inhibition leads to altered expression of NF-κB-dependent genes resulting in reduced apoptosis. This study provides new information relating to the possible mechanism of therapeutic action of hydroxylase inhibitors that has been reported in pre-clinical models of intestinal and hepatic disease. -- Highlights: •Genetic ablation of PHD1 upregulates NF-kappaB (NF-κB) in hepatocytes. •Activation of NF-κB leads to differential DNA-binding of p50/p65 and results in differential regulation of apoptotic genes. •We identified proline 191 in the beta subunit of the I-kappaB kinase as a target for PHD1-mediated hydroxylation. •Blockade of prolyl-4-hydroxylases has been found cytoprotective in liver cells.« less
Dietary tryptophan intake and suicide rate in industrialized nations.
Voracek, Martin; Tran, Ulrich S
2007-03-01
The objective of this study was to assess the ecological association of dietary tryptophan intake and suicide rates across industrialized nations. Tryptophan, an essential amino acid, is the rate-limiting precursor of serotonin biosynthesis. The serotonergic system has been strongly implicated in the neurobiology of suicide. Contemporary male and female suicide rates for the general population (42 countries) and the elderly (38 countries) were correlated with national estimates of dietary tryptophan intake. Measures of tryptophan intake were significantly negatively associated to national suicide rates. Controlling for national affluence, total alcohol consumption and happiness levels slightly attenuated these associations, but left all of them negative. The effect is an ecological (group-level) finding. Estimated per capita tryptophan supply is only a proxy for actual consumption. Developed nations ranking high in dietary tryptophan intake rank low in suicide rates, independent of national wealth, alcohol intake and happiness.
Serotonin release varies with brain tryptophan levels
NASA Technical Reports Server (NTRS)
Schaechter, Judith D.; Wurtman, Richard J.
1990-01-01
This study examines directly the effects on serotonin release of varying brain tryptophan levels within the physiologic range. It also addresses possible interactions between tryptophan availability and the frequency of membrane depolarization in controlling serotonin release. We demonstrate that reducing tryptophan levels in rat hypothalamic slices (by superfusing them with medium supplemented with 100 microM leucine) decreases tissue serotonin levels as well as both the spontaneous and the electrically-evoked serotonin release. Conversely, elevating tissue tryptophan levels (by superfusing slices with medium supplemented with 2 microM tryptophan) increases both the tissue serotonin levels and the serotonin release. Serotonin release was found to be affected independently by the tryptophan availability and the frequency of electrical field-stimulation (1-5 Hz), since increasing both variables produced nearly additive increases in release. These observations demonstrate for the first time that both precursor-dependent elevations and reductions in brain serotonin levels produce proportionate changes in serotonin release, and that the magnitude of the tryptophan effect is unrelated to neuronal firing frequency. The data support the hypothesis that serotonin release is proportionate to intracellular serotonin levels.
Tryptophan Predicts the Risk for Future Type 2 Diabetes
Chen, Tianlu; Zheng, Xiaojiao; Ma, Xiaojing; Bao, Yuqian; Ni, Yan; Hu, Cheng; Rajani, Cynthia; Huang, Fengjie; Zhao, Aihua; Jia, Weiping; Jia, Wei
2016-01-01
Recently, 5 amino acids were identified and verified as important metabolites highly associated with type 2 diabetes (T2D) development. This report aims to assess the association of tryptophan with the development of T2D and to evaluate its performance with existing amino acid markers. A total of 213 participants selected from a ten-year longitudinal Shanghai Diabetes Study (SHDS) were examined in two ways: 1) 51 subjects who developed diabetes and 162 individuals who remained metabolically healthy in 10 years; 2) the same 51 future diabetes and 23 strictly matched ones selected from the 162 healthy individuals. Baseline fasting serum tryptophan concentrations were quantitatively measured using ultra-performance liquid chromatography triple quadruple mass spectrometry. First, serum tryptophan level was found significantly higher in future T2D and was positively and independently associated with diabetes onset risk. Patients with higher tryptophan level tended to present higher degree of insulin resistance and secretion, triglyceride and blood pressure. Second, the prediction potential of tryptophan is non-inferior to the 5 existing amino acids. The predictive performance of the combined score improved after taking tryptophan into account. Our findings unveiled the potential of tryptophan as a new marker associated with diabetes risk in Chinese populations. The addition of tryptophan provided complementary value to the existing amino acid predictors. PMID:27598004
Application of Time-Resolved Tryptophan Phosphorescence Spectroscopy to Protein Folding Studies.
NASA Astrophysics Data System (ADS)
Subramaniam, Vinod
This thesis presents studies of the protein folding problem, one of the most significant questions in contemporary biophysics. Sensitive biophysical techniques, including room temperature tryptophan phosphorescence, which reports on the local environment of the residue, and the lability of proteins to denaturation, a global parameter, were used to assess the validity of the traditional assumption that the biologically active state of a protein is the 'native' state, and to determine whether the pathways of folding in vitro lead to the folded state achieved in vivo. Phosphorescence techniques have also been extended to study, for the first time, emission from tryptophan residues engineered into specific positions as reporters of protein structure. During in vitro refolding of E. coli alkaline phosphatase and bovine 13-lactoglobulin, significant differences were found between the refolded proteins and the native conformations, which have no apparent effect on the biological functions. Slow conformational transitions, termed 'annealing,' that occur long after the return of enzyme activity of alkaline phosphatase are manifested in the retarded recovery of phosphorescence intensity, lifetime, and protein lability. While 'annealing' is not observed for beta -lactoglobulin, both phosphorescence and lability experiments reveal changes in the structure of the refolded protein, even though its biological activity, retinol binding, is fully recovered. This result suggests that the pathways of folding in vitro need not lead to the structure formed in vivo. We have used phosphorescence techniques to study the refolding of ribonuclease T1, which exhibits slow kinetics characteristic of proline isomerization. Furthermore, the ability to extract structural information from phosphorescent tryptophan probes engineered into selected regions represents an important advance in studying protein structure; we have reported the first such results from a mutant staphylococcal nuclease. The refolding data have been interpreted in the context of recent theoretical work on rugged energy landscape models of protein folding. Our results suggest that the barriers to folding can be as large as ~ 20 kcal-mol^{-1}, and imply that the conventional definition of the 'native' state as the biologically active conformation may need revision to acknowledge that the active state may represent a long-lived intermediate on the pathway to the native structure.
Destabilization of artificial biomembrane induced by the penetration of tryptophan
NASA Astrophysics Data System (ADS)
Chen, Liuhua; Gan, Lihua; Liu, Mingxian; Fan, Rong; Xu, Zijie; Hao, Zhixian; Chen, Longwu
2011-03-01
The effect of tryptophan on the membrane stability was studied by using three artificial biological membranes including liposome, Langmuir monolayer and solid supported bilayer lipid membrane (s-BLM) as models. All the results indicate that the penetration of tryptophan can destabilize different artificial biological membranes. The diameter of liposome and the leakage of calcein from liposome increased with the increase of tryptophan concentration because the penetration of tryptophan was beneficial for dehydrating the polar head groups of lipids and the formation of fusion intermediates. π-A isotherms of lecithin on the subphase of tryptophan solution further confirm that tryptophan can penetrate into lipid monolayer and reduce the stability of lipid monolayer. When the concentration of tryptophan increased from 0 to 2 × 10 -3 mol L -1, the limiting molecular area of lecithin increased from 110.5 to 138.5 Å 2, but the collapse pressure of the monolayer decreased from 47.6 to 42.3 mN m -1, indicating the destabilization of lipid monolayer caused by the penetration of tryptophan. The resistance spectra of s-BLM demonstrate that the existence of tryptophan leads to the formation of some defects in s-BLM and the destabilization of s-BLM. The values of electron-transfer resistance and double layer capacitance respectively decreased from 5.765 × 10 6 Ω and 3.573 × 10 -8 F to 1.391 × 10 6 Ω and 3.340 × 10 -8 F when the concentration of tryptophan increased from 0 to 2 × 10 -3 mol L -1. Correspondingly, the breakdown voltage of s-BLM decreased from 2.51 to 1.72 V.
The effect of insulin upon the influx of tryptophan into the brain of the rabbit.
Daniel, P M; Love, E R; Moorhouse, S R; Pratt, O E
1981-03-01
1. The effect of hyperinsulinaemia upon the influx of tryptophan into the brain was determined. A raised level of insulin was maintained in the circulation of rabbits for periods of up to 120 min by means of a continuous, programmed intravenous injection of the hormone, given by an electronically controlled variable-drive syringe. A similar, appropriately programmed, intravenous injection of glucose, given simultaneously with the insulin, maintained the concentration of the blood glucose within normal limits throughout each experiment, so that the results were not vitiated by the development of hypoglycaemia. 2. Raised levels of insulin in the blood affect the supply of tryptophan to the brain in two opposing ways: (a) by increasing the binding of tryptophan to the albumin in the blood, thereby reducing the level of the free tryptophan in the circulation by about a half, which would decrease the influx of tryptophan into the brain; (b) by simultaneously reducing the levels in the blood of six or more of the amino acids which compete with tryptophan for transport carriers into the brain, which would increase the influx of tryptophan. The net result of these two opposing effects is that insulin causes only a slight increase in the influx of tryptophan into the brain. 3. To account in quantitative terms for the effect of insulin upon the influx of tryptophan into the brain it proved necessary to make one assumption. This assumption was that a predictable proportion of the tryptophan which is loosely bound to blood albumin is being stripped off this protein by the transport carrier located on the luminal surface membranes of the endothelial cells during the passage of the blood through the cerebral capillaries. If this assumption is accepted the work reported here explains adequately the effect of insulin on the influx of tryptophan into the brain.
Gastric pentadecapeptide BPC 157 effective against serotonin syndrome in rats.
Boban Blagaic, Alenka; Blagaic, Vladimir; Mirt, Mirela; Jelovac, Nikola; Dodig, Goran; Rucman, Rudolf; Petek, Marijan; Turkovic, Branko; Anic, Tomislav; Dubovecak, Miroslav; Staresinic, Mario; Seiwerth, Sven; Sikiric, Predrag
2005-04-11
Serotonin syndrome commonly follows irreversible monoamine oxidase (MAO)-inhibition and subsequent serotonin (5-HT) substrate (in rats with fore paw treading, hind limbs abduction, wet dog shake, hypothermia followed by hyperthermia). A stable gastric pentadecapeptide BPC 157 with very safe profile (inflammatory bowel disease clinical phase II, PL-10, PLD-116, PL-14736, Pliva) reduced the duration of immobility to a greater extent than imipramine, and, given peripherally, has region specific influence on brain 5-HT synthesis (alpha-[14C]methyl-L-tryptophan autoradiographic measurements) in rats, different from any other serotonergic drug. Thereby, we investigate this peptide (10 microg, 10 ng, 10 pg/kg i.p.) in (i) full serotonin syndrome in rat combining pargyline (irreversible MAO-inhibition; 75 mg/kg i.p.) and subsequent L-tryptophan (5-HT precursor; 100 mg/kg i.p.; BPC 157 as a co-treatment), or (ii, iii) using pargyline or L-tryptophan given separately, as a serotonin-substrate with (ii) pargyline (BPC 157 as a 15-min posttreatment) or as a potential serotonin syndrome inductor with (iii) L-tryptophan (BPC 157 as a 15 min-pretreatment). In all experiments, gastric pentadecapeptide BPC 157 contrasts with serotonin-syndrome either (i) presentation (i.e., particularly counteracted) or (ii) initiation (i.e., neither a serotonin substrate (counteraction of pargyline), nor an inductor for serotonin syndrome (no influence on L-tryptophan challenge)). Indicatively, severe serotonin syndrome in pargyline + L-tryptophan rats is considerably inhibited even by lower pentadecapeptide BPC 157 doses regimens (particularly disturbances such as hyperthermia and wet dog shake thought to be related to stimulation of 5-HT2A receptors), while the highest pentadecapeptide dose counteracts mild disturbances present in pargyline rats (mild hypothermia, feeble hind limbs abduction). Thereby, in severe serotonin syndrome, gastric pentadecapeptide BPC 157 (alone, no behavioral or temperature effect) has a beneficial activity, which is likely, particular, and mostly related to a rather specific counteraction of 5-HT2A receptors phenomena.
Palafox-Carlos, H; Contreras-Vergara, C A; Muhlia-Almazán, A; Islas-Osuna, M A; González-Aguilar, G A
2014-05-16
Phenylalanine ammonia lyase (PAL) and p-coumarate 3-hydroxylase (C3H) are key enzymes in the phenylpropanoid pathway. The relative expression of PAL and C3H was evaluated in mango fruit cultivar 'Ataulfo' in four ripening stages (RS1, RS2, RS3, and RS4) by quantitative polymerase chain reaction. In addition, enzyme activity of PAL and C3H was determined in mango fruits during ripening. The PAL levels were downregulated at the RS2 and RS3 stages, while C3H levels were upregulated in fruits only at RS3. The enzyme activity of PAL followed a pattern that was different from that of the PAL expression, thus suggesting regulation at several levels. For C3H, a regulation at the transcriptional level is suggested because a similar pattern was revealed by its activity and transcript level. In this study, the complexity of secondary metabolite biosynthesis regulation is emphasized because PAL and C3H enzymes are involved in the biosynthesis of several secondary metabolites that are active during all mango ripening stages.
Reddy, S V G; Reddy, K Thammi; Kumari, V Valli; Basha, Syed Hussain
2015-01-01
Indoleamine 2,3-dioxygenase (IDO) is emerging as an important new therapeutic drug target for the treatment of cancer characterized by pathological immune suppression. IDO catalyzes the rate-limiting step of tryptophan degradation along the kynurenine pathway. Reduction in local tryptophan concentration and the production of immunomodulatory tryptophan metabolites contribute to the immunosuppressive effects of IDO. Presence of IDO on dentritic cells in tumor-draining lymph nodes leading to the activation of T cells toward forming immunosuppressive microenvironment for the survival of tumor cells has confirmed the importance of IDO as a promising novel anticancer immunotherapy drug target. On the other hand, Withaferin A (WA) - active constituent of Withania Somnifera ayurvedic herb has shown to be having a wide range of targeted anticancer properties. In the present study conducted here is an attempt to explore the potential of WA in attenuating IDO for immunotherapeutic tumor arresting activity and to elucidate the underlying mode of action in a computational approach. Our docking and molecular dynamic simulation results predict high binding affinity of the ligand to the receptor with up to -11.51 kcal/mol of energy and 3.63 nM of IC50 value. Further, de novo molecular dynamic simulations predicted stable ligand interactions with critically important residues SER167; ARG231; LYS377, and heme moiety involved in IDO's activity. Conclusively, our results strongly suggest WA as a valuable small ligand molecule with strong binding affinity toward IDO.
Chaves Filho, Adriano José Maia; Lima, Camila Nayane Carvalho; Vasconcelos, Silvânia Maria Mendes; de Lucena, David Freitas; Maes, Michael; Macedo, Danielle
2018-01-03
Obesity and depression are among the most pressing health problems in the contemporary world. Obesity and depression share a bidirectional relationship, whereby each condition increases the risk of the other. By inference, shared pathways may underpin the comorbidity between obesity and depression. Activation of cell-mediated immunity (CMI) is a key factor in the pathophysiology of depression. CMI cytokines, including IFN-γ, TNFα and IL-1β, induce the catabolism of tryptophan (TRY) by stimulating indoleamine 2,3-dioxygenase (IDO) resulting in the synthesis of kynurenine (KYN) and other tryptophan catabolites (TRYCATs). In the CNS, TRYCATs have been related to oxidative damage, inflammation, mitochondrial dysfunction, cytotoxicity, excitotoxicity, neurotoxicity and lowered neuroplasticity. The pathophysiology of obesity is also associated with a state of aberrant inflammation that activates aryl hydrocarbon receptor (AHR), a pathway involved in the detection of intracellular or environmental changes as well as with increases in the production of TRYCATs, being KYN an agonists of AHR. Both AHR and TRYCATS are involved in obesity and related metabolic disorders. These changes in the TRYCAT pathway may contribute to the onset of neuropsychiatric symptoms in obesity. This paper reviews the role of immune activation, IDO stimulation and increased TRYCAT production in the pathophysiology of depression and obesity. Here we suggest that increased synthesis of detrimental TRYCATs is implicated in comorbid obesity and depression and is a new drug target to treat both diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Lamas, Bruno; Richard, Mathias L; Sokol, Harry
2017-07-01
Inflammatory bowel diseases (IBDs) develop as a result of a combination of genetic predisposition, dysbiosis of the gut microbiota, and environmental influences. Here, we describe an example of how caspase recruitment domain 9 (CARD9), one of the numerous IBD susceptibility genes, participate to colitis susceptibility by shaping gut microbiota to produce tryptophan metabolites. Recent study showed that CARD9 mice are more susceptible to colitis as a result of impaired interleukin 22 signaling pathway. Furthermore, aryl hydrocarbon receptor (AhR) ligands from tryptophan metabolism by the gut microbiota participate to intestinal homeostasis by inducing production of interleukin 22 by intestinal immune cells. These data suggest an interaction between CARD9 and the ability of gut microbiota to produce AhR ligands. The microbiota from CARD9 mice fails to metabolize tryptophan leading to defective AhR activation which contributes to the susceptibility of mice to colitis by decreased interleukin 22 production. These effects were abrogated in the presence of AhR agonist. Reduced production of AhR ligands is also observed in the microbiota from individuals with IBD, particularly in those with CARD9 risk alleles associated with IBD. Correcting impaired microbiota functions, such as ability to produce AhR ligands, is an attractive strategy in IBD.
Benstein, Ruben Maximilian; Ludewig, Katja; Wulfert, Sabine; Wittek, Sebastian; Gigolashvili, Tamara; Frerigmann, Henning; Gierth, Markus; Flügge, Ulf-Ingo; Krueger, Stephan
2013-01-01
In plants, two independent serine biosynthetic pathways, the photorespiratory and glycolytic phosphoserine (PS) pathways, have been postulated. Although the photorespiratory pathway is well characterized, little information is available on the function of the PS pathway in plants. Here, we present a detailed characterization of phosphoglycerate dehydrogenases (PGDHs) as components of the PS pathway in Arabidopsis thaliana. All PGDHs localize to plastids and possess similar kinetic properties, but they differ with respect to their sensitivity to serine feedback inhibition. Furthermore, analysis of pgdh1 and phosphoserine phosphatase mutants revealed an embryo-lethal phenotype and PGDH1-silenced lines were inhibited in growth. Metabolic analyses of PGDH1-silenced lines grown under ambient and high CO2 conditions indicate a direct link between PS biosynthesis and ammonium assimilation. In addition, we obtained several lines of evidence for an interconnection between PS and tryptophan biosynthesis, because the expression of PGDH1 and PHOSPHOSERINE AMINOTRANSFERASE1 is regulated by MYB51 and MYB34, two activators of tryptophan biosynthesis. Moreover, the concentration of tryptophan-derived glucosinolates and auxin were reduced in PGDH1-silenced plants. In essence, our results provide evidence for a vital function of PS biosynthesis for plant development and metabolism. PMID:24368794
What is the tryptophan kynurenine pathway and why is it important to neurotherapy?
Davis, Ian
2015-01-01
The kynurenine pathway has received increasing attention as its connection to inflammation, the immune system, and neurological conditions became more apparent. It is the primary route for tryptophan catabolism in the liver and the starting point for the synthesis of nicotinamide adenine dinucleotide in mammals. Dysregulation or overactivation of this pathway can lead to immune system activation and accumulation of potentially neurotoxic compounds. These aspects make the kynurenine pathway a promising target for therapeutic development to treat inflammation and some diseases with neurological aspects, especially in cancer patients undergoing chemotherapy. PMID:26004930
Some metabolic effects of bacterial endotoxins in salmonid fishes
Wedemeyer, G.A.; Ross, A.J.; Smith, L.
1968-01-01
Coho salmon (Oncorhynchus kisutch) and rainbow trout (Salmo gairdneri) were highly resistant to endotoxins from both Escherichia coli and Aeromonas salmonicida (a fish pathogen) at 14 and 18 C.This resistance was investigated with liver tryptophan pyrrolase, liver glycogen depletion in vitro, and the arterial blood pressure as indicators. Liver glycogen depletion was accelerated by both endotoxins, but there was no significant cardiovascular response or effect on liver tryptophan pyrrolase activity. Since the cardiovascular effects of histamine were also limited, it was concluded that the metabolic effects of bacterial endotoxins in salmonids are qualitatively different from those of the higher vertebrates.
Maltos, André Luiz; Portari, Guilherme Vannucchi; Moraes, Giselle Vanessa; Monteiro, Marina Casteli Rodrigues; Vannucchi, Helio; da Cunha, Daniel Ferreira
2015-06-01
Flaky paint dermatosis, characterized by extensive, often bilateral areas of flaking and pigmentation, mostly in sun unexposed areas is considered a feature of kwashiorkor in both children and adults, and must be differentiated from other dermatosis, including chapped and xerotica skin, and pellagra. In this case series we provide evidence that malnourished patients with flaky paint dermatosis and infection/inflammation shown laboratory data suggestive of indoleamine 2,3-dioxygenase (IDO) activation, besides decreased urinary excretion of N1-methylnicotinamide (N1 MN), a marker of pellagra. We study nine adult patients showing flaky paint dermatosis and clinical features of infection or inflammation, and increased serum C-reactive protein, characteristic of the presence of acute phase response syndrome. As a group, they had low or deficient urinary N1 MN excretion (0.52 ± 0.39 mg/g creatinine) compatible with pellagra. They also showed low serum tryptophan levels (<29 μmol/L) and a serum kynurenine/tryptophan ratio higher than 0.04, suggesting increased IDO expression and increase in the tryptophan oxidation. Findings suggest that some patients with flaky paint dermatosis showed laboratory data suggestive of IDO activation, besides decreased N1 MN urinary excretion. Taken together, the data support the idea that flaky paint dermatosis could be a skin manifestation of niacin deficiency. Copyright © 2015 Elsevier Inc. All rights reserved.
Valladares, Ricardo; Bojilova, Lora; Potts, Anastasia H; Cameron, Evan; Gardner, Christopher; Lorca, Graciela; Gonzalez, Claudio F
2013-04-01
In our previous work, we found that feeding Lactobacillus johnsonii to BioBreeding diabetes-prone (BBDP) rats decreased the incidence of diabetes development. The aim of this study was to investigate host pathways affected by L. johnsonii, with specific focus on the rate-limiting enzyme of tryptophan catabolism, indoleamine 2,3-dioxygenase (IDO). Suspensions of L. johnsonii or an equal volume of vehicle were orally administered to BBDP rats. Tissue IDO was investigated using quantitative RT-PCR and Western blot, whereas tryptophan, kynurenine, and 5-hydroxytryptamine (5-HT) concentrations were quantified by HPLC and ELISA. IDO activity was also investigated using L. johnsonii culture cell-free supernatant (CFS) with affinity-purified IDO and HT-29 intestinal epithelial cells. L. johnsonii feeding resulted in a 17% reduction in serum kynurenine compared with that in vehicle-fed controls, correlating with a 1.4-fold elevation in 5-HT levels. H₂O₂ produced by L. johnsonii abolished IDO activity in vitro, and L. johnsonii feeding resulted in a 3.9-fold increase in ileum lumen H₂O₂. L. johnsonii CFS significantly reduced IDO activity in HT-29 intestinal epithelial cells (47% reduction) compared with that in vehicle-treated controls, an effect abolished by catalase treatment. These data support the role of H₂O₂ in commensal bacteria-host interactions and highlight the influence of commensal bacteria-derived H₂O₂ on host physiology.
Basu, S; Mandal, C; Allen, A K
1988-01-01
A unique sialic acid-binding lectin, achatininH (ATNH) was purified in single step from the haemolymph of the snail Achatina fulica by affinity chromatography on sheep submaxillary-gland mucin coupled to Sepharose 4B. The homogeneity was checked by alkaline gel electrophoresis, immunodiffusion and immunoelectrophoresis. Amino acid analysis showed that the lectin has a fairly high content of acidic amino acid residues (22% of the total). About 1.3% of the residues are half-cystine. The glycoprotein contains 21% carbohydrate. The unusually high content of xylose (6%) and fucose (2.7%) in this snail lectin is quite interesting. The protein was subjected to various chemical modifications in order to detect the amino acid residues and carbohydrate residues present in its binding sites. Modification of tyrosine and arginine residues did not affect the binding activity of ATNH; however, modification of tryptophan and histidine residues led to a complete loss of its biological activity. A marked decrease in the fluorescence emission was found as the tryptophan residues of ATNH were modified. The c.d. data showed the presence of an identical type of conformation in the native and modified agglutinin. The modification of lysine and carboxy residues partially diminished the biological activity. The activity was completely lost after a beta-elimination reaction, indicating that the sugars are O-glycosidically linked to the glycoprotein's protein moiety. This result confirms that the carbohydrate moiety also plays an important role in the agglutination property of this lectin. Images Fig. 3. PMID:3140796
Cloning and characterization of the rat HIF-1 alpha prolyl-4-hydroxylase-1 gene.
Cobb, Ronald R; McClary, John; Manzana, Warren; Finster, Silke; Larsen, Brent; Blasko, Eric; Pearson, Jennifer; Biancalana, Sara; Kauser, Katalin; Bringmann, Peter; Light, David R; Schirm, Sabine
2005-08-01
Prolyl-4-hydroxylase domain-containing enzymes (PHDs) mediate the oxygen-dependent regulation of the heterodimeric transcription factor hypoxia-inducible factor-1 (HIF-1). Under normoxic conditions, one of the subunits of HIF-1, HIF-1alpha, is hydroxylated on specific proline residues to target HIF-1alpha for degradation by the ubiquitin-proteasome pathway. Under hypoxic conditions, the hydroxylation by the PHDs is attenuated by lack of the oxygen substrate, allowing HIF-1 to accumulate, translocate to the nucleus, and mediate HIF-mediated gene transcription. In several mammalian species including humans, three PHDs have been identified. We report here the cloning of a full-length rat cDNA that is highly homologous to the human and murine PHD-1 enzymes and encodes a protein that is 416 amino acids long. Both cDNA and protein are widely expressed in rat tissues and cell types. We demonstrate that purified and crude baculovirus-expressed rat PHD-1 exhibits HIF-1alpha specific prolyl hydroxylase activity with similar substrate affinities and is comparable to human PHD-1 protein.
Production of hydroxylated fatty acids in genetically modified plants
Somerville, Chris; Broun, Pierre; van de Loo, Frank
2001-01-01
This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants.
Ginsberg, S D; Hof, P R; Young, W G; Morrison, J H
1993-01-22
The distribution of noradrenergic processes within the hypothalamus of rhesus monkeys (Macaca mulatta) was examined by immunohistochemistry with an antibody against dopamine-beta-hydroxylase. The results revealed that the pattern of dopamine-beta-hydroxylase immunoreactivity varied systematically throughout the rhesus monkey hypothalamus. Extremely high densities of dopamine-beta-hydroxylase-immunoreactive processes were observed in the paraventricular and supraoptic nuclei, while relatively lower levels were found in the arcuate and dorsomedial nuclei and in the medial preoptic, perifornical, and suprachiasmatic areas. Moderate levels of dopamine-beta-hydroxylase immunoreactivity were found throughout the lateral hypothalamic area and in the internal lamina of the median eminence. Very few immunoreactive processes were found in the ventromedial nucleus or in the mammillary complex. Other midline diencephalic structures were found to have high densities of dopamine-beta-hydroxylase immunoreactivity, including the paraventricular nucleus of the thalamus and a discrete subregion of nucleus reuniens, the magnocellular subfascicular nucleus. A moderate density of dopamine-beta-hydroxylase immunoreactive processes were found in the rhomboid nucleus and zona incerta whereas little dopamine-beta-hydroxylase immunoreactivity was found in the fields of Forel, nucleus reuniens, or subthalamic nucleus. The differential distribution of dopamine-beta-hydroxylase-immunoreactive processes may reflect a potential role of norepinephrine as a regulator of a variety of functions associated with the nuclei that are most heavily innervated, e.g., neuroendocrine release from the paraventricular and supraoptic nuclei, and gonadotropin release from the medial preoptic area and mediobasal hypothalamus. Additionally, quantitative analysis of dopamine-beta-hydroxylase-immunoreactive varicosities was performed on a laser scanning microscope in both magnocellular and parvicellular regions of the paraventricular nucleus of the hypothalamus. The methodology employed in this study allowed for the high resolution of immunoreactive profiles through the volume of tissue being analyzed, and was more accurate than conventional light microscopy in terms of varicosity quantification. Quantitatively, a significant difference in the density of dopamine-beta-hydroxylase-immunoreactive varicosities was found between magnocellular and parvicellular regions, suggesting that parvicellular neurons received a denser noradrenergic input. These differential patterns may reflect an important functional role for norepinephrine in the regulation of anterior pituitary secretion through the hypothalamic-pituitary-adrenal stress axis.
Inhibition of hormonal and behavioral effects of stress by tryptophan in rats.
Gul, Sumera; Saleem, Darakhshan; Haleem, Muhammad A; Haleem, Darakhshan Jabeen
2017-11-03
Stress in known to alter hormonal systems. Pharmacological doses of tryptophan, the essential amino acid precursor of serotonin, increase circulating leptin and decrease ghrelin in normal healthy adults. Because systemically injected leptin inhibits stress-induced behavioral deficits and systemically injected serotonin modulates leptin release from the adipocytes, we used tryptophan as a pharmacological tool to modulate hormonal and behavioral responses in unstressed and stressed rats. Leptin, ghrelin, serotonin, tryptophan, and behavior were studied in unstressed and stressed rats following oral administration of 0, 100, 200, and 300 mg/kg of tryptophan. Following oral administration of tryptophan at a dose of 300 mg/kg, circulating levels of serotonin and leptin increased and those of ghrelin decreased in unstressed animals. No effect occurred on 24-hours cumulative food intake and elevated plus maze performance. Exposure to 2 hours immobilization stress decreased 24 hours cumulative food intake and impaired performance in elevated plus maze monitored next day. Serum serotonin decreased, leptin increased, and no effect occurred on ghrelin. Stress effects on serotonin, leptin, food intake, and elevated plus maze performance did not occur in tryptophan-pretreated animals. Tryptophan-induced decreases of ghrelin also did not occur in stressed animals. The findings show an important role of serum serotonin, leptin, and ghrelin in responses to stress and suggest that the essential amino acid tryptophan can improve therapeutics in stress-induced hormonal and behavioral disorders.
Haleem, D J; Yasmeen, A; Haleem, M A; Zafar, A
1995-01-01
Caffeine injected at doses of 20, 40 and 80 mg/kg increased brain levels of tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) in rat brain. In view of a possible role of 5-HT in caffeine-induced depression the effects of repeated administration of high doses of caffeine on brain 5-HT metabolism are investigated in rats. Caffeine was injected at doses of 80 mg/kg daily for five days. Control animals were injected with saline daily for five days. On the 6th day caffeine (80 mg/kg) injected to 5 day saline injected rats increased brain levels of tryptophan, 5-HT and 5-HIAA. Plasma total tryptophan levels were not affected and free tryptophan increased. Brain levels of 5-HT and 5-HIAA but not tryptophan decreased in 5 day caffeine injected rats injected with saline on the 6th day. Plasma total and free tryptophan were not altered in these rats. Caffeine-induced increases of brain tryptophan but not 5-HT and 5-HIAA were greater in 5 day caffeine than 5 day saline injected rats. The findings are discussed as repeated caffeine administration producing adaptive changes in the serotonergic neurons to decrease the conversion of tryptophan to 5-HT and this may precipitate depression particularly in conditions of caffeine withdrawal.
Vit, Allegra; Misson, Laëtitia; Blankenfeldt, Wulf; Seebeck, Florian P
2015-01-02
Ergothioneine is an N-α-trimethyl-2-thiohistidine derivative that occurs in human, plant, fungal, and bacterial cells. Biosynthesis of this redox-active betaine starts with trimethylation of the α-amino group of histidine. The three consecutive methyl transfers are catalyzed by the S-adenosylmethionine-dependent methyltransferase EgtD. Three crystal structures of this enzyme in the absence and in the presence of N-α-dimethylhistidine and S-adenosylhomocysteine implicate a preorganized array of hydrophilic interactions as the determinants for substrate specificity and apparent processivity. We identified two active site mutations that change the substrate specificity of EgtD 10(7)-fold and transform the histidine-methyltransferase into a proficient tryptophan-methyltransferase. Finally, a genomic search for EgtD homologues in fungal genomes revealed tyrosine and tryptophan trimethylation activity as a frequent trait in ascomycetous and basidomycetous fungi. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sordillo, Laura A.; Sordillo, Peter P.; Budansky, Yury; Pu, Yang; Alfano, Robert R.
2014-12-01
The correlation between histologic grade, an increasingly important measure of prognosis for patients with breast cancer, and tryptophan levels from tissues of 15 breast carcinoma patients was investigated. Changes in the relative content of key native organic biomolecule tryptophan were seen from the fluorescence spectra of cancerous and paired normal tissues with excitation wavelengths of 280 and 300 nm. Due to a large spectral overlap and matching excitation-emission spectra, fluorescence resonance energy transfer from tryptophan-donor to reduced nicotinamide adenine dinucleotides-acceptor was noted. We used the ratios of fluorescence intensities at their spectral emission peaks, or spectral fingerprint peaks, at 340, 440, and 460 nm. Higher ratios correlated strongly with high histologic grade, while lower-grade tumors had low ratios. Large tumor size also correlated with high ratios, while the number of lymph node metastases, a major factor in staging, was not correlated with tryptophan levels. High histologic grade correlates strongly with increased content of tryptophan in breast cancer tissues and suggests that measurement of tryptophan content may be useful as a part of the evaluation of these patients.
Chromatographic analysis of tryptophan metabolites
Sadok, Ilona; Gamian, Andrzej
2017-01-01
The kynurenine pathway generates multiple tryptophan metabolites called collectively kynurenines and leads to formation of the enzyme cofactor nicotinamide adenine dinucleotide. The first step in this pathway is tryptophan degradation, initiated by the rate‐limiting enzymes indoleamine 2,3‐dioxygenase, or tryptophan 2,3‐dioxygenase, depending on the tissue. The balanced kynurenine metabolism, which has been a subject of multiple studies in last decades, plays an important role in several physiological and pathological conditions such as infections, autoimmunity, neurological disorders, cancer, cataracts, as well as pregnancy. Understanding the regulation of tryptophan depletion provide novel diagnostic and treatment opportunities, however it requires reliable methods for quantification of kynurenines in biological samples with complex composition (body fluids, tissues, or cells). Trace concentrations, interference of sample components, and instability of some tryptophan metabolites need to be addressed using analytical methods. The novel separation approaches and optimized extraction protocols help to overcome difficulties in analyzing kynurenines within the complex tissue material. Recent developments in chromatography coupled with mass spectrometry provide new opportunity for quantification of tryptophan and its degradation products in various biological samples. In this review, we present current accomplishments in the chromatographic methodologies proposed for detection of tryptophan metabolites and provide a guide for choosing the optimal approach. PMID:28590049
NASA Astrophysics Data System (ADS)
Pishchugin, F. V.; Tuleberdiev, I. T.
2017-10-01
The kinetics and mechanism of interaction between pyridoxal and L-tryptophan, D-tryptophan, and their derivatives are studied. It is found that condensation reactions proceed via three kinetically distinguishable stages: (1) the rapid intraplanar addition of the NH2 groups of the amino acids to pyridoxal with the formation of amino alcohols; (2) the rotational isomerism of amino alcohol fragments with their subsequent dehydration and the formation of a Schiff base with a specific configuration; (3) the abstraction of α-hydrogen in the product of condensation of pyridoxal with L-tryptophan, or the abstraction of CO2 in the product of condensation of pyridoxal with D-tryptophan with the formation of quinoid structures, hydrolysis of which results in the preparation of pyridoxamine and keto acid or pyridoxal and tryptamine, respectively. Schiff bases resistant to further chemical transformations are formed in the reaction with tryptophan methyl ester.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gan, L.S.L.; Acebo, A.L.; Alworth, W.L.
The preparation of 1-ethynylpyrene (EP) by incubation of EP with liver microsomes in the presence of NADPH yields fluorescent products briefly. Addition of microsomes restores the original rate. The metabolism of EP is initially more rapid in microsomes from 5,6-benzoflavone- (BF) pretreated rats than in those from phenobarbital (PB) pretreated rats or controls. Ep inhibits the hydroxylation of benzo(a)pyrene (BP) by liver microsomes. Ep more effectively inhibits the oxidation of BP in liver microsomes from BF rats than from PB rats or from controls. The inhibition of BP hydroxylation activity due to EP is dependent upon NADPH and is apparentlymore » irreversible. Kinetic analyses show that the inhibition of BP hydroxylation is due to loss of the activity by a process that is first order in EP and that reaches a limiting value at infinite EP concentrations. A self-catalyzed inhibition of the cytochrome P-450 dependent BP hydroxylation may occur in the presence of EP. Incubation with EP under conditions that result in loss of BP hydroxylase activity in microsomes from BF rats and 66% of the activity from PB rats causes the loss of 6 and 12% of the cytochrome P-450, respectively. Thus the loss of P-450 content is an insensitive measure of the effect of this inhibitor upon this cytochrome P-450 dependent enzyme activity. Selectivity of the loss of P-450 due to the incubation of the different microsomal preparations with EP is observed to be different than the selectivity for loss of BP hydroxylase activity. It is proposed that the inhibition of cytochrome P-450 dependent enzymes by alkynes need not involve heme alkylation and a resulting loss of P-450 content. In vivo EP does not cause a significant change in the cytochrome P-450 content in the microsomes isolated, or result in the change in BP hydroxylation.« less
Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase.
Selak, Mary A; Armour, Sean M; MacKenzie, Elaine D; Boulahbel, Houda; Watson, David G; Mansfield, Kyle D; Pan, Yi; Simon, M Celeste; Thompson, Craig B; Gottlieb, Eyal
2005-01-01
Several mitochondrial proteins are tumor suppressors. These include succinate dehydrogenase (SDH) and fumarate hydratase, both enzymes of the tricarboxylic acid (TCA) cycle. However, to date, the mechanisms by which defects in the TCA cycle contribute to tumor formation have not been elucidated. Here we describe a mitochondrion-to-cytosol signaling pathway that links mitochondrial dysfunction to oncogenic events: succinate, which accumulates as a result of SDH inhibition, inhibits HIF-alpha prolyl hydroxylases in the cytosol, leading to stabilization and activation of HIF-1alpha. These results suggest a mechanistic link between SDH mutations and HIF-1alpha induction, providing an explanation for the highly vascular tumors that develop in the absence of VHL mutations.
Boucher, Eric; Provost, Pierre R; Tremblay, Yves
2014-03-01
Glucocorticoids exert recognized positive effects on lung development. The genes involved in the classical pathway of glucocorticoid synthesis normally occurring in adrenals were found to be expressed on gestation day (GD) 15.5 in the developing mouse lung. Recently, expression of two of these genes was also detected on GD 17.5 suggesting a more complex temporal regulation than previously expected. Here, we deepen the knowledge on expression of "adrenal" glucocorticoid synthesis genes in the mouse lung during the perinatal period and we also study expression of the gene encoding for the steroid inactivating enzyme 20α-hydroxysteroid dehydrogenase (20α-HSD). We performed an ontogenic study of P450scc, 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase 1 (3β-HSD1), 21-hydroxylase, 11β-hydroxylase, 11β-HSD1, and 11β-HSD2 expression up to post natal day (PN) 15. The substrate (progesterone) and the product (deoxycorticosterone) of 21-hydroxylase are substrates of 20α-HSD, thus 20α-HSD (Akr1c18) gene expression was investigated. In lung samples collected between GD 15.5 and PN 15, 11β-hydroxylase was only detected on GD 15.5. In contrast, all the other tested genes were expressed throughout the analyzed period with different temporal expression patterns. P450scc, 21-hydroxylase, 20α-HSD and 11β-HSD2 mRNA levels increased after birth with different patterns including an increase from PN 3 with a possible sex difference for 21-hydroxylase mRNA. Also, the 21-hydroxylase protein was observed by Western blot in perinatal lungs with higher levels after birth. Progesterone is present at high levels during gestation and the product of 21-hydroxylase, deoxycorticosterone, can bind the glucocorticoid receptor with an affinity close to that of corticosterone. Detection of 21-hydroxylase at the protein level during antenatal lung development is the first evidence that the adrenal-like glucocorticoid synthesis pathway detected during lung development has the machinery to produce glucocorticoids in the fetal lung. Glucocorticoids from lung 21-hydroxylase appear to modulate lung ontogenesis through paracrine/intracrine actions.
Hypothalamic digoxin, hemispheric chemical dominance, and sleep.
Kurup, Ravi Kumar; Kurup, Parameswara Achutha
2003-04-01
The isoprenoid path way produces endogenous digoxin, a substance that can regulate neurotransmitter and amino acid transport. Digoxin synthesis and neurotransmitter patterns were assessed in individuals with chronic insomnia. The patterns were compared in those with right hemispheric and left hemispheric dominance. The activity of HMG GoA reductase and serum levels of digoxin, magnesium, tryptophan catabolites, and tyrosine catabolites were measured in individuals with chronic insomnia and in individuals with differing hemispheric dominance. Digoxin synthesis was increased with upregulated tryptophan catabolism (increased levels of serotonin, strychnine, and nicotine), and downregulated tyrosine catabolism (decreased levels of dopamine, noradrenaline, and morphine) in those with chronic insomnia and right hemispheric chemical dominance. Digoxin synthesis was reduced with downregulated tryptophan catabolism (decreased levels of serotonin, strychnine, and nicotine) and upregulated tyrosine catabolism (increased levels of dopamine, noradrenaline, and morphine) in those with normal sleep patterns and left hemispheric chemical dominance. Hypothalamic digoxin plays a central role in the regulation of sleep behavior. Hemispheric chemical dominance in relation to digoxin status is also crucial.
Effect of N-Terminal Acylation on the Activity of Myostatin Inhibitory Peptides.
Takayama, Kentaro; Nakamura, Akari; Rentier, Cédric; Mino, Yusaku; Asari, Tomo; Saga, Yusuke; Taguchi, Akihiro; Yakushiji, Fumika; Hayashi, Yoshio
2016-04-19
Inhibition of myostatin, which negatively regulates skeletal muscle growth, is a promising strategy for the treatment of muscle atrophic disorders, such as muscular dystrophy, cachexia and sarcopenia. Recently, we identified peptide A (H-WRQNTRYSRIEAIKIQILSKLRL-NH2 ), the 23-amino-acid minimum myostatin inhibitory peptide derived from mouse myostatin prodomain, and highlighted the importance of its N-terminal tryptophan residue for the effective inhibition. In this study, we synthesized a series of acylated peptide derivatives focused on the tryptophan residue to develop potent myostatin inhibitors. As a result of the investigation, a more potent derivative of peptide A was successfully identified in which the N-terminal tryptophan residue is replaced with a 2-naphthyloxyacetyl moiety to give an inhibitory peptide three times (1.19±0.11 μm) more potent than parent peptide A (3.53±0.25 μm). This peptide could prove useful as a new starting point for the development of improved inhibitory peptides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dawood, Shazia; Zarina, Shamshad; Bano, Samina
2014-09-01
Tryptophan 2, 3-dioxygenase (TDO) a heme containing enzyme found in mammalian liver is responsible for tryptophan (Trp) catabolism. Trp is an essential amino acid that is degraded in to N-formylkynurenine by the action of TDO. The protein ligand interaction plays a significant role in structural based drug designing. The current study illustrates the binding of established antidepressants (ADs) against TDO enzyme using in-silico docking studies. For this purpose, Fluoxetine, Paroxetine, Sertraline, Fluvoxamine, Seproxetine, Citalopram, Moclobamide, Hyperforin and Amoxepine were selected. In-silico docking studies were carried out using Molegro Virtual Docker (MVD) software. Docking results show that all ADs fit well in the active site of TDO moreover Hyperforin and Paroxetine exhibited high docking scores of -152.484k cal/mol and -139.706k cal/mol, respectively. It is concluded that Hyperforin and Paroxetine are possible lead molecules because of their high docking scores as compared to other ADs examined. Therefore, these two ADs stand as potent inhibitors of TDO enzyme.
Soriano, M A; Justicia, C; Ferrer, I; Rodríguez-Farré, E; Planas, A M
1997-01-01
Dopaminergic neurons of the substantia nigra pars compacta were examined in the rat brain following striatal infarction subsequent to transient focal cerebral ischemia. Rats had the middle cerebral artery occluded for 2 h or were sham-operated, and tyrosine hydroxylase immunoreactivity was evaluated by Western blot and immunohistochemistry at different times ranging from 1 to 60 days after ischemia. The number of tyrosine hydroxylase-immunoreactive cells in the substantia nigra pars compacta was counted under the light microscope and compared to that in the contralateral side and controls. No changes of tyrosine hydroxylase immunoreactivity were detected in the ipsilateral versus the contralateral substantia nigra of sham-operated rats or 1 day after ischemia. However, a statistically significant reduction of tyrosine hydroxylase-immunoreactive cells became apparent in the ipsilateral compared with the contralateral substantia nigra at 7 and 14 days after ischemia. This reduction showed a clear recovery at 30 days after ischemia, and no signs of difference between the ipsilateral and the contralateral side were apparent by 60 days. Therefore, the reduction of tyrosine hydroxylase immunoreactivity in the ipsilateral substantia nigra was only transiently seen from 1 to 2 weeks following ischemia. The observed loss of tyrosine hydroxylase was not accompanied by signs of cell death or gliosis in the ipsilateral pars compacta. The present results show a transitory reduction of tyrosine hydroxylase immunoreactivity in the ipsilateral substantia nigra pars compacta after focal ischemia and suggest that striatal infarction causes a transient deficit of dopaminergic function.
Shak, S; Reich, N O; Goldstein, I M; Ortiz de Montellano, P R
1985-10-25
Human polymorphonuclear leukocytes (PMN) not only generate and respond to leukotriene B4 (LTB4), but also catabolize this mediator of inflammation rapidly and specifically by omega-oxidation (probably due to the action of a cytochrome P-450 enzyme). To develop pharmacologically useful inhibitors of the LTB4 omega-hydroxylase in human PMN, we devised a general scheme for synthesizing terminal acetylenic fatty acids based on the "acetylenic zipper" reaction. We found that the LTB4 omega-hydroxylase in intact PMN and in PMN sonicates is inactivated in a concentration-dependent fashion by terminal acetylenic analogues of lauric, palmitic, and stearic acids (i.e. 11-dodecynoic, 15-hexadecynoic, and 17-octadecynoic acids). Consistent with a suicidal process, inactivation of the LTB4 omega-hydroxylase requires molecular oxygen and NADPH, is time-dependent, and follows pseudo-first-order kinetics. Inactivation of the omega-hydroxylase by acetylenic fatty acids also is dependent on the terminal acetylenic moiety and the carbon chain length. Saturated fatty acids lacking a terminal acetylenic moiety do not inactivate the omega-hydroxylase. In addition, the two long-chain (C16, C18) acetylenic fatty acids inactivate the omega-hydroxylase at much lower concentrations (less than 5.0 microM) than those required for inactivation by the short-chain (C12) terminal acetylenic fatty acid (100 microM). Potent suicidal inhibitors of the LTB4 omega-hydroxylase in human PMN will help elucidate the roles played by LTB4 and its omega-oxidation products in regulating PMN function and in mediating inflammation.
Immunological detection of phenylalanine hydroxylase protein in Drosophila melanogaster.
Silva, F J; Bel, Y; Botella, L M; Cotton, R G; Ferré, J
1992-01-01
A monoclonal antibody raised against monkey liver phenylalanine hydroxylase (PAH) has been used to detect this protein in Drosophila melanogaster. A cross-reacting material (CRM) band of apparent molecular mass 50-52 kDa, equivalent to that deduced for the Drosophila melanogaster PAH protein based on the pah gene cDNA sequence, has been detected. This CRM was analysed throughout development and showed an equivalent pattern to that reported for PAH activity in this insect, with maxima at pupariation and at pharate adult formation. Distribution of this CRM in larval tissues, the haemolymph and the adult body is mainly restricted to the larval fat body and the adult head. Demonstration of this CRM as the PAH protein comes from the correlation between the decreased PAH enzyme activities of two mutant strains and their decreased amounts of CRM by Western blotting. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:1417795
Dang, Thu‐Thuy T.; Franke, Jakob; Tatsis, Evangelos
2017-01-01
Abstract Plants create tremendous chemical diversity from a single biosynthetic intermediate. In plant‐derived ajmalan alkaloid pathways, the biosynthetic intermediate vomilenine can be transformed into the anti‐arrhythmic compound ajmaline, or alternatively, can isomerize to form perakine, an alkaloid with a structurally distinct scaffold. Here we report the discovery and characterization of vinorine hydroxylase, a cytochrome P450 enzyme that hydroxylates vinorine to form vomilenine, which was found to exist as a mixture of rapidly interconverting epimers. Surprisingly, this cytochrome P450 also catalyzes the non‐oxidative isomerization of the ajmaline precursor vomilenine to perakine. This unusual dual catalytic activity of vinorine hydroxylase thereby provides a control mechanism for the bifurcation of these alkaloid pathway branches. This discovery highlights the unusual catalytic functionality that has evolved in plant pathways. PMID:28654178
Dang, Thu-Thuy T; Franke, Jakob; Tatsis, Evangelos; O'Connor, Sarah E
2017-08-01
Plants create tremendous chemical diversity from a single biosynthetic intermediate. In plant-derived ajmalan alkaloid pathways, the biosynthetic intermediate vomilenine can be transformed into the anti-arrhythmic compound ajmaline, or alternatively, can isomerize to form perakine, an alkaloid with a structurally distinct scaffold. Here we report the discovery and characterization of vinorine hydroxylase, a cytochrome P450 enzyme that hydroxylates vinorine to form vomilenine, which was found to exist as a mixture of rapidly interconverting epimers. Surprisingly, this cytochrome P450 also catalyzes the non-oxidative isomerization of the ajmaline precursor vomilenine to perakine. This unusual dual catalytic activity of vinorine hydroxylase thereby provides a control mechanism for the bifurcation of these alkaloid pathway branches. This discovery highlights the unusual catalytic functionality that has evolved in plant pathways. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Roberfroid, M; Poncelet, F; Lambotte-Vandepaer, M; Duverger-Van Bogaert, M; de Meester, C; Mercier, M
1978-01-01
Styrene is commonly used in western Europe for the manufacture of plastics suitable for packaging foodstuffs. This report demonstrates that, injected intraperitoneally at a dose as low as 10 mg/kg, styrene modifies the catalytic properties of aryl hydrocarbon hydroxylase by reducing its KM value. A similar effect is reported for two potent chemical carcinogens, 3-methylcholanthrene and benzo(a)pyrene. Ethylbenzene and benzo(e)pyrene and phenobarbital do not produce the same effect. Pretreatments of the rats with chemicals which modify aryl hydrocarbon hydroxylase also increase the capacity of the liver enzymes to activate benzopyrene to a mutagenic intermediate in vitro, as measured by the Ames test for mutagenicity. Exposure to both styrene and the other modifiers of the xenobiotic-metabolizing enzymes could thus influence the carcinogenic and toxic effects of chemicals which are activated by these enzymes. This hypothesis needs further investigation.
Lieberman, Harris R; Agarwal, Sanjiv; Fulgoni, Victor L
2016-12-01
Tryptophan is an indispensable amino acid and is a precursor of the neurotransmitter serotonin. Tryptophan metabolites, such as serotonin and melatonin, are thought to participate in the regulation of mood and sleep and tryptophan is used to treat insomnia, sleep apnea, and depression. This study examined the intake of tryptophan and its associations with biochemical, behavioral, sleep, and health and safety outcomes in adults in a secondary analysis of a large, publicly available database of the US population. Data from the NHANES 2001-2012 (n = 29,687) were used to determine daily intakes of tryptophan and its associations with biochemical markers of health- and safety-related outcomes, self-reported depression, and sleep-related variables. Data were adjusted for demographic factors and protein intake. Linear trends were computed across deciles of intake for each outcome variable, and P-trends were determined. The usual tryptophan intake by US adults was 826 mg/d, severalfold higher than the Estimated Average Requirement for adults of 4 mg/(kg ⋅ d) (∼280 mg/d for a 70-kg adult). Most health- and safety-related biochemical markers of liver function, kidney function, and carbohydrate metabolism were not significantly (P-trend > 0.05) associated with deciles of tryptophan intake and were well within normal ranges, even for individuals in the 99th percentile of intake. Usual intake deciles of tryptophan were inversely associated with self-reported depression measured by the Patient Health Questionnaire raw score (0-27; P-trend < 0.01) and calculated level (1 = no depression, 5 = severe depression; P-trend < 0.01) and were positively associated with self-reported sleep duration (P-trend = 0.02). Tryptophan intake was not related to most markers of liver function, kidney function or carbohydrate metabolism. Levels of tryptophan intake in the US population appear to be safe as shown by the absence of abnormal laboratory findings. Tryptophan intake was inversely associated with self-reported level of depression and positively associated with sleep duration. © 2016 American Society for Nutrition.
Rafii, Mahroukh; Elango, Rajavel; Ball, Ronald O; Pencharz, Paul B; Courtney-Martin, Glenda
2018-06-01
Maize is a staple food in many regions of the world, particularly in Africa and Latin America. However, maize protein is limiting in the indispensable amino acids lysine and tryptophan, making its protein of poor quality. The main objective of this study was to determine the protein quality of white African cornmeal by determining the metabolic availability (MA) of lysine and tryptophan. To determine the MA of lysine, 4 amounts of l-lysine (10, 13, 16, and 18 mg · kg-1 · d-1 totaling 28.6%, 37.1%, 45.7%, and 51.4% of the mean lysine requirement of 35 mg · kg-1 · d-1, respectively) were studied in 6 healthy young men in a repeated-measures design. To determine the MA of tryptophan, 4 amounts of l-tryptophan (0.5, 1, 1.5, and 2 mg · kg-1 · d-1 totaling 12.5%, 25.0%, 37.5%, and 50.0% of the mean tryptophan requirement of 4 mg · kg-1 · d-1, respectively) were studied in 7 healthy young men in a repeated-measures design. The MAs of lysine and tryptophan were estimated by comparing the indicator amino acid oxidation (IAAO) response with varying intakes of lysine and tryptophan in cooked white cornmeal compared with the IAAO response to l-lysine and l-tryptophan intakes in the reference protein (crystalline amino acid mixture patterned after egg protein) with the use of the slope ratio method. The MAs of lysine and tryptophan from African cooked white cornmeal were 71% and 80%, respectively. Our study provides a robust estimate of the availability of lysine and tryptophan in African white maize to healthy young men. This estimate provides a basis for postproduction fortification or supplementation of maize-based diets. This trial was registered at www.clinicaltrials.gov as NCT02402179.
Parajes, Silvia; Loidi, Lourdes; Reisch, Nicole; Dhir, Vivek; Rose, Ian T.; Hampel, Rainer; Quinkler, Marcus; Conway, Gerard S.; Castro-Feijóo, Lidia; Araujo-Vilar, David; Pombo, Manuel; Dominguez, Fernando; Williams, Emma L.; Cole, Trevor R.; Kirk, Jeremy M.; Kaminsky, Elke; Rumsby, Gill; Arlt, Wiebke; Krone, Nils
2010-01-01
Context: Steroid 11β-hydroxylase (CYP11B1) deficiency (11OHD) is the second most common form of congenital adrenal hyperplasia (CAH). Cases of nonclassic 11OHD are rare compared with the incidence of nonclassic 21-hydroxylase deficiency. Objective: The aim of the study was to analyze the functional consequences of seven novel CYP11B1 mutations (p.M88I, p.W116G, p.P159L, p.A165D, p.K254_A259del, p.R366C, p.T401A) found in three patients with classic 11OHD, two patients with nonclassic 11OHD, and three heterozygous carriers for CYP11B1 mutations. Methods: We conducted functional studies employing a COS7 cell in vitro expression system comparing wild-type (WT) and mutant CYP11B1 activity. Mutants were examined in a computational three-dimensional model of the CYP11B1 protein. Results: All mutations (p.W116G, p.A165D, p.K254_A259del) found in patients with classic 11OHD have absent or very little 11β-hydroxylase activity relative to WT. The mutations detected in patients with nonclassic 11OHD showed partial functional impairment, with one patient being homozygous (p.P159L; 25% of WT) and the other patient compound heterozygous for a novel mild p.M88I (40% of WT) and the known severe p.R383Q mutation. The two mutations detected in heterozygous carriers (p.R366C, p.T401A) also reduced CYP11B1 activity by 23 to 37%, respectively. Conclusion: Functional analysis results allow for the classification of novel CYP11B1 mutations as causative for classic and nonclassic 11OHD, respectively. Four partially inactivating mutations are predicted to result in nonclassic 11OHD. These findings double the number of mild CYP11B1 mutations previously described as associated with mild 11OHD. Our data are important to predict phenotypic expression and provide important information for clinical and genetic counseling in 11OHD. PMID:20089618
Changes in River Organic Matter Through Time.
NASA Astrophysics Data System (ADS)
Hudson, N.; Baker, A.; Ward, D.
2006-12-01
Samples of river water from central England were collected during the summer base-flow period. They were analysed for BOD and filtered at 1.2μm and 0.1μm increments to obtain i) the colloidal and dissolved, and ii) dissolved filter sterilized fractions. Each filtered fraction was plated up for microbiological cell counts and the agar plates and water samples were stored under a range of environmental conditions (4° C dark, 11° C light/ dark, 11° C dark, and 20° C dark) for 26 days. Absorbance, fluorescence, pH, conductivity and total organic carbon (TOC) were measured and colony forming units (CFU) counted on days 1, 2, 3, 4, 5, 12, 19 and 26. The fluorescence intensity was recorded for 5 commonly studied regions: protein like fluorescence, indicative of microbial activity, represented by the fluorescent amino acids tyrosine and tryptophan (which has two clear fluorescence regions) and humic and fulvic acids derived from the break down of terrestrial and aquatic plant material. Humic and fulvic-like fluorescence increased in all samples under all storage conditions suggesting that peaks A and C probably include a microbial element, either a product of the living community or as dead cell material in all fraction sizes including <0.1μm. Tryptophan and tyrosine-like fluorescence intensities demonstrated less clear trends which may be reflective of the intrinsic variation in natural samples. Tryptophan-like fluorescence generally decreased or showed minimal change, except in samples exposed to light in which an increase was observed in line with algal growth. A decrease in intensity may relate to the use of the tryptophan-like material as a microbial substrate. The increase in tryptophan-like fluorescence intensity suggests that this fluorescent material is being produced, either by algae, or bacterial activity associated with algal growth. It may also occur as a result of changing water chemistry causing a change in molecular conformation, and resulting fluorescence, as an increase in pH was also observed in these samples. This work illustrates the dynamic character of river organic matter within a timescale and under conditions that are representative of the natural system.
Introduction of a unique tryptophan residue into various positions of Bacillus licheniformis DnaK.
Chen, Bo-En; Lin, Min-Guan; Lo, Huei-Fen; Wang, Tzu-Fan; Chi, Meng-Chun; Lin, Long-Liu
2013-01-01
Site-directed mutagenesis together with biochemical and biophysical techniques were used to probe effects of single-tryptophan-incorporated mutations on a bacterial molecular chaperone, Bacillus licheniformis DnaK (BlDnaK). Specifically, five phenylalanine residues (Phe(120), Phe(174), Phe(186), Phe(378) and Phe(396)) of BlDnaK were individually replaced by single tryptophans, thus creating site-specific probes for the fluorescence analysis of the protein. The steady-state ATPase activity for BlDnaK, F120W, F174W, F186W, F378W, and F396W was determined to be 76.01, 52.82, 25.32, 53.31, 58.84, and 47.53 nmol Pi/min/mg, respectively. Complementation test revealed that the single mutation at codons 120, 186, and 378 of the dnaK gene still allowed an Escherichia coli dnaK756-Ts strain to grow at a stringent temperature of 44°C. Simultaneous addition of co-chaperones and NR-peptide did not synergistically stimulate the ATPase activity of F174W and F396W, and these two proteins were unable to assist the refolding of GdnHCl-denatured luciferase. The heat-induced denaturation of all variants could be fitted adequately to a three-state model, in agreement with the observation for the wild-type protein. By CD spectral analysis, GdnHCl-induced unfolding transition for BlDnaK was 1.51 M corresponding to ΔG(N-U) of 1.69 kcal/mol; however, the transitions for mutant proteins were 1.07-1.55 M equivalent to ΔG(N-U) of 0.94-2.93 kcal/mol. The emission maximum of single-tryptophan-incorporated variants was in the range of 333.2-335.8 nm. Acrylamide quenching analysis showed that the mutant proteins had a dynamic quenching constant of 3.0-4.2 M(-1). Taken together, these results suggest that the molecular properties of BlDnaK have been significantly changed upon the individual replacement of selected phenylalanine residues by tryptophan. Copyright © 2012 Elsevier B.V. All rights reserved.
Hogenelst, Koen; Schoevers, Robert A; Aan Het Rot, Marije
2015-03-02
Individuals with a family history of depression show subtle abnormalities in the processing of social stimuli. This could negatively affect their interpersonal functioning and contribute to their depression risk. Repeated administration of the serotonin precursor tryptophan has previously been shown to increase agreeable behavior and reduce quarrelsome behavior in irritable people, who are also considered at risk for depression. To examine the effects of tryptophan on social functioning in individuals with a family history of depression, 40 men and women with at least one first-degree relative with depression received tryptophan (1g three times a day) and placebo for 14 days each in a double-blind crossover design and recorded their social behavior and mood during everyday interpersonal encounters. Participants also provided daily ratings of their positive and negative cognitions concerning their social functioning. Tryptophan improved mood. Unexpectedly, tryptophan increased quarrelsome behavior and reduced agreeable behavior, specifically during interactions at home. The behavioral effects of tryptophan were not moderated by mood or by the interaction partner. Negative social cognitions were lower when tryptophan was given second and lower during placebo when placebo was given second. Overall, tryptophan may not alter social behavior in individuals with a family history of depression as it does in irritable people. However, the behavioral effects of tryptophan at home might be seen as a way for individuals with a family history of depression to achieve more control. Over time, this may positively influence the way they feel and think about themselves in a social context. © The Author 2015. Published by Oxford University Press on behalf of CINP.
van Lee, Linde; Cai, Shirong; Loy, See Ling; Tham, Elaine K H; Yap, Fabian K P; Godfrey, Keith M; Gluckman, Peter D; Shek, Lynette P C; Teoh, Oon Hoe; Goh, Daniel Y T; Tan, Kok Hian; Chong, Yap Seng; Meaney, Michael J; Chen, Helen; Broekman, Birit F P; Chong, Mary F F
2018-01-01
Evidence suggests a relation between plasma tryptophan concentrations and sleep and mental well-being. As no studies have been performed in pregnant women, we studied the relation of plasma tryptophan concentrations during pregnancy with sleep quality, and mood during and after pregnancy. Pregnant women (n = 572) from the Growing Up in Singapore Towards healthy Outcomes study completed the Pittsburgh Sleep Quality Index (PSQI), the Edinburgh Postnatal Depression Scale (EPDS) and the State-Trait Anxiety Inventory (STAI) at 26-28 weeks gestation and three months post-delivery. Plasma tryptophan concentrations were measured at 26-28 weeks gestation. Poisson regressions estimated prevalence ratios (PR) for the association between tryptophan and poor sleep quality (PSQI global score > 5), probable antenatal depression (EPDS ≥ 15) and probable anxiety (STAI-state ≥ 41) were calculated adjusting for covariates. Mean plasma tryptophan concentrations was 48.0µmol/L (SD: 8.09). Higher plasma tryptophan concentrations were associated with a lower prevalence of antenatal poor sleep quality adjusting for covariates [PR: 0.88 (95% CI 0.80, 0.97) per 10µmol/L], especially in those participants who also suffered from anxiety symptoms [PR: 0.80 (95% CI 0.67, 0.95)]. No associations were observed between tryptophan concentrations during pregnancy and postnatal sleep quality or mental well-being. Subjective measures were used to assess sleep and mental well-being. We observed that higher plasma tryptophan concentrations were associated with a 12% lower prevalence of poor sleep quality during pregnancy, in particular among those with anxiety symptoms. These findings suggest the importance of having adequate tryptophan concentrations during pregnancy. Copyright © 2017 Elsevier B.V. All rights reserved.
Wu, Yue; Jiang, Zhensheng; Li, Zhihong; Gu, Jing; You, Qi-Dong; Zhang, Xiaojin
2018-06-01
As a gene associated with anemia, the erythropoiesis gene is physiologically expressed under hypoxia regulated by hypoxia-inducing factor-α (HIF-α). Thus, stabilizing HIF-α is a potent strategy to stimulate the expression and secretion of erythropoiesis. In this study we applied click chemistry to the discovery of HIF prolyl hydroxylase 2 (HIF-PHD2) inhibitors for the first time and a series of triazole compounds showed preferable inhibitory activity in fluorescence polarization assay. Of particular note was the orally active HIF-PHD inhibitor 15i (IC50 = 62.23 nM), which was almost ten times more active than the phase III drug FG-4592 (IC50 = 591.4 nM). Furthermore, it can upregulate the hemoglobin of cisplatin induced anemia mice (120 g/L) to normal levels (160 g/L) with no apparent toxicity observed in vivo. These results confirm that triazole compound 15i is a promising candidate for the treatment of renal anemia.