Sample records for tsar fdtd code

  1. Tools and techniques for estimating high intensity RF effects

    NASA Astrophysics Data System (ADS)

    Zacharias, Richard L.; Pennock, Steve T.; Poggio, Andrew J.; Ray, Scott L.

    1992-01-01

    Tools and techniques for estimating and measuring coupling and component disturbance for avionics and electronic controls are described. A finite-difference-time-domain (FD-TD) modeling code, TSAR, used to predict coupling is described. This code can quickly generate a mesh model to represent the test object. Some recent applications as well as the advantages and limitations of using such a code are described. Facilities and techniques for making low-power coupling measurements and for making direct injection test measurements of device disturbance are also described. Some scaling laws for coupling and device effects are presented. A method for extrapolating these low-power test results to high-power full-system effects are presented.

  2. CoreTSAR: Core Task-Size Adapting Runtime

    DOE PAGES

    Scogland, Thomas R. W.; Feng, Wu-chun; Rountree, Barry; ...

    2014-10-27

    Heterogeneity continues to increase at all levels of computing, with the rise of accelerators such as GPUs, FPGAs, and other co-processors into everything from desktops to supercomputers. As a consequence, efficiently managing such disparate resources has become increasingly complex. CoreTSAR seeks to reduce this complexity by adaptively worksharing parallel-loop regions across compute resources without requiring any transformation of the code within the loop. Lastly, our results show performance improvements of up to three-fold over a current state-of-the-art heterogeneous task scheduler as well as linear performance scaling from a single GPU to four GPUs for many codes. In addition, CoreTSAR demonstratesmore » a robust ability to adapt to both a variety of workloads and underlying system configurations.« less

  3. Finite difference time domain electromagnetic scattering from frequency-dependent lossy materials

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Beggs, John H.

    1991-01-01

    Four different FDTD computer codes and companion Radar Cross Section (RCS) conversion codes on magnetic media are submitted. A single three dimensional dispersive FDTD code for both dispersive dielectric and magnetic materials was developed, along with a user's manual. The extension of FDTD to more complicated materials was made. The code is efficient and is capable of modeling interesting radar targets using a modest computer workstation platform. RCS results for two different plate geometries are reported. The FDTD method was also extended to computing far zone time domain results in two dimensions. Also the capability to model nonlinear materials was incorporated into FDTD and validated.

  4. User's manual for three dimensional FDTD version B code for scattering from frequency-dependent dielectric materials

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.

    1992-01-01

    The Penn State Finite Difference Time Domain Electromagnetic Code Version B is a three dimensional numerical electromagnetic scattering code based upon the Finite Difference Time Domain Technique (FDTD). The supplied version of the code is one version of our current three dimensional FDTD code set. This manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into 14 sections: introduction, description of the FDTD method, operation, resource requirements, Version B code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file, a discussion of radar cross section computations, a discussion of some scattering results, a sample problem setup section, a new problem checklist, references and figure titles.

  5. UNIPIC code for simulations of high power microwave devices

    NASA Astrophysics Data System (ADS)

    Wang, Jianguo; Zhang, Dianhui; Liu, Chunliang; Li, Yongdong; Wang, Yue; Wang, Hongguang; Qiao, Hailiang; Li, Xiaoze

    2009-03-01

    In this paper, UNIPIC code, a new member in the family of fully electromagnetic particle-in-cell (PIC) codes for simulations of high power microwave (HPM) generation, is introduced. In the UNIPIC code, the electromagnetic fields are updated using the second-order, finite-difference time-domain (FDTD) method, and the particles are moved using the relativistic Newton-Lorentz force equation. The convolutional perfectly matched layer method is used to truncate the open boundaries of HPM devices. To model curved surfaces and avoid the time step reduction in the conformal-path FDTD method, CP weakly conditional-stable FDTD (WCS FDTD) method which combines the WCS FDTD and CP-FDTD methods, is implemented. UNIPIC is two-and-a-half dimensional, is written in the object-oriented C++ language, and can be run on a variety of platforms including WINDOWS, LINUX, and UNIX. Users can use the graphical user's interface to create the geometric structures of the simulated HPM devices, or input the old structures created before. Numerical experiments on some typical HPM devices by using the UNIPIC code are given. The results are compared to those obtained from some well-known PIC codes, which agree well with each other.

  6. User's manual for three dimensional FDTD version C code for scattering from frequency-independent dielectric and magnetic materials

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Version C is a three dimensional numerical electromagnetic scattering code based upon the Finite Difference Time Domain Technique (FDTD). The supplied version of the code is one version of our current three dimensional FDTD code set. This manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into fourteen sections: introduction, description of the FDTD method, operation, resource requirements, Version C code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file (COMMONC.FOR), a section briefly discussing Radar Cross Section (RCS) computations, a section discussing some scattering results, a sample problem setup section, a new problem checklist, references and figure titles.

  7. User's manual for three dimensional FDTD version D code for scattering from frequency-dependent dielectric and magnetic materials

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Version D is a three dimensional numerical electromagnetic scattering code based upon the Finite Difference Time Domain Technique (FDTD). The supplied version of the code is one version of our current three dimensional FDTD code set. This manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into fourteen sections: introduction, description of the FDTD method, operation, resource requirements, Version D code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file (COMMOND.FOR), a section briefly discussing Radar Cross Section (RCS) computations, a section discussing some scattering results, a sample problem setup section, a new problem checklist, references and figure titles.

  8. User's manual for three dimensional FDTD version A code for scattering from frequency-independent dielectric materials

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.

    1992-01-01

    The Penn State Finite Difference Time Domain (FDTD) Electromagnetic Scattering Code Version A is a three dimensional numerical electromagnetic scattering code based on the Finite Difference Time Domain technique. The supplied version of the code is one version of our current three dimensional FDTD code set. The manual provides a description of the code and the corresponding results for the default scattering problem. The manual is organized into 14 sections: introduction, description of the FDTD method, operation, resource requirements, Version A code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file (COMMONA.FOR), a section briefly discussing radar cross section (RCS) computations, a section discussing the scattering results, a sample problem setup section, a new problem checklist, references, and figure titles.

  9. User's manual for three dimensional FDTD version C code for scattering from frequency-independent dielectric and magnetic materials

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.

    1992-01-01

    The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Version C is a three-dimensional numerical electromagnetic scattering code based on the Finite Difference Time Domain (FDTD) technique. The supplied version of the code is one version of our current three-dimensional FDTD code set. The manual given here provides a description of the code and corresponding results for several scattering problems. The manual is organized into 14 sections: introduction, description of the FDTD method, operation, resource requirements, Version C code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file (COMMONC.FOR), a section briefly discussing radar cross section computations, a section discussing some scattering results, a new problem checklist, references, and figure titles.

  10. User's manual for three dimensional FDTD version B code for scattering from frequency-dependent dielectric materials

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Version B is a three dimensional numerical electromagnetic scattering code based upon the Finite Difference Time Domain Technique (FDTD). The supplied version of the code is one version of our current three dimensional FDTD code set. This manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into fourteen sections: introduction, description of the FDTD method, operation, resource requirements, Version B code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file (COMMONB.FOR), a section briefly discussing Radar Cross Section (RCS) computations, a section discussing some scattering results, a sample problem setup section, a new problem checklist, references and figure titles.

  11. Computational Electronics and Electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeFord, J.F.

    The Computational Electronics and Electromagnetics thrust area is a focal point for computer modeling activities in electronics and electromagnetics in the Electronics Engineering Department of Lawrence Livermore National Laboratory (LLNL). Traditionally, they have focused their efforts in technical areas of importance to existing and developing LLNL programs, and this continues to form the basis for much of their research. A relatively new and increasingly important emphasis for the thrust area is the formation of partnerships with industry and the application of their simulation technology and expertise to the solution of problems faced by industry. The activities of the thrust areamore » fall into three broad categories: (1) the development of theoretical and computational models of electronic and electromagnetic phenomena, (2) the development of useful and robust software tools based on these models, and (3) the application of these tools to programmatic and industrial problems. In FY-92, they worked on projects in all of the areas outlined above. The object of their work on numerical electromagnetic algorithms continues to be the improvement of time-domain algorithms for electromagnetic simulation on unstructured conforming grids. The thrust area is also investigating various technologies for conforming-grid mesh generation to simplify the application of their advanced field solvers to design problems involving complicated geometries. They are developing a major code suite based on the three-dimensional (3-D), conforming-grid, time-domain code DSI3D. They continue to maintain and distribute the 3-D, finite-difference time-domain (FDTD) code TSAR, which is installed at several dozen university, government, and industry sites.« less

  12. User's manual for three dimensional FDTD version D code for scattering from frequency-dependent dielectric and magnetic materials

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.

    1992-01-01

    The Penn State Finite Difference Time Domain Electromagnetic Scattering Code version D is a 3-D numerical electromagnetic scattering code based upon the finite difference time domain technique (FDTD). The manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into 14 sections: introduction; description of the FDTD method; operation; resource requirements; version D code capabilities; a brief description of the default scattering geometry; a brief description of each subroutine; a description of the include file; a section briefly discussing Radar Cross Section computations; a section discussing some scattering results; a sample problem setup section; a new problem checklist; references and figure titles. The FDTD technique models transient electromagnetic scattering and interactions with objects of arbitrary shape and/or material composition. In the FDTD method, Maxwell's curl equations are discretized in time-space and all derivatives (temporal and spatial) are approximated by central differences.

  13. The bHLH Transcription Factors TSAR1 and TSAR2 Regulate Triterpene Saponin Biosynthesis in Medicago truncatula.

    PubMed

    Mertens, Jan; Pollier, Jacob; Vanden Bossche, Robin; Lopez-Vidriero, Irene; Franco-Zorrilla, José Manuel; Goossens, Alain

    2016-01-01

    Plants respond to stresses by producing a broad spectrum of bioactive specialized metabolites. Hormonal elicitors, such as jasmonates, trigger a complex signaling circuit leading to the concerted activation of specific metabolic pathways. However, for many specialized metabolic pathways, the transcription factors involved remain unknown. Here, we report on two homologous jasmonate-inducible transcription factors of the basic helix-loop-helix family, TRITERPENE SAPONIN BIOSYNTHESIS ACTIVATING REGULATOR1 (TSAR1) and TSAR2, which direct triterpene saponin biosynthesis in Medicago truncatula. TSAR1 and TSAR2 are coregulated with and transactivate the genes encoding 3-HYDROXY-3-METHYLGLUTARYL-COENZYME A REDUCTASE1 (HMGR1) and MAKIBISHI1, the rate-limiting enzyme for triterpene biosynthesis and an E3 ubiquitin ligase that controls HMGR1 levels, respectively. Transactivation is mediated by direct binding of TSARs to the N-box in the promoter of HMGR1. In transient expression assays in tobacco (Nicotiana tabacum) protoplasts, TSAR1 and TSAR2 exhibit different patterns of transactivation of downstream triterpene saponin biosynthetic genes, hinting at distinct functionalities within the regulation of the pathway. Correspondingly, overexpression of TSAR1 or TSAR2 in M. truncatula hairy roots resulted in elevated transcript levels of known triterpene saponin biosynthetic genes and strongly increased the accumulation of triterpene saponins. TSAR2 overexpression specifically boosted hemolytic saponin biosynthesis, whereas TSAR1 overexpression primarily stimulated nonhemolytic soyasaponin biosynthesis. Both TSARs also activated all genes of the precursor mevalonate pathway but did not affect sterol biosynthetic genes, pointing to their specific role as regulators of specialized triterpene metabolism in M. truncatula. © 2016 American Society of Plant Biologists. All Rights Reserved.

  14. Implementation of the FDTD method in cylindrical coordinates for dispersive materials: Modal study of C-shaped nano-waveguides

    NASA Astrophysics Data System (ADS)

    kebci, Zahia; Belkhir, Abderrahmane; Mezeghrane, Abdelaziz; Lamrous, Omar; Baida, Fadi Issam

    2018-03-01

    The objective of this work is to develop a code based on the finite difference time domain method in cylindrical coordinates (CC-FDTD) that integrates the Drude Critical Points model (DCP) and to apply it in the study of a metallic C-shaped waveguide (CSWG). The integrated dispersion model allows an accurate description of noble metals in the optical range and working in cylindrical coordinates is necessary to bypass the staircase effect induced by a Cartesian mesh especially in the case of curved geometrical forms. The CC-FDTD code developed as a part of this work is more general than the Body-Of-Revolution-FDTD algorithm that can only handle structures exhibiting a complete cylindrical symmetry. A N-order CC-FDTD code is then derived and used to perform a parametric study of an infinitly-long CSWG for nano-optic applications. Propagation losses and dispersion diagrams are given for different geometrical parameters.

  15. User's manual for two dimensional FDTD version TEA and TMA codes for scattering from frequency-independent dielectic materials

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Versions TEA and TMA are two dimensional numerical electromagnetic scattering codes based upon the Finite Difference Time Domain Technique (FDTD) first proposed by Yee in 1966. The supplied version of the codes are two versions of our current two dimensional FDTD code set. This manual provides a description of the codes and corresponding results for the default scattering problem. The manual is organized into eleven sections: introduction, Version TEA and TMA code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include files (TEACOM.FOR TMACOM.FOR), a section briefly discussing scattering width computations, a section discussing the scattering results, a sample problem set section, a new problem checklist, references and figure titles.

  16. User's manual for two dimensional FDTD version TEA and TMA codes for scattering from frequency-independent dielectric materials

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Versions TEA and TMA are two dimensional electromagnetic scattering codes based on the Finite Difference Time Domain Technique (FDTD) first proposed by Yee in 1966. The supplied version of the codes are two versions of our current FDTD code set. This manual provides a description of the codes and corresponding results for the default scattering problem. The manual is organized into eleven sections: introduction, Version TEA and TMA code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include files (TEACOM.FOR TMACOM.FOR), a section briefly discussing scattering width computations, a section discussing the scattering results, a sample problem setup section, a new problem checklist, references, and figure titles.

  17. CUDA Fortran acceleration for the finite-difference time-domain method

    NASA Astrophysics Data System (ADS)

    Hadi, Mohammed F.; Esmaeili, Seyed A.

    2013-05-01

    A detailed description of programming the three-dimensional finite-difference time-domain (FDTD) method to run on graphical processing units (GPUs) using CUDA Fortran is presented. Two FDTD-to-CUDA thread-block mapping designs are investigated and their performances compared. Comparative assessment of trade-offs between GPU's shared memory and L1 cache is also discussed. This presentation is for the benefit of FDTD programmers who work exclusively with Fortran and are reluctant to port their codes to C in order to utilize GPU computing. The derived CUDA Fortran code is compared with an optimized CPU version that runs on a workstation-class CPU to present a realistic GPU to CPU run time comparison and thus help in making better informed investment decisions on FDTD code redesigns and equipment upgrades. All analyses are mirrored with CUDA C simulations to put in perspective the present state of CUDA Fortran development.

  18. User's manual for three dimensional FDTD version A code for scattering from frequency-independent dielectric materials

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    The Finite Difference Time Domain Electromagnetic Scattering Code Version A is a three dimensional numerical electromagnetic scattering code based upon the Finite Difference Time Domain Technique (FDTD). This manual provides a description of the code and corresponding results for the default scattering problem. In addition to the description, the operation, resource requirements, version A code capabilities, a description of each subroutine, a brief discussion of the radar cross section computations, and a discussion of the scattering results.

  19. Numerical simulation of electromagnetic waves in Schwarzschild space-time by finite difference time domain method and Green function method

    NASA Astrophysics Data System (ADS)

    Jia, Shouqing; La, Dongsheng; Ma, Xuelian

    2018-04-01

    The finite difference time domain (FDTD) algorithm and Green function algorithm are implemented into the numerical simulation of electromagnetic waves in Schwarzschild space-time. FDTD method in curved space-time is developed by filling the flat space-time with an equivalent medium. Green function in curved space-time is obtained by solving transport equations. Simulation results validate both the FDTD code and Green function code. The methods developed in this paper offer a tool to solve electromagnetic scattering problems.

  20. Using the TSAR electromagnetic modeling system

    NASA Astrophysics Data System (ADS)

    Pennock, S. T.; Laguna, G. W.

    1993-09-01

    A new user, upon receipt of the TSAR EM modeling system, may be overwhelmed by the number of software packages to learn and the number of manuals associated with those packages. This is a document to describe the creation of a simple TSAR model, beginning with an MGED solid and continuing the process through final results from TSAR. It is not intended to be a complete description of all the parts of the TSAR package. Rather, it is intended simply to touch on all the steps in the modeling process and to take a new user through the system from start to finish. There are six basic parts to the TSAR package. The first, MGED, is part of the BRL-CAD package and is used to create a solid model. The second part, ANASTASIA, is the program used to sample the solid model and create a finite-difference mesh. The third program, IMAGE, lets the user view the mesh itself and verify its accuracy. If everything about the mesh is correct, the process continues to the fourth step, SETUP-TSAR, which creates the parameter files for compiling TSAR and the input file for running a particular simulation. The fifth step is actually running TSAR, the field modeling program. Finally, the output from TSAR is placed into SIG, B2RAS or another program for post-processing and plotting. Each of these steps will be described below. The best way to learn to use the TSAR software is to actually create and run a simple test problem. As an example of how to use the TSAR package, let's create a sphere with a rectangular internal cavity, with conical and cylindrical penetrations connecting the outside to the inside, and find the electric field inside the cavity when the object is exposed to a Gaussian plane wave. We will begin with the solid modeling software, MGED, a part of the BRL-CAD modeling release.

  1. Using the TSAR Electromagnetic modeling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennock, S.T.; Laguna, G.W.

    1993-09-01

    A new user, upon receipt of the TSAR EM modeling system, may be overwhelmed by the number of software packages to learn and the number of manuals associated with those packages. This is a document to describe the creation of a simple TSAR model, beginning with an MGED solid and continuing the process through final results from TSAR. It is not intended to be a complete description of all the parts of the TSAR package. Rather, it is intended simply to touch on all the steps in the modeling process and to take a new user through the system frommore » start to finish. There are six basic parts to the TSAR package. The first, MGED, is part of the BRL-CAD package and is used to create a solid model. The second part, ANASTASIA, is the program used to sample the solid model and create a finite -- difference mesh. The third program, IMAGE, lets the user view the mesh itself and verify its accuracy. If everything about the mesh is correct, the process continues to the fourth step, SETUP-TSAR, which creates the parameter files for compiling TSAR and the input file for running a particular simulation. The fifth step is actually running TSAR, the field modeling program. Finally, the output from TSAR is placed into SIG, B2RAS or another program for post-processing and plotting. Each of these steps will be described below. The best way to learn to use the TSAR software is to actually create and run a simple test problem. As an example of how to use the TSAR package, let`s create a sphere with a rectangular internal cavity, with conical and cylindrical penetrations connecting the outside to the inside, and find the electric field inside the cavity when the object is exposed to a Gaussian plane wave. We will begin with the solid modeling software, MGED, a part of the BRL-CAD modeling release.« less

  2. Transportation statistics annual report 2000

    DOT National Transportation Integrated Search

    2001-01-01

    The Transportation Statistics Annual Report (TSAR) is a Congressionally mandated publication with wide distribution. The TSAR provides the most comprehensive overview of U.S. transportation that is done on an annual basis. TSAR examines the extent of...

  3. FDTD method for laser absorption in metals for large scale problems.

    PubMed

    Deng, Chun; Ki, Hyungson

    2013-10-21

    The FDTD method has been successfully used for many electromagnetic problems, but its application to laser material processing has been limited because even a several-millimeter domain requires a prohibitively large number of grids. In this article, we present a novel FDTD method for simulating large-scale laser beam absorption problems, especially for metals, by enlarging laser wavelength while maintaining the material's reflection characteristics. For validation purposes, the proposed method has been tested with in-house FDTD codes to simulate p-, s-, and circularly polarized 1.06 μm irradiation on Fe and Sn targets, and the simulation results are in good agreement with theoretical predictions.

  4. Accelerating three-dimensional FDTD calculations on GPU clusters for electromagnetic field simulation.

    PubMed

    Nagaoka, Tomoaki; Watanabe, Soichi

    2012-01-01

    Electromagnetic simulation with anatomically realistic computational human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the computational human model, we adapt three-dimensional FDTD code to a multi-GPU cluster environment with Compute Unified Device Architecture and Message Passing Interface. Our multi-GPU cluster system consists of three nodes. The seven GPU boards (NVIDIA Tesla C2070) are mounted on each node. We examined the performance of the FDTD calculation on multi-GPU cluster environment. We confirmed that the FDTD calculation on the multi-GPU clusters is faster than that on a multi-GPU (a single workstation), and we also found that the GPU cluster system calculate faster than a vector supercomputer. In addition, our GPU cluster system allowed us to perform the large-scale FDTD calculation because were able to use GPU memory of over 100 GB.

  5. FDTD-ANT User Manual

    NASA Technical Reports Server (NTRS)

    Zimmerman, Martin L.

    1995-01-01

    This manual explains the theory and operation of the finite-difference time domain code FDTD-ANT developed by Analex Corporation at the NASA Lewis Research Center in Cleveland, Ohio. This code can be used for solving electromagnetic problems that are electrically small or medium (on the order of 1 to 50 cubic wavelengths). Calculated parameters include transmission line impedance, relative effective permittivity, antenna input impedance, and far-field patterns in both the time and frequency domains. The maximum problem size may be adjusted according to the computer used. This code has been run on the DEC VAX and 486 PC's and on workstations such as the Sun Sparc and the IBM RS/6000.

  6. The electromagnetic modeling of thin apertures using the finite-difference time-domain technique

    NASA Technical Reports Server (NTRS)

    Demarest, Kenneth R.

    1987-01-01

    A technique which computes transient electromagnetic responses of narrow apertures in complex conducting scatterers was implemented as an extension of previously developed Finite-Difference Time-Domain (FDTD) computer codes. Although these apertures are narrow with respect to the wavelengths contained within the power spectrum of excitation, this technique does not require significantly more computer resources to attain the increased resolution at the apertures. In the report, an analytical technique which utilizes Babinet's principle to model the apertures is developed, and an FDTD computer code which utilizes this technique is described.

  7. Test of the FDTD accuracy in the analysis of the scattering resonances associated with high-Q whispering-gallery modes of a circular cylinder.

    PubMed

    Boriskin, Artem V; Boriskina, Svetlana V; Rolland, Anthony; Sauleau, Ronan; Nosich, Alexander I

    2008-05-01

    Our objective is the assessment of the accuracy of a conventional finite-difference time-domain (FDTD) code in the computation of the near- and far-field scattering characteristics of a circular dielectric cylinder. We excite the cylinder with an electric or magnetic line current and demonstrate the failure of the two-dimensional FDTD algorithm to accurately characterize the emission rate and the field patterns near high-Q whispering-gallery-mode resonances. This is proven by comparison with the exact series solutions. The computational errors in the emission rate are then studied at the resonances still detectable with FDTD, i.e., having Q-factors up to 10(3).

  8. Performance advantages of CPML over UPML absorbing boundary conditions in FDTD algorithm

    NASA Astrophysics Data System (ADS)

    Gvozdic, Branko D.; Djurdjevic, Dusan Z.

    2017-01-01

    Implementation of absorbing boundary condition (ABC) has a very important role in simulation performance and accuracy in finite difference time domain (FDTD) method. The perfectly matched layer (PML) is the most efficient type of ABC. The aim of this paper is to give detailed insight in and discussion of boundary conditions and hence to simplify the choice of PML used for termination of computational domain in FDTD method. In particular, we demonstrate that using the convolutional PML (CPML) has significant advantages in terms of implementation in FDTD method and reducing computer resources than using uniaxial PML (UPML). An extensive number of numerical experiments has been performed and results have shown that CPML is more efficient in electromagnetic waves absorption. Numerical code is prepared, several problems are analyzed and relative error is calculated and presented.

  9. Multi-GPU accelerated three-dimensional FDTD method for electromagnetic simulation.

    PubMed

    Nagaoka, Tomoaki; Watanabe, Soichi

    2011-01-01

    Numerical simulation with a numerical human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the numerical human model, we adapt three-dimensional FDTD code to a multi-GPU environment using Compute Unified Device Architecture (CUDA). In this study, we used NVIDIA Tesla C2070 as GPGPU boards. The performance of multi-GPU is evaluated in comparison with that of a single GPU and vector supercomputer. The calculation speed with four GPUs was approximately 3.5 times faster than with a single GPU, and was slightly (approx. 1.3 times) slower than with the supercomputer. Calculation speed of the three-dimensional FDTD method using GPUs can significantly improve with an expanding number of GPUs.

  10. Anatomical appraisal of the skulls and teeth associated with the family of Tsar Nicolay Romanov.

    PubMed

    Kolesnikov, L L; Pashinyan, G A; Abramov, S S

    2001-02-01

    This article describes the identification of skeletal remains attributed to the family of Tsar Nicolay Romanov and other persons buried together at a site near present-day Ekaterinburg, Russia. Detailed descriptions are given regarding the objective methods of craniofacial and odontological identification that were used. Employing computer-assisted photographic superimposition techniques and statistical analysis of morphologic and other characteristics of the specimens, this study identifies with a high likelihood of certainty the remains of the Tsar, his wife, three of his four daughters, and four household assistants. Very strong evidence is presented that the Tsar's daughter Anastasia was killed in 1918. This study demonstrates the effectiveness of the methods and trustworthiness of the results, as well as the prospects of future application of the methods for the identification of skeletonized human remains. Anat Rec (New Anat) 265:15-32, 2001. Copyright 2001 Wiley-Liss, Inc.

  11. Transportation statistics annual report 1994

    DOT National Transportation Integrated Search

    1994-01-01

    The Transportation Statistics Annual Report (TSAR) provides the most comprehensive overview of U.S. transportation that is done on an annual basis. TSAR examines the extent of the system, how it is used, how well it works, how it affects people and t...

  12. Split-field FDTD method for oblique incidence study of periodic dispersive metallic structures.

    PubMed

    Baida, F I; Belkhir, A

    2009-08-15

    The study of periodic structures illuminated by a normally incident plane wave is a simple task that can be numerically simulated by the finite-difference time-domain (FDTD) method. On the contrary, for off-normal incidence, a widely modified algorithm must be developed in order to bypass the frequency dependence appearing in the periodic boundary conditions. After recently implementing this FDTD algorithm for pure dielectric materials, we here extend it to the study of metallic structures where dispersion can be described by analytical models. The accuracy of our code is demonstrated through comparisons with already-published results in the case of 1D and 3D structures.

  13. Advanced Electromagnetic Methods for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Polycarpou, Anastasis; Birtcher, Craig R.; Georgakopoulos, Stavros; Han, Dong-Ho; Ballas, Gerasimos

    1999-01-01

    The imminent destructive threats of Lightning on helicopters and other airborne systems has always been a topic of great interest to this research grant. Previously, the lightning induced currents on the surface of the fuselage and its interior were predicted using the finite-difference time-domain (FDTD) method as well as the NEC code. The limitations of both methods, as applied to lightning, were identified and extensively discussed in the last meeting. After a thorough investigation of the capabilities of the FDTD, it was decided to incorporate into the numerical method a subcell model to accurately represent current diffusion through conducting materials of high conductivity and finite thickness. Because of the complexity of the model, its validity will be first tested for a one-dimensional FDTD problem. Although results are not available yet, the theory and formulation of the subcell model are presented and discussed here to a certain degree. Besides lightning induced currents in the interior of an aircraft, penetration of electromagnetic fields through apertures (e.g., windows and cracks) could also be devastating for the navigation equipment, electronics, and communications systems in general. The main focus of this study is understanding and quantifying field penetration through apertures. The simulation is done using the FDTD method and the predictions are compared with measurements and moment method solutions obtained from the NASA Langley Research Center. Cavity-backed slot (CBS) antennas or slot antennas in general have many applications in aircraft-satellite type of communications. These can be flushmounted on the surface of the fuselage and, therefore, they retain the aerodynamic shape of the aircraft. In the past, input impedance and radiation patterns of CBS antennas were computed using a hybrid FEM/MoM code. The analysis is now extended to coupling between two identical slot antennas mounted on the same structure. The predictions are performed using both the hybrid FEM/MoM and the FDTD NEWS code. The results are compared with each other as well as with measurements performed in the ElectroMagnetic Anechoic Chamber (EMAC) of ASU. In addition to self and mutual impedances versus frequency, the comparisons include mutual coupling S(sub 12) as a function of distance for various slot orientations.

  14. Laser-plasma interactions with a Fourier-Bessel particle-in-cell method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andriyash, Igor A., E-mail: igor.andriyash@gmail.com; LOA, ENSTA ParisTech, CNRS, Ecole polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau cedex; Lehe, Remi

    A new spectral particle-in-cell (PIC) method for plasma modeling is presented and discussed. In the proposed scheme, the Fourier-Bessel transform is used to translate the Maxwell equations to the quasi-cylindrical spectral domain. In this domain, the equations are solved analytically in time, and the spatial derivatives are approximated with high accuracy. In contrast to the finite-difference time domain (FDTD) methods, that are used commonly in PIC, the developed method does not produce numerical dispersion and does not involve grid staggering for the electric and magnetic fields. These features are especially valuable in modeling the wakefield acceleration of particles in plasmas.more » The proposed algorithm is implemented in the code PLARES-PIC, and the test simulations of laser plasma interactions are compared to the ones done with the quasi-cylindrical FDTD PIC code CALDER-CIRC.« less

  15. Finite-difference time-domain simulation of electromagnetic bandgap and bi-anisotropic metamaterials

    NASA Astrophysics Data System (ADS)

    Bray, Matthew G.

    The term "Metamaterial" has been introduced into the electromagnetic lexicon in recent years to describe new artificial materials with electromagnetic properties that are not found in naturally occurring materials. Metamaterials exhibit electromagnetic properties that are not observed in its constituent materials, and/or not observed in nature. This thesis will analyze two different classes of metamaterials through the use of the finite-difference time-domain (FDTD) technique. The first class of metamaterials are artificial magnetic conductors (AMC) which approximate the behavior of a perfect magnetic conductor (PMC) over a finite frequency range. The AMC metamaterials are created through the use of an electromagnetic bandgap (EBG) structure. A periodic FDTD code is used to simulate a full-wave model of the metallodielectric EBG structures. The AMCs developed with the aid of the FDTD tool are then used to create low-profile antenna systems consisting of a dipole antenna in close proximity to an AMC surface. Through the use of this FDTD tool, several original contributions were made to the electromagnetic community. These include the first dual-band independently tunable EBG AMC ground plane and the first linearly polarized single-band and dual-band tunable antenna/EBG systems. The second class of materials analyzed are bi-anisotropic metamaterials. Bi-anisotropic media are the largest class of linear media which is able to describe the macroscopic material properties of artificial dielectrics, artificial magnetics, artificial chiral materials, left-handed materials, and other composite materials. The dispersive properties of these materials can be approximated by the oscillator model. This model assumes a Lorentzian frequency profile for the permittivity and permeability and a Condon model for chirality. A new FDTD formulation is introduced which can simulate this type of bi-anisotropic media. This FDTD method incorporates the dispersive material properties through a Z-transform technique derived from the constitutive relations for bi-anisotropic media. This is the first FDTD formulation to be able to simulate dispersive chiral media on a single FDTD grid. This tool was also used to perform the first simulations of dispersive chiral frequency selective surfaces.

  16. A Chip in the Curtain: Computer Technology in the Soviet Union

    DTIC Science & Technology

    1989-03-01

    authority of the tsar. British historian Lionel Kochan recounted some of the rather complicated story of religion and the tsars: The Church, because of... pseudosciences " and their study was forbidden. Stalin’s policy delayed the development of a scientific and academic foundation for the study of the computer in...leaders, the doctrine of Marx and Lenin is a matter of faith comparable to a religion in Western terms. When the General Secretary of the Soviet Union

  17. TSAR, a new graph-theoretical approach to computational modeling of protein side-chain flexibility: modeling of ionization properties of proteins.

    PubMed

    Stroganov, Oleg V; Novikov, Fedor N; Zeifman, Alexey A; Stroylov, Viktor S; Chilov, Ghermes G

    2011-09-01

    A new graph-theoretical approach called thermodynamic sampling of amino acid residues (TSAR) has been elaborated to explicitly account for the protein side chain flexibility in modeling conformation-dependent protein properties. In TSAR, a protein is viewed as a graph whose nodes correspond to structurally independent groups and whose edges connect the interacting groups. Each node has its set of states describing conformation and ionization of the group, and each edge is assigned an array of pairwise interaction potentials between the adjacent groups. By treating the obtained graph as a belief-network-a well-established mathematical abstraction-the partition function of each node is found. In the current work we used TSAR to calculate partition functions of the ionized forms of protein residues. A simplified version of a semi-empirical molecular mechanical scoring function, borrowed from our Lead Finder docking software, was used for energy calculations. The accuracy of the resulting model was validated on a set of 486 experimentally determined pK(a) values of protein residues. The average correlation coefficient (R) between calculated and experimental pK(a) values was 0.80, ranging from 0.95 (for Tyr) to 0.61 (for Lys). It appeared that the hydrogen bond interactions and the exhaustiveness of side chain sampling made the most significant contribution to the accuracy of pK(a) calculations. Copyright © 2011 Wiley-Liss, Inc.

  18. Synthetic Microwave Imaging Reflectometry diagnostic using 3D FDTD Simulations

    NASA Astrophysics Data System (ADS)

    Kruger, Scott; Jenkins, Thomas; Smithe, David; King, Jacob; Nimrod Team Team

    2017-10-01

    Microwave Imaging Reflectometry (MIR) has become a standard diagnostic for understanding tokamak edge perturbations, including the edge harmonic oscillations in QH mode operation. These long-wavelength perturbations are larger than the normal turbulent fluctuation levels and thus normal analysis of synthetic signals become more difficult. To investigate, we construct a synthetic MIR diagnostic for exploring density fluctuation amplitudes in the tokamak plasma edge by using the three-dimensional, full-wave FDTD code Vorpal. The source microwave beam for the diagnostic is generated and refelected at the cutoff surface that is distorted by 2D density fluctuations in the edge plasma. Synthetic imaging optics at the detector can be used to understand the fluctuation and background density profiles. We apply the diagnostic to understand the fluctuations in edge plasma density during QH-mode activity in the DIII-D tokamak, as modeled by the NIMROD code. This work was funded under DOE Grant Number DE-FC02-08ER54972.

  19. TSAR User’s Manual: A Program for Assessing the Effects of Conventional and Chemical Attacks on Sortie Generation. Volume 1. Program Features, Logic, and Interactions

    DTIC Science & Technology

    1990-09-01

    that work will be done at the point where Task 30000 is specified. The unscheduled on-equipment aircraft tasks are normally grouped together with the...probability events, TSAR groups together those tasks performed by the same work center or shop and selects at most one following each flighL Processing is...remainder capable only of assembling other kinds. Furthermore, the first group of personnel should be specified to be cross-trained to do the work of

  20. Finite difference time domain grid generation from AMC helicopter models

    NASA Technical Reports Server (NTRS)

    Cravey, Robin L.

    1992-01-01

    A simple technique is presented which forms a cubic grid model of a helicopter from an Aircraft Modeling Code (AMC) input file. The AMC input file defines the helicopter fuselage as a series of polygonal cross sections. The cubic grid model is used as an input to a Finite Difference Time Domain (FDTD) code to obtain predictions of antenna performance on a generic helicopter model. The predictions compare reasonably well with measured data.

  1. Wave Propagation and Inversion in Shallow Water and Poro-elastic Sediment

    DTIC Science & Technology

    1997-09-30

    water and high freq. acoustics LONG-TERM GOALS To create codes accurately model wave propagation and scattering in shallow water, and to quantify...is undergoing testing for the acoustic stratified Green’s function. We have adapted code generated by J. Schuster in Geophysics for the FDTD model ...inversions and modelling , and have repercussions in environmental imaging [5], acoustic imaging [1,4,5,6,7] and early breast cancer diagnosis

  2. TSARINA: A computer model for assessing conventional and chemical attacks on air bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emerson, D.E.; Wegner, L.H.

    This Note describes the latest version of the TSARINA (TSAR INputs using AIDA) airbase damage assessment computer program that has been developed to estimate the on-base concentration of toxic agents that would be deposited by a chemical attack and to assess losses to various on-base resources from conventional attacks, as well as the physical damage to runways, taxiways, buildings, and other facilities. Although the model may be used as a general-purpose, complex-target damage assessment model, its primary role in intended to be in support of the TSAR (Theater Simulation of Airbase Resources) aircraft sortie generation simulation program. When used withmore » TSAR, multiple trials of a multibase airbase-attack campaign can be assessed with TSARINA, and the impact of those attacks on sortie generation can be derived using the TSAR simulation model. TSARINA, as currently configured, permits damage assessments of attacks on an airbase (or other) complex that is compassed of up to 1000 individual targets (buildings, taxiways, etc,), and 2500 packets of resources. TSARINA determines the actual impact points (pattern centroids for CBUs and container burst point for chemical weapons) by Monte Carlo procedures-i.e., by random selections from the appropriate error distributions. Uncertainties in wind velocity and heading are also considered for chemical weapons. Point-impact weapons that impact within a specified distance of each target type are classed as hits, and estimates of the damage to the structures and to the various classes of support resources are assessed using cookie-cutter weapon-effects approximations.« less

  3. Performance analysis of the FDTD method applied to holographic volume gratings: Multi-core CPU versus GPU computing

    NASA Astrophysics Data System (ADS)

    Francés, J.; Bleda, S.; Neipp, C.; Márquez, A.; Pascual, I.; Beléndez, A.

    2013-03-01

    The finite-difference time-domain method (FDTD) allows electromagnetic field distribution analysis as a function of time and space. The method is applied to analyze holographic volume gratings (HVGs) for the near-field distribution at optical wavelengths. Usually, this application requires the simulation of wide areas, which implies more memory and time processing. In this work, we propose a specific implementation of the FDTD method including several add-ons for a precise simulation of optical diffractive elements. Values in the near-field region are computed considering the illumination of the grating by means of a plane wave for different angles of incidence and including absorbing boundaries as well. We compare the results obtained by FDTD with those obtained using a matrix method (MM) applied to diffraction gratings. In addition, we have developed two optimized versions of the algorithm, for both CPU and GPU, in order to analyze the improvement of using the new NVIDIA Fermi GPU architecture versus highly tuned multi-core CPU as a function of the size simulation. In particular, the optimized CPU implementation takes advantage of the arithmetic and data transfer streaming SIMD (single instruction multiple data) extensions (SSE) included explicitly in the code and also of multi-threading by means of OpenMP directives. A good agreement between the results obtained using both FDTD and MM methods is obtained, thus validating our methodology. Moreover, the performance of the GPU is compared to the SSE+OpenMP CPU implementation, and it is quantitatively determined that a highly optimized CPU program can be competitive for a wider range of simulation sizes, whereas GPU computing becomes more powerful for large-scale simulations.

  4. Multi-GPU and multi-CPU accelerated FDTD scheme for vibroacoustic applications

    NASA Astrophysics Data System (ADS)

    Francés, J.; Otero, B.; Bleda, S.; Gallego, S.; Neipp, C.; Márquez, A.; Beléndez, A.

    2015-06-01

    The Finite-Difference Time-Domain (FDTD) method is applied to the analysis of vibroacoustic problems and to study the propagation of longitudinal and transversal waves in a stratified media. The potential of the scheme and the relevance of each acceleration strategy for massively computations in FDTD are demonstrated in this work. In this paper, we propose two new specific implementations of the bi-dimensional scheme of the FDTD method using multi-CPU and multi-GPU, respectively. In the first implementation, an open source message passing interface (OMPI) has been included in order to massively exploit the resources of a biprocessor station with two Intel Xeon processors. Moreover, regarding CPU code version, the streaming SIMD extensions (SSE) and also the advanced vectorial extensions (AVX) have been included with shared memory approaches that take advantage of the multi-core platforms. On the other hand, the second implementation called the multi-GPU code version is based on Peer-to-Peer communications available in CUDA on two GPUs (NVIDIA GTX 670). Subsequently, this paper presents an accurate analysis of the influence of the different code versions including shared memory approaches, vector instructions and multi-processors (both CPU and GPU) and compares them in order to delimit the degree of improvement of using distributed solutions based on multi-CPU and multi-GPU. The performance of both approaches was analysed and it has been demonstrated that the addition of shared memory schemes to CPU computing improves substantially the performance of vector instructions enlarging the simulation sizes that use efficiently the cache memory of CPUs. In this case GPU computing is slightly twice times faster than the fine tuned CPU version in both cases one and two nodes. However, for massively computations explicit vector instructions do not worth it since the memory bandwidth is the limiting factor and the performance tends to be the same than the sequential version with auto-vectorisation and also shared memory approach. In this scenario GPU computing is the best option since it provides a homogeneous behaviour. More specifically, the speedup of GPU computing achieves an upper limit of 12 for both one and two GPUs, whereas the performance reaches peak values of 80 GFlops and 146 GFlops for the performance for one GPU and two GPUs respectively. Finally, the method is applied to an earth crust profile in order to demonstrate the potential of our approach and the necessity of applying acceleration strategies in these type of applications.

  5. Assessing Performance of P-Band Backscattering Coefficients and TSAR in Hemi-Boreal Forest AGB Estimation

    NASA Astrophysics Data System (ADS)

    Li, Wenmei; Chen, Erxue; Li, Zengyuan; Feng, Qi

    2014-11-01

    To assess performance of P-band backscattering coefficients and TSAR for hemi-boreal forest AGB estimation, airborne P-band repeat-path Pol-InSAR data collected by ESAR in Ramingstorp test site during March and May 2007 are applied. The correlation coefficient (R) between P-band backscattering coefficients and in-situ biomass reaches 0.87 for HH polarization. Meanwhile, the R between P-band backscattering power at specific height and in-situ biomass are higher in VV polarization than that in HH and HV polarization. And R between P-band backscattering power and in-situ biomass reaches 0.70 at 5m and 10m height in VV polarization.

  6. Assessing Performance of P-Band Backscattering Coefficients and TSAR in Hemi-Boreal Forest AGB Estimation

    NASA Astrophysics Data System (ADS)

    Li, Wenmei; Chen, Erxue; Li, Zengyuan; Feng, Qi

    2014-11-01

    To assess performance of P-band backscattering coefficients and TSAR for hemi-boreal forest AGB estimation, airborne P-band repeat-path Pol-InSAR data collected by ESAR in Ramingstorp test site during March and May 2007 are applied.The correlation coefficient (R) between P-band backscattering coefficients and in-situ biomass reaches 0.87 for HH polarization. Meanwhile, the R between P-band backscattering power at specific height and in-situ biomass are higher in VV polarization than that in HH and HV polarization. And R between P-band backscattering power and in-situ biomass reaches 0.70 at 5m and 10m height in VV polarization.

  7. Helicopter time-domain electromagnetic numerical simulation based on Leapfrog ADI-FDTD

    NASA Astrophysics Data System (ADS)

    Guan, S.; Ji, Y.; Li, D.; Wu, Y.; Wang, A.

    2017-12-01

    We present a three-dimension (3D) Alternative Direction Implicit Finite-Difference Time-Domain (Leapfrog ADI-FDTD) method for the simulation of helicopter time-domain electromagnetic (HTEM) detection. This method is different from the traditional explicit FDTD, or ADI-FDTD. Comparing with the explicit FDTD, leapfrog ADI-FDTD algorithm is no longer limited by Courant-Friedrichs-Lewy(CFL) condition. Thus, the time step is longer. Comparing with the ADI-FDTD, we reduce the equations from 12 to 6 and .the Leapfrog ADI-FDTD method will be easier for the general simulation. First, we determine initial conditions which are adopted from the existing method presented by Wang and Tripp(1993). Second, we derive Maxwell equation using a new finite difference equation by Leapfrog ADI-FDTD method. The purpose is to eliminate sub-time step and retain unconditional stability characteristics. Third, we add the convolution perfectly matched layer (CPML) absorbing boundary condition into the leapfrog ADI-FDTD simulation and study the absorbing effect of different parameters. Different absorbing parameters will affect the absorbing ability. We find the suitable parameters after many numerical experiments. Fourth, We compare the response with the 1-Dnumerical result method for a homogeneous half-space to verify the correctness of our algorithm.When the model contains 107*107*53 grid points, the conductivity is 0.05S/m. The results show that Leapfrog ADI-FDTD need less simulation time and computer storage space, compared with ADI-FDTD. The calculation speed decreases nearly four times, memory occupation decreases about 32.53%. Thus, this algorithm is more efficient than the conventional ADI-FDTD method for HTEM detection, and is more precise than that of explicit FDTD in the late time.

  8. Compensated second-order recoupling: application to third spin assisted recoupling†

    PubMed Central

    Giffard, Mathilde; Hediger, Sabine; Lewandowski, Józef R.; Bardet, Michel; Simorre, Jean-Pierre; Griffin, Robert G.; De Paëpe, Gaël

    2015-01-01

    We consider the effect of phase shifts in the context of second-order recoupling techniques in solid-state NMR. Notably we highlight conditions leading to significant improvements for the Third Spin Assisted Recoupling (TSAR) mechanism and demonstrate the benefits of resulting techniques for detecting long-distance transfer in biomolecular systems. The modified pulse sequences of PAR and PAIN-CP, Phase-Shifted Proton Assisted Recoupling (AH-PS-PAR) and Phase-Shifted Proton-Assisted Insensitive Nuclei Cross Polarization (ABH-PS-PAIN-CP), still rely on cross terms between heteronuclear dipolar couplings involving assisting protons that mediate zero-quantum polarization transfer between low-γ nuclei (13C–13C, 15N–15N, 15N–13C polarization transfer). Using Average Hamiltonian Theory we show that phase inversion compensates off-resonance contributions and yields improved polarization transfer as well as substantial broadening of the matching conditions. PS-TSAR greatly improves on the standard TSAR based methods because it alleviates their sensitivity to precise RF settings which significantly enhances robustness of the experiments. We demonstrate these new methods on a 19.6 kDa protein (U–[15N, 13C]-YajG) at high magnetic fields (up to 900 MHz 1H frequency) and fast sample spinning (up to 65 kHz MAS frequency). PMID:22513727

  9. Application of Cross-Correlation Greens Function Along With FDTD for Fast Computation of Envelope Correlation Coefficient Over Wideband for MIMO Antennas

    NASA Astrophysics Data System (ADS)

    Sarkar, Debdeep; Srivastava, Kumar Vaibhav

    2017-02-01

    In this paper, the concept of cross-correlation Green's functions (CGF) is used in conjunction with the finite difference time domain (FDTD) technique for calculation of envelope correlation coefficient (ECC) of any arbitrary MIMO antenna system over wide frequency band. Both frequency-domain (FD) and time-domain (TD) post-processing techniques are proposed for possible application with this FDTD-CGF scheme. The FDTD-CGF time-domain (FDTD-CGF-TD) scheme utilizes time-domain signal processing methods and exhibits significant reduction in ECC computation time as compared to the FDTD-CGF frequency domain (FDTD-CGF-FD) scheme, for high frequency-resolution requirements. The proposed FDTD-CGF based schemes can be applied for accurate and fast prediction of wideband ECC response, instead of the conventional scattering parameter based techniques which have several limitations. Numerical examples of the proposed FDTD-CGF techniques are provided for two-element MIMO systems involving thin-wire half-wavelength dipoles in parallel side-by-side as well as orthogonal arrangements. The results obtained from the FDTD-CGF techniques are compared with results from commercial electromagnetic solver Ansys HFSS, to verify the validity of proposed approach.

  10. Investigating the effects of external fields polarization on the coupling of pure magnetic waves in the human body in very low frequencies

    PubMed Central

    2007-01-01

    In this paper we studied the effects of external fields' polarization on the coupling of pure magnetic fields into human body. Finite Difference Time Domain (FDTD) method is used to calculate the current densities induced in a 1 cm resolution anatomically based model with proper tissue conductivities. Twenty different tissues have been considered in this investigation and scaled FDTD technique is used to convert the results of computer code run in 15 MHz to low frequencies which are encountered in the vicinity of industrial induction heating and melting devices. It has been found that external magnetic field's orientation due to human body has a pronounced impact on the level of induced currents in different body tissues. This may potentially help developing protecting strategies to mitigate the situations in which workers are exposed to high levels of external magnetic radiation. PMID:17504520

  11. FDTD method and models in optical education

    NASA Astrophysics Data System (ADS)

    Lin, Xiaogang; Wan, Nan; Weng, Lingdong; Zhu, Hao; Du, Jihe

    2017-08-01

    In this paper, finite-difference time-domain (FDTD) method has been proposed as a pedagogical way in optical education. Meanwhile, FDTD solutions, a simulation software based on the FDTD algorithm, has been presented as a new tool which helps abecedarians to build optical models and to analyze optical problems. The core of FDTD algorithm is that the time-dependent Maxwell's equations are discretized to the space and time partial derivatives, and then, to simulate the response of the interaction between the electronic pulse and the ideal conductor or semiconductor. Because the solving of electromagnetic field is in time domain, the memory usage is reduced and the simulation consequence on broadband can be obtained easily. Thus, promoting FDTD algorithm in optical education is available and efficient. FDTD enables us to design, analyze and test modern passive and nonlinear photonic components (such as bio-particles, nanoparticle and so on) for wave propagation, scattering, reflection, diffraction, polarization and nonlinear phenomena. The different FDTD models can help teachers and students solve almost all of the optical problems in optical education. Additionally, the GUI of FDTD solutions is so friendly to abecedarians that learners can master it quickly.

  12. Development of Fast Algorithms Using Recursion, Nesting and Iterations for Computational Electromagnetics

    NASA Technical Reports Server (NTRS)

    Chew, W. C.; Song, J. M.; Lu, C. C.; Weedon, W. H.

    1995-01-01

    In the first phase of our work, we have concentrated on laying the foundation to develop fast algorithms, including the use of recursive structure like the recursive aggregate interaction matrix algorithm (RAIMA), the nested equivalence principle algorithm (NEPAL), the ray-propagation fast multipole algorithm (RPFMA), and the multi-level fast multipole algorithm (MLFMA). We have also investigated the use of curvilinear patches to build a basic method of moments code where these acceleration techniques can be used later. In the second phase, which is mainly reported on here, we have concentrated on implementing three-dimensional NEPAL on a massively parallel machine, the Connection Machine CM-5, and have been able to obtain some 3D scattering results. In order to understand the parallelization of codes on the Connection Machine, we have also studied the parallelization of 3D finite-difference time-domain (FDTD) code with PML material absorbing boundary condition (ABC). We found that simple algorithms like the FDTD with material ABC can be parallelized very well allowing us to solve within a minute a problem of over a million nodes. In addition, we have studied the use of the fast multipole method and the ray-propagation fast multipole algorithm to expedite matrix-vector multiplication in a conjugate-gradient solution to integral equations of scattering. We find that these methods are faster than LU decomposition for one incident angle, but are slower than LU decomposition when many incident angles are needed as in the monostatic RCS calculations.

  13. Transportation statistics annual report 2009

    DOT National Transportation Integrated Search

    2009-01-01

    The Transportation Statistics Annual Report (TSAR) presents data and information selected by the Bureau of Transportation Statistics (BTS), a component of the U.S. Department of Transportation's (USDOT's) Research and Innovative Technology Administra...

  14. Transportation statistics annual report 2007

    DOT National Transportation Integrated Search

    2007-01-01

    This edition of the Transportation Statistics Annual Report (TSAR) presents selected transportation data on topics specified in the legislative mandate of the U.S. Department of Transportations Research and Innovative Technology Administration, Bu...

  15. Transportation statistics annual report 2010

    DOT National Transportation Integrated Search

    2011-01-01

    The Transportation Statistics Annual Report (TSAR) presents data and information compiled by the Bureau of Transportation Statistics (BTS), a component of the U.S. Department of Transportations (USDOTs) Research and Innovative Technology Admini...

  16. Prospects for Finite-Difference Time-Domain (FDTD) Computational Electrodynamics

    NASA Astrophysics Data System (ADS)

    Taflove, Allen

    2002-08-01

    FDTD is the most powerful numerical solution of Maxwell's equations for structures having internal details. Relative to moment-method and finite-element techniques, FDTD can accurately model such problems with 100-times more field unknowns and with nonlinear and/or time-variable parameters. Hundreds of FDTD theory and applications papers are published each year. Currently, there are at least 18 commercial FDTD software packages for solving problems in: defense (especially vulnerability to electromagnetic pulse and high-power microwaves); design of antennas and microwave devices/circuits; electromagnetic compatibility; bioelectromagnetics (especially assessment of cellphone-generated RF absorption in human tissues); signal integrity in computer interconnects; and design of micro-photonic devices (especially photonic bandgap waveguides, microcavities; and lasers). This paper explores emerging prospects for FDTD computational electromagnetics brought about by continuing advances in computer capabilities and FDTD algorithms. We conclude that advances already in place point toward the usage by 2015 of ultralarge-scale (up to 1E11 field unknowns) FDTD electromagnetic wave models covering the frequency range from about 0.1 Hz to 1E17 Hz. We expect that this will yield significant benefits for our society in areas as diverse as computing, telecommunications, defense, and public health and safety.

  17. Transportation statistics annual report 2001

    DOT National Transportation Integrated Search

    2001-01-01

    This eighth Transportation Statistics Annual Report (TSAR), like : those before it, provides data and analysis on the U.S. transportation : system: its extent and condition, relationship to the : nation's security and economic growth, safety aspects,...

  18. Minimizing Dispersion in FDTD Methods with CFL Limit Extension

    NASA Astrophysics Data System (ADS)

    Sun, Chen

    The CFL extension in FDTD methods is receiving considerable attention in order to reduce the computational effort and save the simulation time. One of the major issues in the CFL extension methods is the increased dispersion. We formulate a decomposition of FDTD equations to study the behaviour of the dispersion. A compensation scheme to reduce the dispersion in CFL extension is constructed and proposed. We further study the CFL extension in a FDTD subgridding case, where we improve the accuracy by acting only on the FDTD equations of the fine grid. Numerical results confirm the efficiency of the proposed method for minimising dispersion.

  19. Explicit formulation of second and third order optical nonlinearity in the FDTD framework

    NASA Astrophysics Data System (ADS)

    Varin, Charles; Emms, Rhys; Bart, Graeme; Fennel, Thomas; Brabec, Thomas

    2018-01-01

    The finite-difference time-domain (FDTD) method is a flexible and powerful technique for rigorously solving Maxwell's equations. However, three-dimensional optical nonlinearity in current commercial and research FDTD softwares requires solving iteratively an implicit form of Maxwell's equations over the entire numerical space and at each time step. Reaching numerical convergence demands significant computational resources and practical implementation often requires major modifications to the core FDTD engine. In this paper, we present an explicit method to include second and third order optical nonlinearity in the FDTD framework based on a nonlinear generalization of the Lorentz dispersion model. A formal derivation of the nonlinear Lorentz dispersion equation is equally provided, starting from the quantum mechanical equations describing nonlinear optics in the two-level approximation. With the proposed approach, numerical integration of optical nonlinearity and dispersion in FDTD is intuitive, transparent, and fully explicit. A strong-field formulation is also proposed, which opens an interesting avenue for FDTD-based modelling of the extreme nonlinear optics phenomena involved in laser filamentation and femtosecond micromachining of dielectrics.

  20. ADE-FDTD Scattered-Field Formulation for Dispersive Materials

    PubMed Central

    Kong, Soon-Cheol; Simpson, Jamesina J.; Backman, Vadim

    2009-01-01

    This Letter presents a scattered-field formulation for modeling dispersive media using the finite-difference time-domain (FDTD) method. Specifically, the auxiliary differential equation method is applied to Drude and Lorentz media for a scattered field FDTD model. The present technique can also be applied in a straightforward manner to Debye media. Excellent agreement is achieved between the FDTD-calculated and exact theoretical results for the reflection coefficient in half-space problems. PMID:19844602

  1. ADE-FDTD Scattered-Field Formulation for Dispersive Materials.

    PubMed

    Kong, Soon-Cheol; Simpson, Jamesina J; Backman, Vadim

    2008-01-01

    This Letter presents a scattered-field formulation for modeling dispersive media using the finite-difference time-domain (FDTD) method. Specifically, the auxiliary differential equation method is applied to Drude and Lorentz media for a scattered field FDTD model. The present technique can also be applied in a straightforward manner to Debye media. Excellent agreement is achieved between the FDTD-calculated and exact theoretical results for the reflection coefficient in half-space problems.

  2. Review of FD-TD numerical modeling of electromagnetic wave scattering and radar cross section

    NASA Technical Reports Server (NTRS)

    Taflove, Allen; Umashankar, Korada R.

    1989-01-01

    Applications of the finite-difference time-domain (FD-TD) method for numerical modeling of electromagnetic wave interactions with structures are reviewed, concentrating on scattering and radar cross section (RCS). A number of two- and three-dimensional examples of FD-TD modeling of scattering and penetration are provided. The objects modeled range in nature from simple geometric shapes to extremely complex aerospace and biological systems. Rigorous analytical or experimental validatons are provided for the canonical shapes, and it is shown that FD-TD predictive data for near fields and RCS are in excellent agreement with the benchmark data. It is concluded that with continuing advances in FD-TD modeling theory for target features relevant to the RCS problems and in vector and concurrent supercomputer technology, it is likely that FD-TD numerical modeling will occupy an important place in RCS technology in the 1990s and beyond.

  3. A GPU-based calculation using the three-dimensional FDTD method for electromagnetic field analysis.

    PubMed

    Nagaoka, Tomoaki; Watanabe, Soichi

    2010-01-01

    Numerical simulations with the numerical human model using the finite-difference time domain (FDTD) method have recently been performed frequently in a number of fields in biomedical engineering. However, the FDTD calculation runs too slowly. We focus, therefore, on general purpose programming on the graphics processing unit (GPGPU). The three-dimensional FDTD method was implemented on the GPU using Compute Unified Device Architecture (CUDA). In this study, we used the NVIDIA Tesla C1060 as a GPGPU board. The performance of the GPU is evaluated in comparison with the performance of a conventional CPU and a vector supercomputer. The results indicate that three-dimensional FDTD calculations using a GPU can significantly reduce run time in comparison with that using a conventional CPU, even a native GPU implementation of the three-dimensional FDTD method, while the GPU/CPU speed ratio varies with the calculation domain and thread block size.

  4. Optimization of Focusing by Strip and Pixel Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, G J; White, D A; Thompson, C A

    Professor Kevin Webb and students at Purdue University have demonstrated the design of conducting strip and pixel arrays for focusing electromagnetic waves [1, 2]. Their key point was to design structures to focus waves in the near field using full wave modeling and optimization methods for design. Their designs included arrays of conducting strips optimized with a downhill search algorithm and arrays of conducting and dielectric pixels optimized with the iterative direct binary search method. They used a finite element code for modeling. This report documents our attempts to duplicate and verify their results. We have modeled 2D conducting stripsmore » and both conducting and dielectric pixel arrays with moment method and FDTD codes to compare with Webb's results. New designs for strip arrays were developed with optimization by the downhill simplex method with simulated annealing. Strip arrays were optimized to focus an incident plane wave at a point or at two separated points and to switch between focusing points with a change in frequency. We also tried putting a line current source at the focus point for the plane wave to see how it would work as a directive antenna. We have not tried optimizing the conducting or dielectric pixel arrays, but modeled the structures designed by Webb with the moment method and FDTD to compare with the Purdue results.« less

  5. Higher-order hybrid implicit/explicit FDTD time-stepping

    NASA Astrophysics Data System (ADS)

    Tierens, W.

    2016-12-01

    Both partially implicit FDTD methods, and symplectic FDTD methods of high temporal accuracy (3rd or 4th order), are well documented in the literature. In this paper we combine them: we construct a conservative FDTD method which is fourth order accurate in time and is partially implicit. We show that the stability condition for this method depends exclusively on the explicit part, which makes it suitable for use in e.g. modelling wave propagation in plasmas.

  6. A review of hybrid implicit explicit finite difference time domain method

    NASA Astrophysics Data System (ADS)

    Chen, Juan

    2018-06-01

    The finite-difference time-domain (FDTD) method has been extensively used to simulate varieties of electromagnetic interaction problems. However, because of its Courant-Friedrich-Levy (CFL) condition, the maximum time step size of this method is limited by the minimum size of cell used in the computational domain. So the FDTD method is inefficient to simulate the electromagnetic problems which have very fine structures. To deal with this problem, the Hybrid Implicit Explicit (HIE)-FDTD method is developed. The HIE-FDTD method uses the hybrid implicit explicit difference in the direction with fine structures to avoid the confinement of the fine spatial mesh on the time step size. So this method has much higher computational efficiency than the FDTD method, and is extremely useful for the problems which have fine structures in one direction. In this paper, the basic formulations, time stability condition and dispersion error of the HIE-FDTD method are presented. The implementations of several boundary conditions, including the connect boundary, absorbing boundary and periodic boundary are described, then some applications and important developments of this method are provided. The goal of this paper is to provide an historical overview and future prospects of the HIE-FDTD method.

  7. Transportation statistics annual report 1997 : mobility and access

    DOT National Transportation Integrated Search

    1997-01-01

    This document is the fourth Transportation Statistics Annual Report (TSAR) prepared by the Bureau of Transportation Statistics (BTS) for the President and Congress. As in previous years, it reports on the state of U.S. transportation system at two le...

  8. Hybrid transfer-matrix FDTD method for layered periodic structures.

    PubMed

    Deinega, Alexei; Belousov, Sergei; Valuev, Ilya

    2009-03-15

    A hybrid transfer-matrix finite-difference time-domain (FDTD) method is proposed for modeling the optical properties of finite-width planar periodic structures. This method can also be applied for calculation of the photonic bands in infinite photonic crystals. We describe the procedure of evaluating the transfer-matrix elements by a special numerical FDTD simulation. The accuracy of the new method is tested by comparing computed transmission spectra of a 32-layered photonic crystal composed of spherical or ellipsoidal scatterers with the results of direct FDTD and layer-multiple-scattering calculations.

  9. Nonlocal response with local optics

    NASA Astrophysics Data System (ADS)

    Kong, Jiantao; Shvonski, Alexander J.; Kempa, Krzysztof

    2018-04-01

    For plasmonic systems too small for classical, local simulations to be valid, but too large for ab initio calculations to be computationally feasible, we developed a practical approach—a nonlocal-to-local mapping that enables the use of a modified local system to obtain the response due to nonlocal effects to lowest order, at the cost of higher structural complexity. In this approach, the nonlocal surface region of a metallic structure is mapped onto a local dielectric film, mathematically preserving the nonlocality of the entire system. The most significant feature of this approach is its full compatibility with conventional, highly efficient finite difference time domain (FDTD) simulation codes. Our optimized choice of mapping is based on the Feibelman's d -function formalism, and it produces an effective dielectric function of the local film that obeys all required sum rules, as well as the Kramers-Kronig causality relations. We demonstrate the power of our approach combined with an FDTD scheme, in a series of comparisons with experiments and ab initio density functional theory calculations from the literature, for structures with dimensions from the subnanoscopic to microscopic range.

  10. Long-range propagation of nonlinear infrasound waves through an absorbing atmosphere.

    PubMed

    de Groot-Hedlin, C D

    2016-04-01

    The Navier-Stokes equations are solved using a finite-difference, time-domain (FDTD) approach for axi-symmetric environmental models, allowing three-dimensional acoustic propagation to be simulated using a two-dimensional Cylindrical coordinate system. A method to stabilize the FDTD algorithm in a viscous medium at atmospheric densities characteristic of the lower thermosphere is described. The stabilization scheme slightly alters the governing equations but results in quantifiable dispersion characteristics. It is shown that this method leaves sound speeds and attenuation unchanged at frequencies that are well resolved by the temporal sampling rate but strongly attenuates higher frequencies. Numerical experiments are performed to assess the effect of source strength on the amplitudes and spectral content of signals recorded at ground level at a range of distances from the source. It is shown that the source amplitudes have a stronger effect on a signal's dominant frequency than on its amplitude. Applying the stabilized code to infrasound propagation through realistic atmospheric profiles shows that nonlinear propagation alters the spectral content of low amplitude thermospheric signals, demonstrating that nonlinear effects are significant for all detectable thermospheric returns.

  11. A Dissipative Systems Theory for FDTD With Application to Stability Analysis and Subgridding

    NASA Astrophysics Data System (ADS)

    Bekmambetova, Fadime; Zhang, Xinyue; Triverio, Piero

    2017-02-01

    This paper establishes a far-reaching connection between the Finite-Difference Time-Domain method (FDTD) and the theory of dissipative systems. The FDTD equations for a rectangular region are written as a dynamical system having the magnetic and electric fields on the boundary as inputs and outputs. Suitable expressions for the energy stored in the region and the energy absorbed from the boundaries are introduced, and used to show that the FDTD system is dissipative under a generalized Courant-Friedrichs-Lewy condition. Based on the concept of dissipation, a powerful theoretical framework to investigate the stability of FDTD methods is devised. The new method makes FDTD stability proofs simpler, more intuitive, and modular. Stability conditions can indeed be given on the individual components (e.g. boundary conditions, meshes, embedded models) instead of the whole coupled setup. As an example of application, we derive a new subgridding method with material traverse, arbitrary grid refinement, and guaranteed stability. The method is easy to implement and has a straightforward stability proof. Numerical results confirm its stability, low reflections, and ability to handle material traverse.

  12. GPU-accelerated FDTD modeling of radio-frequency field-tissue interactions in high-field MRI.

    PubMed

    Chi, Jieru; Liu, Feng; Weber, Ewald; Li, Yu; Crozier, Stuart

    2011-06-01

    The analysis of high-field RF field-tissue interactions requires high-performance finite-difference time-domain (FDTD) computing. Conventional CPU-based FDTD calculations offer limited computing performance in a PC environment. This study presents a graphics processing unit (GPU)-based parallel-computing framework, producing substantially boosted computing efficiency (with a two-order speedup factor) at a PC-level cost. Specific details of implementing the FDTD method on a GPU architecture have been presented and the new computational strategy has been successfully applied to the design of a novel 8-element transceive RF coil system at 9.4 T. Facilitated by the powerful GPU-FDTD computing, the new RF coil array offers optimized fields (averaging 25% improvement in sensitivity, and 20% reduction in loop coupling compared with conventional array structures of the same size) for small animal imaging with a robust RF configuration. The GPU-enabled acceleration paves the way for FDTD to be applied for both detailed forward modeling and inverse design of MRI coils, which were previously impractical.

  13. Generalized Sheet Transition Condition FDTD Simulation of Metasurface

    NASA Astrophysics Data System (ADS)

    Vahabzadeh, Yousef; Chamanara, Nima; Caloz, Christophe

    2018-01-01

    We propose an FDTD scheme based on Generalized Sheet Transition Conditions (GSTCs) for the simulation of polychromatic, nonlinear and space-time varying metasurfaces. This scheme consists in placing the metasurface at virtual nodal plane introduced between regular nodes of the staggered Yee grid and inserting fields determined by GSTCs in this plane in the standard FDTD algorithm. The resulting update equations are an elegant generalization of the standard FDTD equations. Indeed, in the limiting case of a null surface susceptibility ($\\chi_\\text{surf}=0$), they reduce to the latter, while in the next limiting case of a time-invariant metasurface $[\\chi_\\text{surf}\

  14. Complex-envelope alternating-direction-implicit FDTD method for simulating active photonic devices with semiconductor/solid-state media.

    PubMed

    Singh, Gurpreet; Ravi, Koustuban; Wang, Qian; Ho, Seng-Tiong

    2012-06-15

    A complex-envelope (CE) alternating-direction-implicit (ADI) finite-difference time-domain (FDTD) approach to treat light-matter interaction self-consistently with electromagnetic field evolution for efficient simulations of active photonic devices is presented for the first time (to our best knowledge). The active medium (AM) is modeled using an efficient multilevel system of carrier rate equations to yield the correct carrier distributions, suitable for modeling semiconductor/solid-state media accurately. To include the AM in the CE-ADI-FDTD method, a first-order differential system involving CE fields in the AM is first set up. The system matrix that includes AM parameters is then split into two time-dependent submatrices that are then used in an efficient ADI splitting formula. The proposed CE-ADI-FDTD approach with AM takes 22% of the time as the approach of the corresponding explicit FDTD, as validated by semiconductor microdisk laser simulations.

  15. Message-passing-interface-based parallel FDTD investigation on the EM scattering from a 1-D rough sea surface using uniaxial perfectly matched layer absorbing boundary.

    PubMed

    Li, J; Guo, L-X; Zeng, H; Han, X-B

    2009-06-01

    A message-passing-interface (MPI)-based parallel finite-difference time-domain (FDTD) algorithm for the electromagnetic scattering from a 1-D randomly rough sea surface is presented. The uniaxial perfectly matched layer (UPML) medium is adopted for truncation of FDTD lattices, in which the finite-difference equations can be used for the total computation domain by properly choosing the uniaxial parameters. This makes the parallel FDTD algorithm easier to implement. The parallel performance with different processors is illustrated for one sea surface realization, and the computation time of the parallel FDTD algorithm is dramatically reduced compared to a single-process implementation. Finally, some numerical results are shown, including the backscattering characteristics of sea surface for different polarization and the bistatic scattering from a sea surface with large incident angle and large wind speed.

  16. Modeling hemoglobin at optical frequency using the unconditionally stable fundamental ADI-FDTD method.

    PubMed

    Heh, Ding Yu; Tan, Eng Leong

    2011-04-12

    This paper presents the modeling of hemoglobin at optical frequency (250 nm - 1000 nm) using the unconditionally stable fundamental alternating-direction-implicit finite-difference time-domain (FADI-FDTD) method. An accurate model based on complex conjugate pole-residue pairs is proposed to model the complex permittivity of hemoglobin at optical frequency. Two hemoglobin concentrations at 15 g/dL and 33 g/dL are considered. The model is then incorporated into the FADI-FDTD method for solving electromagnetic problems involving interaction of light with hemoglobin. The computation of transmission and reflection coefficients of a half space hemoglobin medium using the FADI-FDTD validates the accuracy of our model and method. The specific absorption rate (SAR) distribution of human capillary at optical frequency is also shown. While maintaining accuracy, the unconditionally stable FADI-FDTD method exhibits high efficiency in modeling hemoglobin.

  17. Modeling hemoglobin at optical frequency using the unconditionally stable fundamental ADI-FDTD method

    PubMed Central

    Heh, Ding Yu; Tan, Eng Leong

    2011-01-01

    This paper presents the modeling of hemoglobin at optical frequency (250 nm – 1000 nm) using the unconditionally stable fundamental alternating-direction-implicit finite-difference time-domain (FADI-FDTD) method. An accurate model based on complex conjugate pole-residue pairs is proposed to model the complex permittivity of hemoglobin at optical frequency. Two hemoglobin concentrations at 15 g/dL and 33 g/dL are considered. The model is then incorporated into the FADI-FDTD method for solving electromagnetic problems involving interaction of light with hemoglobin. The computation of transmission and reflection coefficients of a half space hemoglobin medium using the FADI-FDTD validates the accuracy of our model and method. The specific absorption rate (SAR) distribution of human capillary at optical frequency is also shown. While maintaining accuracy, the unconditionally stable FADI-FDTD method exhibits high efficiency in modeling hemoglobin. PMID:21559129

  18. High-order FDTD methods for transverse electromagnetic systems in dispersive inhomogeneous media.

    PubMed

    Zhao, Shan

    2011-08-15

    This Letter introduces a novel finite-difference time-domain (FDTD) formulation for solving transverse electromagnetic systems in dispersive media. Based on the auxiliary differential equation approach, the Debye dispersion model is coupled with Maxwell's equations to derive a supplementary ordinary differential equation for describing the regularity changes in electromagnetic fields at the dispersive interface. The resulting time-dependent jump conditions are rigorously enforced in the FDTD discretization by means of the matched interface and boundary scheme. High-order convergences are numerically achieved for the first time in the literature in the FDTD simulations of dispersive inhomogeneous media. © 2011 Optical Society of America

  19. Amplified total internal reflection: theory, analysis, and demonstration of existence via FDTD.

    PubMed

    Willis, Keely J; Schneider, John B; Hagness, Susan C

    2008-02-04

    The explanation of wave behavior upon total internal reflection from a gainy medium has defied consensus for 40 years. We examine this question using both the finite-difference time-domain (FDTD) method and theoretical analyses. FDTD simulations of a localized wave impinging on a gainy half space are based directly on Maxwell's equations and make no underlying assumptions. They reveal that amplification occurs upon total internal reflection from a gainy medium; conversely, amplification does not occur for incidence below the critical angle. Excellent agreement is obtained between the FDTD results and an analytical formulation that employs a new branch cut in the complex "propagation-constant" plane.

  20. Acceleration of FDTD mode solver by high-performance computing techniques.

    PubMed

    Han, Lin; Xi, Yanping; Huang, Wei-Ping

    2010-06-21

    A two-dimensional (2D) compact finite-difference time-domain (FDTD) mode solver is developed based on wave equation formalism in combination with the matrix pencil method (MPM). The method is validated for calculation of both real guided and complex leaky modes of typical optical waveguides against the bench-mark finite-difference (FD) eigen mode solver. By taking advantage of the inherent parallel nature of the FDTD algorithm, the mode solver is implemented on graphics processing units (GPUs) using the compute unified device architecture (CUDA). It is demonstrated that the high-performance computing technique leads to significant acceleration of the FDTD mode solver with more than 30 times improvement in computational efficiency in comparison with the conventional FDTD mode solver running on CPU of a standard desktop computer. The computational efficiency of the accelerated FDTD method is in the same order of magnitude of the standard finite-difference eigen mode solver and yet require much less memory (e.g., less than 10%). Therefore, the new method may serve as an efficient, accurate and robust tool for mode calculation of optical waveguides even when the conventional eigen value mode solvers are no longer applicable due to memory limitation.

  1. Bolshevik Revolution.

    ERIC Educational Resources Information Center

    Hueston, Stephen P.

    Suitable for use in a high school social studies course, this class game simulates the political interaction and general unrest in the nine-month period following the death of Tsar Nicholas II in Russia in 1917. Eight class groups take the roles of the leaders of the following political factions: the bourgeoisie, nobility, Socialist…

  2. Helping Students Analyze Revolutions

    ERIC Educational Resources Information Center

    Armstrong, Stephen; Desrosiers, Marian

    2012-01-01

    A visitor to a random sampling of Modern World History classes in the United States will find that the subject of "revolution" is a favorite for many students. Reading about and researching individuals and topics such as Tsar Nicholas II, Rasputin, Marie Antoinette and guillotines is never boring. Unfortunately, in too many classrooms,…

  3. Computation of tightly-focused laser beams in the FDTD method

    PubMed Central

    Çapoğlu, İlker R.; Taflove, Allen; Backman, Vadim

    2013-01-01

    We demonstrate how a tightly-focused coherent TEMmn laser beam can be computed in the finite-difference time-domain (FDTD) method. The electromagnetic field around the focus is decomposed into a plane-wave spectrum, and approximated by a finite number of plane waves injected into the FDTD grid using the total-field/scattered-field (TF/SF) method. We provide an error analysis, and guidelines for the discrete approximation. We analyze the scattering of the beam from layered spaces and individual scatterers. The described method should be useful for the simulation of confocal microscopy and optical data storage. An implementation of the method can be found in our free and open source FDTD software (“Angora”). PMID:23388899

  4. Computation of tightly-focused laser beams in the FDTD method.

    PubMed

    Capoğlu, Ilker R; Taflove, Allen; Backman, Vadim

    2013-01-14

    We demonstrate how a tightly-focused coherent TEMmn laser beam can be computed in the finite-difference time-domain (FDTD) method. The electromagnetic field around the focus is decomposed into a plane-wave spectrum, and approximated by a finite number of plane waves injected into the FDTD grid using the total-field/scattered-field (TF/SF) method. We provide an error analysis, and guidelines for the discrete approximation. We analyze the scattering of the beam from layered spaces and individual scatterers. The described method should be useful for the simulation of confocal microscopy and optical data storage. An implementation of the method can be found in our free and open source FDTD software ("Angora").

  5. A 3-D enlarged cell technique (ECT) for elastic wave modelling of a curved free surface

    NASA Astrophysics Data System (ADS)

    Wei, Songlin; Zhou, Jianyang; Zhuang, Mingwei; Liu, Qing Huo

    2016-09-01

    The conventional finite-difference time-domain (FDTD) method for elastic waves suffers from the staircasing error when applied to model a curved free surface because of its structured grid. In this work, an improved, stable and accurate 3-D FDTD method for elastic wave modelling on a curved free surface is developed based on the finite volume method and enlarged cell technique (ECT). To achieve a sufficiently accurate implementation, a finite volume scheme is applied to the curved free surface to remove the staircasing error; in the mean time, to achieve the same stability as the FDTD method without reducing the time step increment, the ECT is introduced to preserve the solution stability by enlarging small irregular cells into adjacent cells under the condition of conservation of force. This method is verified by several 3-D numerical examples. Results show that the method is stable at the Courant stability limit for a regular FDTD grid, and has much higher accuracy than the conventional FDTD method.

  6. Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach.

    PubMed

    Guo, L-X; Li, J; Zeng, H

    2009-11-01

    We present an investigation of the electromagnetic scattering from a three-dimensional (3-D) object above a two-dimensional (2-D) randomly rough surface. A Message Passing Interface-based parallel finite-difference time-domain (FDTD) approach is used, and the uniaxial perfectly matched layer (UPML) medium is adopted for truncation of the FDTD lattices, in which the finite-difference equations can be used for the total computation domain by properly choosing the uniaxial parameters. This makes the parallel FDTD algorithm easier to implement. The parallel performance with different number of processors is illustrated for one rough surface realization and shows that the computation time of our parallel FDTD algorithm is dramatically reduced relative to a single-processor implementation. Finally, the composite scattering coefficients versus scattered and azimuthal angle are presented and analyzed for different conditions, including the surface roughness, the dielectric constants, the polarization, and the size of the 3-D object.

  7. One-step leapfrog ADI-FDTD method for simulating electromagnetic wave propagation in general dispersive media.

    PubMed

    Wang, Xiang-Hua; Yin, Wen-Yan; Chen, Zhi Zhang David

    2013-09-09

    The one-step leapfrog alternating-direction-implicit finite-difference time-domain (ADI-FDTD) method is reformulated for simulating general electrically dispersive media. It models material dispersive properties with equivalent polarization currents. These currents are then solved with the auxiliary differential equation (ADE) and then incorporated into the one-step leapfrog ADI-FDTD method. The final equations are presented in the form similar to that of the conventional FDTD method but with second-order perturbation. The adapted method is then applied to characterize (a) electromagnetic wave propagation in a rectangular waveguide loaded with a magnetized plasma slab, (b) transmission coefficient of a plane wave normally incident on a monolayer graphene sheet biased by a magnetostatic field, and (c) surface plasmon polaritons (SPPs) propagation along a monolayer graphene sheet biased by an electrostatic field. The numerical results verify the stability, accuracy and computational efficiency of the proposed one-step leapfrog ADI-FDTD algorithm in comparison with analytical results and the results obtained with the other methods.

  8. The Application of the FDTD Method to Millimeter-Wave Filter Circuits Including the Design and Analysis of a Compact Coplanar

    NASA Technical Reports Server (NTRS)

    Oswald, J. E.; Siegel, P. H.

    1994-01-01

    The finite difference time domain (FDTD) method is applied to the analysis of microwave, millimeter-wave and submillimeter-wave filter circuits. In each case, the validity of this method is confirmed by comparison with measured data. In addition, the FDTD calculations are used to design a new ultra-thin coplanar-strip filter for feeding a THz planar-antenna mixer.

  9. MITHRA 1.0: A full-wave simulation tool for free electron lasers

    NASA Astrophysics Data System (ADS)

    Fallahi, Arya; Yahaghi, Alireza; Kärtner, Franz X.

    2018-07-01

    Free Electron Lasers (FELs) are a solution for providing intense, coherent and bright radiation in the hard X-ray regime. Due to the low wall-plug efficiency of FEL facilities, it is crucial and additionally very useful to develop complete and accurate simulation tools for better optimizing a FEL interaction. The highly sophisticated dynamics involved in a FEL process was the main obstacle hindering the development of general simulation tools for this problem. We present a numerical algorithm based on finite difference time domain/Particle in cell (FDTD/PIC) in a Lorentz boosted coordinate system which is able to fulfill a full-wave simulation of a FEL process. The developed software offers a suitable tool for the analysis of FEL interactions without considering any of the usual approximations. A coordinate transformation to bunch rest frame makes the very different length scales of bunch size, optical wavelengths and the undulator period transform to values with the same order. Consequently, FDTD/PIC simulations in conjunction with efficient parallelization techniques make the full-wave simulation feasible using the available computational resources. Several examples of free electron lasers are analyzed using the developed software, the results are benchmarked based on standard FEL codes and discussed in detail.

  10. GPU accelerated FDTD solver and its application in MRI.

    PubMed

    Chi, J; Liu, F; Jin, J; Mason, D G; Crozier, S

    2010-01-01

    The finite difference time domain (FDTD) method is a popular technique for computational electromagnetics (CEM). The large computational power often required, however, has been a limiting factor for its applications. In this paper, we will present a graphics processing unit (GPU)-based parallel FDTD solver and its successful application to the investigation of a novel B1 shimming scheme for high-field magnetic resonance imaging (MRI). The optimized shimming scheme exhibits considerably improved transmit B(1) profiles. The GPU implementation dramatically shortened the runtime of FDTD simulation of electromagnetic field compared with its CPU counterpart. The acceleration in runtime has made such investigation possible, and will pave the way for other studies of large-scale computational electromagnetic problems in modern MRI which were previously impractical.

  11. Determination of the transmission coefficients for quantum structures using FDTD method.

    PubMed

    Peng, Yangyang; Wang, Xiaoying; Sui, Wenquan

    2011-12-01

    The purpose of this work is to develop a simple method to incorporate quantum effect in traditional finite-difference time-domain (FDTD) simulators. Witch could make it possible to co-simulate systems include quantum structures and traditional components. In this paper, tunneling transmission coefficient is calculated by solving time-domain Schrödinger equation with a developed FDTD technique, called FDTD-S method. To validate the feasibility of the method, a simple resonant tunneling diode (RTD) structure model has been simulated using the proposed method. The good agreement between the numerical and analytical results proves its accuracy. The effectness and accuracy of this approach makes it a potential method for analysis and design of hybrid systems includes quantum structures and traditional components.

  12. GMES: A Python package for solving Maxwell’s equations using the FDTD method

    NASA Astrophysics Data System (ADS)

    Chun, Kyungwon; Kim, Huioon; Kim, Hyounggyu; Jung, Kil Su; Chung, Youngjoo

    2013-04-01

    This paper describes GMES, a free Python package for solving Maxwell’s equations using the finite-difference time-domain (FDTD) method. The design of GMES follows the object-oriented programming (OOP) approach and adopts a unique design strategy where the voxels in the computational domain are grouped and then updated according to its material type. This piecewise updating scheme ensures that GMES can adopt OOP without losing its simple structure and time-stepping speed. The users can easily add various material types, sources, and boundary conditions into their code using the Python programming language. The key design features, along with the supported material types, excitation sources, boundary conditions and parallel calculations employed in GMES are also described in detail. Catalog identifier: AEOK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOK_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License v3.0 No. of lines in distributed program, including test data, etc.: 17700 No. of bytes in distributed program, including test data, etc.: 89878 Distribution format: tar.gz Programming language: C++, Python. Computer: Any computer with a Unix-like system with a C++ compiler, and a Python interpreter; developed on 2.53 GHz Intel CoreTM i3. Operating system: Any Unix-like system; developed under Ubuntu 12.04 LTS 64 bit. Has the code been vectorized or parallelized?: Yes. Parallelized with MPI directives (optional). RAM: Problem dependent (a simulation with real valued electromagnetic field uses roughly 0.18 KB per Yee cell.) Classification: 10. External routines: SWIG [1], Cython [2], NumPy [3], SciPy [4], matplotlib [5], MPI for Python [6] Nature of problem: Classical electrodynamics Solution method: Finite-difference time-domain (FDTD) method Additional comments: This article describes version 0.9.5. The most recent version can be downloaded at the GMES project homepage [7]. Running time: Problem dependent (a simulation with real valued electromagnetic field takes typically about 0.16 μs per Yee cell per time-step.) SWIG, http://www.swig.org. Cython, http://www.cython.org. NumPy, http://numpy.scipy.org. SciPy, http://www.scipy.org. matplotlib, http://matplotlib.sourceforge.net. MPI for Python, http://mpi4py.scipy.org. GMES, http://sourceforge.net/projects/gmes.

  13. A two dimensional finite difference time domain analysis of the quiet zone fields of an anechoic chamber

    NASA Technical Reports Server (NTRS)

    Ryan, Deirdre A.; Luebbers, Raymond J.; Nguyen, Truong X.; Kunz, Karl S.; Steich, David J.

    1992-01-01

    Prediction of anechoic chamber performance is a difficult problem. Electromagnetic anechoic chambers exist for a wide range of frequencies but are typically very large when measured in wavelengths. Three dimensional finite difference time domain (FDTD) modeling of anechoic chambers is possible with current computers but at frequencies lower than most chamber design frequencies. However, two dimensional FDTD (2D-FTD) modeling enables much greater detail at higher frequencies and offers significant insight into compact anechoic chamber design and performance. A major subsystem of an anechoic chamber for which computational electromagnetic analyses exist is the reflector. First, an analysis of the quiet zone fields of a low frequency anechoic chamber produced by a uniform source and a reflector in two dimensions using the FDTD method is presented. The 2D-FDTD results are compared with results from a three dimensional corrected physical optics calculation and show good agreement. Next, a directional source is substituted for the uniform radiator. Finally, a two dimensional anechoic chamber geometry, including absorbing materials, is considered, and the 2D-FDTD results for these geometries appear reasonable.

  14. Finite difference time domain modeling of steady state scattering from jet engines with moving turbine blades

    NASA Technical Reports Server (NTRS)

    Ryan, Deirdre A.; Langdon, H. Scott; Beggs, John H.; Steich, David J.; Luebbers, Raymond J.; Kunz, Karl S.

    1992-01-01

    The approach chosen to model steady state scattering from jet engines with moving turbine blades is based upon the Finite Difference Time Domain (FDTD) method. The FDTD method is a numerical electromagnetic program based upon the direct solution in the time domain of Maxwell's time dependent curl equations throughout a volume. One of the strengths of this method is the ability to model objects with complicated shape and/or material composition. General time domain functions may be used as source excitations. For example, a plane wave excitation may be specified as a pulse containing many frequencies and at any incidence angle to the scatterer. A best fit to the scatterer is accomplished using cubical cells in the standard cartesian implementation of the FDTD method. The material composition of the scatterer is determined by specifying its electrical properties at each cell on the scatterer. Thus, the FDTD method is a suitable choice for problems with complex geometries evaluated at multiple frequencies. It is assumed that the reader is familiar with the FDTD method.

  15. The use of MR B+1 imaging for validation of FDTD electromagnetic simulations of human anatomies.

    PubMed

    Van den Berg, Cornelis A T; Bartels, Lambertus W; van den Bergen, Bob; Kroeze, Hugo; de Leeuw, Astrid A C; Van de Kamer, Jeroen B; Lagendijk, Jan J W

    2006-10-07

    In this study, MR B(+)(1) imaging is employed to experimentally verify the validity of FDTD simulations of electromagnetic field patterns in human anatomies. Measurements and FDTD simulations of the B(+)(1) field induced by a 3 T MR body coil in a human corpse were performed. It was found that MR B(+)(1) imaging is a sensitive method to measure the radiofrequency (RF) magnetic field inside a human anatomy with a precision of approximately 3.5%. A good correlation was found between the B(+)(1) measurements and FDTD simulations. The measured B(+)(1) pattern for a human pelvis consisted of a global, diagonal modulation pattern plus local B(+)(1) heterogeneties. It is believed that these local B(+)(1) field variations are the result of peaks in the induced electric currents, which could not be resolved by the FDTD simulations on a 5 mm(3) simulation grid. The findings from this study demonstrate that B(+)(1) imaging is a valuable experimental technique to gain more knowledge about the dielectric interaction of RF fields with the human anatomy.

  16. FDTD analysis of the light extraction efficiency of OLEDs with a random scattering layer.

    PubMed

    Kim, Jun-Whee; Jang, Ji-Hyang; Oh, Min-Cheol; Shin, Jin-Wook; Cho, Doo-Hee; Moon, Jae-Hyun; Lee, Jeong-Ik

    2014-01-13

    The light extraction efficiency of OLEDs with a nano-sized random scattering layer (RSL-OLEDs) was analyzed using the Finite Difference Time Domain (FDTD) method. In contrast to periodic diffraction patterns, the presence of an RSL suppresses the spectral shift with respect to the viewing angle. For FDTD simulation of RSL-OLEDs, a planar light source with a certain spatial and temporal coherence was incorporated, and the light extraction efficiency with respect to the fill factor of the RSL and the absorption coefficient of the material was investigated. The design results were compared to the experimental results of the RSL-OLEDs in order to confirm the usefulness of FDTD in predicting experimental results. According to our FDTD simulations, the light confined within the ITO-organic waveguide was quickly absorbed, and the absorption coefficients of ITO and RSL materials should be reduced in order to obtain significant improvement in the external quantum efficiency (EQE). When the extinction coefficient of ITO was 0.01, the EQE in the RSL-OLED was simulated to be enhanced by a factor of 1.8.

  17. Generation of an incident focused light pulse in FDTD.

    PubMed

    Capoğlu, Ilker R; Taflove, Allen; Backman, Vadim

    2008-11-10

    A straightforward procedure is described for accurately creating an incident focused light pulse in the 3-D finite-difference time-domain (FDTD) electromagnetic simulation of the image space of an aplanatic converging lens. In this procedure, the focused light pulse is approximated by a finite sum of plane waves, and each plane wave is introduced into the FDTD simulation grid using the total-field/scattered-field (TF/SF) approach. The accuracy of our results is demonstrated by comparison with exact theoretical formulas.

  18. Modal loss mechanism of micro-structured VCSELs studied using full vector FDTD method.

    PubMed

    Jo, Du-Ho; Vu, Ngoc Hai; Kim, Jin-Tae; Hwang, In-Kag

    2011-09-12

    Modal properties of vertical cavity surface-emitting lasers (VCSELs) with holey structures are studied using a finite difference time domain (FDTD) method. We investigate loss behavior with respect to the variation of structural parameters, and explain the loss mechanism of VCSELs. We also propose an effective method to estimate the modal loss based on mode profiles obtained using FDTD simulation. Our results could provide an important guideline for optimization of the microstructures of high-power single-mode VCSELs.

  19. Generation of an incident focused light pulse in FDTD

    PubMed Central

    Çapoğlu, İlker R.; Taflove, Allen; Backman, Vadim

    2009-01-01

    A straightforward procedure is described for accurately creating an incident focused light pulse in the 3-D finite-difference time-domain (FDTD) electromagnetic simulation of the image space of an aplanatic converging lens. In this procedure, the focused light pulse is approximated by a finite sum of plane waves, and each plane wave is introduced into the FDTD simulation grid using the total-field/scattered-field (TF/SF) approach. The accuracy of our results is demonstrated by comparison with exact theoretical formulas. PMID:19582013

  20. FDTD simulation tools for UWB antenna analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brocato, Robert Wesley

    2004-12-01

    This paper describes the development of a set of software tools useful for analyzing ultra-wideband (UWB) antennas and structures. These tools are used to perform finite difference time domain (FDTD) simulation of a conical antenna with continuous wave (CW) and UWB pulsed excitations. The antenna is analyzed using spherical coordinate-based FDTD equations that are derived from first principles. The simulation results for CW excitation are compared to simulation and measured results from published sources; the results for UWB excitation are new.

  1. Investigation on wide-band scattering of a 2-D target above 1-D randomly rough surface by FDTD method.

    PubMed

    Li, Juan; Guo, Li-Xin; Jiao, Yong-Chang; Li, Ke

    2011-01-17

    Finite-difference time-domain (FDTD) algorithm with a pulse wave excitation is used to investigate the wide-band composite scattering from a two-dimensional(2-D) infinitely long target with arbitrary cross section located above a one-dimensional(1-D) randomly rough surface. The FDTD calculation is performed with a pulse wave incidence, and the 2-D representative time-domain scattered field in the far zone is obtained directly by extrapolating the currently calculated data on the output boundary. Then the 2-D wide-band scattering result is acquired by transforming the representative time-domain field to the frequency domain with a Fourier transform. Taking the composite scattering of an infinitely long cylinder above rough surface as an example, the wide-band response in the far zone by FDTD with the pulsed excitation is computed and it shows a good agreement with the numerical result by FDTD with the sinusoidal illumination. Finally, the normalized radar cross section (NRCS) from a 2-D target above 1-D rough surface versus the incident frequency, and the representative scattered fields in the far zone versus the time are analyzed in detail.

  2. Electron Energy-Loss Spectroscopy (EELS)Calculation in Finite-Difference Time-Domain (FDTD) Package: EELS-FDTD

    NASA Astrophysics Data System (ADS)

    Large, Nicolas; Cao, Yang; Manjavacas, Alejandro; Nordlander, Peter

    2015-03-01

    Electron energy-loss spectroscopy (EELS) is a unique tool that is extensively used to investigate the plasmonic response of metallic nanostructures since the early works in the '50s. To be able to interpret and theoretically investigate EELS results, a myriad of different numerical techniques have been developed for EELS simulations (BEM, DDA, FEM, GDTD, Green dyadic functions). Although these techniques are able to predict and reproduce experimental results, they possess significant drawbacks and are often limited to highly symmetrical geometries, non-penetrating trajectories, small nanostructures, and free standing nanostructures. We present here a novel approach for EELS calculations using the Finite-difference time-domain (FDTD) method: EELS-FDTD. We benchmark our approach by direct comparison with results from the well-established boundary element method (BEM) and published experimental results. In particular, we compute EELS spectra for spherical nanoparticles, nanoparticle dimers, nanodisks supported by various substrates, and gold bowtie antennas on a silicon nitride substrate. Our EELS-FDTD implementation can be easily extended to more complex geometries and configurations and can be directly implemented within other numerical methods. Work funded by the Welch Foundation (C-1222, L-C-004), and the NSF (CNS-0821727, OCI-0959097).

  3. Finite-difference time-domain synthesis of infrasound propagation through an absorbing atmosphere.

    PubMed

    de Groot-Hedlin, C

    2008-09-01

    Equations applicable to finite-difference time-domain (FDTD) computation of infrasound propagation through an absorbing atmosphere are derived and examined in this paper. It is shown that over altitudes up to 160 km, and at frequencies relevant to global infrasound propagation, i.e., 0.02-5 Hz, the acoustic absorption in dB/m varies approximately as the square of the propagation frequency plus a small constant term. A second-order differential equation is presented for an atmosphere modeled as a compressible Newtonian fluid with low shear viscosity, acted on by a small external damping force. It is shown that the solution to this equation represents pressure fluctuations with the attenuation indicated above. Increased dispersion is predicted at altitudes over 100 km at infrasound frequencies. The governing propagation equation is separated into two partial differential equations that are first order in time for FDTD implementation. A numerical analysis of errors inherent to this FDTD method shows that the attenuation term imposes additional stability constraints on the FDTD algorithm. Comparison of FDTD results for models with and without attenuation shows that the predicted transmission losses for the attenuating media agree with those computed from synthesized waveforms.

  4. Comprehensive Numerical Analysis of Finite Difference Time Domain Methods for Improving Optical Waveguide Sensor Accuracy

    PubMed Central

    Samak, M. Mosleh E. Abu; Bakar, A. Ashrif A.; Kashif, Muhammad; Zan, Mohd Saiful Dzulkifly

    2016-01-01

    This paper discusses numerical analysis methods for different geometrical features that have limited interval values for typically used sensor wavelengths. Compared with existing Finite Difference Time Domain (FDTD) methods, the alternating direction implicit (ADI)-FDTD method reduces the number of sub-steps by a factor of two to three, which represents a 33% time savings in each single run. The local one-dimensional (LOD)-FDTD method has similar numerical equation properties, which should be calculated as in the previous method. Generally, a small number of arithmetic processes, which result in a shorter simulation time, are desired. The alternating direction implicit technique can be considered a significant step forward for improving the efficiency of unconditionally stable FDTD schemes. This comparative study shows that the local one-dimensional method had minimum relative error ranges of less than 40% for analytical frequencies above 42.85 GHz, and the same accuracy was generated by both methods.

  5. FDTD simulations of forces on particles during holographic assembly.

    PubMed

    Benito, David C; Simpson, Stephen H; Hanna, Simon

    2008-03-03

    We present finite-difference time-domain (FDTD) calculations of the forces and torques on dielectric particles of various shapes, held in one or many Gaussian optical traps, as part of a study of the physical limitations involved in the construction of micro- and nanostructures using a dynamic holographic assembler (DHA). We employ a full 3-dimensional FDTD implementation, which includes a complete treatment of optical anisotropy. The Gaussian beams are sourced using a multipole expansion of a fifth order Davis beam. Force and torques are calculated for pairs of silica spheres in adjacent traps, for silica cylinders trapped by multiple beams and for oblate silica spheroids and calcite spheres in both linearly and circularly polarized beams. Comparisons are drawn between the magnitudes of the optical forces and the Van der Waals forces acting on the systems. The paper also considers the limitations of the FDTD approach when applied to optical trapping.

  6. Characterization of a subwavelength-scale 3D void structure using the FDTD-based confocal laser scanning microscopic image mapping technique.

    PubMed

    Choi, Kyongsik; Chon, James W; Gu, Min; Lee, Byoungho

    2007-08-20

    In this paper, a simple confocal laser scanning microscopic (CLSM) image mapping technique based on the finite-difference time domain (FDTD) calculation has been proposed and evaluated for characterization of a subwavelength-scale three-dimensional (3D) void structure fabricated inside polymer matrix. The FDTD simulation method adopts a focused Gaussian beam incident wave, Berenger's perfectly matched layer absorbing boundary condition, and the angular spectrum analysis method. Through the well matched simulation and experimental results of the xz-scanned 3D void structure, we first characterize the exact position and the topological shape factor of the subwavelength-scale void structure, which was fabricated by a tightly focused ultrashort pulse laser. The proposed CLSM image mapping technique based on the FDTD can be widely applied from the 3D near-field microscopic imaging, optical trapping, and evanescent wave phenomenon to the state-of-the-art bio- and nanophotonics.

  7. A parallel graded-mesh FDTD algorithm for human-antenna interaction problems.

    PubMed

    Catarinucci, Luca; Tarricone, Luciano

    2009-01-01

    The finite difference time domain method (FDTD) is frequently used for the numerical solution of a wide variety of electromagnetic (EM) problems and, among them, those concerning human exposure to EM fields. In many practical cases related to the assessment of occupational EM exposure, large simulation domains are modeled and high space resolution adopted, so that strong memory and central processing unit power requirements have to be satisfied. To better afford the computational effort, the use of parallel computing is a winning approach; alternatively, subgridding techniques are often implemented. However, the simultaneous use of subgridding schemes and parallel algorithms is very new. In this paper, an easy-to-implement and highly-efficient parallel graded-mesh (GM) FDTD scheme is proposed and applied to human-antenna interaction problems, demonstrating its appropriateness in dealing with complex occupational tasks and showing its capability to guarantee the advantages of a traditional subgridding technique without affecting the parallel FDTD performance.

  8. Large-visual-angle microstructure inspired from quantitative design of Morpho butterflies' lamellae deviation using the FDTD/PSO method.

    PubMed

    Wang, Wanlin; Zhang, Wang; Chen, Weixin; Gu, Jiajun; Liu, Qinglei; Deng, Tao; Zhang, Di

    2013-01-15

    The wide angular range of the treelike structure in Morpho butterfly scales was investigated by finite-difference time-domain (FDTD)/particle-swarm-optimization (PSO) analysis. Using the FDTD method, different parameters in the Morpho butterflies' treelike structure were studied and their contributions to the angular dependence were analyzed. Then a wide angular range was realized by the PSO method from quantitatively designing the lamellae deviation (Δy), which was a crucial parameter with angular range. The field map of the wide-range reflection in a large area was given to confirm the wide angular range. The tristimulus values and corresponding color coordinates for various viewing directions were calculated to confirm the blue color in different observation angles. The wide angular range realized by the FDTD/PSO method will assist us in understanding the scientific principles involved and also in designing artificial optical materials.

  9. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.; Kokotoff, David; Zavosh, Frank

    1993-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program has continuously progressed with its research effort focused on subjects identified and recommended by the Advisory Task Force of the program. The research activities in this reporting period have been steered toward practical helicopter electromagnetic problems, such as HF antenna problems and antenna efficiencies, recommended by the AHE members at the annual conference held at Arizona State University on 28-29 Oct. 1992 and the last biannual meeting held at the Boeing Helicopter on 19-20 May 1993. The main topics addressed include the following: Composite Materials and Antenna Technology. The research work on each topic is closely tied with the AHE Consortium members' interests. Significant progress in each subject is reported. Special attention in the area of Composite Materials has been given to the following: modeling of material discontinuity and their effects on towel-bar antenna patterns; guidelines for composite material modeling by using the Green's function approach in the NEC code; measurements of towel-bar antennas grounded with a partially material-coated plate; development of 3-D volume mesh generator for modeling thick and volumetric dielectrics by using FD-TD method; FDTD modeling of horn antennas with composite E-plane walls; and antenna efficiency analysis for a horn antenna loaded with composite dielectric materials.

  10. Coupled electromagnetic-thermodynamic simulations of microwave heating problems using the FDTD algorithm.

    PubMed

    Kopyt, Paweł; Celuch, Małgorzata

    2007-01-01

    A practical implementation of a hybrid simulation system capable of modeling coupled electromagnetic-thermodynamic problems typical in microwave heating is described. The paper presents two approaches to modeling such problems. Both are based on an FDTD-based commercial electromagnetic solver coupled to an external thermodynamic analysis tool required for calculations of heat diffusion. The first approach utilizes a simple FDTD-based thermal solver while in the second it is replaced by a universal commercial CFD solver. The accuracy of the two modeling systems is verified against the original experimental data as well as the measurement results available in literature.

  11. Finite difference time domain (FDTD) method for modeling the effect of switched gradients on the human body in MRI.

    PubMed

    Zhao, Huawei; Crozier, Stuart; Liu, Feng

    2002-12-01

    Numerical modeling of the eddy currents induced in the human body by the pulsed field gradients in MRI presents a difficult computational problem. It requires an efficient and accurate computational method for high spatial resolution analyses with a relatively low input frequency. In this article, a new technique is described which allows the finite difference time domain (FDTD) method to be efficiently applied over a very large frequency range, including low frequencies. This is not the case in conventional FDTD-based methods. A method of implementing streamline gradients in FDTD is presented, as well as comparative analyses which show that the correct source injection in the FDTD simulation plays a crucial rule in obtaining accurate solutions. In particular, making use of the derivative of the input source waveform is shown to provide distinct benefits in accuracy over direct source injection. In the method, no alterations to the properties of either the source or the transmission media are required. The method is essentially frequency independent and the source injection method has been verified against examples with analytical solutions. Results are presented showing the spatial distribution of gradient-induced electric fields and eddy currents in a complete body model. Copyright 2002 Wiley-Liss, Inc.

  12. Numerical Modeling of Sub-Wavelength Anti-Reflective Structures for Solar Module Applications

    PubMed Central

    Han, Katherine; Chang, Chih-Hung

    2014-01-01

    This paper reviews the current progress in mathematical modeling of anti-reflective subwavelength structures. Methods covered include effective medium theory (EMT), finite-difference time-domain (FDTD), transfer matrix method (TMM), the Fourier modal method (FMM)/rigorous coupled-wave analysis (RCWA) and the finite element method (FEM). Time-based solutions to Maxwell’s equations, such as FDTD, have the benefits of calculating reflectance for multiple wavelengths of light per simulation, but are computationally intensive. Space-discretized methods such as FDTD and FEM output field strength results over the whole geometry and are capable of modeling arbitrary shapes. Frequency-based solutions such as RCWA/FMM and FEM model one wavelength per simulation and are thus able to handle dispersion for regular geometries. Analytical approaches such as TMM are appropriate for very simple thin films. Initial disadvantages such as neglect of dispersion (FDTD), inaccuracy in TM polarization (RCWA), inability to model aperiodic gratings (RCWA), and inaccuracy with metallic materials (FDTD) have been overcome by most modern software. All rigorous numerical methods have accurately predicted the broadband reflection of ideal, graded-index anti-reflective subwavelength structures; ideal structures are tapered nanostructures with periods smaller than the wavelengths of light of interest and lengths that are at least a large portion of the wavelengths considered. PMID:28348287

  13. A design tool for direct and non-stochastic calculations of near-field radiative transfer in complex structures: The NF-RT-FDTD algorithm

    NASA Astrophysics Data System (ADS)

    Didari, Azadeh; Pinar Mengüç, M.

    2017-08-01

    Advances in nanotechnology and nanophotonics are inextricably linked with the need for reliable computational algorithms to be adapted as design tools for the development of new concepts in energy harvesting, radiative cooling, nanolithography and nano-scale manufacturing, among others. In this paper, we provide an outline for such a computational tool, named NF-RT-FDTD, to determine the near-field radiative transfer between structured surfaces using Finite Difference Time Domain method. NF-RT-FDTD is a direct and non-stochastic algorithm, which accounts for the statistical nature of the thermal radiation and is easily applicable to any arbitrary geometry at thermal equilibrium. We present a review of the fundamental relations for far- and near-field radiative transfer between different geometries with nano-scale surface and volumetric features and gaps, and then we discuss the details of the NF-RT-FDTD formulation, its application to sample geometries and outline its future expansion to more complex geometries. In addition, we briefly discuss some of the recent numerical works for direct and indirect calculations of near-field thermal radiation transfer, including Scattering Matrix method, Finite Difference Time Domain method (FDTD), Wiener Chaos Expansion, Fluctuating Surface Current (FSC), Fluctuating Volume Current (FVC) and Thermal Discrete Dipole Approximations (TDDA).

  14. Light extraction efficiency analysis of GaN-based light-emitting diodes with nanopatterned sapphire substrates.

    PubMed

    Pan, Jui-Wen; Tsai, Pei-Jung; Chang, Kao-Der; Chang, Yung-Yuan

    2013-03-01

    In this paper, we propose a method to analyze the light extraction efficiency (LEE) enhancement of a nanopatterned sapphire substrates (NPSS) light-emitting diode (LED) by comparing wave optics software with ray optics software. Finite-difference time-domain (FDTD) simulations represent the wave optics software and Light Tools (LTs) simulations represent the ray optics software. First, we find the trends of and an optimal solution for the LEE enhancement when the 2D-FDTD simulations are used to save on simulation time and computational memory. The rigorous coupled-wave analysis method is utilized to explain the trend we get from the 2D-FDTD algorithm. The optimal solution is then applied in 3D-FDTD and LTs simulations. The results are similar and the difference in LEE enhancement between the two simulations does not exceed 8.5% in the small LED chip area. More than 10(4) times computational memory is saved during the LTs simulation in comparison to the 3D-FDTD simulation. Moreover, LEE enhancement from the side of the LED can be obtained in the LTs simulation. An actual-size NPSS LED is simulated using the LTs. The results show a more than 307% improvement in the total LEE enhancement of the NPSS LED with the optimal solution compared to the conventional LED.

  15. Memory-optimized shift operator alternating direction implicit finite difference time domain method for plasma

    NASA Astrophysics Data System (ADS)

    Song, Wanjun; Zhang, Hou

    2017-11-01

    Through introducing the alternating direction implicit (ADI) technique and the memory-optimized algorithm to the shift operator (SO) finite difference time domain (FDTD) method, the memory-optimized SO-ADI FDTD for nonmagnetized collisional plasma is proposed and the corresponding formulae of the proposed method for programming are deduced. In order to further the computational efficiency, the iteration method rather than Gauss elimination method is employed to solve the equation set in the derivation of the formulae. Complicated transformations and convolutions are avoided in the proposed method compared with the Z transforms (ZT) ADI FDTD method and the piecewise linear JE recursive convolution (PLJERC) ADI FDTD method. The numerical dispersion of the SO-ADI FDTD method with different plasma frequencies and electron collision frequencies is analyzed and the appropriate ratio of grid size to the minimum wavelength is given. The accuracy of the proposed method is validated by the reflection coefficient test on a nonmagnetized collisional plasma sheet. The testing results show that the proposed method is advantageous for improving computational efficiency and saving computer memory. The reflection coefficient of a perfect electric conductor (PEC) sheet covered by multilayer plasma and the RCS of the objects coated by plasma are calculated by the proposed method and the simulation results are analyzed.

  16. Modeling the ponderomotive interaction of high-power laser beams with collisional plasma: the FDTD-based approach.

    PubMed

    Lin, Zhili; Chen, Xudong; Ding, Panfeng; Qiu, Weibin; Pu, Jixiong

    2017-04-03

    The ponderomotive interaction of high-power laser beams with collisional plasma is modeled in the nonrelativistic regime and is simulated using the powerful finite-difference time-domain (FDTD) method for the first time in literature. The nonlinear and dissipative dielectric constant function of the collisional plasma is deduced that takes the ponderomotive effect into account and is implemented in the discrete framework of FDTD algorithms. Maclaurin series expansion approach is applied for implementing the obtained physical model and the time average of the square of light field is extracted by numerically evaluating an integral identity based on the composite trapezoidal rule for numerical integration. Two numerical examples corresponding to two different types of laser beams, Gaussian beam and vortex Laguerre-Gaussian beam, propagating in collisional plasma, are presented for specified laser and plasma parameters to verify the validity of the proposed FDTD-based approach. Simulation results show the anticipated self-focusing and attenuation phenomena of laser beams and the deformation of the spatial density distributions of electron plasma along the beam propagation path. Due to the flexibility of FDTD method in light beam excitation and accurate complex material modeling, the proposed approach has a wide application prospect in the study of the complex laser-plasma interactions in a small scale.

  17. A hybrid FDTD-Rayleigh integral computational method for the simulation of the ultrasound measurement of proximal femur.

    PubMed

    Cassereau, Didier; Nauleau, Pierre; Bendjoudi, Aniss; Minonzio, Jean-Gabriel; Laugier, Pascal; Bossy, Emmanuel; Grimal, Quentin

    2014-07-01

    The development of novel quantitative ultrasound (QUS) techniques to measure the hip is critically dependent on the possibility to simulate the ultrasound propagation. One specificity of hip QUS is that ultrasounds propagate through a large thickness of soft tissue, which can be modeled by a homogeneous fluid in a first approach. Finite difference time domain (FDTD) algorithms have been widely used to simulate QUS measurements but they are not adapted to simulate ultrasonic propagation over long distances in homogeneous media. In this paper, an hybrid numerical method is presented to simulate hip QUS measurements. A two-dimensional FDTD simulation in the vicinity of the bone is coupled to the semi-analytic calculation of the Rayleigh integral to compute the wave propagation between the probe and the bone. The method is used to simulate a setup dedicated to the measurement of circumferential guided waves in the cortical compartment of the femoral neck. The proposed approach is validated by comparison with a full FDTD simulation and with an experiment on a bone phantom. For a realistic QUS configuration, the computation time is estimated to be sixty times less with the hybrid method than with a full FDTD approach. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. AN FDTD ALGORITHM WITH PERFECTLY MATCHED LAYERS FOR CONDUCTIVE MEDIA. (R825225)

    EPA Science Inventory

    We extend Berenger's perfectly matched layers (PML) to conductive media. A finite-difference-time-domain (FDTD) algorithm with PML as an absorbing boundary condition is developed for solutions of Maxwell's equations in inhomogeneous, conductive media. For a perfectly matched laye...

  19. A PML-FDTD ALGORITHM FOR SIMULATING PLASMA-COVERED CAVITY-BACKED SLOT ANTENNAS. (R825225)

    EPA Science Inventory

    A three-dimensional frequency-dependent finite-difference time-domain (FDTD) algorithm with perfectly matched layer (PML) absorbing boundary condition (ABC) and recursive convolution approaches is developed to model plasma-covered open-ended waveguide or cavity-backed slot antenn...

  20. FDTD modeling of thin impedance sheets

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. In this paper it is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods.

  1. Graphics-processing-unit-accelerated finite-difference time-domain simulation of the interaction between ultrashort laser pulses and metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Nikolskiy, V. P.; Stegailov, V. V.

    2018-01-01

    Metal nanoparticles (NPs) serve as important tools for many modern technologies. However, the proper microscopic models of the interaction between ultrashort laser pulses and metal NPs are currently not very well developed in many cases. One part of the problem is the description of the warm dense matter that is formed in NPs after intense irradiation. Another part of the problem is the description of the electromagnetic waves around NPs. Description of wave propagation requires the solution of Maxwell’s equations and the finite-difference time-domain (FDTD) method is the classic approach for solving them. There are many commercial and free implementations of FDTD, including the open source software that supports graphics processing unit (GPU) acceleration. In this report we present the results on the FDTD calculations for different cases of the interaction between ultrashort laser pulses and metal nanoparticles. Following our previous results, we analyze the efficiency of the GPU acceleration of the FDTD algorithm.

  2. Nuclear EMP simulation for large-scale urban environments. FDTD for electrically large problems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, William S.; Bull, Jeffrey S.; Wilcox, Trevor

    2012-08-13

    In case of a terrorist nuclear attack in a metropolitan area, EMP measurement could provide: (1) a prompt confirmation of the nature of the explosion (chemical or nuclear) for emergency response; and (2) and characterization parameters of the device (reaction history, yield) for technical forensics. However, urban environment could affect the fidelity of the prompt EMP measurement (as well as all other types of prompt measurement): (1) Nuclear EMP wavefront would no longer be coherent, due to incoherent production, attenuation, and propagation of gamma and electrons; and (2) EMP propagation from source region outward would undergo complicated transmission, reflection, andmore » diffraction processes. EMP simulation for electrically-large urban environment: (1) Coupled MCNP/FDTD (Finite-difference time domain Maxwell solver) approach; and (2) FDTD tends to be limited to problems that are not 'too' large compared to the wavelengths of interest because of numerical dispersion and anisotropy. We use a higher-order low-dispersion, isotropic FDTD algorithm for EMP propagation.« less

  3. Label-free, single-object sensing with a microring resonator: FDTD simulation.

    PubMed

    Nguyen, Dan T; Norwood, Robert A

    2013-01-14

    Label-free, single-object sensing with a microring resonator is investigated numerically using the finite difference time-domain (FDTD) method. A pulse with ultra-wide bandwidth that spans over several resonant modes of the ring and of the sensing object is used for simulation, enabling a single-shot simulation of the microring sensing. The FDTD simulation not only can describe the circulation of the light in a whispering-gallery-mode (WGM) microring and multiple interactions between the light and the sensing object, but also other important factors of the sensing system, such as scattering and radiation losses. The FDTD results show that the simulation can yield a resonant shift of the WGM cavity modes. Furthermore, it can also extract eigenmodes of the sensing object, and therefore information from deep inside the object. The simulation method is not only suitable for a single object (single molecule, nano-, micro-scale particle) but can be extended to the problem of multiple objects as well.

  4. Obtaining source current density related to irregularly structured electromagnetic target field inside human body using hybrid inverse/FDTD method.

    PubMed

    Han, Jijun; Yang, Deqiang; Sun, Houjun; Xin, Sherman Xuegang

    2017-01-01

    Inverse method is inherently suitable for calculating the distribution of source current density related with an irregularly structured electromagnetic target field. However, the present form of inverse method cannot calculate complex field-tissue interactions. A novel hybrid inverse/finite-difference time domain (FDTD) method that can calculate the complex field-tissue interactions for the inverse design of source current density related with an irregularly structured electromagnetic target field is proposed. A Huygens' equivalent surface is established as a bridge to combine the inverse and FDTD method. Distribution of the radiofrequency (RF) magnetic field on the Huygens' equivalent surface is obtained using the FDTD method by considering the complex field-tissue interactions within the human body model. The obtained magnetic field distributed on the Huygens' equivalent surface is regarded as the next target. The current density on the designated source surface is derived using the inverse method. The homogeneity of target magnetic field and specific energy absorption rate are calculated to verify the proposed method.

  5. Single realization stochastic FDTD for weak scattering waves in biological random media.

    PubMed

    Tan, Tengmeng; Taflove, Allen; Backman, Vadim

    2013-02-01

    This paper introduces an iterative scheme to overcome the unresolved issues presented in S-FDTD (stochastic finite-difference time-domain) for obtaining ensemble average field values recently reported by Smith and Furse in an attempt to replace the brute force multiple-realization also known as Monte-Carlo approach with a single-realization scheme. Our formulation is particularly useful for studying light interactions with biological cells and tissues having sub-wavelength scale features. Numerical results demonstrate that such a small scale variation can be effectively modeled with a random medium problem which when simulated with the proposed S-FDTD indeed produces a very accurate result.

  6. Single realization stochastic FDTD for weak scattering waves in biological random media

    PubMed Central

    Tan, Tengmeng; Taflove, Allen; Backman, Vadim

    2015-01-01

    This paper introduces an iterative scheme to overcome the unresolved issues presented in S-FDTD (stochastic finite-difference time-domain) for obtaining ensemble average field values recently reported by Smith and Furse in an attempt to replace the brute force multiple-realization also known as Monte-Carlo approach with a single-realization scheme. Our formulation is particularly useful for studying light interactions with biological cells and tissues having sub-wavelength scale features. Numerical results demonstrate that such a small scale variation can be effectively modeled with a random medium problem which when simulated with the proposed S-FDTD indeed produces a very accurate result. PMID:27158153

  7. Numerical Simulation of Partially-Coherent Broadband Optical Imaging Using the FDTD Method

    PubMed Central

    Çapoğlu, İlker R.; White, Craig A.; Rogers, Jeremy D.; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2012-01-01

    Rigorous numerical modeling of optical systems has attracted interest in diverse research areas ranging from biophotonics to photolithography. We report the full-vector electromagnetic numerical simulation of a broadband optical imaging system with partially-coherent and unpolarized illumination. The scattering of light from the sample is calculated using the finite-difference time-domain (FDTD) numerical method. Geometrical optics principles are applied to the scattered light to obtain the intensity distribution at the image plane. Multilayered object spaces are also supported by our algorithm. For the first time, numerical FDTD calculations are directly compared to and shown to agree well with broadband experimental microscopy results. PMID:21540939

  8. Steel Spans,

    DTIC Science & Technology

    1984-01-31

    armoured cars of our battalion protected on the streets of Petersburg the risen workers from the gendarmes and faithful to the tsar military units. At...Vasilyevich was the soul of soldier, our leader. €.5 Each armoured car then had its name. It was written by large/coarse letters on the boards...brigade of drivers. They inspect vehicles, they service them with gasoline. Georgiy Vasilyevich lies/rests under the armoured car and something inspects

  9. Russian Anti-Americanism: Origins and Implications

    DTIC Science & Technology

    2008-09-01

    a growing pool of crime , inadequate social protection, and emptiness.29 So what does this mean? While Russians do not necessarily want to become... crime and corruption. Subconsciously driven by a strong Soviet upbringing, Putin has arguably transformed himself into a Russian post-Soviet tsar. He is...of Russia, Official Portal,17 February 2008, http://kremlin.ru/eng/text/ speeches /2008/02/14/1011_type82915_160266.shtml (accessed 12 March 2008

  10. Can Russia Reform? Economic, Political, and Military Perspectives

    DTIC Science & Technology

    2012-06-01

    formation of a diversified economic model , it did not halt the growth of the gap between Russia and the developed world either. The result will be...years. The pure model was a unitary state economic governance scheme where Tsars, (principals) unable to micro-plan and command production...subsistence, and dividing the booty arbitrarily among themselves. TSARIST STATE ECONOMIC MANAGEMENT REFORM The core model served its purpose and was

  11. Analysis and Design of a Fiber-optic Probe for DNA Sensors Final Report CRADA No. TSB-1147-95

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molau, Nicole; Vail, Curtis

    In 1995, a challenge in the field of genetics dealt with the acquisition of efficient DNA sequencing techniques for reading the 3 billion base-pairs that comprised the human genome. AccuPhotonics, Inc. proposed to develop and manufacture a state-of-the-art near-field scanning optical microscopy (NSOM) fiber-optic probe that was expected to increase probe efficiency by two orders of magnitude over the existing state-of-the-art and to improve resolution to 10Å. The detailed design calculation and optimization of electrical properties of the fiber-optic probe tip geometry would be performed at LLNL, using existing finite-difference time-domain (FDTD) electromagnetic (EM) codes.

  12. Flow Cytometry with Gold Nanoparticles and their Clusters as scattering Contrast Agents: FDTD Simulation of Light-Cell Interaction

    PubMed Central

    Tanev, Stoyan; Sun, Wenbo; Pond, James; Tuchin, Valery V.; Zharov, Vladimir P.

    2010-01-01

    The formulation of the Finite-Difference Time-Domain (FDTD) approach is presented in the framework of its potential applications to in vivo flow cytometry based on light scattering. The consideration is focused on comparison of light scattering by a single biological cell alone in controlled refractive index matching conditions and by cells labeled by gold nanoparticles. The optical schematics including phase contrast (OPCM) microscopy as a prospective modality for in vivo flow cytometry is also analyzed. The validation of the FDTD approach for the simulation of flow cytometry may open a new avenue in the development of advanced cytometric techniques based on scattering effects from nanoscale targets. PMID:19670359

  13. 2-D Fused Image Reconstruction approach for Microwave Tomography: a theoretical assessment using FDTD Model.

    PubMed

    Bindu, G; Semenov, S

    2013-01-01

    This paper describes an efficient two-dimensional fused image reconstruction approach for Microwave Tomography (MWT). Finite Difference Time Domain (FDTD) models were created for a viable MWT experimental system having the transceivers modelled using thin wire approximation with resistive voltage sources. Born Iterative and Distorted Born Iterative methods have been employed for image reconstruction with the extremity imaging being done using a differential imaging technique. The forward solver in the imaging algorithm employs the FDTD method of solving the time domain Maxwell's equations with the regularisation parameter computed using a stochastic approach. The algorithm is tested with 10% noise inclusion and successful image reconstruction has been shown implying its robustness.

  14. Development of a Finite-Difference Time Domain (FDTD) Model for Propagation of Transient Sounds in Very Shallow Water.

    PubMed

    Sprague, Mark W; Luczkovich, Joseph J

    2016-01-01

    This finite-difference time domain (FDTD) model for sound propagation in very shallow water uses pressure and velocity grids with both 3-dimensional Cartesian and 2-dimensional cylindrical implementations. Parameters, including water and sediment properties, can vary in each dimension. Steady-state and transient signals from discrete and distributed sources, such as the surface of a vibrating pile, can be used. The cylindrical implementation uses less computation but requires axial symmetry. The Cartesian implementation allows asymmetry. FDTD calculations compare well with those of a split-step parabolic equation. Applications include modeling the propagation of individual fish sounds, fish aggregation sounds, and distributed sources.

  15. DBR, Sub-wavelength grating, and Photonic crystal slab Fabry-Perot cavity design using phase analysis by FDTD.

    PubMed

    Kim, Jae Hwan Eric; Chrostowski, Lukas; Bisaillon, Eric; Plant, David V

    2007-08-06

    We demonstrate a Finite-Difference Time-Domain (FDTD) phase methodology to estimate resonant wavelengths in Fabry-Perot (FP) cavity structures. We validate the phase method in a conventional Vertical-Cavity Surface-Emitting Laser (VCSEL) structure using a transfer-matrix method, and compare results with a FDTD reflectance method. We extend this approach to a Sub-Wavelength Grating (SWG) and a Photonic Crystal (Phc) slab, either of which may replace one of the Distributed Bragg Reflectors (DBRs) in the VCSEL, and predict resonant conditions with varying lithographic parameters. Finally, we compare the resonant tunabilities of three different VCSEL structures, taking quality factors into account.

  16. Efficient analysis of mode profiles in elliptical microcavity using dynamic-thermal electron-quantum medium FDTD method.

    PubMed

    Khoo, E H; Ahmed, I; Goh, R S M; Lee, K H; Hung, T G G; Li, E P

    2013-03-11

    The dynamic-thermal electron-quantum medium finite-difference time-domain (DTEQM-FDTD) method is used for efficient analysis of mode profile in elliptical microcavity. The resonance peak of the elliptical microcavity is studied by varying the length ratio. It is observed that at some length ratios, cavity mode is excited instead of whispering gallery mode. This depicts that mode profiles are length ratio dependent. Through the implementation of the DTEQM-FDTD on graphic processing unit (GPU), the simulation time is reduced by 300 times as compared to the CPU. This leads to an efficient optimization approach to design microcavity lasers for wide range of applications in photonic integrated circuits.

  17. FDTD Analysis of U-Slot Rectangular Patch Antenna

    NASA Technical Reports Server (NTRS)

    Luk, K. M.; Tong, K. F.; Shum, S. M.; Lee, K. F.; Lee, R. Q.

    1997-01-01

    The U-slot rectangular patch antenna (Figure I) has been found experimentally to provide impedance and gain bandwidths of about 300 without the need of stacked or coplanar parasitic elements [1,2]. In this paper, simulation results of the U-slot patch using FDTD analysis are presented. Comparison with measured results are given.

  18. Experimental and numerical investigation of feed-point parameters in a 3-D hyperthermia applicator using different FDTD models of feed networks.

    PubMed

    Nadobny, Jacek; Fähling, Horst; Hagmann, Mark J; Turner, Paul F; Wlodarczyk, Waldemar; Gellermann, Johanna M; Deuflhard, Peter; Wust, Peter

    2002-11-01

    Experimental and numerical methods were used to determine the coupling of energy in a multichannel three-dimensional hyperthermia applicator (SIGMA-Eye), consisting of 12 short dipole antenna pairs with stubs for impedance matching. The relationship between the amplitudes and phases of the forward waves from the amplifiers, to the resulting amplitudes and phases at the antenna feed-points was determined in terms of interaction matrices. Three measuring methods were used: 1) a differential probe soldered directly at the antenna feed-points; 2) an E-field sensor placed near the feed-points; and 3) measurements were made at the outputs of the amplifier. The measured data were compared with finite-difference time-domain (FDTD) calculations made with three different models. The first model assumes that single antennas are fed independently. The second model simulates antenna pairs connected to the transmission lines. The measured data correlate best with the latter FDTD model, resulting in an improvement of more than 20% and 20 degrees (average difference in amplitudes and phases) when compared with the two simpler FDTD models.

  19. An in-depth stability analysis of nonuniform FDTD combined with novel local implicitization techniques

    NASA Astrophysics Data System (ADS)

    Van Londersele, Arne; De Zutter, Daniël; Vande Ginste, Dries

    2017-08-01

    This work focuses on efficient full-wave solutions of multiscale electromagnetic problems in the time domain. Three local implicitization techniques are proposed and carefully analyzed in order to relax the traditional time step limit of the Finite-Difference Time-Domain (FDTD) method on a nonuniform, staggered, tensor product grid: Newmark, Crank-Nicolson (CN) and Alternating-Direction-Implicit (ADI) implicitization. All of them are applied in preferable directions, alike Hybrid Implicit-Explicit (HIE) methods, as to limit the rank of the sparse linear systems. Both exponential and linear stability are rigorously investigated for arbitrary grid spacings and arbitrary inhomogeneous, possibly lossy, isotropic media. Numerical examples confirm the conservation of energy inside a cavity for a million iterations if the time step is chosen below the proposed, relaxed limit. Apart from the theoretical contributions, new accomplishments such as the development of the leapfrog Alternating-Direction-Hybrid-Implicit-Explicit (ADHIE) FDTD method and a less stringent Courant-like time step limit for the conventional, fully explicit FDTD method on a nonuniform grid, have immediate practical applications.

  20. Calculation of light delay for coupled microrings by FDTD technique and Padé approximation.

    PubMed

    Huang, Yong-Zhen; Yang, Yue-De

    2009-11-01

    The Padé approximation with Baker's algorithm is compared with the least-squares Prony method and the generalized pencil-of-functions (GPOF) method for calculating mode frequencies and mode Q factors for coupled optical microdisks by FDTD technique. Comparisons of intensity spectra and the corresponding mode frequencies and Q factors show that the Padé approximation can yield more stable results than the Prony and the GPOF methods, especially the intensity spectrum. The results of the Prony method and the GPOF method are greatly influenced by the selected number of resonant modes, which need to be optimized during the data processing, in addition to the length of the time response signal. Furthermore, the Padé approximation is applied to calculate light delay for embedded microring resonators from complex transmission spectra obtained by the Padé approximation from a FDTD output. The Prony and the GPOF methods cannot be applied to calculate the transmission spectra, because the transmission signal obtained by the FDTD simulation cannot be expressed as a sum of damped complex exponentials.

  1. FDTD based model of ISOCT imaging for validation of nanoscale sensitivity (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Eid, Aya; Zhang, Di; Yi, Ji; Backman, Vadim

    2017-02-01

    Many of the earliest structural changes associated with neoplasia occur on the micro and nanometer scale, and thus appear histologically normal. Our group has established Inverse Spectroscopic OCT (ISOCT), a spectral based technique to extract nanoscale sensitive metrics derived from the OCT signal. Thus, there is a need to model light transport through relatively large volumes (< 50 um^3) of media with nanoscale level resolution. Finite Difference Time Domain (FDTD) is an iterative approach which directly solves Maxwell's equations to robustly estimate the electric and magnetic fields propagating through a sample. The sample's refractive index for every spatial voxel and wavelength are specified upon a grid with voxel sizes on the order of λ/20, making it an ideal modelling technique for nanoscale structure analysis. Here, we utilize the FDTD technique to validate the nanoscale sensing ability of ISOCT. The use of FDTD for OCT modelling requires three components: calculating the source beam as it propagates through the optical system, computing the sample's scattered field using FDTD, and finally propagating the scattered field back through the optical system. The principles of Fourier optics are employed to focus this interference field through a 4f optical system and onto the detector. Three-dimensional numerical samples are generated from a given refractive index correlation function with known parameters, and subsequent OCT images and mass density correlation function metrics are computed. We show that while the resolvability of the OCT image remains diffraction limited, spectral analysis allows nanoscale sensitive metrics to be extracted.

  2. 2-D Fused Image Reconstruction approach for Microwave Tomography: a theoretical assessment using FDTD Model

    PubMed Central

    Bindu, G.; Semenov, S.

    2013-01-01

    This paper describes an efficient two-dimensional fused image reconstruction approach for Microwave Tomography (MWT). Finite Difference Time Domain (FDTD) models were created for a viable MWT experimental system having the transceivers modelled using thin wire approximation with resistive voltage sources. Born Iterative and Distorted Born Iterative methods have been employed for image reconstruction with the extremity imaging being done using a differential imaging technique. The forward solver in the imaging algorithm employs the FDTD method of solving the time domain Maxwell’s equations with the regularisation parameter computed using a stochastic approach. The algorithm is tested with 10% noise inclusion and successful image reconstruction has been shown implying its robustness. PMID:24058889

  3. Development of a GPU-Accelerated 3-D Full-Wave Code for Electromagnetic Wave Propagation in a Cold Plasma

    NASA Astrophysics Data System (ADS)

    Woodbury, D.; Kubota, S.; Johnson, I.

    2014-10-01

    Computer simulations of electromagnetic wave propagation in magnetized plasmas are an important tool for both plasma heating and diagnostics. For active millimeter-wave and microwave diagnostics, accurately modeling the evolution of the beam parameters for launched, reflected or scattered waves in a toroidal plasma requires that calculations be done using the full 3-D geometry. Previously, we reported on the application of GPGPU (General-Purpose computing on Graphics Processing Units) to a 3-D vacuum Maxwell code using the FDTD (Finite-Difference Time-Domain) method. Tests were done for Gaussian beam propagation with a hard source antenna, utilizing the parallel processing capabilities of the NVIDIA K20M. In the current study, we have modified the 3-D code to include a soft source antenna and an induced current density based on the cold plasma approximation. Results from Gaussian beam propagation in an inhomogeneous anisotropic plasma, along with comparisons to ray- and beam-tracing calculations will be presented. Additional enhancements, such as advanced coding techniques for improved speedup, will also be investigated. Supported by U.S. DoE Grant DE-FG02-99-ER54527 and in part by the U.S. DoE, Office of Science, WDTS under the Science Undergraduate Laboratory Internship program.

  4. Towards robust algorithms for current deposition and dynamic load-balancing in a GPU particle in cell code

    NASA Astrophysics Data System (ADS)

    Rossi, Francesco; Londrillo, Pasquale; Sgattoni, Andrea; Sinigardi, Stefano; Turchetti, Giorgio

    2012-12-01

    We present `jasmine', an implementation of a fully relativistic, 3D, electromagnetic Particle-In-Cell (PIC) code, capable of running simulations in various laser plasma acceleration regimes on Graphics-Processing-Units (GPUs) HPC clusters. Standard energy/charge preserving FDTD-based algorithms have been implemented using double precision and quadratic (or arbitrary sized) shape functions for the particle weighting. When porting a PIC scheme to the GPU architecture (or, in general, a shared memory environment), the particle-to-grid operations (e.g. the evaluation of the current density) require special care to avoid memory inconsistencies and conflicts. Here we present a robust implementation of this operation that is efficient for any number of particles per cell and particle shape function order. Our algorithm exploits the exposed GPU memory hierarchy and avoids the use of atomic operations, which can hurt performance especially when many particles lay on the same cell. We show the code multi-GPU scalability results and present a dynamic load-balancing algorithm. The code is written using a python-based C++ meta-programming technique which translates in a high level of modularity and allows for easy performance tuning and simple extension of the core algorithms to various simulation schemes.

  5. Solar Wind Driven Autoregression Model for Ionospheric Short Term Forecast (SWIF)

    DTIC Science & Technology

    2008-06-01

    for GCAM; previous two months for TSAR). However the quality of the autoscaling software ( ARTIST ) performance determines largely the accuracy of...showing the SWIF synthesis. Figure 17: Athens Digisonde ionograms autoscaled with ARTIST4.0 (top) and with ARTIST4.5 (bottom) during fall quiet...intervals Figure 18: Athens Digisonde ionograms autoscaled with ARTIST4.0 (top) and with ARTIST4.5 (bottom) during summer quiet intervals Figure 19

  6. The Effects of Teacher-Set and Student-Set Accelerated Reader Goal Setting on Reading Comprehension and Student Attitudes towards Reading in Fourth- and Fifth-Grade Students

    ERIC Educational Resources Information Center

    Tucker, Tiffany G.

    2016-01-01

    The purpose of this research study was to compare the impact of Teacher-Set Accelerated Reader goals (TSAR) with Student-Set Accelerated Reader goals (SSAR) of fourth- and fifth-grade students. The goal of this research study was to determine which type of goal setting approach influences reading growth the most as measured by the easyCBM…

  7. The Horn of Africa and Arabia

    DTIC Science & Technology

    1990-01-17

    freedom of navigation Ethiopian Emperor Menelik II in 1902 and again in through the Bab al-Mandab. As noted above, the 1925 between Britain and Italy. 45...posed by Ras Menelik II of appealed specifically to Great Britain, France, and Shoa. As insurance against the possible invasion of Russia, as fellow...was carried over by the tsars’ successors. At the end memorandum of understanding between the two of World War II , Stalin tried unsuccessfully to es

  8. Comparison of Cartesian grid configurations for application of the finite-difference time-domain method to electromagnetic scattering by dielectric particles.

    PubMed

    Yang, Ping; Kattawar, George W; Liou, Kuo-Nan; Lu, Jun Q

    2004-08-10

    Two grid configurations can be employed to implement the finite-difference time-domain (FDTD) technique in a Cartesian system. One configuration defines the electric and magnetic field components at the cell edges and cell-face centers, respectively, whereas the other reverses these definitions. These two grid configurations differ in terms of implication on the electromagnetic boundary conditions if the scatterer in the FDTD computation is a dielectric particle. The permittivity has an abrupt transition at the cell interface if the dielectric properties of two adjacent cells are not identical. Similarly, the discontinuity of permittivity is also observed at the edges of neighboring cells that are different in terms of their dielectric constants. We present two FDTD schemes for light scattering by dielectric particles to overcome the above-mentioned discontinuity on the basis of the electromagnetic boundary conditions for the two Cartesian grid configurations. We also present an empirical approach to accelerate the convergence of the discrete Fourier transform to obtain the field values in the frequency domain. As a new application of the FDTD method, we investigate the scattering properties of multibranched bullet-rosette ice crystals at both visible and thermal infrared wavelengths.

  9. Comparing FDTD and Ray-Tracing Models in Numerical Simulation of HgCdTe LWIR Photodetectors

    NASA Astrophysics Data System (ADS)

    Vallone, Marco; Goano, Michele; Bertazzi, Francesco; Ghione, Giovanni; Schirmacher, Wilhelm; Hanna, Stefan; Figgemeier, Heinrich

    2016-09-01

    We present a simulation study of HgCdTe-based long-wavelength infrared detectors, focusing on methodological comparisons between the finite-difference time-domain (FDTD) and ray-tracing optical models. We performed three-dimensional simulations to determine the absorbed photon density distributions and the corresponding photocurrent and quantum efficiency spectra of isolated n-on- p uniform-composition pixels, systematically comparing the results obtained with FDTD and ray tracing. Since ray tracing is a classical optics approach, unable to describe interference effects, its applicability has been found to be strongly wavelength dependent, especially when reflections from metallic layers are relevant. Interesting cavity effects around the material cutoff wavelength are described, and the cases where ray tracing can be considered a viable approximation are discussed.

  10. Nanoporous Anodic Alumina 3D FDTD Modelling for a Broad Range of Inter-pore Distances

    NASA Astrophysics Data System (ADS)

    Bertó-Roselló, Francesc; Xifré-Pérez, Elisabet; Ferré-Borrull, Josep; Pallarès, Josep; Marsal, Lluis F.

    2016-08-01

    The capability of the finite difference time domain (FDTD) method for the numerical modelling of the optical properties of nanoporous anodic alumina (NAA) in a broad range of inter-pore distances is evaluated. FDTD permits taking into account in the same numerical framework all the structural features of NAA, such as the texturization of the interfaces or the incorporation of electrolyte anions in the aluminium oxide host. The evaluation is carried out by comparing reflectance measurements from two samples with two very different inter-pore distances with the simulation results. Results show that considering the texturization is crucial to obtain good agreement with the measurements. On the other hand, including the anionic layer in the model leads to a second-order contribution to the reflectance spectrum.

  11. Economical Sponge Phantom for Teaching, Understanding, and Researching A- and B-Line Reverberation Artifacts in Lung Ultrasound.

    PubMed

    Blüthgen, Christian; Sanabria, Sergio; Frauenfelder, Thomas; Klingmüller, Volker; Rominger, Marga

    2017-10-01

    This project evaluated a low-cost sponge phantom setup for its capability to teach and study A- and B-line reverberation artifacts known from lung ultrasound and to numerically simulate sound wave interaction with the phantom using a finite-difference time-domain (FDTD) model. Both A- and B-line artifacts were reproducible on B-mode ultrasound imaging as well as in the FDTD-based simulation. The phantom was found to be an easy-to-set up and economical tool for understanding, teaching, and researching A- and B-line artifacts occurring in lung ultrasound. The FDTD method-based simulation was able to reproduce the artifacts and provides intuitive insight into the underlying physics. © 2017 by the American Institute of Ultrasound in Medicine.

  12. Combined FDTD-Monte Carlo analysis and a novel design for ZnO scintillator rods in polycarbonate membrane for X-ray imaging

    NASA Astrophysics Data System (ADS)

    Mohammadian-Behbahani, Mohammad-Reza; Saramad, Shahyar; Mohammadi, Mohammad

    2017-05-01

    A combination of Finite Difference Time Domain (FDTD) and Monte Carlo (MC) methods is proposed for simulation and analysis of ZnO microscintillators grown in polycarbonate membrane. A planar 10 keV X-ray source irradiating the detector is simulated by MC method, which provides the amount of absorbed X-ray energy in the assembly. The transport of generated UV scintillation light and its propagation in the detector was studied by the FDTD method. Detector responses to different probable scintillation sites and under different energies of X-ray source from 10 to 25 keV are reported. Finally, the tapered geometry for the scintillators is proposed, which shows enhanced spatial resolution in comparison to cylindrical geometry for imaging applications.

  13. Nanoporous Anodic Alumina 3D FDTD Modelling for a Broad Range of Inter-pore Distances.

    PubMed

    Bertó-Roselló, Francesc; Xifré-Pérez, Elisabet; Ferré-Borrull, Josep; Pallarès, Josep; Marsal, Lluis F

    2016-12-01

    The capability of the finite difference time domain (FDTD) method for the numerical modelling of the optical properties of nanoporous anodic alumina (NAA) in a broad range of inter-pore distances is evaluated. FDTD permits taking into account in the same numerical framework all the structural features of NAA, such as the texturization of the interfaces or the incorporation of electrolyte anions in the aluminium oxide host. The evaluation is carried out by comparing reflectance measurements from two samples with two very different inter-pore distances with the simulation results. Results show that considering the texturization is crucial to obtain good agreement with the measurements. On the other hand, including the anionic layer in the model leads to a second-order contribution to the reflectance spectrum.

  14. FDTD subcell graphene model beyond the thin-film approximation

    NASA Astrophysics Data System (ADS)

    Valuev, Ilya; Belousov, Sergei; Bogdanova, Maria; Kotov, Oleg; Lozovik, Yurii

    2017-01-01

    A subcell technique for calculation of optical properties of graphene with the finite-difference time-domain (FDTD) method is presented. The technique takes into account the surface conductivity of graphene which allows the correct calculation of its dispersive response for arbitrarily polarized incident waves interacting with the graphene. The developed technique is verified for a planar graphene sheet configuration against the exact analytical solution. Based on the same test case scenario, we also show that the subcell technique demonstrates a superior accuracy and numerical efficiency with respect to the widely used thin-film FDTD approach for modeling graphene. We further apply our technique to the simulations of a graphene metamaterial containing periodically spaced graphene strips (graphene strip-grating) and demonstrate good agreement with the available theoretical results.

  15. Flow cytometry with gold nanoparticles and their clusters as scattering contrast agents: FDTD simulation of light-cell interaction.

    PubMed

    Tanev, Stoyan; Sun, Wenbo; Pond, James; Tuchin, Valery V; Zharov, Vladimir P

    2009-09-01

    The formulation of the finite-difference time-domain (FDTD) approach is presented in the framework of its potential applications to in-vivo flow cytometry based on light scattering. The consideration is focused on comparison of light scattering by a single biological cell alone in controlled refractive-index matching conditions and by cells labeled by gold nanoparticles. The optical schematics including phase contrast (OPCM) microscopy as a prospective modality for in-vivo flow cytometry is also analyzed. The validation of the FDTD approach for the simulation of flow cytometry may open up a new avenue in the development of advanced cytometric techniques based on scattering effects from nanoscale targets. 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  16. SFM-FDTD analysis of triangular-lattice AAA structure: Parametric study of the TEM mode

    NASA Astrophysics Data System (ADS)

    Hamidi, M.; Chemrouk, C.; Belkhir, A.; Kebci, Z.; Ndao, A.; Lamrous, O.; Baida, F. I.

    2014-05-01

    This theoretical work reports a parametric study of enhanced transmission through annular aperture array (AAA) structure arranged in a triangular lattice. The effect of the incidence angle in addition to the inner and outer radii values on the evolution of the transmission spectra is carried out. To this end, a 3D Finite-Difference Time-Domain code based on the Split Field Method (SFM) is used to calculate the spectral response of the structure for any angle of incidence. In order to work through an orthogonal unit cell which presents the advantage to reduce time and space of computation, special periodic boundary conditions are implemented. This study provides a new modeling of AAA structures useful for producing tunable ultra-compact devices.

  17. The Center Must Hold: Avoiding Grand Strategic Failure

    DTIC Science & Technology

    2012-03-14

    Russia’s land and unaccountable to the people.11 The Reformation of the Catholic Church, the Glorious Revolution in England, the Enlightenment, the French ...expose them to the ideals of the French revolution. The radical egalitarianism of “liberté, égalité, fraternité” was co- opted by the Tsar to fire...Roman times. Despite this, the peasant birthrate remained high, causing peasants to pay ever higher cash rents to gentry for land to farm for food

  18. Excited State Energetics and Dynamics of Large Molecules, Complexes and Clusters

    DTIC Science & Technology

    1988-07-01

    tetracene. Ar (n=l-5) complexes, providing central information on microscopic solvent shifts. These studies were extended to M-metal atom com - plexes...corresponding to the bare molecule. At higher 2. Experimental stagnation pressures of Ar (p = 80-150 Toff) the contributions of van der Waals DPB. Ar, com - Our...gas aromatic-molecule complexes were docu- So - S1 transition of the trans-stilbene (TS)-Ar com - mented experimentally to lie in the rango - 30- plex

  19. The openGL visualization of the 2D parallel FDTD algorithm

    NASA Astrophysics Data System (ADS)

    Walendziuk, Wojciech

    2005-02-01

    This paper presents a way of visualization of a two-dimensional version of a parallel algorithm of the FDTD method. The visualization module was created on the basis of the OpenGL graphic standard with the use of the GLUT interface. In addition, the work includes the results of the efficiency of the parallel algorithm in the form of speedup charts.

  20. FDTD scattered field formulation for scatterers in stratified dispersive media.

    PubMed

    Olkkonen, Juuso

    2010-03-01

    We introduce a simple scattered field (SF) technique that enables finite difference time domain (FDTD) modeling of light scattering from dispersive objects residing in stratified dispersive media. The introduced SF technique is verified against the total field scattered field (TFSF) technique. As an application example, we study surface plasmon polariton enhanced light transmission through a 100 nm wide slit in a silver film.

  1. A finite difference-time domain technique for modeling narrow apertures in conducting scatterers

    NASA Technical Reports Server (NTRS)

    Demarest, Kenneth R.

    1987-01-01

    The finite difference-time domain (FDTD) technique has proven to be a valuable tool for the calculation of the transient and steady state scattering characteristics of relatively complex scatterer and source configurations. In spite of its usefulness, it exhibits serious deficiencies when used to analyze geometries that contain fine detail. An FDTD technique is described that utilizes Babinet's principle to decouple the regions on both sides of the aperture. The result is an FDTD technique that is capable of modeling apertures that are much smaller than the spatial grid used in the analysis and yet is not perturbed by numerical noise when used in the 'scattered field' mode. Numerical results are presented that show the field penetration through cavity-backed apertures that are much smaller than the spatial grid used during the solution.

  2. Application of the three-dimensional aperiodic Fourier modal method using arc elements in curvilinear coordinates.

    PubMed

    Bucci, Davide; Martin, Bruno; Morand, Alain

    2012-03-01

    This paper deals with a full vectorial generalization of the aperiodic Fourier modal method (AFMM) in cylindrical coordinates. The goal is to predict some key characteristics such as the bending losses of waveguides having an arbitrary distribution of the transverse refractive index. After a description of the method, we compare the results of the cylindrical coordinates AFMM with simulations by the finite-difference time-domain (FDTD) method performed on an S-bend structure made by a 500 nm × 200 nm silicon core (n=3.48) in silica (n=1.44) at a wavelength λ=1550 nm, the bending radius varying from 0.5 up to 2 μm. The FDTD and AFMM results show differences comparable to the variations obtained by changing the parameters of the FDTD simulations.

  3. Modeling, Simulation and Design of Plasmonic Interconnects for On-Chip Signal Processing

    DTIC Science & Technology

    2011-02-14

    integration and computation can be achieved by using the photonic detection devices such as the ultrafast photodectors and nanowire field transistors... infrared to optical frequencies, and their FDTD simulation results are shown in the middle diagram. In the right most diagram, the HSPICE simulation...FDTD simulation. The results tally very well to affirm that plasmonic nanowires can be simulated using circuit simulators like HSPICE to combine the

  4. FDTD modeling of solar energy absorption in silicon branched nanowires.

    PubMed

    Lundgren, Christin; Lopez, Rene; Redwing, Joan; Melde, Kathleen

    2013-05-06

    Thin film nanostructured photovoltaic cells are increasing in efficiency and decreasing the cost of solar energy. FDTD modeling of branched nanowire 'forests' are shown to have improved optical absorption in the visible and near-IR spectra over nanowire arrays alone, with a factor of 5 enhancement available at 1000 nm. Alternate BNW tree configurations are presented, achieving a maximum absorption of over 95% at 500 nm.

  5. Comparison of a 3-D GPU-Assisted Maxwell Code and Ray Tracing for Reflectometry on ITER

    NASA Astrophysics Data System (ADS)

    Gady, Sarah; Kubota, Shigeyuki; Johnson, Irena

    2015-11-01

    Electromagnetic wave propagation and scattering in magnetized plasmas are important diagnostics for high temperature plasmas. 1-D and 2-D full-wave codes are standard tools for measurements of the electron density profile and fluctuations; however, ray tracing results have shown that beam propagation in tokamak plasmas is inherently a 3-D problem. The GPU-Assisted Maxwell Code utilizes the FDTD (Finite-Difference Time-Domain) method for solving the Maxwell equations with the cold plasma approximation in a 3-D geometry. Parallel processing with GPGPU (General-Purpose computing on Graphics Processing Units) is used to accelerate the computation. Previously, we reported on initial comparisons of the code results to 1-D numerical and analytical solutions, where the size of the computational grid was limited by the on-board memory of the GPU. In the current study, this limitation is overcome by using domain decomposition and an additional GPU. As a practical application, this code is used to study the current design of the ITER Low Field Side Reflectometer (LSFR) for the Equatorial Port Plug 11 (EPP11). A detailed examination of Gaussian beam propagation in the ITER edge plasma will be presented, as well as comparisons with ray tracing. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466 and DE-FG02-99-ER54527.

  6. Analysis and Design of an Information Systems Network in the Former Soviet Union.

    DTIC Science & Technology

    1996-03-01

    Hill, 1974), p. 74. 5 Numerous intimate details and insight were provided by a certain Prince to the Marquis de Custine who traveled throughout Russia...And here, it should be noted, the most condemning evidence of despotism and servitude was given not by Custine , but by Tsar Nicholas I, himself, who...can be found the essence of the "Russian Soul." In order ŚAstolphe L.L. Marquis de Custine , Custine’s Eternal Russia: A New Edition of Journey For

  7. Revised Uniform Summary of Surface Weather Observations (RUSSWO) for Yucca Flat Air Strip, Mercury, Nevada. Parts A-F

    DTIC Science & Technology

    1979-09-28

    FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) 03133 YUCCA FLAT AIR STRIP NV 6-77 SEF STATION STATION KANE TSARS NONIN ALL WF&THEk 1200...92.8 92.8 929 92.# 92.2 92.! 92. 92*, 92.6T 9*81 93.,* ~ 9. 3 3 393.3. 93. 9393. 93.22 93 9 9393 93󈨡 93.2 93.21 93.4 93.5 W 94.9 95.09a 9590 9. 51 51

  8. Application of a GPU-Assisted Maxwell Code to Electromagnetic Wave Propagation in ITER

    NASA Astrophysics Data System (ADS)

    Kubota, S.; Peebles, W. A.; Woodbury, D.; Johnson, I.; Zolfaghari, A.

    2014-10-01

    The Low Field Side Reflectometer (LSFR) on ITER is envisioned to provide capabilities for electron density profile and fluctuations measurements in both the plasma core and edge. The current design for the Equatorial Port Plug 11 (EPP11) employs seven monostatic antennas for use with both fixed-frequency and swept-frequency systems. The present work examines the characteristics of this layout using the 3-D version of the GPU-Assisted Maxwell Code (GAMC-3D). Previous studies in this area were performed with either 2-D full wave codes or 3-D ray- and beam-tracing. GAMC-3D is based on the FDTD method and can be run with either a fixed-frequency or modulated (e.g. FMCW) source, and with either a stationary or moving target (e.g. Doppler backscattering). The code is designed to run on a single NVIDIA Tesla GPU accelerator, and utilizes a technique based on the moving window method to overcome the size limitation of the onboard memory. Effects such as beam drift, linear mode conversion, and diffraction/scattering will be examined. Comparisons will be made with beam-tracing calculations using the complex eikonal method. Supported by U.S. DoE Grants DE-FG02-99ER54527 and DE-AC02-09CH11466, and the DoE SULI Program at PPPL.

  9. Terahertz Radiation: A Non-contact Tool for the Selective Stimulation of Biological Responses in Human Cells

    DTIC Science & Technology

    2014-01-01

    computational and empirical dosimetric tools [31]. For the computational dosimetry, we employed finite-dif- ference time- domain (FDTD) modeling techniques to...temperature-time data collected for a well exposed to THz radiation using finite-difference time- domain (FDTD) modeling techniques and thermocouples... like )). Alter- ation in the expression of such genes underscores the signif- 62 IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, VOL. 6, NO. 1

  10. Calibration of ultra-high frequency (UHF) partial discharge sensors using FDTD method

    NASA Astrophysics Data System (ADS)

    Ishak, Asnor Mazuan; Ishak, Mohd Taufiq

    2018-02-01

    Ultra-high frequency (UHF) partial discharge sensors are widely used for conditioning monitoring and defect location in insulation system of high voltage equipment. Designing sensors for specific applications often requires an iterative process of manufacturing, testing and mechanical modifications. This paper demonstrates the use of finite-difference time-domain (FDTD) technique as a tool to predict the frequency response of UHF PD sensors. Using this approach, the design process can be simplified and parametric studies can be conducted in order to assess the influence of component dimensions and material properties on the sensor response. The modelling approach is validated using gigahertz transverse electromagnetic (GTEM) calibration system. The use of a transient excitation source is particularly suitable for modeling using FDTD, which is able to simulate the step response output voltage of the sensor from which the frequency response is obtained using the same post-processing applied to the physical measurement.

  11. Scattering of targets over layered half space using a semi-analytic method in conjunction with FDTD algorithm.

    PubMed

    Cao, Le; Wei, Bing

    2014-08-25

    Finite-difference time-domain (FDTD) algorithm with a new method of plane wave excitation is used to investigate the RCS (Radar Cross Section) characteristics of targets over layered half space. Compare with the traditional excitation plane wave method, the calculation memory and time requirement is greatly decreased. The FDTD calculation is performed with a plane wave incidence, and the RCS of far field is obtained by extrapolating the currently calculated data on the output boundary. However, methods available for extrapolating have to evaluate the half space Green function. In this paper, a new method which avoids using the complex and time-consuming half space Green function is proposed. Numerical results show that this method is in good agreement with classic algorithm and it can be used in the fast calculation of scattering and radiation of targets over layered half space.

  12. Corrections to the General (2,4) and (4,4) FDTD Schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meierbachtol, Collin S.; Smith, William S.; Shao, Xuan-Min

    The sampling weights associated with two general higher order FDTD schemes were derived by Smith, et al. and published in a IEEE Transactions on Antennas and Propagation article in 2012. Inconsistencies between governing equations and their resulting solutions were discovered within the article. In an effort to track down the root cause of these inconsistencies, the full three-dimensional, higher order FDTD dispersion relation was re-derived using Mathematica TM. During this process, two errors were identi ed in the article. Both errors are highlighted in this document. The corrected sampling weights are also provided. Finally, the original stability limits provided formore » both schemes are corrected, and presented in a more precise form. It is recommended any future implementations of the two general higher order schemes provided in the Smith, et al. 2012 article should instead use the sampling weights and stability conditions listed in this document.« less

  13. FDTD Calculation of FM-Band Crosstalks between Perpendicular Traces on Printed Circuit Board with Ground-Pattern Slits

    NASA Astrophysics Data System (ADS)

    Ueyama, Hiroya; Maeno, Tsuyoshi; Hirata, Akimasa; Wang, Jianqing; Fujiwara, Osamu

    Electromagnetic disturbances for vehicle-mounted radios are well known to be caused mainly by conduction noise currents flowing out wire harnesses from printed circuit boards (PCBs) having a common ground layer with slits. In this study, in order to investigate how ground-layer slits affect the above conduction noise currents, we paid FM band induced voltages or crosstalks on the trace connected to the wire harnesss, and simulated with the FDTD method the crosstalk levels between two traces perpendicularly fabricated on three kinds of simple PCBs with different ground-layer slits, which were compared with measurement in the frequency range from 10 MHz to 1 GHz. As a result, we could confirm that the FDTD calculation approximately agrees with the measured results, and also that the crosstalk levels do not always increase with the slit number, which can be reduced by the slit layout.

  14. Experimental and FDTD study of silicon surface morphology induced by femtosecond laser irradiation at a high substrate temperature.

    PubMed

    Deng, Guoliang; Feng, Guoying; Zhou, Shouhuan

    2017-04-03

    Substrate temperature is an important parameter for controlling the properties of femtosecond laser induced surface structures besides traditional ways. The morphology on silicon surface at different temperatures are studied experimentally. Compared to those formed at 300 K, smoother ripples, micro-grooves and nano/micro-holes are formed at 700 K. A two temperature model and FDTD method are used to discuss the temperature dependence of surface structures. The results show that the increased light absorption at elevated temperature leads to the reduction of surface roughness. The type-g feature in the FDTD-η map at 700 K, which corresponds to the energy deposition modulation parallel to the laser polarization with a periodicity bigger than the wavelength, is the origin of the formation of grooves. This work can benefit both surface structures based applications and the study of femtosecond laser-matter interactions.

  15. Numerical Modelling of Ground Penetrating Radar Antennas

    NASA Astrophysics Data System (ADS)

    Giannakis, Iraklis; Giannopoulos, Antonios; Pajewski, Lara

    2014-05-01

    Numerical methods are needed in order to solve Maxwell's equations in complicated and realistic problems. Over the years a number of numerical methods have been developed to do so. Amongst them the most popular are the finite element, finite difference implicit techniques, frequency domain solution of Helmontz equation, the method of moments, transmission line matrix method. However, the finite-difference time-domain method (FDTD) is considered to be one of the most attractive choice basically because of its simplicity, speed and accuracy. FDTD first introduced in 1966 by Kane Yee. Since then, FDTD has been established and developed to be a very rigorous and well defined numerical method for solving Maxwell's equations. The order characteristics, accuracy and limitations are rigorously and mathematically defined. This makes FDTD reliable and easy to use. Numerical modelling of Ground Penetrating Radar (GPR) is a very useful tool which can be used in order to give us insight into the scattering mechanisms and can also be used as an alternative approach to aid data interpretation. Numerical modelling has been used in a wide range of GPR applications including archeology, geophysics, forensic, landmine detection etc. In engineering, some applications of numerical modelling include the estimation of the effectiveness of GPR to detect voids in bridges, to detect metal bars in concrete, to estimate shielding effectiveness etc. The main challenges in numerical modelling of GPR for engineering applications are A) the implementation of the dielectric properties of the media (soils, concrete etc.) in a realistic way, B) the implementation of the geometry of the media (soils inhomogeneities, rough surface, vegetation, concrete features like fractures and rock fragments etc.) and C) the detailed modelling of the antenna units. The main focus of this work (which is part of the COST Action TU1208) is the accurate and realistic implementation of GPR antenna units into the FDTD model. Accurate models based on general characteristics of the commercial antennas GSSI 1.5 GHz and MALA 1.2 GHz have been already incorporated in GprMax, a free software which solves Maxwell's equation using a second order in space and time FDTD algorithm. This work presents the implementation of horn antennas with different parameters as well as ridged horn antennas into this FDTD model and their effectiveness is tested in realistic modelled situations. Accurate models of soils and concrete are used to test and compare different antenna units. Stochastic methods are used in order to realistically simulate the geometrical characteristics of the medium. Regarding the dielectric properties, Debye approximations are incorporated in order to simulate realistically the dielectric properties of the medium on the frequency range of interest.

  16. Optimizing image-based patterned defect inspection through FDTD simulations at multiple ultraviolet wavelengths

    NASA Astrophysics Data System (ADS)

    Barnes, Bryan M.; Zhou, Hui; Henn, Mark-Alexander; Sohn, Martin Y.; Silver, Richard M.

    2017-06-01

    The sizes of non-negligible defects in the patterning of a semiconductor device continue to decrease as the dimensions for these devices are reduced. These "killer defects" disrupt the performance of the device and must be adequately controlled during manufacturing, and new solutions are required to improve optics-based defect inspection. To this end, our group has reported [Barnes et al., Proc. SPIE 1014516 (2017)] our initial five-wavelength simulation study, evaluating the extensibility of defect inspection by reducing the inspection wavelength from a deep-ultraviolet wavelength to wavelengths in the vacuum ultraviolet and the extreme ultraviolet. In that study, a 47 nm wavelength yielded enhancements in the signal to noise (SNR) by a factor of five compared to longer wavelengths and in the differential intensities by as much as three orders-of-magnitude compared to 13 nm. This paper briefly reviews these recent findings and investigates the possible sources for these disparities between results at 13 nm and 47 nm wavelengths. Our in-house finite-difference time-domain code (FDTD) is tested in both two and three dimensions to determine how computational conditions contributed to the results. A modified geometry and materials stack is presented that offers a second viewpoint of defect detectability as functions of wavelength, polarization, and defect type. Reapplication of the initial SNR-based defect metric again yields no detection of a defect at λ = 13 nm, but additional image preprocessing now enables the computation of the SNR for λ = 13 nm simulated images and has led to a revised defect metric that allows comparisons at all five wavelengths.

  17. Explosion localization and characterization via infrasound using numerical modeling

    NASA Astrophysics Data System (ADS)

    Fee, D.; Kim, K.; Iezzi, A. M.; Matoza, R. S.; Jolly, A. D.; De Angelis, S.; Diaz Moreno, A.; Szuberla, C.

    2017-12-01

    Numerous methods have been applied to locate, detect, and characterize volcanic and anthropogenic explosions using infrasound. Far-field localization techniques typically use back-azimuths from multiple arrays (triangulation) or Reverse Time Migration (RTM, or back-projection). At closer ranges, networks surrounding a source may use Time Difference of Arrival (TDOA), semblance, station-pair double difference, etc. However, at volcanoes and regions with topography or obstructions that block the direct path of sound, recent studies have shown that numerical modeling is necessary to provide an accurate source location. A heterogeneous and moving atmosphere (winds) may also affect the location. The time reversal mirror (TRM) application of Kim et al. (2015) back-propagates the wavefield using a Finite Difference Time Domain (FDTD) algorithm, with the source corresponding to the location of peak convergence. Although it provides high-resolution source localization and can account for complex wave propagation, TRM is computationally expensive and limited to individual events. Here we present a new technique, termed RTM-FDTD, which integrates TRM and FDTD. Travel time and transmission loss information is computed from each station to the entire potential source grid from 3-D Green's functions derived via FDTD. The wave energy is then back-projected and stacked at each grid point, with the maximum corresponding to the likely source. We apply our method to detect and characterize thousands of explosions from Yasur Volcano, Vanuatu and Etna Volcano, Italy, which both provide complex wave propagation and multiple source locations. We compare our results with those from more traditional methods (e.g. semblance), and suggest our method is preferred as it is computationally less expensive than TRM but still integrates numerical modeling. RTM-FDTD could be applied to volcanic other anthropogenic sources at a wide variety of ranges and scenarios. Kim, K., Lees, J.M., 2015. Imaging volcanic infrasound sources using time reversal mirror algorithm. Geophysical Journal International 202, 1663-1676.

  18. Massively-parallel FDTD simulations to address mask electromagnetic effects in hyper-NA immersion lithography

    NASA Astrophysics Data System (ADS)

    Tirapu Azpiroz, Jaione; Burr, Geoffrey W.; Rosenbluth, Alan E.; Hibbs, Michael

    2008-03-01

    In the Hyper-NA immersion lithography regime, the electromagnetic response of the reticle is known to deviate in a complicated manner from the idealized Thin-Mask-like behavior. Already, this is driving certain RET choices, such as the use of polarized illumination and the customization of reticle film stacks. Unfortunately, full 3-D electromagnetic mask simulations are computationally intensive. And while OPC-compatible mask electromagnetic field (EMF) models can offer a reasonable tradeoff between speed and accuracy for full-chip OPC applications, full understanding of these complex physical effects demands higher accuracy. Our paper describes recent advances in leveraging High Performance Computing as a critical step towards lithographic modeling of the full manufacturing process. In this paper, highly accurate full 3-D electromagnetic simulation of very large mask layouts are conducted in parallel with reasonable turnaround time, using a Blue- Gene/L supercomputer and a Finite-Difference Time-Domain (FDTD) code developed internally within IBM. A 3-D simulation of a large 2-D layout spanning 5μm×5μm at the wafer plane (and thus (20μm×20μm×0.5μm at the mask) results in a simulation with roughly 12.5GB of memory (grid size of 10nm at the mask, single-precision computation, about 30 bytes/grid point). FDTD is flexible and easily parallelizable to enable full simulations of such large layout in approximately an hour using one BlueGene/L "midplane" containing 512 dual-processor nodes with 256MB of memory per processor. Our scaling studies on BlueGene/L demonstrate that simulations up to 100μm × 100μm at the mask can be computed in a few hours. Finally, we will show that the use of a subcell technique permits accurate simulation of features smaller than the grid discretization, thus improving on the tradeoff between computational complexity and simulation accuracy. We demonstrate the correlation of the real and quadrature components that comprise the Boundary Layer representation of the EMF behavior of a mask blank to intensity measurements of the mask diffraction patterns by an Aerial Image Measurement System (AIMS) with polarized illumination. We also discuss how this model can become a powerful tool for the assessment of the impact to the lithographic process of a mask blank.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudiarta, I. Wayan; Angraini, Lily Maysari, E-mail: lilyangraini@unram.ac.id

    We have applied the finite difference time domain (FDTD) method with the supersymmetric quantum mechanics (SUSY-QM) procedure to determine excited energies of one dimensional quantum systems. The theoretical basis of FDTD, SUSY-QM, a numerical algorithm and an illustrative example for a particle in a one dimensional square-well potential were given in this paper. It was shown that the numerical results were in excellent agreement with theoretical results. Numerical errors produced by the SUSY-QM procedure was due to errors in estimations of superpotentials and supersymmetric partner potentials.

  20. Three-Dimensional Stable Nonorthogonal FDTD Algorithm with Adaptive Mesh Refinement for Solving Maxwell’s Equations

    DTIC Science & Technology

    2013-03-01

    Räisänen. An efficient FDTD algorithm for the analysis of microstrip patch antennas printed on a general anisotropic dielectric substrate. IEEE...applications [3, 21, 22], including antenna , microwave circuits, geophysics, optics, etc. The Ground Penetrating Radar (GPR) is a popular and...IEEE Trans. Antennas Propag., 41:994–999, 1993. 16 [6] S. G. Garcia, T. M. Hung-Bao, R. G. Martin, and B. G. Olmedo. On the application of finite

  1. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue.

    PubMed

    Gabran, S R I; Saad, J H; Salama, M M A; Mansour, R R

    2009-01-01

    This paper demonstrates the electromagnetic modeling and simulation of an implanted Medtronic deep brain stimulation (DBS) electrode using finite difference time domain (FDTD). The model is developed using Empire XCcel and represents the electrode surrounded with brain tissue assuming homogenous and isotropic medium. The model is created to study the parameters influencing the electric field distribution within the tissue in order to provide reference and benchmarking data for DBS and intra-cortical electrode development.

  2. An Implicit LU/AF FDTD Method

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Briley, W. Roger

    2001-01-01

    There has been some recent work to develop two and three-dimensional alternating direction implicit (ADI) FDTD schemes. These ADI schemes are based upon the original ADI concept developed by Peaceman and Rachford and Douglas and Gunn, which is a popular solution method in Computational Fluid Dynamics (CFD). These ADI schemes work well and they require solution of a tridiagonal system of equations. A new approach proposed in this paper applies a LU/AF approximate factorization technique from CFD to Maxwell s equations in flux conservative form for one space dimension. The result is a scheme that will retain its unconditional stability in three space dimensions, but does not require the solution of tridiagonal systems. The theory for this new algorithm is outlined in a one-dimensional context for clarity. An extension to two and threedimensional cases is discussed. Results of Fourier analysis are discussed for both stability and dispersion/damping properties of the algorithm. Results are presented for a one-dimensional model problem, and the explicit FDTD algorithm is chosen as a convenient reference for comparison.

  3. Examination of Surface Roughness on Light Scattering by Long Ice Columns by Use of a Two-Dimensional Finite-Difference Time-Domain Algorithm

    NASA Technical Reports Server (NTRS)

    Sun, W.; Loeb, N. G.; Videen, G.; Fu, Q.

    2004-01-01

    Natural particles such as ice crystals in cirrus clouds generally are not pristine but have additional micro-roughness on their surfaces. A two-dimensional finite-difference time-domain (FDTD) program with a perfectly matched layer absorbing boundary condition is developed to calculate the effect of surface roughness on light scattering by long ice columns. When we use a spatial cell size of 1/120 incident wavelength for ice circular cylinders with size parameters of 6 and 24 at wavelengths of 0.55 and 10.8 mum, respectively, the errors in the FDTD results in the extinction, scattering, and absorption efficiencies are smaller than similar to 0.5%. The errors in the FDTD results in the asymmetry factor are smaller than similar to 0.05%. The errors in the FDTD results in the phase-matrix elements are smaller than similar to 5%. By adding a pseudorandom change as great as 10% of the radius of a cylinder, we calculate the scattering properties of randomly oriented rough-surfaced ice columns. We conclude that, although the effect of small surface roughness on light scattering is negligible, the scattering phase-matrix elements change significantly for particles with large surface roughness. The roughness on the particle surface can make the conventional phase function smooth. The most significant effect of the surface roughness is the decay of polarization of the scattered light.

  4. Using memory-efficient algorithm for large-scale time-domain modeling of surface plasmon polaritons propagation in organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Zakirov, Andrey; Belousov, Sergei; Valuev, Ilya; Levchenko, Vadim; Perepelkina, Anastasia; Zempo, Yasunari

    2017-10-01

    We demonstrate an efficient approach to numerical modeling of optical properties of large-scale structures with typical dimensions much greater than the wavelength of light. For this purpose, we use the finite-difference time-domain (FDTD) method enhanced with a memory efficient Locally Recursive non-Locally Asynchronous (LRnLA) algorithm called DiamondTorre and implemented for General Purpose Graphical Processing Units (GPGPU) architecture. We apply our approach to simulation of optical properties of organic light emitting diodes (OLEDs), which is an essential step in the process of designing OLEDs with improved efficiency. Specifically, we consider a problem of excitation and propagation of surface plasmon polaritons (SPPs) in a typical OLED, which is a challenging task given that SPP decay length can be about two orders of magnitude greater than the wavelength of excitation. We show that with our approach it is possible to extend the simulated volume size sufficiently so that SPP decay dynamics is accounted for. We further consider an OLED with periodically corrugated metallic cathode and show how the SPP decay length can be greatly reduced due to scattering off the corrugation. Ultimately, we compare the performance of our algorithm to the conventional FDTD and demonstrate that our approach can efficiently be used for large-scale FDTD simulations with the use of only a single GPGPU-powered workstation, which is not practically feasible with the conventional FDTD.

  5. Analysis of arsenic and mercury content in human remains of the 16th and 17th centuries from Moscow Kremlin necropolises by neutron activation analysis at the IREN facility and the IBR-2 reactor FLNP JINR

    NASA Astrophysics Data System (ADS)

    Panova, T. D.; Dmitriev, A. Yu.; Borzakov, S. B.; Hramco, C.

    2018-01-01

    A neutron activation analysis (NAA) of three samples of human remains of the 16th and 17th centuries from the necropolises of the Moscow Kremlin has been carried out at FLNP JINR. The samples were irradiated at two facilities: the IREN source of resonance neutrons and the IBR-2 reactor. Spectra of the induced activity of the irradiated samples were measured by using the automatic measurement system developed at the Frank Laboratory of Neutron Physics (FLNP) of the Joint Institute for Nuclear Research (JINR). This system consists of a high-purity germanium detector with spectrometric electronics, a sample changer, and control software. Mass fraction of arsenic, mercury, and some other elements were calculated using two NAA methods—relative and absolute. The obtained values confirm the fact of acute mercury poisoning of Anastasia Romanovna, the first wife of Tsar Ivan Vasil'evich the Terrible, the first Russian Tsarina (died in 1560). High levels of mercury were detected in the bone remains of Tsarevich Ivan Ivanovich (died in 1581), the son of Tsar Ivan the Terrible, and Prince Mikhail Vasil'evich Skopin-Shuiskii (died in 1610). The results provide an opportunity to introduce into scientific circulation the exact values of mass fraction of mercury, arsenic, and other elements in the samples taken from the burials of the Russian historical figures of the second half of 16th-early 17th century.

  6. Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film.

    PubMed

    Wang, Kai; Schonbrun, Ethan; Crozier, Kenneth B

    2009-07-01

    We experimentally demonstrate the enhanced propulsion of gold nanoparticles by surface plasmon polaritons (SPPs). Three dimensional finite difference time domain (FDTD) simulations indicate considerably enhanced optical forces due to the field enhancement provided by SPPs and the near-field coupling between the gold particles and the film. This coupling is an important part of the enhanced propulsion phenomenon. Finally, the measured optical force is compared with that predicted by FDTD simulations and proven to be reasonable.

  7. FDTD simulation of trapping nanowires with linearly polarized and radially polarized optical tweezers.

    PubMed

    Li, Jing; Wu, Xiaoping

    2011-10-10

    In this paper a model of the trapping force on nanowires is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods, and the tightly focused laser beam is expressed by spherical vector wave functions (VSWFs). The trapping capacities on nanoscale-diameter nanowires are discussed in terms of a strongly focused linearly polarized beam and radially polarized beam. Simulation results demonstrate that the radially polarized beam has higher trapping efficiency on nanowires with higher refractive indices than linearly polarized beam.

  8. Explicit finite-difference simulation of optical integrated devices on massive parallel computers.

    PubMed

    Sterkenburgh, T; Michels, R M; Dress, P; Franke, H

    1997-02-20

    An explicit method for the numerical simulation of optical integrated circuits by means of the finite-difference time-domain (FDTD) method is presented. This method, based on an explicit solution of Maxwell's equations, is well established in microwave technology. Although the simulation areas are small, we verified the behavior of three interesting problems, especially nonparaxial problems, with typical aspects of integrated optical devices. Because numerical losses are within acceptable limits, we suggest the use of the FDTD method to achieve promising quantitative simulation results.

  9. RCWA and FDTD modeling of light emission from internally structured OLEDs.

    PubMed

    Callens, Michiel Koen; Marsman, Herman; Penninck, Lieven; Peeters, Patrick; de Groot, Harry; ter Meulen, Jan Matthijs; Neyts, Kristiaan

    2014-05-05

    We report on the fabrication and simulation of a green OLED with an Internal Light Extraction (ILE) layer. The optical behavior of these devices is simulated using both Rigorous Coupled Wave Analysis (RCWA) and Finite Difference Time-Domain (FDTD) methods. Results obtained using these two different techniques show excellent agreement and predict the experimental results with good precision. By verifying the validity of both simulation methods on the internal light extraction structure we pave the way to optimization of ILE layers using either of these methods.

  10. FDTD simulation of trapping nanowires with linearly polarized and radially polarized optical tweezers

    PubMed Central

    Li, Jing; Wu, Xiaoping

    2011-01-01

    In this paper a model of the trapping force on nanowires is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods, and the tightly focused laser beam is expressed by spherical vector wave functions (VSWFs). The trapping capacities on nanoscale-diameter nanowires are discussed in terms of a strongly focused linearly polarized beam and radially polarized beam. Simulation results demonstrate that the radially polarized beam has higher trapping efficiency on nanowires with higher refractive indices than linearly polarized beam. PMID:21997083

  11. Unconditionally stable WLP-FDTD method for the modeling of electromagnetic wave propagation in gyrotropic materials.

    PubMed

    Li, Zheng-Wei; Xi, Xiao-Li; Zhang, Jin-Sheng; Liu, Jiang-fan

    2015-12-14

    The unconditional stable finite-difference time-domain (FDTD) method based on field expansion with weighted Laguerre polynomials (WLPs) is applied to model electromagnetic wave propagation in gyrotropic materials. The conventional Yee cell is modified to have the tightly coupled current density components located at the same spatial position. The perfectly matched layer (PML) is formulated in a stretched-coordinate (SC) system with the complex-frequency-shifted (CFS) factor to achieve good absorption performance. Numerical examples are shown to validate the accuracy and efficiency of the proposed method.

  12. FDTD modeling of thin impedance sheets

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond; Kunz, Karl

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. It is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods. These sheets are characterized by a discontinuity in the tangential magnetic field on either side of the sheet but no discontinuity in tangential electric field. This continuity, or single valued behavior of the electric field, allows the sheet current to be expressed in terms of an impedance multiplying this electric field.

  13. FDTD approach to optical forces of tightly focused vector beams on metal particles.

    PubMed

    Qin, Jian-Qi; Wang, Xi-Lin; Jia, Ding; Chen, Jing; Fan, Ya-Xian; Ding, Jianping; Wang, Hui-Tian

    2009-05-11

    We propose an improved FDTD method to calculate the optical forces of tightly focused beams on microscopic metal particles. Comparison study on different kinds of tightly focused beams indicates that trapping efficiency can be altered by adjusting the polarization of the incident field. The results also show the size-dependence of trapping forces exerted on metal particles. Transverse tapping forces produced by different illumination wavelengths are also evaluated. The numeric simulation demonstrates the possibility of trapping moderate-sized metal particles whose radii are comparable to wavelength.

  14. Optical-analog-to-digital conversion based on successive-like approximations in octagonal-shape photonic crystal ring resonators

    NASA Astrophysics Data System (ADS)

    Tavousi, A.; Mansouri-Birjandi, M. A.

    2018-02-01

    Implementing intensity-dependent Kerr-like nonlinearity in octagonal-shape photonic crystal ring resonators (OSPCRRs), a new class of optical analog-to-digital converters (ADCs) with low power consumption is presented. Due to its size dependent refractive index, Silicon (Si) nanocrystal is used as nonlinear medium in the proposed ADC. Coding system of optical ADC is based on successive-like approximations which requires only one quantization level to represent each single bit, despite of conventional ADCs that require at least two distinct levels for each bit. Each is representing bit of optical ADC is formed by vertically alignment of double rings of OSPCRRs (DR-OSPCRR) and cascading m number of DR-OSPCRR, forms an m bit ADC. Investigating different parameters of DR-OSPCRR such as refractive indices of rings, lattice refractive index, and coupling coefficients of waveguide-to-ring and ring-to-ring, the ADC's threshold power is tuned. Increasing the number of bits of ADC, increases the overall power consumption of ADC. One can arrange to have any number of bits for this ADC, as long as the power levels are treated carefully. Finite difference time domain (FDTD) in-house codes were used to evaluate the ADC's effectiveness.

  15. Developing Chemistry and Kinetic Modeling Tools for Low-Temperature Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Beckwith, Kris; Davidson, Bradley; Kruger, Scott; Pankin, Alexei; Roark, Christine; Stoltz, Peter

    2015-09-01

    We discuss the use of proper orthogonal decomposition (POD) methods in VSim, a FDTD plasma simulation code capable of both PIC/MCC and fluid modeling. POD methods efficiently generate smooth representations of noisy self-consistent or test-particle PIC data, and are thus advantageous in computing macroscopic fluid quantities from large PIC datasets (e.g. for particle-based closure computations) and in constructing optimal visual representations of the underlying physics. They may also confer performance advantages for massively parallel simulations, due to the significant reduction in dataset sizes conferred by truncated singular-value decompositions of the PIC data. We also demonstrate how complex LTP chemistry scenarios can be modeled in VSim via an interface with MUNCHKIN, a developing standalone python/C++/SQL code that identifies reaction paths for given input species, solves 1D rate equations for the time-dependent chemical evolution of the system, and generates corresponding VSim input blocks with appropriate cross-sections/reaction rates. MUNCHKIN also computes reaction rates from user-specified distribution functions, and conducts principal path analyses to reduce the number of simulated chemical reactions. Supported by U.S. Department of Energy SBIR program, Award DE-SC0009501.

  16. Sputtering, Plasma Chemistry, and RF Sheath Effects in Low-Temperature and Fusion Plasma Modeling

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Kruger, Scott E.; McGugan, James M.; Pankin, Alexei Y.; Roark, Christine M.; Smithe, David N.; Stoltz, Peter H.

    2016-09-01

    A new sheath boundary condition has been implemented in VSim, a plasma modeling code which makes use of both PIC/MCC and fluid FDTD representations. It enables physics effects associated with DC and RF sheath formation - local sheath potential evolution, heat/particle fluxes, and sputtering effects on complex plasma-facing components - to be included in macroscopic-scale plasma simulations that need not resolve sheath scale lengths. We model these effects in typical ICRF antenna operation scenarios on the Alcator C-Mod fusion device, and present comparisons of our simulation results with experimental data together with detailed 3D animations of antenna operation. Complex low-temperature plasma chemistry modeling in VSim is facilitated by MUNCHKIN, a standalone python/C++/SQL code that identifies possible reaction paths for a given set of input species, solves 1D rate equations for the ensuing system's chemical evolution, and generates VSim input blocks with appropriate cross-sections/reaction rates. These features, as well as principal path analysis (to reduce the number of simulated chemical reactions while retaining accuracy) and reaction rate calculations from user-specified distribution functions, will also be demonstrated. Supported by the U.S. Department of Energy's SBIR program, Award DE-SC0009501.

  17. FDTD Simulation on Terahertz Waves Propagation Through a Dusty Plasma

    NASA Astrophysics Data System (ADS)

    Wang, Maoyan; Zhang, Meng; Li, Guiping; Jiang, Baojun; Zhang, Xiaochuan; Xu, Jun

    2016-08-01

    The frequency dependent permittivity for dusty plasmas is provided by introducing the charging response factor and charge relaxation rate of airborne particles. The field equations that describe the characteristics of Terahertz (THz) waves propagation in a dusty plasma sheath are derived and discretized on the basis of the auxiliary differential equation (ADE) in the finite difference time domain (FDTD) method. Compared with numerical solutions in reference, the accuracy for the ADE FDTD method is validated. The reflection property of the metal Aluminum interlayer of the sheath at THz frequencies is discussed. The effects of the thickness, effective collision frequency, airborne particle density, and charge relaxation rate of airborne particles on the electromagnetic properties of Terahertz waves through a dusty plasma slab are investigated. Finally, some potential applications for Terahertz waves in information and communication are analyzed. supported by National Natural Science Foundation of China (Nos. 41104097, 11504252, 61201007, 41304119), the Fundamental Research Funds for the Central Universities (Nos. ZYGX2015J039, ZYGX2015J041), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120185120012)

  18. Injection and waveguiding properties in SU8 nanotubes for sub-wavelength regime propagation and nanophotonics integration

    NASA Astrophysics Data System (ADS)

    Bigeon, John; Huby, Nolwenn; Duvail, Jean-Luc; Bêche, Bruno

    2014-04-01

    We report photonic concepts related to injection and sub-wavelength propagation in nanotubes, an unusual but promising geometry for highly integrated photonic devices. Theoretical simulation by the finite domain time-dependent (FDTD) method was first used to determine the features of the direct light injection and sub-wavelength propagation regime within nanotubes. Then, the injection into nanotubes of SU8, a photoresist used for integrated photonics, was successfully achieved by using polymer microlensed fibers with a sub-micronic radius of curvature, as theoretically expected from FDTD simulations. The propagation losses in a single SU8 nanotube were determined by using a comprehensive set-up and a protocol for optical characterization. The attenuation coefficient has been evaluated at 1.25 dB mm-1 by a cut-back method transposed to such nanostructures. The mechanisms responsible for losses in nanotubes were identified with FDTD theoretical support. Both injection and cut-back methods developed here are compatible with any sub-micronic structures. This work on SU8 nanotubes suggests broader perspectives for future nanophotonics.

  19. Injection and waveguiding properties in SU8 nanotubes for sub-wavelength regime propagation and nanophotonics integration.

    PubMed

    Bigeon, John; Huby, Nolwenn; Duvail, Jean-Luc; Bêche, Bruno

    2014-05-21

    We report photonic concepts related to injection and sub-wavelength propagation in nanotubes, an unusual but promising geometry for highly integrated photonic devices. Theoretical simulation by the finite domain time-dependent (FDTD) method was first used to determine the features of the direct light injection and sub-wavelength propagation regime within nanotubes. Then, the injection into nanotubes of SU8, a photoresist used for integrated photonics, was successfully achieved by using polymer microlensed fibers with a sub-micronic radius of curvature, as theoretically expected from FDTD simulations. The propagation losses in a single SU8 nanotube were determined by using a comprehensive set-up and a protocol for optical characterization. The attenuation coefficient has been evaluated at 1.25 dB mm(-1) by a cut-back method transposed to such nanostructures. The mechanisms responsible for losses in nanotubes were identified with FDTD theoretical support. Both injection and cut-back methods developed here are compatible with any sub-micronic structures. This work on SU8 nanotubes suggests broader perspectives for future nanophotonics.

  20. Research on radiation characteristic of plasma antenna through FDTD method.

    PubMed

    Zhou, Jianming; Fang, Jingjing; Lu, Qiuyuan; Liu, Fan

    2014-01-01

    The radiation characteristic of plasma antenna is investigated by using the finite-difference time-domain (FDTD) approach in this paper. Through using FDTD method, we study the propagation of electromagnetic wave in free space in stretched coordinate. And the iterative equations of Maxwell equation are derived. In order to validate the correctness of this method, we simulate the process of electromagnetic wave propagating in free space. Results show that electromagnetic wave spreads out around the signal source and can be absorbed by the perfectly matched layer (PML). Otherwise, we study the propagation of electromagnetic wave in plasma by using the Boltzmann-Maxwell theory. In order to verify this theory, the whole process of electromagnetic wave propagating in plasma under one-dimension case is simulated. Results show that Boltzmann-Maxwell theory can be used to explain the phenomenon of electromagnetic wave propagating in plasma. Finally, the two-dimensional simulation model of plasma antenna is established under the cylindrical coordinate. And the near-field and far-field radiation pattern of plasma antenna are obtained. The experiments show that the variation of electron density can introduce the change of radiation characteristic.

  1. FDTD modeling of anisotropic nonlinear optical phenomena in silicon waveguides.

    PubMed

    Dissanayake, Chethiya M; Premaratne, Malin; Rukhlenko, Ivan D; Agrawal, Govind P

    2010-09-27

    A deep insight into the inherent anisotropic optical properties of silicon is required to improve the performance of silicon-waveguide-based photonic devices. It may also lead to novel device concepts and substantially extend the capabilities of silicon photonics in the future. In this paper, for the first time to the best of our knowledge, we present a three-dimensional finite-difference time-domain (FDTD) method for modeling optical phenomena in silicon waveguides, which takes into account fully the anisotropy of the third-order electronic and Raman susceptibilities. We show that, under certain realistic conditions that prevent generation of the longitudinal optical field inside the waveguide, this model is considerably simplified and can be represented by a computationally efficient algorithm, suitable for numerical analysis of complex polarization effects. To demonstrate the versatility of our model, we study polarization dependence for several nonlinear effects, including self-phase modulation, cross-phase modulation, and stimulated Raman scattering. Our FDTD model provides a basis for a full-blown numerical simulator that is restricted neither by the single-mode assumption nor by the slowly varying envelope approximation.

  2. Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations.

    PubMed

    Bao, Hua; Ruan, Xiulin; Fisher, Timothy S

    2010-03-15

    A finite-difference time-domain (FDTD) method is used to model thermal radiative properties of vertical arrays of multi-walled carbon nanotubes (MWCNT). Individual CNTs are treated as solid circular cylinders with an effective dielectric tensor. Consistent with experiments, the results confirm that CNT arrays are highly absorptive. Compared with the commonly used Maxwell-Garnett theory, the FDTD calculations generally predict larger reflectance and absorbance, and smaller transmittance, which are attributed to the diffraction and scattering within the cylinder array structure. The effects of volume fraction, tube length, tube distance, and incident angle on radiative properties are investigated systematically. Low volume fraction and long tubes are more favorable to achieve low reflectance and high absorbance. For a fixed volume fraction and finite tube length, larger periodicity results in larger reflectance and absorbance. The angular dependence studies reveal an optimum incident angle at which the reflectance can be minimized. The results also suggest that an even darker material could be achieved by using CNTs with good alignment on the top surface.

  3. Sachon AFS K-4, Sacheon, Korea. Revised Uniform Summary of Surface Weather Observations (RUSSWO)

    DTIC Science & Technology

    1968-04-11

    FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OESERVATIONS) 41240 -- SACHON KflREALROK AFS K-4 55-67_________ APR UT"If STATION MANZ TSARS SON ?") ALL...KOREA/ROI( AFS K-4 55-67 ____APR SAINSTATION NAME YEARS MOSN ALL WEATHER 1500-1700 ~ LA $S NOUN$ (LST I ONITIOW (KNTSI 1 .3 4.6 7.10 11.-16 17.21 22...4S 1209 c~ ~iC4 1V/ . $ I - - ’~-4 V ~’ *-** La DATA PROCESSING DIVISION ElAc, UJSAF SURFACE WINDS ASHEVILLE, N. C. 28801 PERCENTAGE FREQUENCY OF

  4. TSAR User’s Manual: A Program for Assessing the Effects of Conventional and Chemical Attacks on Sortie Generation. Volume 3. Variable and Array Definitions, and other Program Aids

    DTIC Science & Technology

    1990-09-01

    array. LTHPER Length of the MPPERS array. LTHQPA Length of the QPA array. LTHXRT Length of the XROOT array. MAXACN Maximum number of aircraft that can...3 Time remaining until the ready-to-fly time at time of report Number of XROOT Array Entries (GENERATED) NROOT (MAXT) The total number of entries in...the XROOT array for each aircraft type. AIS Station Status NSTAT (NOSTAT, I, MAXB) I = 1 Total number of stations of each type on base = 2 Number in

  5. FT Stewart AAF, Savannah, Georgia. Revised Uniform Summary of Surface Weather Observations (RUSSWO)

    DTIC Science & Technology

    1979-04-18

    OBSERVATIONS) 03871i FT STEWART AAF GA 67-70,73-77 SEP STATION STATION MAN, TSARS NONIN ( ~AL.L WI3ATHF:R ___ 1200-1400 CLAS NOUN$ (L.S.T.) SPEED MEAN (ENTS...0i 88:2 92.0 93.0 94t1 94.5 94.6 94.9 94.9 95.0 95.0 95.0 95.0 9590 9.0 95.0 e - , 73:1 88.31 92.5 93.4 95o 95.3 9s.6 95.8 95.8 96.1 96.1 96,1 96.1

  6. TSAR (Theater Simulation of Airbase Resources) Database Dictionary F-4E.

    DTIC Science & Technology

    1986-03-28

    TRANS) . 111-234 111.1.7.92 LRU #277 - 71ZDO -- CONTROL UNIT C- 10062 ./A 111-234. II1.1.7.93 SIMPLE REPAIR TASKS #278. #279 .. ...... 111-235...4 1*9* 23 4P 0443 pa.o S4 P :4.44 pa lip 0.415, PB • .17 4P *446 FIGURE 108 III-202 2 ’~.e’..-.’- ’-..M - " .;- / ", ’: " " " . " % - " , --,j"- " L...CONTROL UNIT C- 10062 /A - RD. TIME PERSONNEL AGE ITEM NO. MIN, TYPE NO #1 #2 PROS ------------------------------------------------ 85 7 2 1 1

  7. Trapping of a micro-bubble by non-paraxial Gaussian beam: computation using the FDTD method.

    PubMed

    Sung, Seung-Yong; Lee, Yong-Gu

    2008-03-03

    Optical forces on a micro-bubble were computed using the Finite Difference Time Domain method. Non-paraxial Gaussian beam equation was used to represent the incident laser with high numerical aperture, common in optical tweezers. The electromagnetic field distribution around a micro-bubble was computed using FDTD method and the electromagnetic stress tensor on the surface of a micro-bubble was used to compute the optical forces. By the analysis of the computational results, interesting relations between the radius of the circular trapping ring and the corresponding stability of the trap were found.

  8. An improved cylindrical FDTD method and its application to field-tissue interaction study in MRI.

    PubMed

    Chi, Jieru; Liu, Feng; Xia, Ling; Shao, Tingting; Mason, David G; Crozier, Stuart

    2010-01-01

    This paper presents a three dimensional finite-difference time-domain (FDTD) scheme in cylindrical coordinates with an improved algorithm for accommodating the numerical singularity associated with the polar axis. The regularization of this singularity problem is entirely based on Ampere's law. The proposed algorithm has been detailed and verified against a problem with a known solution obtained from a commercial electromagnetic simulation package. The numerical scheme is also illustrated by modeling high-frequency RF field-human body interactions in MRI. The results demonstrate the accuracy and capability of the proposed algorithm.

  9. Development of an Implantable WBAN Path-Loss Model for Capsule Endoscopy

    NASA Astrophysics Data System (ADS)

    Aoyagi, Takahiro; Takizawa, Kenichi; Kobayashi, Takehiko; Takada, Jun-Ichi; Hamaguchi, Kiyoshi; Kohno, Ryuji

    An implantable WBAN path-loss model for a capsule endoscopy which is used for examining digestive organs, is developed by conducting simulations and experiments. First, we performed FDTD simulations on implant WBAN propagation by using a numerical human model. Second, we performed FDTD simulations on a vessel that represents the human body. Third, we performed experiments using a vessel of the same dimensions as that used in the simulations. On the basis of the results of these simulations and experiments, we proposed the gradient and intercept parameters of the simple path-loss in-body propagation model.

  10. FDTD-based computed terahertz wave propagation in multilayer medium structures

    NASA Astrophysics Data System (ADS)

    Tu, Wan-li; Zhong, Shun-cong; Yao, Hai-zi; Shen, Yao-chun

    2013-08-01

    The terahertz region of the electromagnetic spectrum spans the frequency range of 0.1THz~10THz, which means it sandwiches between the mid-infrared (IR) and the millimeter/ microwave. With the development and commercialization of terahertz pulsed spectroscopy (TPS) and terahertz pulsed imaging (TPI) systems, terahertz technologies have been widely used in the sensing and imaging fields. It allows high quality cross-sectional images from within scattering media to be obtained nondestructively. Characterizing the interaction of terahertz radiation with multilayer medium structures is critical for the development of nondestructive testing technology. Currently, there was much experimental investigation of using TPI for the characterization of terahertz radiation in materials (e.g., pharmaceutical tablet coatings), but there were few theoretical researches on propagation of terahertz radiation in multilayer medium structures. Finite Difference Time Domain (FDTD) algorithm is a proven method for electromagnetic scattering theory, which analyzes continuous electromagnetic problems by employing finite difference and obtains electromagnetic field value at the sampling point to approach the actual continuous solutions. In the present work, we investigated the propagation of terahertz radiation in multilayer medium structures based on FDTD method. The model of multilayer medium structures under the THz frequency plane wave incidence was established, and the reflected radiation properties were recorded and analyzed. The terahertz radiation used was broad-band in the frequency up to 2 THz. A batch of single layer coated pharmaceutical tablets, whose coating thickness in the range of 40~100μm, was computed by FDTD method. We found that the simulation results on pharmaceutical tablet coatings were in good agreement with the experimental results obtained using a commercial system (TPI imaga 2000, TeraView, Cambridge, UK) , demonstrating its usefulness in simulating and analyzing terahertz responses from a multilayered sample.

  11. Mystery Solved: The Identification of the Two Missing Romanov Children Using DNA Analysis

    PubMed Central

    Wadhams, Mark J.; Edson, Suni M.; Maynard, Kerry; Meyer, Carna E.; Niederstätter, Harald; Berger, Cordula; Berger, Burkhard; Falsetti, Anthony B.; Gill, Peter; Parson, Walther; Finelli, Louis N.

    2009-01-01

    One of the greatest mysteries for most of the twentieth century was the fate of the Romanov family, the last Russian monarchy. Following the abdication of Tsar Nicholas II, he and his wife, Alexandra, and their five children were eventually exiled to the city of Yekaterinburg. The family, along with four loyal members of their staff, was held captive by members of the Ural Soviet. According to historical reports, in the early morning hours of July 17, 1918 the entire family along with four loyal members of their staff was executed by a firing squad. After a failed attempt to dispose of the remains in an abandoned mine shaft, the bodies were transported to an open field only a few kilometers from the mine shaft. Nine members of the group were buried in one mass grave while two of the children were buried in a separate grave. With the official discovery of the larger mass grave in 1991, and subsequent DNA testing to confirm the identities of the Tsar, the Tsarina, and three of their daughters – doubt persisted that these remains were in fact those of the Romanov family. In the summer of 2007, a group of amateur archeologists discovered a collection of remains from the second grave approximately 70 meters from the larger grave. We report forensic DNA testing on the remains discovered in 2007 using mitochondrial DNA (mtDNA), autosomal STR, and Y- STR testing. Combined with additional DNA testing of material from the 1991 grave, we have virtually irrefutable evidence that the two individuals recovered from the 2007 grave are the two missing children of the Romanov family: the Tsarevich Alexei and one of his sisters. PMID:19277206

  12. The oxygenase-peroxidase theory of Bach and Chodat and its modern equivalents: change and permanence in scientific thinking as shown by our understanding of the roles of water, peroxide, and oxygen in the functioning of redox enzymes.

    PubMed

    Nicholls, P

    2007-10-01

    Alexander Bach was both revolutionary politician and biochemist. His earliest significant publication, "Tsar-golod" ("The Tsar of Hunger"), introduced Marxist thought to Russian workers. In exile for 30 years, he moved to study the dialectic of the oxidases. When his theory of oxidases as combinations of oxygenases and peroxidases was developed (circa 1900) the enzyme concept was not fully formulated, and the enzyme/substrate distinction not yet made. Peroxides however were then and remain now significant intermediates, when either free or bound, in oxidase catalyses. The aerobic dehydrogenase/peroxidase/catalase coupled systems which were studied slightly later clarified the Bach model and briefly became an oxidase paradigm. Identification of peroxidase as a metalloprotein, a key step in understanding oxidase and peroxidase mechanisms, postdated Bach's major work. Currently we recognize catalytic organic peroxides in flavoprotein oxygenases; such organic peroxides are also involved in lipid oxidation and tryptophan radical decay. But most physiologically important peroxides are now known to be bound to transition metals (either Fe or Cu) and formed both directly and indirectly (from oxygen). The typical stable metalloprotein peroxide product is the ferryl state. When both peroxide oxidizing equivalents are retained the second equivalent is held as a protein or porphyrin radical. True metal peroxide complexes are unstable. But often water molecules mark the spot where the original peroxide decayed. The cytochrome c oxidase Fe-Cu center can react with either peroxide or oxygen to form the intermediate higher oxidation states P and F. In its resting state water molecules and hydroxyl ions can be seen marking the original location of the oxygen or peroxide molecule.

  13. Analysis of microstrip patch antennas using finite difference time domain method

    NASA Astrophysics Data System (ADS)

    Reineix, Alain; Jecko, Bernard

    1989-11-01

    The study of microstrip patch antennas is directly treated in the time domain, using a modified finite-difference time-domain (FDTD) method. Assuming an appropriate choice of excitation, the frequency dependence of the relevant parameters can readily be found using the Fourier transform of the transient current. The FDTD method allows a rigorous treatment of one or several dielectric interfaces. Different types of excitation can be taken into consideration (coaxial, microstrip lines, etc.). Plotting the spatial distribution of the current density gives information about the resonance modes. The usual frequency-depedent parameters (input impedance, radiation pattern) are given for several examples.

  14. Calculation of the extinction cross section and lifetime of a gold nanoparticle using FDTD simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radhakrishnan, Archana, E-mail: anju.archana@gmail.com; Murugesan, Dr V., E-mail: murugesh@serc.iisc.in

    The electromagnetic theory of light explains the behavior of light in most of the domains quite accurately. The problem arises when the exact solution of the Maxwell's equation is not present, in case of objects with arbitrary geometry. To find the extinction cross-section and lifetime of the gold nanoparticle, the software FDTD solutions 8.6 by Lumerical is employed. The extinction cross-sections and lifetimes of Gold nanospheres of different sizes and arrangements are studied using pulse lengths of the order of femtoseconds. The decay constant and other properties are compared. Further, the lifetimes are calculated using frequency and time domain calculations.

  15. Modeling non-locality of plasmonic excitations with a fictitious film

    NASA Astrophysics Data System (ADS)

    Kong, Jiantao; Shvonski, Alexander; Kempa, Krzysztof

    Non-local effects, requiring a wavevector (q) dependent dielectric response are becoming increasingly important in studies of plasmonic and metamaterial structures. The phenomenological hydrodynamic approximation (HDA) is the simplest, and most often used model, but it often fails. We show that the d-function formalism, exact to first order in q, is a powerful and simple-to-use alternative. Recently, we developed a mapping of the d-function formalism into a purely local fictitious film. This geometric mapping allows for non-local extensions of any local calculation scheme, including FDTD. We demonstrate here, that such mapped FDTD simulation of metallic nanoclusters agrees very well with various experiments.

  16. Simulation of ultrasonic and EMAT arrays using FEM and FDTD.

    PubMed

    Xie, Yuedong; Yin, Wuliang; Liu, Zenghua; Peyton, Anthony

    2016-03-01

    This paper presents a method which combines electromagnetic simulation and ultrasonic simulation to build EMAT array models. For a specific sensor configuration, Lorentz forces are calculated using the finite element method (FEM), which then can feed through to ultrasonic simulations. The propagation of ultrasound waves is numerically simulated using finite-difference time-domain (FDTD) method to describe their propagation within homogenous medium and their scattering phenomenon by cracks. Radiation pattern obtained with Hilbert transform on time domain waveforms is proposed to characterise the sensor in terms of its beam directivity and field distribution along the steering angle. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Adjoint sensitivity analysis of plasmonic structures using the FDTD method.

    PubMed

    Zhang, Yu; Ahmed, Osman S; Bakr, Mohamed H

    2014-05-15

    We present an adjoint variable method for estimating the sensitivities of arbitrary responses with respect to the parameters of dispersive discontinuities in nanoplasmonic devices. Our theory is formulated in terms of the electric field components at the vicinity of perturbed discontinuities. The adjoint sensitivities are computed using at most one extra finite-difference time-domain (FDTD) simulation regardless of the number of parameters. Our approach is illustrated through the sensitivity analysis of an add-drop coupler consisting of a square ring resonator between two parallel waveguides. The computed adjoint sensitivities of the scattering parameters are compared with those obtained using the accurate but computationally expensive central finite difference approach.

  18. Research on Radiation Characteristic of Plasma Antenna through FDTD Method

    PubMed Central

    Zhou, Jianming; Fang, Jingjing; Lu, Qiuyuan; Liu, Fan

    2014-01-01

    The radiation characteristic of plasma antenna is investigated by using the finite-difference time-domain (FDTD) approach in this paper. Through using FDTD method, we study the propagation of electromagnetic wave in free space in stretched coordinate. And the iterative equations of Maxwell equation are derived. In order to validate the correctness of this method, we simulate the process of electromagnetic wave propagating in free space. Results show that electromagnetic wave spreads out around the signal source and can be absorbed by the perfectly matched layer (PML). Otherwise, we study the propagation of electromagnetic wave in plasma by using the Boltzmann-Maxwell theory. In order to verify this theory, the whole process of electromagnetic wave propagating in plasma under one-dimension case is simulated. Results show that Boltzmann-Maxwell theory can be used to explain the phenomenon of electromagnetic wave propagating in plasma. Finally, the two-dimensional simulation model of plasma antenna is established under the cylindrical coordinate. And the near-field and far-field radiation pattern of plasma antenna are obtained. The experiments show that the variation of electron density can introduce the change of radiation characteristic. PMID:25114961

  19. FDTD Modeling of LEMP Propagation in the Earth-Ionosphere Waveguide With Emphasis on Realistic Representation of Lightning Source

    NASA Astrophysics Data System (ADS)

    Tran, Thang H.; Baba, Yoshihiro; Somu, Vijaya B.; Rakov, Vladimir A.

    2017-12-01

    The finite difference time domain (FDTD) method in the 2-D cylindrical coordinate system was used to compute the nearly full-frequency-bandwidth vertical electric field and azimuthal magnetic field waveforms produced on the ground surface by lightning return strokes. The lightning source was represented by the modified transmission-line model with linear current decay with height, which was implemented in the FDTD computations as an appropriate vertical phased-current-source array. The conductivity of atmosphere was assumed to increase exponentially with height, with different conductivity profiles being used for daytime and nighttime conditions. The fields were computed at distances ranging from 50 to 500 km. Sky waves (reflections from the ionosphere) were identified in computed waveforms and used for estimation of apparent ionospheric reflection heights. It was found that our model reproduces reasonably well the daytime electric field waveforms measured at different distances and simulated (using a more sophisticated propagation model) by Qin et al. (2017). Sensitivity of model predictions to changes in the parameters of atmospheric conductivity profile, as well as influences of the lightning source characteristics (current waveshape parameters, return-stroke speed, and channel length) and ground conductivity were examined.

  20. Finite difference time domain calculation of transients in antennas with nonlinear loads

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Beggs, John H.; Kunz, Karl S.; Chamberlin, Kent

    1991-01-01

    Determining transient electromagnetic fields in antennas with nonlinear loads is a challenging problem. Typical methods used involve calculating frequency domain parameters at a large number of different frequencies, then applying Fourier transform methods plus nonlinear equation solution techniques. If the antenna is simple enough so that the open circuit time domain voltage can be determined independently of the effects of the nonlinear load on the antennas current, time stepping methods can be applied in a straightforward way. Here, transient fields for antennas with more general geometries are calculated directly using Finite Difference Time Domain (FDTD) methods. In each FDTD cell which contains a nonlinear load, a nonlinear equation is solved at each time step. As a test case, the transient current in a long dipole antenna with a nonlinear load excited by a pulsed plane wave is computed using this approach. The results agree well with both calculated and measured results previously published. The approach given here extends the applicability of the FDTD method to problems involving scattering from targets, including nonlinear loads and materials, and to coupling between antennas containing nonlinear loads. It may also be extended to propagation through nonlinear materials.

  1. TSAR User’s Manual-A Program for Assessing the Effects of Conventional and Chemical Attacks on Sortie Generation: Volume 2, Data Input, Program Operation and Redimensioning, and Sample Problem,

    DTIC Science & Technology

    1990-09-01

    by damage. SHPREP When not zero, all parts repaired at an operating base are shipped to the base that is selected with the SEND logic in the CONTRL ...nominal (at rest) skin temperature when each MOPP is worn, the pumping factor (y), the insulation factor (CLO), and the permeability factor (IM). The...temiperature is taken to be 35 0C, and 36"C for MOPP #5; the pumping factor (y) ranges from 0.200 to 0.270, the insulation factor (CLO) from 1.70 to

  2. TSAR (Theater Simulation of Airbase Resources) Database Dictionary F-4G.

    DTIC Science & Technology

    1987-06-05

    REC/TRANS RT-1159 388 71ZDO CNTL UNIT C- 10062 /A 391 71320 CNTL ARN-127 393 723A0 REC/TRANS RT-689 394 723B0 INDIC, HEIGHT TOTAL NUMBER OF PART REPAIR...PROCEDURES - 2 LOU " 4"p" IW qg t~l pb i.go stanc E lm FIGURE 98 111-260 S.. RESOURCE REQUIREMENTS 111.1.5.25 LIU’S #45 - #49 - *LRU PART TIME...RT-1159 AG 386 71ZBO ADAPTER MX9577 AG 387 71ZCO MOUNT (REC/TRANS) AG 388 71ZDO CNTL UNIT C- 10062 /A AG 389 71ZEO MOUNT (DIG TO ANALOG CONVERTER) AG

  3. Characterization of the Coupling Between Adjacent Finite Ground Coplanar (FGC) Waveguides

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Katehi, Linda P. B.; Tentzeris, Emmanouil M.

    1997-01-01

    Coupling between adjacent Finite Ground Coplanar (FGC) waveguides as a function of the line geometry is presented for the first time. A two Dimension-Finite Difference Time Domain (2D-FDTD) analysis and measurements are used to show that the coupling decreases as the line to line separation and the grOUnd plane width increases. Furthermore, it is shown that for a given spacing between the center lines of two FGC lines, the coupling is lower if the ground plane width is smaller Lastly, electric field plots generated from the 2D-FDTD technique are presented which demonstrate a strong slotline mode is established in the coupled FGC line.

  4. On the superposition principle in interference experiments.

    PubMed

    Sinha, Aninda; H Vijay, Aravind; Sinha, Urbasi

    2015-05-14

    The superposition principle is usually incorrectly applied in interference experiments. This has recently been investigated through numerics based on Finite Difference Time Domain (FDTD) methods as well as the Feynman path integral formalism. In the current work, we have derived an analytic formula for the Sorkin parameter which can be used to determine the deviation from the application of the principle. We have found excellent agreement between the analytic distribution and those that have been earlier estimated by numerical integration as well as resource intensive FDTD simulations. The analytic handle would be useful for comparing theory with future experiments. It is applicable both to physics based on classical wave equations as well as the non-relativistic Schrödinger equation.

  5. The Effect of Dielectric Constants on Noble Metal/Semiconductor SERS Enhancement: FDTD Simulation and Experiment Validation of Ag/Ge and Ag/Si Substrates

    PubMed Central

    Wang, Tao; Zhang, Zhaoshun; Liao, Fan; Cai, Qian; Li, Yanqing; Lee, Shuit-Tong; Shao, Mingwang

    2014-01-01

    The finite-difference time-domain (FDTD) method was employed to simulate the electric field distribution for noble metal (Au or Ag)/semiconductor (Ge or Si) substrates. The simulation showed that noble metal/Ge had stronger SERS enhancement than noble metal/Si, which was mainly attributed to the different dielectric constants of semiconductors. In order to verify the simulation, Ag nanoparticles with the diameter of ca. 40 nm were grown on Ge or Si wafer (Ag/Ge or Ag/Si) and employed as surface-enhanced Raman scattering substrates to detect analytes in solution. The experiment demonstrated that both the two substrates exhibited excellent performance in the low concentration detection of Rhodamine 6G. Besides, the enhancement factor (1.3 × 109) and relative standard deviation values (less than 11%) of Ag/Ge substrate were both better than those of Ag/Si (2.9 × 107 and less than 15%, respectively), which was consistent with the FDTD simulation. Moreover, Ag nanoparticles were grown in-situ on Ge substrate, which kept the nanoparticles from aggregation in the detection. To data, Ag/Ge substrates showed the best performance for their sensitivity and uniformity among the noble metal/semiconductor ones. PMID:24514430

  6. GPR Imaging for Deeply Buried Objects: A Comparative Study Based on FDTD Models and Field Experiments

    NASA Technical Reports Server (NTRS)

    Tilley, roger; Dowla, Farid; Nekoogar, Faranak; Sadjadpour, Hamid

    2012-01-01

    Conventional use of Ground Penetrating Radar (GPR) is hampered by variations in background environmental conditions, such as water content in soil, resulting in poor repeatability of results over long periods of time when the radar pulse characteristics are kept the same. Target objects types might include voids, tunnels, unexploded ordinance, etc. The long-term objective of this work is to develop methods that would extend the use of GPR under various environmental and soil conditions provided an optimal set of radar parameters (such as frequency, bandwidth, and sensor configuration) are adaptively employed based on the ground conditions. Towards that objective, developing Finite Difference Time Domain (FDTD) GPR models, verified by experimental results, would allow us to develop analytical and experimental techniques to control radar parameters to obtain consistent GPR images with changing ground conditions. Reported here is an attempt at developing 20 and 3D FDTD models of buried targets verified by two different radar systems capable of operating over different soil conditions. Experimental radar data employed were from a custom designed high-frequency (200 MHz) multi-static sensor platform capable of producing 3-D images, and longer wavelength (25 MHz) COTS radar (Pulse EKKO 100) capable of producing 2-D images. Our results indicate different types of radar can produce consistent images.

  7. Transient analysis of spectrally asymmetric magnetic photonic crystals with ferromagnetic losses

    NASA Astrophysics Data System (ADS)

    Jung, K.-Y.; Donderici, B.; Teixeira, F. L.

    2006-10-01

    We analyze transient electromagnetic pulse propagation in spectrally asymmetric magnetic photonic crystals (MPCs) with ferromagnetic losses. MPCs are dispersion-engineered materials consisting of a periodic arrangement of misaligned anisotropic dielectric and ferromagnetic layers that exhibit a stationary inflection point in the (asymmetric) dispersion diagram and unidirectional frozen modes. The analysis is performed via a late-time stable finite-difference time-domain method (FDTD) implemented with perfectly matched layer (PML) absorbing boundary conditions, and extended to handle (simultaneously) dispersive and anisotropic media. The proposed PML-FDTD algorithm is based on a D - H and B - E combined field approach that naturally decouples the FDTD update into two steps, one involving the (anisotropic and dispersive) constitutive material tensors and the other involving Maxwell’s equations in a complex coordinate space (to incorporate the PML). For ferromagnetic layers, a fully dispersive modeling of the permeability tensor is implemented to include magnetic losses in a consistent fashion. The numerical results illustrate some striking properties of MPCs, such as wave slowdown (frozen modes), amplitude increase (pulse compression), and unidirectional characteristics. The numerical model is also used to investigate the sensitivity of the MPC response against excitation (frequency and bandwidth), material (ferromagnetic losses), and geometric (layer misalignment and thickness) parameter variations.

  8. Mark-forming simulations of phase-change land/groove disks

    NASA Astrophysics Data System (ADS)

    Nishi, Yoshiko; Shimano, Takeshi; Kando, Hidehiko

    2000-09-01

    The track pitches of optical discs have become so narrow that it is comparable to the wavelength of laser beam. Finite-difference time-domain (FDTD) simulation, based on vector diffraction analysis, can predict the propagation of light more accurately than scalar analysis, when the size of media texture becomes sub-micron order. The authors applied FDTD simulation to land-and-groove optical disc models, and found out that the effects of 3D geometry is not negligible in analyzing the energy absorption of light inside the land- and-groove multi-layered media. The electromagnetic field in the media does not have the same intensity distribution as the incident beam. Furthermore, the heat conduction inside the media depends on the disc geometry, so the beam spots centered on land and groove makes different effects in heating the recording layers. That is, the spatial and historical profile of temperature requires 3D analysis for both incident light absorption and heat conduction. The difference in temperature profiles is applied to the phase change simulator to see the writing process of the marks in land and groove. We have integrated three simulators: FDTD analysis, heat conduction and phase change simulation. These simulators enabled to evaluate the differences in mark forming process between land and groove.

  9. FDTD-based optical simulations methodology for CMOS image sensors pixels architecture and process optimization

    NASA Astrophysics Data System (ADS)

    Hirigoyen, Flavien; Crocherie, Axel; Vaillant, Jérôme M.; Cazaux, Yvon

    2008-02-01

    This paper presents a new FDTD-based optical simulation model dedicated to describe the optical performances of CMOS image sensors taking into account diffraction effects. Following market trend and industrialization constraints, CMOS image sensors must be easily embedded into even smaller packages, which are now equipped with auto-focus and short-term coming zoom system. Due to miniaturization, the ray-tracing models used to evaluate pixels optical performances are not accurate anymore to describe the light propagation inside the sensor, because of diffraction effects. Thus we adopt a more fundamental description to take into account these diffraction effects: we chose to use Maxwell-Boltzmann based modeling to compute the propagation of light, and to use a software with an FDTD-based (Finite Difference Time Domain) engine to solve this propagation. We present in this article the complete methodology of this modeling: on one hand incoherent plane waves are propagated to approximate a product-use diffuse-like source, on the other hand we use periodic conditions to limit the size of the simulated model and both memory and computation time. After having presented the correlation of the model with measurements we will illustrate its use in the case of the optimization of a 1.75μm pixel.

  10. Electromagnetic modeling of waveguide amplifier based on Nd3+ Si-rich SiO2 layers by means of the ADE-FDTD method.

    PubMed

    Dufour, Christian; Cardin, Julien; Debieu, Olivier; Fafin, Alexandre; Gourbilleau, Fabrice

    2011-04-04

    By means of ADE-FDTD method, this paper investigates the electromagnetic modelling of a rib-loaded waveguide composed of a Nd3+ doped Silicon Rich Silicon Oxide active layer sandwiched between a SiO2 bottom cladding and a SiO2 rib. The Auxilliary Differential Equations are the rate equations which govern the levels populations. The Finite Difference Time Domain (FDTD) scheme is used to solve the space and time dependent Maxwell equations which describe the electromagnetic field in a copropagating scheme of both pumping (λpump = 488 nm) and signal (λsignal = 1064 nm) waves. Such systems are characterized by extremely different specific times such as the period of electromagnetic field ~ 10-15 s and the lifetimes of the electronic levels between ~ 10-10s and ~ 10-4 s. The time scaling method is used in addition to specific initial conditions in order to decrease the computational time. We show maps of the Poynting vector along the propagation direction as a function of the silicon nanograin (Si-ng) concentrations. A threshold value of 1024 Si-ng m-3 is extracted below which the pump wave can propagate so that a signal amplication is possible.

  11. Electromagnetic modeling of waveguide amplifier based on Nd3+ Si-rich SiO2 layers by means of the ADE-FDTD method

    PubMed Central

    2011-01-01

    By means of ADE-FDTD method, this paper investigates the electromagnetic modelling of a rib-loaded waveguide composed of a Nd3+ doped Silicon Rich Silicon Oxide active layer sandwiched between a SiO2 bottom cladding and a SiO2 rib. The Auxilliary Differential Equations are the rate equations which govern the levels populations. The Finite Difference Time Domain (FDTD) scheme is used to solve the space and time dependent Maxwell equations which describe the electromagnetic field in a copropagating scheme of both pumping (λpump = 488 nm) and signal (λsignal = 1064 nm) waves. Such systems are characterized by extremely different specific times such as the period of electromagnetic field ~ 10-15 s and the lifetimes of the electronic levels between ~ 10-10s and ~ 10-4 s. The time scaling method is used in addition to specific initial conditions in order to decrease the computational time. We show maps of the Poynting vector along the propagation direction as a function of the silicon nanograin (Si-ng) concentrations. A threshold value of 1024 Si-ng m-3 is extracted below which the pump wave can propagate so that a signal amplication is possible. PMID:21711829

  12. Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy.

    PubMed

    Uzayisenga, Viviane; Lin, Xiao-Dong; Li, Li-Mei; Anema, Jason R; Yang, Zhi-Lin; Huang, Yi-Fan; Lin, Hai-Xin; Li, Song-Bo; Li, Jian-Feng; Tian, Zhong-Qun

    2012-06-19

    Au-seed Ag-growth nanoparticles of controllable diameter (50-100 nm), and having an ultrathin SiO(2) shell of controllable thickness (2-3 nm), were prepared for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Their morphological, optical, and material properties were characterized; and their potential for use as a versatile Raman signal amplifier was investigated experimentally using pyridine as a probe molecule and theoretically by the three-dimensional finite-difference time-domain (3D-FDTD) method. We show that a SiO(2) shell as thin as 2 nm can be synthesized pinhole-free on the Ag surface of a nanoparticle, which then becomes the core. The dielectric SiO(2) shell serves to isolate the Raman-signal enhancing core and prevent it from interfering with the system under study. The SiO(2) shell also hinders oxidation of the Ag surface and nanoparticle aggregation. It significantly improves the stability and reproducibility of surface-enhanced Raman scattering (SERS) signal intensity, which is essential for SERS applications. Our 3D-FDTD simulations show that Ag-core SHINERS nanoparticles yield at least 2 orders of magnitude greater enhancement than Au-core ones when excited with green light on a smooth Ag surface, and thus add to the versatility of our SHINERS method.

  13. Hybrid ray-FDTD model for the simulation of the ultrasonic inspection of CFRP parts

    NASA Astrophysics Data System (ADS)

    Jezzine, Karim; Ségur, Damien; Ecault, Romain; Dominguez, Nicolas; Calmon, Pierre

    2017-02-01

    Carbon Fiber Reinforced Polymers (CFRP) are commonly used in structural parts in the aeronautic industry, to reduce the weight of aircraft while maintaining high mechanical performances. Simulation of the ultrasonic inspections of these parts has to face the highly heterogeneous and anisotropic characteristics of these materials. To model the propagation of ultrasound in these composite structures, we propose two complementary approaches. The first one is based on a ray model predicting the propagation of the ultrasound in an anisotropic effective medium obtained from a homogenization of the material. The ray model is designed to deal with possibly curved parts and subsequent continuously varying anisotropic orientations. The second approach is based on the coupling of the ray model, and a finite difference scheme in time domain (FDTD). The ray model handles the ultrasonic propagation between the transducer and the FDTD computation zone that surrounds the composite part. In this way, the computational efficiency is preserved and the ultrasound scattering by the composite structure can be predicted. Inspections of flat or curved composite panels, as well as stiffeners can be performed. The models have been implemented in the CIVA software platform and compared to experiments. We also present an application of the simulation to the performance demonstration of the adaptive inspection technique SAUL (Surface Adaptive Ultrasound).

  14. The effect of dielectric constants on noble metal/semiconductor SERS enhancement: FDTD simulation and experiment validation of Ag/Ge and Ag/Si substrates.

    PubMed

    Wang, Tao; Zhang, Zhaoshun; Liao, Fan; Cai, Qian; Li, Yanqing; Lee, Shuit-Tong; Shao, Mingwang

    2014-02-11

    The finite-difference time-domain (FDTD) method was employed to simulate the electric field distribution for noble metal (Au or Ag)/semiconductor (Ge or Si) substrates. The simulation showed that noble metal/Ge had stronger SERS enhancement than noble metal/Si, which was mainly attributed to the different dielectric constants of semiconductors. In order to verify the simulation, Ag nanoparticles with the diameter of ca. 40 nm were grown on Ge or Si wafer (Ag/Ge or Ag/Si) and employed as surface-enhanced Raman scattering substrates to detect analytes in solution. The experiment demonstrated that both the two substrates exhibited excellent performance in the low concentration detection of Rhodamine 6G. Besides, the enhancement factor (1.3 × 10(9)) and relative standard deviation values (less than 11%) of Ag/Ge substrate were both better than those of Ag/Si (2.9 × 10(7) and less than 15%, respectively), which was consistent with the FDTD simulation. Moreover, Ag nanoparticles were grown in-situ on Ge substrate, which kept the nanoparticles from aggregation in the detection. To data, Ag/Ge substrates showed the best performance for their sensitivity and uniformity among the noble metal/semiconductor ones.

  15. Computational dosimetry for grounded and ungrounded human models due to contact current

    NASA Astrophysics Data System (ADS)

    Chan, Kwok Hung; Hattori, Junya; Laakso, Ilkka; Hirata, Akimasa; Taki, Masao

    2013-08-01

    This study presents the computational dosimetry of contact currents for grounded and ungrounded human models. The uncertainty of the quasi-static (QS) approximation of the in situ electric field induced in a grounded/ungrounded human body due to the contact current is first estimated. Different scenarios of cylindrical and anatomical human body models are considered, and the results are compared with the full-wave analysis. In the QS analysis, the induced field in the grounded cylindrical model is calculated by the QS finite-difference time-domain (QS-FDTD) method, and compared with the analytical solution. Because no analytical solution is available for the grounded/ungrounded anatomical human body model, the results of the QS-FDTD method are then compared with those of the conventional FDTD method. The upper frequency limit for the QS approximation in the contact current dosimetry is found to be 3 MHz, with a relative local error of less than 10%. The error increases above this frequency, which can be attributed to the neglect of the displacement current. The QS or conventional FDTD method is used for the dosimetry of induced electric field and/or specific absorption rate (SAR) for a contact current injected into the index finger of a human body model in the frequency range from 10 Hz to 100 MHz. The in situ electric fields or SAR are compared with the basic restrictions in the international guidelines/standards. The maximum electric field or the 99th percentile value of the electric fields appear not only in the fat and muscle tissues of the finger, but also around the wrist, forearm, and the upper arm. Some discrepancies are observed between the basic restrictions for the electric field and SAR and the reference levels for the contact current, especially in the extremities. These discrepancies are shown by an equation that relates the current density, tissue conductivity, and induced electric field in the finger with a cross-sectional area of 1 cm2.

  16. Electrical circuit modeling and analysis of microwave acoustic interaction with biological tissues.

    PubMed

    Gao, Fei; Zheng, Qian; Zheng, Yuanjin

    2014-05-01

    Numerical study of microwave imaging and microwave-induced thermoacoustic imaging utilizes finite difference time domain (FDTD) analysis for simulation of microwave and acoustic interaction with biological tissues, which is time consuming due to complex grid-segmentation and numerous calculations, not straightforward due to no analytical solution and physical explanation, and incompatible with hardware development requiring circuit simulator such as SPICE. In this paper, instead of conventional FDTD numerical simulation, an equivalent electrical circuit model is proposed to model the microwave acoustic interaction with biological tissues for fast simulation and quantitative analysis in both one and two dimensions (2D). The equivalent circuit of ideal point-like tissue for microwave-acoustic interaction is proposed including transmission line, voltage-controlled current source, envelop detector, and resistor-inductor-capacitor (RLC) network, to model the microwave scattering, thermal expansion, and acoustic generation. Based on which, two-port network of the point-like tissue is built and characterized using pseudo S-parameters and transducer gain. Two dimensional circuit network including acoustic scatterer and acoustic channel is also constructed to model the 2D spatial information and acoustic scattering effect in heterogeneous medium. Both FDTD simulation, circuit simulation, and experimental measurement are performed to compare the results in terms of time domain, frequency domain, and pseudo S-parameters characterization. 2D circuit network simulation is also performed under different scenarios including different sizes of tumors and the effect of acoustic scatterer. The proposed circuit model of microwave acoustic interaction with biological tissue could give good agreement with FDTD simulated and experimental measured results. The pseudo S-parameters and characteristic gain could globally evaluate the performance of tumor detection. The 2D circuit network enables the potential to combine the quasi-numerical simulation and circuit simulation in a uniform simulator for codesign and simulation of a microwave acoustic imaging system, bridging bioeffect study and hardware development seamlessly.

  17. Analysis of microstrip dipoles and slots transversely coupled to a microstrip line using the FDTD method

    NASA Technical Reports Server (NTRS)

    Tulintseff, A. N.

    1993-01-01

    Printed dipole elements and their complement, linear slots, are elementary radiators that have found use in low-profile antenna arrays. Low-profile antenna arrays, in addition to their small size and low weight characteristics, offer the potential advantage of low-cost, high-volume production with easy integration with active integrated circuit components. The design of such arrays requires that the radiation and impedance characteristics of the radiating elements be known. The FDTD (Finite-Difference Time-Domain) method is a general, straight-forward implementation of Maxwell's equations and offers a relatively simple way of analyzing both printed dipole and slot elements. Investigated in this work is the application of the FDTD method to the analysis of printed dipole and slot elements transversely coupled to an infinite transmission line in a multilayered configuration. Such dipole and slot elements may be used in dipole and slot series-fed-type linear arrays, where element offsets and interelement line lengths are used to obtain the desired amplitude distribution and beam direction, respectively. The design of such arrays is achieved using transmission line theory with equivalent circuit models for the radiating elements. In an equivalent circuit model, the dipole represents a shunt impedance to the transmission line, where the impedance is a function of dipole offset, length, and width. Similarly, the slot represents a series impedance to the transmission line. The FDTD method is applied to single dipole and slot elements transversely coupled to an infinite microstrip line using a fixed rectangular grid with Mur's second order absorbing boundary conditions. Frequency-dependent circuit and scattering parameters are obtained by saving desired time-domain quantities and using the Fourier transform. A Gaussian pulse excitation is applied to the microstrip transmission line, where the resulting reflected signal due to the presence of the radiating element is used to determine the equivalent element impedance.

  18. Three-dimensional FDTD Modeling of Earth-ionosphere Cavity Resonances

    NASA Astrophysics Data System (ADS)

    Yang, H.; Pasko, V. P.

    2003-12-01

    Resonance properties of the earth-ionosphere cavity were first predicted by W. O. Schumann in 1952 [Schumann, Z. Naturforsch. A, 7, 149, 1952]. Since then observations of extremely low frequency (ELF) signals in the frequency range 1-500 Hz have become a powerful tool for monitoring of global lightning activity and planetary scale variability of the lower ionosphere, as well as, in recent years, for location and remote sensing of sprites, jets and elves and associated lightning discharges [e.g., Sato et al., JASTP, 65, 607, 2003; Su et al., Nature, 423, 974, 2003; and references cited therein]. The simplicity and flexibility of finite difference time domain (FDTD) technique for finding first principles solutions of electromagnetic problems in a medium with arbitrary inhomogeneities and ever-increasing computer power make FDTD an excellent candidate to be the technique of the future in development of realistic numerical models of VLF/ELF propagation in Earth-ionosphere waveguide [Cummer, IEEE Trans. Antennas Propagat., 48, 1420, 2000], and several reports about successful application of the FDTD technique for solution of related problems have recently appeared in the literature [e.g., Thevenot et al., Ann. Telecommun., 54, 297, 1999; Cummer, 2000; Berenger, Ann. Telecommun., 57, 1059, 2002, Simpson and Taflove, IEEE Antennas Wireless Propagat. Lett., 1, 53, 2002]. In this talk we will present results from a new three-dimensional spherical FDTD model, which is designed for studies of ELF electromagnetic signals under 100 Hz in the earth-ionosphere cavity. The model accounts for a realistic latitudinal and longitudinal variation of ground conductivity (i.e., for the boundaries between oceans and continents) by employing a broadband surface impedance technique proposed in [Breggs et al., IEEE Trans. Antenna Propagat., 41, 118, 1993]. The realistic distributions of atmospheric/lower ionospheric conductivity are derived from the international reference ionosphere model (IRI) [Bilitza, Radio Sci., 36, 261, 2001] and account for the medium anisotropy due to the geomagnetic field above approximately 70 km altitude. The realistic three-dimensional geomagnetic field distributions are loaded from the international geomagnetic field model (IGRF) [Barton, J. Geomag. Geoelectr., 49, 123, 1997]. In this talk we will compare the model results with available analytical solutions for electric and magnetic field distributions in the earth-ionosphere cavity excited by a strong positive cloud-to-ground lightning discharge. We will also discuss known sources of variability in Schumann resonance frequencies and present results illustrating model response under conditions of high-energy particle precipitation events in the polar regions [e.g., Morente et al., JGR, 108, doi:10.1029/2002JA009779, 2003, and references cited therein].

  19. Auralization of concert hall acoustics using finite difference time domain methods and wave field synthesis

    NASA Astrophysics Data System (ADS)

    Hochgraf, Kelsey

    Auralization methods have been used for a long time to simulate the acoustics of a concert hall for different seat positions. The goal of this thesis was to apply the concept of auralization to a larger audience area that the listener could walk through to compare differences in acoustics for a wide range of seat positions. For this purpose, the acoustics of Rensselaer's Experimental Media and Performing Arts Center (EMPAC) Concert Hall were simulated to create signals for a 136 channel wave field synthesis (WFS) system located at Rensselaer's Collaborative Research Augmented Immersive Virtual Environment (CRAIVE) Laboratory. By allowing multiple people to dynamically experience the concert hall's acoustics at the same time, this research gained perspective on what is important for achieving objective accuracy and subjective plausibility in an auralization. A finite difference time domain (FDTD) simulation on a three-dimensional face-centered cubic grid, combined at a crossover frequency of 800 Hz with a CATT-Acoustic(TM) simulation, was found to have a reverberation time, direct to reverberant sound energy ratio, and early reflection pattern that more closely matched measured data from the hall compared to a CATT-Acoustic(TM) simulation and other hybrid simulations. In the CRAIVE lab, nine experienced listeners found all hybrid auralizations (with varying source location, grid resolution, crossover frequency, and number of loudspeakers) to be more perceptually plausible than the CATT-Acoustic(TM) auralization. The FDTD simulation required two days to compute, while the CATT-Acoustic(TM) simulation required three separate TUCT(TM) computations, each taking four hours, to accommodate the large number of receivers. Given the perceptual advantages realized with WFS for auralization of a large, inhomogeneous sound field, it is recommended that hybrid simulations be used in the future to achieve more accurate and plausible auralizations. Predictions are made for a parallelized version of the simulation code that could achieve such auralizations in less than one hour, making the tool practical for everyday application.

  20. Full waveform time domain solutions for source and induced magnetotelluric and controlled-source electromagnetic fields using quasi-equivalent time domain decomposition and GPU parallelization

    NASA Astrophysics Data System (ADS)

    Imamura, N.; Schultz, A.

    2015-12-01

    Recently, a full waveform time domain solution has been developed for the magnetotelluric (MT) and controlled-source electromagnetic (CSEM) methods. The ultimate goal of this approach is to obtain a computationally tractable direct waveform joint inversion for source fields and earth conductivity structure in three and four dimensions. This is desirable on several grounds, including the improved spatial resolving power expected from use of a multitude of source illuminations of non-zero wavenumber, the ability to operate in areas of high levels of source signal spatial complexity and non-stationarity, etc. This goal would not be obtainable if one were to adopt the finite difference time-domain (FDTD) approach for the forward problem. This is particularly true for the case of MT surveys, since an enormous number of degrees of freedom are required to represent the observed MT waveforms across the large frequency bandwidth. It means that for FDTD simulation, the smallest time steps should be finer than that required to represent the highest frequency, while the number of time steps should also cover the lowest frequency. This leads to a linear system that is computationally burdensome to solve. We have implemented our code that addresses this situation through the use of a fictitious wave domain method and GPUs to speed up the computation time. We also substantially reduce the size of the linear systems by applying concepts from successive cascade decimation, through quasi-equivalent time domain decomposition. By combining these refinements, we have made good progress toward implementing the core of a full waveform joint source field/earth conductivity inverse modeling method. From results, we found the use of previous generation of CPU/GPU speeds computations by an order of magnitude over a parallel CPU only approach. In part, this arises from the use of the quasi-equivalent time domain decomposition, which shrinks the size of the linear system dramatically.

  1. [E.S.BOTKIN, A SPECIMEN OF FIDELITY TO PROFESSIONAL DUTY AND OATH OF LOYALTY, AN EXAMPLE OF COURAGE AND HONOUR OF THE RUSSIAN DOCTOR].

    PubMed

    Vologdin, A A; Simonenko, V B

    2015-01-01

    Evgeny Sergeevch Botkin, son of the legendary Russian internist Sergey Petrovich Botkin, was a court physician for Tsar Nikolai II. After Nikolai abdicated the throne on 15 March (2 March in the Julian calendar) 1917, E.S. Botkin felt it was his duty to accompany the Romanovs into exile to Siberia and continued to selflessly treat the crown prince Aleksey, other members of the Romanov family and all those who applied for his advice. He was shot together with the Romanovs in the basement room of the Ipatiev house, Ekaterinburg, remaining loyal to professional duty and the word given to the Emperor.

  2. Finite difference time domain calculation of transients in antennas with nonlinear loads

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Beggs, John H.; Kunz, Karl S.; Chamberlin, Kent

    1991-01-01

    In this paper transient fields for antennas with more general geometries are calculated directly using Finite Difference Time Domain methods. In each FDTD cell which contains a nonlinear load, a nonlinear equation is solved at each time step. As a test case the transient current in a long dipole antenna with a nonlinear load excited by a pulsed plane wave is computed using this approach. The results agree well with both calculated and measured results previously published. The approach given here extends the applicability of the FDTD method to problems involving scattering from targets including nonlinear loads and materials, and to coupling between antennas containing nonlinear loads. It may also be extended to propagation through nonlinear materials.

  3. Novel conformal technique to reduce staircasing artifacts at material boundaries for FDTD modeling of the bioheat equation.

    PubMed

    Neufeld, E; Chavannes, N; Samaras, T; Kuster, N

    2007-08-07

    The modeling of thermal effects, often based on the Pennes Bioheat Equation, is becoming increasingly popular. The FDTD technique commonly used in this context suffers considerably from staircasing errors at boundaries. A new conformal technique is proposed that can easily be integrated into existing implementations without requiring a special update scheme. It scales fluxes at interfaces with factors derived from the local surface normal. The new scheme is validated using an analytical solution, and an error analysis is performed to understand its behavior. The new scheme behaves considerably better than the standard scheme. Furthermore, in contrast to the standard scheme, it is possible to obtain with it more accurate solutions by increasing the grid resolution.

  4. FDTD simulations of localization and enhancements on fractal plasmonics nanostructures.

    PubMed

    Buil, Stéphanie; Laverdant, Julien; Berini, Bruno; Maso, Pierre; Hermier, Jean-Pierre; Quélin, Xavier

    2012-05-21

    A parallelized 3D FDTD (Finite-Difference Time-Domain) solver has been used to study the near-field electromagnetic intensity upon plasmonics nanostructures. The studied structures are obtained from AFM (Atomic Force Microscopy) topography measured on real disordered gold layers deposited by thermal evaporation under ultra-high vacuum. The simulation results obtained with these 3D metallic nanostructures are in good agreement with previous experimental results: the localization of the electromagnetic intensity in subwavelength areas ("hot spots") is demonstrated; the spectral and polarization dependences of the position of these "hot spots" are also satisfactory; the enhancement factors obtained are realistic compared to the experimental ones. These results could be useful to further our understanding of the electromagnetic behavior of random metal layers.

  5. Numerical investigation of field enhancement by metal nano-particles using a hybrid FDTD-PSTD algorithm.

    PubMed

    Pernice, W H; Payne, F P; Gallagher, D F

    2007-09-03

    We present a novel numerical scheme for the simulation of the field enhancement by metal nano-particles in the time domain. The algorithm is based on a combination of the finite-difference time-domain method and the pseudo-spectral time-domain method for dispersive materials. The hybrid solver leads to an efficient subgridding algorithm that does not suffer from spurious field spikes as do FDTD schemes. Simulation of the field enhancement by gold particles shows the expected exponential field profile. The enhancement factors are computed for single particles and particle arrays. Due to the geometry conforming mesh the algorithm is stable for long integration times and thus suitable for the simulation of resonance phenomena in coupled nano-particle structures.

  6. [Transmission efficiency analysis of near-field fiber probe using FDTD simulation].

    PubMed

    Huang, Wei; Dai, Song-Tao; Wang, Huai-Yu; Zhou, Yun-Song

    2011-10-01

    A fiber probe is the key component of near-field optical technology which is widely used in high resolution imaging, spectroscopy detection and nano processing. How to improve the transmission efficiency of the fiber probe is a very important problem in the application of near-field optical technology. Based on the results of 3D-FDTD computation, the dependence of the transmission efficiency on the cone angle, the aperture diameter, the wavelength and the thickness of metal cladding is revealed. The authors have also made a comparison between naked probe and the probe with metal cladding in terms of transmission efficiency and spatial resolution. In addition, the authors have discovered the fluctuation phenomena of transmission efficiency as the wavelength of incident laser increases.

  7. Ancient and Medieval Cosmology in Armenian Highland

    NASA Astrophysics Data System (ADS)

    Farmanyan, Sona V.; Mickaelian, Areg M.

    2016-12-01

    Humankind has always sought to recognize the nature of various sky related phenomena and tried to give them explanations. It is especially vivid in ancient cultures, many of which are related to the Middle East. The purpose of this study is to identify ancient Armenian's pantheistic and cosmological perceptions, world view, notions and beliefs. By this study we answer the question "How did the Universe work in Ancient Armenian Highland?" The paper focuses on the structure of the Universe and many phenomena of nature that have always had major influence on ancient Armenians thinking. Here we weave together astronomy, anthropology and mythology of Armenia, and scientific thinking revealed in local astronomy traditions. The initial review of the study covers Moses of Khoren, Yeznik of Koghb, Anania Shirakatsi and other 5th-7th centuries historians' and scientists' records about the Universe related superstitious beliefs and cosmological understanding. By discussing and comparing Universe structure in various regional traditions, myths, folk songs and phraseological units we very often came across "seven worlds", "seven earths" and "seven layers" concepts. We draw parallels between scientific and mythological Earth and Heaven and thus find similar number of layers on both of the ancient and modern thinking. In the article we also give some details about the tripartite structure of the Universe and how these parts are connected with axis. This axis is either a column or a Cosmic Tree (Kenatz Tsar). In Armenian culture the preliminary meanings of the Kenatz Tsar are more vivid in folk songs (Jan gyulums), plays, epic, and so on, which was subsequently mixed with religious and spiritual views. We conclude that the perception of the Universe structure and celestial objects had a significant impact on culture and worldview of the people of the Armenian Highland; particularly it was one of the bases of the regional cultural diversity.

  8. Computer analysis of microcrystalline silicon hetero-junction solar cell with lumerical FDTD/DEVICE

    NASA Astrophysics Data System (ADS)

    Riaz, Muhammad; Earles, S. K.; Kadhim, Ahmed; Azzahrani, Ahmad

    The computer analysis of tandem solar cell, c-Si/a-Si:H/μc-SiGe, is studied within Lumerical FDTD/Device 4.6. The optical characterization is performed in FDTD and then total generation rate is transported into DEVICE for electrical characterization. The electrical characterization of the solar cell is carried out in DEVICE. The design is implemented by staking three sub cells with band gap of 1.12eV, 1.50eV and 1.70eV, respectively. First, single junction solar cell with both a-Si and μc-SiGe absorbing layers are designed and compared. The thickness for both layers are kept the same. In a single junction, solar cell with a-Si absorbing layer, the fill factor and the efficiency are noticed as FF = 78.98%, and η = 6.03%. For μc-SiGe absorbing layer, the efficiency and fill factor are increased as η = 7.06% and FF = 84.27%, respectively. Second, for tandem thin film solar cell c-Si/a-Si:H/μc-SiGe, the fill factor FF = 81.91% and efficiency η = 9.84% have been noticed. The maximum efficiency for both single junction thin film solar cell c-Si/μc-SiGe and tandem solar cell c-Si/a-Si:H/μc-SiGe are improved with check board surface design for light trapping.

  9. FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses.

    PubMed

    Simicevic, Neven

    2008-03-21

    With an increase in the application of ultra-wideband (UWB) electromagnetic pulses in the communications industry, radar, biotechnology and medicine, comes an interest in UWB exposure safety standards. Despite an increase of the scientific research on bioeffects of exposure to non-ionizing UWB pulses, characterization of those effects is far from complete. A numerical computational approach, such as a finite-difference time domain (FDTD) method, is required to visualize and understand the complexity of broadband electromagnetic interactions. The FDTD method has almost no limits in the description of the geometrical and dispersive properties of the simulated material, it is numerically robust and appropriate for current computer technology. In this paper, a complete calculation of exposure of the human eye to UWB electromagnetic pulses in the frequency range of 3.1-10.6, 22-29 and 57-64 GHz is performed. Computation in this frequency range required a geometrical resolution of the eye of 0.1 mm and an arbitrary precision in the description of its dielectric properties in terms of the Debye model. New results show that the interaction of UWB pulses with the eye tissues exhibits the same properties as the interaction of the continuous electromagnetic waves (CWs) with the frequencies from the pulse's frequency spectrum. It is also shown that under the same exposure conditions the exposure to UWB pulses is from one to many orders of magnitude safer than the exposure to CW.

  10. Optical absorption of suspended graphene based metal plasmonic grating in the visible range

    NASA Astrophysics Data System (ADS)

    Han, Y. X.; Chen, B. B.; Yang, J. B.; He, X.; Huang, J.; Zhang, J. J.; Zhang, Z. J.

    2018-05-01

    We employ finite-difference time-domain ( FDTD) method and Raman spectroscopy to study the properties of graphene, which is suspended on a gold/SiO2/Si grating structure with different trench depth of SiO2 layer. The absorption enhancement of suspended graphene and plasmonic resonance of metal grating are investigated in the visible range using 2D FDTD method. Moreover, it is found that the intensity of the Raman features depends very sensitively on the trench depth of SiO2 layer. Raman enhancement in our experiments is attributed to the enhanced optical absorption of graphene by near-field coupling based metal plasmonic grating. The enhanced absorption of suspended graphene modulated by localized surface plasmon resonance (LSPR) offers a potential application for opto-electromechanical devices.

  11. Performance Analysis of Triple Asymmetrical Optical Micro Ring Resonator with 2 × 2 Input-Output Bus Waveguide

    NASA Astrophysics Data System (ADS)

    Ranjan, Suman; Mandal, Sanjoy

    2017-12-01

    Modeling of triple asymmetrical optical micro ring resonator (TAOMRR) in z-domain with 2 × 2 input-output system with detailed design of its waveguide configuration using finite-difference time-domain (FDTD) method is presented. Transfer function in z-domain using delay-line signal processing technique of the proposed TAOMRR is determined for different input and output ports. The frequency response analysis is carried out using MATLAB software. Group delay and dispersion characteristics are also determined in MATLAB. The electric field analysis is done using FDTD. The method proposes a new methodology to design and draw multiple configurations of coupled ring resonators having multiple in and out ports. Various important parameters such as coupling coefficients and FSR are also determined.

  12. Performance Analysis of Triple Asymmetrical Optical Micro Ring Resonator with 2 × 2 Input-Output Bus Waveguide

    NASA Astrophysics Data System (ADS)

    Ranjan, Suman; Mandal, Sanjoy

    2018-02-01

    Modeling of triple asymmetrical optical micro ring resonator (TAOMRR) in z-domain with 2 × 2 input-output system with detailed design of its waveguide configuration using finite-difference time-domain (FDTD) method is presented. Transfer function in z-domain using delay-line signal processing technique of the proposed TAOMRR is determined for different input and output ports. The frequency response analysis is carried out using MATLAB software. Group delay and dispersion characteristics are also determined in MATLAB. The electric field analysis is done using FDTD. The method proposes a new methodology to design and draw multiple configurations of coupled ring resonators having multiple in and out ports. Various important parameters such as coupling coefficients and FSR are also determined.

  13. Collocated electrodynamic FDTD schemes using overlapping Yee grids and higher-order Hodge duals

    NASA Astrophysics Data System (ADS)

    Deimert, C.; Potter, M. E.; Okoniewski, M.

    2016-12-01

    The collocated Lebedev grid has previously been proposed as an alternative to the Yee grid for electromagnetic finite-difference time-domain (FDTD) simulations. While it performs better in anisotropic media, it performs poorly in isotropic media because it is equivalent to four overlapping, uncoupled Yee grids. We propose to couple the four Yee grids and fix the Lebedev method using discrete exterior calculus (DEC) with higher-order Hodge duals. We find that higher-order Hodge duals do improve the performance of the Lebedev grid, but they also improve the Yee grid by a similar amount. The effectiveness of coupling overlapping Yee grids with a higher-order Hodge dual is thus questionable. However, the theoretical foundations developed to derive these methods may be of interest in other problems.

  14. Anomaly of Transmission Properties in Pre-Cantor Dielectric Multilayers

    NASA Astrophysics Data System (ADS)

    Kaino, Keimei; Sonoda, Jun

    2008-02-01

    Using the transmission-line theory, we investigate wave propagation in a pre-Cantor multilayer. Transmission spectra of the low stages of pre-Cantor media show good agreement with those of numerical calculation of Maxwell's equations using the FDTD method. Numerical results obtained using the FDTD method show that the electric field at the midpoint of the nth stage pre-Cantor medium has sharp resonance and broad attenuation at transmission bands that are newly generated in attenuation bands of the (n-1)th stage. Using an expression of transmittance of the high stage of pre-Cantor multilayer, we show that the transmittance t becomes a two-valued function of t = 0/1 and the collection of points for t = 1 is a power set of positive integers whose cardinal number is 3ℵ0.

  15. Characterization of anisotropically shaped silver nanoparticle arrays via spectroscopic ellipsometry supported by numerical optical modeling

    NASA Astrophysics Data System (ADS)

    Gkogkou, Dimitra; Shaykhutdinov, Timur; Oates, Thomas W. H.; Gernert, Ulrich; Schreiber, Benjamin; Facsko, Stefan; Hildebrandt, Peter; Weidinger, Inez M.; Esser, Norbert; Hinrichs, Karsten

    2017-11-01

    The present investigation aims to study the optical response of anisotropic Ag nanoparticle arrays deposited on rippled silicon substrates by performing a qualitative comparison between experimental and theoretical results. Spectroscopic ellipsometry was used along with numerical calculations using finite-difference time-domain (FDTD) method and rigorous coupled wave analysis (RCWA) to reveal trends in the optical and geometrical properties of the nanoparticle array. Ellipsometric data show two resonances, in the orthogonal x and y directions, that originate from localized plasmon resonances as demonstrated by the calculated near-fields from FDTD calculations. The far-field calculations by RCWA point to decoupled resonances in x direction and possible coupling effects in y direction, corresponding to the short and long axis of the anisotropic nanoparticles, respectively.

  16. Experimental Quasi-Microwave Whole-Body Averaged SAR Estimation Method Using Cylindrical-External Field Scanning

    NASA Astrophysics Data System (ADS)

    Kawamura, Yoshifumi; Hikage, Takashi; Nojima, Toshio

    The aim of this study is to develop a new whole-body averaged specific absorption rate (SAR) estimation method based on the external-cylindrical field scanning technique. This technique is adopted with the goal of simplifying the dosimetry estimation of human phantoms that have different postures or sizes. An experimental scaled model system is constructed. In order to examine the validity of the proposed method for realistic human models, we discuss the pros and cons of measurements and numerical analyses based on the finite-difference time-domain (FDTD) method. We consider the anatomical European human phantoms and plane-wave in the 2GHz mobile phone frequency band. The measured whole-body averaged SAR results obtained by the proposed method are compared with the results of the FDTD analyses.

  17. Extension of On-Surface Radiation Condition (OSRC) theory to full-vector electromagnetic wave scattering by three-dimensional conducting, dielectric, and coated targets

    NASA Astrophysics Data System (ADS)

    Taflove, Allen; Umashankar, Korada R.

    1993-08-01

    This project introduced radiation boundary condition (RBC) and absorbing boundary condition (ABC) theory to the engineering electromagnetics community. An approximate method for obtaining the scattering of 2-D and 3-D bodies, the on-surface radiation condition (OSRC) method, was formulated and validated. RBC's and ABC's were shown to work well at points closer to scatterers than anyone had expected. Finite-difference time domain (FD-TD) methods exploiting these ABC's were pursued for applications in scattering, radiation, penetration, biomedical studies, and nonlinear optics. Multiprocessing supercomputer software was developed for FD-TD, leading to the largest scale detailed electromagnetic wave interaction models ever conducted, including entire jet fighter aircraft modeled for radar cross section (RCS) at UHF frequencies up to 500 MHz.

  18. Improvements of the two-dimensional FDTD method for the simulation of normal- and superconducting planar waveguides using time series analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofschen, S.; Wolff, I.

    1996-08-01

    Time-domain simulation results of two-dimensional (2-D) planar waveguide finite-difference time-domain (FDTD) analysis are normally analyzed using Fourier transform. The introduced method of time series analysis to extract propagation and attenuation constants reduces the desired computation time drastically. Additionally, a nonequidistant discretization together with an adequate excitation technique is used to reduce the number of spatial grid points. Therefore, it is possible to reduce the number of spatial grid points. Therefore, it is possible to simulate normal- and superconducting planar waveguide structures with very thin conductors and small dimensions, as they are used in MMIC technology. The simulation results are comparedmore » with measurements and show good agreement.« less

  19. Numerical time-domain electromagnetics based on finite-difference and convolution

    NASA Astrophysics Data System (ADS)

    Lin, Yuanqu

    Time-domain methods posses a number of advantages over their frequency-domain counterparts for the solution of wideband, nonlinear, and time varying electromagnetic scattering and radiation phenomenon. Time domain integral equation (TDIE)-based methods, which incorporate the beneficial properties of integral equation method, are thus well suited for solving broadband scattering problems for homogeneous scatterers. Widespread adoption of TDIE solvers has been retarded relative to other techniques by their inefficiency, inaccuracy and instability. Moreover, two-dimensional (2D) problems are especially problematic, because 2D Green's functions have infinite temporal support, exacerbating these difficulties. This thesis proposes a finite difference delay modeling (FDDM) scheme for the solution of the integral equations of 2D transient electromagnetic scattering problems. The method discretizes the integral equations temporally using first- and second-order finite differences to map Laplace-domain equations into the Z domain before transforming to the discrete time domain. The resulting procedure is unconditionally stable because of the nature of the Laplace- to Z-domain mapping. The first FDDM method developed in this thesis uses second-order Lagrange basis functions with Galerkin's method for spatial discretization. The second application of the FDDM method discretizes the space using a locally-corrected Nystrom method, which accelerates the precomputation phase and achieves high order accuracy. The Fast Fourier Transform (FFT) is applied to accelerate the marching-on-time process in both methods. While FDDM methods demonstrate impressive accuracy and stability in solving wideband scattering problems for homogeneous scatterers, they still have limitations in analyzing interactions between several inhomogenous scatterers. Therefore, this thesis devises a multi-region finite-difference time-domain (MR-FDTD) scheme based on domain-optimal Green's functions for solving sparsely-populated problems. The scheme uses a discrete Green's function (DGF) on the FDTD lattice to truncate the local subregions, and thus reduces reflection error on the local boundary. A continuous Green's function (CGF) is implemented to pass the influence of external fields into each FDTD region which mitigates the numerical dispersion and anisotropy of standard FDTD. Numerical results will illustrate the accuracy and stability of the proposed techniques.

  20. 2.5D transient electromagnetic inversion with OCCAM method

    NASA Astrophysics Data System (ADS)

    Li, R.; Hu, X.

    2016-12-01

    In the application of time-domain electromagnetic method (TEM), some multidimensional inversion schemes are applied for imaging in the past few decades to overcome great error produced by 1D model inversion when the subsurface structure is complex. The current mainstream multidimensional inversion for EM data, with the finite-difference time-domain (FDTD) forward method, mainly implemented by Nonlinear Conjugate Gradient (NLCG). But the convergence rate of NLCG heavily depends on Lagrange multiplier and maybe fail to converge. We use the OCCAM inversion method to avoid the weakness. OCCAM inversion is proven to be a more stable and reliable method to image the subsurface 2.5D electrical conductivity. Firstly, we simulate the 3D transient EM fields governed by Maxwell's equations with FDTD method. Secondly, we use the OCCAM inversion scheme with the appropriate objective error functional we established to image the 2.5D structure. And the data space OCCAM's inversion (DASOCC) strategy based on OCCAM scheme were given in this paper. The sensitivity matrix is calculated with the method of time-integrated back-propagated fields. Imaging result of example model shown in Fig. 1 have proven that the OCCAM scheme is an efficient inversion method for TEM with FDTD method. The processes of the inversion iterations have shown the great ability of convergence with few iterations. Summarizing the process of the imaging, we can make the following conclusions. Firstly, the 2.5D imaging in FDTD system with OCCAM inversion demonstrates that we could get desired imaging results for the resistivity structure in the homogeneous half-space. Secondly, the imaging results usually do not over-depend on the initial model, but the iteration times can be reduced distinctly if the background resistivity of initial model get close to the truthful model. So it is batter to set the initial model based on the other geologic information in the application. When the background resistivity fit the truthful model well, the imaging of anomalous body only need a few iteration steps. Finally, the speed of imaging vertical boundaries is slower than the speed of imaging the horizontal boundaries.

  1. Practical aspects of complex permittivity reconstruction with neural-network-controlled FDTD modeling of a two-port fixture.

    PubMed

    Eves, E Eugene; Murphy, Ethan K; Yakovlev, Vadim V

    2007-01-01

    The paper discusses characteristics of a new modeling-based technique for determining dielectric properties of materials. Complex permittivity is found with an optimization algorithm designed to match complex S-parameters obtained from measurements and from 3D FDTD simulation. The method is developed on a two-port (waveguide-type) fixture and deals with complex reflection and transmission characteristics at the frequency of interest. A computational part is constructed as an inverse-RBF-network-based procedure that reconstructs dielectric constant and the loss factor of the sample from the FDTD modeling data sets and the measured reflection and transmission coefficients. As such, it is applicable to samples and cavities of arbitrary configurations provided that the geometry of the experimental setup is adequately represented by the FDTD model. The practical implementation of the method considered in this paper is a section of a WR975 waveguide containing a sample of a liquid in a cylindrical cutout of a rectangular Teflon cup. The method is run in two stages and employs two databases--first, built for a sparse grid on the complex permittivity plane, in order to locate a domain with an anticipated solution and, second, made as a denser grid covering the determined domain, for finding an exact location of the complex permittivity point. Numerical tests demonstrate that the computational part of the method is highly accurate even when the modeling data is represented by relatively small data sets. When working with reflection and transmission coefficients measured in an actual experimental fixture and reconstructing a low dielectric constant and the loss factor the technique may be less accurate. It is shown that the employed neural network is capable of finding complex permittivity of the sample when experimental data on the reflection and transmission coefficients are numerically dispersive (noise-contaminated). A special modeling test is proposed for validating the results; it confirms that the values of complex permittivity for several liquids (including salt water acetone and three types of alcohol) at 915 MHz are reconstructed with satisfactory accuracy.

  2. Role of nanoparticles generation in the formation of femtosecond laser-induced periodic surface structures on silicon.

    PubMed

    Xue, Hongyan; Deng, Guoliang; Feng, Guoying; Chen, Lin; Li, Jiaqi; Yang, Chao; Zhou, Shouhuan

    2017-09-01

    An initial roughness is assumed in the most accepted Sipe-Drude model to analyze laser-induced periodic surface structures (LIPSS). However, the direct experimental observation for the crucial parameters is still lacking. The generation of nanoparticles and low-spatial frequency LIPSS (LSFL) (LIPSS with a periodicity close to laser wavelength) on a silicon surface upon a single pulse and subsequent pulses irradiation, respectively, is observed experimentally. Finite-difference time-domain (FDTD) simulation indicates that the nanoparticles generated with the first pulse enhance the local electric field greatly. Based on the experimental extrapolated parameters, FDTD-η maps have been calculated. The results show that the inhomogeneous energy deposition, which leads to the formation of LSFL, is mainly from the modulation of the nanoparticles with a radius of around 100 nm.

  3. Time-domain finite-difference based analysis of induced crosstalk in multiwall carbon nanotube interconnects

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Nehra, Vikas; Kaushik, Brajesh Kumar

    2017-08-01

    Graphene rolled-up cylindrical sheets i.e. carbon nanotubes (CNTs) is one of the finest and emerging research area. This paper presents the investigation of induced crosstalk in coupled on-chip multiwalled carbon nanotube (MWCNT) interconnects using finite-difference analysis (FDA) in time-domain i.e. the finite-difference time-domain (FDTD) method. The exceptional properties of versatile MWCNTs profess their candidacy to replace conventional on-chip copper interconnects. Time delay and crosstalk noise have been evaluated for coupled on-chip MWCNT interconnects. With a decrease in CNT length, the obtained results for an MWCNT shows that transmission performance improves as the number of shells increases. It has been observed that the obtained results using the finite-difference time domain (FDTD) technique shows a very close match with the HSPICE simulated results.

  4. Studies Of Infrasonic Propagation Using Dense Seismic Networks

    NASA Astrophysics Data System (ADS)

    Hedlin, M. A.; deGroot-Hedlin, C. D.; Drob, D. P.

    2011-12-01

    Although there are approximately 100 infrasonic arrays worldwide, more than ever before, the station density is still insufficient to provide validation for detailed propagation modeling. Relatively large infrasonic signals can be observed on seismic channels due to coupling at the Earth's surface. Recent research, using data from the 70-km spaced 400-station USArray and other seismic network deployments, has shown the value of dense seismic network data for filling in the gaps between infrasonic arrays. The dense sampling of the infrasonic wavefield has allowed us to observe complete travel-time branches of infrasound and address important research problems in infrasonic propagation. We present our analysis of infrasound created by a series of rocket motor detonations that occurred at the UTTR facility in Utah in 2007. These data were well recorded by the USArray seismometers. We use the precisely located blasts to assess the utility of G2S mesoscale models and methods to synthesize infrasonic propagation. We model the travel times of the branches using a ray-based approach and the complete wavefield using a FDTD algorithm. Although results from both rays and FDTD approaches predict the travel times to within several seconds, only about 40% of signals are predicted using rays largely due to penetration of sound into shadow zones. FDTD predicts some sound penetration into the shadow zone, but the observed shadow zones, as defined by the seismic data, have considerably narrower spatial extent than either method predicts, perhaps due to un-modeled small-scale structure in the atmosphere.

  5. FDTD-based quantitative analysis of terahertz wave detection for multilayered structures.

    PubMed

    Tu, Wanli; Zhong, Shuncong; Shen, Yaochun; Zhou, Qing; Yao, Ligang

    2014-10-01

    Experimental investigations have shown that terahertz pulsed imaging (TPI) is able to quantitatively characterize a range of multilayered media (e.g., biological issues, pharmaceutical tablet coatings, layered polymer composites, etc.). Advanced modeling of the interaction of terahertz radiation with a multilayered medium is required to enable the wide application of terahertz technology in a number of emerging fields, including nondestructive testing. Indeed, there have already been many theoretical analyses performed on the propagation of terahertz radiation in various multilayered media. However, to date, most of these studies used 1D or 2D models, and the dispersive nature of the dielectric layers was not considered or was simplified. In the present work, the theoretical framework of using terahertz waves for the quantitative characterization of multilayered media was established. A 3D model based on the finite difference time domain (FDTD) method is proposed. A batch of pharmaceutical tablets with a single coating layer of different coating thicknesses and different refractive indices was modeled. The reflected terahertz wave from such a sample was computed using the FDTD method, assuming that the incident terahertz wave is broadband, covering a frequency range up to 3.5 THz. The simulated results for all of the pharmaceutical-coated tablets considered were found to be in good agreement with the experimental results obtained using a commercial TPI system. In addition, we studied a three-layered medium to mimic the occurrence of defects in the sample.

  6. High-fidelity simulation capability for virtual testing of seismic and acoustic sensors

    NASA Astrophysics Data System (ADS)

    Wilson, D. Keith; Moran, Mark L.; Ketcham, Stephen A.; Lacombe, James; Anderson, Thomas S.; Symons, Neill P.; Aldridge, David F.; Marlin, David H.; Collier, Sandra L.; Ostashev, Vladimir E.

    2005-05-01

    This paper describes development and application of a high-fidelity, seismic/acoustic simulation capability for battlefield sensors. The purpose is to provide simulated sensor data so realistic that they cannot be distinguished by experts from actual field data. This emerging capability provides rapid, low-cost trade studies of unattended ground sensor network configurations, data processing and fusion strategies, and signatures emitted by prototype vehicles. There are three essential components to the modeling: (1) detailed mechanical signature models for vehicles and walkers, (2) high-resolution characterization of the subsurface and atmospheric environments, and (3) state-of-the-art seismic/acoustic models for propagating moving-vehicle signatures through realistic, complex environments. With regard to the first of these components, dynamic models of wheeled and tracked vehicles have been developed to generate ground force inputs to seismic propagation models. Vehicle models range from simple, 2D representations to highly detailed, 3D representations of entire linked-track suspension systems. Similarly detailed models of acoustic emissions from vehicle engines are under development. The propagation calculations for both the seismics and acoustics are based on finite-difference, time-domain (FDTD) methodologies capable of handling complex environmental features such as heterogeneous geologies, urban structures, surface vegetation, and dynamic atmospheric turbulence. Any number of dynamic sources and virtual sensors may be incorporated into the FDTD model. The computational demands of 3D FDTD simulation over tactical distances require massively parallel computers. Several example calculations of seismic/acoustic wave propagation through complex atmospheric and terrain environments are shown.

  7. K istorii goroskopa Petra Velikogo %t On the history of horoscope of Peter the Great

    NASA Astrophysics Data System (ADS)

    Bronshtehn, V. A.

    In the first part of the paper the question is discussed if Simeon Polotsky (1629-1680), poet and teacher of children of the Russian tsar Alexei Mikhailovich, was also the author of the horoscope of his son, in the future - Russian emperor Peter the Great, born in 1672. The poems by Simeon Polotsky with astrological contents are analyzed. The conclusion is supported that he could be the author of Peter the Great horoscope. In the second part a recently found text of the horoscope of Peter the Great reconstructed in 1775 by Russian astronomer Andrei Lexell of the request of historian G. F. Miller is published and discussed. It is also compared with texts previously published (in 1842) by Russian historians Pogodin and Polevoi.

  8. Nonlinear FDTD Analysis of Lightning-Generated Sferics

    NASA Astrophysics Data System (ADS)

    Erdman, A.; Moore, R. C.

    2017-12-01

    Lightning strikes are extremely powerful natural events producing wideband electromagnetic waves. The EMP radiation and quasi-electrostatic field changes from powerful lightning discharges are capable of directly heating and ionizing the lower ionosphere. These changes to the electrical parameters of the lower ionosphere in turn modify the way different components of the wideband sferic propagate through and reflect from the lower ionosphere. Here we present the results of a new FDTD model that utilizes a 2D cylindrically symmetric grid with second-order accurate centered-difference differentials to evaluate a large number of chemical reactions pertinent to the D-region in order to update the electron density and conductivity every iteration. Using this model, we are able to evaluate the impact of lightning strikes of varying magnitude and analyze the role of ionospheric self-action in changing in the sferic waveform observed on the ground.

  9. Optical and infrared properties of glancing angle-deposited nanostructured tungsten films.

    PubMed

    Ungaro, Craig; Shah, Ankit; Kravchenko, Ivan; Hensley, Dale K; Gray, Stephen K; Gupta, Mool C

    2015-02-15

    Nanotextured tungsten thin films were obtained on a stainless steel (SS) substrate using the glancing-angle-deposition (GLAD) method. It was found that the optical absorption and thermal emittance of the SS substrate can be controlled by varying the parameters used during deposition. Finite-difference time-domain (FDTD) simulations were used to predict the optical absorption and infrared (IR) reflectance spectra of the fabricated samples, and good agreement was found between simulated and measured data. FDTD simulations were also used to predict the effect of changes in the height and periodicity of the nanotextures. These simulations show that good control over the absorption can be achieved by altering the height and periodicity of the nanostructure. These nanostructures were shown to be temperature stable up to 500°C with the addition of a protective HfO2 layer. Applications for this structure are explored, including a promising application for solar thermal energy systems.

  10. On the Huygens absorbing boundary conditions for electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berenger, Jean-Pierre

    A new absorbing boundary condition (ABC) is presented for the solution of Maxwell equations in unbounded spaces. Called the Huygens ABC, this condition is a generalization of two previously published ABCs, namely the multiple absorbing surfaces (MAS) and the re-radiating boundary condition (rRBC). The properties of the Huygens ABC are derived theoretically in continuous spaces and in the finite-difference (FDTD) discretized space. A solution is proposed to render the Huygens ABC effective for the absorption of evanescent waves. Numerical experiments with the FDTD method show that the effectiveness of the Huygens ABC is close to that of the PML ABCmore » in some realistic problems of numerical electromagnetics. It is also shown in the paper that a combination of the Huygens ABC with the PML ABC is very well suited to the solution of some particular problems.« less

  11. Tidal Effect in Small-Scale Sound Propagation Experiment

    NASA Astrophysics Data System (ADS)

    Kamimura, Seiji; Ogasawara, Hanako; Mori, Kazuyoshi; Nakamura, Toshiaki

    2012-07-01

    A sound propagation experiment in very shallow water was conducted at Hashirimizu port in 2009. We transmitted 5 kHz sinusoidal waves with M-sequence modulation. As a result, we found that the travel time concentrated in two time frames. When comparing the travel time with the tide level, the travel time was dependent on the tide level. In terms of the wave patterns, most of the wave patterns have two peaks. As the tide level changed, the biggest peak switched within two peaks. To discuss this, numerical simulation by finite difference time domain (FDTD) method was carried out. The result agreed with the experimental result. Finally, we changed the material of the quay wall in the FDTD simulation and concluded that the first peak is a multireflected combination wave and the effect of its reflected wave at a quay wall has superiority in the second peak.

  12. Computation of the acoustic radiation force using the finite-difference time-domain method.

    PubMed

    Cai, Feiyan; Meng, Long; Jiang, Chunxiang; Pan, Yu; Zheng, Hairong

    2010-10-01

    The computational details related to calculating the acoustic radiation force on an object using a 2-D grid finite-difference time-domain method (FDTD) are presented. The method is based on propagating the stress and velocity fields through the grid and determining the energy flow with and without the object. The axial and radial acoustic radiation forces predicted by FDTD method are in excellent agreement with the results obtained by analytical evaluation of the scattering method. In particular, the results indicate that it is possible to trap the steel cylinder in the radial direction by optimizing the width of Gaussian source and the operation frequency. As the sizes of the relating objects are smaller than or comparable to wavelength, the algorithm presented here can be easily extended to 3-D and include torque computation algorithms, thus providing a highly flexible and universally usable computation engine.

  13. 3-D FDTD simulation of shear waves for evaluation of complex modulus imaging.

    PubMed

    Orescanin, Marko; Wang, Yue; Insana, Michael

    2011-02-01

    The Navier equation describing shear wave propagation in 3-D viscoelastic media is solved numerically with a finite differences time domain (FDTD) method. Solutions are formed in terms of transverse scatterer velocity waves and then verified via comparison to measured wave fields in heterogeneous hydrogel phantoms. The numerical algorithm is used as a tool to study the effects on complex shear modulus estimation from wave propagation in heterogeneous viscoelastic media. We used an algebraic Helmholtz inversion (AHI) technique to solve for the complex shear modulus from simulated and experimental velocity data acquired in 2-D and 3-D. Although 3-D velocity estimates are required in general, there are object geometries for which 2-D inversions provide accurate estimations of the material properties. Through simulations and experiments, we explored artifacts generated in elastic and dynamic-viscous shear modulus images related to the shear wavelength and average viscosity.

  14. A Linear Bicharacteristic FDTD Method

    NASA Technical Reports Server (NTRS)

    Beggs, John H.

    2001-01-01

    The linear bicharacteristic scheme (LBS) was originally developed to improve unsteady solutions in computational acoustics and aeroacoustics [1]-[7]. It is a classical leapfrog algorithm, but is combined with upwind bias in the spatial derivatives. This approach preserves the time-reversibility of the leapfrog algorithm, which results in no dissipation, and it permits more flexibility by the ability to adopt a characteristic based method. The use of characteristic variables allows the LBS to treat the outer computational boundaries naturally using the exact compatibility equations. The LBS offers a central storage approach with lower dispersion than the Yee algorithm, plus it generalizes much easier to nonuniform grids. It has previously been applied to two and three-dimensional freespace electromagnetic propagation and scattering problems [3], [6], [7]. This paper extends the LBS to model lossy dielectric and magnetic materials. Results are presented for several one-dimensional model problems, and the FDTD algorithm is chosen as a convenient reference for comparison.

  15. Newmark-Beta-FDTD method for super-resolution analysis of time reversal waves

    NASA Astrophysics Data System (ADS)

    Shi, Sheng-Bing; Shao, Wei; Ma, Jing; Jin, Congjun; Wang, Xiao-Hua

    2017-09-01

    In this work, a new unconditionally stable finite-difference time-domain (FDTD) method with the split-field perfectly matched layer (PML) is proposed for the analysis of time reversal (TR) waves. The proposed method is very suitable for multiscale problems involving microstructures. The spatial and temporal derivatives in this method are discretized by the central difference technique and Newmark-Beta algorithm, respectively, and the derivation results in the calculation of a banded-sparse matrix equation. Since the coefficient matrix keeps unchanged during the whole simulation process, the lower-upper (LU) decomposition of the matrix needs to be performed only once at the beginning of the calculation. Moreover, the reverse Cuthill-Mckee (RCM) technique, an effective preprocessing technique in bandwidth compression of sparse matrices, is used to improve computational efficiency. The super-resolution focusing of TR wave propagation in two- and three-dimensional spaces is included to validate the accuracy and efficiency of the proposed method.

  16. Finite-difference time-domain (FDTD) analysis on the interaction between a metal block and a radially polarized focused beam.

    PubMed

    Kitamura, Kyoko; Sakai, Kyosuke; Noda, Susumu

    2011-07-18

    Radially polarized focused beams have attracted a great deal of attention because of their unique properties characterized by the longitudinal field. Although this longitudinal field is strongly confined to the beam axis, the energy flow, i.e., the Poynting vector, has null intensity on the axis. Hence, the interaction of the focused beam and matter has thus far been unclear. We analyzed the interactions between the focused beam and a subwavelength metal block placed at the center of the focus using three-dimensional finite-difference time-domain (FDTD) calculation. We found that most of the Poynting energy propagates through to the far-field, and that a strong enhancement of the electric field appeared on the metal surface. This enhancement is attributed to the constructive interference of the symmetric electric field and the coupling to the surface plasmon mode.

  17. Development of Numerical Codes for Modeling Electromagnetic Behavior at High Frequencies Near Large Objects

    NASA Technical Reports Server (NTRS)

    Joshi, R. P.; Deshpande, M. D. (Technical Monitor)

    2003-01-01

    A study into the problem of determining electromagnetic solutions at high frequencies for problems involving complex geometries, large sizes and multiple sources (e.g. antennas) has been initiated. Typical applications include the behavior of antennas (and radiators) installed on complex conducting structures (e.g. ships, aircrafts, etc..) with strong interactions between antennas, the radiation patterns, and electromagnetic signals is of great interest for electromagnetic compatibility control. This includes the overall performance evaluation and control of all on-board radiating systems, electromagnetic interference, and personnel radiation hazards. Electromagnetic computational capability exists at NASA LaRC, and many of the codes developed are based on the Moment Method (MM). However, the MM is computationally intensive, and this places a limit on the size of objects and structures that can be modeled. Here, two approaches are proposed: (i) a current-based hybrid scheme that combines the MM with Physical optics, and (ii) an Alternating Direction Implicit-Finite Difference Time Domain (ADI-FDTD) method. The essence of a hybrid technique is to split the overall scattering surface(s) into two regions: (a) a MM zone (MMZ) which can be used over any part of the given geometry, but is most essential over irregular and "non-smooth" geometries, and (b) a PO sub-region (POSR). Currents induced on the scattering and reflecting surfaces can then be computed in two ways depending on whether the region belonged to the MMZ or was part of the POSR. For the MMZ, the current calculations proceed in terms of basis functions with undetermined coefficients (as in the usual MM method), and the answer obtained by solving a system of linear equations. Over the POSR, conduction is obtained as a superposition of two contributions: (i) currents due to the incident magnetic field, and (ii) currents produced by the mutual induction from conduction within the MMZ. This effectively leads to a reduction in the size of linear equations from N to N - Npo with N being the total number of segments for the entire surface and Npo the number of segments over the POSR. The scheme would be appropriate for relatively large, flat surfaces, and at high frequencies. The ADI-FDTD scheme provides for both transient and steady state analyses. The restrictive Courant-Friedrich-Levy (CFL) condition on the time-step is removed, and so large time steps can be chosen even though the spatial grids are small. This report includes the problem definition, a detailed discussion of both the numerical techniques, and numerical implementations for simple surface geometries. Numerical solutions have been derived for a few simple situations.

  18. Simulation of the evolution of fused silica's surface defect during wet chemical etching

    NASA Astrophysics Data System (ADS)

    Liu, Taixiang; Yang, Ke; Li, Heyang; Yan, Lianghong; Yuan, Xiaodong; Yan, Hongwei

    2017-08-01

    Large high-power-laser facility is the basis for achieving inertial confinement fusion, one of whose missions is to make fusion energy usable in the near future. In the facility, fused silica optics plays an irreplaceable role to conduct extremely high-intensity laser to fusion capsule. But the surface defect of fused silica is a major obstacle limiting the output power of the large laser facility and likely resulting in the failure of ignition. To mitigate, or event to remove the surface defect, wet chemical etching has been developed as a practical way. However, how the surface defect evolves during wet chemical etching is still not clearly known so far. To address this problem, in this work, the three-dimensional model of surface defect is built and finite difference time domain (FDTD) method is developed to simulate the evolution of surface defect during etching. From the simulation, it is found that the surface defect will get smooth and result in the improvement of surface quality of fused silica after etching. Comparatively, surface defects (e.g. micro-crack, scratch, series of pinholes, etc.) of a typical fused silica at different etching time are experimentally measured. It can be seen that the simulation result agrees well with the result of experiment, indicating the FDTD method is valid for investigating the evolution of surface defect during etching. With the finding of FDTD simulation, one can optimize the treatment process of fused silica in practical etching or even to make the initial characterization of surface defect traceable.

  19. Reflection characterization of nano-sized dielectric structure in Morpho butterfly wings

    NASA Astrophysics Data System (ADS)

    Zhu, Dong

    2017-10-01

    Morpho butterflies living in Central and South America are well-known for their structural-colored blue wings. The blue coloring originates from the interaction of light with nano-sized dielectric structures that are equipped on the external surface of scales covering over their wings. The high-accuracy nonstandard finite-difference time domain (NS-FDTD) method is used to investigate the reflection characterization from the nanostructures. In the NS-FDTD calculation, a computational model is built to mimic the actual tree-like multilayered structures wherever possible using the hyperbolic tangent functions. It is generally known that both multilayer interference and diffraction grating phenomena can occur when light enters the nano-sized multilayered structure. To answer the question that which phenomenon is mainly responsible for the blue coloring, the NS-FDTD calculation is performed under various incidence angles at wavelengths from 360 to 500 nm. The calculated results at one incident wavelength under different incidence angles are visualized in a two-dimensional mapping image, where horizontal and vertical axes are incidence and reflection angles, respectively. The images demonstrate a remarkable transition from a ring-like pattern at shorter wavelengths to a retro-reflection pattern at longer wavelengths. To clarify the origin of the pattern transition, the model is separated into several simpler parts and compared their mapping images with the theoretical diffraction calculations. It can be concluded that the blue coloring at longer wavelengths is mainly caused by the cooperation of multilayer interference and retro-reflection while the effect of diffraction grating is predominant at shorter wavelengths.

  20. Global 3-D FDTD Maxwell's-Equations Modeling of Ionospheric Disturbances Associated with Earthquakes Using an Optimized Geodesic Grid

    NASA Astrophysics Data System (ADS)

    Simpson, J. J.; Taflove, A.

    2005-12-01

    We report a finite-difference time-domain (FDTD) computational solution of Maxwell's equations [1] that models the possibility of detecting and characterizing ionospheric disturbances above seismic regions. Specifically, we study anomalies in Schumann resonance spectra in the extremely low frequency (ELF) range below 30 Hz as observed in Japan caused by a hypothetical cylindrical ionospheric disturbance above Taiwan. We consider excitation of the global Earth-ionosphere waveguide by lightning in three major thunderstorm regions of the world: Southeast Asia, South America (Amazon region), and Africa. Furthermore, we investigate varying geometries and characteristics of the ionospheric disturbance above Taiwan. The FDTD technique used in this study enables a direct, full-vector, three-dimensional (3-D) time-domain Maxwell's equations calculation of round-the-world ELF propagation accounting for arbitrary horizontal as well as vertical geometrical and electrical inhomogeneities and anisotropies of the excitation, ionosphere, lithosphere, and oceans. Our entire-Earth model grids the annular lithosphere-atmosphere volume within 100 km of sea level, and contains over 6,500,000 grid-points (63 km laterally between adjacent grid points, 5 km radial resolution). We use our recently developed spherical geodesic gridding technique having a spatial discretization best described as resembling the surface of a soccer ball [2]. The grid is comprised entirely of hexagonal cells except for a small fixed number of pentagonal cells needed for completion. Grid-cell areas and locations are optimized to yield a smoothly varying area difference between adjacent cells, thereby maximizing numerical convergence. We compare our calculated results with measured data prior to the Chi-Chi earthquake in Taiwan as reported by Hayakawa et. al. [3]. Acknowledgement This work was suggested by Dr. Masashi Hayakawa, University of Electro-Communications, Chofugaoka, Chofu Tokyo. References [1] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time- Domain Method, 3rd. ed. Norwood, MA: Artech House, 2005. [2] M. Hayakawa, K. Ohta, A. P. Nickolaenko, and Y. Ando, "Anomalous effect in Schumann resonance phenomena observed in Japan, possibly associated with the Chi-Chi earthquake in Taiwan," Ann. Geophysicae, in press. [3] J. J. Simpson and A. Taflove, "3-D FDTD modeling of ULF/ELF propagation within the global Earth-ionosphere cavity using an optimized geodesic grid," Proc. IEEE AP-S International Symposium, Washington, D.C., July 2005.

  1. AN FDTD ALGORITHM WITH PML FOR DISPERSIVE, CONDUCTIVE MEDIA. (R825225)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  2. Post2 End-to-End Descent and Landing Simulation for ALHAT Design Analysis Cycle 2

    NASA Technical Reports Server (NTRS)

    Davis, Jody L.; Striepe, Scott A.; Maddock, Robert W.; Johnson, Andrew E.; Paschall, Stephen C., II

    2010-01-01

    The ALHAT project is an agency-level program involving NASA centers, academia, and industry, with a primary goal to develop a safe, autonomous, precision-landing system for robotic and crew-piloted lunar and planetary descent vehicles. POST2 is used as the 6DOF descent and landing trajectory simulation for determining integrated system performance of ALHAT landing-system models and lunar environment models. This paper presents updates in the development of the ALHAT POST2 simulation, as well as preliminary system performance analysis for ALDAC-2 used for the testing and assessment of ALHAT system models. The ALDAC-2 POST2 Monte Carlo simulation results have been generated and focus on HRN model performance with the fully integrated system, as well performance improvements of AGNC and TSAR model since the previous design analysis cycle

  3. Histological staining can enhance the performance of spectroscopic microscopy on sensing nanoarchitectural alterations of biological cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Cherkezyan, Lusik; Li, Yue; Capoglu, Ilker; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2017-02-01

    Our group had previously established that nanoscale three-dimensional refractive index (RI) fluctuations of a linear, dielectric, label-free medium can be sensed in the far field through spectroscopic microscopy, regardless of the diffraction limit of optical microscopy. Adopting this technique, Partial Wave Spectroscopic (PWS) Microscopy was able to sense nanoarchitectural alterations in early-stage cancers. With the success of PWS on detecting cancer from healthy clinical samples, we further investigated whether and how histological staining can enhance the performance of PWS by both finite difference time domain (FDTD) simulations and experiments. In this investigation, the dispersion models of hematoxylin and eosin were extracted from the absorption spectra of H and E stained cells. Using these models, the effect of staining were studied via FDTD simulations of unstained versus stained samples with various nanostructures. We observed that, the spectral variance was increased and the spectral variance difference between two samples with distinct nanostructures was enhanced in stained samples by over 200%. Furthermore, we investigated with FDTD whether molecule-specific staining can be used to enhance signals from a medium composing of the desired molecule. Samples with two mixed random media were created and the desired medium was either stained or unstained. Our results showed that the difference between the nanostructures of only the desired medium was enhanced in stained samples. We concluded that, with molecule-specific staining, PWS can selectively target the nanoarchitecture of a desired molecule. Lastly, these results were validated by experiments using human buccal cells from healthy or lung cancer patients. This study has significant impact in improving the performance of PWS on quantifying nanoarchitectural alterations during cancer.

  4. Numerical modeling for an electric-field hyperthermia applicator

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao; Chou, C. K.; Chan, K. W.; Mcdougall, J.

    1993-01-01

    Hyperthermia, in conjunction with radiation and chemotherapy for treatment of cancers, is an area of current concern. Experiments have shown that hyperthermia can increase the potency of many chemotherapy drugs and the effectiveness of radiation for treating cancer. A combination of whole body or regional hyperthermia with chemotherapy or radiation should improve treatment results. Conventional methods for inducing whole body hyperthermia, such as exposing a patient in a radiant cabinet or under a hot water blanket, conduct heat very slowly from the skin to the body core. Thus a more efficient system, such as the three-plate electric-field hyperthermia applicator (EHA), is developed. This three-plate EHA has one top plate over and two lower plates beneath the patient. It is driven at 27.12 MHz with 500 Watts through a matching circuit. Using this applicator, a 50 kg pig was successfully heated to 42 C within 45 minutes. However, phantom and animal studies have indicated non-uniform heating near the side of the body. In addition, changes in the size and distance between the electrode plates can affect the heating (or electromagnetic field) pattern. Therefore, numerical models using the method of moments (MOM) or the finite difference time domain (FDTD) technique are developed to optimize the heating pattern of this EHA before it is used for human trials. The accuracy of the numerical modeling has been achieved by the good agreement between the MOM and FDTD results for the three-plate EHA without a biological body. The versatile FDTD technique is then applied to optimize the EHA design with a human body. Both the numerical and measured data in phantom blocks will be presented. The results of this study will be used to design an optimized system for whole body or regional hyperthermia.

  5. The Linear Bicharacteristic Scheme for Computational Electromagnetics

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Chan, Siew-Loong

    2000-01-01

    The upwind leapfrog or Linear Bicharacteristic Scheme (LBS) has previously been implemented and demonstrated on electromagnetic wave propagation problems. This paper extends the Linear Bicharacteristic Scheme for computational electromagnetics to treat lossy dielectric and magnetic materials and perfect electrical conductors. This is accomplished by proper implementation of the LBS for homogeneous lossy dielectric and magnetic media, and treatment of perfect electrical conductors (PECs) are shown to follow directly in the limit of high conductivity. Heterogeneous media are treated through implementation of surface boundary conditions and no special extrapolations or interpolations at dielectric material boundaries are required. Results are presented for one-dimensional model problems on both uniform and nonuniform grids, and the FDTD algorithm is chosen as a convenient reference algorithm for comparison. The results demonstrate that the explicit LBS is a dissipation-free, second-order accurate algorithm which uses a smaller stencil than the FDTD algorithm, yet it has approximately one-third the phase velocity error. The LBS is also more accurate on nonuniform grids.

  6. FDTD simulation of field performance in reverberation chamber excited by two excitation antennas

    NASA Astrophysics Data System (ADS)

    Wang, Song; Wu, Zhan-cheng; Cui, Yao-zhong

    2013-03-01

    The excitation source is one of the critical items that determine the electromagnetic fields in a reverberation chamber (RC). In order to optimize the electromagnetic fields performance, a new method of exciting RC with two antennas is proposed based on theoretical analysis. The full 3D simulation of RC is carried out by the finite difference time domain (FDTD) method on two excitation conditions of one antenna and two antennas. The broadband response of RC is obtained by fast Fourier transformation (FFT) after only one simulation. Numerical data show that the field uniformity in the test space is improved on the condition of two transmitting antennas while the normalized electric fields decreased slightly compared to the one antenna condition. It is straightforward to recognize that two antennas excitation can reduce the demands on power amplifier as the total input power is split among the two antennas, and consequently the cost of electromagnetic compatibility (EMC) test in large-scale RC can be reduced.

  7. Liquid-crystal-based tunable plasmonic waveguide filters

    NASA Astrophysics Data System (ADS)

    Yin, Shengtao; Liu, Yan Jun; Xiao, Dong; He, Huilin; Luo, Dan; Jiang, Shouzhen; Dai, Haitao; Ji, Wei; Sun, Xiao Wei

    2018-06-01

    We propose a liquid-crystal-based tunable plasmonic waveguide filter and numerically investigate its filtering properties. The filter consists of a metal-insulator-metal waveguide with a nanocavity resonator. By filling the nanocavity with birefringent liquid crystals (LCs), we could then vary the effective refractive index of the nanocavity by controlling the alignment of the LC molecules, hence making the filter tunable. The tunable filtering properties are further analyzed in details via the temporal coupled mode theory (CMT) and the finite-difference time-domain (FDTD) method. The simulation results show that the resonant wavelengths have linear redshift as the refractive index of the nanocavity increases and the coupling efficiency is more than 65% without considering the internal loss in the nanocavity and waveguides. These achieved results by the FDTD simulations can be also accurately analyzed by CMT. The compact design of our proposed plasmonic filters is especially favorable for integration, and such filters could find many important potential applications in high-density plasmonic integration circuits.

  8. Light Scattering by Gaussian Particles: A Solution with Finite-Difference Time Domain Technique

    NASA Technical Reports Server (NTRS)

    Sun, W.; Nousiainen, T.; Fu, Q.; Loeb, N. G.; Videen, G.; Muinonen, K.

    2003-01-01

    The understanding of single-scattering properties of complex ice crystals has significance in atmospheric radiative transfer and remote-sensing applications. In this work, light scattering by irregularly shaped Gaussian ice crystals is studied with the finite-difference time-domain (FDTD) technique. For given sample particle shapes and size parameters in the resonance region, the scattering phase matrices and asymmetry factors are calculated. It is found that the deformation of the particle surface can significantly smooth the scattering phase functions and slightly reduce the asymmetry factors. The polarization properties of irregular ice crystals are also significantly different from those of spherical cloud particles. These FDTD results could provide a reference for approximate light-scattering models developed for irregular particle shapes and can have potential applications in developing a much simpler practical light scattering model for ice clouds angular-distribution models and for remote sensing of ice clouds and aerosols using polarized light. (copyright) 2003 Elsevier Science Ltd. All rights reserved.

  9. FDTD-based Transcranial Magnetic Stimulation model applied to specific neurodegenerative disorders.

    PubMed

    Fanjul-Vélez, Félix; Salas-García, Irene; Ortega-Quijano, Noé; Arce-Diego, José Luis

    2015-01-01

    Non-invasive treatment of neurodegenerative diseases is particularly challenging in Western countries, where the population age is increasing. In this work, magnetic propagation in human head is modelled by Finite-Difference Time-Domain (FDTD) method, taking into account specific characteristics of Transcranial Magnetic Stimulation (TMS) in neurodegenerative diseases. It uses a realistic high-resolution three-dimensional human head mesh. The numerical method is applied to the analysis of magnetic radiation distribution in the brain using two realistic magnetic source models: a circular coil and a figure-8 coil commonly employed in TMS. The complete model was applied to the study of magnetic stimulation in Alzheimer and Parkinson Diseases (AD, PD). The results show the electrical field distribution when magnetic stimulation is supplied to those brain areas of specific interest for each particular disease. Thereby the current approach entails a high potential for the establishment of the current underdeveloped TMS dosimetry in its emerging application to AD and PD. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Calculated shape dependence of electromagnetic field in tip-enhanced Raman scattering by using a monopole antenna model

    NASA Astrophysics Data System (ADS)

    Kitahama, Yasutaka; Itoh, Tamitake; Suzuki, Toshiaki

    2018-05-01

    To evaluate the shape of an Ag tip with regard to tip-enhanced Raman scattering (TERS) signal, the enhanced electromagnetic (EM) field and scattering spectrum, arising from surface plasmon resonance at the apex of the tip, were calculated using a finite-difference time domain (FDTD) method. In the calculated forward scattering spectra from the smooth Ag tip, the band appeared within the visible region, similar to the experimental results and calculation for a corrugated Ag cone. In the FDTD calculation of TERS, the Ag tip acting as a monopole antenna was adopted by insertion of a perfect electric conductor between the root of the tip and a top boundary surface of the calculation space. As a result, the EM field was only enhanced at the apex. The shape dependence i.e. the EM field calculated at the apex with various curvatures on the different tapered tips, obtained using the monopole antenna model, was different from that simulated using a conventional dipole antenna model.

  11. Optimization of imprintable nanostructured a-Si solar cells: FDTD study.

    PubMed

    Fisker, Christian; Pedersen, Thomas Garm

    2013-03-11

    We present a finite-difference time-domain (FDTD) study of an amorphous silicon (a-Si) thin film solar cell, with nano scale patterns on the substrate surface. The patterns, based on the geometry of anisotropically etched silicon gratings, are optimized with respect to the period and anti-reflection (AR) coating thickness for maximal absorption in the range of the solar spectrum. The structure is shown to increase the cell efficiency by 10.2% compared to a similar flat solar cell with an optimized AR coating thickness. An increased back reflection can be obtained with a 50 nm zinc oxide layer on the back reflector, which gives an additional efficiency increase, leading to a total of 14.9%. In addition, the patterned cells are shown to be up to 3.8% more efficient than an optimized textured reference cell based on the Asahi U-type glass surface. The effects of variations of the optimized solar cell structure due to the manufacturing process are investigated, and shown to be negligible for variations below ±10%.

  12. A Two-Dimensional Linear Bicharacteristic Scheme for Electromagnetics

    NASA Technical Reports Server (NTRS)

    Beggs, John H.

    2002-01-01

    The upwind leapfrog or Linear Bicharacteristic Scheme (LBS) has previously been implemented and demonstrated on one-dimensional electromagnetic wave propagation problems. This memorandum extends the Linear Bicharacteristic Scheme for computational electromagnetics to model lossy dielectric and magnetic materials and perfect electrical conductors in two dimensions. This is accomplished by proper implementation of the LBS for homogeneous lossy dielectric and magnetic media and for perfect electrical conductors. Both the Transverse Electric and Transverse Magnetic polarizations are considered. Computational requirements and a Fourier analysis are also discussed. Heterogeneous media are modeled through implementation of surface boundary conditions and no special extrapolations or interpolations at dielectric material boundaries are required. Results are presented for two-dimensional model problems on uniform grids, and the Finite Difference Time Domain (FDTD) algorithm is chosen as a convenient reference algorithm for comparison. The results demonstrate that the two-dimensional explicit LBS is a dissipation-free, second-order accurate algorithm which uses a smaller stencil than the FDTD algorithm, yet it has less phase velocity error.

  13. Broadband light trapping in nanotextured thin film photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Mennucci, Carlo; Muhammad, M. H.; Hameed, Mohamed Farhat O.; Mohamed, Shaimaa A.; Abdelkhalik, Mohamed S.; Obayya, S. S. A.; Buatier de Mongeot, Francesco

    2018-07-01

    Substrates with engineered roughness are studied with the aim of achieving broadband and omnidirectional photon harvesting in thin film devices. Light coupling across the interfaces of a photonic device is induced by uniaxial pseudo-periodic gratings formed in a self-organised fashion via de-focused ion beam sputtering (IBS). The optical properties of the textured interfaces are assessed both experimentally and numerically using finite difference time domain (FDTD) algorithm, quantitatively demonstrating the optimal geometries which favour broadband diffuse scattering of radiation across the Vis-NIR spectral range. Thin film amorphous silicon solar cells based on the nanostructured patterns have been numerically studied via FDTD to assess absorption enhancement in comparison to flat reference devices, finding a 25% increase of short-circuit current, in good agreement with the experiment. Similar light trapping experiments performed on prototypical solar cells employing a PTB7:PC61BM organic absorber, allow to extend the general validity of the results to a relevant class of materials in the view of photovoltaic applications.

  14. Observations of experimental and numerical waveforms of piezoelectric signals generated in bovine cancellous bone by ultrasound waves

    NASA Astrophysics Data System (ADS)

    Hosokawa, Atsushi

    2018-07-01

    Experimental and numerical waveforms of piezoelectric signals generated in the bovine cancellous bone by ultrasound waves at 1.0 MHz were observed. The experimental observations were performed using a “piezoelectric cell (PE-cell)”, in which an air-saturated cancellous bone specimen was electrically shielded. The PE-cell was used to receive burst ultrasound waves. The numerical observations were performed using a piezoelectric finite-difference time-domain (PE-FDTD) method, which was an elastic FDTD method with piezoelectric constitutive equations. The cancellous bone model was reconstructed from the three-dimensional X-ray microcomputed tomographic image of the specimen used in the experiments. Both experimental and numerical results showed that the repetitive piezoelectric signals could be generated by the multireflected ultrasound waves within the cancellous bone specimen. Moreover, it was shown that the output piezoelectric signal in the PE-cell could be the overlap of the local signals in the trabecular elements at various depths (or thicknesses) in the cancellous bone specimen.

  15. Optical properties of electrohydrodynamic convection patterns: rigorous and approximate methods.

    PubMed

    Bohley, Christian; Heuer, Jana; Stannarius, Ralf

    2005-12-01

    We analyze the optical behavior of two-dimensionally periodic structures that occur in electrohydrodynamic convection (EHC) patterns in nematic sandwich cells. These structures are anisotropic, locally uniaxial, and periodic on the scale of micrometers. For the first time, the optics of these structures is investigated with a rigorous method. The method used for the description of the electromagnetic waves interacting with EHC director patterns is a numerical approach that discretizes directly the Maxwell equations. It works as a space-grid-time-domain method and computes electric and magnetic fields in time steps. This so-called finite-difference-time-domain (FDTD) method is able to generate the fields with arbitrary accuracy. We compare this rigorous method with earlier attempts based on ray-tracing and analytical approximations. Results of optical studies of EHC structures made earlier based on ray-tracing methods are confirmed for thin cells, when the spatial periods of the pattern are sufficiently large. For the treatment of small-scale convection structures, the FDTD method is without alternatives.

  16. Numerical Exposure Assessment Method for Low Frequency Range and Application to Wireless Power Transfer.

    PubMed

    Park, SangWook; Kim, Minhyuk

    2016-01-01

    In this paper, a numerical exposure assessment method is presented for a quasi-static analysis by the use of finite-difference time-domain (FDTD) algorithm. The proposed method is composed of scattered field FDTD method and quasi-static approximation for analyzing of the low frequency band electromagnetic problems. The proposed method provides an effective tool to compute induced electric fields in an anatomically realistic human voxel model exposed to an arbitrary non-uniform field source in the low frequency ranges. The method is verified, and excellent agreement with theoretical solutions is found for a dielectric sphere model exposed to a magnetic dipole source. The assessment method serves a practical example of the electric fields, current densities, and specific absorption rates induced in a human head and body in close proximity to a 150-kHz wireless power transfer system for cell phone charging. The results are compared to the limits recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the IEEE standard guidelines.

  17. FDTD chiral brain tissue model for specific absorption rate determination under radiation from mobile phones at 900 and 1800 MHz

    NASA Astrophysics Data System (ADS)

    Zamorano, M.; Torres-Silva, H.

    2006-04-01

    A new electrodynamics model formed by chiral bioplasma, which represents the human head inner structure and makes it possible to analyse its behaviour when it is irradiated by a microwave electromagnetic field from cellular phones, is presented. The finite-difference time-domain (FDTD) numeric technique is used, which allows simulation of the electromagnetic fields, deduced with Maxwell's equations, and allows us to simulate the specific absorption rate (SAR). The results show the SAR behaviour as a function of the input power and the chirality factor. In considering the chiral brain tissue in the proposed human head model, the two more important conclusions of our work are the following: (a) the absorption of the electromagnetic fields from cellular phones is stronger, so the SAR coefficient is higher than that using the classical model, when values of the chiral factor are of order of 1; (b) 'inverse skin effect' shows up at 1800 MHz, with respect to a 900 MHz source.

  18. Optical and infrared properties of glancing angle-deposited nanostructured tungsten films

    DOE PAGES

    Ungaro, Craig; Shah, Ankit; Kravchenko, Ivan; ...

    2015-02-06

    For this study, nanotextured tungsten thin films were obtained on a stainless steel (SS) substrate using the glancing-angle-deposition (GLAD) method. It was found that the optical absorption and thermal emittance of the SS substrate can be controlled by varying the parameters used during deposition. Finite-difference time-domain (FDTD) simulations were used to predict the optical absorption and infrared (IR) reflectance spectra of the fabricated samples, and good agreement was found between simulated and measured data. FDTD simulations were also used to predict the effect of changes in the height and periodicity of the nanotextures. These simulations show that good control overmore » the absorption can be achieved by altering the height and periodicity of the nanostructure. These nanostructures were shown to be temperature stable up to 500°C with the addition of a protective HfO 2 layer. Finally, applications for this structure are explored, including a promising application for solar thermal energy systems.« less

  19. Simulation of subwavelength metallic gratings using a new implementation of the recursive convolution finite-difference time-domain algorithm.

    PubMed

    Banerjee, Saswatee; Hoshino, Tetsuya; Cole, James B

    2008-08-01

    We introduce a new implementation of the finite-difference time-domain (FDTD) algorithm with recursive convolution (RC) for first-order Drude metals. We implemented RC for both Maxwell's equations for light polarized in the plane of incidence (TM mode) and the wave equation for light polarized normal to the plane of incidence (TE mode). We computed the Drude parameters at each wavelength using the measured value of the dielectric constant as a function of the spatial and temporal discretization to ensure both the accuracy of the material model and algorithm stability. For the TE mode, where Maxwell's equations reduce to the wave equation (even in a region of nonuniform permittivity) we introduced a wave equation formulation of RC-FDTD. This greatly reduces the computational cost. We used our methods to compute the diffraction characteristics of metallic gratings in the visible wavelength band and compared our results with frequency-domain calculations.

  20. Numerical Exposure Assessment Method for Low Frequency Range and Application to Wireless Power Transfer

    PubMed Central

    Kim, Minhyuk

    2016-01-01

    In this paper, a numerical exposure assessment method is presented for a quasi-static analysis by the use of finite-difference time-domain (FDTD) algorithm. The proposed method is composed of scattered field FDTD method and quasi-static approximation for analyzing of the low frequency band electromagnetic problems. The proposed method provides an effective tool to compute induced electric fields in an anatomically realistic human voxel model exposed to an arbitrary non-uniform field source in the low frequency ranges. The method is verified, and excellent agreement with theoretical solutions is found for a dielectric sphere model exposed to a magnetic dipole source. The assessment method serves a practical example of the electric fields, current densities, and specific absorption rates induced in a human head and body in close proximity to a 150-kHz wireless power transfer system for cell phone charging. The results are compared to the limits recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the IEEE standard guidelines. PMID:27898688

  1. Allowing for Slow Evolution of Background Plasma in the 3D FDTD Plasma, Sheath, and Antenna Model

    NASA Astrophysics Data System (ADS)

    Smithe, David; Jenkins, Thomas; King, Jake

    2015-11-01

    We are working to include a slow-time evolution capability for what has previously been the static background plasma parameters, in the 3D finite-difference time-domain (FDTD) plasma and sheath model used to model ICRF antennas in fusion plasmas. A key aspect of this is SOL-density time-evolution driven by ponderomotive rarefaction from the strong fields in the vicinity of the antenna. We demonstrate and benchmark a Scalar Ponderomotive Potential method, based on local field amplitudes, which is included in the 3D simulation. And present a more advanced Tensor Ponderomotive Potential approach, which we hope to employ in the future, which should improve the physical fidelity in the highly anisotropic environment of the SOL. Finally, we demonstrate and benchmark slow time (non-linear) evolution of the RF sheath, and include realistic collisional effects from the neutral gas. Support from US DOE Grants DE-FC02-08ER54953, DE-FG02-09ER55006.

  2. Multi-level multi-thermal-electron FDTD simulation of plasmonic interaction with semiconducting gain media: applications to plasmonic amplifiers and nano-lasers.

    PubMed

    Chen, X; Bhola, B; Huang, Y; Ho, S T

    2010-08-02

    Interactions between a semiconducting gain medium and confined plasmon-polaritons are studied using a multilevel multi-thermal-electron finite-difference time-domain (MLMTE-FDTD) simulator. We investigated the amplification of wave propagating in a plasmonic metal-semiconductor-metal (MSM) waveguide filled with semiconductor gain medium and obtained the conditions required to achieve net optical gain. The MSM gain waveguide is used to form a plasmonic semiconductor nano-ring laser(PSNRL) with an effective mode volume of 0.0071 microm3, which is about an order of magnitude smaller than the smallest demonstrated integrated photonic crystal based laser cavities. The simulation shows a lasing threshold current density of 1kA/cm2 for a 300 nm outer diameter ring cavity with 80 nm-wide ring. This current density can be realistically achieved in typical III-V semiconductor, which shows the experimental feasibility of the proposed PSNRL structure.

  3. A Two-Dimensional Linear Bicharacteristic FDTD Method

    NASA Technical Reports Server (NTRS)

    Beggs, John H.

    2002-01-01

    The linear bicharacteristic scheme (LBS) was originally developed to improve unsteady solutions in computational acoustics and aeroacoustics. The LBS has previously been extended to treat lossy materials for one-dimensional problems. It is a classical leapfrog algorithm, but is combined with upwind bias in the spatial derivatives. This approach preserves the time-reversibility of the leapfrog algorithm, which results in no dissipation, and it permits more flexibility by the ability to adopt a characteristic based method. The use of characteristic variables allows the LBS to include the Perfectly Matched Layer boundary condition with no added storage or complexity. The LBS offers a central storage approach with lower dispersion than the Yee algorithm, plus it generalizes much easier to nonuniform grids. It has previously been applied to two and three-dimensional free-space electromagnetic propagation and scattering problems. This paper extends the LBS to the two-dimensional case. Results are presented for point source radiation problems, and the FDTD algorithm is chosen as a convenient reference for comparison.

  4. E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model.

    PubMed

    Kim, Richard S; Zhu, Jinfeng; Park, Jeung Hun; Li, Lu; Yu, Zhibin; Shen, Huajun; Xue, Mei; Wang, Kang L; Park, Gyechoon; Anderson, Timothy J; Pei, Qibing

    2012-06-04

    We report the plasmon-assisted photocurrent enhancement in Ag-nanoparticles (Ag-NPs) embedded PEDOT:PSS/P3HT:PCBM organic solar cells, and systematically investigate the causes of the improved optical absorption based on a cylindrical Ag-NPs optical model which is simulated with a 3-Dimensional finite difference time domain (FDTD) method. The proposed cylindrical Ag-NPs optical model is able to explain the optical absorption enhancement by the localized surface plasmon resonance (LSPR) modes, and to provide a further understanding of Ag-NPs shape parameters which play an important role to determine the broadband absorption phenomena in plasmonic organic solar cells. A significant increase in the power conversion efficiency (PCE) of the plasmonic solar cell was experimentally observed and compared with that of the solar cells without Ag-NPs. Finally, our conclusion was made after briefly discussing the electrical effects of the fabricated plasmonic organic solar cells.

  5. Numerical Simulation of Shock Wave Propagation in Fractured Cortical Bone

    NASA Astrophysics Data System (ADS)

    Padilla, Frédéric; Cleveland, Robin

    2009-04-01

    Shock waves (SW) are considered a promising method to treat bone non unions, but the associated mechanisms of action are not well understood. In this study, numerical simulations are used to quantify the stresses induced by SWs in cortical bone tissue. We use a 3D FDTD code to solve the linear lossless equations that describe wave propagation in solids and fluids. A 3D model of a fractured rat femur was obtained from micro-CT data with a resolution of 32 μm. The bone was subject to a plane SW pulse with a peak positive pressure of 40 MPa and peak negative pressure of -8 MPa. During the simulations the principal tensile stress and maximum shear stress were tracked throughout the bone. It was found that the simulated stresses in a transverse plane relative to the bone axis may reach values higher than the tensile and shear strength of the bone tissue (around 50 MPa). These results suggest that the stresses induced by the SW may be large enough to initiate local micro-fractures, which may in turn trigger the start of bone healing for the case of a non union.

  6. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.; Andrew, William V.; Kokotoff, David; Zavosh, Frank

    1993-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program has fruitfully completed its fourth year. Under the support of the AHE members and the joint effort of the research team, new and significant progress has been achieved in the year. Following the recommendations by the Advisory Task Force, the research effort is placed on more practical helicopter electromagnetic problems, such as HF antennas, composite materials, and antenna efficiencies. In this annual report, the main topics to be addressed include composite materials and antenna technology. The research work on each topic has been driven by the AHE consortium members' interests and needs. The remarkable achievements and progresses in each subject is reported respectively in individual sections of the report. The work in the area of composite materials includes: modeling of low conductivity composite materials by using Green's function approach; guidelines for composite material modeling by using the Green's function approach in the NEC code; development of 3-D volume mesh generator for modeling thick and volumetric dielectrics by using FD-TD method; modeling antenna elements mounted on a composite Comanche tail stabilizer; and antenna pattern control and efficiency estimate for a horn antenna loaded with composite dielectric materials.

  7. A NONUNIFORM CYLINDRICAL FDTD ALGORITHM WITH IMPROVED PML AND QUASI-PML ABSORBING BOUNDARY CONDITIONS. (R825225)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. THE PSTD ALGORITHM: A TIME-DOMAIN METHOD REQUIRING ONLY TWO CELLS PER WAVELENGTH. (R825225)

    EPA Science Inventory

    A pseudospectral time-domain (PSTD) method is developed for solutions of Maxwell's equations. It uses the fast Fourier transform (FFT), instead of finite differences on conventional finite-difference-time-domain (FDTD) methods, to represent spatial derivatives. Because the Fourie...

  9. Wave propagation in media having negative permittivity and permeability.

    PubMed

    Ziolkowski, R W; Heyman, E

    2001-11-01

    Wave propagation in a double negative (DNG) medium, i.e., a medium having negative permittivity and negative permeability, is studied both analytically and numerically. The choices of the square root that leads to the index of refraction and the wave impedance in a DNG medium are determined by imposing analyticity in the complex frequency domain, and the corresponding wave properties associated with each choice are presented. These monochromatic concepts are then tested critically via a one-dimensional finite difference time domain (FDTD) simulation of the propagation of a causal, pulsed plane wave in a matched, lossy Drude model DNG medium. The causal responses of different spectral regimes of the medium with positive or negative refractive indices are studied by varying the carrier frequency of narrowband pulse excitations. The smooth transition of the phenomena associated with a DNG medium from its early-time nondispersive behavior to its late-time monochromatic response is explored with wideband pulse excitations. These FDTD results show conclusively that the square root choice leading to a negative index of refraction and positive wave impedance is the correct one, and that this choice is consistent with the overall causality of the response. An analytical, exact frequency domain solution to the scattering of a wave from a DNG slab is also given and is used to characterize several physical effects. This solution is independent of the choice of the square roots for the index of refraction and the wave impedance, and thus avoids any controversy that may arise in connection with the signs of these constituents. The DNG slab solution is used to critically examine the perfect lens concept suggested recently by Pendry. It is shown that the perfect lens effect exists only under the special case of a DNG medium with epsilon(omega)=mu(omega)=-1 that is both lossless and nondispersive. Otherwise, the closed form solutions for the field structure reveal that the DNG slab converts an incident spherical wave into a localized beam field whose parameters depend on the values of epsilon and mu. This beam field is characterized with a paraxial approximation of the exact DNG slab solution. These monochromatic concepts are again explored numerically via a causal two-dimensional FDTD simulation of the scattering of a pulsed cylindrical wave by a matched, lossy Drude model DNG slab. These FDTD results demonstrate conclusively that the monochromatic electromagnetic power flow through the DNG slab is channeled into beams rather then being focused and, hence, the Pendry perfect lens effect is not realizable with any realistic metamaterial.

  10. Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution - Part I, second-order FVTD schemes

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Taflove, Allen; Garain, Sudip; Montecinos, Gino

    2017-11-01

    While classic finite-difference time-domain (FDTD) solutions of Maxwell's equations have served the computational electrodynamics (CED) community very well, formulations based on Godunov methodology have begun to show advantages. We argue that the formulations presented so far are such that FDTD schemes and Godunov-based schemes each have their own unique advantages. However, there is currently not a single formulation that systematically integrates the strengths of both these major strains of development. While an early glimpse of such a formulation was offered in Balsara et al. [16], that paper focused on electrodynamics in plasma. Here, we present a synthesis that integrates the strengths of both FDTD and Godunov-based schemes into a robust single formulation for CED in material media. Three advances make this synthesis possible. First, from the FDTD method, we retain (but somewhat modify) a spatial staggering strategy for the primal variables. This provides a beneficial constraint preservation for the electric displacement and magnetic induction vector fields via reconstruction methods that were initially developed in some of the first author's papers for numerical magnetohydrodynamics (MHD). Second, from the Godunov method, we retain the idea of upwinding, except that this idea, too, has to be significantly modified to use the multi-dimensionally upwinded Riemann solvers developed by the first author. Third, we draw upon recent advances in arbitrary derivatives in space and time (ADER) time-stepping by the first author and his colleagues. We use the ADER predictor step to endow our method with sub-cell resolving capabilities so that the method can be stiffly stable and resolve significant sub-cell variation in the material properties within a zone. Overall, in this paper, we report a new scheme for numerically solving Maxwell's equations in material media, with special attention paid to a second-order-accurate formulation. Several numerical examples are presented to show that the proposed technique works. Because of its sub-cell resolving ability, the new method retains second-order accuracy even when material permeability and permittivity vary by an order-of-magnitude over just one or two zones. Furthermore, because the new method is also unconditionally stable in the presence of stiff source terms (i.e., in problems involving giant conductivity variations), it can handle several orders-of-magnitude variation in material conductivity over just one or two zones without any reduction of the time-step. Consequently, the CFL depends only on the propagation speed of light in the medium being studied.

  11. Safety assessment of ultra-wideband antennas for microwave breast imaging.

    PubMed

    De Santis, Valerio; Sill, Jeff M; Bourqui, Jeremie; Fear, Elise C

    2012-04-01

    This article deals with the safety assessment of several ultra-wideband (UWB) antenna designs for use in prototype microwave breast imaging systems. First, the performances of the antennas are validated by comparison of measured and simulated data collected for a simple test case. An efficient approach to estimating the specific energy absorption (SA) is introduced and validated. Next, SA produced by the UWB antennas inside more realistic breast models is computed. In particular, the power levels and pulse repetition periods adopted for the SA evaluation follow the measurement protocol employed by a tissue sensing adaptive radar (TSAR) prototype system. Results indicate that the SA for the antennas examined is below limits prescribed in standards for exposure of the general population; however, the difficulties inherent in applying such standards to UWB exposures are discussed. The results also suggest that effective tools for the rapid evaluation of new sensors have been developed. © 2011 Wiley Periodicals, Inc.

  12. Transportation Statistics Annual Report 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenn, M.

    1997-01-01

    This document is the fourth Transportation Statistics Annual Report (TSAR) prepared by the Bureau of Transportation Statistics (BTS) for the President and Congress. As in previous years, it reports on the state of U.S. transportation system at two levels. First, in Part I, it provides a statistical and interpretive survey of the system—its physical characteristics, its economic attributes, aspects of its use and performance, and the scale and severity of unintended consequences of transportation, such as fatalities and injuries, oil import dependency, and environment impacts. Part I also explores the state of transportation statistics, and new needs of the rapidlymore » changing world of transportation. Second, Part II of the report, as in prior years, explores in detail the performance of the U.S. transportation system from the perspective of desired social outcomes or strategic goals. This year, the performance aspect of transportation chosen for thematic treatment is “Mobility and Access,” which complements past TSAR theme sections on “The Economic Performance of Transportation” (1995) and “Transportation and the Environment” (1996). Mobility and access are at the heart of the transportation system’s performance from the user’s perspective. In what ways and to what extent does the geographic freedom provided by transportation enhance personal fulfillment of the nation’s residents and contribute to economic advancement of people and businesses? This broad question underlies many of the topics examined in Part II: What is the current level of personal mobility in the United States, and how does it vary by sex, age, income level, urban or rural location, and over time? What factors explain variations? Has transportation helped improve people’s access to work, shopping, recreational facilities, and medical services, and in what ways and in what locations? How have barriers, such as age, disabilities, or lack of an automobile, affected these accessibility patterns? How are commodity flows and transportation services responding to global competition, deregulation, economic restructuring, and new information technologies? How do U.S. patterns of personal mobility and freight movement compare with other advanced industrialized countries, formerly centrally planned economies, and major newly industrializing countries? Finally, how is the rapid adoption of new information technologies influencing the patterns of transportation demand and the supply of new transportation services? Indeed, how are information technologies affecting the nature and organization of transportation services used by individuals and firms?« less

  13. Effect of Nanohole Spacing on the Self-Imaging Phenomenon Created by the Three-Dimensional Propagation of Light through Periodic Nanohole Arrays

    PubMed Central

    Chowdhury, Mustafa H.; Lindquist, Nathan C.; Lesuffleur, Antoine; Oh, Sang-Hyun; Lakowicz, Joseph R.; Ray, Krishanu

    2013-01-01

    We present a detailed study of the inter-nanohole distance that governs the self-imaging phenomenon created by the three-dimensional propagation of light through periodic nanohole arrays on plasmonic substrates. We used scanning near-field optical microscopy (SNOM) to map the light intensity distributions at various heights above 10×10 nanohole arrays of varying pitch sizes on silver films. Our results suggest the inter-hole spacing has to be greater than the wavelength of the incident light to create the self-imaging phenomenon. We also present Finite-Difference Time-Domain (FDTD) calculations which show qualitative corroboration of our experimental results. Both our experimental and FDTD results show that the self-imaging phenomenon is more pronounced for structures with larger pitch sizes. We believe this self-imaging phenomenon is related to the Talbot imaging effect that has also been modified by a plasmonic component and can potentially be used to provide the basis for a new class of optical microscopes. PMID:24416456

  14. Calculated shape dependence of electromagnetic field in tip-enhanced Raman scattering by using a monopole antenna model.

    PubMed

    Kitahama, Yasutaka; Itoh, Tamitake; Suzuki, Toshiaki

    2018-05-15

    To evaluate the shape of an Ag tip with regard to tip-enhanced Raman scattering (TERS) signal, the enhanced electromagnetic (EM) field and scattering spectrum, arising from surface plasmon resonance at the apex of the tip, were calculated using a finite-difference time domain (FDTD) method. In the calculated forward scattering spectra from the smooth Ag tip, the band appeared within the visible region, similar to the experimental results and calculation for a corrugated Ag cone. In the FDTD calculation of TERS, the Ag tip acting as a monopole antenna was adopted by insertion of a perfect electric conductor between the root of the tip and a top boundary surface of the calculation space. As a result, the EM field was only enhanced at the apex. The shape dependence i.e. the EM field calculated at the apex with various curvatures on the different tapered tips, obtained using the monopole antenna model, was different from that simulated using a conventional dipole antenna model. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Effects of mechanical strain on optical properties of ZnO nanowire

    NASA Astrophysics Data System (ADS)

    Vazinishayan, Ali; Lambada, Dasaradha Rao; Yang, Shuming; Zhang, Guofeng; Cheng, Biyao; Woldu, Yonas Tesfaye; Shafique, Shareen; Wang, Yiming; Anastase, Ndahimana

    2018-02-01

    The main objective of this study is to investigate the influences of mechanical strain on optical properties of ZnO nanowire (NW) before and after embedding ZnS nanowire into the ZnO nanowire, respectively. For this work, commercial finite element modeling (FEM) software package ABAQUS and three-dimensional (3D) finite-difference time-domain (FDTD) methods were utilized to analyze the nonlinear mechanical behavior and optical properties of the sample, respectively. Likewise, in this structure a single focused Gaussian beam with wavelength of 633 nm was used as source. The dimensions of ZnO nanowire were defined to be 12280 nm in length and 103.2 nm in diameter with hexagonal cross-section. In order to investigate mechanical properties, three-point bending technique was adopted so that both ends of the model were clamped with mid-span under loading condition and then the physical deformation model was imported into FDTD solutions to study optical properties of ZnO nanowire under mechanical strain. Moreover, it was found that increase in the strain due to the external load induced changes in reflectance, transmittance and absorptance, respectively.

  16. Rapid computation of the amplitude and phase of tightly focused optical fields distorted by scattering particles

    PubMed Central

    Ranasinghesagara, Janaka C.; Hayakawa, Carole K.; Davis, Mitchell A.; Dunn, Andrew K.; Potma, Eric O.; Venugopalan, Vasan

    2014-01-01

    We develop an efficient method for accurately calculating the electric field of tightly focused laser beams in the presence of specific configurations of microscopic scatterers. This Huygens–Fresnel wave-based electric field superposition (HF-WEFS) method computes the amplitude and phase of the scattered electric field in excellent agreement with finite difference time-domain (FDTD) solutions of Maxwell’s equations. Our HF-WEFS implementation is 2–4 orders of magnitude faster than the FDTD method and enables systematic investigations of the effects of scatterer size and configuration on the focal field. We demonstrate the power of the new HF-WEFS approach by mapping several metrics of focal field distortion as a function of scatterer position. This analysis shows that the maximum focal field distortion occurs for single scatterers placed below the focal plane with an offset from the optical axis. The HF-WEFS method represents an important first step toward the development of a computational model of laser-scanning microscopy of thick cellular/tissue specimens. PMID:25121440

  17. Optical manipulation and catalytic activity enhanced by surface plasmon effect

    NASA Astrophysics Data System (ADS)

    Zou, Ningmu; Min, Jiang; Jiao, Wenxiang; Wang, Guanghui

    2017-02-01

    For optical manipulation, a nano-optical conveyor belt consisting of an array of gold plasmonic non-concentric nano-rings (PNNRs) is demonstrated for the realization of trapping and unidirectional transportation of nanoparticles by polarization rotation of excitation beam. These hot spots of an asymmetric plasmonic nanostructure are polarization dependent, therefore, one can use the incident polarization state to manipulate the trapped targets. Trapped particles could be transferred between adjacent PNNRs in a given direction just by rotating the polarization of incident beam due to unbalanced potential. The angular dependent distribution of electric field around PNNR has been solved using the three- dimensional finite-difference time-domain (FDTD) technique. For optical enhanced catalytic activity, the spectral properties of dimers of Au nanorod-Au nanorod nanostructures under the excitation of 532nm photons have been investigated. With a super-resolution catalytic mapping technique, we identified the existence of "hot spot" in terms of catalytic reactivity at the gap region within the twined plasmonic nanostructure. Also, FDTD calculation has revealed an intrinsic correlation between hot electron transfer.

  18. Finite-Difference Time-Domain Analysis of Tapered Photonic Crystal Fiber

    NASA Astrophysics Data System (ADS)

    Ali, M. I. Md; Sanusidin, S. N.; Yusof, M. H. M.

    2018-03-01

    This paper brief about the simulation of tapered photonic crystal fiber (PCF) LMA-8 single-mode type based on correlation of scattering pattern at wavelength of 1.55 μm, analyzation of transmission spectrum at wavelength over the range of 1.0 until 2.5 μm and correlation of transmission spectrum with the refractive index change in photonic crystal holes with respect to taper size of 0.1 until 1.0 using Optiwave simulation software. The main objective is to simulate using Finite-Difference Time-Domain (FDTD) technique of tapered LMA-8 PCF and for sensing application by improving the capabilities of PCF without collapsing the crystal holes. The types of FDTD techniques used are scattering pattern and transverse transmission and principal component analysis (PCA) used as a mathematical tool to model the data obtained by MathCad software. The simulation results showed that there is no obvious correlation of scattering pattern at a wavelength of 1.55 μm, a correlation obtained between taper sizes with a transverse transmission and there is a parabolic relationship between the refractive index changes inside the crystal structure.

  19. Plasma-Surface Interactions and RF Antennas

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Smithe, D. N.; Beckwith, K.; Davidson, B. D.; Kruger, S. E.; Pankin, A. Y.; Roark, C. M.

    2015-11-01

    Implementation of recently developed finite-difference time-domain (FDTD) modeling techniques on high-performance computing platforms allows RF power flow, and antenna near- and far-field behavior, to be studied in realistic experimental ion-cyclotron resonance heating scenarios at previously inaccessible levels of resolution. We present results and 3D animations of high-performance (10k-100k core) FDTD simulations of Alcator C-Mod's field-aligned ICRF antenna on the Titan supercomputer, considering (a) the physics of slow wave excitation in the immediate vicinity of the antenna hardware and in the scrape-off layer for various edge densities, and (b) sputtering and impurity production, as driven by self-consistent sheath potentials at antenna surfaces. Related research efforts in low-temperature plasma modeling, including the use of proper orthogonal decomposition methods for PIC/fluid modeling and the development of plasma chemistry tools (e.g. a robust and flexible reaction database, principal path reduction analysis capabilities, and improved visualization options), will also be summarized. Supported by U.S. DoE SBIR Phase I/II Award DE-SC0009501 and ALCC/OLCF.

  20. The use of FDTD in establishing in vitro experimentation conditions representative of lifelike cell phone radiation on the spermatozoa.

    PubMed

    Mouradi, Rand; Desai, Nisarg; Erdemir, Ahmet; Agarwal, Ashok

    2012-01-01

    Recent studies have shown that exposing human semen samples to cell phone radiation leads to a significant decline in sperm parameters. In daily living, a cell phone is usually kept in proximity to the groin, such as in a trouser pocket, separated from the testes by multiple layers of tissue. The aim of this study was to calculate the distance between cell phone and semen sample to set up an in vitro experiment that can mimic real life conditions (cell phone in trouser pocket separated by multiple tissue layers). For this reason, a computational model of scrotal tissues was designed by considering these separating layers, the results of which were used in a series of simulations using the Finite Difference Time Domain (FDTD) method. To provide an equivalent effect of multiple tissue layers, these results showed that the distance between a cell phone and semen sample should be 0.8 cm to 1.8 cm greater than the anticipated distance between a cell phone and the testes.

  1. Numerical and experimental study on the wave attenuation in bone--FDTD simulation of ultrasound propagation in cancellous bone.

    PubMed

    Nagatani, Yoshiki; Mizuno, Katsunori; Saeki, Takashi; Matsukawa, Mami; Sakaguchi, Takefumi; Hosoi, Hiroshi

    2008-11-01

    In cancellous bone, longitudinal waves often separate into fast and slow waves depending on the alignment of bone trabeculae in the propagation path. This interesting phenomenon becomes an effective tool for the diagnosis of osteoporosis because wave propagation behavior depends on the bone structure. Since the fast wave mainly propagates in trabeculae, this wave is considered to reflect the structure of trabeculae. For a new diagnosis method using the information of this fast wave, therefore, it is necessary to understand the generation mechanism and propagation behavior precisely. In this study, the generation process of fast wave was examined by numerical simulations using elastic finite-difference time-domain (FDTD) method and experimental measurements. As simulation models, three-dimensional X-ray computer tomography (CT) data of actual bone samples were used. Simulation and experimental results showed that the attenuation of fast wave was always higher in the early state of propagation, and they gradually decreased as the wave propagated in bone. This phenomenon is supposed to come from the complicated propagating paths of fast waves in cancellous bone.

  2. Cell light scattering characteristic numerical simulation research based on FDTD algorithm

    NASA Astrophysics Data System (ADS)

    Lin, Xiaogang; Wan, Nan; Zhu, Hao; Weng, Lingdong

    2017-01-01

    In this study, finite-difference time-domain (FDTD) algorithm has been used to work out the cell light scattering problem. Before beginning to do the simulation contrast, finding out the changes or the differences between normal cells and abnormal cells which may be cancerous or maldevelopment is necessary. The preparation of simulation are building up the simple cell model of cell which consists of organelles, nucleus and cytoplasm and setting up the suitable precision of mesh. Meanwhile, setting up the total field scattering field source as the excitation source and far field projection analysis group is also important. Every step need to be explained by the principles of mathematic such as the numerical dispersion, perfect matched layer boundary condition and near-far field extrapolation. The consequences of simulation indicated that the position of nucleus changed will increase the back scattering intensity and the significant difference on the peak value of scattering intensity may result from the changes of the size of cytoplasm. The study may help us find out the regulations based on the simulation consequences and the regulations can be meaningful for early diagnosis of cancers.

  3. [Size dependent SERS activity of gold nanoparticles studied by 3D-FDTD simulation].

    PubMed

    Li, Li-mei; Fang, Ping-ping; Yang, Zhi-lin; Huang, Wen-da; Wu, De-yin; Ren, Bin; Tian, Zhong-qun

    2009-05-01

    By synthesizing Au nanoparticles with the controllable size from about 16 to 160 nm and measuring their SERS activity, the authors found that Au nanoparticles film with a size in the range of 120-135 nm showed the highest SERS activity with the 632.8 nm excitation, which is different from previous experimental results and theoretical predictions. The three dimensional finite difference time domain (3D-FDTD)method was employed to simulate the size dependent SERS activity. At the 632.8 nm excitation, the particles with a size of 110 nm shows the highest enhancement under coupling condition and presents an enhancement as high as 10(9) at the hot site. If the enhancement is averaged over the whole surface, the enhancement can still be as high as 10(7), in good agreement with our experimental data. For Au nanoparticles with a larger size such as 220 nm, the multipolar effect leads to the appearance of the second maximum enhancement with the increase in particles size. The averaged enhancement for the excitation line of 325 nm is only 10(2).

  4. Synergistic effects of semiconductor substrate and noble metal nano-particles on SERS effect both theoretical and experimental aspects

    NASA Astrophysics Data System (ADS)

    Yang, Chen; Liang, Pei; Tang, Lisha; Zhou, Yongfeng; Cao, Yanting; Wu, Yanxiong; Zhang, De; Dong, Qianmin; Huang, Jie; He, Peng

    2018-04-01

    As a means of chemical identification and analysis, Surface enhanced Raman spectroscopy (SERS), with the advantages of high sensitivity and selectivity, non-destructive, high repeatability and in situ detection etc., has important significance in the field of composition detection, environmental science, biological medicine etc. Physical model of coupling effect between different semiconductor substrates and noble metal particles were investigated by using 3D-FDTD method. Mechanism and the effects of excitation wavelength, particle spacing and semiconductor substrate types on the SERS effect were discussed. The results showed that the optimal excitation wavelengths of three noble metals of Ag, Au, Cu, were located at 510, 600 and 630 nm, respectively; SERS effect of Ag, Au, Cu increases with the decreasing of the inter distance of particles, while the distance of the NPs reaches the critical value of 3 nm, the strength of SERS effect will be greatly enhanced. For the four different types of substrate of Ge, Si, SiO2 (glass) and Al2O3, the SERS effect of Ag on SiO2 > Ge > Al2O3 > Si. For Au and Cu nanoparticles, the SERS effect of them on oxide substrate is stronger than that on non-oxide substrate. In order to verify FDTD simulations, taking silver nanoparticles as an example, and silver nanoparticles prepared by chemical method were spinning coating on the four different substrates with R6G as probe molecules. The results show that the experimental results are consistent with FDTD theoretical simulations, and the SERS enhancement effect of Ag-SiO2 substrate is best. The results of this study have important theoretical significance to explain the variations of SERS enhancement on different noble metals, which is also an important guide for the preparation of SERS substrates, especially for the microfluidics. The better Raman effect can be realized by choosing proper substrate type, particle spacing and excitation wavelength, result in expanding the depth and width of SERS application.

  5. On the convergence and accuracy of the FDTD method for nanoplasmonics.

    PubMed

    Lesina, Antonino Calà; Vaccari, Alessandro; Berini, Pierre; Ramunno, Lora

    2015-04-20

    Use of the Finite-Difference Time-Domain (FDTD) method to model nanoplasmonic structures continues to rise - more than 2700 papers have been published in 2014 on FDTD simulations of surface plasmons. However, a comprehensive study on the convergence and accuracy of the method for nanoplasmonic structures has yet to be reported. Although the method may be well-established in other areas of electromagnetics, the peculiarities of nanoplasmonic problems are such that a targeted study on convergence and accuracy is required. The availability of a high-performance computing system (a massively parallel IBM Blue Gene/Q) allows us to do this for the first time. We consider gold and silver at optical wavelengths along with three "standard" nanoplasmonic structures: a metal sphere, a metal dipole antenna and a metal bowtie antenna - for the first structure comparisons with the analytical extinction, scattering, and absorption coefficients based on Mie theory are possible. We consider different ways to set-up the simulation domain, we vary the mesh size to very small dimensions, we compare the simple Drude model with the Drude model augmented with two critical points correction, we compare single-precision to double-precision arithmetic, and we compare two staircase meshing techniques, per-component and uniform. We find that the Drude model with two critical points correction (at least) must be used in general. Double-precision arithmetic is needed to avoid round-off errors if highly converged results are sought. Per-component meshing increases the accuracy when complex geometries are modeled, but the uniform mesh works better for structures completely fillable by the Yee cell (e.g., rectangular structures). Generally, a mesh size of 0.25 nm is required to achieve convergence of results to ∼ 1%. We determine how to optimally setup the simulation domain, and in so doing we find that performing scattering calculations within the near-field does not necessarily produces large errors but reduces the computational resources required.

  6. Modeling Exposure to Electromagnetic Fields with Realistic Anatomical Models: The Brooks Finite Difference Time Domain (FDTD)

    DTIC Science & Technology

    2008-02-01

    1996. [15] Gambrill, C.S. DeAngelis M.L., Lu S-T. Error analysis of a thermometric microwave-dosimetry procedure. In: Blank M, editor. Electricity...Transactions on Biomedical Engineering, Vol. BME-31, No. 7, July 1984, 533-536. [18] Lu S-T, DeAngelis ML, Gambrill CS. Ocular microwave thermometric

  7. Full Wave Analysis of Passive Microwave Monolithic Integrated Circuit Devices Using a Generalized Finite Difference Time Domain (GFDTD) Algorithm

    NASA Technical Reports Server (NTRS)

    Lansing, Faiza S.; Rascoe, Daniel L.

    1993-01-01

    This paper presents a modified Finite-Difference Time-Domain (FDTD) technique using a generalized conformed orthogonal grid. The use of the Conformed Orthogonal Grid, Finite Difference Time Domain (GFDTD) enables the designer to match all the circuit dimensions, hence eliminating a major source o error in the analysis.

  8. Optical response of bowtie antennas

    NASA Astrophysics Data System (ADS)

    Guo, Ying-Nan; Pan, Shi; Li, Xu-Feng; Wang, Shuo; Wang, Qiao

    2010-10-01

    Optical properties of bowtie antennas are investigated using a numerical method of finite-difference time-domain (FDTD). The optical response in the antenna feed gap is simulated as functions of its geometry parameters (flare angle, arm length, apex width, thickness, gap dimension, as well as the index of substrate), which provide a clear guideline to exploit such antenna structures in practice.

  9. Simulated BRDF based on measured surface topography of metal

    NASA Astrophysics Data System (ADS)

    Yang, Haiyue; Haist, Tobias; Gronle, Marc; Osten, Wolfgang

    2017-06-01

    The radiative reflective properties of a calibration standard rough surface were simulated by ray tracing and the Finite-difference time-domain (FDTD) method. The simulation results have been used to compute the reflectance distribution functions (BRDF) of metal surfaces and have been compared with experimental measurements. The experimental and simulated results are in good agreement.

  10. Efficient light absorption by plasmonic metallic nanostructures in photovoltaic application

    NASA Astrophysics Data System (ADS)

    Roy, Rhombik; Datta, Debasish

    2018-04-01

    This article reports the way to trap light efficiently inside a tri-layered Cu(Zn,Sn)S2 (CZTS) and Zinc Oxide (ZnO) based solar cell module using Ag nanoparticles as light concentrators by virtue of their plasmonic property. The passage of E. M. radiation within the cell has been simulated using finite difference time domain (FDTD) method.

  11. Electromagnetic Wave Propagation in Body Area Networks Using the Finite-Difference-Time-Domain Method

    PubMed Central

    Bringuier, Jonathan N.; Mittra, Raj

    2012-01-01

    A rigorous full-wave solution, via the Finite-Difference-Time-Domain (FDTD) method, is performed in an attempt to obtain realistic communication channel models for on-body wireless transmission in Body-Area-Networks (BANs), which are local data networks using the human body as a propagation medium. The problem of modeling the coupling between body mounted antennas is often not amenable to attack by hybrid techniques owing to the complex nature of the human body. For instance, the time-domain Green's function approach becomes more involved when the antennas are not conformal. Furthermore, the human body is irregular in shape and has dispersion properties that are unique. One consequence of this is that we must resort to modeling the antenna network mounted on the body in its entirety, and the number of degrees of freedom (DoFs) can be on the order of billions. Even so, this type of problem can still be modeled by employing a parallel version of the FDTD algorithm running on a cluster. Lastly, we note that the results of rigorous simulation of BANs can serve as benchmarks for comparison with the abundance of measurement data. PMID:23012575

  12. Método numérico das diferenças finitas no domínio do tempo aplicado a ondas Alfvén em plasma astrofísico

    NASA Astrophysics Data System (ADS)

    Dos Santos, L. C.; Kintopp, J. A.; Jatenco-Pereira, V.; Opher, R.

    2003-08-01

    Ondas Alfvén em plasma astrofísico têm sido objeto de intenso estudo nas últimas décadas pelo fato de apresentarem papel importante em muitas áreas de pesquisa na astrofísica. Particularmente são importantes no mecanismo de aquecimento da coroa solar; em ventos estelares; em jatos galácticos e extragalácticos; em discos protoestelares, etc. A formulação para diferenças finitas no domínio do tempo (FDTD), aplicada a plasma magnetizado é desenvolvida para estudo das propriedades de ondas Alfvén em três dimensões (3D-FDTD). O método é aplicado inicialmente a um plasma homogêneo e isotérmico imerso em uma região com campo magnético externo B0, que sofre uma pequena perturbação. Uma vez gerada a onda, esta perturbação é retirada e, então analisamos a evolução temporal das ondas, bem como a forma de seu amortecimento.

  13. Theoretical analysis of bimetallic nanorod dimer biosensors for label-free molecule detection

    NASA Astrophysics Data System (ADS)

    Das, Avijit; Talukder, Muhammad Anisuzzaman

    2018-02-01

    In this work, we theoretically analyze a gold (Au) core within silver (Ag) shell (Au@Ag) nanorod dimer biosensor for label-free molecule detection. The incident light on an Au@Ag nanorod strongly couples to localized surface plasmon modes, especially around the tip region. The field enhancement around the tip of a nanorod or between the tips of two longitudinally aligned nanorods as in a dimer can be exploited for sensitive detection of biomolecules. We derive analytical expressions for the interactions of an Au@Ag nanorod dimer with the incident light. We also study the detail dynamics of an Au@Ag nanorod dimer with the incident light computationally using finite difference time domain (FDTD) technique when core-shell ratio, relative position of the nanorods, and angle of incidence of light change. We find that the results obtained using the developed analytical model match well with that obtained using FDTD simulations. Additionally, we investigate the sensitivity of the Au@Ag nanorod dimer, i.e., shift in the resonance wavelength, when a target biomolecule such as lysozyme (Lys), human serum albumin (HSA), anti-biotin (Abn), human catalase (CAT), and human fibrinogen (Fb) protein molecules are attached to the tips of the nanorods.

  14. Optical spectra of composite silver-porous silicon (Ag-pSi) nanostructure based periodical lattice

    NASA Astrophysics Data System (ADS)

    Amedome Min-Dianey, Kossi Aniya; Zhang, Hao-Chun; Brohi, Ali Anwar; Yu, Haiyan; Xia, Xinlin

    2018-03-01

    Numerical finite differential time domain (FDTD) tools were used in this study for predicting the optical characteristics through the nanostructure of composite silver-porous silicon (Ag-pSi) based periodical lattice. This is aimed at providing an interpretation of the optical spectra at known porosity in improvement of the light manipulating efficiency through a proposed structure. With boundary conditions correctly chosen, the numerical simulation was achieved using FDTD Lumerical solutions. This was used to investigate the effect of porosity and the number of layers on the reflection, transmission and absorption characteristics through a proposed structure in a visible wavelength range of 400-750 nm. The results revealed that the higher the number of layers, the lower the reflection. Also, the reflection increases with porosity increase. The transmission characteristics were the inverse to those found in the case of reflection spectra and optimum transmission was attained at high number of layers. Also, increase in porosity results in reduced transmission. Increase in porosity as well as in the number of layers led to an increase in absorption. Therefore, absorption into such structure can be enhanced by elevating the number of layers and the degree of porosity.

  15. Proposed radiofrequency phased-array excitation scheme for homogenous and localized 7-Tesla whole-body imaging based on full-wave numerical simulations.

    PubMed

    Abraham, Roney; Ibrahim, Tamer S

    2007-02-01

    In this article, a radiofrequency (RF) excitation scheme for 7-Tesla (T) whole-body applications is derived and analyzed using the finite difference time domain (FDTD) method. Important features of the proposed excitation scheme and coil (a potential 7T whole-body transverse electromagnetic [TEM] resonator design), from both operational and electromagnetic perspectives, are discussed. The choice of the coil's operational mode is unconventional; instead of the typical "homogenous mode," we use a mode that provides a null field in the center of the coil at low-field applications. Using a 3D FDTD implementation of Maxwell's equations, we demonstrate that the whole-body 7T TEM coil (tuned to the aforementioned unconventional mode and excited in an optimized near-field, phased-array fashion) can potentially provide 1) homogenous whole-slice (demonstrated in three axial, sagittal, and coronal slices) and 2) 3D localized (demonstrated in the heart) excitations. As RF power was not considered as a part of the optimization in several cases, the significant improvements achieved by whole-slice RF excitation came at the cost of considerable increases in RF power requirements. Copyright (c) 2007 Wiley-Liss, Inc.

  16. Design and Fabrication of nanowire-grid polarizer in near-infrared broadband

    NASA Astrophysics Data System (ADS)

    Jin, Qiufeng; Liu, Quan; Wu, Jianhong; Cheng, Yu

    2012-11-01

    The infrared polarizers are widely used in the infrared imaging systems as the core components, such as infrared stealth, target acquisition and mine detection, automobile night-vision instrument and other systems. For the requirements of near-infrared imaging systems, a nanowire-grid is designed by Finite Difference Time Domain (FDTD) method. Herein, considering the high reflection of metal aluminum in the manufacturing process, we propose a structure with aluminum-copper nanowire-grid. FDTD method is adapted to analyze the effects of the thickness of aluminumcopper in different combinations on the TM and TE polarization transmission efficiency as well as the extinction ratio when the grating's period is 300nm. Numerical results and theoretical analysis show that: the reflection on the substrate is suppressed with the optimal thickness of the Cu layer. Considering the resist-substrate reflectivity and the final performance of the polarizer, the structure with an 120nm Al layer, and a 50nm anti-reflection Cu layer is chosen; and the TM transmission efficiency is more than 71%, and the extinction ratio is more than 25dB. At last we used Holographic lithography and IBE to fabricate a prototype of the nanowire-grid.

  17. Investigating the spectral characteristics of backscattering from heterogeneous spherical nuclei using broadband finite-difference time-domain simulations

    NASA Astrophysics Data System (ADS)

    Chao, Guo-Shan; Sung, Kung-Bin

    2010-01-01

    Reflectance spectra measured from epithelial tissue have been used to extract size distribution and refractive index of cell nuclei for noninvasive detection of precancerous changes. Despite many in vitro and in vivo experimental results, the underlying mechanism of sizing nuclei based on modeling nuclei as homogeneous spheres and fitting the measured data with Mie theory has not been fully explored. We describe the implementation of a three-dimensional finite-difference time-domain (FDTD) simulation tool using a Gaussian pulse as the light source to investigate the wavelength-dependent characteristics of backscattered light from a nuclear model consisting of a nucleolus and clumps of chromatin embedded in homogeneous nucleoplasm. The results show that small-sized heterogeneities within the nuclei generate about five times higher backscattering than homogeneous spheres. More interestingly, backscattering spectra from heterogeneous spherical nuclei show periodic oscillations similar to those from homogeneous spheres, leading to high accuracy of estimating the nuclear diameter by comparison with Mie theory. In addition to the application in light scattering spectroscopy, the reported FDTD method could be adapted to study the relations between measured spectral data and nuclear structures in other optical imaging and spectroscopic techniques for in vivo diagnosis.

  18. Finite-difference modeling of the electroseismic logging in a fluid-saturated porous formation

    NASA Astrophysics Data System (ADS)

    Guan, Wei; Hu, Hengshan

    2008-05-01

    In a fluid-saturated porous medium, an electromagnetic (EM) wavefield induces an acoustic wavefield due to the electrokinetic effect. A potential geophysical application of this effect is electroseismic (ES) logging, in which the converted acoustic wavefield is received in a fluid-filled borehole to evaluate the parameters of the porous formation around the borehole. In this paper, a finite-difference scheme is proposed to model the ES logging responses to a vertical low frequency electric dipole along the borehole axis. The EM field excited by the electric dipole is calculated separately by finite-difference first, and is considered as a distributed exciting source term in a set of extended Biot's equations for the converted acoustic wavefield in the formation. This set of equations is solved by a modified finite-difference time-domain (FDTD) algorithm that allows for the calculation of dynamic permeability so that it is not restricted to low-frequency poroelastic wave problems. The perfectly matched layer (PML) technique without splitting the fields is applied to truncate the computational region. The simulated ES logging waveforms approximately agree with those obtained by the analytical method. The FDTD algorithm applies also to acoustic logging simulation in porous formations.

  19. An analysis of the surface-normal coupling efficiency of a metal grating coupler embedded in a Scotch tape optical waveguide

    NASA Astrophysics Data System (ADS)

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor

    2017-01-01

    The coupling efficiency at normal incidence of recently demonstrated aluminum grating couplers integrated in flexible Scotch tape waveguides has been analyzed theoretically and experimentally. Finite difference time domain (FDTD) and rigorously coupled wave analysis (RCWA) methods have been used to optimize the dimensions (duty cycle and metal thickness) of Scotch tape-embedded 1D Al gratings for maximum coupling at 635 nm wavelength. Good dimension and tape refractive index tolerances are predicted. FDTD simulations reveal the incident beam width and impinging position (alignment) values that avoid rediffraction and thus maximize the coupling efficiency. A 1D Al diffraction grating integrated into a Scotch tape optical waveguide has been fabricated and characterized. The fabrication process, based on pattern transfer, has been optimized to allow complete Al grating transfer onto the Scotch tape waveguide. A maximum coupling efficiency of 20% for TM-polarized normal incidence has been measured, which is in good agreement with the theoretical predictions. The measured coupling efficiency is further increased up to 28% for TM polarization under oblique incidence. Temperature dependence measurements have been also achieved and related to the simulations results and fabrication procedure.

  20. Infrasound propagation in tropospheric ducts and acoustic shadow zones.

    PubMed

    de Groot-Hedlin, Catherine D

    2017-10-01

    Numerical computations of the Navier-Stokes equations governing acoustic propagation are performed to investigate infrasound propagation in the troposphere and into acoustic shadow zones. An existing nonlinear finite-difference, time-domain (FDTD) solver that constrains input sound speed models to be axisymmetric is expanded to allow for advection and rigid, stair-step topography. The FDTD solver permits realistic computations along a given azimuth. It is applied to several environmental models to examine the effects of nonlinearity, topography, advection, and two-dimensional (2D) variations in wind and sound speeds on the penetration of infrasound into shadow zones. Synthesized waveforms are compared to a recording of a rocket motor fuel elimination event at the Utah Test and Training Range. Results show good agreement in the amplitude, duration, and spectra of synthesized and recorded waveforms for propagation through 2D atmospheric models whether or not topography, advection, or nonlinearity is explicitly included. However, infrasound propagation through a one-dimensional, range-averaged, atmospheric model yields waveforms with lower amplitudes and frequencies, suggesting that small-scale atmospheric variability causes significant scatter within the troposphere, leading to enhanced infrasound penetration into shadow zones. Thus, unresolved fine-scale atmospheric dynamics are not required to explain infrasound propagation into shadow zones.

  1. High-Performance Computational Modeling of ICRF Physics and Plasma-Surface Interactions in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Smithe, David

    2016-10-01

    Inefficiencies and detrimental physical effects may arise in conjunction with ICRF heating of tokamak plasmas. Large wall potential drops, associated with sheath formation near plasma-facing antenna hardware, give rise to high-Z impurity sputtering from plasma-facing components and subsequent radiative cooling. Linear and nonlinear wave excitations in the plasma edge/SOL also dissipate injected RF power and reduce overall antenna efficiency. Recent advances in finite-difference time-domain (FDTD) modeling techniques allow the physics of localized sheath potentials, and associated sputtering events, to be modeled concurrently with the physics of antenna near- and far-field behavior and RF power flow. The new methods enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We present results/animations from high-performance (10k-100k core) FDTD/PIC simulations spanning half of Alcator C-Mod at mm-scale resolution, exploring impurity production due to localized sputtering (in response to self-consistent sheath potentials at antenna surfaces) and the physics of parasitic slow wave excitation near the antenna hardware and SOL. Supported by US DoE (Award DE-SC0009501) and the ALCC program.

  2. Excitation of surface plasmon polaritons by fluorescent light from organic nanofibers

    NASA Astrophysics Data System (ADS)

    Sobolewska, Elżbieta Karolina; Józefowski, Leszek; Kawalec, Tomasz; Leißner, Till; Rubahn, Horst-Günter; Adam, Jost; Fiutowski, Jacek

    2017-11-01

    Micro- and nano-scale systems with defined active elements acting as local surface plasmons polariton (SPP) sources are crucial for the development of future plasmonic circuits. We demonstrate SPP excitation by fluorescent light from crystalline organic para-hexaphenylene nanofibers deposited on a dielectric/metal surface. We characterize the SPPs using angle-resolved leakage radiation spectroscopy, in the excitation wavelength range 420 - 675 nm, corresponding to the nanofiber photoluminescence band. The nanofiber arrangement's capability to act as an SPP coupler for coherent as well as non-coherent excitation indicates its prospect for future integrated systems. To support our experimental results, we investigate the proposed geometries by analytical calculations and finite-difference-time-domain (FDTD) modelling. The experimentally obtained angular leakage radiation peak positions can readily be predicted by our analytical calculations. Nevertheless, the experimental results exhibit a distinct asymmetry in the peak intensities. In agreement with our FDTD calculations, we address this asymmetrical SPP excitation to the nanofiber molecular orientation. The proposed structure's high flexibility, the ease of selective positioning of organic nanofibers, together with the gained insight into its photon-SPP coupling mechanism show great promise towards future local SPP excitation-based integrated devices.

  3. Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers.

    PubMed

    Dhawan, Anuj; Norton, Stephen J; Gerhold, Michael D; Vo-Dinh, Tuan

    2009-06-08

    This paper describes a comparative study of finite-difference time-domain (FDTD) and analytical evaluations of electromagnetic fields in the vicinity of dimers of metallic nanospheres of plasmonics-active metals. The results of these two computational methods, to determine electromagnetic field enhancement in the region often referred to as "hot spots" between the two nanospheres forming the dimer, were compared and a strong correlation observed for gold dimers. The analytical evaluation involved the use of the spherical-harmonic addition theorem to relate the multipole expansion coefficients between the two nanospheres. In these evaluations, the spacing between two nanospheres forming the dimer was varied to obtain the effect of nanoparticle spacing on the electromagnetic fields in the regions between the nanostructures. Gold and silver were the metals investigated in our work as they exhibit substantial plasmon resonance properties in the ultraviolet, visible, and near-infrared spectral regimes. The results indicate excellent correlation between the two computational methods, especially for gold nanosphere dimers with only a 5-10% difference between the two methods. The effect of varying the diameters of the nanospheres forming the dimer, on the electromagnetic field enhancement, was also studied.

  4. Enhanced Photocurrent Generation from Bacteriorhodopsin Photocells Using Grating-Structured Transparent Conductive Oxide Electrodes.

    PubMed

    Kaji, Takahiro; Kasai, Katsuyuki; Haruyama, Yoshihiro; Yamada, Toshiki; Inoue, Shin-Ichiro; Tominari, Yukihiro; Ueda, Rieko; Terui, Toshifumi; Tanaka, Shukichi; Otomo, Akira

    2016-04-01

    We fabricated a grating-structured electrode made of indium-doped zinc oxide (IZO) with a high refractive index (approximately 2) for a bacteriorhodopsin (bR) photocell. We investigated the photocurrent characteristics of the bR photocell and demonstrated that the photocurrent values from the bR/IZO electrode with the grating structure with a grating period of 340 nm were more than 3.5-4 times larger than those without the grating structure. The photocurrent enhancement was attributed to the resonance effect due to light coupling to the grating structure as well as the scattering effect based on the experimental results and analysis using the photonic band structure determined using finite-difference time-domain (FDTD) simulations. The refractive index of the bR film in electrolyte solution (1.40) used in the FDTD simulations was estimated by analyzing the extinction peak wavelength of 20-nm gold colloids in the bR film. Our results indicate that the grating- or photonic-crystal-structured transparent conductive oxide (TCO) electrodes can increase the light use efficiency of various bR devices such as artificial photosynthetic devices, solar cells, and light-sensing devices.

  5. The medical treatment of Maria, Dowager Empress of the Russian Empire: an analysis of her prescription book from 1807 and 1808.

    PubMed

    Gudienè, V

    2016-11-02

    This study analyzes the medicines that were used to treat the Dowager Russian Empress Maria, widow of Tsar Paul I, and describes the doctors who cared for her health in 1807 and 1808. The source for this research was the imperial court pharmacy prescription book 1807-1811. Hypotheses about the diseases and medical problems of the Empress and how treatment for her differed according to circumstances, particularly after the loss of her granddaughter Princess Elizabeth, have been made based on the prescriptions recorded in the book. The content of the prescriptions suggests that the Empress suffered from gastrointestinal tract disorders, skin and eye diseases, neuralgic pains and insomnia. Foreign physicians educated in European universities worked at the imperial court and implemented European medical traditions. They took high positions in the administration and the medical education system, and gradually spread their experience and modern knowledge to Tsarist Russian society.

  6. The alleged poisoning of Joseph Stalin: proof beyond reasonable doubt?

    PubMed

    Quigley, James; Keating, Áine

    2013-12-01

    The name "Ioseb Besarionis dze Dzhugashvili" is as unassuming as it is unknown. It is the birth name of the brutal dictator who changed the face of Europe and whose actions still influence our lives today. Stalin, the man responsible for the slaughter of over twenty million of his own Soviet citizens and yet, the man who transformed the USSR from the feudalistic society of the Tsar's to a twentieth century military powerhouse that was instrumental in the defeat of Nazi Germany. Known as "Koba" to his friends, he cultivated a cult of personality where he was, and to a certain extent still is, admired in Russia and the former Soviet states. This paper will look at the following questions: why when he fell gravely ill did his comrades wait so long before seeking medical assistance? why were there omissions in the final post mortem report?, and why did one his closest lieutenants boast so openly about having murdered him.

  7. Stability of finite difference numerical simulations of acoustic logging-while-drilling with different perfectly matched layer schemes

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Tao, Guo; Shang, Xue-Feng; Fang, Xin-Ding; Burns, Daniel R.

    2013-12-01

    In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid columns (radius ˜27 mm). Fine grids and large computational models are required to model the thin fluid region between the tool and the formation. As a result, small time step and more iterations are needed, which increases the cumulative numerical error. Furthermore, due to high impedance contrast between the drill collar and fluid in the borehole (the difference is >30 times), the stability and efficiency of the perfectly matched layer (PML) scheme is critical to simulate complicated wave modes accurately. In this paper, we compared four different PML implementations in a staggered grid finite difference in time domain (FDTD) in the ALWD simulation, including field-splitting PML (SPML), multiaxial PML(MPML), non-splitting PML (NPML), and complex frequency-shifted PML (CFS-PML). The comparison indicated that NPML and CFS-PML can absorb the guided wave reflection from the computational boundaries more efficiently than SPML and M-PML. For large simulation time, SPML, M-PML, and NPML are numerically unstable. However, the stability of M-PML can be improved further to some extent. Based on the analysis, we proposed that the CFS-PML method is used in FDTD to eliminate the numerical instability and to improve the efficiency of absorption in the PML layers for LWD modeling. The optimal values of CFS-PML parameters in the LWD simulation were investigated based on thousands of 3D simulations. For typical LWD cases, the best maximum value of the quadratic damping profile was obtained using one d 0. The optimal parameter space for the maximum value of the linear frequency-shifted factor ( α 0) and the scaling factor ( β 0) depended on the thickness of the PML layer. For typical formations, if the PML thickness is 10 grid points, the global error can be reduced to <1% using the optimal PML parameters, and the error will decrease as the PML thickness increases.

  8. The simulation and improved design of tunable channel drop filter using hexagonal photonic crystal ring resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com

    2014-10-15

    In this paper, we have proposed a new design of tunable two dimensional (2D) photonic crystal (PhC) channel drop filter (CDF) using ring resonators. The increasing interest in photonic integrated circuits (PIC's) and the increasing use of all-optical fiber networks as backbones for global communication systems have been based in large part on the extremely wide optical transmission bandwidth provided by dielectric materials. Based on the analysis we present novel photonic crystal channel drop filters. Simulations demonstrate that these filters exhibit ideal transfer characteristics. Channel dropping filters (CDF's) that access one channel of a wavelength division multiplexed (WDM) signal whilemore » leaving other channels undisturbed are essential components of PIC's and optical communication systems. In this paper we have investigated such parameters which have an effect on resonant wavelength in this Channel Drop Filter, such as dielectric constant of inner, coupling, adjacent and whole rods of the structure. The dimensions of these structures are taken as 20a×19a and the area of the proposed structure is about 125.6μm{sup 2}; therefore this structure can be used in the future photonic integrated circuits. While using this design the dropping efficiency at the resonance of single ring are 100%. The spectrum of the power transmission is obtained with finite difference time domain (FDTD) method. FDTD method is the most famous method for PhC analysis. In this paper the dielectric rods have a dielectric constant of 10.65, so the refractive index is 3.26 and radius r=0.213a is located in air, where a is a lattice constant. In this we have used five scatter rods for obtaining more coupling efficiency; radius of scatter rods is set to 0.215a. The proposed structure is simulated with OptiFDTD.v.8.0 software, the different dielectric constant of rods equal to ε{sub r}−0.4, ε{sub r} and ε{sub r}+0.4 at wavelength of 1570 nm.« less

  9. Liquid Crystal Cells for Blazed Grating Steering Devices.

    DTIC Science & Technology

    1999-12-08

    gratings2, and micromirror devices3, among other technologies. Liquid crystalline materials are also under investigation for their potential use in beam...discrete wavelengths over a range encompassing the reflection band. These FDTD-generated data points were superimposed on the curve of the analytic...field intensity pattern is shown in Figure 3.19. The sharp spike in the near field intensity curve is the product of the disclination appearing in

  10. The Marvels of Electromagnetic Band Gap (EBG) Structures

    DTIC Science & Technology

    2003-11-01

    terminology of "Electromagnetic conference papers and journal articles dealing with Band- gaps (EBG)". Recently, many researchers the characterizations...Band Gap (EBG) Structures 9 utilized to reduce the mutual coupling between Structures: An FDTD/Prony Technique elements of antenna arrays. based on the...Band- Gap of several patents. He has had pioneering research contributions in diverse areas of electromagnetics,Snteructure", Dymposiget o l 21 IE 48

  11. Nanoparticle Contrast Agents for Enhanced Microwave Imaging and Thermal Treatment of Breast Cancer

    DTIC Science & Technology

    2010-10-01

    continue to increase in step with de - creasing critical dimensions, electrodynamic effects directly influence high-frequency device performance, and...computational burden is significant. The Cellular Monte Carlo (CMC) method, originally de - veloped by Kometer et al. [50], was designed to reduce this...combination of a full-wave FDTD solver with a de - vice simulator based upon a stochastic transport kernel is conceptually straightforward, but the

  12. Educational Software for Interference and Optical Diffraction Analysis in Fresnel and Fraunhofer Regions Based on MATLAB GUIs and the FDTD Method

    ERIC Educational Resources Information Center

    Frances, J.; Perez-Molina, M.; Bleda, S.; Fernandez, E.; Neipp, C.; Belendez, A.

    2012-01-01

    Interference and diffraction of light are elementary topics in optics. The aim of the work presented here is to develop an accurate and cheap optical-system simulation software that provides a virtual laboratory for studying the effects of propagation in both time and space for the near- and far-field regions. In laboratory sessions, this software…

  13. Multiscale optical simulation settings: challenging applications handled with an iterative ray-tracing FDTD interface method.

    PubMed

    Leiner, Claude; Nemitz, Wolfgang; Schweitzer, Susanne; Kuna, Ladislav; Wenzl, Franz P; Hartmann, Paul; Satzinger, Valentin; Sommer, Christian

    2016-03-20

    We show that with an appropriate combination of two optical simulation techniques-classical ray-tracing and the finite difference time domain method-an optical device containing multiple diffractive and refractive optical elements can be accurately simulated in an iterative simulation approach. We compare the simulation results with experimental measurements of the device to discuss the applicability and accuracy of our iterative simulation procedure.

  14. Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application

    NASA Astrophysics Data System (ADS)

    Liu, Zhihai; Guo, Chengkai; Yang, Jun; Yuan, Libo

    2006-12-01

    A novel single tapered fiber optical tweezers is proposed and fabricated by heating and drawing technology. The microscopic particle tapping performance of this special designed tapered fiber probe is demonstrated and investigated. The distribution of the optical field emerging from the tapered fiber tip is numerically calculated based on the beam propagation method. The trapping force FDTD analysis results, both axial and transverse, are also given.

  15. Detection and Analysis of Partial Reflections of HF Waves from the Lower Ionosphere

    NASA Astrophysics Data System (ADS)

    Erdman, A.; Moore, R. C.

    2016-12-01

    On the afternoon of August 27, 2011, the western half of the High Frequency Active Auroral Research Program's (HAARP's) HF transmitter repeatedly broadcast a low-power (1 kW/Tx), 4.5-MHz, X-mode polarized, 10 microsecond pulse. The HF beam was directed vertically, and the inter-pulse period was 20 milliseconds. HF observations were performed at Oasis (62° 23' 30" N, 145° 9' 03" W) using two crossed 90-foot folded dipoles. Observations clearly indicate the detection of a ground wave and multiple reflections from different sources at F-region altitudes, which is consistent with digisonde measurements at 4.5 MHz. Additional reflections were detected at a virtual altitude of 90-110 km, and we interpret these reflections as partial reflections from the rapid conductivity change at the base of the ionosphere. We compare these observations with the predictions of a new finite-difference time-domain (FDTD) plasma model. The model is a one-dimensional, second-order accurate, cold plasma FDTD model of the ionosphere extending from ground through the lower F-region. The model accounts for a spatially varying plasma frequency, cyclotron frequency, and electron-neutral collision frequency. We discuss the possibility to analyze partial reflections from the base of the ionosphere as a function of frequency to characterize the reflecting plasma.

  16. Simulation of two-dimensional gratings for SERS-active substrate

    NASA Astrophysics Data System (ADS)

    Zou, Wenlong; Wu, Jianhong

    2016-11-01

    Raman spectroscopy provides intrinsic vibrational and rotational mode of molecules in materials, which is widely used in chemical, medical and environmental domains. As known, the magnitude of surface enhanced Raman scattering can be amplified several orders. Nowadays, common Raman scattering has been gradually replaced by surface enhanced Raman scattering in low concentration detection domain. Generally speaking, the signal of surface enhanced Raman scattering on periodic nanostructures is more reliable and reproducible than on irregular nanostructures. In this paper, two-dimensional gratings coated by noble metal are used as SERS-active substrate. The surface plasmon resonance can be obtained by tuning the period of two-dimensional grating when the excitation laser interacts on the grating. The local electric field distribution is simulated by finite-difference-time-domain (FDTD). The wavelength of 632.8nm and 785nm are usually assembled on commercial Raman spectrometer. The optimization procedure of two-dimensional grating period is simulated by FDTD for above two wavelengths. The relation between the grating period and surface plasmon resonance is obtained in theory. The parameters such as depth of photoresist and thickness of coated metal are systematic discussed. The simulation results will greatly guide our post manufacture, which can be served for the commercial Raman spectrometer in SERS detection.

  17. The effect of buildings on acoustic pulse propagation in an urban environment.

    PubMed

    Albert, Donald G; Liu, Lanbo

    2010-03-01

    Experimental measurements were conducted using acoustic pulse sources in a full-scale artificial village to investigate the reverberation, scattering, and diffraction produced as acoustic waves interact with buildings. These measurements show that a simple acoustic source pulse is transformed into a complex signature when propagating through this environment, and that diffraction acts as a low-pass filter on the acoustic pulse. Sensors located in non-line-of-sight (NLOS) positions usually recorded lower positive pressure maxima than sensors in line-of-sight positions. Often, the first arrival on a NLOS sensor located around a corner was not the largest arrival, as later reflection arrivals that traveled longer distances without diffraction had higher amplitudes. The waveforms are of such complexity that human listeners have difficulty identifying replays of the signatures generated by a single pulse, and the usual methods of source location based on the direction of arrivals may fail in many cases. Theoretical calculations were performed using a two-dimensional finite difference time domain (FDTD) method and compared to the measurements. The predicted peak positive pressure agreed well with the measured amplitudes for all but two sensor locations directly behind buildings, where the omission of rooftop ray paths caused the discrepancy. The FDTD method also produced good agreement with many of the measured waveform characteristics.

  18. A k-Space Method for Moderately Nonlinear Wave Propagation

    PubMed Central

    Jing, Yun; Wang, Tianren; Clement, Greg T.

    2013-01-01

    A k-space method for moderately nonlinear wave propagation in absorptive media is presented. The Westervelt equation is first transferred into k-space via Fourier transformation, and is solved by a modified wave-vector time-domain scheme. The present approach is not limited to forward propagation or parabolic approximation. One- and two-dimensional problems are investigated to verify the method by comparing results to analytic solutions and finite-difference time-domain (FDTD) method. It is found that to obtain accurate results in homogeneous media, the grid size can be as little as two points per wavelength, and for a moderately nonlinear problem, the Courant–Friedrichs–Lewy number can be as large as 0.4. Through comparisons with the conventional FDTD method, the k-space method for nonlinear wave propagation is shown here to be computationally more efficient and accurate. The k-space method is then employed to study three-dimensional nonlinear wave propagation through the skull, which shows that a relatively accurate focusing can be achieved in the brain at a high frequency by sending a low frequency from the transducer. Finally, implementations of the k-space method using a single graphics processing unit shows that it required about one-seventh the computation time of a single-core CPU calculation. PMID:22899114

  19. Waveguide design, modeling, and optimization: from photonic nanodevices to integrated photonic circuits

    NASA Astrophysics Data System (ADS)

    Bordovsky, Michal; Catrysse, Peter; Dods, Steven; Freitas, Marcio; Klein, Jackson; Kotacka, Libor; Tzolov, Velko; Uzunov, Ivan M.; Zhang, Jiazong

    2004-05-01

    We present the state of the art for commercial design and simulation software in the 'front end' of photonic circuit design. One recent advance is to extend the flexibility of the software by using more than one numerical technique on the same optical circuit. There are a number of popular and proven techniques for analysis of photonic devices. Examples of these techniques include the Beam Propagation Method (BPM), the Coupled Mode Theory (CMT), and the Finite Difference Time Domain (FDTD) method. For larger photonic circuits, it may not be practical to analyze the whole circuit by any one of these methods alone, but often some smaller part of the circuit lends itself to at least one of these standard techniques. Later the whole problem can be analyzed on a unified platform. This kind of approach can enable analysis for cases that would otherwise be cumbersome, or even impossible. We demonstrate solutions for more complex structures ranging from the sub-component layout, through the entire device characterization, to the mask layout and its editing. We also present recent advances in the above well established techniques. This includes the analysis of nano-particles, metals, and non-linear materials by FDTD, photonic crystal design and analysis, and improved models for high concentration Er/Yb co-doped glass waveguide amplifiers.

  20. Modeling approaches for the simulation of ultrasonic inspections of anisotropic composite structures in the CIVA software platform

    NASA Astrophysics Data System (ADS)

    Jezzine, Karim; Imperiale, Alexandre; Demaldent, Edouard; Le Bourdais, Florian; Calmon, Pierre; Dominguez, Nicolas

    2018-04-01

    Models for the simulation of ultrasonic inspections of flat and curved plate-like composite structures, as well as stiffeners, are available in the CIVA-COMPOSITE module released in 2016. A first modelling approach using a ray-based model is able to predict the ultrasonic propagation in an anisotropic effective medium obtained after having homogenized the composite laminate. Fast 3D computations can be performed on configurations featuring delaminations, flat bottom holes or inclusions for example. In addition, computations on ply waviness using this model will be available in CIVA 2017. Another approach is proposed in the CIVA-COMPOSITE module. It is based on the coupling of CIVA ray-based model and a finite difference scheme in time domain (FDTD) developed by AIRBUS. The ray model handles the ultrasonic propagation between the transducer and the FDTD computation zone that surrounds the composite part. In this way, the computational efficiency is preserved and the ultrasound scattering by the composite structure can be predicted. Alternatively, a high order finite element approach is currently developed at CEA but not yet integrated in CIVA. The advantages of this approach will be discussed and first simulation results on Carbon Fiber Reinforced Polymers (CFRP) will be shown. Finally, the application of these modelling tools to the construction of metamodels is discussed.

  1. Meshed doped silicon photonic crystals for manipulating near-field thermal radiation

    NASA Astrophysics Data System (ADS)

    Elzouka, Mahmoud; Ndao, Sidy

    2018-01-01

    The ability to control and manipulate heat flow is of great interest to thermal management and thermal logic and memory devices. Particularly, near-field thermal radiation presents a unique opportunity to enhance heat transfer while being able to tailor its characteristics (e.g., spectral selectivity). However, achieving nanometric gaps, necessary for near-field, has been and remains a formidable challenge. Here, we demonstrate significant enhancement of the near-field heat transfer through meshed photonic crystals with separation gaps above 0.5 μm. Using a first-principle method, we investigate the meshed photonic structures numerically via finite-difference time-domain technique (FDTD) along with the Langevin approach. Results for doped-silicon meshed structures show significant enhancement in heat transfer; 26 times over the non-meshed corrugated structures. This is especially important for thermal management and thermal rectification applications. The results also support the premise that thermal radiation at micro scale is a bulk (rather than a surface) phenomenon; the increase in heat transfer between two meshed-corrugated surfaces compared to the flat surface (8.2) wasn't proportional to the increase in the surface area due to the corrugations (9). Results were further validated through good agreements between the resonant modes predicted from the dispersion relation (calculated using a finite-element method), and transmission factors (calculated from FDTD).

  2. Investigating the spectral characteristics of backscattering from heterogeneous spheroidal nuclei using broadband finite-difference time-domain simulations

    NASA Astrophysics Data System (ADS)

    Chao, Guo-Shan; Sung, Kung-Bin

    2010-02-01

    Backscattered light spectra have been used to extract size distribution of cell nuclei in epithelial tissues for noninvasive detection of precancerous lesions. In existing experimental studies, size estimation is achieved by assuming nuclei as homogeneous spheres or spheroids and fitting the measured data with models based on Mie theory. However, the validity of simplifying nuclei as homogeneous spheres has not been thoroughly examined. In this study, we investigate the spectral characteristics of backscattering from models of spheroidal nuclei under plane wave illumination using three-dimensional finite-difference time-domain (FDTD) simulation. A modulated Gaussian pulse is used to obtain wavelength dependent scattering intensity with a single FDTD run. The simulated model of nuclei consists of a nucleolus and randomly distributed chromatin condensation in homogeneous cytoplasm and nucleoplasm. The results show that backscattering spectra from spheroidal nuclei have similar oscillating patterns to those from homogeneous spheres with the diameter equal to the projective length of the spheroidal nucleus along the propagation direction. The strength of backscattering is enhanced in heterogeneous spheroids as compared to homogeneous spheroids. The degree of which backscattering spectra of heterogeneous nuclei deviate from Mie theory is highly dependent on the distribution of chromatin/nucleolus but not sensitive to nucleolar size, refractive index fluctuation or chromatin density.

  3. The finite element method for micro-scale modeling of ultrasound propagation in cancellous bone.

    PubMed

    Vafaeian, B; El-Rich, M; El-Bialy, T; Adeeb, S

    2014-08-01

    Quantitative ultrasound for bone assessment is based on the correlations between ultrasonic parameters and the properties (mechanical and physical) of cancellous bone. To elucidate the correlations, understanding the physics of ultrasound in cancellous bone is demanded. Micro-scale modeling of ultrasound propagation in cancellous bone using the finite-difference time-domain (FDTD) method has been so far utilized as one of the approaches in this regard. However, the FDTD method accompanies two disadvantages: staircase sampling of cancellous bone by finite difference grids leads to generation of wave artifacts at the solid-fluid interface inside the bone; additionally, this method cannot explicitly satisfy the needed perfect-slip conditions at the interface. To overcome these disadvantages, the finite element method (FEM) is proposed in this study. Three-dimensional finite element models of six water-saturated cancellous bone samples with different bone volume were created. The values of speed of sound (SOS) and broadband ultrasound attenuation (BUA) were calculated through the finite element simulations of ultrasound propagation in each sample. Comparing the results with other experimental and simulation studies demonstrated the capabilities of the FEM for micro-scale modeling of ultrasound in water-saturated cancellous bone. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Time-Domain Modeling of RF Antennas and Plasma-Surface Interactions

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Smithe, David N.

    2017-10-01

    Recent advances in finite-difference time-domain (FDTD) modeling techniques allow plasma-surface interactions such as sheath formation and sputtering to be modeled concurrently with the physics of antenna near- and far-field behavior and ICRF power flow. Although typical sheath length scales (micrometers) are much smaller than the wavelengths of fast (tens of cm) and slow (millimeter) waves excited by the antenna, sheath behavior near plasma-facing antenna components can be represented by a sub-grid kinetic sheath boundary condition, from which RF-rectified sheath potential variation over the surface is computed as a function of current flow and local plasma parameters near the wall. These local time-varying sheath potentials can then be used, in tandem with particle-in-cell (PIC) models of the edge plasma, to study sputtering effects. Particle strike energies at the wall can be computed more accurately, consistent with their passage through the known potential of the sheath, such that correspondingly increased accuracy of sputtering yields and heat/particle fluxes to antenna surfaces is obtained. The new simulation capabilities enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We will present results/animations from high-performance (10k-100k core) FDTD/PIC simulations of Alcator C-Mod antenna operation.

  5. Laser-driven dielectric electron accelerator for radiobiology researches

    NASA Astrophysics Data System (ADS)

    Koyama, Kazuyoshi; Matsumura, Yosuke; Uesaka, Mitsuru; Yoshida, Mitsuhiro; Natsui, Takuya; Aimierding, Aimidula

    2013-05-01

    In order to estimate the health risk associated with a low dose radiation, the fundamental process of the radiation effects in a living cell must be understood. It is desired that an electron bunch or photon pulse precisely knock a cell nucleus and DNA. The required electron energy and electronic charge of the bunch are several tens keV to 1 MeV and 0.1 fC to 1 fC, respectively. The smaller beam size than micron is better for the precise observation. Since the laser-driven dielectric electron accelerator seems to suite for the compact micro-beam source, a phase-modulation-masked-type laser-driven dielectric accelerator was studied. Although the preliminary analysis made a conclusion that a grating period and an electron speed must satisfy the matching condition of LG/λ = v/c, a deformation of a wavefront in a pillar of the grating relaxed the matching condition and enabled the slow electron to be accelerated. The simulation results by using the free FDTD code, Meep, showed that the low energy electron of 20 keV felt the acceleration field strength of 20 MV/m and gradually felt higher field as the speed was increased. Finally the ultra relativistic electron felt the field strength of 600 MV/m. The Meep code also showed that a length of the accelerator to get energy of 1 MeV was 3.8 mm, the required laser power and energy were 11 GW and 350 mJ, respectively. Restrictions on the laser was eased by adopting sequential laser pulses. If the accelerator is illuminated by sequential N pulses, the pulse power, pulse width and the pulse energy are reduced to 1/N, 1/N and 1/N2, respectively. The required laser power per pulse is estimated to be 2.2 GW when ten pairs of sequential laser pulse is irradiated.

  6. All silicon waveguide spherical microcavity coupler device.

    PubMed

    Xifré-Pérez, E; Domenech, J D; Fenollosa, R; Muñoz, P; Capmany, J; Meseguer, F

    2011-02-14

    A coupler based on silicon spherical microcavities coupled to silicon waveguides for telecom wavelengths is presented. The light scattered by the microcavity is detected and analyzed as a function of the wavelength. The transmittance signal through the waveguide is strongly attenuated (up to 25 dB) at wavelengths corresponding to the Mie resonances of the microcavity. The coupling between the microcavity and the waveguide is experimentally demonstrated and theoretically modeled with the help of FDTD calculations.

  7. Effect of Heterogeneity of Tissues on RF Energy Absorption in the Brain for Exposure Assessment in Epidemiological Studies on Mobile Phone Use and Brain Tumors

    NASA Astrophysics Data System (ADS)

    Varsier, Nadege; Wake, Kanako; Taki, Masao; Watanabe, Soichi

    We compared SAR distributions in major anatomical structures of the brain of a homogeneous and a heterogeneous model using FDTD calculations. Our results proved a good correlation between SAR values in lobes of the brain where tumors may arise more frequently. However SAR values at some specific locations were shown to be under or overestimated.

  8. Joint Services Electronics Program. Annual Report (16th). Appendix

    DTIC Science & Technology

    1993-10-01

    Lee and R.J. Burkholder, "A Three-Dimensional Implementation of the Hybrid Ray-FDTD Method for Modeling Electromagnetic Scattering from Electrically ...thin material-coated metallic surfaces. Each of the It is noted that expressions for the constants A1 electrically thin material coatings is modeled by...ElectroSdiece Laboratory Department of Electrical Engineering Columbus, Ohio 43212I ODTIC.. . •L•ELECTIE 1 Annual Report Appendix 721563-6 JAN I At ,94

  9. Engineering Photonic Devices and Materials Through Quantum Confinement and Electromagnetic Design

    DTIC Science & Technology

    2010-12-20

    selectivity based on the Al concentration in AlGaAs films [27]. Preliminary calibration has demonstrated that a 4:1 ratio of citric acid to hydrogen...positioning the mode near 800 nm. We first simulated the reflectance of the proposed device in a passive FDTD simulation by introducing a Gaussian pulse... passively , enabling us to measure much higher quality factors than was possible using our spectrometer. The passive measurements were conducted by

  10. Accurate Modeling of Ionospheric Electromagnetic Fields Generated by a Low Altitude VLF Transmitter

    DTIC Science & Technology

    2009-03-31

    AFRL-RV-HA-TR-2009-1055 Accurate Modeling of Ionospheric Electromagnetic Fields Generated by a Low Altitude VLF Transmitter ...m (or even 500 m) at mid to high latitudes . At low latitudes , the FDTD model exhibits variations that make it difficult to determine a reliable...Scientific, Final 3. DATES COVERED (From - To) 02-08-2006 – 31-12-2008 4. TITLE AND SUBTITLE Accurate Modeling of Ionospheric Electromagnetic Fields

  11. Frequency-dependent FDTD methods using Z transforms

    NASA Technical Reports Server (NTRS)

    Sullivan, Dennis M.

    1992-01-01

    While the frequency-dependent finite-difference time-domain, or (FD)2TD, method can correctly calculate EM propagation through media whose dielectric properties are frequency-dependent, more elaborate applications lead to greater (FD)2TD complexity. Z-transform theory is presently used to develop the mathematical bases of the (FD)2TD method, simultaneously obtaining a clearer formulation and allowing researchers to draw on the existing literature of systems analysis and signal-processing.

  12. Plasmonic Resonances for Spectroscopy Applications using 3D Finite-Difference Time-Domain Models

    NASA Astrophysics Data System (ADS)

    Ravi, Aruna

    Tuning plasmonic extinction resonances of sub-wavelength scale structures is essential to achieve maximum sensitivity and accuracy. These resonances can be controlled with careful design of nanoparticle geometries and incident wave attributes. In the first part of this dissertation, plasmonically enhanced effects on hexagonal-arrays of metal nanoparticles, metal-hole arrays (micro-mesh), and linear-arrays of metal nanorings are analyzed using three-dimensional Finite-Difference Time-Domain (3D-FDTD) simulations. The effect of particle size, lattice spacing, and lack of monodispersity of a self-assembled, hexagonal array layer of silver (Ag) nanoparticles on the extinction resonance is investigated to help determine optimal design specifications for efficient organic solar power harvesting. The enhancement of transmission resonances using plasmonic thin metal films with arrays of holes which enable recording of scatter-free infrared (IR) transmission spectra of individual particles is also explored. This method is quantitative, non-destructive and helps in better understanding the interaction of light with sub-wavelength particles. Next, plasmonically enhanced effects on linear arrays of gold (Au) rings are studied. Simulations employing 3D-FDTD can be used to determine the set of geometrical parameters to attain localized surface plasmon resonance (LSPR). The shifts in resonances due to changes in the effective dielectric of the structure are investigated, which is useful in sensing applications. Computational models enrich experimental studies. In the second part of this dissertation, the effect of particle size, shape and orientation on the IR spectra is investigated using 3D-FDTD and Mie-Bruggeman models. This computational analysis is extended to include clusters of particles of mixed composition. The prediction of extinction and absorption spectra of single particles of mixed composition helps in interpreting their physical properties and predict chemical composition. The chemical composition of respirable particles is of great interest from health, atmospheric, and environmental perspectives. Different environments may pose different hazards and spectroscopic challenges. Common mineral components of airborne and atmospheric dust samples have strong IR transitions with wavelengths that match particle size, giving rise to interesting lineshape distortions. These models enable the determination of volume fractions of components in individual particles that are mixtures of many materials, as are the dust particles inhaled into people's lungs.

  13. Finite Difference modeling of VLF Propagation in the Earth-Ionosphere Waveguide

    NASA Astrophysics Data System (ADS)

    Marshall, R. A.; Wallace, T.; Turbe, M.

    2016-12-01

    Very-low-frequency (VLF, 3—30 kHz) waves can propagate efficiently in the waveguide formed by the Earth and the D-region ionosphere. vVariation in the signals monitored by a stationary receiver can be attributed to variations in the lower ionosphere. As such, these signals are used to monitor the D-region ionosphere in daytime and nighttime. However, the use of VLF transmitter signals to quantitatively diagnose the D-region ionosphere is complicated by i) the propagation of many modes in the waveguide, and their interference, and ii) the effect of the ionosphere along the entire path on the receiver signal at a single location. In this paper, we compare the modeled phase and amplitude of VLF signals using three methods: a Finite-Difference Time-Domain (FDTD) model, a Finite-Difference Frequency-Domain (FDFD) model, and the Long-Wave Prediction Capability (LWPC) model, which has been the method de rigueur since the 1970s. While LWPC solves mode propagation and coupling in the anisotropic waveguide, the FD methods directly solve for electric and magnetic fields from Maxwell's equations on a finite-difference grid. Thus, FD methods provide greater freedom to vary the physical inputs of the model, limited only by the spatial resolution, but at the expense of computation time. We compare the simulated amplitude and phase of these models by running them with identical physical inputs. In this work we compare both i) the absolute amplitude and phase trends as a function of distance, and ii) the magnitude of amplitude and phase variations for given ionosphere changes. Modeling results show that FDTD and FDFD simulations track the amplitude and phase as a function of distance very closely when compared to LWPC. Phase drift due to numerical dispersion is observed at large distances, of a few tens of degrees per 1000 km. These phase drifts increase quadratically with frequency, as expected from numerical dispersion in FD methods. In fact, the phase drift can be mostly removed by applying a simple Richardson extrapolation. After extrapolating, FDTD and LWPC differences can be mapped to a phase velocity difference of <0.07%. When we compare phase changes due to ionospheric variations (Figure 1), we find that all three models show similar magnitudes of phase changes, to within 20%, and similar trends with frequency.­­­

  14. Precast concrete unit assessment through GPR survey and FDTD modelling

    NASA Astrophysics Data System (ADS)

    Campo, Davide

    2017-04-01

    Precast concrete elements are widely used within United Kingdom house building offering ease in assembly and added values as structural integrity, sound and thermal insulation; most common concrete components include walls, beams, floors, panels, lintels, stairs, etc. The lack of respect of the manufacturer instruction during assembling, however, may induce cracking and short/long term loss of bearing capacity. GPR is a well-established not destructive technique employed in the assessment of structural elements because of real-time imaging, quickness of data collecting and ability to discriminate finest structural details. In this work, GPR has been used to investigate two different precast elements: precast reinforced concrete planks constituting the roof slab of a school and precast wood-cement blocks with insulation material pre-fitted used to build a perimeter wall of a private building. Visible cracks affected both constructions. For the assessment surveys, a GSSI 2.0 GHz GPR antenna has been used because of the high resolution required and the small size of the antenna case (155 by 90 by 105mm) enabling scanning up to 45mm from any obstruction. Finite Difference Time Domain (FDTD) numerical modelling was also performed to build a scenario of the expected GPR signal response for a preliminary real-time interpretation and to help solve uncertainties due to complex reflection patterns: simulated radargrams were built using Reflex Software v. 8.2, reproducing the same GPR pulse used for the surveys in terms of wavelet, nominal frequency, sample frequency and time window. Model geometries were derived from the design projects available both for the planks and the blocks; the electromagnetic properties of the materials (concrete, reinforcing bars, air-filled void, insulation and wooden concrete) were inferred from both values reported in literature and a preliminary interpretation of radargrams where internal layer interfaces were clearly recognizable and univocally interpretable. Simulated and real radargrams comparison demonstrated that, in both cases, manufacturer instructions were not fully respected and confirmed GPR as a fast and effective structural assessment technique with the support of FDTD modelling as data interpretation validating method when complex reflection patterns are observed. GPR findings will be then used to address the intrusive coring necessary to evaluate the compressive strength of the concrete and, in synergy with the intrusive survey results, to plan properly corrective actions to ensure the stability of the structures and guarantee the usability.

  15. Transmission characteristics of a novel grating assisted microring

    NASA Astrophysics Data System (ADS)

    Lou, Fei; Zhang, Xinliang; Wosinski, Lech

    2011-12-01

    We propose a new type of grating-assisted microring (GAMR) structure with Bragg gratings placed on microring's arms. Two Fabry-Perot resonances interact with microring resonance, resulting in GAMR's unique amplitude and phase spectra. The structure's characteristics are analytically studied using coupled mode theory and numerically verified by 2D-FDTD. With proper cavity lengths, GAMR exhibits an electromagnetically induced transparency (EIT)-like spectrum. The ultra-narrow resonance can be used for sensing, modulation, and other applications.

  16. Photonic time crystals.

    PubMed

    Zeng, Lunwu; Xu, Jin; Wang, Chengen; Zhang, Jianhua; Zhao, Yuting; Zeng, Jing; Song, Runxia

    2017-12-07

    When space (time) translation symmetry is spontaneously broken, the space crystal (time crystal) forms; when permittivity and permeability periodically vary with space (time), the photonic crystal (photonic time crystal) forms. We proposed the concept of photonic time crystal and rewritten the Maxwell's equations. Utilizing Finite Difference Time Domain (FDTD) method, we simulated electromagnetic wave propagation in photonic time crystal and photonic space-time crystal, the simulation results show that more intensive scatter fields can obtained in photonic time crystal and photonic space-time crystal.

  17. Light Scattering by Coated Sphere Immersed in Absorbing Medium: A Comparison between the FDTD and Analytic Solutions

    NASA Technical Reports Server (NTRS)

    Sun, W.; Loeb, N. G.; Fu, Q.

    2004-01-01

    A recently developed finite-difference time domain scheme is examined using the exact analytic solutions for light scattering by a coated sphere immersed in an absorbing medium. The relative differences are less than 1% in the extinction, scattering, and absorption efficiencies and less than 5% in the scattering phase functions. The definition of apparent single-scattering properties is also discussed. (C) 2003 Elsevier Ltd. All rights reserved.

  18. A Multiscale Software Tool for Field/Circuit Co-Simulation

    DTIC Science & Technology

    2011-12-15

    technology fields: Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale): Number of graduating undergraduates funded by a...times more efficient than FDTD for such a problem in 3D . The techniques in class (c) above include the discontinuous Galerkin method and multidomain...implements a finite-differential-time-domain method on single field propagation in a 3D space. We consider a cavity model which includes two electric

  19. Full-wave Characterization of Rough Terrain Surface Effects for Forward-looking Radar Applications: A Scattering and Imaging Study from the Electromagnetic Perspective

    DTIC Science & Technology

    2011-09-01

    and Imaging Framework First, the parallelized 3-D FDTD algorithm is applied to simulate composite scattering from targets in a rough ground...solver as pertinent to forward-looking radar sensing , the effects of surface clutter on multistatic target imaging are illustrated with large-scale...Full-wave Characterization of Rough Terrain Surface Effects for Forward-looking Radar Applications: A Scattering and Imaging Study from the

  20. Three-dimensional compact explicit-finite difference time domain scheme with density variation

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Takao; Maruta, Naoki

    2018-07-01

    In this paper, the density variation is implemented in the three-dimensional compact-explicit finite-difference time-domain (CE-FDTD) method. The formulation is first developed based on the continuity equation and the equation of motion, which include the density. Some numerical demonstrations are performed for the three-dimensional sound wave propagation in a two density layered medium. The numerical results are compared with the theoretical results to verify the proposed formulation.

  1. FDTD Modeling and Counteraction to Scintillation Effects in the lonosphere

    DTIC Science & Technology

    2014-04-05

    collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT...for vectorial diffraction calculations and its numerical implementation,” J. Opt. Soc. Am. A, 23 (3), pp. 713-722, 2006. [21] Coe, R. L. and E. J...Seibel, “Improved near-field calculations using vectorial diffraction integrals in the finite-difference time-domain method,” J. Opt. Soc. Am. A, 28

  2. Finite Difference Time Domain Modeling at USA Instruments, Inc.

    NASA Astrophysics Data System (ADS)

    Curtis, Richard

    2003-10-01

    Due to the competitive nature of the commercial MRI industry, it is essential for the financial health of a participating company to innovate new coil designs and bring product to market rapidly in response to ever-changing market conditions. However, the technology of MRI coil design is still early in its stage of development and its principles are yet evolving. As a result, it is not always possible to know the relevant electromagnetic effects of a given design since the interaction of coil elements is complex and often counter-intuitive. Even if the effects are known qualitatively, the quantitative results are difficult to obtain. At USA Instruments, Inc., the acquisition of the XFDTDâ electromagnetic simulation tool from REMCOM, Inc., has been helpful in determining the electromagnetic performance characteristics of existing coil designs in the prototype stage before the coils are released for production. In the ideal case, a coil design would be modeled earlier at the conceptual stage, so that only good designs will make it to the prototyping stage and the electromagnetic characteristics better understood very early in the design process and before the testing stage has begun. This paper is a brief overview of using FDTD modeling for MRI coil design at USA Instruments, Inc., and shows some of the highlights of recent FDTD modeling efforts on Birdcage coils, a staple of the MRI coil design portfolio.

  3. Radiative Transfer and Satellite Remote Sensing of Cirrus Clouds Using FIRE-2-IFO Data

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Under the support of the NASA grant, we have developed a new geometric-optics model (GOM2) for the calculation of the single-scattering and polarization properties for arbitrarily oriented hexagonal ice crystals. From comparisons with the results computed by the finite difference time domain (FDTD) method, we show that the novel geometric-optics can be applied to the computation of the extinction cross section and single-scattering albedo for ice crystals with size parameters along the minimum dimension as small as approximately 6. We demonstrate that the present model converges to the conventional ray tracing method for large size parameters and produces single-scattering results close to those computed by the FDTD method for size parameters along the minimum dimension smaller than approximately 20. We demonstrate that neither the conventional geometric optics method nor the Lorenz-Mie theory can be used to approximate the scattering, absorption, and polarization features for hexagonal ice crystals with size parameters from approximately 5 to 20. On the satellite remote sensing algorithm development and validation, we have developed a numerical scheme to identify multilayer cirrus cloud systems using AVHRR data. We have applied this scheme to the satellite data collected over the FIRE-2-IFO area during nine overpasses within seven observation dates. Determination of the threshold values used in the detection scheme are based on statistical analyses of these satellite data.

  4. Uncertainty of GHz-band Whole-body Average SARs in Infants based on their Kaup Indices

    NASA Astrophysics Data System (ADS)

    Miwa, Hironobu; Hirata, Akimasa; Fujiwara, Osamu; Nagaoka, Tomoaki; Watanabe, Soichi

    We previously showed that a strong correlation exists between the absorption cross section and the body surface area of a human for 0.3-2GHz far field exposure, and proposed a formula for estimating whole-body-average specific absorption rates (WBA-SARs) in terms of height and weight. In this study, to evaluate variability in the WBA-SARs in infants based on their physique, we derived a new formula including Kaup indices of infants, which are being used to check their growth, and thereby estimated the WBA-SARs in infants with respect to their age from 0 month to three years. As a result, we found that under the same height/weight, the smaller the Kaup indices are, the larger the WBA-SARs become, and that the variability in the WBA-SARs is around 15% at the same age. To validate these findings, using the FDTD method, we simulated the GHz-band WBA-SARs in numerical human models corresponding to infants with age of 0, 1, 3, 6 and 9 months, which were obtained by scaling down the anatomically based Japanese three-year child model developed by NICT (National Institute of Information and Communications Technology). Results show that the FDTD-simulated WBA-SARs are smaller by 20% compared to those estimated for infants having the median height and the Kaup index of 0.5 percentiles, which provide conservative WBA-SARs.

  5. Formation of an indium tin oxide nanodot/Ag nanowire electrode as a current spreader for near ultraviolet AlGaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Park, Jae-Seong; Kim, Jae-Ho; Kim, Jun-Yong; Kim, Dae-Hyun; Na, Jin-Young; Kim, Sun-Kyung; Kang, Daesung; Seong, Tae-Yeon

    2017-01-01

    Indium tin oxide (ITO) nanodots (NDs) were combined with Ag nanowires (Ag NWs) as a p-type electrode in near ultraviolet AlGaN-based light-emitting diodes (LEDs) to increase light output power. The Ag NWs were 30 ± 5 nm in diameter and 25 ± 5 μm in length. The transmittance of 10 nm-thick ITO-only was 98% at 385 nm, while the values for ITO ND/Ag NW were 83%-88%. ITO ND/Ag NW films showed lower sheet resistances (32-51 Ω sq-1) than the ITO-only film (950 Ω sq-1). LEDs (chip size: 300 × 800 μm2) fabricated using the ITO NDs/Ag NW electrodes exhibited higher forward-bias voltages (3.52-3.75 V at 20 mA) than the LEDs with the 10 nm-thick ITO-only electrode (3.5 V). The LEDs with ITO ND/Ag NW electrodes yielded a 24%-62% higher light output power (at 20 mA) than those with the 10 nm-thick ITO-only electrode. Furthermore, finite-difference time-domain (FDTD) simulations were performed to investigate the extraction efficiency. Based on the emission images and FDTD simulations, the enhanced light output with the ITO ND/Ag NW electrodes is attributed to improved current spreading and better extraction efficiency.

  6. Comparison of FDTD-calculated specific absorption rate in adults and children when using a mobile phone at 900 and 1800 MHz

    NASA Astrophysics Data System (ADS)

    Martínez-Búrdalo, M.; Martín, A.; Anguiano, M.; Villar, R.

    2004-01-01

    In this paper, the specific absorption rate (SAR) in scaled human head models is analysed to study possible differences between SAR in the heads of adults and children and for assessment of compliance with the international safety guidelines, while using a mobile phone. The finite-difference time-domain method (FDTD) has been used for calculating SAR values for models of both children and adults, at 900 and 1800 MHz. Maximum 1 g averaged SAR (SAR1 g) and maximum 10 g averaged SAR (SAR10 g) have been calculated in adults and scaled head models for comparison and assessment of compliance with ANSI/IEEE and European guidelines. Results show that peak SAR1 g and peak SAR10 g all trend downwards with decreasing head size but as head size decreases, the percentage of energy absorbed in the brain increases. So, higher SAR in children's brains can be expected depending on whether the thickness of their skulls and surrounding tissues actually depends on age. The SAR in eyes of different sizes, as a critical organ, has also been studied and very similar distributions for the full size and the scaled models have been obtained. Standard limits can only be exceeded in the unpractical situation where the antenna is located at a very short distance in front of the eye.

  7. Propagation in and scattering from a matched metamaterial having a zero index of refraction.

    PubMed

    Ziolkowski, Richard W

    2004-10-01

    Planar metamaterials that exhibit a zero index of refraction have been realized experimentally by several research groups. Their existence stimulated the present investigation, which details the properties of a passive, dispersive metamaterial that is matched to free space and has an index of refraction equal to zero. Thus, unlike previous zero-index investigations, both the permittivity and permeability are zero here at a specified frequency. One-, two-, and three-dimensional source problems are treated analytically. The one- and two-dimensional source problem results are confirmed numerically with finite difference time domain (FDTD) simulations. The FDTD simulator is also used to treat the corresponding one- and two-dimensional scattering problems. It is shown that in both the source and scattering configurations the electromagnetic fields in a matched zero-index medium take on a static character in space, yet remain dynamic in time, in such a manner that the underlying physics remains associated with propagating fields. Zero phase variation at various points in the zero-index medium is demonstrated once steady-state conditions are obtained. These behaviors are used to illustrate why a zero-index metamaterial, such as a zero-index electromagnetic band-gap structured medium, significantly narrows the far-field pattern associated with an antenna located within it. They are also used to show how a matched zero-index slab could be used to transform curved wave fronts into planar ones.

  8. Retrieval of Polar Stratospheric Cloud Microphysical Properties from Lidar Measurements: Dependence on Particle Shape Assumptions

    NASA Technical Reports Server (NTRS)

    Reichardt, J.; Reichardt, S.; Yang, P.; McGee, T. J.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    A retrieval algorithm has been developed for the microphysical analysis of polar stratospheric cloud (PSC) optical data obtained using lidar instrumentation. The parameterization scheme of the PSC microphysical properties allows for coexistence of up to three different particle types with size-dependent shapes. The finite difference time domain (FDTD) method has been used to calculate optical properties of particles with maximum dimensions equal to or less than 2 mu m and with shapes that can be considered more representative of PSCs on the scale of individual crystals than the commonly assumed spheroids. Specifically. these are irregular and hexagonal crystals. Selection of the optical parameters that are input to the inversion algorithm is based on a potential data set such as that gathered by two of the lidars on board the NASA DC-8 during the Stratospheric Aerosol and Gas Experiment 0 p (SAGE) Ozone Loss Validation experiment (SOLVE) campaign in winter 1999/2000: the Airborne Raman Ozone and Temperature Lidar (AROTEL) and the NASA Langley Differential Absorption Lidar (DIAL). The 0 microphysical retrieval algorithm has been applied to study how particle shape assumptions affect the inversion of lidar data measured in leewave PSCs. The model simulations show that under the assumption of spheroidal particle shapes, PSC surface and volume density are systematically smaller than the FDTD-based values by, respectively, approximately 10-30% and approximately 5-23%.

  9. Finite difference time domain analysis of chirped dielectric gratings

    NASA Technical Reports Server (NTRS)

    Hochmuth, Diane H.; Johnson, Eric G.

    1993-01-01

    The finite difference time domain (FDTD) method for solving Maxwell's time-dependent curl equations is accurate, computationally efficient, and straight-forward to implement. Since both time and space derivatives are employed, the propagation of an electromagnetic wave can be treated as an initial-value problem. Second-order central-difference approximations are applied to the space and time derivatives of the electric and magnetic fields providing a discretization of the fields in a volume of space, for a period of time. The solution to this system of equations is stepped through time, thus, simulating the propagation of the incident wave. If the simulation is continued until a steady-state is reached, an appropriate far-field transformation can be applied to the time-domain scattered fields to obtain reflected and transmitted powers. From this information diffraction efficiencies can also be determined. In analyzing the chirped structure, a mesh is applied only to the area immediately around the grating. The size of the mesh is then proportional to the electric size of the grating. Doing this, however, imposes an artificial boundary around the area of interest. An absorbing boundary condition must be applied along the artificial boundary so that the outgoing waves are absorbed as if the boundary were absent. Many such boundary conditions have been developed that give near-perfect absorption. In this analysis, the Mur absorbing boundary conditions are employed. Several grating structures were analyzed using the FDTD method.

  10. Insight into RF power requirements and B1 field homogeneity for human MRI via rigorous FDTD approach.

    PubMed

    Ibrahim, Tamer S; Tang, Lin

    2007-06-01

    To study the dependence of radiofrequency (RF) power deposition on B(0) field strength for different loads and excitation mechanisms. Studies were performed utilizing a finite difference time domain (FDTD) model that treats the transmit array and the load as a single system. Since it was possible to achieve homogenous excitations across the human head model by varying the amplitudes/phases of the voltages driving the transmit array, studies of the RF power/B(0) field strength (frequency) dependence were achievable under well-defined/fixed/homogenous RF excitation. Analysis illustrating the regime in which the RF power is dependent on the square of the operating frequency is presented. Detailed studies focusing on the RF power requirements as a function of number of excitation ports, driving mechanism, and orientations/positioning within the load are presented. With variable phase/amplitude excitation, as a function of frequency, the peak-then-decrease relation observed in the upper axial slices of brain with quadrature excitation becomes more evident in the lower slices as well. Additionally, homogeneity optimization targeted at minimizing the ratio of maximum/minimum B(1) (+) field intensity within the region of interest, typically results in increased RF power requirements (standard deviation was not considered in this study). Increasing the number of excitation ports, however, can result in significant RF power reduction. (c) 2007 Wiley-Liss, Inc.

  11. Ultrafast two-photon absorption generated free-carrier modulation in a silicon nanoplasmonic resonator

    NASA Astrophysics Data System (ADS)

    Nielsen, M. P.; Elezzabi, A. Y.

    2014-03-01

    Ultrafast all-optical modulation in Ag/HfO2/Si/HfO2/Ag metal-insulator-semiconductor-insulator-metal (MISIM) nanoring resonators through two-photon absorption photogenerated free-carriers is studied using self-consistent 3-D finite difference time domain (FDTD) simulations. The self-consistent FDTD simulations incorporate the two-photon absorption, free carrier absorption, and plasma dispersion effects in silicon. The nanorings are aperture coupled to Ag/HfO2/Si(100nm)/HfO2/Ag MISIM waveguides by 300nm wide and 50nm deep apertures. The effects of pump pulse energy, HfO2 spacer thickness, and device footprint on the modulation characteristics are studied. Nanoring radius is varied between 540nm and 1μm, the HfO2 spacer thickness is varied between 10nm and 20nm, and the pump pulse energy is explored up to 60pJ. Modulation amplitude, switching time, average generated carrier density, and wavelength resonant shift is studied for each of the device configurations. In a compact device footprint of only 1.4μm2, a 13.1dB modulation amplitude was obtained with a switching time of only 2ps using a modest pump pulse energy of 16.0pJ. The larger bandwidth associated with more compact nanorings and thinner spacer layers is shown to result in increased modulation amplitude.

  12. Two-dimensional numerical simulation of O-mode to Z-mode conversion in the ionosphere

    NASA Astrophysics Data System (ADS)

    Cannon, P. D.; Honary, F.; Borisov, N.

    2016-03-01

    Experiments in the illumination of the F region of the ionosphere via radio frequency waves polarized in the ordinary mode (O-mode) have revealed that the magnitude of artificial heating-induced effects depends strongly on the inclination angle of the pump beam, with a greater modification to the plasma observed when the heating beam is directed close to or along the magnetic zenith direction. Numerical simulations performed using a recently developed finite-difference time-domain (FDTD) code are used to investigate the contribution of the O-mode to Z-mode conversion process to this effect. The aspect angle dependence and angular size of the radio window for which conversion of an O-mode pump wave to the Z-mode occurs is simulated for a variety of plasma density profiles including 2-D linear gradients representative of large-scale plasma depletions, density-depleted plasma ducts, and periodic field-aligned irregularities. The angular shape of the conversion window is found to be strongly influenced by the background plasma profile. If the Z-mode wave is reflected, it can propagate back toward the O-mode reflection region leading to resonant enhancement of the electric field in this region. Simulation results presented in this paper demonstrate that this process can make a significant contribution to the magnitude of electron density depletion and temperature enhancement around the resonance height and contributes to a strong dependence of the magnitude of plasma perturbation with the direction of the pump wave.

  13. Recent advances in numerical PDEs

    NASA Astrophysics Data System (ADS)

    Zuev, Julia Michelle

    In this thesis, we investigate four neighboring topics, all in the general area of numerical methods for solving Partial Differential Equations (PDEs). Topic 1. Radial Basis Functions (RBF) are widely used for multi-dimensional interpolation of scattered data. This methodology offers smooth and accurate interpolants, which can be further refined, if necessary, by clustering nodes in select areas. We show, however, that local refinements with RBF (in a constant shape parameter [varepsilon] regime) may lead to the oscillatory errors associated with the Runge phenomenon (RP). RP is best known in the case of high-order polynomial interpolation, where its effects can be accurately predicted via Lebesgue constant L (which is based solely on the node distribution). We study the RP and the applicability of Lebesgue constant (as well as other error measures) in RBF interpolation. Mainly, we allow for a spatially variable shape parameter, and demonstrate how it can be used to suppress RP-like edge effects and to improve the overall stability and accuracy. Topic 2. Although not as versatile as RBFs, cubic splines are useful for interpolating grid-based data. In 2-D, we consider a patch representation via Hermite basis functions s i,j ( u, v ) = [Special characters omitted.] h mn H m ( u ) H n ( v ), as opposed to the standard bicubic representation. Stitching requirements for the rectangular non-equispaced grid yield a 2-D tridiagonal linear system AX = B, where X represents the unknown first derivatives. We discover that the standard methods for solving this NxM system do not take advantage of the spline-specific format of the matrix B. We develop an alternative approach using this specialization of the RHS, which allows us to pre-compute coefficients only once, instead of N times. MATLAB implementation of our fast 2-D cubic spline algorithm is provided. We confirm analytically and numerically that for large N ( N > 200), our method is at least 3 times faster than the standard algorithm and is just as accurate. Topic 3. The well-known ADI-FDTD method for solving Maxwell's curl equations is second-order accurate in space/time, unconditionally stable, and computationally efficient. We research Richardson extrapolation -based techniques to improve time discretization accuracy for spatially oversampled ADI-FDTD. A careful analysis of temporal accuracy, computational efficiency, and the algorithm's overall stability is presented. Given the context of wave- type PDEs, we find that only a limited number of extrapolations to the ADI-FDTD method are beneficial, if its unconditional stability is to be preserved. We propose a practical approach for choosing the size of a time step that can be used to improve the efficiency of the ADI-FDTD algorithm, while maintaining its accuracy and stability. Topic 4. Shock waves and their energy dissipation properties are critical to understanding the dynamics controlling the MHD turbulence. Numerical advection algorithms used in MHD solvers (e.g. the ZEUS package) introduce undesirable numerical viscosity. To counteract its effects and to resolve shocks numerically, Richtmyer and von Neumann's artificial viscosity is commonly added to the model. We study shock power by analyzing the influence of both artificial and numerical viscosity on energy decay rates. Also, we analytically characterize the numerical diffusivity of various advection algorithms by quantifying their diffusion coefficients e.

  14. Three Dimensional Transient Analysis of Microstrip Circuits in Multilayered Anisotropic Media

    DTIC Science & Technology

    1994-01-18

    time fat rfVWh ifl~ttUktOnS. watching e..,ing| galai• fld t gatlwnq and maintaningn~ te data needed. an cems~l~lzn andI reuiewing 1h cOllection Of...noise on the passive via are derived. The coupling responses in the frequency domain and crosstalk waveforms in the time domain for some multilayered...source, developed across the module-backplane connector. The finite-difference time -domain (FD-TD) technique, which is based on the discretization of

  15. Formalism of photons in a nonlinear microring resonator

    NASA Astrophysics Data System (ADS)

    Tran, Quang Loc; Yupapin, Preecha

    2018-03-01

    In this paper, using short Gaussian pulses input from a monochromatic light source, we simulate the photon distribution and analyse the output gate's signals of PANDA nonlinear ring resonator. The present analysis is restricted to directional couplers characterized by two parameters, the power coupling coefficient κ and power coupling loss γ. Add/drop filters are also employed and investigated for the suitable to implement in the practical communication system. The experiment was conducted by using the combination of Lumerical FDTD Solutions and Lumerical MODE Solutions software.

  16. Vertical Ge photodetector base on InP taper waveguide

    NASA Astrophysics Data System (ADS)

    Amiri, Iraj Sadegh; Ariannejad, M. M.; Azzuhri, S. R. B.; Anwar, T.; Kouhdaragh, V.; Yupapin, P.

    2018-06-01

    In this work, simulation is conducted to investigate Ge photodetectors monolithically integrated on Si chip. The performance of vertical Germanium photodetector with FDTD Solutions (optical simulation) and electrical simulation has been studied. Selective heteroepitaxy of Ge is functioned in the monolithic integration of Ge photodetectors. The potential of CMOS-compatible monolithic integration of Ge as photodetector is investigated and the performance optimization is presented. Additionally, the investigation is extended to electrical part, particularly in the conversion efficiency as well as operation under low supplied voltage condition.

  17. FDTD Simulation of Novel Polarimetric and Directional Reflectance and Transmittance Measurements from Optical Nano- and Micro-Structured Materials

    DTIC Science & Technology

    2012-03-22

    structures and lead to better designs. 84 Appendix A. Particle Swarm Optimization Algorithm In order to validate the need for a new BSDF model ...24 9. Hierarchy representation of a subset of ScatMech BSDF library model classes...polarimetric BRDF at λ=4.3μm of SPP structures with Λ=1.79μm (left), 2μm (middle) and 2.33μm (right). All components are normalized by dividing by s0

  18. Reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators.

    PubMed

    Fegadolli, William S; Almeida, Vilson R; Oliveira, José Edimar Barbosa

    2011-06-20

    A novel tunable and reconfigurable thermo-optical device is theoretically proposed and analyzed in this paper. The device is designed to be entirely compatible with CMOS process and to work as a thermo-optical filter or modulator. Numerical results, made by means of analytical and Finite-Difference Time-Domain (FDTD) methods, show that a compact device enables a broad bandwidth operation, of up to 830 GHz, which allows the device to work under a large temperature variation, of up to 96 K.

  19. Modeling of interactions of electromagnetic fields with human bodies

    NASA Astrophysics Data System (ADS)

    Caputa, Krzysztof

    Interactions of electromagnetic fields with the human body have been a subject of scientific interest and public concern. In recent years, issues in power line field effects and those of wireless telephones have been in the forefront of research. Engineering research compliments biological investigations by quantifying the induced fields in biological bodies due to exposure to external fields. The research presented in this thesis aims at providing reliable tools, and addressing some of the unresolved issues related to interactions with the human body of power line fields and fields produced by handheld wireless telephones. The research comprises two areas, namely development of versatile models of the human body and their visualisation, and verification and application of numerical codes to solve selected problems of interest. The models of the human body, which are based on the magnetic resonance scans of the body, are unique and differ considerably from other models currently available. With the aid of computer software developed, the models can be arranged to different postures, and medical devices can be accurately placed inside them. A previously developed code for modeling interactions of power line fields with biological bodies has been verified by rigorous, quantitative inter-laboratory comparison for two human body models. This code has been employed to model electromagnetic interference (EMI) of the magnetic field with implanted cardiac pacemakers. In this case, the correct placement and representation of the pacemaker leads are critical, as simplified computations have been shown to result in significant errors. In modeling interactions of wireless communication devices, the finite difference time domain technique (FDTD) has become a de facto standard. The previously developed code has been verified by comparison with the analytical solution for a conductive sphere. While previously researchers limited their verifications to principal axes of the sphere, a global (volumetric) fields evaluation allowed for identification of locations of errors due to staircasing, and the singularities responsible for them. In evaluation of safety of cellular telephones and similar devices, the specific absorption rate (SAR) averaged over a 1 g (in North America) or 10 g (in Europe) cube is used. A new algorithm has been developed and tested, which allows for automatic and reliable identification of the maximum value with a user-selected inclusion of air (if required). This algorithm and the verified code have been used to model performance of a commercial telephone in the proximity of head, and to model EMI of this phone with a hearing aid placed in the ear canal. The modeling results, which relied on a proper representation of the antenna consisting of two helices and complex shape and structure of the telephone case, have been confirmed by measurements performed in another laboratory. Similarly, the EMI modeling has been in agreement with acoustic measurements (performed elsewhere). The latter comparison has allowed to confirm anticipated mechanism of the EMI.

  20. Simulation and Implementation of Moth-eye Structures as a Broadband Anti-Reflective Layer

    NASA Astrophysics Data System (ADS)

    Deshpande, Ketan S.

    Conventional single layer thin anti-reflective coatings (ARCs) are only suitable for narrowband applications. A multilayer film stack is often employed for broadband applications. A coating of multiple layers with alternating low and high refractive index materials increases the overall cost of the system. This makes multilayer ARCs unsuitable for low-cost broadband applications. Since the discovery of moth-eye corneal nipple patterns and their potential applicability in the field of broadband ARCs, many studies have been carried out to fabricate these bio-inspired nanostructures with available manufacturing processes. Plasma etching processes used in microelectronic manufacturing are applied for creating these nanostructures at the Rochester Institute of Technology's Semiconductor & Microsystems Fabrication Laboratory (SMFL). Atomic Force Microscope (AFM) scanned surfaces of the nanostructure layer are simulated and characterized for their optical properties using a Finite-Difference Time Domain (FDTD) simulator from Lumerical Solutions, Inc. known as FDTD Solutions. Simulation results show that the layer is anti-reflective over 50 to 350 nm broadband of wavelengths at 0° angle of incidence. These simulation results were supported by ellipsometer reflection measurements off the actual samples at multiple angles of light incidence, which show a 10% to 15% decrease in reflection for 240 to 400 nm wavelengths. Further improvements in the optical efficiency of these structures can be achieved through simulation-fabrication-characterization cycles performed for this project. The optimized nanostructures can then serve the purpose of low-cost anti-reflective coatings for solar cells and similar applications.

  1. Limitation of optical properties through porous silicon photonic crystals influenced by porosity and lattice dynamic

    NASA Astrophysics Data System (ADS)

    Amedome Min-Dianey, Kossi Aniya; Zhang, Hao-Chun; M'Bouana, Noé Landry Privace; Kougblenou, Komi; Xia, Xinlin

    2018-01-01

    Finite differential time domain (FDTD) tools were applied to simulate the optical properties characteristics' through square and triangular lattices of porous silicon (pSi) photonic crystals (PhCs); which consisted of periodical patterns of circular air holes built into the pSi material. This was used to investigate the influence of porosity and lattice dynamic on the reflection, transmission and absorption characteristics through unit cell pSi PhC in the visible wavelength domain (400 nm - 700 nm). The numerical simulation was achieved using FDTD Lumerical solutions with periodic boundary conditions (PBC) and perfectly matched layers (PML) as the appropriate boundary conditions. The results revealed that the limitation of optical properties is dependent on porosity and the lattice dynamic in pSi PhC. This was presented by the trend; the higher the reflection the higher the porosity and a decrease in porosity led to an increase in absorption in both lattice considerations. It was discovered that attaining optimum properties for triangular lattice will entail considering porosities less than 50% and hole radius r to the lattice constant a ratio (r / a) above 0.3 for the absorption characteristic and below 0.3 for the transmission characteristic. Triangular lattice can be adapted to improve the optical pattern through the PhC. In addition, the optimisation of these properties through pSi PhCs was achieved by controlling porosity and the ratio r / a .

  2. FDTD assessment of human exposure to electromagnetic fields from WiFi and bluetooth devices in some operating situations.

    PubMed

    Martínez-Búrdalo, M; Martín, A; Sanchis, A; Villar, R

    2009-02-01

    In this work, the numerical dosimetry in human exposure to the electromagnetic fields from antennas of wireless devices, such as those of wireless local area networks (WLAN) access points or phone and computer peripherals with Bluetooth antennas, is analyzed with the objective of assessing guidelines compliance. Several geometrical configurations are considered to simulate possible exposure situations of a person to the fields from WLAN or Bluetooth antennas operating at 2400 MHz. The exposure to radiation from two sources of different frequencies when using a 1800 MHz GSM mobile phone connected via Bluetooth with a hands-free car kit is also considered. The finite-difference time-domain (FDTD) method is used to calculate electric and magnetic field values in the vicinity of the antennas and specific absorption rates (SAR) in a high-resolution model of the human head and torso, to be compared with the limits from the guidelines (reference levels and basic restrictions, respectively). Results show that the exposure levels in worst-case situations studied are lower than those obtained when analyzing the exposure to mobile phones, as could be expected because of the low power of the signals and the distance between the human and the antennas, with both field and SAR values being far below the limits established by the guidelines, even when considering the combined exposure to both a GSM and a Bluetooth antenna. Copyright 2008 Wiley-Liss, Inc.

  3. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz

    NASA Astrophysics Data System (ADS)

    Findlay, R. P.; Dimbylow, P. J.

    2006-05-01

    Finite-difference time-domain (FDTD) calculations have been performed to investigate the frequency dependence of the specific energy absorption rate (SAR) in a seated voxel model of the human body. The seated model was derived from NORMAN (NORmalized MAN), an anatomically realistic voxel phantom in the standing posture with arms to the side. Exposure conditions included both vertically and horizontally polarized plane wave electric fields between 10 MHz and 3 GHz. The resolution of the voxel model was 4 mm for frequencies up to 360 MHz and 2 mm for calculations in the higher frequency range. The reduction in voxel size permitted the calculation of SAR at these higher frequencies using the FDTD method. SAR values have been calculated for the seated adult phantom and scaled versions representing 10-, 5- and 1-year-old children under isolated and grounded conditions. These scaled models do not exactly reproduce the dimensions and anatomy of children, but represent good geometric information for a seated child. Results show that, when the field is vertically polarized, the sitting position causes a second, smaller resonance condition not seen in resonance curves for the phantom in the standing posture. This occurs at ~130 MHz for the adult model when grounded. Partial-body SAR calculations indicate that the upper and lower regions of the body have their own resonant frequency at ~120 MHz and ~160 MHz, respectively, when the grounded adult model is orientated in the sitting position. These combine to produce this second resonance peak in the whole-body averaged SAR values calculated. Two resonance peaks also occur for the sitting posture when the incident electric field is horizontally polarized. For the adult model, the peaks in the whole-body averaged SAR occur at ~180 and ~600 MHz. These peaks are due to resonance in the arms and feet, respectively. Layer absorption plots and colour images of SAR in individual voxels show the specific regions in which the seated human body absorbs the incident field. External electric field values required to produce the ICNIRP basic restrictions were derived from SAR calculations and compared with ICNIRP reference levels. This comparison shows that the reference levels provide a conservative estimate of the ICNIRP whole-body averaged SAR restriction, with the exception of the region above 1.4 GHz for the scaled 1-year-old model.

  4. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz.

    PubMed

    Findlay, R P; Dimbylow, P J

    2006-05-07

    Finite-difference time-domain (FDTD) calculations have been performed to investigate the frequency dependence of the specific energy absorption rate (SAR) in a seated voxel model of the human body. The seated model was derived from NORMAN (NORmalized MAN), an anatomically realistic voxel phantom in the standing posture with arms to the side. Exposure conditions included both vertically and horizontally polarized plane wave electric fields between 10 MHz and 3 GHz. The resolution of the voxel model was 4 mm for frequencies up to 360 MHz and 2 mm for calculations in the higher frequency range. The reduction in voxel size permitted the calculation of SAR at these higher frequencies using the FDTD method. SAR values have been calculated for the seated adult phantom and scaled versions representing 10-, 5- and 1-year-old children under isolated and grounded conditions. These scaled models do not exactly reproduce the dimensions and anatomy of children, but represent good geometric information for a seated child. Results show that, when the field is vertically polarized, the sitting position causes a second, smaller resonance condition not seen in resonance curves for the phantom in the standing posture. This occurs at approximately 130 MHz for the adult model when grounded. Partial-body SAR calculations indicate that the upper and lower regions of the body have their own resonant frequency at approximately 120 MHz and approximately 160 MHz, respectively, when the grounded adult model is orientated in the sitting position. These combine to produce this second resonance peak in the whole-body averaged SAR values calculated. Two resonance peaks also occur for the sitting posture when the incident electric field is horizontally polarized. For the adult model, the peaks in the whole-body averaged SAR occur at approximately 180 and approximately 600 MHz. These peaks are due to resonance in the arms and feet, respectively. Layer absorption plots and colour images of SAR in individual voxels show the specific regions in which the seated human body absorbs the incident field. External electric field values required to produce the ICNIRP basic restrictions were derived from SAR calculations and compared with ICNIRP reference levels. This comparison shows that the reference levels provide a conservative estimate of the ICNIRP whole-body averaged SAR restriction, with the exception of the region above 1.4 GHz for the scaled 1-year-old model.

  5. Finite difference time domain modeling of spiral antennas

    NASA Technical Reports Server (NTRS)

    Penney, Christopher W.; Beggs, John H.; Luebbers, Raymond J.

    1992-01-01

    The objectives outlined in the original proposal for this project were to create a well-documented computer analysis model based on the finite-difference, time-domain (FDTD) method that would be capable of computing antenna impedance, far-zone radiation patterns, and radar cross-section (RCS). The ability to model a variety of penetrable materials in addition to conductors is also desired. The spiral antennas under study by this project meet these requirements since they are constructed of slots cut into conducting surfaces which are backed by dielectric materials.

  6. 1x3 beam splitter for TE polarization based on self-imaging phenomena in photonic crystal waveguides.

    PubMed

    Zhang, Min; Malureanu, Radu; Krüger, Asger Christian; Kristensen, Martin

    2010-07-05

    Based on inspiration from multi-mode interference self-imaging and theoretical FDTD simulations, a 1x3 beam splitter was designed, fabricated and characterized. Measurements show that for TE-polarized incident light the power is distributed equally between the output ports within 1dB in the range from 1541nm to 1552nm, and the total transmission of the 1x3 splitter is equal to the corresponding length of a single-line-defect PhCW within the measurement uncertainty.

  7. Analysis of composite/difference field scattering properties between a slightly rough optical surface and multi-body defects.

    PubMed

    Gong, Lei; Wu, Zhensen; Gao, Ming; Qu, Tan

    2018-03-20

    The effective extraction of optical surface roughness and defect characteristic provide important realistic values to improve optical system efficiency. Based on finite difference time domain/multi-resolution time domain (FDTD/MRTD) mixed approach, composite scattering between a slightly rough optical surface and multi-body defect particles with different positions is investigated. The scattering contribution of defect particles or the slightly rough optical surface is presented. Our study provides a theoretical and technological basis for the nondestructive examination and optical performance design of nanometer structures.

  8. Fundamental Studies of Electronic Properties of Materials and Devices for High Power, Compact Terahertz Vacuum Electron Devices

    DTIC Science & Technology

    2011-12-23

    International Conference on Plasma Science, Karlsruhe, Germany, 2008. [9] K.J. Willis, S.C. Hagness, and I. Knezevic, “A global EMC/FDTD simulation...Materials,” 2010 IEEE AP-S International Symposium on Antennas and Propagation and 2010 USNC/ CNC /URSI Meeting in Toronto, ON, Canada, July 11-17...with a High-Q Quasioptical Resonator,” IEEE Int’l Conf. Plasma Sci., Chicago, IL, June 26-30, (2011), paper IO2B-4. [21] M.J. Weber, B.B. Yang, S.L

  9. On the Treatment of Electric and Magnetic Loss in the Linear Bicharacteristic Scheme for Electromagnetics

    NASA Technical Reports Server (NTRS)

    Beggs, John H.

    2000-01-01

    The upwind leapfrog or Linear Bicharacteristic Scheme (LBS) has previously been extended to treat lossy dielectric and magnetic materials. This paper examines different methodologies for treatment of the electric loss term in the Linear Bicharacteristic Scheme for computational electromagnetics. Several different treatments of the electric loss term using the LBS are explored and compared on one-dimensional model problems involving reflection from lossy dielectric materials on both uniform and nonuniform grids. Results using these LBS implementations are also compared with the FDTD method for convenience.

  10. Micro-Coplanar Striplines: New Transmission Media for Microwave Applications

    NASA Technical Reports Server (NTRS)

    Goverdhanam, Kavita; Simons, Rainee N.; Katehi, Linda P. B.

    1998-01-01

    In this paper a new transmission line for microwave applications, referred to here as the Micro-Coplanar Stripline (MCPS), is introduced. The propagation characteristics, such as, characteristic impedance (Z(sub 0) and effective dielectric constant (epsilon eff) for a range of MCPS geometries have been modeled using the Finite Difference Time Domain (FDTD) Technique and presented here. Also, preliminary experimental results on the performance of an MCP-Microstrip transition and an MCPS-fed patch antenna are presented. The results indicate several potential applications of the MCPS line in microwave integrated circuit technology.

  11. Large-mode-area single-mode-output Neodymium-doped silicate glass all-solid photonic crystal fiber

    PubMed Central

    Li, Wentao; Chen, Danping; Qinling, Zhou; Hu, Lili

    2015-01-01

    We have demonstrated a 45 μm core diameter Neodymium-doped all-solid silicate glass photonic crystal fiber laser with a single mode laser output. The structure parameters and modes information of the fiber are both demonstrated by theoretical calculations using Finite Difference Time Domain (FDTD) method and experimental measurements. Maximum 0.8 W output power limited by launched pump power has been generated in 1064 nm with laser beam quality factor M2 1.18. PMID:26205850

  12. Interaction of Lightning Electromagnetic Pulse with the Ionosphere as Inferred from Wideband Measurements and Modeling

    NASA Astrophysics Data System (ADS)

    Somu, Vijaya Bhaskar

    Apparent ionospheric reflection heights estimated using the zero-to-zero and peak-to-peak methods to measure skywave delay relative to the groundwave were compared for 108 first and 124 subsequent strokes observed at LOG in 2009. For either metric there was a considerable decrease in average re ection height for subsequent strokes relative to first strokes. Median uncertainties in daytime re ection heights did not exceed 0.7 km. The standard errors in mean re ection heights were less than 3% of the mean value. Apparent changes in re ection height (estimated using the peak-to-peak method) within individual ashes for 54 daytime and 11 nighttime events at distances ranging from 50 km to 330 km were compared. For daytime conditions, the majority of the ashes showed a monotonic decrease in re ection height. For nighttime ashes, the monotonic decrease was found to be considerably less frequent. The apparent ionospheric re ection height tends to increase with return-stroke peak current. In order to increase the sample size for nighttime conditions, additional data for 43 nighttime flashes observed at LOG in 2014 were analyzed. The "fast-break-point" method of measuring skywave delay (McDonald et al., 1979) was additionally used. The 2014 results for return strokes are generally consistent with the 2009 results. The 2014 data were also used for estimating ionospheric re ection heights for elevated sources (6 CIDs and 3 PB pulses) using the double-skywave feature. The results were compared with re ection heights estimated for corresponding return strokes (if any), and fairly good agreement was generally found. It has been shown, using two different FDTD simulation codes, that the observed differences in re ection height cannot be explained by the difference in the frequency content of first and subsequent return-stroke currents. FDTD simulations showed that within 200 km the re ection heights estimated using the peak-to-peak method are close to the hOE parameter of the ionospheric profile for both daytime and nighttime conditions and for both first and second skywaves. The TL model was used to estimate the radial extent of elves produced by the interaction of LEMP with the ionosphere as a function of return-stroke peak current. For a peak current of 100 kA and the speed equal to one-half of the speed of light, the expected radius of elves is 157 km. Skywaves associated with 24 return strokes in 6 lightning ashes triggered at CB in 2015 and recorded at LOG (at a distance of 45 km from CB) were not found for any of the strokes recorded. In contrast, natural-lightning strokes do produce skywaves at comparable distances. One possible reason is the difference in the higher-frequency content (field waveforms for triggered lightning are more narrow than for natural lightning).

  13. Remote sensing of mineral dust aerosol using AERI during the UAE2: A modeling and sensitivity study

    NASA Astrophysics Data System (ADS)

    Hansell, R. A.; Liou, K. N.; Ou, S. C.; Tsay, S. C.; Ji, Q.; Reid, J. S.

    2008-09-01

    Numerical simulations and sensitivity studies have been performed to assess the potential for using brightness temperature spectra from a ground-based Atmospheric Emitted Radiance Interferometer (AERI) during the United Arab Emirates Unified Aerosol Experiment (UAE2) for detecting/retrieving mineral dust aerosol. A methodology for separating dust from clouds and retrieving the dust IR optical depths was developed by exploiting differences between their spectral absorptive powers in prescribed thermal IR window subbands. Dust microphysical models were constructed using in situ data from the UAE2 and prior field studies while composition was modeled using refractive index data sets for minerals commonly observed around the UAE region including quartz, kaolinite, and calcium carbonate. The T-matrix, finite difference time domain (FDTD), and Lorenz-Mie light scattering programs were employed to calculate the single scattering properties for three dust shapes: oblate spheroids, hexagonal plates, and spheres. We used the Code for High-resolution Accelerated Radiative Transfer with Scattering (CHARTS) radiative transfer program to investigate sensitivity of the modeled AERI spectra to key dust and atmospheric parameters. Sensitivity studies show that characterization of the thermodynamic boundary layer is crucial for accurate AERI dust detection/retrieval. Furthermore, AERI sensitivity to dust optical depth is manifested in the strong subband slope dependence of the window region. Two daytime UAE2 cases were examined to demonstrate the present detection/retrieval technique, and we show that the results compare reasonably well to collocated AERONET Sun photometer/MPLNET micropulse lidar measurements. Finally, sensitivity of the developed methodology to the AERI's estimated MgCdTe detector nonlinearity was evaluated.

  14. Human exposure assessment in the near field of GSM base-station antennas using a hybrid finite element/method of moments technique.

    PubMed

    Meyer, Frans J C; Davidson, David B; Jakobus, Ulrich; Stuchly, Maria A

    2003-02-01

    A hybrid finite-element method (FEM)/method of moments (MoM) technique is employed for specific absorption rate (SAR) calculations in a human phantom in the near field of a typical group special mobile (GSM) base-station antenna. The MoM is used to model the metallic surfaces and wires of the base-station antenna, and the FEM is used to model the heterogeneous human phantom. The advantages of each of these frequency domain techniques are, thus, exploited, leading to a highly efficient and robust numerical method for addressing this type of bioelectromagnetic problem. The basic mathematical formulation of the hybrid technique is presented. This is followed by a discussion of important implementation details-in particular, the linear algebra routines for sparse, complex FEM matrices combined with dense MoM matrices. The implementation is validated by comparing results to MoM (surface equivalence principle implementation) and finite-difference time-domain (FDTD) solutions of human exposure problems. A comparison of the computational efficiency of the different techniques is presented. The FEM/MoM implementation is then used for whole-body and critical-organ SAR calculations in a phantom at different positions in the near field of a base-station antenna. This problem cannot, in general, be solved using the MoM or FDTD due to computational limitations. This paper shows that the specific hybrid FEM/MoM implementation is an efficient numerical tool for accurate assessment of human exposure in the near field of base-station antennas.

  15. Structural and Biochemical Characterization of a Bifunctional Ketoisomerase/N-acetyltransferase from Shewanella denitrificans¶

    PubMed Central

    Chantigian, Daniel P.; Thoden, James B.; Holden, Hazel M.

    2014-01-01

    Unusual N-acetylated sugars have been observed on the O-antigens of some Gram-negative bacteria and on the S-layers of both Gram-positive and Gram-negative bacteria. One such sugar is 3-acetamido-3,6-dideoxy-α-d-galactose or Fuc3NAc. The pathway for its production requires five enzymes with the first step involving the attachment of dTMP to glucose-1-phosphate. Here we report a structural and biochemical characterization of a bifunctional enzyme from Shewanella denitificans thought to be involved in the biosynthesis of dTDP-Fuc3NAc. On the basis of a bioinformatics analysis, the enzyme, hereafter referred to as FdtD, has been postulated to catalyze the third and fifth steps in the pathway, namely a 3,4-keto isomerization and an N-acetyltransferase reaction. For the X-ray analysis reported here, the enzyme was crystallized in the presence of dTDP and CoA. The crystal structure shows that FdtD adopts a hexameric quaternary structure with 322 symmetry. Each subunit of the hexamer folds into two distinct domains connected by a flexible loop. The N-terminal domain adopts a left-handed β-helix motif and is responsible for the N-acetylation reaction. The C-terminal domain folds into an antiparallel flattened β-barrel that harbors the active site responsible for the isomerization reaction. Biochemical assays verify the two proposed catalytic activities of the enzyme and reveal that the 3,4-keto isomerization event leads to inversion of configuration about the hexose C-4' carbon. PMID:24128043

  16. Particle detection for patterned wafers of 100nm design rule by evanescent light illumination: analysis of evanescent light scattering using Finite-Difference Time-Domain (FDTD) method

    NASA Astrophysics Data System (ADS)

    Yoshioka, Toshie; Miyoshi, Takashi; Takaya, Yasuhiro

    2005-12-01

    To realize high productivity and reliability of the semiconductor, patterned wafers inspection technology to maintain high yield becomes essential in modern semiconductor manufacturing processes. As circuit feature is scaled below 100nm, the conventional imaging and light scattering methods are impossible to apply to the patterned wafers inspection technique, because of diffraction limit and lower S/N ratio. So, we propose a new particle detection method using annular evanescent light illumination. In this method, a converging annular light used as a light source is incident on a micro-hemispherical lens. When the converging angle is larger than critical angle, annular evanescent light is generated under the bottom surface of the hemispherical lens. Evanescent light is localized near by the bottom surface and decays exponentially away from the bottom surface. So, the evanescent light selectively illuminates the particles on the patterned wafer surface, because it can't illuminate the patterned wafer surface. The proposed method evaluates particles on a patterned wafer surface by detecting scattered evanescent light distribution from particles. To analyze the fundamental characteristics of the proposed method, the computer simulation was performed using FDTD method. The simulation results show that the proposed method is effective for detecting 100nm size particle on patterned wafer of 100nm lines and spaces, particularly under the condition that the evanescent light illumination with p-polarization and parallel incident to the line orientation. Finally, the experiment results suggest that 220nm size particle on patterned wafer of about 200nm lines and spaces can be detected.

  17. Quantitative measurement of the near-field enhancement of nanostructures by two-photon polymerization.

    PubMed

    Geldhauser, Tobias; Kolloch, Andreas; Murazawa, Naoki; Ueno, Kosei; Boneberg, Johannes; Leiderer, Paul; Scheer, Elke; Misawa, Hiroaki

    2012-06-19

    The quantitative determination of the strength of the near-field enhancement in and around nanostructures is essential for optimizing and using these structures for applications. We combine the gaussian intensity distribution of a laser profile and two-photon-polymerization of SU-8 to a suitable tool for the quantitative experimental measurement of the near-field enhancement of a nanostructure. Our results give a feedback to the results obtained by finite-difference time-domain (FDTD) simulations. The structures under investigation are gold nanotriangles on a glass substrate with 85 nm side length and a thickness of 40 nm. We compare the threshold fluence for polymerization for areas of the gaussian intensity profile with and without the near-field enhancement of the nanostructures. The experimentally obtained value of the near-field intensity enhancement is 600 ± 140, independent of the laser power, irradiation time, and spot size. The FDTD simulation shows a pointlike maximum of 2600 at the tip. In a more extended area with an approximate size close to the smallest polymerized structure of 25 nm in diameter, we find a value between 800 and 600. Using our novel approach, we determine the threshold fluence for polymerization of the commercially available photopolymerizable resin SU-8 by a femtosecond laser working at a wavelength of 795 nm and a repetition rate of 82 MHz to be 0.25 J/cm(2) almost independent of the irradiation time and the laser power used. This finding is important for future applications of the method because it enables one to use varying laser systems.

  18. Estimation of Mars radar backscatter from measured surface rock populations

    USGS Publications Warehouse

    Baron, J.E.; Simpson, R.A.; Tyler, G.L.; Moore, H.J.; Harmon, J.K.

    1998-01-01

    Reanalysis of rock population data at the Mars Viking Lander sites has yielded updated values of rock fractional surface coverage (about 0.16 at both sites, including outcrops) and new estimates of rock burial depths and axial ratios. These data are combined with a finite difference time domain (FDTD) numerical scattering model to estimate diffuse backscatter due to rocks at both the Lander l (VL1) and Lander 2 (VL2) sites. We consider single scattering from both surface and subsurface objects of various shapes, ranging from an ideal sphere to an accurate digitized model of a terrestrial rock. The FDTD cross-section calculations explicitly account for the size, shape, composition, orientation, and burial state of the scattering object, the incident wave angle and polarization, and the composition of the surface. We calculate depolarized specific cross sections at 12.6 cm wavelength due to lossless rock-like scatterers of about 0.014 at VL1 and 0.023 at VL2, which are comparable to the measured ranges of 0.019-0.032 and 0.012-0.018, respectively. We also discuss the variation of the diffuse cross section as the local angle of incidence, ??i, changes. Numerical calculations for a limited set of rock shapes indicate a marked difference between the angular backscattering behavior of wavelength-scale surface and subsurface rocks: while subsurface rocks scatter approximately as a cosine power law, surface rocks display a complex variation, often with peak backscattering at high incidence angles (??i = 70??-75??). Copyright 1998 by the American Geophysical Union.

  19. Optoelectronic properties and depth profile of charge transport in nanocrystal films

    NASA Astrophysics Data System (ADS)

    Aigner, Willi; Bienek, Oliver; Desta, Derese; Wiggers, Hartmut; Stutzmann, Martin; Pereira, Rui N.

    2017-07-01

    We investigate the charge transport in nanocrystal (NC) films using field effect transistors (FETs) of silicon NCs. By studying films with various thicknesses in the dark and under illumination with photons with different penetration depths (UV and red light), we are able to predictably change the spatial distribution of charge carriers across the films' profile. The experimental data are compared with photoinduced charge carrier generation rates computed using finite-difference time-domain (FDTD) simulations complemented with optical measurements. This enables us to understand the optoelectronic properties of NC films and the depth profile dependence of the charge transport properties. From electrical measurements, we extract the total (bulk) photoinduced charge carrier densities (nphoto) and the photoinduced charge carrier densities in the FETs channel (nphoto*). We observe that the values of nphoto and their dependence on film thickness are similar for UV and red light illumination, whereas a significant difference is observed for the values of nphoto*. The dependencies of nphoto and nphoto* on film thickness and illumination wavelength are compared with data from FDTD simulations. Combining experimental data and simulation results, we find that charge carriers in the top rough surface of the films cannot contribute to the macroscopic charge transport. Moreover, we conclude that below the top rough surface of NC films, the efficiency of charge transport, including the charge carrier mobility, is homogeneous across the film thickness. Our work shows that the use of NC films as photoactive layers in applications requiring harvesting of strongly absorbed photons such as photodetectors and photovoltaics demands a very rigorous control over the films' roughness.

  20. DFT analysis and FDTD simulation of CH3NH3PbI3-x Cl x mixed halide perovskite solar cells: role of halide mixing and light trapping technique

    NASA Astrophysics Data System (ADS)

    Saffari, Mohaddeseh; Mohebpour, Mohammad Ali; Rahimpour Soleimani, H.; Bagheri Tagani, Meysam

    2017-10-01

    Since perovskite solar cells have attracted a great deal of attention over the past few years, the enhancement of their optical absorption and current density are among the basic upcoming challenges. For this reason, first, we have studied the structural and optical properties of organic-inorganic hybrid halide perovskite CH3NH3PbI3 and the compounds doped by chlorine halogen CH3NH3PbI3-x Cl x in the cubic phase by using a density functional theory (DFT). Then, we model a single-junction perovskite solar cell based on a full solution to Maxwell’s equations, using a finite difference time domain (FDTD) technique, which helps us to investigate the light absorption efficiency and optical current density of the cell with CH3NH3PbI3-x Cl x (x  =  0, 1, 2, 3) as the active layer. The results suggest that increasing the amount of chlorine in CH3NH3PbI3-x Cl x compound leads to an increase in the bandgap energy, as well as a decrease in the lattice constants and optical properties, like the refractive index and extinction coefficient of the structure. Also, the results obtained by the simulation express that by taking advantage of the light trapping techniques of SiO2, a remarkable increase of light absorption will be achieved to the magnitude of 83.13%, which is noticeable.

  1. SF-FDTD analysis of a predictive physical model for parallel aligned liquid crystal devices

    NASA Astrophysics Data System (ADS)

    Márquez, Andrés.; Francés, Jorge; Martínez, Francisco J.; Gallego, Sergi; Alvarez, Mariela L.; Calzado, Eva M.; Pascual, Inmaculada; Beléndez, Augusto

    2017-08-01

    Recently we demonstrated a novel and simplified model enabling to calculate the voltage dependent retardance provided by parallel aligned liquid crystal devices (PA-LCoS) for a very wide range of incidence angles and any wavelength in the visible. To our knowledge it represents the most simplified approach still showing predictive capability. Deeper insight into the physics behind the simplified model is necessary to understand if the parameters in the model are physically meaningful. Since the PA-LCoS is a black-box where we do not have information about the physical parameters of the device, we cannot perform this kind of analysis using the experimental retardance measurements. In this work we develop realistic simulations for the non-linear tilt of the liquid crystal director across the thickness of the liquid crystal layer in the PA devices. We consider these profiles to have a sine-like shape, which is a good approximation for typical ranges of applied voltage in commercial PA-LCoS microdisplays. For these simulations we develop a rigorous method based on the split-field finite difference time domain (SF-FDTD) technique which provides realistic retardance values. These values are used as the experimental measurements to which the simplified model is fitted. From this analysis we learn that the simplified model is very robust, providing unambiguous solutions when fitting its parameters. We also learn that two of the parameters in the model are physically meaningful, proving a useful reverse-engineering approach, with predictive capability, to probe into internal characteristics of the PA-LCoS device.

  2. Beam shaping of light sources using circular photonic crystal funnel

    NASA Astrophysics Data System (ADS)

    Kumar, Mrityunjay; Kumar, Mithun; Dinesh Kumar, V.

    2012-10-01

    A novel two-dimensional circular photonic crystal (CPC) structure with a sectorial opening for shaping the beam of light sources was designed and investigated. When combined with light sources, the structure acts like an antenna emitting a directional beam which could be advantageously used in several nanophotonic applications. Using the two-dimensional finite-difference time-domain (2D FDTD) method, we examined the effects of geometrical parameters of the structure on the directional and transmission properties of emitted radiation. Further, we examined the transmitting and receiving properties of a pair of identical structures as a function of distance between them.

  3. Optically-free-standing InGaN microdisks with metallic reflectors

    NASA Astrophysics Data System (ADS)

    Zhang, Xuhui; To, Chap Hang; Choi, Hoi Wai

    2017-01-01

    The optical properties of free-standing thin-film microdisks with NiAg metallic reflectors are compared with those with an indium tin oxide (ITO) interfacial layer. The microdisks have been fabricated by a combination of microsphere lithography and laser lift-off processes. Optical-pumped lasing from the microdisk with NiAg reflector has been observed, with reduced threshold and higher quality factor compared those with ITO layers, attributed to improved optical confinement due to the reflectivity of the Ag coating. The results are supported by three-dimensional (3D) finite-difference-time-domain (FDTD) simulations.

  4. A Fourier collocation time domain method for numerically solving Maxwell's equations

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1991-01-01

    A new method for solving Maxwell's equations in the time domain for arbitrary values of permittivity, conductivity, and permeability is presented. Spatial derivatives are found by a Fourier transform method and time integration is performed using a second order, semi-implicit procedure. Electric and magnetic fields are collocated on the same grid points, rather than on interleaved points, as in the Finite Difference Time Domain (FDTD) method. Numerical results are presented for the propagation of a 2-D Transverse Electromagnetic (TEM) mode out of a parallel plate waveguide and into a dielectric and conducting medium.

  5. High-contrast grating hollow-core waveguide splitter applied to optical phased array

    NASA Astrophysics Data System (ADS)

    Zhao, Che; Xue, Ping; Zhang, Hanxing; Chen, Te; Peng, Chao; Hu, Weiwei

    2014-11-01

    A novel hollow-core (HW) Y-branch waveguide splitter based on high-contrast grating (HCG) is presented. We calculated and designed the HCG-HW splitter using Rigorous Coupled Wave Analysis (RCWA). Finite-different timedomain (FDTD) simulation shows that the splitter has a broad bandwidth and the branching loss is as low as 0.23 dB. Fabrication is accomplished with standard Silicon-On-Insulator (SOI) process. The experimental measurement results indicate its good performance on beam splitting near the central wavelength λ = 1550 nm with a total insertion loss of 7.0 dB.

  6. Numerical analyses of planer plasmonic focusing lens

    NASA Astrophysics Data System (ADS)

    Chou, Yen-Yu; Lee, Yeeu-Chang

    2018-03-01

    The use of polystyrene (PS) sphere lithography has been widely applied in the fabrication of micron and nano structures, due to their low cost and ease of fabrication in large scale applications. This study evaluated the feasibility of plasmonic lens base on metal thin films with nanohole structures fabricated by using PS sphere lithography through three-dimensional (3D) finite difference time domain (FDTD) method. We calculated the intensity profile of lens with various wavelength of incident light, lens size, cutting positions, diameters of nanohole, and periods of nanohole to investigate the geometric parameters influence on the focusing properties of the plasmonic lens.

  7. Resolving the multipolar scattering modes of a submicron particle using parametric indirect microscopic imaging

    NASA Astrophysics Data System (ADS)

    Ullah, Kaleem; Liu, Xuefeng; Krasnok, Alex; Habib, Muhammad; Song, Li; Garcia-Camara, Braulio

    2018-07-01

    In this work, we show the spatial distribution of the scattered electromagnetic field of dielectric particles by using a new super-resolution method based on polarization modulation. Applying this technique, we were able to resolve the multipolar distribution of a Cu2O particle with a radius of 450 nm. In addition, FDTD and Mie simulations have been carried out to validate and confirm the experimental results. The results are helpful to understand the resonant modes of dielectric submicron particles which have a broad range of potential applications, such as all-optical devices or nanoantennas.

  8. All-optical analog-to-digital converter based on Kerr effect in photonic crystal

    NASA Astrophysics Data System (ADS)

    Jafari, Dariush; Nurmohammadi, Tofiq; Asadi, Mohammad Javad; Abbasian, Karim

    2018-05-01

    In this paper, a novel all-optical analog-to-digital converter (AOADC) is proposed and simulated for proof of principle. This AOADC is designed to operate in the range of telecom wavelength (1550 nm). A cavity made of nonlinear Kerr material in photonic crystal (PhC), is designed to achieve an optical analog-to-digital conversion with 1 Tera sample per second (TS/s) and the total footprint of 42 μm2 . The simulation is done using finite-difference time domain (FDTD) method.

  9. A process to control light in a micro resonator through a coupling modulation by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Fan, Guofang; Li, Yuan; Hu, Chunguang; Lei, Lihua; Guo, Yanchuan

    2016-08-01

    A novel process to control light through the coupling modulation by surface acoustic wave (SAW) is presented in an optical micro resonator. An optical waveguide modulator of a racetrack resonator on silicon-on-insulator (SOI) technology is took as an example to explore the mechanism. A finite-difference time-domain (FDTD) is developed to simulate the acousto-optical (AO) modulator using the mechanism. An analytical method is presented to verify our proposal. The results show that the process can work well as an optical modulator by SAW.

  10. Spatial resolution limitation of liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Wang, Xinghua; Wang, Bin; McManamon, Paul F., III; Pouch, John J.; Miranda, Felix A.; Anderson, James E.; Bos, Philip J.

    2004-10-01

    The effect of fringing electric fields in a liquid crystal (LC) Optical Phased Array (OPA), also referred to as a spatial light modulator (SLM), is a governing factor that determines the diffraction efficiency (DE) of the LC OPA for high resolution spatial phase modulation. In this article, the fringing field effect in a high resolution LC OPA is studied by accurate modeling the DE of the LC blazed gratings by LC director simulation and Finite Difference Time Domain (FDTD) simulation. Influence factors that contribute significantly to the DE are discussed. Such results provide fundamental understanding for high resolution LC devices.

  11. A stochastic model for density-dependent microwave Snow- and Graupel scattering coefficients of the NOAA JCSDA community radiative transfer model

    NASA Astrophysics Data System (ADS)

    Stegmann, Patrick G.; Tang, Guanglin; Yang, Ping; Johnson, Benjamin T.

    2018-05-01

    A structural model is developed for the single-scattering properties of snow and graupel particles with a strongly heterogeneous morphology and an arbitrary variable mass density. This effort is aimed to provide a mechanism to consider particle mass density variation in the microwave scattering coefficients implemented in the Community Radiative Transfer Model (CRTM). The stochastic model applies a bicontinuous random medium algorithm to a simple base shape and uses the Finite-Difference-Time-Domain (FDTD) method to compute the single-scattering properties of the resulting complex morphology.

  12. Optical, electrical and elastic properties of ferroelectric domain walls in lithium niobate and lithium titanate

    NASA Astrophysics Data System (ADS)

    Kim, Sungwon

    Ferroelectric LiNbO3 and LiTaO3 crystals have developed, over the last 50 years as key materials for integrated and nonlinear optics due to their large electro-optic and nonlinear optical coefficients and a broad transparency range from 0.4 mum-4.5 mum wavelengths. Applications include high speed optical modulation and switching in 40GHz range, second harmonic generation, optical parametric amplification, pulse compression and so on. Ferroelectric domain microengineering has led to electro-optic scanners, dynamic focusing lenses, total internal reflection switches, and quasi-phase matched (QPM) frequency doublers. Most of these applications have so far been on non-stoichiometric compositions of these crystals. Recent breakthroughs in crystal growth have however opened up an entirely new window of opportunity from both scientific and technological viewpoint. The growth of stoichiometric composition crystals has led to the discovery of many fascinating effects arising from the presence or absence of atomic defects, such as an order of magnitude changes in coercive fields, internal fields, domain backswitching and stabilization phenomenon. On the nanoscale, unexpected features such as the presence of wide regions of optical contrast and strain have been discovered at 180° domain walls. Such strong influence of small amounts of nonstoichiometric defects on material properties has led to new device applications, particularly those involving domain patterning and shaping such as QPM devices in thick bulk crystals and improved photorefractive damage compositions. The central focus of this dissertation is to explore the role of nonstoichiometry and its precise influence on macroscale and nanoscale properties in lithium niobate and tantalate. Macroscale properties are studied using a combination of in-situ and high-speed electro-optic imaging microscopy and electrical switching experiments. Local static and dynamic strain properties at individual domain walls is studied using X-ray synchrotron imaging with and without in-situ electric fields. Nanoscale optical properties are studied using Near Field Scanning Optical Microscopy(NSOM). Finite Difference Time Domain(FDTD) codes, Beam Propagation Method(BPM) codes and X-ray tracing codes have been developed to successfully simulate NSOM images and X-ray topography images to extract the local optical and strain properties, respectively. A 3-D ferroelectric domain simulation code based on Time Dependent Ginzburg Landau(TDGL) theory and group theory has been developed to understand the nature of these local wall strains and the preferred wall orientations. By combining these experimental and numerical tools, We have also proposed a defect-dipole model and a mechanism by which the defect interacts with the domain walls. This thesis has thus built a more comprehensive picture of the influence of defects on domain walls on nanoscale and macroscale, and raises new scientific questions about the exact nature of domain walls-defect interactions. Besides the specific problem of ferroelectrics, the experimental and simulation tools, developed in this thesis will have wider application in the area of materials science.

  13. Segmenting texts from outdoor images taken by mobile phones using color features

    NASA Astrophysics Data System (ADS)

    Liu, Zongyi; Zhou, Hanning

    2011-01-01

    Recognizing texts from images taken by mobile phones with low resolution has wide applications. It has been shown that a good image binarization can substantially improve the performances of OCR engines. In this paper, we present a framework to segment texts from outdoor images taken by mobile phones using color features. The framework consists of three steps: (i) the initial process including image enhancement, binarization and noise filtering, where we binarize the input images in each RGB channel, and apply component level noise filtering; (ii) grouping components into blocks using color features, where we compute the component similarities by dynamically adjusting the weights of RGB channels, and merge groups hierachically, and (iii) blocks selection, where we use the run-length features and choose the Support Vector Machine (SVM) as the classifier. We tested the algorithm using 13 outdoor images taken by an old-style LG-64693 mobile phone with 640x480 resolution. We compared the segmentation results with Tsar's algorithm, a state-of-the-art camera text detection algorithm, and show that our algorithm is more robust, particularly in terms of the false alarm rates. In addition, we also evaluated the impacts of our algorithm on the Abbyy's FineReader, one of the most popular commercial OCR engines in the market.

  14. On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability

    NASA Astrophysics Data System (ADS)

    Meyers, M. D.; Huang, C.-K.; Zeng, Y.; Yi, S. A.; Albright, B. J.

    2015-09-01

    The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTD scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models.

  15. Radio-Frequency Emissions from Streamer Collisions: Implications for High-Energy Processes.

    NASA Astrophysics Data System (ADS)

    Luque, A.

    2017-12-01

    The production of energetic particles in a discharge corona is possibly linked to the collision of streamers of opposite polarities [Cooray et al. (2009), Kochkin et al. (2012), Østgaard et al. (2016)]. There is also experimental evidence linking it to radio-frequency emissions in the UHF frequency range (300 MHz-3 GHz) [Montanyà et al. (2015), Petersen and Beasley (2014)]. Here we investigate these two links by modeling the radio-frequency emissions emanating from an encounter between two counter-propagating streamers. Our numerical model combines self-consistently a conservative, high-order Finite-Volume scheme for electron transport with a Finite-Difference Time-Domain (FDTD) method for electromagnetic propagation. We also include the most relevant reactions for streamer propagation: impact ionization, dissociative attachment and photo-ionization. Our implementation benefits from massive parallelization by running on a General-Purpose Graphical Processing Unit (GPGPU). With this code we found that streamer encounters emit electromagnetic waves predominantly in the UHF range, supporting the hypothesis that streamer collisions are essential precursors of high-energy processes in electric discharges. References Cooray, V., et al., J. Atm. Sol.-Terr. Phys., 71, 1890, doi:10.1016/j.jastp.2009.07.010 (2009). Kochkin, P. O., et al., J. Phys. D, 45, 425202, doi: 10.1088/0022-3727/45/42/425202 (2012). Montanyà, J., et al., J. Atm. Sol.-Terr. Phys., 136, 94, doi:10.1016/j.jastp.2015.06.009, (2015). Østgaard, N., et al., J. Geophys. Res. (Atmos.), 121, 2939, doi:10.1002/2015JD024394 (2016). Petersen, D., and W. Beasley, Atmospheric Research, 135, 314, doi:10.1016/j.atmosres.2013.02.006 (2014).

  16. TEM Systems Design: Using Full Maxwell FDTD Modelling to Study the Transient Response of Custom-madeTx and Rx Coils.

    NASA Astrophysics Data System (ADS)

    Chevalier, A.; Rejiba, F.; Schamper, C.; Thiesson, J.; Hovhannissian, G.

    2016-12-01

    From airborne applications to field scale measurements of Transient Electromagnetic Methods(TEM), an accurate knowledge of the sensitivity of the inductive coil sensors (system response) is aprerequisite to interpret the measured transient magnetic flux density into a subsurface distributionof conductivity. The system response is a term that refers to the cumulative effect of inductive andcapacitive couplings (cross-talks) between each component constituting a TEM apparatus and thenearby conductive structures. As a result, the frequency sensitivity of the voltage coil sensor (Rx)along with the emitted current waveform in the current emitting coil (Tx) are controlled by thegeometry and electronic characteristic of the set-up as well as the near surface electromagneticproperties. During the early development of an innovative airborne TEM solutions (French nationalTEMas project), determining the coil geometries and the impedance matching between all parts ofthe transmission link (electronic parts and coils) for various environmental set-ups, has been a majorissue. In this study, we review the required theoretical framework and propose a versatile numericalmethodology to ease the coil design and impedance matching process while extending ourunderstanding of short-time transient that operates from DC to moderately high frequencies (0 to 20Mhz). We used a full Maxwell equations FDTD model along with a semi-analytical 1D modeler to infercoils emitting and receiving properties, for various coil geometries and site-dependent conditions.Results highlight the influence of the environment on the emitting and sensing properties. Theincreasing effects of cross-talks between the Tx and the Rx coils depending on their size is shown.Strategies regarding the impedance adaptation between the electronical components and the coilsensors are then discussed for different geophysical specifications.

  17. Assessing the Location of Surface Plasmons Over Nanotriangle and Nanohole Arrays of Different Size and Periodicity

    PubMed Central

    Correia-Ledo, Debby; Gibson, Kirsty F.; Dhawan, Anuj; Couture, Maxime; Vo-Dinh, Tuan; Graham, Duncan; Masson, Jean-Francois

    2012-01-01

    The increasing popularity of surface plasmon resonance (SPR) and surface enhanced Raman scattering (SERS) sensor design based on nanotriangle or nanohole arrays, and the possibility to manufacture substrates at the transition between these plasmonic substrates, makes them ideal candidates for the establishment of structure-property relationships. This work features near diffraction-limited Raman images and FDTD simulations of nanotriangle and nanohole arrays substrates, which clearly demonstrate that the localization of the hot spot on these SERS substrates is significantly influenced by the ratio of diameter/periodicity (D/P). The experimental and simulation data reveal that the hot spots are located around nanotriangles (D/P = 1), characteristic of localized SPR. Decreasing the D/P ratio to 0.75-0.7 led to the creation of nanohole arrays, which promoted the excitation of a propagating surface plasmon (SP) delocalized over the metal network. The optimal SERS intensity was consistently achieved at this transition from nanotriangles to nanoholes, for every periodicity (650 nm to 1.5 μm) and excitation wavelength (633 and 785 nm) investigated, despite the presence or absence of a plasmonic band near the laser excitation. Further decreasing the D/P ratio led to excitation of a localized SP located around the rim of nanohole arrays for D/P of 0.5-0.6, in agreement with previous reports. In addition, this manuscript provides the first evidence that the hot spots are positioned inside the hole for D/P of 0.4, with the center being the region of highest electric field and Raman intensity. The compelling experimental evidence and FDTD simulations offer an overall understanding of the plasmonic properties of nanohole arrays as SERS and SPR sensors, which is of significant value in advancing the diversity of applications from such surfaces. PMID:23977402

  18. A Finite-Difference Time-Domain Model of Artificial Ionospheric Modification

    NASA Astrophysics Data System (ADS)

    Cannon, Patrick; Honary, Farideh; Borisov, Nikolay

    Experiments in the artificial modification of the ionosphere via a radio frequency pump wave have observed a wide range of non-linear phenomena near the reflection height of an O-mode wave. These effects exhibit a strong aspect-angle dependence thought to be associated with the process by which, for a narrow range of off-vertical launch angles, the O-mode pump wave can propagate beyond the standard reflection height at X=1 as a Z-mode wave and excite additional plasma activity. A numerical model based on Finite-Difference Time-Domain method has been developed to simulate the interaction of the pump wave with an ionospheric plasma and investigate different non-linear processes involved in modification experiments. The effects on wave propagation due to plasma inhomogeneity and anisotropy are introduced through coupling of the Lorentz equation of motion for electrons and ions to Maxwell’s wave equations in the FDTD formulation, leading to a model that is capable of exciting a variety of plasma waves including Langmuir and upper-hybrid waves. Additionally, discretized equations describing the time-dependent evolution of the plasma fluid temperature and density are included in the FDTD update scheme. This model is used to calculate the aspect angle dependence and angular size of the radio window for which Z-mode excitation occurs, and the results compared favourably with both theoretical predictions and experimental observations. The simulation results are found to reproduce the angular dependence on electron density and temperature enhancement observed experimentally. The model is used to investigate the effect of different initial plasma density conditions on the evolution of non-linear effects, and demonstrates that the inclusion of features such as small field-aligned density perturbations can have a significant influence on wave propagation and the magnitude of temperature and density enhancements.

  19. Cylindrical optical resonators: fundamental properties and bio-sensing characteristics

    NASA Astrophysics Data System (ADS)

    Khozeymeh, Foroogh; Razaghi, Mohammad

    2018-04-01

    In this paper, detailed theoretical analysis of cylindrical resonators is demonstrated. As illustrated, these kinds of resonators can be used as optical bio-sensing devices. The proposed structure is analyzed using an analytical method based on Lam's approximation. This method is systematic and has simplified the tedious process of whispering-gallery mode (WGM) wavelength analysis in optical cylindrical biosensors. By this method, analysis of higher radial orders of high angular momentum WGMs has been possible. Using closed-form analytical equations, resonance wavelengths of higher radial and angular order WGMs of TE and TM polarization waves are calculated. It is shown that high angular momentum WGMs are more appropriate for bio-sensing applications. Some of the calculations are done using a numerical non-linear Newton method. A perfect match of 99.84% between the analytical and the numerical methods has been achieved. In order to verify the validity of the calculations, Meep simulations based on the finite difference time domain (FDTD) method are performed. In this case, a match of 96.70% between the analytical and FDTD results has been obtained. The analytical predictions are in good agreement with other experimental work (99.99% match). These results validate the proposed analytical modelling for the fast design of optical cylindrical biosensors. It is shown that by extending the proposed two-layer resonator structure analyzing scheme, it is possible to study a three-layer cylindrical resonator structure as well. Moreover, by this method, fast sensitivity optimization in cylindrical resonator-based biosensors has been possible. Sensitivity of the WGM resonances is analyzed as a function of the structural parameters of the cylindrical resonators. Based on the results, fourth radial order WGMs, with a resonator radius of 50 μm, display the most bulk refractive index sensitivity of 41.50 (nm/RIU).

  20. Development of a wearable microwave bladder monitor for the management and treatment of urinary incontinence

    NASA Astrophysics Data System (ADS)

    Krewer, F.; Morgan, F.; Jones, E.; Glavin, M.; O'Halloran, M.

    2014-05-01

    Urinary incontinence is defined as the inability to stop the flow of urine from the bladder. In the US alone, the annual societal cost of incontinence-related care is estimated at 12.6 billion dollars. Clinicians agree that those suffering from urinary incontinence would greatly benefit from a wearable system that could continually monitor the bladder, providing continuous feedback to the patient. While existing ultrasound-based solutions are highly accurate, they are severely limited by form-factor, battery size, cost and ease of use. In this study the authors propose an alternative bladder-state sensing system, based on Ultra Wideband (UWB) Radar. As part of an initial proof-of-concept, the authors developed one of the first dielectrically and anatomically-representative Finite Difference Time Domain models of the pelvis. These models (one male and one female) are derived from Magnetic Resonance images provided by the IT'IS Foundation. These IT'IS models provide the foundation upon which an anatomically-plausible bladder growth model was constructed. The authors employed accurate multi-pole Debye models to simulate the dielectric properties of each of the pelvic tissues. Two-dimensional Finite Difference Time Domain (FDTD) simulations were completed for a range of bladder volumes. Relevant features were extracted from the FDTD-derived signals using Principle Component Analysis (PCA) and then classified using a k-Nearest-Neighbour and Support Vector Machine algorithms (incorporating the Leave-one-out cross-validation approach). Additionally the authors investigated the effects of signal fidelity, noise and antenna movement relative to the target as potential sources of error. The results of this initial study provide strong motivation for further research into this timely application, particularly in the context of an ageing population.

  1. Controlling the numerical Cerenkov instability in PIC simulations using a customized finite difference Maxwell solver and a local FFT based current correction

    DOE PAGES

    Li, Fei; Yu, Peicheng; Xu, Xinlu; ...

    2017-01-12

    In this study we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1ˆ direction). We show that this eliminates the main NCI modes with moderate |k 1|, while keepsmore » additional main NCI modes well outside the range of physical interest with higher |k 1|. These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1ˆ which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss’ Law is satisfied. Lastly, we present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.« less

  2. Controlling the numerical Cerenkov instability in PIC simulations using a customized finite difference Maxwell solver and a local FFT based current correction

    NASA Astrophysics Data System (ADS)

    Li, Fei; Yu, Peicheng; Xu, Xinlu; Fiuza, Frederico; Decyk, Viktor K.; Dalichaouch, Thamine; Davidson, Asher; Tableman, Adam; An, Weiming; Tsung, Frank S.; Fonseca, Ricardo A.; Lu, Wei; Mori, Warren B.

    2017-05-01

    In this paper we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1 ˆ direction). We show that this eliminates the main NCI modes with moderate |k1 | , while keeps additional main NCI modes well outside the range of physical interest with higher |k1 | . These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1 ˆ which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss' Law is satisfied. We present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.

  3. Controlling the numerical Cerenkov instability in PIC simulations using a customized finite difference Maxwell solver and a local FFT based current correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Fei; Yu, Peicheng; Xu, Xinlu

    In this study we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1ˆ direction). We show that this eliminates the main NCI modes with moderate |k 1|, while keepsmore » additional main NCI modes well outside the range of physical interest with higher |k 1|. These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1ˆ which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss’ Law is satisfied. Lastly, we present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.« less

  4. Methods for describing the electromagnetic properties of silver and gold nanoparticles.

    PubMed

    Zhao, Jing; Pinchuk, Anatoliy O; McMahon, Jeffrey M; Li, Shuzhou; Ausman, Logan K; Atkinson, Ariel L; Schatz, George C

    2008-12-01

    This Account provides an overview of the methods that are currently being used to study the electromagnetics of silver and gold nanoparticles, with an emphasis on the determination of extinction and surface-enhanced Raman scattering (SERS) spectra. These methods have proven to be immensely useful in recent years for interpreting a wide range of nanoscience experiments and providing the capability to describe optical properties of particles up to several hundred nanometers in dimension, including arbitrary particle structures and complex dielectric environments (adsorbed layers of molecules, nearby metal films, and other particles). While some of the methods date back to Mie's celebrated work a century ago, others are still at the forefront of algorithm development in computational electromagnetics. This Account gives a qualitative description of the physical and mathematical basis behind the most commonly used methods, including both analytical and numerical methods, as well as representative results of applications that are relevant to current experiments. The analytical methods that we discuss are either derived from Mie theory for spheres or from the quasistatic (Gans) model as applied to spheres and spheroids. In this discussion, we describe the use of Mie theory to determine electromagnetic contributions to SERS enhancements that include for retarded dipole emission effects, and the use of the quasistatic approximation for spheroidal particles interacting with dye adsorbate layers. The numerical methods include the discrete dipole approximation (DDA), the finite difference time domain (FDTD) method, and the finite element method (FEM) based on Whitney forms. We discuss applications such as using DDA to describe the interaction of two gold disks to define electromagnetic hot spots, FDTD for light interacting with metal wires that go from particle-like plasmonic response to the film-like transmission as wire dimension is varied, and FEM studies of electromagnetic fields near cubic particles.

  5. FDTD analysis of a noninvasive hyperthermia system for brain tumors.

    PubMed

    Yacoob, Sulafa M; Hassan, Noha S

    2012-08-14

    Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40-45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD) method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors.

  6. Polarimetric and Structural Properties of a Boreal Forest at P-Band and L-Band

    NASA Astrophysics Data System (ADS)

    Tebaldini, S.; Rocca, F.

    2010-12-01

    With this paper we investigate the structural and polarimetric of the boreal forest within the Krycklan river catchment, Northern Sweden, basing on multi-polarimetric and multi-baseline SAR surveys at P-Band and L-Band collected in the framework of the ESA campaign BioSAR 2008. The analysis has been carried out by applying the Algebraic Synthesis (AS) technique, recently introduced in literature, which provides a theoretical framework for the decomposition of the backscattered signal into ground-only and volume-only contributions, basing on both baseline and polarization diversity. The availability of multiple baselines allows the formation of a synthetic aperture not only along the azimuth direction but also in elevation. Accordingly, the backscattered echoes can be focused not only in the slant range, azimuth plane, but in the whole 3D space. This is the rationale of the SAR Tomography (T-SAR) concept, which has been widely considered in the literature of the last years. It follows that, as long as the penetration in the scattering volume is guaranteed, the vertical profile of the vegetation layer is retrieved by separating backscatter contributions along the vertical direction, which is the main reason for the exploitation of Tomographic techniques at longer wavelengths. Still, the capabilities of T-SAR are limited to imaging the global vertical structure of the electromagnetic scattering in a certain polarization. It then becomes important to develop methodologies for the investigation of the vertical structure of different Scattering Mechanisms (SMs), such as ground and volume scattering, in such a way as to derive information that can be delivered also outside the field of Radar processing. This is an issue that may become relevant at longer wavelengths, such as P-Band, where the presence of multiple scattering arising from the interaction with terrain could hinder the correct reconstruction of the forest structure. The availability of multiple polarizations allows to overcome this limitation, thus providing a way to obtain the vertical structures associated with volume-only contributions. Experimental results will be provided showing the following. At P-Band the most relevant scattering contributions are observed at the ground level, not only in the co-polar channels, but also in HV, consistently with he first BioSAR campaign. L-Band data have shown a remarkable difference, resulting in a more uniform distribution of the backscattered power along the vertical direction. Volume top height has been observed to be substantially invariant to the choice of the solution for volume-only scattering. These results underline the validity of modeling a forest scenario as being constituted by volume and ground (or rather ground-locked) scattering, and the importance of forest top height as the most robust indicator of the forest structure as imaged through microwaves measurements. Nevertheless, it has also been shown that different solutions for volume scattering correspond to dramatically different vertical structures. In this framework, tomography represents a powerful tool for investigating the potential solutions, as it allows to see what kind of vertical structure has been retrieved. On this basis, a solution has been proposed as a criterion to emphasize volume contributions at P-Band.

  7. Numerical characterization of a flexible circular coil for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Bautista, T.; Hernandez, R.; Solis-Najera, S. E.; Rodriguez, A. O.

    2012-10-01

    Numerical simulations of the magnetic field generated by a flexible surface coil were conducted to study its behavior for applications of animal models at 7 Tesla. This coil design is able to fully cover a volume of interest. The Finite Difference Method in Time Domain (FDTD) was used because of its ability to accurately model complex problems in electromagnetism. This particular coil design is best suited for regions of interests with a spherical shape, since B1 uniformity is not significantly attenuated as in the case of a circular-loop coil. It still remains to investigate the feasibility to actually construct a coil prototype.

  8. A study on transmission characteristics and specific absorption rate using impedance-matched electrodes for various human body communication.

    PubMed

    Machida, Yuta; Yamamoto, Takahiko; Koshiji, Kohji

    2013-01-01

    Human body communication (HBC) is a new communication technology that has presented potential applications in health care and elderly support systems in recent years. In this study, which is focused on a wearable transmitter and receiver for HBC in a body area network (BAN), we performed electromagnetic field analysis and simulation using the finite difference time domain (FDTD) method with various models of the human body. Further we redesigned a number of impedance-matched electrodes to allow transmission without stubs or transformers. The specific absorption rate (SAR) and transmission characteristics S21 of these electrode structures were compared for several models.

  9. Spectral response modification of TiO₂ MSM photodetector with an LSPR filter.

    PubMed

    Calışkan, Deniz; Bütün, Bayram; Ozcan, Sadan; Ozbay, Ekmel

    2014-06-16

    We fabricated UVB filtered TiO₂ MSM photodetectors by the localized surface plasmon resonance effect. A plasmonic filter structure was designed using FDTD simulations. Final filter structure was fabricated with Al nano-cylinders with a 70 nm radius 180 nm period on 360 nm SiO₂film. The spectral response of the TiO₂ MSM photodetector was modified and the UVB response was reduced by approx. 60% with an LSPR structure, resulting in a peak responsivity shift of more than 40 nm. To our knowledge, this is the first published result for the spectral response modification of TiO₂ photodetectors with LSPR technique.

  10. Mirrorless lasing from light emitters in percolating clusters

    NASA Astrophysics Data System (ADS)

    Burlak, Gennadiy; Rubo, Y. G.

    2015-07-01

    We describe the lasing effect in the three-dimensional percolation system, where the percolating cluster is filled by active media composed by light emitters excited noncoherently. We show that, due to the presence of a topologically nontrivial photonic structure, the stimulated emission is modified with respect to both conventional and random lasers. The time dynamics and spectra of the lasing output are studied numerically with finite-difference time-domain approach. The Fermat principle and Monte Carlo approach are applied to characterize the optimal optical path and interconnection between the radiating emitters. The spatial structure of the laser mode is found by a long-time FDTD simulation.

  11. Characteristic analysis of a photoexcited metamaterial perfect absorber at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Bing, Pibin; Huang, Shichao; Li, Zhongyang; Yu, Zhou; Lu, Ying; Yao, Jianquan

    2017-06-01

    The absorption characteristics of a photoexcited metamaterial absorber at terahertz frequencies were analyzed in this study. Filling photosensitive semiconductor silicon into the gap between the resonator arms leads to modulation of its electromagnetic response through a pump beam which changes conductivity of silicon. Comparisons of terahertz absorbing properties which were caused by different thicknesses and dielectric constants of polyimide, cell sizes and widths of SRRs, and lengths and conductivities of the photosensitive silicon, were studied by using Finite Difference Time Domain (FDTD) from 0.4 THz to 1.6 THz. The results of this study will facilitate the design and preparation of terahertz modulator, filters and absorbers.

  12. Measurement and modelization of silica opal optical properties

    NASA Astrophysics Data System (ADS)

    Avoine, Amaury; Hong, Phan Ngoc; Frederich, Hugo; Aregahegn, Kifle; Bénalloul, Paul; Coolen, Laurent; Schwob, Catherine; Thu Nga, Pham; Gallas, Bruno; Maître, Agnès

    2014-03-01

    We present the synthesis process and optical characterization of artificial silica opals. The specular reflection spectra are analyzed and compared to band structure calculations and finite difference time domain (FDTD) simulations. The silica optical index is a key parameter to correctly describe an opal and is usually not known and treated as a free parameter. Here we propose a method to infer the silica index, as well as the silica spheres diameter, from the reflection spectra and we validate it by comparison with two independent infrared methods for the index and, scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements for the spheres diameter.

  13. FDTD and transfer matrix methods for evaluating the performance of photonic crystal based microcavities for exciton-polaritons

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Cheng; Byrnes, Tim

    2016-11-01

    We investigate alternative microcavity structures for exciton-polaritons consisting of photonic crystals instead of distributed Bragg reflectors. Finite-difference time-domain simulations and scattering transfer matrix methods are used to evaluate the cavity performance. The results are compared with conventional distributed Bragg reflectors. We find that in terms of the photon lifetime, the photonic crystal based microcavities are competitive, with typical lifetimes in the region of ∼20 ps being achieved. The photonic crystal microcavities have the advantage that they are compact and are frequency adjustable, showing that they are viable to investigate exciton-polariton condensation physics.

  14. Real-time curling probe monitoring of dielectric layer deposited on plasma chamber wall

    NASA Astrophysics Data System (ADS)

    Hotta, Masaya; Ogawa, Daisuke; Nakamura, Keiji; Sugai, Hideo

    2018-04-01

    A microwave resonator probe called a curling probe (CP) was applied to in situ monitoring of a dielectric layer deposited on a chamber wall during plasma processing. The resonance frequency of the CP was analytically found to shift in proportion to the dielectric layer thickness; the proportionality constant was determined from a comparison with the finite-difference time-domain (FDTD) simulation result. Amorphous carbon layers deposited in acetylene inductively coupled plasma (ICP) discharge were monitored using the CP. The measured resonance frequency shift dictated the carbon layer thickness, which agreed with the results from the surface profiler and ellipsometry.

  15. Design of the sample cell in near-field surface-enhanced Raman scattering by finite difference time domain method

    NASA Astrophysics Data System (ADS)

    Li, Yaqin; Jian, Guoshu; Wu, Shifa

    2006-11-01

    The rational design of the sample cell may improve the sensitivity of surface-enhanced Raman scattering (SERS) detection in a high degree. Finite difference time domain (FDTD) simulations of the configuration of Ag film-Ag particles illuminated by plane wave and evanescent wave are performed to provide physical insight for design of the sample cell. Numerical solutions indicate that the sample cell can provide more "hot spots' and the massive field intensity enhancement occurs in these "hot spots'. More information on the nanometer character of the sample can be got because of gradient-field Raman (GFR) of evanescent wave.

  16. Optical NOR logic gate design on square lattice photonic crystal platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’souza, Nirmala Maria, E-mail: nirmala@cukerala.ac.in; Mathew, Vincent, E-mail: vincent@cukerala.ac.in

    We numerically demonstrate a new configuration of all-optical NOR logic gate with square lattice photonic crystal (PhC) waveguide using finite difference time domain (FDTD) method. The logic operations are based on interference effect of optical waves. We have determined the operating frequency range by calculating the band structure for a perfectly periodic PhC using plane wave expansion (PWE) method. Response time of this logic gate is 1.98 ps and it can be operated with speed about 513 GB/s. The proposed device consists of four linear waveguides and a square ring resonator waveguides on PhC platform.

  17. Research on the FDTD method of scattering effects of obliquely incident electromagnetic waves in time-varying plasma sheath on collision and plasma frequencies

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Guo, Li-xin; Li, Jiang-ting

    2017-04-01

    This study analyzes the scattering characteristics of obliquely incident electromagnetic (EM) waves in a time-varying plasma sheath. The finite-difference time-domain algorithm is applied. According to the empirical formula of the collision frequency in a plasma sheath, the plasma frequency, temperature, and pressure are assumed to vary with time in the form of exponential rise. Some scattering problems of EM waves are discussed by calculating the radar cross section (RCS) of the time-varying plasma. The laws of the RCS varying with time are summarized at the L and S wave bands.

  18. Optical near-field analysis of spherical metals: Application of the FDTD method combined with the ADE method.

    PubMed

    Yamaguchi, Takashi; Hinata, Takashi

    2007-09-03

    The time-average energy density of the optical near-field generated around a metallic sphere is computed using the finite-difference time-domain method. To check the accuracy, the numerical results are compared with the rigorous solutions by Mie theory. The Lorentz-Drude model, which is coupled with Maxwell's equation via motion equations of an electron, is applied to simulate the dispersion relation of metallic materials. The distributions of the optical near-filed generated around a metallic hemisphere and a metallic spheroid are also computed, and strong optical near-fields are obtained at the rim of them.

  19. Subsurface characterization by the ground penetrating radar WISDOM/ExoMars 2020

    NASA Astrophysics Data System (ADS)

    Hervé, Y.; Ciarletti, V.; Le Gall, A. A.; Oudart, N.; Loizeau, D.; Guiffaut, C.; Dorizon, S.

    2017-12-01

    The main objective of the ExoMars 2020 mission is to search for signs of past and/or present life on Mars. Toward this goal, a rover was designed to investigate the shallow subsurface which is the most likely place where signs of life may be preserved, beneath the hostile surface of Mars. The rover of the ExoMars 2020 mission has on board a polarimetric ground penetrating radar called WISDOM (Water Ice Subsurface Deposits Observation on Mars). Thanks to its large frequency bandwidth of 2.5 GHz, WISDOM is able to probe down to a depth of approximately 3 m on sedimentary rock with a vertical resolution of a few centimeters.The main scientific objectives of WISDOM are to characterize the shallow subsurface of Mars, to help understand the local geological context and to identify the most promising location for drilling. The WISDOM team is currently working on the preparation of the scientific return of the ExoMars 2020 mission. In particular, tools are developed to interpret WISDOM experimental data and, more specifically, to extract information from the radar signatures of expected buried reflectors. Insights into the composition of the ground (through the retrieval of its permittivity) and the geological context of the site can be inferred from the radar signature of buried rocks since the shape and the density of rocks in the subsurface is related to the geological processes that have shaped and placed them there (impact, fluvial processes, volcanism). This paper presents results obtained by automatic detection of structures of interest on a radargram, especially radar signature of buried rocks. The algorithm we developed uses a neural network to identify the position of buried rocks/blocs and then a Hough transform to characterize each signature and to estimate the local permittivity of the medium. Firstly, we will test the performances of the algorithm on simulated data constructed with a 3D FDTD code. This code allows us to simulate radar operation in realistic environments. Secondly, we will test our algorithm on experimental data acquired in a semi-controlled environment. Lastly, we will present experimental data acquired during a recent field campaign (July 2017) in the south of France and we will validate our method and illustrate the ability of WISDOM to provide clues about the geological context of a site.

  20. Characterization of Meta-Materials Using Computational Electromagnetic Methods

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar; Shin, Joon

    2005-01-01

    An efficient and powerful computational method is presented to synthesize a meta-material to specified electromagnetic properties. Using the periodicity of meta-materials, the Finite Element Methodology (FEM) is developed to estimate the reflection and transmission through the meta-material structure for a normal plane wave incidence. For efficient computations of the reflection and transmission over a wide band frequency range through a meta-material a Finite Difference Time Domain (FDTD) approach is also developed. Using the Nicholson-Ross method and the Genetic Algorithms, a robust procedure to extract electromagnetic properties of meta-material from the knowledge of its reflection and transmission coefficients is described. Few numerical examples are also presented to validate the present approach.

  1. Omnidirectional light absorption of disordered nano-hole structure inspired from Papilio ulysses.

    PubMed

    Wang, Wanlin; Zhang, Wang; Fang, Xiaotian; Huang, Yiqiao; Liu, Qinglei; Bai, Mingwen; Zhang, Di

    2014-07-15

    Butterflies routinely produce nanostructured surfaces with useful properties. Here, we report a disordered nano-hole structure with ridges inspired by Papilio ulysses that produce omnidirectional light absorption compared with the common ordered structure. The result shows that the omnidirectional light absorption is affected by polarization, the incident angle, and the wavelength. Using the finite-difference time-domain (FDTD) method, the stable omnidirectional light absorption is achieved in the structure inspired from the Papilio ulysses over a wide incident angle range and with various wavelengths. This explains some of the mysteries of the structure of the Papilio ulysses butterfly. These conclusions can guide the design of omnidirectional absorption materials.

  2. Spatially dispersive finite-difference time-domain analysis of sub-wavelength imaging by the wire medium slabs

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Belov, Pavel A.; Hao, Yang

    2006-06-01

    In this paper, a spatially dispersive finite-difference time-domain (FDTD) method to model wire media is developed and validated. Sub-wavelength imaging properties of the finite wire medium slabs are examined. It is demonstrated that the slab with its thickness equal to an integer number of half-wavelengths is capable of transporting images with sub-wavelength resolution from one interface of the slab to another. It is also shown that the operation of such transmission devices is not sensitive to their transverse dimensions, which can be made even comparable to the wavelength. In this case, the edge diffractions are negligible and do not disturb the image formation.

  3. On-chip photonic particle sensor

    NASA Astrophysics Data System (ADS)

    Singh, Robin; Ma, Danhao; Agarwal, Anu; Anthony, Brian

    2018-02-01

    We propose an on-chip photonic particle sensor design that can perform particle sizing and counting for various environmental applications. The sensor is based on micro photonic ring resonators that are able to detect the presence of the free space particles through the interaction with their evanescent electric field tail. The sensor can characterize a wide range of the particle size ranging from a few nano meters to micron ( 1 micron). The photonic platform offers high sensitivity, compactness, fast response of the device. Further, FDTD simulations are performed to analyze different particle-light interactions. Such a compact and portable platform, packaged with integrated photonic circuit provides a useful sensing modality in space shuttle and environmental applications.

  4. Corrugated metal-coated tapered tip for scanning near-field optical microscope.

    PubMed

    Antosiewicz, Tomasz J; Szoplik, Tomasz

    2007-08-20

    This paper addresses an important issue of light throughput of a metal-coated tapered tip for scanning near-field microscope (SNOM). Corrugations of the interface between the fiber core and metal coating in the form of parallel grooves of different profiles etched in the core considerably increase the energy throughput. In 2D FDTD simulations in the Cartesian coordinates we calculate near-field light emitted from such tips. For a certain wavelength range total intensity of forward emission from the corrugated tip is 10 times stronger than that from a classical tapered tip. When realized in practice the idea of corrugated tip may lead up to twice better resolution of SNOM.

  5. Design of integrated all optical digital to analog converter (DAC) using 2D photonic crystals

    NASA Astrophysics Data System (ADS)

    Moniem, Tamer A.; El-Din, Eman S.

    2017-11-01

    A novel design of all optical 3 bit digital to analog (DAC) converter will be presented in this paper based on 2 Dimension photonic crystals (PhC). The proposed structure is based on the photonic crystal ring resonators (PCRR) with combining the nonlinear Kerr effect on the PCRR. The total size of the proposed optical 3 bit DAC is equal to 44 μm × 37 μm of 2D square lattice photonic crystals of silicon rods with refractive index equal to 3.4. The finite different time domain (FDTD) and Plane Wave Expansion (PWE) methods are used to back the overall operation of the proposed optical DAC.

  6. Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic-crystal waveguide.

    PubMed

    Shinya, Akihiko; Mitsugi, Satoshi; Kuramochi, Eiichi; Notomi, Masaya

    2005-05-30

    We have devised an ultra-small multi-channel drop filter based on a two-port resonant tunneling system in a two-dimensional photonic crystal with a triangular air-hole lattice. This filter does not require careful consideration of the interference process to achieve a high dropping efficiency. First we develop three-port systems based on a two-port resonant tunneling filter. Next we devise a multi-port channel drop filter by cascading these three-port systems. In this paper, we demonstrate a ten-channel drop filter with an 18 mum device size by 2D-FDTD calculation, and a three-port resonant tunneling filter with 65+/- 20 % dropping efficiency by experiment.

  7. A Novel Coupled Resonator Photonic Crystal Design in Lithium Niobate for Electrooptic Applications

    DOE PAGES

    Ozturk, Birol; Yavuzcetin, Ozgur; Sridhar, Srinivas

    2015-01-01

    High-aspect-ratio photonic crystal air-hole fabrication on bulk Lithium Niobate (LN) substrates is extremely difficult due to its inherent resistance to etching, resulting in conical structures and high insertion losses. Here, we propose a novel coupled resonator photonic crystal (CRPC) design, combining a coupled resonator approach with that of Bragg gratings. CRPC design parameters were optimized by analytical calculations and FDTD simulations. CRPC structures with optimized parameters were fabricated and electrooptically tested on bulk LN annealed proton exchange waveguides. Low insertion loss and large electrooptic effect were observed with the fabricated devices, making the CRPC design a promising structure for electroopticmore » device applications.« less

  8. A 3D Model to Compute Lightning and HIRF Coupling Effects on Avionic Equipment of an Aircraft

    NASA Astrophysics Data System (ADS)

    Perrin, E.; Tristant, F.; Guiffaut, C.; Terrade, F.; Reineix, A.

    2012-05-01

    This paper describes the 3D FDTD model of an aircraft developed to compute the lightning and HIRF (High Intentity Radiated Fields) coupling effects on avionic equipment and all the wire harness associated. This virtual prototype aims at assisting the aircraft manufacturer during the lightning and HIRF certification processes. The model presented here permits to cover a frequency range from lightning spectrum to the low frequency HIRF domain, i.e. 0 to 100 MHz. Moreover, the entire aircraft, including the frame, the skin, the wire harness and the equipment are taken into account in only one model. Results obtained are compared to measurements on a real aircraft.

  9. 3D light harnessing based on coupling engineering between 1D-2D Photonic Crystal membranes and metallic nano-antenna.

    PubMed

    Belarouci, Ali; Benyattou, Taha; Letartre, Xavier; Viktorovitch, Pierre

    2010-09-13

    A new approach is proposed for the optimum addressing of a metallic nano-antenna (NA) with a free space optical beam. This approach relies on the use of an intermediate resonator structure that provides the appropriate modal conversion of the incoming beam. More precisely, the intermediate resonator consists in a Photonic Crystal (PC) membrane resonant structure that takes benefit of surface addressable slow Bloch modes. First, a phenomenological approach including a deep physical understanding of the NA-PC coupling and its optimization is presented. In a second step, the main features of this analysis are confirmed by numerical simulations (FDTD).

  10. Spectral scalability and optical spectra of fractal multilayer structures: FDTD analysis

    NASA Astrophysics Data System (ADS)

    Simsek, Sevket; Palaz, Selami; Mamedov, Amirullah M.; Ozbay, Ekmel

    2017-01-01

    An investigation of the optical properties and band structures for the conventional and Fibonacci photonic crystals (PCs) based on SrTiO3 and Sb2Te3 is made in the present research. Here, we use one-dimensional SrTiO3- and Sb2Te3-based layers. We have theoretically calculated the photonic band structure and transmission spectra of SrTiO3- and Sb2Te3-based PC superlattices. The position of minima in the transmission spectrum correlates with the gaps obtained in the calculation. The intensity of the transmission depths is more intense in the case of higher refractive index contrast between the layers.

  11. Micro-ring sensor used in the diagnosis of gastric cancer

    NASA Astrophysics Data System (ADS)

    Shi, Sichao; Cheng, Qing; Lin, Rong; Su, Da; Huang, Ying

    2016-01-01

    To find a detecting method that can be applied to the clinical screening and diagnosis, the cascaded micro-ring sensor with Vernier effect was used to distinguish gastric cancerous and normal cells. The simulation by FDTD of the cascaded microring sensor with different refractive indexes of the analyte (normal cells and gastric cancer cells) will be presented. In the simulation, with the refractive index's change Δn=0.02 for the two different analyte, the shift of sensor's resonant wavelength is 6.71nm. And the cascaded micro-ring sensor's sensitivity S is 335.5nm/RIU, and it is much larger compared to 19nm/RIU for a single ring sensor.

  12. Modelling terahertz radiation absorption and reflection with computational phantoms of skin and associated appendages

    NASA Astrophysics Data System (ADS)

    Vilagosh, Zoltan; Lajevardipour, Alireza; Wood, Andrew

    2018-01-01

    Finite-difference time-domain (FDTD) computational phantoms aid the analysis of THz radiation interaction with human skin. The presented computational phantoms have accurate anatomical layering and electromagnetic properties. A novel "large sheet" simulation technique is used allowing for a realistic representation of lateral absorption and reflection of in-vivo measurements. Simulations carried out to date have indicated that hair follicles act as THz propagation channels and confirms the possible role of melanin, both in nevi and skin pigmentation, to act as a significant absorber of THz radiation. A novel freezing technique has promise in increasing the depth of skin penetration of THz radiation to aid diagnostic imaging.

  13. Optimization of top coupling grating for very long wavelength QWIP based on surface plasmon

    NASA Astrophysics Data System (ADS)

    Wang, Guodong; Shen, Junling; Liu, Xiaolian; Ni, Lu; Wang, Saili

    2017-09-01

    The relative coupling efficiency of two-dimensional (2D) grating based on surface plasmon for very long wavelength quantum well infrared detector is analyzed by using the three-dimensional finite-difference time domain (3D-FDTD) method algorithm. The relative coupling efficiency with respect to the grating parameters, such as grating pitch, duty ratio, and grating thickness, is analyzed. The calculated results show that the relative coupling efficiency would reach the largest value for the 14.5 μm incident infrared light when taking the grating pitch as 4.4 μm, the duty ratio as 0.325, and the grating thickness as 0.07 μm, respectively.

  14. Plasmon resonance hybridization in self-assembled copper nanoparticle clusters: efficient and precise localization of surface plasmon resonance (LSPR) sensing based on Fano resonances.

    PubMed

    Ahmadivand, Arash; Pala, Nezih

    2015-01-01

    In this work, we have investigated the hybridization of plasmon resonance modes in completely copper (Cu)-based subwavelength nanoparticle clusters from simple symmetric dimers to complex asymmetric self-assembled structures. The quality of apparent bonding and antibonding plasmon resonance modes for all of the clusters has been studied, and we examined the spectral response of each one of the proposed configurations numerically using the finite-difference time domain (FDTD) method. The effect of the geometric sizes of nanoparticles used and substrate refractive index on the cross-sectional profiles of each of the studied structures has been calculated and drawn. We proved that Fano-like resonance can be formed in Cu-based heptamer clusters as in analogous noble metallic particles (e.g., Au and Ag) by determining the coupling strength and interference between sub-radiant and super-radiant resonance modes. Employing certain Cu nanodiscs in designing an octamer structure, we measured the quality of the Fano dip formation along the scattering diagram. Accurate tuning of the geometric sizes for the Cu-based octamer yields an opportunity to observe isotropic, deep, and narrow Fano minima along the scattering profile that are in comparable condition with the response of other plasmonic metallic substances. Immersing investigated final Cu-based octamer in various liquids with different refractive indices, we determined the sensing accuracy of the cluster based on the performance of the Fano dip. Plotting a linear diagram of plasmon energy differences over the refractive index variations as a figure of merit (FoM), which we have quantified as 13.25. With this method, the precision of the completely Cu-based octamer is verified numerically using the FDTD tool. This study paves the way toward the use of Cu as an efficient, low-cost, and complementary metal-oxide semiconductor (CMOS)-compatible plasmonic material with optical properties that are similar to analogous plasmonic substances.

  15. 3-D Forward modeling of Induced Polarization Effects of Transient Electromagnetic Method

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Ji, Y.; Guan, S.; Li, D.; Wang, A.

    2017-12-01

    In transient electromagnetic (TEM) detection, Induced polarization (IP) effects are so important that they cannot be ignored. The authors simulate the three-dimensional (3-D) induced polarization effects in time-domain directly by applying the finite-difference time-domain method (FDTD) based on Cole-Cole model. Due to the frequency dispersion characteristics of the electrical conductivity, the computations of convolution in the generalized Ohm's law of fractional order system makes the forward modeling particularly complicated. Firstly, we propose a method to approximate the fractional order function of Cole-Cole model using a lower order rational transfer function based on error minimum theory in the frequency domain. In this section, two auxiliary variables are introduced to transform nonlinear least square fitting problem of the fractional order system into a linear programming problem, thus avoiding having to solve a system of equations and nonlinear problems. Secondly, the time-domain expression of Cole-Cole model is obtained by using Inverse Laplace transform. Then, for the calculation of Ohm's law, we propose an e-index auxiliary equation of conductivity to transform the convolution to non-convolution integral; in this section, the trapezoid rule is applied to compute the integral. We then substitute the recursion equation into Maxwell's equations to derive the iterative equations of electromagnetic field using the FDTD method. Finally, we finish the stimulation of 3-D model and evaluate polarization parameters. The results are compared with those obtained from the digital filtering solution of the analytical equation in the homogeneous half space, as well as with the 3-D model results from the auxiliary ordinary differential equation method (ADE). Good agreements are obtained across the three methods. In terms of the 3-D model, the proposed method has higher efficiency and lower memory requirements as execution times and memory usage were reduced by 20% compared with ADE method.

  16. A FDTD solution of scattering of laser beam with orbital angular momentum by dielectric particles: Far-field characteristics

    NASA Astrophysics Data System (ADS)

    Sun, Wenbo; Hu, Yongxiang; Weimer, Carl; Ayers, Kirk; Baize, Rosemary R.; Lee, Tsengdar

    2017-02-01

    Electromagnetic (EM) beams with orbital angular momentum (OAM) may have great potential applications in communication technology and in remote sensing of the Earth-atmosphere system and outer planets. Study of their interaction with optical lenses and dielectric or metallic objects, or scattering of them by particles in the Earth-atmosphere system, is a necessary step to explore the advantage of the OAM EM beams. In this study, the 3-dimensional (3D) scattered-field (SF) finite-difference time domain (FDTD) technique with the convolutional perfectly matched layer (CPML) absorbing boundary conditions (ABC) is applied to calculate the scattering of the purely azimuthal (the radial mode number is assumed to be zero) Laguerre-Gaussian (LG) beams with the OAM by dielectric particles. We found that for OAM beam's interaction with dielectric particles, the forward-scattering peak in the conventional phase function (P11) disappears, and light scattering peak occurs at a scattering angle of 15° to 45°. The disappearance of forward-scattering peak means that, in laser communications most of the particle-scattered noise cannot enter the receiver, thus the received light is optimally the original OAM-encoded signal. This feature of the OAM beam also implies that in lidar remote sensing of the atmospheric particulates, most of the multiple-scattering energy will be off lidar sensors, and this may result in an accurate profiling of particle layers in the atmosphere or in the oceans by lidar, or even in the ground when a ground penetration radar (GPR) with the OAM is applied. This far-field characteristics of the scattered OAM light also imply that the optical theorem, which is derived from plane-parallel wave scattering case and relates the forward scattering amplitude to the total cross section of the scatterer, is invalid for the scattering of OAM beams by dielectric particles.

  17. Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides.

    PubMed

    Papes, Martin; Cheben, Pavel; Benedikovic, Daniel; Schmid, Jens H; Pond, James; Halir, Robert; Ortega-Moñux, Alejandro; Wangüemert-Pérez, Gonzalo; Ye, Winnie N; Xu, Dan-Xia; Janz, Siegfried; Dado, Milan; Vašinek, Vladimír

    2016-03-07

    Fiber-chip edge couplers are extensively used in integrated optics for coupling of light between planar waveguide circuits and optical fibers. In this work, we report on a new fiber-chip edge coupler concept with large mode size for silicon photonic wire waveguides. The coupler allows direct coupling with conventional cleaved optical fibers with large mode size while circumventing the need for lensed fibers. The coupler is designed for 220 nm silicon-on-insulator (SOI) platform. It exhibits an overall coupling efficiency exceeding 90%, as independently confirmed by 3D Finite-Difference Time-Domain (FDTD) and fully vectorial 3D Eigenmode Expansion (EME) calculations. We present two specific coupler designs, namely for a high numerical aperture single mode optical fiber with 6 µm mode field diameter (MFD) and a standard SMF-28 fiber with 10.4 µm MFD. An important advantage of our coupler concept is the ability to expand the mode at the chip edge without leading to high substrate leakage losses through buried oxide (BOX), which in our design is set to 3 µm. This remarkable feature is achieved by implementing in the SiO 2 upper cladding thin high-index Si 3 N 4 layers. The Si 3 N 4 layers increase the effective refractive index of the upper cladding near the facet. The index is controlled along the taper by subwavelength refractive index engineering to facilitate adiabatic mode transformation to the silicon wire waveguide while the Si-wire waveguide is inversely tapered along the coupler. The mode overlap optimization at the chip facet is carried out with a full vectorial mode solver. The mode transformation along the coupler is studied using 3D-FDTD simulations and with fully-vectorial 3D-EME calculations. The couplers are optimized for operating with transverse electric (TE) polarization and the operating wavelength is centered at 1.55 µm.

  18. FDTD analysis of a noninvasive hyperthermia system for brain tumors

    PubMed Central

    2012-01-01

    Background Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40–45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. Methods The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD) method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. Results The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. Conclusions The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors. PMID:22891953

  19. An FDTD-based computer simulation platform for shock wave propagation in electrohydraulic lithotripsy.

    PubMed

    Yılmaz, Bülent; Çiftçi, Emre

    2013-06-01

    Extracorporeal Shock Wave Lithotripsy (ESWL) is based on disintegration of the kidney stone by delivering high-energy shock waves that are created outside the body and transmitted through the skin and body tissues. Nowadays high-energy shock waves are also used in orthopedic operations and investigated to be used in the treatment of myocardial infarction and cancer. Because of these new application areas novel lithotriptor designs are needed for different kinds of treatment strategies. In this study our aim was to develop a versatile computer simulation environment which would give the device designers working on various medical applications that use shock wave principle a substantial amount of flexibility while testing the effects of new parameters such as reflector size, material properties of the medium, water temperature, and different clinical scenarios. For this purpose, we created a finite-difference time-domain (FDTD)-based computational model in which most of the physical system parameters were defined as an input and/or as a variable in the simulations. We constructed a realistic computational model of a commercial electrohydraulic lithotriptor and optimized our simulation program using the results that were obtained by the manufacturer in an experimental setup. We, then, compared the simulation results with the results from an experimental setup in which oxygen level in water was varied. Finally, we studied the effects of changing the input parameters like ellipsoid size and material, temperature change in the wave propagation media, and shock wave source point misalignment. The simulation results were consistent with the experimental results and expected effects of variation in physical parameters of the system. The results of this study encourage further investigation and provide adequate evidence that the numerical modeling of a shock wave therapy system is feasible and can provide a practical means to test novel ideas in new device design procedures. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. 3D modeling of lightning-induced electromagnetic pulses on Venus, Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Pérez-Invernón, Francisco J.; Luque, Alejandro; Gordillo-Vázquez, Francisco J.

    2017-04-01

    Atmospheric electricity is a common phenomenon in some planets of The Solar System. We know that atmospheric discharges exist on Earth and gaseous planets; however, some characteristics of lightning on Saturn and Jupiter as well as their relevance on the effects of lightning in the atmospheres of these planets are still unknown. In the case of Venus, there exist some radio evidences of lightning, but the lack of optical observations suggests exploring indirect methods of detection, such as searching for lightning-induced transient optical emissions from the upper atmosphere. The Akatsuki probe, currently orbiting Venus, is equipped with a camera whose temporal resolution is high enough to detect optical emissions from lightning discharges and to measure nightglow enhancements. In this work, we extend previous models [1,2] to investigate the chemical impact and transient optical emissions produced by possible lightning-emitted electromagnetic pulses (EMP) in Venus, Saturn and Jupiter. Using a 3D FDTD ("Finite Differences Time Domain") model we solve the Maxwell equations coupled with the Langevin equation for electrons [3] and with a kinetic scheme, different for each planetary atmosphere. This method is useful to investigate the temporal and spatial impact of lightning-induced electromagnetic fields in the atmosphere of each planet for different lightning characteristics (e.g. energy released, orientation). This 3D FDTD model allows us to include the saturnian and jovian background magnetic field inclination and magnitude at different latitudes, and to determine the effects of different lightning channel inclinations. Results provide useful information to interpret lightning observations on giant gaseous planets and in the search for indirect optical signals from atmospheric discharge on Venus such as fast nightglow transient enhancements related to lightning as seen on Earth. Furthermore, we underline the observation of electrical discharges characteristics as a powerful tool to obtain information about planetary atmospheres, such as density profiles of electrons or other components. Our model may also be useful to extend some studies about the chemical impact of EMP pulses in the terrestrial atmosphere [4]. References [1] Luque, A., D. Dubrovin, F. J. Gordillo-Vázquez, U. Ebert, F. C. Parra-Rojas, Y. Yair, and C. Price (2014), Coupling between atmospheric layers in gaseous giant planets due to lightning-generated electromagnetic pulses, J. Geophys. Res. (Space Phys), 119, 8705, doi: 10.1002/2014JA020457. [2] Pérez-Invernón, F. J., A. Luque, and F. J. Gordillo-Vázquez (2016), Mesospheric optical signatures of possible lightning on Venus, J. Geophys. Res. (Space Phys), 121, 7026, doi: 10.1029/2016JA022886. [3] Lee, J. H., and D. K. Kalluri (1999), Three-dimensional FDTD simulation of electromagnetic wave transformation in a dynamic inhomogeneous magnetized plasma, IEEE Transactions on Antennas and Propagation, 47, 1146, doi:10.1109/8.785745. [4] Marshall, R. A., U. S. Inan, and V. S. Glukhov (2010), Elves and associated electron density changes due to cloud-to-ground and in-cloud lightning discharges, J. Geophys. Res. (Space Phys), 115, A00E17, doi:10.1029/2009JA014469.

  1. Radiative Properties of Cirrus Clouds in the Infrared (8-13 microns) Spectral Region

    NASA Technical Reports Server (NTRS)

    Yang, Ping; Gao, Bo-Cai; Baum, Bryan A.; Hu, Yong X.; Wiscombe, Warren J.; Tsay, Si-Chee; Winker, Dave M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Atmospheric radiation in the infrared (IR) 8-13 microns spectral region contains a wealth of information that is very useful for the retrieval of ice cloud properties from aircraft or space-borne measurements. To provide the scattering and absorption properties of nonspherical ice crystals that are fundamental to the IR retrieval implementation, we use the finite-difference time domain (FDTD) method to solve for the extinction efficiency, single-scattering albedo, and the asymmetry parameter of the phase function for ice crystals smaller than 40 microns. For particles larger than this size, the improved geometric optics method (IGOM) can be employed to calculate the asymmetry parameter with an acceptable accuracy, provided that we properly account for the inhomogeneity of the refracted wave due to strong absorption inside the ice particle. A combination of the results computed from the two methods provides the asymmetry parameter for the entire practical range of particle sizes between 1 micron and 10000 microns over wavelengths ranging from 8 microns to 13 microns. For the extinction and absorption efficiency calculations, several methods including the IGOM, Mie solution for equivalent spheres (MSFES), and the anomalous diffraction theory (ADT) can lead to a substantial discontinuity in comparison with the FDTD solutions for particle sizes on the order of 40 microns. To overcome this difficulty, we have developed a novel approach called the stretched scattering potential method (SSPM). For the IR 8-13 microns spectral region, we show that SSPM is a more accurate approximation than ADT, MSFES, and IGOM. The SSPM solution can be further refined numerically. Through a combination of the FDTD and SSPM, we have computed the extinction and absorption efficiency for hexagonal ice crystals with sizes ranging from 1 to 10000 microns at 12 wavelengths between 8 and 13 microns Calculations of the cirrus bulk scattering and absorption properties are performed for 30 size distributions obtained from various field campaigns for midlatitude and tropical cirrus cloud systems. Parameterization of these bulk scattering properties is carried out by using second-order polynomial functions for the extinction efficiency and the single-scattering albedo and the power law expression for the asymmetry parameter. We note that the volume-normalized extinction coefficient can be separated into two parts: one is inversely proportional to effective size and is independent of wavelength, and the other is the wavelength-dependent effective extinction efficiency. Unlike conventional parameterization efforts, the present parameterization scheme is more accurate because only the latter part of the volume-normalized extinction coefficient is approximated in terms of an analytical expression. After averaging over size distribution, the single-scattering albedo is shown to decrease with an increase in effective size for wavelengths shorter than 10.0 microns whereas the opposite behavior is observed for longer wavelengths. The variation of the asymmetry parameter as a function of effective size is substantial when the effective size is smaller than 50 microns. For effective sizes larger than 100 microns, the asymmetry parameter approaches its asymptotic value. The results derived in this study can be useful to remote sensing applications involving IR window bands under cirrus cloud conditions.

  2. Numerical simulation of compressible fluid flow in an ultrasonic suction pump.

    PubMed

    Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro

    2016-08-01

    Characteristics of an ultrasonic suction pump that uses a vibrating piston surface and a pipe are numerically simulated and compared with experimental results. Fluid analysis based on the finite-difference time-domain (FDTD) routine is performed, where the nonlinear term and the moving fluid-surface boundary condition are considered. As a result, the suction mechanism of the pump is found to be similar to that of a check valve, where the gap is open during the inflow phase, and it is nearly closed during the outflow phase. The effects of Reynolds number, vibration amplitude and gap thickness on the pump performance are analyzed. The calculated result is in good agreement with the previously measured results. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Electromagnetic ray tracing model for line structures.

    PubMed

    Tan, C B; Khoh, A; Yeo, S H

    2008-03-17

    In this paper, a model for electromagnetic scattering of line structures is established based on high frequency approximation approach - ray tracing. This electromagnetic ray tracing (ERT) model gives the advantage of identifying each physical field that contributes to the total solution of the scattering phenomenon. Besides the geometrical optics field, different diffracted fields associated with the line structures are also discussed and formulated. A step by step addition of each electromagnetic field is given to elucidate the causes of a disturbance in the amplitude profile. The accuracy of the ERT model is also discussed by comparing with the reference finite difference time domain (FDTD) solution, which shows a promising result for a single polysilicon line structure with width of as narrow as 0.4 wavelength.

  4. Compact SOI optimized slot microring coupled phase-shifted Bragg grating resonator for sensing

    NASA Astrophysics Data System (ADS)

    Zhao, Chao Ying; Zhang, Lei; Zhang, Cheng Mei

    2018-05-01

    We propose a novel sensor structure composed of a slot microring and a phase-shifted sidewall Bragg gratings in a slot waveguide. We first present a theoretical analysis of transmission by using the transfer matrix. Then, the mode-field distributions of transmission spectrum obtained from 3D simulations based on FDTD method demonstrates that our sensor exhibit theoretical sensitivity of 297 . 13 nm / RIU, a minimum detection limit of 1 . 1 × 10-4 RIU, the maximum extinction ratio of 20 dB, the quality factor of 2 × 103 and a compact dimension-theoretical structure of 15 μm × 8 . 5 μm. Finally, the sensor's performance is simulated for NaCl solution.

  5. Polarization-independent beam focusing by high-contrast grating reflectors

    NASA Astrophysics Data System (ADS)

    Su, Wei; Zheng, Gaige; Jiang, Liyong; Li, Xiangyin

    2014-08-01

    A kind of high-contrast grating (HCG) reflector for beam focusing has been proposed. We design a planar grating structure with a parabolic surface and numerical simulations using a finite different time domain (FDTD) method to verify that the structure has the capability of focusing both transverse-magnetic (TM) and transverse-electric (TE) polarized lights. Finally, we expand the design structure into a three-dimensional (3D) case. Numerical results demonstrate that the power intensities at the focal point are all greater than 8.5 dB compared with incident intensity, which means the structure has a better focusing effect. Further analysis of incident wavelength sensitivity (1.55, 1.79 and 2 μm) reveals that the proposed structure has a wide range of working wavelength.

  6. Photonic crystal ring resonator based optical filters for photonic integrated circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, S., E-mail: mail2robinson@gmail.com

    In this paper, a two Dimensional (2D) Photonic Crystal Ring Resonator (PCRR) based optical Filters namely Add Drop Filter, Bandpass Filter, and Bandstop Filter are designed for Photonic Integrated Circuits (PICs). The normalized output response of the filters is obtained using 2D Finite Difference Time Domain (FDTD) method and the band diagram of periodic and non-periodic structure is attained by Plane Wave Expansion (PWE) method. The size of the device is minimized from a scale of few tens of millimeters to the order of micrometers. The overall size of the filters is around 11.4 μm × 11.4 μm which ismore » highly suitable of photonic integrated circuits.« less

  7. Discrete exterior calculus approach for discretizing Maxwell's equations on face-centered cubic grids for FDTD

    NASA Astrophysics Data System (ADS)

    Salmasi, Mahbod; Potter, Michael

    2018-07-01

    Maxwell's equations are discretized on a Face-Centered Cubic (FCC) lattice instead of a simple cubic as an alternative to the standard Yee method for improvements in numerical dispersion characteristics and grid isotropy of the method. Explicit update equations and numerical dispersion expressions, and the stability criteria are derived. Also, several tools available to the standard Yee method such as PEC/PMC boundary conditions, absorbing boundary conditions, and scattered field formulation are extended to this method as well. A comparison between the FCC and the Yee formulations is made, showing that the FCC method exhibits better dispersion compared to its Yee counterpart. Simulations are provided to demonstrate both the accuracy and grid isotropy improvement of the method.

  8. Characteristics of microstrip muscle-loaded single-arm Archimedean spiral antennas as investigated by FDTD numerical computations.

    PubMed

    Jacobsen, Svein; Rolfsnes, Hans Olav; Stauffer, Paul R

    2005-02-01

    The radiation characteristics and mode of operation of single-arm, groundplane backed, Archimedean spiral antennas are investigated by means of conformal finite difference time domain numerical analysis. It is shown that this antenna type may be categorized as a well-matched, broadband, circularly polarized traveling wave structure that can be fed directly by nonbalanced coaxial networks. The study further concentrates on relevant design and description features parameterized in terms of measures like radiation efficiency, sensing depth, directivity, and axial ratio of complementary polarizations. We document that an antenna of only 30-mm transverse size produces circularly polarized waves in a two-octave frequency span (2-8 GHz) with acceptable radiation efficiency (76%-94%) when loaded by muscle-like tissue.

  9. Enhanced optical transmission through a star-shaped bull's eye at dual resonant-bands in UV and the visible spectral range.

    PubMed

    Nazari, Tavakol; Khazaeinezhad, Reza; Jung, Woohyun; Joo, Boram; Kong, Byung-Joo; Oh, Kyunghwan

    2015-07-13

    Dual resonant bands in UV and the visible range were simultaneously observed in the enhanced optical transmission (EOT) through star-shaped plasmonic structures. EOTs through four types of polygonal bull's eyes with a star aperture surrounded by the concentric star grooves were analyzed and compared for 3, 4, 5, and 6 corners, using finite difference time domain (FDTD) method. In contrast to plasmonic resonances in the visible range, the UV-band resonance intensity was found to scale with the number of corners, which is related with higher order multipole interactions. Spectral positions and relative intensities of the dual resonances were analyzed parametrically to find optimal conditions to maximize EOT in UV-visible dual bands.

  10. Slot-grating flat lens for telecom wavelengths.

    PubMed

    Pugh, Jonathan R; Stokes, Jamie L; Lopez-Garcia, Martin; Gan, Choon-How; Nash, Geoff R; Rarity, John G; Cryan, Martin J

    2014-07-01

    We present a stand-alone beam-focusing flat lens for use in the telecommunications wavelength range. Light incident on the back surface of the lens propagates through a subwavelength aperture and is heavily diffracted on exit and partially couples into a surface plasmon polariton and a surface wave propagating along the surface of the lens. Interference between the diffracted wave and re-emission from a grating patterned on the surface produces a highly collimated beam. We show for the first time a geometry at which a lens of this type can be used at telecommunication wavelengths (λ=1.55 μm) and identify the light coupling and re-emission mechanisms involved. Measured beam profile results at varying incident wavelengths show excellent agreement with Lumerical FDTD simulation results.

  11. Surface Plasmon Coupling and Control Using Spherical Cap Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Yu; Joly, Alan G.; Zhang, Xin

    2017-06-05

    Propagating surface plasmons (PSPs) launched from a protruded silver spherical cap structure are investigated using photoemission electron microscopy (PEEM) and finite difference time domain (FDTD) calculations. Our combined experimental and theoretical findings reveal that PSP coupling efficiency is comparable to conventional etched-in plasmonic coupling structures. Additionally, plasmon propagation direction can be varied by a linear rotation of the driving laser polarization. A simple geometric model is proposed in which the plasmon direction selectivity is proportional to the projection of the linear laser polarization on the surface normal. An application for the spherical cap coupler as a gate device is proposed.more » Overall, our results indicate that protruded cap structures hold great promise as elements in emerging surface plasmon applications.« less

  12. New design of a triplexer using ring resonator integrated with directional coupler based on photonic crystals

    NASA Astrophysics Data System (ADS)

    Wu, Yaw-Dong; Shih, Tien-Tsorng; Lee, Jian-Jang

    2009-11-01

    In this paper, we proposed the design of directional coupler integrated with ring resonator based on two-dimensional photonic crystals (2D PCs) to develop a triplexer filter. It can be widely used as the fiber access network element for multiplexer-demultiplexer wavelength selective in fiber-to-the-home (FTTH) communication systems. The directional coupler is chosen to separate the wavelengths of 1490nm and 1310nm. The ring resonator separates the wavelength of 1550nm. The transmission efficiency is larger than 90%. Besides, the total size of propose triplexer is only 19μm×12μm. We present simulation results using the finite-difference time-domain (FDTD) method for the proposed structure.

  13. Design and analysis of photonic crystal micro-cavity based optical sensor platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyal, Amit Kumar, E-mail: amitgoyal.ceeri@gmail.com; Dutta, Hemant Sankar, E-mail: hemantdutta97@gmail.com; Pal, Suchandan, E-mail: spal@ceeri.ernet.in

    2016-04-13

    In this paper, the design of a two-dimensional photonic crystal micro-cavity based integrated-optic sensor platform is proposed. The behaviour of designed cavity is analyzed using two-dimensional Finite Difference Time Domain (FDTD) method. The structure is designed by deliberately inserting some defects in a photonic crystal waveguide structure. Proposed structure shows a quality factor (Q) of about 1e5 and the average sensitivity of 500nm/RIU in the wavelength range of 1450 – 1580 nm. Sensing technique is based on the detection of shift in upper-edge cut-off wavelength for a reference signal strength of –10 dB in accordance with the change in refractive index ofmore » analyte.« less

  14. An Investigation of a Design for a Finite-Difference Time Domain (FDTD) Hardware Accelerator

    DTIC Science & Technology

    1991-12-01

    D PTR), accumulators A and B ( ACCA & ACCB), and the third fixed incrementer (IN3). The stack file in the floating-point unit is untouched. The first...of data. REGISTERS: R1, R2, R4, R5, R7, R8, R9, R11, R12, R13, ACCA , ACCB, MBR. MAR, STAT POINTERS: APT, BPT, CPT, DPT, AIN, BIN, CIN, DIN, IN3 LINES...BBUS MARh-2 READ BACTL, 12 R2 =En(lj) R2=D MAR+2 READ BAACT; 13 MBR = En+I(1j) ACCA = En(0,j-1) + En(lj-1) BU=R2 BL=R2 CD C=R1 MBR=D FP++ a=CBUS b=BBUS

  15. Modeling optical transmissivity of graphene grate in on-chip silicon photonic device

    NASA Astrophysics Data System (ADS)

    Amiri, Iraj S.; Ariannejad, M. M.; Jalil, M. A.; Ali, J.; Yupapin, P.

    2018-06-01

    A three-dimensional (3-D) finite-difference-time-domain (FDTD) analysis was used to simulate a silicon photonic waveguide. We have calculated power and transmission of the graphene used as single or multilayers to study the light transmission behavior. A new technique has been developed to define the straight silicon waveguide integrated with grate graphene layer. The waveguide has a variable grate spacing to be filled by the graphene layer. The number of graphene atomic layers varies between 100 and 1000 (or 380 nm and 3800 nm), the transmitted power obtained varies as ∼30% and ∼80%. The ∼99%, blocking of the light was occurred in 10,000 (or 38,000 nm) atomic layers of the graphene grate.

  16. A metamaterial terahertz modulator based on complementary planar double-split-ring resonator

    NASA Astrophysics Data System (ADS)

    Wang, Chang-hui; Kuang, Deng-feng; Chang, Sheng-jiang; Lin, Lie

    2013-07-01

    A metamaterial based on complementary planar double-split-ring resonator (DSRR) structure is presented and demonstrated, which can optically tune the transmission of the terahertz (THz) wave. Unlike the traditional DSRR metamaterials, the DSRR discussed in this paper consists of two split rings connected by two bridges. Numerical simulations with the finite-difference time-domain (FDTD) method reveal that the transmission spectra of the original and the complementary metamaterials are both in good agreement with Babinet's principle. Then by increasing the carrier density of the intrinsic GaAs substrate, the magnetic response of the complementary special DSRR metamaterial can be weakened or even turned off. This metamaterial structure is promised to be a narrow-band THz modulator with response time of several nanoseconds.

  17. Reconfigurable optofluidic switch for generation of optical pulse width modulation based on tunable reflective interface.

    PubMed

    Mansuori, M; Zareei, G H; Hashemi, H

    2015-10-01

    We present a numerical method for generation of optical pulse width modulation (PWM) based on tunable reflective interface by using a microfluidic droplet. We demonstrate a single layer, planar, optofluidic PWM switch that is driven by excited alternating microbubbles. The main parameters of generation of this PWM such as frequency and speed of switching can be controlled by the mass flow rates of input fluids, and the shape of plug or droplet. Advantages of this design are the reconfigurability in design and the easy control of the switching parameters. The validation of the proposed design is carried out by employing the finite element method (FEM) for the mechanical simulation and the finite-difference time-domain (FDTD) for the optical simulation.

  18. Simulation on change of generic satellite radar cross section via artificially created plasma sprays

    NASA Astrophysics Data System (ADS)

    Chung, Shen Shou Max; Chuang, Yu-Chou

    2016-06-01

    Recent advancements in antisatellite missile technologies have proven the effectiveness of such attacks, and the vulnerability of satellites in such exercises inspires a new paradigm in RF Stealth techniques suitable for satellites. In this paper we examine the possibility of using artificially created plasma sprays on the surface of the satellite’s main body to alter its radar cross section (RCS). First, we briefly review past research related to RF Stealth using plasma. Next, we discuss the physics between electromagnetic waves and plasma, and the RCS number game in RF Stealth design. A comparison of RCS in a generic satellite and a more complicated model is made to illustrate the effect of the RCS number game, and its meaning for a simulation model. We also run a comparison between finite-difference-time-domain (FDTD) and multilevel fast multipole method (MLFMM) codes, and find the RCS results are very close. We then compare the RCS of the generic satellite and the plasma-covered satellite. The incident radar wave is a differentiated Gaussian monopulse, with 3 dB bandwidth between 1.2 GHz and 4 GHz, and we simulate three kinds of plasma density, with a characteristic plasma frequency ω P  =  0.1, 1, and 10 GHz. The electron-neutral collision frequency ν en is set at 0.01 GHz. We found the RCS of plasma-covered satellite is not necessarily smaller than the originally satellite. When ω P is 0.1 GHz, the plasma spray behaves like a dielectric, and there is minor reduction in the RCS. When ω P is 1 GHz, the X-Y cut RCS increases. When ω P is 10 GHz, the plasma behaves more like a metal to the radar wave, and stronger RCS dependency to frequency appears. Therefore, to use plasma as an RCS adjustment tool requires careful fine-tuning of plasma density and shape, in order to achieve the so-called plasma stealth effect.

  19. Light scattering microscopy measurements of single nuclei compared with GPU-accelerated FDTD simulations

    NASA Astrophysics Data System (ADS)

    Stark, Julian; Rothe, Thomas; Kieß, Steffen; Simon, Sven; Kienle, Alwin

    2016-04-01

    Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns.

  20. Light scattering from laser induced pit ensembles on high power laser optics

    DOE PAGES

    Feigenbaum, Eyal; Elhadj, Selim; Matthews, Manyalibo J.

    2015-01-01

    Far-field light scattering characteristics from randomly arranged shallow Gaussian-like shaped laser induced pits, found on optics exposed to high energy laser pulses, is studied. Closed-form expressions for the far-field intensity distribution and scattered power are derived for individual pits and validated using numerical calculations of both Fourier optics and FDTD solutions to Maxwell’s equations. It is found that the scattered power is proportional to the square of the pit width and approximately also to the square of the pit depth, with the proportionality factor scaling with pit depth. As a result, the power scattered from shallow pitted optics is expectedmore » to be substantially lower than assuming complete scattering from the total visible footprint of the pits.« less

Top