Theoretical analysis of tsunami generation by pyroclastic flows
Watts, P.; Waythomas, C.F.
2003-01-01
Pyroclastic flows are a common product of explosive volcanism and have the potential to initiate tsunamis whenever thick, dense flows encounter bodies of water. We evaluate the process of tsunami generation by pyroclastic flow by decomposing the pyroclastic flow into two components, the dense underflow portion, which we term the pyroclastic debris flow, and the plume, which includes the surge and coignimbrite ash cloud parts of the flow. We consider five possible wave generation mechanisms. These mechanisms consist of steam explosion, pyroclastic debris flow, plume pressure, plume shear, and pressure impulse wave generation. Our theoretical analysis of tsunami generation by these mechanisms provides an estimate of tsunami features such as a characteristic wave amplitude and wavelength. We find that in most situations, tsunami generation is dominated by the pyroclastic debris flow component of a pyroclastic flow. This work presents information sufficient to construct tsunami sources for an arbitrary pyroclastic flow interacting with most bodies of water. Copyright 2003 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Fritz, Hermann M.
2014-05-01
The 10th anniversary of the 2004 Indian Ocean tsunami recalls the advent of tsunami video recordings by eyewitnesses. The tsunami of December 26, 2004 severely affected Banda Aceh along the North tip of Sumatra (Indonesia) at a distance of 250 km from the epicenter of the Magnitude 9.0 earthquake. The tsunami flow velocity analysis focused on two survivor videos recorded within Banda Aceh more than 3km from the open ocean. The exact locations of the tsunami eyewitness video recordings were revisited to record camera calibration ground control points. The motion of the camera during the recordings was determined. The individual video images were rectified with a direct linear transformation (DLT). Finally a cross-correlation based particle image velocimetry (PIV) analysis was applied to the rectified video images to determine instantaneous tsunami flow velocity fields. The measured overland tsunami flow velocities were within the range of 2 to 5 m/s in downtown Banda Aceh, Indonesia. The March 11, 2011, magnitude Mw 9.0 earthquake off the coast of Japan caused catastrophic damage and loss of life. Fortunately many survivors at evacuation sites recorded countless tsunami videos with unprecedented spatial and temporal coverage. Numerous tsunami reconnaissance trips were conducted in Japan. This report focuses on the surveys at selected tsunami eyewitness video recording locations along Japan's Sanriku coast and the subsequent tsunami video image analysis. Locations with high quality survivor videos were visited, eyewitnesses interviewed and detailed site topography scanned with a terrestrial laser scanner (TLS). The analysis of the tsunami videos followed the four step procedure developed for the analysis of 2004 Indian Ocean tsunami videos at Banda Aceh. Tsunami currents up to 11 m/s were measured in Kesennuma Bay making navigation impossible. Further tsunami height and runup hydrographs are derived from the videos to discuss the complex effects of coastal structures on inundation and outflow flow velocities. Tsunamis generated by landslides and volcanic island collapses account for some of the most catastrophic events. On July 10, 1958, an earthquake Mw 8.3 along the Fairweather fault triggered a major subaerial landslide into Gilbert Inlet at the head of Lituya Bay on the south coast of Alaska. The landslide impacted the water at high speed generating a giant tsunami and the highest wave runup in recorded history. This event was observed by eyewitnesses on board the sole surviving fishing boat, which managed to ride the tsunami. The mega-tsunami runup to an elevation of 524 m caused total forest destruction and erosion down to bedrock on a spur ridge in direct prolongation of the slide axis. A cross-section of Gilbert Inlet was rebuilt in a two dimensional physical laboratory model. Particle image velocimetry (PIV) provided instantaneous velocity vector fields of decisive initial phase with landslide impact and wave generation as well as the runup on the headland. Three dimensional source and runup scenarios based on real world events are physically modeled in the NEES tsunami wave basin (TWB) at Oregon State University (OSU). The measured landslide and tsunami data serve to validate and advance numerical landslide tsunami models. This lecture encompasses multi-hazard aspects and implications of recent tsunami and cyclonic events around the world such as the November 2013 Typhoon Haiyan (Yolanda) in the Philippines.
NASA Astrophysics Data System (ADS)
Harada, K.; Takahashi, T.; Yamamoto, A.; Sakuraba, M.; Nojima, K.
2017-12-01
An important aim of the study of tsunami deposits is to estimate the characteristics of past tsunamis from the tsunami deposits found locally. Based on the tsunami characteristics estimated from tsunami deposit, it is possible to examine tsunami risk assessment in coastal areas. It is considered that tsunami deposits are formed based on the dynamic correlation between tsunami's hydraulic values, sediment particle size, topography, etc. However, it is currently not enough to evaluate the characteristics of tsunamis from tsunami deposits. This is considered to be one of the reasons that the understanding of the formation process of tsunami deposits is not sufficiently understood. In this study, we analyze the measurement results of hydraulic experiment (Yamamoto et al., 2016) and focus on the formation process and distribution of tsunami deposits. Hydraulic experiment was conducted with two-dimensional water channel with a slope. Tsunami was inputted as a bore wave flow. The moving floor section was installed as a seabed slope connecting to shoreline and grain size distribution was set some cases. The water level was measured using ultrasonic displacement gauges, and the flow velocity was measured using propeller current meters and an electromagnetic current meter. The water level and flow velocity was measured at some points. The distribution of tsunami deposit was measured from shoreline to run-up limit on the slope. Yamamoto et al. (2016) reported the measurement results on the distribution of tsunami deposit with wave height and sand grain size. Therefore, in this study, hydraulic analysis of tsunami sediment formation process was examined based on the measurement data. Time series fluctuation of hydraulic parameters such as Froude number, Shields number, Rouse number etc. was calculated to understand on the formation process of tsunami deposit. In the front part of the tsunami, the flow velocity take strong flow from shoreline to around the middle of slope. From the measurement result in this time, it is considered that the dominant process of deposit formation is suspended state. At the run-up limit where the flow velocity decreases, the sediment moves in bedload state. As a result, the amount of sediment transport near the run-up limit changes under the influence of particle size.
NASA Astrophysics Data System (ADS)
Velioglu Sogut, Deniz; Yalciner, Ahmet Cevdet
2018-06-01
Field observations provide valuable data regarding nearshore tsunami impact, yet only in inundation areas where tsunami waves have already flooded. Therefore, tsunami modeling is essential to understand tsunami behavior and prepare for tsunami inundation. It is necessary that all numerical models used in tsunami emergency planning be subject to benchmark tests for validation and verification. This study focuses on two numerical codes, NAMI DANCE and FLOW-3D®, for validation and performance comparison. NAMI DANCE is an in-house tsunami numerical model developed by the Ocean Engineering Research Center of Middle East Technical University, Turkey and Laboratory of Special Research Bureau for Automation of Marine Research, Russia. FLOW-3D® is a general purpose computational fluid dynamics software, which was developed by scientists who pioneered in the design of the Volume-of-Fluid technique. The codes are validated and their performances are compared via analytical, experimental and field benchmark problems, which are documented in the ``Proceedings and Results of the 2011 National Tsunami Hazard Mitigation Program (NTHMP) Model Benchmarking Workshop'' and the ``Proceedings and Results of the NTHMP 2015 Tsunami Current Modeling Workshop". The variations between the numerical solutions of these two models are evaluated through statistical error analysis.
A simple model for calculating tsunami flow speed from tsunami deposits
Jaffe, B.E.; Gelfenbuam, G.
2007-01-01
This paper presents a simple model for tsunami sedimentation that can be applied to calculate tsunami flow speed from the thickness and grain size of a tsunami deposit (the inverse problem). For sandy tsunami deposits where grain size and thickness vary gradually in the direction of transport, tsunami sediment transport is modeled as a steady, spatially uniform process. The amount of sediment in suspension is assumed to be in equilibrium with the steady portion of the long period, slowing varying uprush portion of the tsunami. Spatial flow deceleration is assumed to be small and not to contribute significantly to the tsunami deposit. Tsunami deposits are formed from sediment settling from the water column when flow speeds on land go to zero everywhere at the time of maximum tsunami inundation. There is little erosion of the deposit by return flow because it is a slow flow and is concentrated in topographic lows. Variations in grain size of the deposit are found to have more effect on calculated tsunami flow speed than deposit thickness. The model is tested using field data collected at Arop, Papua New Guinea soon after the 1998 tsunami. Speed estimates of 14??m/s at 200??m inland from the shoreline compare favorably with those from a 1-D inundation model and from application of Bernoulli's principle to water levels on buildings left standing after the tsunami. As evidence that the model is applicable to some sandy tsunami deposits, the model reproduces the observed normal grading and vertical variation in sorting and skewness of a deposit formed by the 1998 tsunami.
NASA Astrophysics Data System (ADS)
Suppasri, A.; Charvet, I.; Leelawat, N.; Fukutani, Y.; Muhari, A.; Futami, T.; Imamura, F.
2014-12-01
This study focused in turn on detailed data of buildings and boats damage caused by the 2011 tsunami in order to understand its main causes and provide damage probability estimates. Tsunami-induced building damage data was collected from field surveys, and includes inundation depth, building material, number of stories and occupancy type for more than 80,000 buildings. Numerical simulations with high resolution bathymetry and topography data were conducted to obtain characteristic tsunami measures such as flow velocity. These data were analyzed using advanced statistical methods, ordinal regression analysis to create not only empirical 2D tsunami fragility curves, but also 3D tsunami fragility surfaces for the first time. The effect of floating debris was also considered, by using a binary indicator of debris impact based on the proximity of a structure from a debris source (i.e. washed away building). Both the 2D and 3D fragility analyses provided results for each different building damage level, and different topography. While 2D fragility curves provide easily interpretable results relating tsunami flow depth to damage probability for different damage levels, 3D fragility surfaces allow for several influential tsunami parameters to be taken into account thus reduce uncertainty in the probability estimations. More than 20,000 damaged boats were used in the analysis similar to the one carried out on the buildings. Detailed data for each boat comprises information on the damage ratio (paid value over insured value), tonnage, engine type, material type and damage classification. The 2D and 3D fragility analyses were developed using representative tsunami heights for each port obtained from field surveys and flow velocities obtained from the aforementioned simulations. The results are currently being adapted for practical disaster mitigation. They are being integrated with the probabilistic tsunami hazard analysis, in order to create offshore and onshore probabilistic hazard maps. Through the GPS and embedded calculation function based on the aforementioned fragility results, these applications can be used in the field for a quick estimation of possible building damage, as well as a decision support system for fishermen (whether or not they should move their boats to the deep sea upon tsunami arrival).
NASA Astrophysics Data System (ADS)
Fritz, H. M.; Phillips, D. A.; Okayasu, A.; Shimozono, T.; Liu, H.; Takeda, S.; Mohammed, F.; Skanavis, V.; Synolakis, C. E.; Takahashi, T.
2012-12-01
The March 11, 2011, magnitude Mw 9.0 earthquake off the coast of the Tohoku region caused catastrophic damage and loss of life in Japan. The mid-afternoon tsunami arrival combined with survivors equipped with cameras on top of vertical evacuation buildings provided spontaneous spatially and temporally resolved inundation recordings. This report focuses on the surveys at 9 tsunami eyewitness video recording locations in Myako, Kamaishi, Kesennuma and Yoriisohama along Japan's Sanriku coast and the subsequent video image calibration, processing, tsunami hydrograph and flow velocity analysis. Selected tsunami video recording sites were explored, eyewitnesses interviewed and some ground control points recorded during the initial tsunami reconnaissance in April, 2011. A follow-up survey in June, 2011 focused on terrestrial laser scanning (TLS) at locations with high quality eyewitness videos. We acquired precise topographic data using TLS at the video sites producing a 3-dimensional "point cloud" dataset. A camera mounted on the Riegl VZ-400 scanner yields photorealistic 3D images. Integrated GPS measurements allow accurate georeferencing. The original video recordings were recovered from eyewitnesses and the Japanese Coast Guard (JCG). The analysis of the tsunami videos follows an adapted four step procedure originally developed for the analysis of 2004 Indian Ocean tsunami videos at Banda Aceh, Indonesia (Fritz et al., 2006). The first step requires the calibration of the sector of view present in the eyewitness video recording based on ground control points measured in the LiDAR data. In a second step the video image motion induced by the panning of the video camera was determined from subsequent images by particle image velocimetry (PIV) applied to fixed objects. The third step involves the transformation of the raw tsunami video images from image coordinates to world coordinates with a direct linear transformation (DLT) procedure. Finally, the instantaneous tsunami surface current and flooding velocity vector maps are determined by applying the digital PIV analysis method to the rectified tsunami video images with floating debris clusters. Tsunami currents up to 11 m/s per second were measured in Kesennuma Bay making navigation impossible. Tsunami hydrographs are derived from the videos based on water surface elevations at surface piercing objects identified in the acquired topographic TLS data. Apart from a dominant tsunami crest the hydrograph at Kamaishi also reveals a subsequent draw down to -10m exposing the harbor bottom. In some cases ship moorings resist the main tsunami crest only to be broken by the extreme draw down and setting vessels a drift for hours. Further we discuss the complex effects of coastal structures on inundation and outflow hydrographs and flow velocities.;
NASA Astrophysics Data System (ADS)
Fritz, Hermann M.; Phillips, David A.; Okayasu, Akio; Shimozono, Takenori; Liu, Haijiang; Takeda, Seiichi; Mohammed, Fahad; Skanavis, Vassilis; Synolakis, Costas E.; Takahashi, Tomoyuki
2013-04-01
The March 11, 2011, magnitude Mw 9.0 earthquake off the Tohoku coast of Japan caused catastrophic damage and loss of life to a tsunami aware population. The mid-afternoon tsunami arrival combined with survivors equipped with cameras on top of vertical evacuation buildings provided fragmented spatially and temporally resolved inundation recordings. This report focuses on the surveys at 9 tsunami eyewitness video recording locations in Myako, Kamaishi, Kesennuma and Yoriisohama along Japan's Sanriku coast and the subsequent video image calibration, processing, tsunami hydrograph and flow velocity analysis. Selected tsunami video recording sites were explored, eyewitnesses interviewed and some ground control points recorded during the initial tsunami reconnaissance in April, 2011. A follow-up survey in June, 2011 focused on terrestrial laser scanning (TLS) at locations with high quality eyewitness videos. We acquired precise topographic data using TLS at the video sites producing a 3-dimensional "point cloud" dataset. A camera mounted on the Riegl VZ-400 scanner yields photorealistic 3D images. Integrated GPS measurements allow accurate georeferencing. The original video recordings were recovered from eyewitnesses and the Japanese Coast Guard (JCG). The analysis of the tsunami videos follows an adapted four step procedure originally developed for the analysis of 2004 Indian Ocean tsunami videos at Banda Aceh, Indonesia (Fritz et al., 2006). The first step requires the calibration of the sector of view present in the eyewitness video recording based on ground control points measured in the LiDAR data. In a second step the video image motion induced by the panning of the video camera was determined from subsequent images by particle image velocimetry (PIV) applied to fixed objects. The third step involves the transformation of the raw tsunami video images from image coordinates to world coordinates with a direct linear transformation (DLT) procedure. Finally, the instantaneous tsunami surface current and flooding velocity vector maps are determined by applying the digital PIV analysis method to the rectified tsunami video images with floating debris clusters. Tsunami currents up to 11 m/s were measured in Kesennuma Bay making navigation impossible (Fritz et al., 2012). Tsunami hydrographs are derived from the videos based on water surface elevations at surface piercing objects identified in the acquired topographic TLS data. Apart from a dominant tsunami crest the hydrograph at Kamaishi also reveals a subsequent draw down to minus 10m exposing the harbor bottom. In some cases ship moorings resist the main tsunami crest only to be broken by the extreme draw down and setting vessels a drift for hours. Further we discuss the complex effects of coastal structures on inundation and outflow hydrographs and flow velocities. Lastly a perspective on the recovery and reconstruction process is provided based on numerous revisits of identical sites between April 2011 and July 2012.
NASA Astrophysics Data System (ADS)
Kalligeris, Nikos; Lynett, Patrick
2017-11-01
Numerous historical accounts describe the formation of ``whirpools'' inside ports and harbors during tsunami events, causing port operation disruptions. Videos from the Japan 2011 tsunami revealed complex nearshore flow patters, resulting from the interaction of tsunami-induced currents with the man-made coastline, and the generation of large eddies (or turbulent coherent structures) in numerous ports and harbors near the earthquake epicenter. The aim of this work is to study the generation and evolution of tsunami-induced turbulent coherent structures (TCS) in a well-controlled environment using realistic scaling. A physical configuration is created in the image of a port entrance at a scale of 1:27 and a small-amplitude, long period wave creates a transient flow through the asymmetric harbor channel. A separated region forms, which coupled with the transient flow, leads to the formation of a stable monopolar TCS. The surface flow is examined through mono- and stereo-PTV techniques to extract surface velocity vectors. Surface velocity maps and vortex flow profiles are used to study the experimental TCS generation and evolution, and characterize the TCS structure. Analytical tools are used to describe the TCS growth rate and kinetic energy decay. This work was funded by the National Science Foundation NEES Research program, with Award Number 1135026.
Unique and remarkable dilatometer measurements of pyroclastic flow generated tsunamis
NASA Astrophysics Data System (ADS)
Mattioli, G. S.; Voight, B.; Linde, A. T.; Sacks, I. S.; Watts, P.; Widiwijayanti, C.; Young, S. R.; Hidayat, D.; Elsworth, D.; Malin, P. E.; Shalev, E.; van Boskirk, E.; Johnston, W.; Sparks, R. S. J.; Neuberg, J.; Bass, V.; Dunkley, P.; Herd, R.; Syers, T.; Williams, P.; Williams, D.
2007-01-01
Pyroclastic flows entering the sea may cause tsunamis at coastal volcanoes worldwide, but geophysically monitored field occurrences are rare. We document the process of tsunami generation during a prolonged gigantic collapse of the Soufrière Hills volcano lava dome on Montserrat on 12 13 July 2003. Tsunamis were initiated by large-volume pyroclastic flows entering the ocean. We reconstruct the collapse from seismic records and report unique and remarkable borehole dilatometer observations, which recorded clearly the passage of wave packets at periods of 250 500 s over several hours. Strain signals are consistent in period and amplitude with water loading from passing tsunamis; each wave packet can be correlated with individual pyroclastic flow packages recorded by seismic data, proving that multiple tsunamis were initiated by pyroclastic flows. Any volcano within a few kilometers of water and capable of generating hot pyroclastic flows or cold debris flows with volumes greater than 5 × 106 m3 may generate significant and possibly damaging tsunamis during future eruptions.
NASA Astrophysics Data System (ADS)
Harbitz, C. B.; Frauenfelder, R.; Kaiser, G.; Glimsdal, S.; Sverdrup-thygeson, K.; Løvholt, F.; Gruenburg, L.; Mc Adoo, B. G.
2015-12-01
The 2011 Tōhoku tsunami caused a high number of fatalities and massive destruction. Data collected after the event allow for retrospective analyses. Since 2009, NGI has developed a generic GIS model for local analyses of tsunami vulnerability and mortality risk. The mortality risk convolves the hazard, exposure, and vulnerability. The hazard is represented by the maximum tsunami flow depth (with a corresponding likelihood), the exposure is described by the population density in time and space, while the vulnerability is expressed by the probability of being killed as a function of flow depth and building class. The analysis is further based on high-resolution DEMs. Normally a certain tsunami scenario with a corresponding return period is applied for vulnerability and mortality risk analysis. Hence, the model was first employed for a tsunami forecast scenario affecting Bridgetown, Barbados, and further developed in a forecast study for the city of Batangas in the Philippines. Subsequently, the model was tested by hindcasting the 2009 South Pacific tsunami in American Samoa. This hindcast was based on post-tsunami information. The GIS model was adapted for optimal use of the available data and successfully estimated the degree of mortality.For further validation and development, the model was recently applied in the RAPSODI project for hindcasting the 2011 Tōhoku tsunami in Sendai and Ishinomaki. With reasonable choices of building vulnerability, the estimated expected number of fatalities agree well with the reported death toll. The results of the mortality hindcast for the 2011 Tōhoku tsunami substantiate that the GIS model can help to identify high tsunami mortality risk areas, as well as identify the main risk drivers.The research leading to these results has received funding from CONCERT-Japan Joint Call on Efficient Energy Storage and Distribution/Resilience against Disasters (http://www.concertjapan.eu; project RAPSODI - Risk Assessment and design of Prevention Structures fOr enhanced tsunami DIsaster resilience http://www.ngi.no/en/Project-pages/RAPSODI/), and from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603839 (Project ASTARTE - Assessment, STrategy And Risk reduction for Tsunamis in Europe http://www.astarte-project.eu/).
Reconstructing Tsunami Flow Speed from Sedimentary Deposits
NASA Astrophysics Data System (ADS)
Jaffe, B. E.; Gelfenbaum, G. R.
2014-12-01
Paleotsunami deposits contain information about the flow that created them that can be used to reconstruct tsunami flow speed and thereby improving assessment of tsunami hazard. We applied an inverse tsunami sediment transport model to sandy deposits near Sendai Airport, Japan, that formed during the 11 March 2011 Tohoku-oki tsunami to test model performance and explore the spatial variations in tsunami flow speed. The inverse model assumes the amount of suspended sediment in the water column is in equilibrium with local flow speed and that sediment transport convergences, primarily from bedload transport, do not contribute significantly to formation of the portion of the deposit we identify as formed by sediment settling out of suspension. We interpret massive or inversely graded intervals as forming from sediment transport convergences and do not model them. Sediment falling out of suspension forms a specific type of normal grading, termed 'suspension' grading, where the entire grain size distribution shifts to finer sizes higher up in a deposit. Suspension grading is often observed in deposits of high-energy flows, including turbidity currents and tsunamis. The inverse model calculates tsunami flow speed from the thickness and bulk grain size of a suspension-graded interval. We identified 24 suspension-graded intervals from 7 trenches located near the Sendai Airport from ~250-1350 m inland from the shoreline. Flow speeds were highest ~500 m from the shoreline, landward of the forested sand dunes where the tsunami encountered lower roughness in a low-lying area as it traveled downslope. Modeled tsunami flow speeds range from 2.2 to 9.0 m/s. Tsunami flow speeds are sensitive to roughness, which is unfortunately poorly constrained. Flow speed calculated by the inverse model was similar to those calculated from video taken from a helicopter about 1-2 km inland. Deposit reconstructions of suspension-graded intervals reproduced observed upward shifts in grain size distributions reasonably well. As approaches to estimating paleo-roughness improve, the flow speed and size of paleotsunamis will be better understood and the ability to assess tsunami hazard from paleotsunami deposits will improve.
Validation and Performance Comparison of Numerical Codes for Tsunami Inundation
NASA Astrophysics Data System (ADS)
Velioglu, D.; Kian, R.; Yalciner, A. C.; Zaytsev, A.
2015-12-01
In inundation zones, tsunami motion turns from wave motion to flow of water. Modelling of this phenomenon is a complex problem since there are many parameters affecting the tsunami flow. In this respect, the performance of numerical codes that analyze tsunami inundation patterns becomes important. The computation of water surface elevation is not sufficient for proper analysis of tsunami behaviour in shallow water zones and on land and hence for the development of mitigation strategies. Velocity and velocity patterns are also crucial parameters and have to be computed at the highest accuracy. There are numerous numerical codes to be used for simulating tsunami inundation. In this study, FLOW 3D and NAMI DANCE codes are selected for validation and performance comparison. Flow 3D simulates linear and nonlinear propagating surface waves as well as long waves by solving three-dimensional Navier-Stokes (3D-NS) equations. FLOW 3D is used specificaly for flood problems. NAMI DANCE uses finite difference computational method to solve linear and nonlinear forms of shallow water equations (NSWE) in long wave problems, specifically tsunamis. In this study, these codes are validated and their performances are compared using two benchmark problems which are discussed in 2015 National Tsunami Hazard Mitigation Program (NTHMP) Annual meeting in Portland, USA. One of the problems is an experiment of a single long-period wave propagating up a piecewise linear slope and onto a small-scale model of the town of Seaside, Oregon. Other benchmark problem is an experiment of a single solitary wave propagating up a triangular shaped shelf with an island feature located at the offshore point of the shelf. The computed water surface elevation and velocity data are compared with the measured data. The comparisons showed that both codes are in fairly good agreement with each other and benchmark data. All results are presented with discussions and comparisons. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement No 603839 (Project ASTARTE - Assessment, Strategy and Risk Reduction for Tsunamis in Europe)
On the characteristics of landslide tsunamis
Løvholt, F.; Pedersen, G.; Harbitz, C. B.; Glimsdal, S.; Kim, J.
2015-01-01
This review presents modelling techniques and processes that govern landslide tsunami generation, with emphasis on tsunamis induced by fully submerged landslides. The analysis focuses on a set of representative examples in simplified geometries demonstrating the main kinematic landslide parameters influencing initial tsunami amplitudes and wavelengths. Scaling relations from laboratory experiments for subaerial landslide tsunamis are also briefly reviewed. It is found that the landslide acceleration determines the initial tsunami elevation for translational landslides, while the landslide velocity is more important for impulsive events such as rapid slumps and subaerial landslides. Retrogressive effects stretch the tsunami, and in certain cases produce enlarged amplitudes due to positive interference. In an example involving a deformable landslide, it is found that the landslide deformation has only a weak influence on tsunamigenesis. However, more research is needed to determine how landslide flow processes that involve strong deformation and long run-out determine tsunami generation. PMID:26392615
On the characteristics of landslide tsunamis.
Løvholt, F; Pedersen, G; Harbitz, C B; Glimsdal, S; Kim, J
2015-10-28
This review presents modelling techniques and processes that govern landslide tsunami generation, with emphasis on tsunamis induced by fully submerged landslides. The analysis focuses on a set of representative examples in simplified geometries demonstrating the main kinematic landslide parameters influencing initial tsunami amplitudes and wavelengths. Scaling relations from laboratory experiments for subaerial landslide tsunamis are also briefly reviewed. It is found that the landslide acceleration determines the initial tsunami elevation for translational landslides, while the landslide velocity is more important for impulsive events such as rapid slumps and subaerial landslides. Retrogressive effects stretch the tsunami, and in certain cases produce enlarged amplitudes due to positive interference. In an example involving a deformable landslide, it is found that the landslide deformation has only a weak influence on tsunamigenesis. However, more research is needed to determine how landslide flow processes that involve strong deformation and long run-out determine tsunami generation. © 2015 The Authors.
Tsunamis: Global Exposure and Local Risk Analysis
NASA Astrophysics Data System (ADS)
Harbitz, C. B.; Løvholt, F.; Glimsdal, S.; Horspool, N.; Griffin, J.; Davies, G.; Frauenfelder, R.
2014-12-01
The 2004 Indian Ocean tsunami led to a better understanding of the likelihood of tsunami occurrence and potential tsunami inundation, and the Hyogo Framework for Action (HFA) was one direct result of this event. The United Nations International Strategy for Disaster Risk Reduction (UN-ISDR) adopted HFA in January 2005 in order to reduce disaster risk. As an instrument to compare the risk due to different natural hazards, an integrated worldwide study was implemented and published in several Global Assessment Reports (GAR) by UN-ISDR. The results of the global earthquake induced tsunami hazard and exposure analysis for a return period of 500 years are presented. Both deterministic and probabilistic methods (PTHA) are used. The resulting hazard levels for both methods are compared quantitatively for selected areas. The comparison demonstrates that the analysis is rather rough, which is expected for a study aiming at average trends on a country level across the globe. It is shown that populous Asian countries account for the largest absolute number of people living in tsunami prone areas, more than 50% of the total exposed people live in Japan. Smaller nations like Macao and the Maldives are among the most exposed by population count. Exposed nuclear power plants are limited to Japan, China, India, Taiwan, and USA. On the contrary, a local tsunami vulnerability and risk analysis applies information on population, building types, infrastructure, inundation, flow depth for a certain tsunami scenario with a corresponding return period combined with empirical data on tsunami damages and mortality. Results and validation of a GIS tsunami vulnerability and risk assessment model are presented. The GIS model is adapted for optimal use of data available for each study. Finally, the importance of including landslide sources in the tsunami analysis is also discussed.
Volcanic Tsunami Generation in the Aleutian Arc of Alaska
NASA Astrophysics Data System (ADS)
Waythomas, C. F.; Watts, P.
2003-12-01
Many of the worlds active volcanoes are situated on or near coastlines, and during eruptions the transfer of mass from volcano to sea is a potential source mechanism for tsunamis. Flows of granular material off of volcanoes, such as pyroclastic flow, debris avalanche, and lahar, often deliver large volumes of unconsolidated debris to the ocean that have a large potential tsunami hazard. The deposits of both hot and cold volcanic grain flows produced by eruptions of Aleutian arc volcanoes are exposed at many locations along the coastlines of the Bering Sea, North Pacific Ocean, and Cook Inlet indicating that the flows entered the sea and in some cases may have initiated tsunamis. We evaluate the process of tsunami generation by granular subaerial volcanic flows using examples from Aniakchak volcano in southwestern Alaska, and Augustine volcano in southern Cook Inlet. Evidence for far-field tsunami inundation coincident with a major caldera-forming eruption of Aniakchak volcano ca. 3.5 ka has been described and is the basis for one of our case studies. We perform a numerical simulation of the tsunami using a large volume pyroclastic flow as the source mechanism and compare our results to field measurements of tsunami deposits preserved along the north shore of Bristol Bay. Several attributes of the tsunami simulation, such as water flux and wave amplitude, are reasonable predictors of tsunami deposit thickness and generally agree with the field evidence for tsunami inundation. At Augustine volcano, geological investigations suggest that as many as 14 large volcanic-rock avalanches have reached the sea in the last 2000 years, and a debris avalanche emplaced during the 1883 eruption may have initiated a tsunami observed about 80 km east of the volcano at the village of English Bay (Nanwalek) on the coast of the southern Kenai Peninsula. By analogy with the 1883 event, previous studies concluded that tsunamis could have been generated many times in the past. If so, geological evidence of tsunamis, such as tsunami deposits on land, should be found in the area around Augustine Island. Paradoxically, unequivocal evidence for tsunami inundation has been found. Augustine Volcano is the most historically active volcano in the Cook Inlet region and a future tsunami from the volcano would have devastating consequences to villages, towns, oil-production facilities, and the fishing industry, especially if it occurred at high tide (the tidal range in this area is about 5 m). Numerical simulation experiments of tsunami generation, propagation and inundation using a subaerial debris avalanche source at Augustine volcano indicate only modest wave generation because of the shallow water surrounding the volcano (maximum water depth about 25 m). Lahar flows produced during eruptions at snow and ice clad volcanoes in the Aleutian arc also deliver copious amounts of sediment to the sea. These flows only rarely transform to subaqueous debris flows that may become tsunamigenic. However, the accumulation of loose, unconsolidated sediment on the continental shelf may lead to subaqueous debris flows and landslides if these deposits become mobilized by large earthquakes. Tsunamis produced by this mechanism could potentially reach coastlines all along the Pacific Rim. Finally, recent work in the western Aleutian Islands indicates that many of the island volcanoes in this area have experienced large-scale flank collapse. Because these volcanoes are surrounded by deep water, the tsunami hazard associated with a future sector collapse could be significant.
Case study: Mapping tsunami hazards associated with debris flow into a reservoir
Walder, J.S.; Watts, P.; Waythomas, C.F.
2006-01-01
Debris-flow generated impulse waves (tsunamis) pose hazards in lakes, especially those used for hydropower or recreation. We describe a method for assessing tsunami-related hazards for the case in which inundation by coherent water waves, rather than chaotic splashing, is of primary concern. The method involves an experimentally based initial condition (tsunami source) and a Boussinesq model for tsunami propagation and inundation. Model results are used to create hazard maps that offer guidance for emergency planners and responders. An example application explores tsunami hazards associated with potential debris flows entering Baker Lake, a reservoir on the flanks of the Mount Baker volcano in the northwestern United States. ?? 2006 ASCE.
Simulation of Tsunami Resistance of a Pinus Thunbergii tree in Coastal Forest in Japan
NASA Astrophysics Data System (ADS)
Nanko, K.; Suzuki, S.; Noguchi, H.; Hagino, H.
2015-12-01
Forests reduce fluid force of tsunami, whereas extreme tsunami sometimes breaks down the forest trees. It is difficult to estimate the interactive relationship between the fluid and the trees because fluid deform tree architecture and deformed tree changes flow field. Dynamic tree deformation and fluid behavior should be clarified by fluid-structure interaction analysis. For the initial step, we have developed dynamic simulation of tree sway and breakage caused by tsunami based on a vibrating system with multiple degrees of freedom. The target specie of the simulation was Japanese black pine (pinus thunbergii), which is major specie in the coastal forest to secure livelihood area from the damage by blown sand and salt in Japanese coastal area. For the simulation, a tree was segmented into 0.2 m long circular truncated cones. Turning moment induced by tsunami and self-weight was calculated at each segment bottom. Tree deformation was computed on multi-degree-of-freedom vibration equation. Tree sway was simulated by iterative calculation of the tree deformation with time step 0.05 second with temporally varied flow velocity of tsunami. From the calculation of bending stress and turning moment at tree base, we estimated resistance of a Pinus thunbergii tree from tsunami against tree breakage.
NASA Astrophysics Data System (ADS)
Suppasri, Anawat; Fukui, Kentaro; Yamashita, Kei; Leelawat, Natt; Ohira, Hiroyuki; Imamura, Fumihiko
2018-01-01
Since the two devastating tsunamis in 2004 (Indian Ocean) and 2011 (Great East Japan), new findings have emerged on the relationship between tsunami characteristics and damage in terms of fragility functions. Human loss and damage to buildings and infrastructures are the primary target of recovery and reconstruction; thus, such relationships for offshore properties and marine ecosystems remain unclear. To overcome this lack of knowledge, this study used the available data from two possible target areas (Mangokuura Lake and Matsushima Bay) from the 2011 Japan tsunami. This study has three main components: (1) reproduction of the 2011 tsunami, (2) damage investigation, and (3) fragility function development. First, the source models of the 2011 tsunami were verified and adjusted to reproduce the tsunami characteristics in the target areas. Second, the damage ratio (complete damage) of the aquaculture raft and eelgrass was investigated using satellite images taken before and after the 2011 tsunami through visual inspection and binarization. Third, the tsunami fragility functions were developed using the relationship between the simulated tsunami characteristics and the estimated damage ratio. Based on the statistical analysis results, fragility functions were developed for Mangokuura Lake, and the flow velocity was the main contributor to the damage instead of the wave amplitude. For example, the damage ratio above 0.9 was found to be equal to the maximum flow velocities of 1.3 m s-1 (aquaculture raft) and 3.0 m s-1 (eelgrass). This finding is consistent with the previously proposed damage criterion of 1 m s-1 for the aquaculture raft. This study is the first step in the development of damage assessment and planning for marine products and environmental factors to mitigate the effects of future tsunamis.
NASA Astrophysics Data System (ADS)
Nakamura, Yugo; Nishimura, Yuichi; Putra, Purna Sulastya
2012-12-01
The 2011 Tohoku-oki tsunami caused severe damage to the coastal regions of eastern Japan and left a sediment veneer over affected areas. We discuss differences in depositional characteristics of the 2011 Tohoku-oki tsunami from the viewpoint of the sediment source, coastal topography and flow height. The study area on the Misawa coast, northern Tohoku, includes a 20 km long coastline with sandy beaches, coastal dunes and a gently sloping lowland. This landscape assemblage provides an opportunity to examine the effects of topography on the characteristics of the tsunami deposit. During field surveys conducted from April 10 to May 2, 2011, we described the thickness, facies, and structure of the tsunami deposit. We also collected sand samples at approximately 20 m intervals along 13 shore-perpendicular transects extending up to 550 m inland, for grain size and mineral assemblage analysis. The tsunami flow height was estimated by measuring the elevation of debris found in trees, broken tree limbs, or water marks on buildings. The nature of the coastal lowland affected the flow height and inundation distance. In the southern part of the study area, where there is a narrow, 100 m wide low-lying coastal strip, the run-up height reached 10 m on the landward terrace slopes. To the north, the maximum inundation reached 550 m with a run-up height of 3.2 m on the wider, low-lying coastal topography. The average flow height was 4-5 m. The tsunami eroded coastal dunes and formed small scarps along the coast. Immediately landward of the coastal dunes the tsunami deposit was more than 20 cm thick, but thinned markedly inland from this point. Close to the dunes the deposit was composed largely of medium sand (1-2 Φ) with planar and parallel bedding, but with no apparent upward fining or coarsening. The grain size was similar to that of the coastal dune and we infer that the dunes were the local source material for the tsunami deposit at this point. The mineral assemblage of the tsunami deposit was dominated by orthopyroxene and clinopyroxene and was also similar to the dune and beach sand. At sites more than half the inundation distance inland, the thinner tsunami deposit consisted mainly of fine sand (2.375 Φ) with some upward fining. The difference in grain size and sedimentary characteristics was probably caused by differences in sediment transportation and depositional processes. We infer that the well-sorted, finer sediments were deposited out of suspension, whereas the relatively coarse sands were laid down from traction flows. The depositional characteristics of the 2011 Tohoku-oki tsunami deposit appeared to have been affected mainly by the coastal topography and the extent of erosion at any one point, as opposed to flow height.
Numerical simulation of tsunami generation by cold volcanic mass flows at Augustine Volcano, Alaska
Waythomas, C.F.; Watts, P.; Walder, J.S.
2006-01-01
Many of the world's active volcanoes are situated on or near coastlines. During eruptions, diverse geophysical mass flows, including pyroclastic flows, debris avalanches, and lahars, can deliver large volumes of unconsolidated debris to the ocean in a short period of time and thereby generate tsunamis. Deposits of both hot and cold volcanic mass flows produced by eruptions of Aleutian arc volcanoes are exposed at many locations along the coastlines of the Bering Sea, North Pacific Ocean, and Cook Inlet, indicating that the flows entered the sea and in some cases may have initiated tsunamis. We evaluate the process of tsunami generation by cold granular subaerial volcanic mass flows using examples from Augustine Volcano in southern Cook Inlet. Augustine Volcano is the most historically active volcano in the Cook Inlet region, and future eruptions, should they lead to debris-avalanche formation and tsunami generation, could be hazardous to some coastal areas. Geological investigations at Augustine Volcano suggest that as many as 12-14 debris avalanches have reached the sea in the last 2000 years, and a debris avalanche emplaced during an A.D. 1883 eruption may have initiated a tsunami that was observed about 80 km east of the volcano at the village of English Bay (Nanwalek) on the coast of the southern Kenai Peninsula. Numerical simulation of mass-flow motion, tsunami generation, propagation, and inundation for Augustine Volcano indicate only modest wave generation by volcanic mass flows and localized wave effects. However, for east-directed mass flows entering Cook Inlet, tsunamis are capable of reaching the more populated coastlines of the southwestern Kenai Peninsula, where maximum water amplitudes of several meters are possible.
NASA Astrophysics Data System (ADS)
Fritz, H. M.; Phillips, D. A.; Okayasu, A.; Shimozono, T.; Liu, H.; Takeda, S.; Mohammed, F.; Skanavis, V.; Synolakis, C.; Takahashi, T.
2014-12-01
The 2004 Indian Ocean tsunami marked the advent of survivor videos mainly from tourist areas in Thailand and basin-wide locations. Near-field video recordings on Sumatra's north tip at Banda Aceh were limited to inland areas a few kilometres off the beach (Fritz et al., 2006). The March 11, 2011, magnitude Mw 9.0 earthquake off the Tohoku coast of Japan caused catastrophic damage and loss of life resulting in the costliest natural disaster in recorded history. The mid-afternoon tsunami arrival combined with survivors equipped with cameras on top of vertical evacuation buildings provided numerous inundation recordings with unprecedented spatial and temporal resolution. High quality tsunami video recording sites at Yoriisohama, Kesennuma, Kamaishi and Miyako along Japan's Sanriku coast were surveyed, eyewitnesses interviewed and precise topographic data recorded using terrestrial laser scanning (TLS). The original video recordings were recovered from eyewitnesses and the Japanese Coast Guard (JCG). The analysis of the tsunami videos follows an adapted four step procedure (Fritz et al., 2012). Measured overland flow velocities during tsunami runup exceed 13 m/s at Yoriisohama. The runup hydrograph at Yoriisohama highlights the under sampling at the Onagawa Nuclear Power Plant (NPP) pressure gauge, which skips the shorter period second crest. Combined tsunami and runup hydrographs are derived from the videos based on water surface elevations at surface piercing objects and along slopes identified in the acquired topographic TLS data. Several hydrographs reveal a draw down to minus 10 m after a first wave crest exposing harbor bottoms at Yoriisohama and Kamaishi. In some cases ship moorings resist the main tsunami crest only to be broken by the extreme draw down. A multi-hour ship track for the Asia Symphony with the vessels complete tsunami drifting motion in Kamaishi Bay is recovered from the universal ship borne AIS (Automatic Identification System). Multiple hydrographs corroborate the tsunami propagation through Miyako Bay and up the Hei River. Tsunami outflow currents up to 11 m/s were measured in Kesennuma Bay making navigation impossible. Further we discuss the complex effects of coastal structures on inundation and outflow hydrographs as well as associated flow velocities.
Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples
Morton, Robert A.; Gelfenbaum, Guy; Jaffe, Bruce E.
2007-01-01
Modern subaerial sand beds deposited by major tsunamis and hurricanes were compared at trench, transect, and sub-regional spatial scales to evaluate which attributes are most useful for distinguishing the two types of deposits. Physical criteria that may be diagnostic include: sediment composition, textures and grading, types and organization of stratification, thickness, geometry, and landscape conformity. Published reports of Pacific Ocean tsunami impacts and our field observations suggest that sandy tsunami deposits are generally 30 cm thick, generally extend The distinctions between tsunami and storm deposits are related to differences in the hydrodynamics and sediment-sorting processes during transport. Tsunami deposition results from a few high-velocity, long-period waves that entrain sediment from the shoreface, beach, and landward erosion zone. Tsunamis can have flow depths greater than 10 m, transport sediment primarily in suspension, and distribute the load over a broad region where sediment falls out of suspension when flow decelerates. In contrast, storm inundation generally is gradual and prolonged, consisting of many waves that erode beaches and dunes with no significant overland return flow until after the main flooding. Storm flow depths are commonly
NOAA Propagation Database Value in Tsunami Forecast Guidance
NASA Astrophysics Data System (ADS)
Eble, M. C.; Wright, L. M.
2016-02-01
The National Oceanic and Atmospheric Administration (NOAA) Center for Tsunami Research (NCTR) has developed a tsunami forecasting capability that combines a graphical user interface with data ingestion and numerical models to produce estimates of tsunami wave arrival times, amplitudes, current or water flow rates, and flooding at specific coastal communities. The capability integrates several key components: deep-ocean observations of tsunamis in real-time, a basin-wide pre-computed propagation database of water level and flow velocities based on potential pre-defined seismic unit sources, an inversion or fitting algorithm to refine the tsunami source based on the observations during an event, and tsunami forecast models. As tsunami waves propagate across the ocean, observations from the deep ocean are automatically ingested into the application in real-time to better define the source of the tsunami itself. Since passage of tsunami waves over a deep ocean reporting site is not immediate, we explore the value of the NOAA propagation database in providing placeholder forecasts in advance of deep ocean observations. The propagation database consists of water elevations and flow velocities pre-computed for 50 x 100 [km] unit sources in a continuous series along all known ocean subduction zones. The 2011 Japan Tohoku tsunami is presented as the case study
Tsunami Simulators in Physical Modelling - Concept to Practical Solutions
NASA Astrophysics Data System (ADS)
Chandler, Ian; Allsop, William; Robinson, David; Rossetto, Tiziana; McGovern, David; Todd, David
2017-04-01
Whilst many researchers have conducted simple 'tsunami impact' studies, few engineering tools are available to assess the onshore impacts of tsunami, with no agreed methods available to predict loadings on coastal defences, buildings or related infrastructure. Most previous impact studies have relied upon unrealistic waveforms (solitary or dam-break waves and bores) rather than full-duration tsunami waves, or have used simplified models of nearshore and over-land flows. Over the last 10+ years, pneumatic Tsunami Simulators for the hydraulic laboratory have been developed into an exciting and versatile technology, allowing the forces of real-world tsunami to be reproduced and measured in a laboratory environment for the first time. These devices have been used to model generic elevated and N-wave tsunamis up to and over simple shorelines, and at example coastal defences and infrastructure. They have also reproduced full-duration tsunamis including Mercator 2004 and Tohoku 2011, both at 1:50 scale. Engineering scale models of these tsunamis have measured wave run-up on simple slopes, forces on idealised sea defences, pressures / forces on buildings, and scour at idealised buildings. This presentation will describe how these Tsunami Simulators work, demonstrate how they have generated tsunami waves longer than the facilities within which they operate, and will present research results from three generations of Tsunami Simulators. Highlights of direct importance to natural hazard modellers and coastal engineers include measurements of wave run-up levels, forces on single and multiple buildings and comparison with previous theoretical predictions. Multiple buildings have two malign effects. The density of buildings to flow area (blockage ratio) increases water depths and flow velocities in the 'streets'. But the increased building densities themselves also increase the cost of flow per unit area (both personal and monetary). The most recent study with the Tsunami Simulators therefore focussed on the influence of multiple buildings (up to 4 rows) which showed (for instance) that the greatest forces can act on the landward (not seaward) rows of buildings. Studies in the 70m long, 4m wide main channel of the Fast Flow Facility on tsunami defence structures have also measured forces on buildings in the lee of a failed defence wall and tsunami induced scour. Supporting presentations at this conference: McGovern et al on tsunami induced scour at coastal structures and Foster et al on building loads.
NASA Astrophysics Data System (ADS)
Geshi, Nobuo; Maeno, Fukashi; Nakagawa, Shojiro; Naruo, Hideto; Kobayashi, Tetsuo
2017-11-01
Timing and mechanism of volcanic tsunamis will be a key to understand the dynamics of large-scale submarine explosive volcanism. Tsunami deposits associated with the VEI 7 eruption of the Kikai Caldera at 7.3 ka are found in the Yakushima and Kuchinoerabujima Islands, 40 km south -southeast of the caldera rim. The tsunami deposits distribute along the rivers in their northern coast up to 4.5 km from the river exit and up to 50 m above the present sea level. The tsunami deposits in the Yakushima area consist of pumice-bearing gravels in the lower part of the section (Unit I) and pumiceous conglomerate in the upper part (Unit II). The presence of rounded pebbles of sedimentary rocks, which characterize the beach deposit, indicates a run-up current from the coastal area. The rip-up clasts of the underlying paleosol in Unit I show strong erosion during the invasion of tsunami. Compositional similarity between the pumices in the tsunami deposit and the juvenile materials erupted in the early phase of the Akahoya eruption indicates the formation of tsunami deposit during the early phase of the eruption, which produced the initial Plinian pumice fall and the lower half of the Koya pyroclastic flow. Presence of the dense volcanic components (obsidians and lava fragments) besides pumices in the tsunami deposit supports that they were carried by the Koya pyroclastic flow, and not the pumices floating on the sea surface. Sequential relationship between the Koya pyroclastic flow and the tsunami suggests that the emplacement of the pyroclastic flow into the sea surrounding the caldera is the most probable mechanism of the tsunami.
NASA Astrophysics Data System (ADS)
Gonzalez Vida, J. M., Sr.; Macias Sanchez, J.; Castro, M. J.; Ortega, S.
2015-12-01
Model ability to compute and predict tsunami flow velocities is of importance in risk assessment and hazard mitigation. Substantial damage can be produced by high velocity flows, particularly in harbors and bays, even when the wave height is small. Besides, an accurate simulation of tsunami flow velocities and accelerations is fundamental for advancing in the study of tsunami sediment transport. These considerations made the National Tsunami Hazard Mitigation Program (NTHMP) proposing a benchmark exercise focused on modeling and simulating tsunami currents. Until recently, few direct measurements of tsunami velocities were available to compare and to validate model results. After Tohoku 2011 many current meters measurement were made, mainly in harbors and channels. In this work we present a part of the contribution made by the EDANYA group from the University of Malaga to the NTHMP workshop organized at Portland (USA), 9-10 of February 2015. We have selected three out of the five proposed benchmark problems. Two of them consist in real observed data from the Tohoku 2011 event, one at Hilo Habour (Hawaii) and the other at Tauranga Bay (New Zealand). The third one consists in laboratory experimental data for the inundation of Seaside City in Oregon. For this model validation the Tsunami-HySEA model, developed by EDANYA group, was used. The overall conclusion that we could extract from this validation exercise was that the Tsunami-HySEA model performed well in all benchmark problems proposed. The greater spatial variability in tsunami velocity than wave height makes it more difficult its precise numerical representation. The larger variability in velocities is likely a result of the behaviour of the flow as it is channelized and as it flows around bathymetric highs and structures. In the other hand wave height do not respond as strongly to chanelized flow as current velocity.
NASA Astrophysics Data System (ADS)
Koshimura, S.; Hino, R.; Ohta, Y.; Kobayashi, H.; Musa, A.; Murashima, Y.
2014-12-01
With use of modern computing power and advanced sensor networks, a project is underway to establish a new system of real-time tsunami inundation forecasting, damage estimation and mapping to enhance society's resilience in the aftermath of major tsunami disaster. The system consists of fusion of real-time crustal deformation monitoring/fault model estimation by Ohta et al. (2012), high-performance real-time tsunami propagation/inundation modeling with NEC's vector supercomputer SX-ACE, damage/loss estimation models (Koshimura et al., 2013), and geo-informatics. After a major (near field) earthquake is triggered, the first response of the system is to identify the tsunami source model by applying RAPiD Algorithm (Ohta et al., 2012) to observed RTK-GPS time series at GEONET sites in Japan. As performed in the data obtained during the 2011 Tohoku event, we assume less than 10 minutes as the acquisition time of the source model. Given the tsunami source, the system moves on to running tsunami propagation and inundation model which was optimized on the vector supercomputer SX-ACE to acquire the estimation of time series of tsunami at offshore/coastal tide gauges to determine tsunami travel and arrival time, extent of inundation zone, maximum flow depth distribution. The implemented tsunami numerical model is based on the non-linear shallow-water equations discretized by finite difference method. The merged bathymetry and topography grids are prepared with 10 m resolution to better estimate the tsunami inland penetration. Given the maximum flow depth distribution, the system performs GIS analysis to determine the numbers of exposed population and structures using census data, then estimates the numbers of potential death and damaged structures by applying tsunami fragility curve (Koshimura et al., 2013). Since the tsunami source model is determined, the model is supposed to complete the estimation within 10 minutes. The results are disseminated as mapping products to responders and stakeholders, e.g. national and regional municipalities, to be utilized for their emergency/response activities. In 2014, the system is verified through the case studies of 2011 Tohoku event and potential earthquake scenarios along Nankai Trough with regard to its capability and robustness.
NASA Astrophysics Data System (ADS)
Imai, K.; Sugawara, D.; Takahashi, T.
2017-12-01
A large flow caused by tsunami transports sediments from beach and forms tsunami deposits in land and coastal lakes. A tsunami deposit has been found in their undisturbed on coastal lakes especially. Okamura & Matsuoka (2012) found some tsunami deposits in the field survey of coastal lakes facing to the Nankai trough, and tsunami deposits due to the past eight Nankai Trough megathrust earthquakes they identified. The environment in coastal lakes is stably calm and suitable for tsunami deposits preservation compared to other topographical conditions such as plains. Therefore, there is a possibility that the recurrence interval of megathrust earthquakes and tsunamis will be discussed with high resolution. In addition, it has been pointed out that small events that cannot be detected in plains could be separated finely (Sawai, 2012). Various aspects of past tsunami is expected to be elucidated, in consideration of topographical conditions of coastal lakes by using the relationship between the erosion-and-sedimentation process of the lake bottom and the external force of tsunami. In this research, numerical examination based on tsunami sediment transport model (Takahashi et al., 1999) was carried out on the site Ryujin-ike pond of Ohita, Japan where tsunami deposit was identified, and deposit migration analysis was conducted on the tsunami deposit distribution process of historical Nankai Trough earthquakes. Furthermore, examination of tsunami source conditions is possibly investigated by comparison studies of the observed data and the computation of tsunami deposit distribution. It is difficult to clarify details of tsunami source from indistinct information of paleogeographical conditions. However, this result shows that it can be used as a constraint condition of the tsunami source scale by combining tsunami deposit distribution in lakes with computation data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pudasaini, Shiva P.; Miller, Stephen A.
The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include amore » dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the submarine debris speed can be faster than the tsunami speed. This information can be useful for early warning strategies in the coastal regions. These findings substantially increase our understanding of complex multi-phase systems and multi-physics and flows, and allows for the proper modeling of landslide and debris induced tsunami, the dynamics of turbidity currents and sediment transport, and the associated applications to hazard mitigation, geomorphology and sedimentology.« less
Pedestrian flow-path modeling to support tsunami-evacuation planning
NASA Astrophysics Data System (ADS)
Wood, N. J.; Jones, J. M.; Schmidtlein, M.
2015-12-01
Near-field tsunami hazards are credible threats to many coastal communities throughout the world. Along the U.S. Pacific Northwest coast, low-lying areas could be inundated by a series of catastrophic tsunamis potentially arriving in a matter of minutes following a Cascadia subduction zone (CSZ) earthquake. We developed a geospatial-modeling method for characterizing pedestrian-evacuation flow paths and evacuation basins to support evacuation and relief planning efforts for coastal communities in this region. We demonstrate this approach using the coastal communities of Aberdeen, Hoquiam, and Cosmopolis in southwestern Grays Harbor County, Washington (USA), where previous research suggests approximately 20,500 people (99% of the residents in tsunami-hazard zones) will likely have enough time to evacuate before tsunami-wave arrival. Geospatial, anisotropic, path distance models were developed to map the most efficient pedestrian paths to higher ground from locations within the tsunami-hazard zone. This information was then used to identify evacuation basins, outlining neighborhoods sharing a common evacuation pathway to safety. We then estimated the number of people traveling along designated evacuation pathways and arriving at pre-determined safe assembly areas, helping determine shelter demand and relief support (e.g., for elderly individuals or tourists). Finally, we assessed which paths may become inaccessible due to earthquake-induced ground failures, a factor which may impact an individual's success in reaching safe ground. The presentation will include a discussion of the implications of our analysis for developing more comprehensive coastal community tsunami-evacuation planning strategies worldwide.
NASA Astrophysics Data System (ADS)
Jaffe, B. E.; Richmond, B. M.; Gelfenbaum, G. R.; Watt, S.; Apotsos, A. A.; Buckley, M. L.; Dudley, W. C.; Peck, B.
2009-12-01
The 29 September 2009 tsunami caused 181 fatalities and displaced more than 5000 people on the islands of Samoa, American Samoa, and Tonga. This is the first tsunami to cause significant damage and fatalities on U.S. soil in more than 30 years. Scientists from around the world quickly mobilized to help document the tsunami water levels before this ephemeral data was forever lost as recovery activities and natural processes overtook the effected area. A USGS team collected data in American Samoa from October 6-22 and November 5-12, 2009. The tsunami was large, reaching elevations of greater than 15 m, however wave heights and devastation varied from village to village in American Samoa. Even within villages, some structures were completely destroyed, some flooded and left standing, and others barely touched. Wave heights, flow depths, runup heights, inundation distances, and flow directions were collected for use in ground-truthing inundation models. The team also collected nearshore bathymetry, topography and reef flat elevation, sediment samples, and documented the distribution and characteristics of both sand and boulder deposits. Eyewitness accounts of the tsunami were also videotaped. One striking aspect of this tsunami was the abundance of indicators of strong return flow. For example at Poloa in the northwest of Tutuila, where the runup was greater than 11 m along a 300-m stretch of coast and flow depths exceeded 4 m, the coral reef flat was strewn with debris including chairs, desks, and books from a school. On land, River channels were excavated and new channels formed as return flow scoured sediment and transported it offshore. Possible causes for the strong return flow and the relation between the stength of the return flow, inundation distance, and runup in American Samoa are presented. These relationships and others based on data collected by field survey teams will ultimately reduce loss of life and destruction from tsunamis in the Pacific and elsewhere.
NASA Astrophysics Data System (ADS)
Marras, Simone; Suckale, Jenny; Lunghino, Brent; Giraldo, Francis X.; Constantinescu, Emil
2016-04-01
From the now common idea that vegetated shores may reduce the power of a destructive storm surge, an increasing number of coastal communities around the world are extending this thinking to the design of coastal parks as a way to limit the impact of a tsunami. Tsunamis and storm surges are significantly different in nature and behavior, and it is implausible that vegetation alone could act as a tsunami mitigation tool. A more comprehensive approach relies on the installation of vegetated, scattered mitigation hills in front of the shore to deviate the incoming tsunami wave instead. The analysis of how natural obstacles affect non-linear tsunami waves is still very limited and consists mostly of one-dimensional studies (e.g., [1, 2]). To that end, this work aims to extend the analysis of the interaction of waves of different shapes (solitary wave, N-wave), sizes (amplitude and wave length), and configurations with large obstacles to two-dimensional flows. The following metrics are used for a quantification of the results: 1) tsunami run-up and run-down and 2) a measure of channelization (via the flow kinetic energy and discharge). First, preliminary results show that the configuration of the obstacles is consequential as long as the amplitude of the incoming wave is large enough relative to the obstacles. In second instance, we also observed that the channelization of the flow between two neighboring obstacles may not be greatly affected solely by the distance between obstacles, but must be analyzed in relationship to the initial wave/wave train. This study is based on the numerical solution of the viscous shallow water equations via high order discontinuous finite elements method (DG) using a quadrilateral version of the model described in [3] and with fully implicit time integration [4]. Large and relatively massive hills appear to be a better solution than any offshore concrete walls, which have shown to possibly enhance the tsunami catastrophic power rather than reducing it. Nevertheless, without a thorough understanding of the behavior of non-linear waves when they approach coastal configurations such as hills, coastal parks may still be far from a safe reality. References [1] P. Lynett (2007) "Effect of shallow water obstruction on long wave run-up and overland flow velocity" J. Waterway, Port, Coastal, Ocean Engrg. 136:455-462 [2] G. F. Carrier, T. T. Wu, H. Yeh (2003) "Tsunami run-up and draw-down on a plane beach" J. Fluid Mech. 475:79-99. [3] F. X. Giraldo and M. Restelli (2010) "High-order semi- implicit time-integrators for a triangular discontinuous Galerkin oceanic shallow water model" Int. J. Numer. Methods Fluids, 63:1077-1102. [4] F X. Giraldo, J F.. Kelly, and E. Constantinescu. "Implicit-explicit formulations of a three-dimensional Nonhydrostatic Unified Model of the Atmosphere (NUMA)" SIAM J. Sci. Comput., 35:1162-1194, 2013.
Geomorphic impacts of the 2011 tsunami on the lower reaches of the R. Natori, northeast Japan
NASA Astrophysics Data System (ADS)
Shimazu, H.
2012-04-01
The tsunami caused by "the 2011 off the Pacific coast of Tohoku Earthquake" attacked Japan's east coast and inundated a large extent of the lowlands. The strong flood flow went upstream in the lower reaches of the rivers. The lower reaches of the rivers in Japan usually have unprotected dry riverbeds separated by dykes from floodplains where people live. The tsunami went upstream not only in the channels but also in the dry riverbeds. There is 1 kilometers wide unprotected dry riverbed in the lower reaches of the R. Natori, northeast Japan and they were used for vegetable farmlands. This study aims to discuss the geomorphic impacts of the tsunami on the dry riverbed in the lower reaches of the R. Natori. Surface sediments, micro-landforms and damages to agricultural facilities such as small poly tunnels, plastic mulches and support posts were examined to reconstruct the geomorphic impacts. Fieldworks were carried out at the beginning of May, 50 days after the tsunami disaster, and the end of August. Height of the tsunami near the river mouth was estimated over 3 meters. The flood flow went upstream to the sites at an elevation of 4 meters, 9 kilometers from the river mouth in the channel and 6.5 kilometers in the dry riverbed. Because the tsunami deposits are light colored sand and silt containing salinity, they could be distinguished from brown cultivated soil easily. The geomorphic impacts on the dry riverbed changed longitudinally. In the lowest 2.5 kilometers reaches strong flood flow and ebb flow caused strong erosion. It accounted for thin tsunami deposits with seashells and beach gravels, eroded scar, and dunes of downstream direction in the dry riverbed. In the next 1.5 kilometers reaches agricultural facilities were washed away or fell over upstream direction. Although the flood flow was still devastating, strength of the ebb flow gradually weakened. In this reaches dominant sedimentation process caused the tsunami deposits over 10 centimeters thick. In the reaches at about 5 kilometers from the river mouth, weakened and shallow tsunami flow went upstream through the relatively lower part. in the dry riverbed. Islands surrounded former channel courses were not damaged by the tsunami and vegetables in them grew as usual. The tsunami flooding at 6.5 kilometers from the river mouth inundated the dry riverbed and only thin deposits were left on it.
Power and Scour: Laboratory simulations of tsunami-induced scour
NASA Astrophysics Data System (ADS)
Todd, David; McGovern, David; Whitehouse, Richard; Harris, John; Rossetto, Tiziana
2017-04-01
The world's coastal regions are becoming increasingly urbanised and densely populated. Recent major tsunami events in regions such as Samoa (2007), Indonesia (2004, 2006, 2010), and Japan (2011) have starkly highlighted this effect, resulting in catastrophic loss of both life and property, with much of the damage to buildings being reported in EEFIT mission reports following each of these events. The URBANWAVES project, led by UCL in collaboration with HR Wallingford, brings the power of the tsunami to the laboratory for the first time. The Pneumatic Tsunami Simulator is capable of tsimulating both idealised and real-world tsunami traces at a scale of 1:50. Experiments undertaken in the Fast Flow Facility at HR Wallingford using square and rectangular buildings placed on a sediment bed have allow us to measure, for the first time under laboratory conditions, the variations in the flow field around buildings produced by tsunami waves as a result of the scour process. The results of these tests are presented, providing insight into the process of scour development under different types of tsunami, giving a glimpse into the power of tsunamis that have already occurred, and helping us to inform the designs of future buildings so that we can be better prepared to analyse and design against these failure modes in the future. Additional supporting abstracts include Foster et al., on tsunami induced building loads; Chandler et al., on the tsunami simulation concept and McGovern et al., on the simulation of tsunami-driven scour and flow fields.
NASA Astrophysics Data System (ADS)
Wiebe, D. M.; Cox, D. T.; Chen, Y.; Weber, B. A.; Chen, Y.
2012-12-01
Building damage from a hypothetical Cascadia Subduction Zone tsunami was estimated using two methods and applied at the community scale. The first method applies proposed guidelines for a new ASCE 7 standard to calculate the flow depth, flow velocity, and momentum flux from a known runup limit and estimate of the total tsunami energy at the shoreline. This procedure is based on a potential energy budget, uses the energy grade line, and accounts for frictional losses. The second method utilized numerical model results from previous studies to determine maximum flow depth, velocity, and momentum flux throughout the inundation zone. The towns of Seaside and Canon Beach, Oregon, were selected for analysis due to the availability of existing data from previously published works. Fragility curves, based on the hydrodynamic features of the tsunami flow (inundation depth, flow velocity, and momentum flux) and proposed design standards from ASCE 7 were used to estimate the probability of damage to structures located within the inundations zone. The analysis proceeded at the parcel level, using tax-lot data to identify construction type (wood, steel, and reinforced-concrete) and age, which was used as a performance measure when applying the fragility curves and design standards. The overall probability of damage to civil buildings was integrated for comparison between the two methods, and also analyzed spatially for damage patterns, which could be controlled by local bathymetric features. The two methods were compared to assess the sensitivity of the results to the uncertainty in the input hydrodynamic conditions and fragility curves, and the potential advantages of each method discussed. On-going work includes coupling the results of building damage and vulnerability to an economic input output model. This model assesses trade between business sectors located inside and outside the induction zone, and is used to measure the impact to the regional economy. Results highlight critical businesses sectors and infrastructure critical to the economic recovery effort, which could be retrofitted or relocated to survive the event. The results of this study improve community understanding of the tsunami hazard for civil buildings.
Tsunami: ocean dynamo generator.
Sugioka, Hiroko; Hamano, Yozo; Baba, Kiyoshi; Kasaya, Takafumi; Tada, Noriko; Suetsugu, Daisuke
2014-01-08
Secondary magnetic fields are induced by the flow of electrically conducting seawater through the Earth's primary magnetic field ('ocean dynamo effect'), and hence it has long been speculated that tsunami flows should produce measurable magnetic field perturbations, although the signal-to-noise ratio would be small because of the influence of the solar magnetic fields. Here, we report on the detection of deep-seafloor electromagnetic perturbations of 10-micron-order induced by a tsunami, which propagated through a seafloor electromagnetometer array network. The observed data extracted tsunami characteristics, including the direction and velocity of propagation as well as sea-level change, first to verify the induction theory. Presently, offshore observation systems for the early forecasting of tsunami are based on the sea-level measurement by seafloor pressure gauges. In terms of tsunami forecasting accuracy, the integration of vectored electromagnetic measurements into existing scalar observation systems would represent a substantial improvement in the performance of tsunami early-warning systems.
Hydrodynamic modeling of tsunamis from the Currituck landslide
Geist, E.L.; Lynett, P.J.; Chaytor, J.D.
2009-01-01
Tsunami generation from the Currituck landslide offshore North Carolina and propagation of waves toward the U.S. coastline are modeled based on recent geotechnical analysis of slide movement. A long and intermediate wave modeling package (COULWAVE) based on the non-linear Boussinesq equations are used to simulate the tsunami. This model includes procedures to incorporate bottom friction, wave breaking, and overland flow during runup. Potential tsunamis generated from the Currituck landslide are analyzed using four approaches: (1) tsunami wave history is calculated from several different scenarios indicated by geotechnical stability and mobility analyses; (2) a sensitivity analysis is conducted to determine the effects of both landslide failure duration during generation and bottom friction along the continental shelf during propagation; (3) wave history is calculated over a regional area to determine the propagation of energy oblique to the slide axis; and (4) a high-resolution 1D model is developed to accurately model wave breaking and the combined influence of nonlinearity and dispersion during nearshore propagation and runup. The primary source parameter that affects tsunami severity for this case study is landslide volume, with failure duration having a secondary influence. Bottom friction during propagation across the continental shelf has a strong influence on the attenuation of the tsunami during propagation. The high-resolution 1D model also indicates that the tsunami undergoes nonlinear fission prior to wave breaking, generating independent, short-period waves. Wave breaking occurs approximately 40-50??km offshore where a tsunami bore is formed that persists during runup. These analyses illustrate the complex nature of landslide tsunamis, necessitating the use of detailed landslide stability/mobility models and higher-order hydrodynamic models to determine their hazard.
Errors in Tsunami Source Estimation from Tide Gauges
NASA Astrophysics Data System (ADS)
Arcas, D.
2012-12-01
Linearity of tsunami waves in deep water can be assessed as a comparison of flow speed, u to wave propagation speed √gh. In real tsunami scenarios this evaluation becomes impractical due to the absence of observational data of tsunami flow velocities in shallow water. Consequently the extent of validity of the linear regime in the ocean is unclear. Linearity is the fundamental assumption behind tsunami source inversion processes based on linear combinations of unit propagation runs from a deep water propagation database (Gica et al., 2008). The primary tsunami elevation data for such inversion is usually provided by National Oceanic and Atmospheric (NOAA) deep-water tsunami detection systems known as DART. The use of tide gauge data for such inversions is more controversial due to the uncertainty of wave linearity at the depth of the tide gauge site. This study demonstrates the inaccuracies incurred in source estimation using tide gauge data in conjunction with a linear combination procedure for tsunami source estimation.
NASA Astrophysics Data System (ADS)
Sawai, Y.; Jankaew, K.; Martin, M. E.; Choowong, M.; Charoentitirat, T.; Prendergast, A.
2008-12-01
Diatom assemblages in the 2004 tsunami deposits of Phra Thong Island, Thailand represent flow conditions during the tsunami. The tsunami deposit consists of single or multiple graded beds. Diatom assemblages in the lowermost part of the deposit predominantly comprise beach and subtidal species. In the middle part of the deposit, the assemblages are dominated by marine plankton with increasing finer fractions. A mixed assemblage of freshwater, brackish, and marine species occupies the uppermost part of the deposit. Changes in flow conditions during the tsunami can explain these diatom assemblage variations. During fast current velocities, medium sand is deposited; only beach and subtidal diatoms that live attached to the sand can be incorporated into the tsunami deposit under these flow conditions. It is difficult for diatoms in suspension to settle out under fast current velocities. With decreasing current velocities, marine plankton can settle out of the water column .Finally, during the suspension stage (calm currents) between tsunami waves, the entrained freshwater, brackish, and marine species settle out with mud and plant trash. Fewer broken valves in the lowermost part of the deposit is probably a results of rapid entrainment, whilst selective breakage of marine plankton (Thalassionema nitzschioides, and Thalassiosira and Coscinodiscus spp.) in the middle part of the deposit probably results from abrasion by turbulent current before their deposition.
NASA Astrophysics Data System (ADS)
Sassa, S.
2017-12-01
This presentation shows some recent research advances on tsunami-seabed-structure interaction following the 2011 Tohoku Earthquake Tsunami, Japan. It presents a concise summary and discussion of utilizing a geotechnical centrifuge and a large-scale hydro flume for the modelling of tsunami-seabed-structure interaction. I highlight here the role of tsunami-induced seepage in piping/boiling, erosion and bearing capacity decrease and failure of the rubble/seabed foundation. A comparison and discussion are made on the stability assessment for the design of tsunami-resistant structures on the basis of the results from both geo-centrifuge and large-scale hydrodynamic experiments. The concurrent processes of the instability involving the scour of the mound/sandy seabed, bearing capacity failure and flow of the foundation and the failure of caisson breakwaters under tsunami overflow and seepage coupling are made clear in this presentation. Three series of experiments were conducted under fifty gravities. The first series of experiments targeted the instability of the mounds themselves, and the second series of experiments clarified how the mound scour would affect the overall stability of the caissons. The third series of experiments examined the effect of a countermeasure on the basis of the results from the two series of experiments. The experimental results first demonstrated that the coupled overflow-seepage actions promoted the development of the mound scour significantly, and caused bearing capacity failure of the mound, resulting in the total failure of the caisson breakwater, which otherwise remained stable without the coupling effect. The velocity vectors obtained from the high-resolution image analysis illustrated the series of such concurrent scour/bearing-capacity-failure/flow processes leading to the instability of the breakwater. The stability of the breakwaters was significantly improved with decreasing hydraulic gradient underneath the caissons due to an embankment effect. These findings elucidate the crucial role of overflow/seepage coupling in tsunami-seabed-structure interaction from both geotechnical and hydrodynamic perspectives, as an interdisciplinary tsunami science, warranting an enhanced disaster resilience.
NASA Astrophysics Data System (ADS)
Conde, Daniel; Telhado, Maria J.; Viana Baptista, Maria A.; Antunes, Carlos M.; Ferreira, Rui M. L.
2014-05-01
The Tagus estuary is recognized as an exposed location to tsunami occurrences, given its proximity to tsunamigenic faults such as the Marquês de Pombal and the Horseshoe fault system. Lisbon, bordered by the Tagus estuary, is a critical point of Portugal's tsunami hazard map, having been affected by several tsunamis (Baptista and Miranda, 2009) including the notorious event of November 1st 1755, the last major natural disaster known to have inflicted massive destruction in Portugal. The main objective of this work, a joint initiative of CEHIDRO (IST - Universidade de Lisboa) and the Municipal Civil Protection Services of Lisbon, is to contribute to the quantification of severity and exposure of Lisbon waterfront to tsunami events. For that purpose, the propagation of a tsunami similar to that of the 1st November of 1755 in the Tagus estuary was numerically simulated. Several scenarios were considered, articulating the influence of tidal (low and high tides), atmospheric (increase in water level due to storm surges) and hydrological (flow discharge in Tagus river) conditions. Different initial and boundary conditions were defined for each modelling scenario but the magnitude of the tsunami remained what is believed to be an exceptional event. The extent of the inundation and relevant hydrodynamic quantities were registered for all scenarios. The employed simulation tool - STAV-2D - was developed at CEHIDRO (IST) and is based on a 2DH spatial (Eulerian) shallow-flow approach suited to complex and dynamic bottom boundaries. The discretization technique relies on a finite-volume scheme, based on a flux-splitting technique incorporating a reviewed version of the Roe Riemann solver (Canelas et al. 2013, Conde et al. 2013). STAV-2D features conservation equations for the finer solid phase of the flow and also a Lagrangian model for the advection of larger debris elements. The urban meshwork was thoroughly discretized with a mesh finer than average street width. This fine discretization allows for resolving flow resistance associated to obstacles: no ad hoc formulations are needed to express drag on buildings, which is a key innovation in regard to previous studies. Additionally, vehicle-like particles were virtually placed over the major traffic nodes and routes, resulting in over 5000 lagrangian particles along the riverfront. This allows for an assessment of debris deposition patterns on the aftermath of the tsunami inundation. Severity is herein assumed to depend on hydrodynamic features of the tsunami, namely its capacity to impart momentum. Exposure to tsunami actions depends on the extent of the inundation. Both severity and exposure thus vary with the tsunami scenario considered. The obtained results, obtained with a high detail of hydrodynamic behavior, allow for a street-by-street quantification of severity, expressed in terms of the product of the depth-averaged velocity by the flow depth (Karvonen et al., 2000), herein the q-parameter. This parameter is shown to be larger during run-up, particularly in streets and narrow sections. It was observed that the scenario with greater exposure is a combination of a high-tide, a storm surge and a discharge equivalent to a 100 year flood on the Tagus River. The work conducted allows for designing a methodology for exposure assessment due to tsunami propagating over urban meshes, where the influence of the existing infrastructures on the incoming inundation is highly relevant. Such methodology, here applied to Lisbon waterfront, is general since it is defined in terms of quantifiable hydrodynamic variables. Acknowledgements: Project RECI/ECM-HID/0371/2012, funded by the Portuguese Foundation for Science and Technology (FCT), has partially supported this work. References: Baptista, M.A., Miranda, J.M. (2009). Revision of the Portuguese catalog of tsunamis. Nat. Hazards Earth Syst. Sci., 9, 25 - 42. Canelas, R., Murillo, J. & Ferreira, R.M.L. (2013). Two-dimensional depth-averaged modelling of dam-break flows over mobile beds. Journal of Hydraulic Research, 51(4), 392-407. Conde, D., Baptista, M. A. V., Sousa Oliveira, C., and Ferreira, R. M. L. (2013). A shallow-flow model for the propagation of tsunamis over complex geometries and mobile beds, Nat. Hazards Earth Syst. Sci., 13, 2533-2542. Karvonen, R.A., Hepojoki, A., Huhta, H.K., and Louhio, A. (2000) The Use of Physical Models in Dam-Break Analysis. RESCDAM Final Report. Helsinki University of Technology, Helsinki, Finland.
Laboratory Experiments of Tsunami Inundation in Patchy Coastal Forest on a Steep Beach
NASA Astrophysics Data System (ADS)
Irish, J. L.; Weiss, R.; Yang, Y.; Zainali, A.; Marivela Colmenarejo, R.
2014-12-01
Tsunamis are a leading natural threat to coastal communities, and events such as the 2011 Japan and 2004 Indian Ocean tsunamis caused widespread, crippling damages to coastal infrastructure. Yet, these events also called attention to the role of coastal forest as sustainable mitigation against tsunami hazard. Here, we present large-scale experiments of tsunami runup and withdrawal on a steeply sloping beach in the presence of patchy forest. The forest is modeled using 1.2-m diameter macro-roughness patches of varying resistance were constructed from staggered arrays of 2.7-cm diameter rigid cylinders. Macro-roughness patches were affixed in a staggered arrangement with mean spacing of 3.2 m between patches (Fig. 1). The basin depth and wave height at the wavemaker were 0.73 m and 0.43 m, respectively, such that a broken roller formed offshore of the still-water line. Point measurements of velocity and flow depth were made at twenty locations using co-located acoustic Doppler velocimeters and sonic wave gauges, respectively, in order to construct a flow field in the vicinity of three macro-roughness patches. Simultaneous, high-resolution video was also collected in order to track the runup bore position in time. Analysis of mean flow conditions reveals that patchy roughness induces non-uniform changes in momentum flux throughout the patch array (Fig. 2). During runup, momentum flux is generally reduced in the lee of the patches. However, flow channelization between cross-shore rows of patches leads to an increase in momentum flux. During withdrawal, the strong gravity-driven flows that develop as a result of the steep 1:10 beach lead to an increase in momentum flux in areas behind the patches, which benefited from reduced momentum flux during runup. The experiment findings indicate that flow interactions with the natural environment are indeed complex and that care must be exercised when considering the use of coastal forest as a tsunami bioshield. Acknowledgements: This material is based upon work supported by the National Science Foundation under Grant Number CMMI-1206271. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
A Preliminary Tsunami vulnerability analysis for Bakirkoy district in Istanbul
NASA Astrophysics Data System (ADS)
Tufekci, Duygu; Lutfi Suzen, M.; Cevdet Yalciner, Ahmet; Zaytsev, Andrey
2016-04-01
Resilience of coastal utilities after earthquakes and tsunamis has major importance for efficient and proper rescue and recovery operations soon after the disasters. Vulnerability assessment of coastal areas under extreme events has major importance for preparedness and development of mitigation strategies. The Sea of Marmara has experienced numerous earthquakes as well as associated tsunamis. There are variety of coastal facilities such as ports, small craft harbors, and terminals for maritime transportation, water front roads and business centers mainly at North Coast of Marmara Sea in megacity Istanbul. A detailed vulnerability analysis for Yenikapi region and a detailed resilience analysis for Haydarpasa port in Istanbul have been studied in previously by Cankaya et al., (2015) and Aytore et al., (2015) in SATREPS project. In this study, the methodology of vulnerability analysis under tsunami attack given in Cankaya et al., (2015) is modified and applied to Bakirkoy district of Istanbul. Bakirkoy district is located at western part of Istanbul and faces to the North Coast of Marmara Sea from 28.77oE to 28.89oE. High resolution spatial dataset of Istanbul Metropolitan Municipality (IMM) is used and analyzed. The bathymetry and topography database and the spatial dataset containing all buildings/structures/infrastructures in the district are collated and utilized for tsunami numerical modeling and following vulnerability analysis. The tsunami parameters from deterministically defined worst case scenarios are computed from the simulations using tsunami numerical model NAMI DANCE. The vulnerability assessment parameters in the district according to vulnerability and resilience are defined; and scored by implementation of a GIS based TVA with appropriate MCDA methods. The risk level is computed using tsunami intensity (level of flow depth from simulations) and TVA results at every location in Bakirkoy district. The preliminary results are presented and discussed. Acknowledgements: Partial support by Japan-Turkey Joint Research Project by JICA on earthquakes and tsunamis in Marmara Region in (JICA SATREPS - MarDiM Project), 603839 ASTARTE Project of EU, UDAP-C-12-14 project of AFAD, Turkey, 108Y227, 113M556, 213M534 projects of TUBITAK Turkey, RAPSODI (CONCERT_Dis-021) of CONCERT-Japan Joint Call and Istanbul Metropolitan Municipality are acknowledged.
Source mechanisms of volcanic tsunamis.
Paris, Raphaël
2015-10-28
Volcanic tsunamis are generated by a variety of mechanisms, including volcano-tectonic earthquakes, slope instabilities, pyroclastic flows, underwater explosions, shock waves and caldera collapse. In this review, we focus on the lessons that can be learnt from past events and address the influence of parameters such as volume flux of mass flows, explosion energy or duration of caldera collapse on tsunami generation. The diversity of waves in terms of amplitude, period, form, dispersion, etc. poses difficulties for integration and harmonization of sources to be used for numerical models and probabilistic tsunami hazard maps. In many cases, monitoring and warning of volcanic tsunamis remain challenging (further technical and scientific developments being necessary) and must be coupled with policies of population preparedness. © 2015 The Author(s).
Fusion of real-time simulation, sensing, and geo-informatics in assessing tsunami impact
NASA Astrophysics Data System (ADS)
Koshimura, S.; Inoue, T.; Hino, R.; Ohta, Y.; Kobayashi, H.; Musa, A.; Murashima, Y.; Gokon, H.
2015-12-01
Bringing together state-of-the-art high-performance computing, remote sensing and spatial information sciences, we establish a method of real-time tsunami inundation forecasting, damage estimation and mapping to enhance disaster response. Right after a major (near field) earthquake is triggered, we perform a real-time tsunami inundation forecasting with use of high-performance computing platform (Koshimura et al., 2014). Using Tohoku University's vector supercomputer, we accomplished "10-10-10 challenge", to complete tsunami source determination in 10 minutes, tsunami inundation modeling in 10 minutes with 10 m grid resolution. Given the maximum flow depth distribution, we perform quantitative estimation of exposed population using census data and mobile phone data, and the numbers of potential death and damaged structures by applying tsunami fragility curve. After the potential tsunami-affected areas are estimated, the analysis gets focused and moves on to the "detection" phase using remote sensing. Recent advances of remote sensing technologies expand capabilities of detecting spatial extent of tsunami affected area and structural damage. Especially, a semi-automated method to estimate building damage in tsunami affected areas is developed using pre- and post-event high-resolution SAR (Synthetic Aperture Radar) data. The method is verified through the case studies in the 2011 Tohoku and other potential tsunami scenarios, and the prototype system development is now underway in Kochi prefecture, one of at-risk coastal city against Nankai trough earthquake. In the trial operation, we verify the capability of the method as a new tsunami early warning and response system for stakeholders and responders.
Time-dependent onshore tsunami response
Apotsos, Alex; Gelfenbaum, Guy R.; Jaffe, Bruce E.
2012-01-01
While bulk measures of the onshore impact of a tsunami, including the maximum run-up elevation and inundation distance, are important for hazard planning, the temporal evolution of the onshore flow dynamics likely controls the extent of the onshore destruction and the erosion and deposition of sediment that occurs. However, the time-varying dynamics of actual tsunamis are even more difficult to measure in situ than the bulk parameters. Here, a numerical model based on the non-linear shallow water equations is used to examine the effects variations in the wave characteristics, bed slope, and bottom roughness have on the temporal evolution of the onshore flow. Model results indicate that the onshore flow dynamics vary significantly over the parameter space examined. For example, the flow dynamics over steep, smooth morphologies tend to be temporally symmetric, with similar magnitude velocities generated during the run-up and run-down phases of inundation. Conversely, on shallow, rough onshore topographies the flow dynamics tend to be temporally skewed toward the run-down phase of inundation, with the magnitude of the flow velocities during run-up and run-down being significantly different. Furthermore, for near-breaking tsunami waves inundating over steep topography, the flow velocity tends to accelerate almost instantaneously to a maximum and then decrease monotonically. Conversely, when very long waves inundate over shallow topography, the flow accelerates more slowly and can remain steady for a period of time before beginning to decelerate. These results indicate that a single set of assumptions concerning the onshore flow dynamics cannot be applied to all tsunamis, and site specific analyses may be required.
A Review of Methodologies on Vulnerability Assessment of Buildings to Tsunami Damage
NASA Astrophysics Data System (ADS)
Gunasekera, R.; Rosetto, T.; Tabuchi, S.; Suppasri, A.; Futami, T.; Scott, I.; Maegawa, H.
2012-04-01
The infrequency, suddenness and violence tsunamis has led to a lack of knowledge on tsunami and lack of data available for the calibration of numerical models particularly in relation to tsunami damage. Therefore, there are very few tsunami structural vulnerability studies available. Of the available literature, most of these started after the disastrous 2004 Indian Ocean event. Most of fragility curves have been developed in some areas struck by the 2004 tsunami, which are very different in architecture and engineering respect to the US, Japanese or European ones. This review aims to highlight the strengths and weaknesses of current knowledge on tsunami fragility by critically assessing several fragility curves based on post tsunami damage surveys in Chile, Japan (including initial findings of the March 2011 event), Samoa, Sri Lanka and Thailand. It is observed that there is no consensus on how to derive tsunami fragility curves. Most of the examined relationships are seen to relate to residential buildings, and, due to the location of recent tsunami occurrences, they mostly represent non-engineered buildings (i.e. all use data from Thailand, Sri Lanka, Samoa, or Sumatra), which limits their usefulness. In the absence of a good understanding of tsunami actions on buildings most existing fragility relationships adopt inundation depth as the hazard parameter in the vulnerability function, which does not account for the other components of onshore flow contributing to tsunami loads on buildings, such as flow velocity.
Tsunami Field Survey for the Solomon Islands Earthquake of April 1, 2007
NASA Astrophysics Data System (ADS)
Nishimura, Y.; Tanioka, Y.; Nakamura, Y.; Tsuji, Y.; Namegaya, Y.; Murata, M.; Woodward, S.
2007-12-01
Two weeks after the 2007 off-Solomon earthquake, an international tsunami survey team (ITST) of Japanese and US researchers performed a post tsunami survey in Ghizo and adjacent islands. Main purpose of the team was to provide information on the earthquake and tsunami to the national disaster council of the Solomon Islands, who was responsible for the disaster management at that time. The ITST had interview with the affected people and conducted reconnaissance mapping of the tsunami heights and flow directions. Tsunami flow heights at beach and inland were evaluated from watermarks on buildings and the position of broken branches and stuck materials on trees. These tsunami heights along the southern to western coasts of Ghizo Island were ca. 5m (a.s.l.). Tsunami run-up was traced by distribution of floating debris that carried up by the tsunami and deposited at their inundation limit. The maximum run-up was measured at Tapurai of Simbo Island to be ca. 9 m. Most of the inundation area was covered by 0-10 cm thick tsunami deposit that consists of beach sand, coral peaces and eroded soil. Coseismic uplift and subsidence were clearly identified by changes of the sea level before and after the earthquake, that were inferred by eyewitness accounts and evidences such as dried up coral reeves. These deformation patterns, as well as the tsunami height distribution, could constrain the earthquake fault geometry and motion. It is worthy of mention that the tsunami damage in villages in Ranongga Island has significantly reduced by 2-3 m uplift before the tsunami attack.
A consistent model for tsunami actions on buildings
NASA Astrophysics Data System (ADS)
Foster, A.; Rossetto, T.; Eames, I.; Chandler, I.; Allsop, W.
2016-12-01
The Japan (2011) and Indian Ocean (2004) tsunami resulted in significant loss of life, buildings, and critical infrastructure. The tsunami forces imposed upon structures in coastal regions are initially due to wave slamming, after which the quasi-steady flow of the sea water around buildings becomes important. An essential requirement in both design and loss assessment is a consistent model that can accurately predict these forces. A model suitable for predicting forces in the in the quasi-steady range has been established as part of a systematic programme of research by the UCL EPICentre to understand the fundamental physical processes of tsunami actions on buildings, and more generally their social and economic consequences. Using the pioneering tsunami generator at HR Wallingford, this study considers the influence of unsteady flow conditions on the forces acting upon a rectangular building occupying 10-80% of a channel for 20-240 second wave periods. A mathematical model based upon basic open-channel flow principles is proposed, which provides empirical estimates for drag and hydrostatic coefficients. A simple force prediction equation, requiring only basic flow velocity and wave height inputs is then developed, providing good agreement with the experimental results. The results of this study demonstrate that the unsteady forces from the very long waves encountered during tsunami events can be predicted with a level of accuracy and simplicity suitable for design and risk assessment.
Inter-model analysis of tsunami-induced coastal currents
NASA Astrophysics Data System (ADS)
Lynett, Patrick J.; Gately, Kara; Wilson, Rick; Montoya, Luis; Arcas, Diego; Aytore, Betul; Bai, Yefei; Bricker, Jeremy D.; Castro, Manuel J.; Cheung, Kwok Fai; David, C. Gabriel; Dogan, Gozde Guney; Escalante, Cipriano; González-Vida, José Manuel; Grilli, Stephan T.; Heitmann, Troy W.; Horrillo, Juan; Kânoğlu, Utku; Kian, Rozita; Kirby, James T.; Li, Wenwen; Macías, Jorge; Nicolsky, Dmitry J.; Ortega, Sergio; Pampell-Manis, Alyssa; Park, Yong Sung; Roeber, Volker; Sharghivand, Naeimeh; Shelby, Michael; Shi, Fengyan; Tehranirad, Babak; Tolkova, Elena; Thio, Hong Kie; Velioğlu, Deniz; Yalçıner, Ahmet Cevdet; Yamazaki, Yoshiki; Zaytsev, Andrey; Zhang, Y. J.
2017-06-01
To help produce accurate and consistent maritime hazard products, the National Tsunami Hazard Mitigation Program organized a benchmarking workshop to evaluate the numerical modeling of tsunami currents. Thirteen teams of international researchers, using a set of tsunami models currently utilized for hazard mitigation studies, presented results for a series of benchmarking problems; these results are summarized in this paper. Comparisons focus on physical situations where the currents are shear and separation driven, and are thus de-coupled from the incident tsunami waveform. In general, we find that models of increasing physical complexity provide better accuracy, and that low-order three-dimensional models are superior to high-order two-dimensional models. Inside separation zones and in areas strongly affected by eddies, the magnitude of both model-data errors and inter-model differences can be the same as the magnitude of the mean flow. Thus, we make arguments for the need of an ensemble modeling approach for areas affected by large-scale turbulent eddies, where deterministic simulation may be misleading. As a result of the analyses presented herein, we expect that tsunami modelers now have a better awareness of their ability to accurately capture the physics of tsunami currents, and therefore a better understanding of how to use these simulation tools for hazard assessment and mitigation efforts.
Geological effects and implications of the 2010 tsunami along the central coast of Chile
NASA Astrophysics Data System (ADS)
Morton, Robert A.; Gelfenbaum, Guy; Buckley, Mark L.; Richmond, Bruce M.
2011-12-01
Geological effects of the 2010 Chilean tsunami were quantified at five near-field sites along a 200 km segment of coast located between the two zones of predominant fault slip. Field measurements, including topography, flow depths, flow directions, scour depths, and deposit thicknesses, provide insights into the processes and morphological changes associated with tsunami inundation and return flow. The superposition of downed trees recorded multiple strong onshore and alongshore flows that arrived at different times and from different directions. The most likely explanation for the diverse directions and timing of coastal inundation combines (1) variable fault rupture and asymmetrical slip displacement of the seafloor away from the epicenter with (2) resonant amplification of coastal edge waves. Other possible contributing factors include local interaction of incoming flow and return flow and delayed wave reflection by the southern coast of Peru. Coastal embayments amplified the maximum inundation distances at two sites (2.4 and 2.6 km, respectively). Tsunami vertical erosion included scour and planation of the land surface, inundation scour around the bases of trees, and channel incision from return flow. Sheets and wedges of sand and gravel were deposited at all of the sites. Locally derived boulders up to 1 m in diameter were transported as much as 400 m inland and deposited as fields of dispersed clasts. The presence of lobate bedforms at one site indicates that at least some of the late-stage sediment transport was as bed load and not as suspended load. Most of the tsunami deposits were less than 25 cm thick. Exceptions were thick deposits near open-ocean river mouths where sediment supply was abundant. Human alterations of the land surface at most of the sites provided opportunities to examine some tsunami effects that otherwise would not have been possible, including flow histories, boulder dispersion, and vegetation controls on deposit thickness.
Geological effects and implications of the 2010 tsunami along the central coast of Chile
Morton, R.A.; Gelfenbaum, G.; Buckley, M.L.; Richmond, B.M.
2011-01-01
Geological effects of the 2010 Chilean tsunami were quantified at five near-field sites along a 200. km segment of coast located between the two zones of predominant fault slip. Field measurements, including topography, flow depths, flow directions, scour depths, and deposit thicknesses, provide insights into the processes and morphological changes associated with tsunami inundation and return flow. The superposition of downed trees recorded multiple strong onshore and alongshore flows that arrived at different times and from different directions. The most likely explanation for the diverse directions and timing of coastal inundation combines (1) variable fault rupture and asymmetrical slip displacement of the seafloor away from the epicenter with (2) resonant amplification of coastal edge waves. Other possible contributing factors include local interaction of incoming flow and return flow and delayed wave reflection by the southern coast of Peru. Coastal embayments amplified the maximum inundation distances at two sites (2.4 and 2.6. km, respectively). Tsunami vertical erosion included scour and planation of the land surface, inundation scour around the bases of trees, and channel incision from return flow. Sheets and wedges of sand and gravel were deposited at all of the sites. Locally derived boulders up to 1. m in diameter were transported as much as 400. m inland and deposited as fields of dispersed clasts. The presence of lobate bedforms at one site indicates that at least some of the late-stage sediment transport was as bed load and not as suspended load. Most of the tsunami deposits were less than 25. cm thick. Exceptions were thick deposits near open-ocean river mouths where sediment supply was abundant. Human alterations of the land surface at most of the sites provided opportunities to examine some tsunami effects that otherwise would not have been possible, including flow histories, boulder dispersion, and vegetation controls on deposit thickness. ?? 2011.
Geological impacts and implications of the 2010 tsunami along the central coast of Chile
Morton, Robert A.; Gelfenbaum, Guy; Buckley, Mark L.; Richmond, Bruce M.
2011-01-01
Geological effects of the 2010 Chilean tsunami were quantified at five near-field sites along a 200 km segment of coast located between the two zones of predominant fault slip. Field measurements, including topography, flow depths, flow directions, scour depths, and deposit thicknesses, provide insights into the processes and morphological changes associated with tsunami inundation and return flow. The superposition of downed trees recorded multiple strong onshore and alongshore flows that arrived at different times and from different directions. The most likely explanation for the diverse directions and timing of coastal inundation combines (1) variable fault rupture and asymmetrical slip displacement of the seafloor away from the epicenter with (2) resonant amplification of coastal edge waves. Other possible contributing factors include local interaction of incoming flow and return flow and delayed wave reflection by the southern coast of Peru. Coastal embayments amplified the maximum inundation distances at two sites (2.4 and 2.6 km, respectively). Tsunami vertical erosion included scour and planation of the land surface, inundation scour around the bases of trees, and channel incision from return flow. Sheets and wedges of sand and gravel were deposited at all of the sites. Locally derived boulders up to 1 m in diameter were transported as much as 400 m inland and deposited as fields of dispersed clasts. The presence of lobate bedforms at one site indicates that at least some of the late-stage sediment transport was as bed load and not as suspended load. Most of the tsunami deposits were less than 25 cm thick. Exceptions were thick deposits near open-ocean river mouths where sediment supply was abundant. Human alterations of the land surface at most of the sites provided opportunities to examine some tsunami effects that otherwise would not have been possible, including flow histories, boulder dispersion, and vegetation controls on deposit thickness.
Richmond, Bruce M.; Buckley, Mark; Etienne, Samuel; Chagué-Goff, Catherine; Clark, Kate; Goff, James; Dominey-Howes, Dale; Strotz, Luke
2011-01-01
The September 29th 2009 tsunami caused widespread coastal modification within the islands of Samoa and northern Tonga in the South Pacific. Preliminary measurements indicate maximum runup values of around 17 m (Okal et al., 2010) and shore-normal inundation distances of up to ~ 620 m (Jaffe et al., 2010). Geological field reconnaissance studies were conducted as part of an UNESCO-IOC International Tsunami Survey Team survey within three weeks of the event in order to document the erosion, transport, and deposition of sediment by the tsunami. Data collected included: a) general morphology and geological characteristics of the coast, b) evidence of tsunami flow (inundation, flow depth and direction, wave height and runup), c) surficial and subsurface sediment samples including deposit thickness and extent, d) topographic mapping, and e) boulder size and location measurements. Four main types of sedimentary deposits were identified: a) gravel fields consisting mostly of isolated cobbles and boulders, b) sand sheets from a few to ~ 25 cm thick, c) piles of organic (mostly vegetation) and man-made material forming debris ramparts, and d) surface mud deposits that settled from suspension from standing water in the tsunami aftermath. Tsunami deposits within the reef system were not widespread, however, surficial changes to the reefs were observed. PMID:27065478
Impacts of the 2004 Indian ocean tsunami on the southwest coasts of Sri Lanka
Morton, Robert A.; Goff, John A.; Nichol, Scott L.
2007-01-01
The 2004 Indian Ocean tsunami caused major landscape changes along the southwest coasts of Sri Lanka that were controlled by the flow, natural topography and bathymetry, and anthropogenic modifications of the terrain. Landscape changes included substantial beach erosion and scouring of return-flow channels near the beach, and deposition of sand sheets across the narrow coastal plain. In many areas tsunami deposits also included abundant building rubble due to the extensive destruction of homes and businesses in areas of dense development. Trim lines and flow directions confirmed that shoreline orientation and wave refraction from embayments and rock-anchored headlands locally focused the flow and amplified the inundation. Tsunami deposits were 1 to 36 cm thick but most were less than 25 cm thick. Deposit thickness depended partly on antecedent topography. The deposits were composed of coarse to medium sand organized into a few sets of plane parallel laminae that exhibited overall upward fining and landward thinning trends.
NASA Astrophysics Data System (ADS)
van Boskirk, E. J.; Voight, B.; Watts, P.; Widiwijayanti, C.; Mattioli, G. S.; Elsworth, D.; Hidayat, D.; Linde, A.; Malin, P.; Neuberg, J.; Sacks, S.; Shalev, E.; Sparks, R. J.; Young, S. R.
2004-12-01
The July 12-13, 2003 eruption (dome collapse plus explosions) of Soufriere Hills Volcano in Montserrat, WI, is the largest historical lava dome collapse with ˜120 million cubic meters of the dome lost. Pyroclastic flows entered the sea at 18:00 AST 12 July at the Tar River Valley (TRV) and continued until the early hours of 13 July. Low-amplitude tsunamis were reported at Antigua and Guadaloupe soon after the dome collapse. At the time of eruption, four CALIPSO borehole-monitoring stations were in the process of being installed, and three very-broad-band Sacks-Evertson dilatometers were operational and recorded the event at 50 sps. The strongest strain signals were recorded at the Trants site, 5 km north of the TRV entry zone, suggesting tsunami waves >1 m high. Debris strandlines closer to TRV recorded runup heights as much as 8 m. We test the hypothesis that the strain signal is related to tsunami waves generated by successive pyroclastic flows induced during the dome collapse. Tsunami simulation models have been generated using GEOWAVE, which uses simple physics to recreate waves generated by idealized pyroclastic flows entering the sea at TRV. Each simulation run contains surface wave amplitude gauges located in key positions to the three borehole sites. These simulated wave amplitudes and periods are compared quantitatively with the data recorded by the dilatometers and with field observations of wave runup, to elucidate the dynamics of pyroclastic flow tsunami genesis and its propagation in shallow ocean water.
Tsunamis triggered by the 12 January 2010 Earthquake in Haiti
NASA Astrophysics Data System (ADS)
Fritz, H. M.; Hillaire, J. V.; Molière, E.; Mohammed, F.; Wei, Y.
2010-12-01
On 12 January 2010 a magnitude Mw 7.0 earthquake occurred 25 km west-southwest of Haiti’s Capital of Port-au-Prince, which resulted in more than 230,000 fatalities. In addition tsunami waves triggered by the earthquake caused at least 3 fatalities at Petit Paradis. Unfortunately, the people of Haiti had neither ancestral knowledge nor educational awareness of tsunami hazards despite the 1946 Dominican Republic tsunami at Hispaniola’s northeast coast. In sharp contrast Sri Lankan UN-soldiers on duty at Jacmel self-evacuated given the memory of the 2004 Indian Ocean tsunami. The International Tsunami Survey Team (ITST) documented flow depths, runup heights, inundation distances, sediment deposition, damage patterns at various scales, and performance of the man-made infrastructure and impact on the natural environment. The 31 January to 7 February 2010 ITST covered the greater Bay of Port-au-Prince and more than 100 km of Hispaniola’s south coast between Pedernales, Dominican Republic and Jacmel, Haiti. The Hispaniola survey data includes more than 20 runup and flow depth measurements. The tsunami impacts peaked with maximum flow depths exceeding 3 m both at Petit Paradis inside the Bay of Grand Goâve located 45 km west-southwest of Port-au-Prince and at Jacmel on Haiti’s south coast. A significant variation in tsunami impact was observed on Hispaniola and tsunami runup of more than 1 m was still observed at Pedernales in the Dominican Republic. Jacmel, which is near the center of the south coast, represents an unfortunate example of a village and harbor that was located for protection from storm waves but is vulnerable to tsunami waves with runup doubling from the entrance to the head of the bay. Inundation and damage was limited to less than 100 m inland at both Jacmel and Petit Paradis. Differences in wave period were documented between the tsunami waves at Petit Paradis and Jacmel. The Petit Paradis tsunami is attributed to a coastal submarine landslide. Field observations, video recordings, satellite imagery and numerical modelling are presented. The team interviewed numerous eyewitnesses and educated residents about the tsunami hazard. Community-based education and awareness programs are essential to save lives in locales at risk from locally generated tsunamis. Petit Paradis landslide scar with tree located 70m offshore
NASA Astrophysics Data System (ADS)
Aytore, Betul; Yalciner, Ahmet Cevdet; Zaytsev, Andrey; Cankaya, Zeynep Ceren; Suzen, Mehmet Lütfi
2016-08-01
Turkey is highly prone to earthquakes because of active fault zones in the region. The Marmara region located at the western extension of the North Anatolian Fault Zone (NAFZ) is one of the most tectonically active zones in Turkey. Numerous catastrophic events such as earthquakes or earthquake/landslide-induced tsunamis have occurred in the Marmara Sea basin. According to studies on the past tsunami records, the Marmara coasts have been hit by 35 different tsunami events in the last 2000 years. The recent occurrences of catastrophic tsunamis in the world's oceans have also raised awareness about tsunamis that might take place around the Marmara coasts. Similarly, comprehensive studies on tsunamis, such as preparation of tsunami databases, tsunami hazard analysis and assessments, risk evaluations for the potential tsunami-prone regions, and establishing warning systems have accelerated. However, a complete tsunami inundation analysis in high resolution will provide a better understanding of the effects of tsunamis on a specific critical structure located in the Marmara Sea. Ports are one of those critical structures that are susceptible to marine disasters. Resilience of ports and harbors against tsunamis are essential for proper, efficient, and successful rescue operations to reduce loss of life and property. Considering this, high-resolution simulations have been carried out in the Marmara Sea by focusing on Haydarpaşa Port of the megacity Istanbul. In the first stage of simulations, the most critical tsunami sources possibly effective for Haydarpaşa Port were inputted, and the computed tsunami parameters at the port were compared to determine the most critical tsunami scenario. In the second stage of simulations, the nested domains from 90 m gird size to 10 m grid size (in the port region) were used, and the most critical tsunami scenario was modeled. In the third stage of simulations, the topography of the port and its regions were used in the two nested domains in 3-m and 1-m resolutions and the water elevations computed from the previous simulations were inputted from the border of the large domain. A tsunami numerical code, NAMI DANCE, was used in the simulations. The tsunami parameters in the highest resolution were computed in and around the port. The effect of the data resolution on the computed results has been presented. The performance of the port structures and possible effects of tsunami on port operations have been discussed. Since the harbor protection structures have not been designed to withstand tsunamis, the breakwaters' stability becomes one of the major concerns for less agitation and inundation under tsunami in Haydarpaşa Port for resilience. The flow depth, momentum fluxes, and current pattern are the other concerns that cause unexpected circulations and uncontrolled movements of objects on land and vessels in the sea.
3D numerical investigation on landslide generated tsunamis around a conical island
NASA Astrophysics Data System (ADS)
Montagna, Francesca; Bellotti, Giorgio
2010-05-01
This paper presents numerical computations of tsunamis generated by subaerial and submerged landslides falling along the flank of a conical island. The study is inspired by the tsunamis that on 30th December 2002 attacked the coast of the volcanic island of Stromboli (South Tyrrhenian sea, Italy). In particular this paper analyzes the important feature of the lateral spreading of landside generated tsunamis and the associated flooding hazard. The numerical model used in this study is the full three dimensional commercial code FLOW-3D. The model has already been successfully used (Choi et al., 2007; 2008; Chopakatla et al, 2008) to study the interaction of waves and structures. In the simulations carried out in this work a particular feature of the code has been employed: the GMO (General Moving Object) algorithm. It allows to reproduce the interaction between moving objects, as a landslide, and the water. FLOW-3D has been firstly validated using available 3D experiments reproducing tsunamis generated by landslides at the flank of a conical island. The experiments have been carried out in the LIC laboratory of the Polytechnic of Bari, Italy (Di Risio et al., 2009). Numerical and experimental time series of run-up and sea level recorded at gauges located at the flanks of the island and offshore have been successfully compared. This analysis shows that the model can accurately represent the generation, the propagation and the inundation of landslide generated tsunamis and suggests the use of the numerical model as a tool for preparing inundation maps. At the conference we will present the validation of the model and parametric analyses aimed to investigate how wave properties depend on the landslide kinematic and on further parameters such as the landslide volume and shape, as well as the radius of the island. The expected final results of the research are precomputed inundation maps that depend on the characteristics of the landslide and of the island. Finally we will try to apply the code to a real life case i.e. the landslide tsunamis at the coast of the Stromboli island (Italy). SELECTED REFERENCES Choi, B.H. and D. C. Kim and E. Pelinovsky and S. B. Woo, 2007. Three dimensional simulation of tsunami run-up around conical island. Coastal Engineering 54,374 pp. 618-629. Chopakatla, S.C. and T.C. Lipmann and J.E. Richardson, 2008. Field verification of a computational fluid dynamics model for wave transformation and breaking in the surf zone. Journal of Waterway, Port, Coastal, and Ocean Engineering 134(2), pp. 71-80 Di Risio, M., P. De Girolamo, G. Bellotti, A. Panizzo, F. Aristodemo, M. G.Molfetta, and A. F. Petrillo (2009), Landslidegenerated tsunamis runup at the coast of a conical island: New physical model experiments. J. Geophys. Res., 114, C01009, doi:10.1029/2008JC004858 Flow Science, Inc, 2007. FLOW-3D User's Manual.
Erosion and sedimentation from the 17 July, 1998 Papua New Guinea tsunami
Gelfenbaum, G.; Jaffe, B.
2003-01-01
This paper describes erosion and sedimentation associated with the 17 July 1998 Papua New Guinea tsunami. Observed within two months of the tsunami, distinct deposits of a layer averaging 8-cm thick of gray sand rested on a brown muddy soil. In most cases the sand is normally graded, with more coarse sand near the base and fine sand at the top. In some cases the deposit contains rip-up clasts of muddy soil and in some locations it has a mud cap. Detailed measurements of coastal topography, tsunami flow height and direction indicators, and deposit thickness were made in the field, and samples of the deposit were collected for grain-size analysis in the laboratory. Four shore-normal transects were examined in detail to assess the shore-normal and along shore distribution of the tsunami deposit. Near the shoreline, the tsunami eroded approximately 10-25 cm of sand from the beach and berm. The sandy layer deposited by the tsunami began 50-150 m inland from the shoreline and extended across the coastal plain to within about 40 m of the limit of inundation; a total distance of up to 750 m from the beach. As much as 2/3 of the sand in the deposit originated from offshore. Across most of the coastal plain the deposit thickness and mean grain size varied little. In the along-shore direction the deposit thickness varied with the tsunami wave height; both largest near the entrance to Sissano Lagoon.
Development of a Probabilistic Tsunami Hazard Analysis in Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toshiaki Sakai; Tomoyoshi Takeda; Hiroshi Soraoka
2006-07-01
It is meaningful for tsunami assessment to evaluate phenomena beyond the design basis as well as seismic design. Because once we set the design basis tsunami height, we still have possibilities tsunami height may exceeds the determined design tsunami height due to uncertainties regarding the tsunami phenomena. Probabilistic tsunami risk assessment consists of estimating for tsunami hazard and fragility of structures and executing system analysis. In this report, we apply a method for probabilistic tsunami hazard analysis (PTHA). We introduce a logic tree approach to estimate tsunami hazard curves (relationships between tsunami height and probability of excess) and present anmore » example for Japan. Examples of tsunami hazard curves are illustrated, and uncertainty in the tsunami hazard is displayed by 5-, 16-, 50-, 84- and 95-percentile and mean hazard curves. The result of PTHA will be used for quantitative assessment of the tsunami risk for important facilities located on coastal area. Tsunami hazard curves are the reasonable input data for structures and system analysis. However the evaluation method for estimating fragility of structures and the procedure of system analysis is now being developed. (authors)« less
Pacific Basin tsunami hazards associated with mass flows in the Aleutian arc of Alaska
Waythomas, Christopher F.; Watts, Philip; Shi, Fengyan; Kirby, James T.
2009-01-01
We analyze mass-flow tsunami generation for selected areas within the Aleutian arc of Alaska using results from numerical simulation of hypothetical but plausible mass-flow sources such as submarine landslides and volcanic debris avalanches. The Aleutian arc consists of a chain of volcanic mountains, volcanic islands, and submarine canyons, surrounded by a low-relief continental shelf above about 1000–2000 m water depth. Parts of the arc are fragmented into a series of fault-bounded blocks, tens to hundreds of kilometers in length, and separated from one another by distinctive fault-controlled canyons that are roughly normal to the arc axis. The canyons are natural regions for the accumulation and conveyance of sediment derived from glacial and volcanic processes. The volcanic islands in the region include a number of historically active volcanoes and some possess geological evidence for large-scale sector collapse into the sea. Large scale mass-flow deposits have not been mapped on the seafloor south of the Aleutian Islands, in part because most of the area has never been examined at the resolution required to identify such features, and in part because of the complex nature of erosional and depositional processes. Extensive submarine landslide deposits and debris flows are known on the north side of the arc and are common in similar settings elsewhere and thus they likely exist on the trench slope south of the Aleutian Islands. Because the Aleutian arc is surrounded by deep, open ocean, mass flows of unconsolidated debris that originate either as submarine landslides or as volcanic debris avalanches entering the sea may be potential tsunami sources. To test this hypothesis we present a series of numerical simulations of submarine mass-flow initiated tsunamis from eight different source areas. We consider four submarine mass flows originating in submarine canyons and four flows that evolve from submarine landslides on the trench slope. The flows have lengths that range from 40 to 80 km, maximum thicknesses of 400–800 m, and maximum widths of 10–40 km. We also evaluate tsunami generation by volcanic debris avalanches associated with flank collapse, at four locations (Makushin, Cleveland, Seguam and Yunaska SW volcanoes), which represent large to moderate sized events in this region. We calculate tsunami sources using the numerical model TOPICS and simulate wave propagation across the Pacific using a spherical Boussinesq model, which is a modified version of the public domain code FUNWAVE. Our numerical simulations indicate that geologically plausible mass flows originating in the North Pacific near the Aleutian Islands can indeed generate large local tsunamis as well as large transoceanic tsunamis. These waves may be several meters in elevation at distal locations, such as Japan, Hawaii, and along the North and South American coastlines where they would constitute significant hazards.
NASA Astrophysics Data System (ADS)
Cankaya, Zeynep Ceren; Suzen, Mehmet Lutfi; Yalciner, Ahmet Cevdet; Kolat, Cagil; Zaytsev, Andrey; Aytore, Betul
2016-07-01
Istanbul is a mega city with various coastal utilities located on the northern coast of the Sea of Marmara. At Yenikapı, there are critical vulnerable coastal utilities, structures, and active metropolitan life. Fishery ports, commercial ports, small craft harbors, passenger terminals of intercity maritime transportation, waterfront commercial and/or recreational structures with residential/commercial areas and public utility areas are some examples of coastal utilization that are vulnerable to marine disasters. Therefore, the tsunami risk in the Yenikapı region is an important issue for Istanbul. In this study, a new methodology for tsunami vulnerability assessment for areas susceptible to tsunami is proposed, in which the Yenikapı region is chosen as a case study. Available datasets from the Istanbul Metropolitan Municipality and Turkish Navy are used as inputs for high-resolution GIS-based multi-criteria decision analysis (MCDA) evaluation of tsunami risk in Yenikapı. Bathymetry and topography database is used for high-resolution tsunami numerical modeling where the tsunami hazard, in terms of coastal inundation, is deterministically computed using the NAMI DANCE numerical code, considering earthquake worst case scenarios. In order to define the tsunami human vulnerability of the region, two different aspects, vulnerability at location and evacuation resilience maps were created using the analytical hierarchical process (AHP) method of MCDA. A vulnerability at location map is composed of metropolitan use, geology, elevation, and distance from shoreline layers, whereas an evacuation resilience map is formed by slope, distance within flat areas, distance to buildings, and distance to road networks layers. The tsunami risk map is then computed by the proposed new relationship which uses flow depth maps, vulnerability at location maps, and evacuation resilience maps.
NASA Astrophysics Data System (ADS)
Martin-Medina, Manuel; Morichon, Denis; Abadie, Stephane; Le Roy, Sylvestre; Lemoine, Anne
2017-04-01
The Tohoku tsunami, that impacted the Japanese coast in 2011, caused great damages on many offshore vertical breakwaters ranging from the erosion of the rubble mound to the partial displacement or total collapse of caissons. The breakwater failure mechanisms were function of the tsunami wave types that vary along the Japanese coast according to the bathymetry features. The Iwate coast, characterized by deep water depths and steep slopes, was mainly impacted by tsunami overflow leading in particular to the failure of the world's deepest breakwater of Kamaishi. In the shallow waters of the Sendai bay, observations showed that breakwaters protecting harbor entrances were impacted by short waves train resembling to undular bore. This work aims to investigate this latter type of tsunami wave impacts that are less reported in the literature. We chose to focus on the highly damaged offshore breakwater of Soma, located in the south part of the Sendai bay. The hydrodynamics conditions during the tsunami impact are investigated using the VARANS Thetis code (Desombre et al., 2012), which allows to simulate both the free surface flow and the flow inside the rubble mound simulated by a porous medium. The model is forced at the offshore boundaries by the Funwave Boussinesq code that describes the transformation of the tsunami waves from the source to the generation of undular bores in shallow waters. The study includes the computation of forces acting on the caissons. We discuss the relevance of describing the hydrodynamics at the short wave scale to assess breakwater stability in the course of tsunami-like undular bore impact. References Desombre, J., Morichon, D., & Mory, M. (2012). SIMULTANEOUS SURFACE AND SUBSURFACE AIR AND WATER FLOWS MODELLING IN THE SWASH ZONE. Coastal Engineering Proceedings, 1(33), 56.
Tsunami-HySEA model validation for tsunami current predictions
NASA Astrophysics Data System (ADS)
Macías, Jorge; Castro, Manuel J.; González-Vida, José Manuel; Ortega, Sergio
2016-04-01
Model ability to compute and predict tsunami flow velocities is of importance in risk assessment and hazard mitigation. Substantial damage can be produced by high velocity flows, particularly in harbors and bays, even when the wave height is small. Besides, an accurate simulation of tsunami flow velocities and accelerations is fundamental for advancing in the study of tsunami sediment transport. These considerations made the National Tsunami Hazard Mitigation Program (NTHMP) proposing a benchmark exercise focussed on modeling and simulating tsunami currents. Until recently, few direct measurements of tsunami velocities were available to compare and to validate model results. After Tohoku 2011 many current meters measurement were made, mainly in harbors and channels. In this work we present a part of the contribution made by the EDANYA group from the University of Malaga to the NTHMP workshop organized at Portland (USA), 9-10 of February 2015. We have selected three out of the five proposed benchmark problems. Two of them consist in real observed data from the Tohoku 2011 event, one at Hilo Habour (Hawaii) and the other at Tauranga Bay (New Zealand). The third one consists in laboratory experimental data for the inundation of Seaside City in Oregon. Acknowledgements: This research has been partially supported by the Junta de Andalucía research project TESELA (P11-RNM7069) and the Spanish Government Research project DAIFLUID (MTM2012-38383-C02-01) and Universidad de Málaga, Campus de Excelencia Andalucía TECH. The GPU and multi-GPU computations were performed at the Unit of Numerical Methods (UNM) of the Research Support Central Services (SCAI) of the University of Malaga.
NASA Astrophysics Data System (ADS)
Goguitchaichrili, A.; Ramirez-Herrera, M.; Calvo-Rathert, M.; Aguilar, B.; Carrancho, Alonso; Morales, J.; Caballero, C. I.; Bautista, F.
2013-05-01
The Pacific coast of Mexico has repeatedly been exposed to destructive tsunamis. Recent studies have shown that rock-magnetic methods can be a promising approach for identification of tsunami or storm induced deposits. We present new rock-magnetic and anisotropy of magnetic susceptibility results to try to distinguish tsunami deposits in the Ixtapa-Zihuatanejo area (Western Mexico). The sampled, 80 cm deep sequence is characterised by the presence of two anomalous sand beds within fine-grained coastal deposits. The first lower lying sand bed is probably associated with the 14th March 1979 Petatlán earthquake (MW = 7.6) while the second one was originated by the September 21st 1985 Mexico earthquake (MW = 8.1). Rock magnetic experiments have shown significant variations within the analysed sequence. Thermomagnetic curves reveal two types of behaviour: In the upper part of the sequence, after the occurrence of the first tsunami and in the lower part of the sequence, during that event and below. Analysis of hysteresis parameter ratios in a Day-plot also allows distinguishing two kinds of behaviour. The samples associated to the second tsunami plot in the PSD area, while specimens associated to the first tsunami and the time between both tsunamis display a very different trend which can be ascribed to the production of a considerable amount of superparamagnetic grains which might be due to pedogenic processes after the first tsunami. The studied profile is characterised by a sedimentary fabric with almost vertical minimum principal susceptibilities. The maximum susceptibility axis shows a declination angle D = 27, suggesting a NNE flow direction which is equal for both tsunamis and normal currents. The standard AMS parameters display a significant enhancement within the transitional zone between both tsunamis. The study of rock-magnetic parameters may represent a useful tool for the identification and understanding of tsunami deposits.
NASA Astrophysics Data System (ADS)
Adams, L. M.; LeVeque, R. J.
2015-12-01
The ability to measure, predict, and compute tsunami flow velocities is ofimportance in risk assessment and hazard mitigation. Until recently, fewdirect measurements of tsunami velocities existed to compare with modelresults. During the 11 March 2001 Tohoku Tsunami, 328 current meters werewere in place around the Hawaiian Islands, USA, that captured time seriesof water velocity in 18 locations, in both harbors and deep channels, ata series of depths. Arcos and LeVeque[1] compared these records againstnumerical simulations performed using the GeoClaw numerical tsunami modelwhich is based on the depth-averaged shallow water equations. They confirmedthat GeoClaw can accurately predict velocities at nearshore locations, andthat tsunami current velocity is more spatially variable than wave formor height and potentially more sensitive for model validation.We present a new approach to detiding this sensitive current data. Thisapproach can be used separately on data at each depth of a current gauge.When averaged across depths, the Geoclaw results in [1] are validated. Withoutaveraging, the results should be useful to researchers wishing to validate their3D codes. These results can be downloaded from the project website below.The approach decomposes the pre-tsunami component of the data into three parts:a tidal component, a fast component (noise), and a slow component (not matchedby the harmonic analysis). Each part is extended to the time when the tsunamiis present and subtracted from the current data then to give the ''tsunami current''that can be compared with 2D or 3D codes that do not model currents in thepre-tsunami regime. [1] "Validating Velocities in the GeoClaw Tsunami Model using Observations NearHawaii from the 2001 Tohoku Tsunami"M.E.M. Arcos and Randall J. LeVequearXiv:1410.2884v1 [physics.geo-py], 10 Oct. 2014.project website: http://faculty.washington.edu/lma3/research.html
A Preliminary Tsunami Vulnerability Analysis for Yenikapi Region in Istanbul
NASA Astrophysics Data System (ADS)
Ceren Cankaya, Zeynep; Suzen, Lutfi; Cevdet Yalciner, Ahmet; Kolat, Cagil; Aytore, Betul; Zaytsev, Andrey
2015-04-01
One of the main requirements during post disaster recovery operations is to maintain proper transportation and fluent communication at the disaster areas. Ports and harbors are the main transportation hubs which must work with proper performance at all times especially after the disasters. Resilience of coastal utilities after earthquakes and tsunamis have major importance for efficient and proper rescue and recovery operations soon after the disasters. Istanbul is a mega city with its various coastal utilities located at the north coast of the Sea of Marmara. At Yenikapi region of Istanbul, there are critical coastal utilities and vulnerable coastal structures and critical activities occur daily. Fishery ports, commercial ports, small craft harbors, passenger terminals of intercity maritime transportation, water front commercial and/or recreational structures are some of the examples of coastal utilization which are vulnerable against marine disasters. Therefore their vulnerability under tsunami or any other marine hazard to Yenikapi region of Istanbul is an important issue. In this study, a methodology of vulnerability analysis under tsunami attack is proposed with the applications to Yenikapi region. In the study, high resolution (1m) GIS database of Istanbul Metropolitan Municipality (IMM) is used and analyzed by using GIS implementation. The bathymetry and topography database and the vector dataset containing all buildings/structures/infrastructures in the study area are obtained for tsunami numerical modeling for the study area. GIS based tsunami vulnerability assessment is conducted by applying the Multi-criteria Decision Making Analysis (MCDA). The tsunami parameters from deterministically defined worst case scenarios are computed from the simulations using tsunami numerical model NAMI DANCE. The vulnerability parameters in the region due to two different classifications i) vulnerability of buildings/structures and ii) vulnerability of (human) evacuation are defined and scored. The risk level is computed using tsunami intensity (level of flow depth from simulations) and vulnerability (structural and human-based) at each node in Yenikapi. The results are presented at high resolution (1m) and discussed. Acknowledgements: Partial support by EU 603839 ASTARTE Project, UDAP-C-12-14 of AFAD of Turkey, 108Y227 and 113M556 of TUBITAK Turkey, RAPSODI (CONCERT_Dis-021) of CONCERT-Japan Joint Call, 2011K140210 of DPT, Istanbul Metropolitan Municipality, Japan-Turkey Joint Research Project by JICA on earthquakes and tsunamis in Marmara Region by SATREPS are acknowledged.
Modelling tsunami inundation for risk analysis at the Andaman Sea Coast of Thailand
NASA Astrophysics Data System (ADS)
Kaiser, G.; Kortenhaus, A.
2009-04-01
The mega-tsunami of Dec. 26, 2004 strongly impacted the Andaman Sea coast of Thailand and devastated coastal ecosystems as well as towns, settlements and tourism resorts. In addition to the tragic loss of many lives, the destruction or damage of life-supporting infrastructure, such as buildings, roads, water & power supply etc. caused high economic losses in the region. To mitigate future tsunami impacts there is a need to assess the tsunami hazard and vulnerability in flood prone areas at the Andaman Sea coast in order to determine the spatial distribution of risk and to develop risk management strategies. In the bilateral German-Thai project TRAIT research is performed on integrated risk assessment for the Provinces Phang Nga and Phuket in southern Thailand, including a hazard analysis, i.e. modelling tsunami propagation to the coast, tsunami wave breaking and inundation characteristics, as well as vulnerability analysis of the socio-economic and the ecological system in order to determine the scenario-based, specific risk for the region. In this presentation results of the hazard analysis and the inundation simulation are presented and discussed. Numerical modelling of tsunami propagation and inundation simulation is an inevitable tool for risk analysis, risk management and evacuation planning. While numerous investigations have been made to model tsunami wave generation and propagation in the Indian Ocean, there is still a lack in determining detailed inundation patterns, i.e. water depth and flow dynamics. However, for risk management and evacuation planning this knowledge is essential. As the accuracy of the inundation simulation is strongly depending on the available bathymetric and the topographic data, a multi-scale approach is chosen in this work. The ETOPO Global Relief Model as a bathymetric basis and the Shuttle Radar Topography Mission (SRTM90) have been widely applied in tsunami modelling approaches as these data are free and almost world-wide available. However, to model tsunami-induced inundation for risk analysis and management purposes the accuracy of these data is not sufficient as the processes in the near-shore zone cannot be modelled accurately enough and the spatial resolution of the topography is weak. Moreover, the SRTM data provide a digital surface model which includes vegetation and buildings in the surface description. To improve the data basis additional bathymetric data were used in the near shore zone of the Phang Nga and Phuket coastlines and various remote sensing techniques as well as additional GPS measurements were applied to derive a high resolution topography from satellite and airborne data. Land use classifications and filter methods were developed to correct the digital surface models to digital elevation models. Simulations were then performed with a non-linear shallow water model to model the 2004 Asian Tsunami and to simulate possible future ones. Results of water elevation near the coast were compared with field measurements and observations, and the influence of the resolution of the topography on inundation patterns like water depth, velocity, dispersion and duration of the flood were analysed. The inundation simulation provides detailed hazard maps and is considered a reliable basis for risk assessment and risk zone mapping. Results are regarded vital for estimation of tsunami induced damages and evacuation planning. Results of the aforementioned simulations will be discussed during the conference. Differences of the numerical results using topographic data of different scales and modified by different post processing techniques will be analysed and explained. Further use of the results with respect to tsunami risk analysis and management will also be demonstrated.
Defining Tsunami Magnitude as Measure of Potential Impact
NASA Astrophysics Data System (ADS)
Titov, V. V.; Tang, L.
2016-12-01
The goal of tsunami forecast, as a system for predicting potential impact of a tsunami at coastlines, requires quick estimate of a tsunami magnitude. This goal has been recognized since the beginning of tsunami research. The work of Kajiura, Soloviev, Abe, Murty, and many others discussed several scales for tsunami magnitude based on estimates of tsunami energy. However, difficulties of estimating tsunami energy based on available tsunami measurements at coastal sea-level stations has carried significant uncertainties and has been virtually impossible in real time, before tsunami impacts coastlines. The slow process of tsunami magnitude estimates, including collection of vast amount of available coastal sea-level data from affected coastlines, made it impractical to use any tsunami magnitude scales in tsunami warning operations. Uncertainties of estimates made tsunami magnitudes difficult to use as universal scale for tsunami analysis. Historically, the earthquake magnitude has been used as a proxy of tsunami impact estimates, since real-time seismic data is available of real-time processing and ample amount of seismic data is available for an elaborate post event analysis. This measure of tsunami impact carries significant uncertainties in quantitative tsunami impact estimates, since the relation between the earthquake and generated tsunami energy varies from case to case. In this work, we argue that current tsunami measurement capabilities and real-time modeling tools allow for establishing robust tsunami magnitude that will be useful for tsunami warning as a quick estimate for tsunami impact and for post-event analysis as a universal scale for tsunamis inter-comparison. We present a method for estimating the tsunami magnitude based on tsunami energy and present application of the magnitude analysis for several historical events for inter-comparison with existing methods.
NASA Astrophysics Data System (ADS)
Yamamoto, A.; Takahashi, T.; Harada, K.; Sakuraba, M.; Nojima, K.
2017-12-01
An underestimation of the 2011 Tohoku tsunami caused serious damage in coastal area. Reconsideration for tsunami estimation needs knowledge of paleo tsunamis. The historical records of giant tsunamis are limited, because they had occurred infrequently. Tsunami deposits may include many of tsunami records and are expected to analyze paleo tsunamis. However, present research on tsunami deposits are not able to estimate the tsunami source and its magnitude. Furthermore, numerical models of tsunami and its sediment transport are also important. Takahashi et al. (1999) proposed a model of movable bed condition due to tsunamis, although it has some issues. Improvement of the model needs basic data on sediment transport and deposition. This study investigated the formation mechanism of tsunami deposit by hydraulic experiment using a two-dimensional water channel with slope. In a fixed bed condition experiment, velocity, water level and suspended load concentration were measured at many points. In a movable bed condition, effects of sand grains and bore wave on the deposit were examined. Yamamoto et al. (2016) showed deposition range varied with sand grain sizes. In addition, it is revealed that the range fluctuated by number of waves and wave period. The measurements of velocity and water level showed that flow was clearly different near shoreline and in run-up area. Large velocity by return flow was affected the amount of sand deposit near shoreline. When a cutoff wall was installed on the slope, the amount of sand deposit repeatedly increased and decreased. Especially, sand deposit increased where velocity decreased. Takahashi et al. (1999) adapted the proposed model into Kesennuma bay when the 1960 Chilean tsunami arrived, although the amount of sand transportation was underestimated. The cause of the underestimation is inferred that the velocity of this model was underestimated. A relationship between velocity and sediment transport has to be studied in detail, but observation of velocity in Kesennnuma bay had a low accuracy. On the other hand, this hydraulic experiment measured accurate velocity and sand deposition distribution of various condition. Based on these data, we tried more accurate verification of the model of Takahashi et al. (1999).
Hydrodynamic implications of textural trends in sand deposits of the 2004 tsunami in Sri Lanka
Morton, R.A.; Goff, J.R.; Nichol, S.L.
2008-01-01
Field observations and sediment samples at a coastal-plain setting in southeastern Sri Lanka were used to document the erosional and depositional impacts of the 2004 Indian Ocean tsunami and to interpret the hydrodynamic processes that produced an extensive sand-sheet deposit. Tsunami deposit thicknesses ranged from 6 to 22??cm with thickness being controlled partly by antecedent topography. The deposit was composed of coarse to medium sand organized into plane-parallel laminae and a few laminasets. Vertical textural trends showed an overall but non-systematic upward fining and upward thinning of depositional units with an upward increase in heavy-mineral laminations at some locations. Repeated patterns in the vertical textural trends (upward fining, upward coarsening, uniform) were used to subdivide and correlate the deposit into five hydro-textural stratigraphic units. The depositional units were linked to hydrodynamic processes and upcurrent conditions, such as rates of sediment supply and composition of the sediment sources. Vertical changes in grain-size distributions recorded the depositional phases associated with flow acceleration, initial unsteady pulsating flow, relatively stable and uniform flow, flow deceleration, slack water, and return flow or flow redirection. Study results suggest that vertical textural trends from multiple cross-shore sections can be used to interpret complex tsunami flow histories, but at the location examined, interpretation of the lateral textural trends did not provide a basis for identifying the correct sediment transport pathways because flow near the landward boundary was multidirectional.
NASA Astrophysics Data System (ADS)
Conde, Daniel; Baptista, Maria Ana; Sousa Oliveira, Carlos; Ferreira, Rui M. L.
2015-04-01
Global energy production is still significantly dependant on the coal supply chain, justifying huge investments on building infrastructures, capable of stocking very large quantities of this natural resource. Most of these infrastructures are located at deep-sea ports and are therefore exposed to extreme coastal hazards, such as tsunami impacts. The 2011 Tohoku tsunami is reported to have inflicted severe damage to Japan's coal-fired power stations and related infrastructure. Sines, located in the Portuguese coast, hosts a major commercial port featuring an exposed coal stockpile area extending over more than 24 ha and a container terminal currently under expansion up to 100ha. It is protected against storm surges but tsunamis have not been considered in the design criteria. The dominant wind-generated wave direction is N to NW, while the main tsunamigenic faults are located S to SW of the port. This configuration potentially exposes sensitive facilities, such as the new terminal container and the coal stockpile area. According to a recent revision of the national tsunami catalogue (Baptista, 2009), Portugal has been affected by numerous major tsunamis over the last two millennia, with the most notorious event being the Great Lisbon Earthquake and Tsunami occurred on the 1st November 1755. The aim of this work is to simulate the open ocean propagation and overland impact of a tsunami on the Sines port, similar to the historical event of 1755, based on the different tsunamigenic faults and magnitudes proposed in the current literature. Open ocean propagation was modelled with standard simulation tools like TUNAMI and GeoClaw. Near-shore and overland propagation was carried out using a recent 2DH mathematical model for solid-fluid flows, STAV-2D from CERIS-IST (Ferreira et al., 2009; Canelas, 2013). STAV-2D is particularly suited for tsunami propagation over complex and morphodynamic geometries, featuring a discretization scheme based on a finite-volume method using a flux-splitting technique with a reviewed Roe-Riemann solver and appropriate source-term formulations to ensure full conservativeness. Additionally, STAV-2D features Lagrangian-Eulerian coupling enabling solid transport simulation under both continuum and discrete approaches, and has been validated with both laboratory data and paleo-tsunami evidence (Conde, 2013a; Conde, 2013b). The interactions between the inundating flow and coal stockpiles or natural mobile bed reaches were simulated using a continuum debris-flow approach, featuring fractional solid transport, while the containers at the new terminal were advected with an explicit Lagrangian method. The meshwork employed at the port models the existing geometry and structures in great detail, enabling explicitly resolved interactions between the current infrastructure and the overland propagating tsunami. The obtained preliminary results suggest that several structures, some of them critical in a nationwide context, are exposed to tsunami actions. The coal deposition pattern and the final location of monitored containers were determined for two magnitude scenarios (8.5 Mw and 9.5 Mw) in the case of a tsunami generated at the Horseshoe fault and one magnitude scenario (9.5 Mw) for a tsunami generated at the Gorringe bank. The inland washing of the coal stockpiles may impose great loss of both economical and environmental value, while the impact of large mobile debris, such as the containers in the terminal area, significantly increases the severity of infrastructural damage. Acknowledgements This work was partially funded by FEDER, program COMPETE, and by national funds through the Portuguese Foundation for Science and Technology (FCT) with project RECI/ECM-HID/0371/2012. References Baptista M.A. & Miranda, J.M. (2009), Revision of the Portuguese catalog of tsunamis. Nat. Hazards Earth Syst. Sci., 9, 25-42. Canelas, R.; Murillo, J. & Ferreira, R.M.L. (2013), Two-dimensional depth-averaged modelling of dam-break flows over mobile beds. Vol 51(4) pp. 392-407. Conde, D. A. S.; Baptista, M. A. V.; Sousa Oliveira, C. & Ferreira, R. M. L. (2013a), A shallow-flow model for the propagation of tsunamis over complex geometries and mobile beds, Nat. Hazards Earth Syst. Sci., 13, 2533-2542. Conde, D. A. S.; Canelas, R. B.; Sousa Oliveira, C. & Ferreira, R. M. L. (2013b), Mathematical modelling of transport of coal stockpiles by a tsunami at Sines port, 8th International SedNet Conference 2013, Lisbon, Portugal. Ferreira, R. M. L.; Franca, M. J.; Leal, J. G. & Cardoso, A. H. (2009), Mathematical modelling of shallow flows: Closure models drawn from grain-scale mechanics of sediment transport and flow hydrodynamics, Can. J. Civil. Eng., 36, 1604-1621, 2009.
NASA Astrophysics Data System (ADS)
Tang, H.; WANG, J.
2017-12-01
Population living close to coastlines is increasing, which creates higher risks due to coastal hazards, such as the tsunami. However, the generation of a tsunami is not fully understood yet, especially for paleo-tsunami. Tsunami deposits are one of the concrete evidence in the geological record which we can apply for studying paleo-tsunami. The understanding of tsunami deposits has significantly improved over the last decades. There are many inversion models (e.g. TsuSedMod, TSUFLIND, and TSUFLIND-EnKF) to study the overland-flow characteristics based on tsunami deposits. However, none of them tries to reconstruct offshore tsunami wave characteristics (wave form, wave height, and length) based on tsunami deposits. Here we present a state-of-the-art inverse approach to reconstruct offshore tsunami wave based on the tsunami inundation data, the spatial distribution of tsunami deposits and Marine-terrestrial sediment signal in the tsunami deposits. Ensemble Kalman Filter (EnKF) Method is used for assimilating both sediment transport simulations and the field observation data. While more computationally expensive, the EnKF approach potentially provides more accurate reconstructions for tsunami waveform. In addition to the improvement of inversion results, the ensemble-based method can also quantify the uncertainties of the results. Meanwhile, joint inversion improves the resolution of tsunami waves compared with inversions using any single data type. The method will be tested by field survey data and gauge data from the 2011 Tohoku tsunami on Sendai plain area.
NASA Astrophysics Data System (ADS)
Tappin, David R.; Evans, Hannah M.; Jordan, Colm J.; Richmond, Bruce; Sugawara, Daisuke; Goto, Kazuhisa
2012-12-01
A combination of time-series satellite imagery, helicopter-borne video footage and field observation is used to identify the impact of a major tsunami on a low-lying coastal zone located in eastern Japan. A comparison is made between the coast protected by armoured 'engineered' sea walls and the coast without. Changes are mapped from before and after imagery, and sedimentary processes identified from the video footage. The results are validated by field observations. The impact along a 'natural' coast, with minimal defences, is erosion focussed on the back beach. Along coasts with hard engineered protection constructed to defend against erosion, the presence of three to six metre high concrete-faced embankments results in severe erosion on their landward faces. The erosion is due to the tsunami wave accelerating through a hydraulic jump as it passes over the embankment, resulting in the formation of a ditch into which the foundations collapse. Engineered coastal defences are thus found to be small defence against highly energetic tsunami waves that overtop them. There is little erosion (or sedimentation) of the whole beach, and where active, it mainly forms V-shaped channels. These channels are probably initiated during tsunami inflow and then further developed during tsunami backflow. Tsunami backflow on such a low lying area takes place energetically as sheet flow immediately after tsunami flooding has ceased. Subsequently, when the water level landward of the coastal dune ridges falls below their elevation, flow becomes confined to rivers and breaches in the coast formed during tsunami inflow. Enigmatic, short lived, 'strand lines' are attributed to the slow fall of sea level after such a major tsunami. Immediately after the tsunami coastal reconstruction begins, sourced from the sediment recently flushed into the sea by tsunami backflow.
NASA Astrophysics Data System (ADS)
Lamarche, G.; Popinet, S.; Pelletier, B.; Mountjoy, J.; Goff, J.; Delaux, S.; Bind, J.
2015-08-01
We investigated the tsunami hazard in the remote French territory of Wallis and Futuna, Southwest Pacific, using the Gerris flow solver to produce numerical models of tsunami generation, propagation and inundation. Wallis consists of the inhabited volcanic island of Uvéa that is surrounded by a lagoon delimited by a barrier reef. Futuna and the island of Alofi form the Horn Archipelago located ca. 240 km east of Wallis. They are surrounded by a narrow fringing reef. Futuna and Alofi emerge from the North Fiji Transform Fault that marks the seismically active Pacific-Australia plate boundary. We generated 15 tsunami scenarios. For each, we calculated maximum wave elevation (MWE), inundation distance and expected time of arrival (ETA). The tsunami sources were local, regional and distant earthquake faults located along the Pacific Rim. In Wallis, the outer reef may experience 6.8 m-high MWE. Uvéa is protected by the barrier reef and the lagoon, but inundation depths of 2-3 m occur in several coastal areas. In Futuna, flow depths exceeding 2 m are modelled in several populated areas, and have been confirmed by a post-September 2009 South Pacific tsunami survey. The channel between the islands of Futuna and Alofi amplified the 2009 tsunami, which resulted in inundation distance of almost 100 m and MWE of 4.4 m. This first ever tsunami hazard modelling study of Wallis and Futuna compares well with palaeotsunamis recognised on both islands and observation of the impact of the 2009 South Pacific tsunami. The study provides evidence for the mitigating effect of barrier and fringing reefs from tsunamis.
NASA Astrophysics Data System (ADS)
Lamarche, G.; Popinet, S.; Pelletier, B.; Mountjoy, J.; Goff, J.; Delaux, S.; Bind, J.
2015-04-01
We investigated the tsunami hazard in the remote French territory of Wallis and Futuna, Southwest Pacific, using the Gerris flow solver to produce numerical models of tsunami generation, propagation and inundation. Wallis consists of the inhabited volcanic island of Uvéa that is surrounded by a lagoon delimited by a barrier reef. Futuna and the island of Alofi forms the Horn Archipelago located ca. 240 km east of Wallis. They are surrounded by a narrow fringing reef. Futuna and Alofi emerge from the North Fiji Transform Fault that marks the seismically active Pacific-Australia plate boundary. We generated fifteen tsunami scenarios. For each, we calculated maximum wave elevation (MWE), inundation distance, and Expected Time of Arrival (ETA). The tsunami sources were local, regional and distant earthquake faults located along the Pacific Rim. In Wallis, the outer reef may experience 6.8 m-high MWE. Uvéa is protected by the barrier reef and the lagoon, but inundation depths of 2-3 m occur in several coastal areas. In Futuna, flow depths exceeding 2 m are modelled in several populated areas, and have been confirmed by a post-September 2009 South Pacific tsunami survey. The channel between the islands of Futuna and Alofi amplified the 2009 tsunami, which resulted in inundation distance of almost 100 m and MWE of 4.4 m. This first-ever tsunami hazard modelling study of Wallis and Futuna compares well with palaeotsunamis recognised on both islands and observation of the impact of the 2009 South Pacific tsunami. The study provides evidence for the mitigating effect of barrier and fringing reefs from tsunamis.
Issues and Advances in Understanding Landslide-Generated Tsunamis: Toward a Unified Model
NASA Astrophysics Data System (ADS)
Geist, E. L.; Locat, J.; Lee, H. J.; Lynett, P. J.; Parsons, T.; Kayen, R. E.; Hart, P. E.
2008-12-01
The physics of tsunamis generated from submarine landslides is highly complex, involving a cross- disciplinary exchange in geophysics. In the 10 years following the devastating Papua New Guinea tsunami, there have been significant advances in understanding landslide-generated tsunamis. However, persistent issues still remain related to submarine landslide dynamics that may be addressed with collection of new marine geologic and geophysical observations. We review critical elements of landslide tsunamis in the hope of developing a unified model that encompasses all stages of the process from triggering to tsunami runup. Because the majority of non-volcanogenic landslides that generate tsunamis are triggered seismically, advances in understanding inertial displacements and changes in strength and rheologic properties in response to strong-ground motion need to be included in a unified model. For example, interaction between compliant marine sediments and multi-direction ground motion results in greater permanent plastic displacements than predicted by traditional rigid-block analysis. When considering the coupling of the overlying water layer in the generation of tsunamis, the post-failure dynamics of landslides is important since the overall rate of seafloor deformation for landslides is less than or comparable to the phase speed of tsunami waves. As such, the rheologic and mechanical behavior of the slide material needs to be well understood. For clayey and silty debris flows, a non-linear (Herschel-Bulkley) and bilinear rheology have recently been developed to explain observed runout distances and deposit thicknesses. An additional complexity to this rheology is the inclusion of hydrate-laden sediment that commonly occurs along continental slopes. Although it has been proposed in the past that gas hydrate dissociation may provide potential failure planes for slide movement, it is unclear how zones of rigid hydrate-bearing sediment surrounded by a more viscoplastic matrix affects the overall rheologic behavior during slide dynamics. For more rigid materials, such as carbonate and volcanic rocks, models are being developed that encompass the initial fracturing and eventual disintegration associated with debris avalanches. Lastly, the physics dictating the hydrodynamics of landslide-generated tsunamis is equally complex. The effects of non-linearity and dispersion are not necessarily negligible for landslides (in contrast to most earthquake-generated tsunamis), indicating that numerical implementation of the non-linear Boussinesq equations is often needed. Moreover, we show that for near-field landslide tsunamis propagating across the continental shelf, bottom friction (bottom boundary layer turbulence) and wave breaking can be important energy sinks. Detailed geophysical surveys can dissect landslide complexes to determine the geometry of individual events and help estimate rheological properties of the flowing mass, whereas cores in landslide provinces can determine the mechanical properties and pore-pressure distribution for pre- and post-failure sediment. This information is critical toward developing well-documented case histories for validating physics-based landslide tsunami models.
NASA Astrophysics Data System (ADS)
Yeh, H.
2007-12-01
More than 4500 deaths by tsunamis were recorded in the decade of 1990. For example, the 1992 Flores Tsunami in Indonesia took away at least 1712 lives, and more than 2182 people were victimized by the 1998 Papua New Guinea Tsunami. Such staggering death toll has been totally overshadowed by the 2004 Indian Ocean Tsunami that claimed more than 220,000 lives. Unlike hurricanes that are often evaluated by economic losses, death count is the primary measure for tsunami hazard. It is partly because tsunamis kill more people owing to its short lead- time for warning. Although exact death tallies are not available for most of the tsunami events, there exist gender and age discriminations in tsunami casualties. Significant gender difference in the victims of the 2004 Indian Ocean Tsunami was attributed to women's social norms and role behavior, as well as cultural bias toward women's inability to swim. Here we develop a rational casualty model based on humans' limit to withstand the tsunami flows. The application to simple tsunami runup cases demonstrates that biological and physiological disadvantages also make a significant difference in casualty rate. It further demonstrates that the gender and age discriminations in casualties become most pronounced when tsunami is marginally strong and the difference tends to diminish as tsunami strength increases.
NASA Astrophysics Data System (ADS)
Mohammed, F.
2016-12-01
Landslide hazards such as fast-moving debris flows, slow-moving landslides, and other mass flows cause numerous fatalities, injuries, and damage. Landslide occurrences in fjords, bays, and lakes can additionally generate tsunamis with locally extremely high wave heights and runups. Two-dimensional depth-averaged models can successfully simulate the entire lifecycle of the three-dimensional landslide dynamics and tsunami propagation efficiently and accurately with the appropriate assumptions. Landslide rheology is defined using viscous fluids, visco-plastic fluids, and granular material to account for the possible landslide source materials. Saturated and unsaturated rheologies are further included to simulate debris flow, debris avalanches, mudflows, and rockslides respectively. The models are obtained by reducing the fully three-dimensional Navier-Stokes equations with the internal rheological definition of the landslide material, the water body, and appropriate scaling assumptions to obtain the depth-averaged two-dimensional models. The landslide and tsunami models are coupled to include the interaction between the landslide and the water body for tsunami generation. The reduced models are solved numerically with a fast semi-implicit finite-volume, shock-capturing based algorithm. The well-balanced, positivity preserving algorithm accurately accounts for wet-dry interface transition for the landslide runout, landslide-water body interface, and the tsunami wave flooding on land. The models are implemented as a General-Purpose computing on Graphics Processing Unit-based (GPGPU) suite of models, either coupled or run independently within the suite. The GPGPU implementation provides up to 1000 times speedup over a CPU-based serial computation. This enables simulations of multiple scenarios of hazard realizations that provides a basis for a probabilistic hazard assessment. The models have been successfully validated against experiments, past studies, and field data for landslides and tsunamis.
Integrated Historical Tsunami Event and Deposit Database
NASA Astrophysics Data System (ADS)
Dunbar, P. K.; McCullough, H. L.
2010-12-01
The National Geophysical Data Center (NGDC) provides integrated access to historical tsunami event, deposit, and proxy data. The NGDC tsunami archive initially listed tsunami sources and locations with observed tsunami effects. Tsunami frequency and intensity are important for understanding tsunami hazards. Unfortunately, tsunami recurrence intervals often exceed the historic record. As a result, NGDC expanded the archive to include the Global Tsunami Deposits Database (GTD_DB). Tsunami deposits are the physical evidence left behind when a tsunami impacts a shoreline or affects submarine sediments. Proxies include co-seismic subsidence, turbidite deposits, changes in biota following an influx of marine water in a freshwater environment, etc. By adding past tsunami data inferred from the geologic record, the GTD_DB extends the record of tsunamis backward in time. Although the best methods for identifying tsunami deposits and proxies in the geologic record remain under discussion, developing an overall picture of where tsunamis have affected coasts, calculating recurrence intervals, and approximating runup height and inundation distance provides a better estimate of a region’s true tsunami hazard. Tsunami deposit and proxy descriptions in the GTD_DB were compiled from published data found in journal articles, conference proceedings, theses, books, conference abstracts, posters, web sites, etc. The database now includes over 1,200 descriptions compiled from over 1,100 citations. Each record in the GTD_DB is linked to its bibliographic citation where more information on the deposit can be found. The GTD_DB includes data for over 50 variables such as: event description (e.g., 2010 Chile Tsunami), geologic time period, year, deposit location name, latitude, longitude, country, associated body of water, setting during the event (e.g., beach, lake, river, deep sea), upper and lower contacts, underlying and overlying material, etc. If known, the tsunami source mechanism (e.g., earthquake, landslide, volcanic eruption, asteroid impact) is also specified. Observations (grain size, sedimentary structure, bed thickness, number of layers, etc.) are stored along with the conclusions drawn from the evidence by the author (wave height, flow depth, flow velocity, number of waves, etc.). Geologic time periods in the GTD_DB range from Precambrian to Quaternary, but the majority (70%) are from the Quaternary period. This period includes events such as: the 2004 Indian Ocean tsunami, the Cascadia subduction zone earthquakes and tsunamis, the 1755 Lisbon tsunami, the A.D. 79 Vesuvius tsunami, the 3500 BP Santorini caldera collapse and tsunami, and the 7000 BP Storegga landslide-generated tsunami. Prior to the Quaternary period, the majority of the paleotsunamis are due to impact events such as: the Tertiary Chesapeake Bay Bolide, Cretaceous-Tertiary (K/T) Boundary, Cretaceous Manson, and Devonian Alamo. The tsunami deposits are integrated with the historical tsunami event database where applicable. For example, users can search for articles describing deposits related to the 1755 Lisbon tsunami and view those records, as well as link to the related historic event record. The data and information may be viewed using tools designed to extract and display data (selection forms, Web Map Services, and Web Feature Services).
Probabilistic analysis of tsunami hazards
Geist, E.L.; Parsons, T.
2006-01-01
Determining the likelihood of a disaster is a key component of any comprehensive hazard assessment. This is particularly true for tsunamis, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models. We discuss probabilistic tsunami hazard analysis (PTHA) from the standpoint of integrating computational methods with empirical analysis of past tsunami runup. PTHA is derived from probabilistic seismic hazard analysis (PSHA), with the main difference being that PTHA must account for far-field sources. The computational methods rely on numerical tsunami propagation models rather than empirical attenuation relationships as in PSHA in determining ground motions. Because a number of source parameters affect local tsunami runup height, PTHA can become complex and computationally intensive. Empirical analysis can function in one of two ways, depending on the length and completeness of the tsunami catalog. For site-specific studies where there is sufficient tsunami runup data available, hazard curves can primarily be derived from empirical analysis, with computational methods used to highlight deficiencies in the tsunami catalog. For region-wide analyses and sites where there are little to no tsunami data, a computationally based method such as Monte Carlo simulation is the primary method to establish tsunami hazards. Two case studies that describe how computational and empirical methods can be integrated are presented for Acapulco, Mexico (site-specific) and the U.S. Pacific Northwest coastline (region-wide analysis).
Role of Compressibility on Tsunami Propagation
NASA Astrophysics Data System (ADS)
Abdolali, Ali; Kirby, James T.
2017-12-01
In the present paper, we aim to reduce the discrepancies between tsunami arrival times evaluated from tsunami models and real measurements considering the role of ocean compressibility. We perform qualitative studies to reveal the phase speed reduction rate via a modified version of the Mild Slope Equation for Weakly Compressible fluid (MSEWC) proposed by Sammarco et al. (2013). The model is validated against a 3-D computational model. Physical properties of surface gravity waves are studied and compared with those for waves evaluated from an incompressible flow solver over realistic geometry for 2011 Tohoku-oki event, revealing reduction in phase speed.
NASA Astrophysics Data System (ADS)
Dominey-Howes, D.
2009-12-01
The September 2009 tsunami was a regional South Pacific event of enormous significance. Our UNESCO-IOC ITST Samoa survey used a simplified version of a ‘coupled human-environment systems framework’ (Turner et al., 2003) to investigate the impacts and effects of the tsunami in Samoa. Further, the framework allowed us to identify those factors that affected the vulnerability and resilience of the human-environment system before, during and after the tsunami - a global first. Key findings (unprocessed) include: Maximum run-up exceeded 14 metres above sea level Maximum inundation (at right angles to the shore) was approximately 400 metres Maximum inundation with the wave running parallel with the shore (but inland), exceeded 700 metres Buildings sustained varying degrees of damage Damage was correlated with depth of tsunami flow, velocity, condition of foundations, quality of building materials used, quality of workmanship, adherence to the building code and so on Buildings raised even one metre above the surrounding land surface suffered much less damage Plants, trees and mangroves reduced flow velocity and flow depth - leading to greater chances of human survival and lower levels of building damage The tsunami has left a clear and distinguishable geological record in terms of sediments deposited in the coastal landscape The clear sediment layer associated with this tsunami suggests that older (and prehistoric) tsunamis can be identified, helping to answer questions about frequency and magnitude of tsunamis The tsunami caused widespread erosion of the coastal and beach zones but this damage will repair itself naturally and quickly The tsunami has had clear impacts on ecosystems and these are highly variable Ecosystems will repair themselves naturally and are unlikely to preserve long-term impacts It is clear that some plant (tree) species are highly resilient and provided immediate places for safety during the tsunami and resources post-tsunami People of Samoa are forgetting their knowledge of the value and uses of indigenous plant and animal species and efforts are needed to increase the understanding of the value of these plants and animals (thus increasing community resilience) Video recording survivor stories is important Sadly, there is no tradition of story telling or memory of past tsunamis so the capturing of survivor accounts means that such stories can be introduced to the cultural memory Permitting survivors to tell their stories allows them to heal emotionally, and also provides valuable information for future education and community outreach The people of Samoa are hurting after the tsunami Impacts and effects are highly variable socially and spatially Where lives have been lost, the impacts and associated fear are much higher Communities require practical and long-term emotional care A complex picture is emerging about community experiences of warning and response behaviour that presents challenges to the Government of Samoa in terms of education and outreach for hazard reduction
Tsunami Induced Sedimentation in Ports; A Case Study in Haydarpasa Harbor, Marmara Sea
NASA Astrophysics Data System (ADS)
Yalçıner, A. C.; Kian, R.; Velioglu, D.; Zaytsev, A.
2015-12-01
The movement of sea bottom or ground sediment material by tsunami cause erosion, deposition and hence bathymetry and topogrphy changes. The unexpected depth decrease at some parts of the enclosed basins and harbors may result in lack of movements of vessels. In order to understand the sediment movement inside the enclosed basins, Haydarpasa port in the sea of Marama is selected as a case study to understand the motion of tsunamis inside the port and identify their effects on harbor functions. The highest populated mega city Istanbul, located at north coast of the Sea of Marmara is one of the main centers of major economic activities in the region. In the study, the spatial and temporal changes of main tsunami parameters are investigated and their adverse effects on harbor performance are identified by analyzing the critical tsunami parameters (water elevation, current speed and momentum fluxes) in the port. Furthermore, the morphological changes due to tsunami induced flows are also considered. The morphological changes due to tsunamis can be governed by bathymetry and topography, tsunami current and the characteristics of ground material. Rouse number is one of the indicators to describe the initiation of sediment motion and transport modes under the flow. Therefore the morphological changes can be monitored by monitoring the change of the Rouse number. In this study the spatial and temporal change of Rouse number and hence modes of sediment transport in Haydarpasa port during a tsunami is investigated. Finally the functional loss of the port and the necessary strategies for reduction of tsunami impact and increase of resilience are also discussed. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 603839 (Project ASTARTE - Assessment, Strategy and Risk Reduction for Tsunamis in Europe)".
Great East Japan Earthquake Tsunami
NASA Astrophysics Data System (ADS)
Iijima, Y.; Minoura, K.; Hirano, S.; Yamada, T.
2011-12-01
The 11 March 2011, Mw 9.0 Great East Japan Earthquake, already among the most destructive earthquakes in modern history, emanated from a fault rupture that extended an estimated 500 km along the Pacific coast of Honshu. This earthquake is the fourth among five of the strongest temblors since AD 1900 and the largest in Japan since modern instrumental recordings began 130 years ago. The earthquake triggered a huge tsunami, which invaded the seaside areas of the Pacific coast of East Japan, causing devastating damages on the coast. Artificial structures were destroyed and planted forests were thoroughly eroded. Inrush of turbulent flows washed backshore areas and dunes. Coastal materials including beach sand were transported onto inland areas by going-up currents. Just after the occurrence of the tsunami, we started field investigation of measuring thickness and distribution of sediment layers by the tsunami and the inundation depth of water in Sendai plain. Ripple marks showing direction of sediment transport were the important object of observation. We used a soil auger for collecting sediments in the field, and sediment samples were submitted for analyzing grain size and interstitial water chemistry. Satellite images and aerial photographs are very useful for estimating the hydrogeological effects of tsunami inundation. We checked the correspondence of micro-topography, vegetation and sediment covering between before and after the tsunami. The most conspicuous phenomenon is the damage of pine forests planted in the purpose of preventing sand shifting. About ninety-five percent of vegetation coverage was lost during the period of rapid currents changed from first wave. The landward slopes of seawalls were mostly damaged and destroyed. Some aerial photographs leave detailed records of wave destruction just behind seawalls, which shows the occurrence of supercritical flows. The large-scale erosion of backshore behind seawalls is interpreted to have been caused by supercritical flows, resulting in the loss of landward seawall slopes. Such erosion was also observed at landward side of footpath between rice fields. The Sendai plain was subjected just after the main shock of the earthquake. Seawater inundation resulting from tsunami run-up lasted two months. The historical document Sandai-jitsuroku, which gives a detailed history of all of Japan, describes the Jogan earthquake and subsequent tsunami which have attacked Sendai plain in AD 869. The document describes the prolonged period of flooding, and it is suggested that co-seismic subsidence of the plain took place. The inundation area of the Jogan tsunami estimated by the distribution of tsunami deposit mostly overlaps with that of the 3.11 tsunami. Considering the very similarity of seismic shocks between the both, we interpreted the Great East Japan Earthquake Tsunami is the second coming of the Jogan Earthquake Tsunami.
The Chile tsunami of 27 February 2010: Field survey and modeling
NASA Astrophysics Data System (ADS)
Fritz, H. M.; Petroff, C. M.; Catalan, P. A.; Cienfuegos, R.; Winckler, P.; Kalligeris, N.; Weiss, R.; Meneses, G.; Valderas-Bermejo, C.; Barrientos, S. E.; Ebeling, C. W.; Papadopoulos, A.; Contreras, M.; Almar, R.; Dominguez, J.; Synolakis, C.
2011-12-01
On 27 February, 2010 a magnitude Mw 8.8 earthquake occurred off the coast of Chile's Maule region some 100 km N of Concepción, causing substantial damage and loss of life on Chile's mainland and the Juan Fernandez archipelago. The majority of the 521 fatalities are attributed to the earthquake, while the tsunami accounts for 124 victims. Fortunately, ancestral knowledge from past tsunamis such as the giant 1960 event, as well as tsunami education and evacuation exercises prompted most coastal residents to spontaneously evacuate to high ground after the earthquake. The majority of the tsunami victims were tourists staying overnight in low lying camp grounds along the coast. A multi-disciplinary international tsunami survey team (ITST) was deployed within days of the event to document flow depths, runup heights, inundation distances, sediment deposition, damage patterns at various scales, performance of the man-made infrastructure and impact on the natural environment. The 3 to 25 March ITST covered an 800 km stretch of coastline from Quintero to Mehuín in various subgroups the Pacific Islands of Santa María, Juan Fernández Archipelago, and Rapa Nui (Easter), while Mocha Island was surveyed 21 to 23 May, 2010. The collected survey data includes more than 400 tsunami runup and flow depth measurements. The tsunami impact peaked with a localized maximum runup of 29 m on a coastal bluff at Constitución and 23 m on marine terraces on Mocha Island. A significant variation in tsunami impact was observed along Chile's mainland both at local and regional scales. Inundation and damage also occurred several kilometres inland along rivers. Eyewitness tsunami videos are analysed and flooding velocities presented. Observations from the Chile tsunami are compared against the 1960 Chile, 2004 Indian Ocean and 2011 Tohoku Japan tsunamis. The tsunamigenic seafloor displacements were partially characterized based on coastal uplift measurements along a 100 km stretch of coastline between Caleta Chome and Punta Morguilla. More than 2 m vertical uplift were measured on Santa Maria Island. Tsunami propagation in the Pacific Ocean is simulated using the benchmarked tsunami model MOST (Titov and Gonzalez, 1997; Titov and Synolakis, 1998). For initial conditions the inversion model of Lorito et al. (2011) is utilized. The model results highlight the directivity of the highest tsunami waves towards Juan Fernández and Easter Island during the transoceanic propagation. The team interviewed numerous eyewitnesses and educated residents about tsunami hazards since community-based education and awareness programs are essential to save lives in locales at risk from locally generated tsunamis.
Hydrodynamics of the 1868 and 1877 tsunamis in Southern Peru and Northern Chile
NASA Astrophysics Data System (ADS)
Morales, S.; Soto-Sandoval, J.; Monardez, P.
2013-05-01
The tsunami occurred on 27th February 2010 offshore central Chile due to a mega-thrust earthquake (Mw=8.8), showed a complex hydrodynamic behavior in the near field that is not completely understood and could not be well characterized using linear models (Cox 2011, Fujima 2011). Several floods separated by several minutes that lasted over eight hours, which flowed parallel to the coast were reported. A reasonable physical explication for this phenomena has been published. Due to the distance from the rupture zone to the coast is shorter than a complete tsunami wave, the latter cannot be created then secondary effects are triggered (Monárdez and Salinas, 2011). This was validated using numerical models based on RANS equations and measurements and field observations in the 2010 Chilean tsunami. Due to this knowledge, the 1868 and 1877 last mega-thrust earthquakes in the Southern Peru and Northern Chile are analyzed. This became necessary, since this zone is known as one the major seismic gap in the area. Scenarios with different fault parameters were implemented for the 1868 and 1877 tsunamis and important results were obtained. In both of the tsunamis, several floods were observed and the arrival time and direction of flow propagation were according to historical reports. In the 1868 tsunami, the effects on the Chilean coast are due to secondary effects such as it is described in historical observations, e.g. in Arica port three main floods 40, 120 and 156 minutes after the earthquakes are observed. In the 1877 tsunami secondary effects were present mainly on the Peruvian coast. Finally, a new classification for near and far field tsunami is proposed.
NASA Astrophysics Data System (ADS)
Tonini, R.; Anita, G.
2011-12-01
In both worldwide and regional historical catalogues, most of the tsunamis are caused by earthquakes and a minor percentage is represented by all the other non-seismic sources. On the other hand, tsunami hazard and risk studies are often applied to very specific areas, where this global trend can be different or even inverted, depending on the kind of potential tsunamigenic sources which characterize the case study. So far, few probabilistic approaches consider the contribution of landslides and/or phenomena derived by volcanic activity, i.e. pyroclastic flows and flank collapses, as predominant in the PTHA, also because of the difficulties to estimate the correspondent recurrence time. These considerations are valid, for example, for the city of Naples, Italy, which is surrounded by a complex active volcanic system (Vesuvio, Campi Flegrei, Ischia) that presents a significant number of potential tsunami sources of non-seismic origin compared to the seismic ones. In this work we present the preliminary results of a probabilistic multi-source tsunami hazard assessment applied to Naples. The method to estimate the uncertainties will be based on Bayesian inference. This is the first step towards a more comprehensive task which will provide a tsunami risk quantification for this town in the frame of the Italian national project ByMuR (http://bymur.bo.ingv.it). This three years long ongoing project has the final objective of developing a Bayesian multi-risk methodology to quantify the risk related to different natural hazards (volcanoes, earthquakes and tsunamis) applied to the city of Naples.
The Solomon Islands tsunami of 6 February 2013 field survey in the Santa Cruz Islands
NASA Astrophysics Data System (ADS)
Fritz, H. M.; Papantoniou, A.; Biukoto, L.; Albert, G.
2013-12-01
On February 6, 2013 at 01:12:27 UTC (local time: UTC+11), a magnitude Mw 8.0 earthquake occurred 70 km to the west of Ndendo Island (Santa Cruz Island) in the Solomon Islands. The under-thrusting earthquake near a 90° bend, where the Australian plate subducts beneath the Pacific plate generated a locally focused tsunami in the Coral Sea and the South Pacific Ocean. The tsunami claimed the lives of 10 people and injured 15, destroyed 588 houses and partially damaged 478 houses, affecting 4,509 people in 1,066 households corresponding to an estimated 37% of the population of Santa Cruz Island. A multi-disciplinary international tsunami survey team (ITST) was deployed within days of the event to document flow depths, runup heights, inundation distances, sediment and coral boulder depositions, land level changes, damage patterns at various scales, performance of the man-made infrastructure and impact on the natural environment. The 19 to 23 February 2013 ITST covered 30 locations on 4 Islands: Ndendo (Santa Cruz), Tomotu Noi (Lord Howe), Nea Tomotu (Trevanion, Malo) and Tinakula. The reconnaissance completely circling Ndendo and Tinakula logged 240 km by small boat and additionally covered 20 km of Ndendo's hard hit western coastline by vehicle. The collected survey data includes more than 80 tsunami runup and flow depth measurements. The tsunami impact peaked at Manoputi on Ndendo's densely populated west coast with maximum tsunami height exceeding 11 m and local flow depths above ground exceeding 7 m. A fast tide-like positive amplitude of 1 m was recorded at Lata wharf inside Graciosa Bay on Ndendo Island and misleadingly reported in the media as representative tsunami height. The stark contrast between the field observations on exposed coastlines and the Lata tide gauge recording highlights the importance of rapid tsunami reconnaissance surveys. Inundation distance and damage more than 500 m inland were recorded at Lata airport on Ndendo Island. Landslides were observed on volcanic Tinakula Island and on Ndendo Island. Observations from the 2013 Santa Cruz tsunami are compared against the 2007 and 2010 Solomon Islands tsunamis. The team also interviewed eyewitnesses and educated residents about the tsunami hazard in numerous ad hoc presentations and discussions. The combination of ancestral knowledge and recent Solomon Islands wide geohazards education programs triggered an immediate spontaneous self-evacuation containing the death toll in the small evacuation window of few minutes between the end of the ground shaking and the onslaught of the tsunami. Fortunately school children were shown a video on the 1 April 2007 Solomon Islands tsunami 3 months prior to the Santa Cruz event and the headmaster of the school at Venga evacuated the later flooded school already during a foreshock. On Tomotu Noi Island at Bamoi the residents evacuated inland towards a crocodile infested lake, which was not reached by the tsunami inundation. Community-based education and awareness programs are particularly essential to help save lives in locales at risk from near-source tsunamis.
Tsunami inundation, sediment transport, and subsequent deposits on topography with a dune
NASA Astrophysics Data System (ADS)
Yoshii, T.; Tanaka, S.; Matsuyama, M.
2017-12-01
The processes of tsunami inundation, sediment transport, and subsequent deposits on topography with a dune were investigated as part of Tsunami Sediment Transport Large-scale experiments (TSTLE) project. The inundation process on topography with a dune was categorized into first and second phase flows. The first phase flow was governed by the wave speed at the shoreline and the land slope, whereas the second phase flow was governed by the difference in water level at the dune. The deposits caused by the first phase flow (near the inundation limit) were constant regardless of the presence of the dune. Thus, there was no direct relationship between the substantial erosion and deposition near the dune caused by the second phase flow and the inundation limit determined by the initial phase flow. It is impossible to measure hydraulic parameters beyond these governing parameters from the deposits without assumption of waveform. Therefore, if the inundation limit is determined by the initial phase flow, the only way to reconstruct the inundation limit (height) is to investigate the deposits near the limit. The nearshore deposit, which could be sufficiently thick to observe sedimentary structures, would enable us to estimate the wave level in front of the dune.
NASA Astrophysics Data System (ADS)
Volpe, M.; Selva, J.; Tonini, R.; Romano, F.; Lorito, S.; Brizuela, B.; Argyroudis, S.; Salzano, E.; Piatanesi, A.
2016-12-01
Seismic Probabilistic Tsunami Hazard Analysis (SPTHA) is a methodology to assess the exceedance probability for different thresholds of tsunami hazard intensity, at a specific site or region in a given time period, due to a seismic source. A large amount of high-resolution inundation simulations is typically required for taking into account the full variability of potential seismic sources and their slip distributions. Starting from regional SPTHA offshore results, the computational cost can be reduced by considering for inundation calculations only a subset of `important' scenarios. We here use a method based on an event tree for the treatment of the seismic source aleatory variability; a cluster analysis on the offshore results to define the important sources; epistemic uncertainty treatment through an ensemble modeling approach. We consider two target sites in the Mediterranean (Milazzo, Italy, and Thessaloniki, Greece) where coastal (non nuclear) critical infrastructures (CIs) are located. After performing a regional SPTHA covering the whole Mediterranean, for each target site, few hundreds of representative scenarios are filtered out of all the potential seismic sources and the tsunami inundation is explicitly modeled, obtaining a site-specific SPTHA, with a complete characterization of the tsunami hazard in terms of flow depth and velocity time histories. Moreover, we also explore the variability of SPTHA at the target site accounting for coseismic deformation (i.e. uplift or subsidence) due to near field sources located in very shallow water. The results are suitable and will be applied for subsequent multi-hazard risk analysis for the CIs. These applications have been developed in the framework of the Italian Flagship Project RITMARE, EC FP7 ASTARTE (Grant agreement 603839) and STREST (Grant agreement 603389) projects, and of the INGV-DPC Agreement.
The Solomon Islands Tsunami of 6 February 2013 in the Santa Cruz Islands: Field Survey and Modeling
NASA Astrophysics Data System (ADS)
Fritz, Hermann M.; Papantoniou, Antonios; Biukoto, Litea; Albert, Gilly; Wei, Yong
2014-05-01
On February 6, 2013 at 01:12:27 UTC (local time: UTC+11), a magnitude Mw 8.0 earthquake occurred 70 km to the west of Ndendo Island (Santa Cruz Island) in the Solomon Islands. The under-thrusting earthquake near a 90° bend, where the Australian plate subducts beneath the Pacific plate generated a locally focused tsunami in the Coral Sea and the South Pacific Ocean. The tsunami claimed the lives of 10 people and injured 15, destroyed 588 houses and partially damaged 478 houses, affecting 4,509 people in 1,066 households corresponding to an estimated 37% of the population of Santa Cruz Island. A multi-disciplinary international tsunami survey team (ITST) was deployed within days of the event to document flow depths, runup heights, inundation distances, sediment and coral boulder depositions, land level changes, damage patterns at various scales, performance of the man-made infrastructure and impact on the natural environment. The 19 to 23 February 2013 ITST covered 30 locations on 4 Islands: Ndendo (Santa Cruz), Tomotu Noi (Lord Howe), Nea Tomotu (Trevanion, Malo) and Tinakula. The reconnaissance completely circling Ndendo and Tinakula logged 240 km by small boat and additionally covered 20 km of Ndendo's hard hit western coastline by vehicle. The collected survey data includes more than 80 tsunami runup and flow depth measurements. The tsunami impact peaked at Manoputi on Ndendo's densely populated west coast with maximum tsunami height exceeding 11 m and local flow depths above ground exceeding 7 m. A fast tide-like positive amplitude of 1 m was recorded at Lata wharf inside Graciosa Bay on Ndendo Island and misleadingly reported in the media as representative tsunami height. The stark contrast between the field observations on exposed coastlines and the Lata tide gauge recording highlights the importance of rapid tsunami reconnaissance surveys. Inundation distance and damage more than 500 m inland were recorded at Lata airport on Ndendo Island. Landslides were observed on volcanic Tinakula Island and on Ndendo Island. Observations from the 2013 Santa Cruz tsunami are compared against the 2007 and 2010 Solomon Islands tsunamis. The field observations in the Santa Cruz Islands present an important dataset to assess tsunami impact in the near-source region. The tsunami was also recorded at deep-ocean tsunameters and tide gauges throughout the Pacific. These observations allow us to further investigate the physics of tsunami generation caused by the seismic process (or other non-seismic mechanisms). We use numerical model MOST to analyze the large runup and complex impact distribution caused by the Santa Cruz tsunami. Source models obtained using seismic data / tsunami data are carried out to initialize the tsunami model. MOST uses two sets of numerical grids to investigate both the near- and far-field aspects of the tsunami. The basin-scale modeling results are computed using a spatial resolution of 4 arc min (approx. 7,200 m) and compared with measurements at deep-ocean tsunameters. The near-field modeling is carried out using a series of telescoped grids up to a grid resolution of tens of meters to compare with the tsunami runup and flooding extent obtained through the field survey in the Solomon Islands. The modeling results emphasize the contrast between the tsunami impact on the exposed coastline and the sheltered Lata Bay stressing the problematic interpretation of a tsunami in progress based solely on near-source tide-gauge measurements. The team also interviewed eyewitnesses and educated residents about the tsunami hazard in numerous ad hoc presentations and discussions. The combination of ancestral knowledge and recent Solomon Islands wide geohazards education programs triggered an immediate spontaneous self-evacuation containing the death toll in the small evacuation window of few minutes between the end of the ground shaking and the onslaught of the tsunami. Fortunately school children were shown a video on the 1 April 2007 Solomon Islands tsunami 3 months prior to the Santa Cruz event and the headmaster of the school at Venga evacuated the later flooded school already during a foreshock. On Tomotu Noi Island at Bamoi the residents evacuated inland towards a crocodile infested lake, which was not reached by the tsunami inundation. Community-based education and awareness programs are particularly essential to help save lives in locales at risk from near-source tsunamis.
Prediction of Tsunami Inundation in the City of Lisbon (portugal)
NASA Astrophysics Data System (ADS)
Baptista, M.; Miranda, J.; Omira, R.; Catalao Fernandes, J.
2010-12-01
Lisbon city is located inside the estuary of Tagus river, 20 km away from the Atlantic ocean. The city suffered great damage from tsunamis and its downtown was flooded at least twice in 1531 and 1755. Since the installation of the tide-gage network, in the area, three tsunamis caused by submarine earthquakes, were recorded in November 1941, February 1969 and May 1975. The most destructive tsunamis listed along Tagus Estuary are the 26th January 1531, a local tsunami event restricted to the Tagus Estuary, and the well known 1st November 1755 transoceanic event, both following highly destructive earthquakes, which deeply affected Lisbon. The economic losses due to the impact of the 1755 tsunami in one of Europe’s 18t century main harbor and commercial fleets were enormous. Since then the Tagus estuary suffered strong morphologic changes manly due to dredging works, construction of commercial and industrial facilities and recreational docks, some of them already projected to preserve Lisbon. In this study we present preliminary inundation maps for the Tagus estuary area in the Lisbon County, for conditions similar to the 1755 tsunami event, but using present day bathymetric and topographic maps. Inundation modelling is made using non linear shallow water theory and the numerical code is based upon COMCOT code. Nested grids resolutions used in this study are 800 m, 200 m and 50 m, respectively. The inundation is discussed in terms of flow depth, run up height, maximum inundation area and current flow velocity. The effects of estuary modifications on tsunami propagation are also investigated.
NASA Astrophysics Data System (ADS)
Liu, Jiaqi; Tokunaga, Tomochika
2016-04-01
Groundwater is vulnerable to many natural hazards, including tsunami. As reported after the 2004 Indian Ocean earthquake and the 2011 Great East Japan earthquake, the generated massive tsunami inundations resulted in unexpected groundwater salinization in coastal areas. Water supply was strongly disturbed due to the significantly elevated salinity in groundwater. Supplying fresh water is one of the prioritized concerns in the immediate aftermath of disaster, and during long-term post-disaster reconstruction as well. The aim of this study is to assess the impact of tsunami on coastal groundwater system and provide guidelines on managing water resources in post-tsunami period. We selected the study area as the Niijima Island, a tsunami-prone area in Japan, which is under the risk of being attacked by a devastated tsunami with its wave height up to 30 m. A three-dimension (3-D) numerical model of the groundwater system on the Niijima Island was developed by using the simulation code FEFLOW which can handle both density- dependent groundwater flow and saturated-unsaturated flow processes. The model was justified by the measured water table data obtained from the field work in July, 2015. By using this model, we investigated saltwater intrusion and aquifer recovery process under different tsunami scenarios. Modelling results showed that saltwater could fully saturate the vadose zone and come into contact with groundwater table in just 10 mins. The 0.6 km2 of inundation area introduced salt mass equivalent to approximately 9×104 t of NaCl into the vadose zone. After the retreat of tsunami waves, the remained saltwater in vadose zone continuously intruded into the groundwater and dramatically salinized the aquifer up to about 10,000 mg/L. In the worst tsunami scenario, it took more than 10 years for the polluted aquifer to be entirely recovered by natural rainfall. Given that the groundwater is the only freshwater source on the Niijima Island, we can provide suggestions on preparedness of tsunami disasters and guidelines of supplying water resource in post-tsunami period based on these numerical modelling results. This approach has implications for the disaster prevention and the better preparation with respect to tsunami and tsunami-like events such as storm surges on other coastal areas.
High Resolution Tsunami Modeling and Assessment of Harbor Resilience; Case Study in Istanbul
NASA Astrophysics Data System (ADS)
Cevdet Yalciner, Ahmet; Aytore, Betul; Gokhan Guler, Hasan; Kanoglu, Utku; Duzgun, Sebnem; Zaytsev, Andrey; Arikawa, Taro; Tomita, Takashi; Ozer Sozdinler, Ceren; Necmioglu, Ocal; Meral Ozel, Nurcan
2014-05-01
Ports and harbors are the major vulnerable coastal structures under tsunami attack. Resilient harbors against tsunami impacts are essential for proper, efficient and successful rescue operations and reduction of the loss of life and property by tsunami disasters. There are several critical coastal structures as such in the Marmara Sea. Haydarpasa and Yenikapi ports are located in the Marmara Sea coast of Istanbul. These two ports are selected as the sites of numerical experiments to test their resilience under tsunami impact. Cargo, container and ro-ro handlings, and short/long distance passenger transfers are the common services in both ports. Haydarpasa port has two breakwaters with the length of three kilometers in total. Yenikapi port has one kilometer long breakwater. The accurate resilience analysis needs high resolution tsunami modeling and careful assessment of the site. Therefore, building data with accurate coordinates of their foot prints and elevations are obtained. The high resolution bathymetry and topography database with less than 5m grid size is developed for modeling. The metadata of the several types of structures and infrastructure of the ports and environs are processed. Different resistances for the structures/buildings/infrastructures are controlled by assigning different friction coefficients in a friction matrix. Two different tsunami conditions - high expected and moderate expected - are selected for numerical modeling. The hybrid tsunami simulation and visualization codes NAMI DANCE, STOC-CADMAS System are utilized to solve all necessary tsunami parameters and obtain the spatial and temporal distributions of flow depth, current velocity, inundation distance and maximum water level in the study domain. Finally, the computed critical values of tsunami parameters are evaluated and structural performance of the port components are discussed in regard to a better resilience. ACKNOWLEDGEMENTS: Support by EU 603839 ASTARTE Project, UDAP-Ç-12-14 of AFAD, 108Y227 and 113M556 of TUBITAK, RAPSODI (CONCERT_Dis-021) of CONCERT-Japan Joint Call, Earthquake and Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey Japan-Turkey Joint Research Project by SATREPS, 2011K140210 of DPT, Istanbul Metropolitan Municipality are acknowledged.
Modeling of the 2011 Tohoku-oki Tsunami and its Impacts on Hawaii
NASA Astrophysics Data System (ADS)
Cheung, K.; Yamazaki, Y.; Roeber, V.; Lay, T.
2011-12-01
The 2011 Tohoku-oki great earthquake (Mw 9.0) generated a destructive tsunami along the entire Pacific coast of northeastern Japan. The tsunami, which registered 6.7 m amplitude at a coastal GPS gauge and 1.75 m at an open-ocean DART buoy, triggered warnings across the Pacific. The waves reached Hawaii 7 hours after the earthquake and caused localized damage and persistent coastal oscillations along the island chain. Several tide gauges and a DART buoy west of Hawaii Island recorded clear signals of the tsunami. The Tsunami Observer Program of Hawaii State Civil Defense immediately conducted field surveys to gather runup and inundation data on Kauai, Oahu, Maui, and Hawaii Island. The extensive global seismic networks and geodetic instruments allows evaluation and validation of finite fault solutions for the tsunami modeling. We reconstruct the 2011 Tohoku-oki tsunami using the long-wave model NEOWAVE (Non-hydrostatic Evolution of Ocean WAVEs) and a finite fault solution based on inversion of teleseismic P waves. The depth-integrated model describes dispersive waves through the non-hydrostatic pressure and vertical velocity, which also account for tsunami generation from time histories of seafloor deformation. The semi-implicit, staggered finite difference model captures flow discontinuities associated with bores or hydraulic jumps through the momentum-conserved advection scheme. Four levels of two-way nested grids in spherical coordinates allow description of tsunami evolution processes of different time and spatial scales for investigation of the impacts around the Hawaiian Islands. The model results are validated with DART data across the Pacific as well as tide gauge and runup measurements in Hawaii. Spectral analysis of the computed surface elevation reveals a series of resonance modes over the insular shelf and slope complex along the archipelago. Resonance oscillations provide an explanation for the localized impacts and the persistent wave activities in the aftermath. The model results provide insights into effects of fringing reefs, which are present along 70% of Hawaii's coastlines, on tsunami transformation and runup processes. This case study improves our understanding of tsunamis in tropical island environment and validates the modeling capability to predict their impacts for hazard mitigation and emergency management.
NASA Astrophysics Data System (ADS)
Johnson, Joel P. L.; Delbecq, Katie; Kim, Wonsuck; Mohrig, David
2016-01-01
A goal of paleotsunami research is to quantitatively reconstruct wave hydraulics from sediment deposits in order to better understand coastal hazards. Simple models have been proposed to predict wave heights and velocities, based largely on deposit grain size distributions (GSDs). Although seemingly consistent with some recent tsunamis, little independent data exist to test these equations. We conducted laboratory experiments to evaluate inversion assumptions and uncertainties. A computer-controlled lift gate instantaneously released 6.5 m3 of water into a 32 m flume with shallow ponded water, creating a hydraulic bore that transported sand from an upstream source dune. Differences in initial GSDs and ponded water depths influenced entrainment, transport, and deposition. While the source dune sand was fully suspendable based on size alone, experimental tsunamis produced deposits dominated by bed load sand transport in the upstream 1/3 of the flume and suspension-dominated transport downstream. The suspension deposits exhibited downstream fining and thinning. At 95% confidence, a published advection-settling model predicts time-averaged flow depths to approximately a factor of two, and time-averaged downstream flow velocities to within a factor of 1.5. Finally, reasonable scaling is found between flume and field cases by comparing flow depths, inundation distances, Froude numbers, Rouse numbers and grain size trends in suspension-dominated tsunami deposits, justifying laboratory study of sediment transport and deposition by tsunamis.
Wastewater treatment in tsunami affected areas of Thailand by constructed wetlands.
Brix, H; Koottatep, T; Laugesen, C H
2007-01-01
The tsunami of December 2004 destroyed infrastructure in many coastal areas in South-East Asia. In January 2005, the Danish Government gave a tsunami relief grant to Thailand to re-establish the wastewater management services in some of the areas affected by the tsunami. This paper describes the systems which have been built at three locations: (a) Baan Pru Teau: A newly-built township for tsunami victims which was constructed with the contribution of the Thai Red Cross. Conventional septic tanks were installed for the treatment of blackwater from each household and its effluent and grey water (40 m3/day) are collected and treated at a 220 m2 subsurface flow constructed wetland. (b) Koh Phi Phi Don island: A wastewater collection system for the main business and hotel area of the island, a pumping station and a pressure pipe to the treatment facility, a multi-stage constructed wetland system and a system for reuse of treated wastewater. The constructed wetland system (capacity 400 m3/day) consists of vertical flow, horizontal subsurface flow, free water surface flow and pond units. Because the treatment plant is surrounded by resorts, restaurants and shops, the constructed wetland systems are designed with terrains as scenic landscaping. (c) Patong: A 5,000 m2 constructed wetland system has been established to treat polluted water from drainage canals which collect overflow from septic tanks and grey water from residential areas. It is envisaged that these three systems will serve as prototype demonstration systems for appropriate wastewater management in Thailand and other tropical countries.
NASA Astrophysics Data System (ADS)
Petroff, C. M.
2011-12-01
Before the March 11, 2011 Tohoku tsunami, many communities along the Japan coast had shore protection barriers, some designed specifically to provide protection from tsunamis and others for typhoon and storm surge protection. A vast number of these structures were overtopped, damaged or destroyed by the high inundation and currents generated in the tsunami. Observations are presented about scour features at man-made coastal structures in the Tohoku region as well as the hydraulic transport of debris from these structures. Along with providing lessons for structure design and maintenance, these observations have implications for hydraulic transport in natural terrain, not only at hard points such as rock outcrops but also at other features such as river mouths, barrier islands and coastal dunes. As an example, Photo 1 shows the overtopping flow at the seawall at Noda, in the Iwate prefecture. From the point of view of hydraulics the type of flow seen in the photo is more like that at an in-line weir or spillway than the wave conditions for which the structure was designed. On the lee or downstream side of such structures, the flow is supercritical resulting in a supercritical to subcritical transition near the landward toe of the seawall. High flow velocities along with increased pore pressure and overturning flow create very deep scour in these locations Such as the zone clearly seen in Photo 2 behind the seawall at the Sendai airport. It is anticipated that similar hydraulic conditions would occur for flow over a high coastal dune ridge where the ridge would act as a flow control point and locally high velocities on the landward side of the ridge would result in high erosion and scour. Other examples are given.
Variety of Sedimentary Process and Distribution of Tsunami Deposits in Laboratory Experiments
NASA Astrophysics Data System (ADS)
Yamaguchi, N.; Sekiguchi, T.
2017-12-01
As an indicator of the history and magnitude of paleotsunami events, tsunami deposits have received considerable attention. To improve the identification and interpretation of paleotsunami deposits, an understanding of sedimentary process and distribution of tsunami deposits is crucial. Recent detailed surveys of onshore tsunami deposits including the 2004 Indian Ocean tsunami and the 2011 Tohoku-oki tsunami have revealed that terrestrial topography causes a variety of their features and distributions. Therefore, a better understanding of possible sedimentary process and distribution on such influential topographies is required. Flume experiments, in which sedimentary conditions can be easily controlled, can provide insights into the effects of terrestrial topography as well as tsunami magnitude on the feature of tsunami deposits. In this presentation, we report laboratory experiments that focused on terrestrial topography including a water body (e.g. coastal lake) on a coastal lowland and a cliff. In both cases, the results suggested relationship between the distribution of tsunami deposits and the hydraulic condition of the tsunami flow associated with the terrestrial topography. These experiments suggest that influential topography would enhance the variability in thickness of tsunami deposits, and thus, in reconstructions of paleotsunami events using sedimentary records, we should take into account such anomalous distribution of tsunami deposits. Further examination of the temporal sequence of sedimentary process in laboratory tsunamis may improve interpretation and estimation of paleotsunami events.
NASA Astrophysics Data System (ADS)
Wang, Jiajia; Ward, Steven N.; Xiao, Lili
2015-06-01
Flow-like landslides are rapidly moving fluid-solid mixtures that can cause significant destruction along paths that run far from their original sources. Existing models for run out prediction and motion simulation of flow-like landslides have many limitations. In this paper, we develop a new method named `Tsunami Squares' to simulate the generation, propagation and stoppage of flow-like landslides based on conservation of volume and momentum. Landslide materials in the new method form divisible squares that are displaced, then further fractured. The squares move under the influence of gravity-driven acceleration and suffer decelerations due to basal and dynamic frictions. Distinctively, this method takes into account solid and fluid mechanics, particle interactions and flow regime transitions. We apply this approach to simulate the 1982 El Picacho landslide in San Salvador, capital city of El Salvador. Landslide products from Tsunami Squares such as run out distance, velocities, erosion and deposition depths and impacted area agree well with field investigated and eyewitness data.
NASA Astrophysics Data System (ADS)
Julius, Musa, Admiral; Pribadi, Sugeng; Muzli, Muzli
2018-03-01
Sulawesi, one of the biggest island in Indonesia, located on the convergence of two macro plate that is Eurasia and Pacific. NOAA and Novosibirsk Tsunami Laboratory show more than 20 tsunami data recorded in Sulawesi since 1820. Based on this data, determination of correlation between tsunami and earthquake parameter need to be done to proved all event in the past. Complete data of magnitudes, fault sizes and tsunami heights on this study sourced from NOAA and Novosibirsk Tsunami database, completed with Pacific Tsunami Warning Center (PTWC) catalog. This study aims to find correlation between moment magnitude, fault size and tsunami height by simple regression. The step of this research are data collecting, processing, and regression analysis. Result shows moment magnitude, fault size and tsunami heights strongly correlated. This analysis is enough to proved the accuracy of historical tsunami database in Sulawesi on NOAA, Novosibirsk Tsunami Laboratory and PTWC.
NASA Astrophysics Data System (ADS)
Akoh, Ryosuke; Ishikawa, Tadaharu; Kojima, Takashi; Tomaru, Mahito; Maeno, Shiro
2017-11-01
Run-up processes of the 2011 Tohoku tsunami into the city of Kamaishi, Japan, were simulated numerically using 2-D shallow water equations with a new treatment of building footprints. The model imposes an internal hydraulic condition of permeable and impermeable walls at the building footprint outline on unstructured triangular meshes. Digital data of the building footprint approximated by polygons were overlaid on a 1.0 m resolution terrain model. The hydraulic boundary conditions were ascertained using conventional tsunami propagation calculation from the seismic center to nearshore areas. Run-up flow calculations were conducted under the same hydraulic conditions for several cases having different building permeabilities. Comparison of computation results with field data suggests that the case with a small amount of wall permeability gives better agreement than the case with impermeable condition. Spatial mapping of an indicator for run-up flow intensity (IF = (hU2)max, where h and U respectively denote the inundation depth and flow velocity during the flood, shows fairly good correlation with the distribution of houses destroyed by flooding. As a possible mitigation measure, the influence of the buildings on the flow was assessed using a numerical experiment for solid buildings arrayed alternately in two lines along the coast. Results show that the buildings can prevent seawater from flowing straight to the city center while maintaining access to the sea.
Sediments from the Boxing Day tsunami on the coasts of southeastern India and Kenya
NASA Astrophysics Data System (ADS)
Weiss, R.; Bahlburg, H.
2006-12-01
On the Boxing Day 2004, the world community experienced a catastrophic tsunami in the Indian Ocean and could also saw how unprepared and unaware countries along the Indian ocean were. Beyond the tragedy of the tremendous loss of lives, the result of this event is an opportunity to study a global tsunami (mega-tsunami) in many regards. Here, we report on tsunami sediments left behind on beaches at the coast of Tamil Nadu (India) and on beaches between Malindi and Lamu (Kenya). Characteristic debris accumulations on the beach surface at Tamil Nadu (India) showed the impact of three tsunami waves. In this area, the tsunami climbed ~5 m up the beach; the last traces of a tsunami wave were found ~580 m away from the shoreline. Palm trees indicated an overland flow depth of 3.5 m, ~50 m from the shoreline. The tsunami deposits were up to 30 cm thick. They had an erosional base to the underlying soil and pre-tsunami beach deposits and were made up of moderately well- to well-sorted coarse and medium sand. The sand sheet thins inland, but without a decrease in grain size. Three distinct layers could be identified within the tsunami deposit. The lower one occasionally displayed cross-bedding with foresets dipping landward indicating deposition during run-up. The two upper layers were graded or parallel-laminated without indicators of flow directions. The boundaries between the different layers were marked by dark laminae, rich in heavy minerals. Also, the presence of benthic foraminifera indicates entrainment of sediment into the water column by the incoming tsunami wave in water depths less than 30 m. On beaches between Malindi and Lamu, Kenya, the traces of only one tsunami wave could be found, which attained a run-up height of about 3 m and traveled ~35 m inland with respect to the tidal stage at tsunami impact. The tsunami sediments consist of one layer of fine sand and are predominantly composed of heavy minerals supplied to the sea by nearby rivers. A slight fining-inland trend could be identified in the thinning- inland sand layer. Benthic foraminifera also indicate an entrainment of sediment by the incoming tsunami wave in a water depth less than 30 m, however there are indications that sediment might be entrained in a water depth of 80 m. The fact that only one sand layer occurs in Kenya as opposed to three at Tamil Nadu might lead to the conclusion that only one wave approached the Kenyan coast. This interpretation is misleading because the Kenyan coast is several thousand kilometers away from source area of the tsunami; the non-linear behavior of the incoming tsunami waves, especially the interaction with the nearby reef, may have resulted in the discovered sedimentologic evidence of the tsunami impact on the Kenyan coast.
Atwater, Brian F.; Cisternas, Marco; Yulianto, E.; Prendergast, A.; Jankaew, K.; Eipert, A.; Fernando, Warnakulasuriya; Tejakusuma, Iwan; Schiappacasse, Ignacio; Sawai, Yuki
2013-01-01
The Chilean tsunami of 22 May 1960 reamed out a breach and built up a fan as it flowed across a sparsely inhabited beach-ridge plain near Maullín, midway along the length of the tsunami source. Eyewitnesses to the flooding, interviewed mainly in 1988 and 1989, identified levels that the tsunami had reached on high ground, trees, and build- ings. The maximum levels fell, from about 10 m to 2 m, between the mouth of the tidal Río Maullín and an inundation limit nearly 5 km inland across the plain. Along this profile at Caulle, where the maximum flow depth was a few meters deep, airphotos taken in 1961 show breaches across a road on a sandy beach ridge. Inland from one of these breaches is a fan with branched distributaries. Today its breach holds a pond that has been changing into a marsh. The 1960 fan deposits, as much as 60 cm thick, are traceable inland for 120 m from the breach. They rest on a pasture soil above two additional sand bodies, each atop its own buried soil. The earlier of the pre-1960 sand bodies probably dates to AD 1270-1400, in which case its age is not statistically different from that of a sand sheet previously dated elsewhere near Maullín. The breach likely originated then and has been freshened twice. Evidence that the breach was freshened in 1960 includes a near-basal interval of cobble-size clasts of sediment and soil, most of them probably derived from the organic fill of pre-1960 breach. The cobbly interval is overlain by sand with ripple-drift laminae that record landward flow. The fan of another breach near Maullín, at Chanhué, also provides stratigraphic evidence for recurrent tsunamis, though not necessarily for the repeated use of the breach. These findings were anticipated a half century ago by descrip- tion of paired breaches and fans that the 1960 Chilean tsunami produced in Japan. Breaches and their fans may provide lasting evidence for tsunami inundation of beach-ridge plains. The breaches might be detectable by remote sensing, and the thickness of the fan deposits might help them outlast an ordinary tsunami sand sheet. Keywords: Tsunami, Erosion, Deposition, Hazard, Chile.
Modeling the mitigation effect of coastal forests on tsunami
NASA Astrophysics Data System (ADS)
Kh'ng, Xin Yi; Teh, Su Yean; Koh, Hock Lye
2017-08-01
As we have learned from the 26 Dec 2004 mega Andaman tsunami that killed 250, 000 lives worldwide, tsunami is a devastating natural disaster that can cause severe impacts including immense loss of human lives and extensive destruction of properties. The wave energy can be dissipated by the presence of coastal mangrove forests, which provide some degree of protection against tsunami waves. On the other hand, costly artificial structures such as reinforced walls can substantially diminish the aesthetic value and may cause environmental problems. To quantify the effectiveness of coastal forests in mitigating tsunami waves, an in-house 2-D model TUNA-RP is developed and used to quantify the reduction in wave heights and velocities due to the presence of coastal forests. The degree of reduction varies significantly depending on forest flow-resistant properties such as vegetation characteristics, forest density and forest width. The ability of coastal forest in reducing tsunami wave heights along the west coast of Penang Island is quantified by means of model simulations. Comparison between measured tsunami wave heights for the 2004 Andaman tsunami and 2-D TUNA-RP model simulated values demonstrated good agreement.
Xenakis, A M; Lind, S J; Stansby, P K; Rogers, B D
2017-03-01
Tsunamis caused by landslides may result in significant destruction of the surroundings with both societal and industrial impact. The 1958 Lituya Bay landslide and tsunami is a recent and well-documented terrestrial landslide generating a tsunami with a run-up of 524 m. Although recent computational techniques have shown good performance in the estimation of the run-up height, they fail to capture all the physical processes, in particular, the landslide-entry profile and interaction with the water. Smoothed particle hydrodynamics (SPH) is a versatile numerical technique for describing free-surface and multi-phase flows, particularly those that exhibit highly nonlinear deformation in landslide-generated tsunamis. In the current work, the novel multi-phase incompressible SPH method with shifting is applied to the Lituya Bay tsunami and landslide and is the first methodology able to reproduce realistically both the run-up and landslide-entry as documented in a benchmark experiment. The method is the first paper to develop a realistic implementation of the physics that in addition to the non-Newtonian rheology of the landslide includes turbulence in the water phase and soil saturation. Sensitivity to the experimental initial conditions is also considered. This work demonstrates the ability of the proposed method in modelling challenging environmental multi-phase, non-Newtonian and turbulent flows.
Lind, S. J.; Stansby, P. K.; Rogers, B. D.
2017-01-01
Tsunamis caused by landslides may result in significant destruction of the surroundings with both societal and industrial impact. The 1958 Lituya Bay landslide and tsunami is a recent and well-documented terrestrial landslide generating a tsunami with a run-up of 524 m. Although recent computational techniques have shown good performance in the estimation of the run-up height, they fail to capture all the physical processes, in particular, the landslide-entry profile and interaction with the water. Smoothed particle hydrodynamics (SPH) is a versatile numerical technique for describing free-surface and multi-phase flows, particularly those that exhibit highly nonlinear deformation in landslide-generated tsunamis. In the current work, the novel multi-phase incompressible SPH method with shifting is applied to the Lituya Bay tsunami and landslide and is the first methodology able to reproduce realistically both the run-up and landslide-entry as documented in a benchmark experiment. The method is the first paper to develop a realistic implementation of the physics that in addition to the non-Newtonian rheology of the landslide includes turbulence in the water phase and soil saturation. Sensitivity to the experimental initial conditions is also considered. This work demonstrates the ability of the proposed method in modelling challenging environmental multi-phase, non-Newtonian and turbulent flows. PMID:28413334
Tsunami-induced boulder transport - combining physical experiments and numerical modelling
NASA Astrophysics Data System (ADS)
Oetjen, Jan; Engel, Max; May, Simon Matthias; Schüttrumpf, Holger; Brueckner, Helmut; Prasad Pudasaini, Shiva
2016-04-01
Coasts are crucial areas for living, economy, recreation, transportation, and various sectors of industry. Many of them are exposed to high-energy wave events. With regard to the ongoing population growth in low-elevation coastal areas, the urgent need for developing suitable management measures, especially for hazards like tsunamis, becomes obvious. These measures require supporting tools which allow an exact estimation of impact parameters like inundation height, inundation area, and wave energy. Focussing on tsunamis, geological archives can provide essential information on frequency and magnitude on a longer time scale in order to support coastal hazard management. While fine-grained deposits may quickly be altered after deposition, multi-ton coarse clasts (boulders) may represent an information source on past tsunami events with a much higher preservation potential. Applying numerical hydrodynamic coupled boulder transport models (BTM) is a commonly used approach to analyse characteristics (e.g. wave height, flow velocity) of the corresponding tsunami. Correct computations of tsunamis and the induced boulder transport can provide essential event-specific information, including wave heights, runup and direction. Although several valuable numerical models for tsunami-induced boulder transport exist (e. g. Goto et al., 2007; Imamura et al., 2008), some important basic aspects of both tsunami hydrodynamics and corresponding boulder transport have not yet been entirely understood. Therefore, our project aims at these questions in four crucial aspects of boulder transport by a tsunami: (i) influence of sediment load, (ii) influence of complex boulder shapes other than idealized rectangular shapes, (iii) momentum transfers between multiple boulders, and (iv) influence of non-uniform bathymetries and topographies both on tsunami and boulder. The investigation of these aspects in physical experiments and the correct implementation of an advanced model is an urgent need since they have been largely neglected. In order to tackle these gaps, we develop a novel BTM in two steps. First, scaled physical experiments are performed that determine the exact hydrodynamic processes within a tsunami during boulder transportations. Furthermore, the experiments are the basis for calibrating the numerical BTM. The BTM is based on the numerical two-phase mass flow model of Pudasaini (2012) that employs an advanced and unified high-resolution computational tool for mixtures consisting of the solid and fluid components and their interactions. This allows for the motion of the boulder while interacting with the particle-laden tsunami on the inundated coastal plane as a function of the total fluid and solid stresses. Our approach leads to fundamentally new insights in to the essential physical processes in BTM. Goto, K., Chavanich, S. A., Imamura, F., Kunthasap, P., Matsui, T., Minoura, K., Sugawara, D. and Yanagisawa, H.: Distribution, origin and transport process of boulders deposited by the 2004 Indian Ocean tsunami at Pakarang Cape, Thailand. Sediment. Geol., 202, 821-837, 2007. Imamura, F., Goto, K. and Ohkubo, S.: A numerical model of the transport of a boulder by tsunami. J. Geophys. Res. Oceans, 113, C01008, 2008. Pudasaini, S. P.: A general two-phase debris flow model. J. Geophys. Res. Earth Surf., 117, F03010, 2012.
NASA Astrophysics Data System (ADS)
Oetjen, Jan; Engel, Max; Prasad Pudasaini, Shiva; Schüttrumpf, Holger; Brückner, Helmut
2017-04-01
Coasts around the world are affected by high-energy wave events like storm surges or tsunamis depending on their regional climatological and geological settings. By focusing on tsunami impacts, we combine the abilities and experiences of different scientific fields aiming at improved insights of near- and onshore tsunami hydrodynamics. We investigate the transport of coarse clasts - so called boulders - due to tsunami impacts by a multi-methodology approach of numerical modelling, laboratory experiments, and sedimentary field records. Coupled numerical hydrodynamic and boulder transport models (BTM) are widely applied for analysing the impact characteristics of the transport by tsunami, such as wave height and flow velocity. Numerical models able to simulate past tsunami events and the corresponding boulder transport patterns with high accuracy and acceptable computational effort can be utilized as powerful forecasting models predicting the impact of a coast approaching tsunami. We have conducted small-scale physical experiments in the tilting flume with real shaped boulder models. Utilizing the structure from motion technique (Westoby et al., 2012) we reconstructed real boulders from a field study on the Island of Bonaire (Lesser Antilles, Caribbean Sea, Engel & May, 2012). The obtained three-dimensional boulder meshes are utilized for creating downscaled replica of the real boulder for physical experiments. The results of the irregular shaped boulder are compared to experiments with regular shaped boulder models to achieve a better insight about the shape related influence on transport patterns. The numerical model is based on the general two-phase mass flow model by Pudasaini (2012) enhanced for boulder transport simulations. The boulder is implemented using the immersed boundary technique (Peskin, 2002) and the direct forcing approach. In this method Cartesian grids (fluid and particle phase) and Lagrangian meshes (boulder) are combined. By applying the immersed boundary method we can compute the interactions between fluid, particles and arbitrary boulder shape. We are able to reproduce the exact physical experiment for calibration and verification of the tsunami boulder transport phenomena. First results of the study will be presented. Engel, M.; May, S.M.: Bonaire's boulder fields revisited: evidence for Holocene tsunami impact on the Leeward, Antilles. Quaternary Science Reviews 54, 126-141, 2012. Peskin, C.S.: The immersed boundary method. Acta Numerica, 479 - 517, 2002. Pudasaini, S. P.: A general two-phase debris flow model. J. Geophys. Res. Earth Surf., 117, F03010, 2012. Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M.: 'Structure-from-Motion' photogrammetry - a low-cost, effective tool for geoscience applications. Geomorphology 179, 300-314, 2012.
Peters, R.; Jaffe, B.; Gelfenbaum, G.
2007-01-01
Tsunami deposits have been found at more than 60 sites along the Cascadia margin of Western North America, and here we review and synthesize their distribution and sedimentary characteristics based on the published record. Cascadia tsunami deposits are best preserved, and most easily identified, in low-energy coastal environments such as tidal marshes, back-barrier marshes and coastal lakes where they occur as anomalous layers of sand within peat and mud. They extend up to a kilometer inland in open coastal settings and several kilometers up river valleys. They are distinguished from other sediments by a combination of sedimentary character and stratigraphic context. Recurrence intervals range from 300-1000??years with an average of 500-600??years. The tsunami deposits have been used to help evaluate and mitigate tsunami hazards in Cascadia. They show that the Cascadia subduction zone is prone to great earthquakes that generate large tsunamis. The inclusion of tsunami deposits on inundation maps, used in conjunction with results from inundation models, allows a more accurate assessment of areas subject to tsunami inundation. The application of sediment transport models can help estimate tsunami flow velocity and wave height, parameters which are necessary to help establish evacuation routes and plan development in tsunami prone areas. ?? 2007.
Maritime Tsunami Hazard Assessment in California
NASA Astrophysics Data System (ADS)
Lynett, P. J.; Borrero, J. C.; Wilson, R. I.; Miller, K. M.
2012-12-01
The California tsunami program in cooperation with NOAA and FEMA has begun implementing a plan to increase awareness of tsunami generated hazards to the maritime community (both ships and harbor infrastructure) through the development of in-harbor hazard maps, offshore safety zones for boater evacuation, and associated guidance for harbors and marinas before, during and following tsunamis. The hope is that the maritime guidance and associated education and outreach program will help save lives and reduce exposure of damage to boats and harbor infrastructure. An important step in this process is to understand the causative mechanism for damage in ports and harbors, and then ensure that the models used to generate hazard maps are able to accurately simulate these processes. Findings will be used to develop maps, guidance documents, and consistent policy recommendations for emergency managers and port authorities and provide information critical to real-time decisions required when responding to tsunami alert notifications. Basin resonance and geometric amplification are two reasonably well understood mechanisms for local magnification of tsunami impact in harbors, and are generally the mechanisms investigated when estimating the tsunami hazard potential in a port or harbor. On the other hand, our understanding of and predictive ability for currents is lacking. When a free surface flow is forced through a geometric constriction, it is readily expected that the enhanced potential gradient will drive strong, possibly unstable currents and the associated turbulent coherent structures such as "jets" and "whirlpools"; a simple example would be tidal flow through an inlet channel. However, these fundamentals have not been quantitatively connected with respect to understanding tsunami hazards in ports and harbors. A plausible explanation for this oversight is the observation that these features are turbulent phenomena with spatial and temporal scales much smaller than that of a typical tsunami. The ability to model and then validate these currentsdissect them has only recently become available through the evaluation of dozens of eyewitness accounts and hundreds of videos.developed. In this presentation, we will present ongoing work related to the application of such models to quantify the maritime tsunami hazard in select ports and harbors in California. The development of current-based tsunami hazard maps and safe-offshore-depth delineations will be discussed. We will also present an overview of the challenges in modeling tsunami currents, including capture of turbulent dynamics, coupling with tides, and issues with long-duration simulations. This work in California will form the basis for tsunami hazard reduction for all U.S. maritime communities through the National Tsunami Hazard Mitigation Program.
NASA Astrophysics Data System (ADS)
Watanabe, Masashi; Goto, Kazuhisa; Bricker, Jeremy D.; Imamura, Fumihiko
2018-02-01
We examined the quantitative difference in the distribution of tsunami and storm deposits based on numerical simulations of inundation and sediment transport due to tsunami and storm events on the Sendai Plain, Japan. The calculated distance from the shoreline inundated by the 2011 Tohoku-oki tsunami was smaller than that inundated by storm surges from hypothetical typhoon events. Previous studies have assumed that deposits observed farther inland than the possible inundation limit of storm waves and storm surge were tsunami deposits. However, confirming only the extent of inundation is insufficient to distinguish tsunami and storm deposits, because the inundation limit of storm surges may be farther inland than that of tsunamis in the case of gently sloping coastal topography such as on the Sendai Plain. In other locations, where coastal topography is steep, the maximum inland inundation extent of storm surges may be only several hundred meters, so marine-sourced deposits that are distributed several km inland can be identified as tsunami deposits by default. Over both gentle and steep slopes, another difference between tsunami and storm deposits is the total volume deposited, as flow speed over land during a tsunami is faster than during a storm surge. Therefore, the total deposit volume could also be a useful proxy to differentiate tsunami and storm deposits.
Currents, drag, and sediment transport induced by a tsunami
Lacy, Jessica R.; Rubin, David M.; Buscombe, Daniel
2012-01-01
We report observations of water surface elevation, currents, and suspended sediment concentration (SSC) from a 10-m deep site on the inner shelf in northern Monterey Bay during the arrival of the 2010 Chile tsunami. Velocity profiles were measured from 3.5 m above the bed (mab) to the surface at 2 min intervals, and from 0.1 to 0.7 mab at 1 Hz. SSC was determined from the acoustic backscatter of the near-bed profiler. The initial tsunami waves were directed cross shore and had a period of approximately 16 min. Maximum wave height was 1.1 m, and maximum current speed was 0.36 m/s. During the strongest onrush, near-bed velocities were clearly influenced by friction and a logarithmic boundary layer developed, extending more than 0.3 mab. We estimated friction velocity and bed shear stress from the logarithmic profiles. The logarithmic structure indicates that the flow can be characterized as quasi-steady at these times. At other phases of the tsunami waves, the magnitude of the acceleration term was significant in the near-bed momentum equation, indicating unsteady flow. The maximum tsunami-induced bed shear stress (0.4 N/m2) exceeded the critical shear stress for the medium-grained sand on the seafloor. Cross-shore sediment flux was enhanced by the tsunami. Oscillations of water surface elevation and currents continued for several days. The oscillations were dominated by resonant frequencies, the most energetic of which was the fundamental longitudinal frequency of Monterey Bay. The maximum current speed (hourly-timescale) in 18 months of observations occurred four hours after the tsunami arrived.
Modeling the 1958 Lituya Bay mega-tsunami with a PVM-IFCP GPU-based model
NASA Astrophysics Data System (ADS)
González-Vida, José M.; Arcas, Diego; de la Asunción, Marc; Castro, Manuel J.; Macías, Jorge; Ortega, Sergio; Sánchez-Linares, Carlos; Titov, Vasily
2013-04-01
In this work we present a numerical study, performed in collaboration with the NOAA Center for Tsunami Research (USA), that uses a GPU version of the PVM-IFCP landslide model for the simulation of the 1958 landslide generated tsunami of Lituya Bay. In this model, a layer composed of fluidized granular material is assumed to flow within an upper layer of an inviscid fluid (e. g. water). The model is discretized using a two dimensional PVM-IFCP [Fernández - Castro - Parés. On an Intermediate Field Capturing Riemann Solver Based on a Parabolic Viscosity Matrix for the Two-Layer Shallow Water System, J. Sci. Comput., 48 (2011):117-140] finite volume scheme implemented on GPU cards for increasing the speed-up. This model has been previously validated by using the two-dimensional physical laboratory experiments data from H. Fritz [Lituya Bay Landslide Impact Generated Mega-Tsunami 50th Anniversary. Pure Appl. Geophys., 166 (2009) pp. 153-175]. In the present work, the first step was to reconstruct the topobathymetry of the Lituya Bay before this event ocurred, this is based on USGS geological surveys data. Then, a sensitivity analysis of some model parameters has been performed in order to determine the parameters that better fit to reality, when model results are compared against available event data, as run-up areas. In this presentation, the reconstruction of the pre-tsunami scenario will be shown, a detailed simulation of the tsunami presented and several comparisons with real data (runup, wave height, etc.) shown.
NASA Astrophysics Data System (ADS)
Cienfuegos, R.; Suarez, L.; Aránguiz, R.; Gonzalez, G.; González-Carrasco, J. F.; Catalan, P. A.; Dominguez, J. C.; Tomita, T.
2014-12-01
On April 1st2014 a 8.1 Mw Earthquake occurred at 23:46:50 UTC (20:46:50 local time) with its epicenter located off the coast of Pisagua, 68 km north of the city of Iquique (An et al., 2014). The potential risk of earthquake and tsunami in this area was widely recognized by the scientific community (Chlieh et al., 2004). Nevertheless, the energy released by this earthquake and the associated slip distribution was much less than expected. In the present contribution, we will reassess the tsunami hazard for the North of Chile taking into account the occurrence of the recent events, focusing on the potential impact that a worse case scenario could produce in the city of Iquique. For that purpose, an updated tsunami source will be derived using updated information on the seismic and co-seismic tectonic displacements that is available from historical, geological information, and the dense GPS and seismometer networks available in the North of Chile. The updated tsunami source will be used to generate initial conditions for a tsunami and analyze the following aspects: i) large scale hydrodynamics, ii) arrival times, maximum flow depths, and inundation area, iii) potential impact on the port of Iquique, and more specifically on the container's drift that the tsunami could produce. This analysis is essential to reassess tsunami hazard in Iquique, evaluate evacuation plans and mitigation options regarding the port operation. Tsunami propagation and inundation will be conducted using the STOC model (Tomita and Honda, 2010), and a high resolution Lidar topographic database. ReferencesAn, C. et al. (2014). Tsunami source and its validation of the 2014 Iquique, Chile Earthquake, Geophys. Res. Lett., 41, doi:10.1002/2014GL060567. Chlieh, et al. (2004). Crustal deformation and fault slip during the seismic cycle in the north Chile subduction zone, from GPS and INSAR observations, Geophys J. Int., 158(2), 695-711, 10.1111/j.1365-246X.2004.02326.x. Tomita, T., & Honda, K. (2010). Practical model to estimate drift motion of vessels by tsunami with consideration of colliding with structures and stranding. Proceedings of the 32nd Conference on Coastal Engineering. ASCE.
Tsunami and acoustic-gravity waves in water of constant depth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendin, Gali; Stiassnie, Michael
2013-08-15
A study of wave radiation by a rather general bottom displacement, in a compressible ocean of otherwise constant depth, is carried out within the framework of a three-dimensional linear theory. Simple analytic expressions for the flow field, at large distance from the disturbance, are derived. Realistic numerical examples indicate that the Acoustic-Gravity waves, which significantly precede the Tsunami, are expected to leave a measurable signature on bottom-pressure records that should be considered for early detection of Tsunami.
Evaluating tsunami hazards from debris flows
Watts, P.; Walder, J.S.; ,
2003-01-01
Debris flows that enter water bodies may have significant kinetic energy, some of which is transferred to water motion or waves that can impact shorelines and structures. The associated hazards depend on the location of the affected area relative to the point at which the debris flow enters the water. Three distinct regions (splash zone, near field, and far field) may be identified. Experiments demonstrate that characteristics of the near field water wave, which is the only coherent wave to emerge from the splash zone, depend primarily on debris flow volume, debris flow submerged time of motion, and water depth at the point where debris flow motion stops. Near field wave characteristics commonly may be used as & proxy source for computational tsunami propagation. This result is used to assess hazards associated with potential debris flows entering a reservoir in the northwestern USA. ?? 2003 Millpress,.
NASA Astrophysics Data System (ADS)
Ren, Luchuan
2015-04-01
A Global Sensitivity Analysis Method on Maximum Tsunami Wave Heights to Potential Seismic Source Parameters Luchuan Ren, Jianwei Tian, Mingli Hong Institute of Disaster Prevention, Sanhe, Heibei Province, 065201, P.R. China It is obvious that the uncertainties of the maximum tsunami wave heights in offshore area are partly from uncertainties of the potential seismic tsunami source parameters. A global sensitivity analysis method on the maximum tsunami wave heights to the potential seismic source parameters is put forward in this paper. The tsunami wave heights are calculated by COMCOT ( the Cornell Multi-grid Coupled Tsunami Model), on the assumption that an earthquake with magnitude MW8.0 occurred at the northern fault segment along the Manila Trench and triggered a tsunami in the South China Sea. We select the simulated results of maximum tsunami wave heights at specific sites in offshore area to verify the validity of the method proposed in this paper. For ranking importance order of the uncertainties of potential seismic source parameters (the earthquake's magnitude, the focal depth, the strike angle, dip angle and slip angle etc..) in generating uncertainties of the maximum tsunami wave heights, we chose Morris method to analyze the sensitivity of the maximum tsunami wave heights to the aforementioned parameters, and give several qualitative descriptions of nonlinear or linear effects of them on the maximum tsunami wave heights. We quantitatively analyze the sensitivity of the maximum tsunami wave heights to these parameters and the interaction effects among these parameters on the maximum tsunami wave heights by means of the extended FAST method afterward. The results shows that the maximum tsunami wave heights are very sensitive to the earthquake magnitude, followed successively by the epicenter location, the strike angle and dip angle, the interactions effect between the sensitive parameters are very obvious at specific site in offshore area, and there exist differences in importance order in generating uncertainties of the maximum tsunami wave heights for same group parameters at different specific sites in offshore area. These results are helpful to deeply understand the relationship between the tsunami wave heights and the seismic tsunami source parameters. Keywords: Global sensitivity analysis; Tsunami wave height; Potential seismic tsunami source parameter; Morris method; Extended FAST method
Guide to Geologic Hazards in Alaska | Alaska Division of Geological &
content Guide to Geologic Hazards in Alaska Glossary Coastal and river hazards image Coastal and river Storm surge Tsunami Earthquake related hazards image Earthquake related hazards Earthquake Earthquake Subsidence Surface fault rupture Tsunami Uplift Glacier hazards image Glacier hazards Avalanche Debris flow
NASA Astrophysics Data System (ADS)
Sugawara, D.; Imai, K.; Mitobe, Y.; Takahashi, T.
2016-12-01
Coastal lakes are one of the promising environments to identify deposits of past tsunamis, and such deposits have been an important key to know the recurrence of tsunami events. In contrast to tsunami deposits on the coastal plains, however, relationship between deposit geometry and tsunami hydrodynamic character in the coastal lakes has poorly been understood. Flume experiment and numerical modeling will be important measures to clarify such relationship. In this study, data from a series of flume experiment were compared with simulations by an existing tsunami sediment transport model to examine applicability of the numerical model for tsunami-induced morphological change in a coastal lake. A coastal lake with a non-erodible beach ridge was modeled as the target geomorphology. The ridge separates the lake from the offshore part of the flume, and the lake bottom was filled by sand. Tsunami bore was generated by a dam-break flow, which is capable of generating a maximum near-bed flow speed of 2.5 m/s. Test runs with varying magnitude of the bore demonstrated that the duration of tsunami overflow controls the scouring depth of the lake bottom behind the ridge. The maximum scouring depth reached up to 7 cm, and sand deposition occurred mainly in the seaward-half of the lake. A conventional depth-averaged tsunami hydrodynamic model coupled with the sediment transport model was used to compare the simulation and experimental results. In the Simulation, scouring depth behind the ridge reached up to 6 cm. In addition, the width of the scouring was consistent between the simulation and experiment. However, sand deposition occurred mainly in a zone much far from the ridge, showing a considerable deviation from the experimental results. This may be associated with the lack of model capability to resolve some important physics, such as vortex generation behind the ridge and shoreward migration of hydraulic jump. In this presentation, the results from the flume experiment and the numerical modeling will be compared in detail, including temporal evolution of the morphological change. In addition, model applicability and future improvements will be discussed.
Modeling Tsunami Wave Generation Using a Two-layer Granular Landslide Model
NASA Astrophysics Data System (ADS)
Ma, G.; Kirby, J. T., Jr.; Shi, F.; Grilli, S. T.; Hsu, T. J.
2016-12-01
Tsunamis can be generated by subaerial or submarine landslides in reservoirs, lakes, fjords, bays and oceans. Compared to seismogenic tsunamis, landslide or submarine mass failure (SMF) tsunamis are normally characterized by relatively shorter wave lengths and stronger wave dispersion, and potentially may generate large wave amplitudes locally and high run-up along adjacent coastlines. Due to a complex interplay between the landslide and tsunami waves, accurate simulation of landslide motion as well as tsunami generation is a challenging task. We develop and test a new two-layer model for granular landslide motion and tsunami wave generation. The landslide is described as a saturated granular flow, accounting for intergranular stresses governed by Coulomb friction. Tsunami wave generation is simulated by the three-dimensional non-hydrostatic wave model NHWAVE, which is capable of capturing wave dispersion efficiently using a small number of discretized vertical levels. Depth-averaged governing equations for the granular landslide are derived in a slope-oriented coordinate system, taking into account the dynamic interaction between the lower-layer granular landslide and upper-layer water motion. The model is tested against laboratory experiments on impulsive wave generation by subaerial granular landslides. Model results illustrate a complex interplay between the granular landslide and tsunami waves, and they reasonably predict not only the tsunami wave generation but also the granular landslide motion from initiation to deposition.
NASA Astrophysics Data System (ADS)
Wassmer, Patrick; Gomez, Christopher; Iskandasyah, T. Yan W. M.; Lavigne, Franck; Sartohadi, Junun
2015-07-01
One of the main concerns of deciphering tsunami sedimentary records along seashore is to link the emplaced layers with marine high energy events. Based on a combination of morphologic features, sedimentary figures, grain size characteristics, fossils content, microfossils assemblages, geochemical elements, heavy minerals presence; it is, in principle, possible to relate the sedimentary record to a tsunami event. However, experience shows that sometimes, in reason of a lack of any visible sedimentary features, it is hard to decide between a storm and a tsunami origin. To solve this issue, the authors have used the Anisotropy of Magnetic Susceptibility (AMS) to evidence the sediment fabric. The validity of the method for reconstructing flow direction has been proved when applied on sediments in the aftermath of a tsunami event, for which the behaviour was well documented (2004 IOT). We present herein an application of this method for a 56 cm thick paleo-deposit dated 4220 BP laying under the soil covered by the 2004 IOT, SE of Banda Aceh, North Sumatra. We analysed this homogenous deposit, lacking of any visible structure, using methods of classic sedimentology to confirm the occurrence of a high energy event. We then applied AMS technique that allowed the reconstruction of flow characteristics during sediment emplacement. We show that all the sequence was emplaced by uprush phases and that the local topography played a role on the re-orientation of a part of the uprush flow, creating strong reverse current. This particular behaviour was reported by eyewitnesses during the 2004 IOT event.
Observations and Modeling of the 27 February 2010 Tsunami in Chile
NASA Astrophysics Data System (ADS)
Synolakis, C. E.; Fritz, H. M.; Petroff, C. M.; Catalan, P. A.; Cienfuegos, R.; Winckler, P.; Kalligeris, N.; Weiss, R.; Meneses, G.; Valderas-Bermejo, C.; Ebeling, C. W.; Papadopoulos, A.; Contreras, M.; Almar, R.; Dominguez, J. C.; Barrientos, S. E.
2010-12-01
On 27 February 2010, a magnitude Mw 8.8 earthquake occurred just off the coast of Chile, 100km N of Concepción, causing substantial damage and loss of life on Chile’s mainland and the Juan Fernandez archipelago. The tsunami accounts for 124 victims out of about 500 fatalities. Fortunately, ancestral knowledge from past tsunamis such as the giant 1960 event and tsunami education and evacuation exercises prompted most coastal residents to spontaneously evacuate to high ground after the earthquake. The majority of the tsunami victims were tourists staying overnight in low lying camp grounds along the coast. A multi-disciplinary ITST was deployed within days of the event to document flow depths, runup heights, inundation distances, sediment deposition, damage patterns at various scales, performance of the man-made infrastructure and impact on the natural environment per established protocols. The 3-25 March ITST covered an 800km stretch of coastline from Quintero to Mehuín in various subgroups the Pacific Islands of Santa María, Juan Fernández Archipelago, and Rapa Nui (Easter Island), while Mocha Island was surveyed 21-23 May, 2010. The collected survey data includes more than 400 tsunami runup and flow depth measurements. The tsunami impact peaked with a localized maximum runup of 29m on a coastal bluff at Constitución and 23 m on marine terraces on Mocha. A significant variation in tsunami impact was observed along Chile’s mainland both at local and regional scales. Inundation and damage also occurred several kilometers inland along rivers. Observations from the Chile tsunami are compared against the 2004 Indian Ocean tsunami. The tsunamigenic seafloor displacements were partially characterized based on coastal uplift measurements along a 100 km stretch of coastline between Caleta Chome and Punta Morguilla. More than 2 m vertical uplift were measured on Santa Maria Island. Coastal uplift measurements in Chile are compared with tectonic land level changes from the 2007 Solomon Islands event. Preliminary modeling results, field observations, video recordings and satellite imagery are presented. The team interviewed numerous eyewitnesses and educated residents about tsunami hazards as community-based education and awareness are essential to save lives in locales at risk.
Validation of NEOWAVE with Measurements from the 2011 Tohoku Tsunami
NASA Astrophysics Data System (ADS)
Cheung, K.; Yamazaki, Y.
2012-12-01
An accurate and reliable numerical model is essential in mapping tsunami hazards for mitigation and preparedness. The model NEOWAVE (Non-hydrostatic Evolution of Ocean WAVEs) is being used for tsunami inundation mapping in Hawaii, American Samoa, the Gulf coast states, and Puerto Rico. In addition to the benchmarks established by the National Tsunami Hazard Mitigation Program, we have been conducting a thorough investigation of NEOWAVE's capability in reproducing the 2011 Tohoku tsunami and its impact across the Pacific. The shock-capturing non-hydrostatic model is well suited to handle tsunami conditions in a variety of coastal environments in the near and far field. It describes dispersive waves through non-hydrostatic pressure and vertical velocity, which also account for tsunami generation from time histories of seafloor deformation. The semi-implicit, staggered finite difference model captures flow discontinuities associated with bores or hydraulic jumps through a momentum conservation scheme. The model supports up to five levels of two-way nested grids in spherical coordinates to describe tsunami processes of varying time and spatial scales from the open ocean to the coast. We first define the source mechanism through forward modeling of the near-field tsunami recorded by coastal and deep-ocean buoys. A finite-fault solution based on teleseismic P-wave inversion serves as the starting point of the iterative process, in which the source parameters are systematically adjusted to achieve convergence of the computed tsunami with the near-field records. The capability of NEOWAVE in modeling propagation of the tsunami is evaluated with DART data across the Pacific as well as water-level and current measurements in Hawaii. These far-field water-level records, which are not considered in the forward modeling, also provide an independently assessment of the source model. The computed runup and inundation are compared with measurements along Northeastern Japan coasts and the Hawaiian Island chain. These coastlines include shallow embayments with open plains, narrow estuaries with steep cliffs, and volcanic insular slopes with fringing reefs for full validation of the model in a single event. The Tohoku tsunami caused persistent oscillations and hazardous currents in coastal waters around Hawaii. Analysis of the computed surface elevation reveals complex resonance modes along the Hawaiian Island chain. Standing waves with period 16 min or shorter are able to form a series of nodes and antinodes over the reefs that results in strong currents and large drawdown responsible for the damage in harbors and marinas. The results provide insights into effects of fringing reefs, which are present along 70% of Hawaii's coastlines, on tsunami transformation and runup processes. The case study improves our understanding on tsunamis in tropical island environments and validates the modeling capability to predict their impacts for hazard mitigation and emergency management.
NASA Astrophysics Data System (ADS)
Marras, S.; Suckale, J.; Eguzkitza, B.; Houzeaux, G.; Vázquez, M.; Lesage, A. C.
2016-12-01
The propagation of tsunamis in the open ocean has been studied in detail with many excellent numerical approaches available to researchers. Our understanding of the processes that govern the onshore propagation of tsunamis is less advanced. Yet, the reach of tsunamis on land is an important predictor of the damage associated with a given event, highlighting the need to investigate the factors that govern tsunami propagation onshore. In this study, we specifically focus on understanding the effect of bottom roughness at a variety of scales. The term roughness is to be understood broadly, as it represents scales ranging from small features like rocks, to vegetation, up to the size of larger structures and topography. In this poster, we link applied mathematics, computational fluid dynamics, and tsunami physics to analyze the small scales features of coastal hydrodynamics and the effect of roughness on the motion of tsunamis as they run up a sloping beach and propagate inland. We solve the three-dimensional Navier-Stokes equations of incompressible flows with free surface, which is tracked by a level set function in combination with an accurate re-distancing scheme. We discretize the equations via linear finite elements for space approximation and fully implicit time integration. Stabilization is achieved via the variational multiscale method whereas the subgrid scales for our large eddy simulations are modeled using a dynamically adaptive Smagorinsky eddy viscosity. As the geometrical characteristics of roughness in this study vary greatly across different scales, we implement a scale-dependent representation of the roughness elements. We model the smallest sub-grid scale roughness features by the use of a properly defined law of the wall. Furthermore, we utilize a Manning formula to compute the shear stress at the boundary. As the geometrical scales become larger, we resolve the geometry explicitly and compute the effective volume drag introduced by large scale immersed bodies. This study is a necessary step to verify and validate our model before proceeding further into the simulation of sediment transport in turbulent free surface flows. The simulation of such problems requires a space and time-dependent viscosity to model the effect of solid bodies transported by the incoming flow on onshore tsunami propagation.
The Numerical Technique for the Landslide Tsunami Simulations Based on Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Kozelkov, A. S.
2017-12-01
The paper presents an integral technique simulating all phases of a landslide-driven tsunami. The technique is based on the numerical solution of the system of Navier-Stokes equations for multiphase flows. The numerical algorithm uses a fully implicit approximation method, in which the equations of continuity and momentum conservation are coupled through implicit summands of pressure gradient and mass flow. The method we propose removes severe restrictions on the time step and allows simulation of tsunami propagation to arbitrarily large distances. The landslide origin is simulated as an individual phase being a Newtonian fluid with its own density and viscosity and separated from the water and air phases by an interface. The basic formulas of equation discretization and expressions for coefficients are presented, and the main steps of the computation procedure are described in the paper. To enable simulations of tsunami propagation across wide water areas, we propose a parallel algorithm of the technique implementation, which employs an algebraic multigrid method. The implementation of the multigrid method is based on the global level and cascade collection algorithms that impose no limitations on the paralleling scale and make this technique applicable to petascale systems. We demonstrate the possibility of simulating all phases of a landslide-driven tsunami, including its generation, propagation and uprush. The technique has been verified against the problems supported by experimental data. The paper describes the mechanism of incorporating bathymetric data to simulate tsunamis in real water areas of the world ocean. Results of comparison with the nonlinear dispersion theory, which has demonstrated good agreement, are presented for the case of a historical tsunami of volcanic origin on the Montserrat Island in the Caribbean Sea.
Post-eruptive flooding of Santorini caldera and implications for tsunami generation
NASA Astrophysics Data System (ADS)
Nomikou, Paraskevi; Druitt, Tim; Hübscher, Christian; Mather, Tamsin; Paulatto, Michele; Kalnins, Lara; Kelfoun, Karim; Papanikolaou, Dimitris; Bejelou, Konstantina; Lampridou, Danai; Pyle, David; Carey, Steven; Watts, Anthony; Weiß, Benedikt; Parks, Michelle
2017-04-01
Caldera-forming eruptions of island volcanoes generate tsunamis by the interaction of different eruptive phenomena with the sea. Such tsunamis are a major hazard, but forward models of their impacts are limited by poor understanding of source mechanisms. The eruption of Santorini 3600 years ago was one of the largest of eruptions known worldwide from the past 10,000 years - and was at least 3 times larger than the catastrophic eruption of Krakatoa. This huge eruption evacuated large volumes of magma, causing collapse of the large caldera, which is now filled with seawater. Tsunamis from this eruption have been proposed to have played a role in the demise of the Minoan culture across the southern Aegean, through damage to coastal towns, harbors, shipping and maritime trade. Before the eruption, there was an older caldera in the northern part of Santorini, partly filled with a shallow lagoon. In our study, we present bathymetric and seismic evidence showing that the caldera was not open to the sea during the main phase of the eruption, but was flooded once the eruption had finished. Following subsidence of the caldera floor, rapid inflow of seawater and landslides cut a deep 2.0-2.5 km3 submarine channel into the northern flank of the caldera wall. Hydrodynamic modelling indicates that the caldera was flooded through this breach in less than a couple of days. It was previously proposed that collapse of the caldera could have led to the formation of a major tsunami; but this is ruled out by our new evidence. Any tsunami's generated were most likely caused by entry of pyroclastic flows into the sea, combined with slumping of submarine pyroclastic accumulations. This idea is consistent with previous assertions that pyroclastic flows were the main cause of tsunamis at Krakatau.
Sedimentary deposits of the 26 December 2004 tsunami on the northwest coast of Aceh, Indonesia
Moore, A.; Nishimura, Y.; Gelfenbaum, G.; Kamataki, T.; Triyono, R.
2006-01-01
The 2004 Sumatra-Andaman tsunami flooded coastal northern Sumatra to a depth of over 20 m, deposited a discontinuous sheet of sand up to 80 cm thick, and left mud up to 5 km inland. In most places the sand sheet is normally graded, and in some it contains complex internal stratigraphy. Structures within the sand sheet may record the passage of up to 3 individual waves. We studied the 2004 tsunami deposits in detail along a flow-parallel transect about 400 m long, 16 km southwest of Banda Aceh. Near the shore along this transect, the deposit is thin or absent. Between 50 and 400 m inland it ranges in thickness from 5 to 20 cm. The main trend in thickness is a tendency to thicken by filling low spots, most dramatically at pre-existing stream channels. Deposition generally attended inundation - along the transect, the tsunami deposited sand to within about 40 m of the inundation limit. Although the tsunami deposit contains primarily material indistinguishable from material found on the beach one month after the event, it also contains grain sizes and compositions unavailable on the current beach. Along the transect we studied, these grains become increasingly dominant both landward and upward in the deposit; possibly some landward source of sediment was exposed and exploited by the passage of the waves. The deposit also contains the unabraded shells of subtidal marine organisms, suggesting that at least part of the deposit came from offshore. Grain sizes within the deposit tend to fine upward and landward, although individual units within the deposit appear massive, or show reverse grading. Sorting becomes better landward, although the most landward sites generally become poorly sorted from the inclusion of soil clasts. These sites commonly show interlayering of sandy units and soil clast units. Deposits from the 2004 tsunami in Sumatra demonstrate the complex nature of the deposits of large tsunamis. Unlike the deposits of smaller tsunamis, internal stratigraphy is complex, and will require some effort to understand. The Sumatra deposits also show the contribution of multiple sediment sources, each of which has its own composition and grain size. Such complexity may allow more accurate modeling of flow depth and flow velocity for paleotsunamis, if an understanding of how tsunami hydraulics affect sedimentation can be established. Copyright ?? The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB.
NASA Astrophysics Data System (ADS)
Otero, L. J.; Restrepo, J. C.; Gonzalez, M.
2014-05-01
In this study, the tsunami hazard posed to 120 000 inhabitants of Tumaco (Colombia) is assessed, and an evaluation and analysis of regenerating the previous El Guano Island for tsunami protection is conducted. El Guano Island was a sandy barrier island in front of the city of Tumaco until its disappearance during the tsunami of 1979; the island is believed to have played a protective role, substantially reducing the scale of the disaster. The analysis is conducted by identifying seismotectonic parameters and focal mechanisms of tsunami generation in the area, determining seven potential generation sources, applying a numerical model for tsunami generation and propagation, and evaluating the effect of tsunamis on Tumaco. The results show that in the current situation, this area is vulnerable to impact and flooding by tsunamis originating nearby. El Guano Island was found to markedly reduce flood levels and the energy flux of tsunami waves in Tumaco during the 1979 tsunami. By reducing the risk of flooding due to tsunamis, the regeneration and morphological modification of El Guano Island would help to protect Tumaco.
NASA Astrophysics Data System (ADS)
Otero, L. J.; Restrepo, J. C.; Gonzalez, M.
2013-04-01
In this study, the tsunami hazard posed to 120 000 inhabitants of Tumaco (Colombia) is assessed, and an evaluation and analysis of regenerating the previous El Guano Island for tsunami protection is conducted. El Guano Island was a sandy barrier island in front of the city of Tumaco until its disappearance during the tsunami of 1979; the island is believed to have played a protective role, substantially reducing the scale of the disaster. The analysis is conducted by identifying seismotectonic parameters and focal mechanisms of tsunami generation in the area, determining seven potential generation sources, applying a numerical model for tsunami generation and propagation, and evaluating the effect of tsunamis on Tumaco. The results show that in the current situation, this area is vulnerable to impact and flooding by tsunamis originating nearby. El Guano Island was found to markedly reduce flood levels and the energy flux of tsunami waves in Tumaco during the 1979 tsunami. To reduce the risk of flooding due to tsunamis, the regeneration and morphological modification of El Guano Island would help to protect Tumaco.
Real-time Tsunami Inundation Prediction Using High Performance Computers
NASA Astrophysics Data System (ADS)
Oishi, Y.; Imamura, F.; Sugawara, D.
2014-12-01
Recently off-shore tsunami observation stations based on cabled ocean bottom pressure gauges are actively being deployed especially in Japan. These cabled systems are designed to provide real-time tsunami data before tsunamis reach coastlines for disaster mitigation purposes. To receive real benefits of these observations, real-time analysis techniques to make an effective use of these data are necessary. A representative study was made by Tsushima et al. (2009) that proposed a method to provide instant tsunami source prediction based on achieving tsunami waveform data. As time passes, the prediction is improved by using updated waveform data. After a tsunami source is predicted, tsunami waveforms are synthesized from pre-computed tsunami Green functions of linear long wave equations. Tsushima et al. (2014) updated the method by combining the tsunami waveform inversion with an instant inversion of coseismic crustal deformation and improved the prediction accuracy and speed in the early stages. For disaster mitigation purposes, real-time predictions of tsunami inundation are also important. In this study, we discuss the possibility of real-time tsunami inundation predictions, which require faster-than-real-time tsunami inundation simulation in addition to instant tsunami source analysis. Although the computational amount is large to solve non-linear shallow water equations for inundation predictions, it has become executable through the recent developments of high performance computing technologies. We conducted parallel computations of tsunami inundation and achieved 6.0 TFLOPS by using 19,000 CPU cores. We employed a leap-frog finite difference method with nested staggered grids of which resolution range from 405 m to 5 m. The resolution ratio of each nested domain was 1/3. Total number of grid points were 13 million, and the time step was 0.1 seconds. Tsunami sources of 2011 Tohoku-oki earthquake were tested. The inundation prediction up to 2 hours after the earthquake occurs took about 2 minutes, which would be sufficient for a practical tsunami inundation predictions. In the presentation, the computational performance of our faster-than-real-time tsunami inundation model will be shown, and preferable tsunami wave source analysis for an accurate inundation prediction will also be discussed.
One year after the 1 April 2014 Iquique tsunami field survey along the coasts of Chile and Peru
NASA Astrophysics Data System (ADS)
Lagos, Marcelo; Fritz, Hermann M.
2015-04-01
One year ago on the evening of 1 April, 2014 a magnitude Mw 8.2 earthquake occurred off the coast of northern Chile off the coast of Pisagua within a region of historic quiescence termed the northern Chile seismic gap. The ensuing tsunami inundation caused mostly minor damage centered in Iquique and neighbouring stretches of coastline. Fortunately, ancestral knowledge from the past 1868 and 1877 tsunamis in the region along with the recent 2010 Maule tsunami, as well as tsunami education and evacuation exercises prompted most coastal residents to spontaneously evacuate to high ground after the earthquake. There were no tsunami victims; while a handful of fatalities were associated to earthquake induced building collapses and the physical stress of tsunami evacuation. The Arica native local scientist deployed overnight and started the tsunami survey in Iquique on the day after the earthquake. The international scientist joined the local effort from April 6 to 11, 2014. The international tsunami survey team (ITST) interviewed numerous eyewitnesses and documented flow depths, runup heights, inundation distances, sediment deposition, damage patterns, performance of the navigation infrastructure and impact on the natural environment. The ITST covered a 700 km stretch of coastline from the Mejillones Peninsula (23.5° S) north of Antofagasta in Chile up to Vila Vila (18.1° S) in southern Peru. We surveyed 30 locations with differential GPS and laser range finders. The tsunami impact peaked at Caleta Camarones exceeding 5 m in tsunami runup height. A significant variation in tsunami impact was observed along the coastlines of Chile and Peru both at local and regional scales. The tsunami occurred in the evening hours limiting the availability of eyewitness video footages. Observations from the 2014 Chile tsunami are compared against the 1868, 1877 and 2010 Chile tsunamis. Comparing to other similar magnitude events such as the 2007 Pisco tsunami in Peru the 1 April 2014 tsunami could have been significantly larger. The absence of a massive tsunami may mislead residents to believe another similarly minor tsunami may be generated after a potential future earthquake of similar magnitude. This April fool's day event poses significant challenges to community-based education raising tsunami awareness. The team educated residents about tsunami hazards since awareness programs are essential to save lives in locales at risk from near-field tsunamis.
Field Survey of the 2015 Ilapel Tsunami in North Central Chile
NASA Astrophysics Data System (ADS)
Lagos, M.; Fritz, H. M.
2016-12-01
The magnitude Mw 8.3 earthquake in north-central Chile on September 16, 2015 generated a tsunami that rapidly flooded coastal areas. The tsunami impact was concentrated in Coquimbo region, while the regions of Valparaiso and Atacama were also affected. Fortunately, ancestral knowledge from the past tsunamis in the region, as well as tsunami education and evacuation exercises prompted most coastal residents to spontaneously evacuate to high ground after the earthquake. The event caused 11 fatalities: 8 were associated with the tsunami, while 3 were attributed to building collapses caused by the earthquake. The international scientist joined the local effort from September 20 to 26, 2015. The international tsunami survey team (ITST) interviewed numerous eyewitnesses and documented flow depths, runup heights, inundation distances, sediment deposition, damage patterns, performance of the navigation infrastructure and impact on the natural environment. The ITST covered a 500 km stretch of coastline from Caleta Chañaral de Aceituno (28.8° S) south of Huasco down to Llolleo near San Antonio (33.6° S). We surveyed more than 40 locations and recorded more than 100 tsunami and runup heights with differential GPS and integrated laser range finders. The tsunami impact peaked at Caleta Totoral near Punta Aldea with both tsunami and runup heights exceeding 10 m as surveyed on September 22. Runup exceeded 10 m at a second uninhabited location some 15 km south of Caleta Totoral. A significant variation in tsunami impact was observed along the coastlines of central Chile at local and regional scales. The tsunami occurred in the evening hours limiting the availability of eyewitness video footages. Observations from the 2015 Chile tsunami are compared with recent Chilean tsunamis. The tsunami was characterized by rapid arrival within minutes in the nearfield requiring spontaneous self-evacuation as warning messages did not reach some of the hardest hit fishing villages prior to tsunami arrival. The absence of a massive tsunami outside of the Coquimbo region may mislead evacuated residents in the adjacent Atacama and Valparaíso regions of Chile in potential future events. This event poses significant challenges to community-based education raising tsunami awareness.
Multi-scale modeling of tsunami flows and tsunami-induced forces
NASA Astrophysics Data System (ADS)
Qin, X.; Motley, M. R.; LeVeque, R. J.; Gonzalez, F. I.
2016-12-01
The modeling of tsunami flows and tsunami-induced forces in coastal communities with the incorporation of the constructed environment is challenging for many numerical modelers because of the scale and complexity of the physical problem. A two-dimensional (2D) depth-averaged model can be efficient for modeling of waves offshore but may not be accurate enough to predict the complex flow with transient variance in vertical direction around constructed environments on land. On the other hand, using a more complex three-dimensional model is much more computational expensive and can become impractical due to the size of the problem and the meshing requirements near the built environment. In this study, a 2D depth-integrated model and a 3D Reynolds Averaged Navier-Stokes (RANS) model are built to model a 1:50 model-scale, idealized community, representative of Seaside, OR, USA, for which existing experimental data is available for comparison. Numerical results from the two numerical models are compared with each other as well as experimental measurement. Both models predict the flow parameters (water level, velocity, and momentum flux in the vicinity of the buildings) accurately, in general, except for time period near the initial impact, where the depth-averaged models can fail to capture the complexities in the flow. Forces predicted using direct integration of predicted pressure on structural surfaces from the 3D model and using momentum flux from the 2D model with constructed environment are compared, which indicates that force prediction from the 2D model is not always reliable in such a complicated case. Force predictions from integration of the pressure are also compared with forces predicted from bare earth momentum flux calculations to reveal the importance of incorporating the constructed environment in force prediction models.
The February 27, 2010 Chile Tsunami - Sedimentology of runup and backflow deposits at Isla Mocha
NASA Astrophysics Data System (ADS)
Bahlburg, H.; Spiske, M.
2010-12-01
On February 27, 2010, at 3:34 am local time, an earthquake with Mw 8.8 occurred off the town of Constitución in Central Chile and caused a major tsunami beween Valaparaiso (c. 33°S) and Tirua (c. 38°S). Maximum runup heights of up to 10 m were measured on coastal plains. The cliff coast at Tirua recorded a runup height between 30 m and 40 m. Considering past tsunami events, respective deposits may be the only observable evidence, even though their preservation potential is limited. To understand how tsunami deposits form and how they can be identified in the geological record, it is of paramount importance to undertake detailed studies in the wake of such events. Here we report initial field data of a sedimentological post-tsunami field survey undertaken in Central Chile between March 31 and April 18, 2010. At selected localities we measured detailed topographic profiles including runup heights and inundation distances, and recorded the thickness, distribution and sedimentological features of the respective tsunami deposits, as well as erosional features caused by the tsunami. We found the most instructive and complete sedimentological record of the February 27, 2010 tsunami at the northern tip of Isla Mocha, a small island off the Chilean coast at c. 28.15°S. Runup distances vary between 400 m and 600 m, the flow depth exceeded 3 m at ca. 100 m from the coast. Runup heights reached up to 21 m above sea level. In a rare sedimentological case, deposits of tsunami runup and backwash could be distinguished. The runup phase was mainly documented by fields of boulders extending c. 360 m inland. Boulders had maximum weights of 12 t. They were oriented with their long axis parallel to the coast and the wave front. Algal veneers and barnacles on the boulder faces give evidence of entrainment in intertidal water depths. The boulders are now embedded in mostly structureless coarse shelly sand. These sands were originally entrained during near shore supratidal erosion of coastal plain terraces by the tsunami and transported inland during runup. Flow structures indicate that the sands were then re-deposited during backwash. Downcurrent of terrace steps the tsunami backwash produced large erosional gullies. The backwash deposits occur either as widespread covers blanketing microtopography consisting of dark pre-tsunami soils, or as depositional fans which prograde seaward over soils free of a sediment cover. The coarse to very coarse shell debris is comprised of fragmented or entire mollusk and crab cascs. Some coarser deposits also contain significant amounts of Tertiary sandstone bedrock gravels in parts freshly eroded by the tsunami. The deposits are either massive or imbricated, the imbrication identifying them as a product of backflow currents. The deposit thickness is commonly c. 10 to 15 cm. Around large boulders backflow partitioning and associated erosion and deposition permitted the generation of 0.8 m deep scours and accumulation of up to 80 cm thick backflow sands. The depositional angles at the fan fronts vary between 27° and 36°. Backflow fan surfaces are characterized by channel and overbank regions and flow structures like current ripples. Clusters of bedrock pebbles and mollusk cascs are distributed irregularly over the fan surfaces.
NASA Astrophysics Data System (ADS)
Wilson, R. I.; Barberopoulou, A.; Miller, K. M.; Goltz, J. D.; Synolakis, C. E.
2008-12-01
A consortium of tsunami hydrodynamic modelers, geologic hazard mapping specialists, and emergency planning managers is producing maximum tsunami inundation maps for California, covering most residential and transient populated areas along the state's coastline. The new tsunami inundation maps will be an upgrade from the existing maps for the state, improving on the resolution, accuracy, and coverage of the maximum anticipated tsunami inundation line. Thirty-five separate map areas covering nearly one-half of California's coastline were selected for tsunami modeling using the MOST (Method of Splitting Tsunami) model. From preliminary evaluations of nearly fifty local and distant tsunami source scenarios, those with the maximum expected hazard for a particular area were input to MOST. The MOST model was run with a near-shore bathymetric grid resolution varying from three arc-seconds (90m) to one arc-second (30m), depending on availability. Maximum tsunami "flow depth" and inundation layers were created by combining all modeled scenarios for each area. A method was developed to better define the location of the maximum inland penetration line using higher resolution digital onshore topographic data from interferometric radar sources. The final inundation line for each map area was validated using a combination of digital stereo photography and fieldwork. Further verification of the final inundation line will include ongoing evaluation of tsunami sources (seismic and submarine landslide) as well as comparison to the location of recorded paleotsunami deposits. Local governmental agencies can use these new maximum tsunami inundation lines to assist in the development of their evacuation routes and emergency response plans.
Dall'Osso, F.; Dominey-Howes, D.; Moore, C.; Summerhayes, S.; Withycombe, G.
2014-01-01
Approximately 85% of Australia's population live along the coastal fringe, an area with high exposure to extreme inundations such as tsunamis. However, to date, no Probabilistic Tsunami Hazard Assessments (PTHA) that include inundation have been published for Australia. This limits the development of appropriate risk reduction measures by decision and policy makers. We describe our PTHA undertaken for the Sydney metropolitan area. Using the NOAA NCTR model MOST (Method for Splitting Tsunamis), we simulate 36 earthquake-generated tsunamis with annual probabilities of 1:100, 1:1,000 and 1:10,000, occurring under present and future predicted sea level conditions. For each tsunami scenario we generate a high-resolution inundation map of the maximum water level and flow velocity, and we calculate the exposure of buildings and critical infrastructure. Results indicate that exposure to earthquake-generated tsunamis is relatively low for present events, but increases significantly with higher sea level conditions. The probabilistic approach allowed us to undertake a comparison with an existing storm surge hazard assessment. Interestingly, the exposure to all the simulated tsunamis is significantly lower than that for the 1:100 storm surge scenarios, under the same initial sea level conditions. The results have significant implications for multi-risk and emergency management in Sydney. PMID:25492514
Dall'Osso, F; Dominey-Howes, D; Moore, C; Summerhayes, S; Withycombe, G
2014-12-10
Approximately 85% of Australia's population live along the coastal fringe, an area with high exposure to extreme inundations such as tsunamis. However, to date, no Probabilistic Tsunami Hazard Assessments (PTHA) that include inundation have been published for Australia. This limits the development of appropriate risk reduction measures by decision and policy makers. We describe our PTHA undertaken for the Sydney metropolitan area. Using the NOAA NCTR model MOST (Method for Splitting Tsunamis), we simulate 36 earthquake-generated tsunamis with annual probabilities of 1:100, 1:1,000 and 1:10,000, occurring under present and future predicted sea level conditions. For each tsunami scenario we generate a high-resolution inundation map of the maximum water level and flow velocity, and we calculate the exposure of buildings and critical infrastructure. Results indicate that exposure to earthquake-generated tsunamis is relatively low for present events, but increases significantly with higher sea level conditions. The probabilistic approach allowed us to undertake a comparison with an existing storm surge hazard assessment. Interestingly, the exposure to all the simulated tsunamis is significantly lower than that for the 1:100 storm surge scenarios, under the same initial sea level conditions. The results have significant implications for multi-risk and emergency management in Sydney.
Tsunamis generated by subaerial mass flows
Walder, S.J.; Watts, P.; Sorensen, O.E.; Janssen, K.
2003-01-01
Tsunamis generated in lakes and reservoirs by subaerial mass flows pose distinctive problems for hazards assessment because the domain of interest is commonly the "near field," beyond the zone of complex splashing but close enough to the source that wave propagation effects are not predominant. Scaling analysis of the equations governing water wave propagation shows that near-field wave amplitude and wavelength should depend on certain measures of mass flow dynamics and volume. The scaling analysis motivates a successful collapse (in dimensionless space) of data from two distinct sets of experiments with solid block "wave makers." To first order, wave amplitude/water depth is a simple function of the ratio of dimensionless wave maker travel time to dimensionless wave maker volume per unit width. Wave amplitude data from previous laboratory investigations with both rigid and deformable wave makers follow the same trend in dimensionless parameter space as our own data. The characteristic wavelength/water depth for all our experiments is simply proportional to dimensionless wave maker travel time, which is itself given approximately by a simple function of wave maker length/water depth. Wave maker shape and rigidity do not otherwise influence wave features. Application of the amplitude scaling relation to several historical events yields "predicted" near-field wave amplitudes in reasonable agreement with measurements and observations. Together, the scaling relations for near-field amplitude, wavelength, and submerged travel time provide key inputs necessary for computational wave propagation and hazards assessment.
Field survey of the 1 April 2014 Iquique tsunami along the coasts of Chile and Peru
NASA Astrophysics Data System (ADS)
Lagos, M.; Fritz, H. M.
2014-12-01
On 1 April, 2014 a magnitude Mw 8.2 earthquake occurred off the coast of northern Chile less than 100 km NW of Iquique within a region of historic quiescence termed the northern Chile seismic gap. The ensuing tsunami inundation caused mostly minor damage centered in Iquique and neighbouring stretches of coastline. Fortunately, ancestral knowledge from the past 1868 and 1877 tsunamis in the region along with the recent 2010 Maule tsunami, as well as tsunami education and evacuation exercises prompted most coastal residents to spontaneously evacuate to high ground after the earthquake. There were no tsunami victims, while a handful of fatalities were associated to the earthquake and the tsunami evacuation. The local scientist deployed in the morning hours to start the tsunami survey in Iquique on the day after the earthquake. The international scientist joined the local effort from April 6 to 11. The international tsunami survey team (ITST) documented flow depths, runup heights, inundation distances, sediment deposition, damage patterns, performance of the navigation infrastructure and impact on the natural environment. The ITST covered a 700 km stretch of coastline from the Mejillones Peninsula (23.5° S) north of Antofagasta in Chile up to Vila Vila (18.1° S) in southern Peru. We surveyed 30 locations with differential GPS and laser range finders. The tsunami impact peaked in the vicinity of Iquique exceeding 4 m in tsunami height. A significant variation in tsunami impact was observed along the coastlines of Chile and Peru both at local and regional scales. The tsunami occurred in the evening hours limiting the availability of eyewitness video footages. Observations from the 2014 Chile tsunami are compared against the 1868, 1877 and 2010 Chile tsunamis. Given the magnitude of the 1 April 2014 earthquake the tsunami could have been significantly larger. However the absence of a massive tsunami may mislead residents in the future to believe another minor tsunami may be generated after an earthquake of similar magnitude. Hence the April fool's day event poses significant challenges to community-based education. The team interviewed numerous eyewitnesses and educated residents about tsunami hazards since awareness programs are essential to save lives in locales at risk from locally generated tsunamis.
NASA Astrophysics Data System (ADS)
Wilson, R. I.; Eble, M. C.
2013-12-01
The U.S. National Tsunami Hazard Mitigation Program (NTHMP) is comprised of representatives from coastal states and federal agencies who, under the guidance of NOAA, work together to develop protocols and products to help communities prepare for and mitigate tsunami hazards. Within the NTHMP are several subcommittees responsible for complimentary aspects of tsunami assessment, mitigation, education, warning, and response. The Mapping and Modeling Subcommittee (MMS) is comprised of state and federal scientists who specialize in tsunami source characterization, numerical tsunami modeling, inundation map production, and warning forecasting. Until September 2012, much of the work of the MMS was authorized through the Tsunami Warning and Education Act, an Act that has since expired but the spirit of which is being adhered to in parallel with reauthorization efforts. Over the past several years, the MMS has developed guidance and best practices for states and territories to produce accurate and consistent tsunami inundation maps for community level evacuation planning, and has conducted benchmarking of numerical inundation models. Recent tsunami events have highlighted the need for other types of tsunami hazard analyses and products for improving evacuation planning, vertical evacuation, maritime planning, land-use planning, building construction, and warning forecasts. As the program responsible for producing accurate and consistent tsunami products nationally, the NTHMP-MMS is initiating a multi-year plan to accomplish the following: 1) Create and build on existing demonstration projects that explore new tsunami hazard analysis techniques and products, such as maps identifying areas of strong currents and potential damage within harbors as well as probabilistic tsunami hazard analysis for land-use planning. 2) Develop benchmarks for validating new numerical modeling techniques related to current velocities and landslide sources. 3) Generate guidance and protocols for the production and use of new tsunami hazard analysis products. 4) Identify multistate collaborations and funding partners interested in these new products. Application of these new products will improve the overall safety and resilience of coastal communities exposed to tsunami hazards.
Predicted sedimentary record of reflected bores
Higman, B.; Gelfenbaum, G.; Lynett, P.; Moore, A.; Jaffe, B.
2007-01-01
Where a steep slope blocks an inrushing tsunami, the tsunami commonly reverses direction as a reflected bore. A simple method for relating vertical and horizontal variation in sediment size to output from numerical models of depth-averaged tsunami flow yields predictions about the sedimentary record of reflected bores: 1. Near the reflector, a abrupt slowing of the flow as the reflected bore passes is recorded by a normally graded layer that drapes preexisting topography. 2. At intermediate distances from the reflector, the deposit consists of a single normally graded bed deposited preferentially in depressions, possibly including a sharp fine-over-coarse contact. This contact records a brief period of erosion as the front of the reflected bore passes. 3. Far seaward of the reflector, grading in the deposit includes two distinct normally graded beds deposited preferentially in depressions separated by an erosional unconformity. The second normally graded bed records the reflected bore.
Numerical study of dam-break induced tsunami-like bore with a hump of different slopes
NASA Astrophysics Data System (ADS)
Cheng, Du; Zhao, Xi-zeng; Zhang, Da-ke; Chen, Yong
2017-12-01
Numerical simulation of dam-break wave, as an imitation of tsunami hydraulic bore, with a hump of different slopes is performed in this paper using an in-house code, named a Constrained Interpolation Profile (CIP)-based model. The model is built on a Cartesian grid system with the Navier Stokes equations using a CIP method for the flow solver, and employs an immersed boundary method (IBM) for the treatment of solid body boundary. A more accurate interface capturing scheme, the Tangent of hyperbola for interface capturing/Slope weighting (THINC/SW) scheme, is adopted as the interface capturing method. Then, the CIP-based model is applied to simulate the dam break flow problem in a bumpy channel. Considerable attention is paid to the spilling type reflected bore, the following spilling type wave breaking, free surface profiles and water level variations over time. Computations are compared with available experimental data and other numerical results quantitatively and qualitatively. Further investigation is conducted to analyze the influence of variable slopes on the flow features of the tsunami-like bore.
Probability-Based Design Criteria of the ASCE 7 Tsunami Loads and Effects Provisions (Invited)
NASA Astrophysics Data System (ADS)
Chock, G.
2013-12-01
Mitigation of tsunami risk requires a combination of emergency preparedness for evacuation in addition to providing structural resilience of critical facilities, infrastructure, and key resources necessary for immediate response and economic and social recovery. Critical facilities would include emergency response, medical, tsunami refuges and shelters, ports and harbors, lifelines, transportation, telecommunications, power, financial institutions, and major industrial/commercial facilities. The Tsunami Loads and Effects Subcommittee of the ASCE/SEI 7 Standards Committee is developing a proposed new Chapter 6 - Tsunami Loads and Effects for the 2016 edition of the ASCE 7 Standard. ASCE 7 provides the minimum design loads and requirements for structures subject to building codes such as the International Building Code utilized in the USA. In this paper we will provide a review emphasizing the intent of these new code provisions and explain the design methodology. The ASCE 7 provisions for Tsunami Loads and Effects enables a set of analysis and design methodologies that are consistent with performance-based engineering based on probabilistic criteria. . The ASCE 7 Tsunami Loads and Effects chapter will be initially applicable only to the states of Alaska, Washington, Oregon, California, and Hawaii. Ground shaking effects and subsidence from a preceding local offshore Maximum Considered Earthquake will also be considered prior to tsunami arrival for Alaska and states in the Pacific Northwest regions governed by nearby offshore subduction earthquakes. For national tsunami design provisions to achieve a consistent reliability standard of structural performance for community resilience, a new generation of tsunami inundation hazard maps for design is required. The lesson of recent tsunami is that historical records alone do not provide a sufficient measure of the potential heights of future tsunamis. Engineering design must consider the occurrence of events greater than scenarios in the historical record, and should properly be based on the underlying seismicity of subduction zones. Therefore, Probabilistic Tsunami Hazard Analysis (PTHA) consistent with source seismicity must be performed in addition to consideration of historical event scenarios. A method of Probabilistic Tsunami Hazard Analysis has been established that is generally consistent with Probabilistic Seismic Hazard Analysis in the treatment of uncertainty. These new tsunami design zone maps will define the coastal zones where structures of greater importance would be designed for tsunami resistance and community resilience. Structural member acceptability criteria will be based on performance objectives for a 2,500-year Maximum Considered Tsunami. The approach developed by the ASCE Tsunami Loads and Effects Subcommittee of the ASCE 7 Standard would result in the first national unification of tsunami hazard criteria for design codes reflecting the modern approach of Performance-Based Engineering.
The November 15, 2006 Kuril Islands-Generated Tsunami in Crescent City, California
NASA Astrophysics Data System (ADS)
Dengler, L.; Uslu, B.; Barberopoulou, A.; Yim, S. C.; Kelly, A.
2009-02-01
On November 15, 2006, Crescent City in Del Norte County, California was hit by a tsunami generated by a M w 8.3 earthquake in the central Kuril Islands. Strong currents that persisted over an eight-hour period damaged floating docks and several boats and caused an estimated 9.2 million in losses. Initial tsunami alert bulletins issued by the West Coast Alaska Tsunami Warning Center (WCATWC) in Palmer, Alaska were cancelled about three and a half hours after the earthquake, nearly five hours before the first surges reached Crescent City. The largest amplitude wave, 1.76-meter peak to trough, was the sixth cycle and arrived over two hours after the first wave. Strong currents estimated at over 10 knots, damaged or destroyed three docks and caused cracks in most of the remaining docks. As a result of the November 15 event, WCATWC changed the definition of Advisory from a region-wide alert bulletin meaning that a potential tsunami is 6 hours or further away to a localized alert that tsunami water heights may approach warning- level thresholds in specific, vulnerable locations like Crescent City. On January 13, 2007 a similar Kuril event occurred and hourly conferences between the warning center and regional weather forecasts were held with a considerable improvement in the flow of information to local coastal jurisdictions. The event highlighted the vulnerability of harbors from a relatively modest tsunami and underscored the need to improve public education regarding the duration of the tsunami hazards, improve dialog between tsunami warning centers and local jurisdictions, and better understand the currents produced by tsunamis in harbors.
Field survey of the 16 September 2015 Chile tsunami
NASA Astrophysics Data System (ADS)
Lagos, Marcelo; Fritz, Hermann M.
2016-04-01
On the evening of 16 September, 2015 a magnitude Mw 8.3 earthquake occurred off the coast of central Chile's Coquimbo region. The ensuing tsunami caused significant inundation and damage in the Coquimbo or 4th region and mostly minor effects in neighbouring 3rd and 5th regions. Fortunately, ancestral knowledge from the past 1922 and 1943 tsunamis in the region along with the catastrophic 2010 Maule and recent 2014 tsunamis, as well as tsunami education and evacuation exercises prompted most coastal residents to spontaneously evacuate to high ground after the earthquake. There were a few tsunami victims; while a handful of fatalities were associated to earthquake induced building collapses and the physical stress of tsunami evacuation. The international scientist joined the local effort from September 20 to 26, 2015. The international tsunami survey team (ITST) interviewed numerous eyewitnesses and documented flow depths, runup heights, inundation distances, sediment deposition, damage patterns, performance of the navigation infrastructure and impact on the natural environment. The ITST covered a 500 km stretch of coastline from Caleta Chañaral de Aceituno (28.8° S) south of Huasco down to Llolleo near San Antonio (33.6° S). We surveyed more than 40 locations and recorded more than 100 tsunami and runup heights with differential GPS and integrated laser range finders. The tsunami impact peaked at Caleta Totoral near Punta Aldea with both tsunami and runup heights exceeding 10 m as surveyed on September 22 and broadcasted nationwide that evening. Runup exceeded 10 m at a second uninhabited location some 15 km south of Caleta Totoral. A significant variation in tsunami impact was observed along the coastlines of central Chile at local and regional scales. The tsunami occurred in the evening hours limiting the availability of eyewitness video footages. Observations from the 2015 Chile tsunami are compared against the 1922, 1943, 2010 and 2014 Chile tsunamis. The tsunami was characterized by rapid arrival within minutes in the nearfield requiring spontaneous self-evacuation as warning messages did not reach some of the hardest hit fishing villages prior to tsunami arrival. The absence of a massive tsunami outside of the 4th region may mislead evacuated residents in the adjacent 3rd and 5th regions of Chile in potential future events. This event poses significant challenges to community-based education raising tsunami awareness. The team educated residents about tsunami hazards since awareness programs are essential to save lives in locales at risk from near-field tsunamis.
NASA Astrophysics Data System (ADS)
Yamada, M.; Fujino, S.; Satake, K.
2017-12-01
The 7.3 ka eruption of Kikai volcano, southern Kyushu, Japan, is one of the largest caldera-forming eruption in the world. Given that a huge caldera was formed in shallow sea area during the eruption, a tsunami must have been generated by a sea-level change associated. Pyroclastic flow and tsunami deposits by the eruption have been studied around the caldera, but they are not enough to evaluate the tsunami size. The goal of this study is to unravel sizes of tsunami and triggering caldera collapse by numerical simulations based on a widely-distributed tsunami deposit associated with the eruption. In this presentation, we will provide an initial data on distribution of the 7.3 ka tsunami deposit contained in sediment cores taken at three coastal lowlands in Wakayama, Tokushima, and Oita prefectures (560 km, 520 km, and 310 km north-east from the caldera, respectively). A volcanic ash from the eruption (Kikai Akahoya tephra: K-Ah) is evident in organic-rich muddy sedimentary sequence in all sediment cores. Up to 6-cm-thick sand layer, characterized by a grading structure and sharp bed boundary with lower mud, is observed immediately beneath the K-Ah tephra in all study sites. These sedimentary characteristics and broad distribution indicate that the sand layer was most likely deposited by a tsunami which can propagate to a wide area, but not by a local storm surge. Furthermore, the stratigraphic relationship implies that the study sites must have been inundated by the tsunami prior to the ash fall. A sand layer is also evident within the K-Ah tephra layer, suggesting that the sand layer was probably formed by a subsequent tsunami wave during the ash fall. These geological evidences for the 7.3 ka tsunami inundation will contribute to a better understanding of the caldera collapse and the resultant tsunami, but also of the tsunami generating system in the eruptive process.
Assessment of a Tsunami Hazard for Mediterranean Coast of Egypt
NASA Astrophysics Data System (ADS)
Zaytsev, Andrey; Babeyko, Andrey; Yalciner, Ahmet; Pelinovsky, Efim
2017-04-01
Analysis of tsunami hazard for Egypt based on historic data and numerical modelling of historic and prognostic events is given. There are 13 historic events for 4000 years, including one instrumental record (1956). Tsunami database includes 12 earthquake tsunamis and 1 event of volcanic origin (Santorini eruption). Tsunami intensity of events (365, 881, 1303, 1870) is estimated as I = 3 led to tsunami wave height more than 6 m. Numerical simulation of some possible scenario of tsunamis of seismic and landslide origin is done with use of NAMI-DANCE software solved the shallow-water equations. The PTHA method (Probabilistic Tsunami Hazard Assessment - Probabilistic assessment of a tsunami hazard) for the Mediterranean Sea developed in (Sorensen M.B., Spada M., Babeyko A., Wiemer S., Grunthal G. Probabilistic tsunami hazard in the Mediterranean Sea. J Geophysical Research, 2012, vol. 117, B01305) is used to evaluate the probability of tsunami occurrence on the Egyptian coast. The synthetic catalogue of prognostic tsunamis of seismic origin with magnitude more than 6.5 includes 84 920 events for 100000 years. For the wave heights more 1 m the curve: exceedance probability - tsunami height can be approximated by exponential Gumbel function with two parameters which are determined for each coastal location in Egypt (totally. 24 points). Prognostic extreme highest events with probability less 10-4 are not satisfied to the Gumbel function (approximately 10 events) and required the special analysis. Acknowledgements: This work was supported EU FP7 ASTARTE Project [603839], and for EP - NS6637.2016.5.
NASA Astrophysics Data System (ADS)
Kijko, Andrzej; Smit, Ansie; Papadopoulos, Gerassimos A.; Novikova, Tatyana
2018-04-01
After the mega-earthquakes and concomitant devastating tsunamis in Sumatra (2004) and Japan (2011), we launched an investigation into the potential risk of tsunami hazard to the coastal cities of South Africa. This paper presents the analysis of the seismic hazard of seismogenic sources that could potentially generate tsunamis, as well as the analysis of the tsunami hazard to coastal areas of South Africa. The subduction zones of Makran, South Sandwich Island, Sumatra, and the Andaman Islands were identified as possible sources of mega-earthquakes and tsunamis that could affect the African coast. Numerical tsunami simulations were used to investigate the realistic and worst-case scenarios that could be generated by these subduction zones. The simulated tsunami amplitudes and run-up heights calculated for the coastal cities of Cape Town, Durban, and Port Elizabeth are relatively small and therefore pose no real risk to the South African coast. However, only distant tsunamigenic sources were considered and the results should therefore be viewed as preliminary.
NASA Astrophysics Data System (ADS)
Kijko, Andrzej; Smit, Ansie; Papadopoulos, Gerassimos A.; Novikova, Tatyana
2017-11-01
After the mega-earthquakes and concomitant devastating tsunamis in Sumatra (2004) and Japan (2011), we launched an investigation into the potential risk of tsunami hazard to the coastal cities of South Africa. This paper presents the analysis of the seismic hazard of seismogenic sources that could potentially generate tsunamis, as well as the analysis of the tsunami hazard to coastal areas of South Africa. The subduction zones of Makran, South Sandwich Island, Sumatra, and the Andaman Islands were identified as possible sources of mega-earthquakes and tsunamis that could affect the African coast. Numerical tsunami simulations were used to investigate the realistic and worst-case scenarios that could be generated by these subduction zones. The simulated tsunami amplitudes and run-up heights calculated for the coastal cities of Cape Town, Durban, and Port Elizabeth are relatively small and therefore pose no real risk to the South African coast. However, only distant tsunamigenic sources were considered and the results should therefore be viewed as preliminary.
NASA Astrophysics Data System (ADS)
Canelas, Ricardo; Oliveira, Maria; Crespo, Alejandro; Neves, Ramiro; Costa, Pedro; Freitas, Conceição; Andrade, César; Ferreira, Rui
2014-05-01
The study of coastal boulder deposits related with marine abrupt inundation events has been addressed by several authors using conventional numerical solutions that simulate particle transport by storm and tsunami, sometimes with contradictory results (Nandasena et al. 2011, Kain et al. 2012). The biggest challenge has been the differentiation of the events (storm or tsunami), and the reconstruction of wave parameters (e.g. wave height, length, direction) responsible for the entrainment and transport of these megaclasts. In this study we employ an inverse-problem strategy to determine the cause of dislodgement of megaclasts and to explain the pattern of deposition found in some locations of the Portuguese western coast, well above maximum records of sea level. It is envisaged that the causes are either flows originated by wave breaking, typically associated to storms, which would impart large momentum in a short time interval (herein impulsive motion), or long waves such as a tsunamis, that would transport the clasts in a mode analogous to bedload (herein sustained motion). The geometry of the problem is idealized but represents the key features of overhanging layers related with fractures, bedding and differential erosion of sub-horizontal layers. In plan view, concave and convex coastline shapes are testes to assess the influence of flow concentration. These geometrical features are representative of the western Portuguese coast. The fluid-solid model solves numerically the Navier-Stokes equations for the liquid phase and Newton's motion equations for solid bodies. The discretization of both fluid and solids is performed with Smooth Particle Hydrodynamics (SPH). The model is based DualSPHyics code (www.dual.sphysics.org) and represents an effort to avoid different discretization techniques for different phases in motion. This approach to boulder transport demonstrates that the ability of high-energy flow events to entrain and transport large particles largely depends on fluid velocity, flow characteristic wavelength and local geometry. The results of the model allow for a classification of the deposition patterns associated with the combinations of hydrodynamic parameters characteristic of short (storms) and long waves (tsunamis). Ackownledgements: Project RECI/ECM-HID/0371/2012, funded by the Portuguese Foundation for Science and Technology (FCT), has partially supported this work. References Nandasena, N.A.K., Paris, R. e Tanaka, N., 2011. Reassessment of hydrodynamic equations: Minimum flow velocity to initaite boulder transport by high energy events (storms, tsunamis). Marine Geology, 281: 70-84. Kain, C.L; Gomez, C.; Moghaddam, A.E. (2012) Comment on 'Reassessment of hydrodynamic equations: Minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis), by N.A.K. Nandasena, R. Paris and N. Tanaka [Marine Geology 281, 70-84], Marine Geology, Volumes 319-322, 1, pp. 75-76, ISSN 0025-3227, http://dx.doi.org/10.1016/j.margeo.2011.08.008.
Probabilistic Tsunami Hazard Analysis
NASA Astrophysics Data System (ADS)
Thio, H. K.; Ichinose, G. A.; Somerville, P. G.; Polet, J.
2006-12-01
The recent tsunami disaster caused by the 2004 Sumatra-Andaman earthquake has focused our attention to the hazard posed by large earthquakes that occur under water, in particular subduction zone earthquakes, and the tsunamis that they generate. Even though these kinds of events are rare, the very large loss of life and material destruction caused by this earthquake warrant a significant effort towards the mitigation of the tsunami hazard. For ground motion hazard, Probabilistic Seismic Hazard Analysis (PSHA) has become a standard practice in the evaluation and mitigation of seismic hazard to populations in particular with respect to structures, infrastructure and lifelines. Its ability to condense the complexities and variability of seismic activity into a manageable set of parameters greatly facilitates the design of effective seismic resistant buildings but also the planning of infrastructure projects. Probabilistic Tsunami Hazard Analysis (PTHA) achieves the same goal for hazards posed by tsunami. There are great advantages of implementing such a method to evaluate the total risk (seismic and tsunami) to coastal communities. The method that we have developed is based on the traditional PSHA and therefore completely consistent with standard seismic practice. Because of the strong dependence of tsunami wave heights on bathymetry, we use a full waveform tsunami waveform computation in lieu of attenuation relations that are common in PSHA. By pre-computing and storing the tsunami waveforms at points along the coast generated for sets of subfaults that comprise larger earthquake faults, we can efficiently synthesize tsunami waveforms for any slip distribution on those faults by summing the individual subfault tsunami waveforms (weighted by their slip). This efficiency make it feasible to use Green's function summation in lieu of attenuation relations to provide very accurate estimates of tsunami height for probabilistic calculations, where one typically computes thousands of earthquake scenarios. We have carried out preliminary tsunami hazard calculations for different return periods for western North America and Hawaii based on thousands of earthquake scenarios around the Pacific rim and along the coast of North America. We will present tsunami hazard maps for several return periods and also discuss how to use these results for probabilistic inundation and runup mapping. Our knowledge of certain types of tsunami sources is very limited (e.g. submarine landslides), but a probabilistic framework for tsunami hazard evaluation can include even such sources and their uncertainties and present the overall hazard in a meaningful and consistent way.
Deterministic approach for multiple-source tsunami hazard assessment for Sines, Portugal
NASA Astrophysics Data System (ADS)
Wronna, M.; Omira, R.; Baptista, M. A.
2015-11-01
In this paper, we present a deterministic approach to tsunami hazard assessment for the city and harbour of Sines, Portugal, one of the test sites of project ASTARTE (Assessment, STrategy And Risk Reduction for Tsunamis in Europe). Sines has one of the most important deep-water ports, which has oil-bearing, petrochemical, liquid-bulk, coal, and container terminals. The port and its industrial infrastructures face the ocean southwest towards the main seismogenic sources. This work considers two different seismic zones: the Southwest Iberian Margin and the Gloria Fault. Within these two regions, we selected a total of six scenarios to assess the tsunami impact at the test site. The tsunami simulations are computed using NSWING, a Non-linear Shallow Water model wIth Nested Grids. In this study, the static effect of tides is analysed for three different tidal stages: MLLW (mean lower low water), MSL (mean sea level), and MHHW (mean higher high water). For each scenario, the tsunami hazard is described by maximum values of wave height, flow depth, drawback, maximum inundation area and run-up. Synthetic waveforms are computed at virtual tide gauges at specific locations outside and inside the harbour. The final results describe the impact at the Sines test site considering the single scenarios at mean sea level, the aggregate scenario, and the influence of the tide on the aggregate scenario. The results confirm the composite source of Horseshoe and Marques de Pombal faults as the worst-case scenario, with wave heights of over 10 m, which reach the coast approximately 22 min after the rupture. It dominates the aggregate scenario by about 60 % of the impact area at the test site, considering maximum wave height and maximum flow depth. The HSMPF scenario inundates a total area of 3.5 km2.
Peltz, Rami; Ashkenazi, Issac; Schwartz, Dagan; Shushan, Ofer; Nakash, Guy; Leiba, Adi; Levi, Yeheskel; Goldberg, Avishay; Bar-Dayan, Yaron
2006-01-01
Quarantelli established criteria for evaluating the effectiveness of disaster management. The objectives of this study were to analyze the response of the healthcare system to the Tsunami disaster according to the Quarantelli principles, and to validate these principles in a scenario of a disaster due to natural hazards. The Israeli Defense Forces (IDF) Home Front Command Medical Department sent a research team to study the response of the Thai medical system to the disaster. The analysis of the disaster management was based on Quarantelli's 10 criteria for evaluating the management of community disasters. Data were collected through personal and group interviews. The three most important elements for effective disaster management were: (1) the flow of information; (2) overall coordination; and (3) leadership. Although pre-event preparedness was for different and smaller scenarios, medical teams repeatedly reported a better performance in hospitals that recently conducted drills. In order to increase effectiveness, disaster management response should focus on: (1) the flow of information; (2) overall coordination; and (3) leadership.
NASA Astrophysics Data System (ADS)
Wei, Y.; Thomas, S.; Zhou, H.; Arcas, D.; Titov, V. V.
2017-12-01
The increasing potential tsunami hazards pose great challenges for infrastructures along the coastlines of the U.S. Pacific Northwest. Tsunami impact at a coastal site is usually assessed from deterministic scenarios based on 10,000 years of geological records in the Cascadia Subduction Zone (CSZ). Aside from these deterministic methods, the new ASCE 7-16 tsunami provisions provide engineering design criteria of tsunami loads on buildings based on a probabilistic approach. This work develops a site-specific model near Newport, OR using high-resolution grids, and compute tsunami inundation depth and velocities at the study site resulted from credible probabilistic and deterministic earthquake sources in the Cascadia Subduction Zone. Three Cascadia scenarios, two deterministic scenarios, XXL1 and L1, and a 2,500-yr probabilistic scenario compliant with the new ASCE 7-16 standard, are simulated using combination of a depth-averaged shallow water model for offshore propagation and a Boussinesq-type model for onshore inundation. We speculate on the methods and procedure to obtain the 2,500-year probabilistic scenario for Newport that is compliant with the ASCE 7-16 tsunami provisions. We provide details of model results, particularly the inundation depth and flow speed for a new building, which will also be designated as a tsunami vertical evacuation shelter, at Newport, Oregon. We show that the ASCE 7-16 consistent hazards are between those obtained from deterministic L1 and XXL1 scenarios, and the greatest impact on the building may come from later waves. As a further step, we utilize the inundation model results to numerically compute tracks of large vessels in the vicinity of the building site and estimate if these vessels will impact on the building site during the extreme XXL1 and ASCE 7-16 hazard-consistent scenarios. Two-step study is carried out first to study tracks of massless particles and then large vessels with assigned mass considering drag force, inertial force, ship grounding and mooring. The simulation results show that none of the large vessels will impact on the building site in all tested scenarios.
Post-eruptive flooding of Santorini caldera and implications for tsunami generation.
Nomikou, P; Druitt, T H; Hübscher, C; Mather, T A; Paulatto, M; Kalnins, L M; Kelfoun, K; Papanikolaou, D; Bejelou, K; Lampridou, D; Pyle, D M; Carey, S; Watts, A B; Weiß, B; Parks, M M
2016-11-08
Caldera-forming eruptions of island volcanoes generate tsunamis by the interaction of different eruptive phenomena with the sea. Such tsunamis are a major hazard, but forward models of their impacts are limited by poor understanding of source mechanisms. The caldera-forming eruption of Santorini in the Late Bronze Age is known to have been tsunamigenic, and caldera collapse has been proposed as a mechanism. Here, we present bathymetric and seismic evidence showing that the caldera was not open to the sea during the main phase of the eruption, but was flooded once the eruption had finished. Inflow of water and associated landsliding cut a deep, 2.0-2.5 km 3 , submarine channel, thus filling the caldera in less than a couple of days. If, as at most such volcanoes, caldera collapse occurred syn-eruptively, then it cannot have generated tsunamis. Entry of pyroclastic flows into the sea, combined with slumping of submarine pyroclastic accumulations, were the main mechanisms of tsunami production.
Post-eruptive flooding of Santorini caldera and implications for tsunami generation
NASA Astrophysics Data System (ADS)
Nomikou, P.; Druitt, T. H.; Hübscher, C.; Mather, T. A.; Paulatto, M.; Kalnins, L. M.; Kelfoun, K.; Papanikolaou, D.; Bejelou, K.; Lampridou, D.; Pyle, D. M.; Carey, S.; Watts, A. B.; Weiß, B.; Parks, M. M.
2016-11-01
Caldera-forming eruptions of island volcanoes generate tsunamis by the interaction of different eruptive phenomena with the sea. Such tsunamis are a major hazard, but forward models of their impacts are limited by poor understanding of source mechanisms. The caldera-forming eruption of Santorini in the Late Bronze Age is known to have been tsunamigenic, and caldera collapse has been proposed as a mechanism. Here, we present bathymetric and seismic evidence showing that the caldera was not open to the sea during the main phase of the eruption, but was flooded once the eruption had finished. Inflow of water and associated landsliding cut a deep, 2.0-2.5 km3, submarine channel, thus filling the caldera in less than a couple of days. If, as at most such volcanoes, caldera collapse occurred syn-eruptively, then it cannot have generated tsunamis. Entry of pyroclastic flows into the sea, combined with slumping of submarine pyroclastic accumulations, were the main mechanisms of tsunami production.
Post-eruptive flooding of Santorini caldera and implications for tsunami generation
Nomikou, P.; Druitt, T. H.; Hübscher, C.; Mather, T. A.; Paulatto, M.; Kalnins, L. M.; Kelfoun, K.; Papanikolaou, D.; Bejelou, K.; Lampridou, D.; Pyle, D. M.; Carey, S.; Watts, A. B.; Weiß, B.; Parks, M. M.
2016-01-01
Caldera-forming eruptions of island volcanoes generate tsunamis by the interaction of different eruptive phenomena with the sea. Such tsunamis are a major hazard, but forward models of their impacts are limited by poor understanding of source mechanisms. The caldera-forming eruption of Santorini in the Late Bronze Age is known to have been tsunamigenic, and caldera collapse has been proposed as a mechanism. Here, we present bathymetric and seismic evidence showing that the caldera was not open to the sea during the main phase of the eruption, but was flooded once the eruption had finished. Inflow of water and associated landsliding cut a deep, 2.0–2.5 km3, submarine channel, thus filling the caldera in less than a couple of days. If, as at most such volcanoes, caldera collapse occurred syn-eruptively, then it cannot have generated tsunamis. Entry of pyroclastic flows into the sea, combined with slumping of submarine pyroclastic accumulations, were the main mechanisms of tsunami production. PMID:27824353
NASA Astrophysics Data System (ADS)
Sugianto, S.; Heriansyah; Darusman; Rusdi, M.; Karim, A.
2018-04-01
The Indian Ocean Tsunami event on the 26 December 2004 has caused severe damage of some shorelines in Banda Aceh City, Indonesia. Tracing back the impact can be seen using remote sensing data combined with GIS. The approach is incorporated with image processing to analyze the extent of shoreline changes with multi-temporal data after 12 years of tsunami. This study demonstrates multi-resolution and multi-temporal satellite images of QuickBird and IKONOS to demarcate the shoreline of Banda Aceh shoreline from before and after tsunami. The research has demonstrated a significant change to the shoreline in the form of abrasion between 2004 and 2005 from few meters to hundred meters’ change. The change between 2004 and 2011 has not returned to the previous stage of shoreline before the tsunami, considered post tsunami impact. The abrasion occurs between 18.3 to 194.93 meters. Further, the change in 2009-2011 shows slowly change of shoreline of Banda Aceh, considered without impact of tsunami e.g. abrasion caused by ocean waves that erode the coast and on specific areas accretion occurs caused by sediment carried by the river flow into the sea near the shoreline of the study area.
A review of mechanisms and modelling procedures for landslide tsunamis
NASA Astrophysics Data System (ADS)
Løvholt, Finn; Harbitz, Carl B.; Glimsdal, Sylfest
2017-04-01
Landslides, including volcano flank collapses or volcanically induced flows, constitute the second-most important cause of tsunamis after earthquakes. Compared to earthquakes, landslides are more diverse with respect to how they generation tsunamis. Here, we give an overview over the main tsunami generation mechanisms for landslide tsunamis. In the presentation, a mix of results using analytical models, numerical models, laboratory experiments, and case studies are used to illustrate the diversity, but also to point out some common characteristics. Different numerical modelling techniques for the landslide evolution, and the tsunami generation and propagation, as well as the effect of frequency dispersion, are also briefly discussed. Basic tsunami generation mechanisms for different types of landslides, including large submarine translational landslide, to impulsive submarine slumps, and violent subaerial landslides and volcano flank collapses, are reviewed. The importance of the landslide kinematics is given attention, including the interplay between landslide acceleration, landslide velocity to depth ratio (Froude number) and dimensions. Using numerical simulations, we demonstrate how landslide deformation and retrogressive failure development influence tsunamigenesis. Generation mechanisms for subaerial landslides, are reviewed by means of scaling relations from laboratory experiments and numerical modelling. Finally, it is demonstrated how the different degree of complexity in the landslide tsunamigenesis needs to be reflected by increased sophistication in numerical models.
Introduction to “Global tsunami science: Past and future, Volume I”
Geist, Eric L.; Fritz, Hermann; Rabinovich, Alexander B.; Tanioka, Yuichiro
2016-01-01
Twenty-five papers on the study of tsunamis are included in Volume I of the PAGEOPH topical issue “Global Tsunami Science: Past and Future”. Six papers examine various aspects of tsunami probability and uncertainty analysis related to hazard assessment. Three papers relate to deterministic hazard and risk assessment. Five more papers present new methods for tsunami warning and detection. Six papers describe new methods for modeling tsunami hydrodynamics. Two papers investigate tsunamis generated by non-seismic sources: landslides and meteorological disturbances. The final three papers describe important case studies of recent and historical events. Collectively, this volume highlights contemporary trends in global tsunami research, both fundamental and applied toward hazard assessment and mitigation.
Introduction to "Global Tsunami Science: Past and Future, Volume I"
NASA Astrophysics Data System (ADS)
Geist, Eric L.; Fritz, Hermann M.; Rabinovich, Alexander B.; Tanioka, Yuichiro
2016-12-01
Twenty-five papers on the study of tsunamis are included in Volume I of the PAGEOPH topical issue "Global Tsunami Science: Past and Future". Six papers examine various aspects of tsunami probability and uncertainty analysis related to hazard assessment. Three papers relate to deterministic hazard and risk assessment. Five more papers present new methods for tsunami warning and detection. Six papers describe new methods for modeling tsunami hydrodynamics. Two papers investigate tsunamis generated by non-seismic sources: landslides and meteorological disturbances. The final three papers describe important case studies of recent and historical events. Collectively, this volume highlights contemporary trends in global tsunami research, both fundamental and applied toward hazard assessment and mitigation.
Deep-sea tsunami deposits in the Miocene Nishizaki Formation of Boso Peninsula, Central Japan
NASA Astrophysics Data System (ADS)
Lee, I. T.; Ogawa, Y.
2003-12-01
Many sets of deep-sea deposits considered to be formed by return flow of tsunami were found from the middle Miocene Nishizaki Formation of Boso Peninsula, Central Japan, which is located near the convergent plate boundary at present as well as in the past, and has been frequently attacked by tsunami. The characteristics of the tsunami deposits in the Nishizaki Formation are as follows. Each set consists of 10-20 beds with parallel laminations formed under upper plane regime composed of alternated pumiceous beds in white and black colors. The white bed comprises coarse sands and pebbles with thickness of 5-10 cm. In contrast, the black bed is made of silts with thickness less than 1 cm. Among the 10-20 beds, the grain size is coarsest in the middle part of the set in general. The uppermost bed of each set shows cross-lamination formed by lower plane regime, gradually changing into finer graded bed on top. Sometimes, the lower part of the parallel laminated bed is associated with an underlying debrite or turbidite bed. Each set of these parallel-laminated beds is lenticular in shape thinning to the east in consistent with the generally eastward paleocurrent of the cross-lamination at the top. Such sedimentary characteristics are different from any event deposits reported in deep-sea but similar to the deep-sea K/T boundary deposits in the Caribbean region. Statistically, tsunami waves occur totally 12-13 times. Among them the height of 5-6th wave is known to be strongest. Interval time of each return flow is known to be 30-40 minutes, enough to settle the finer clastics at each bed top. The parallel-laminated parts have common dish structure and never trace fossils, indicating rather rapid deposition for the whole parts of the set. Consequently, the sedimentary characteristics shown from the parallel-laminated beds of the Nishizaki Formation are attributed to the return flow of tsunami to the deep-sea. We considered that such deep-sea parallel-laminated deposits of pumiceous clastics occur just after a large earthquake which forms the debrite or turbidite at the lowermost part.
Display of historical and hypothetical tsunami on the coast of Sakhalin Island
NASA Astrophysics Data System (ADS)
Kostenko, Irina; Zaytsev, Andrey; Kurkin, Andrey; Yalciner, Ahmet
2014-05-01
Tsunami waves achieve the coast of the Sakhalin Island and their sources are located in the Japan Sea, in the Okhotsk Sea, in Kuril Islands region and in the Pacific Ocean. Study of tsunami generation characteristics and its propagation allows studying display of the tsunami on the various parts of the island coast. For this purpose the series of computational experiments of some historical tsunamis was carried out. Their sources located in Japan Sea and Kuril Islands region. The simulation results are compared with the observations. Analysis of all recorded historical tsunami on coast of Sakhalin Island was done. To identify the possible display of the tsunami on the coast of Sakhalin Island the series of computational experiments of hypothetical tsunamis was carried out. Their sources located in the Japan Sea and in the Okhotsk Sea. There were used hydrodynamic sources. There were used different parameters of sources (length, width, height, raising and lowering of sea level), which correspond to earthquakes of various magnitudes. The analysis of the results was carried out. Pictures of the distribution of maximum amplitudes from each tsunami were done. Areas of Okhotsk Sea, Japan Sea and offshore strip of Sakhalin Island with maximum tsunami amplitudes were defined. Graphs of the distribution of maximum tsunami wave heights along the coast of the Sakhalin Island were plotted. Based on shallow-water equation tsunami numerical code NAMI DANCE was used for numerical simulations. This work was supported by ASTARTE project.
Simulation-Based Probabilistic Tsunami Hazard Analysis: Empirical and Robust Hazard Predictions
NASA Astrophysics Data System (ADS)
De Risi, Raffaele; Goda, Katsuichiro
2017-08-01
Probabilistic tsunami hazard analysis (PTHA) is the prerequisite for rigorous risk assessment and thus for decision-making regarding risk mitigation strategies. This paper proposes a new simulation-based methodology for tsunami hazard assessment for a specific site of an engineering project along the coast, or, more broadly, for a wider tsunami-prone region. The methodology incorporates numerous uncertain parameters that are related to geophysical processes by adopting new scaling relationships for tsunamigenic seismic regions. Through the proposed methodology it is possible to obtain either a tsunami hazard curve for a single location, that is the representation of a tsunami intensity measure (such as inundation depth) versus its mean annual rate of occurrence, or tsunami hazard maps, representing the expected tsunami intensity measures within a geographical area, for a specific probability of occurrence in a given time window. In addition to the conventional tsunami hazard curve that is based on an empirical statistical representation of the simulation-based PTHA results, this study presents a robust tsunami hazard curve, which is based on a Bayesian fitting methodology. The robust approach allows a significant reduction of the number of simulations and, therefore, a reduction of the computational effort. Both methods produce a central estimate of the hazard as well as a confidence interval, facilitating the rigorous quantification of the hazard uncertainties.
Tsunami magnetic signals in the Northwestern Pacific seafloor magnetic measurements
NASA Astrophysics Data System (ADS)
Schnepf, N. R.; An, C.; Nair, M. C.; Maus, S.
2013-12-01
In the past two decades, underwater cables and seafloor magnetometers have observed motional inductance from ocean tsunamis. This study aimed to characterize the electromagnetic signatures of tsunamis from seafloor stations to assist in the long-term goal of real-time tsunami detection and warning systems. Four ocean seafloor stations (T13, T14, T15, T18) in the Northeastern Philippine Sea collected vector measurements of the electric and magnetic fields every minute during the period of 10/05/2005 to 11/30/2007 (Baba et al., 2010 PEPI). During this time, four major tsunamis occurred as a result of moment magnitude 8.0-8.1 earthquakes. These tsunamis include the 05/03/2006 Tonga event, the 01/13/2007 Kuril Islands event, the 04/01/2007 Solomon Islands event, and the 08/15/2007 Peru event. The Cornell Multi-grid Coupled Tsunami model (COMCOT) was used to predict the arrival time of the tsunamis at each of the seafloor stations. The stations' raw magnetic field signals underwent a high pass filter to then be examined for signals of the tsunami arrival. The high pass filtering showed clear tsunami signals for the Tonga event, but a clear signal was not seen for the other events. This may be due to signals from near Earth space with periods similar to tsunamis. To remove extraneous atmospheric magnetic signals, a cross-wavelet analysis was conducted using the horizontal field components from three INTERMAGNET land stations and the vertical component from the seafloor stations. The cross-wavelet analysis showed that for three of the six stations (two of the four tsunami events) the peak in wavelet amplitude matched the arrival of the tsunami. We discuss implications of our finding in magnetic monitoring of tsunamis.
NASA Astrophysics Data System (ADS)
Takashimizu, Yasuhiro; Urabe, Atsushi; Suzuki, Koji; Sato, Yoshiki
2012-12-01
A study of the 2011 Tohoku-oki tsunami deposits on the coastal lowland of the Sendai Plain, Japan was carried out along a shore-perpendicular survey line in the Arahama area. Field descriptions and tsunami water depth measurements were complemented by sedimentary analyses, including grain size, grain fabric and diatom analysis. The tsunami deposits show a generally fining-inland trend along the 3.4 km long transect. The depositional facies, grain size analysis and grain fabric data suggest that most of the tsunami deposits were laid down during the tsunami inflow, except at one site. These tsunami deposits are characterized by parallel-laminated or massive sand and silt with pieces of woods, fragments of glass, rip-up mud clasts and an erosional base. Minor backwash deposits overlying the inflow sand layer were only observed on one beach ridge and attributed to the topographic high. Marine diatom species comprised only approximately 2% of the diatom assemblage in tsunami deposits and their content decreased landward. In this study, diatom assemblages were similar in the rice field soil and tsunami layers, suggesting that the muddy fraction of the deposits mainly consists of sediments derived from the tsunami-eroded rice field soil. As a result of soil erosion, the tsunami had a high suspended sediment load. Furthermore, after the first tsunami inundation, seawater left by the tsunami did not drain completely to the sea because of the high coastal beach ridge and/or coastal subsidence due to the massive earthquake. Therefore, strong tsunami outflows to the sea did not occur and these areas were covered by mud deposited from stagnant water.
Tsunami Simulators in Physical Modelling Laboratories - From Concept to Proven Technique
NASA Astrophysics Data System (ADS)
Allsop, W.; Chandler, I.; Rossetto, T.; McGovern, D.; Petrone, C.; Robinson, D.
2016-12-01
Before 2004, there was little public awareness around Indian Ocean coasts of the potential size and effects of tsunami. Even in 2011, the scale and extent of devastation by the Japan East Coast Tsunami was unexpected. There were very few engineering tools to assess onshore impacts of tsunami, so no agreement on robust methods to predict forces on coastal defences, buildings or related infrastructure. Modelling generally used substantial simplifications of either solitary waves (far too short durations) or dam break (unrealistic and/or uncontrolled wave forms).This presentation will describe research from EPI-centre, HYDRALAB IV, URBANWAVES and CRUST projects over the last 10 years that have developed and refined pneumatic Tsunami Simulators for the hydraulic laboratory. These unique devices have been used to model generic elevated and N-wave tsunamis up to and over simple shorelines, and at example defences. They have reproduced full-duration tsunamis including the Mercator trace from 2004 at 1:50 scale. Engineering scale models subjected to those tsunamis have measured wave run-up on simple slopes, forces on idealised sea defences and pressures / forces on buildings. This presentation will describe how these pneumatic Tsunami Simulators work, demonstrate how they have generated tsunami waves longer than the facility within which they operate, and will highlight research results from the three generations of Tsunami Simulator. Of direct relevance to engineers and modellers will be measurements of wave run-up levels and comparison with theoretical predictions. Recent measurements of forces on individual buildings have been generalized by separate experiments on buildings (up to 4 rows) which show that the greatest forces can act on the landward (not seaward) buildings. Continuing research in the 70m long 4m wide Fast Flow Facility on tsunami defence structures have also measured forces on buildings in the lee of a failed defence wall.
Morton, Robert A.; Buckley, Mark L.; Gelfenbaum, Guy; Richmond, Bruce M.; Cecioni, Adriano; Artal, Osvaldo; Hoffmann, Constanza; Perez, Felipe
2010-01-01
The February 27, 2010, Chilean tsunami substantially altered the coastal landscape and left a permanent depositional record that may be preserved at many locales along the central coast of Chile. From April 24 to May 2, 2010, a team of U.S. Geological Survey (USGS) and Chilean scientists examined the geological impacts of the tsunami at five sites along a 200-km segment of coast centered on the earthquake epicenter. Significant observations include: (1) substantial tsunami-induced erosion and deposition (+/- 1 m) on the coastal plain; (2) erosion from return flow, inundation scour around the bases of trees, and widespread planation of the land surface; (3) tsunami sand deposits at all sites that extended to near the limit of inundation except at one site; (4) evidence of multiple strong onshore waves that arrived at different times and from different directions; (5) vegetation height and density controlled the thickness of tsunami deposits at one site, (6) the abundance of layers of plane-parallel stratification in some deposits and the presence of large bedforms at one site indicated at least some of the sediment was transported as bed load and not as suspended load; (7) shoreward transport of mud boulders and rock cobbles where they were available; and (8) the maximum tsunami inundation distance (2.35 km) was up an alluvial valley. Most of the tsunami deposits were less than 25 cm thick, which is consistent with tsunami-deposit thicknesses found elsewhere (for example, Papua New Guinea, Peru, Sumatra, Sri Lanka). Exceptions were the thick tsunami deposits near the mouths of Rio Huenchullami (La Trinchera) and Rio Maule (Constitucion), where the sediment supply was abundant. The substantial vertical erosion of the coastal plain at Constitucion
A shallow water model for the propagation of tsunami via Lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Zergani, Sara; Aziz, Z. A.; Viswanathan, K. K.
2015-01-01
An efficient implementation of the lattice Boltzmann method (LBM) for the numerical simulation of the propagation of long ocean waves (e.g. tsunami), based on the nonlinear shallow water (NSW) wave equation is presented. The LBM is an alternative numerical procedure for the description of incompressible hydrodynamics and has the potential to serve as an efficient solver for incompressible flows in complex geometries. This work proposes the NSW equations for the irrotational surface waves in the case of complex bottom elevation. In recent time, equation involving shallow water is the current norm in modelling tsunami operations which include the propagation zone estimation. Several test-cases are presented to verify our model. Some implications to tsunami wave modelling are also discussed. Numerical results are found to be in excellent agreement with theory.
Sources of information for tsunami forecasting in New Zealand
NASA Astrophysics Data System (ADS)
Barberopoulou, A.; Ristau, J. P.; D'Anastasio, E.; Wang, X.
2013-12-01
Tsunami science has evolved considerably in the last two decades due to technological advancements which also helped push for better numerical modelling of the tsunami phases (generation to inundation). The deployment of DART buoys has also been a considerable milestone in tsunami forecasting. Tsunami forecasting is one of the parts that tsunami modelling feeds into and is related to response, preparedness and planning. Usually tsunami forecasting refers to short-term forecasting that takes place in real-time after a tsunami has or appears to have been generated. In this report we refer to all types of forecasting (short-term or long-term) related to work in advance of a tsunami impacting a coastline that would help in response, planning or preparedness. We look at the standard types of data (seismic, GPS, water level) that are available in New Zealand for tsunami forecasting, how they are currently being used, other ways to use these data and provide recommendations for better utilisation. The main findings are: -Current investigations of the use of seismic parameters quickly obtained after an earthquake, have potential to provide critical information about the tsunamigenic potential of earthquakes. Further analysis of the most promising methods should be undertaken to determine a path to full implementation. -Network communication of the largest part of the GPS network is not currently at a stage that can provide sufficient data early enough for tsunami warning. It is believed that it has potential, but changes including data transmission improvements may have to happen before real-time processing oriented to tsunami early warning is implemented on the data that is currently provided. -Tide gauge data is currently under-utilised for tsunami forecasting. Spectral analysis, modal analysis based on identified modes and arrival times extracted from the records can be useful in forecasting. -The current study is by no means exhaustive of the ways the different types of data can be used. We are only presenting an overview of what can be done. More extensive studies with each one of the types of data collected by GeoNet and other relevant networks will help improve tsunami forecasting in New Zealand.
NASA Astrophysics Data System (ADS)
Tonini, R.; Lorito, S.; Orefice, S.; Graziani, L.; Brizuela, B.; Smedile, A.; Volpe, M.; Romano, F.; De Martini, P. M.; Maramai, A.; Selva, J.; Piatanesi, A.; Pantosti, D.
2016-12-01
Site-specific probabilistic tsunami hazard analyses demand very high computational efforts that are often reduced by introducing approximations on tsunami sources and/or tsunami modeling. On one hand, the large variability of source parameters implies the definition of a huge number of potential tsunami scenarios, whose omission could easily lead to important bias in the analysis. On the other hand, detailed inundation maps computed by tsunami numerical simulations require very long running time. When tsunami effects are calculated at regional scale, a common practice is to propagate tsunami waves in deep waters (up to 50-100 m depth) neglecting non-linear effects and using coarse bathymetric meshes. Then, maximum wave heights on the coast are empirically extrapolated, saving a significant amount of computational time. However, moving to local scale, such assumptions drop out and tsunami modeling would require much greater computational resources. In this work, we perform a local Seismic Probabilistic Tsunami Hazard Analysis (SPTHA) for the 50 km long coastal segment between Augusta and Siracusa, a touristic and commercial area placed along the South-Eastern Sicily coast, Italy. The procedure consists in using the outcomes of a regional SPTHA as input for a two-step filtering method to select and substantially reduce the number of scenarios contributing to the specific target area. These selected scenarios are modeled using high resolution topo-bathymetry for producing detailed inundation maps. Results are presented as probabilistic hazard curves and maps, with the goal of analyze, compare and highlight the different results provided by regional and local hazard assessments. Moreover, the analysis is enriched by the use of local observed tsunami data, both geological and historical. Indeed, tsunami data-sets available for the selected target areas are particularly rich with respect to the scarce and heterogeneous data-sets usually available elsewhere. Therefore, they can represent valuable benchmarks for testing and strengthening the results of such kind of studies. The work is funded by the Italian Flagship Project RITMARE, the two EC FP7 projects ASTARTE (Grant agreement 603839) and STREST (Grant agreement 603389), and the INGV-DPC Agreement.
NASA Astrophysics Data System (ADS)
Ohata, Koji; Naruse, Hajime; Yokokawa, Miwa; Viparelli, Enrica
2017-11-01
Understanding of the formative conditions of fluvial bedforms is significant for both river management and geological studies. Diagrams showing bedform stability conditions have been widely used for the analyses of sedimentary structures. However, the use of discriminants to determine the boundaries of different bedforms regimes has not yet been explored. In this study, we use discriminant functions to describe formative conditions for a range of fluvial bedforms in a 3-D dimensionless parametric space. We do this by means of discriminant analysis using the Mahalanobis distance. We analyzed 3,793 available laboratory and field data and used these to produce new bedform phase diagrams. These diagrams employ three dimensionless parameters representing properties of flow hydraulics and sediment particles as their axes. The discriminant functions for bedform regimes proposed herein are quadratic functions of three dimensionless parameters and are expressed as curved surfaces in 3-D space. These empirical functions can be used to estimate paleoflow velocities from sedimentary structures. As an example of the reconstruction of hydraulic conditions, we calculated the paleoflow velocity of the 2011 Tohoku-Oki tsunami backwash flow from the sedimentary structures of the tsunami deposit. In so doing, we successfully reconstructed reasonable values of the paleoflow velocities.
Nearshore Tsunami Inundation Model Validation: Toward Sediment Transport Applications
Apotsos, Alex; Buckley, Mark; Gelfenbaum, Guy; Jaffe, Bruce; Vatvani, Deepak
2011-01-01
Model predictions from a numerical model, Delft3D, based on the nonlinear shallow water equations are compared with analytical results and laboratory observations from seven tsunami-like benchmark experiments, and with field observations from the 26 December 2004 Indian Ocean tsunami. The model accurately predicts the magnitude and timing of the measured water levels and flow velocities, as well as the magnitude of the maximum inundation distance and run-up, for both breaking and non-breaking waves. The shock-capturing numerical scheme employed describes well the total decrease in wave height due to breaking, but does not reproduce the observed shoaling near the break point. The maximum water levels observed onshore near Kuala Meurisi, Sumatra, following the 26 December 2004 tsunami are well predicted given the uncertainty in the model setup. The good agreement between the model predictions and the analytical results and observations demonstrates that the numerical solution and wetting and drying methods employed are appropriate for modeling tsunami inundation for breaking and non-breaking long waves. Extension of the model to include sediment transport may be appropriate for long, non-breaking tsunami waves. Using available sediment transport formulations, the sediment deposit thickness at Kuala Meurisi is predicted generally within a factor of 2.
NASA Astrophysics Data System (ADS)
Mattioli, G. S.; Voight, B.; Linde, A. T.; Sacks, I. S.; Watts, P.; Hidayat, D.; Young, S. R.; Widiwijayanti, C.; Shalev, E.; Malin, P. E.; Elsworth, D.; Williams, P.; van Boskirk, E.; Thompson, G.; Syers, T.; Sparks, R. S.; Schleigh, B.; Norton, G.; Neuberg, J.; Miller, V.; McWhorter, N.; Johnston, W.; Dunkley, P.; Clarke, A. B.; Bass, V.
2005-05-01
The CALIPSO Project (Caribbean Andesite Lava Island-volcano Precision Seismo-geodetic Observatory) has greatly enhanced the monitoring and scientific infrastructure at the Soufrière Hills Volcano, Montserrat with the recent installation of an integrated array of borehole and surface geophysical instrumentation at four sites (Mattioli et al., 2004). The sensor package at each site includes: a single-component, very broad band, Sacks-Evertson strainmeter, a three-component seismometer (~Hz to 1 kHz), a Pinnacle Technologies series 5000 tiltmeter, and a surface Ashtech u-Z CGPS station with choke ring antenna, SCIGN mount and radome. The project has been successfully launched with its capture of the tremendous SHV lava dome collapse of 12-13 July 2003 (Herd et al., 2003), involving about 120 million cubic meters--the largest lava dome collapse in the historical record. A wide variety of unique geophysical signals were acquired CALIPSO instrumentation during the July 2003 collapse and important constraints on a variety of volcanic processes are being obtained. For example, tsunami waves were generated 2 km east of the volcanic dome by pyroclastic flows entering the sea. We reconstruct collapse volume-time history from seismic signals generated by pyroclastic flows, using the method of Brodscholl et al. (2000). The tsunami left flotsam strandlines of runup >8m high along the east coast of Montserrat, and waves ~0.5m high were reported from Guadaloupe. Unique borehole dilatometer data (Voight et al., 2003; Mattioli et al., 2003; 2004) record details of tsunami wave passage. One station is located 40m from the sea, with the instrument ~180m below MSL. Strain wave packets at periods of ~200-500s occurred, consistent in period and amplitude with water loading from passing tsunami waves. Wave packets between ~0600-1130 LT can be correlated with pyroclastic flow seismic data. Non-linear Boussinesq hydrodynamic modeling fits wave decay from source to instrument site and is consistent with wave periods and delay times. Coherent near-field waves depend on flow volume, submerged time of motion, and bathymetry. The model matches the delay time between pyroclastic flow entry time and arrival of tsunami waves at the instrument site.
Coupled Eulerian-Lagrangian transport of large debris by tsunamis
NASA Astrophysics Data System (ADS)
Conde, Daniel A. S.; Ferreira, Rui M. L.; Sousa Oliveira, Carlos
2016-04-01
Tsunamis are notorious for the large disruption they can cause on coastal environments, not only due to the imparted momentum of the incoming wave but also due to its capacity to transport large quantities of solid debris, either from natural or human-made sources, over great distances. A 2DH numerical model under development at CERIS-IST (Ferreira et al., 2009; Conde, 2013) - STAV2D - capable of simulating solid transport in both Eulerian and Lagrangian paradigms will be used to assess the relevance of Lagrangian-Eulerian coupling when modelling the transport of solid debris by tsunamis. The model has been previously validated and applied to tsunami scenarios (Conde, 2013), being well-suited for overland tsunami propagation and capable of handling morphodynamic changes in estuaries and seashores. The discretization scheme is an explicit Finite Volume technique employing flux-vector splitting and a reviewed Roe-Riemann solver. Source term formulations are employed in a semi-implicit way, including the two-way coupling of the Lagrangian and Eulerian solvers by means of conservative mass and momentum transfers between fluid and solid phases. The model was applied to Sines Port, a major commercial port in Portugal, where two tsunamigenic scenarios are considered: an 8.5 Mw scenario, consistent with the Great Lisbon Earthquake and Tsunami of the 1st November 1755 (Baptista, 2009), and an hypothetical 9.5 Mw worst-case scenario based on the same historical event. Open-ocean propagation of these scenarios were simulated with GeoClaw model from ClawPack (Leveque, 2011). Following previous efforts on the modelling of debris transport by tsunamis in seaports (Conde, 2015), this work discusses the sensitivity of the obtained results with respect to the phenomenological detail of the employed Eulerian-Lagrangian formulation and the resolution of the mesh used in the Eulerian solver. The results have shown that the fluid to debris mass ratio is the key parameter regarding the conservativeness of the model. This way, in highly resolved meshes and high quantities of debris, the model approaches full conservativeness only if the two-way coupling feature is present, an effect that is attenuated in coarse meshes or with small debris quantities. Aknownledgements: This work was partially funded by FEDER, program COMPETE, and by national funds through the Portuguese Foundation for Science and Technology (FCT) with project RECI/ECM-HID/0371/2012. References: Baptista M.A. & Miranda, J.M. (2009) Revision of the Portuguese catalog of tsunamis. Nat. Hazards Earth Syst. Sci., 9, 25-42. Conde, D. A. S.; Baptista, M. A. V.; Sousa Oliveira, C. & Ferreira, R. M. L. (2013) A shallow-flow model for the propagation of tsunamis over complex geometries and mobile beds, Nat. Hazards Earth Syst. Sci., 13, 2533-2542. Conde, D. A. S.; Baptista, M. A. V.; Sousa Oliveira, C. & Ferreira, R. M. L. (2015) Mathematical modelling of tsunami impacts on critical infrastructures: exposure and severity associated with debris transport at Sines port. EGU General Assembly 2015, Vienna, Austria. Ferreira, R. M. L.; Franca, M. J.; Leal, J. G. & Cardoso, A. H. (2009) Mathematical modelling of shallow flows: Closure models drawn from grain-scale mechanics of sediment transport and flow hydrodynamics, Can. J. Civil. Eng., 36, 1604-1621. LeVeque, R. J., George, D. L., & Berger, M. J. (2011) Tsunami modelling with adaptively refined finite volume methods, Acta Numerica, pp. 211-289.
Improving tsunami resiliency: California's Tsunami Policy Working Group
Real, Charles R.; Johnson, Laurie; Jones, Lucile M.; Ross, Stephanie L.; Kontar, Y.A.; Santiago-Fandiño, V.; Takahashi, T.
2014-01-01
California has established a Tsunami Policy Working Group to facilitate development of policy recommendations for tsunami hazard mitigation. The Tsunami Policy Working Group brings together government and industry specialists from diverse fields including tsunami, seismic, and flood hazards, local and regional planning, structural engineering, natural hazard policy, and coastal engineering. The group is acting on findings from two parallel efforts: The USGS SAFRR Tsunami Scenario project, a comprehensive impact analysis of a large credible tsunami originating from an M 9.1 earthquake in the Aleutian Islands Subduction Zone striking California’s coastline, and the State’s Tsunami Preparedness and Hazard Mitigation Program. The unique dual-track approach provides a comprehensive assessment of vulnerability and risk within which the policy group can identify gaps and issues in current tsunami hazard mitigation and risk reduction, make recommendations that will help eliminate these impediments, and provide advice that will assist development and implementation of effective tsunami hazard risk communication products to improve community resiliency.
Introduction to "Tsunami Science: Ten Years After the 2004 Indian Ocean Tsunami. Volume I"
NASA Astrophysics Data System (ADS)
Rabinovich, Alexander B.; Geist, Eric L.; Fritz, Hermann M.; Borrero, Jose C.
2015-03-01
Twenty-two papers on the study of tsunamis are included in Volume I of the PAGEOPH topical issue "Tsunami Science: Ten Years after the 2004 Indian Ocean Tsunami." Eight papers examine various aspects of past events with an emphasis on case and regional studies. Five papers are on tsunami warning and forecast, including the improvement of existing tsunami warning systems and the development of new warning systems in the northeast Atlantic and Mediterranean region. Three more papers present the results of analytical studies and discuss benchmark problems. Four papers report the impacts of tsunamis, including the detailed calculation of inundation onshore and into rivers and probabilistic analysis for engineering purposes. The final two papers relate to important investigations of the source and tsunami generation. Overall, the volume not only addresses the pivotal 2004 Indian Ocean (Sumatra) and 2011 Japan (Tohoku) tsunamis, but also examines the tsunami hazard posed to other critical coasts in the world.
NASA Astrophysics Data System (ADS)
Sakamoto, Shingo X.; Sasa, Shuji; Sawayama, Shuhei; Tsujimoto, Ryo; Terauchi, Genki; Yagi, Hiroshi; Komatsu, Teruhisa
2012-10-01
Seaweed beds are very important for abalones and sea urchins as a habitat. In Sanriku Coast, these animals are target species of coastal fisheries. The huge tsunami hit Sanriku Coast facing Pacific Ocean on 11 March 2011. It is needed for fishermen to know present situation of seaweed beds and understand damages of the huge tsunami on natural environments to recover coastal fisheries. We selected Shizugawa Bay as a study site because abalone catch of Shizugawa Bay occupied the first position in Sanriku Coast. To evaluate impact of tsunami on seaweed beds, we compared high spatial resolution satellite image of Shizugawa Bay before the tsunami with that after the tsunami by remote sensing with ground surveys to know impact of the tsunami on seaweed beds. We used two multi-band imageries of commercial high-resolution satellite, Geoeye-1, which were taken on 4 November 2009 before the tsunami and on 22 February 2012 after the tsunami. Although divers observed the tsunami damaged a very small part of Eisenia bicyclis distributions on rock substrates at the bay head, it was not observed clearly by satellite image analysis. On the other hand, we found increase in seaweed beds after the tsunami from the image analysis. The tsunami broke concrete breakwaters, entrained a large amount of rocks and pebble from land to the sea, and disseminated them in the bay. Thus, hard substrates suitable for attachment of seaweeds were increased. Ground surveys revealed that seaweeds consisting of E. bicyclis, Sargassum and Laminaria species grew on these hard substrates on the sandy bottom.
NASA Astrophysics Data System (ADS)
Toucanne, S.; Howlett, S.; Garziglia, S.; Silva Jacinto, R.; Courgeon, S.; Sabine, M.; Riboulot, V.; Marsset, B.
2016-12-01
In the aftermath of the devastating tsunami on the Japanese coast in 2011, a French multi-partnership project called TANDEM has been launched to assess the impact of tsunamis generated or propagated in the vicinity of French Channel and Atlantic coastlines. Tsunami are usually generated by earthquakes, but can also be triggered by submarine landslides. This study focuses on submarine landslides along the French Atlantic continental slope using data that were mainly collected in August 2015 during the GITAN cruise (R/V Pourquoi Pas?). Following geomorphological, geophysical and sedimentological analysis of the Bay of Biscay, efforts were oriented towards the determination of the sediment properties controlling landslide dynamics from in situ and laboratory measurements. Preliminary results show over 700 landslide scars on the French Atlantic continental slope, with most of them occurring between 400 and 1000m water depth and in canyon environments. The Plio-Quaternary sediments draping the majority of the Bay of Biscay are generally normally consolidated and composed of high plasticity clays. They show similar geomechanical properties throughout the area studied, with linear evolutions with depth and good reproducibility for rheological parameters such as Storage and Loss modulus. These similarities allow to extend geotechnical and rheological models to a regional scale in the Bay of Biscay. Our multi-disciplinary approach will provide the tools to assess continental slope failures and submarine landslides generation. Finally, we will aim to qualify and quantify the volumes and flow properties of sediment transported obtained through slope-stability modeling on SAMU-3D and rheology modelling on Nixes-SPH. These results will provide the TANDEM actors with the information necessary to simulate tsunami wave generation.
Quantification of uncertainties of the tsunami risk in Cascadia
NASA Astrophysics Data System (ADS)
Guillas, S.; Sarri, A.; Day, S. J.; Liu, X.; Dias, F.
2013-12-01
We first show new realistic simulations of earthquake-generated tsunamis in Cascadia (Western Canada and USA) using VOLNA. VOLNA is a solver of nonlinear shallow water equations on unstructured meshes that is accelerated on the new GPU system Emerald. Primary outputs from these runs are tsunami inundation maps, accompanied by site-specific wave trains and flow velocity histories. The variations in inputs (here seabed deformations due to earthquakes) are time-varying shapes difficult to sample, and they require an integrated statistical and geophysical analysis. Furthermore, the uncertainties in the bathymetry require extensive investigation and optimization of the resolutions at the source and impact. Thus we need to run VOLNA for well chosen combinations of the inputs and the bathymetry to reflect the various sources of uncertainties, and we interpolate in between using a so-called statistical emulator that keeps track of the additional uncertainties due to the interpolation itself. We present novel adaptive sequential designs that enable such choices of the combinations for our Gaussian Process (GP) based emulator in order to maximize the information from the limited number of runs of VOLNA that can be computed. GPs show strength in the approximation of the response surface but suffer from large computer costs associated with the fitting. Hence, a careful selection of the inputs is necessary to optimize the trade-off fit versus computations. Finally, we also propose to assess the frequencies and intensities of the earthquakes along the Cascadia subduction zone that have been demonstrated by geological palaeoseismic, palaeogeodetic and tsunami deposit studies in Cascadia. As a result, the hazard assessment aims to reflect the multiple non-linearities and uncertainties for the tsunami risk in Cascadia.
Spatial Distribution and Sedimentary Facies of the 2007 Solomon Islands Tsunami Deposits
NASA Astrophysics Data System (ADS)
Nakamura, Y.; Nishimura, Y.; Woodward, S.
2007-12-01
We conducted a field survey of the extent of damage, crustal deformation, and onshore deposits caused by 2007 Solomon Islands tsunami in Ghizo and adjacent islands in the western Solomon Islands, from 13th to 18th April, 2007. Our survey team was comprised of six Japanese and one American researcher. Three of us, the authors, mainly investigated tsunami deposits in three villages (Titiana, Suva, and Pailongge) in southern Ghizo Island. One member of our team re-investigated the deposits in June 2007. The tsunami generated sheet-like deposits of coral beach sand on the flat plain in Titiana. Beside the sea coast, the tsunami wave eroded ground surfaces and formed small scarps at 30 m from the sea. Just interior of the scarps, tsunami deposits accumulated up to 9 cm in thickness. The thickness decreased with distance from the sea and was also affected by microtopography. No sandy tsunami deposits were observed on the inland area between 170 m and 210 m from the sea. The upper boundary of inundation was recognized at about 210 m from the sea because of accumulation of driftwood and floating debris. In Suva and Pailongge, the outline of sand-sheet distribution is the same as it in Titiana. The tsunami had a maximum thickness of 10 cm and two or three sand layers are separated by thin humic sand layers. These humic layers were likely supplied from hillslopes eroded by the tsunami and transported by return-flows. These successions of deposits suggest that tsunami waves inundated at least two times. This is consistent with the number of large waves told by eyewitnesses. In the Solomon Islands, the plentiful rainfall causes erosion and resedimentation of tsunami deposits. Furthermore, the sedimentary structures will be destroyed by chemical weathering in warm and moist environment, and bioturbation by plants, animals, and human activities. The sedimentary structures had been preserved till the end of June 2007, but had already been penetrated by plant roots and sandpipes of crabs. We believe that the knowledge of weathering process of tsunami deposits is important for interpretation of sedimentary structures of paleo-tsunami deposits.
Numerical tsunami hazard assessment of the submarine volcano Kick 'em Jenny in high resolution are
NASA Astrophysics Data System (ADS)
Dondin, Frédéric; Dorville, Jean-Francois Marc; Robertson, Richard E. A.
2016-04-01
Landslide-generated tsunami are infrequent phenomena that can be potentially highly hazardous for population located in the near-field domain of the source. The Lesser Antilles volcanic arc is a curved 800 km chain of volcanic islands. At least 53 flank collapse episodes have been recognized along the arc. Several of these collapses have been associated with underwater voluminous deposits (volume > 1 km3). Due to their momentum these events were likely capable of generating regional tsunami. However no clear field evidence of tsunami associated with these voluminous events have been reported but the occurrence of such an episode nowadays would certainly have catastrophic consequences. Kick 'em Jenny (KeJ) is the only active submarine volcano of the Lesser Antilles Arc (LAA), with a current edifice volume estimated to 1.5 km3. It is the southernmost edifice of the LAA with recognized associated volcanic landslide deposits. The volcano appears to have undergone three episodes of flank failure. Numerical simulations of one of these episodes associated with a collapse volume of ca. 4.4 km3 and considering a single pulse collapse revealed that this episode would have produced a regional tsunami with amplitude of 30 m. In the present study we applied a detailed hazard assessment on KeJ submarine volcano (KeJ) form its collapse to its waves impact on high resolution coastal area of selected island of the LAA in order to highlight needs to improve alert system and risk mitigation. We present the assessment process of tsunami hazard related to shoreline surface elevation (i.e. run-up) and flood dynamic (i.e. duration, height, speed...) at the coast of LAA island in the case of a potential flank collapse scenario at KeJ. After quantification of potential initial volumes of collapse material using relative slope instability analysis (RSIA, VolcanoFit 2.0 & SSAP 4.5) based on seven geomechanical models, the tsunami source have been simulate by St-Venant equations-based code (VolcFlow-Matlab). The wave have been propagated on the coastal area of two island with high resolution bathymetry (Litto3D). Keywords - Volcano edifice stability, Collapse volume estimate, Tsunami impact, Kick 'em Jenny, wave propagation, Lesser Antilles, High resolution bathymetry
NASA Astrophysics Data System (ADS)
Dondin, F. J. Y.; Dorville, J. F. M.; Robertson, R. E. A.
2015-12-01
The Lesser Antilles Volcanic Arc has potentially been hit by prehistorical regional tsunamis generated by voluminous volcanic landslides (volume > 1 km3) among the 53 events recognized so far. No field evidence of these tsunamis are found in the vincity of the sources. Such a scenario taking place nowadays would trigger hazardous tsunami waves bearing potentially catastrophic consequences for the closest islands and regional offshore oil platforms.Here we applied a complete hazard assessment method on the only active submarine volcano of the arc Kick 'em Jenny (KeJ). KeJ is the southernmost edifice with recognized associated volcanic landslide deposits. From the three identified landslide episodes one is associated with a collapse volume ca. 4.4 km3. Numerical simulations considering a single pulse collapse revealed that this episode would have produced a regional tsunami. An edifice current volume estimate is ca. 1.5 km3.Previous study exists in relationship to assessment of regional tsunami hazard related to shoreline surface elevation (run-up) in the case of a potential flank collapse scenario at KeJ. However this assessment was based on inferred volume of collapse material. We aim to firstly quantify potential initial volumes of collapse material using relative slope instability analysis (RSIA); secondly to assess first order run-ups and maximum inland inundation distance for Barbados and Trinidad and Tobago, i.e. two important economic centers of the Lesser Antilles. In this framework we present for seven geomechanical models tested in the RSIA step maps of critical failure surface associated with factor of stability (Fs) for twelve sectors of 30° each; then we introduce maps of expected potential run-ups (run-up × the probability of failure at a sector) at the shoreline.The RSIA evaluates critical potential failure surface associated with Fs <1 as compared to areas of deficit/surplus of mass/volume identified on the volcanic edifice using (VolcanoFit 2.0 & SSAP 4.5). Tsunami sources characteristics are retrieved from numerical simulation using an hydraulic equations-based code (VolcFlow-Matlab). The tsunami propagation towards the coasts is computed using the open source a Boussinesq equations-based code (FUNWAVE) taking into account high order non linear effects including dissipation.
Anatomy of Historical Tsunamis: Lessons Learned for Tsunami Warning
NASA Astrophysics Data System (ADS)
Igarashi, Y.; Kong, L.; Yamamoto, M.; McCreery, C. S.
2011-11-01
Tsunamis are high-impact disasters that can cause death and destruction locally within a few minutes of their occurrence and across oceans hours, even up to a day, afterward. Efforts to establish tsunami warning systems to protect life and property began in the Pacific after the 1946 Aleutian Islands tsunami caused casualties in Hawaii. Seismic and sea level data were used by a central control center to evaluate tsunamigenic potential and then issue alerts and warnings. The ensuing events of 1952, 1957, and 1960 tested the new system, which continued to expand and evolve from a United States system to an international system in 1965. The Tsunami Warning System in the Pacific (ITSU) steadily improved through the decades as more stations became available in real and near-real time through better communications technology and greater bandwidth. New analysis techniques, coupled with more data of higher quality, resulted in better detection, greater solution accuracy, and more reliable warnings, but limitations still exist in constraining the source and in accurately predicting propagation of the wave from source to shore. Tsunami event data collected over the last two decades through international tsunami science surveys have led to more realistic models for source generation and inundation, and within the warning centers, real-time tsunami wave forecasting will become a reality in the near future. The tsunami warning system is an international cooperative effort amongst countries supported by global and national monitoring networks and dedicated tsunami warning centers; the research community has contributed to the system by advancing and improving its analysis tools. Lessons learned from the earliest tsunamis provided the backbone for the present system, but despite 45 years of experience, the 2004 Indian Ocean tsunami reminded us that tsunamis strike and kill everywhere, not just in the Pacific. Today, a global intergovernmental tsunami warning system is coordinated under the United Nations. This paper reviews historical tsunamis, their warning activities, and their sea level records to highlight lessons learned with the focus on how these insights have helped to drive further development of tsunami warning systems and their tsunami warning centers. While the international systems do well for teletsunamis, faster detection, more accurate evaluations, and widespread timely alerts are still the goals, and challenges still remain to achieving early warning against the more frequent and destructive local tsunamis.
Tsunami vs Infragravity Surge: Statistics and Physical Character of Extreme Runup
NASA Astrophysics Data System (ADS)
Lynett, P. J.; Montoya, L. H.
2017-12-01
Motivated by recent observations of energetic and impulsive infragravity (IG) flooding events - also known as sneaker waves - we will present recent work on the relative probabilities and dynamics of extreme flooding events from tsunamis and long period wind wave events. The discussion will be founded on videos and records of coastal flooding by both recent tsunamis and IG, such as those in the Philippines during Typhoon Haiyan. From these observations, it is evident that IG surges may approach the coast as breaking bores with periods of minutes; a very tsunami-like character. Numerical simulations will be used to estimate flow elevations and speeds from potential IG surges, and these will be compared with similar values from tsunamis, over a range of different beach profiles. We will examine the relative rareness of each type of flooding event, which for large values of IG runup is a particularly challenging topic. For example, for a given runup elevation or flooding speed, the related tsunami return period may be longer than that associated with IG, implying that deposit information associated with such elevations or speeds are more likely to be caused by IG. Our purpose is to provide a statistical and physical discriminant between tsunami and IG, such that in areas exposed to both, a proper interpretation of overland transport, deposition, and damage is possible.
Fisher, Michael A.; Geist, Eric L.; Sliter, Ray; Wong, Florence L.; Reiss, Carol; Mann, Dennis M.
2007-01-01
On April 1, 2007, a destructive earthquake (Mw 8.1) and tsunami struck the central Solomon Islands arc in the southwestern Pacific Ocean. The earthquake had a thrust-fault focal mechanism and occurred at shallow depth (between 15 km and 25 km) beneath the island arc. The combined effects of the earthquake and tsunami caused dozens of fatalities and thousands remain without shelter. We present a preliminary analysis of the Mw-8.1 earthquake and resulting tsunami. Multichannel seismic-reflection data collected during 1984 show the geologic structure of the arc's frontal prism within the earthquake's rupture zone. Modeling tsunami-wave propagation indicates that some of the islands are so close to the earthquake epicenter that they were hard hit by tsunami waves as soon as 5 min. after shaking began, allowing people scant time to react.
Tsunami Evidence in South Coast Java, Case Study: Tsunami Deposit along South Coast of Cilacap
NASA Astrophysics Data System (ADS)
Rizal, Yan; Aswan; Zaim, Yahdi; Dwijo Santoso, Wahyu; Rochim, Nur; Daryono; Dewi Anugrah, Suci; Wijayanto; Gunawan, Indra; Yatimantoro, Tatok; Hidayanti; Herdiyani Rahayu, Resti; Priyobudi
2017-06-01
Cilacap Area is situated in coastal area of Southern Java and directly affected by tsunami hazard in 2006. This event was triggered by active subduction in Java Trench which active since long time ago. To detect tsunami and active tectonic in Southern Java, paleo-tsunami study is performed which is targeted paleo-tsunami deposit older than fifty years ago. During 2011 - 2016, 16 locations which suspected as paleo-tsunami location were visited and the test-pits were performed to obtain characteristic and stratigraphy of paleo-tsunami layers. Paleo-tsunami layer was identified by the presence of light-sand in the upper part of paleo-soil, liquefaction fine grain sandstone, and many rip-up clast of mudstone. The systematic samples were taken and analysis (micro-fauna, grainsize and dating analysis). Micro-fauna result shows that paleo-tsunami layer consist of benthonic foraminifera assemblages from different bathymetry and mixing in one layer. Moreover, grainsize shows random grain distribution which characterized as turbulence and strong wave deposit. Paleo-tsunami layers in Cilacap area are correlated using paleo-soil as marker. There are three paleo-tsunami layers and the distribution can be identified as PS-A, PS-B and PS-C. The samples which were taken in Glempang Pasir layer are being dated using Pb - Zn (Lead-Zinc) method. The result of Pb - Zn (Lead-Zinc) dating shows that PS-A was deposited in 139 years ago, PS-B in 21 years ago, and PS C in 10 years ago. This result indicates that PS -1 occurred in 1883 earthquake activity while PS B formed in 1982 earthquake and PS-C was formed by 2006 earthquake. For ongoing research, the older paleo-tsunami layers were determined in the Gua Nagaraja, close to Selok location and 6 layers of Paleo-tsunami suspect found which shown a similar characteristic with the layers from another location. The three layers deeper approximately have an older age than another location in Cilacap.
NASA Astrophysics Data System (ADS)
Muhammad, Ario; Goda, Katsuichiro
2018-03-01
This study investigates the impact of model complexity in source characterization and digital elevation model (DEM) resolution on the accuracy of tsunami hazard assessment and fatality estimation through a case study in Padang, Indonesia. Two types of earthquake source models, i.e. complex and uniform slip models, are adopted by considering three resolutions of DEMs, i.e. 150 m, 50 m, and 10 m. For each of the three grid resolutions, 300 complex source models are generated using new statistical prediction models of earthquake source parameters developed from extensive finite-fault models of past subduction earthquakes, whilst 100 uniform slip models are constructed with variable fault geometry without slip heterogeneity. The results highlight that significant changes to tsunami hazard and fatality estimates are observed with regard to earthquake source complexity and grid resolution. Coarse resolution (i.e. 150 m) leads to inaccurate tsunami hazard prediction and fatality estimation, whilst 50-m and 10-m resolutions produce similar results. However, velocity and momentum flux are sensitive to the grid resolution and hence, at least 10-m grid resolution needs to be implemented when considering flow-based parameters for tsunami hazard and risk assessments. In addition, the results indicate that the tsunami hazard parameters and fatality number are more sensitive to the complexity of earthquake source characterization than the grid resolution. Thus, the uniform models are not recommended for probabilistic tsunami hazard and risk assessments. Finally, the findings confirm that uncertainties of tsunami hazard level and fatality in terms of depth, velocity and momentum flux can be captured and visualized through the complex source modeling approach. From tsunami risk management perspectives, this indeed creates big data, which are useful for making effective and robust decisions.
Tsunami and shelf resonance on the northern Chile coast
NASA Astrophysics Data System (ADS)
Cortés, Pablo; Catalán, Patricio A.; Aránguiz, Rafael; Bellotti, Giorgio
2017-09-01
This work presents the analysis of long waves resonance in two of the main cities along the northern coast of Chile, Arica, and Iquique, where a large tsunamigenic potential remains despite recent earthquakes. By combining a modal analysis solving the equation of free surface oscillations, with the analysis of background spectra derived from in situ measurements, the spatial and temporal structures of the modes are recovered. Comparison with spectra from three tsunamis of different characteristics shows that the modes found have been excited by past events. Moreover, the two locations show different response patterns. Arica is more sensitive to the characteristics of the tsunami source, whereas Iquique shows a smaller dependency and similar response for different tsunami events. Results are further compared with other methodologies with good agreement. These findings are relevant in characterizing the tsunami hazard in the area, and the methodology can be further extended to other regions along the Chilean coast.
NASA Astrophysics Data System (ADS)
Mas, E.; Takagi, H.; Adriano, B.; Hayashi, S.; Koshimura, S.
2014-12-01
The 2011 Great East Japan earthquake and tsunami reminded that nature can exceed structural countermeasures like seawalls, breakwaters or tsunami gates. In such situations it is a challenging task for people to find nearby haven. This event, as many others before, confirmed the importance of early evacuation, tsunami awareness and the need for developing much more resilient communities with effective evacuation plans. To support reconstruction activities and efforts on developing resilient communities in areas at risk, tsunami evacuation simulation can be applied to tsunami mitigation and evacuation planning. In this study, using the compiled information related to the evacuation behavior at Yuriage in Natori during the 2011 tsunami, we simulated the evacuation process and explored the reasons for the large number of fatalities in the area. It was found that residents did evacuate to nearby shelter areas, however after the tsunami warning was increased some evacuees decided to conduct a second step evacuation to a far inland shelter. Simulation results show the consequences of such decision and the outcomes when a second evacuation would not have been performed. The actual reported number of fatalities in the event and the results from simulation are compared to verify the model. The case study shows the contribution of tsunami evacuation models as tools to be applied for the analysis of evacuees' decisions and the related outcomes. In addition, future evacuation plans and activities for reconstruction process and urban planning can be supported by the results provided from this kind of tsunami evacuation models.
Field survey of the 1946 Dominican Republic tsunami based on eyewitness interviews
NASA Astrophysics Data System (ADS)
Fritz, H. M.; Martinez, C.; Salado, J.; Rivera, W.
2016-12-01
On 4 August 1946 an Mw 8.1 earthquake struck off the northeastern shore of Hispaniola resulting in a destructive tsunami with order one hundred fatalities in the Dominican Republic and observed runup in Puerto Rico. In the far field the tsunami was recorded on some tide gauges on the Atlantic coast of the United States. The earthquake devastated the Dominican Republic, extended into Haiti, and shook many other islands. This was one of the strongest earthquakes ever reported in the Caribbean. The immediate earthquake reconnaissance surveys focused on earthquake damage and were conducted in September 1946 (Lynch and Bodle, 1948; Small, 1948). The 1946 Dominican Republic tsunami eyewitness based field survey took place in three phases from 18 to 21 March 2014, 1 to 3 September 2014 and 9 to 11 May 2016. The International Tsunami Survey Team (ITST) covered more than 400 km of coastline along the northern Dominican Republic from La Isabela to Punta Cana. The survey team documented tsunami runup, flow depth, inundation distances, coastal erosion and co-seismic land level changes based on eyewitnesses interviewed on site using established protocols. The early afternoon earthquake resulted in detailed survival stories with excellent eyewitness observations recounted almost 70 years later with lucidity. The Dominican Republic survey data includes 29 runup and tsunami height measurements at 21 locations. The tsunami impacts peaked with maximum tsunami heights exceeding 5 m at a cluster of locations between Cabrera and El Limon. A maximum tsunami height of 8 m likely associated with splash up was measured in Playa Boca Nueva. Tsunami inundation distances of 600 m or more were measured at Las Terrenas and Playa Rincon on the Samana Peninsula. Some locations were surveyed twice in 2014 and 2016, which allowed to identify current coastal erosion rates. Field data points measured in 2014 and 2016 were corrected for predicted astronomical tide levels at the time of tsunami arrival in 1946 as there were no tide stations along the surveyed coastline in 1946. At least 10 significant tsunamis have been documented in the northern Caribbean since 1498, six of which are known to have resulted in loss of life (O'Loughlin and Lander, 2003). Rapid population increase in the Caribbean exposes more coastal residents and tourists to future tsunami events.
Develop Probabilistic Tsunami Design Maps for ASCE 7
NASA Astrophysics Data System (ADS)
Wei, Y.; Thio, H. K.; Chock, G.; Titov, V. V.
2014-12-01
A national standard for engineering design for tsunami effects has not existed before and this significant risk is mostly ignored in engineering design. The American Society of Civil Engineers (ASCE) 7 Tsunami Loads and Effects Subcommittee is completing a chapter for the 2016 edition of ASCE/SEI 7 Standard. Chapter 6, Tsunami Loads and Effects, would become the first national tsunami design provisions. These provisions will apply to essential facilities and critical infrastructure. This standard for tsunami loads and effects will apply to designs as part of the tsunami preparedness. The provisions will have significance as the post-tsunami recovery tool, to plan and evaluate for reconstruction. Maps of 2,500-year probabilistic tsunami inundation for Alaska, Washington, Oregon, California, and Hawaii need to be developed for use with the ASCE design provisions. These new tsunami design zone maps will define the coastal zones where structures of greater importance would be designed for tsunami resistance and community resilience. The NOAA Center for Tsunami Research (NCTR) has developed 75 tsunami inundation models as part of the operational tsunami model forecast capability for the U.S. coastline. NCTR, UW, and URS are collaborating with ASCE to develop the 2,500-year tsunami design maps for the Pacific states using these tsunami models. This ensures the probabilistic criteria are established in ASCE's tsunami design maps. URS established a Probabilistic Tsunami Hazard Assessment approach consisting of a large amount of tsunami scenarios that include both epistemic uncertainty and aleatory variability (Thio et al., 2010). Their study provides 2,500-year offshore tsunami heights at the 100-m water depth, along with the disaggregated earthquake sources. NOAA's tsunami models are used to identify a group of sources that produce these 2,500-year tsunami heights. The tsunami inundation limits and runup heights derived from these sources establish the tsunami design map for the study site. ASCE's Energy Grad Line Analysis then uses these modeling constraints to derive hydrodynamic forces for structures within the tsunami design zone. The probabilistic tsunami design maps will be validated by comparison to state inundation maps under the coordination of the National Tsunami Hazard Mitigation Program.
NASA Astrophysics Data System (ADS)
Velioǧlu, Deniz; Cevdet Yalçıner, Ahmet; Zaytsev, Andrey
2016-04-01
Tsunamis are huge waves with long wave periods and wave lengths that can cause great devastation and loss of life when they strike a coast. The interest in experimental and numerical modeling of tsunami propagation and inundation increased considerably after the 2011 Great East Japan earthquake. In this study, two numerical codes, FLOW 3D and NAMI DANCE, that analyze tsunami propagation and inundation patterns are considered. Flow 3D simulates linear and nonlinear propagating surface waves as well as long waves by solving three-dimensional Navier-Stokes (3D-NS) equations. NAMI DANCE uses finite difference computational method to solve 2D depth-averaged linear and nonlinear forms of shallow water equations (NSWE) in long wave problems, specifically tsunamis. In order to validate these two codes and analyze the differences between 3D-NS and 2D depth-averaged NSWE equations, two benchmark problems are applied. One benchmark problem investigates the runup of long waves over a complex 3D beach. The experimental setup is a 1:400 scale model of Monai Valley located on the west coast of Okushiri Island, Japan. Other benchmark problem is discussed in 2015 National Tsunami Hazard Mitigation Program (NTHMP) Annual meeting in Portland, USA. It is a field dataset, recording the Japan 2011 tsunami in Hilo Harbor, Hawaii. The computed water surface elevation and velocity data are compared with the measured data. The comparisons showed that both codes are in fairly good agreement with each other and benchmark data. The differences between 3D-NS and 2D depth-averaged NSWE equations are highlighted. All results are presented with discussions and comparisons. Acknowledgements: Partial support by Japan-Turkey Joint Research Project by JICA on earthquakes and tsunamis in Marmara Region (JICA SATREPS - MarDiM Project), 603839 ASTARTE Project of EU, UDAP-C-12-14 project of AFAD Turkey, 108Y227, 113M556 and 213M534 projects of TUBITAK Turkey, RAPSODI (CONCERT_Dis-021) of CONCERT-Japan Joint Call and Istanbul Metropolitan Municipality are all acknowledged.
A Sensitivity Analysis of Tsunami Inversions on the Number of Stations
NASA Astrophysics Data System (ADS)
An, Chao; Liu, Philip L.-F.; Meng, Lingsen
2018-05-01
Current finite-fault inversions of tsunami recordings generally adopt as many tsunami stations as possible to better constrain earthquake source parameters. In this study, inversions are evaluated by the waveform residual that measures the difference between model predictions and recordings, and the dependence of the quality of inversions on the number tsunami stations is derived. Results for the 2011 Tohoku event show that, if the tsunami stations are optimally located, the waveform residual decreases significantly with the number of stations when the number is 1 ˜ 4 and remains almost constant when the number is larger than 4, indicating that 2 ˜ 4 stations are able to recover the main characteristics of the earthquake source. The optimal location of tsunami stations is explained in the text. Similar analysis is applied to the Manila Trench in the South China Sea using artificially generated earthquakes and virtual tsunami stations. Results confirm that 2 ˜ 4 stations are necessary and sufficient to constrain the earthquake source parameters, and the optimal sites of stations are recommended in the text. The conclusion is useful for the design of new tsunami warning systems. Current strategies of tsunameter network design mainly focus on the early detection of tsunami waves from potential sources to coastal regions. We therefore recommend that, in addition to the current strategies, the waveform residual could also be taken into consideration so as to minimize the error of tsunami wave prediction for warning purposes.
NASA Astrophysics Data System (ADS)
Lamarche, G.; Pelletier, B.; Goff, J. R.
2009-12-01
The north Tonga earthquake occurred at 5:48am on 30 September local time in Futuna, ~650 km west of the epicentre. The PTWC issued a warning at 6:04am for tsunami arrival in Wallis (Wallis & Futuna) at 6.35am. No warning was issued by the territorial authorities for Wallis nor for Futuna, located 230 km to the south-west. There was no reported tsunami on Wallis. However a tsunami hit the archipelago of Futuna (islands of Futuna and Alofi) between 7.00 and 7.20am on 30 September. The tide was approximately 3/4 out. We took advantage of an 8 days survey funded by the French Ministry of Foreign Affairs, previously planned for investigating palaeotsunamis on Futuna and Alofi. We measured run-up and inundation from the mid- to low-tide mark, as well as flow depths, and sediments associated with the 30 September tsunami at 41 sites around the islands. Run-ups were estimated based on visual evidence of recent coastal impact - burnt grasses and plants, sand and other displaced debris (e.g., on the road). We interviewed the population on multiple occasions. The maximum run-up of 4.5 m was observed on the eastern beach of Alofitai in Alofi, associated with an inundation of 85 m and a flow depth of 3m at the coast. On Futuna, we measured maximum run-ups of 4.4 m on the eastern tip and 4.3 m on the NW tip of the island, with maximum inundations of 95 and 72m, respectively. A flow depth of 2 m was inferred on the NE tip. Overall, the tsunami impact was more severe on the northern coast of Futuna, with run-ups ranging from 2.1 to 4.3 m. Very small run-ups and inundations were observed along the southern coast, with a 1.0 m run-up and 10 m inundation measured in Léava, the capital of Futuna. Most witnesses report two main waves equivalent in amplitude, the second one being sometimes described as the largest. All witnesses indicate that the sea withdrew first. A video suggests only a few minutes between the successive waves (likely not the first) in Léava. The video shows the reef exposed well below the lowest tides. There were no casualties. One inhabitant was warned by LCI television at 06:30am and was able to witness the tsunami. There were unconfirmed reports of two women taken by surprise by the arrival of the tsunami on the reef near the eastern end of Futuna, but who managed to hold on to trees to avoid being taken out to sea by the backwash. A significant disaster was avoided essentially because it was early and the tide was low when the tsunami hit. Such an event at high tide would have added about 0.8-1m in height to the wave and have undoubtedly resulted in severe damage, injuries and possibly deaths. This event, together with a small tsunami triggered by a Mw 6.4 local earthquake in March 1993 and an oral legend about a deadly and destructive wave indicate that the tsunami risk for Futuna is high for the >4000 inhabitants who live almost exclusively on a 50-400 m-wide coastal strip, between a narrow reef and landward coastal cliffs. However, the hour and 10 minutes that the 30 September tsunami took to reach the island provided sufficient time to issue a warning to the population who can rapidly reach safety on this mountainous landscape.
NASA Astrophysics Data System (ADS)
Latcharote, P.
2016-12-01
Kuwait is one of the most important oil producers to the world and most of population and many vital facilities are located along the coasts. However, even with low or unknown tsunami risk, it is important to investigate tsunami hazards in this country to ensure safety of life and sustain the global economy. This study aimed to evaluate tsunami hazards along the coastal areas of Kuwait from both earthquake and landslide sources using numerical modeling. Tsunami generation and propagation was simulated using the two-layer model and the TUNAMI model. Four cases of earthquake scenarios are expected to generate tsunami along the Makran Subduction Zone (MSZ) based on historical events and worst cases possible to simulate tsunami propagation to the coastal areas of the Arabian Gulf. Case 1 (Mw 8.3) and Case 2 (Mw 8.3) are the replication of the 1945 Makran earthquake, whereas Case 3 (Mw 8.6) and Case 4 (Mw 9.0) are the worst-case scenarios. Tsunami numerical simulation was modelled with mesh size 30 arc-second using bathymetry and topography data from GEBCO. Preliminary results suggested that tsunamis generated by Case 1 and Case 2 will impose very small effects to Kuwait (< 0.1 m) while Case 3 and Case 4 can generate maximum tsunami amplitude up to 0.3 m to 1.0 m after 12 hours from the earthquake. In addition, this study considered tsunamis generated by landslide along the opposite Iranian coast of Kuwait bay. To preliminarily assess tsunami hazards, coastal landslides were assumed occurred at the volume of 1.0-2.0 km3 at three possible locations from their topographic features. The preliminary results revealed that tsunami generated by coastal landslides could impose a significant tsunami impact to Kuwait having maximum tsunami amplitude at the Falika Island in front of Kuwait bay and Azzour power and desalination plant about 0.5 m- 1.1 m depending on landslide volume and energy dissipation. Future works will include more accuracy of tsunami numerical simulation with higher resolution of bathymetry and topography data in order to investigate tsunami inundation. Furthermore, detailed analysis on possible landslide sources will be performed by means of 3D-slope stability analysis in order to know the exact locations and landslide volumes taking into account the geological conditions, such as surface elevation and soil property data.
Observations and Modeling of Environmental and Human Damages by the 2004 Indian Ocean tsunami
NASA Astrophysics Data System (ADS)
Goto, K.; Imamura, F.; Koshimura, S.; Yanagisawa, H.
2008-05-01
On 26 December 2004, one of the largest tsunamis in human history (the 2004 Indian Ocean tsunami) struck coastal areas of countries surrounding the Indian Ocean, causing severe property damage and loss of life and causing us to think anew about the fearful consequences of a tsunami disaster. The tsunami devastated more than 10 countries around the ocean including Indonesia, Sri Lanka, India, and Thailand. Since its energy remains almost constant, the tsunami wave height grows tremendously in shallow water. It ranged in runups of ~48m on the western shore of Sumatra, ~18m in Thailand, and ~15m in Sri Lanka. The tsunami killed nearly 230,000 people, including visitors from foreign countries, resulting in great economic losses. The tsunami was also affected coastal environment at these countries and induced severe topographic change, and damages to the marine ecosystems as well as vegetations on land. Immediately following the tsunami, number of research teams has investigated damages of environment and human communities by tsunamis. Numerical analyses of tsunami propagation have also been carried out to understand the behavior and wave properties of tsunamis. However, there are few studies that focused on the integration of the field observations and numerical results, nevertheless that such analysis is critically important to evaluate the environmental and human damages by the tsunami. In this contribution, we first review damages to the environment and humans due to the 2004 Indian Ocean tsunami at Thailand, Indonesia, and Sri Lanka based on our field observations, and then we evaluate these damages based on high resolution numerical results. For example, we conducted field observation as well as high-resolution (17 m grid cells) numerical calculation for damages of corals (reef rocks) and mangroves at Pakarang Cape, Thailand. We found that hundreds of reef rocks were emplaced on the tidal bench, and 70 % of mangroves were destroyed at the cape. Our numerical results further clarified that these damages are well explained by the calculated hydraulic force of tsunamis. This kind of analysis that integrated the observation and numerical results is important to evaluate environmental and human damages quantitatively, and to make a future disaster prevention plan.
Tsunami risk mapping simulation for Malaysia
Teh, S.Y.; Koh, H. L.; Moh, Y.T.; De Angelis, D. L.; Jiang, J.
2011-01-01
The 26 December 2004 Andaman mega tsunami killed about a quarter of a million people worldwide. Since then several significant tsunamis have recurred in this region, including the most recent 25 October 2010 Mentawai tsunami. These tsunamis grimly remind us of the devastating destruction that a tsunami might inflict on the affected coastal communities. There is evidence that tsunamis of similar or higher magnitudes might occur again in the near future in this region. Of particular concern to Malaysia are tsunamigenic earthquakes occurring along the northern part of the Sunda Trench. Further, the Manila Trench in the South China Sea has been identified as another source of potential tsunamigenic earthquakes that might trigger large tsunamis. To protect coastal communities that might be affected by future tsunamis, an effective early warning system must be properly installed and maintained to provide adequate time for residents to be evacuated from risk zones. Affected communities must be prepared and educated in advance regarding tsunami risk zones, evacuation routes as well as an effective evacuation procedure that must be taken during a tsunami occurrence. For these purposes, tsunami risk zones must be identified and classified according to the levels of risk simulated. This paper presents an analysis of tsunami simulations for the South China Sea and the Andaman Sea for the purpose of developing a tsunami risk zone classification map for Malaysia based upon simulated maximum wave heights. ?? 2011 WIT Press.
NASA Astrophysics Data System (ADS)
López-Venegas, Alberto M.; Horrillo, Juan; Pampell-Manis, Alyssa; Huérfano, Victor; Mercado, Aurelio
2015-06-01
The most recent tsunami observed along the coast of the island of Puerto Rico occurred on October 11, 1918, after a magnitude 7.2 earthquake in the Mona Passage. The earthquake was responsible for initiating a tsunami that mostly affected the northwestern coast of the island. Runup values from a post-tsunami survey indicated the waves reached up to 6 m. A controversy regarding the source of the tsunami has resulted in several numerical simulations involving either fault rupture or a submarine landslide as the most probable cause of the tsunami. Here we follow up on previous simulations of the tsunami from a submarine landslide source off the western coast of Puerto Rico as initiated by the earthquake. Improvements on our previous study include: (1) higher-resolution bathymetry; (2) a 3D-2D coupled numerical model specifically developed for the tsunami; (3) use of the non-hydrostatic numerical model NEOWAVE (non-hydrostatic evolution of ocean WAVE) featuring two-way nesting capabilities; and (4) comprehensive energy analysis to determine the time of full tsunami wave development. The three-dimensional Navier-Stokes model tsunami solution using the Navier-Stokes algorithm with multiple interfaces for two fluids (water and landslide) was used to determine the initial wave characteristic generated by the submarine landslide. Use of NEOWAVE enabled us to solve for coastal inundation, wave propagation, and detailed runup. Our results were in agreement with previous work in which a submarine landslide is favored as the most probable source of the tsunami, and improvement in the resolution of the bathymetry yielded inundation of the coastal areas that compare well with values from a post-tsunami survey. Our unique energy analysis indicates that most of the wave energy is isolated in the wave generation region, particularly at depths near the landslide, and once the initial wave propagates from the generation region its energy begins to stabilize.
A Tsunami Model for Chile for (Re) Insurance Purposes
NASA Astrophysics Data System (ADS)
Arango, Cristina; Rara, Vaclav; Puncochar, Petr; Trendafiloski, Goran; Ewing, Chris; Podlaha, Adam; Vatvani, Deepak; van Ormondt, Maarten; Chandler, Adrian
2014-05-01
Catastrophe models help (re)insurers to understand the financial implications of catastrophic events such as earthquakes and tsunamis. In earthquake-prone regions such as Chile,(re)insurers need more sophisticated tools to quantify the risks facing their businesses, including models with the ability to estimate secondary losses. The 2010 (M8.8) Maule (Chile) earthquake highlighted the need for quantifying losses from secondary perils such as tsunamis, which can contribute to the overall event losses but are not often modelled. This paper presents some key modelling aspects of a new earthquake catastrophe model for Chile developed by Impact Forecasting in collaboration with Aon Benfield Research partners, focusing on the tsunami component. The model has the capability to model tsunami as a secondary peril - losses due to earthquake (ground-shaking) and induced tsunamis along the Chilean coast are quantified in a probabilistic manner, and also for historical scenarios. The model is implemented in the IF catastrophe modelling platform, ELEMENTS. The probabilistic modelling of earthquake-induced tsunamis uses a stochastic event set that is consistent with the seismic (ground shaking) hazard developed for Chile, representing simulations of earthquake occurrence patterns for the region. Criteria for selecting tsunamigenic events (from the stochastic event set) are proposed which take into consideration earthquake location, depth and the resulting seabed vertical displacement and tsunami inundation depths at the coast. The source modelling software RuptGen by Babeyko (2007) was used to calculate static seabed vertical displacement resulting from earthquake slip. More than 3,600 events were selected for tsunami simulations. Deep and shallow water wave propagation is modelled using the Delft3D modelling suite, which is a state-of-the-art software developed by Deltares. The Delft3D-FLOW module is used in 2-dimensional hydrodynamic simulation settings with non-steady flow. Earthquake-induced static seabed vertical displacement is used as an input boundary condition to the model. The model is hierarchically set up with three nested domain levels; with 250 domains in total covering the entire Chilean coast. Spatial grid-cell resolution is equal to the native SRTM resolution of approximately 90m. In addition to the stochastic events, the 1960 (M9.5) Valdivia and 2010 (M8.8) Maule earthquakes are modelled. The modelled tsunami inundation map for the 2010 Maule event is validated through comparison with real observations. The vulnerability component consists of an extensive damage curves database, including curves for buildings, contents and business interruption for 21 occupancies, 24 structural types and two secondary modifies such as building height and period of construction. The building damage curves are developed by use of load-based method in which the building's capacity to resist tsunami loads is treated as equivalent to the design earthquake load capacity. The contents damage and business interruption curves are developed by use of deductive approach i.e. HAZUS flood vulnerability and business function restoration models are adapted for detailed occupancies and then assigned to the dominant structural types in Chile. The vulnerability component is validated through model overall back testing by use of observed aggregated earthquake and tsunami losses for client portfolios for 2010 Maule earthquake.
NASA Astrophysics Data System (ADS)
Najihah, R.; Effendi, D. M.; Hairunnisa, M. A.; Masiri, K.
2014-02-01
The catastrophic Indian Ocean tsunami of 26 December 2004 raised a number of questions for scientist and politicians on how to deal with the tsunami risk and assessment in coastal regions. This paper discusses the challenges in tsunami vulnerability assessment and presents the result of tsunami disaster mapping and vulnerability assessment study for West Coast of Peninsular Malaysia. The spatial analysis was carried out using Geographical Information System (GIS) technology to demarcate spatially the tsunami affected village's boundary and suitable disaster management program can be quickly and easily developed. In combination with other thematic maps such as road maps, rail maps, school maps, and topographic map sheets it was possible to plan the accessibility and shelter to the affected people. The tsunami vulnerability map was used to identify the vulnerability of villages/village population to tsunami. In the tsunami vulnerability map, the intensity of the tsunami was classified as hazard zones based on the inundation level in meter (contour). The approach produced a tsunami vulnerability assessment map consists of considering scenarios of plausible extreme, tsunami-generating events, computing the tsunami inundation levels caused by different events and scenarios and estimating the possible range of casualties for computing inundation levels. The study provides an interactive means to identify the tsunami affected areas after the disaster and mapping the tsunami vulnerable village before for planning purpose were the essential exercises for managing future disasters.
A culture of tsunami preparedness and applying knowledge from recent tsunamis affecting California
NASA Astrophysics Data System (ADS)
Miller, K. M.; Wilson, R. I.
2012-12-01
It is the mission of the California Tsunami Program to ensure public safety by protecting lives and property before, during, and after a potentially destructive or damaging tsunami. In order to achieve this goal, the state has sought first to use finite funding resources to identify and quantify the tsunami hazard using the best available scientific expertise, modeling, data, mapping, and methods at its disposal. Secondly, it has been vital to accurately inform the emergency response community of the nature of the threat by defining inundation zones prior to a tsunami event and leveraging technical expertise during ongoing tsunami alert notifications (specifically incoming wave heights, arrival times, and the dangers of strong currents). State scientists and emergency managers have been able to learn and apply both scientific and emergency response lessons from recent, distant-source tsunamis affecting coastal California (from Samoa in 2009, Chile in 2010, and Japan in 2011). Emergency managers must understand and plan in advance for specific actions and protocols for each alert notification level provided by the NOAA/NWS West Coast/Alaska Tsunami Warning Center. Finally the state program has provided education and outreach information via a multitude of delivery methods, activities, and end products while keeping the message simple, consistent, and focused. The goal is a culture of preparedness and understanding of what to do in the face of a tsunami by residents, visitors, and responsible government officials. We provide an update of results and findings made by the state program with support of the National Tsunami Hazard Mitigation Program through important collaboration with other U.S. States, Territories and agencies. In 2009 the California Emergency Management Agency (CalEMA) and the California Geological Survey (CGS) completed tsunami inundation modeling and mapping for all low-lying, populated coastal areas of California to assist local jurisdictions on the coast in the identification of areas possible to be inundated in a tsunami. "Tsunami Inundation Maps for Emergency Planning" have provided the basis for some of the following preparedness, planning, and education activities in California: Improved evacuation and emergency response plans; Production of multi-language brochures: statewide, community, and boating; Development and support of tsunami scenario-driven exercises and drills; Development of workshops to educate both emergency managers and public; and Establishment of a comprehensive information website www.tsunami.ca.gov; and a preparedness website myhazards.calema.ca.gov. In addition, the California Tsunami Program has a number of initiatives underway through existing work plans to continue to apply scientifically vetted information toward comprehensive public understanding of the threat from future tsunamis to constituents on the coast. These include projects to: Complete tsunami land-use planning maps for California communities, Develop in-harbor tsunami hazard maps statewide, Complete modeling of offshore safety zones for the maritime community, Complete preliminary tsunami risk analysis for state utilizing new HAZUS tsunami module and probabilistic analysis results, and Develop a post-tsunami recovery and resiliency plan for the state.
Towards a probabilistic tsunami hazard analysis for the Gulf of Cadiz
NASA Astrophysics Data System (ADS)
Løvholt, Finn; Urgeles, Roger
2017-04-01
Landslides and volcanic flank collapses constitute a significant portion of all known tsunami sources, and they are less constrained geographically than earthquakes as they are not tied to large fault zones. While landslides have mostly produced local tsunamis historically, prehistoric evidence show that landslides can also produce ocean wide tsunamis. Because the landslide induced tsunami probability is more difficult to quantify than the one induced by earthquakes, our understanding of the landslide tsunami hazard is less understood. To improve our understanding and methodologies to deal with this hazard, we here present results and methods for a preliminary landslide probabilistic tsunami hazard assessment (LPTHA) for the Gulf of Cadiz for submerged landslides. The present literature on LPTHA is sparse, and studies have so far been separated into two groups, the first based on observed magnitude frequency distributions (MFD's), the second based on simplified geotechnical slope stability analysis. We argue that the MFD based approach is best suited when a sufficient amount of data covering a wide range of volumes is available, although uncertainties in the dating of the landslides often represent a potential large source of bias. To this end, the relatively rich availability of landslide data in the Gulf of Cadiz makes this area suitable for developing and testing LPTHA models. In the presentation, we will first explore the landslide data and statistics, including different spatial factors such as slope versus volume relationships, faults etc. Examples of how random realizations can be used to distribute tsunami source over the study area will be demonstrated. Furthermore, computational strategies for simulating both the landslide and the tsunami generation in a simplified way will be described. To this end, we use depth averaged viscoplastic landslide model coupled to the numerical tsunami model to represent a set of idealized tsunami sources, which are in turn put into a regional tsunami model for computing the tsunami propagation. We devote attention to discussing the epistemic uncertainty and sensitivity of the landslide input parameters, and how these may affect the hazard assessment. As the full variability of the landslide parameters cannot be endured, we show that there is a considerable challenge related to the multiple landslide parameter variability. Finally, we discuss some logical next steps in the analysis, as well as possible sources of error.
Wein, Anne; Rose, Adam; Sue Wing, Ian; Wei, Dan
2013-01-01
This study evaluates the hypothetical economic impacts of the SAFRR (Science Application for Risk Reduction) tsunami scenario to the California economy. The SAFRR scenario simulates a tsunami generated by a hypothetical magnitude 9.1 earthquake that occurs offshore of the Alaska Peninsula (Kirby and others, 2013). Economic impacts are measured by the estimated reduction in California’s gross domestic product (GDP), the standard economic measure of the total value of goods and services produced. Economic impacts are derived from the physical damages from the tsunami as described by Porter and others (2013). The principal physical damages that result in disruption of the California economy are (1) about $100 million in damages to the twin Ports of Los Angeles (POLA) and Long Beach (POLB), (2) about $700 million in damages to marinas, and (3) about $2.5 billion in damages to buildings and contents (properties) in the tsunami inundation zone on the California coast. The study of economic impacts does not include the impacts from damages to roads, bridges, railroads, and agricultural production or fires in fuel storage facilities because these damages will be minimal with respect to the California economy. The economic impacts of damage to other California ports are not included in this study because detailed evaluation of the physical damage to these ports was not available in time for this report. The analysis of economic impacts is accomplished in several steps. First, estimates are made for the direct economic impacts that result in immediate business interruption losses in individual sectors of the economy due to physical damage to facilities or to disruption of the flow of production units (commodities necessary for production). Second, the total economic impacts (consisting of both direct and indirect effects) are measured by including the general equilibrium (essentially quantity and price multiplier effects) of lost production in other sectors by ripple effects upstream and downstream along the supply chain. An appropriate measure of the economic impacts on the California economy for the SAFRR tsunami scenario is the reduction in GDP. The economic impacts are first calculated without resilience, the ability of the economy to adjust to disruptions in ways that mute potential negative impacts. There are many types of resilience, including using existing inventories of materials, using unused capacity, conserving inputs, substituting for disrupted supplies, recapturing production after the disruption is restored, and many others. A method for estimating resilience, identified in the port system and sectors affected by property damages, is applied to indicate potential reductions of direct and total economic impacts. In this SAFRR tsunami scenario analysis of economic impacts to California, we implement established techniques used to model the economic impacts for two previous U.S. Geological Survey (USGS) scenarios: the southern California Shakeout earthquake (Rose and others, 2011) and the California ARkStorm severe winter storm (Sue Wing and others, written commun., 2013). For the SAFRR tsunami scenario, we reviewed the relevant studies that assess economic impacts from previous tsunami events affecting California and elsewhere and estimate the economic impacts of potential tsunami and other threats to POLA and POLB. To our knowledge, assessment of impacts to the California economy from distant source tsunamis does not exist. Previous tsunamis, including those from the 1960 Chile earthquake, the 1964 Alaska earthquake, the 2008 Chile earthquake and the 2011 Japan earthquake, had only relatively minor or very localized severe damage (such as that in Crescent City in 1964), and no studies of the economic impacts were completed. A rare study of the economic impacts of a tsunami event has recently been produced for the Tohoku earthquake and tsunami (Kajitani and others, 2013). Quarterly declines in Japan’s GDP are observed to peak at ‒1.63 percent in the second quarter after the event and stagnate for the rest of the year. The majority of the economic impacts are attributed to the tsunami rather than the earthquake. The hardest hit sectors are identified as agriculture, fisheries, manufacturing, retail, and tourism. Other relevant studies have focused on the economic impacts of threats that close POLA and POLB. We find one analysis of a potential tsunami scenario affecting the California economy through disruption of port operations. Borrero and others (2005) estimated economic impacts to the southern California economy of $7 to $40 billion from a locally generated tsunami that closes POLA and POLB for as much as 1 year. There have also been several studies of the economic impacts of non-tsunami events affecting POLA and POLB. Analyses of an 11-day labor lockout produced a range of estimated national impacts of as much as $1.94 billion/day (Park and others 2008, Martin Associates 2001). Examination of a potential terrorist attack that closes the San Pedro port for 1 month yielded a $29 billion impact to the California economy (Park, 2008). These studies have reinforced the importance of recognizing economic resilience in economic impact analyses. Hall (2004) criticized the upper-end estimate of national economic impacts from the labor lockout based on model shortcomings that neglected short-run substitution behavior and fixed the long-run economic behaviors. Following the 2011 Japanese tsunami, resilience was observed in the forms of rapid recovery of manufacturing sectors, energy conservation, and insurance (Kajitani and others, 2013).
NASA Astrophysics Data System (ADS)
Bernard, Eddie; Wei, Yong; Tang, Liujuan; Titov, Vasily
2014-12-01
Following the devastating 11 March 2011 tsunami, two deep-ocean assessment and reporting of tsunamis (DART®)(DART® and the DART® logo are registered trademarks of the National Oceanic and Atmospheric Administration, used with permission) stations were deployed in Japanese waters by the Japanese Meteorological Agency. Two weeks after deployment, on 7 December 2012, a M w 7.3 earthquake off Japan's Pacific coastline generated a tsunami. The tsunami was recorded at the two Japanese DARTs as early as 11 min after the earthquake origin time, which set a record as the fastest tsunami detecting time at a DART station. These data, along with those recorded at other DARTs, were used to derive a tsunami source using the National Oceanic and Atmospheric Administration tsunami forecast system. The results of our analysis show that data provided by the two near-field Japanese DARTs can not only improve the forecast speed but also the forecast accuracy at the Japanese tide gauge stations. This study provides important guidelines for early detection and forecasting of local tsunamis.
NASA Astrophysics Data System (ADS)
Rabinovich, A.; Zaytsev, O.; Thomson, R.
2016-12-01
The three recent great earthquakes offshore of Chile on 27 February 2010 (Maule, Mw 8.8), 1 April 2014 (Iquique, Mw 8.2) and 16 September 2015 (Illapel, Mw 8.3) generated major trans-oceanic tsunamis that spread throughout the entire Pacific Ocean and were measured by numerous coastal tide gauges and open-ocean DART stations. Statistical and spectral analyses of the tsunami waves from the three events recorded on the Pacific coast of Mexico enabled us to compare the events and to identify coastal "hot spots", regions with maximum tsunami risk. Based on joint spectral analyses of tsunamis and background noise, we have developed a method for reconstructing the "true" tsunami spectra in the deep ocean. The "reconstructed" open-ocean tsunami spectra are in excellent agreement with the actual tsunami spectra evaluated from direct analysis of the DART records offshore of Mexico. We have further used the spectral estimates to parameterize the energy of the three Chilean tsunamis based on the total open-ocean tsunami energy and frequency content of the individual events.
The Global Tsunami Model (GTM)
NASA Astrophysics Data System (ADS)
Thio, H. K.; Løvholt, F.; Harbitz, C. B.; Polet, J.; Lorito, S.; Basili, R.; Volpe, M.; Romano, F.; Selva, J.; Piatanesi, A.; Davies, G.; Griffin, J.; Baptista, M. A.; Omira, R.; Babeyko, A. Y.; Power, W. L.; Salgado Gálvez, M.; Behrens, J.; Yalciner, A. C.; Kanoglu, U.; Pekcan, O.; Ross, S.; Parsons, T.; LeVeque, R. J.; Gonzalez, F. I.; Paris, R.; Shäfer, A.; Canals, M.; Fraser, S. A.; Wei, Y.; Weiss, R.; Zaniboni, F.; Papadopoulos, G. A.; Didenkulova, I.; Necmioglu, O.; Suppasri, A.; Lynett, P. J.; Mokhtari, M.; Sørensen, M.; von Hillebrandt-Andrade, C.; Aguirre Ayerbe, I.; Aniel-Quiroga, Í.; Guillas, S.; Macias, J.
2016-12-01
The large tsunami disasters of the last two decades have highlighted the need for a thorough understanding of the risk posed by relatively infrequent but disastrous tsunamis and the importance of a comprehensive and consistent methodology for quantifying the hazard. In the last few years, several methods for probabilistic tsunami hazard analysis have been developed and applied to different parts of the world. In an effort to coordinate and streamline these activities and make progress towards implementing the Sendai Framework of Disaster Risk Reduction (SFDRR) we have initiated a Global Tsunami Model (GTM) working group with the aim of i) enhancing our understanding of tsunami hazard and risk on a global scale and developing standards and guidelines for it, ii) providing a portfolio of validated tools for probabilistic tsunami hazard and risk assessment at a range of scales, and iii) developing a global tsunami hazard reference model. This GTM initiative has grown out of the tsunami component of the Global Assessment of Risk (GAR15), which has resulted in an initial global model of probabilistic tsunami hazard and risk. Started as an informal gathering of scientists interested in advancing tsunami hazard analysis, the GTM is currently in the process of being formalized through letters of interest from participating institutions. The initiative has now been endorsed by the United Nations International Strategy for Disaster Reduction (UNISDR) and the World Bank's Global Facility for Disaster Reduction and Recovery (GFDRR). We will provide an update on the state of the project and the overall technical framework, and discuss the technical issues that are currently being addressed, including earthquake source recurrence models, the use of aleatory variability and epistemic uncertainty, and preliminary results for a probabilistic global hazard assessment, which is an update of the model included in UNISDR GAR15.
The Global Tsunami Model (GTM)
NASA Astrophysics Data System (ADS)
Lorito, S.; Basili, R.; Harbitz, C. B.; Løvholt, F.; Polet, J.; Thio, H. K.
2017-12-01
The tsunamis occurred worldwide in the last two decades have highlighted the need for a thorough understanding of the risk posed by relatively infrequent but often disastrous tsunamis and the importance of a comprehensive and consistent methodology for quantifying the hazard. In the last few years, several methods for probabilistic tsunami hazard analysis have been developed and applied to different parts of the world. In an effort to coordinate and streamline these activities and make progress towards implementing the Sendai Framework of Disaster Risk Reduction (SFDRR) we have initiated a Global Tsunami Model (GTM) working group with the aim of i) enhancing our understanding of tsunami hazard and risk on a global scale and developing standards and guidelines for it, ii) providing a portfolio of validated tools for probabilistic tsunami hazard and risk assessment at a range of scales, and iii) developing a global tsunami hazard reference model. This GTM initiative has grown out of the tsunami component of the Global Assessment of Risk (GAR15), which has resulted in an initial global model of probabilistic tsunami hazard and risk. Started as an informal gathering of scientists interested in advancing tsunami hazard analysis, the GTM is currently in the process of being formalized through letters of interest from participating institutions. The initiative has now been endorsed by the United Nations International Strategy for Disaster Reduction (UNISDR) and the World Bank's Global Facility for Disaster Reduction and Recovery (GFDRR). We will provide an update on the state of the project and the overall technical framework, and discuss the technical issues that are currently being addressed, including earthquake source recurrence models, the use of aleatory variability and epistemic uncertainty, and preliminary results for a probabilistic global hazard assessment, which is an update of the model included in UNISDR GAR15.
The Global Tsunami Model (GTM)
NASA Astrophysics Data System (ADS)
Løvholt, Finn
2017-04-01
The large tsunami disasters of the last two decades have highlighted the need for a thorough understanding of the risk posed by relatively infrequent but disastrous tsunamis and the importance of a comprehensive and consistent methodology for quantifying the hazard. In the last few years, several methods for probabilistic tsunami hazard analysis have been developed and applied to different parts of the world. In an effort to coordinate and streamline these activities and make progress towards implementing the Sendai Framework of Disaster Risk Reduction (SFDRR) we have initiated a Global Tsunami Model (GTM) working group with the aim of i) enhancing our understanding of tsunami hazard and risk on a global scale and developing standards and guidelines for it, ii) providing a portfolio of validated tools for probabilistic tsunami hazard and risk assessment at a range of scales, and iii) developing a global tsunami hazard reference model. This GTM initiative has grown out of the tsunami component of the Global Assessment of Risk (GAR15), which has resulted in an initial global model of probabilistic tsunami hazard and risk. Started as an informal gathering of scientists interested in advancing tsunami hazard analysis, the GTM is currently in the process of being formalized through letters of interest from participating institutions. The initiative has now been endorsed by the United Nations International Strategy for Disaster Reduction (UNISDR) and the World Bank's Global Facility for Disaster Reduction and Recovery (GFDRR). We will provide an update on the state of the project and the overall technical framework, and discuss the technical issues that are currently being addressed, including earthquake source recurrence models, the use of aleatory variability and epistemic uncertainty, and preliminary results for a probabilistic global hazard assessment, which is an update of the model included in UNISDR GAR15.
NASA Astrophysics Data System (ADS)
Klausner, V.; Mendes, Odim; Domingues, Margarete O.; Papa, Andres R. R.; Tyler, Robert H.; Frick, Peter; Kherani, Esfhan A.
2014-04-01
The vertical component (Z) of the geomagnetic field observed by ground-based observatories of the International Real-Time Magnetic Observatory Network has been used to analyze the induced magnetic fields produced by the movement of a tsunami, electrically conducting sea water through the geomagnetic field. We focus on the survey of minutely sampled geomagnetic variations induced by the tsunami of 27 February 2010 at Easter Island (IPM) and Papeete (PPT) observatories. In order to detect the tsunami disturbances in the geomagnetic data, we used wavelet techniques. We have observed an 85% correlation between the Z component variation and the tide gauge measurements in period range of 10 to 30 min which may be due to two physical mechanisms: gravity waves and the electric currents in the sea. As an auxiliary tool to verify the disturbed magnetic fields, we used the maximum variance analysis (MVA). At PPT, the analyses show local magnetic variations associated with the tsunami arriving in advance of sea surface fluctuations by about 2 h. The first interpretation of the results suggests that wavelet techniques and MVA can be effectively used to characterize the tsunami contributions to the geomagnetic field and further used to calibrate tsunami models and implemented to real-time analysis for forecast tsunami scenarios.
NASA Astrophysics Data System (ADS)
Heidarzadeh, Mohammad; Satake, Kenji
2014-12-01
We studied two tsunamis from 2012, one generated by the El Salvador earthquake of 27 August ( Mw 7.3) and the other generated by the Philippines earthquake of 31 August ( Mw 7.6), using sea level data analysis and numerical modeling. For the El Salvador tsunami, the largest wave height was observed in Baltra, Galapagos Islands (71.1 cm) located about 1,400 km away from the source. The tsunami governing periods were around 9 and 19 min. Numerical modeling indicated that most of the tsunami energy was directed towards the Galapagos Islands, explaining the relatively large wave height there. For the Philippines tsunami, the maximum wave height of 30.5 cm was observed at Kushimoto in Japan located about 2,700 km away from the source. The tsunami governing periods were around 8, 12 and 29 min. Numerical modeling showed that a significant part of the far-field tsunami energy was directed towards the southern coast of Japan. Fourier and wavelet analyses as well as numerical modeling suggested that the dominant period of the first wave at stations normal to the fault strike is related to the fault width, while the period of the first wave at stations in the direction of fault strike is representative of the fault length.
Mechanism of the 2015 volcanic tsunami earthquake near Torishima, Japan
Satake, Kenji
2018-01-01
Tsunami earthquakes are a group of enigmatic earthquakes generating disproportionally large tsunamis relative to seismic magnitude. These events occur most typically near deep-sea trenches. Tsunami earthquakes occurring approximately every 10 years near Torishima on the Izu-Bonin arc are another example. Seismic and tsunami waves from the 2015 event [Mw (moment magnitude) = 5.7] were recorded by an offshore seafloor array of 10 pressure gauges, ~100 km away from the epicenter. We made an array analysis of dispersive tsunamis to locate the tsunami source within the submarine Smith Caldera. The tsunami simulation from a large caldera-floor uplift of ~1.5 m with a small peripheral depression yielded waveforms remarkably similar to the observations. The estimated central uplift, 1.5 m, is ~20 times larger than that inferred from the seismologically determined non–double-couple source. Thus, the tsunami observation is not compatible with the published seismic source model taken at face value. However, given the indeterminacy of Mzx, Mzy, and M{tensile} of a shallow moment tensor source, it may be possible to find a source mechanism with efficient tsunami but inefficient seismic radiation that can satisfactorily explain both the tsunami and seismic observations, but this question remains unresolved. PMID:29740604
Mechanism of the 2015 volcanic tsunami earthquake near Torishima, Japan.
Fukao, Yoshio; Sandanbata, Osamu; Sugioka, Hiroko; Ito, Aki; Shiobara, Hajime; Watada, Shingo; Satake, Kenji
2018-04-01
Tsunami earthquakes are a group of enigmatic earthquakes generating disproportionally large tsunamis relative to seismic magnitude. These events occur most typically near deep-sea trenches. Tsunami earthquakes occurring approximately every 10 years near Torishima on the Izu-Bonin arc are another example. Seismic and tsunami waves from the 2015 event [ M w (moment magnitude) = 5.7] were recorded by an offshore seafloor array of 10 pressure gauges, ~100 km away from the epicenter. We made an array analysis of dispersive tsunamis to locate the tsunami source within the submarine Smith Caldera. The tsunami simulation from a large caldera-floor uplift of ~1.5 m with a small peripheral depression yielded waveforms remarkably similar to the observations. The estimated central uplift, 1.5 m, is ~20 times larger than that inferred from the seismologically determined non-double-couple source. Thus, the tsunami observation is not compatible with the published seismic source model taken at face value. However, given the indeterminacy of M zx , M zy , and M {tensile} of a shallow moment tensor source, it may be possible to find a source mechanism with efficient tsunami but inefficient seismic radiation that can satisfactorily explain both the tsunami and seismic observations, but this question remains unresolved.
Historical tsunami in the Azores archipelago (Portugal)
NASA Astrophysics Data System (ADS)
Andrade, C.; Borges, P.; Freitas, M. C.
2006-08-01
Because of its exposed northern mid-Atlantic location, morphology and plate-tectonics setting, the Azores Archipelago is highly vulnerable to tsunami hazards associated with landslides and seismic or volcanic triggers, local or distal. Critical examination of available data - written accounts and geologic evidence - indicates that, since the settlement of the archipelago in the 15th century, at least 23 tsunami have struck Azorean coastal zones. Most of the recorded tsunami are generated by earthquakes. The highest known run-up (11-15 m) was recorded on 1 November 1755 at Terceira Island, corresponding to an event of intensity VII-VIII (damaging-heavily damaging) on the Papadopolous-Imamura scale. To date, eruptive activity, while relatively frequent in the Azores, does not appear to have generated destructive tsunami. However, this apparent paucity of volcanogenic tsunami in the historical record may be misleading because of limited instrumental and documentary data, and small source-volumes released during historical eruptions. The latter are in contrast with the geological record of massive pyroclastic flows and caldera explosions with potential to generate high-magnitude tsunami, predating settlement. In addition, limited evidence suggests that submarine landslides from unstable volcano flanks may have also triggered some damaging tsunamigenic floods that perhaps were erroneously attributed to intense storms. The lack of destructive tsunami since the mid-18th century has led to governmental complacency and public disinterest in the Azores, as demonstrated by the fact that existing emergency regulations concerning seismic events in the Azores Autonomous Region make no mention of tsunami and their attendant hazards. We suspect that the coastal fringe of the Azores may well preserve a sedimentary record of some past tsunamigenic flooding events. Geological field studies must be accelerated to expand the existing database to include prehistoric events-information essential for more precisely estimating the average tsunami recurrence rate for the Azores over a longer period. A present-day occurrence of a moderate to intense tsunami (i.e., the size of the 1755 event) would produce societal disruption and economic loss orders of magnitudes greater than those of previous events in Azorean history. To reduce risk from future tsunami, comprehensive assessment of tsunami hazards and the preparation of hazards-zonation maps are needed to guide governmental decisions on issues of prudent land-use planning, public education and emergency management.
The U.S. National Tsunami Hazard Mitigation Program: Successes in Tsunami Preparedness
NASA Astrophysics Data System (ADS)
Whitmore, P.; Wilson, R. I.
2012-12-01
Formed in 1995 by Congressional Action, the National Tsunami Hazards Mitigation Program (NTHMP) provides the framework for tsunami preparedness activities in the United States. The Program consists of the 28 U.S. coastal states, territories, and commonwealths (STCs), as well as three Federal agencies: the National Oceanic and Atmospheric Administration (NOAA), the Federal Emergency Management Agency (FEMA), and the United States Geological Survey (USGS). Since its inception, the NTHMP has advanced tsunami preparedness in the United States through accomplishments in many areas of tsunami preparedness: - Coordination and funding of tsunami hazard analysis and preparedness activities in STCs; - Development and execution of a coordinated plan to address education and outreach activities (materials, signage, and guides) within its membership; - Lead the effort to assist communities in meeting National Weather Service (NWS) TsunamiReady guidelines through development of evacuation maps and other planning activities; - Determination of tsunami hazard zones in most highly threatened coastal communities throughout the country by detailed tsunami inundation studies; - Development of a benchmarking procedure for numerical tsunami models to ensure models used in the inundation studies meet consistent, NOAA standards; - Creation of a national tsunami exercise framework to test tsunami warning system response; - Funding community tsunami warning dissemination and reception systems such as sirens and NOAA Weather Radios; and, - Providing guidance to NOAA's Tsunami Warning Centers regarding warning dissemination and content. NTHMP activities have advanced the state of preparedness of United States coastal communities, and have helped save lives and property during recent tsunamis. Program successes as well as future plans, including maritime preparedness, are discussed.
Seismic Shaking, Tsunami Wave Erosion And Generation of Seismo-Turbidites in the Ionian Sea
NASA Astrophysics Data System (ADS)
Polonia, Alina; Nelson, Hans; Romano, Stefania; Vaiani, Stefano Claudio; Colizza, Ester; Gasparotto, Giorgio; Gasperini, Luca
2016-04-01
We are investigating the effects of earthquakes and tsunamis on the sedimentary record in the Ionian Sea through the analysis of turbidite deposits. A comparison between radiometric dating and historical earthquake catalogs suggests that recent turbidite generation is triggered by great earthquakes in the Calabrian and hellenic Arcs such as the AD 1908 Messina, AD 1693 Catania, AD 1169 Eastern Sicily and AD 365 Crete earthquakes. Textural, micropaleontological, geochemical and mineralogical signatures of the youngest three seismo-turbidites reveal cyclic patterns of sedimentary units. The basal stacked turbidites result from multiple slope failure sources as shown by different sedimentary structures as well as mineralogic, geochemical and micropaleontological compositions. The homogenite units, are graded muds deposited from the waning flows of the multiple turbidity currents that are trapped in the Ionian Sea confined basin. The uppermost unit is divided into two parts. The lower marine sourced laminated part without textural gradation, we interpret to result from seiching of the confined water mass that appears to be generated by earthquake ruptures combined with tsunami waves. The uppermost part we interpret as the tsunamite cap that is deposited by the slow settling suspension cloud created by tsunami wave backwash erosion of the shoreline and continental shelf. This tsunami process interpretation is based on the final textural gradation of the upper unit and a more continental source of the tsunami cap which includes C/N >10, the lack of abyssal foraminifera species wirth the local occurrence of inner shelf foraminifera. Seismic reflection images show that some deeper turbidite beds are very thick and marked by acoustic transparent homogenite mud layers at their top. Based on a high resolution study of the most recent of such megabeds (Homogenite/Augias turbidite, i.e. HAT), we show that it was triggered by the AD 365 Crete earthquake. Radiometric dating support a scenario of synchronous deposition of the HAT in an area as wide as 150.000 km2, which suggests basin-scale sediment remobilization processes. The HAT in our cores is made up of a base to top sequence of stacked and graded sand/silt units with different compositions related to the Malta, Calabria and Sicilian margin locations. This composition suggests multiple synchronous slope failures typical of seismo-turbidites; however, the Crete earthquake source is too distant from the Italian margins to cause sediment failures by earthquake shaking. Consequently, because our present evidence suggests shallow-water sediment sources, we reinforce previous interpretations that the HAT is a deep-sea "tsunamite" deposit. Utilizing the expanded stratigraphy of the HAT, together with the heterogeneity of the sediment sources of the Ionian margins, we are trying to unravel the relative contribution of seismic shaking (sediment failures, MTDs, turbidity currents) and of tsunami wave processes (overwash surges, backwash flows, turbidity currents) for seismo-turbidite generation.
Tsunami Risk in the NE Atlantic: Pilot Study for Algarve Portugal and Applications for future TWS
NASA Astrophysics Data System (ADS)
Omira, R.; Baptista, M. A.; Catita, C.; Carrilho, F.; Matias, L.
2012-04-01
Tsunami risk assessment is an essential component of any Tsunami Early Warning System due to its significant contribution to the disaster reduction by providing valuable information that serve as basis for mitigation preparedness and strategies. Generally, risk assessment combines the outputs of the hazard and the vulnerability assessment for considered exposed elements. In the NE Atlantic region, the tsunami hazard is relatively well established through compilation of tsunami historical events, evaluation of tsunamigenic sources and impact computations for site-specific coastal areas. While, tsunami vulnerability remains poorly investigated in spite of some few studies that focused on limited coastal areas of the Gulf of Cadiz region. This work seeks to present a pilot study for tsunami risk assessment that covers about 170 km of coasts of Algarve region, south of Portugal. This area of high coastal occupation and touristic activities was strongly impacted by the 1755 tsunami event as reported in various historical documents. An approach based upon a combination of tsunami hazard and vulnerability is developed in order to take into account the dynamic aspect of tsunami risk in the region that depends on the variation of hazard and vulnerability of exposed elements from a coastal point to other. Hazard study is based upon the consideration of most credible earthquake scenarios and the derivation of hazard maps through hydrodynamic modeling of inundation and tsunami arrival time. The vulnerability assessment is performed by: i) the analysis of the occupation and the population density, ii) derivation of evacuation maps and safe shelters, and iii) the analysis of population response and evacuation times. Different risk levels ranging from "low" to "high" are assigned to the coats of the studied area. Variation of human tsunami risk between the high and low touristic seasons is also considered in this study and aims to produce different tsunami risk-related scenarios. Results are presented in terms of thematic maps and GIS layers highlighting information on inundation depths and limits, evacuation plans and safe shelters, tsunami vulnerability, evacuation times and tsunami risk levels. Results can be used for national and regional tsunami disaster management and planning. This work is funded by TRIDEC (Collaborative, Complex and Critical Decision-Support in Evolving Crises) FP7, EU project and by MAREMOTI (Mareograph and field tsunami observations, modeling and vulnerability studies for Northeast Atlantic and western Mediterranean) French project. Keywords: Tsunami, Algarve-Portugal, Evacuation, Vulnerability, Risk
Response to the 2011 Great East Japan Earthquake and Tsunami disaster.
Koshimura, Shunichi; Shuto, Nobuo
2015-10-28
We revisited the lessons of the 2011 Great East Japan Earthquake Tsunami disaster specifically on the response and impact, and discussed the paradigm shift of Japan's tsunami disaster management policies and the perspectives for reconstruction. Revisiting the modern histories of Tohoku tsunami disasters and pre-2011 tsunami countermeasures, we clarified how Japan's coastal communities have prepared for tsunamis. The discussion mainly focuses on structural measures such as seawalls and breakwaters and non-structural measures of hazard map and evacuation. The responses to the 2011 event are discussed specifically on the tsunami warning system and efforts to identify the tsunami impacts. The nation-wide post-tsunami survey results shed light on the mechanisms of structural destruction, tsunami loads and structural vulnerability to inform structural rehabilitation measures and land-use planning. Remarkable paradigm shifts in designing coastal protection and disaster mitigation measures were introduced, leading with a new concept of potential tsunami levels: Prevention (Level 1) and Mitigation (Level 2) levels according to the level of 'protection'. The seawall is designed with reference to Level 1 tsunami scenario, while comprehensive disaster management measures should refer to Level 2 tsunami for protection of human lives and reducing potential losses and damage. Throughout the case study in Sendai city, the proposed reconstruction plan was evaluated from the tsunami engineering point of view to discuss how the post 2011 paradigm was implemented in coastal communities for future disaster mitigation. The analysis revealed that Sendai city's multiple protection measures for Level 2 tsunami will contribute to a substantial reduction of the tsunami inundation zone and potential losses, combined with an effective tsunami evacuation plan. © 2015 The Author(s).
Open-Ocean and Coastal Properties of Recent Major Tsunamis
NASA Astrophysics Data System (ADS)
Rabinovich, A.; Thomson, R.; Zaytsev, O.
2017-12-01
The properties of six major tsunamis during the period 2009-2015 (2009 Samoa; 2010 Chile; 2011 Tohoku; 2012 Haida Gwaii; 2014 and 2015 Chile) were thoroughly examined using coastal data from British Columbia, the U.S. West Coast and Mexico, and offshore open-ocean DART and NEPTUNE stations. Based on joint spectral analyses of the tsunamis and background noise, we have developed a method to suppress the influence of local topography and to use coastal observations to determine the underlying spectra of tsunami waves in the deep ocean. The "reconstructed" open-ocean tsunami spectra were found to be in close agreement with the actual tsunami spectra evaluated from the analysis of directly measured open-ocean tsunami records. We have further used the spectral estimates to parameterize tsunamis based on their integral open-ocean spectral characteristics. Three key parameters are introduced to describe individual tsunami events: (1) Integral open-ocean energy; (2) Amplification factor (increase of the mean coastal tsunami variance relative to the open-ocean variance); and (3) Tsunami colour, the frequency composition of the open-ocean tsunami waves. In particular, we found that the strongest tsunamis, associated with large source areas (the 2010 Chile and 2011 Tohoku) are "reddish" (indicating the dominance of low-frequency motions), while small-source events (the 2009 Samoa and 2012 Haida Gwaii) are "bluish" (indicating strong prevalence of high-frequency motions).
NASA Astrophysics Data System (ADS)
Zosseder, K.; Post, J.; Steinmetz, T.; Wegscheider, S.; Strunz, G.
2009-04-01
Indonesia is located at one of the most active geological subduction zones in the world. Following the most recent seaquakes and their subsequent tsunamis in December 2004 and July 2006 it is expected that also in the near future tsunamis are likely to occur due to increased tectonic tensions leading to abrupt vertical seafloor alterations after a century of relative tectonic silence. To face this devastating threat tsunami hazard maps are very important as base for evacuation planning and mitigation strategies. In terms of a tsunami impact the hazard assessment is mostly covered by numerical modelling because the model results normally offer the most precise database for a hazard analysis as they include spatially distributed data and their influence to the hydraulic dynamics. Generally a model result gives a probability for the intensity distribution of a tsunami at the coast (or run up) and the spatial distribution of the maximum inundation area depending on the location and magnitude of the tsunami source used. The boundary condition of the source used for the model is mostly chosen by a worst case approach. Hence the location and magnitude which are likely to occur and which are assumed to generate the worst impact are used to predict the impact at a specific area. But for a tsunami hazard assessment covering a large coastal area, as it is demanded in the GITEWS (German Indonesian Tsunami Early Warning System) project in which the present work is embedded, this approach is not practicable because a lot of tsunami sources can cause an impact at the coast and must be considered. Thus a multi-scenario tsunami model approach is developed to provide a reliable hazard assessment covering large areas. For the Indonesian Early Warning System many tsunami scenarios were modelled by the Alfred Wegener Institute (AWI) at different probable tsunami sources and with different magnitudes along the Sunda Trench. Every modelled scenario delivers the spatial distribution of the inundation for a specific area, the wave height at coast at this area and the estimated times of arrival (ETAs) of the waves, caused by one tsunamigenic source with a specific magnitude. These parameters from the several scenarios can overlap each other along the coast and must be combined to get one comprehensive hazard assessment for all possible future tsunamis at the region under observation. The simplest way to derive the inundation probability along the coast using the multiscenario approach is to overlay all scenario inundation results and to determine how often a point on land will be significantly inundated from the various scenarios. But this does not take into account that the used tsunamigenic sources for the modeled scenarios have different likelihoods of causing a tsunami. Hence a statistical analysis of historical data and geophysical investigation results based on numerical modelling results is added to the hazard assessment, which clearly improves the significance of the hazard assessment. For this purpose the present method is developed and contains a complex logical combination of the diverse probabilities assessed like probability of occurrence for different earthquake magnitudes at different localities, probability of occurrence for a specific wave height at the coast and the probability for every point on land likely to get hit by a tsunami. The values are combined by a logical tree technique and quantified by statistical analysis of historical data and of the tsunami modelling results as mentioned before. This results in a tsunami inundation probability map covering the South West Coast of Indonesia which nevertheless shows a significant spatial diversity offering a good base for evacuation planning and mitigation strategies. Keywords: tsunami hazard assessment, tsunami modelling, probabilistic analysis, early warning
Analysis of tsunami disaster resilience in Bandar Lampung Bay Coastal Zone
NASA Astrophysics Data System (ADS)
Alhamidi; Pakpahan, V. H.; Simanjuntak, J. E. S.
2018-05-01
The coastal area is an area that has potential diversity of natural resources and high economic value. The coastal area is influenced by changes in land and sea so that the coastal areas are highly vulnerable to tsunami. Bandar Lampung has the potential of coastal areas of considerable potential as it is located in the bay adjacent to the Sunda Strait. Based on the study of Heru Sri Naryanto (2003), Bandar Lampung ranks third from the level of vulnerability to tsunami. Therefore, the purpose of this study to determine the readiness of the region in facing tsunami and the magnitude of the potential risks of tsunami disaster in the Gulf Coast region of Lampung in Bandar Lampung; thus, it needs to make the model or concept of tsunami disaster mitigation appropriate in terms of vulnerability and danger in creating the resilience of the Gulf Coast region of Lampung in Bandar Lampung against tsunami. The methodology used in this study was the methods of primary and secondary data collection, and the data analysis method was quantitative analysis such as spatial analysis and descriptive analysis of the data obtained from the field. The results showed that the level of preparedness in the Gulf coast region of Lampung in Bandar Lampung in facing the tsunami was still low. There are still many developed regions or houses belonging to the community either fishermen or non-fishermen located in a tsunami hazard zone. Other than that, the level of education in the Gulf coast region of Lampung in Bandar Lampung is still low where the majority of inhabitants work as fishermen. Besides, the infrastructure is old and not well-maintained so that it becomes a slum area. Therefore, the development and planning to mitigate the natural disasters tsunami using technology of IOT (Internet of Things) is an embeded system with the use of sensor seismic as a means of pre-Earthquakes vibrations, placed both on the land and in the ocean, to read the vibrations and faults in the earth’s crust under the sea. With the use of seismic sensors under the sea, the vibration of the earth’s crust under the sea will be detected. The sensors then will be connected to a flare marker buoys as a means to inform the disaster mitigation center. The construction of hall disaster at some point will be helpful to give first aid to those who are difficult to pass through the evacuation place since it is far away from the Gulf coast. The hall mitigation can be designed anti-earthquake and anti-tsunami. The model and concept of mitigation used is combining the Spatial Plan of Bandar Lampung and the mitigation of tsunami disaster as an integrated system of pre-disaster, during disaster and post-disaster by making the city of Bandar Lampung has the resilience to tsunamis.
SCALE 6.2 Continuous-Energy TSUNAMI-3D Capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perfetti, Christopher M; Rearden, Bradley T
2015-01-01
The TSUNAMI (Tools for Sensitivity and UNcertainty Analysis Methodology Implementation) capabilities within the SCALE code system make use of sensitivity coefficients for an extensive number of criticality safety applications, such as quantifying the data-induced uncertainty in the eigenvalue of critical systems, assessing the neutronic similarity between different systems, quantifying computational biases, and guiding nuclear data adjustment studies. The need to model geometrically complex systems with improved ease of use and fidelity and the desire to extend TSUNAMI analysis to advanced applications have motivated the development of a SCALE 6.2 module for calculating sensitivity coefficients using three-dimensional (3D) continuous-energy (CE) Montemore » Carlo methods: CE TSUNAMI-3D. This paper provides an overview of the theory, implementation, and capabilities of the CE TSUNAMI-3D sensitivity analysis methods. CE TSUNAMI contains two methods for calculating sensitivity coefficients in eigenvalue sensitivity applications: (1) the Iterated Fission Probability (IFP) method and (2) the Contributon-Linked eigenvalue sensitivity/Uncertainty estimation via Track length importance CHaracterization (CLUTCH) method. This work also presents the GEneralized Adjoint Response in Monte Carlo method (GEAR-MC), a first-of-its-kind approach for calculating adjoint-weighted, generalized response sensitivity coefficients—such as flux responses or reaction rate ratios—in CE Monte Carlo applications. The accuracy and efficiency of the CE TSUNAMI-3D eigenvalue sensitivity methods are assessed from a user perspective in a companion publication, and the accuracy and features of the CE TSUNAMI-3D GEAR-MC methods are detailed in this paper.« less
NASA Astrophysics Data System (ADS)
Heidarzadeh, Mohammad; Satake, Kenji
2015-03-01
We constrain the source of the 27 November 1945 tsunami in the Makran Subduction Zone (MSZ) using available tsunami waveforms recorded on tide gauges at Mumbai (India) and Karachi (Pakistan), and that inferred at Port Victoria (Seychelles), and coseismic deformation data along the Makran coast. Spectral analysis of the tsunami waveforms shows that the tsunami governing period was 40-50 min at Karachi whereas it was around 22 min at Mumbai. The inferred tsunami waveform at Port Victoria also indicated a period of around 21 min for the tsunami. Tsunami numerical simulations from the previously proposed source models failed in reproducing the observed tsunami waveforms and coseismic deformation data. Sensitivity analysis showed that the source fault needs to be extended offshore into deep water in order to reproduce the first 22-min signal at Mumbai. Based on the inversion of the observed tsunami waveforms, we propose a four-segment fault with varying slip amounts as the final source. This source includes a slip of 4.3 m onshore near Ormara (Pakistan) and a slip of 10 m offshore at water depth of around 3,000 m. The total fault length is 220 km, and the average slip is 6.1 m. This source, first, reproduces fairly well the observed tide gauge records at Mumbai and Karachi, second, produces ~1 m of uplift at Ormara and ~1 m of subsidence at Pasni, and third, gives a moment magnitude of 8.3 for the earthquake, which is in the acceptable range of seismic data. The computed 1 m uplift at Ormara is in the uplift range of 1-3 m reported in the literature. As the tide gauge stations were located in the far field, our proposed source explains mainly the tectonic source of the tsunami.
NASA Astrophysics Data System (ADS)
Fine, I.; Thomson, R.; Chadwick, W. W., Jr.; Davis, E. E.; Fox, C. G.
2016-12-01
We have used a set of high-resolution bottom pressure recorder (BPR) time series collected at Axial Seamount on the Juan de Fuca Ridge beginning in 1986 to examine tsunami waves of seismological origin in the northeast Pacific. These data are a combination of autonomous, internally-recording battery-powered instruments and cabled instruments on the OOI Cabled Array. Of the total of 120 tsunami events catalogued for the coasts of Japan, Alaska, western North America and Hawaii, we found evidence for 38 events in the Axial Seamount BPR records. Many of these tsunamis were not observed along the adjacent west coast of the USA and Canada because of the much higher noise level of coastal locations and the lack of digital tide gauge data prior to 2000. We have also identified several tsunamis of apparent seismological origin that were observed at coastal stations but not at the deep ocean site. Careful analysis of these observations suggests that they were likely of meteorological origin. Analysis of the pressure measurements from Axial Seamount, along with BPR measurements from a nearby ODP CORK (Ocean Drilling Program Circulation Obviation Retrofit Kit) borehole and DART (Deep-ocean Assessment and Reporting of Tsunamis) locations, reveals features of deep-ocean tsunamis that are markedly different from features observed at coastal locations. Results also show that the energy of deep-ocean tsunamis can differ significantly among the three sets of stations despite their close spatial spacing and that this difference is strongly dependent on the direction of the incoming tsunami waves. These deep-ocean observations provide the most comprehensive statistics possible for tsunamis in the Pacific Ocean over the past 30 years. New insight into the distribution of tsunami amplitudes and wave energy derived from the deep-ocean sites should prove useful for long-term tsunami prediction and mitigation for coastal communities along the west coast of the USA and Canada.
1946 Dominican Republic Tsunami: Field Survey based on Eyewitness Interviews
NASA Astrophysics Data System (ADS)
Fritz, Hermann M.; Martinez, Claudio; Salado, Juan; Rivera, Wagner; Duarte, Leoncio
2017-04-01
On 4 August 1946 an Mw 8.1 earthquake struck off the north-eastern shore of Hispaniola Island resulting in a destructive tsunami with order one hundred fatalities in the Dominican Republic and observed runup in Puerto Rico. In the far field, tsunami waves were recorded on some tide gauges on the Atlantic coast of the United States of America. The earthquake devastated the Dominican Republic, extended into Haiti, and shook many other islands. This was one of the strongest earthquakes reported in the Caribbean since colonial times. The immediate earthquake reconnaissance surveys focused on earthquake damage and were conducted in September 1946 (Lynch and Bodle, 1948; Small, 1948). The 1946 Dominican Republic tsunami eyewitness based field survey took place in three phases from 18 to 21 March 2014, 1 to 3 September 2014 and 9 to 11 May 2016. The International Tsunami Survey Team (ITST) covered more than 400 km of coastline along the northern Dominican Republic from the eastern most tip at Punta Cana to La Isabela some 70 km from the border with Haiti. The survey team documented tsunami runup, flow depth, inundation distances, sea-level drawdown, coastal erosion and co-seismic land level changes based on eyewitnesses interviewed on site using established protocols. The early afternoon earthquake resulted in detailed survival stories with excellent eyewitness observations recounted almost 70 years later with lucidity. The Dominican Republic survey data includes 29 runup and tsunami height measurements at 21 locations. The tsunami impacts peaked with maximum tsunami heights exceeding 5 m at a cluster of locations between Cabrera and El Limon. A maximum tsunami height of 8 m likely associated with splash up was measured in Playa Boca Nueva. Tsunami inundation distances of 600 m or more were measured at Las Terrenas and Playa Rincon on the Samana Peninsula. Some locations were surveyed twice in 2014 and 2016, which allowed to identify current coastal erosion rates. Field data points measured in 2014 and 2016 were corrected for predicted astronomical tide levels at the time of tsunami arrival in 1946 as there were no tide stations operating along the surveyed coastline in 1946. Individual tidal corrections applied to the raw field measurements were less than ± 0.5 m given the relatively small tidal range around Hispaniola Island. At least 10 significant tsunamis have been documented in the northern Caribbean since 1498, six of which are known to have resulted in loss of life (O'Loughlin and Lander, 2003). Rapid population increase in the Caribbean exposes more coastal residents and tourists to future tsunami events.
GPS water level measurements for Indonesia's Tsunami Early Warning System
NASA Astrophysics Data System (ADS)
Schöne, T.; Pandoe, W.; Mudita, I.; Roemer, S.; Illigner, J.; Zech, C.; Galas, R.
2011-03-01
On Boxing Day 2004, a severe tsunami was generated by a strong earthquake in Northern Sumatra causing a large number of casualties. At this time, neither an offshore buoy network was in place to measure tsunami waves, nor a system to disseminate tsunami warnings to local governmental entities. Since then, buoys have been developed by Indonesia and Germany, complemented by NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART) buoys, and have been moored offshore Sumatra and Java. The suite of sensors for offshore tsunami detection in Indonesia has been advanced by adding GPS technology for water level measurements. The usage of GPS buoys in tsunami warning systems is a relatively new approach. The concept of the German Indonesian Tsunami Early Warning System (GITEWS) (Rudloff et al., 2009) combines GPS technology and ocean bottom pressure (OBP) measurements. Especially for near-field installations where the seismic noise may deteriorate the OBP data, GPS-derived sea level heights provide additional information. The GPS buoy technology is precise enough to detect medium to large tsunamis of amplitudes larger than 10 cm. The analysis presented here suggests that for about 68% of the time, tsunamis larger than 5 cm may be detectable.
A global probabilistic tsunami hazard assessment from earthquake sources
Davies, Gareth; Griffin, Jonathan; Lovholt, Finn; Glimsdal, Sylfest; Harbitz, Carl; Thio, Hong Kie; Lorito, Stefano; Basili, Roberto; Selva, Jacopo; Geist, Eric L.; Baptista, Maria Ana
2017-01-01
Large tsunamis occur infrequently but have the capacity to cause enormous numbers of casualties, damage to the built environment and critical infrastructure, and economic losses. A sound understanding of tsunami hazard is required to underpin management of these risks, and while tsunami hazard assessments are typically conducted at regional or local scales, globally consistent assessments are required to support international disaster risk reduction efforts, and can serve as a reference for local and regional studies. This study presents a global-scale probabilistic tsunami hazard assessment (PTHA), extending previous global-scale assessments based largely on scenario analysis. Only earthquake sources are considered, as they represent about 80% of the recorded damaging tsunami events. Globally extensive estimates of tsunami run-up height are derived at various exceedance rates, and the associated uncertainties are quantified. Epistemic uncertainties in the exceedance rates of large earthquakes often lead to large uncertainties in tsunami run-up. Deviations between modelled tsunami run-up and event observations are quantified, and found to be larger than suggested in previous studies. Accounting for these deviations in PTHA is important, as it leads to a pronounced increase in predicted tsunami run-up for a given exceedance rate.
Assessment of source probabilities for potential tsunamis affecting the U.S. Atlantic coast
Geist, E.L.; Parsons, T.
2009-01-01
Estimating the likelihood of tsunamis occurring along the U.S. Atlantic coast critically depends on knowledge of tsunami source probability. We review available information on both earthquake and landslide probabilities from potential sources that could generate local and transoceanic tsunamis. Estimating source probability includes defining both size and recurrence distributions for earthquakes and landslides. For the former distribution, source sizes are often distributed according to a truncated or tapered power-law relationship. For the latter distribution, sources are often assumed to occur in time according to a Poisson process, simplifying the way tsunami probabilities from individual sources can be aggregated. For the U.S. Atlantic coast, earthquake tsunami sources primarily occur at transoceanic distances along plate boundary faults. Probabilities for these sources are constrained from previous statistical studies of global seismicity for similar plate boundary types. In contrast, there is presently little information constraining landslide probabilities that may generate local tsunamis. Though there is significant uncertainty in tsunami source probabilities for the Atlantic, results from this study yield a comparative analysis of tsunami source recurrence rates that can form the basis for future probabilistic analyses.
Hirata, K.; Tanioka, Y.; Satake, K.; Yamaki, S.; Geist, E.L.
2004-01-01
We estimate the tsunami source area of the 2003 Tokachi-oki earthquake (Mw 8.0) from observed tsunami travel times at 17 Japanese tide gauge stations. The estimated tsunami source area (???1.4 ?? 104 km2) coincides with the western-half of the ocean-bottom deformation area (???2.52 ?? 104 km2) of the 1952 Tokachi-oki earthquake (Mw 8.1), previously inferred from tsunami waveform inversion. This suggests that the 2003 event ruptured only the western-half of the 1952 rupture extent. Geographical distribution of the maximum tsunami heights in 2003 differs significantly from that of the 1952 tsunami, supporting this hypothesis. Analysis of first-peak tsunami travel times indicates that a major uplift of the ocean-bottom occurred approximately 30 km to the NNW of the mainshock epicenter, just above a major asperity inferred from seismic waveform inversion. Copyright ?? The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences.
Probabilistic tsunami hazard analysis: Multiple sources and global applications
Grezio, Anita; Babeyko, Andrey; Baptista, Maria Ana; Behrens, Jörn; Costa, Antonio; Davies, Gareth; Geist, Eric L.; Glimsdal, Sylfest; González, Frank I.; Griffin, Jonathan; Harbitz, Carl B.; LeVeque, Randall J.; Lorito, Stefano; Løvholt, Finn; Omira, Rachid; Mueller, Christof; Paris, Raphaël; Parsons, Thomas E.; Polet, Jascha; Power, William; Selva, Jacopo; Sørensen, Mathilde B.; Thio, Hong Kie
2017-01-01
Applying probabilistic methods to infrequent but devastating natural events is intrinsically challenging. For tsunami analyses, a suite of geophysical assessments should be in principle evaluated because of the different causes generating tsunamis (earthquakes, landslides, volcanic activity, meteorological events, and asteroid impacts) with varying mean recurrence rates. Probabilistic Tsunami Hazard Analyses (PTHAs) are conducted in different areas of the world at global, regional, and local scales with the aim of understanding tsunami hazard to inform tsunami risk reduction activities. PTHAs enhance knowledge of the potential tsunamigenic threat by estimating the probability of exceeding specific levels of tsunami intensity metrics (e.g., run-up or maximum inundation heights) within a certain period of time (exposure time) at given locations (target sites); these estimates can be summarized in hazard maps or hazard curves. This discussion presents a broad overview of PTHA, including (i) sources and mechanisms of tsunami generation, emphasizing the variety and complexity of the tsunami sources and their generation mechanisms, (ii) developments in modeling the propagation and impact of tsunami waves, and (iii) statistical procedures for tsunami hazard estimates that include the associated epistemic and aleatoric uncertainties. Key elements in understanding the potential tsunami hazard are discussed, in light of the rapid development of PTHA methods during the last decade and the globally distributed applications, including the importance of considering multiple sources, their relative intensities, probabilities of occurrence, and uncertainties in an integrated and consistent probabilistic framework.
Probabilistic Tsunami Hazard Analysis: Multiple Sources and Global Applications
NASA Astrophysics Data System (ADS)
Grezio, Anita; Babeyko, Andrey; Baptista, Maria Ana; Behrens, Jörn; Costa, Antonio; Davies, Gareth; Geist, Eric L.; Glimsdal, Sylfest; González, Frank I.; Griffin, Jonathan; Harbitz, Carl B.; LeVeque, Randall J.; Lorito, Stefano; Løvholt, Finn; Omira, Rachid; Mueller, Christof; Paris, Raphaël.; Parsons, Tom; Polet, Jascha; Power, William; Selva, Jacopo; Sørensen, Mathilde B.; Thio, Hong Kie
2017-12-01
Applying probabilistic methods to infrequent but devastating natural events is intrinsically challenging. For tsunami analyses, a suite of geophysical assessments should be in principle evaluated because of the different causes generating tsunamis (earthquakes, landslides, volcanic activity, meteorological events, and asteroid impacts) with varying mean recurrence rates. Probabilistic Tsunami Hazard Analyses (PTHAs) are conducted in different areas of the world at global, regional, and local scales with the aim of understanding tsunami hazard to inform tsunami risk reduction activities. PTHAs enhance knowledge of the potential tsunamigenic threat by estimating the probability of exceeding specific levels of tsunami intensity metrics (e.g., run-up or maximum inundation heights) within a certain period of time (exposure time) at given locations (target sites); these estimates can be summarized in hazard maps or hazard curves. This discussion presents a broad overview of PTHA, including (i) sources and mechanisms of tsunami generation, emphasizing the variety and complexity of the tsunami sources and their generation mechanisms, (ii) developments in modeling the propagation and impact of tsunami waves, and (iii) statistical procedures for tsunami hazard estimates that include the associated epistemic and aleatoric uncertainties. Key elements in understanding the potential tsunami hazard are discussed, in light of the rapid development of PTHA methods during the last decade and the globally distributed applications, including the importance of considering multiple sources, their relative intensities, probabilities of occurrence, and uncertainties in an integrated and consistent probabilistic framework.
The living environment and children's fears following the Indonesian tsunami
Du, Ye Beverly; Lee, Christopher Thomas; Christina, Desy; Belfer, Myron L.; Betancourt, Theresa S.; O'Rourke, Edward James; Palfrey, Judith S.
2014-01-01
The tsunami that struck South-east Asia on 26 December 2004 left more than 500,000 people in Aceh, Indonesia, homeless and displaced to temporary barracks and other communities. This study examines the associations between prolonged habitation in barracks and the nature of fears reported by school-age children and adolescents. In mid-2007, 30 months after the tsunami, the authors interviewed 155 child and parent dyads. Logistic regression analysis was used to compare the fears reported by children and adolescents living in barracks with those reported by their peers who were living in villages. After adjusting for demographic factors and tsunami exposure, the data reveals that children and adolescents living in barracks were three times more likely than those living in villages to report tsunami-related fears. The study demonstrates that continued residence in barracks 30 months after the tsunami is associated with higher rates of reporting tsunami-related fears, suggesting that barracks habitation has had a significant impact on the psychological experience of children and adolescents since the tsunami. PMID:22098206
NASA Astrophysics Data System (ADS)
George, D. L.; Iverson, R. M.; Cannon, C. M.
2016-12-01
Landslide-generated tsunamis pose significant hazards to coastal communities and infrastructure, but developing models to assess these hazards presents challenges beyond those confronted when modeling seismically generated tsunamis. We present a new methodology in which our depth-averaged two-phase model D-Claw (Proc. Roy. Soc. A, 2014, doi: 10.1098/rspa.2013.0819 and doi:10.1098/rspa.2013.0820) is used to simulate all stages of landslide dynamics and subsequent tsunami generation and propagation. D-Claw was developed to simulate landslides and debris-flows, but if granular solids are absent, then the D-Claw equations reduce to the shallow-water equations commonly used to model tsunamis. Because the model describes the evolution of solid and fluid volume fractions, it treats both landslides and tsunamis as special cases of a more general class of phenomena, and the landslide and tsunami can be simulated as a single-layer continuum with spatially and temporally evolving solid-grain concentrations. This seamless approach accommodates wave generation via mass displacement and longitudinal momentum transfer, the dominant mechanisms producing impulse waves when large subaerial landslides impact relatively shallow bodies of water. To test our methodology, we used D-Claw to model a large subaerial landslide and resulting tsunami that occurred on October, 17, 2015, in Taan Fjord near the terminus of Tyndall Glacier, Alaska. The estimated landslide volume derived from radiated long-period seismicity (C. Stark (2015), Abstract EP51D-08, AGU Fall Meeting) was about 70-80 million cubic meters. Guided by satellite imagery and this volume estimate, we inferred an approximate landslide basal slip surface, and we used material property values identical to those used in our previous modeling of the 2014 Oso, Washington, landslide. With these inputs the modeled tsunami inundation patterns on shorelines compare well with observations derived from satellite imagery.
NASA Astrophysics Data System (ADS)
Jagodziński, Robert; Sternal, Beata; Szczuciński, Witold; Chagué-Goff, Catherine; Sugawara, Daisuke
2012-12-01
The 2011 Tohoku-oki tsunami left sand and mud deposits more than 4 km inland on the coastal plain of Sendai, Japan. The tsunami deposits, pre-tsunami soils and beach sediments were analysed for grain size, and heavy mineral content and assemblages to test the applicability of heavy mineral analyses in the identification of tsunami deposits and interpretation of associated sedimentation processes. Heavy minerals comprised on average 35% of the tsunami deposit in the 0.125-0.25 mm grain size fraction. The most common were orthopyroxenes, clinopyroxenes, amphiboles, limonites and opaque minerals. Heavy mineral concentrations and assemblages were similar in the tsunami deposits, beach and pre-tsunami soils and sediments and thus tsunami deposits could not simply be identified based on their heavy minerals. Sediment provenance analysis revealed that tsunami deposits left within 1.5 km of the shoreline were mostly eroded from the beach, dune and local soils, while deposits farther inland (> 1.5 km) were mostly derived from local soil erosion. No evidence was found for a significant contribution of offshore sediments. Detailed analyses revealed that the lowermost portion of tsunami deposits was mostly of local origin, while the sediment source of the upper portion was variable. A comparison with a previous study of heavy minerals in 2004 IOT deposits confirms that heavy minerals in tsunami deposits are mostly source-dependent and may represent a useful supplementary tool in studies of tsunami deposits. However, the interpretation must always be placed in the local geological context and corroborated with other "tsunami proxies".
NASA Astrophysics Data System (ADS)
Omira, Rachid; Baptista, Maria Ana; Matias, Luis
2015-04-01
This study constitutes the first assessment of probabilistic tsunami inundation in the NE Atlantic region, using an event-tree approach. It aims to develop a probabilistic tsunami inundation approach for the NE Atlantic coast with an application to two test sites of ASTARTE project, Tangier-Morocco and Sines-Portugal. Only tsunamis of tectonic origin are considered here, taking into account near-, regional- and far-filed sources. The multidisciplinary approach, proposed here, consists of an event-tree method that gathers seismic hazard assessment, tsunami numerical modelling, and statistical methods. It presents also a treatment of uncertainties related to source location and tidal stage in order to derive the likelihood of tsunami flood occurrence and exceedance of a specific near-shore wave height during a given return period. We derive high-resolution probabilistic maximum wave heights and flood distributions for both test-sites Tangier and Sines considering 100-, 500-, and 1000-year return periods. We find that the probability that a maximum wave height exceeds 1 m somewhere along the Sines coasts reaches about 55% for 100-year return period, and is up to 100% for 1000-year return period. Along Tangier coast, the probability of inundation occurrence (flow depth > 0m) is up to 45% for 100-year return period and reaches 96% in some near-shore costal location for 500-year return period. Acknowledgements: This work is funded by project ASTARTE - Assessment, STrategy And Risk Reduction for Tsunamis in Europe. Grant 603839, 7th FP (ENV.2013.6.4-3 ENV.2013.6.4-3).
NASA Astrophysics Data System (ADS)
Lau, A. Y. Annie; Terry, James P.; Ziegler, Alan; Pratap, Arti; Harris, Daniel
2018-02-01
The characteristics of a reef-top boulder field created by a local submarine landslide tsunami are presented for the first time. Our examination of large reef-derived boulders deposited by the 1953 tsunami near Suva City, Fiji, revealed that shorter-than-normal-period tsunami waves generated by submarine landslides can create a boulder field resembling a storm boulder field due to relatively short boulder transport distances. The boulder-inferred 1953 tsunami flow velocity is estimated at over 9 m s- 1 at the reef edge. Subsequent events, for example Cyclone Kina (1993), appear to have remobilised some large boulders. While prior research has demonstrated headward retreat of Suva Canyon in response to the repeated occurrence of earthquakes over the past few millennia, our results highlight the lingering vulnerability of the Fijian coastlines to high-energy waves generated both in the presence (tsunami) and absence (storm) of submarine failures and/or earthquakes. To explain the age discrepancies of U-Th dated coral comprising the deposited boulders, we introduce a conceptual model showing the role of repeated episodes of tsunamigenic submarine landslides in removing reef front sections through collapse. Subsequent high-energy wave events transport boulders from exposed older sections of the reef front onto the reef where they are deposited as 'new' boulders, alongside freshly detached sections of the living reef. In similar situations where anachronistic deposits complicate the deposition signal, age-dating of the coral boulders should not be used as a proxy for determining the timing of the submarine landslides or the tsunamis that generated them.
A lagrangian-eulerian description of debris transport by a tsunami in the Lisbon waterfront
NASA Astrophysics Data System (ADS)
Conde, Daniel; Canelas, Ricardo; Baptista, Maria Ana; João Telhado, Maria; Ferreira, Rui M. L.
2013-04-01
Several major tsunamis are known to have struck the Portuguese coast over the past millennia (Baptista and Miranda, 2009). The Tagus estuary has great exposure to tsunami occurrences and, being bordered by the largest metropolitan area in the country, is a particularly worrisome location in what concerns safety of populations and economic losses due to disruption of built infrastructures. The last major earthquake and tsunami combination known to have critically affected the Tagus estuary dates back to November 1st 1755. This catastrophe critically damaged Lisbon's infrastructures, led to numerous casualties and priceless heritage losses. The urban tissue of the present city still bears visible the effects of the catastrophe and of the ensuing protection measures. The objective of this work is to simulate the propagation of debris carried by a 1755-like tsunami along the present-day bathimetric and altimetric conditions of Lisbon waterfront. Particular emphasis was directed to the modeling of vehicles since the tsunami is likely to affect areas that are major traffic nodes such as Alcântara, with more than 1500 vehicles in road network of about 3 km. The simulation tool employed is based on a 2DH spatial (eulerian) shallow-flow approach suited to complex and dynamic bottom boundaries. The discretization technique relies on a finite-volume scheme, based on a flux-splitting technique incorporating a reviewed version of the Roe Riemann solver (Canelas et al. 2013). Two formulations were employed to model the advection of debris: a fully coupled continuum approach, where solid bodies are described by the concentration only and an uncoupled material (lagrangian) formulation where solid bodies are tracked between two time-steps once the flow field is determined by the eulerian solver. In the latter case, concentrations are updated after tracking the solid bodies thus correcting the mass and momentum balance to be used for the next time-step. The urban tissue was thoroughly discretized with a mesh finer than street width so that the buildings would act as obstacles and the streets would bind the incoming flow. To simplify the plan-view geometry, it was assumed that buildings would retain its original shape after the earthquake. The results of the eulerian-continuum and of the lagrangian-discrete solutions are presented, compared and discussed. It was found that the patterns of deposition of the eulerian-continuum model can be considerably different to those obtained by the lagrangian-discrete solution if the latter assumes that vehicles have a small equivalent density and if momentum losses due to inter-particle collisions are neglected. Results become more similar if vehicles are considered much denser than water and that the mixture of water and solid bodies loses momentum due to particle collisions. Acknowledgements: Project PTDC/ECM/117660/2010, funded by the Portuguese Foundation for Science and Technology (FCT) has partially supported this work. References Canelas, R.; Murillo, J. & Ferreira, R.M.L. (2013) 2DH modelling of discontinuous flows over mobile beds. Accepted, Journal of Hydraulic Research, December 2012 Baptista M.A. Miranda, J.M. (2009). Revision of the Portuguese catalog of tsunamis. Nat. Hazards Earth Syst. Sci., 9, 25-42.
Modeling of influence from remote tsunami at the coast of Sakhalin and Kuriles islands.
NASA Astrophysics Data System (ADS)
Zaytsev, Andrey; Pelinovsky, Efim; Yalciner, Ahmet; Chernov, Anton; Kostenko, Irina
2010-05-01
The Far East coast of Russia (Kuriles islands, Sakhalin, Kamchatka) is the area where the dangerous natural phenomena as tsunami is located. A lot of works are established for decreasing of tsunami's influence. Tsunami mapping and mitigation strategy are given for some regions. The centers of Tsunami Warning System are opened, enough plenty of records of a tsunami are collected. The properties of local tsunami are studied well. At the same time, the catastrophic event of the Indonesian tsunami, which had happened in December, 2004, when the sufficient waves have reached the coasts of Africa and South America, it is necessary to note, that the coats, which was far from the epicenter of earthquakes can be effected by catastrophic influence. Moreover, it is practically unique case, when using Tsunami Warning System can reduce the number of human victims to zero. Development of the computer technologies, numerical methods for the solution of systems of the nonlinear differential equations makes computer modeling real and hypothetical tsunamis is the basic method of studying features of distribution of waves in water areas and their influence at coast. Numerical modeling of distribution of historical tsunami from the seismic sources in the Pacific Ocean was observed. The events with an epicenter, remote from Far East coast of Russia were considered. The estimation of the remote tsunami waves propagation was developed. Impact force of tsunamis was estimated. The features of passage of tsunami through Kuril Straits were considered. The spectral analysis of records in settlements of Sakhalin and Kuriles is lead. NAMI-DANCE program was used for tsunami propagation numerical modeling. It is used finite element numerical schemes for Shallow Water Equations and Nonlinear-Dispersive Equations, with use Nested Grid.
Development Of New Databases For Tsunami Hazard Analysis In California
NASA Astrophysics Data System (ADS)
Wilson, R. I.; Barberopoulou, A.; Borrero, J. C.; Bryant, W. A.; Dengler, L. A.; Goltz, J. D.; Legg, M.; McGuire, T.; Miller, K. M.; Real, C. R.; Synolakis, C.; Uslu, B.
2009-12-01
The California Geological Survey (CGS) has partnered with other tsunami specialists to produce two statewide databases to facilitate the evaluation of tsunami hazard products for both emergency response and land-use planning and development. A robust, State-run tsunami deposit database is being developed that compliments and expands on existing databases from the National Geophysical Data Center (global) and the USGS (Cascadia). Whereas these existing databases focus on references or individual tsunami layers, the new State-maintained database concentrates on the location and contents of individual borings/trenches that sample tsunami deposits. These data provide an important observational benchmark for evaluating the results of tsunami inundation modeling. CGS is collaborating with and sharing the database entry form with other states to encourage its continued development beyond California’s coastline so that historic tsunami deposits can be evaluated on a regional basis. CGS is also developing an internet-based, tsunami source scenario database and forum where tsunami source experts and hydrodynamic modelers can discuss the validity of tsunami sources and their contribution to hazard assessments for California and other coastal areas bordering the Pacific Ocean. The database includes all distant and local tsunami sources relevant to California starting with the forty scenarios evaluated during the creation of the recently completed statewide series of tsunami inundation maps for emergency response planning. Factors germane to probabilistic tsunami hazard analyses (PTHA), such as event histories and recurrence intervals, are also addressed in the database and discussed in the forum. Discussions with other tsunami source experts will help CGS determine what additional scenarios should be considered in PTHA for assessing the feasibility of generating products of value to local land-use planning and development.
Topographic data acquisition in tsunami-prone coastal area using Unmanned Aerial Vehicle (UAV)
NASA Astrophysics Data System (ADS)
Marfai, M. A.; Sunarto; Khakim, N.; Cahyadi, A.; Rosaji, F. S. C.; Fatchurohman, H.; Wibowo, Y. A.
2018-04-01
The southern coastal area of Java Island is one of the nine seismic gaps prone to tsunamis. The entire coastline in one of the regencies, Gunungkidul, is exposed to the subduction zone in the Indian Ocean. Also, the growing tourism industries in the regency increase its vulnerability, which places most of its areas at high risk of tsunamis. The same case applies to Kukup, i.e., one of the most well-known beaches in Gunungkidul. Structurally shaped cliffs that surround it experience intensive wave erosion process, but it has very minimum access for evacuation routes. Since tsunami modeling is a very advanced analysis, it requires an accurate topographic data. Therefore, the research aimed to generate the topographic data of Kukup Beach as the baseline in tsunami risk reduction analysis and disaster management. It used aerial photograph data, which was acquired using Unmanned Aerial Vehicle (UAV). The results showed that the aerial photographs captured by drone had accurate elevation and spatial resolution. Therefore, they are applicable for tsunami modeling and disaster management.
Development of jacket platform tsunami risk rating system in waters offshore North Borneo
NASA Astrophysics Data System (ADS)
Lee, H. E.; Liew, M. S.; Mardi, N. H.; Na, K. L.; Toloue, Iraj; Wong, S. K.
2016-09-01
This work details the simulation of tsunami waves generated by seaquakes in the Manila Trench and their effect on fixed oil and gas jacket platforms in waters offshore North Borneo. For this study, a four-leg living quarter jacket platform located in a water depth of 63m is modelled in SACS v5.3. Malaysia has traditionally been perceived to be safe from the hazards of earthquakes and tsunamis. Local design practices tend to neglect tsunami waves and include no such provisions. In 2004, a 9.3 M w seaquake occurred off the northwest coast of Aceh, which generated tsunami waves that caused destruction in Malaysia totalling US 25 million and 68 deaths. This event prompted an awareness of the need to study the reliability of fixed offshore platforms scattered throughout Malaysian waters. In this paper, we present a review of research on the seismicity of the Manila Trench, which is perceived to be high risk for Southeast Asia. From the tsunami numerical model TUNA-M2, we extract computer-simulated tsunami waves at prescribed grid points in the vicinity of the platforms in the region. Using wave heights as input, we simulate the tsunami using SACS v5.3 structural analysis software of offshore platforms, which is widely accepted by the industry. We employ the nonlinear solitary wave theory in our tsunami loading calculations for the platforms, and formulate a platform-specific risk quantification system. We then perform an intensive structural sensitivity analysis and derive a corresponding platform-specific risk rating model.
Real-time determination of the worst tsunami scenario based on Earthquake Early Warning
NASA Astrophysics Data System (ADS)
Furuya, Takashi; Koshimura, Shunichi; Hino, Ryota; Ohta, Yusaku; Inoue, Takuya
2016-04-01
In recent years, real-time tsunami inundation forecasting has been developed with the advances of dense seismic monitoring, GPS Earth observation, offshore tsunami observation networks, and high-performance computing infrastructure (Koshimura et al., 2014). Several uncertainties are involved in tsunami inundation modeling and it is believed that tsunami generation model is one of the great uncertain sources. Uncertain tsunami source model has risk to underestimate tsunami height, extent of inundation zone, and damage. Tsunami source inversion using observed seismic, geodetic and tsunami data is the most effective to avoid underestimation of tsunami, but needs to expect more time to acquire the observed data and this limitation makes difficult to terminate real-time tsunami inundation forecasting within sufficient time. Not waiting for the precise tsunami observation information, but from disaster management point of view, we aim to determine the worst tsunami source scenario, for the use of real-time tsunami inundation forecasting and mapping, using the seismic information of Earthquake Early Warning (EEW) that can be obtained immediately after the event triggered. After an earthquake occurs, JMA's EEW estimates magnitude and hypocenter. With the constraints of earthquake magnitude, hypocenter and scaling law, we determine possible multi tsunami source scenarios and start searching the worst one by the superposition of pre-computed tsunami Green's functions, i.e. time series of tsunami height at offshore points corresponding to 2-dimensional Gaussian unit source, e.g. Tsushima et al., 2014. Scenario analysis of our method consists of following 2 steps. (1) Searching the worst scenario range by calculating 90 scenarios with various strike and fault-position. From maximum tsunami height of 90 scenarios, we determine a narrower strike range which causes high tsunami height in the area of concern. (2) Calculating 900 scenarios that have different strike, dip, length, width, depth and fault-position. Note that strike is limited with the range obtained from 90 scenarios calculation. From 900 scenarios, we determine the worst tsunami scenarios from disaster management point of view, such as the one with shortest travel time and the highest water level. The method was applied to a hypothetical-earthquake, and verified if it can effectively search the worst tsunami source scenario in real-time, to be used as an input of real-time tsunami inundation forecasting.
Did a slump source cause the 1929 Grand Banks tsunami?
NASA Astrophysics Data System (ADS)
Løvholt, F.; Schulten, I.; Mosher, D.; Harbitz, C. B.; Krastel, S.
2017-12-01
On November 18, 1929, a Mw 7.2 earthquake occurred beneath the upper Laurentian Fan, south of Newfoundland. The earthquake displaced about 100 km3 of sediment volume that rapidly evolved into a turbidity current revealed by a series of successive telecommunication cable breaks. A tsunami with fatal consequences along the south coast of Newfoundland also resulted. This tsunami is attributed to sediment mass failure as no seafloor displacement due to the earthquake is observed or expected. Although sidescan sonar, sub-bottom profiler and modern multibeam data show surficial sediment slumping and translational slide activity in the upper part of the slope, no major headscarp, single evacuation area or large mass transport deposit are observed. Sediment mass failure has been interpreted as broadly distributed and shallow, likely occurring in a retrogressive fashion. The question remained, therefore, as to how such complex failure kinematics could generate a tsunami. The Grand Banks tsunami is the only landslide tsunami for which traces are found at transoceanic distances. Despite being a landmark event, only a couple of attempts to model the tsunami exist. None of these have been able to match tsunami observations. Recently acquired seismic reflection data suggest that rotational slumping of a thick sediment mass ( 500 m) on the St. Pierre Slope may have occurred, causing seafloor displacements (fault traces) up to 100 m in height. The previously mapped surficial failures were a consequence of slumping of the thicker mass. Here, we simulate tsunami generation using the new geophysical information to construct different tsunamigenic slump sources. In addition, we undertake simulations assuming a flowing surficial landslide. The numerical simulations shows that its large and rapid vertical displacements render the slump source more tsunamigenic than the alternative surficial landslide. The simulations using the slump source roughly complies with observations of large run-ups on the Burin Peninsula along the south coast of Newfoundland, in contrast to previous modelling attempts. As the source extensions complies with new observations of rotational failures at the slope, the simulations suggest that a slump source is the most likely explanation for the large tsunami observations due to the Grand Banks event.
NASA Astrophysics Data System (ADS)
Heidarzadeh, Mohammad; Necmioglu, Ocal; Ishibe, Takeo; Yalciner, Ahmet C.
2017-12-01
Various Tsunami Service Providers (TSPs) within the Mediterranean Basin supply tsunami warnings including CAT-INGV (Italy), KOERI-RETMC (Turkey), and NOA/HL-NTWC (Greece). The 20 July 2017 Bodrum-Kos (Turkey-Greece) earthquake (Mw 6.6) and tsunami provided an opportunity to assess the response from these TSPs. Although the Bodrum-Kos tsunami was moderate (e.g., runup of 1.9 m) with little damage to properties, it was the first noticeable tsunami in the Mediterranean Basin since the 21 May 2003 western Mediterranean tsunami. Tsunami waveform analysis revealed that the trough-to-crest height was 34.1 cm at the near-field tide gauge station of Bodrum (Turkey). Tsunami period band was 2-30 min with peak periods at 7-13 min. We proposed a source fault model for this tsunami with the length and width of 25 and 15 km and uniform slip of 0.4 m. Tsunami simulations using both nodal planes produced almost same results in terms of agreement between tsunami observations and simulations. Different TSPs provided tsunami warnings at 10 min (CAT-INGV), 19 min (KOERI-RETMC), and 18 min (NOA/HL-NTWC) after the earthquake origin time. Apart from CAT-INGV, whose initial Mw estimation differed 0.2 units with respect to the final value, the response from the other two TSPs came relatively late compared to the desired warning time of 10 min, given the difficulties for timely and accurate calculation of earthquake magnitude and tsunami impact assessment. It is argued that even if a warning time of 10 min was achieved, it might not have been sufficient for addressing near-field tsunami hazards. Despite considerable progress and achievements made within the upstream components of NEAMTWS (North East Atlantic, Mediterranean and Connected seas Tsunami Warning System), the experience from this moderate tsunami may highlight the need for improving operational capabilities of TSPs, but more importantly for effectively integrating civil protection authorities into NEAMTWS and strengthening tsunami education programs.
Tsunami Generation Modelling for Early Warning Systems
NASA Astrophysics Data System (ADS)
Annunziato, A.; Matias, L.; Ulutas, E.; Baptista, M. A.; Carrilho, F.
2009-04-01
In the frame of a collaboration between the European Commission Joint Research Centre and the Institute of Meteorology in Portugal, a complete analytical tool to support Early Warning Systems is being developed. The tool will be part of the Portuguese National Early Warning System and will be used also in the frame of the UNESCO North Atlantic Section of the Tsunami Early Warning System. The system called Tsunami Analysis Tool (TAT) includes a worldwide scenario database that has been pre-calculated using the SWAN-JRC code (Annunziato, 2007). This code uses a simplified fault generation mechanism and the hydraulic model is based on the SWAN code (Mader, 1988). In addition to the pre-defined scenario, a system of computers is always ready to start a new calculation whenever a new earthquake is detected by the seismic networks (such as USGS or EMSC) and is judged capable to generate a Tsunami. The calculation is performed using minimal parameters (epicentre and the magnitude of the earthquake): the programme calculates the rupture length and rupture width by using empirical relationship proposed by Ward (2002). The database calculations, as well the newly generated calculations with the current conditions are therefore available to TAT where the real online analysis is performed. The system allows to analyze also sea level measurements available worldwide in order to compare them and decide if a tsunami is really occurring or not. Although TAT, connected with the scenario database and the online calculation system, is at the moment the only software that can support the tsunami analysis on a global scale, we are convinced that the fault generation mechanism is too simplified to give a correct tsunami prediction. Furthermore short tsunami arrival times especially require a possible earthquake source parameters data on tectonic features of the faults like strike, dip, rake and slip in order to minimize real time uncertainty of rupture parameters. Indeed the earthquake parameters available right after an earthquake are preliminary and could be inaccurate. Determining which earthquake source parameters would affect the initial height and time series of tsunamis will show the sensitivity of the tsunami time series to seismic source details. Therefore a new fault generation model will be adopted, according to the seismotectonics properties of the different regions, and finally included in the calculation scheme. In order to do this, within the collaboration framework of Portuguese authorities, a new model is being defined, starting from the seismic sources in the North Atlantic, Caribbean and Gulf of Cadiz. As earthquakes occurring in North Atlantic and Caribbean sources may affect Portugal mainland, the Azores and Madeira archipelagos also these sources will be included in the analysis. Firstly we have started to examine the geometries of those sources that spawn tsunamis to understand the effect of fault geometry and depths of earthquakes. References: Annunziato, A., 2007. The Tsunami Assesment Modelling System by the Joint Research Center, Science of Tsunami Hazards, Vol. 26, pp. 70-92. Mader, C.L., 1988. Numerical modelling of water waves, University of California Press, Berkeley, California. Ward, S.N., 2002. Tsunamis, Encyclopedia of Physical Science and Technology, Vol. 17, pp. 175-191, ed. Meyers, R.A., Academic Press.
The 2011 Tohoku Tsunami on the Coast of Mexico: A Case Study
NASA Astrophysics Data System (ADS)
Zaytsev, Oleg; Rabinovich, Alexander B.; Thomson, Richard E.
2017-08-01
The Tohoku (East Japan) earthquake of 11 March 2011 ( M w 9.0) generated a great trans-oceanic tsunami that spread throughout the Pacific Ocean, where it was measured by numerous coastal tide gauges and open-ocean DART (Deep-ocean Assessment and Reporting of Tsunamis) stations. Statistical and spectral analyses of the tsunami waves recorded along the Pacific coast of Mexico have enabled us to estimate the principal parameters of the waves along the coast and to compare statistical features of the tsunami with other tsunamis recorded on this coast. We identify coastal "hot spots"—Manzanillo, Zihuatanejo, Acapulco, and Ensenada—corresponding to sites having highest tsunami hazard potential, where wave heights during the 2011 event exceeded 1.5-2 m and tsunami-induced currents were strong enough to close port operations. Based on a joint spectral analysis of the tsunamis and background noise, we reconstructed the spectra of tsunami waves in the deep ocean and found that, with the exception of the high-frequency spectral band (>5 cph), the spectra are in close agreement with the "true" tsunami spectra determined from DART bottom pressure records. The departure of the high-frequency spectra in the coastal region from the deep-sea spectra is shown to be related to background infragravity waves generated in the coastal zone. The total energy and frequency content of the Tohoku tsunami is compared with the corresponding results for the 2010 Chilean tsunami. Our findings show that the integral open-ocean tsunami energy, I 0, was 2.30 cm2, or approximately 1.7 times larger than for the 2010 event. Comparison of this parameter with the mean coastal tsunami variance (451 cm2) indicates that tsunami waves propagating onshore from the open ocean amplified by 14 times; the same was observed for the 2010 tsunami. The "tsunami colour" (frequency content) for the 2011 Tohoku tsunami was "red", with about 65% of the total energy associated with low-frequency waves at frequencies <1.7 cph (periods >35 min). The "red colour" (i.e., the prevalence of low-frequency waves) in the 2011 Tohoku, as well as in the 2010 Chile tsunamis, is explained by the large extension of the source areas. In contrast, the 2014 and 2015 Chilean earthquakes had much smaller source areas and, consequently, induced "bluish" (high-frequency) tsunamis.
NASA Astrophysics Data System (ADS)
Monecke, K.; Beitel, J.; Moran, K.; Moore, A.
2006-12-01
Ban Talae Nok, a village on the Andaman shoreline of Thailand, was hit by the December 26, 2004, tsunami with wave heights up to ~13 meters. Eyewitnesses reported the passage of four to five waves with the second being the largest, followed by the third and fourth waves. The tsunami flooded an area with open grassy fields, small cashew nut plantations and a wetland within a local swale. The wave stopped against hills ~500 m from the shoreline, where watermarks still indicate a flow depth of approximately 1 m. Erosion at the beach is marked by a ~30 cm high scarp cutting a former gravelly beach trail ~60 m inshore of the present shoreline. Deposition of tsunami sand started behind the former beach trail at 80 m inshore. The tsunami deposit changes significantly in thickness and composition along a flow parallel transect that was measured and sampled within this study. The most seaward deposit is about 10 cm thick and consists of three distinct layers that show internal as well as overall normal grading from coarse sand into fine sand. The coarse base contains gravels from the old beach trail and shell fragments. Locally, cross stratification is visible at the top. Farther landward the deposit thins and only one normally graded layer is visible. Behind a small ridge where the wetland begins, the tsunami sediments again reveal three normally graded layers with shell- rich, medium-coarse sand grading into brown-gray mud, probably eroded from the wetland. This deposit thins farther inland from ~30 cm to 8 cm and consists of only one layer. The thickest deposit along the transect is 125 cm thick and can be found in a low at the landward end of the wetland. It consists of normally graded coarse to fine sand with rip-up clasts at the base and climbing ripples in the middle of the deposit section. In the adjacent grassy field the deposit is up to 40 cm thick and consists of medium to coarse sand with shell fragments grading into fine to medium sands, which continue to the foot of the hills.
Tsunami Risk for the Caribbean Coast
NASA Astrophysics Data System (ADS)
Kozelkov, A. S.; Kurkin, A. A.; Pelinovsky, E. N.; Zahibo, N.
2004-12-01
The tsunami problem for the coast of the Caribbean basin is discussed. Briefly the historical data of tsunami in the Caribbean Sea are presented. Numerical simulation of potential tsunamis in the Caribbean Sea is performed in the framework of the nonlinear-shallow theory. The tsunami wave height distribution along the Caribbean Coast is computed. These results are used to estimate the far-field tsunami potential of various coastal locations in the Caribbean Sea. In fact, five zones with tsunami low risk are selected basing on prognostic computations, they are: the bay "Golfo de Batabano" and the coast of province "Ciego de Avila" in Cuba, the Nicaraguan Coast (between Bluefields and Puerto Cabezas), the border between Mexico and Belize, the bay "Golfo de Venezuela" in Venezuela. The analysis of historical data confirms that there was no tsunami in the selected zones. Also, the wave attenuation in the Caribbean Sea is investigated; in fact, wave amplitude decreases in an order if the tsunami source is located on the distance up to 1000 km from the coastal location. Both factors wave attenuation and wave height distribution should be taken into account in the planned warning system for the Caribbean Sea.
NASA Astrophysics Data System (ADS)
González-Carrasco, J. F.; Benavente, R. F.; Zelaya, C.; Núñez, C.; Gonzalez, G.
2017-12-01
The 2017 Mw 8.1, Tehuantepec earthquake generated a moderated tsunami, which was registered in near-field tide gauges network activating a tsunami threat state for Mexico issued by PTWC. In the case of Chile, the forecast of tsunami waves indicate amplitudes less than 0.3 meters above the tide level, advising an informative state of threat, without activation of evacuation procedures. Nevertheless, during sea level monitoring of network we detect wave amplitudes (> 0.3 m) indicating a possible change of threat state. Finally, NTWS maintains informative level of threat based on mathematical filtering analysis of sea level records. After 2010 Mw 8.8, Maule earthquake, the Chilean National Tsunami Warning System (NTWS) has increased its observational capabilities to improve early response. Most important operational efforts have focused on strengthening tide gauge network for national area of responsibility. Furthermore, technological initiatives as Integrated Tsunami Prediction and Warning System (SIPAT) has segmented the area of responsibility in blocks to focus early warning and evacuation procedures on most affected coastal areas, while maintaining an informative state for distant areas of near-field earthquake. In the case of far-field events, NTWS follow the recommendations proposed by Pacific Tsunami Warning Center (PTWC), including a comprehensive monitoring of sea level records, such as tide gauges and DART (Deep-Ocean Assessment and Reporting of Tsunami) buoys, to evaluate the state of tsunami threat in the area of responsibility. The main objective of this work is to analyze the first-order physical processes involved in the far-field propagation and coastal impact of tsunami, including implications for decision-making of NTWS. To explore our main question, we construct a finite-fault model of the 2017, Mw 8.1 Tehuantepec earthquake. We employ the rupture model to simulate a transoceanic tsunami modeled by Neowave2D. We generate synthetic time series at tide gauge stations and compare them with recorded sea level data, to dismiss meteorological processes, such as storms and surges. Resonance analysis is performed by wavelet technique.
Tsunami evacuation analysis, modelling and planning: application to the coastal area of El Salvador
NASA Astrophysics Data System (ADS)
Gonzalez-Riancho, Pino; Aguirre-Ayerbe, Ignacio; Aniel-Quiroga, Iñigo; Abad Herrero, Sheila; González Rodriguez, Mauricio; Larreynaga, Jeniffer; Gavidia, Francisco; Quetzalcoalt Gutiérrez, Omar; Álvarez-Gómez, Jose Antonio; Medina Santamaría, Raúl
2014-05-01
Advances in the understanding and prediction of tsunami impacts allow the development of risk reduction strategies for tsunami-prone areas. Conducting adequate tsunami risk assessments is essential, as the hazard, vulnerability and risk assessment results allow the identification of adequate, site-specific and vulnerability-oriented risk management options, with the formulation of a tsunami evacuation plan being one of the main expected results. An evacuation plan requires the analysis of the territory and an evaluation of the relevant elements (hazard, population, evacuation routes, and shelters), the modelling of the evacuation, and the proposal of alternatives for those communities located in areas with limited opportunities for evacuation. Evacuation plans, which are developed by the responsible authorities and decision makers, would benefit from a clear and straightforward connection between the scientific and technical information from tsunami risk assessments and the subsequent risk reduction options. Scientifically-based evacuation plans would translate into benefits for the society in terms of mortality reduction. This work presents a comprehensive framework for the formulation of tsunami evacuation plans based on tsunami vulnerability assessment and evacuation modelling. This framework considers (i) the hazard aspects (tsunami flooding characteristics and arrival time), (ii) the characteristics of the exposed area (people, shelters and road network), (iii) the current tsunami warning procedures and timing, (iv) the time needed to evacuate the population, and (v) the identification of measures to improve the evacuation process, such as the potential location for vertical evacuation shelters and alternative routes. The proposed methodological framework aims to bridge the gap between risk assessment and risk management in terms of tsunami evacuation, as it allows for an estimation of the degree of evacuation success of specific management options, as well as for the classification and prioritization of the gathered information, in order to formulate an optimal evacuation plan. The framework has been applied to the El Salvador case study through the project "Tsunami Hazard and Risk Assessment in El Salvador", funded by AECID during the period 2009-12, demonstrating its applicability to site-specific response times and population characteristics.
NASA Astrophysics Data System (ADS)
Tang, L.; Titov, V. V.; Chamberlin, C. D.
2009-12-01
The study describes the development, testing and applications of site-specific tsunami inundation models (forecast models) for use in NOAA's tsunami forecast and warning system. The model development process includes sensitivity studies of tsunami wave characteristics in the nearshore and inundation, for a range of model grid setups, resolutions and parameters. To demonstrate the process, four forecast models in Hawaii, at Hilo, Kahului, Honolulu, and Nawiliwili are described. The models were validated with fourteen historical tsunamis and compared with numerical results from reference inundation models of higher resolution. The accuracy of the modeled maximum wave height is greater than 80% when the observation is greater than 0.5 m; when the observation is below 0.5 m the error is less than 0.3 m. The error of the modeled arrival time of the first peak is within 3% of the travel time. The developed forecast models were further applied to hazard assessment from simulated magnitude 7.5, 8.2, 8.7 and 9.3 tsunamis based on subduction zone earthquakes in the Pacific. The tsunami hazard assessment study indicates that use of a seismic magnitude alone for a tsunami source assessment is inadequate to achieve such accuracy for tsunami amplitude forecasts. The forecast models apply local bathymetric and topographic information, and utilize dynamic boundary conditions from the tsunami source function database, to provide site- and event-specific coastal predictions. Only by combining a Deep-ocean Assessment and Reporting of Tsunami-constrained tsunami magnitude with site-specific high-resolution models can the forecasts completely cover the evolution of earthquake-generated tsunami waves: generation, deep ocean propagation, and coastal inundation. Wavelet analysis of the tsunami waves suggests the coastal tsunami frequency responses at different sites are dominated by the local bathymetry, yet they can be partially related to the locations of the tsunami sources. The study also demonstrates the nonlinearity between offshore and nearshore maximum wave amplitudes.
Survey of the July 17, 2006 Central Javan tsunami reveals 21m runup heights
NASA Astrophysics Data System (ADS)
Fritz, H.; Goff, J.; Harbitz, C.; McAdoo, B.; Moore, A.; Latief, H.; Kalligeris, N.; Kodjo, W.; Uslu, B.; Titov, V.; Synolakis, C.
2006-12-01
The Monday, July 17, 2006 Central Javan 7.7 earthquake triggered a substantial tsunami that killed 600 people along a 200km stretch of coastline. The earthquake was not reported felt along the coastline. While there was a warning issued by the PTWC, it did not trigger an evacuation warning (Synolakis, 2006). The Indian Ocean Tsunami Warning System announced by UNESCO as operational in a press release two weeks before the event did not function as promised. There were no seismic recordings transmitted to the PTWC, and two German tsunameter buoys had broken off their moorings and were not operational. Lifeguards along a tourist beach reported that while the observed the harbinger shoreline recession, they attributed to exteme storm waves that were pounding the beaches that day. Had the tsunami struck on the preceding Sunday, instead of Monday, the death toll would had been far higher. The International Tsunami Survey Team (ITST) surveyed the coastline measuring runup, inundation, flow depths and sediment deposition, with standard methods (Synolakis and Okal, 2004). Runup values ranged up to 21m with several readings over 10m, while sand sheets up to 15cm were deposited. The parent earthquake was similar, albeit of smaller magnitude, to the 1994 East Javan tsunami, which struck about 200km east (Synolakis, et al, 1995) and reached a maximum of 11m runup height only at one location on steep cliffs. The unusual distribution of runup heights, and the pronounced extreme values near Nusa Kambangan, suggest a local coseismic landslide may have triggered an additional tsunami (Okal and Synolakis, 2005). The ITST observed that many coastal villages were completely abandoned after the tsunami, even in locales where there were no casualties. Whether residents will return is uncertain, but it is clear that an education campaign in tsunami hazard mitigation is urgently needed. In the aftermath of the tsunami, the Government of Indonesia enforced urgent emergency preparedness measures, including sirens, identification of rapid evacuation routes, and emergency drills, which were under way some locations the team visited. Synolakis, C.E., What went wrong Wall Street Journal. p. 12, July 25, 2006. Synolakis, C.E., and E.A. Okal, 1992--2002: Perspective on a decade of post-tsunami surveys, in: Tsunamis: Case studies, K. Satake (ed), Adv. Natur. Technol. Hazards, 23 1--30, 2005. Okal, E.A., and Synolakis, C.E., Source discriminants for nearfield tsunamis, Geophysical Journal International, 158, 899?-912, 2004. Synolakis, C.E., Imamura, F., Tsuji, Y., Matsutomi, S., Tinti, B., Cook, B., and Ushman, M. Damage, Conditions of East Java tsunami of 1994 analyzed, EOS, 76, (26), 257 and 261-?262, 1995.
NASA Astrophysics Data System (ADS)
Krivorot'ko, Olga; Kabanikhin, Sergey; Marinin, Igor; Karas, Adel; Khidasheli, David
2013-04-01
One of the most important problems of tsunami investigation is the problem of seismic tsunami source reconstruction. Non-profit organization WAPMERR (http://wapmerr.org) has provided a historical database of alleged tsunami sources around the world that obtained with the help of information about seaquakes. WAPMERR also has a database of observations of the tsunami waves in coastal areas. The main idea of presentation consists of determining of the tsunami source parameters using seismic data and observations of the tsunami waves on the shore, and the expansion and refinement of the database of presupposed tsunami sources for operative and accurate prediction of hazards and assessment of risks and consequences. Also we present 3D visualization of real-time tsunami wave propagation and loss assessment, characterizing the nature of the building stock in cities at risk, and monitoring by satellite images using modern GIS technology ITRIS (Integrated Tsunami Research and Information System) developed by WAPMERR and Informap Ltd. The special scientific plug-in components are embedded in a specially developed GIS-type graphic shell for easy data retrieval, visualization and processing. The most suitable physical models related to simulation of tsunamis are based on shallow water equations. We consider the initial-boundary value problem in Ω := {(x,y) ?R2 : x ?(0,Lx ), y ?(0,Ly ), Lx,Ly > 0} for the well-known linear shallow water equations in the Cartesian coordinate system in terms of the liquid flow components in dimensional form Here ?(x,y,t) defines the free water surface vertical displacement, i.e. amplitude of a tsunami wave, q(x,y) is the initial amplitude of a tsunami wave. The lateral boundary is assumed to be a non-reflecting boundary of the domain, that is, it allows the free passage of the propagating waves. Assume that the free surface oscillation data at points (xm, ym) are given as a measured output data from tsunami records: fm(t) := ? (xm, ym,t), (xm,ym ) ?Ω, t ?(Tm1, Tm2), m = 1,2,...,M, M ?N (2) The problem of tsunami source reconstruction (inverse tsunami problem) consists of determining the unknown initial perturbation q(x,y) of the free surface defied in (1) from knowledge of the free surface oscillation data fm(t) given by (2). We present a numerical method to determine the tsunami source using measurements of the height of a passing tsunami wave. Proposed approach based on the weak solution theory for hyperbolic PDEs and adjoint problem method for minimization of the corresponding cost functional 2 J(q) = ?Aq - F? , F = (f1,...,fM ). (3) The adjoint problem is defined to obtain an explicit gradient formula for the cost functional (3). Different numerical algorithms (finite-difference approach and finite volume method) are proposed for the direct as well as adjoint problem. Conjugate gradient algorithm based on explicit gradient formula is used for numerical solution of the inverse problem (1)-(2). This work was partially supported by the Russian Foundation for Basic Research (project No. 12-01-00773) and by SB RAS interdisciplinary project 14 "Inverse Problems and Applications: Theory, Algorithms, Software".
The New Zealand Tsunami Database: historical and modern records
NASA Astrophysics Data System (ADS)
Barberopoulou, A.; Downes, G. L.; Cochran, U. A.; Clark, K.; Scheele, F.
2016-12-01
A database of historical (pre-instrumental) and modern (instrumentally recorded)tsunamis that have impacted or been observed in New Zealand has been compiled andpublished online. New Zealand's tectonic setting, astride an obliquely convergenttectonic boundary on the Pacific Rim, means that it is vulnerable to local, regional andcircum-Pacific tsunamis. Despite New Zealand's comparatively short written historicalrecord of c. 200 years there is a wealth of information about the impact of past tsunamis.The New Zealand Tsunami Database currently has 800+ entries that describe >50 highvaliditytsunamis. Sources of historical information include witness reports recorded indiaries, notes, newspapers, books, and photographs. Information on recent events comesfrom tide gauges and other instrumental recordings such as DART® buoys, and media ofgreater variety, for example, video and online surveys. The New Zealand TsunamiDatabase is an ongoing project with information added as further historical records cometo light. Modern tsunamis are also added to the database once the relevant data for anevent has been collated and edited. This paper briefly overviews the procedures and toolsused in the recording and analysis of New Zealand's historical tsunamis, with emphasison database content.
The living environment and children's fears following the Indonesian tsunami.
Du, Ye Beverly; Lee, Christopher Thomas; Christina, Desy; Belfer, Myron L; Betancourt, Theresa S; O'Rourke, Edward James; Palfrey, Judith S
2012-07-01
The tsunami that struck South-east Asia on 26 December 2004 left more than 500,000 people in Aceh, Indonesia, homeless and displaced to temporary barracks and other communities. This study examines the associations between prolonged habitation in barracks and the nature of fears reported by school-age children and adolescents. In mid-2007, 30 months after the tsunami, the authors interviewed 155 child and parent dyads. Logistic regression analysis was used to compare the fears reported by children and adolescents living in barracks with those reported by their peers who were living in villages. After adjusting for demographic factors and tsunami exposure, the data reveals that children and adolescents living in barracks were three times more likely than those living in villages to report tsunami-related fears. The study demonstrates that continued residence in barracks 30 months after the tsunami is associated with higher rates of reporting tsunami-related fears, suggesting that barracks habitation has had a significant impact on the psychological experience of children and adolescents since the tsunami. © 2012 The Author(s). Journal compilation © Overseas Development Institute, 2012.
Dynamics and early post-tsunami evolution of floating marine debris near Fukushima Daiichi
NASA Astrophysics Data System (ADS)
Matthews, John Philip; Ostrovsky, Lev; Yoshikawa, Yutaka; Komori, Satoru; Tamura, Hitoshi
2017-08-01
The devastating tsunami triggered by the Tōhoku-Oki earthquake of 11 March 2011 caused a crisis at the Fukushima Daiichi nuclear power station where it overtopped the seawall defences. On retreating, the tsunami carried loose debris and wreckage seaward and marshalled buoyant material into extensive plumes. Widespread concern over the fate of these and numerous other Tōhoku tsunami depositions prompted attempts to simulate debris dispersion throughout the wider Pacific. However, the effects of locally perturbed wind and wave fields, active Langmuir circulation and current-induced attrition determine a complex and poorly understood morphology for large floating agglomerations. Here we show that the early post-tsunami evolution of marine-debris plumes near Fukushima Daiichi was also shaped by near-surface wind modifications that took place above relatively calm (lower surface roughness) waters covered by surface films derived from oil and other contaminants. High-spatial-resolution satellite tracking reveals faster-than-expected floating-debris motions and invigorated plume evolution within these regions, while numerical modelling of turbulent air flow over the low-drag, film-covered surface predicts typically metre-per-second wind strengthening at centimetric heights, sufficient to explain the observed debris-speed increases. Wind restructuring probably stimulates the dispersion of flotsam from both biological and anthropogenic sources throughout a global ocean of highly variable surface roughness.
NASA Astrophysics Data System (ADS)
Omira, R.; Matias, L.; Baptista, M. A.
2016-12-01
This study constitutes a preliminary assessment of probabilistic tsunami inundation in the NE Atlantic region. We developed an event-tree approach to calculate the likelihood of tsunami flood occurrence and exceedance of a specific near-shore wave height for a given exposure time. Only tsunamis of tectonic origin are considered here, taking into account local, regional, and far-field sources. The approach used here consists of an event-tree method that gathers probability models for seismic sources, tsunami numerical modeling, and statistical methods. It also includes a treatment of aleatoric uncertainties related to source location and tidal stage. Epistemic uncertainties are not addressed in this study. The methodology is applied to the coastal test-site of Sines located in the NE Atlantic coast of Portugal. We derive probabilistic high-resolution maximum wave amplitudes and flood distributions for the study test-site considering 100- and 500-year exposure times. We find that the probability that maximum wave amplitude exceeds 1 m somewhere along the Sines coasts reaches about 60 % for an exposure time of 100 years and is up to 97 % for an exposure time of 500 years. The probability of inundation occurrence (flow depth >0 m) varies between 10 % and 57 %, and from 20 % up to 95 % for 100- and 500-year exposure times, respectively. No validation has been performed here with historical tsunamis. This paper illustrates a methodology through a case study, which is not an operational assessment.
Mangrove forest against dyke-break-induced tsunami on rapidly subsiding coasts
NASA Astrophysics Data System (ADS)
Takagi, Hiroshi; Mikami, Takahito; Fujii, Daisuke; Esteban, Miguel; Kurobe, Shota
2016-07-01
Thin coastal dykes typically found in developing countries may suddenly collapse due to rapid land subsidence, material ageing, sea-level rise, high wave attack, earthquakes, landslides, or a collision with vessels. Such a failure could trigger dam-break tsunami-type flooding, or "dyke-break-induced tsunami", a possibility which has so far been overlooked in the field of coastal disaster science and management. To analyse the potential consequences of one such flooding event caused by a dyke failure, a hydrodynamic model was constructed based on the authors' field surveys of a vulnerable coastal location in Jakarta, Indonesia. In a 2 m land subsidence scenario - which is expected to take place in the study area after only about 10-20 years - the model results show that the floodwaters rapidly rise to a height of nearly 3 m, resembling the flooding pattern of earthquake-induced tsunamis. The depth-velocity product criterion suggests that many of the narrow pedestrian paths behind the dyke could experience strong flows, which are far greater than the safe limits that would allow pedestrian evacuation. A couple of alternative scenarios were also considered to investigate how such flood impacts could be mitigated by creating a mangrove belt in front of the dyke as an additional safety measure. The dyke-break-induced tsunamis, which in many areas are far more likely than regular earthquake tsunamis, cannot be overlooked and thus should be considered in disaster management and urban planning along the coasts of many developing countries.
NASA Astrophysics Data System (ADS)
Tanioka, Y.; Miranda, G. J. A.; Gusman, A. R.
2017-12-01
Recently, tsunami early warning technique has been improved using tsunami waveforms observed at the ocean bottom pressure gauges such as NOAA DART system or DONET and S-NET systems in Japan. However, for tsunami early warning of near field tsunamis, it is essential to determine appropriate source models using seismological analysis before large tsunamis hit the coast, especially for tsunami earthquakes which generated significantly large tsunamis. In this paper, we develop a technique to determine appropriate source models from which appropriate tsunami inundation along the coast can be numerically computed The technique is tested for four large earthquakes, the 1992 Nicaragua tsunami earthquake (Mw7.7), the 2001 El Salvador earthquake (Mw7.7), the 2004 El Astillero earthquake (Mw7.0), and the 2012 El Salvador-Nicaragua earthquake (Mw7.3), which occurred off Central America. In this study, fault parameters were estimated from the W-phase inversion, then the fault length and width were determined from scaling relationships. At first, the slip amount was calculated from the seismic moment with a constant rigidity of 3.5 x 10**10N/m2. The tsunami numerical simulation was carried out and compared with the observed tsunami. For the 1992 Nicaragua tsunami earthquake, the computed tsunami was much smaller than the observed one. For the 2004 El Astillero earthquake, the computed tsunami was overestimated. In order to solve this problem, we constructed a depth dependent rigidity curve, similar to suggested by Bilek and Lay (1999). The curve with a central depth estimated by the W-phase inversion was used to calculate the slip amount of the fault model. Using those new slip amounts, tsunami numerical simulation was carried out again. Then, the observed tsunami heights, run-up heights, and inundation areas for the 1992 Nicaragua tsunami earthquake were well explained by the computed one. The other tsunamis from the other three earthquakes were also reasonably well explained by the computed ones. Therefore, our technique using a depth dependent rigidity curve is worked to estimate an appropriate fault model which reproduces tsunami heights near the coast in Central America. The technique may be worked in the other subduction zones by finding a depth dependent rigidity curve in that particular subduction zone.
Analysis of community tsunami evacuation time: An overview
NASA Astrophysics Data System (ADS)
Yunarto, Y.; Sari, A. M.
2018-02-01
Tsunami in Indonesia is defined as local tsunami due to its occurrences which are within a distance of 200 km from the epicenter of the earthquake. A local tsunami can be caused by an earthquake, landslide, or volcanic eruption. Tsunami arrival time in Indonesia is generally between 10-60 minutes. As the estimated time of the tsunami waves to reach the coast is 30 minutes after the earthquake, the community should go to the vertical or horizontal evacuation in less than 30 minutes. In an evacuation, the city frequently does the evacuation after obtaining official directions from the authorities. Otherwise, they perform an independent evacuation without correct instructions from the authorities. Both of these ways have several strengths and limitations. This study analyzes these methods regarding time as well as the number of people expected to be saved.
NASA Astrophysics Data System (ADS)
Williams, Shaun; Zhang, Tianran; Chagué, Catherine; Williams, James; Goff, James; Lane, Emily M.; Bind, Jochen; Qasim, Ilyas; Thomas, Kristie-Lee; Mueller, Christof; Hampton, Sam; Borella, Josh
2018-07-01
The 14 November 2016 Kaikōura Tsunami inundated Little Pigeon Bay in Banks Peninsula, New Zealand, and left a distinct sedimentary deposit, on the ground and within the cottage near the shore. Sedimentary (grain size) and geochemical (electrical conductivity and X-Ray Fluorescence) analyses on samples collected over successive field campaigns are used to characterize the deposits. Sediment distribution observed in the cottage in combination with flow direction indicators suggests that sediment and debris laid down within the building were predominantly the result of a single wave that had been channeled up the stream bed rather than from offshore. Salinity data indicated that the maximum tsunami-wetted and/or seawater-sprayed area extended 12.5 m farther inland than the maximum inundation distance inferred from the debris line observed a few days after the event. In addition, the salinity signature was short-lived. An overall inland waning of tsunami energy was indicated by the mean grain size and portable X-Ray Fluorescence elemental results. ITRAX data collected from three cores along an inland transect indicated a distinct elevated elemental signature at the surfaces of the cores, with an associated increase in magnetic susceptibility. Comparable signatures were also identified within subsurface stratigraphic sequences, and likely represent older tsunamis known to have inundated this bay as well as adjacent bays in Banks Peninsula. The sedimentary and geochemical signatures of the 2016 Kaikōura Tsunami at Little Pigeon Bay provide a modern benchmark that can be used to identify older tsunami deposits in the Banks Peninsula region.
Ocean waves and roadside spirits: Thai health service providers' post-tsunami psychosocial health.
Varley, Emma; Isaranuwatchai, Wanrudee; Coyte, Peter C
2012-10-01
A massive earthquake off the west coast of Sumatra in Indonesia triggered a tsunami on 26 December 2004. At least five million people around the world were affected, and the total number of deaths exceeded 280,000. In Thailand, the tsunami struck six southern provinces, where the disaster's immediate impact was catastrophic. Based on ethnographic fieldwork in Phang Nga Province (2007), this paper provides an overview of the disaster's psychosocial consequences for Thai health service providers, the vast majority of whom were bypassed by regional post-tsunami mental health initiatives. The available tsunami literature only briefly attends to health providers' experience of professional 'burn-out', rather than explores the tsunami's wide spectrum of psychosocial effects. This research aims to remedy such oversights through 'critical medical' and 'interpretive phenomenological' analysis of the diverse and culturally-situated ways in which health providers' experienced the tsunami. The paper concludes by arguing for disaster-related psychosocial interventions to involve health providers explicitly. © 2012 The Author(s). Journal compilation © Overseas Development Institute, 2012.
NASA Astrophysics Data System (ADS)
Novikova, Tatyana; Babeyko, Andrey; Papadopoulos, Gerassimos
2017-04-01
Greece and adjacent coastal areas are characterized by a high population exposure to tsunami hazard. The Hellenic Arc is the most active geotectonic structure for the generation of earthquakes and tsunamis. We performed probabilistic tsunami hazard assessment for selected locations of Greek coastlines which are the forecasting points officially used in the tsunami warning operations by the Hellenic National Tsunami Warning Center and the NEAMTWS/IOC/UNESCO. In our analysis we considered seismic sources for tsunami generation along the western, central and eastern segments of the Hellenic Arc. We first created a synthetic catalog as long as 10,000 years for all the significant earthquakes with magnitudes in the range from 6.0 to 8.5, the real events being included in this catalog. For each event included in the synthetic catalog a tsunami was generated and propagated using Boussinesq model. The probability of occurrence for each event was determined by Gutenberg-Richter magnitude-frequency distribution. The results of our study are expressed as hazard curves and hazard maps. The hazard curves were obtained for the selected sites and present the annual probability of exceedance as a function of pick coastal tsunami amplitude. Hazard maps represent the distribution of peak coastal tsunami amplitudes corresponding to a fixed annual probability. In such forms our results can be easily compared to the ones obtained in other studies and further employed for the development of tsunami risk management plans. This research is a contribution to the EU-FP7 tsunami research project ASTARTE (Assessment, Strategy And Risk Reduction for Tsunamis in Europe), grant agreement no: 603839, 2013-10-30.
Tsunami Waves and Tsunami-Induced Natural Oscillations Determined by HF Radar in Ise Bay, Japan
NASA Astrophysics Data System (ADS)
Toguchi, Y.; Fujii, S.; Hinata, H.
2018-04-01
Tsunami waves and the subsequent natural oscillations generated by the 2011 Tohoku earthquake were observed by two high-frequency (HF) radars and four tidal gauge records in Ise Bay. The radial velocity components of both records increased abruptly at approximately 17:00 (JST) and continued for more than 24 h. This indicated that natural oscillations followed the tsunami in Ise Bay. The spectral analyses showed that the tsunami wave arrivals had periods of 16-19, 30-40, 60-90, and 120-140 min. The three longest periods were remarkably amplified. Time-frequency analysis also showed the energy increase and duration of these periods. We used an Empirical Orthogonal Function (EOF) to analyze the total velocity of the currents to find the underlying oscillation patterns in the three longest periods. To verify the physical properties of the EOF analysis results, we calculated the oscillation modes in Ise Bay using a numerical model proposed by Loomis. The results of EOF analysis showed that the oscillation modes of 120-140 and 60-90 min period bands were distributed widely, whereas the oscillation mode of the 30-40 min period band was distributed locally. The EOF spatial patterns of each period showed good agreement with the eigenmodes calculated by the method of Loomis (1975). Thus, the HF radars were capable of observing the tsunami arrival and the subsequent oscillations.
Using landscape analysis to assess and model tsunami damage in Aceh province, Sumatra
Louis R. Iverson; Anantha Prasad
2007-01-01
The nearly unprecedented loss of life resulting from the earthquake and tsunami of December 26,2004, was greatest in the province of Aceh, Sumatra (Indonesia). We evaluated tsunami damage and built empirical vulnerability models of damage/no damage based on elevation, distance from shore, vegetation, and exposure. We found that highly predictive models are possible and...
Real-time correction of tsunami site effect by frequency-dependent tsunami-amplification factor
NASA Astrophysics Data System (ADS)
Tsushima, H.
2017-12-01
For tsunami early warning, I developed frequency-dependent tsunami-amplification factor and used it to design a recursive digital filter that can be applicable for real-time correction of tsunami site response. In this study, I assumed that a tsunami waveform at an observing point could be modeled by convolution of source, path and site effects in time domain. Under this assumption, spectral ratio between offshore and the nearby coast can be regarded as site response (i.e. frequency-dependent amplification factor). If the amplification factor can be prepared before tsunamigenic earthquakes, its temporal convolution to offshore tsunami waveform provides tsunami prediction at coast in real time. In this study, tsunami waveforms calculated by tsunami numerical simulations were used to develop frequency-dependent tsunami-amplification factor. Firstly, I performed numerical tsunami simulations based on nonlinear shallow-water theory from many tsuanmigenic earthquake scenarios by varying the seismic magnitudes and locations. The resultant tsunami waveforms at offshore and the nearby coastal observing points were then used in spectral-ratio analysis. An average of the resulted spectral ratios from the tsunamigenic-earthquake scenarios is regarded as frequency-dependent amplification factor. Finally, the estimated amplification factor is used in design of a recursive digital filter that can be applicable in time domain. The above procedure is applied to Miyako bay at the Pacific coast of northeastern Japan. The averaged tsunami-height spectral ratio (i.e. amplification factor) between the location at the center of the bay and the outside show a peak at wave-period of 20 min. A recursive digital filter based on the estimated amplification factor shows good performance in real-time correction of tsunami-height amplification due to the site effect. This study is supported by Japan Society for the Promotion of Science (JSPS) KAKENHI grant 15K16309.
NASA Astrophysics Data System (ADS)
Tarbotton, C.; Walters, R. A.; Goff, J. R.; Dominey-Howes, D.; Turner, I. L.
2012-12-01
As communities become increasingly aware of the risks posed by tsunamis, it is important to develop methods for predicting the damage they can cause to the built environment. This will provide the information needed to make informed decisions regarding land-use, building codes, and evacuation. At present, a number of tsunami-building vulnerability assessment models are available, however, the relative infrequency and destructive nature of tsunamis has long made it difficult to obtain the data necessary to adequately validate and compare them. Further complicating matters is that the inundation of a tsunami in the built environment is very difficult model, as is the response of a building to the hydraulic forces that a tsunami generates. Variations in building design and condition will significantly affect a building's susceptibility to damage. Likewise, factors affecting the flow conditions at a building (i.e. surrounding structures and topography), will greatly affect its exposure. This presents significant challenges for practitioners, as they are often left in the dark on how to use hazard modeling and vulnerability assessment techniques together to conduct the community-scale impact studies required for tsunami planning. This paper presents the results of an in-depth case study of Yuriage, Miyagi Prefecture - a coastal city in Japan that was badly damaged by the 2011 Tohoku tsunami. The aim of the study was twofold: 1) To test and compare existing tsunami vulnerability assessment models and 2) To more effectively utilize hydrodynamic models in the context of tsunami impact studies. Following the 2011 Tohoku event, an unprecedented quantity of field data, imagery and video emerged. Yuriage in particular, features a comprehensive set of street level Google Street View imagery, available both before and after the event. This has enabled the collection of a large dataset describing the characteristics of the buildings existing before the event as well the subsequent damage that they sustained during. These data together with the detailed results from hydrodynamic models have been used to provide the building, damage and hazard data necessary to rigorously test and compare existing vulnerability assessments techniques. The result is a much-improved understanding of the capabilities of existing vulnerability assessment techniques, as well as important improvements to their assessment framework This provides much needed guidance to practitioners on how to conduct tsunami impact assessments in the future. Furthermore, the study introduces some new methods of integrating hydrodynamic models into vulnerability assessment models, offering guidance on how to more effectively model tsunami inundation in the built environment.
NASA Astrophysics Data System (ADS)
Beranzoli, Laura; Best, Mairi; Chierici, Francesco; Embriaco, Davide; Galbraith, Nan; Heeseman, Martin; Kelley, Deborah; Pirenne, Benoit; Scofield, Oscar; Weller, Robert
2015-04-01
There is a need for tsunami modeling and early warning systems for near-source areas. For example this is a common public safety threat in the Mediterranean and Juan de Fuca/NE Pacific Coast of N.A.; Regions covered by the EMSO, OOI, and ONC ocean observatories. Through the CoopEUS international cooperation project, a number of environmental research infrastructures have come together to coordinate efforts on environmental challenges; this tsunami case study tackles one such challenge. There is a mutual need of tsunami event field data and modeling to deepen our experience in testing methodology and developing real-time data processing. Tsunami field data are already available for past events, part of this use case compares these for compatibility, gap analysis, and model groundtruthing. It also reviews sensors needed and harmonizes instrument settings. Sensor metadata and registries are compared, harmonized, and aligned. Data policies and access are also compared and assessed for gap analysis. Modelling algorithms are compared and tested against archived and real-time data. This case study will then be extended to other related tsunami data and model sources globally with similar geographic and seismic scenarios.
An evaluation of onshore digital elevation models for tsunami inundation modelling
NASA Astrophysics Data System (ADS)
Griffin, J.; Latief, H.; Kongko, W.; Harig, S.; Horspool, N.; Hanung, R.; Rojali, A.; Maher, N.; Fountain, L.; Fuchs, A.; Hossen, J.; Upi, S.; Dewanto, S. E.; Cummins, P. R.
2012-12-01
Tsunami inundation models provide fundamental information about coastal areas that may be inundated in the event of a tsunami along with additional parameters such as flow depth and velocity. This can inform disaster management activities including evacuation planning, impact and risk assessment and coastal engineering. A fundamental input to tsunami inundation models is adigital elevation model (DEM). Onshore DEMs vary widely in resolution, accuracy, availability and cost. A proper assessment of how the accuracy and resolution of DEMs translates into uncertainties in modelled inundation is needed to ensure results are appropriately interpreted and used. This assessment can in turn informdata acquisition strategies depending on the purpose of the inundation model. For example, lower accuracy elevation data may give inundation results that are sufficiently accurate to plan a community's evacuation route but not sufficient to inform engineering of a vertical evacuation shelters. A sensitivity study is undertaken to assess the utility of different available onshore digital elevation models for tsunami inundation modelling. We compare airborne interferometric synthetic aperture radar (IFSAR), ASTER and SRTM against high resolution (<1 m horizontal resolution, < 0.15 m vertical accuracy) LiDAR or stereo-camera data in three Indonesian locations with different coastal morphologies (Padang, West Sumatra; Palu, Central Sulawesi; and Maumere, Flores), using three different computational codes (ANUGA, TUNAMI-N3 and TsunAWI). Tsunami inundation extents modelled with IFSAR are comparable with those modelled with the high resolution datasets and with historical tsunami run-up data. Large vertical errors (> 10 m) and poor resolution of the coastline in the ASTER and SRTM elevation models cause modelled inundation to be much less compared with models using better data and with observations. Therefore we recommend that ASTER and SRTM should not be used for modelling tsunami inundation in order to determine tsunami extent or any other measure of onshore tsunami hazard. We suggest that for certain disaster management applications where the important factor is the extent of inundation, such as evacuation planning, airborne IFSAR provides a good compromise between cost and accuracy; however the representation of flow parameters such as depth and velocity is not sufficient to inform detailed engineering of structures. Differences in modelled inundation extent between digital terrain models (DTM) and digital surface models (DSM) for LiDAR, high resolution stereo-camera and airborne IFSAR data are greater than differences between the data types. The presence of trees and buildings as solid elevation in the DSM leads to underestimated inundation extents compared with observations, while removal of these features in the DTM causes more extensive inundation. Further work is needed to resolve whether DTM or DSM should be used and, in particular for DTM, how and at what spatial scale roughness should be parameterized to appropriately account for the presence of buildings and vegetation. We also test model mesh resolutions up to 0.8 m but find that there are only negligible changes in inundation extent between 0.8 and 25 m mesh resolution, even using the highest resolution elevation data.
Non-Poissonian Distribution of Tsunami Waiting Times
NASA Astrophysics Data System (ADS)
Geist, E. L.; Parsons, T.
2007-12-01
Analysis of the global tsunami catalog indicates that tsunami waiting times deviate from an exponential distribution one would expect from a Poisson process. Empirical density distributions of tsunami waiting times were determined using both global tsunami origin times and tsunami arrival times at a particular site with a sufficient catalog: Hilo, Hawai'i. Most sources for the tsunamis in the catalog are earthquakes; other sources include landslides and volcanogenic processes. Both datasets indicate an over-abundance of short waiting times in comparison to an exponential distribution. Two types of probability models are investigated to explain this observation. Model (1) is a universal scaling law that describes long-term clustering of sources with a gamma distribution. The shape parameter (γ) for the global tsunami distribution is similar to that of the global earthquake catalog γ=0.63-0.67 [Corral, 2004]. For the Hilo catalog, γ is slightly greater (0.75-0.82) and closer to an exponential distribution. This is explained by the fact that tsunamis from smaller triggered earthquakes or landslides are less likely to be recorded at a far-field station such as Hilo in comparison to the global catalog, which includes a greater proportion of local tsunamis. Model (2) is based on two distributions derived from Omori's law for the temporal decay of triggered sources (aftershocks). The first is the ETAS distribution derived by Saichev and Sornette [2007], which is shown to fit the distribution of observed tsunami waiting times. The second is a simpler two-parameter distribution that is the exponential distribution augmented by a linear decay in aftershocks multiplied by a time constant Ta. Examination of the sources associated with short tsunami waiting times indicate that triggered events include both earthquake and landslide tsunamis that begin in the vicinity of the primary source. Triggered seismogenic tsunamis do not necessarily originate from the same fault zone, however. For example, subduction-thrust and outer-rise earthquake pairs are evident, such as the November 2006 and January 2007 Kuril Islands tsunamigenic pair. Because of variations in tsunami source parameters, such as water depth above the source, triggered tsunami events with short waiting times are not systematically smaller than the primary tsunami.
Doocy, Shannon; Daniels, Amy; Dick, Anna; Kirsch, Thomas D.
2013-01-01
Introduction. Although rare, tsunamis have the potential to cause considerable loss of life and injury as well as widespread damage to the natural and built environments. The objectives of this review were to describe the impact of tsunamis on human populations in terms of mortality, injury, and displacement and, to the extent possible, identify risk factors associated with these outcomes. This is one of five reviews on the human impact of natural disasters. Methods. Data on the impact of tsunamis were compiled using two methods, a historical review from 1900 to mid 2009 of tsunami events from multiple databases and a systematic literature review to October 2012 of publications. Analysis included descriptive statistics and bivariate tests for associations between tsunami mortality and characteristics using STATA 11. Findings. There were 255,195 deaths (range 252,619-275,784) and 48,462 injuries (range 45,466-51,457) as a result of tsunamis from 1900 to 2009. The majority of deaths (89%) and injuries reported during this time period were attributed to a single event –the 2004 Indian Ocean tsunami. Findings from the systematic literature review indicate that the primary cause of tsunami-related mortality is drowning, and that females, children and the elderly are at increased mortality risk. The few studies that reported on tsunami-related injury suggest that males and young adults are at increased injury-risk. Conclusions. Early warning systems may help mitigate tsunami-related loss of life. PMID:23857277
Doocy, Shannon; Daniels, Amy; Dick, Anna; Kirsch, Thomas D
2013-04-16
Introduction. Although rare, tsunamis have the potential to cause considerable loss of life and injury as well as widespread damage to the natural and built environments. The objectives of this review were to describe the impact of tsunamis on human populations in terms of mortality, injury, and displacement and, to the extent possible, identify risk factors associated with these outcomes. This is one of five reviews on the human impact of natural disasters. Methods. Data on the impact of tsunamis were compiled using two methods, a historical review from 1900 to mid 2009 of tsunami events from multiple databases and a systematic literature review to October 2012 of publications. Analysis included descriptive statistics and bivariate tests for associations between tsunami mortality and characteristics using STATA 11. Findings. There were 255,195 deaths (range 252,619-275,784) and 48,462 injuries (range 45,466-51,457) as a result of tsunamis from 1900 to 2009. The majority of deaths (89%) and injuries reported during this time period were attributed to a single event -the 2004 Indian Ocean tsunami. Findings from the systematic literature review indicate that the primary cause of tsunami-related mortality is drowning, and that females, children and the elderly are at increased mortality risk. The few studies that reported on tsunami-related injury suggest that males and young adults are at increased injury-risk. Conclusions. Early warning systems may help mitigate tsunami-related loss of life.
A GIS Representation of 1964 Tsunami Damage in Crescent City, California
NASA Astrophysics Data System (ADS)
Velasco Campos, C. J.; Dengler, L. A.
2013-12-01
The March 1964 Alaska tsunami caused major damage in Alaska and also impacted the west coast of North America. Crescent City, California, 3000 km away from the source region, suffered the greatest damage outside Alaska. Twenty-nine blocks of the downtown and harbor areas were inundated and nearly 300 homes and businesses damaged or destroyed. In the aftermath of the tsunami, numerous maps, reports and photographs of the impacts in Crescent City were released, some by engineers and scientists, and much by individuals and the popular press. The Del Norte Historical Society has a large amount of archival material (photographs and eye witness accounts) from the tsunami, much of which has never been thoroughly examined or correlated with other reports. In this study, we assemble all of the available information from these disparate sources into a GIS framework in order to examine the 1964 Crescent City damage in a systematic way and provide a quantitative framework for others who are modeling tsunami impacts. Using ArcGIS 10, old aerial photos, tsunami inundation maps, and photographs were georeferenced to produce GIS layers of 'before and after' Crescent City. Hyperlinks were created to connect photos with their locations in present day. We reference damage to a layer showing Magoon's 1968 map of inundation depth and extent. Structural damage falls into four main groupings: structures floated off of foundations, damage by impact from debris, pressure differences from water infilling structures, and fire. 15 structures were moved off of foundations, all in the direction of the outgoing flow. We also create layers of the structures of the modern city and the predicted tsunami run-up from a Cascadia event. Magoon, Orville T., 1966, Structural Damage by Tsunamis, Proceedings, American Society Civil Engineers, Specialty Conference on Coastal Engineering, Santa Barbara (California), Oct. 1965, pp. 35-68
NASA Astrophysics Data System (ADS)
Pagnoni, Gianluca; Tinti, Stefano
2015-04-01
The coast of the eastern Sicily is exposed to tsunamis that can be generated by local earthquakes (e.g. the 1169, 1693, 1908 events) and by earthquakes located in distant seismic zones (see the 365 AD tsunamigenic quake in Western Hellenic Arc). Tsunamis can also be generated by landslides possibly triggered by earthquakes. The Hyblean-Malta steep escarpment running offshore at a small angle with the coast is an ideal place for submarine mass failure occurrences with tsunamigenic effects. The entire eastern coast of Sicily from Messina in the north to Siracusa in the south is under the threat of tsunamis. In the frame of the FP7 European project ASTARTE (Assessment, Strategy And Risk Reduction for Tsunamis in Europe - FP7-ENV2013 6.4-3, Grant 603839), the segment of coast from Augusta to Siracusa was selected to undertake specific and detailed studies of tsunami hazard, vulnerability and damage to test existing methods and develop innovative approaches. The scope of the present work regards vulnerability and damage analyses. We chose to adopt two methods, known in the literature and briefly denoted as PTVA-3 and SCHEMA, that are based on two very different approaches, the former more qualitative and the latter more quantitative. The method PTVA-3 determines the vulnerability and damageability of a building by weighting and ranking a number of attributes covering the structural features of the edifice and the relevant characteristics of the surrounding environment such as the position with respect to the coast, the existence of defensive elements (e.g. walls, breakwaters, vegetation) and also the proximity to potential sources of floating objects that can feed damaging debris flows. On the other hand, the SCHEMA method uses a classification of building and a damage matrix that were derived from experimental fragility and damage curves first established after the Sumatra 2004 tsunami and later refined and adapted to the building stock of the Mediterranean region. The aim of this work is to compare the vulnerability and damage analyses carried out by means of the PTVA-3 and the SCHEMA methods on the same data set, that is the urban and port areas of Siracusa and Augusta in order to highlight similarities and discrepancies. In this preliminary analysis the coastal inundation was not derived from tsunami simulations, but was assumed to be constant along the coast (bathtub hypothesis) and was taken to be 5 m and 10 m respectively for Siracusa and Augusta. The main outcome of the compared analysis is that the two methods do not provide completely overlapping vulnerability and damage maps, though they use equivalent 5-degree scales. In general the PTVA-3 method tends to overestimate the damage, although there are several counterexamples where PTVA-3 foresees less damage than SCHEMA. The differences we found in the assessment opens the question of how to treat uncertainties in the vulnerability and damage analyses, which is a problem often overlooked, but of crucial importance for the application and for civil authorities.
Probabilistic tsunami hazard assessment at Seaside, Oregon, for near-and far-field seismic sources
Gonzalez, F.I.; Geist, E.L.; Jaffe, B.; Kanoglu, U.; Mofjeld, H.; Synolakis, C.E.; Titov, V.V.; Areas, D.; Bellomo, D.; Carlton, D.; Horning, T.; Johnson, J.; Newman, J.; Parsons, T.; Peters, R.; Peterson, C.; Priest, G.; Venturato, A.; Weber, J.; Wong, F.; Yalciner, A.
2009-01-01
The first probabilistic tsunami flooding maps have been developed. The methodology, called probabilistic tsunami hazard assessment (PTHA), integrates tsunami inundation modeling with methods of probabilistic seismic hazard assessment (PSHA). Application of the methodology to Seaside, Oregon, has yielded estimates of the spatial distribution of 100- and 500-year maximum tsunami amplitudes, i.e., amplitudes with 1% and 0.2% annual probability of exceedance. The 100-year tsunami is generated most frequently by far-field sources in the Alaska-Aleutian Subduction Zone and is characterized by maximum amplitudes that do not exceed 4 m, with an inland extent of less than 500 m. In contrast, the 500-year tsunami is dominated by local sources in the Cascadia Subduction Zone and is characterized by maximum amplitudes in excess of 10 m and an inland extent of more than 1 km. The primary sources of uncertainty in these results include those associated with interevent time estimates, modeling of background sea level, and accounting for temporal changes in bathymetry and topography. Nonetheless, PTHA represents an important contribution to tsunami hazard assessment techniques; viewed in the broader context of risk analysis, PTHA provides a method for quantifying estimates of the likelihood and severity of the tsunami hazard, which can then be combined with vulnerability and exposure to yield estimates of tsunami risk. Copyright 2009 by the American Geophysical Union.
Scale/TSUNAMI Sensitivity Data for ICSBEP Evaluations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rearden, Bradley T; Reed, Davis Allan; Lefebvre, Robert A
2011-01-01
The Tools for Sensitivity and Uncertainty Analysis Methodology Implementation (TSUNAMI) software developed at Oak Ridge National Laboratory (ORNL) as part of the Scale code system provide unique methods for code validation, gap analysis, and experiment design. For TSUNAMI analysis, sensitivity data are generated for each application and each existing or proposed experiment used in the assessment. The validation of diverse sets of applications requires potentially thousands of data files to be maintained and organized by the user, and a growing number of these files are available through the International Handbook of Evaluated Criticality Safety Benchmark Experiments (IHECSBE) distributed through themore » International Criticality Safety Benchmark Evaluation Program (ICSBEP). To facilitate the use of the IHECSBE benchmarks in rigorous TSUNAMI validation and gap analysis techniques, ORNL generated SCALE/TSUNAMI sensitivity data files (SDFs) for several hundred benchmarks for distribution with the IHECSBE. For the 2010 edition of IHECSBE, the sensitivity data were generated using 238-group cross-section data based on ENDF/B-VII.0 for 494 benchmark experiments. Additionally, ORNL has developed a quality assurance procedure to guide the generation of Scale inputs and sensitivity data, as well as a graphical user interface to facilitate the use of sensitivity data in identifying experiments and applying them in validation studies.« less
New method to determine initial surface water displacement at tsunami source
NASA Astrophysics Data System (ADS)
Lavrentyev, Mikhail; Romanenko, Alexey; Tatarintsev, Pavel
2013-04-01
Friday, March 11, 2011 at 05:46:23 UTC, Japan was struck by an 8.9-magnitude earthquake near its Northeastern coast. This is one of the largest earthquakes that Japan has ever experienced. Tsunami waves swept away houses and cars and caused massive human losses. To predict tsunami wave parameters better and faster, we propose to improve data inversion scheme and achieve the performance gain of data processing. One of the reasons of inaccurate predictions of tsunami parameters is that very little information is available about the initial disturbance of the sea bed at tsunami source. In this paper, we suggest a new way of improving the quality of tsunami source parameters prediction. Modern computational technologies can accurately calculate tsunami wave propagation over the deep ocean provided that the initial displacement (perturbation of the sea bed at tsunami source) is known [4]. Direct geophysical measurements provide the location of an earthquake hypocenter and its magnitude (the released energy evaluation). Among the methods of determination of initial displacement the following ones should be considered. Calculation through the known fault structure and available seismic information. This method is widely used and provides useful information. However, even if the exact knowledge about rock blocks shifts is given, recalculation in terms of sea bed displacement is needed. This results in a certain number of errors. GPS data analysis. This method was developed after the December 2004 event in the Indian Ocean. A good correlation between dry land based GPS sensors and tsunami wave parameters was observed in the particular case of the West coast of Sumatra, Indonesia. This approach is very unique and can hardly been used in other geo locations. Satellite image analysis. The resolution of modern satellite images has dramatically improved. In the future, correct data of sea surface displacement will probably be available in real time, right after a tsunamigenic earthquake. However, today it is not yet possible. Ground-based sea radars. This is an effective tool for direct measurement of tsunami wave. At the same time, the wave is measured at a rather narrow area in front of the radar and does not include information about neighboring parts of the wave. Direct measurement of tsunami wave at deep water [2]. Today, this technology is certainly among the most useful and promising. The DART II® system consists of a seafloor bottom pressure recording (BPR) system, capable of detecting tsunamis as small as 1 cm, and a moored surface buoy for real-time communications. We focus our research on improving the later method, direct measurement of tsunami wave at deep water. We suggest the new way to analyze DART data, modifying the methodology originally proposed by V. Titov. Smaller system of unit sources [3] should be considered to approximate all typical shapes of initial disturbance by several suitable basis functions. To successfully implement it, performance of data analysis should be dramatically improved. This could be done by using a signal orthogonalization procedure for considered system of unit sources and calculation of Fourier coefficients of the measured time series with respect to orthogonal basis. The approach suggested was used as a part of computerized workstation for tsunami hazard monitoring [5-6]. National Oceanic and Atmospheric Administration Center for Tsunami Research. URL: http://nctr.pmel.noaa.gov/honshu20110311/ National Data Buoy Center. URL: http://www.ndbc.noaa.gov/dart.shtml National Oceanic and Atmospheric Administration Center for Tsunami Research. URL: http://sift.pmel.noaa.gov/thredds/dodsC/uncompressed/ National Oceanic and Atmospheric Administration Center for Tsunami Research. URL: http://nctr.pmel.noaa.gov/model.html Alexey Romanenko, Mikhail Lavrentiev-jr, Vasily Titov, "Modern Architecture for Tsunami Hazard Mitigation" // Asia Oceania Geosciences Society (AOGS-2012), ISBN 978-981-07-2049-0 Mikhail Lavrentiev-jr, Andrey Marchuk, Alexey Romanenko, Konstantin Simonov, and Vasiliy Titov, "Computerized Workstation for Tsunami Hazard Monitoring", Geophysical research abstracts, Vol. 12, EGU2010-3021-1, 2010
Kammerer, A.M.; ten Brink, Uri S.; Titov, V.V.
2017-01-01
In response to the 2004 Indian Ocean Tsunami, the United States Nuclear Regulatory Commission (US NRC) initiated a long-term research program to improve understanding of tsunami hazard levels for nuclear facilities in the United States. For this effort, the US NRC organized a collaborative research program with the United States Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA) with a goal of assessing tsunami hazard on the Atlantic and Gulf Coasts of the United States. Necessarily, the US NRC research program includes both seismic- and landslide-based tsunamigenic sources in both the near and the far fields. The inclusion of tsunamigenic landslides, an important category of sources that impact tsunami hazard levels for the Atlantic and Gulf Coasts is a key difference between this program and most other tsunami hazard assessment programs. The initial phase of this work consisted of collection, interpretation, and analysis of available offshore data, with significant effort focused on characterizing offshore near-field landslides and analyzing their tsunamigenic potential and properties. In the next phase of research, additional field investigations will be conducted in key locations of interest and additional analysis will be undertaken. Simultaneously, the MOST tsunami generation and propagation model used by NOAA will first be enhanced to include landslide-based initiation mechanisms and then will be used to investigate the impact of the tsunamigenic sources identified and characterized by the USGS. The potential for probabilistic tsunami hazard assessment will also be explore in the final phases of the program.
Risk mapping and tsunami mitigation in Gunungkidul area, Yogyakarta
NASA Astrophysics Data System (ADS)
Mardiatno, Djati; Sunarto, WF, Lies Rahayu; Saptadi, Gatot; Ayuningtyas, Efrinda Ari
2015-04-01
Coastal area of Gunungkidul Regency is one of the areas prone to tsunami in Indonesia. In contrary, currently, this area is very intensively developed as one of the favourite tourism destination. This paper is aimed at explaining tsunami risk and a mitigation type in Gunungkidul Area, Yogyakarta. Digital elevation model (DEM) and coastal morphology were used to generate tsunami hazard map. Vulnerability was analysed by utilizing land use data. Information from previous studies (e.g. from GTZ) were also considered for analysis. Tsunami risk was classified into three classes, i.e. high risk, medium risk, and low risk and visualized in the form of tsunami risk map. Tsunami risk map is a tool which can be used as disaster reduction instrument, such as for evacuation routes planning. Based on the preliminary results of this research, it is clear that tsunami risk in this area is varied depend on the morphological condition of the location. There are five coastal area selected as the location, i.e. Ngrenehan, Baron, Sepanjang, PulangSawal, and Sadeng. All locations have the high risk zone to tsunami, especially for bay area. Evacuation routes were generated for all locations by considering the local landscape condition. There are several differences of evacuation ways for each location.
A long source area of the 1906 Colombia-Ecuador earthquake estimated from observed tsunami waveforms
NASA Astrophysics Data System (ADS)
Yamanaka, Yusuke; Tanioka, Yuichiro; Shiina, Takahiro
2017-12-01
The 1906 Colombia-Ecuador earthquake induced both strong seismic motions and a tsunami, the most destructive earthquake in the history of the Colombia-Ecuador subduction zone. The tsunami propagated across the Pacific Ocean, and its waveforms were observed at tide gauge stations in countries including Panama, Japan, and the USA. This study conducted slip inverse analysis for the 1906 earthquake using these waveforms. A digital dataset of observed tsunami waveforms at the Naos Island (Panama) and Honolulu (USA) tide gauge stations, where the tsunami was clearly observed, was first produced by consulting documents. Next, the two waveforms were applied in an inverse analysis as the target waveform. The results of this analysis indicated that the moment magnitude of the 1906 earthquake ranged from 8.3 to 8.6. Moreover, the dominant slip occurred in the northern part of the assumed source region near the coast of Colombia, where little significant seismicity has occurred, rather than in the southern part. The results also indicated that the source area, with significant slip, covered a long distance, including the southern, central, and northern parts of the region.[Figure not available: see fulltext.
Quantifying the impacts of global disasters
NASA Astrophysics Data System (ADS)
Jones, L. M.; Ross, S.; Wilson, R. I.; Borrero, J. C.; Brosnan, D.; Bwarie, J. T.; Geist, E. L.; Hansen, R. A.; Johnson, L. A.; Kirby, S. H.; Long, K.; Lynett, P. J.; Miller, K. M.; Mortensen, C. E.; Perry, S. C.; Porter, K. A.; Real, C. R.; Ryan, K. J.; Thio, H. K.; Wein, A. M.; Whitmore, P.; Wood, N. J.
2012-12-01
The US Geological Survey, National Oceanic and Atmospheric Administration, California Geological Survey, and other entities are developing a Tsunami Scenario, depicting a realistic outcome of a hypothetical but plausible large tsunami originating in the eastern Aleutian Arc, affecting the west coast of the United States, including Alaska and Hawaii. The scenario includes earth-science effects, damage and restoration of the built environment, and social and economic impacts. Like the earlier ShakeOut and ARkStorm disaster scenarios, the purpose of the Tsunami Scenario is to apply science to quantify the impacts of natural disasters in a way that can be used by decision makers in the affected sectors to reduce the potential for loss. Most natural disasters are local. A major hurricane can destroy a city or damage a long swath of coastline while mostly sparing inland areas. The largest earthquake on record caused strong shaking along 1500 km of Chile, but left the capital relatively unscathed. Previous scenarios have used the local nature of disasters to focus interaction with the user community. However, the capacity for global disasters is growing with the interdependency of the global economy. Earthquakes have disrupted global computer chip manufacturing and caused stock market downturns. Tsunamis, however, can be global in their extent and direct impact. Moreover, the vulnerability of seaports to tsunami damage can increase the global consequences. The Tsunami Scenario is trying to capture the widespread effects while maintaining the close interaction with users that has been one of the most successful features of the previous scenarios. The scenario tsunami occurs in the eastern Aleutians with a source similar to the 2011 Tohoku event. Geologic similarities support the argument that a Tohoku-like source is plausible in Alaska. It creates a major nearfield tsunami in the Aleutian arc and peninsula, a moderate tsunami in the US Pacific Northwest, large but not the maximum in Hawaii, and the largest plausible tsunami in southern California. To support the analysis of global impacts, we begin with the Ports of Los Angeles and Long Beach which account for >40% of the imports to the United States. We expand from there throughout California for the first level economic analysis. We are looking to work with Alaska and Hawaii, especially on similar economic issues in ports, over the next year and to expand the analysis to consideration of economic interactions between the regions.
Does Morphological Adjustment During Tsunami Inundation Increase Levels of Hazard?
NASA Astrophysics Data System (ADS)
Tehranirad, B.; Kirby, J. T., Jr.; Shi, F.; Grilli, S. T.
2016-12-01
Previous inundation mapping results for the US East Coast have shown that barrier islands would be among the most impacted areas during a possible tsunami. Many of these barriers are home to large population centers such as Atlantic City, NJ and Ocean City, MD. A tsunami can significantly change coastal morphology. Post-tsunami surveys have shown that large amounts of sediment can be moved in bays and estuaries by tsunami action, especially over coastal dunes. During tsunami inundation, large amounts of sediment have been eroded from sandy coasts and deposited further onshore. In some cases, sand dunes have been completely eroded by a tsunami, with the eroded sediment being deposited either onshore behind the dunes, or offshore during the rundown process. Given the potential for tsunamis to change coastal morphology, it is necessary to consider whether barrier island morphology change during inundation, if accounted for, would increase the assessment of tsunami hazard identified in the development of inundation and evacuation maps. In this presentation, we will show the results of our recent study on the morphological response of barrier islands during possible tsunamis that threaten the US East Coast. For this purpose, we have coupled the Boussinesq model FUNWAVE-TVD with a depth-averaged advection-diffusion sediment transport model and a morphology module to capture bed evolution under tsunami conditions. The model is verified in comparison to laboratory observations and to observed erosion/deposition patterns in Crescent City, CA harbor during the 2011 Tohoku-oki tsunami. We then use the model to study the effect of morphology change on predicted inundation limits for two barrier islands: the undeveloped Assateague Island, and the developed Ocean City, MD, using the tsunami sources utilized in previous hazard analysis. Our results suggest that significant bathymetric changes could be expected on a barrier island during tsunami inundation, leading to large increases in inundation areas for some of the events, particularly for smaller events where inundation without progressive dune breaching is minor.
A decade of mangrove recovery at affected area by the 2004 tsunami along coast of Banda Aceh city
NASA Astrophysics Data System (ADS)
Onrizal; Mansor, M.
2018-03-01
Banda Aceh (BA) is the capital of Aceh Province, Indonesia. It was the most affected areas by the 2004 tsunami. Before the natural catastrophe, most of the BA mangroves disturbed by human activities and remaining mangroves were fragmented and had a low density of trees. Therefore, the objectives of this study were to calculate the impact of the tsunami on mangrove and subsequently to evaluate the mangrove recovery based on spatial and temporal analysis and ground truthing method within the period 11 years in intertidal areas of BA. Three regions of BA coastal areas were selected, namely Kuala Cangkoy, Gampong Jawa and Lambada coasts. Before the tsunami, the mangrove forests in BA were only 13.6% of BA coastlands and fragmented. Approximately 48.9% of the mangroves have destroyed due to the tsunami. The BA mangroves at 5 and 11 years after tsunami were 66.5% and 81.3% relative to the data before tsunami, respectively. It means that the BA is very vulnerable due to the future tsunami occur. Therefore, the mangrove restoration in BA needs to be improved and maintain based on green belt concept for coastal protection as well as productivity of estuarine ecosystem.
Site-specific seismic probabilistic tsunami hazard analysis: performances and potential applications
NASA Astrophysics Data System (ADS)
Tonini, Roberto; Volpe, Manuela; Lorito, Stefano; Selva, Jacopo; Orefice, Simone; Graziani, Laura; Brizuela, Beatriz; Smedile, Alessandra; Romano, Fabrizio; De Martini, Paolo Marco; Maramai, Alessandra; Piatanesi, Alessio; Pantosti, Daniela
2017-04-01
Seismic Probabilistic Tsunami Hazard Analysis (SPTHA) provides probabilities to exceed different thresholds of tsunami hazard intensity, at a specific site or region and in a given time span, for tsunamis caused by seismic sources. Results obtained by SPTHA (i.e., probabilistic hazard curves and inundation maps) represent a very important input to risk analyses and land use planning. However, the large variability of source parameters implies the definition of a huge number of potential tsunami scenarios, whose omission could lead to a biased analysis. Moreover, tsunami propagation from source to target requires the use of very expensive numerical simulations. At regional scale, the computational cost can be reduced using assumptions on the tsunami modeling (i.e., neglecting non-linear effects, using coarse topo-bathymetric meshes, empirically extrapolating maximum wave heights on the coast). On the other hand, moving to local scale, a much higher resolution is required and such assumptions drop out, since detailed inundation maps require significantly greater computational resources. In this work we apply a multi-step method to perform a site-specific SPTHA which can be summarized in the following steps: i) to perform a regional hazard assessment to account for both the aleatory and epistemic uncertainties of the seismic source, by combining the use of an event tree and an ensemble modeling technique; ii) to apply a filtering procedure which use a cluster analysis to define a significantly reduced number of representative scenarios contributing to the hazard of a specific target site; iii) to perform high resolution numerical simulations only for these representative scenarios and for a subset of near field sources placed in very shallow waters and/or whose coseismic displacements induce ground uplift or subsidence at the target. The method is applied to three target areas in the Mediterranean located around the cities of Milazzo (Italy), Thessaloniki (Greece) and Siracusa (Italy). The latter target analysis is enriched by the use of local observed tsunami data, both geological and historical. Indeed, tsunami data-sets available for Siracusa are particularly rich with respect to the scarce and heterogeneous data-sets usually available elsewhere. Therefore, they can represent a further valuable source of information to benchmark and strengthen the results of such kind of studies. The work is funded by the Italian Flagship Project RITMARE, the two EC FP7 ASTARTE (Grant agreement 603839) and STREST (Grant agreement 603389) projects, the TSUMAPS-NEAM (Grant agreement ECHO/SUB/2015/718568/PREV26) project and the INGV-DPC Agreement.
NASA Astrophysics Data System (ADS)
Alam, Edris; Dominey-Howes, Dale; Chagué-Goff, Catherine; Goff, James
2012-08-01
The 2004 Indian Ocean Tsunami (2004 IOT) challenged assumptions about the level of regional hazard. Significantly, there has been some debate about the hypothesis that the northern Bay of Bengal may be capable of generating large tsunamis similar to the 2004 IOT. To test this hypothesis, we documented historical and palaeotsunamis in the northeast Indian Ocean. Using multiple sources, we identified 135 purported tsunamis. After completing a process of validity assessment, we categorised 31 definite tsunamis, 27 probable tsunamis, 51 doubtful tsunamis and 20 events that only caused a seiche or disturbance in an inland river. Six of the purported events were identified as either cyclones or earthquakes without any associated tsunamis. Using the reported list of 135 events, we identified different tsunamigenic regions and explored the temporal distribution of past events, with the oldest event dated to around 38,000BC (although the dated material is most likely reworked and this was probably a Holocene event). The second oldest event dated to 3000-2000BC. Historical records indicate that only one definite tsunami, occurring in AD1762, was generated in the northern Bay of Bengal. We encountered a number of significant challenges in reviewing and analysing data contained within the documents and sources we consulted. Statistical analysis of tsunami data from AD1710 to AD2010 suggests that the occurrence of a tsunami affecting the coasts of Bangladesh and Myanmar is 0.99% in any given year, and 63% in a century. We recognise that this incomplete tsunami dataset limits the capacity to fully quantify the hazard. As such, we recommend further 'deep' archival research coupled with regional palaeotsunami studies to gain a more sophisticated understanding of the hazard.
Signals in the ionosphere generated by tsunami earthquakes: observations and modeling suppor
NASA Astrophysics Data System (ADS)
Rolland, L.; Sladen, A.; Mikesell, D.; Larmat, C. S.; Rakoto, V.; Remillieux, M.; Lee, R.; Khelfi, K.; Lognonne, P. H.; Astafyeva, E.
2017-12-01
Forecasting systems failed to predict the magnitude of the 2011 great tsunami in Japan due to the difficulty and cost of instrumenting the ocean with high-quality and dense networks. Melgar et al. (2013) show that using all of the conventional data (inland seismic, geodetic, and tsunami gauges) with the best inversion method still fails to predict the correct height of the tsunami before it breaks onto a coast near the epicenter (< 500 km). On the other hand, in the last decade, scientists have gathered convincing evidence of transient signals in the ionosphere Total Electron Content (TEC) observations that are associated to open ocean tsunami waves. Even though typical tsunami waves are only a few centimeters high, they are powerful enough to create atmospheric vibrations extending all the way to the ionosphere, 300 kilometers up in the atmosphere. Therefore, we are proposing to incorporate the ionospheric signals into tsunami early-warning systems. We anticipate that the method could be decisive for mitigating "tsunami earthquakes" which trigger tsunamis larger than expected from their short-period magnitude. These events are challenging to characterize as they rupture the near-trench subduction interface, in a distant region less constrained by onshore data. As a couple of devastating tsunami earthquakes happens per decade, they represent a real threat for onshore populations and a challenge for tsunami early-warning systems. We will present the TEC observations of the recent Java 2006 and Mentawaii 2010 tsunami earthquakes and base our analysis on acoustic ray tracing, normal modes summation and the simulation code SPECFEM, which solves the wave equation in coupled acoustic (ocean, atmosphere) and elastic (solid earth) domains. Rupture histories are entered as finite source models, which will allow us to evaluate the effect of a relatively slow rupture on the surrounding ocean and atmosphere.
A probabilistic tsunami hazard assessment for Indonesia
NASA Astrophysics Data System (ADS)
Horspool, N.; Pranantyo, I.; Griffin, J.; Latief, H.; Natawidjaja, D. H.; Kongko, W.; Cipta, A.; Bustaman, B.; Anugrah, S. D.; Thio, H. K.
2014-11-01
Probabilistic hazard assessments are a fundamental tool for assessing the threats posed by hazards to communities and are important for underpinning evidence-based decision-making regarding risk mitigation activities. Indonesia has been the focus of intense tsunami risk mitigation efforts following the 2004 Indian Ocean tsunami, but this has been largely concentrated on the Sunda Arc with little attention to other tsunami prone areas of the country such as eastern Indonesia. We present the first nationally consistent probabilistic tsunami hazard assessment (PTHA) for Indonesia. This assessment produces time-independent forecasts of tsunami hazards at the coast using data from tsunami generated by local, regional and distant earthquake sources. The methodology is based on the established monte carlo approach to probabilistic seismic hazard assessment (PSHA) and has been adapted to tsunami. We account for sources of epistemic and aleatory uncertainty in the analysis through the use of logic trees and sampling probability density functions. For short return periods (100 years) the highest tsunami hazard is the west coast of Sumatra, south coast of Java and the north coast of Papua. For longer return periods (500-2500 years), the tsunami hazard is highest along the Sunda Arc, reflecting the larger maximum magnitudes. The annual probability of experiencing a tsunami with a height of > 0.5 m at the coast is greater than 10% for Sumatra, Java, the Sunda islands (Bali, Lombok, Flores, Sumba) and north Papua. The annual probability of experiencing a tsunami with a height of > 3.0 m, which would cause significant inundation and fatalities, is 1-10% in Sumatra, Java, Bali, Lombok and north Papua, and 0.1-1% for north Sulawesi, Seram and Flores. The results of this national-scale hazard assessment provide evidence for disaster managers to prioritise regions for risk mitigation activities and/or more detailed hazard or risk assessment.
NASA Astrophysics Data System (ADS)
Kozono, Y.; Takahashi, T.; Sakuraba, M.; Nojima, K.
2016-12-01
A lot of debris by tsunami, such as cars, ships and collapsed buildings were generated in the 2011 Tohoku tsunami. It is useful for rescue and recovery after tsunami disaster to predict the amount and final position of disaster debris. The transport form of disaster debris varies as drifting, rolling and sliding. These transport forms need to be considered comprehensively in tsunami simulation. In this study, we focused on the following three points. Firstly, the numerical model considering various transport forms of disaster debris was developed. The proposed numerical model was compared with the hydraulic experiment by Okubo et al. (2004) in order to verify transport on the bottom surface such as rolling and sliding. Secondly, a numerical experiment considering transporting on the bottom surface and drifting was studied. Finally, the numerical model was applied for Kesennuma city where serious damage occurred by the 2011 Tohoku tsunami. In this model, the influence of disaster debris was considered as tsunami flow energy loss. The hydraulic experiments conducted in a water tank which was 10 m long by 30 cm wide. The gate confined water in a storage tank, and acted as a wave generator. A slope was set at downstream section. The initial position of a block (width: 3.2 cm, density: 1.55 g/cm3) assuming the disaster debris was placed in front of the slope. The proposed numerical model simulated well the maximum transport distance and the final stop position of the block. In the second numerical experiment, the conditions were the same as the hydraulic experiment, except for the density of the block. The density was set to various values (from 0.30 to 4.20 g/cm3). This model was able to estimate various transport forms including drifting and sliding. In the numerical simulation of the 2011 Tohoku tsunami, the condition of buildings was modeled as follows: (i)the resistance on the bottom using Manning roughness coefficient (conventional method), and (ii)structure of buildings with collapsing and washing-away due to tsunami wave pressure. In this calculation, disaster debris of collapsed buildings, cars and ships was considered. As a result, the proposed model showed that it is necessary to take the disaster debris into account in order to predict tsunami inundation accurately.
Landslide tsunami hazard in New South Wales, Australia: novel observations from 3D modelling
NASA Astrophysics Data System (ADS)
Power, Hannah; Clarke, Samantha; Hubble, Tom
2015-04-01
This paper examines the potential of tsunami inundation generated from two case study sites of submarine mass failures on the New South Wales coast of Australia. Two submarine mass failure events are investigated: the Bulli Slide and the Shovel Slide. Both slides are located approximately 65 km southeast of Sydney and 60 km east of the township of Wollongong. The Bulli Slide (~20 km3) and the Shovel Slide (7.97 km3) correspond to the two largest identified erosional surface submarine landslides scars of the NSW continental margin (Glenn et al. 2008; Clarke 2014) and represent examples of large to very large submarine landslide scars. The Shovel Slide is a moderately thick (80-165 m), moderately wide to wide (4.4 km) slide, and is located in 880 m water depth; and the Bulli Slide is an extremely thick (200-425 m), very wide (8.9 km) slide, and is located in 1500 m water depth. Previous work on the east Australian margin (Clarke et al., 2014) and elsewhere (Harbitz et al., 2013) suggests that submarine landslides similar to the Bulli Slide or the Shovel Slide are volumetrically large enough and occur at shallow enough water depths (400-2500 m) to generate substantial tsunamis that could cause widespread damage on the east Australian coast and threaten coastal communities (Burbidge et al. 2008; Clarke 2014; Talukder and Volker 2014). Currently, the tsunamogenic potential of these two slides has only been investigated using 2D modelling (Clarke 2014) and to date it has been difficult to establish the onshore tsunami surge characteristics for the submarine landslides with certainty. To address this knowledge gap, the forecast inundation as a result of these two mass failure events was investigated using a three-dimensional model (ANUGA) that predicts water flow resulting from natural hazard events such as tsunami (Nielsen et al., 2005). The ANUGA model solves the two-dimensional shallow water wave equations and accurately models the process of wetting and drying thus making it ideal for simulating inundation due to tsunami. The model generates a surface wave profile based on the dimensions of the submarine mass failure event using the method of Ward et al. (2005). Inundation maps are shown for these two slides and sensitivity analysis is conducted to identify the characteristics of the slides that are most influential on inundation areas and depths.
EDITORIAL: The FDR Prize The FDR Prize
NASA Astrophysics Data System (ADS)
Kida, Shigeo
2009-06-01
From the 45 papers published in the year 2008 in Fluid Dynamics Research the following paper has been selected for the second FDR prize: 'Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis' by Adrian Constantin and Robin S Johnson, published in volume 40 (March 2008) pp 175-211. This paper takes, as its main theme, the analysis of the propagation of very long gravity waves in the ocean environment, with the possibility of applying the results to tsunamis. Both variable depth and some pre-existing vorticity are allowed in the model, but under the over-arching assumption of long waves; indeed, it is argued, the waves are so long that it is impossible for classical soliton theory to be the appropriate description of a developing tsunami. This aspect is supported by some simple scaling arguments, together with some observations associated with the tsunami of Boxing Day 2004. The formulation is based on two small scales: the slow scale on which the depth varies and the small amplitude of the wave (as initially generated in deep water). The technique adopted is that of matched asymptotic expansions. The solution, constructed for deep water, is not valid in suitably reduced depth of water; the solution in this shallow region (close inshore) is then matched to the deep-water solution. A novel feature of this work is the inclusion of a general distribution of vorticity in the absence of waves—intended to model the realistic ocean—which is based on the slow evolution scale for the bottom topography. Some general properties of such background flows are proved, and two specific examples have been obtained: constant vorticity everywhere (as far as the shoreline), and regions of isolated vorticity (for appropriate bottom profiles). The way in which the wave properties are modified in the presence of vorticity is described. The significant overall proposal in this theory, specifically applicable to tsunamis, is that it is the profile of the initial disturbance (generated by the seismic activity) that is the single most important ingredient in the formation of tsunami waves (provided, of course, the familiar requirement of a long, gently shelving beach is also present). This contention is described and developed, and supported by some graphical examples of the various types of solution that can be obtained; these include contributions from variable depth and suitable background vorticity.
Cisternas, M.; Garrett, E; Wesson, Robert L.; Dura, T.; Ely, L. L
2017-01-01
An uncommon coastal sedimentary record combines evidence for seismic shaking and coincident tsunami inundation since AD 1000 in the region of the largest earthquake recorded instrumentally: the giant 1960 southern Chile earthquake (Mw 9.5). The record reveals significant variability in the size and recurrence of megathrust earthquakes and ensuing tsunamis along this part of the Nazca-South American plate boundary. A 500-m long coastal outcrop on Isla Chiloé, midway along the 1960 rupture, provides continuous exposure of soil horizons buried locally by debris-flow diamicts and extensively by tsunami sand sheets. The diamicts flattened plants that yield geologically precise ages to correlate with well-dated evidence elsewhere. The 1960 event was preceded by three earthquakes that probably resembled it in their effects, in AD 898 - 1128, 1300 - 1398 and 1575, and by five relatively smaller intervening earthquakes. Earthquakes and tsunamis recurred exceptionally often between AD 1300 and 1575. Their average recurrence interval of 85 years only slightly exceeds the time already elapsed since 1960. This inference is of serious concern because no earthquake has been anticipated in the region so soon after the 1960 event, and current plate locking suggests that some segments of the boundary are already capable of producing large earthquakes. This long-term earthquake and tsunami history of one of the world's most seismically active subduction zones provides an example of variable rupture mode, in which earthquake size and recurrence interval vary from one earthquake to the next.
NASA Astrophysics Data System (ADS)
Tonini, R.; Maesano, F. E.; Tiberti, M. M.; Romano, F.; Scala, A.; Lorito, S.; Volpe, M.; Basili, R.
2017-12-01
The geometry of seismogenic sources could be one of the most important factors concurring to control the generation and the propagation of earthquake-generated tsunamis and their effects on the coasts. Since the majority of potentially tsunamigenic earthquakes occur offshore, the corresponding faults are generally poorly constrained and, consequently, their geometry is often oversimplified as a planar fault. The rupture area of mega-thrust earthquakes in subduction zones, where most of the greatest tsunamis have occurred, extends for tens to hundreds of kilometers both down dip and along strike, and generally deviates from the planar geometry. Therefore, the larger the earthquake size is, the weaker the planar fault assumption become. In this work, we present a sensitivity analysis aimed to explore the effects on modeled tsunamis generated by seismic sources with different degrees of geometric complexities. We focused on the Calabrian subduction zone, located in the Mediterranean Sea, which is characterized by the convergence between the African and European plates, with rates of up to 5 mm/yr. This subduction zone has been considered to have generated some past large earthquakes and tsunamis, despite it shows only in-slab significant seismic activity below 40 km depth and no relevant seismicity in the shallower portion of the interface. Our analysis is performed by defining and modeling an exhaustive set of tsunami scenarios located in the Calabrian subduction and using different models of the subduction interface with increasing geometrical complexity, from a planar surface to a highly detailed 3D surface. The latter was obtained from the interpretation of a dense network of seismic reflection profiles coupled with the analysis of the seismicity distribution. The more relevant effects due to the inclusion of 3D complexities in the seismic source geometry are finally highlighted in terms of the resulting tsunami impact.
Reconstruction of far-field tsunami amplitude distributions from earthquake sources
Geist, Eric L.; Parsons, Thomas E.
2016-01-01
The probability distribution of far-field tsunami amplitudes is explained in relation to the distribution of seismic moment at subduction zones. Tsunami amplitude distributions at tide gauge stations follow a similar functional form, well described by a tapered Pareto distribution that is parameterized by a power-law exponent and a corner amplitude. Distribution parameters are first established for eight tide gauge stations in the Pacific, using maximum likelihood estimation. A procedure is then developed to reconstruct the tsunami amplitude distribution that consists of four steps: (1) define the distribution of seismic moment at subduction zones; (2) establish a source-station scaling relation from regression analysis; (3) transform the seismic moment distribution to a tsunami amplitude distribution for each subduction zone; and (4) mix the transformed distribution for all subduction zones to an aggregate tsunami amplitude distribution specific to the tide gauge station. The tsunami amplitude distribution is adequately reconstructed for four tide gauge stations using globally constant seismic moment distribution parameters established in previous studies. In comparisons to empirical tsunami amplitude distributions from maximum likelihood estimation, the reconstructed distributions consistently exhibit higher corner amplitude values, implying that in most cases, the empirical catalogs are too short to include the largest amplitudes. Because the reconstructed distribution is based on a catalog of earthquakes that is much larger than the tsunami catalog, it is less susceptible to the effects of record-breaking events and more indicative of the actual distribution of tsunami amplitudes.
Identification of elements at risk for a credible tsunami event for Istanbul
NASA Astrophysics Data System (ADS)
Hancilar, U.
2012-01-01
Physical and social elements at risk are identified for a credible tsunami event for Istanbul. For this purpose, inundation maps resulting from probabilistic tsunami hazard analysis for a 10% probability of exceedance in 50 yr are utilised in combination with the geo-coded inventories of building stock, lifeline systems and demographic data. The built environment on Istanbul's shorelines that is exposed to tsunami inundation comprises residential, commercial, industrial, public (governmental/municipal, schools, hospitals, sports and religious), infrastructure (car parks, garages, fuel stations, electricity transformer buildings) and military buildings, as well as piers and ports, gas tanks and stations and other urban elements (e.g., recreational facilities). Along the Marmara Sea shore, Tuzla shipyards and important port and petrochemical facilities at Ambarlı are expected to be exposed to tsunami hazard. Significant lifeline systems of the city of Istanbul such as natural gas, electricity, telecommunication and sanitary and waste-water transmission, are also under the threat of tsunamis. In terms of social risk, it is estimated that there are about 32 000 inhabitants exposed to tsunami hazard.
A review of potential tsunami impacts to the Suez Canal
NASA Astrophysics Data System (ADS)
Finkl, C.; Pelinovsky, E.
2012-04-01
Destructive tsunamis in the eastern Mediterranean and Red seas, induced by earthquakes and/or volcanic activity, pose potential hazards to docked seaport shipping and fixed harbor infrastructure as well as to in-transit international shipping within the Suez Canal. Potential vulnerabilities of the Suez Canal to possible tsunami impacts are reviewed by reference to geological, historical, archaeoseismological, and anecdotal data. Tsunami catalogues and databases compiled by earlier researchers are perused to estimate potential return periods for tsunami events that could affect directly the Suez Canal and its closely associated operational infrastructures. Analysis of these various records indicates a centurial return period, or multiples thereof, for long-wave repetition that could generally affect the Nile Delta. It is estimated that tsunami waves 2 m high would have a breaking length about 5 km down Canal whereas a 10 m wave break would occur about 1 km into the Canal. Should a tsunami strike the eastern flanks of the Nile Delta, it would damage Egypt's maritime infrastructure and multi-national commercial vessels and military ships then using the Canal.
Tsunami Source Identification on the 1867 Tsunami Event Based on the Impact Intensity
NASA Astrophysics Data System (ADS)
Wu, T. R.
2014-12-01
The 1867 Keelung tsunami event has drawn significant attention from people in Taiwan. Not only because the location was very close to the 3 nuclear power plants which are only about 20km away from the Taipei city but also because of the ambiguous on the tsunami sources. This event is unique in terms of many aspects. First, it was documented on many literatures with many languages and with similar descriptions. Second, the tsunami deposit was discovered recently. Based on the literatures, earthquake, 7-meter tsunami height, volcanic smoke, and oceanic smoke were observed. Previous studies concluded that this tsunami was generated by an earthquake with a magnitude around Mw7.0 along the Shanchiao Fault. However, numerical results showed that even a Mw 8.0 earthquake was not able to generate a 7-meter tsunami. Considering the steep bathymetry and intense volcanic activities along the Keelung coast, one reasonable hypothesis is that different types of tsunami sources were existed, such as the submarine landslide or volcanic eruption. In order to confirm this scenario, last year we proposed the Tsunami Reverse Tracing Method (TRTM) to find the possible locations of the tsunami sources. This method helped us ruling out the impossible far-field tsunami sources. However, the near-field sources are still remain unclear. This year, we further developed a new method named 'Impact Intensity Analysis' (IIA). In the IIA method, the study area is divided into a sequence of tsunami sources, and the numerical simulations of each source is conducted by COMCOT (Cornell Multi-grid Coupled Tsunami Model) tsunami model. After that, the resulting wave height from each source to the study site is collected and plotted. This method successfully helped us to identify the impact factor from the near-field potential sources. The IIA result (Fig. 1) shows that the 1867 tsunami event was a multi-source event. A mild tsunami was trigged by a Mw7.0 earthquake, and then followed by the submarine landslide or volcanic events. A near-field submarine landslide and landslide at Mien-Hwa Canyon were the most possible scenarios. As for the volcano scenarios, the volcanic eruption located about 10 km away from Keelung with 2.5x108 m3 disturbed water volume might be a candidate. The detailed scenario results will be presented in the full paper.
New Science Applications Within the U.S. National Tsunami Hazard Mitigation Program
NASA Astrophysics Data System (ADS)
Wilson, R. I.; Eble, M. C.; Forson, C. K.; Horrillo, J. J.; Nicolsky, D.
2017-12-01
The U.S. National Tsunami Hazard Mitigation Program (NTHMP) is a collaborative State and Federal program which supports consistent and cost effective tsunami preparedness and mitigation activities at a community level. The NTHMP is developing a new five-year Strategic Plan based on the 2017 Tsunami Warning, Education, and Research Act as well as recommendations the 2017 NTHMP External Review Panel. Many NTHMP activities are based on the best available scientific methods through the NTHMP Mapping and Modeling Subcommittee (MMS). The primary activities for the MMS member States are to characterize significant tsunami sources, numerically model those sources, and create tsunami inundation maps for evacuation planning. This work remains a focus for many unmapped coastlines. With the lessons learned from the 2004 Indian Ocean and 2011 Tohoku Japan tsunamis, where both immediate risks and long-term recovery issues where recognized, the NTHMP MMS is expanding efforts into other areas that address community resilience. Tsunami evacuation modeling based on both pedestrian and vehicular modes of transportation are being developed by NTHMP States. Products include tools for the public to create personal evacuation maps. New tsunami response planning tools are being developed for both maritime and coastal communities. Maritime planning includes tsunami current-hazard maps for in-harbor and offshore response activities. Multi-tiered tsunami evacuation plans are being developed in some states to address local- versus distant-source tsunamis, as well as real-time evacuation plans, or "playbooks," for distant-source tsunamis forecasted to be less than the worst-case flood event. Products to assist community mitigation and recovery are being developed at a State level. Harbor Improvement Reports, which evaluate the impacts of currents, sediment, and debris on harbor infrastructure, include direct mitigation activities for Local Hazard Mitigation Plans. Building code updates in the five Pacific states will include new sections on tsunami load analysis of structures, and require Tsunami Design Zones based on probabilistic analyses. Guidance for community recovery planning has also been initiated. These new projects are being piloted by some States and will help create guidance for other States in the future.
Statistical Analysis of Tsunami Variability
NASA Astrophysics Data System (ADS)
Zolezzi, Francesca; Del Giudice, Tania; Traverso, Chiara; Valfrè, Giulio; Poggi, Pamela; Parker, Eric J.
2010-05-01
The purpose of this paper was to investigate statistical variability of seismically generated tsunami impact. The specific goal of the work was to evaluate the variability in tsunami wave run-up due to uncertainty in fault rupture parameters (source effects) and to the effects of local bathymetry at an individual location (site effects). This knowledge is critical to development of methodologies for probabilistic tsunami hazard assessment. Two types of variability were considered: • Inter-event; • Intra-event. Generally, inter-event variability refers to the differences of tsunami run-up at a given location for a number of different earthquake events. The focus of the current study was to evaluate the variability of tsunami run-up at a given point for a given magnitude earthquake. In this case, the variability is expected to arise from lack of knowledge regarding the specific details of the fault rupture "source" parameters. As sufficient field observations are not available to resolve this question, numerical modelling was used to generate run-up data. A scenario magnitude 8 earthquake in the Hellenic Arc was modelled. This is similar to the event thought to have caused the infamous 1303 tsunami. The tsunami wave run-up was computed at 4020 locations along the Egyptian coast between longitudes 28.7° E and 33.8° E. Specific source parameters (e.g. fault rupture length and displacement) were varied, and the effects on wave height were determined. A Monte Carlo approach considering the statistical distribution of the underlying parameters was used to evaluate the variability in wave height at locations along the coast. The results were evaluated in terms of the coefficient of variation of the simulated wave run-up (standard deviation divided by mean value) for each location. The coefficient of variation along the coast was between 0.14 and 3.11, with an average value of 0.67. The variation was higher in areas of irregular coast. This level of variability is similar to that seen in ground motion attenuation correlations used for seismic hazard assessment. The second issue was intra-event variability. This refers to the differences in tsunami wave run-up along a section of coast during a single event. Intra-event variability investigated directly considering field observations. The tsunami events used in the statistical evaluation were selected on the basis of the completeness and reliability of the available data. Tsunami considered for the analysis included the recent and well surveyed tsunami of Boxing Day 2004 (Great Indian Ocean Tsunami), Java 2006, Okushiri 1993, Kocaeli 1999, Messina 1908 and a case study of several historic events in Hawaii. Basic statistical analysis was performed on the field observations from these tsunamis. For events with very wide survey regions, the run-up heights have been grouped in order to maintain a homogeneous distance from the source. Where more than one survey was available for a given event, the original datasets were maintained separately to avoid combination of non-homogeneous data. The observed run-up measurements were used to evaluate the minimum, maximum, average, standard deviation and coefficient of variation for each data set. The minimum coefficient of variation was 0.12 measured for the 2004 Boxing Day tsunami at Nias Island (7 data) while the maximum is 0.98 for the Okushiri 1993 event (93 data). The average coefficient of variation is of the order of 0.45.
Hiraoka, Satoshi; Machiyama, Asako; Ijichi, Minoru; Inoue, Kentaro; Oshima, Kenshiro; Hattori, Masahira; Yoshizawa, Susumu; Kogure, Kazuhiro; Iwasaki, Wataru
2016-01-14
The Great East Japan Earthquake of 2011 triggered large tsunami waves, which flooded broad areas of land along the Pacific coast of eastern Japan and changed the soil environment drastically. However, the microbial characteristics of tsunami-affected soil at the genomic level remain largely unknown. In this study, we isolated microbes from a soil sample using general low-nutrient and seawater-based media to investigate microbial characteristics in tsunami-affected soil. As expected, a greater proportion of strains isolated from the tsunami-affected soil than the unaffected soil grew in the seawater-based medium. Cultivable strains in both the general low-nutrient and seawater-based media were distributed in the genus Arthrobacter. Most importantly, whole-genome sequencing of four of the isolated Arthrobacter strains revealed independent losses of siderophore-synthesis genes from their genomes. Siderophores are low-molecular-weight, iron-chelating compounds that are secreted for iron uptake; thus, the loss of siderophore-synthesis genes indicates that these strains have adapted to environments with high-iron concentrations. Indeed, chemical analysis confirmed the investigated soil samples to be rich in iron, and culture experiments confirmed weak cultivability of some of these strains in iron-limited media. Furthermore, metagenomic analyses demonstrated over-representation of denitrification-related genes in the tsunami-affected soil sample, as well as the presence of pathogenic and marine-living genera and genes related to salt-tolerance. Collectively, the present results would provide an example of microbial characteristics of soil disturbed by the tsunami, which may give an insight into microbial adaptation to drastic environmental changes. Further analyses on microbial ecology after a tsunami are envisioned to develop a deeper understanding of the recovery processes of terrestrial microbial ecosystems.
Seaside, Oregon, Tsunami Pilot Study-Modernization of FEMA Flood Hazard Maps: GIS Data
Wong, Florence L.; Venturato, Angie J.; Geist, Eric L.
2006-01-01
Introduction: The Federal Emergency Management Agency (FEMA) Federal Insurance Rate Map (FIRM) guidelines do not currently exist for conducting and incorporating tsunami hazard assessments that reflect the substantial advances in tsunami research achieved in the last two decades; this conclusion is the result of two FEMA-sponsored workshops and the associated Tsunami Focused Study (Chowdhury and others, 2005). Therefore, as part of FEMA's Map Modernization Program, a Tsunami Pilot Study was carried out in the Seaside/Gearhart, Oregon, area to develop an improved Probabilistic Tsunami Hazard Analysis (PTHA) methodology and to provide recommendations for improved tsunami hazard assessment guidelines (Tsunami Pilot Study Working Group, 2006). The Seaside area was chosen because it is typical of many coastal communities in the section of the Pacific Coast from Cape Mendocino to the Strait of Juan de Fuca, and because State agencies and local stakeholders expressed considerable interest in mapping the tsunami threat to this area. The study was an interagency effort by FEMA, U.S. Geological Survey, and the National Oceanic and Atmospheric Administration (NOAA), in collaboration with the University of Southern California, Middle East Technical University, Portland State University, Horning Geoscience, Northwest Hydraulics Consultants, and the Oregon Department of Geological and Mineral Industries. We present the spatial (geographic information system, GIS) data from the pilot study in standard GIS formats and provide files for visualization in Google Earth, a global map viewer.
Impact of tsunami on texture and mineralogy of a major placer deposit in southwest coast of India
NASA Astrophysics Data System (ADS)
Babu, N.; Babu, D. S. Suresh; Das, P. N. Mohan
2007-03-01
The great Indonesian earth quake (26 December 2004) triggered a tsunami wave across the Bay of Bengal and Indian Ocean basins and has brought a major havoc in several countries including India. The coastal segment between Thotapalli and Valiazhikal in Kerala state of southwest India, where considerably rich beach placer deposit with ilmenite percentage of more than 70% is concentrated, has been investigated to understand the impact of tsunami on coastal sediments. The grain size analysis flashes out the significant differences between the pre- and post-tsunami littoral environments. While the mineral grains collected during pre-tsunami period show well-sorted nature, the post-tsunami samples represent moderately to poorly sorted nature. Similarly, unimodal and bimodal distributions of the sediments have been recorded for pre- and post-tsunami sediments, respectively. Further, mineral assemblages corresponding to before and after this major wave activity clearly indicate the large-scale redistribution of sediments. The post-tsunami sediments register increasing trends of garnet, sillimanite and rutile. The total heavy mineral percentage of the post-tsunami sediment also shows an improved concentration, perhaps due to the large-scale transport of lighter fraction. Magnetite percentage of post-tsunami samples reflects higher concentration compared to the pre-tsunami samples, indicating the intensity of reworking process. X-ray diffraction patterns of ilmenite grains have confirmed the increased presence of pseduorutile, and pseudobrookite in post-tsunami samples, which could be due to the mixing of more altered grains. SEM examination of grains also confirms the significant alteration patterns on the ubiquitous mineral of placer body, the ilmenite. The reason for these textural, mineralogical and micromorphological changes in heavy minerals particularly in ilmenite, could be due to the churning action on the deeper sediments of onshore region or on the sediments entrapped in the near shelf region of the area, by the ˜ 6 m high tsunami waves.
Proposal of a method for evaluating tsunami risk using response-surface methodology
NASA Astrophysics Data System (ADS)
Fukutani, Y.
2017-12-01
Information on probabilistic tsunami inundation hazards is needed to define and evaluate tsunami risk. Several methods for calculating these hazards have been proposed (e.g. Løvholt et al. (2012), Thio (2012), Fukutani et al. (2014), Goda et al. (2015)). However, these methods are inefficient, and their calculation cost is high, since they require multiple tsunami numerical simulations, therefore lacking versatility. In this study, we proposed a simpler method for tsunami risk evaluation using response-surface methodology. Kotani et al. (2016) proposed an evaluation method for the probabilistic distribution of tsunami wave-height using a response-surface methodology. We expanded their study and developed a probabilistic distribution of tsunami inundation depth. We set the depth (x1) and the slip (x2) of an earthquake fault as explanatory variables and tsunami inundation depth (y) as an object variable. Subsequently, tsunami risk could be evaluated by conducting a Monte Carlo simulation, assuming that the generation probability of an earthquake follows a Poisson distribution, the probability distribution of tsunami inundation depth follows the distribution derived from a response-surface, and the damage probability of a target follows a log normal distribution. We applied the proposed method to a wood building located on the coast of Tokyo Bay. We implemented a regression analysis based on the results of 25 tsunami numerical calculations and developed a response-surface, which was defined as y=ax1+bx2+c (a:0.2615, b:3.1763, c=-1.1802). We assumed proper probabilistic distribution for earthquake generation, inundation height, and vulnerability. Based on these probabilistic distributions, we conducted Monte Carlo simulations of 1,000,000 years. We clarified that the expected damage probability of the studied wood building is 22.5%, assuming that an earthquake occurs. The proposed method is therefore a useful and simple way to evaluate tsunami risk using a response-surface and Monte Carlo simulation without conducting multiple tsunami numerical simulations.
Modeling Extra-Long Tsunami Propagation: Assessing Data, Model Accuracy and Forecast Implications
NASA Astrophysics Data System (ADS)
Titov, V. V.; Moore, C. W.; Rabinovich, A.
2017-12-01
Detecting and modeling tsunamis propagating tens of thousands of kilometers from the source is a formidable scientific challenge and seemingly satisfies only scientific curiosity. However, results of such analyses produce a valuable insight into the tsunami propagation dynamics, model accuracy and would provide important implications for tsunami forecast. The Mw = 9.3 megathrust earthquake of December 26, 2004 off the coast of Sumatra generated a tsunami that devastated Indian Ocean coastlines and spread into the Pacific and Atlantic oceans. The tsunami was recorded by a great number of coastal tide gauges, including those located in 15-25 thousand kilometers from the source area. To date, it is still the farthest instrumentally detected tsunami. The data from these instruments throughout the world oceans enabled to estimate various statistical parameters and energy decay of this event. High-resolution records of this tsunami from DARTs 32401 (offshore of northern Chile), 46405 and NeMO (both offshore of the US West Coast), combined with the mainland tide gauge measurements enabled us to examine far-field characteristics of the 2004 in the Pacific Ocean and to compare the results of global numerical simulations with the observations. Despite their small heights (less than 2 cm at deep-ocean locations), the records demonstrated consistent spatial and temporal structure. The numerical model described well the frequency content, amplitudes and general structure of the observed waves at deep-ocean and coastal gages. We present analysis of the measurements and comparison with model data to discuss implication for tsunami forecast accuracy. Model study for such extreme distances from the tsunami source and at extra-long times after the event is an attempt to find accuracy bounds for tsunami models and accuracy limitations of model use for forecast. We discuss results in application to tsunami model forecast and tsunami modeling in general.
Sedimentary Environment Changes between Tsunami Events in the Central Fukushima Prefecture, Japan
NASA Astrophysics Data System (ADS)
Kusumoto, S.; Goto, T.; Satake, K.; Sugai, T.; Yoneda, M.; Omori, T.; Ozaki, H.
2016-12-01
Many tsunami deposits were found in the Tohoku region, Japan from recent and past tsunamis. Study of tsunami deposits is particularly important in the central to southern Fukushima Prefecture, which is the southern limit of the distributions of tsunami deposits of the 869 Jogan, 1454 Kyotoku and 1611 Keicho-Sanriku earthquakes. Previous studies reported that there were at least five tsunami deposits (EV1-EV5) consisted of fine-middle sand and the sedimentary environment was inner-bay or lagoon for the past 2,600 years (Goto and Aoyama, 2005; JpGU, Oikawa et al., 2011; JpGU, Oota and Hoyanagi, 2014; GSJ, Kusumoto et al., 2016; JpGU). However, the sedimentary environment changes between or across historical tsunamis have not been examined. In this study, we try to estimate the sedimentary environment changes using Total Organic Carbon (TOC), Total Nitrogen (TN) concentrations and organic Carbon-to-Nitrogen (C/N) ratio. We took 13 geological core samples of length 2.0-2.5 m at 11 locations 0.6-2.7 km from the coast. The deposits consisted of silt and massive sand with graded beddings, laminas and rip-up clasts. For samples, we performed grain-size analysis, radiocarbon age measurement and CN elemental analysis. We found three interesting characteristics. First, grain size of ordinary deposits between EV4 and EV5 tend to fine upward slightly. It suggests that tidal current became gradually weak. Second, C/N ratio is about 5-10 at every depth, meaning that organic material source was phytoplankton or zooplankton (Müller, 1977; GCA). Finally, TOC and TN concentrations slowly increase between EV4 and EV5, and they rapidly decrease across EV3 and EV4. Their slow increases correspond to sedimentary environment change from anaerobic to aerobic, whereas rapid decreases correspond to sedimentary environment change from aerobic to anaerobic. These characteristics might indicate development of sand bar between tsunami events and sudden collapse of sand bar by historical tsunamis.
Probabilistic Tsunami Hazard Assessment: the Seaside, Oregon Pilot Study
NASA Astrophysics Data System (ADS)
Gonzalez, F. I.; Geist, E. L.; Synolakis, C.; Titov, V. V.
2004-12-01
A pilot study of Seaside, Oregon is underway, to develop methodologies for probabilistic tsunami hazard assessments that can be incorporated into Flood Insurance Rate Maps (FIRMs) developed by FEMA's National Flood Insurance Program (NFIP). Current NFIP guidelines for tsunami hazard assessment rely on the science, technology and methodologies developed in the 1970s; although generally regarded as groundbreaking and state-of-the-art for its time, this approach is now superseded by modern methods that reflect substantial advances in tsunami research achieved in the last two decades. In particular, post-1990 technical advances include: improvements in tsunami source specification; improved tsunami inundation models; better computational grids by virtue of improved bathymetric and topographic databases; a larger database of long-term paleoseismic and paleotsunami records and short-term, historical earthquake and tsunami records that can be exploited to develop improved probabilistic methodologies; better understanding of earthquake recurrence and probability models. The NOAA-led U.S. National Tsunami Hazard Mitigation Program (NTHMP), in partnership with FEMA, USGS, NSF and Emergency Management and Geotechnical agencies of the five Pacific States, incorporates these advances into site-specific tsunami hazard assessments for coastal communities in Alaska, California, Hawaii, Oregon and Washington. NTHMP hazard assessment efforts currently focus on developing deterministic, "credible worst-case" scenarios that provide valuable guidance for hazard mitigation and emergency management. The NFIP focus, on the other hand, is on actuarial needs that require probabilistic hazard assessments such as those that characterize 100- and 500-year flooding events. There are clearly overlaps in NFIP and NTHMP objectives. NTHMP worst-case scenario assessments that include an estimated probability of occurrence could benefit the NFIP; NFIP probabilistic assessments of 100- and 500-yr events could benefit the NTHMP. The joint NFIP/NTHMP pilot study at Seaside, Oregon is organized into three closely related components: Probabilistic, Modeling, and Impact studies. Probabilistic studies (Geist, et al., this session) are led by the USGS and include the specification of near- and far-field seismic tsunami sources and their associated probabilities. Modeling studies (Titov, et al., this session) are led by NOAA and include the development and testing of a Seaside tsunami inundation model and an associated database of computed wave height and flow velocity fields. Impact studies (Synolakis, et al., this session) are led by USC and include the computation and analyses of indices for the categorization of hazard zones. The results of each component study will be integrated to produce a Seaside tsunami hazard map. This presentation will provide a brief overview of the project and an update on progress, while the above-referenced companion presentations will provide details on the methods used and the preliminary results obtained by each project component.
,
2013-01-01
This U.S. Geological Survey (USGS) Open-File report presents a compilation of tsunami modeling studies for the Science Application for Risk Reduction (SAFRR) tsunami scenario. These modeling studies are based on an earthquake source specified by the SAFRR tsunami source working group (Kirby and others, 2013). The modeling studies in this report are organized into three groups. The first group relates to tsunami generation. The effects that source discretization and horizontal displacement have on tsunami initial conditions are examined in section 1 (Whitmore and others). In section 2 (Ryan and others), dynamic earthquake rupture models are explored in modeling tsunami generation. These models calculate slip distribution and vertical displacement of the seafloor as a result of realistic fault friction, physical properties of rocks surrounding the fault, and dynamic stresses resolved on the fault. The second group of papers relates to tsunami propagation and inundation modeling. Section 3 (Thio) presents a modeling study for the entire California coast that includes runup and inundation modeling where there is significant exposure and estimates of maximum velocity and momentum flux at the shoreline. In section 4 (Borrero and others), modeling of tsunami propagation and high-resolution inundation of critical locations in southern California is performed using the National Oceanic and Atmospheric Administration’s (NOAA) Method of Splitting Tsunami (MOST) model and NOAA’s Community Model Interface for Tsunamis (ComMIT) modeling tool. Adjustments to the inundation line owing to fine-scale structures such as levees are described in section 5 (Wilson). The third group of papers relates to modeling of hydrodynamics in ports and harbors. Section 6 (Nicolsky and Suleimani) presents results of the model used at the Alaska Earthquake Information Center for the Ports of Los Angeles and Long Beach, as well as synthetic time series of the modeled tsunami for other selected locales in southern California. Importantly, section 6 provides a comparison of the effect of including horizontal displacements at the source described in section 1 and differences in bottom friction on wave heights and inundation in the Ports of Los Angeles and Long Beach. Modeling described in section 7 (Lynett and Son) uses a higher order physical model to determine variations of currents during the tsunami and complex flow structures such as jets and eddies. Section 7 also uses sediment transport models to estimate scour and deposition of sediment in ports and harbors—a significant effect that was observed in southern California following the 2011 Tohoku tsunami. Together, all of the sections in this report form the basis for damage, impact, and emergency preparedness aspects of the SAFRR tsunami scenario. Three sections of this report independently calculate wave height and inundation results using the source specified by Kirby and others (2013). Refer to figure 29 in section 3, figure 52 in section 4, and figure 62 in section 6. All of these results are relative to a mean high water (MHW) vertical datum. Slight differences in the results are observed in East Basin of the Port of Los Angeles, Alamitos Bay, and the Seal Beach National Wildlife Refuge. However, given that these three modeling efforts involved different implementations of the source, different numerical wave propagation and runup models, and slight differences in the digital elevation models (DEMs), the similarity among the results is remarkable.
Suspected Offshore Chalcolithic/Early Bronze Age Tsunamigenic Sediments: Jisr al Zarka, Israel
NASA Astrophysics Data System (ADS)
Tiulienieva, N.; Braun, Y.; Katz, T.; Goodman-Tchernov, B. N.; Suchkov, I.
2017-12-01
Offshore tsunami deposits are a potentially important sedimentological archive for past tsunamis. They have been identified offshore of Israel using granulometric, geoarchaeological, and micropaleontological indicators. Recent advances in tsunami sedimentological research have put forth a series of new proxies that may be useful tools for tsunami deposit identification. The well-studied offshore deposits of Israel provide a unique opportunity to test some of these proxies because they present good distinction between tsunami and non-tsunami deposits and they can be associated with a rich historical record and archaeological artifacts. In this study, a 219 cm long sediment core, retrieved from a 15.3 m water depth, situated in about 5 km to the north from well studied shallow shelf, offshore Caesarea. Based on the previously used criteria three layers in the new core were identified as tsunami-generated. Two of these correlated to previously described tsunami events in Caesarea; 749 AD and 1500 BC. The third layer gave the time frame from 5.6 to 6 ka BP, making this event the oldest identified in the Eastern Mediterranean to date. Identified unusual layers were attributed to tsunami-generated sedimentary sequences, based on both visually recognizable indicators and the results of laboratory analyses. FT-IR, XRD, and XRF analysis were also applied. The results of this study allow to make following conclusions: (1) visual tsunami indicators in the studied core are similar to those in Caesarea, but lack archaeological debris; (2) while distinct deviation of granulometric coefficients (mean, median, standard deviation, skewness, kurtosis) correlated to tsunami layers, the additional proxies of deposition rate and mollusk assemblage excluded one deviated layer from tsunamigenic-designation; (3) the results of XRF, FT-IR, XRD showed that they are not useful as independent methods at this study site.
Recent Findings on Tsunami Hazards in the Makran Subduction Zone, NW Indian Ocean
NASA Astrophysics Data System (ADS)
Heidarzadeh, M.; Satake, K.
2014-12-01
We present recent findings on tsunami hazards in the Makran subduction zone (MSZ), NW Indian Ocean, based on the results of tsunami source analyses for two Makran tsunamis of 1945 and 2013. A re-analysis of the source of the 27 November 1945 tsunami in the MSZ showed that the slip needs to be extended to deep waters around the depth contour of 3000 m in order to reproduce the observed tide gauge waveforms at Karachi and Mumbai. On the other hand, coastal uplift report at Ormara (Pakistan) implies that the source fault needs to be extended inland. In comparison to other existing fault models, our fault model is longer and includes a heterogeneous slip with larger maximum slip. The recent tsunami on 24 September 2013 in the Makran region was triggered by an inland Mw 7.7 earthquake. While the main shock and all aftershocks were located inland, a tsunami with a dominant period of around 12 min was recorded on tide gauges and a DART station. We examined different possible sources for this tsunami including a mud volcano, a mud/shale diapir, and a landslide/slump through numerical modeling. Only a submarine slump with a source dimension of 10-15 km and a thickness of around 100 m, located 60-70 km offshore Jiwani (Pakistan) at the water depth of around 2000m, was able to reasonably reproduce the observed tsunami waveforms. In terms of tsunami hazards, analyses of the two tsunamis provide new insights: 1) large runup heights can be generated in the coastal areas due to slip in deep waters, and 2) even an inland earthquake may generate tsunamigenic submarine landslides.
NASA Astrophysics Data System (ADS)
Monnier, Angélique; Gailler, Audrey; Loevenbruck, Anne; Heinrich, Philippe; Hébert, Hélène
2017-04-01
The February 1887 earthquake in Italy (Imperia) triggered a tsunami well observed on the French and Italian coastlines. Tsunami waves were recorded on a tide gauge in the Genoa harbour with a small, recently reappraised maximum amplitude of about 10-12 cm (crest-to-trough). The magnitude of the earthquake is still debated in the recent literature, and discussed according to available macroseismic, tectonic and tsunami data. While the tsunami waveform observed in the Genoa harbour may be well explained with a magnitude smaller than 6.5 (Hébert et al., EGU 2015), we investigate in this study whether such source models are consistent with the tsunami effects reported elsewhere along the coastline. The idea is to take the opportunity of the fine bathymetric data recently synthetized for the French Tsunami Warning Center (CENALT) to test the 1887 source parameters using refined, nested grid tsunami numerical modeling down to the harbour scale. Several source parameters are investigated to provide a series of models accounting for various magnitudes and mechanisms. This allows us to compute the tsunami effects for several coastal sites in France (Nice, Villefranche, Antibes, Mandelieu, Cannes) and to compare with observations. Meanwhile we also check the computing time of the chosen scenarios to study whether running nested grids simulation in real time can be suitable in operational context in term of computational cost for these Ligurian scenarios. This work is supported by the FP7 ASTARTE project (Assessment Strategy and Risk Reduction for Tsunamis in Europe, grant 603839 FP7) and by the French PIA TANDEM (Tsunamis in the Atlantic and English ChaNnel: Definition of the Effects through Modeling) project (grant ANR-11-RSNR-00023).
Noise Reduction of Ocean-Bottom Pressure Data Toward Real-Time Tsunami Forecasting
NASA Astrophysics Data System (ADS)
Tsushima, H.; Hino, R.
2008-12-01
We discuss a method of noise reduction of ocean-bottom pressure data to be fed into the near-field tsunami forecasting scheme proposed by Tsushima et al. [2008a]. In their scheme, the pressure data is processed in real time as follows: (1) removing ocean tide components by subtracting the sea-level variation computed from a theoretical tide model, (2) applying low-pass digital filter to remove high-frequency fluctuation due to seismic waves, and (3) removing DC-offset and linear-trend component to determine a baseline of relative sea level. However, it turns out this simple method is not always successful in extracting tsunami waveforms from the data, when the observed amplitude is ~1cm. For disaster mitigation, accurate forecasting of small tsunamis is important as well as large tsunamis. Since small tsunami events occur frequently, successful tsunami forecasting of those events are critical to obtain public reliance upon tsunami warnings. As a test case, we applied the data-processing described above to the bottom pressure records containing tsunami with amplitude less than 1 cm which was generated by the 2003 Off-Fukushima earthquake occurring in the Japan Trench subduction zone. The observed pressure variation due to the ocean tide is well explained by the calculated tide signals from NAO99Jb model [Matsumoto et al., 2000]. However, the tide components estimated by BAYTAP-G [Tamura et al., 1991] from the pressure data is more appropriate for predicting and removing the ocean tide signals. In the pressure data after removing the tide variations, there remain pressure fluctuations with frequencies ranging from about 0.1 to 1 mHz and with amplitudes around ~10 cm. These fluctuations distort the estimation of zero-level and linear trend to define relative sea-level variation, which is treated as tsunami waveform in the subsequent analysis. Since the linear trend is estimated from the data prior to the origin time of the earthquake, an artificial linear trend is produced in the processed waveform. This artificial linear trend degrades the accuracy of the tsunami forecasting, although the forecasting result is expected to be robust against the existence of short-period noise [Tsushima et al., 2008a]. Since the bottom pressure show gradual increase (or decrease) in the tsunami source region [Tsushima et al., 2008b], it is important to remove the linear trend not related to the tsunami generation from the data before fed into the analysis. Therefore, the reduction of the noise in sub-mHz band is critical for the forecasting small tsunamis. Applying a kind of frequency filters to eliminate this noise cannot be a solution for this problem because actual tsunami signals may also contain components of this frequency band. We investigate whether any statistical modelings of the noise are effective for reducing the sub-mHz noise.
Possible Dual Earthquake-Landslide Source of the 13 November 2016 Kaikoura, New Zealand Tsunami
NASA Astrophysics Data System (ADS)
Heidarzadeh, Mohammad; Satake, Kenji
2017-10-01
A complicated earthquake ( M w 7.8) in terms of rupture mechanism occurred in the NE coast of South Island, New Zealand, on 13 November 2016 (UTC) in a complex tectonic setting comprising a transition strike-slip zone between two subduction zones. The earthquake generated a moderate tsunami with zero-to-crest amplitude of 257 cm at the near-field tide gauge station of Kaikoura. Spectral analysis of the tsunami observations showed dual peaks at 3.6-5.7 and 5.7-56 min, which we attribute to the potential landslide and earthquake sources of the tsunami, respectively. Tsunami simulations showed that a source model with slip on an offshore plate-interface fault reproduces the near-field tsunami observation in terms of amplitude, but fails in terms of tsunami period. On the other hand, a source model without offshore slip fails to reproduce the first peak, but the later phases are reproduced well in terms of both amplitude and period. It can be inferred that an offshore source is necessary to be involved, but it needs to be smaller in size than the plate interface slip, which most likely points to a confined submarine landslide source, consistent with the dual-peak tsunami spectrum. We estimated the dimension of the potential submarine landslide at 8-10 km.
South American Tsunamis in Lyttelton Harbor, New Zealand
NASA Astrophysics Data System (ADS)
Borrero, Jose C.; Goring, Derek G.
2015-03-01
At 2347 UTC on April 1, 2014 (12:47 pm April 2, 2014 NZDT) an earthquake with a moment magnitude of 8.2 occurred offshore of Iquique in northern Chile. The temblor generated a tsunami that was observed locally and recorded on tide gauges and deep ocean tsunameters close to the source region. While real time modeling based on inverted tsunameter data and finite fault solutions of the earthquake rupture suggested that a damaging far-field tsunami was not expected (and later confirmed), this event nevertheless reminded us of the threat posed to New Zealand by tsunami generated along the west coast of South America and from the Peru/Chile border region in particular. In this paper we quantitatively assess the tsunami hazard at Lyttelton Harbor from South American tsunamis through a review of historical accounts, numerical modeling of past events and analysis of water level records. A sensitivity study for tsunamis generated along the length of the South American Subduction Zone is used to illustrate which section of the subduction zone would generate the strongest response at Lyttelton while deterministic scenario modeling of significant historical South American tsunamis (i.e. 1868, 1877 and 1960) provide a quantitative estimate of the expected effects from possible future great earthquakes along the coast of South America.
Wickrama, K A S; Wickrama, T
2011-09-01
The 2004 tsunami seriously affected millions of families in several developing countries by destroying their livelihoods, houses and communities, subsequently damaging social and physical resources. Disaster studies have documented that both post-traumatic stress disorder (PTSD) and depression develop during the first six months following disaster exposure for the majority of those afflicted. and Using data from 325 tsunami-affected families living in southern Sri Lanka, the current study investigates whether community social resources such as residents' perceived community participation in tsunami recovery efforts reduce mental health risks (PTSD and depressive symptoms) of tsunami-affected mothers. The analysis is based on structural equation modelling. and The findings of structural equation modelling supports the main hypothesis that residents' perceived community participation directly and indirectly (through collective family functioning and mental health service use) reduces mental health risks (both PTSD and depressive symptoms) of tsunami-affected mothers after controlling for pre-tsunami family adversities. In addition, the results show that residents' perceived community participation buffers the influence of trauma exposure on PTSD symptom levels of mothers. The identification of specific social and family processes that relate to mental health can be useful for post-disaster interventions and recovery programmes.
NASA Astrophysics Data System (ADS)
Savastano, Giorgio; Komjathy, Attila; Verkhoglyadova, Olga; Mazzoni, Augusto; Crespi, Mattia; Wei, Yong; Mannucci, Anthony J.
2017-04-01
It is well known that tsunamis can produce gravity waves that propagate up to the ionosphere generating disturbed electron densities in the E and F regions. These ionospheric disturbances can be studied in detail using ionospheric total electron content (TEC) measurements collected by continuously operating ground-based receivers from the Global Navigation Satellite Systems (GNSS). Here, we present results using a new approach, named VARION (Variometric Approach for Real-Time Ionosphere Observation), and estimate slant TEC (sTEC) variations in a real-time scenario. Using the VARION algorithm we compute TEC variations at 56 GPS receivers in Hawaii as induced by the 2012 Haida Gwaii tsunami event. We observe TEC perturbations with amplitudes of up to 0.25 TEC units and traveling ionospheric perturbations (TIDs) moving away from the earthquake epicenter at an approximate speed of 316 m/s. We perform a wavelet analysis to analyze localized variations of power in the TEC time series and we find perturbation periods consistent with a tsunami typical deep ocean period. Finally, we present comparisons with the real-time tsunami MOST (Method of Splitting Tsunami) model produced by the NOAA Center for Tsunami Research and we observe variations in TEC that correlate in time and space with the tsunami waves.
Lasting Impact of a Tsunami Event on Sediment-Organism Interactions in the Ocean
NASA Astrophysics Data System (ADS)
Seike, Koji; Sassa, Shinji; Shirai, Kotaro; Kubota, Kaoru
2018-02-01
Although tsunami sedimentation is a short-term phenomenon, it may control the long-term benthic environment by altering seafloor surface characteristics such as topography and grain-size composition. By analyzing sediment cores, we investigated the long-term effect of the 2011 tsunami generated by the Tohoku Earthquake off the Pacific coast of Japan on sediment mixing (bioturbation) by an important ecosystem engineer, the heart urchin Echinocardium cordatum. Recent tsunami deposits allow accurate estimation of the depth of current bioturbation by E. cordatum, because there are no preexisting burrows in the sediments. The in situ hardness of the substrate decreased significantly with increasing abundance of E. cordatum, suggesting that echinoid bioturbation softens the seafloor sediment. Sediment-core analysis revealed that this echinoid rarely burrows into the coarser-grained (medium-grained to coarse-grained) sandy layer deposited by the 2011 tsunami; thus, the vertical grain-size distribution resulting from tsunami sedimentation controls the depth of E. cordatum bioturbation. As sandy tsunami layers are preserved in the seafloor substrate, their restriction on bioturbation continues for an extended period. The results demonstrate that understanding the effects on seafloor processes of extreme natural events that occur on geological timescales, including tsunami events, is important in revealing continuing interactions between seafloor sediments and marine benthic invertebrates.
Savastano, Giorgio; Komjathy, Attila; Verkhoglyadova, Olga; Mazzoni, Augusto; Crespi, Mattia; Wei, Yong; Mannucci, Anthony J.
2017-01-01
It is well known that tsunamis can produce gravity waves that propagate up to the ionosphere generating disturbed electron densities in the E and F regions. These ionospheric disturbances can be studied in detail using ionospheric total electron content (TEC) measurements collected by continuously operating ground-based receivers from the Global Navigation Satellite Systems (GNSS). Here, we present results using a new approach, named VARION (Variometric Approach for Real-Time Ionosphere Observation), and estimate slant TEC (sTEC) variations in a real-time scenario. Using the VARION algorithm we compute TEC variations at 56 GPS receivers in Hawaii as induced by the 2012 Haida Gwaii tsunami event. We observe TEC perturbations with amplitudes of up to 0.25 TEC units and traveling ionospheric perturbations (TIDs) moving away from the earthquake epicenter at an approximate speed of 316 m/s. We perform a wavelet analysis to analyze localized variations of power in the TEC time series and we find perturbation periods consistent with a tsunami typical deep ocean period. Finally, we present comparisons with the real-time tsunami MOST (Method of Splitting Tsunami) model produced by the NOAA Center for Tsunami Research and we observe variations in TEC that correlate in time and space with the tsunami waves. PMID:28429754
Savastano, Giorgio; Komjathy, Attila; Verkhoglyadova, Olga; Mazzoni, Augusto; Crespi, Mattia; Wei, Yong; Mannucci, Anthony J
2017-04-21
It is well known that tsunamis can produce gravity waves that propagate up to the ionosphere generating disturbed electron densities in the E and F regions. These ionospheric disturbances can be studied in detail using ionospheric total electron content (TEC) measurements collected by continuously operating ground-based receivers from the Global Navigation Satellite Systems (GNSS). Here, we present results using a new approach, named VARION (Variometric Approach for Real-Time Ionosphere Observation), and estimate slant TEC (sTEC) variations in a real-time scenario. Using the VARION algorithm we compute TEC variations at 56 GPS receivers in Hawaii as induced by the 2012 Haida Gwaii tsunami event. We observe TEC perturbations with amplitudes of up to 0.25 TEC units and traveling ionospheric perturbations (TIDs) moving away from the earthquake epicenter at an approximate speed of 316 m/s. We perform a wavelet analysis to analyze localized variations of power in the TEC time series and we find perturbation periods consistent with a tsunami typical deep ocean period. Finally, we present comparisons with the real-time tsunami MOST (Method of Splitting Tsunami) model produced by the NOAA Center for Tsunami Research and we observe variations in TEC that correlate in time and space with the tsunami waves.
High tsunami frequency as a result of combined strike-slip faulting and coastal landslides
Hornbach, Matthew J.; Braudy, Nicole; Briggs, Richard W.; Cormier, Marie-Helene; Davis, Marcy B.; Diebold, John B.; Dieudonne, Nicole; Douilly, Roby; Frohlich, Cliff; Gulick, Sean P.S.; Johnson, Harold E.; Mann, Paul; McHugh, Cecilia; Ryan-Mishkin, Katherine; Prentice, Carol S.; Seeber, Leonardo; Sorlien, Christopher C.; Steckler, Michael S.; Symithe, Steeve Julien; Taylor, Frederick W.; Templeton, John
2010-01-01
Earthquakes on strike-slip faults can produce devastating natural hazards. However, because they consist predominantly of lateral motion, these faults are rarely associated with significant uplift or tsunami generation. And although submarine slides can generate tsunami, only a few per cent of all tsunami are believed to be triggered in this way. The 12 January Mw 7.0 Haiti earthquake exhibited primarily strike-slip motion but nevertheless generated a tsunami. Here we present data from a comprehensive field survey that covered the onshore and offshore area around the epicentre to document that modest uplift together with slope failure caused tsunamigenesis. Submarine landslides caused the most severe tsunami locally. Our analysis suggests that slide-generated tsunami occur an order-of-magnitude more frequently along the Gonave microplate than global estimates predict. Uplift was generated because of the earthquake's location, where the Caribbean and Gonave microplates collide obliquely. The earthquake also caused liquefaction at several river deltas that prograde rapidly and are prone to failure. We conclude that coastal strike-slip fault systems such as the Enriquillo-Plantain Garden fault produce relief conducive to rapid sedimentation, erosion and slope failure, so that even modest predominantly strike-slip earthquakes can cause potentially catastrophic slide-generated tsunami - a risk that is underestimated at present.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madlazim,, E-mail: m-lazim@physics.its.ac.id; Hariyono, E., E-mail: m-lazim@physics.its.ac.id
The purpose of the study was to estimate P-wave rupture durations (T{sub dur}), dominant periods (T{sub d}) and exceeds duration (T{sub 50Ex}) simultaneously for local events, shallow earthquakes which occurred off the coast of Indonesia. Although the all earthquakes had parameters of magnitude more than 6,3 and depth less than 70 km, part of the earthquakes generated a tsunami while the other events (Mw=7.8) did not. Analysis using Joko Tingkir of the above stated parameters helped understand the tsunami generation of these earthquakes. Measurements from vertical component broadband P-wave quake velocity records and determination of the above stated parameters canmore » provide a direct procedure for assessing rapidly the potential for tsunami generation. The results of the present study and the analysis of the seismic parameters helped explain why the events generated a tsunami, while the others did not.« less
Effects of fringing reefs on tsunami inundation: American Samoa
Gelfenbaum, G.; Apotsos, A.; Stevens, A.W.; Jaffe, B.
2011-01-01
A numerical model of tsunami inundation, Delft3D, which has been validated for the 29 September 2009 tsunami in Tutuila, American Samoa, is used to better understand the impact of fringing coral reefs and embayments on tsunami wave heights, inundation distances, and velocities. The inundation model is used to explore the general conditions under which fringing reefs act as coastal buffers against incoming tsunamis. Of particular interest is the response of tsunamis to reefs of varying widths, depths, and roughness, as well as the effects of channels incised in the reef and the focusing effect of embayments. Model simulations for conditions similar to Tutuila, yet simplified to be uniform in the alongshore, suggest that for narrow reefs, less than about 200 m wide, the shoaling owing to shallow water depths over the fringing reef dominates, inducing greater wave heights onshore under some conditions and farther inundation inland. As the reef width increases, wave dissipation through bottom friction begins to dominate and the reef causes the tsunami wave heights to decrease and the tsunami to inundate less far inland. A sensitivity analysis suggests that coral reef roughness is important in determining the manner in which a fringing reef affects tsunami inundation. Smooth reefs are more likely to increase the onshore velocity within the tsunami compared to rough reefs. A larger velocity will likely result in an increased impact of the tsunami on structures and buildings. Simulations developed to explore 2D coastal morphology show that incised channels similar to those found around Tutuila, as well as coastal embayments, also affect tsunami inundation, allowing larger waves to penetrate farther inland. The largest effect is found for channels located within embayments, and for embayments that narrow landward. These simulations suggest that embayments that narrow landward, such as Fagafue Bay on the north side of Tutuila, and that have an incised deep channel, can cause a significant increase in tsunami wave heights, inundation distances, and velocities. Wide embayments, similar in size to Massacre Bay, induce some tsunami amplification, but not as much as for the narrowing embayment.
Influence of Earthquake Parameters on Tsunami Wave Height and Inundation
NASA Astrophysics Data System (ADS)
Kulangara Madham Subrahmanian, D.; Sri Ganesh, J.; Venkata Ramana Murthy, M.; V, R. M.
2014-12-01
After Indian Ocean Tsunami (IOT) on 26th December, 2004, attempts are being made to assess the threat of tsunami originating from different sources for different parts of India. The Andaman - Sumatra trench is segmented by transcurrent faults and differences in the rate of subduction which is low in the north and increases southward. Therefore key board model with initial deformation calculated using different strike directions, slip rates, are used. This results in uncertainties in the earthquake parameters. This study is made to identify the location of origin of most destructive tsunami for Southeast coast of India and to infer the influence of the earthquake parameters in tsunami wave height travel time in deep ocean as well as in the shelf and inundation in the coast. Five tsunamigenic sources were considered in the Andaman - Sumatra trench taking into consideration the tectonic characters of the trench described by various authors and the modeling was carried out using TUNAMI N2 code. The model results were validated using the travel time and runup in the coastal areas and comparing the water elevation along Jason - 1's satellite track. The inundation results are compared from the field data. The assessment of the tsunami threat for the area south of Chennai city the metropolitan city of South India shows that a tsunami originating in Car Nicobar segment of the Andaman - Sumatra subduction zone can generate the most destructive tsunami. Sensitivity analysis in the modelling indicates that fault length influences the results significantly and the tsunami reaches early and with higher amplitude. Strike angle is also modifying the tsunami followed by amount of slip.
NASA Astrophysics Data System (ADS)
Veerasingam, S.; Venkatachalapathy, R.; Basavaiah, N.; Ramkumar, T.; Venkatramanan, S.; Deenadayalan, K.
2014-06-01
The December 2004 Indian Ocean Tsunami (IOT) had a major impact on the geomorphology and sedimentology of the east coast of India. Estimation of the magnitude of the tsunami from its deposits is a challenging topic to be developed in studies on tsunami hazard assessment. Two core sediments (C1 and C2) from Nagapattinam, southeast coast of India were subjected to textural, mineral, geochemical and rock-magnetic measurements. In both cores, three zones (zone I, II and III) have been distinguished based on mineralogical, geochemical and magnetic data. Zone II is featured by peculiar rock-magnetic, textural, mineralogical and geochemical signatures in both sediment cores that we interpret to correspond to the 2004 IOT deposit. Textural, mineralogical, geochemical and rock-magnetic investigations showed that the tsunami deposit is featured by relative enrichment in sand, quartz, feldspar, carbonate, SiO 2, TiO 2, K 2O and CaO and by a depletion in clay and iron oxides. These results point to a dilution of reworked ferromagnetic particles into a huge volume of paramagnetic materials, similar to what has been described in other nearshore tsunami deposits (Font et al. 2010). Correlation analysis elucidated the relationships among the textural, mineral, geochemical and magnetic parameters, and suggests that most of the quartz-rich coarse sediments have been transported offshore by the tsunami wave. These results agreed well with the previously published numerical model of tsunami induced sediment transport off southeast coast of India and can be used for future comparative studies on tsunami deposits.
Optimization of the Number and Location of Tsunami Stations in a Tsunami Warning System
NASA Astrophysics Data System (ADS)
An, C.; Liu, P. L. F.; Pritchard, M. E.
2014-12-01
Optimizing the number and location of tsunami stations in designing a tsunami warning system is an important and practical problem. It is always desirable to maximize the capability of the data obtained from the stations for constraining the earthquake source parameters, and to minimize the number of stations at the same time. During the 2011 Tohoku tsunami event, 28 coastal gauges and DART buoys in the near-field recorded tsunami waves, providing an opportunity for assessing the effectiveness of those stations in identifying the earthquake source parameters. Assuming a single-plane fault geometry, inversions of tsunami data from combinations of various number (1~28) of stations and locations are conducted and evaluated their effectiveness according to the residues of the inverse method. Results show that the optimized locations of stations depend on the number of stations used. If the stations are optimally located, 2~4 stations are sufficient to constrain the source parameters. Regarding the optimized location, stations must be uniformly spread in all directions, which is not surprising. It is also found that stations within the source region generally give worse constraint of earthquake source than stations farther from source, which is due to the exaggeration of model error in matching large amplitude waves at near-source stations. Quantitative discussions on these findings will be given in the presentation. Applying similar analysis to the Manila Trench based on artificial scenarios of earthquakes and tsunamis, the optimal location of tsunami stations are obtained, which provides guidance of deploying a tsunami warning system in this region.
Eigenvalue Contributon Estimator for Sensitivity Calculations with TSUNAMI-3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rearden, Bradley T; Williams, Mark L
2007-01-01
Since the release of the Tools for Sensitivity and Uncertainty Analysis Methodology Implementation (TSUNAMI) codes in SCALE [1], the use of sensitivity and uncertainty analysis techniques for criticality safety applications has greatly increased within the user community. In general, sensitivity and uncertainty analysis is transitioning from a technique used only by specialists to a practical tool in routine use. With the desire to use the tool more routinely comes the need to improve the solution methodology to reduce the input and computational burden on the user. This paper reviews the current solution methodology of the Monte Carlo eigenvalue sensitivity analysismore » sequence TSUNAMI-3D, describes an alternative approach, and presents results from both methodologies.« less
Housing anxiety and multiple geographies in post-tsunami Sri Lanka.
Boano, Camillo
2009-10-01
Tsunami intervention has been an extraordinary and unprecedented relief and recovery operation. This article underlines the complexities posed by shelter and housing intervention in post-tsunami Sri Lanka, revealing a pragmatic, reductionist approach to shelter and housing reconstruction in a contested and fragmented environment. Competition, housing anxiety and buffer zone implementation have resulted in compulsory villagisation inland, stirring feelings of discrimination and tension, and becoming major obstacles to equitable rebuilding of houses and livelihoods. A new tsunami geography has been imposed on an already vulnerable conflict-based geography, in which shelter has been conceived as a mono-dimensional artefact. An analysis of the process and outcomes of temporary and permanent post-tsunami housing programmes yields information about the extent to which shelter policies and programmes serve not only physical needs but 'higher order' objectives for a comprehensive and sustainable recovery plan.
NASA Astrophysics Data System (ADS)
Laksono, A. T., Jr.; Tsai, L. L. Y., Sr.
2017-12-01
Major earthquakes had occurred in eastern Taiwan for many times. According to an Amis folklore originated in Chengkong City, there was a big sea wave struck their settlement in 1850 AD. Several studies had been conducted, however, the evidence which indicates the tsunami was very weak. There is also a possibility that big sea waves had occurred due to typhoons which take place 3-4 times a year in Taiwan. The purpose of this study is to prove the possibility of tsunami events on the eastern coast of Taiwan based on sedimentological features. The methods in this study are facies analysis including observation of the marine terrace along Lu-Ye, Changping, and Tulan, identification of lithology, sedimentary structure, and fossil content. Lithology analysis is conducted by using point counting of 12 sandstone samples from marine terrace outcrops. Based on the field observation, we found a thin sand marine deposit included in the beach gravel at a height of 10 meters at the Changping marine terrace. It contains coral and some Mollusca shells and does not display any particular sedimentary structure. Sediments that have similar characteristics were also found in the Tulan marine terrace with a height of 5 m. In addition, fossil analysis of marine sand in Tulan exhibits the presence of several planktonic foraminifera fossils such as Orbulina bilobata and Globigerinoides ruber. Temporary interpretation indicates that there is a "super" event which transports shallow marine and beach materials subsequently deposit them on top of an alluvial fan. A 10 cm thin layer of sediment serves as an early tsunami indicator. In addition, the absence of deposits with the same characteristics further indicates that the event occurred only once. Since the eastern coast of Taiwan is an uplift zone with an uplift rate between 5-8 mm/year, the estimated wave height of tsunami should take into account both the tsunami age and the uplift rate. Furthermore, based on the distance from the probable tsunami source and the study area, it is estimated that the tsunami wave was triggered by the thrust fault at the base of the eastern Taiwan margin, which ruptured during a main event of the 19th century. The conclusion of this study is that a tsunami did occur along the eastern coast of Taiwan. An assessment of potential tsunami hazard risk is important and suggested in the future.
NASA Astrophysics Data System (ADS)
Tufekci, Duygu; Lutfi Suzen, Mehmet; Cevdet Yalciner, Ahmet
2017-04-01
The resilience of coastal communities against tsunamis are dependent on preparedness of the communities. Preparedness covers social and structural components which increases with the awareness in the community against tsunamis. Therefore, proper evaluation of all components of preparedness will help communities to reduce the adverse effects of tsunamis and increase the overall resilience of communities. On the other hand, the complexity of the metropolitan life with its social and structural components necessitates explicit vulnerability assessments for proper determination of tsunami risk, and development of proper mitigation strategies and recovery plans. Assessing the vulnerability and resilience level of a region against tsunamis and efforts for reducing the tsunami risk are the key components of disaster management. Since increasing the awareness of coastal communities against tsunamis is one of the main objectives of disaster management, then it should be considered as one of the parameter in tsunami risk analysis. In the method named MetHuVA (METU - Metropolitan Human Tsunami Vulnerability Assessment) proposed by Cankaya et al., (2016) and Tufekci et al., (2016), the awareness and preparedness level of the community is revealed to be an indispensable parameter with a great effect on tsunami risk. According to the results obtained from those studies, it becomes important that the awareness and preparedness parameter (n) must be analyzed by considering their interaction and all related components. While increasing awareness can be achieved, vulnerability and risk will be reduced. In this study the components of awareness and preparedness parameter (n) is analyzed in different categories by considering administrative, social, educational, economic and structural preparedness of the coastal communities. Hence the proposed awareness and preparedness parameter can properly be analyzed and further improvements can be achieved in vulnerability and risk analysis. Furthermore, the components of the awareness and preparedness parameter n, is widely investigated in global and local practices by using the method of categorization to determine different levels for different coastal metropolitan areas with different cultures and with different hazard perception. Moreover, consistency between the theoretical maximum and practical applications of parameter n is estimated, discussed and presented. In the applications mainly the Bakirkoy district of Istanbul is analyzed and the results are presented. Acknowledgements: Partial support by 603839 ASTARTE Project of EU, UDAPC-12-14 project of AFAD, Turkey, 213M534 projects of TUBITAK, Japan-Turkey Joint Research Project by JICA on earthquakes and tsunamis in Marmara Region in (JICA SATREPS - MarDiM Project), and Istanbul Metropolitan Municipality are acknowledged.
NASA Astrophysics Data System (ADS)
Orpin, Alan R.; Rickard, Graham J.; Gerring, Peter K.; Lamarche, Geoffroy
2016-05-01
Devastating tsunami over the last decade have significantly heightened awareness of the potential consequences and vulnerability of low-lying Pacific islands and coastal regions. Our appraisal of the potential tsunami hazard for the atolls of the Tokelau Islands is based on a tsunami source-propagation-inundation model using Gerris Flow Solver, adapted from the companion study by Lamarche et al. (2015) for the islands of Wallis and Futuna. We assess whether there is potential for tsunami flooding on any of the village islets from a selection of 14 earthquake-source experiments. These earthquake sources are primarily based on the largest Pacific earthquakes of Mw ≥ 8.1 since 1950 and other large credible sources of tsunami that may impact Tokelau. Earthquake-source location and moment magnitude are related to tsunami-wave amplitudes and tsunami flood depths simulated for each of the three atolls of Tokelau. This approach yields instructive results for a community advisory but is not intended to be fully deterministic. Rather, the underlying aim is to identify credible sources that present the greatest potential to trigger an emergency response. Results from our modelling show that wave fields are channelled by the bathymetry of the Pacific basin in such a way that the swathes of the highest waves sweep immediately northeast of the Tokelau Islands. Our limited simulations suggest that trans-Pacific tsunami from distant earthquake sources to the north of Tokelau pose the most significant inundation threat. In particular, our assumed worst-case scenario for the Kuril Trench generated maximum modelled-wave amplitudes in excess of 1 m, which may last a few hours and include several wave trains. Other sources can impact specific sectors of the atolls, particularly distant earthquakes from Chile and Peru, and regional earthquake sources to the south. Flooding is dependent on the wave orientation and direct alignment to the incoming tsunami. Our "worst-case" tsunami simulations of the Tokelau Islands suggest that dry areas remain around the villages, which are typically built on a high islet. Consistent with the oral history of little or no perceived tsunami threat, simulations from the recent Tohoku and Chile earthquake sources suggest only limited flooding around low-lying islets of the atoll. Where potential tsunami flooding is inferred from the modelling, recommended minimum evacuation heights above local sea level are compiled, with particular attention paid to variations in tsunami flood depth around the atolls, subdivided into directional quadrants around each atoll. However, complex wave behaviours around the atolls, islets, tidal channels and within the lagoons are also observed in our simulations. Wave amplitudes within the lagoons may exceed 50 cm, increasing any inundation and potential hazards on the inner shoreline of the atolls, which in turn may influence evacuation strategies. Our study shows that indicative simulation studies can be achieved even with only basic field information. In part, this is due to the spatially and vertically limited topography of the atoll, short reef flat and steep seaward bathymetry, and the simple depth profile of the lagoon bathymetry.
NASA Astrophysics Data System (ADS)
Quiroz, M.; Cienfuegos, R.
2017-12-01
At present, there is good knowledge acquired by the scientific community on characterizing the evolution of tsunami energy at ocean and shelf scales. For instance, the investigations of Rabinovich (2013) and Yamazaki (2011), represent some important advances in this subject. In the present paper we rather focus on tsunami energy evolution, and ultimately its decay, in coastal areas because characteristic time scales of this process has implications for early warning, evacuation initiation, and cancelling. We address the tsunami energy evolution analysis at three different spatial scales, a global scale at the ocean basin level, in particular the Pacific Ocean basin, a regional scale comprising processes that occur at the continental shelf level, and finally a local scale comprising coastal areas or bays. These scales were selected following the motivation to understand how the response is associated with tsunami, and how the energy evolves until it is completely dissipated. Through signal processing methods, such as discrete and wavelets analysis, we analyze time series of recent tsunamigenic events in the main Chilean coastal cities. Based on this analysis, we propose a conceptual model based on the influence of geomorphological variables on the evolution and decay of tsunami energy. This model acts as a filter from the seismic source to the observed response in coastal zones. Finally, we hope to conclude with practical tools that will establish patterns of behavior and scaling of energy evolution through interconnections from seismic source variables and the geomorphological component to understand the response and predict behavior for a given site.
NASA Astrophysics Data System (ADS)
Quartau, R.; Omira, R.; Ramalho, I.; Baptista, M. A.; Mitchell, N. C.
2015-12-01
The Azores archipelago is a set of nine volcanic islands in the middle of the North Atlantic, close to the triple junction between the North American, Eurasian and African plates. Due to their location, the islands are seismic and volcanically active, which makes them especially vulnerable to these types of hazards that could eventually trigger flank collapses, capable of generating destructive tsunamis. However, solid evidence of large-scale flank collapses has only been found recently in Pico Island (Costa et al., 2014; Quartau et al., 2015). This study investigates for the first time the tsunami effects of a flank collapse of the northeastern subaerial slope of Pico Island that occurred more than 70 ka ago. We first reconstructed the pre-event sub-aerial morphology of the island, and then numerically model the flank failure involving an estimated volume of ~8 km3, its flow toward and under the sea of ~14 km, and the subsequent tsunami generation and propagation. The modelling suggests that the collapse of Pico created a mega-tsunami that significantly impacted the coast of adjacent São Jorge Island only after 7 minutes after generation, with wave run-up reaching a maximum of 50 m at some coastlines. Most of the tsunami energy became trapped in the semi-enclosed basin between Pico and São Jorge Islands, with only relatively little energy escaping to neighboring islands. Acknowledgments The author wishes to acknowledge the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603839 (Project ASTARTE - Assessment, Strategy and Risk Reduction for Tsunamis in Europe)" for its major contribution for the success of this study. Publication supported by project FCT UID/GEO/50019/2013 - Instituto Dom Luiz. The author also acknowledges Fundação Luso-Americana para o Desenvolvimento for supporting the participation in the meeting.
López-Venegas, A.M.; ten Brink, Uri S.; Geist, Eric L.
2008-01-01
The October 11, 1918 ML 7.5 earthquake in the Mona Passage between Hispaniola and Puerto Rico generated a local tsunami that claimed approximately 100 lives along the western coast of Puerto Rico. The area affected by this tsunami is now significantly more populated. Newly acquired high-resolution bathymetry and seismic reflection lines in the Mona Passage show a fresh submarine landslide 15 km northwest of Rinćon in northwestern Puerto Rico and in the vicinity of the first published earthquake epicenter. The landslide area is approximately 76 km2 and probably displaced a total volume of 10 km3. The landslide's headscarp is at a water depth of 1200 m, with the debris flow extending to a water depth of 4200 m. Submarine telegraph cables were reported cut by a landslide in this area following the earthquake, further suggesting that the landslide was the result of the October 11, 1918 earthquake. On the other hand, the location of the previously suggested source of the 1918 tsunami, a normal fault along the east wall of Mona Rift, does not show recent seafloor rupture. Using the extended, weakly non-linear hydrodynamic equations implemented in the program COULWAVE, we modeled the tsunami as generated by a landslide with a duration of 325 s (corresponding to an average speed of ~ 27 m/s) and with the observed dimensions and location. Calculated marigrams show a leading depression wave followed by a maximum positive amplitude in agreement with the reported polarity, relative amplitudes, and arrival times. Our results suggest this newly-identified landslide, which was likely triggered by the 1918 earthquake, was the primary cause of the October 11, 1918 tsunami and not the earthquake itself. Results from this study should be useful to help discern poorly constrained tsunami sources in other case studies.
The October 11, 1918 Mona Passage tsunami modeled using new submarine landslide evidence.
NASA Astrophysics Data System (ADS)
López, A. M.; ten Brink, U.; Geist, E.
2007-12-01
The October 11, 1918 ML 7.5 earthquake in the Mona Passage betweeen Hispaniola and Puerto Rico generated a local tsunami that claimed approximately 100 lives along the western coast of Puerto Rico. The area affected by this tsunami is now many-fold more populated. Although the exact cause of the tsunami is still unclear, newly-acquired high-resolution bathymetry of the Mona Passage and seismic reflection lines show a fresh submarine landslide 12 km northwest of Rincón in northwestern Puerto Rico and in the vicinity of the earthquake epicenter determined by Doser et al., (2005). The landslide area is approximately 76 km2 and probably displaced a total volume of 10 km3. The landslide's head scarp is at a water depth of 1.2 km, with the debris flow extending down to a water depth of 4.5 km. The seismic profiles and multibeam bathymetry indicate that the previously suggested source of the 1918 tsunami, a normal fault along the east side of Mona Rift (Mercado and McCann, 1998), was not active recently. The fault escarpment along Desecheo Ridge, which is near the Doser et al., (2005) epicenter, and our landslide appear, on the other hand, to be rather fresh. Using the extended, weakly non-linear hydrodynamic equations implemented in the program COULWAVE (Lynett and Liu, 2002), we modeled the tsunami by a landslide with a finite duration and with the observed dimensions and location. Marigrams (time series of sea level) were calculated at locations near to reported locations of runup. The marigrams show a leading depression wave followed by a maximum positive amplitude in good agreement with the reported polarity, relative amplitudes, and arrival times. Our results suggest this newly-identified landslide, which was likely triggered by the 1918 earthquake, was the probable cause of the October 11, 1918 tsunami and not a normal fault rupture as previously suggested.
Far-Field Simulations of Tele-tsunami Observed in the Atlantic Ocean: Impact on the Lesser Antilles
NASA Astrophysics Data System (ADS)
Viana-Baptista, M.; Roger, J.; Hebert, H.
2009-12-01
In this study we present the results of far-field numerical modelling of tsunamis generated in the North-Atlantic Ocean and the impact along the coasts. The historical databases for the North East Atlantic area and the Caribbean region present two tele-tsunamis of seismic origin: the 1755.11.01 and the 1761.03.31 events. The impact of the 1755 tsunami in the West Indies and Northern America is extensively described in the historical documents; in fact important wave heights (> 2 m), flooding of low areas and damage and destruction of coastal infrastructures were reported in the West Indies, Brazil and Newfoundland (Canada) for the 1755 event. Recently several authors published the results of far-field simulations, for this event. The 31st March 1761 earthquake occurred at noon and one hour and a quarter after the quake Lisbon was impacted by the tsunami with a maximum amplitude of 8 feet (circa 2.4 meter). Sea water changes were observed along the south coast of Spain, and in the Atlantic Islands of Azores and Madeira. In the far field the most well known report comes from Barbados where the tide ebbed and flowed, in about eight minutes between eighteen inches and two feet. According to the Portuguese catalogue of tsunamis the source location of this event is 34.5°N, 13°W and the magnitude of the generating earthquake is 8.5. We present far-field simulation results in two French Overseas Territories, Guadeloupe and Martinique Islands in the West Indies and in Newfoundland (Canada). The main objective is to discuss the reliability of the available historical reports for this event occurring about 5.5 years after the big Lisbon tsunami. Then we show that such event has to be considered in hazard assessment with regards to the West Indies. Understanding the impact of these two tele-tsunamis is crucial for hazard and risk studies in the Caribbean region and particularly for the Martinique and Guadeloupe Islands. This study has been founded by the French ANR project MAREMOTI under contract ANR-08-RISKNAT-05-01c.
NASA Astrophysics Data System (ADS)
Dominey-Howes, D.; Goff, J. R.
2009-12-01
National economies are increasingly dependent on the global telecommunications system - and in particular, its submarine cable infrastructure. Submarine cable traffic represents about 30% of global GDP so the cost of losing, or even simply slowing, communications traffic is high. Many natural hazards are capable of damaging and destroying this infrastructure but tsunamis are the most significant threat, particularly in waters >1000 m deep. Submarine cables and their shore-based infrastructure (the anchor points), are at risk from direct and indirect tsunami-related effects. During the 2004 Indian Ocean Tsunami in India and Indonesia, cables were broken (direct effect) as the tsunami eroded supporting sediments, and were further damaged by floating/submerged objects and intense nearshore currents. Shore-based infrastructure was also directly damaged in India, Indonesia, and the Maldives. The 1929 Grand Banks earthquake generated a submarine landslide and tsunami off Newfoundland which broke 12 submarine telegraph cables. In 2006, an earthquake in Taiwan generated submarine landslides and a tsunami. These landslides caused one of the largest disruptions of modern telecommunications history when nine cables in the Strait of Luzon were broken disabling vital connections between SE Asia and the rest of the world. Although electronic traffic in and out of Australia was slowed, it did not cease because >70% of our traffic is routed via cables that pass through Hawaii. This is extremely significant because Hawaii is an internationally recognised bottleneck or “choke point” in the global telecommunications network. The fact that Hawaii is a choke point is important because it is regularly affected by numerous large magnitude natural hazards. Any damage to the submarine telecommunications infrastructure routed through Hawaii could result in significant impacts on the electronic flow of data and voice traffic, negatively affecting dependent economies such as Australia. Other choke points exist globally, many in high hazards regions. We propose that proper risk assessments be undertaken at all bottlenecks in the global telecommunications system affected by natural hazards (such as tsunami). We use Hawaii as an example of the sort of research that should be undertaken.
Archiving Legacy Images from International Tsunami Science Team (ITST) Surveys, 1946 - 2013
NASA Astrophysics Data System (ADS)
Synolakis, C.; Kong, L. S. L.; Elwany, H.; Arcos, N. P.; Dunbar, P. K.
2016-12-01
The ITIC, USC, Coastal Environments, and NOAA/NCEI have collaborated to gather legacy videos and photos from ITST surveys conducted since 1992, plus from 1946 and 1956, by the USC-TR. The images will become part of the NCEI online and searchable historical tsunami image database. The legacy videos and photos document the local conditions in the tsunami aftermath and are important resources for visualizing the tsunami and identifying patterns of impacts. The data provide invaluable insights into tsunami events, and this information will empower future generations to make informed decisions regarding the future management of ocean resources, local development, and safety protocols. Eyewitnesses are important sources for further understanding even well studied events, especially before 2000. Videos provide context - what residents were doing, what they felt, what they saw, what reactions helped them survive. Photographs document inundation extent. Together, they help to visualize the location and document human behavior and response of the built environment. For example, a flow mark inside a house that survived, versus a partially destroyed house, differentiates construction styles. While the scientific rationale behind tsunami surveys is obvious, ITST protocols strike the delicate balance between the prompt need to act to recover ephemeral scientific field evidence, and urgent priorities for search-and-rescue immediately after tsunami disasters. The data set includes over 50 videos of varying formats and over 3,000 internationally-sourced photos from 24 major tsunami events from 1946-2013: 01 April 1946 Unimak Island, Aleutians; 09 July 1956 Amorgos Island, Greece; 01 September 1992, Nicaragua; 12 December 1992, Flores; 02 June 1994, East Java; 04 October 1994, Shikotan; 14 November 1994, Mindoro, Philippines; 17 January 1994 Northridge; 09 October 1995, Manzanillo, Mexico; 17 February 1997, Biak, Indonesia; 21 February 1996 Chimbote, Peru; 17 August 1998 Aitape, PNG; 17 August 1999, Izmit, Turkey; 13 September 1999, Fatu Hiva, Marquesas; 26 November 1999, Vanuatu; 23 June 2001, Camana, Peru; 08 September 2002, Wewak, PNG; 26 December 2004, Sumatra; 17 July 2006 Central Java; 02 April 2007, Solomons; 29 September 2009 Samoa; 03 January 2010 Solomons; 27 February 2010 Chile; 06 February 2013, Solomons.
Assessment of GNSS-based height data of multiple ships for measuring and forecasting great tsunamis
NASA Astrophysics Data System (ADS)
Inazu, Daisuke; Waseda, Takuji; Hibiya, Toshiyuki; Ohta, Yusaku
2016-12-01
Ship height positioning by the Global Navigation Satellite System (GNSS) was investigated for measuring and forecasting great tsunamis. We first examined GNSS height-positioning data of a navigating vessel. If we use the kinematic precise point positioning (PPP) method, tsunamis greater than 10-1 m will be detected by ship height positioning. Based on Automatic Identification System (AIS) data, we found that tens of cargo ships and tankers are usually identified to navigate over the Nankai Trough, southwest Japan. We assumed that a future Nankai Trough great earthquake tsunami will be observed by the kinematic PPP height positioning of an AIS-derived ship distribution, and examined the tsunami forecast capability of the offshore tsunami measurements based on the PPP-based ship height. A method to estimate the initial tsunami height distribution using offshore tsunami observations was used for forecasting. Tsunami forecast tests were carried out using simulated tsunami data by the PPP-based ship height of 92 cargo ships/tankers, and by currently operating deep-sea pressure and Global Positioning System (GPS) buoy observations at 71 stations over the Nankai Trough. The forecast capability using the PPP-based height of the 92 ships was shown to be comparable to or better than that using the operating offshore observatories at the 71 stations. We suppose that, immediately after the occurrence of a great earthquake, stations receiving successive ship information (AIS data) along certain areas of the coast would fail to acquire ship data due to strong ground shaking, especially near the epicenter. Such a situation would significantly deteriorate the tsunami-forecast capability using ship data. On the other hand, operational real-time analysis of seismic/geodetic data would be carried out for estimating a tsunamigenic fault model. Incorporating the seismic/geodetic fault model estimation into the tsunami forecast above possibly compensates for the deteriorated forecast capability.
A~probabilistic tsunami hazard assessment for Indonesia
NASA Astrophysics Data System (ADS)
Horspool, N.; Pranantyo, I.; Griffin, J.; Latief, H.; Natawidjaja, D. H.; Kongko, W.; Cipta, A.; Bustaman, B.; Anugrah, S. D.; Thio, H. K.
2014-05-01
Probabilistic hazard assessments are a fundamental tool for assessing the threats posed by hazards to communities and are important for underpinning evidence based decision making on risk mitigation activities. Indonesia has been the focus of intense tsunami risk mitigation efforts following the 2004 Indian Ocean Tsunami, but this has been largely concentrated on the Sunda Arc, with little attention to other tsunami prone areas of the country such as eastern Indonesia. We present the first nationally consistent Probabilistic Tsunami Hazard Assessment (PTHA) for Indonesia. This assessment produces time independent forecasts of tsunami hazard at the coast from tsunami generated by local, regional and distant earthquake sources. The methodology is based on the established monte-carlo approach to probabilistic seismic hazard assessment (PSHA) and has been adapted to tsunami. We account for sources of epistemic and aleatory uncertainty in the analysis through the use of logic trees and through sampling probability density functions. For short return periods (100 years) the highest tsunami hazard is the west coast of Sumatra, south coast of Java and the north coast of Papua. For longer return periods (500-2500 years), the tsunami hazard is highest along the Sunda Arc, reflecting larger maximum magnitudes along the Sunda Arc. The annual probability of experiencing a tsunami with a height at the coast of > 0.5 m is greater than 10% for Sumatra, Java, the Sunda Islands (Bali, Lombok, Flores, Sumba) and north Papua. The annual probability of experiencing a tsunami with a height of >3.0 m, which would cause significant inundation and fatalities, is 1-10% in Sumatra, Java, Bali, Lombok and north Papua, and 0.1-1% for north Sulawesi, Seram and Flores. The results of this national scale hazard assessment provide evidence for disaster managers to prioritise regions for risk mitigation activities and/or more detailed hazard or risk assessment.
Camana, Peru, and Tsunami Vulnerability
NASA Technical Reports Server (NTRS)
2002-01-01
A tsunami washed over the low-lying coastal resort region near Camana, southern Peru, following a strong earthquake on June 23, 2001. The earthquake was one of the most powerful of the last 35 years and had a magnitude of 8.4. After the initial quake, coastal residents witnessed a sudden drawdown of the ocean and knew a tsunami was imminent. They had less than 20 minutes to reach higher ground before the tsunami hit. Waves as high as 8 m came in four destructive surges reaching as far as 1.2 km inland. The dashed line marks the approximate area of tsunami inundation. Thousands of buildings were destroyed, and the combined earthquake and tsunami killed as many as 139 people. This image (ISS004-ESC-6128) was taken by astronauts onboard the International Space Station on 10 January 2002. It shows some of the reasons that the Camana area was so vulnerable to tsunami damage. The area has a 1 km band of coastal plain that is less than 5 m in elevation. Much of the plain can be seen by the bright green fields of irrigated agriculture that contrast with the light-colored desert high ground. Many of the tsunami-related deaths were workers in the onion fields in the coastal plain that were unwilling to leave their jobs before the end of the shift. A number of lives were spared because the tsunami occurred during the resort off-season, during the daylight when people could see the ocean drawdown, and during one of the lowest tides of the year. Information on the Tsunami that hit Camana can be found in a reports on the visit by the International Tsunami Survey Team and the USC Tsunami Research Lab. Earthquake Epicenter, Peru shows another image of the area. Image provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.
GIS data for the Seaside, Oregon, Tsunami Pilot Study to modernize FEMA flood hazard maps
Wong, Florence L.; Venturato, Angie J.; Geist, Eric L.
2007-01-01
A Tsunami Pilot Study was conducted for the area surrounding the coastal town of Seaside, Oregon, as part of the Federal Emergency Management's (FEMA) Flood Insurance Rate Map Modernization Program (Tsunami Pilot Study Working Group, 2006). The Cascadia subduction zone extends from Cape Mendocino, California, to Vancouver Island, Canada. The Seaside area was chosen because it is typical of many coastal communities subject to tsunamis generated by far- and near-field (Cascadia) earthquakes. Two goals of the pilot study were to develop probabilistic 100-year and 500-year tsunami inundation maps using Probabilistic Tsunami Hazard Analysis (PTHA) and to provide recommendations for improving tsunami hazard assessment guidelines for FEMA and state and local agencies. The study was an interagency effort by the National Oceanic and Atmospheric Administration, U.S. Geological Survey, and FEMA, in collaboration with the University of Southern California, Middle East Technical University, Portland State University, Horning Geoscience, Northwest Hydraulics Consultants, and the Oregon Department of Geological and Mineral Industries. The pilot study model data and results are published separately as a geographic information systems (GIS) data report (Wong and others, 2006). The flood maps and GIS data are briefly described here.
Interdisciplinary modeling and analysis to reduce loss of life from tsunamis
NASA Astrophysics Data System (ADS)
Wood, N. J.
2016-12-01
Recent disasters have demonstrated the significant loss of life and community impacts that can occur from tsunamis. Minimizing future losses requires an integrated understanding of the range of potential tsunami threats, how individuals are specifically vulnerable to these threats, what is currently in place to improve their chances of survival, and what risk-reduction efforts could be implemented. This presentation will provide a holistic perspective of USGS research enabled by recent advances in geospatial modeling to assess and communicate population vulnerability to tsunamis and the range of possible interventions to reduce it. Integrated research includes efforts to characterize the magnitude and demography of at-risk individuals in tsunami-hazard zones, their evacuation potential based on landscape conditions, nature-based mitigation to improve evacuation potential, evacuation pathways and population demand at assembly areas, siting considerations for vertical-evacuation refuges, community implications of multiple evacuation zones, car-based evacuation modeling for distant tsunamis, and projected changes in population exposure to tsunamis over time. Collectively, this interdisciplinary research supports emergency managers in their efforts to implement targeted risk-reduction efforts based on local conditions and needs, instead of generic regional strategies that only focus on hazard attributes.
Costa, Pedro J.M.; Gelfenbaum, Guy R.; Dawson, Sue; La selle, Seanpaul; Milne, F; Cascalho, J.; Ponte Lira, C.; Andrade, C.; Freitas, M. C.; Jaffe, Bruce E.
2017-01-01
Recent work has applied microtextural and heavy mineral analyses to sandy storm and tsunami deposits from Portugal, Scotland, Indonesia and the USA. We looked at the interpretation of microtextural imagery (scanning electron microscopy) of quartz grains and heavy mineral compositions. We consider inundation events of different chronologies and sources (the AD 1755 Lisbon and 2004 Indian Ocean tsunamis, the Great Storm of 11 January 2005 in Scotland, and Hurricane Sandy in 2012) that affected contrasting coastal and hinterland settings with different regional oceanographic conditions. Storm and tsunami deposits were examined along with potential source sediments (alluvial, beach, dune and nearshore sediments) to determine provenance.Results suggest that tsunami deposits typically exhibit a significant spatial variation in grain sizes, microtextures and heavy minerals. Storm deposits show less variability, especially in vertical profiles. Tsunami and storm quartz grains had more percussion marks and fresh surfaces compared to potential source material. Moreover, in the studied cases, tsunami samples had fewer fresh surfaces than storm deposits.Heavy mineral assemblages are typically site-specific. The concentration of heavy minerals decreases upwards in tsunamigenic units, whereas storm sediments show cyclic concentrations of heavy minerals, reflected in the laminations observed macroscopically in the deposits.
NOAA/West Coast and Alaska Tsunami Warning Center Pacific Ocean response criteria
Whitmore, P.; Benz, H.; Bolton, M.; Crawford, G.; Dengler, L.; Fryer, G.; Goltz, J.; Hansen, R.; Kryzanowski, K.; Malone, S.; Oppenheimer, D.; Petty, E.; Rogers, G.; Wilson, Jim
2008-01-01
New West Coast/Alaska Tsunami Warning Center (WCATWC) response criteria for earthquakes occurring in the Pacific basin are presented. Initial warning decisions are based on earthquake location, magnitude, depth, and - dependent on magnitude - either distance from source or precomputed threat estimates generated from tsunami models. The new criteria will help limit the geographical extent of warnings and advisories to threatened regions, and complement the new operational tsunami product suite. Changes to the previous criteria include: adding hypocentral depth dependence, reducing geographical warning extent for the lower magnitude ranges, setting special criteria for areas not well-connected to the open ocean, basing warning extent on pre-computed threat levels versus tsunami travel time for very large events, including the new advisory product, using the advisory product for far-offshore events in the lower magnitude ranges, and specifying distances from the coast for on-shore events which may be tsunamigenic. This report sets a baseline for response criteria used by the WCATWC considering its processing and observational data capabilities as well as its organizational requirements. Criteria are set for tsunamis generated by earthquakes, which are by far the main cause of tsunami generation (either directly through sea floor displacement or indirectly by triggering of slumps). As further research and development provides better tsunami source definition, observational data streams, and improved analysis tools, the criteria will continue to adjust. Future lines of research and development capable of providing operational tsunami warning centers with better tools are discussed.
NASA Astrophysics Data System (ADS)
Kim, Jihwan; Løvholt, Finn
2016-04-01
Enormous submarine landslides having volumes up to thousands of km3 and long run-out may cause tsunamis with widespread effects. Clay-rich landslides, such as Trænadjupet and Storegga offshore Norway commonly involve retrogressive mass and momentum release mechanisms that affect the tsunami generation. As a consequence, the failure mechanisms, soil parameters, and release rate of the retrogression are of importance for the tsunami generation. Previous attempts to model the tsunami generation due to retrogressive landslides are few, and limited to idealized conditions. Here, a visco-plastic model including additional effects such as remolding, time dependent mass release, and hydrodynamic resistance, is employed for simulating the Storegga Slide. As landslide strength parameters and their evolution in time are uncertain, it is necessary to conduct a sensitivity study to shed light on the tsunamigenic processes. The induced tsunami is simulated using Geoclaw. We also compare our tsunami simulations with recent analysis conducted using a pure retrogressive model for the landslide, as well as previously published results using a block model. The availability of paleotsunami run-up data and detailed slide deposits provides a suitable background for improved understanding of the slide mechanics and tsunami generation. The research leading to these results has received funding from the Research Council of Norway under grant number 231252 (Project TsunamiLand) and the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 603839 (Project ASTARTE).
NASA Astrophysics Data System (ADS)
Lane, E. M.; Gillibrand, P. A.; Wang, X.; Power, W.
2013-09-01
Regional source tsunamis pose a potentially devastating hazard to communities and infrastructure on the New Zealand coast. But major events are very uncommon. This dichotomy of infrequent but potentially devastating hazards makes realistic assessment of the risk challenging. Here, we describe a method to determine a probabilistic assessment of the tsunami hazard by regional source tsunamis with an "Average Recurrence Interval" of 2,500-years. The method is applied to the east Auckland region of New Zealand. From an assessment of potential regional tsunamigenic events over 100,000 years, the inundation of the Auckland region from the worst 100 events is modelled using a hydrodynamic model and probabilistic inundation depths on a 2,500-year time scale were determined. Tidal effects on the potential inundation were included by coupling the predicted wave heights with the probability density function of tidal heights at the inundation site. Results show that the more exposed northern section of the east coast and outer islands in the Hauraki Gulf face the greatest hazard from regional tsunamis in the Auckland region. Incorporating tidal effects into predictions of inundation reduced the predicted hazard compared to modelling all the tsunamis arriving at high tide giving a more accurate hazard assessment on the specified time scale. This study presents the first probabilistic analysis of dynamic modelling of tsunami inundation for the New Zealand coast and as such provides the most comprehensive assessment of tsunami inundation of the Auckland region from regional source tsunamis available to date.
Holocene tsunamigenic sediments and tsunami modelling in the Thermaikos Gulf area (northern Greece)
NASA Astrophysics Data System (ADS)
Reicherter, Klaus; Papanikolaou, Ioannis D.; Roger, Jean; Grützner, Christoph; Stamatis, Georgios; Papanikolaou, Dimitrios
2010-05-01
Shallow drill cores in flat and southerly exposed coastal areas around the Thermaikos Gulf (Thessalonica, northern Greece) provided evidence for past high energy sedimentary events, which are interpreted as tsunamites. A tsunamigenic source is located along the western tip of the North Anatolian Fault Zone (NAFZ) in the North Aegean Basin, where water depths ranging between 1.200 and 1.650 m are sufficiently deep to generate tsunamis. However, the event layers up to now cannot be assigned to individual seismic or landslide sources, but the potential of a tsunami threat in the Thermaikos Gulf area can now be tested, following both sedimentological and modelling processes. Such potential threat regarding the Thermaikos Gulf has only recently been notified but never tested and studied in depth. As a result, several Holocene coarse clastic layers have been found intercalated in clayey or gypsiferous lagoonal deposits. These layers have erosive bases, show fining-up and thinning-up sequences, and include shell debris, foraminifera and rip-up clasts of lagoonal sediments. A widely observed significant feature of these layers involves mud-coated beach clasts, clasts that rework the high-plasticity clays of lagoons. Such features that indicate highly disturbed sedimentological condition (hyperpyncal flows) are rarely described elsewhere. Multiple intercalations of these layers with all the mentioned indicative features downhole are interpreted paleotsunami deposits from tsunamis generated by earthquakes or earthquake-triggered submarine landslides triggered by seismic shaking in the Thermaikos Gulf. Modelling of the tsunami potential of the basin-bounding fault southwards of the Thermaikos Gulf provides an example for possible tsunami generation at only one segment of NAFZ along an approx. 55 km normal fault at the southern fault-bound margin of the North Aegean Basin. The Herodotus Histories report on inundations and sea withdrawals occurring during the Greek-Persian war, which occurred near Potidea. In the ancient Greek village Mende we found evidence for a tsunamigenic layer, dated with shells to 2500 BP, which may tentatively be interpreted as the sedimentary remains of the "Herodotus tsunami" in 479 BC. Acknowledgements: This work has been supported financially by the DAAD-IKYDA Project (Tracing tsunami deposits in the Thermaikos Gulf, Northern Greece. Implications for seismic and tsunami hazard and archaeology) and the RWTH Aachen University.
Field Survey of the 17 June 2017 Landslide and Tsunami in Karrat Fjord, Greenland
NASA Astrophysics Data System (ADS)
Fritz, H. M.; Giachetti, T.; Anderson, S.; Gauthier, D.
2017-12-01
On 17 June 2017 a massive landslide generated tsunami impacted Karrat Fjord and the Uummannaq fjord system located some 280 km north of Ilulissat in western Greenland. The eastern of two easily recognized landslides detached completely and fell approximately 1 km to sea level, before plunging into the Karrat Fjord and generating a tsunami within the fjord system. The landslide generated tsunami washed 4 victims and several houses into the fjord at Nuugaatsiaq, about 30 km west of the landslide. Eyewitnesses at Nuugaatsiaq and Illorsuit recorded the tsunami inundation on videos. The active western landslide features a back scarp and large cracks, and therefore remains a threat in Karrat Fjord. The villages of Nuugaatsiaq and Illorsuit remain evacuated. The Geotechnical Extreme Events Reconnaissance (GEER) survey team deployed to Greenland from July 6 to 9, 2017. The reconnaissance on July 8 involved approximately 800 km of helicopter flight and landings in several key locations. The survey focused on the landslides and coastlines within 30 km of the landslide in either fjord direction. The aerial reconnaissance collected high quality oblique aerial photogrammetry (OAP) of the landslide, scarp, and debris avalanche track. The 3D model of the landslide provides the ability to study the morphology of the slope on July 8, it provides a baseline model for future surveys, and it can be used to compare to earlier imagery to estimate what happened on June 17. Change detection using prior satellite imagery indicates an approximate 55 million m3 total landslide volume of which 45 million m3 plunged into the fjord from elevations up to 1200 m above the water surface. The ground based tsunami survey documented flow depths, runup heights, inundation distances, sediment deposition, damage patterns at various scales, performance of the man-made infrastructure, and impact on the natural and glacial environment. Perishable high-water marks include changes in vegetation and damage to roots, deposits and scour of soil and rock, stranded icebergs, as well as damage to homes and infrastructure. The tsunami runup heights exceeded 90 m laterally to the west of the landslide and 50 m across the 6 km wide fjord. The Greenland landslide generated tsunami highlights coastal hazards to communities not commonly exposed to earthquake generated tsunamis.
SCALE TSUNAMI Analysis of Critical Experiments for Validation of 233U Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Don; Rearden, Bradley T
2009-01-01
Oak Ridge National Laboratory (ORNL) staff used the SCALE TSUNAMI tools to provide a demonstration evaluation of critical experiments considered for use in validation of current and anticipated operations involving {sup 233}U at the Radiochemical Development Facility (RDF). This work was reported in ORNL/TM-2008/196 issued in January 2009. This paper presents the analysis of two representative safety analysis models provided by RDF staff.
PIV measurements and flow characteristics downstream of mangrove root models
NASA Astrophysics Data System (ADS)
Kazemi, Amirkhosro; Curet, Oscar
2016-11-01
Mangrove forests attracted attentions as a solution to protect coastal areas exposed to sea-level rising, frequent storms, and tsunamis. Mangrove forests found in tide-dominated flow regions are characterized by their massive and complex root systems, which play a prominent role in the structure of tidal flow currents. To understand the role of mangrove roots in flow structure, we modeled mangrove roots with rigid and flexible arrays of cylinders with different spacing between them as well as different configurations. In this work, we investigate the fluid dynamics downstream of the models using a 2-D time-resolved particle image velocimetry (PIV) and flow visualization. We carried out experiments for four different Reynolds number based on cylinder diameters ranges from 2200 to 12000. We present time-averaged and time-resolved flow parameters including velocity distribution, vorticity, streamline, Reynolds shear stress and turbulent kinetic energy. The results show that the flow structure has different vortex shedding downstream of the cylinders due to interactions of shear layers separating from cylinders surface. The spectral analysis of the measured velocity data is also performed to obtain Strouhal number of the unsteady flow in the cylinder wake.
Large Historical Tsunamigenic Earthquakes in Italy: The Neglected Tsunami Research Point of View
NASA Astrophysics Data System (ADS)
Armigliato, A.; Tinti, S.; Pagnoni, G.; Zaniboni, F.
2015-12-01
It is known that tsunamis are rather rare events, especially when compared to earthquakes, and the Italian coasts are no exception. Nonetheless, a striking evidence is that 6 out of 10 earthquakes occurred in the last thousand years in Italy, and having equivalent moment magnitude equal or larger than 7 where accompanied by destructive or heavily damaging tsunamis. If we extend the lower limit of the equivalent moment magnitude down to 6.5 the percentage decreases (around 40%), but is still significant. Famous events like those occurred on 30 July 1627 in Gargano, on 11 January 1693 in eastern Sicily, and on 28 December 1908 in the Messina Straits are part of this list: they were all characterized by maximum run-ups of several meters (13 m for the 1908 tsunami), significant maximum inundation distances, and large (although not precisely quantifiable) numbers of victims. Further evidences provided in the last decade by paleo-tsunami deposit analyses help to better characterize the tsunami impact and confirm that none of the cited events can be reduced to local or secondary effects. Proper analysis and simulation of available tsunami data would then appear as an obvious part of the correct definition of the sources responsible for the largest Italian tsunamigenic earthquakes, in a process in which different datasets analyzed by different disciplines must be reconciled rather than put into contrast with each other. Unfortunately, macroseismic, seismic and geological/geomorphological observations and data typically are assigned much heavier weights, and in-land faults are often assigned larger credit than the offshore ones, even when evidence is provided by tsunami simulations that they are not at all capable of justifying the observed tsunami effects. Tsunami generation is imputed a-priori to only supposed, and sometimes even non-existing, submarine landslides. We try to summarize the tsunami research point of view on the largest Italian historical tsunamigenic earthquakes; we highlight the open problems, and suggest that tsunami observations and simulations can contribute towards their solution. This study is funded in the frame of the EU Project called ASTARTE - Assessment, STrategy And Risk reduction for Tsunamis in Europe. Grant 603839, 7th FP (ENV.2013.6.4-3).
Organic-geochemical investigations on soil layers affected by theTohoku-oki tsunami (March 2011)
NASA Astrophysics Data System (ADS)
Reicherter, Klaus; Schwarzbauer, Jan; Jaffe, Bruce; Szczucinski, Witold
2014-05-01
Geochemical investigations on tsunami deposits, in particular palaeotsunamites, have mainly focused on inorganic indicators that have been used to distinguish between terrestrial and marine matter in sedimentary archives. Observable tsunami deposits may also be characterised by organic-geochemical parameters reflecting the mixture and unexpected transport of marine and terrestrial matter. The application of organic substances with indicative properties has so far not been used, although the approach of using specific indicators to determine prehistoric, historic and recent processes and impacts (so-called biomarker and anthropogenic marker approach) already exists. In particular, for recent tsunami deposit the analysis of anthropogenic or even xenobiotic compounds as indicators for assessing the impact of tsunamis has been neglected so far. The Tohoku-oki tsunami in March 2011 showed the huge threat that tsunamis, and subsequent flooding of coastal lowlands, pose to society. The mainly sandy deposits of this mega-tsunami reach more than 4.5 km inland as there were run-up heights of ca. 10 m (wave height). The destruction of infrastructure by wave action and flooding is accompanied by the release of environmental pollutants (e.g. fuels, fats, tarmac, plastics, heavy metals, etc.) contaminating the coastal areas and ocean. To characterize this event in the sedimentary deposits, we analyzed several soil archives from the Bay of Sendai area. Soil layers representing the tsunami deposits have been contrasted with unaffected pre-tsunami samples by means of organic-geochemical analyses based on GC/MS. Natural compounds and their diagenetic transformation products have been tested as marker compounds for monitoring this recent tsunami. The relative composition of fatty acids, n-alkanes, sesquiterpenes and further substances pointed to significant variations before and after the tsunami event. Additionally, anthropogenic marker compounds (such as soil derived pesticides, source specific PAHs, halogenated aromatics from industrial sources) have been detected and quantified. Concentration profiles of distinct terrestrial pollutants revealed shifts either to increasing but for selected compounds also to decreasing contamination levels. Generally, this preliminary study points to the usefulness of organic indicator compounds for characterising the two-dimensional expansion of recent but in particular historic tsunami events as well as its time scales.
NASA Astrophysics Data System (ADS)
Pagnoni, Gianluca; Accorsi, Eleonora; Tinti, Stefano
2016-04-01
Siracusa, an important city of the south-east Sicily, is located in an area highly exposed to the danger of tsunami, local and remote. Among the many events that affected this area those with a major effect are the AD 365 tsunami generated by an earthquake in the Western Hellenic Arc, the event of 11 January 1693, following an earthquake in the area of Augusta, and the tsunami of 28 December 1908 generated in the Messina strait. The aim of this study is to evaluate the number of exposed people and of fatalities as well as the type of damage to constructions and the associated loss of economic value in case of a tsunami, based on a simple tsunami scenario, i.e. on assuming a uniform inundation level of 5 m. This figure is considered appropriate for this preliminary tsunami loss analysis since it is compatible with historical tsunami observations and is also supported by recent tsunami hazard studies carried out for this area (Armigliato et al., 2015). The main physical tsunami parameter used in computations is the water column, which is merely the difference between the assumed inundation level and the topographic altitude. We use numerical geo-referenced 1:2000 maps providing a database of constructions in the area of Siracusa together with data from national and local statistical institutions to make estimates on the number and type of buildings and on the number of people that may be found in the inundation area in different periods of the year, discriminating between residents and tourists. Using a variant of the Terrier et al. (2012) table and tsunami mortality curves proposed by Koshimura et al. (2009) we are able to estimate expected fatalities with tsunami inundation reaching at most the first floor of buildings. We calculate economic loss by taking into account both residential buildings and commercial-industrial structures and data from the real estate market. This study is funded by the EU Project ASTARTE - "Assessment, STrategy And Risk Reduction for Tsunamis in Europe", Grant 603839, 7th FP (ENV.2013.6.4-3)
NASA Astrophysics Data System (ADS)
Allgeyer, S.; Quentel, É.; Hébert, H.; Gailler, A.; Loevenbruck, A.
2017-08-01
Several major tsunamis have affected the southwest Indian Ocean area since the 2004 Sumatra event, and some of them (2005, 2006, 2007 and 2010) have hit La Réunion Island in the southwest Indian Ocean. However, tsunami hazard is not well defined for La Réunion Island where vulnerable coastlines can be exposed. This study offers a first tsunami hazard assesment for La Réunion Island. We first review the historical tsunami observations made on the coastlines, where high tsunami waves (2-3 m) have been reported on the western coast, especially during the 2004 Indian Ocean tsunami. Numerical models of historical scenarios yield results consistent with available observations on the coastal sites (the harbours of La Pointe des Galets and Saint-Paul). The 1833 Pagai earthquake and tsunami can be considered as the worst-case historical scenario for this area. In a second step, we assess the tsunami exposure by covering the major subduction zones with syntethic events of constant magnitude (8.7, 9.0 and 9.3). The aggregation of magnitude 8.7 scenarios all generate strong currents in the harbours (3-7 m s^{-1}) and about 2 m of tsunami maximum height without significant inundation. The analysis of the magnitude 9.0 events confirms that the main commercial harbour (Port Est) is more vulnerable than Port Ouest and that flooding in Saint-Paul is limited to the beach area and the river mouth. Finally, the magnitude 9.3 scenarios show limited inundations close to the beach and in the riverbed in Saint-Paul. More generally, the results confirm that for La Runion, the Sumatra subduction zone is the most threatening non-local source area for tsunami generation. This study also shows that far-field coastal sites should be prepared for tsunami hazard and that further work is needed to improve operational warning procedures. Forecast methods should be developed to provide tools to enable the authorities to anticipate the local effects of tsunamis and to evacuate the harbours in sufficient time when such an earthquake occurs.
Implementation of the NEAMTWS in Portugal
NASA Astrophysics Data System (ADS)
Matias, L. M.; Annunziato, A.; Carrilho, F.; Baptista, M.
2008-12-01
In this paper we present the ongoing implementation of a national tsunami warning system in Portugal. After the Sumatra event in December 2004, the UNESCO, through its International Oceanographic Commission, recognized the need for an end to end global tsunami warning system and International Coordination Groups have been established for different areas around the globe: Indian, Caribbean, Atlantic and Mediterranean ocean basins. This system is the natural response to the historical and recent instrumental events generated along the western segment of the Eurasia and Nubian plates, which eastern end corresponds to the Gulf of Cadiz. The TWS includes three main components: the seismic detection, the tsunami detection and the issue of warnings/alerts. In Portugal the automatic earthquake processing is installed at IM (Instituto de Meteorologia) which is the only national institution operating on a 24x7 basis. This makes IM the natural candidate to host the Portuguese tsunami warning system. The TWS under implementation has several key points: definition of the tsunami scenarios, tsunami detection, and tsunami protocol messages. The system will also be able to predict tsunami potential impact along the coast, wave-heights and arrival times at pre-defined locations along the coast. In this study we present the recent results on definition of tsunami scenarios, establishment of the scenario database and the tsunami analysis tool. This work is a joint effort between Instituto de Meteorologia (Portugal), the Joint Research Center, JRC- ISPRA, Italy and the coordination of the Portuguese Group for the implementation of NEAMTWS in the area. This work has been financed by different European projects as NEAREST and TRANSFER, and also by the JRC, the IM and CGUL/IDL institutions.
Sedimentary deposits study of the 2006 Java tsunami, in Pangandaran, West Java (preliminary result)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maemunah, Imun, E-mail: imun-m2001@yahoo.com; Institute Technology of Bandung; Suparka, Emmy, E-mail: emmy@gc.itb.ac.id
The 2006 Java Earthquake (Mw 7.2) has generated a tsunami that reached Pangandaran coastal plain with 9.7 m above sea level height of wave. In 2014 we examined the tsunami deposit exposed in shallow trenches along a∼300 m at 5 transect from shoreline to inland on Karapyak and Madasari, Pangandaran. We documented stratigraphically and sedimentologically, the characteristics of Java Tsunami deposit on Karapyak and Madasari and compared both sediments. In local farmland a moderately-sorted, brown soil is buried by a poorly-sorted, grey, medium-grained sand-sheet. The tsunami deposit was distinguished from the underlying soil by a pronounced increase in grain size that becomesmore » finner upwards and landwards. Decreasing concentration of coarse size particles with distance toward inland are in agreement with grain size analysis. The thickest tsunami deposit is about 25 cm found at 84 m from shoreline in Madasari and about 15 cm found at 80 m from shoreline in Karapyak. The thickness of tsunami deposits in some transect become thinner landward but in some other transect lack a consistent suggested strongly affected by local topography. Tsunami deposits at Karapyak and Madasari show many similarities. Both deposits consist of coarse sand that sharply overlies a finer sandy soil. The presence mud drapes and other sedimentary structure like graded bedding, massive beds, mud clasts in many locations shows a dynamics process of tsunami waves. The imbrication coarse and shell fragments of the 2006 Java, tsunami deposits also provide information about the curent direction, allowing us to distinguish run up deposits from backwash deposits.« less
NASA Astrophysics Data System (ADS)
Fauzan Zakki, Ahmad; Suharto; Windyandari, Aulia
2018-03-01
Several attempts have been made to reduce the risk of tsunami disasters such as the development of early warning systems, evacuation procedures training, coastal protection and coastal spatial planning. Although many efforts to mitigate the impact of the tsunami in Indonesia was made, no one has developed a portable disaster rescue vehicle/shelter as well as a lifeboat on ships and offshore building, which is always available when a disaster occurs. The aim of the paper is to evaluate the performance of cone capsule shaped hull form that would be used for the portable tsunami lifeboat. The investigation of the boat resistance, intact stability, and seakeeping characteristics was made. The numerical analysis results indicate that the cone capsule is reliable as an alternative hull form for the portable tsunami lifeboat.
Household evacuation characteristics in American Samoa during the 2009 Samoa Islands tsunami
Apatu, Emma J. I.; Gregg, Chris E.; Wood, Nathan J.; Wang, Liang
2016-01-01
Tsunamis represent significant threats to human life and development in coastal communities. This quantitative study examines the influence of household characteristics on evacuation actions taken by 211 respondents in American Samoa who were at their homes during the 29 September 2009 Mw 8.1 Samoa Islands earthquake and tsunami disaster. Multiple logistic regression analysis of survey data was used to examine the association between evacuation and various household factors. Findings show that increases in distance to shoreline were associated with a slightly decreased likelihood of evacuation, whereas households reporting higher income had an increased probability of evacuation. The response in American Samoa was an effective one, with only 34 fatalities in a tsunami that reached shore in as little as 15 minutes. Consequently, future research should implement more qualitative study designs to identify event and cultural specific determinants of household evacuation behaviour to local tsunamis.
2011 Great East Japan tsunami in Okhotsk Sea region: numerical modelings and observation data
NASA Astrophysics Data System (ADS)
Kostenko, Irina; Zaytsev, Andrey; Yalciner, Ahmet; Pelinovsky, Efim
2013-04-01
The 11 March, 2011 Great East Japan Earthquake with Mw: 9.0 occurred at 05:46:23 UTC with its epicenter estimated at 38.322_N, 142.369_E, and focal depth of 32 km (USGS, 2011). Tsunami waves propagated in Pacific Ocean to all directions. At Russian coast the highest waves were observed in the Kuril Islands (Malokurilskoye, Kunashir Island) which located in between Pacific ocean and the Okhotsk Sea. Kuril island provides limited transmission of tsunami waves from Pacific ocean. tsunami In 2011 Great East Japan Earthquake and Tsunami event, the maximum amplitude of the tsunami was observed as 3 m in Kuril islands. However, tsunami arrived Okhotsk Sea losing a significant amount of energy. Therefore the tsunami amplitudes at the coast of the Okhotsk Sea were smaller. In order to estimate the level of energy loss while passing through the narrow straits of the Kuril Islands, a series of numerical simulations was done by using tsunami numerical code NAMI DANCE. Ten largest earthquake shocks capable of generating tsunami were used as inputs of tsunami sources in the modeling. Hence the relation between the transmission of tsunami and the dimensions of the straits are compared and discussed. Finally the characteristics of tsunami propagation (arrival time and coastal amplification) at the coast in the Okhotsk Sea. The varying grid structure is used in numerical modeling in order to make finer analysis of tsunami passing through narrow straits of the Kuril Islands. This allows to combine exactly the installation locations of stationary and computational gauges. The simulation results are compared with the observations. The linear form of shallow water equations are used in the deep ocean region offshore part of the Sea of Okhotsk. Boussinesq type equations were also used at the near shore area in simulations. Since the Okhotsk Sea Results are a semi enclosed basin, the reflection characteristics at the coastal boundaries may be important. The numerical experiments are also extended to investigate the spectral characteristics of the time histories of water level fluctuations in Okhotsk Results is a semi enclosed basin, the reflection characteristics at the coastal boundaries by comparing with the instrumental data from coastal locations. As the summary, the transmission characteristics of tsunami at Kuril islands, the propagation, coastal amplification and reflection characteristics of tsunamis in the Okhotsk Sea are investigated and presented. This study was partly supported by Russian Federation President Award .1935.2012.5
Vithanage, M; Engesgaard, P; Jensen, K H; Illangasekare, T H; Obeysekera, J
2012-08-01
This intermediate scale laboratory experimental study was designed to improve the conceptual understanding of aquifer flushing time associated with diffuse saltwater contamination of coastal aquifers due to a tsunami-like event. The motivation comes from field observations made after the tsunami in December, 2004 in South Asia. The focus is on the role and effects of heterogeneity on flushing effectiveness. A scheme that combines experimentation in a 4.8m long laboratory tank and numerical modeling was used. To demonstrate the effects of geologic heterogeneity, plume migration and flushing times were analyzed in both homogeneous and layered media and under different boundary conditions (ambient flow, saltwater infiltration rate, freshwater recharge). Saltwater and freshwater infiltrations imitate the results of the groundwater salinization from the tsunami and freshening from the monsoon rainfall. The saltwater plume behavior was monitored both through visual observations (digital photography) of the dyed salt water and using measurements taken from several electrical conductivity sensors installed through the tank walls. The variable-density, three dimensional code HST3D was used to simulate the tank experiments and understand the fate and movement of the saltwater plume under field conditions. The results from the tank experiments and modeling demonstrated that macro-scale heterogeneity significantly influenced the migration patterns and flushing times of diffuse saltwater contamination. Ambient flow had a direct influence on total flush-out time, and heterogeneity impacted flush-out times for the top part of the tank and total flush-out times. The presence of a continuous low-permeability layer caused a 40% increase in complete flush-out time due to the slower flow of salt water in the low-permeability layer. When a relatively small opening was introduced in the low-permeability layer, salt water migrated quickly into a higher-permeable layer below causing a reduction in flush-out time. Freshwater recharge caused an early dilution of salt water in the top part of the tank in the case of a layered media, but also pushed the saltwater plume into the low-permeability layer which led to increased total flush-out times. Copyright © 2012 Elsevier B.V. All rights reserved.
Glikson, Andrew Y
2004-01-01
Pioneering studies of Precambrian impact fallout units and associated tsunami deposits in the Hamersley Basin, Pilbara Craton, Western Australia, by B.M. Simonson and S.W. Hassler, document a range of tsunami deposits associated with impact fallout units whose impact connection is identified by associated microtektites and microkrystites (condensation spherules). The impact connection of these particles is demonstrated by iridium anomalies, unique platinum group elements patterns, and Ni-rich mineral phases. Densely packed tsunami-transported fragments and boulders overlie microkrystite units of the >2629 +/- 5 Ma top Jeerinah Impact Layer (JIL). Tsunami events closely follow spherule settling associated with the 2561 +/- 8 Ma Spherule Marker Bed SMB-1 and SMB-2 impact events, Bee Gorge Member, Wittenoom Formation. The two impact cycles are separated by a stratigraphically consistent silicified black siltstone, representing a "Quiet Interval." The SMB turbidites display turbulence eddies, climbing ripples, conglomerate pockets, slumps, and waterlogged sediment deformation features. Consequences of tsunami in the probably contemporaneous Carawine Dolomite (Pb-Pb carbonate ages of approximately 2.56-2.54 Ga), eastern Hamersley Basin, include sub-autochthonous below-wave base excavation and megabrecciation of sea floor substrata, resulting in a unique 10-30-m-thick spherule-bearing megabreccia marker mapped over a nearly 100-km north-south strike distance in the east Hamersley Basin. The field relations suggest a pretsunami settling of the bulk of the spherules. Tsunami wave effects include: (1). dispersal of the spherule-rich soft upper sea floor sediments as a subaqueous mud cloud and (2). excavation of consolidated substrata below the soft sediment zone. Excavation and megabrecciation included injection of liquefied spherule-bearing microbreccia into dilated fractures in the disrupted underlying carbonates. Near-perfect preservation of the spherules within the basal microbreccia veins suggests tsunami-induced hydraulic pressures locally exceeded lithostatic pressure. Late-stage settling of spherule-bearing mud clouds in the wake of the tsunami is represented by an abundance of spherules in the uppermost microbreccia zones of the megabreccia pile. From the deep below-wave base facies of the Carawine Dolomite, tsunami wave amplitudes may have exceeded 200 m depth. The approximately 2.47-2.50 Ga DGS4 (S4 Macroband, Dales Gorge Member, Brockman Iron Formation) fallout units include exotic chert and carbonate boulders transported by tsunami following settling of a 10-20-cm-thick microkrystite and microtektite-rich unit. Seismic perturbations preceding deposition of the JIL and SMB fallout units are marked by rip-up clasts. The geochemistry of microkrystites and microtektites suggests impact fallout originated from impacts in simatic/oceanic crustal regions, although tsunami waves may have originated from seismically reactivated faults and plate margins located at distance from the impact craters.
The Pacific Tsunami Warning Center's Response to the Tohoku Earthquake and Tsunami
NASA Astrophysics Data System (ADS)
Weinstein, S. A.; Becker, N. C.; Shiro, B.; Koyanagi, K. K.; Sardina, V.; Walsh, D.; Wang, D.; McCreery, C. S.; Fryer, G. J.; Cessaro, R. K.; Hirshorn, B. F.; Hsu, V.
2011-12-01
The largest Pacific basin earthquake in 47 years, and also the largest magnitude earthquake since the Sumatra 2004 earthquake, struck off of the east coast of the Tohoku region of Honshu, Japan at 5:46 UTC on 11 March 2011. The Tohoku earthquake (Mw 9.0) generated a massive tsunami with runups of up to 40m along the Tohoku coast. The tsunami waves crossed the Pacific Ocean causing significant damage as far away as Hawaii, California, and Chile, thereby becoming the largest, most destructive tsunami in the Pacific Basin since 1960. Triggers on the seismic stations at Erimo, Hokkaido (ERM) and Matsushiro, Honshu (MAJO), alerted Pacific Tsunami Warning Center (PTWC) scientists 90 seconds after the earthquake began. Four minutes after its origin, and about one minute after the earthquake's rupture ended, PTWC issued an observatory message reporting a preliminary magnitude of 7.5. Eight minutes after origin time, the Japan Meteorological Agency (JMA) issued its first international tsunami message in its capacity as the Northwest Pacific Tsunami Advisory Center. In accordance with international tsunami warning system protocols, PTWC then followed with its first international tsunami warning message using JMA's earthquake parameters, including an Mw of 7.8. Additional Mwp, mantle wave, and W-phase magnitude estimations based on the analysis of later-arriving seismic data at PTWC revealed that the earthquake magnitude reached at least 8.8, and that a destructive tsunami would likely be crossing the Pacific Ocean. The earthquake damaged the nearest coastal sea-level station located 90 km from the epicenter in Ofunato, Japan. The NOAA DART sensor situated 600 km off the coast of Sendai, Japan, at a depth of 5.6 km recorded a tsunami wave amplitude of nearly two meters, making it by far the largest tsunami wave ever recorded by a DART sensor. Thirty minutes later, a coastal sea-level station at Hanasaki, Japan, 600 km from the epicenter, recorded a tsunami wave amplitude of nearly three meters. The evacuation of Hawaii's coastlines commenced at 7:31 UTC. Concurrent with this tsunami event, a widely-felt Mw 4.6 earthquake occurred beneath the island of Hawai`i at 8:58 UTC. PTWC responded within three minutes of origin time with a Tsunami Information Statement stating that the Hawaii earthquake would not generate a tsunami. After issuing 27 international tsunami bulletins to Pacific basin countries, and 16 messages to the State of Hawaii during a period of 25 hours after the event began, PTWC concluded its role during the Tohoku tsunami event with the issuance of the corresponding warning cancellation message at 6:36 UTC on 12 March 2011. During the following weeks, however, the PTWC would continue to respond to dozens of aftershocks related to the earthquake. We will present a complete timeline of PTWC's activities, both domestic and international, during the Tohoku tsunami event. We will also illustrate the immense number of website hits, phone calls, and media requests that flooded PTWC during the course of the event, as well as the growing role social media plays in communicating tsunami hazard information to the public.
Tavares, Alexandre Oliveira; Barros, José Leandro; Santos, Angela
2017-04-01
This study presents a new multidimensional methodology for tsunami vulnerability assessment that combines the morphological, structural, social, and tax component of vulnerability. This new approach can be distinguished from previous methodologies that focused primarily on the evaluation of potentially affected buildings and did not use tsunami numerical modeling. The methodology was applied to the Figueira da Foz and Vila do Bispo municipalities in Portugal. For each area, the potential tsunami-inundated areas were calculated considering the 1755 Lisbon tsunami, which is the greatest disaster caused by natural hazards that ever occurred in Portugal. Furthermore, the four components of the vulnerability were calculated to obtain a composite vulnerability index. This methodology enables us to differentiate the two areas in their vulnerability, highlighting the characteristics of the territory components. This methodology can be a starting point for the creation of a local assessment framework at the municipal scale related to tsunami risk. In addition, the methodology is an important support for the different local stakeholders. © 2016 Society for Risk Analysis.
Wood, N.J.; Burton, C.G.; Cutter, S.L.
2010-01-01
Tsunamis generated by Cascadia subduction zone earthquakes pose significant threats to coastal communities in the U. S. Pacific Northwest. Impacts of future tsunamis to individuals and communities will likely vary due to pre-event socioeconomic and demographic differences. In order to assess social vulnerability to Cascadia tsunamis, we adjust a social vulnerability index based on principal component analysis first developed by Cutter et al. (2003) to operate at the census-block level of geography and focus on community-level comparisons along the Oregon coast. The number of residents from blocks in tsunami-prone areas considered to have higher social vulnerability varies considerably among 26 Oregon cities and most are concentrated in four cities and two unincorporated areas. Variations in the number of residents from census blocks considered to have higher social vulnerability in each city do not strongly correlate with the number of residents or city assets in tsunami-prone areas. Methods presented here will help emergency managers to identify community sub-groups that are more susceptible to loss and to develop risk-reduction strategies that are tailored to local conditions. ?? z.
Local tsunamis and earthquake source parameters
Geist, Eric L.; Dmowska, Renata; Saltzman, Barry
1999-01-01
This chapter establishes the relationship among earthquake source parameters and the generation, propagation, and run-up of local tsunamis. In general terms, displacement of the seafloor during the earthquake rupture is modeled using the elastic dislocation theory for which the displacement field is dependent on the slip distribution, fault geometry, and the elastic response and properties of the medium. Specifically, nonlinear long-wave theory governs the propagation and run-up of tsunamis. A parametric study is devised to examine the relative importance of individual earthquake source parameters on local tsunamis, because the physics that describes tsunamis from generation through run-up is complex. Analysis of the source parameters of various tsunamigenic earthquakes have indicated that the details of the earthquake source, namely, nonuniform distribution of slip along the fault plane, have a significant effect on the local tsunami run-up. Numerical methods have been developed to address the realistic bathymetric and shoreline conditions. The accuracy of determining the run-up on shore is directly dependent on the source parameters of the earthquake, which provide the initial conditions used for the hydrodynamic models.
Integration of WERA Ocean Radar into Tsunami Early Warning Systems
NASA Astrophysics Data System (ADS)
Dzvonkovskaya, Anna; Helzel, Thomas; Kniephoff, Matthias; Petersen, Leif; Weber, Bernd
2016-04-01
High-frequency (HF) ocean radars give a unique capability to deliver simultaneous wide area measurements of ocean surface current fields and sea state parameters far beyond the horizon. The WERA® ocean radar system is a shore-based remote sensing system to monitor ocean surface in near real-time and at all-weather conditions up to 300 km offshore. Tsunami induced surface currents cause increasing orbital velocities comparing to normal oceanographic situation and affect the measured radar spectra. The theoretical approach about tsunami influence on radar spectra showed that a tsunami wave train generates a specific unusual pattern in the HF radar spectra. While the tsunami wave is approaching the beach, the surface current pattern changes slightly in deep water and significantly in the shelf area as it was shown in theoretical considerations and later proved during the 2011 Japan tsunami. These observed tsunami signatures showed that the velocity of tsunami currents depended on a tsunami wave height and bathymetry. The HF ocean radar doesn't measure the approaching wave height of a tsunami; however, it can resolve the surface current velocity signature, which is generated when tsunami reaches the shelf edge. This strong change of the surface current can be detected by a phased-array WERA system in real-time; thus the WERA ocean radar is a valuable tool to support Tsunami Early Warning Systems (TEWS). Based on real tsunami measurements, requirements for the integration of ocean radar systems into TEWS are already defined. The requirements include a high range resolution, a narrow beam directivity of phased-array antennas and an accelerated data update mode to provide a possibility of offshore tsunami detection in real-time. The developed software package allows reconstructing an ocean surface current map of the area observed by HF radar based on the radar power spectrum processing. This fact gives an opportunity to issue an automated tsunami identification message by the WERA radars to TEWS. The radar measurements can be used to confirm a pre-warning and raise a tsunami alert. The output data of WERA processing software can be easily integrated into existing TEWS due to flexible data format, fast update rate and quality control of measurements. The archived radar data can be used for further hazard analysis and research purposes. The newly launched Tsunami Warning Center in Oman is one of the most sophisticated tsunami warning system world-wide applying a mix of well proven state-of-the-art subsystems. It allows the acquisition of data from many different sensor systems including seismic stations, GNSS, tide gauges, and WERA ocean radars in one acquisition system providing access to all sensor data via a common interface. The TEWS in Oman also integrates measurements of a modern network of HF ocean radars to verify tsunami simulations, which give additional scenario quality information and confirmation to the decision support.
NASA Astrophysics Data System (ADS)
Peters, J.
2015-12-01
Planning for a tsunami evacuation is challenging for California communities due to the variety of earthquake sources that could generate a tsunami. A maximum tsunami inundation zone is currently the basis for all tsunami evacuations in California, although an Evacuation Playbook consisting of specific event-based evacuation phases relating to flooding severity is in development. We chose to investigate the Evacuation Playbook approach for the island community of Alameda, CA since past reports estimated a significant difference in numbers of residents in the maximum inundation zone when compared to an event-based inundation zone. In order to recognize variations in the types of residents and businesses within each phase, a population exposure analysis was conducted for each of the four Alameda evacuation phases. A pedestrian evacuation analysis using an anisotropic, path distance model was also conducted to understand the time it would take for populations to reach high ground by foot. Initial results suggest that the two islands of the City of Alameda have different situations when it comes to the four tsunami evacuation phases. Pedestrian evacuation results suggest that Bay Farm Island would have more success evacuating by vehicle due to limited nearby high ground for pedestrians to reach safety. Therefore, agent-based traffic simulation software was used to model vehicle evacuation off Bay Farm Island. Initial results show that Alameda Island could face challenges evacuating numerous boat docks and a large beach for phases 1 and 2, whereas Bay Farm Island is unaffected at these phases but might be challenged with evacuating by vehicle for phases 3 and maximum due to congestion on limited egress routes. A better understanding of the population exposure within each tsunami Evacuation Playbook phase and the time it would take to evacuate out of each phase by foot or vehicle will help emergency managers implement the evacuation phases during an actual tsunami event.
NASA Astrophysics Data System (ADS)
Grilli, Stéphan T.; Guérin, Charles-Antoine; Shelby, Michael; Grilli, Annette R.; Moran, Patrick; Grosdidier, Samuel; Insua, Tania L.
2017-08-01
In past work, tsunami detection algorithms (TDAs) have been proposed, and successfully applied to offline tsunami detection, based on analyzing tsunami currents inverted from high-frequency (HF) radar Doppler spectra. With this method, however, the detection of small and short-lived tsunami currents in the most distant radar ranges is challenging due to conflicting requirements on the Doppler spectra integration time and resolution. To circumvent this issue, in Part I of this work, we proposed an alternative TDA, referred to as time correlation (TC) TDA, that does not require inverting currents, but instead detects changes in patterns of correlations of radar signal time series measured in pairs of cells located along the main directions of tsunami propagation (predicted by geometric optics theory); such correlations can be maximized when one signal is time-shifted by the pre-computed long wave propagation time. We initially validated the TC-TDA based on numerical simulations of idealized tsunamis in a simplified geometry. Here, we further develop, extend, and apply the TC algorithm to more realistic tsunami case studies. These are performed in the area West of Vancouver Island, BC, where Ocean Networks Canada recently deployed a HF radar (in Tofino, BC), to detect tsunamis from far- and near-field sources, up to a 110 km range. Two case studies are considered, both simulated using long wave models (1) a far-field seismic, and (2) a near-field landslide, tsunami. Pending the availability of radar data, a radar signal simulator is parameterized for the Tofino HF radar characteristics, in particular its signal-to-noise ratio with range, and combined with the simulated tsunami currents to produce realistic time series of backscattered radar signal from a dense grid of cells. Numerical experiments show that the arrival of a tsunami causes a clear change in radar signal correlation patterns, even at the most distant ranges beyond the continental shelf, thus making an early tsunami detection possible with the TC-TDA. Based on these results, we discuss how the new algorithm could be combined with standard methods proposed earlier, based on a Doppler analysis, to develop a new tsunami detection system based on HF radar data, that could increase warning time. This will be the object of future work, which will be based on actual, rather than simulated, radar data.
Changes in Tsunami Risk Perception in Northern Chile After the April 1 2014 Tsunami
NASA Astrophysics Data System (ADS)
Carvalho, L.; Lagos, M.
2016-12-01
Tsunamis are a permanent risk in the coast of Chile. Apart from that, the coastal settlements and the Chilean State, historically, have underestimated the danger of tsunamis. On April 1 2014, a magnitude Mw 8.2 earthquake and a minor tsunami occurred off the coast of northern Chile. Considering that over decades this region has been awaiting an earthquake that would generate a large tsunami, in this study we inquired if the familiarity with the subject tsunami and the lack of frequent tsunamis or occurrence of non-hazardous tsunamis for people could lead to adaptive responses to underestimate the danger. The purpose of this study was to evaluate the perceived risk of tsunami in the city of Arica, before and after the April 1 2014 event. A questionnaire was designed and applied in two time periods to 547 people living in low coastal areas in Arica. In the first step, the survey was applied in March 2014. While in step 2, new questions were included and the survey was reapplied, a year after the minor tsunami. A descriptive analysis of data was performed, followed by a comparison between means. We identified illusion of invulnerability, especially regarding to assessment that preparedness and education actions are enough. Answers about lack of belief in the occurrence of future tsunamis were also reported. At the same time, there were learning elements identified. After April 1, a larger number of participants described self-protection actions for emergency, as well as performing of preventive actions. In addition, we mapped answers about the tsunami danger degree in different locations in the city, where we observed a high knowledge of it. When compared with other hazards, the concern about tsunamis were very high, lower than earthquakes hazard, but higher than pollution, crime and rain. Moreover, we identified place attachment in answers about sense of security and affective bonds with home and their location. We discussed the relationship between risk perception, illusion of invulnerability and place attachment. Finally, we questioned whether learning elements will remain in time, or if this elements are related to short-term public interest. The April 1 event was not the largest earthquake expected in this subduction zone, therefore, it is extremely important that communities are educated and prepared to live with risk.
NASA Astrophysics Data System (ADS)
Kato, T.; Ito, T.; Abidin, H. Z.; Agustan
2007-09-01
A large earthquake (Mw=7.7) along a plate boundary occurred in the south of Java Island on July 17, 2006, and caused a significant tsunami. We made GPS observations and tsunami heights measurements during the period from July 24 to August 1, 2006. The earthquake seems to be due to an interplate low angle reverse faulting, though there might be a possibility of high angle faulting within the subducting lithosphere. Crustal deformation distribution due to the earthquake, aided by tsunami heights measurements, might clarify which would be the case. We occupied 29 sites by GPS in the area of southern Java encompassing the area from 107.8 E to 109.50 E. These sites were occupied once before the earthquake. However, we were not able to detect significant co-seismic displacements. The obtained displacements, most of which span several years, show ESE direction in ITRF2000 frame. This represents the direction of Sunda block motion. The tsunami heights measured at 11 sites were 6-7 m along the southern coast of Java and indicate that the observed heights are systematically higher than those estimated from numerical simulations that are based on seismic data analysis. This might suggest that fault offsets might have been larger - nearly double - than those estimated using seismic analysis. These results lead us to an idea that the rupture was very slow. If this is the case, the earthquake might have been a "tsunami earthquake" that is similar to the one that occurred on June 2, 1994 in the east of the present earthquake.
Analysis of the tsunami generated by the MW 7.8 1906 San Francisco earthquake
Geist, E.L.; Zoback, M.L.
1999-01-01
We examine possible sources of a small tsunami produced by the 1906 San Francisco earthquake, recorded at a single tide gauge station situated at the opening to San Francisco Bay. Coseismic vertical displacement fields were calculated using elastic dislocation theory for geodetically constrained horizontal slip along a variety of offshore fault geometries. Propagation of the ensuing tsunami was calculated using a shallow-water hydrodynamic model that takes into account the effects of bottom friction. The observed amplitude and negative pulse of the first arrival are shown to be inconsistent with small vertical displacements (~4-6 cm) arising from pure horizontal slip along a continuous right bend in the San Andreas fault offshore. The primary source region of the tsunami was most likely a recently recognized 3 km right step in the San Andreas fault that is also the probable epicentral region for the 1906 earthquake. Tsunami models that include the 3 km right step with pure horizontal slip match the arrival time of the tsunami, but underestimate the amplitude of the negative first-arrival pulse. Both the amplitude and time of the first arrival are adequately matched by using a rupture geometry similar to that defined for the 1995 MW (moment magnitude) 6.9 Kobe earthquake: i.e., fault segments dipping toward each other within the stepover region (83??dip, intersecting at 10 km depth) and a small component of slip in the dip direction (rake=-172??). Analysis of the tsunami provides confirming evidence that the 1906 San Francisco earthquake initiated at a right step in a right-lateral fault and propagated bilaterally, suggesting a rupture initiation mechanism similar to that for the 1995 Kobe earthquake.
Tsunami modelling with adaptively refined finite volume methods
LeVeque, R.J.; George, D.L.; Berger, M.J.
2011-01-01
Numerical modelling of transoceanic tsunami propagation, together with the detailed modelling of inundation of small-scale coastal regions, poses a number of algorithmic challenges. The depth-averaged shallow water equations can be used to reduce this to a time-dependent problem in two space dimensions, but even so it is crucial to use adaptive mesh refinement in order to efficiently handle the vast differences in spatial scales. This must be done in a 'wellbalanced' manner that accurately captures very small perturbations to the steady state of the ocean at rest. Inundation can be modelled by allowing cells to dynamically change from dry to wet, but this must also be done carefully near refinement boundaries. We discuss these issues in the context of Riemann-solver-based finite volume methods for tsunami modelling. Several examples are presented using the GeoClaw software, and sample codes are available to accompany the paper. The techniques discussed also apply to a variety of other geophysical flows. ?? 2011 Cambridge University Press.
Ironic Effects of the Destructive Tsunami on Public Risk Judgment
NASA Astrophysics Data System (ADS)
Oki, S.; Nakayachi, K.
2011-12-01
The 2011 Tohoku earthquake caused more than 20,000 casualties, with most of the dead and missing in an enormous tsunami. Survivors had simply evacuated to higher ground within approximately 30 minutes of its arrival. This reflects the importance of public perception of tsunami risks represented by its heights. Our question is how the devastating tsunami affected people in the western Japan where a great earthquake is anticipated in near future. Existing risk analysis researches show that the experience of natural disasters increases risk perception, even with indirect experiences such as seeing photographs of disaster scenes or thinking about a major natural calamity. No doubt, we can assume that the devastating tsunami would have led people to have a greater sense of associated risks. Our result, however, shows that the destructive tsunami of Tohoku earthquake lowered the risk assessment of tsunami heights. One possible explanation to this paradoxical result is the anchoring heuristic. It defines that laypersons are highly inclined to judge based on the numbers first presented to them. Media's repeating report of record-breaking tsunamis of 30 m or more anchored people to elevate the height to evacuate. The results of our survey pose a significant problem for disaster prevention. The survey area is at high risk of giant earthquake, and according to our results, more than 50% of the people surveyed no longer sensed the danger of a 1-m-high tsunami, whereas about 70% had perceived its peril before the Tohoku earthquake. This is also of great importance in Indonesia or Chile where huge earthquakes had occurred recently. We scientists need to face up to the fact that improvement of quick calculation of tsunami heights is not sufficient at all to mitigate the tsunami disasters, but reorient how we should inform laypersons to evacuate at the emergency situation.
NASA Astrophysics Data System (ADS)
Pirrotta, Claudia; Serafina Barbano, Maria; Gerardi, Flavia
2010-05-01
We present a study to discriminate the kind of anomalous waves, storms or tsunamis, that were responsible for the large boulder accumulation in the Vendicari Reserve along the south-eastern Sicilian coast. These depositional and erosional indicators of the large wave impact have been already observed in some rocky coasts of the Mediterranean basin and associated to strong waves of tsunamigenic or meteorological origin. Distinguishing boulders deposited by tsunamis from that deposited by storms and determining the age of their deposition can help to evaluate the magnitude and frequency of tsunamis and the hazard along the coast also regarding extraordinarily violent storms. The Sicilian Ionian coast has been affected in historical time by large destructive earthquake-related tsunamis (e.g. the 1169, 1693 and 1908) and it is exposed to an intense wave motion coming from a NNE- SSE span direction . In the rocky coastal area of Vendicari Reserve, three different GPS surveys (from September 2006 until April 2009) have been performed with the aim to observe the distance of each boulders with respect to the shoreline and if storms removed boulders or deposited new ones. A morphological analysis aiming to identify boulder shapes, measuring their volumes, elongation axis azimuth, pre-transport setting and the probable transport mechanism on the platform, was also carried out. The calcarenitic boulders (specific weight about 2,3 g/cm3), reaching about 20 tons and a distance up to 60m from the shoreline, are generally carved out from the supratidal or mid-sublittoral zone, showing widespread biogenic encrustations sometimes so fresh that suggest a recent deposition. The GPS surveys allowed us to observed that, after a strong storm during January 2009, several boulders were removed while new have been deposited on the platform by the storm waves. Hydrodynamic equations jointly to statistical analysis of sea storms have been used to determine the extreme event, geological or meteorological, responsible for this singular accumulation. We computed the minimum wave height, of storm and tsunami, required to start the movement of each boulder from its initial position. Moreover, we calculated the maximum penetration of the waves for the two major storm waves estimated at Vendicari and for the 1693 and 1908 tsunami waves. Finally we compared the computed values with the boulder distribution. The results show that the strongest storms were probably responsible for the current distribution of many boulders but about the 30% of them need of stronger waves, likely tsunami waves, than the maximum assumed storms to be moved and transported in their final place. Radiocarbon dating, performed on three probably tsunami boulders, having weight of about 15 t and sited at a distance >40 m from the shoreline, suggests that two of them were probably deposited by the 1693 tsunami, and one by a tsunami occurred after 650-930 AD that could be an unknown event or one of the historical tsunamis occurred in the Ionian coast of Sicily. Absolute age dating, such as optical stimulated luminescence, should be necessary to gather a correct imprint of the paleotsunami event.
Tsunami hazard and risk assessment in El Salvador
NASA Astrophysics Data System (ADS)
González, M.; González-Riancho, P.; Gutiérrez, O. Q.; García-Aguilar, O.; Aniel-Quiroga, I.; Aguirre, I.; Alvarez, J. A.; Gavidia, F.; Jaimes, I.; Larreynaga, J. A.
2012-04-01
Tsunamis are relatively infrequent phenomena representing a greater threat than earthquakes, hurricanes and tornadoes, causing the loss of thousands of human lives and extensive damage to coastal infrastructure around the world. Several works have attempted to study these phenomena in order to understand their origin, causes, evolution, consequences, and magnitude of their damages, to finally propose mechanisms to protect coastal societies. Advances in the understanding and prediction of tsunami impacts allow the development of adaptation and mitigation strategies to reduce risk on coastal areas. This work -Tsunami Hazard and Risk Assessment in El Salvador-, funded by AECID during the period 2009-12, examines the state of the art and presents a comprehensive methodology for assessing the risk of tsunamis at any coastal area worldwide and applying it to the coast of El Salvador. The conceptual framework is based on the definition of Risk as the probability of harmful consequences or expected losses resulting from a given hazard to a given element at danger or peril, over a specified time period (European Commission, Schneiderbauer et al., 2004). The HAZARD assessment (Phase I of the project) is based on propagation models for earthquake-generated tsunamis, developed through the characterization of tsunamigenic sources -sismotectonic faults- and other dynamics under study -tsunami waves, sea level, etc.-. The study area is located in a high seismic activity area and has been hit by 11 tsunamis between 1859 and 1997, nine of them recorded in the twentieth century and all generated by earthquakes. Simulations of historical and potential tsunamis with greater or lesser affection to the country's coast have been performed, including distant sources, intermediate and close. Deterministic analyses of the threats under study -coastal flooding- have been carried out, resulting in different hazard maps (maximum wave height elevation, maximum water depth, minimum tsunami arrival time, maximum flooding level or "Run-up", hazard degree for people based on incipient velocity for people instability) along the coast of El Salvador and at some relevant locations (high resolution analysis). The VULNERABILITY assessment of the exposed elements (Phase II of the project) is based on an integrated approach which is essential given the complexity of coastal areas. A set of indices and indicators have been developed supported by a Geographic Information System that allows graphical representation of physical, environmental, social, economic and infrastructure characteristics of the coast. Different spatial and temporal scales have been also considered in this project to calculate the risk, since both factors would change the amount and type of exposed elements and their vulnerability. A final global RISK analysis (hazard, exposure and vulnerability analysis for each dimension -human, environmental, socioeconomic and infrastructure- and both temporal and spatial scales) allows identifying weaknesses, gaps and special needs to cope with a tsunami event and, therefore, will result in a set of risk reduction measures, including adaptation and mitigation measures.
NASA Astrophysics Data System (ADS)
Power, William; Wang, Xiaoming; Lane, Emily; Gillibrand, Philip
2013-09-01
Regional source tsunamis represent a potentially devastating threat to coastal communities in New Zealand, yet are infrequent events for which little historical information is available. It is therefore essential to develop robust methods for quantitatively estimating the hazards posed, so that effective mitigation measures can be implemented. We develop a probabilistic model for the tsunami hazard posed to the Auckland region of New Zealand from the Kermadec Trench and the southern New Hebrides Trench subduction zones. An innovative feature of our model is the systematic analysis of uncertainty regarding the magnitude-frequency distribution of earthquakes in the source regions. The methodology is first used to estimate the tsunami hazard at the coastline, and then used to produce a set of scenarios that can be applied to produce probabilistic maps of tsunami inundation for the study region; the production of these maps is described in part II. We find that the 2,500 year return period regional source tsunami hazard for the densely populated east coast of Auckland is dominated by events originating in the Kermadec Trench, while the equivalent hazard to the sparsely populated west coast is approximately equally due to events on the Kermadec Trench and the southern New Hebrides Trench.
NASA Astrophysics Data System (ADS)
Reymond, Dominique
2017-04-01
We present a tool for computing the complete arrival times of the dispersed wave-train of a tsunami. The calculus is made using the exact formulation of the tsunami dispersion (and without approximations), at any desired periods between one hour or more (concerning the gravity waves propagation) until 10s (the highly dispersed mode). The computation of the travel times is based on the a summation of the necessary time for a tsunami to cross all the elementary blocs of a grid of bathymetry following a path between the source and receiver at a given period. In addition the source dimensions and the focal mechanism are taken into account to adjust the minimum travel time to the different possible points of emission of the source. A possible application of this tool is to forecast the arrival time of late arrivals of tsunami waves that could produce the resonnance of some bays and sites at higher frequencies than the gravity mode. The theoretical arrival times are compared to the observed ones and to the results obtained by TTT (P. Wessel, 2009) and the ones obtained by numerical simulations. References: Wessel, P. (2009). Analysis of oberved and predicted tsunami travel times for the Pacic and Indian oceans. Pure Appl. Geophys., 166:301-324.
POSTTRAUMATIC STRESS DISORDER AMONG INDONESIAN CHILDREN 5 YEARS AFTER THE TSUNAMI.
Irwanto; Faisal; Zulfa, Hendra
2015-09-01
Children are at risk for developing posttraumatic stress disorder (PTSD) due to experiencing or living in a disaster area. The factors that increase the likelihood of a child developing PTSD need further clarification. We studied the factors associated with PTSD among children who experienced the tsunami in Sumatra, Indonesia. We conducted a cross sectional study in 2 subdistricts of Sumatra 5 years after experiencing a tsunami. Children aged 7-13 years were enrolled using stratified cluster sampling. A tsunami-modified version of The PsySTART Rapid Triage System was used to question children about their tsunami-specific traumatic experiences. Trauma symptoms were evaluated using the Trauma Symptom Checklist For Children (TSCC). The diagnosis of PTSD was made using the Child PTSD Symptom Scale (CPSS) and DSM-IV criteria. The data were analyzed with chi-square tests and multivariate logistic regression analysis with 95% confidence intervals (CI). A total of 262 children were enrolled in this study. The prevalence of PTSD in these children was 20.6%. On multivariate analysis, having experienced a delay in evacuation (PR = 4.5; 95% CI: 2.794-13.80; p < 0.001) and being unable to escape (PR = 13.07; 95% CI: 5.884-64; p < 0.001) were significantly associated with PTSD 5 years after the tsunami. Children who experienced a traumatic event in which they were unable to escape or when there is a delay in evacuation are at risk of developing PTSD and need appropriate treatment.
Post-crisis analysis of an ineffective tsunami alert: the 2010 earthquake in Maule, Chile.
Soulé, Bastien
2014-04-01
Considering its huge magnitude and its location in a densely populated area of Chile, the Maule seism of 27 February 2010 generated a low amount of victims. However, post-seismic tsunamis were particularly devastating on that day; surprisingly, no full alert was launched, not at the national, regional or local level. This earthquake and associated tsunamis are of interest in the context of natural hazards management as well as crisis management planning. Instead of focusing exclusively on the event itself, this article places emphasis on the process, systems and long-term approach that led the tsunami alert mechanism to be ineffectual. Notably, this perspective reveals interrelated forerunner signs of vulnerability. © 2014 The Author(s). Disasters © Overseas Development Institute, 2014.
NASA Astrophysics Data System (ADS)
Martin, S. S.; Li, L.; Okal, E.; Kanamori, H.; Morin, J.; Sieh, K.; Switzer, A.
2017-12-01
On 4 January 1907, an earthquake and tsunami occurred off the west coast of Sumatra, Indonesia, causing at least 2,188 fatalities. The earthquake was given an instrumental surface-wave magnitude (MS) in the range of 7.5 to 8.0 at periods of ≈40s. The tsunami it triggered was destructive on the islands of Nias and Simeulue; on the latter, this gave rise to the legend of the S'mong. This tsunami appears in records in India, Pakistan, Sri Lanka, and as far as the island of La Réunion. In relation to published seismic magnitudes for the earthquake, the tsunami was anomalously large, qualifying it as a "tsunami earthquake." Relocations using reported arrival times suggest an epicentral location near the trench. However, unusually for a tsunami earthquake the reported macroseismic intensities were higher than expected on Nias (6-7 EMS). We present a new study of this event based on macroseismic and tsunami observations culled from published literature and colonial press reports, as well as existing and newly acquired digitized or print seismograms. This multidisciplinary combination of macroseismic and seismological data with tsunami modelling has yielded new insights into this poorly understood but scientifically and societally important tsunami earthquake in the Indian Ocean. With these new data, we discriminated two large earthquakes within an hour of each other with clear differences in seismological character. The first, we interpret to be a tsunami earthquake with low levels of shaking (3-4 EMS). For this event, we estimate a seismic moment (M0) between 0.8 and 1.2 x1021 Nm (≈MW 7.9 to 8.0) based on digitized Wiechert records at Göttingen in the frequency band 6-8 mHz. These records document a regular growth of moment with period and suggest possibly larger values of M0 at even longer periods. The second earthquake caused damage on Nias (6-7 EMS). We estimate MS 6 ¾ - 7 for the second event based on seismograms from Manila, Mizusawa, and Osaka. We also identified two MS ≈6 aftershocks within 24-hours of the mainshock. From a subset of descriptions of the tsunami and tide gauge readings, we modelled the tsunami in the Indian Ocean using heterogeneous slip distributions based on M0 estimates between 0.6 and 4.5 x1021 Nm. The results of our tsunami modelling also yield a seismic moment in the range estimated by our new seismological analysis.
February 27, 2010 Chilean Tsunami in Pacific and its Arrival to North East Asia
NASA Astrophysics Data System (ADS)
Zaytsev, Andrey; Pelinovsky, Eï¬M.; Yalciner, Ahmet C.; Ozer, Ceren; Chernov, Anton; Kostenko, Irina; Shevchenko, Georgy
2010-05-01
The outskirts of the fault plane broken by the strong earthquake on February 27, 2010 in Chili with a magnitude 8.8 at the 35km depth of 35.909°S, 72.733°W coordinates generated a moderate size tsunami. The initial amplitude of the tsunami source is not so high because of the major area of the plane was at land. The tsunami waves propagated far distances in South and North directions to East Asia and Wet America coasts. The waves are also recorded by several gauges in Pacific during its propagation and arrival to coastal areas. The recorded and observed amplitudes of tsunami waves are important for the potential effects with the threatening amplitudes. The event also showed that a moderate size tsunami can be effective even if it propagates far distances in any ocean or a marginal sea. The far east coasts of Russia at North East Asia (Sakhalin, Kuriles, Kamchatka) are one of the important source (i.e. November 15, 2006, Kuril Island Tsunami) and target (i.e. February, 27, 2010 Chilean tsunami) areas of the Pacific tsunamis. Many efforts have been spent for establishment of the monitoring system and assessment of tsunamis and development of the mitigation strategies against tsunamis and other hazards in the region. Development of the computer technologies provided the advances in data collection, transfer, and processing. Furthermore it also contributed new developments in computational tools and made the computer modeling to be an efficient tool in tsunami warning systems. In this study the tsunami numerical model NAMI DANCE Nested version is used. NAMI-DANCE solves Nonlinear form of Long Wave (Shallow water) equations (with or without dispersion) using finite difference model in nested grid domains from the source to target areas in multiprocessor hardware environment. It is applied to 2010 Chilean tsunami and its propagation and coastal behavior at far distances near Sakhalin, Kuril and Kamchatka coasts. The main tide gauge records used in this study are from Petropavlosk (Kamchatka), Severo-Kurilsk (Paramushir), Kurilsk (Iturup, coast of the Okhotsk sea), Malokurilskoe (Shikotan), Korsakov, Kholmsk and Aniva Bay (Sakhalin). These records and also other offshore DART records are analyzed and used for comparison of the modeling results with offshore and nearshore records. The transmission of tsunami waves through Sakhalin and Kuril straits and their propagation to nearby coasts are investigated. The spectral analysis of records in settlements of Sakhalin and Kurile Islands are investigated. The performance and capabilities of NAMI DANCE is also presented together with comparisons between the model, observations and discussions.
Sediment gravity flows triggered by remotely generated earthquake waves
NASA Astrophysics Data System (ADS)
Johnson, H. Paul; Gomberg, Joan S.; Hautala, Susan L.; Salmi, Marie S.
2017-06-01
Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011-2015 Cascadia Initiative experiment, and seafloor morphology. Our results led us to suggest that thick accretionary prism sediments amplified and extended seismic wave durations from the 11 April 2012 Mw8.6 Indian Ocean earthquake, located more than 13,500 km away. These waves triggered a sequence of small slope failures on the Cascadia margin that led to sediment gravity flows culminating in turbidity currents. Previous studies have related the triggering of sediment-laden gravity flows and turbidite deposition to local earthquakes, but this is the first study in which the originating seismic event is extremely distant (> 10,000 km). The possibility of remotely triggered slope failures that generate sediment-laden gravity flows should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences. Future similar studies may provide new understanding of submarine slope failures and turbidity currents and the hazards they pose to seafloor infrastructure and tsunami generation in regions both with and without local earthquakes.
Sediment gravity flows triggered by remotely generated earthquake waves
Johnson, H. Paul; Gomberg, Joan S.; Hautala, Susan; Salmi, Marie
2017-01-01
Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011–2015 Cascadia Initiative experiment, and seafloor morphology. Our results led us to suggest that thick accretionary prism sediments amplified and extended seismic wave durations from the 11 April 2012 Mw8.6 Indian Ocean earthquake, located more than 13,500 km away. These waves triggered a sequence of small slope failures on the Cascadia margin that led to sediment gravity flows culminating in turbidity currents. Previous studies have related the triggering of sediment-laden gravity flows and turbidite deposition to local earthquakes, but this is the first study in which the originating seismic event is extremely distant (> 10,000 km). The possibility of remotely triggered slope failures that generate sediment-laden gravity flows should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences. Future similar studies may provide new understanding of submarine slope failures and turbidity currents and the hazards they pose to seafloor infrastructure and tsunami generation in regions both with and without local earthquakes.
NASA Astrophysics Data System (ADS)
Kafle, Jeevan; Kattel, Parameshwari; Mergili, Martin; Fischer, Jan-Thomas; Tuladhar, Bhadra Man; Pudasaini, Shiva P.
2017-04-01
Dense geophysical mass flows such as landslides, debris flows and debris avalanches may generate super tsunami waves as they impact water bodies such as the sea, hydraulic reservoirs or mountain lakes. Here, we apply a comprehensive and general two-phase, physical-mathematical mass flow model (Pudasaini, 2012) that consists of non-linear and hyperbolic-parabolic partial differential equations for mass and momentum balances, and present novel, high-resolution simulation results for two-phase flows, as a mixture of solid grains and viscous fluid, impacting fluid reservoirs with obstacles. The simulations demonstrate that due to the presence of different obstacles in the water body, the intense flow-obstacle-interaction dramatically reduces the flow momentum resulting in the rapid energy dissipation around the obstacles. With the increase of obstacle height overtopping decreases but, the deflection and capturing (holding) of solid mass increases. In addition, the submarine solid mass is captured by the multiple obstacles and the moving mass decreases both in amount and speed as each obstacle causes the flow to deflect into two streams and also captures a portion of it. This results in distinct tsunami and submarine flow dynamics with multiple surface water and submarine debris waves. This novel approach can be implemented in open source GIS modelling framework r.avaflow, and be applied in hazard mitigation, prevention and relevant engineering or environmental tasks. This might be in particular for process chains, such as debris impacts in lakes and subsequent overtopping. So, as the complex flow-obstacle-interactions strongly and simultaneously dissipate huge energy at impact such installations potentially avoid great threat against the integrity of the dam. References: Pudasaini, S. P. (2012): A general two-phase debris flow model. J. Geophys. Res. 117, F03010, doi: 10.1029/ 2011JF002186.
Complex earthquake rupture and local tsunamis
Geist, E.L.
2002-01-01
In contrast to far-field tsunami amplitudes that are fairly well predicted by the seismic moment of subduction zone earthquakes, there exists significant variation in the scaling of local tsunami amplitude with respect to seismic moment. From a global catalog of tsunami runup observations this variability is greatest for the most frequently occuring tsunamigenic subduction zone earthquakes in the magnitude range of 7 < Mw < 8.5. Variability in local tsunami runup scaling can be ascribed to tsunami source parameters that are independent of seismic moment: variations in the water depth in the source region, the combination of higher slip and lower shear modulus at shallow depth, and rupture complexity in the form of heterogeneous slip distribution patterns. The focus of this study is on the effect that rupture complexity has on the local tsunami wave field. A wide range of slip distribution patterns are generated using a stochastic, self-affine source model that is consistent with the falloff of far-field seismic displacement spectra at high frequencies. The synthetic slip distributions generated by the stochastic source model are discretized and the vertical displacement fields from point source elastic dislocation expressions are superimposed to compute the coseismic vertical displacement field. For shallow subduction zone earthquakes it is demonstrated that self-affine irregularities of the slip distribution result in significant variations in local tsunami amplitude. The effects of rupture complexity are less pronounced for earthquakes at greater depth or along faults with steep dip angles. For a test region along the Pacific coast of central Mexico, peak nearshore tsunami amplitude is calculated for a large number (N = 100) of synthetic slip distribution patterns, all with identical seismic moment (Mw = 8.1). Analysis of the results indicates that for earthquakes of a fixed location, geometry, and seismic moment, peak nearshore tsunami amplitude can vary by a factor of 3 or more. These results indicate that there is substantially more variation in the local tsunami wave field derived from the inherent complexity subduction zone earthquakes than predicted by a simple elastic dislocation model. Probabilistic methods that take into account variability in earthquake rupture processes are likely to yield more accurate assessments of tsunami hazards.
Development of A Tsunami Magnitude Scale Based on DART Buoy Data
NASA Astrophysics Data System (ADS)
Leiva, J.; Polet, J.
2016-12-01
The quantification of tsunami energy has evolved through time, with a number of magnitude and intensity scales employed in the past century. Most of these scales rely on coastal measurements, which may be affected by complexities due to near-shore bathymetric effects and coastal geometries. Moreover, these datasets are generated by tsunami inundation, and thus cannot serve as a means of assessing potential tsunami impact prior to coastal arrival. With the introduction of a network of ocean buoys provided through the Deep-ocean Assessment and Reporting of Tsunamis (DART) project, a dataset has become available that can be exploited to further our current understanding of tsunamis and the earthquakes that excite them. The DART network consists of 39 stations that have produced estimates of sea-surface height as a function of time since 2003, and are able to detect deep ocean tsunami waves. Data collected at these buoys for the past decade reveals that at least nine major tsunami events, such as the 2011 Tohoku and 2013 Solomon Islands events, produced substantial wave amplitudes across a large distance range that can be implemented in a DART data based tsunami magnitude scale. We present preliminary results from the development of a tsunami magnitude scale that follows the methods used in the development of the local magnitude scale by Charles Richter. Analogous to the use of seismic ground motion amplitudes in the calculation of local magnitude, maximum ocean height displacements due to the passage of tsunami waves will be related to distance from the source in a least-squares exponential regression analysis. The regression produces attenuation curves based on the DART data, a site correction term, attenuation parameters, and an amplification factor. Initially, single event based regressions are used to constrain the attenuation parameters. Additional iterations use the parameters of these event-based fits as a starting point to obtain a stable solution, and include the calculation of station corrections, in order to obtain a final amplification factor for each event, which is used to calculate its tsunami magnitude.
Hazard Assessment and Early Warning of Tsunamis: Lessons from the 2011 Tohoku earthquake
NASA Astrophysics Data System (ADS)
Satake, K.
2012-12-01
The March 11, 2011 Tohoku earthquake (M 9.0) was the largest earthquake in Japanese history, and was the best recorded subduction-zone earthquakes in the world. In particular, various offshore geophysical observations revealed large horizontal and vertical seafloor movements, and the tsunami was recorded on high-quality, high-sampling gauges. Analysis of such tsunami waveforms shows a temporal and spatial slip distribution during the 2011 Tohoku earthquake. The fault rupture started near the hypocenter and propagated into both deep and shallow parts of the plate interface. Very large, ~25 m, slip off Miyagi on the deep part of plate interface corresponds to an interplate earthquake of M 8.8, the location and size similar to 869 Jogan earthquake model, and was responsible for the large tsunami inundation in Sendai and Ishinomaki plains. Huge slip, more than 50 m, occurred on the shallow part near the trench axis ~3 min after the earthquake origin time. This delayed shallow rupture (M 8.8) was similar to the 1896 "tsunami earthquake," and was responsible for the large tsunami on the northern Sanriku coast, measured at ~100 km north of the largest slip. Thus the Tohoku earthquake can be decomposed into an interplate earthquake and the triggered "tsunami earthquake." The Japan Meteorological Agency issued tsunami warning 3 minutes after the earthquake, and saved many lives. However, their initial estimation of tsunami height was underestimated, because the earthquake magnitude was initially estimated as M 7.9, hence the computed tsunami heights were lower. The JMA attempts to improve the tsunami warning system, including technical developments to estimate the earthquake size in a few minutes by using various and redundant information, to deploy and utilize the offshore tsunami observations, and to issue a warning based on the worst case scenario if a possibility of giant earthquake exists. Predicting a trigger of another large earthquake would still be a challenge. Tsunami hazard assessments or long-term forecast of earthquakes have not considered such a triggering or simultaneous occurrence of different types of earthquakes. The large tsunami at the Fukushima nuclear power station was due to the combination of the deep and shallow slip. Disaster prevention for low-frequency but large-scale hazard must be considered. The Japanese government established a general policy to for two levels: L1 and L2. The L2 tsunamis are the largest possible tsunamis with low frequency of occurrence, but cause devastating disaster once they occur. For such events, saving people's lives is the first priority and soft measures such as tsunami hazard maps, evacuation facilities or disaster education will be prepared. The L1 tsunamis are expected to occur more frequently, typically once in a few decades, for which hard countermeasures such as breakwater must be prepared to protect lives and properties of residents as well as economic and industrial activities.
NASA Astrophysics Data System (ADS)
Jeanlèn, L.; Philippon, M. M.; Randrianasolo, A.; Jean-Frederic, L.; Cornée, J. J.; Münch, P.
2015-12-01
Guadeloupe archipelago is part of the Lesser Antilles active volcanic arc and is therefore subjected to both enhanced seismic and volcanic activity related to the Lesser Antilles subduction zone, along which the Atlantic plate is subducted westward bellow the Caribbean plate. The volcanic arc is composed of several immerged volcanic islands (St Kitts, Nevis Montserrat, Basse Terre, Dominica, Martinique, St Lucia, Grenada) and submerged volcanoes (Kick em'Jenny). These volcanoes are known to be explosives and when they are entering in an eruptive cycle, debris flow could potentially initiate a tsunami and generate peculiar deposits within the sedimentary record recognized as tsunami deposits (or tsunamite). Subduction- related earthquakes might also initiate slope instabilities and trigger debris flow. Another controlling factor of slope (in-)-stabilities and debris flow is massive rainfalls. During cyclonic season (June to December), massive rainfalls are recorded in the area, which moreover is located on the trajectory of Atlantic Hurricanes that are responsible for numerous landslides. As a consequence, tsunami deposit are described and well studied in the Lesser Antilles arc as the islands shoreline and coastal plain are perpetually re-shaped by hurricanes responsible for tempestite deposits. However, the report of these deposit concern recent to actual events, for example present-day deposits consisting of large (metric) boulders, more or less aligned, located in the supralittoral fringe can be observed along Guadeloupe shore. In this study, we investigate the Plio-pleistocene sedimentary sequence of Grande Terre carbonate platform (Guadeloupe), and track the presence of such extreme-event related deposits and discuss our findings in the frame of the Lesser Antilles geological context.
NASA Astrophysics Data System (ADS)
Novikova, Tatyana; Annunziato, Alessandro; Charalampakis, Marinos; Romano, Fabrizio; Volpe, Manuela; Tonini, Roberto; Gerardinger, Andrea; Papadopoulos, Gerassimos A.
2016-04-01
On 17 November 2015 an Mw6.5 earthquake ruptured offshore Lefkada Isl. in Ionian Sea, Greece, causing two human victims, minor damage and several ground failures including coastal landslides. Fault plane solutions released by CMT/Harvard, NOA and other institutes have indicated that the faulting style was strike-slip right-lateral, which is quite typical for the area, as for example, the Mw6.3 event that occurred on August 14, 2003, in exactly the same fault zone. In spite of the very low tsunami potential commonly associated to this faulting mechanism, a tsunami-like sea level change was recorded after the earthquake by one tide-gauge in the Crotone harbor, Italy. Preliminary tsunami numerical simulations were performed to reproduce the observed signal. The spectral analysis of the synthetic mareograms close to the entrance of the harbor shows the presence of some peaks that could justify the relation between the natural port resonance and the observed wave amplification. Of particular interest is the coupling between the tsunami energy and the natural modes of basin oscillation enhancing tsunami wave amplitude in harbors through resonance, as shown in some historical events in the Mediterranean Sea and elsewhere. This research is a contribution to the EU-FP7 tsunami research project ASTARTE (Assessment, Strategy And Risk Reduction for Tsunamis in Europe), grant agreement no: 603839, 2013-10-30.
Tsunami Catalogues for the Eastern Mediterranean - Revisited.
NASA Astrophysics Data System (ADS)
Ambraseys, N.; Synolakis, C. E.
2008-12-01
We critically examine examine tsunami catalogues of tsunamis in the Eastern Mediterranean published in the last decade, by reference to the original sources, see Ambraseys (2008). Such catalogues have been widely used in the aftermath of the 2004 Boxing Day tsunami for probabilistic hazard analysis, even to make projections for a ten year time frame. On occasion, such predictions have caused panic and have reduced the credibility of the scientific community in making hazard assessments. We correct classification and other spurious errors in earlier catalogues and posit a new list. We conclude that for some historic events, any assignment of magnitude, even on a six point intensity scale is inappropriate due to lack of information. Further we assert that any tsunami catalogue, including ours, can only be used in conjunction with sedimentologic evidence to quantitatively infer the return period of larger events. Statistical analyses correlating numbers of tsunami events derived solely from catalogues with their inferred or imagined intensities are meaningless, at least when focusing on specific locales where only a handful of tsunamis are known to have been historically reported. Quantitative hazard assessments based on scenario events of historic tsunamis for which -at best- only the size and approximate location of the parent earthquake is known should be undertaken with extreme caution and only with benefit of geologic studies to enhance the understanding of the local tectonics. Ambraseys N. (2008) Earthquakes in the Eastern Mediterranean and the Middle East: multidisciplinary study of 2000 years of seimicity, Cambridge Univ. Press, Cambridge (ISBN 9780521872928).
NASA Astrophysics Data System (ADS)
Fujihara, S.; Korenaga, M.; Kawaji, K.; Akiyama, S.
2013-12-01
We try to compare and evaluate the nature of tsunami generation and seismic wave generation in occurrence of the 2011 Tohoku-Oki earthquake (hereafter, called as TOH11), in terms of two type of moment rate functions, inferred from finite source imaging of tsunami waveforms and seismic waveforms. Since 1970's, the nature of "tsunami earthquakes" has been discussed in many researches (e.g. Kanamori, 1972; Kanamori and Kikuchi, 1993; Kikuchi and Kanamori, 1995; Ide et al., 1993; Satake, 1994) mostly based on analysis of seismic waveform data , in terms of the "slow" nature of tsunami earthquakes (e.g., the 1992 Nicaragura earthquake). Although TOH11 is not necessarily understood as a tsunami earthquake, TOH11 is one of historical earthquakes that simultaneously generated large seismic waves and tsunami. Also, TOH11 is one of earthquakes which was observed both by seismic observation network and tsunami observation network around the Japanese islands. Therefore, for the purpose of analyzing the nature of tsunami generation, we try to utilize tsunami waveform data as much as possible. In our previous studies of TOH11 (Fujihara et al., 2012a; Fujihara et al., 2012b), we inverted tsunami waveforms at GPS wave gauges of NOWPHAS to image the spatio-temporal slip distribution. The "temporal" nature of our tsunami source model is generally consistent with the other tsunami source models (e.g., Satake et al, 2013). For seismic waveform inversion based on 1-D structure, here we inverted broadband seismograms at GSN stations based on the teleseismic body-wave inversion scheme (Kikuchi and Kanamori, 2003). Also, for seismic waveform inversion considering the inhomogeneous internal structure, we inverted strong motion seismograms at K-NET and KiK-net stations, based on 3-D Green's functions (Fujihara et al., 2013a; Fujihara et al., 2013b). The gross "temporal" nature of our seismic source models are generally consistent with the other seismic source models (e.g., Yoshida et al., 2011; Ide at al., 2011; Yagi and Fukahata, 2011; Suzuki et al., 2011). The comparison of two type of moment rate functions, inferred from finite source imaging of tsunami waveforms and seismic waveforms, suggested that there was the time period common to both seismic wave generation and tsunami generation followed by the time period unique to tsunami generation. At this point, we think that comparison of the absolute values of moment rates is not so meaningful between tsunami waveform inversion and seismic waveform inversion, because of general ambiguity of rigidity values of each subfault in the fault region (assuming the rigidity value of 30 GPa of Yoshida et al (2011)). Considering this, the normalized value of moment rate function was also evaluated and it does not change the general feature of two moment rate functions in terms of duration property. Furthermore, the results suggested that tsunami generation process apparently took more time than seismic wave generation process did. Tsunami can be generated even by "extra" motions resulting from many suggested abnormal mechanisms. These extra motions may be attribute to the relatively larger-scale tsunami generation than expected from the magnitude level from seismic ground motion, and attribute to the longer duration of tsunami generation process.
A debris avalanche at Süphan stratovolcano (Turkey) and implications for hazard evaluation
NASA Astrophysics Data System (ADS)
Özdemir, Yavuz; Akkaya, İsmail; Oyan, Vural; Kelfoun, Karim
2016-02-01
The Quaternary Süphan debris avalanche deposit is located in Eastern Anatolia, Turkey. The avalanche formed by the sector collapse of a major stratovolcano towards the north, possibly during a single catastrophic event. The deposit has an estimated volume of 4 km3 and ran out over 25 km to cover an area of approximately 200 km2. Products of the collapse are overlain by younger eruptive units from the Süphan volcano. We have tested the numerical code VolcFlow to first reproduce the emplacement of the Quaternary Süphan debris avalanche and then to develop a hazard assessment for potential future sector collapses and subsequent emplacement of debris avalanches and associated tsunami. The numerical model captures the main features of the propagation process, including travel distance, lateral spread, and run up. The best fit obtained for the existing flow has a constant retarding stress of 50 kPa and a collapse scar volume of 4 km3. Analysis of potential future collapse scenarios reveals that northern sector debris avalanches (up to 6 km3) could affect several towns. In the case of a sector collapse towards the south, a tsunami will reach the city of Van and several of the biggest towns on the southern shoreline of Lake Van. Cities most affected by the larger amplitude waves would be Van, Edremit, Gevaş, Tatvan, and, to a lesser extent, Erciş, with wave amplitudes (first waves after the onset of the collapse) between 8 and 10 m.
Tsunami Inundation Mapping for the Upper East Coast of the United States
NASA Astrophysics Data System (ADS)
Tehranirad, B.; Kirby, J. T., Jr.; Callahan, J. A.; Shi, F.; Banihashemi, S.; Grilli, S. T.; Grilli, A. R.; Tajalli Bakhsh, T. S.; O'Reilly, C.
2014-12-01
We describe the modeling of tsunami inundation for the Upper US East Coast (USEC) from Ocean City, MD up to Nantucket, MA. and the development of inundation maps for use in emergency management and hazard analysis. Seven tsunami sources were used as initial conditions in order to develop inundation maps based on a Probable Maximum Tsunami approach. Of the seven, two coseismic sources were used; the first being a large earthquake in the Puerto Rico Trench, in the well-known Caribbean Subduction Zone, and the second, an earthquake close to the Azores Gibraltar plate boundary known as the source of the biggest tsunami recorded in the North Atlantic Basin. In addition, four Submarine Mass Failure (SMF) sources located at different locations on the edge of the shelf break were simulated. Finally, the Cumbre Vieja Volcanic (CVV) collapse, located in the Canary Islands, was studied. For this presentation, we discuss modeling results for nearshore tsunami propagation and onshore inundation. A fully nonlinear Boussinesq model (FUNWAVE-TVD) is used to capture the characteristics of tsunami propagation, both nearshore and inland. In addition to the inundation line as the main result of this work, other tsunami quantities such as inundation depth and maximum velocities will be discussed for the whole USEC area. Moreover, a discussion of most vulnerable areas to a possible tsunami in the USEC will be provided. For example, during the inundation simulation process, it was observed that coastal environments with barrier islands are among the hot spots to be significantly impacted by a tsunami. As a result, areas like western Long Island, NY and Atlantic City, NJ are some of the locations that will get extremely affected in case of a tsunami occurrence in the Atlantic Ocean. Finally, the differences between various tsunami sources modeled here will be presented. Although inundation lines for different sources usually follow a similar pattern, there are clear distinctions between the inundation depth and other tsunami features in different areas. Figure below shows the inundation depth for surrounding area of the Ocean City, MD. Figure (a) and (b) are the envelope inundation depth for SMF and coseismic sources. Figure (C) shows the inundation depth for CVV source, which clearly has the largest magnitude amongst the sources studied for this work.
A numerical study of tsunami wave impact and run-up on coastal cliffs using a CIP-based model
NASA Astrophysics Data System (ADS)
Zhao, Xizeng; Chen, Yong; Huang, Zhenhua; Hu, Zijun; Gao, Yangyang
2017-05-01
There is a general lack of understanding of tsunami wave interaction with complex geographies, especially the process of inundation. Numerical simulations are performed to understand the effects of several factors on tsunami wave impact and run-up in the presence of gentle submarine slopes and coastal cliffs, using an in-house code, a constrained interpolation profile (CIP)-based model. The model employs a high-order finite difference method, the CIP method, as the flow solver; utilizes a VOF-type method, the tangent of hyperbola for interface capturing/slope weighting (THINC/SW) scheme, to capture the free surface; and treats the solid boundary by an immersed boundary method. A series of incident waves are arranged to interact with varying coastal geographies. Numerical results are compared with experimental data and good agreement is obtained. The influences of gentle submarine slope, coastal cliff and incident wave height are discussed. It is found that the tsunami amplification factor varying with incident wave is affected by gradient of cliff slope, and the critical value is about 45°. The run-up on a toe-erosion cliff is smaller than that on a normal cliff. The run-up is also related to the length of a gentle submarine slope with a critical value of about 2.292 m in the present model for most cases. The impact pressure on the cliff is extremely large and concentrated, and the backflow effect is non-negligible. Results of our work are highly precise and helpful in inverting tsunami source and forecasting disaster.
Wood, Nathan J.; Jones, Jeanne M.; Schmidtlein, Mathew; Schelling, John; Frazier, T.
2016-01-01
Successful evacuations are critical to saving lives from future tsunamis. Pedestrian-evacuation modeling related to tsunami hazards primarily has focused on identifying areas and the number of people in these areas where successful evacuations are unlikely. Less attention has been paid to identifying evacuation pathways and population demand at assembly areas for at-risk individuals that may have sufficient time to evacuate. We use the neighboring coastal communities of Hoquiam, Aberdeen, and Cosmopolis (Washington, USA) and the local tsunami threat posed by Cascadia subduction zone earthquakes as a case study to explore the use of geospatial, least-cost-distance evacuation modeling for supporting evacuation outreach, response, and relief planning. We demonstrate an approach that uses geospatial evacuation modeling to (a) map the minimum pedestrian travel speeds to safety, the most efficient paths, and collective evacuation basins, (b) estimate the total number and demographic description of evacuees at predetermined assembly areas, and (c) determine which paths may be compromised due to earthquake-induced ground failure. Results suggest a wide range in the magnitude and type of evacuees at predetermined assembly areas and highlight parts of the communities with no readily accessible assembly area. Earthquake-induced ground failures could obstruct access to some assembly areas, cause evacuees to reroute to get to other assembly areas, and isolate some evacuees from relief personnel. Evacuation-modeling methods and results discussed here have implications and application to tsunami-evacuation outreach, training, response procedures, mitigation, and long-term land use planning to increase community resilience.
Revisiting the 1761 Transatlantic Tsunami
NASA Astrophysics Data System (ADS)
Baptista, Maria Ana; Wronna, Martin; Miranda, Jorge Miguel
2016-04-01
The tsunami catalogs of the Atlantic include two transatlantic tsunamis in the 18th century the well known 1st November 1755 and the 31st March 1761. The 31st March 1761 earthquake struck Portugal, Spain, and Morocco. The earthquake occurred around noontime in Lisbon alarming the inhabitants and throwing down ruins of the past 1st November 1755 earthquake. According to several sources, the earthquake was followed by a tsunami observed as far as Cornwall (United Kingdom), Cork (Ireland) and Barbados (Caribbean). The analysis of macroseismic information and its compatibility with tsunami travel time information led to a source area close to the Ampere Seamount with an estimated epicenter circa 34.5°N 13°W. The estimated magnitude of the earthquake was 8.5. In this study, we revisit the tsunami observations, and we include a report from Cadiz not used before. We use the results of the compilation of the multi-beam bathymetric data, that covers the area between 34°N - 38°N and 12.5°W - 5.5°W and use the recent tectonic map published for the Southwest Iberian Margin to select among possible source scenarios. Finally, we use a non-linear shallow water model that includes the discretization and explicit leap-frog finite difference scheme to solve the shallow water equations in the spherical or Cartesian coordinate to compute tsunami waveforms and tsunami inundation and check the results against the historical descriptions to infer the source of the event. This study received funding from project ASTARTE- Assessment Strategy and Risk Reduction for Tsunamis in Europe a collaborative project Grant 603839, FP7-ENV2013 6.4-3
Orui, Masatsugu; Sato, Yasuhiro; Tazaki, Kanako; Kawamura, Ikuko; Harada, Shuichiro; Hayashi, Mizuho
2015-03-01
Devastating natural disasters and their aftermath are known to cause psychological distress. However, little information is available regarding suicide rates following tsunami disasters that destroy regional social services and networks. The aim of the present study was to determine whether the tsunami disaster following the Great East Japan Earthquake in March 2011 has influenced suicide rates. The study period was from March 2009 to February 2014. Tsunami disaster-stricken areas were defined as the 16 municipalities facing the Pacific Ocean in Miyagi Prefecture. Inland areas were defined as other municipalities in Miyagi that were damaged by the earthquake. Suicide rates in the tsunami disaster-stricken areas were compared to national averages, using a time-series analysis and the Poisson distribution test. In tsunami disaster-stricken areas, male suicide rates were significantly lower than the national average during the initial post-disaster period and began to increase after two years. Likewise, male suicide rates in the inland areas decreased for seven months, and then increased to exceed the national average. In contrast, female post-disaster suicide rates did not change in both areas compared to the national average. Importantly, the male suicide rates in the inland areas started to increase earlier compared to the tsunami-stricken areas, which may reflect the relative deficiency of mental healthcare services in the inland areas. Considering the present status that many survivors from the tsunami disaster still live in temporary housing and face various challenges to rebuild their lives, we should continue intensive, long-term mental healthcare services in the tsunami-stricken areas.
Tsunami vulnerability assessment in the western coastal belt in Sri Lanka
NASA Astrophysics Data System (ADS)
Ranagalage, M. M.
2017-12-01
26th December 2004 tsunami disaster has caused massive loss of life, damage to coastal infrastructures and disruption to economic activities in the coastal belt of Sri Lanka. Tsunami vulnerability assessment is a requirement for disaster risk and vulnerability reduction. It plays a major role in identifying the extent and level of vulnerabilities to disasters within the communities. There is a need for a clearer understanding of the disaster risk patterns and factors contributing to it in different parts of the coastal belt. The main objective of this study is to investigate tsunami vulnerability assessment of Moratuwa Municipal council area in Sri Lanka. We have selected Moratuwa area due to considering urbanization pattern and Tsunami hazards of the country. Different data sets such as one-meter resolution LiDAR data, orthophoto, population, housing data and road layer were employed in this study. We employed tsunami vulnerability model for 1796 housing units located there, for a tsunami scenario with a maximum run-up 8 meters. 86% of the total land area affected by the tsunami in 8 meters scenarios. Additionally, building population has been used to estimate population in different vulnerability levels. The result shows that 32% of the buildings have extremely critical vulnerability level, 46% have critical vulnerability level, 22% have high vulnerability level, and 1% have a moderate vulnerability. According to the population estimation model results, 18% reside building with extremely critical vulnerability, 43% with critical vulnerability, 36% with high vulnerability and 3% belong to moderate vulnerability level. The results of the study provide a clear picture of tsunami vulnerability. Outcomes of this analysis can use as a valuable tool for urban planners to assess the risk and extent of disaster risk reduction which could be achieved via suitable mitigation measures to manage the coastal belt in Sri Lanka.
Fukushima nuclear power plant accident was preventable
NASA Astrophysics Data System (ADS)
Kanoglu, Utku; Synolakis, Costas
2015-04-01
On 11 March 2011, the fourth largest earthquake in recorded history triggered a large tsunami, which will probably be remembered from the dramatic live pictures in a country, which is possibly the most tsunami-prepared in the world. The earthquake and tsunami caused a major nuclear power plant (NPP) accident at the Fukushima Dai-ichi, owned by Tokyo Electric Power Company (TEPCO). The accident was likely more severe than the 1979 Three Mile Island and less severe than the Chernobyl 1986 accidents. Yet, after the 26 December 2004 Indian Ocean tsunami had hit the Madras Atomic Power Station there had been renewed interest in the resilience of NPPs to tsunamis. The 11 March 2011 tsunami hit the Onagawa, Fukushima Dai-ichi, Fukushima Dai-ni, and Tokai Dai-ni NPPs, all located approximately in a 230km stretch along the east coast of Honshu. The Onagawa NPP was the closest to the source and was hit by an approximately height of 13m tsunami, of the same height as the one that hit the Fukushima Dai-ichi. Even though the Onagawa site also subsided by 1m, the tsunami did not reach to the main critical facilities. As the International Atomic Energy Agency put it, the Onagawa NPP survived the event "remarkably undamaged." At Fukushima Dai-ichi, the three reactors in operation were shut down due to strong ground shaking. The earthquake damaged all offsite electric transmission facilities. Emergency diesel generators (EDGs) provided back up power and started cooling down the reactors. However, the tsunami flooded the facilities damaging 12 of its 13 EDGs and caused a blackout. Among the consequences were hydrogen explosions that released radioactive material in the environment. It is unfortunately clear that TEPCO and Japan's principal regulator Nuclear and Industrial Safety Agency (NISA) had failed in providing a professional hazard analysis for the plant, even though their last assessment had taken place only months before the accident. The main reasons are the following. One, insufficient attention was paid to evidence of large tsunamis inundating the region, i.e., AD 869 Jogan and 1677 Empo Boso-oki tsunamis, and the 1896 Sanriku tsunami maximum height in eastern Japan whose maximum runup was 38m. Two, the design safety conditions were different in Onagawa, Fukushima and Tokai NPPs. It is inconceivable to have had different earthquake scenarios for the NPPs at such close distance from each other. Three, studying the sub-standard TEPCO analysis performed only months before the accident shows that it is not the accuracy of numerical computations or the veracity of the computational model that doomed the NPP, but the lack of familiarity with the context of numerical predictions. Inundation projections, even if correct for one particular scenario, need to always be put in context of similar studies and events elsewhere. To put it in colloquial terms, following a recipe from a great cookbook and having great cookware does not always result in great food, if the cook is an amateur. The Fukushima accident was preventable. Had the plant's owner TEPCO and NISA followed international best practices and standards, they would had predicted the possibility of the plant being struck by the size of tsunami that materialized in 2011. If the EDGs had been relocated inland or higher, there would have been no loss of power. A clear chance to have reduced the impact of the tsunami at Fukushima was lost after the 2010 Chilean tsunami. Standards are not only needed for evaluating the vulnerability of NPPs against tsunami attack, but also for evaluating the competence of modelers and evaluators. Acknowledgment: This work is partially supported by the project ASTARTE (Assessment, STrategy And Risk Reduction for Tsunamis in Europe) FP7-ENV2013 6.4-3, Grant 603839 to the Technical University of Crete and the Middle East Technical University.
Household evacuation characteristics in American Samoa during the 2009 Samoa Islands tsunami.
Apatu, Emma J I; Gregg, Chris E; Wood, Nathan J; Wang, Liang
2016-10-01
Tsunamis represent significant threats to human life and development in coastal communities. This quantitative study examines the influence of household characteristics on evacuation actions taken by 211 respondents in American Samoa who were at their homes during the 29 September 2009 Mw 8.1 Samoa Islands earthquake and tsunami disaster. Multiple logistic regression analysis of survey data was used to examine the association between evacuation and various household factors. Findings show that increases in distance to shoreline were associated with a slightly decreased likelihood of evacuation, whereas households reporting higher income had an increased probability of evacuation. The response in American Samoa was an effective one, with only 34 fatalities in a tsunami that reached shore in as little as 15 minutes. Consequently, future research should implement more qualitative study designs to identify event and cultural specific determinants of household evacuation behaviour to local tsunamis. © 2016 The Author(s). Disasters © Overseas Development Institute, 2016.
Suleimani, E.; Nicolsky, D.J.; Haeussler, Peter J.; Hansen, R.
2011-01-01
We apply a recently developed and validated numerical model of tsunami propagation and runup to study the inundation of Resurrection Bay and the town of Seward by the 1964 Alaska tsunami. Seward was hit by both tectonic and landslide-generated tsunami waves during the Mw 9.2 1964 mega thrust earthquake. The earthquake triggered a series of submarine mass failures around the fjord, which resulted in land sliding of part of the coastline into the water, along with the loss of the port facilities. These submarine mass failures generated local waves in the bay within 5 min of the beginning of strong ground motion. Recent studies estimate the total volume of underwater slide material that moved in Resurrection Bay to be about 211 million m3 (Haeussler et al. in Submarine mass movements and their consequences, pp 269-278, 2007). The first tectonic tsunami wave arrived in Resurrection Bay about 30 min after the main shock and was about the same height as the local landslide-generated waves. Our previous numerical study, which focused only on the local land slide generated waves in Resurrection Bay, demonstrated that they were produced by a number of different slope failures, and estimated relative contributions of different submarine slide complexes into tsunami amplitudes (Suleimani et al. in Pure Appl Geophys 166:131-152, 2009). This work extends the previous study by calculating tsunami inundation in Resurrection Bay caused by the combined impact of landslide-generated waves and the tectonic tsunami, and comparing the composite inundation area with observations. To simulate landslide tsunami runup in Seward, we use a viscous slide model of Jiang and LeBlond (J Phys Oceanogr 24(3):559-572, 1994) coupled with nonlinear shallow water equations. The input data set includes a high resolution multibeam bathymetry and LIDAR topography grid of Resurrection Bay, and an initial thickness of slide material based on pre- and post-earthquake bathymetry difference maps. For simulation of tectonic tsunami runup, we derive the 1964 coseismic deformations from detailed slip distribution in the rupture area, and use them as an initial condition for propagation of the tectonic tsunami. The numerical model employs nonlinear shallow water equations formulated for depth-averaged water fluxes, and calculates a temporal position of the shoreline using a free-surface moving boundary algorithm. We find that the calculated tsunami runup in Seward caused first by local submarine landslide-generated waves, and later by a tectonic tsunami, is in good agreement with observations of the inundation zone. The analysis of inundation caused by two different tsunami sources improves our understanding of their relative contributions, and supports tsunami risk mitigation in south-central Alaska. The record of the 1964 earthquake, tsunami, and submarine landslides, combined with the high-resolution topography and bathymetry of Resurrection Bay make it an ideal location for studying tectonic tsunamis in coastal regions susceptible to underwater landslides. ?? 2010 Springer Basel AG.
The role of deposits in tsunami risk assessment
Jaffe, B.
2008-01-01
An incomplete catalogue of tsunamis in the written record hinders tsunami risk assessment. Tsunami deposits, hard evidence of tsunami, can be used to extend the written record. The two primary factors in tsunami risk, tsunami frequency and magnitude, can be addressed through field and modeling studies of tsunami deposits. Recent research has increased the utility of tsunami deposits in tsunami risk assessment by improving the ability to identify tsunami deposits and developing models to determine tsunami magnitude from deposit characteristics. Copyright ASCE 2008.
Tsunami-tendenko and morality in disasters.
Kodama, Satoshi
2015-05-01
Disaster planning challenges our morality. Everyday rules of action may need to be suspended during large-scale disasters in favour of maxims that that may make prudential or practical sense and may even be morally preferable but emotionally hard to accept, such as tsunami-tendenko. This maxim dictates that the individual not stay and help others but run and preserve his or her life instead. Tsunami-tendenko became well known after the great East Japan earthquake on 11 March 2011, when almost all the elementary and junior high school students in one city survived the tsunami because they acted on this maxim that had been taught for several years. While tsunami-tendenko has been praised, two criticisms of it merit careful consideration: one, that the maxim is selfish and immoral; and two, that it goes against the natural tendency to try to save others in dire need. In this paper, I will explain the concept of tsunami-tendenko and then respond to these criticisms. Such ethical analysis is essential for dispelling confusion and doubts about evacuation policies in a disaster. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
NASA Astrophysics Data System (ADS)
Ulutas, E.; Inan, A.; Annunziato, A.
2012-06-01
This study analyzes the response of the Global Disasters Alerts and Coordination System (GDACS) in relation to a case study: the Kepulaunan Mentawai earthquake and related tsunami, which occurred on 25 October 2010. The GDACS, developed by the European Commission Joint Research Center, combines existing web-based disaster information management systems with the aim to alert the international community in case of major disasters. The tsunami simulation system is an integral part of the GDACS. In more detail, the study aims to assess the tsunami hazard on the Mentawai and Sumatra coasts: the tsunami heights and arrival times have been estimated employing three propagation models based on the long wave theory. The analysis was performed in three stages: (1) pre-calculated simulations by using the tsunami scenario database for that region, used by the GDACS system to estimate the alert level; (2) near-real-time simulated tsunami forecasts, automatically performed by the GDACS system whenever a new earthquake is detected by the seismological data providers; and (3) post-event tsunami calculations using GCMT (Global Centroid Moment Tensor) fault mechanism solutions proposed by US Geological Survey (USGS) for this event. The GDACS system estimates the alert level based on the first type of calculations and on that basis sends alert messages to its users; the second type of calculations is available within 30-40 min after the notification of the event but does not change the estimated alert level. The third type of calculations is performed to improve the initial estimations and to have a better understanding of the extent of the possible damage. The automatic alert level for the earthquake was given between Green and Orange Alert, which, in the logic of GDACS, means no need or moderate need of international humanitarian assistance; however, the earthquake generated 3 to 9 m tsunami run-up along southwestern coasts of the Pagai Islands where 431 people died. The post-event calculations indicated medium-high humanitarian impacts.
NASA Astrophysics Data System (ADS)
Ramirez-Herrera, M.; Navarrete-Pacheco, J.; Lagos, M.; Arcas, D.
2013-12-01
Recent extreme tsunamis have shown their major socioeconomic impact and imprint in the coastal landscape. Extensive destruction, erosion, sediment transport and deposition resculpted coastal landscape within few minutes along hundreds of kilometers of the Central Chile, in 2010, and the Northeast coast of Japan, in 2011. In the central coast of Chile, we performed a post-tsunami survey a week after the tsunami due to access restrictions. Our observations focus on the inundation and geomorphic effects of the 2010 tsunami and included an air reconnaissance flight, analysis of pre- and post-event low fly air-photographs and Google Earth satellite images, together with ground reconnaissance and mapping in the field, including topographic transects, during a period of 13 days. Eyewitness accounts enabled us to confirm our observations on effects produced by the tsunami along ~ 500km along the coastline landscape in central Chile For the Tohoku case study, we assessed in a day tsunami inundation distances and runup heights using satellite data (very high resolution satellite images from the GeoEye1 satellite and from the DigitalGlobe worldview through the Google crisis response project, SRTM and ASTER GDEM) of the Tohoku region, Northeast Japan. Field survey data by Japanese, other international scientists and us validated our results. The rapid assessment of damage using high-resolution images has proven to be an excellent tool neccessary for effcient postsunami surveys as well as for rapid assessment of areas with access restrictions. All countries, in particular those with less access to technology and infrastructure, can benefit from the use of freely available satellite imagery and DEMs for an initial, pre-field survey, rapid estimate of inundated areas, distances and runup, tsunami effects in the coastal geomorphology and for assisting in hazard management and mitigation after a natural disaster. These data provide unprecedented opportunities for rapid assessment and to describe both damage and how tsunamis impacted the coastal geomorphology .
NASA Astrophysics Data System (ADS)
Gebert, Niklas; Post, Joachim
2010-05-01
The development of early warning systems are one of the key domains of adaptation to global environmental change and contribute very much to the development of societal reaction and adaptive capacities to deal with extreme events. Especially, Indonesia is highly exposed to tsunami. In average every three years small and medium size tsunamis occur in the region causing damage and death. In the aftermath of the Indian Ocean Tsunami 2004, the German and Indonesian government agreed on a joint cooperation to develop a People Centered End-to-End Early Warning System (GITEWS). The analysis of risk and vulnerability, as an important step in risk (and early warning) governance, is a precondition for the design of effective early warning structures by delivering the knowledge base for developing institutionalized quick response mechanisms of organizations involved in the issuing of a tsunami warning, and of populations exposed to react to warnings and to manage evacuation before the first tsunami wave hits. Thus, a special challenge for developing countries is the governance of complex cross-sectoral and cross-scale institutional, social and spatial processes and requirements for the conceptualization, implementation and optimization of a people centered tsunami early warning system. In support of this, the risk and vulnerability assessment of the case study aims at identifying those factors that constitute the causal structure of the (dis)functionality between the technological warning and the social response system causing loss of life during an emergency situation: Which social groups are likely to be less able to receive and respond to an early warning alert? And, are people able to evacuate in due time? Here, only an interdisciplinary research approach is capable to analyze the socio-spatial and environmental conditions of vulnerability and risk and to produce valuable results for decision makers and civil society to manage tsunami risk in the early warning context. This requires the integration of natural / spatial and social science concepts, methods and data: E.g. a scenario based approach for tsunami inundation modeling was developed to provide decision makers with options to decide up to what level they aim to protect their people and territory, on the contrary household surveys were conducted for the spatial analysis of the evacuation preparedness of the population as a function of place specific hazard, risk, warning and evacuation perception; remote sensing was applied for the spatial analysis (land-use) of the socio-physical conditions of a city and region for evacuation; and existing social / population statistics were combined with land-use data for the precise spatial mapping of the population exposed to tsunami risks. Only by utilizing such a comprehensive assessment approach valuable information for risk governance can be generated. The results are mapped using GIS and designed according to the specific needs of different end-users, such as public authorities involved in the design of warning dissemination strategies, land-use planners (shelter planning, road network configuration) and NGOs mandated to provide education for the general public on tsunami risk and evacuation behavior. The case study of the city of Padang (one of the pilot areas of GITEWS), Indonesia clearly show, that only by intersecting social (vulnerability) and natural hazards research a comprehensive picture on tsunami risk can be provided with which risk governance in the early warning context can be conducted in a comprehensive, systemic and sustainable manner.
High tsunami frequency as a result of combined strike-slip faulting and coastal landslides
Hornbach, M.J.; Braudy, N.; Briggs, R.W.; Cormier, M.-H.; Davis, M.B.; Diebold, J.B.; Dieudonne, N.; Douilly, R.; Frohlich, C.; Gulick, S.P.S.; Johnson, H. E.; Mann, P.; McHugh, C.; Ryan-Mishkin, K.; Prentice, C.S.; Seeber, L.; Sorlien, C.C.; Steckler, M.S.; Symithe, S.J.; Taylor, F.W.; Templeton, J.
2010-01-01
Earthquakes on strike-slip faults can produce devastating natural hazards. However, because they consist predominantly of lateral motion, these faults are rarely associated with significant uplift or tsunami generation. And although submarine slides can generate tsunami, only a few per cent of all tsunami are believed to be triggered in this way. The 12 January Mw 7.0 Haiti earthquake exhibited primarily strike-slip motion but nevertheless generated a tsunami. Here we present data from a comprehensive field survey that covered the onshore and offshore area around the epicentre to document that modest uplift together with slope failure caused tsunamigenesis. Submarine landslides caused the most severe tsunami locally. Our analysis suggests that slide-generated tsunami occur an order-of-magnitude more frequently along the Gonave microplate than global estimates predict. Uplift was generated because of the earthquake?s location, where the Caribbean and Gonave microplates collide obliquely. The earthquake also caused liquefaction at several river deltas that prograde rapidly and are prone to failure. We conclude that coastal strike-slip fault systems such as the Enriquillog-Plantain Garden fault produce relief conducive to rapid sedimentation, erosion and slope failure, so that even modest predominantly strike-slip earthquakes can cause potentially catastrophic slide-generated tsunamig-a risk that is underestimated at present. ?? 2010 Macmillan Publishers Limited. All rights reserved.
NASA Astrophysics Data System (ADS)
Ausilia Paparo, Maria; Pagnoni, Gianluca; Zaniboni, Filippo; Tinti, Stefano
2016-04-01
The stability analysis of offshore margins is an important step for the assessment of natural hazard: the main challenge is to evaluate the potential slope failures and the consequent occurrence of submarine tsunamigenic landslides to mitigate the potential coastal damage to inhabitants and infrastructures. But the limited geotechnical knowledge of the underwater soil and the controversial scientific interpretation of the tectonic units make it often difficult to carry out this type of analysis reliably. We select the Hyblean-Malta Escarpment (HME), the main active geological structure offshore eastern Sicily, because the amount of data from historical chronicles, the records about strong earthquakes and tsunami, and the numerous geological offshore surveys carried out in recent years make the region an excellent scenario to evaluate slope failures, mass movements triggered by earthquakes and the consequent tsunamis. We choose several profiles along the HME and analyse their equilibrium conditions using the Minimun Lithostatic Deviation (MLD) method (Tinti and Manucci, 2006, 2008; Paparo et al. 2013), that is based on the limit-equilibrium theory. Considering the morphological and geotechnical features of the offshore slopes, we prove that large-earthquake shaking may lead some zones of the HME to instability, we evaluate the expected volumes involved in sliding and compute the associated landslide-tsunami through numerical tsunami simulations. This work was carried out in the frame of the EU Project called ASTARTE - Assessment, STrategy And Risk Reduction for Tsunamis in Europe (Grant 603839, 7th FP, ENV.2013.6.4-3).
Quantification of tsunami hazard on Canada's Pacific Coast; implications for risk assessment
NASA Astrophysics Data System (ADS)
Evans, Stephen G.; Delaney, Keith B.
2015-04-01
Our assessment of tsunami hazard on Canada's Pacific Coast (i.e., the coast of British Columbia) begins with a review of the 1964 tsunami generated by The Great Alaska Earthquake (M9.2) that resulted in significant damage to coastal communities and infrastructure. In particular, the tsunami waves swept up inlets on the west coast of Vancouver Island and damaged several communities; Port Alberni suffered upwards of 5M worth of damage. At Port Alberni, the maximum tsunami wave height was estimated at 8.2 m above mean sea level and was recorded on the stream gauge on the Somass River located at about 7 m a.s.l, 6 km upstream from its mouth. The highest wave (9.75 m above tidal datum) was reported from Shields Bay, Graham Island, Queen Charlotte Islands (Haida Gwaii). In addition, the 1964 tsunami was recorded on tide gauges at a number of locations on the BC coast. The 1964 signal and the magnitude and frequency of traces of other historical Pacific tsunamis (both far-field and local) are analysed in the Tofino tide gauge records and compared to tsunami traces in other tide gauges in the Pacific Basin (e.g., Miyako, Japan). Together with a review of the geological evidence for tsunami occurrence along Vancouver Island's west coast, we use this tide gauge data to develop a quantitative framework for tsunami hazard on Canada's Pacific coast. In larger time scales, tsunamis are a major component of the hazard from Cascadia megathrust events. From sedimentological evidence and seismological considerations, the recurrence interval of megathrust events on the Cascadia Subduction Zone has been estimated by others at roughly 500 years. We assume that the hazard associated with a high-magnitude destructive tsunami thus has an annual frequency of roughly 1/500. Compared to other major natural hazards in western Canada this represents a very high annual probability of potentially destructive hazard that, in some coastal communities, translates into high levels of local risk including life-loss risk. Our analysis further indicates that in terms of life-loss risk, communities on Canada's Pacific Coast that are exposed to high tsunami hazard, experience the highest natural risk in Canada. Although sparsely populated, the (outer) coast of British Columbia has important critical infrastructure that includes port developments, shoreline facilities related to forest resource exploitation, a large number of First Nations Reserves, small municipal centres, towns, and villages, (some of which are ecotourism and sport fishing centres), and a limited number of industrial facilities. For selected areas on the west coast of Vancouver Island inundation maps have been prepared for a range of tsunami scenarios. We find that key facilities and critical infrastructure are exposed to the hazards associated with tsunami inundation.
Miller, Kevin M.; Long, Kate
2013-01-01
This chapter is directed towards two audiences: Firstly, it targets nonemergency management readers, providing them with insight on the process and challenges facing emergency managers in responding to tsunami Warning, particularly given this “short fuse” scenario. It is called “short fuse” because there is only a 5.5-hour window following the earthquake before arrival of the tsunami within which to evaluate the threat, disseminate alert and warning messages, and respond. This action initiates a period when crisis communication is of paramount importance. An additional dynamic that is important to note is that within 15 minutes of the earthquake, the National Oceanic and Atmospheric Administration (NOAA) and the National Weather Service (NWS) will issue alert bulletins for the entire Pacific Coast. This is one-half the time actually presented by recent tsunamis from Japan, Chile, and Samoa. Second, the chapter provides emergency managers at all levels with insights into key considerations they may need to address in order to augment their existing plans and effectively respond to tsunami events. We look at emergency management response to the tsunami threat from three perspectives:“Top Down” (Threat analysis and Alert/Warning information from the Federal agency charged with Alert and Warning) “Bottom Up” (Emergency management’s Incident Command approach to responding to emergencies and disasters based on the needs of impacted local jurisdictions) “Across Time” (From the initiating earthquake event through emergency response) We focus on these questions: What are the government roles, relationships, and products that support Tsunami Alert and Warning dissemination? (Emergency Planning and Preparedness.) What roles, relationships, and products support emergency management response to Tsunami Warning and impact? (Engendering prudent public safety response.) What are the key emergency management activities, considerations, and challenges brought out by the SAFRR tsunami scenario? (Real emergencies) How do these activities, considerations, and challenges play out as the tsunami event unfolds across the “life” of the event? (Lessons)
Sensitivities of Near-field Tsunami Forecasts to Megathrust Deformation Predictions
NASA Astrophysics Data System (ADS)
Tung, S.; Masterlark, T.
2018-02-01
This study reveals how modeling configurations of forward and inverse analyses of coseismic deformation data influence the estimations of seismic and tsunami sources. We illuminate how the predictions of near-field tsunami change when (1) a heterogeneous (HET) distribution of crustal material is introduced to the elastic dislocation model, and (2) the near-trench rupture is either encouraged or suppressed to invert spontaneous coseismic displacements. Hypothetical scenarios of megathrust earthquakes are studied with synthetic Global Positioning System displacements in Cascadia. Finite-element models are designed to mimic the subsurface heterogeneity across the curved subduction margin. The HET lithospheric domain modifies the seafloor displacement field and alters tsunami predictions from those of a homogeneous (HOM) crust. Uncertainties persist as the inverse analyses of geodetic data produce nonrealistic slip artifacts over the HOM domain, which propagates into the prediction errors of subsequent tsunami arrival and amplitudes. A stochastic analysis further shows that the uncertainties of seismic tomography models do not degrade the solution accuracy of HET over HOM. Whether the source ruptures near the trench also controls the details of the seafloor disturbance. Deeper subsurface slips induce more seafloor uplift near the coast and cause an earlier arrival of tsunami waves than surface-slipping events. We suggest using the solutions of zero-updip-slip and zero-updip-slip-gradient rupture boundary conditions as end-members to constrain the tsunami behavior for forecasting purposes. The findings are important for the near-field tsunami warning that primarily relies on the near-real-time geodetic or seismic data for source calibration before megawaves hit the nearest shore upon tsunamigenic events.
NASA Astrophysics Data System (ADS)
Hébert, H.; Schindelé, F.
2015-12-01
The 2004 Indian Ocean tsunami gave the opportunity to gather unprecedented tsunami observation databases for various coastlines. We present here an analysis of such databases gathered for 3 coastlines, among the most impacted in 2004 in the intermediate- and far field: Thailand-Myanmar, SE India-Sri Lanka, and SE Madagascar. Non-linear shallow water tsunami modeling performed on a single 4' coarse bathymetric grid is compared to these observations, in order to check to which extent a simple approach based on the usual energy conservation laws (either Green's or Synolakis laws) can explain the data. The idea is to fit tsunami data with numerical modeling carried out without any refined coastal bathymetry/topography. To this end several parameters are discussed, namely the bathymetric depth to which model results must be extrapolated (using the Green's law), or the mean bathymetric slope to consider near the studied coast (when using the Synolakis law). Using extrapolation depths from 1 to 10 m generally allows a good fit; however, a 0.1 m is required for some others, especially in the far field (Madagascar) possibly due to enhanced numerical dispersion. Such a method also allows describing the tsunami impact variability along a given coastline. Then, using a series of scenarios, we propose a preliminary statistical assessment of tsunami impact for a given earthquake magnitude along the Indonesian subduction. Conversely, the sources mostly contributing to a specific hazard can also be mapped onto the sources, providing a first order definition of which sources are threatening the 3 studied coastlines.
NASA Astrophysics Data System (ADS)
Fukao, Y.; Sugioka, H.; Ito, A.; Shiobara, H.; Sandanbata, O.; Watada, S.; Satake, K.
2016-12-01
An array of ocean bottom pressure gauges was deployed off east of Aogashima island of the Izu-Bonin arc from May 2014 to May 2015. The array consists of 10 ocean bottom pressure gauges using ParoScientific quartz resonators which can measure absolute water pressure at 7000m depth with nano-resolution. The array configures equilateral triangles with minimum and maximum lengths of 10 and 30km. This array recorded seismic and tsunami waves from the CLVD-type earthquake (M5.7) of May 02, 2015, that occurred near Torishima Island 100 km distant from the array. Comparison with records of ordinary thrust earthquakes with similar magnitudes at similar distances indicates that this event generated anomalously large tsunamis relative to seismic waves. We made an array analysis for the phase speed, propagating azimuth and travel time of tsunami wave in a frequency range 1-10 mHz, where the dispersion effect is significant. The results show excellent agreements with the frequency-dependent ray-tracing calculations. The tsunami trace apparently starts with positive onset (pressure increase) and reaches a maximum amplitude of about 200Pa (≈2cm in tsunami height). A closer inspection, however, shows a preceding negative small pulse (Fig. 1), suggesting that the seafloor deformation at the tsunami source consists of a central large uplift and a peripheral small depression. This mode of deformation is qualitatively consistent with a finite CLVD source uniformly shortened laterally and uniformly stretched vertically without volume change. The detection of weak initial motions is indebted to the array deployment of sensitive pressure gauges far away from coastal regions. The bandpass-filtered waveform is drastically different between the lower and higher frequency ranges. The waveform is single-peaked in the lower frequency range (<5 mHz) but is ringing in the higher frequency range (>5 mHz), corresponding to the tsunami spectrum that consists of the broad primary peak around 3.5 mHz and the sharp double peaks at around 6.5 and 9 mHz. We interpret the broad primary peak as due to the tsunami source associated with seafloor deformation and the sharp double peaks as due to wave resonance (seiche) inside the Smith Caldera.
Scenario Based Approach for Multiple Source Tsunami Hazard Assessment for Sines, Portugal
NASA Astrophysics Data System (ADS)
Wronna, Martin; Omira, Rachid; Baptista, Maria Ana
2015-04-01
In this paper, we present a scenario-based approach for tsunami hazard assessment for the city and harbour of Sines, Portugal one the test-sites of project ASTARTE. Sines holds one of the most important deep-water ports which contains oil-bearing, petrochemical, liquid bulk, coal and container terminals. The port and its industrial infrastructures are facing the ocean to the southwest facing the main seismogenic sources. This work considers two different seismic zones: the Southwest Iberian Margin and the Gloria Fault. Within these two regions, a total of five scenarios were selected to assess tsunami impact at the test site. These scenarios correspond to the worst-case credible scenario approach based upon the largest events of the historical and paleo tsunami catalogues. The tsunami simulations from the source area towards the coast is carried out using NSWING a Non-linear Shallow Water Model With Nested Grids. The code solves the non-linear shallow water equations using the discretization and explicit leap-frog finite difference scheme, in a Cartesian or Spherical frame. The initial sea surface displacement is assumed to be equal to the sea bottom deformation that is computed by Okada equations. Both uniform and non-uniform slip conditions are used. The presented results correspond to the models using non-uniform slip conditions. In this study, the static effect of tides is analysed for three different tidal stages MLLW (mean lower low water) MSL (mean sea level) and MHHW (mean higher high water). For each scenario, inundation is described by maximum values of wave height, flow depth, drawdown, run-up and inundation distance. Synthetic waveforms are computed at virtual tide gages at specific locations outside and inside the harbour. The final results consist of Aggregate Scenario Maps presented for the different inundation parameters. This work is funded by ASTARTE - Assessment, Strategy And Risk Reduction for Tsunamis in Europe - FP7-ENV2013 6.4-3, Grant 603839
NASA Astrophysics Data System (ADS)
Chague-Goff, C.; Goto, K.; Goff, J. R.; Gadd, P.; Dudley, W. C.; Sugawara, D.; Nakamura, N.
2016-12-01
Around 1900, Japanese workers brought to Big Island, Hawaii, to work on the sugar plantations, established the Shinmachi (`New Town') community on low-lying land on Hilo's waterfront. Although Shinmachi was obliterated by the 1946 Aleutian tsunami, it was rebuilt, only to be totally destroyed again by the 1960 Chile tsunami. Shinmachi was never rebuilt and the site is now part of the Wailoa State Park. Short cores were collected throughout the park in an attempt to recover the geological evidence of these two tsunamis. Two anomalous layers, a lower sand (Unit 1) and an upper fining upward fine sand to silt (Unit 2) intercalated within soil and peat and exhibiting sharp lower and upper contacts, were recorded at only a few locations, probably reflecting, at least partly, the effect of anthropogenic disturbance and a limited amount of accommodation space on recent Holocene lava flows. One core was analysed by ITRAX core scanner equipped with a magnetic susceptibility (MS) meter. Unit 1 exhibits high MS associated with high Fe, Mn and Rb counts, but low Si and K counts, reflecting the volcanic composition of the material, and probably an older flooding event from the river. Unit 2 on the other hand is characterised by a different suite of elements, including Si, K, Ti, Mn, Fe, Ca, Sr, Zr and As. These most likely represent the mineralogical and chemical composition of shallow marine sediments from Hilo Bay and/or brackish sediments from Wailoa River estuary. High concentrations of As in particular have previously been reported in sediments from Hilo Bay and Wailoa River estuary and attributed to the release of arsenic trioxide by a canec manufacturing plant between 1932-1963. In this study, As was absent below Unit 2, and can thus be used as chronological control. Unit 2 therefore most likely represents the 1946 tsunami deposit. There was no clear evidence for the 1960 tsunami, probably reflecting the limited amount of accommodation space in the area.
Landslide-Generated Tsunami Model for Quick Hazard Assessment
NASA Astrophysics Data System (ADS)
Franz, M.; Rudaz, B.; Locat, J.; Jaboyedoff, M.; Podladchikov, Y.
2015-12-01
Alpine regions are likely to be areas at risk regarding to landslide-induced tsunamis, because of the proximity between lakes and potential instabilities and due to the concentration of the population in valleys and on the lakes shores. In particular, dam lakes are often surrounded by steep slopes and frequently affect the stability of the banks. In order to assess comprehensively this phenomenon together with the induced risks, we have developed a 2.5D numerical model which aims to simulate the propagation of the landslide, the generation and the propagation of the wave and eventually the spread on the shores or the associated downstream flow. To perform this task, the process is done in three steps. Firstly, the geometry of the sliding mass is constructed using the Sloping Local Base Level (SLBL) concept. Secondly, the propagation of this volume is performed using a model based on viscous flow equations. Finally, the wave generation and its propagation are simulated using the shallow water equations stabilized by the Lax-Friedrichs scheme. The transition between wet and dry bed is performed by the combination of the two latter sets of equations. The proper behavior of our model is demonstrated by; (1) numerical tests from Toro (2001), and (2) by comparison with a real event where the horizontal run-up distance is known (Nicolet landslide, Quebec, Canada). The model is of particular interest due to its ability to perform quickly the 2.5D geometric model of the landslide, the tsunami simulation and, consequently, the hazard assessment.
Tsunami Detection Systems for International Requirements
NASA Astrophysics Data System (ADS)
Lawson, R. A.
2007-12-01
Results are presented regarding the first commercially available, fully operational, tsunami detection system to have passed stringent U.S. government testing requirements and to have successfully demonstrated its ability to detect an actual tsunami at sea. Spurred by the devastation of the December 26, 2004, Indian Ocean tsunami that killed more than 230,000 people, the private sector actively supported the Intergovernmental Oceanographic Commission's (IOC"s) efforts to develop a tsunami warning system and mitigation plan for the Indian Ocean region. As each country in the region developed its requirements, SAIC recognized that many of these underdeveloped countries would need significant technical assistance to fully execute their plans. With the original focus on data fusion, consequence assessment tools, and warning center architecture, it was quickly realized that the cornerstone of any tsunami warning system would be reliable tsunami detection buoys that could meet very stringent operational standards. Our goal was to leverage extensive experience in underwater surveillance and oceanographic sensing to produce an enhanced and reliable deep water sensor that could meet emerging international requirements. Like the NOAA Deep-ocean Assessment and Recording of Tsunamis (DART TM ) buoy, the SAIC Tsunami Buoy (STB) system consists of three subsystems: a surfaccommunications buoy subsystem, a bottom pressure recorder subsystem, and a buoy mooring subsystem. With the operational success that DART has demonstrated, SAIC decided to build and test to the same high standards. The tsunami detection buoy system measures small changes in the depth of the deep ocean caused by tsunami waves as they propagate past the sensor. This is accomplished by using an extremely sensitive bottom pressure sensor/recorder to measure very small changes in pressure as the waves move past the buoy system. The bottom pressure recorder component includes a processor with algorithms that recognize these characteristics, and then immediately alerts a tsunami warning center through the communications buoy when the processor senses one of these waves. In addition to the tsunami detection buoy system, an end-to-end tsunami warning system was developed that builds upon the country's existing disaster warning infrastructure. This warning system includes 1) components that receive, process, and analyze buoy, seismic and tide gauge data; 2) predictive tools and a consequence assessment tool set to provide decision support; 3) operation center design and implementation; and 4) tsunami buoy operations and maintenance support. The first buoy was deployed Oct. 25, 2006, approximately 200 nautical miles west of San Diego in 3,800 meters of water. Just three weeks later, it was put to the test during an actual tsunami event. On Nov. 15, 2006, an 8.3 magnitude earthquake rocked the Kuril Islands, located between Japan and the Kamchatka Peninsula of Russia. That quake generated a small tsunami. Waves from the tsunami propagated approximately 4,000 nautical miles across the Pacific Ocean in about nine hours-- a speed of about 445 nautical miles per hour when this commercial buoy first detected them. Throughout that event, the tsunami buoy system showed excellent correlation with data collected by a NOAA DART buoy located 28 nautical miles north of it. Subsequent analysis revealed that the STB matched DART operational capabilities and performed flawlessly. The buoy proved its capabilities again on Jan. 13, 2007, when an 8.1 magnitude earthquake occurred in the same region, and the STB detected the seismic event. As a result of the successes of this entire project, SAIC recently applied for and received a license from NOAA to build DART systems.
NASA Astrophysics Data System (ADS)
González-Carrasco, J. F.; Gonzalez, G.; Aránguiz, R.; Catalan, P. A.; Cienfuegos, R.; Urrutia, A.; Shrivastava, M. N.; Yagi, Y.; Moreno, M.
2015-12-01
Tsunami inundation maps are a powerful tool to design evacuation plans of coastal communities, additionally can be used as a guide to territorial planning and assessment of structural damages in port facilities and critical infrastructure (Borrero et al., 2003; Barberopoulou et al., 2011; Power et al., 2012; Mueller et al., 2015). The accuracy of inundation estimation is highly correlated with tsunami initial conditions, e.g. seafloor vertical deformation, displaced water volume and potential energy (Bolshakova et al., 2011). Usually, the initial conditions are estimated using homogeneous rupture models based in historical worst-case scenario. However tsunamigenic events occurred in central Chilean continental margin showed a heterogeneous slip distribution of source with patches of high slip, correlated with fully-coupled interseismic zones (Moreno et al., 2012). The main objective of this work is to evaluate the predictive capacity of interseismic coupling models based on geodetic data comparing them with homogeneous fault slip model constructed using scaling laws (Blaser et al., 2010) to estimate inundation and runup in coastal areas. To test our hypothesis we select a seismic gap of Maule, where occurred the last large tsunamigenic earthquake in the chilean subduction zone, using the interseismic coupling models (ISC) proposed by Moreno et al., 2011 and Métois et al., 2013. We generate a slip deficit distribution to build a tsunami source supported by geological information such as slab depth (Hayes et al., 2012), strike, rake and dip (Dziewonski et al., 1981; Ekström et al., 2012) to model tsunami generation, propagation and shoreline impact using Neowave 2D (Yamazaki et al., 2009). We compare the tsunami scenario of Mw 8.8, Maule based in coseismic slip distribution proposed by Moreno et al., 2012 with homogeneous and heterogeneous models to identify the accuracy of our results with sea level time series and regional runup data (Figure 1). The estimation of tsunami source using ISC model can be useful to improve the analysis of tsunami threat, based in more realistic slip distribution.
SATO, Shinji
2015-01-01
Characteristics of the 2011 Tohoku Tsunami have been revealed by collaborative tsunami surveys extensively performed under the coordination of the Joint Tsunami Survey Group. The complex behaviors of the mega-tsunami were characterized by the unprecedented scale and the low occurrence frequency. The limitation and the performance of tsunami countermeasures were described on the basis of tsunami surveys, laboratory experiments and numerical analyses. These findings contributed to the introduction of two-level tsunami hazards to establish a new strategy for tsunami disaster mitigation, combining structure-based flood protection designed by the Level-1 tsunami and non-structure-based damage reduction planned by the Level-2 tsunami. PMID:26062739
Sato, Shinji
2015-01-01
Characteristics of the 2011 Tohoku Tsunami have been revealed by collaborative tsunami surveys extensively performed under the coordination of the Joint Tsunami Survey Group. The complex behaviors of the mega-tsunami were characterized by the unprecedented scale and the low occurrence frequency. The limitation and the performance of tsunami countermeasures were described on the basis of tsunami surveys, laboratory experiments and numerical analyses. These findings contributed to the introduction of two-level tsunami hazards to establish a new strategy for tsunami disaster mitigation, combining structure-based flood protection designed by the Level-1 tsunami and non-structure-based damage reduction planned by the Level-2 tsunami.
Tsunami Disaster Response: A Case Analysis of the Information Society in Thailand
ERIC Educational Resources Information Center
Aswalap, Supaluk Joy
2009-01-01
The December 2004 Indian Ocean Tsunami wrecked thousands of lives, homes, and livelihoods--losses that could have been avoided with timely and better information. A resource such as information is needed at a fundamental level much like water, food, medicine, or shelter. This dissertation examines the development of the Thai information…
Spatial Analysis of Traffic and Routing Path Methods for Tsunami Evacuation
NASA Astrophysics Data System (ADS)
Fakhrurrozi, A.; Sari, A. M.
2018-02-01
Tsunami disaster occurred relatively very fast. Thus, it has a very large-scale impact on both non-material and material aspects. Community evacuation caused mass panic, crowds, and traffic congestion. A further research in spatial based modelling, traffic engineering and splitting zone evacuation simulation is very crucial as an effort to reduce higher losses. This topic covers some information from the previous research. Complex parameters include route selection, destination selection, the spontaneous timing of both the departure of the source and the arrival time to destination and other aspects of the result parameter in various methods. The simulation process and its results, traffic modelling, and routing analysis emphasized discussion which is the closest to real conditions in the tsunami evacuation process. The method that we should highlight is Clearance Time Estimate based on Location Priority in which the computation result is superior to others despite many drawbacks. The study is expected to have input to improve and invent a new method that will be a part of decision support systems for disaster risk reduction of tsunamis disaster.
NASA Astrophysics Data System (ADS)
Barba, M.; Willis, M. J.; Tiampo, K. F.; Lynett, P. J.; Mätzler, E.; Thorsøe, K.; Higman, B. M.; Thompson, J. A.; Morin, P. J.
2017-12-01
We use a combination of geodetic imaging techniques and modelling efforts to examine the June 2017 Karrat Fjord, West Greenland, landslide and tsunami event. Our efforts include analysis of pre-cursor motions extracted from Sentinal SAR interferometry that we improved with high-resolution Digital Surface Models derived from commercial imagery and geo-coded Structure from Motion analyses. We produce well constrained estimates of landslide volume through DSM differencing by improving the ArcticDEM coverage of the region, and provide modeled tsunami run-up estimates at villages around the region, constrained with in-situ observations provided by the Greenlandic authorities. Estimates of run-up at unoccupied coasts are derived using a blend of high resolution imagery and elevation models. We further detail post-failure slope stability for areas of interest around the Karrat Fjord region. Warming trends in the region from model and satellite analysis are combined with optical imagery to ascertain whether the influence of melting permafrost and the formation of small springs on a slight bench on the mountainside that eventually failed can be used as indicators of future events.
NASA Astrophysics Data System (ADS)
Bayraktar, Başak; Özer Sözdinler, Ceren; Necmioǧlu, Öcal; Meral Özel, Nurcan
2017-04-01
The Marmara Sea and its surrounding is one of the most populated areas in Turkey. Many densely populated cities, such as megacity Istanbul with a population of more than 14 million, a great number of industrial facilities in largest capacity and potential, refineries, ports and harbors are located along the coasts of Marmara Sea. The region is highly seismically active. There has been a wide range of studies in this region regarding the fault mechanisms, seismic activities, earthquakes and triggered tsunamis in the Sea of Marmara. The historical documents reveal that the region has been experienced many earthquakes and tsunamis in the past. According to Altinok et al. (2011), 35 tsunami events happened in Marmara Sea between BC 330 and 1999. As earthquakes are expected in Marmara Sea with the break of segments of North Anatolian Fault (NAF) in the future, the region should be investigated in terms of the possibility of tsunamis by the occurrence of earthquakes in specific return periods. This study aims to make probabilistic tsunami hazard analysis in Marmara Sea. For this purpose, the possible sources of tsunami scenarios are specified by compiling the earthquake catalogues, historical records and scientific studies conducted in the region. After compiling all this data, a synthetic earthquake and tsunami catalogue are prepared using Monte Carlo simulations. For specific return periods, the possible epicenters, rupture lengths, widths and displacements are determined with Monte Carlo simulations assuming the angles of fault segments as deterministic. For each earthquake of synthetic catalogue, the tsunami wave heights will be calculated at specific locations along Marmara Sea. As a further objective, this study will determine the tsunami hazard curves for specific locations in Marmara Sea including the tsunami wave heights and their probability of exceedance. This work is supported by SATREPS-MarDim Project (Earthquake and Tsunami Disaster Mitigation in the Marmara Region and Disaster Education in Turkey) and JICA (Japan International Cooperation Agency). The authors would like to acknowledge the project MARsite - New Directions in Seismic Hazard assessment through Focused Earth Observation in the Marmara Supersite (FP7-ENV.2012 6.4-2, Grant 308417 - see NH2.3/GMPV7.4/SM7.7). The authors also would like to acknowledge Prof. Dr. Mustafa Erdik and Prof. Dr. Sinan Akkar for their valuable feedback and guidance throughout this study.
NASA Astrophysics Data System (ADS)
Wood, N. J.; Schmidtlein, M.; Schelling, J.; Jones, J.; Ng, P.
2012-12-01
Recent tsunami disasters, such as the 2010 Chilean and 2011 Tohoku events, demonstrate the significant life loss that can occur from tsunamis. Many coastal communities in the world are threatened by near-field tsunami hazards that may inundate low-lying areas only minutes after a tsunami begins. Geospatial integration of demographic data and hazard zones has identified potential impacts on populations in communities susceptible to near-field tsunami threats. Pedestrian-evacuation models build on these geospatial analyses to determine if individuals in tsunami-prone areas will have sufficient time to reach high ground before tsunami-wave arrival. Areas where successful evacuations are unlikely may warrant vertical-evacuation (VE) strategies, such as berms or structures designed to aid evacuation. The decision of whether and where VE strategies are warranted is complex. Such decisions require an interdisciplinary understanding of tsunami hazards, land cover conditions, demography, community vulnerability, pedestrian-evacuation models, land-use and emergency-management policy, and decision science. Engagement with the at-risk population and local emergency managers in VE planning discussions is critical because resulting strategies include permanent structures within a community and their local ownership helps ensure long-term success. We present a summary of an interdisciplinary approach to assess VE options in communities along the southwest Washington coast (U.S.A.) that are threatened by near-field tsunami hazards generated by Cascadia subduction zone earthquakes. Pedestrian-evacuation models based on an anisotropic approach that uses path-distance algorithms were merged with population data to forecast the distribution of at-risk individuals within several communities as a function of travel time to safe locations. A series of community-based workshops helped identify potential VE options in these communities, collectively known as "Project Safe Haven" at the State of Washington Emergency Management Division. Models of the influence of stakeholder-driven VE options identified changes in the type and distribution of at-risk individuals. Insights from VE use and performance as an aid to evacuations from the 2011 Tohoku tsunami helped to inform the meetings and the analysis. We developed geospatial tools to automate parts of the pedestrian-evacuation models to support the iterative process of developing VE options and forecasting changes in population exposure. Our summary presents the interdisciplinary effort to forecast population impacts from near-field tsunami threats and to develop effective VE strategies to minimize fatalities in future events.
An Earthquake Source Sensitivity Analysis for Tsunami Propagation in the Eastern Mediterranean
NASA Astrophysics Data System (ADS)
Necmioglu, Ocal; Meral Ozel, Nurcan
2013-04-01
An earthquake source parameter sensitivity analysis for tsunami propagation in the Eastern Mediterranean has been performed based on 8 August 1303 Crete and Dodecanese Islands earthquake resulting in destructive inundation in the Eastern Mediterranean. The analysis involves 23 cases describing different sets of strike, dip, rake and focal depth, while keeping the fault area and displacement, thus the magnitude, same. The main conclusions of the evaluation are drawn from the investigation of the wave height distributions at Tsunami Forecast Points (TFP). The earthquake vs. initial tsunami source parameters comparison indicated that the maximum initial wave height values correspond in general to the changes in rake angle. No clear depth dependency is observed within the depth range considered and no strike angle dependency is observed in terms of amplitude change. Directivity sensitivity analysis indicated that for the same strike and dip, 180° shift in rake may lead to 20% change in the calculated tsunami wave height. Moreover, an approximately 10 min difference in the arrival time of the initial wave has been observed. These differences are, however, greatly reduced in the far field. The dip sensitivity analysis, performed separately for thrust and normal faulting, has both indicated that an increase in the dip angle results in the decrease of the tsunami wave amplitude in the near field approximately 40%. While a positive phase shift is observed, the period and the shape of the initial wave stays nearly the same for all dip angles at respective TFPs. These affects are, however, not observed at the far field. The resolution of the bathymetry, on the other hand, is a limiting factor for further evaluation. Four different cases were considered for the depth sensitivity indicating that within the depth ranges considered (15-60 km), the increase of the depth has only a smoothing effect on the synthetic tsunami wave height measurements at the selected TFPs. The strike sensitivity analysis showed clear phase shift with respect to the variation of the strike angles, without leading to severe variation of the initial and maximum waves at locations considered. Travel time maps for two cases corresponding to difference in the strike value (60° vs 150°) presented a more complex wave propagation for the case with 60° strike angle due to the fact that the normal of the fault plane is orthogonal to the main bathymetric structure in the region, namely the Eastern section of the Hellenic Arc between Crete and Rhodes Islands. For a given set of strike, dip and focal depth parameters, the effect of the variation in the rake angle has been evaluated in the rake sensitivity analysis. A waveform envelope composed of symmetric synthetic recordings at one TFPs could be clearly observed as a result of rake angle variations in 0-180° range. This could also lead to the conclusion that for a given magnitude (fault size and displacement), the expected maximum and minimum tsunami wave amplitudes could be evaluated as a waveform envelope rather limited to a single point of time or amplitude. The Evaluation of the initial wave arrival times follows an expected pattern controlled by the distance, wheras maximum wave arrival time distribution presents no clear pattern. Nevertheless, the distribution is rather concentrated in time domain for some TFPs. Maximum positive and minimum negative wave amplitude distributions indicates a broader range for a subgroup of TFPs, wheras for the remaining TFPs the distributions are narrow. Any deviation from the expected trend of calculating narrower ranges of amplitude distributions could be interpreted as the result o the bathymetry and focusing effects. As similar studies conducted in the different parts of the globe indicated, the main characteristics of the tsunami propagation are unique for each basin. It should be noted, however, that the synthetic measurements obtained at the TFPs in the absence of high-resolution bathymetric data, should be considered only an overall guidance. The results indicate the importance of the accuracy of earthquake source parameters for reliable tsunami predictions and the need for high-resolution bathymetric data to be able to perform calculations with higher accuracy. On the other hand, this study did not address other parameters, such as heterogeneous slip distribution and rupture duration, which affect the tsunami initiation and propagation process.
Tsunami on Sanriku Coast in 1586: Orphan or Ghost Tsunami ?
NASA Astrophysics Data System (ADS)
Satake, K.
2017-12-01
The Peruvian earthquake on July 9, 1586 was the oldest earthquake that damaged Lima. The tsunami height was assigned as 24 m in Callao and 1-2 m in Miyagi prefecture in Japan by Soloviev and Go (1975). Dorbath et al. (1990) studied historical earthquakes in Peru and estimated that the 1586 earthquake was similar to the 1974 event (Mw 8.1) with source length of 175 km. They referred two different tsunami heights, 3. 7m and 24 m, in Callao, and judged that the latter was exaggerated. Okal et al. (2006) could not make a source model to explain both tsunami heights in Callao and Japan. More recently, Butler et al. (2017) estimated the age of coral boulders in Hawaii as AD 1572 +/- 21, speculated the tsunami source in Aleutians, and attributed it to the source of the 1586 tsunami in Japan. Historical tsunamis, both near-field and far-field, have been documented along the Sanriku coast since 1586 (e.g., Watanabe, 1998). However, there is no written document for the 1586 tsunami (Tsuji et al., 2013). Ninomiya (1960) compiled the historical tsunami records on the Sanriku coast soon after the 1960 Chilean tsunami, and correlated the legend of tsunami in Tokura with the 1586 Peruvian earthquake, although he noted that the dates were different. About the legend, he referred to Kunitomi(1933) who compiled historical tsunami data after the 1933 Showa Sanriku tsunami. Kunitomi referred to "Tsunami history of Miyagi prefecture" published after the 1896 Meiji Sanriku tsunami. "Tsunami history" described the earthquake and tsunami damage of Tensho earthquake on January 18 (Gregorian),1586 in central Japan, and correlated the tsunami legend in Tokura on June 30, 1586 (G). Following the 2011 Tohoku tsunami, tsunami legend in Tokura was studied again (Ebina, 2015). A local person published a story he heard from his grandfather that many small valleys were named following the 1611 tsunami, which inundated further inland than the 2011 tsunami. Ebina (2015), based on historical documents, estimated that the legend existed around 1750. From the above research, the tsunami legend in Tokura is unlikely from the Peruvian earthquake. Hence the 1586 tsunami was not an orphan tsunami, but rather a ghost or fake tsunami. The legend simply mentioned about tsunami, but the tsunami heights were speculated as 1-2 m (Soloviev and Go) or 2 - 2.5 m (NOAA tsunami DB).
The hazards of eruptions through lakes and seawater
Mastin, L.G.; Witter, J.B.
2000-01-01
Eruptions through crater lakes or shallow seawater, referred to here as subaqueous eruptions, present hazards from hydromagmatic explosions, such as base surges, lahars, and tsunamis, which may not exist at volcanoes on dry land. We have systematically compiled information from eruptions through surface water in order to understand the circumstances under which these hazards occur and what disastrous effects they have caused in the past. Subaqueous eruptions represent only 8% of all recorded eruptions but have produced about 20% of all fatalities associated with volcanic activity in historical time. Excluding eruptions that have resulted in about a hundred deaths or less, lahars have killed people in the largest number of historical subaqueous eruptions (8), followed by pyroclastic flows (excluding base surges; 5) tsunamis (4), and base surges (2). Subaqueous eruptions have produced lahars primarily on high (>1000 m), steep-sided volcanoes containing small (<1 km diameter) crater lakes. Tsunamis and other water waves have caused death or destroyed man-made structures only at submarine volcanoes and at Lake Taal in the Philippines. In spite of evidence that magma-water mixing makes eruptions more explosive, such explosions and their associated base surges have caused fewer deaths, and have been implicated in fewer eruptions involving large numbers of fatalities than lahars and tsunamis. The latter hazards are more deadly because they travel much farther from a volcano and inundate coastal areas and stream valleys that tend to be densely settled.
O'Connor, Jim; Atwater, Brian F.; Cohn, Timothy A.; Cronin, Thomas M.; Keith, Mackenzie K.; Smith, Christopher G.; Mason, Jr., Robert R.
2014-01-01
A screening of the 104 nuclear powerplants in the United States licensed by the Nuclear Regulatory Commission (at 64 sites) indicates several sites for which paleoflood studies likely would provide additional flood-frequency information. Two sites—Duane Arnold, Iowa, on the Cedar River; and David-Besse, Ohio, on the Toussaint River—have geologic conditions suitable for creating and preserving stratigraphic records of flooding and few upstream dams that may complicate flood-frequency analysis. One site—Crystal River, Florida1, on the Withlacoochee River and only 4 kilometers from the coast—has high potential as a candidate for assessing riverine and marine inundation hazards. Several sites on the Mississippi River have high geologic potential, but upstream dams almost certainly now regulate peak flows. Nevertheless, studies on the Mississippi River to evaluate long-term flood frequency may provide results applicable to a wide spectrum of regional hazard issues. Several sites in the southeastern United States have high geologic potential, and studies at these sites also may be helpful in evaluating hazards from outburst floods from landslide dams (river blockages formed by mass movements), which may be a regional hazard. For all these sites, closer investigation and field reconnaissance would be needed to confirm suitable deposits and settings for a complete paleoflood analysis. Similar screenings may help identify high-potential sites for geologic investigations of tsunami and storm-surge hazards.
Analysis of tsunami disaster map by Geographic Information System (GIS): Aceh Singkil-Indonesia
NASA Astrophysics Data System (ADS)
Farhan, A.; Akhyar, H.
2017-02-01
Tsunami risk map is used by stakeholder as a base to decide evacuation plan and evaluates from disaster. Aceh Singkil district of Aceh- Indonesia’s disaster maps have been developed and analyzed by using GIS tool. Overlay methods through algorithms are used to produce hazard map, vulnerability, capacity and finally created disaster risk map. Spatial maps are used topographic maps, administrative map, SRTM. The parameters are social, economic, physical environmental vulnerability, a level of exposed people, parameters of houses, public building, critical facilities, productive land, population density, sex ratio, poor ratio, disability ratio, age group ratio, the protected forest, natural forest, and mangrove forest. The results show high-risk tsunami disaster at nine villages; moderate levels are seventeen villages, and other villages are shown in the low level of tsunami risk disaster.
Undersea landslides: Extent and significance in the Pacific Ocean, an update
Lee, H.J.
2005-01-01
Submarine landslides are known to occur disproportionately in a limited number of environments including fjords, deltas, canyons, volcanic islands and the open continental slope. An evaluation of the progress that has been made in understanding Pacific Ocean submarine landslides over the last 15 years shows that mapping technologies have improved greatly, allowing a better interpretation of landslide features. Some features previously identified as landslides are being reinterpreted by some as sediment waves. Previously underappreciated environments for landslides such as deep-sea trenches are being recognized and lava deltas are being found to be landslide prone. Landslides are also being recognized much more commonly as a potential source of tsunamis. Landslides that have produced tsunamis in the past are being mapped and in some cases modeled. The flow characteristics of turbidity currents produced by landslides in canyon heads have recently been monitored and the source of these failures has been identified using repeated multibeam mapping. Finally, some landslide deposits are being dated as part of assessing risk to coastal cities from landslide-tsunamis. European Geosciences Union ?? 2005 Author(s). This work is licensed under a Creative Commons License.
NASA Astrophysics Data System (ADS)
Gao, Dawei; Wang, Kelin; Davis, Earl E.; Jiang, Yan; Insua, Tania L.; He, Jiangheng
2017-04-01
The Explorer segment of northernmost Cascadia is an end-member "warm" subduction zone with very young incoming plate and slow-convergence rate. Understanding the megathrust earthquake potential of this type of subduction zone is of both geodynamic and societal importance. Available geodetic observations indicate that the subduction megathrust of the Explorer segment is currently locked to some degree, but the downdip extent of the fault area that is potentially seismogenic is not known. Here we construct finite-element models to estimate the thermally allowed megathrust seismogenic zone, using available knowledge of regional plate kinematics, structural data, and heat flow observations as constraints. Despite ambiguities in plate interface geometry constrained by hypocenter locations of low-frequency earthquakes beneath Vancouver Island, the thermal models suggest a potential rupture zone of ˜60 km downdip width located fully offshore. Using dislocation modeling, we further illustrate that a rupture zone of this size, even with a conservative assumption of ˜100 km strike length, can cause significant tsunami-genic deformation. Future seismic and tsunami hazard assessment in northern Cascadia must take the Explorer segment into account.
The origin of the 1883 Krakatau tsunamis
NASA Technical Reports Server (NTRS)
Francis, P. W.
1985-01-01
Three hypotheses proposed to explain possible causes of the Aug. 27, 1883 Krakatau tsunamis were analyzed: (1) large-scale collapse of the northern part of Krakatau island (Verbeek, 1884), (2) submarine explosion (Yokoyama, 1981), and (3) emplacement of pyroclastic flows (Latter, 1981). A study of timings of the air and sea waves between Krakatau and Batavia, showing that no precise sea wave travel times can be obtained, and a study of the tide and pressure gage records made on August 27, indicating that the air and sea waves were propagated from the focus of eruption on Krakatau island, suggest that neither hypothesis 2 or 3 are sufficiently substantiated. In addition, the event that caused the major air and sea wave was preceded (by 40 min) by a similar, smaller event which generated the second largest tsunami and an air wave. It is concluded that the most likely mechanism for the eruption is a Mt. St. Helens scenario, close to the hypothesis of Verbeek, in which collapse of part of the original volcanic edifice propagated a major explosion.
Tsunami geology in paleoseismology
Yuichi Nishimura,; Jaffe, Bruce E.
2015-01-01
The 2004 Indian Ocean and 2011 Tohoku-oki disasters dramatically demonstrated the destructiveness and deadliness of tsunamis. For the assessment of future risk posed by tsunamis it is necessary to understand past tsunami events. Recent work on tsunami deposits has provided new information on paleotsunami events, including their recurrence interval and the size of the tsunamis (e.g. [187–189]). Tsunamis are observed not only on the margin of oceans but also in lakes. The majority of tsunamis are generated by earthquakes, but other events that displace water such as landslides and volcanic eruptions can also generate tsunamis. These non-earthquake tsunamis occur less frequently than earthquake tsunamis; it is, therefore, very important to find and study geologic evidence for past eruption and submarine landslide triggered tsunami events, as their rare occurrence may lead to risks being underestimated. Geologic investigations of tsunamis have historically relied on earthquake geology. Geophysicists estimate the parameters of vertical coseismic displacement that tsunami modelers use as a tsunami's initial condition. The modelers then let the simulated tsunami run ashore. This approach suffers from the relationship between the earthquake and seafloor displacement, the pertinent parameter in tsunami generation, being equivocal. In recent years, geologic investigations of tsunamis have added sedimentology and micropaleontology, which focus on identifying and interpreting depositional and erosional features of tsunamis. For example, coastal sediment may contain deposits that provide important information on past tsunami events [190, 191]. In some cases, a tsunami is recorded by a single sand layer. Elsewhere, tsunami deposits can consist of complex layers of mud, sand, and boulders, containing abundant stratigraphic evidence for sediment reworking and redeposition. These onshore sediments are geologic evidence for tsunamis and are called ‘tsunami deposits’ (Figs. 26 and 27). Tsunami deposits can be classified into two groups: modern tsunami deposits and paleotsunami deposits. A modern tsunami deposit is a deposit whose source event is known. A paleotsunami deposit is a deposit whose age is estimated and has a source that is either inferred to be a historical event or is unknown.
Tsunami Detection by High-Frequency Radar Beyond the Continental Shelf
NASA Astrophysics Data System (ADS)
Grilli, Stéphan T.; Grosdidier, Samuel; Guérin, Charles-Antoine
2016-12-01
Where coastal tsunami hazard is governed by near-field sources, such as submarine mass failures or meteo-tsunamis, tsunami propagation times may be too small for a detection based on deep or shallow water buoys. To offer sufficient warning time, it has been proposed to implement early warning systems relying on high-frequency (HF) radar remote sensing, that can provide a dense spatial coverage as far offshore as 200-300 km (e.g., for Diginext Ltd.'s Stradivarius radar). Shore-based HF radars have been used to measure nearshore currents (e.g., CODAR SeaSonde® system; http://www.codar.com/), by inverting the Doppler spectral shifts, these cause on ocean waves at the Bragg frequency. Both modeling work and an analysis of radar data following the Tohoku 2011 tsunami, have shown that, given proper detection algorithms, such radars could be used to detect tsunami-induced currents and issue a warning. However, long wave physics is such that tsunami currents will only rise above noise and background currents (i.e., be at least 10-15 cm/s), and become detectable, in fairly shallow water which would limit the direct detection of tsunami currents by HF radar to nearshore areas, unless there is a very wide shallow shelf. Here, we use numerical simulations of both HF radar remote sensing and tsunami propagation to develop and validate a new type of tsunami detection algorithm that does not have these limitations. To simulate the radar backscattered signal, we develop a numerical model including second-order effects in both wind waves and radar signal, with the wave angular frequency being modulated by a time-varying surface current, combining tsunami and background currents. In each "radar cell", the model represents wind waves with random phases and amplitudes extracted from a specified (wind speed dependent) energy density frequency spectrum, and includes effects of random environmental noise and background current; phases, noise, and background current are extracted from independent Gaussian distributions. The principle of the new algorithm is to compute correlations of HF radar signals measured/simulated in many pairs of distant "cells" located along the same tsunami wave ray, shifted in time by the tsunami propagation time between these cell locations; both rays and travel time are easily obtained as a function of long wave phase speed and local bathymetry. It is expected that, in the presence of a tsunami current, correlations computed as a function of range and an additional time lag will show a narrow elevated peak near the zero time lag, whereas no pattern in correlation will be observed in the absence of a tsunami current; this is because surface waves and background current are uncorrelated between pair of cells, particularly when time-shifted by the long-wave propagation time. This change in correlation pattern can be used as a threshold for tsunami detection. To validate the algorithm, we first identify key features of tsunami propagation in the Western Mediterranean Basin, where Stradivarius is deployed, by way of direct numerical simulations with a long wave model. Then, for the purpose of validating the algorithm we only model HF radar detection for idealized tsunami wave trains and bathymetry, but verify that such idealized case studies capture well the salient tsunami wave physics. Results show that, in the presence of strong background currents, the proposed method still allows detecting a tsunami with currents as low as 0.05 m/s, whereas a standard direct inversion based on radar signal Doppler spectra fails to reproduce tsunami currents weaker than 0.15-0.2 m/s. Hence, the new algorithm allows detecting tsunami arrival in deeper water, beyond the shelf and further away from the coast, and providing an early warning. Because the standard detection of tsunami currents works well at short range, we envision that, in a field situation, the new algorithm could complement the standard approach of direct near-field detection by providing a warning that a tsunami is approaching, at larger range and in greater depth. This warning would then be confirmed at shorter range by a direct inversion of tsunami currents, from which the magnitude of the tsunami would also estimated. Hence, both algorithms would be complementary. In future work, the algorithm will be applied to actual tsunami case studies performed using a state-of-the-art long wave model, such as briefly presented here in the Mediterranean Basin.
A Probabilistic Tsunami Hazard Assessment Methodology and Its Application to Crescent City, CA
NASA Astrophysics Data System (ADS)
Gonzalez, F. I.; Leveque, R. J.; Waagan, K.; Adams, L.; Lin, G.
2012-12-01
A PTHA methodology, based in large part on Probabilistic Seismic Hazard Assessment methods (e.g., Cornell, 1968; SSHAC, 1997; Geist and Parsons, 2005), was previously applied to Seaside, OR (Gonzalez, et al., 2009). This initial version of the method has been updated to include: a revised method to estimate tidal uncertainty; an improved method for generating stochastic realizations to estimate slip distribution uncertainty (Mai and Beroza, 2002; Blair, et al., 2011); additional near-field sources in the Cascadia Subduction Zone, based on the work of Goldfinger, et al. (2012); far-field sources in Japan, based on information updated since the 3 March 2011 Tohoku tsunami (Japan Earthquake Research Committee, 2011). The GeoClaw tsunami model (Berger, et. al, 2011) is used to simulate generation, propagation and inundation. We will discuss this revised PTHA methodology and the results of its application to Crescent City, CA. Berger, M.J., D. L. George, R. J. LeVeque, and K. T. Mandli, The GeoClaw software for depth-averaged flows with adaptive refinement, Adv. Water Res. 34 (2011), pp. 1195-1206. Blair, J.L., McCrory, P.A., Oppenheimer, D.H., and Waldhauser, F. (2011): A Geo-referenced 3D model of the Juan de Fuca Slab and associated seismicity: U.S. Geological Survey Data Series 633, v.1.0, available at http://pubs.usgs.gov/ds/633/. Cornell, C. A. (1968): Engineering seismic risk analysis, Bull. Seismol. Soc. Am., 58, 1583-1606. Geist, E. L., and T. Parsons (2005): Probabilistic Analysis of Tsunami Hazards, Nat. Hazards, 37 (3), 277-314. Goldfinger, C., Nelson, C.H., Morey, A.E., Johnson, J.E., Patton, J.R., Karabanov, E., Gutiérrez-Pastor, J., Eriksson, A.T., Gràcia, E., Dunhill, G., Enkin, R.J., Dallimore, A., and Vallier, T. (2012): Turbidite event history—Methods and implications for Holocene paleoseismicity of the Cascadia subduction zone: U.S. Geological Survey Professional Paper 1661-F, 170 p. (Available at http://pubs.usgs.gov/pp/pp1661f/). González, F.I., E.L. Geist, B. Jaffe, U. Kânoglu, H. Mofjeld, C.E. Synolakis, V.V Titov, D. Arcas, D. Bellomo, D. Carlton, T. Horning, J. Johnson, J. Newman, T. Parsons, R. Peters, C. Peterson, G .Priest, A. Venturato, J. Weber, F. Wong, and A. Yalciner (2009): Probabilistic Tsunami Hazard Assessment at Seaside, Oregon, for Near- and Far-Field Seismic Sources, J. Geophys. Res., 114, C11023, doi:10.1029/2008JC005132. Japan Earthquake Research Committee, (2011): http://www.jishin.go.jp/main/p_hyoka02.htm Mai, P. M., and G. C. Beroza (2002): A spatial random field model to characterize complexity in earthquake slip, J. Geophys. Res., 107(B11), 2308, doi:10.1029/2001JB000588. SSHAC (Senior Seismic Hazard Analysis Committee) (1997): Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts, Main Report Rep. NUREG/CR-6372 UCRL-ID-122160 Vol. 1, 256 pp, U.S. Nuclear Regulatory Commission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Don; Rearden, Bradley T; Hollenbach, Daniel F
2009-02-01
The Radiochemical Development Facility at Oak Ridge National Laboratory has been storing solid materials containing 233U for decades. Preparations are under way to process these materials into a form that is inherently safe from a nuclear criticality safety perspective. This will be accomplished by down-blending the {sup 233}U materials with depleted or natural uranium. At the request of the U.S. Department of Energy, a study has been performed using the SCALE sensitivity and uncertainty analysis tools to demonstrate how these tools could be used to validate nuclear criticality safety calculations of selected process and storage configurations. ISOTEK nuclear criticality safetymore » staff provided four models that are representative of the criticality safety calculations for which validation will be needed. The SCALE TSUNAMI-1D and TSUNAMI-3D sequences were used to generate energy-dependent k{sub eff} sensitivity profiles for each nuclide and reaction present in the four safety analysis models, also referred to as the applications, and in a large set of critical experiments. The SCALE TSUNAMI-IP module was used together with the sensitivity profiles and the cross-section uncertainty data contained in the SCALE covariance data files to propagate the cross-section uncertainties ({Delta}{sigma}/{sigma}) to k{sub eff} uncertainties ({Delta}k/k) for each application model. The SCALE TSUNAMI-IP module was also used to evaluate the similarity of each of the 672 critical experiments with each application. Results of the uncertainty analysis and similarity assessment are presented in this report. A total of 142 experiments were judged to be similar to application 1, and 68 experiments were judged to be similar to application 2. None of the 672 experiments were judged to be adequately similar to applications 3 and 4. Discussion of the uncertainty analysis and similarity assessment is provided for each of the four applications. Example upper subcritical limits (USLs) were generated for application 1 based on trending of the energy of average lethargy of neutrons causing fission, trending of the TSUNAMI similarity parameters, and use of data adjustment techniques.« less
Tsunami hazard assessment in the Colombian Caribbean Coast with a deterministic approach
NASA Astrophysics Data System (ADS)
Otero Diaz, L.; Correa, R.; Ortiz R, J. C.; Restrepo L, J. C.
2014-12-01
For the Caribbean Sea, we propose six potential tectonic sources of tsunami, defining for each source the worst credible earthquake from the analysis of historical seismicity, tectonics, pasts tsunami, and review of IRIS, PDE, NOAA, and CMT catalogs. The generation and propagation of tsunami waves in the selected sources were simulated with COMCOT 1.7, which is a numerical model that solves the linear and nonlinear long wave equations in finite differences in both Cartesian, and spherical coordinates. The results of the modeling are presented in maps of maximum displacement of the free surface for the Colombian Caribbean coast and the island areas, and they show that the event would produce greater impact is generated in the source of North Panama Deformed Belt (NPDB), where the first wave train reaches the central Colombian coast in 40 minutes, generating wave heights up to 3.7 m. In San Andrés and Providencia island, tsunami waves reach more than 4.5 m due effects of edge waves caused by interactions between waves and a barrier coral reef around of each island. The results obtained in this work are useful for planning systems and future regional and local warning systems and to identify priority areas to conduct detailed research to the tsunami threat.
Kammerer, A.M.; ten Brink, Uri S.; Twitchell, David C.; Geist, Eric L.; Chaytor, Jason D.; Locat, J.; Lee, H.J.; Buczkowski, Brian J.; Sansoucy, M.
2008-01-01
In response to the 2004 Indian Ocean Tsunami, the United States Nuclear Regulatory Commission (US NRC) initiated a long-term research program to improve understanding of tsunami hazard levels for nuclear facilities in the United States. For this effort, the US NRC organized a collaborative research program with the United States Geological Survey (USGS) and other key researchers for the purpose of assessing tsunami hazard on the Atlantic and Gulf Coasts of the United States. The initial phase of this work consisted principally of collection, interpretation, and analysis of available offshore data and information. Necessarily, the US NRC research program includes both seismic- and landslide-based tsunamigenic sources in both the near and the far fields. The inclusion of tsunamigenic landslides, an important category of sources that impact tsunami hazard levels for the Atlantic and Gulf Coasts over the long time periods of interest to the US NRC is a key difference between this program and most other tsunami hazard assessment programs. Although only a few years old, this program is already producing results that both support current US NRC activities and look toward the long-term goal of probabilistic tsunami hazard assessment. This paper provides a summary of results from several areas of current research. An overview of the broader US NRC research program is provided in a companion paper in this conference.
Nakamura, Kengo; Kuwatani, Tatsu; Kawabe, Yoshishige; Komai, Takeshi
2016-02-01
Tsunami deposits accumulated on the Tohoku coastal area in Japan due to the impact of the Tohoku-oki earthquake. In the study reported in this paper, we applied principal component analysis (PCA) and cluster analysis (CA) to determine the concentrations of heavy metals in tsunami deposits that had been diluted with water or digested using 1 M HCl. The results suggest that the environmental risk is relatively low, evidenced by the following geometric mean concentrations: Pb, 16 mg kg(-1) and 0.003 ml L(-1); As, 1.8 mg kg(-1) and 0.004 ml L(-1); and Cd, 0.17 mg kg(-1) and 0.0001 ml L(-1). CA was performed after outliers were excluded using PCA. The analysis grouped the concentrations of heavy metals for leaching in water and acid. For the acid case, the first cluster contained Ni, Fe, Cd, Cu, Al, Cr, Zn, and Mn; while the second contained Pb, Sb, As, and Mo. For water, the first cluster contained Ni, Fe, Al, and Cr; and the second cluster contained Mo, Sb, As, Cu, Zn, Pb, and Mn. Statistical analysis revealed that the typical toxic elements, As, Pb, and Cd have steady correlations for acid leaching but are relatively sparse for water leaching. Pb and As from the tsunami deposits seemed to reveal a kind of redox elution mechanism using 1 M HCl. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Vithanage Receives 2009 Natural Hazards Focus Group Award for Graduate Research
NASA Astrophysics Data System (ADS)
2010-04-01
Meththika Vithanage has been awarded the Natural Hazards Focus Group Award for Graduate Research, given annually to recent Ph.D. recipients for outstanding contributions to natural hazards research. Vithanage’s thesis is entitled “Effect of tsunami on coastal aquifers: Field studies and tank experiments.” She was formally presented with the award at the Natural Hazards Focus Group reception during the 2009 AGU Fall Meeting, held 14-18 December in San Francisco, Calif. Vithanage received her B.S. in natural resources from Sabaragamuwa University of Sri Lanka in 2002 and an M.S. in environmental science from the University of Peradeniya, Sri Lanka, in 2005. In 2009, she attained a Ph.D. in hydrogeology under the supervision of Karsten Jensen and Peter Engesgaard in the Department of Geology and Geography at University of Copenhagen, Denmark. Her research interests include groundwater flow modeling, density-dependent flow and solute transport modeling, and water quality analysis.
NASA Astrophysics Data System (ADS)
Bahlburg, Heinrich; Nentwig, Vanessa; Matthias, Kreutzer
2016-04-01
On September 16, 2015, at 7:54 pm local time, an earthquake with Mw 8.3 occurred off the coast of Central Chile, 46 km west of the town of Illapel. Its hypocenter was located at a depth of 8.7 km in the transition zone from the Chilean flat slab to the central Chilean steep slab subduction geometry, and near the intersection of the Juan Fernandez Ridge with the South America plate. The quake caused a predominantly minor tsunami between Caldera (c. 27°S) and Los Vilos (c. 32°S). Only at Coquimbo and La Serena (c. 30°S) did the tsunami attain large wave heights on the order of 4.5 m leading to flooding and destruction of infrastructure. Maximum inundation distance was c. 700 m at Playa Changa, Coquimbo Bay. Minor flooding occurred along the northward adjacent beaches of La Serena reaching inundation distances of up to 150 m. Tsunami deposits are usually the only observable evidence of past events. To understand how tsunami deposits form and are preserved, and how they can be identified in the geological record, it is of paramount importance to undertake detailed studies in the wake of actual events. Here we report initial field data of a sedimentological post-tsunami field survey undertaken in October 2015. The most comprehensive and instructive sedimentological record of the September 16, 2015 tsunami is preserved at Playa Los Fuertes in La Serena. Along a 30 m long trench perpendicular to the coast we observed a laminated package of tsunami deposits of varying thickness. The deposits have an erosive basal unconformity with an amplitude of at least 10 cm. The preserved deposit thickness varies between 10 an 50 cm. The deposit consists of 7 layers of variable thickness, ranging between dark laminae a few millimeters thick and rich in heavy minerals, and lighter colored sand layers up to 15 cm thick. Grain size distributions are moderately well to well sorted and unimodal with modes between 1.3 and 2.0 Φ (medium sand). A c. 10 cm thick laminated layer in the central part of the vertical section includes mildly trough-shaped crossbeds indicating landward flow, a c. 5 cm thick layer 10 cm below the top in the interior part of the trench contains planar cross beds formed by outflow currents. Water escape occur as small sand diapirs and volcanoes within the final deposit. Water escape through small volcanoes appears to have been coeval to formation of the overlying layer by traction deposition as sand issuing from the lower layer has been preserved as a thin plume deformed in the downcurrent, i.e. landward, direction in the newly forming upper layer. Other sectors of the sediment show sand diapirs intruding up to 15 cm into the overlying tsunami deposit. The assemblage of laminae, layers and sedimentary structures indicates that the deposit records at least two events of tsunami inflow indicated by crossbeds and deformed sand volcano plumes, and one outflow event. Intervening layers without directional structures can not be assigned unequivocally to either inflow or outflow deposition.
NASA Astrophysics Data System (ADS)
Yang, Y. M.; Komjathy, A.; Meng, X.; Verkhoglyadova, O. P.; Langley, R. B.; Mannucci, A. J.
2015-12-01
Traveling ionospheric disturbances (TIDs) induced by acoustic-gravity waves in the neutral atmosphere have significant impact on trans-ionospheric radio waves such as Global Navigation Satellite System (GNSS, including Global Position System (GPS)) measurements. Natural hazards and solid Earth events, such as earthquakes, tsunamis and volcanic eruptions are actual sources that may trigger acoustic and gravity waves resulting in traveling ionospheric disturbances (TIDs) in the upper atmosphere. Trans-ionospheric radio wave measurements sense the total electron content (TEC) along the signal propagation path. In this research, we introduce a novel GPS-based detection and estimation technique for remote sensing of atmospheric wave-induced TIDs including space weather phenomena induced by major natural hazard events, using TEC time series collected from worldwide ground-based dual-frequency GNSS (including GPS) receiver networks. We demonstrate the ability of using ground- and space-based dual-frequency GPS measurements to detect and monitor tsunami wave propagation from the 2011 Tohoku-Oki earthquake and tsunami. Major wave trains with different propagation speeds and wavelengths were identified through analysis of the GPS remote sensing observations. Dominant physical characteristics of atmospheric wave-induced TIDs are found to be associated with specific tsunami propagations and oceanic Rayleigh waves. In this research, we compared GPS-based observations, corresponding model simulations and tsunami wave propagation. Results are shown to lead to a better understanding of the tsunami-induced ionosphere responses. Based on current distribution of Plate Boundary Observatory GPS stations, the results indicate that tsunami-induced TIDs may be detected about 60 minutes prior to tsunamis arriving at the U.S. west coast. It is expected that this GNSS-based technology will become an integral part of future early-warning systems.
NASA Astrophysics Data System (ADS)
Zaniboni, Filippo; Pagnoni, Gianluca; Armigliato, Alberto; Tinti, Stefano
2015-04-01
The study of the source of 1693 tsunami in eastern Sicily (South Italy) is still debated in the scientific community. Macroseismic analyses provide inland location for the epicenter of the earthquake, while historical reports describing 1-2 m waves hitting the coast suggest the existence of at least an offshore extension of the fault. Furthermore, an anomalous water elevation was described in Augusta (between Siracusa and Catania), that was interpreted as the manifestation of a local submarine landslide. The presence of the steep Hyblaean-Malta escarpment, that runs parallel to the eastern coast of Sicily at a short distance from the shoreline and is cut by several canyons and scars, corroborates the hypothesis of a landslide occurrence, though no clear evidence has been found yet. This research, realized in the frame of the project ASTARTE (Assessment, Strategy And Risk Reduction for Tsunamis in Europe - FP7-ENV2013 6.4-3, Grant 603839), aims at assessing the effect of landslide-generated tsunamis on the coastal stretch around Augusta considering different scenarios of collapsing masses along the Hyblaean-Malta escarpment. The slide dynamics is computed by means of the numerical code UBO-BLOCK1 (developed by the University of Bologna Tsunami Research Team), and the corresponding tsunami is simulated via the code UBO-TSUFD. The sliding bodies are placed in different positions in order to assess which of them could produce significant effects on the town of Augusta, providing then clues on the possible source area for the hypothesized slide related to the 1693 tsunami. The sensitivity analysis shows the spatial dependence of the coastal tsunami height on the source volume, position, distance from the coast, and on other parameters.
NASA Astrophysics Data System (ADS)
Wood, N. J.; Jones, J.; Spielman, S.
2013-12-01
Near-field tsunami hazards are credible threats to many coastal communities throughout the world. Along the U.S. Pacific Northwest coast, low-lying areas could be inundated by a series of catastrophic tsunami waves that begin to arrive in a matter of minutes following a Cascadia subduction zone (CSZ) earthquake. This presentation summarizes analytical efforts to classify communities with similar characteristics of community vulnerability to tsunami hazards. This work builds on past State-focused inventories of community exposure to CSZ-related tsunami hazards in northern California, Oregon, and Washington. Attributes used in the classification, or cluster analysis, include demography of residents, spatial extent of the developed footprint based on mid-resolution land cover data, distribution of the local workforce, and the number and type of public venues, dependent-care facilities, and community-support businesses. Population distributions also are characterized by a function of travel time to safety, based on anisotropic, path-distance, geospatial modeling. We used an unsupervised-model-based clustering algorithm and a v-fold, cross-validation procedure (v=50) to identify the appropriate number of community types. We selected class solutions that provided the appropriate balance between parsimony and model fit. The goal of the vulnerability classification is to provide emergency managers with a general sense of the types of communities in tsunami hazard zones based on similar characteristics instead of only providing an exhaustive list of attributes for individual communities. This classification scheme can be then used to target and prioritize risk-reduction efforts that address common issues across multiple communities. The presentation will include a discussion of the utility of proposed place classifications to support regional preparedness and outreach efforts.
NASA Astrophysics Data System (ADS)
Zamora, N.; Hoechner, A.; Babeyko, A. Y.
2014-12-01
Iran and Pakistan are countries frequently affected by destructive earthquakes, as for instance, the magnitude 6.6 Bam earthquake in 2003 in Iran with about 30 000 casualties, or the magnitude 7.6 Kashmir earthquake 2005 in Pakistan with about 80'000 casualties. Both events took place inland, but in terms of magnitude, even significantly larger events can be expected to happen offshore, at the Makran subduction zone. This small subduction zone is seismically rather quiescent, nevertheless a tsunami caused by a thrust event in 1945 (Balochistan earthquake) led to about 4000 casualties. Nowadays, the coastal regions are more densely populated and vulnerable to similar events. Furthermore, some recent publications discuss the possiblity of rather rare huge magnitude 9 events at the Makran subduction zone. We analyze the seismicity at the subduction plate interface and generate various synthetic earthquake catalogs spanning 100000 years. All the events are projected onto the plate interface using scaling relations and a tsunami model is run for every scenario. The tsunami hazard along the coast is computed and presented in the form of annual probability of exceedance, probabilistic tsunami height for different time periods and other measures. We show how the hazard reacts to variation of the Gutenberg-Richter parameters and maximum magnitudes.We model the historic Balochistan event and its effect in terms of coastal wave heights. Finally, we show how an effective tsunami early warning could be achieved by using an array of high-precision real-time GNSS (Global Navigation Satellite System) receivers along the coast by applying it to the 1945 event and by performing a sensitivity analysis.
Chaytor, Jason D.; Geist, Eric L.; Paull, Charles K.; Caress, David W; Gwiazda, Roberto; Urrutia Fucugauchi, Jaime; Rebolledo Vieyra, Mario
2016-01-01
Submarine landslides occurring along the margins of the Gulf of Mexico (GOM) represent a low-likelihood, but potentially damaging source of tsunamis. New multibeam bathymetry coverage reveals that mass wasting is pervasive along the Yucatán Shelf edge with several large composite landslides possibly removing as much as 70 km3 of the Cenozoic sedimentary section in a single event. Using GIS-based analysis, the dimensions of six landslides from the central and northern sections of the Yucatán Shelf/Campeche Escarpment were determined and used as input for preliminary tsunami generation and propagation models. Tsunami modeling is performed to compare the propagation characteristics and distribution of maximum amplitudes throughout the GOM among the different landslide scenarios. Various factors such as landslide geometry, location along the Yucatán Shelf/Campeche Escarpment, and refraction during propagation result in significant variations in the affected part of the Mexican and US Gulf Coasts. In all cases, however, tsunami amplitudes are greatest along the northern Yucatán Peninsula.
NASA Astrophysics Data System (ADS)
Choi, B. H.; Min, B. I.; Yoshinobu, T.; Kim, K. O.; Pelinovsky, E.
2012-04-01
Data from a field survey of the 2011 tsunami in the Sanriku area of Japan is presented and used to plot the distribution function of runup heights along the coast. It is shown that the distribution function can be approximated using a theoretical log-normal curve [Choi et al, 2002]. The characteristics of the distribution functions derived from the runup-heights data obtained during the 2011 event are compared with data from two previous gigantic tsunamis (1896 and 1933) that occurred in almost the same region. The number of observations during the last tsunami is very large (more than 5,247), which provides an opportunity to revise the conception of the distribution of tsunami wave heights and the relationship between statistical characteristics and number of observations suggested by Kajiura [1983]. The distribution function of the 2011 event demonstrates the sensitivity to the number of observation points (many of them cannot be considered independent measurements) and can be used to determine the characteristic scale of the coast, which corresponds to the statistical independence of observed wave heights.
Kashima, Saori; Inoue, Kazuo; Matsumoto, Masatoshi
2017-01-01
The Great East Japan Earthquake occurred on 11 March 2011 near the northeast coast of the main island, 'Honshu', of Japan. It wreaked enormous damage in two main ways: a giant tsunami and an accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP). This disaster may have affected the distribution of physicians in the region. Here, we evaluate the effect of the disaster on the distribution of hospital physicians in the three most severely affected prefectures (Iwate, Miyagi, and Fukushima). We obtained individual information about physicians from the Physician Census in 2010 (pre-disaster) and 2012 (post-disaster). We examined geographical distributions of physicians in two ways: (1) municipality-based analysis for demographic evaluation; and (2) hospital-based analysis for geographic evaluation. In each analysis, we calculated the rate of change in physician distributions between pre- and post-disaster years at various distances from the tsunami-affected coast, and from the restricted area due to the FDNPP accident. The change in all, hospital, and clinic physicians were 0.2%, 0.7%, and -0.7%, respectively. In the municipality-based analysis, after taking account of the decreased population, physician numbers only decreased within the restricted area. In the hospital-based analysis, hospital physician numbers did not decrease at any distance from the tsunami-affected coast. In contrast, there was a 3.3% and 2.3% decrease in hospital physicians 0-25 km and 25-50 km from the restricted area surrounding the FDNPP, respectively. Additionally, decreases were larger and increases were smaller in areas close to the FDNPP than in areas further away. Our results suggest that the tsunami did not affect the distribution of physicians in the affected regions. However, the FDNPP accident changed physician distribution in areas close to the power plant.
Inoue, Kazuo; Matsumoto, Masatoshi
2017-01-01
Objective The Great East Japan Earthquake occurred on 11 March 2011 near the northeast coast of the main island, ‘Honshu’, of Japan. It wreaked enormous damage in two main ways: a giant tsunami and an accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP). This disaster may have affected the distribution of physicians in the region. Here, we evaluate the effect of the disaster on the distribution of hospital physicians in the three most severely affected prefectures (Iwate, Miyagi, and Fukushima). Methods We obtained individual information about physicians from the Physician Census in 2010 (pre-disaster) and 2012 (post-disaster). We examined geographical distributions of physicians in two ways: (1) municipality-based analysis for demographic evaluation; and (2) hospital-based analysis for geographic evaluation. In each analysis, we calculated the rate of change in physician distributions between pre- and post-disaster years at various distances from the tsunami-affected coast, and from the restricted area due to the FDNPP accident. Results The change in all, hospital, and clinic physicians were 0.2%, 0.7%, and −0.7%, respectively. In the municipality-based analysis, after taking account of the decreased population, physician numbers only decreased within the restricted area. In the hospital-based analysis, hospital physician numbers did not decrease at any distance from the tsunami-affected coast. In contrast, there was a 3.3% and 2.3% decrease in hospital physicians 0–25 km and 25–50 km from the restricted area surrounding the FDNPP, respectively. Additionally, decreases were larger and increases were smaller in areas close to the FDNPP than in areas further away. Conclusions Our results suggest that the tsunami did not affect the distribution of physicians in the affected regions. However, the FDNPP accident changed physician distribution in areas close to the power plant. PMID:28542461
NASA Astrophysics Data System (ADS)
Tanioka, Yuichiro
2017-04-01
After tsunami disaster due to the 2011 Tohoku-oki great earthquake, improvement of the tsunami forecast has been an urgent issue in Japan. National Institute of Disaster Prevention is installing a cable network system of earthquake and tsunami observation (S-NET) at the ocean bottom along the Japan and Kurile trench. This cable system includes 125 pressure sensors (tsunami meters) which are separated by 30 km. Along the Nankai trough, JAMSTEC already installed and operated the cable network system of seismometers and pressure sensors (DONET and DONET2). Those systems are the most dense observation network systems on top of source areas of great underthrust earthquakes in the world. Real-time tsunami forecast has depended on estimation of earthquake parameters, such as epicenter, depth, and magnitude of earthquakes. Recently, tsunami forecast method has been developed using the estimation of tsunami source from tsunami waveforms observed at the ocean bottom pressure sensors. However, when we have many pressure sensors separated by 30km on top of the source area, we do not need to estimate the tsunami source or earthquake source to compute tsunami. Instead, we can initiate a tsunami simulation from those dense tsunami observed data. Observed tsunami height differences with a time interval at the ocean bottom pressure sensors separated by 30 km were used to estimate tsunami height distribution at a particular time. In our new method, tsunami numerical simulation was initiated from those estimated tsunami height distribution. In this paper, the above method is improved and applied for the tsunami generated by the 2011 Tohoku-oki great earthquake. Tsunami source model of the 2011 Tohoku-oki great earthquake estimated using observed tsunami waveforms, coseimic deformation observed by GPS and ocean bottom sensors by Gusman et al. (2012) is used in this study. The ocean surface deformation is computed from the source model and used as an initial condition of tsunami simulation. By assuming that this computed tsunami is a real tsunami and observed at ocean bottom sensors, new tsunami simulation is carried out using the above method. The station distribution (each station is separated by 15 min., about 30 km) observed tsunami waveforms which were actually computed from the source model. Tsunami height distributions are estimated from the above method at 40, 80, and 120 seconds after the origin time of the earthquake. The Near-field Tsunami Inundation forecast method (Gusman et al. 2014) was used to estimate the tsunami inundation along the Sanriku coast. The result shows that the observed tsunami inundation was well explained by those estimated inundation. This also shows that it takes about 10 minutes to estimate the tsunami inundation from the origin time of the earthquake. This new method developed in this paper is very effective for a real-time tsunami forecast.
Geologic Evidence of Earthquakes and Tsunamis in the Mexican Subduction zone - Guerrero
NASA Astrophysics Data System (ADS)
Ramirez-Herrera, M.; Lagos, M.; Hutchinson, I.; Ruiz-Fernández, A.; Machain, M.; Caballero, M.; Rangel, V.; Nava, H.; Corona, N.; Bautista, F.; Kostoglodov, V.; Goguitchaichrili, A.; Morales, J.; Quintana, P.
2010-12-01
A study of large historic and prehistoric earthquakes and their tsunamis using a multiproxy approach (geomorphic features, sediment deposits, microfossils, sediment geochemistry and more recently the use of magnetic properties) has provided valuable information in the assessment of earthquake and tsunami record. The Pacific coast of Mexico is located over the active subduction zone (~1000 km) that has experienced numerous large magnitude earthquakes in historical time (Mw>7.5), and more than 50 documented tsunamis since 1732. Geomorphic and stratigraphic studies through test pits at 13 sites on the Guerrero coast reveal distinct stratigraphic changes with depth, indicating clear rapid change in depositional environments over time. Microfossil ecology (diatoms and foraminifera), sediment geochemistry (concentration increment in elements such as Sr, Ba, Ca, P, Si, K), stratigraphy, sediment magnetic properties (magnetic susceptibility anisotropy for the first time applied in tsunami deposits identification) and other proxies are indicative of sudden changes in land level and tsunami deposits. Buried evidence of liquefaction confirms the occurrence of a large earthquake at Barra de Potosi and Ixtapa, Guerrero. Preliminary 210Pb analysis suggests a sedimentation rate of ca. 0.1±0.01 cm/year and an estimated minimum age of ~ 100 years (maximum age at ca. 450 years?) for the most recent earthquake. At least three large events can be recognized by sharp contacts and sand layers in the sedimentary record. Ongoing C14, OSL and 210Pb dating will constrain the timing of these events. Deposits from three marine inwash events (tsunamis) dating from the past 4600 years have been identified on the Guerrero coast. A near-surface sand bed with a sharp basal contact overlying soil at sites near Ixtapa and Barra de Potosi most probably marks the tsunami following the 1985 Mw 8.2 earthquake. Interviews with Barra de Potosi fishermen and locals corroborate that these sites were inundated by this tsunami.
Tsunami warnings: Understanding in Hawai'i
Gregg, Chris E.; Houghton, Bruce F.; Paton, Douglas; Johnston, David M.; Swanson, D.A.; Yanagi, B.S.
2007-01-01
The devastating southeast Asian tsunami of December 26, 2004 has brought home the destructive consequences of coastal hazards in an absence of effective warning systems. Since the 1946 tsunami that destroyed much of Hilo, Hawai'i, a network of pole mounted sirens has been used to provide an early public alert of future tsunamis. However, studies in the 1960s showed that understanding of the meaning of siren soundings was very low and that ambiguity in understanding had contributed to fatalities in the 1960 tsunami that again destroyed much of Hilo. The Hawaiian public has since been exposed to monthly tests of the sirens for more than 25 years and descriptions of the system have been widely published in telephone books for at least 45 years. However, currently there remains some uncertainty in the level of public understanding of the sirens and their implications for behavioral response. Here, we show from recent surveys of Hawai'i residents that awareness of the siren tests and test frequency is high, but these factors do not equate with increased understanding of the meaning of the siren, which remains disturbingly low (13%). Furthermore, the length of time people have lived in Hawai'i is not correlated systematically with understanding of the meaning of the sirens. An additional issue is that warning times for tsunamis gene rated locally in Hawai'i will be of the order of minutes to tens of minutes and limit the immediate utility of the sirens. Natural warning signs of such tsunamis may provide the earliest warning to residents. Analysis of a survey subgroup from Hilo suggests that awareness of natural signs is only moderate, and a majority may expect notification via alerts provided by official sources. We conclude that a major change is needed in tsunami education, even in Hawai'i, to increase public understanding of, and effective response to, both future official alerts and natural warning signs of future tsunamis. ?? Springer 2006.
Coastal evidence for Holocene subduction-zone earthquakes and tsunamis in central Chile
Dure, Tina; Cisternas, Marco; Horton, Benjamin; Ely, Lisa; Nelson, Alan R.; Wesson, Robert L.; Pilarczyk, Jessica
2015-01-01
The ∼500-year historical record of seismicity along the central Chile coast (30–34°S) is characterized by a series of ∼M 8.0–8.5 earthquakes followed by low tsunamis (<4 m) occurring on the megathrust about every 80 years. One exception is the AD 1730 great earthquake (M 9.0–9.5) and high tsunami (>10 m), but the frequency of such large events is unknown. We extend the seismic history of central Chile through a study of a lowland stratigraphic sequence along the metropolitan coast north of Valparaíso (33°S). At this site, higher relative sea level during the mid Holocene created a tidal marsh and the accommodation space necessary for sediment that preserves earthquake and tsunami evidence. Within this 2600-yr-long sequence, we traced six laterally continuous sand beds probably deposited by high tsunamis. Plant remains that underlie the sand beds were radiocarbon dated to 6200, 5600, 5000, 4400, 3800, and 3700 cal yr BP. Sediment properties and diatom assemblages of the sand beds—for example, anomalous marine planktonic diatoms and upward fining of silt-sized diatom valves—point to a marine sediment source and high-energy deposition. Grain-size analysis shows a strong similarity between inferred tsunami deposits and modern coastal sediment. Upward fining sequences characteristic of suspension deposition are present in five of the six sand beds. Despite the lack of significant lithologic changes between the sedimentary units under- and overlying tsunami deposits, we infer that the increase in freshwater siliceous microfossils in overlying units records coseismic uplift concurrent with the deposition of five of the sand beds. During our mid-Holocene window of evidence preservation, the mean recurrence interval of earthquakes and tsunamis is ∼500 years. Our findings imply that the frequency of historical earthquakes in central Chile is not representative of the greatest earthquakes and tsunamis that the central Chilean subduction zone has produced.
Dating of Submarine Landslides and Their Tsunami Deposits Using Hawaii as an Example
NASA Astrophysics Data System (ADS)
McMurtry, G. M.; Herrero-Bervera, E.
2003-12-01
There have been several approaches to dating the initiation of submarine landslides and the tsunamis they inevitably produce. In Hawaii, the timing of flank failures of major volcanoes has been estimated by radiometric and paleomagnetic dating of the youngest shield-building flows and dikes, the apex ages of the volcanoes, which can also be constrained by the oldest flows of post-collapse volcanism. More precise age estimates can be obtained by direct dating of the landslide. These approaches include paleomagnetic and U-series stratigraphic dating of the overlying pelagic sediment cover upon and in front of the landslide, the latter method producing minimum ages of last landslide turbidite emplacement, e.g., the ca. 120 ka Alika phase 2 event. Elevated, detached landslide blocks make the best targets for such dating because it is assumed that smaller post-emplacement turbidites will not reach their summits. Catastrophic events such as the 1.0 Ma Wailau giant landslide have, however, been dated by turbidite deposition upon large, elevated blocks of the nearby 1.8 Ma Nuuanu giant landslide. Other direct methods for older events include use of thickness of ferromanganese crusts collected from steep, exposed rock scarps and cosmogenic Be-10 or U-series radiometric determination of the few mm/Ma rate of accumulation. In subtropical areas such as Hawaii, coral clast-bearing, elevated marine deposits on the southeastern islands have been identified as deposits from giant tsunamis. Among the key evidence are the great age and paleo-elevations of the coral clasts found in situ. Since modern coral clasts are relatively young, a few thousand years old or less, older analogs swept from the presently submerged reefs offshore can reliably date tsunamigenic depositional events within the late Quaternary using U-series methods. The age of the tsunami will date within these limits (and the analytical precisions) to the youngest in situ coral clast that was entrained by the waves. U-series dates approximately coeval with the Alika 2 giant landslide suggest a youngest 100 ka tsunami emplacement age from 100-137 ka corals collected on Lanai and Hawaii; likewise, older deposits on Molokai and Lanai suggest a 200 ka tsunami emplacement age from corals that range 200-258 ka in age, but interpretative care must be taken as open-system behavior upon weathering may produce apparently younger dates. Other promising methods for dating these deposits include cosmogenic Cl-36 exposure ages of cements and Cl-36 and He-3 exposure ages of the entrained volcanic rocks. Younger events can be dated by the above methods using C-14 or unsupported Pb-210.
Post Fukushima tsunami simulations for Malaysian coasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koh, Hock Lye, E-mail: kohhl@ucsiuniversity.edu.my; Teh, Su Yean, E-mail: syteh@usm.my; Abas, Mohd Rosaidi Che
The recent recurrences of mega tsunamis in the Asian region have rekindled concern regarding potential tsunamis that could inflict severe damage to affected coastal facilities and communities. The 11 March 2011 Fukushima tsunami that crippled nuclear power plants in Northern Japan has further raised the level of caution. The recent discovery of petroleum reserves in the coastal water surrounding Malaysia further ignites the concern regarding tsunami hazards to petroleum facilities located along affected coasts. Working in a group, federal government agencies seek to understand the dynamics of tsunami and their impacts under the coordination of the Malaysian National Centre formore » Tsunami Research, Malaysian Meteorological Department. Knowledge regarding the generation, propagation and runup of tsunami would provide the scientific basis to address safety issues. An in-house tsunami simulation models known as TUNA has been developed by the authors to assess tsunami hazards along affected beaches so that mitigation measures could be put in place. Capacity building on tsunami simulation plays a critical role in the development of tsunami resilience. This paper aims to first provide a simple introduction to tsunami simulation towards the achievement of tsunami simulation capacity building. The paper will also present several scenarios of tsunami dangers along affected Malaysia coastal regions via TUNA simulations to highlight tsunami threats. The choice of tsunami generation parameters reflects the concern following the Fukushima tsunami.« less
A short history of tsunami research and countermeasures in Japan.
Shuto, Nobuo; Fujima, Koji
2009-01-01
The tsunami science and engineering began in Japan, the country the most frequently hit by local and distant tsunamis. The gate to the tsunami science was opened in 1896 by a giant local tsunami of the highest run-up height of 38 m that claimed 22,000 lives. The crucial key was a tide record to conclude that this tsunami was generated by a "tsunami earthquake". In 1933, the same area was hit again by another giant tsunami. A total system of tsunami disaster mitigation including 10 "hard" and "soft" countermeasures was proposed. Relocation of dwelling houses to high ground was the major countermeasures. The tsunami forecasting began in 1941. In 1960, the Chilean Tsunami damaged the whole Japanese Pacific coast. The height of this tsunami was 5-6 m at most. The countermeasures were the construction of structures including the tsunami breakwater which was the first one in the world. Since the late 1970s, tsunami numerical simulation was developed in Japan and refined to become the UNESCO standard scheme that was transformed to 22 different countries. In 1983, photos and videos of a tsunami in the Japan Sea revealed many faces of tsunami such as soliton fission and edge bores. The 1993 tsunami devastated a town protected by seawalls 4.5 m high. This experience introduced again the idea of comprehensive countermeasures, consisted of defense structure, tsunami-resistant town development and evacuation based on warning.
NASA Astrophysics Data System (ADS)
Bernard, E. N.
2014-12-01
As the decade of mega-tsunamis has unfolded with new data, the science of tsunami has advanced at an unprecedented pace. Our responsibility to society should guide the use of these new scientific discoveries to better prepare society for the next tsunami. This presentation will focus on the impacts of the 2004 and 2011 tsunamis and new societal expectations accompanying enhanced funding for tsunami research. A list of scientific products, including tsunami hazard maps, tsunami energy scale, real-time tsunami flooding estimates, and real-time current velocities in harbors will be presented to illustrate society's need for relevant, easy to understand tsunami information. Appropriate use of these tsunami scientific products will be presented to demonstrate greater tsunami resilience for tsunami threatened coastlines. Finally, a scientific infrastructure is proposed to ensure that these products are both scientifically sound and represent today's best practices to protect the scientific integrity of the products as well as the safety of coastal residents.
Numerical modeling of marine Gravity data for tsunami hazard zone mapping
NASA Astrophysics Data System (ADS)
Porwal, Nipun
2012-07-01
Tsunami is a series of ocean wave with very high wavelengths ranges from 10 to 500 km. Therefore tsunamis act as shallow water waves and hard to predict from various methods. Bottom Pressure Recorders of Poseidon class considered as a preeminent method to detect tsunami waves but Acoustic Modem in Ocean Bottom Pressure (OBP) sensors placed in the vicinity of trenches having depth of more than 6000m fails to propel OBP data to Surface Buoys. Therefore this paper is developed for numerical modeling of Gravity field coefficients from Bureau Gravimetric International (BGI) which do not play a central role in the study of geodesy, satellite orbit computation, & geophysics but by mathematical transformation of gravity field coefficients using Normalized Legendre Polynomial high resolution ocean bottom pressure (OBP) data is generated. Real time sea level monitored OBP data of 0.3° by 1° spatial resolution using Kalman filter (kf080) for past 10 years by Estimating the Circulation and Climate of the Ocean (ECCO) has been correlated with OBP data from gravity field coefficients which attribute a feasible study on future tsunami detection system from space and in identification of most suitable sites to place OBP sensors near deep trenches. The Levitus Climatological temperature and salinity are assimilated into the version of the MITGCM using the ad-joint method to obtain the sea height segment. Then TOPEX/Poseidon satellite altimeter, surface momentum, heat, and freshwater fluxes from NCEP reanalysis product and the dynamic ocean topography DOT_DNSCMSS08_EGM08 is used to interpret sea-bottom elevation. Then all datasets are associated under raster calculator in ArcGIS 9.3 using Boolean Intersection Algebra Method and proximal analysis tools with high resolution sea floor topographic map. Afterward tsunami prone area and suitable sites for set up of BPR as analyzed in this research is authenticated by using Passive microwave radiometry system for Tsunami Hazard Zone Mapping by network of seismometers. Thus using such methodology for early Tsunami Hazard Zone Mapping also increase accuracy and reduce time period for tsunami predictions. KEYWORDS:, Tsunami, Gravity Field Coefficients, Ocean Bottom Pressure, ECCO, BGI, Sea Bottom Temperature, Sea Floor Topography.
Source Mechanism and Near-field Characteristics of the 2011 Tohoku-oki Tsunami
NASA Astrophysics Data System (ADS)
Yamazaki, Y.; Cheung, K.; Lay, T.
2011-12-01
The Tohoku-oki great earthquake ruptured the megathrust fault offshore of Miyagi and Fukushima in Northeast Honshu with moment magnitude of Mw 9.0 on March 11, 2011, and generated strong shaking across the region. The resulting tsunami devastated the northeastern Japan coasts and damaged coastal infrastructure across the Pacific. The extensive global seismic networks, dense geodetic instruments, well-positioned buoys and wave gauges, and comprehensive runup records along the northeast Japan coasts provide datasets of unprecedented quality and coverage for investigation of the tsunami source mechanism and near-field wave characteristics. Our finite-source model reconstructs detailed source rupture processes by inversion of teleseismic P waves recorded around the globe. The finite-source solution is validated through comparison with the static displacements recoded at the ARIA (JPL-GSI) GPS stations and models obtained by inversion of high-rate GPS observations. The rupture model has two primary slip regions, near the hypocenter and along the trench; the maximum slip is about 60 m near the trench. Together with the low rupture velocity, the Tohoku-oki event has characteristics in common with tsunami earthquakes, although it ruptured across the entire megathrust. Superposition of the deformation of the subfaults from the planar fault model according to their rupture initiation and rise times specifies the seafloor vertical displacement and velocity for tsunami modeling. We reconstruct the 2011 Tohoku-oki tsunami from the time histories of the seafloor deformation using the dispersive long-wave model NEOWAVE (Non-hydrostatic Evolution of Ocean WAVEs). The computed results are compared with data from six GPS gauges and three wave gauges near the source at 120~200-m and 50-m water depth, as well as DART buoys positioned across the Pacific. The shock-capturing model reproduces near-shore tsunami bores and the runup data gathered by the 2011 Tohoku Earthquake Tsunami Joint Survey Group. Spectral analysis of the computed surface elevation reveals a series of resonance modes and areas prone to tsunami hazards. This case study improves our understanding of near-field tsunami waves and validates the modeling capability to predict their impacts for hazard mitigation and emergency management.
Survivor Interviews from the Sept. 29, 2009 tsunami on Samoa and American Samoa
NASA Astrophysics Data System (ADS)
Richmond, B. M.; Dudley, W. C.; Buckley, M. L.; Jaffe, B. E.; Fanolua, S.; Chan Kau, M.
2009-12-01
Thirty-one video interviews were carried out on the islands of Tutuila, American Samoa and Upolu, Samoa with survivors of, and responders to, the September 29, 2009 tsunami event. Those interviewed included local residents caught by the waves while attempting to flee to higher ground, those who intentionally ran into the water to save others, individuals who recognized the potential tsunami hazard due to the severity of the earthquake and attempted to warn others, first-responders, aid workers, tourism managers, and others. The frank, often emotional, responses provide unfiltered insight into the level of preparedness of local residents, level of training of first responders, and challenges faced by aid workers. Among the important observations voiced by interviewees were: (1) recent tsunami education briefings and school drills were critical in preventing greater loss of life; (2) those who had not received training about the tsunami hazard were unaware that a tsunami could follow a strong earthquake; (3) first responders were not adequately trained or prepared for the specific impacts of a tsunami; (4) initial medical procedures did not adequately address the levels of bacterial contamination; and (5) survivors, first responders and aid workers suffer from post traumatic stress disorder as a result of the event and its aftermath. Valuable scientific data can also be gained from first-hand accounts. Several interviews describe waves “bending,” “funneling,” and one spoke of the waves coming together as a “monster that jumped up from the channel spitting boulders.” In the village of Fagasa on the north coast of Tutuila, American Samoa, the assumed transport direction of large boulders by scientists was dramatically revised based on first-hand accounts of the original position of the boulders. The single most common message was that hazard education played a key role in saving lives in both Samoa and American Samoa. It is critically important to understand the reaction and response of individuals from different cultures to tsunami events in order to better design mitigation, education, response and recovery programs that best fit local communities. It is hoped that the analysis of these and other post-tsunami interviews will be used in that effort. Interviews were carried out in high-definition (1080i) video so as to capture the emotional impact of first-person, eye-witness accounts. Interviews will be translated in Samoa and English and transcribed with video time-code thus making them suitable for quality media production for use in local, regional, and international tsunami education programs. Additional observations gleaned from the interviews, as well as preliminary analysis based on specific location and demographic will also be presented.
Development of High Precision Tsunami Runup Calculation Method Coupled with Structure Analysis
NASA Astrophysics Data System (ADS)
Arikawa, Taro; Seki, Katsumi; Chida, Yu; Takagawa, Tomohiro; Shimosako, Kenichiro
2017-04-01
The 2011 Great East Japan Earthquake (GEJE) has shown that tsunami disasters are not limited to inundation damage in a specified region, but may destroy a wide area, causing a major disaster. Evaluating standing land structures and damage to them requires highly precise evaluation of three-dimensional fluid motion - an expensive process. Our research goals were thus to develop a coupling STOC-CADMAS (Arikawa and Tomita, 2016) coupling with the structure analysis (Arikawa et. al., 2009) to efficiently calculate all stages from tsunami source to runup including the deformation of structures and to verify their applicability. We also investigated the stability of breakwaters at Kamaishi Bay. Fig. 1 shows the whole of this calculation system. The STOC-ML simulator approximates pressure by hydrostatic pressure and calculates the wave profiles based on an equation of continuity, thereby lowering calculation cost, primarily calculating from a e epi center to the shallow region. As a simulator, STOC-IC solves pressure based on a Poisson equation to account for a shallower, more complex topography, but reduces computation cost slightly to calculate the area near a port by setting the water surface based on an equation of continuity. CS3D also solves a Navier-Stokes equation and sets the water surface by VOF to deal with the runup area, with its complex surfaces of overflows and bores. STR solves the structure analysis including the geo analysis based on the Biot's formula. By coupling these, it efficiently calculates the tsunami profile from the propagation to the inundation. The numerical results compared with the physical experiments done by Arikawa et. al.,2012. It was good agreement with the experimental ones. Finally, the system applied to the local situation at Kamaishi bay. The almost breakwaters were washed away, whose situation was similar to the damage at Kamaishi bay. REFERENCES T. Arikawa and T. Tomita (2016): "Development of High Precision Tsunami Runup Calculation Method Based on a Hierarchical Simulation", Journal of Disaster ResearchVol.11 No.4 T. Arikawa, K. Hamaguchi, K. Kitagawa, T. Suzuki (2009): "Development of Numerical Wave Tank Coupled with Structure Analysis Based on FEM", Journal of J.S.C.E., Ser. B2 (Coastal Engineering) Vol. 65, No. 1 T. Arikawa et. al.(2012) "Failure Mechanism of Kamaishi Breakwaters due to the Great East Japan Earthquake Tsunami", 33rd International Conference on Coastal Engineering, No.1191
Lessons Learned and Unlearned from the 2004 Great Sumatran Tsunami.
NASA Astrophysics Data System (ADS)
Synolakis, C.; Kanoglu, U.
2014-12-01
Huppert & Sparks (2006 Phil Trans Math Phys Eng Sci) wrote It is likely that in the future, we will experience several disasters per year that kill more than 10,000 people. The 2011 Great East Japan Earthquake Disaster alone resulted in more than 20,000 casualties. Synolakis & Bernard (2006 Phil Trans Math Phys Eng Sci) concluded that Before the next Sumatra-type tsunami strikes, we must resolve to create a world that can coexist with the tsunami hazard. The 2011 Japan tsunami dramatically showed that we are not there yet. Despite substantial advances after the 2004 Boxing Day tsunami, substantial challenges remain for improving tsunami hazard mitigation. If the tsunami community appeared at first perplexed in the aftermath of the 2004 tsunami, it was not due to the failure of recognized hydrodynamic paradigms, much as certain geophysical ones and scaling laws failed, but at the worst surprise, the lack of preparedness and education. Synolakis et al. (2008 Pure Appl Geophys) presented standards for tsunami modeling; for both warnings and inundation maps (IMs). Although at least one forecasting methodology has gone through extensive testing, and is now officially in use by the warning centers (WCs), standards need urgently to be formalized for warnings. In Europe, several WCs have been established, but none has yet to issue an operational warning for a hazardous event. If it happens, there might be confusion with possibly contradictory/competing warnings. Never again should there be a repeat of the TEPCO analysis for the safety of the Fukushima NPP. This was primarily due to lacks of familiarity with the context of numerical predictions and experience with real tsunami. The accident was the result of a cascade of stupid errors, almost impossible to ignore by anyone in the field (Synolakis, 26.03.2011 The New York Times). Current practices in tsunami studies for US NPPs and for IMs do not provide us with optimism that the Fukushima lessons have been absorbed and that bagatellomania is still rabid. What saves human lives is ancestral knowledge and community preparedness, as demonstrated repeatedly. Efforts need to be focused in improving education worldwide in the simple steps they can take. We acknowledge the partial supports from the 7th FP (ASTARTE, Grant 603839), TUBITAK, TR (109Y387) and GSRT, GR (10TUR/1-50-1) projects.
Development of a new real-time GNSS data analysis system in GEONET for rapid Mw estimates in Japan
NASA Astrophysics Data System (ADS)
Kawamoto, S.; Miyagawa, K.; Yahagi, T.; Yamaguchi, K.; Tsuji, H.; Nishimura, T.; Ohta, Y.; Hino, R.; Miura, S.
2013-12-01
The 2011 off the Pacific Coast of Tohoku Earthquake (Mw 9.0) occurred on March 11, 2011. The earthquake and following tsunami caused serious damages to the broad coastal area of east Japan. Japan Meteorological Agency (JMA) operates the Tsunami Warning system, which is designed to forecast the tsunami height and its arrival time around 3 minutes after a large event. However, the first estimated magnitude of Mj, which was used for Tsunami Warning issuance, was far below the real one at the Tohoku event because of a saturation problem. In principle, as well as most other magnitude scales, Mj is saturated at certain values around 8.0. On the other hand, Mw represents the earthquake energy itself and it can be directly calculated by permanent displacements derived from geodetic measurements without the saturation problem. GNSS Earth Observation Network System (GEONET) is one of the densest real-time GNSS networks in the world operated by Geospatial Information Authority of Japan (GSI). The GEONET data and recent rapid advancement of GNSS analysis techniques motivate us to develop a new system for tackling the tsunami disasters. In order to provide the more reliable magnitude for Tsunami Warning, GSI and Tohoku University have jointly developed a new real-time analysis system in GEONET for quasi real-time Mw estimation. Its targets are large earthquakes, especially ones of Mw > 8.0, which would be saturated by the Tsunami Warning system. The real-time analysis system in GEONET mainly consists of three parts: (1) real-time GNSS positioning, (2) automated extraction of displacement fields due to the large earthquake, and (3) automated estimation of Mw by an approximated single rectangular fault. The positions of each station are calculated by using RTKLIB 2.4.1 (Takasu, 2011) with the baseline mode and the predicted part of the IGS Ultra Rapid precise orbit. For the event detection, we adopt the 'RAPiD' algorithm (Ohta et al., 2012) or Earthquake Early Warning issued by JMA. This whole process is done within 10 seconds at most and the estimated results are immediately announced to GSI staffs by e-mail. We examined the system by using the recorded 1Hz GEONET data of past several large earthquakes in Japan. The results showed that it could estimate reliable Mw within a few minutes like Mw of 8.9 for the 2011 Tohoku earthquake (Mw 9.0) after 172 seconds, Mw of 7.6 for the 2011 off Ibaraki earthquake (Mw 7.7) after 107 seconds and Mw of 8.0 for the 2003 Tokachi-oki earthquake (Mw 8.0) after 93 seconds respectively. GSI launched its prototype in April of 2012 with 146 GEONET stations for covering mainly Tohoku district and now is planning to extend it to the whole area of Japan. We assure that this system would become one of the powerful tools for supporting Tsunami Warinng in order to prevent or mitigate the severe damages of future disastrous tsunamis.
Simulations and analysis of asteroid-generated tsunamis using the shallow water equations
NASA Astrophysics Data System (ADS)
Berger, M. J.; LeVeque, R. J.; Weiss, R.
2016-12-01
We discuss tsunami propagation for asteroid-generated air bursts and water impacts. We present simulations for a range of conditions using the GeoClaw simulation software. Examples include meteors that span 5 to 250 MT of kinetic energy, and use bathymetry from the U.S. coastline. We also study radially symmetric one-dimensional equations to better explore the nature and decay rate of waves generated by air burst pressure disturbances traveling at the speed of sound in air, which is much greater than the gravity wave speed of the tsunami generated. One-dimensional simulations along a transect of bathymetry are also used to explore the resolution needed for the full two-dimensional simulations, which are much more expensive even with the use of adaptive mesh refinement due to the short wave lengths of these tsunamis. For this same reason, shallow water equations may be inadequate and we also discuss dispersive effects.
NASA Astrophysics Data System (ADS)
Anita, G.; Selva, J.; Laura, S.
2011-12-01
We develop a comprehensive and total probabilistic tsunami hazard assessment (TotPTHA), in which many different possible source types concur to the definition of the total tsunami hazard at given target sites. In a multi-hazard and multi-risk perspective, such an innovative approach allows, in principle, to consider all possible tsunamigenic sources, from seismic events, to slides, asteroids, volcanic eruptions, etc. In this respect, we also formally introduce and discuss the treatment of interaction/cascade effects in the TotPTHA analysis. We demonstrate how external triggering events may induce significant temporary variations in the tsunami hazard. Because of this, such effects should always be considered, at least in short-term applications, to obtain unbiased analyses. Finally, we prove the feasibility of the TotPTHA and of the treatment of interaction/cascade effects by applying this methodology to an ideal region with realistic characteristics (Neverland).
A short history of tsunami research and countermeasures in Japan
Shuto, Nobuo; Fujima, Koji
2009-01-01
The tsunami science and engineering began in Japan, the country the most frequently hit by local and distant tsunamis. The gate to the tsunami science was opened in 1896 by a giant local tsunami of the highest run-up height of 38 m that claimed 22,000 lives. The crucial key was a tide record to conclude that this tsunami was generated by a “tsunami earthquake”. In 1933, the same area was hit again by another giant tsunami. A total system of tsunami disaster mitigation including 10 “hard” and “soft” countermeasures was proposed. Relocation of dwelling houses to high ground was the major countermeasures. The tsunami forecasting began in 1941. In 1960, the Chilean Tsunami damaged the whole Japanese Pacific coast. The height of this tsunami was 5–6 m at most. The countermeasures were the construction of structures including the tsunami breakwater which was the first one in the world. Since the late 1970s, tsunami numerical simulation was developed in Japan and refined to become the UNESCO standard scheme that was transformed to 22 different countries. In 1983, photos and videos of a tsunami in the Japan Sea revealed many faces of tsunami such as soliton fission and edge bores. The 1993 tsunami devastated a town protected by seawalls 4.5 m high. This experience introduced again the idea of comprehensive countermeasures, consisted of defense structure, tsunami-resistant town development and evacuation based on warning. PMID:19838008
Dynamic Data Driven Applications Systems (DDDAS)
2012-05-03
response) – Earthquakes, hurricanes, tornados, wildfires, floods, landslides, tsunamis, … • Critical Infrastructure systems – Electric-powergrid...Multiphase Flow Weather and Climate Structural Mechanics Seismic Processing Aerodynamics Geophysical Fluids Quantum Chemistry Actinide Chemistry...Alloys • Approach and Objectives: Consider porous SMAs: similar macroscopic behavior but mass /weight is less, and thus attractive for
Development of smart wave mitigation structure using array of poles (Conference Presentation)
NASA Astrophysics Data System (ADS)
Asanuma, Hiroshi
2017-05-01
This paper describes reduction of water flow velocity by array of poles as a new wave mitigation structure. This structure is based on tsunami mitigation coastal forest. As natural forests have many problems such as low fraction of trees, low visibility of ocean waves, low strength, long of time to grow, and so on. To cope with these problems, a new wave mitigation structure has been developed, which are intended to add better capability of high wave or tsunami mitigation effect to actual ones by optimizing various parameters such as configuration, distribution density and material properties. In this study, the effect of type of material and its combination were mainly investigated. According to the results, reduction rate of the flow velocity increases with increasing number of rows for each material up to a certain level, and that of poles having lower Young's modulus is generally higher than that of those having higher Young's modulus. The effect of combination of materials was also investigated and drastic increase of mitigation effect was found when soft and hard poles were combined.
NASA Astrophysics Data System (ADS)
Basith, Abdul; Prakoso, Yudhono; Kongko, Widjo
2017-07-01
A tsunami model using high resolution geometric data is indispensable in efforts to tsunami mitigation, especially in tsunami prone areas. It is one of the factors that affect the accuracy results of numerical modeling of tsunami. Sadeng Port is a new infrastructure in the Southern Coast of Java which could potentially hit by massive tsunami from seismic gap. This paper discusses validation and error estimation of tsunami model created using high resolution geometric data in Sadeng Port. Tsunami model validation uses the height wave of Tsunami Pangandaran 2006 recorded by Tide Gauge of Sadeng. Tsunami model will be used to accommodate the tsunami numerical modeling involves the parameters of earthquake-tsunami which is derived from the seismic gap. The validation results using t-test (student) shows that the height of the tsunami modeling results and observation in Tide Gauge of Sadeng are considered statistically equal at 95% confidence level and the value of the RMSE and NRMSE are 0.428 m and 22.12%, while the differences of tsunami wave travel time is 12 minutes.
The Record of Tsunamis and Storms in a Coastal Mangrove Pond, NW Puerto Rico
NASA Astrophysics Data System (ADS)
Jaffe, B. E.; Buckley, M. L.; Watt, S. G.; Moya, J. C.; Richmond, B. M.; Gelfenbaum, G. R.; La Selle, S.
2017-12-01
The written record of tsunamis in the Caribbean extends back over 500 years, yet, is incomplete. In particular, it is not known whether great earthquakes or submarine landslides near the Puerto Rico Trench have generated large tsunamis that impact the north coast of Puerto Rico. We cored a coastal mangrove pond in NW Puerto Rico to search for tsunami deposits. The pond extends from 150 to 350 m from the shoreline, and is 0.5 m above sea level. The area between the pond and the ocean presently has a high of 3 m above sea level, but had dunes up to 10 m high before they were mined for sand beginning in the 1960s. Pond sediments are predominately mud or mangrove peat and contain prominent sand layers. At the sediment surface, a tabular sandy overwash deposit up to 40 cm thick extends inland approximately 30 m from the pond's seaward edge and abruptly ends. This sand layer contains no evidence of vertical grading and was likely formed by one or more recent hurricanes, which with the removal of coastal dunes in the 1960s are able to flood the pond. In contrast, underlying the overwash deposit and mangrove peat at a depth of approximately 60 cm is a thin (1 - 7 cm thick) sand layer extending to the landward limit of the pond. This layer has features of a tsunami deposit, including suspension grading, which is a specific type of normal grading where the entire grain-size distribution shifts to finer sizes upward that is created when sediment settles out of suspension as a high-speed flow wanes, an erosive basal contact, and an organic cap. In addition, couplets or triplets of sand inter-layered with mud are present within the thin sandy layer at some locations. Alternation of sand and mud layers at this scale is a signature of series of tsunami waves. Radiocarbon dates from organic material above and below the thin sand layer constrain deposition as occurring sometime from 1446 to 1919 AD. We present the features of the coastal mangrove pond deposits and evaluate whether these deposits could be correlated with an extreme wave overwash that left a deposit on Anegada, BVI, sometime between 1200 and 1480 AD, which would support a great Puerto Rico Trench earthquake and tsunami about 600 years ago.
A 2D-3D strategy for resolving tsunami-generated debris flow in urban environments
NASA Astrophysics Data System (ADS)
Birjukovs Canelas, Ricardo; Conde, Daniel; Garcia-Feal, Orlando; João Telhado, Maria; Ferreira, Rui M. L.
2017-04-01
The incorporation of solids, either sediment from the natural environment or remains from buildings or infrastructures is a relevant feature of tsunami run-up in urban environments, greatly increasing the destructive potential of tsunami propagation. Two-dimensional (2D) models have been used to assess the propagation of the bore, even in dense urban fronts. Computational advances are introduced in this work, namely a fully lagrangian, 3D description of the fluid-solid flow, coupled with a high performance meshless implementation capable of dealing with large domains and fine discretizations. A Smoothed Particle Hydrodynamics (SPH) Navier-Stokes discretization and a Distributed Contact Discrete Element Method (DCDEM) description of solid-solid interactions provide a state-of the-art fluid-solid flow description. Together with support for arbitrary geometries, centimetre scale resolution simulations of a city section in Lisbon downtown are presented. 2D results are used as boundary conditions for the 3D model, characterizing the incoming wave as it approaches the coast. It is shown that the incoming bore is able to mobilize and incorporate standing vehicles and other urban hardware. Such fully featured simulation provides explicit description of the interactions among fluid, floating debris (vehicles and urban furniture), the buildings and the pavement. The proposed model presents both an innovative research tool for the study of these flows and a powerful and robust approach to study, design and test mitigation solutions at the local scale. At the same time, due to the high time and space resolution of these methodologies, new questions are raised: scenario-building and initial configurations play a crucial role but they do not univocally determine the final configuration of the simulation, as the solution of the Navier-Stokes equations for high Reynolds numbers possesses a high number of degrees of freedom. This calls for conducting the simulations in a statistical framework, involving both initial conditions generation and interpretation of results, which is only attainable under very high standards of computational efficiency. This research as partially supported by Portuguese and European funds, within programs COMPETE2020 and PORL-FEDER, through project PTDC/ECM-HID/6387/2014 granted by the National Foundation for Science and Technology (FCT).
NASA Astrophysics Data System (ADS)
Lin, Jyh-Woei
2012-10-01
Nonlinear principal component analysis (NLPCA) is implemented to analyze the spatial pattern of total electron content (TEC) anomalies 3 hours after Japan's Tohoku earthquake that occurred at 05:46:23 on 11 March, 2011 (UTC) ( M w =9). A geomagnetic storm was in progress at the time of the earthquake. NLPCA and TEC data processing were conducted on the global ionospheric map (GIM) for the time between 08:30 to 09:30 UTC, about 3 hours after this devastating earthquake and ensuing tsunami. Analysis results show stark earthquake-associated TEC anomalies that are widespread, and appear to have been induced by two acoustic gravity waves due to strong shaking (vertical acoustic wave) and the generation of the tsunami (horizontal Rayleigh mode gravity wave). The TEC anomalies roughly fit the initial mainshock and movement of the tsunami. Observation of the earthquake-associated TEC anomalies does not appear to be affected by a contemporaneous geomagnetic storm.
Magnitude scale for the Central American tsunamis
NASA Astrophysics Data System (ADS)
Hatori, Tokutaro
1995-09-01
Based on the tsunami data in the Central American region, the regional characteristic of tsunami magnitude scales is discussed in relation to earthquake magnitudes during the period from 1900 to 1993. Tsunami magnitudes on the Imamura-Iida scale of the 1985 Mexico and 1992 Nicaragua tsunamis are determined to be m=2.5, judging from the tsunami height-distance diagram. The magnitude values of the Central American tsunamis are relatively small compared to earthquakes with similar size in other regions. However, there are a few large tsunamis generated by low-frequency earthquakes such as the 1992 Nicaragua earthquake. Inundation heights of these unusual tsunamis are about 10 times higher than those of normal tsunamis for the same earthquake magnitude ( M s =6.9 7.2). The Central American tsunamis having magnitude m>1 have been observed by the Japanese tide stations, but the effect of directivity toward Japan is very small compared to that of the South American tsunamis.
NASA Astrophysics Data System (ADS)
Kitamura, Akihisa
2016-12-01
Japanese historical documents reveal that Mw 8 class earthquakes have occurred every 100-150 years along the Suruga and Nankai troughs since the 684 Hakuho earthquake. These earthquakes have commonly caused large tsunamis with wave heights of up to 10 m in the Japanese coastal area along the Suruga and Nankai troughs. From the perspective of tsunami disaster management, these tsunamis are designated as Level 1 tsunamis and are the basis for the design of coastal protection facilities. A Mw 9.0 earthquake (the 2011 Tohoku-oki earthquake) and a mega-tsunami with wave heights of 10-40 m struck the Pacific coast of the northeastern Japanese mainland on 11 March 2011, and far exceeded pre-disaster predictions of wave height. Based on the lessons learned from the 2011 Tohoku-oki earthquake, the Japanese Government predicted the tsunami heights of the largest-possible tsunami (termed a Level 2 tsunami) that could be generated in the Suruga and Nankai troughs. The difference in wave heights between Level 1 and Level 2 tsunamis exceeds 20 m in some areas, including the southern Izu Peninsula. This study reviews the distribution of prehistorical tsunami deposits and tsunami boulders during the past 4000 years, based on previous studies in the coastal area of Shizuoka Prefecture, Japan. The results show that a tsunami deposit dated at 3400-3300 cal BP can be traced between the Shimizu, Shizuoka and Rokken-gawa lowlands, whereas no geologic evidence related to the corresponding tsunami (the Rokken-gawa-Oya tsunami) was found on the southern Izu Peninsula. Thus, the Rokken-gawa-Oya tsunami is not classified as a Level 2 tsunami.
NASA Astrophysics Data System (ADS)
Sardina, V.; Koyanagi, K. K.; Walsh, D.; Becker, N. C.; McCreery, C.
2015-12-01
The PTWC functions not only as official international tsunami warning center (TWC) for nations with coasts around the Pacific rim, the Caribbean, and other regions of the world, but also as the local TWC for the State of Hawaii. The PTWC began sending local tsunami messages to HI-EMA only since September, 2003. As part of its routine operations, the PTWC strives to send a local tsunami message product for any Hawaii earthquake with a 4.0 magnitude or larger within five minutes of origin time. To evaluate PTWC's performance in that regard, however, we must first compile a suitable local tsunami bulletins' database. For this purpose, we scanned all the available logs for the Federal Aviation Administration (FAA) communications' circuit between 2003 and 2015 and retrieved 104 local bulletins. We parsed these bulletins and extracted the parametric data needed to evaluate PTWC's performance in terms of essential statistics such as message delay time, epicenter offsets, and magnitude residuals as compared with more authoritative earthquake source parametrizations. To that end, we cross-validated 88 of these seismic events having magnitudes between 2.8 and 6.7 with the corresponding source parameters obtained from the USGS Hawaiian Volcano Observatory (HVO) and the National Earthquake Information Center's (NEIC) online catalog. Analysis of events with magnitude 4.0 or larger gives a median message delay time of 3 minutes and 33 seconds, a median epicentral offset of 3.2 km, and a median magnitude residual of 0.2 unit. Several message delay outliers exist due to the fact that PTWC has sent local tsunami information statements (TIS) for felt events with magnitudes as small as 2.8 located west of the Big Island. Routine use of a synthetic Wood-Anderson magnitude since the end of 2012 appears to have brought consistency to PTWC's local magnitude estimates and a reduction in the message delays. Station site corrections, a refined attenuation model, and optimization of the peak-amplitude search window may improve magnitude estimates. Improved dissemination software, regional moment tensor determinations for rapid magnitude estimation in addition to ML and Mwp can result in yet faster and more accurate tsunami message products.
NASA Astrophysics Data System (ADS)
Gica, E.
2016-12-01
The Short-term Inundation Forecasting for Tsunamis (SIFT) tool, developed by NOAA Center for Tsunami Research (NCTR) at the Pacific Marine Environmental Laboratory (PMEL), is used in forecast operations at the Tsunami Warning Centers in Alaska and Hawaii. The SIFT tool relies on a pre-computed tsunami propagation database, real-time DART buoy data, and an inversion algorithm to define the tsunami source. The tsunami propagation database is composed of 50×100km unit sources, simulated basin-wide for at least 24 hours. Different combinations of unit sources, DART buoys, and length of real-time DART buoy data can generate a wide range of results within the defined tsunami source. For an inexperienced SIFT user, the primary challenge is to determine which solution, among multiple solutions for a single tsunami event, would provide the best forecast in real time. This study investigates how the use of different tsunami sources affects simulated tsunamis at tide gauge locations. Using the tide gauge at Hilo, Hawaii, a total of 50 possible solutions for the 2011 Tohoku tsunami are considered. Maximum tsunami wave amplitude and root mean square error results are used to compare tide gauge data and the simulated tsunami time series. Results of this study will facilitate SIFT users' efforts to determine if the simulated tide gauge tsunami time series from a specific tsunami source solution would be within the range of possible solutions. This study will serve as the basis for investigating more historical tsunami events and tide gauge locations.
Nateghi, Roshanak; Bricker, Jeremy D; Guikema, Seth D; Bessho, Akane
2016-01-01
The Pacific coast of the Tohoku region of Japan experiences repeated tsunamis, with the most recent events having occurred in 1896, 1933, 1960, and 2011. These events have caused large loss of life and damage throughout the coastal region. There is uncertainty about the degree to which seawalls reduce deaths and building damage during tsunamis in Japan. On the one hand they provide physical protection against tsunamis as long as they are not overtopped and do not fail. On the other hand, the presence of a seawall may induce a false sense of security, encouraging additional development behind the seawall and reducing evacuation rates during an event. We analyze municipality-level and sub-municipality-level data on the impacts of the 1896, 1933, 1960, and 2011 tsunamis, finding that seawalls larger than 5 m in height generally have served a protective role in these past events, reducing both death rates and the damage rates of residential buildings. However, seawalls smaller than 5 m in height appear to have encouraged development in vulnerable areas and exacerbated damage. We also find that the extent of flooding is a critical factor in estimating both death rates and building damage rates, suggesting that additional measures, such as multiple lines of defense and elevating topography, may have significant benefits in reducing the impacts of tsunamis. Moreover, the area of coastal forests was found to be inversely related to death and destruction rates, indicating that forests either mitigated the impacts of these tsunamis, or displaced development that would otherwise have been damaged.
NASA Astrophysics Data System (ADS)
Sugiki, Nao; Hirata, Yoshiki; Matsuo, Kojiro
2017-10-01
Large scale earthquakes occur frequently in Japan in recent years. In the Great East Japan Earthquake that occurred in 2011 and caused major damage, more than 90% of the dead were due to the tsunami. The speed of evacuation is important in considering evacuation at the time of the attack of the tsunami, especially the elderly evacuation speed is assumed to be slower than non-elderly people. Elderly people may have different means of evacuation and speed depending on the composition of the households to which they belong because of the different possibilities of riding in families' driven cars. However, a simulation taking such a difference of evacuation into consideration has not been conducted. The purpose of this study is to conduct a tsunami evacuation simulation in consideration of evacuation measures and speed depending on the type of households belonging to in the tsunami inundation area of Toyohashi city, Japan. In order to conduct the tsunami evacuation simulation considering the household type, detailed data on individual households is necessary. However, it is difficult to obtain from aggregated data such as National Census. Therefore, detailed data on individual households is created by using the household micro data estimation system developed by Sugiki et al. [1]. Evacuation simulation is performed by shortest path search using Esri's ArcGIS Network Analyst's OD cost matrix analysis. The elderly people who cannot complete evacuation by the time of the arrival of the tsunami were found from evacuation simulation results assuming evacuation measures available for each household attribute to which the evacuees belong.
Nateghi, Roshanak; Bricker, Jeremy D.; Guikema, Seth D.; Bessho, Akane
2016-01-01
The Pacific coast of the Tohoku region of Japan experiences repeated tsunamis, with the most recent events having occurred in 1896, 1933, 1960, and 2011. These events have caused large loss of life and damage throughout the coastal region. There is uncertainty about the degree to which seawalls reduce deaths and building damage during tsunamis in Japan. On the one hand they provide physical protection against tsunamis as long as they are not overtopped and do not fail. On the other hand, the presence of a seawall may induce a false sense of security, encouraging additional development behind the seawall and reducing evacuation rates during an event. We analyze municipality-level and sub-municipality-level data on the impacts of the 1896, 1933, 1960, and 2011 tsunamis, finding that seawalls larger than 5 m in height generally have served a protective role in these past events, reducing both death rates and the damage rates of residential buildings. However, seawalls smaller than 5 m in height appear to have encouraged development in vulnerable areas and exacerbated damage. We also find that the extent of flooding is a critical factor in estimating both death rates and building damage rates, suggesting that additional measures, such as multiple lines of defense and elevating topography, may have significant benefits in reducing the impacts of tsunamis. Moreover, the area of coastal forests was found to be inversely related to death and destruction rates, indicating that forests either mitigated the impacts of these tsunamis, or displaced development that would otherwise have been damaged. PMID:27508461
NASA Astrophysics Data System (ADS)
Mulia, Iyan E.; Inazu, Daisuke; Waseda, Takuji; Gusman, Aditya Riadi
2017-10-01
The future Nankai Trough tsunami is one of the imminent threats to the Japanese coastal communities that could potentially cause a catastrophic event. As a part of the countermeasure efforts for such an occurrence, this study analyzes the efficacy of combining tsunami data assimilation (DA) and waveform inversion (WI). The DA is used to continuously refine a wavefield model whereas the WI is used to estimate the tsunami source. We consider a future scenario of the Nankai Trough tsunami recorded at various observational systems, including ocean bottom pressure (OBP) gauges, global positioning system (GPS) buoys, and ship height positioning data. Since most of the OBP gauges are located inside the source region, the recorded tsunami signals exhibit significant offsets from surface measurements due to coseismic seafloor deformation effects. Such biased data are not applicable to the standard DA, but can be taken into account in the WI. On the other hand, the use of WI for the ship data may not be practical because a considerably large precomputed tsunami database is needed to cope with the spontaneous ship locations. The DA is more suitable for such an observational system as it can be executed sequentially in time and does not require precomputed scenarios. Therefore, the combined approach of DA and WI allows us to concurrently make use of all observational resources. Additionally, we introduce a bias correction scheme for the OBP data to improve the accuracy, and an adaptive thinning of observations to determine the efficient number of observations.
Evaluating screening effects and Tusnami danger in bays
NASA Astrophysics Data System (ADS)
Ivanov, V. V.; Simonov, K. V.; Garder, O. I.
1985-06-01
In selecting sites for new construction in the Kuril Islands it is important to evaluate the tsunami danger of the pertinent parts of the coastline. Recommendations for the Kuril Islands have been published, but they are only preliminary. An effort has now been made to improve them by formulatating a more adequate model of the source with defining of those peculiarities of the specific position of a bay which exert the most significant influence on formation of the maximum tsunami wave in the analyzed coastal zone. The analysis was based on observational data for the Kamchatka tsunami of 1952, which was catastrophic for the shores of Kamchatka and the Kuril Islands. The data used were for Pearl Harbor, Honolulu and Hilo. The processing method involved breakdown of the record into the signal at the source and the impulse function for penetration of the wave into a bay. it was found that the record can be represented in the form of the convolution of the source function common for all the records of one tsunami and the specific impulse function for the propagation path specific for each bay. It was found that the signal at the tsunami source is a periodic process with beats of great duration with a relatively narrow spectrum. The impulse function for the paths for closed bays contains a small number of oscillations and varies in characteristic times on the order of 1 to 1.5 hours. The characteristic time of tsunami filling of a bay is important to know for shielding the bay against a tsunami wave.
Scenario based approach for multiple source Tsunami Hazard assessment for Sines, Portugal
NASA Astrophysics Data System (ADS)
Wronna, M.; Omira, R.; Baptista, M. A.
2015-08-01
In this paper, we present a scenario-based approach for tsunami hazard assessment for the city and harbour of Sines - Portugal, one of the test-sites of project ASTARTE. Sines holds one of the most important deep-water ports which contains oil-bearing, petrochemical, liquid bulk, coal and container terminals. The port and its industrial infrastructures are facing the ocean southwest towards the main seismogenic sources. This work considers two different seismic zones: the Southwest Iberian Margin and the Gloria Fault. Within these two regions, we selected a total of six scenarios to assess the tsunami impact at the test site. The tsunami simulations are computed using NSWING a Non-linear Shallow Water Model With Nested Grids. In this study, the static effect of tides is analysed for three different tidal stages MLLW (mean lower low water), MSL (mean sea level) and MHHW (mean higher high water). For each scenario, inundation is described by maximum values of wave height, flow depth, drawback, runup and inundation distance. Synthetic waveforms are computed at virtual tide gauges at specific locations outside and inside the harbour. The final results describe the impact at Sines test site considering the single scenarios at mean sea level, the aggregate scenario and the influence of the tide on the aggregate scenario. The results confirm the composite of Horseshoe and Marques Pombal fault as the worst case scenario. It governs the aggregate scenario with about 60 % and inundates an area of 3.5 km2.
Tsunami.gov: NOAA's Tsunami Information Portal
NASA Astrophysics Data System (ADS)
Shiro, B.; Carrick, J.; Hellman, S. B.; Bernard, M.; Dildine, W. P.
2014-12-01
We present the new Tsunami.gov website, which delivers a single authoritative source of tsunami information for the public and emergency management communities. The site efficiently merges information from NOAA's Tsunami Warning Centers (TWC's) by way of a comprehensive XML feed called Tsunami Event XML (TEX). The resulting unified view allows users to quickly see the latest tsunami alert status in geographic context without having to understand complex TWC areas of responsibility. The new site provides for the creation of a wide range of products beyond the traditional ASCII-based tsunami messages. The publication of modern formats such as Common Alerting Protocol (CAP) can drive geographically aware emergency alert systems like FEMA's Integrated Public Alert and Warning System (IPAWS). Supported are other popular information delivery systems, including email, text messaging, and social media updates. The Tsunami.gov portal allows NOAA staff to easily edit content and provides the facility for users to customize their viewing experience. In addition to access by the public, emergency managers and government officials may be offered the capability to log into the portal for special access rights to decision-making and administrative resources relevant to their respective tsunami warning systems. The site follows modern HTML5 responsive design practices for optimized use on mobile as well as non-mobile platforms. It meets all federal security and accessibility standards. Moving forward, we hope to expand Tsunami.gov to encompass tsunami-related content currently offered on separate websites, including the NOAA Tsunami Website, National Tsunami Hazard Mitigation Program, NOAA Center for Tsunami Research, National Geophysical Data Center's Tsunami Database, and National Data Buoy Center's DART Program. This project is part of the larger Tsunami Information Technology Modernization Project, which is consolidating the software architectures of NOAA's existing TWC's into a single system. We welcome your feedback to help Tsunami.gov become an effective public resource for tsunami information and a medium to enable better global tsunami warning coordination.
Introduction to "Tsunamis in the Pacific Ocean: 2011-2012"
NASA Astrophysics Data System (ADS)
Rabinovich, Alexander B.; Borrero, Jose C.; Fritz, Hermann M.
2014-12-01
With this volume of the Pure and Applied Geophysics (PAGEOPH) topical issue "Tsunamis in the Pacific Ocean: 2011-2012", we are pleased to present 21 new papers discussing tsunami events occurring in this two-year span. Owing to the profound impact resulting from the unique crossover of a natural and nuclear disaster, research into the 11 March 2011 Tohoku, Japan earthquake and tsunami continues; here we present 12 papers related to this event. Three papers report on detailed field survey results and updated analyses of the wave dynamics based on these surveys. Two papers explore the effects of the Tohoku tsunami on the coast of Russia. Three papers discuss the tsunami source mechanism, and four papers deal with tsunami hydrodynamics in the far field or over the wider Pacific basin. In addition, a series of five papers presents studies of four new tsunami and earthquake events occurring over this time period. This includes tsunamis in El Salvador, the Philippines, Japan and the west coast of British Columbia, Canada. Finally, we present four new papers on tsunami science, including discussions on tsunami event duration, tsunami wave amplitude, tsunami energy and tsunami recurrence.
A preliminary study of paleotsunami deposit along the south coast of East Java: Pacitan-Banyuwangi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anugrah, Suci D.; Istiyanati; Zaim, Yahdi
Along the southern coast of East Java Indonesia, at a number of localities, it can be identified and attempted to assign the age of tsunami deposit. Laboratory analyses were conducted also to support this study such as Granulometry, Paleontology and radiometric dating analysis. The presence of tsunami 1994 deposit in the area of Pancer, Lampon, Prigi and Grajagan was found, as a result of 7.8 Magnitude Banyuwangi Earthquake. The radiometric dating analysis also identified some paleotsunami deposit of about 1921 and 1930 in the area of Prigi and Teleng. This paleotsunami is assumed to have a correlation with an earthquakemore » in the south of Java at the same time. An outcrop in the Prigi and Teleng strongly convinced the fact of an earthquake generated tsunami in the south of Java in the year of about 1921 and 1930.« less
Yong, Wei; Newman, Andrew V.; Hayes, Gavin P.; Titov, Vasily V.; Tang, Liujuan
2014-01-01
Correctly characterizing tsunami source generation is the most critical component of modern tsunami forecasting. Although difficult to quantify directly, a tsunami source can be modeled via different methods using a variety of measurements from deep-ocean tsunameters, seismometers, GPS, and other advanced instruments, some of which in or near real time. Here we assess the performance of different source models for the destructive 11 March 2011 Japan tsunami using model–data comparison for the generation, propagation, and inundation in the near field of Japan. This comparative study of tsunami source models addresses the advantages and limitations of different real-time measurements with potential use in early tsunami warning in the near and far field. The study highlights the critical role of deep-ocean tsunami measurements and rapid validation of the approximate tsunami source for high-quality forecasting. We show that these tsunami measurements are compatible with other real-time geodetic data, and may provide more insightful understanding of tsunami generation from earthquakes, as well as from nonseismic processes such as submarine landslide failures.
3D Numerical Simulation on the Rockslide Generated Tsunamis
NASA Astrophysics Data System (ADS)
Chuang, M.; Wu, T.; Wang, C.; Chu, C.
2013-12-01
The rockslide generated tsunami is one of the most devastating nature hazards. However, the involvement of the moving obstacle and dynamic free-surface movement makes the numerical simulation a difficult task. To describe both the fluid motion and solid movement at the same time, we newly developed a two-way fully-coupled moving solid algorithm with 3D LES turbulent model. The free-surface movement is tracked by volume of fluid (VOF) method. The two-step projection method is adopted to solve the Navier-Stokes type government equations. In the new moving solid algorithm, a fictitious body force is implicitly prescribed in MAC correction step to make the cell-center velocity satisfied with the obstacle velocity. We called this method the implicit velocity method (IVM). Because no extra terms are added to the pressure Poission correction, the pressure field of the fluid part is stable, which is the key of the two-way fluid-solid coupling. Because no real solid material is presented in the IVM, the time marching step is not restricted to the smallest effective grid size. Also, because the fictitious force is implicitly added to the correction step, the resulting velocity is accurate and fully coupled with the resulting pressure field. We validated the IVM by simulating a floating box moving up and down on the free-surface. We presented the time-history obstacle trajectory and compared it with the experimental data. Very accurate result can be seen in terms of the oscillating amplitude and the period (Fig. 1). We also presented the free-surface comparison with the high-speed snapshots. At the end, the IVM was used to study the rock-slide generated tsunamis (Liu et al., 2005). Good validations on the slide trajectory and the free-surface movement will be presented in the full paper. From the simulation results (Fig. 2), we observed that the rockslide generated waves are manly caused by the rebounding waves from two sides of the sliding rock after the water is dragging down by the solid downward motion. We also found that the turbulence has minor effect to the main flow field. The rock size, rock density, and the steepness of the slope were analyzed to understand their effects to the maximum runup height. The detailed algorithm of IVM, the validation, the simulation and analysis of rockslide tsunami will be presented in the full paper. Figure 1. Time-history trajectory of obstacle for the floating obstacle simulation. Figure 2. Snapshots of the free-surface elevation with streamlines for the rockslide tsunami simulation.
Asteroid-Generated Tsunami and Impact Risk
NASA Astrophysics Data System (ADS)
Boslough, M.; Aftosmis, M.; Berger, M. J.; Ezzedine, S. M.; Gisler, G.; Jennings, B.; LeVeque, R. J.; Mathias, D.; McCoy, C.; Robertson, D.; Titov, V. V.; Wheeler, L.
2016-12-01
The justification for planetary defense comes from a cost/benefit analysis, which includes risk assessment. The contribution from ocean impacts and airbursts is difficult to quantify and represents a significant uncertainty in our assessment of the overall risk. Our group is currently working toward improved understanding of impact scenarios that can generate dangerous tsunami. The importance of asteroid-generated tsunami research has increased because a new Science Definition Team, at the behest of NASA's Planetary Defense Coordinating Office, is now updating the results of a 2003 study on which our current planetary defense policy is based Our group was formed to address this question on many fronts, including asteroid entry modeling, tsunami generation and propagation simulations, modeling of coastal run-ups, inundation, and consequences, infrastructure damage estimates, and physics-based probabilistic impact risk assessment. We also organized the Second International Workshop on Asteroid Threat Assessment, focused on asteroid-generated tsunami and associated risk (Aug. 23-24, 2016). We will summarize our progress and present the highlights of our workshop, emphasizing its relevance to earth and planetary science. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.
Tsunami evacuation buildings and evacuation planning in Banda Aceh, Indonesia.
Yuzal, Hendri; Kim, Karl; Pant, Pradip; Yamashita, Eric
Indonesia, a country of more than 17,000 islands, is exposed to many hazards. A magnitude 9.1 earthquake struck off the coast of Sumatra, Indonesia, on December 26, 2004. It triggered a series of tsunami waves that spread across the Indian Ocean causing damage in 11 countries. Banda Aceh, the capital city of Aceh Province, was among the most damaged. More than 31,000 people were killed. At the time, there were no early warning systems nor evacuation buildings that could provide safe refuge for residents. Since then, four tsunami evacuation buildings (TEBs) have been constructed in the Meuraxa subdistrict of Banda Aceh. Based on analysis of evacuation routes and travel times, the capacity of existing TEBs is examined. Existing TEBs would not be able to shelter all of the at-risk population. In this study, additional buildings and locations for TEBs are proposed and residents are assigned to the closest TEBs. While TEBs may be part of a larger system of tsunami mitigation efforts, other strategies and approaches need to be considered. In addition to TEBs, robust detection, warning and alert systems, land use planning, training, exercises, and other preparedness strategies are essential to tsunami risk reduction.
Tsunami Forecast Progress Five Years After Indonesian Disaster
NASA Astrophysics Data System (ADS)
Titov, Vasily V.; Bernard, Eddie N.; Weinstein, Stuart A.; Kanoglu, Utku; Synolakis, Costas E.
2010-05-01
Almost five years after the 26 December 2004 Indian Ocean tragedy, tsunami warnings are finally benefiting from decades of research toward effective model-based forecasts. Since the 2004 tsunami, two seminal advances have been (i) deep-ocean tsunami measurements with tsunameters and (ii) their use in accurately forecasting tsunamis after the tsunami has been generated. Using direct measurements of deep-ocean tsunami heights, assimilated into numerical models for specific locations, greatly improves the real-time forecast accuracy over earthquake-derived magnitude estimates of tsunami impact. Since 2003, this method has been used to forecast tsunamis at specific harbors for different events in the Pacific and Indian Oceans. Recent tsunamis illustrated how this technology is being adopted in global tsunami warning operations. The U.S. forecasting system was used by both research and operations to evaluate the tsunami hazard. Tests demonstrated the effectiveness of operational tsunami forecasting using real-time deep-ocean data assimilated into forecast models. Several examples also showed potential of distributed forecast tools. With IOC and USAID funding, NOAA researchers at PMEL developed the Community Model Interface for Tsunami (ComMIT) tool and distributed it through extensive capacity-building sessions in the Indian Ocean. Over hundred scientists have been trained in tsunami inundation mapping, leading to the first generation of inundation models for many Indian Ocean shorelines. These same inundation models can also be used for real-time tsunami forecasts as was demonstrated during several events. Contact Information Vasily V. Titov, Seattle, Washington, USA, 98115
Sandy signs of a tsunami's onshore depth and speed
Huntington, K.; Bourgeois, J.; Gelfenbaum, G.; Lynett, P.; Jaffe, B.; Yeh, H.; Weiss, R.
2007-01-01
Tsunamis rank among the most devastating and unpredictable natural hazards to affect coastal areas. Just 3 years ago, in December 2004, the Indian Ocean tsunami caused more than 225,000 deaths. Like many extreme events, however, destructive tsunamis strike rarely enough that written records span too little time to quantify tsunami hazard and risk. Tsunami deposits preserved in the geologic record have been used to extend the record of tsunami occurrence but not the magnitude of past events. To quantify tsunami hazard further, we asked the following question: Can ancient deposits also provide guidance on the expectable water depths and speeds for future tsunamis?
Issues of tsunami hazard maps revealed by the 2011 Tohoku tsunami
NASA Astrophysics Data System (ADS)
Sugimoto, M.
2013-12-01
Tsunami scientists are imposed responsibilities of selection for people's tsunami evacuation place after the 2011 Tohoku Tsunami in Japan. A lot of matured people died out of tsunami hazard zone based on tsunami hazard map though students made a miracle by evacuation on their own judgment in Kamaishi city. Tsunami hazard maps were based on numerical model smaller than actual magnitude 9. How can we bridge the gap between hazard map and future disasters? We have to discuss about using tsunami numerical model better enough to contribute tsunami hazard map. How do we have to improve tsunami hazard map? Tsunami hazard map should be revised included possibility of upthrust or downthrust after earthquakes and social information. Ground sank 1.14m below sea level in Ayukawa town, Tohoku. Ministry of Land, Infrastructure, Transport and Tourism's research shows around 10% people know about tsunami hazard map in Japan. However, people know about their evacuation places (buildings) through experienced drills once a year even though most people did not know about tsunami hazard map. We need wider spread of tsunami hazard with contingency of science (See the botom disaster handbook material's URL). California Emergency Management Agency (CEMA) team practically shows one good practice and solution to me. I followed their field trip in Catalina Island, California in Sep 2011. A team members are multidisciplinary specialists: A geologist, a GIS specialist, oceanographers in USC (tsunami numerical modeler) and a private company, a local policeman, a disaster manager, a local authority and so on. They check field based on their own specialties. They conduct an on-the-spot inspection of ambiguous locations between tsunami numerical model and real field conditions today. The data always become older. They pay attention not only to topographical conditions but also to social conditions: vulnerable people, elementary schools and so on. It takes a long time to check such field information, however tsunami hazard map based on numerical model should be this process. Tsunami scientists should not enter into the inhumane business by using tsunami numerical model. It includes accountability to society therefore scientists need scientific ethics and humanitarian attention. Should only tsunami scientist have responsibility for human life? Multidisciplinary approach is essential for mitigation like CEMA. I am taking on hazard map training course for disaster management officers from developing countries in JICA training course. I would like to discuss how to improve tsunami hazard map after the 2011 Tohoku tsunami experience in this presentation. A multidisciplinary exparts team of CEMA's tsunami hazard map
Machine-learning techniques for geochemical discrimination of 2011 Tohoku tsunami deposits
Kuwatani, Tatsu; Nagata, Kenji; Okada, Masato; Watanabe, Takahiro; Ogawa, Yasumasa; Komai, Takeshi; Tsuchiya, Noriyoshi
2014-01-01
Geochemical discrimination has recently been recognised as a potentially useful proxy for identifying tsunami deposits in addition to classical proxies such as sedimentological and micropalaeontological evidence. However, difficulties remain because it is unclear which elements best discriminate between tsunami and non-tsunami deposits. Herein, we propose a mathematical methodology for the geochemical discrimination of tsunami deposits using machine-learning techniques. The proposed method can determine the appropriate combinations of elements and the precise discrimination plane that best discerns tsunami deposits from non-tsunami deposits in high-dimensional compositional space through the use of data sets of bulk composition that have been categorised as tsunami or non-tsunami sediments. We applied this method to the 2011 Tohoku tsunami and to background marine sedimentary rocks. After an exhaustive search of all 262,144 (= 218) combinations of the 18 analysed elements, we observed several tens of combinations with discrimination rates higher than 99.0%. The analytical results show that elements such as Ca and several heavy-metal elements are important for discriminating tsunami deposits from marine sedimentary rocks. These elements are considered to reflect the formation mechanism and origin of the tsunami deposits. The proposed methodology has the potential to aid in the identification of past tsunamis by using other tsunami proxies. PMID:25399750
In Search of the Largest Possible Tsunami: An Example Following the 2011 Japan Tsunami
NASA Astrophysics Data System (ADS)
Geist, E. L.; Parsons, T.
2012-12-01
Many tsunami hazard assessments focus on estimating the largest possible tsunami: i.e., the worst-case scenario. This is typically performed by examining historic and prehistoric tsunami data or by estimating the largest source that can produce a tsunami. We demonstrate that worst-case assessments derived from tsunami and tsunami-source catalogs are greatly affected by sampling bias. Both tsunami and tsunami sources are well represented by a Pareto distribution. It is intuitive to assume that there is some limiting size (i.e., runup or seismic moment) for which a Pareto distribution is truncated or tapered. Likelihood methods are used to determine whether a limiting size can be determined from existing catalogs. Results from synthetic catalogs indicate that several observations near the limiting size are needed for accurate parameter estimation. Accordingly, the catalog length needed to empirically determine the limiting size is dependent on the difference between the limiting size and the observation threshold, with larger catalog lengths needed for larger limiting-threshold size differences. Most, if not all, tsunami catalogs and regional tsunami source catalogs are of insufficient length to determine the upper bound on tsunami runup. As an example, estimates of the empirical tsunami runup distribution are obtained from the Miyako tide gauge station in Japan, which recorded the 2011 Tohoku-oki tsunami as the largest tsunami among 51 other events. Parameter estimation using a tapered Pareto distribution is made both with and without the Tohoku-oki event. The catalog without the 2011 event appears to have a low limiting tsunami runup. However, this is an artifact of undersampling. Including the 2011 event, the catalog conforms more to a pure Pareto distribution with no confidence in estimating a limiting runup. Estimating the size distribution of regional tsunami sources is subject to the same sampling bias. Physical attenuation mechanisms such as wave breaking likely limit the maximum tsunami runup at a particular site. However, historic and prehistoric data alone cannot determine the upper bound on tsunami runup. Because of problems endemic to sampling Pareto distributions of tsunamis and their sources, we recommend that tsunami hazard assessment be based on a specific design probability of exceedance following a pure Pareto distribution, rather than attempting to determine the worst-case scenario.
NASA Astrophysics Data System (ADS)
Lane, Emily M.; Borrero, Jose; Whittaker, Colin N.; Bind, Jo; Chagué-Goff, Catherine; Goff, James; Goring, Derek; Hoyle, Jo; Mueller, Christof; Power, William L.; Reid, Catherine M.; Williams, James H.; Williams, Shaun P.
2017-05-01
At 12:02:56 a.m. Monday, November 14 2016 NZDT (11:02:56 a.m., November 13 2016 UTC) a magnitude 7.8 earthquake struck near Kaikōura on the north-eastern coast of the South Island of New Zealand. This earthquake caused a tsunami along New Zealand's east coast that was recorded on a number of sea level gauges. Outside of the Kaikōura region, north facing bays along Banks Peninsula were most affected by the tsunami. Of these, Little Pigeon Bay experienced extensive inundation and an unoccupied cottage was destroyed by the wave run-up. We report on the inundation extent and (inferred) flow directions at Little Pigeon Bay, including a study on temporal changes in the field evidence of this inundation. Preliminary modelling results indicate that the waves may have excited resonance in the bay. We also present results from inundation surveys of nearby, north-facing bays on Banks Peninsula. The excitation of resonance in Little Pigeon Bay provides an explanation for the more severe inundation and damage there in comparison to these nearby bays.
Zhang, S.; Yuen, D.A.; Zhu, A.; Song, S.; George, D.L.
2011-01-01
We parallelized the GeoClaw code on one-level grid using OpenMP in March, 2011 to meet the urgent need of simulating tsunami waves at near-shore from Tohoku 2011 and achieved over 75% of the potential speed-up on an eight core Dell Precision T7500 workstation [1]. After submitting that work to SC11 - the International Conference for High Performance Computing, we obtained an unreleased OpenMP version of GeoClaw from David George, who developed the GeoClaw code as part of his PH.D thesis. In this paper, we will show the complementary characteristics of the two approaches used in parallelizing GeoClaw and the speed-up obtained by combining the advantage of each of the two individual approaches with adaptive mesh refinement (AMR), demonstrating the capabilities of running GeoClaw efficiently on many-core systems. We will also show a novel simulation of the Tohoku 2011 Tsunami waves inundating the Sendai airport and Fukushima Nuclear Power Plants, over which the finest grid distance of 20 meters is achieved through a 4-level AMR. This simulation yields quite good predictions about the wave-heights and travel time of the tsunami waves. ?? 2011 IEEE.