Jiang, Yi; Liu, Hai-can; Zheng, Huajun; Dou, Xiangfeng; Tang, Biao; Zhao, Xiu-qin; Zhu, Yongqiang; Lu, Bing; Wang, Shengyue; Dong, Hai-yan; Zhang, Yuan-yuan; Zhao, Guoping; Wan, Kanglin
2013-07-01
Recently, tandem repeat typing has emerged as a rapid and easy method for the molecular epidemiology of the Mycobacterium tuberculosis (M. tuberculosis) complex. In this study, a collection of 19 VNTRs incorporating 15 previously described loci and 4 newly evaluated markers were used to genotype 206 Chinese M. tuberculosis isolates and 9 BCG strains. The discriminatory power was evaluated and compared with that obtained by Spoligotyping. It turned out that 15-locus VNTR could be very useful in M. tuberculosis complex strains genotyping in China. The 4 newly evaluated loci were proved informative and could be useful for future epidemiology studies, especially in Beijing family strains. In addition, a unique pattern of the latter 4 loci were found in Chinese BCG strains. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ghosh, Smita; Moonan, Patrick K; Cowan, Lauren; Grant, Juliana; Kammerer, Steve; Navin, Thomas R
2012-06-01
Molecular characterization of Mycobacterium tuberculosis complex isolates (genotyping) can be used by public health programs to more readily identify tuberculosis (TB) transmission. The Centers for Disease Control and Prevention's National Tuberculosis Genotyping Service has offered M. tuberculosis genotyping for every culture-confirmed case in the United States since 2004. The TB Genotyping Information Management System (TB GIMS), launched in March 2010, is a secure online database containing genotype results linked with case characteristics from the national TB registry for state and local TB programs to access, manage and analyze these data. As of September 2011, TB GIMS contains genotype results for 89% of all culture-positive TB cases for 2010. Over 400 users can generate local and national reports and maps using TB GIMS. Automated alerts on geospatially concentrated cases with matching genotypes that may represent outbreaks are also generated by TB GIMS. TB genotyping results are available to enhance national TB surveillance and apply genotyping results to conduct TB control activities in the United States. Published by Elsevier B.V.
David, Suzana; Barros, Vanessa; Portugal, Clara; Antunes, Abílio; Cardoso, Angela; Calado, Ana; Sancho, Luísa; de Sousa, José Germano
2005-01-01
The present population study, from 1999 to 2003, has been based on the use of Spoligotyping in the genotyping of 452 isolates of the Mycobacterium tuberculosis complex from tuberculosis patients of the Fernando Fonseca Hospital. Spoligotypes were identified as "shared types" (STs) with the aid of an international database. Eleven rarely found STs, not identified in the database, grouped 8.4% of the isolates. Moreover, particular to Portugal, may be the predominance of STs identified in the database but not previously classified as genotypic families, such as ST244, ST150 and ST389, representing 13.3 % of the total. The identification of clinical isolates of M. africanum genotype Afri1 and of M. tuberculosis genotype CAS1 may confirm import of isolates of African and Asian origin. M. tuberculosis of the Beijing family was first reported by us as of 1999. Since then, the number of isolates at the Hospital has passed from one to five annually, representing 2.2% of the total and the tenth most predominant family in the present study. M. tuberculosis Beijing may correspond to an emerging problem in Portugal due to recent immigration from Eastern Europe and Asia. Other genotypes, ST150 and ST389, have shown increase, the significance of which is not clear. However, the relative frequencies of the predominant families LAM, T1 and Haarlem remained relatively stable. The present study confirms the genetic variability in Portugal of M. tuberculosis complex isolates. These studies may contribute to the definition of priorities in the national tuberculosis control programs.
Leung, Eric T Y; Zheng, L; Wong, Rity Y K; Chan, Edward W C; Au, T K; Chan, Raphael C Y; Lui, Grace; Lee, Nelson; Ip, Margaret
2011-07-01
Rapid diagnosis and genotyping of Mycobacterium tuberculosis by molecular methods are often limited by the amount and purity of DNA extracted from body fluids. In this study, we evaluated 12 DNA extraction methods and developed a highly sensitive protocol for mycobacterial DNA extraction directly from sputa using surface-coated magnetic particles. We have also developed a novel multiplex real-time PCR for simultaneous identification of M. tuberculosis complex and the Beijing/W genotype (a hypervirulent sublineage of M. tuberculosis) by using multiple fluorogenic probes targeting both the M. tuberculosis IS6110 and the Rv0927c-pstS3 intergenic region. With reference strains and clinical isolates, our real-time PCR accurately identified 20 non-Beijing/W and 20 Beijing/W M. tuberculosis strains from 17 different species of nontuberculosis Mycobacterium (NTM). Further assessment of our DNA extraction protocol and real-time PCR with 335 nonduplicate sputum specimens correctly identified all 74 M. tuberculosis culture-positive specimens. In addition, 15 culture-negative specimens from patients with confirmed tuberculosis were also identified. No cross-reactivity was detected with NTM specimens (n = 31). The detection limit of the assay is 10 M. tuberculosis bacilli, as determined by endpoint dilution analysis. In conclusion, an optimized DNA extraction protocol coupled with a novel multiprobe multiplex real-time PCR for the direct detection of M. tuberculosis, including Beijing/W M. tuberculosis, was found to confer high sensitivity and specificity. The combined procedure has the potential to compensate for the drawbacks of conventional mycobacterial culture in routine clinical laboratory setting, such as the lengthy incubation period and the limitation to viable organisms.
Molecular characterisation of Mycobacterium caprae strains isolated in Poland.
Krajewska-Wędzina, Monika; Kozińska, Monika; Orłowska, Blanka; Weiner, Marcin; Szulowski, Krzysztof; Augustynowicz-Kopeć, Ewa; Anusz, Krzysztof; Smith, Noel H
2018-03-10
Bovine tuberculosis (bovine TB, bTB) is caused by bovine bacilli: Mycobacterium bovis and M caprae The studies conducted in Poland, in the National Bovine Tuberculosis Reference Laboratory in the Department of Microbiology of the National Veterinary Research Institute in Pulawy, show that animal tuberculosis in Poland is also caused by M caprae We here describe the identification and genotypic assessment of 52 isolates of M caprae obtained from Polish cattle and wild animals over the last five years. We show that strains isolated from bison have significant genotypic diversity and are distinct compared with the genotypes of strains isolated from cattle. Similarly, isolates from cattle herds can be highly genotypically variable. Formal designation of the members of the Mycobacterium tuberculosis complex is controversial in Poland; there is a gap in veterinary legislation with regard to bTB and no explicit mention of M caprae causing tuberculosis in animal. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Rito, Teresa; Matos, Carlos; Carvalho, Carlos; Machado, Henrique; Rodrigues, Gabriela; Oliveira, Olena; Ferreira, Eduarda; Gonçalves, Jorge; Maio, Lurdes; Morais, Clara; Ramos, Helena; Guimarães, João Tiago; Santos, Catarina L; Duarte, Raquel; Correia-Neves, Margarida
2018-01-25
Tuberculosis (TB) incidence is decreasing worldwide and eradication is becoming plausible. In low-incidence countries, intervention on migrant populations is considered one of the most important strategies for elimination. However, such measures are inappropriate in European areas where TB is largely endemic, such as Porto in Portugal. We aim to understand transmission chains in Porto through a genetic characterization of Mycobacterium tuberculosis strains and through a detailed epidemiological evaluation of cases. We genotyped the M. tuberculosis strains using the MIRU-VNTR system. We performed an evolutionary reconstruction of the genotypes with median networks, used in this context for the first time. TB cases from a period of two years were evaluated combining genetic, epidemiological and georeferencing information. The data reveal a unique complex scenario in Porto where the autochthonous population acts as a genetic reservoir of M. tuberculosis diversity with discreet episodes of transmission, mostly undetected using classical epidemiology alone. Although control policies have been successful in decreasing incidence in Porto, the discerned complexity suggests that, for elimination to be a realistic goal, strategies need to be adjusted and coupled with a continuous genetic characterization of strains and detailed epidemiological evaluation, in order to successfully identify and interrupt transmission chains.
Ejo, Mebrat; Gehre, Florian; Barry, Mamadou Dian; Sow, Oumou; Bah, Nene Mamata; Camara, Mory; Bah, Boubacar; Uwizeye, Cecile; Nduwamahoro, Elie; Fissette, Kristina; Rijk, Pim De; Merle, Corinne; Olliaro, Piero; Burgos, Marcos; Lienhardt, Christian; Rigouts, Leen; de Jong, Bouke C.
2015-01-01
In this study we assessed first-line anti-tuberculosis drug resistance and the genotypic distribution of Mycobacterium tuberculosis complex (MTBC) isolates that had been collected from consecutive new tuberculosis patients enrolled in two clinical trials conducted in Guinea between 2005 and 2010. Among the total 359 MTBC strains that were analyzed in this study, 22.8% were resistant to at least one of the first line anti-tuberculosis drugs, including 2.5% multidrug resistance and 17.5% isoniazid resistance, with or without other drugs. In addition, further characterization of isolates from a subset of the two trials (n = 184) revealed a total of 80 different spoligotype patterns, 29 “orphan” and 51 shared patterns. We identified the six major MTBC lineages of human relevance, with predominance of the Euro-American lineage. In total, 132 (71.7%) of the strains were genotypically clustered, and further analysis (using the DESTUS model) suggesting significantly faster spread of LAM10_CAM family (p = 0.00016). In conclusion, our findings provide a first insight into drug resistance and the population structure of the MTBC in Guinea, with relevance for public health scientists in tuberculosis control programs. PMID:26004194
Ejo, Mebrat; Gehre, Florian; Barry, Mamadou Dian; Sow, Oumou; Bah, Nene Mamata; Camara, Mory; Bah, Boubacar; Uwizeye, Cecile; Nduwamahoro, Elie; Fissette, Kristina; De Rijk, Pim; Merle, Corinne; Olliaro, Piero; Burgos, Marcos; Lienhardt, Christian; Rigouts, Leen; de Jong, Bouke C
2015-07-01
In this study we assessed first-line anti-tuberculosis drug resistance and the genotypic distribution of Mycobacterium tuberculosis complex (MTBC) isolates that had been collected from consecutive new tuberculosis patients enrolled in two clinical trials conducted in Guinea between 2005 and 2010. Among the total 359 MTBC strains that were analyzed in this study, 22.8% were resistant to at least one of the first line anti-tuberculosis drugs, including 2.5% multidrug resistance and 17.5% isoniazid resistance, with or without other drugs. In addition, further characterization of isolates from a subset of the two trials (n = 184) revealed a total of 80 different spoligotype patterns, 29 "orphan" and 51 shared patterns. We identified the six major MTBC lineages of human relevance, with predominance of the Euro-American lineage. In total, 132 (71.7%) of the strains were genotypically clustered, and further analysis (using the DESTUS model) suggesting significantly faster spread of LAM10_CAM family (p = 0.00016). In conclusion, our findings provide a first insight into drug resistance and the population structure of the MTBC in Guinea, with relevance for public health scientists in tuberculosis control programs. Copyright © 2015. Published by Elsevier B.V.
Genotypic analysis of the earliest known prehistoric case of tuberculosis in Britain.
Taylor, G Michael; Young, Douglas B; Mays, Simon A
2005-05-01
The earliest known case of human tuberculosis in Britain dates to the middle period of the Iron Age, approximately 2,200 years before present. Bone lesions on the spine of a male skeleton excavated at Tarrant Hinton in Dorset, United Kingdom, show evidence of Pott's disease and are supported by molecular evidence of Mycobacterium tuberculosis complex DNA amplified by IS6110 PCR (19). In the present study, we used a further series of sensitive PCR methods to confirm the diagnosis of tuberculosis and to determine the genotype of the infecting strain. These tests demonstrated that this individual was infected with a strain of M. tuberculosis rather than Mycobacterium bovis. The strain had undergone the tuberculosis D1 deletion affecting the mmpS6 and mmpL6 genes and can therefore be identified as a member of the family of "modern" M. tuberculosis isolates. All evidence obtained was consistent with surviving mycobacterial DNA being highly fragmented in this case.
Wamala, Dan; Asiimwe, Benon; Kigozi, Edgar; Mboowa, Gerald; Joloba, Moses; Kallenius, Gunilla
2014-04-02
Tuberculous lymphadenitis is next to pulmonary tuberculosis as the most common cause of tuberculosis. Uganda genotype, one of the sub-lineages of Mycobacterium tuberculosis, is the most prevalent cause of pulmonary tuberculosis in Uganda. We here investigate the clinicopathological characteristics of patients with tuberculous lymphadenitis infected with M. tuberculosis Uganda genotype compared with those infected with M. tuberculosis non-Uganda genotype strains. Between 2010 and 2012, we enrolled 121 patients (mean age 28.5 yrs, male 48%; female 52%) with tuberculous lymphadenitis, and categorized them by their M. tuberculosis genotypes. The clinical features and lymph node cytopathological parameters were compared between patients in the Uganda and non-Uganda categories using a crude and multivariable logistic regression model with adjustment for confounding factors. Of the 121participants, 56 (46%) were infected with strains of Uganda genotype. Patients infected with this genotype had significantly lower frequency of abdominal lymphadenopathy (odds ratio 0.4, p = 0.046) after adjusting for sex, age and HIV. Abdominal lymphadenopathy was also significantly associated with abnormal chest X-ray (p = 0.027). Tuberculous lymphadenitis patients infected with M. tuberculosis Uganda genotype were significantly less prone to have abdominal lymphadenopathy indicating potential reduced ability to disseminate and supporting the concept that differences in M. tuberculosis genotype may have clinical implications.
Caws, Maxine; Thwaites, Guy; Dunstan, Sarah; Hawn, Thomas R.; Thi Ngoc Lan, Nguyen; Thuong, Nguyen Thuy Thuong; Stepniewska, Kasia; Huyen, Mai Nguyet Thu; Bang, Nguyen Duc; Huu Loc, Tran; Gagneux, Sebastien; van Soolingen, Dick; Kremer, Kristin; van der Sande, Marianne; Small, Peter; Thi Hoang Anh, Phan; Chinh, Nguyen Tran; Thi Quy, Hoang; Thi Hong Duyen, Nguyen; Quang Tho, Dau; Hieu, Nguyen T.; Torok, Estee; Hien, Tran Tinh; Dung, Nguyen Huy; Thi Quynh Nhu, Nguyen; Duy, Phan Minh; van Vinh Chau, Nguyen; Farrar, Jeremy
2008-01-01
The factors that govern the development of tuberculosis disease are incompletely understood. We hypothesized that some strains of Mycobacterium tuberculosis (M. tuberculosis) are more capable of causing disseminated disease than others and may be associated with polymorphisms in host genes responsible for the innate immune response to infection. We compared the host and bacterial genotype in 187 Vietnamese adults with tuberculous meningitis (TBM) and 237 Vietnamese adults with uncomplicated pulmonary tuberculosis. The host genotype of tuberculosis cases was also compared with the genotype of 392 cord blood controls from the same population. Isolates of M. tuberculosis were genotyped by large sequence polymorphisms. The hosts were defined by polymorphisms in genes encoding Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) and Toll-like receptor-2 (TLR-2). We found a significant protective association between the Euro-American lineage of M. tuberculosis and pulmonary rather than meningeal tuberculosis (Odds ratio (OR) for causing TBM 0.395, 95% confidence intervals (C.I.) 0.193–0.806, P = 0.009), suggesting these strains are less capable of extra-pulmonary dissemination than others in the study population. We also found that individuals with the C allele of TLR-2 T597C allele were more likely to have tuberculosis caused by the East-Asian/Beijing genotype (OR = 1.57 [95% C.I. 1.15–2.15]) than other individuals. The study provides evidence that M. tuberculosis genotype influences clinical disease phenotype and demonstrates, for the first time, a significant interaction between host and bacterial genotypes and the development of tuberculosis. PMID:18369480
Jajou, Rana; de Neeling, Albert; van Hunen, Rianne; de Vries, Gerard; Schimmel, Henrieke; Mulder, Arnout; Anthony, Richard; van der Hoek, Wim; van Soolingen, Dick
2018-01-01
Patients with Mycobacterium tuberculosis isolates sharing identical DNA fingerprint patterns can be epidemiologically linked. However, municipal health services in the Netherlands are able to confirm an epidemiological link in only around 23% of the patients with isolates clustered by the conventional variable number of tandem repeat (VNTR) genotyping. This research aims to investigate whether whole genome sequencing (WGS) is a more reliable predictor of epidemiological links between tuberculosis patients than VNTR genotyping. VNTR genotyping and WGS were performed in parallel on all Mycobacterium tuberculosis complex isolates received at the Netherlands National Institute for Public Health and the Environment in 2016. Isolates were clustered by VNTR when they shared identical 24-loci VNTR patterns; isolates were assigned to a WGS cluster when the pair-wise genetic distance was ≤ 12 single nucleotide polymorphisms (SNPs). Cluster investigation was performed by municipal health services on all isolates clustered by VNTR in 2016. The proportion of epidemiological links identified among patients clustered by either method was calculated. In total, 535 isolates were genotyped, of which 25% (134/535) were clustered by VNTR and 14% (76/535) by WGS; the concordance between both typing methods was 86%. The proportion of epidemiological links among WGS clustered cases (57%) was twice as common than among VNTR clustered cases (31%). When WGS was applied, the number of clustered isolates was halved, while all epidemiologically linked cases remained clustered. WGS is therefore a more reliable tool to predict epidemiological links between tuberculosis cases than VNTR genotyping and will allow more efficient transmission tracing, as epidemiological investigations based on false clustering can be avoided.
Dhatwalia, Sunil Kumar; Yadav, Rakesh; Behera, Digambar; Kaur, Harsimran; Kumar, Manoj; Sethi, Sunil
2017-09-01
Comparative genomics on the basis of TbD1 deletion has differentiated the members of Mycobacterium tuberculosis complex (MTC) in two major genogroups. They exhibit differential distribution and virulence potential. The present study was carried out to see the proportion of these genogroups and their association with drug resistance. The drug resistance pattern of 205 culture positive cases of M. tuberculosis and their relation with TbD1 deletion was analysed from the tertiary care centre. Overall proportion of genotypes (TbD1- and Tbd1+) and their association with drug resistance was also observed from the various studies from India. Our study reports that 85.4% of the isolates of M. tuberculosis were modern genotypes (TbD1-) and rest of 14.6% were ancient genotypes (TbD1+). 37 cases were of multiple drug resistant-TB (MDR-TB), 35 of them belongs to modern genogrop and rest of (2) were in ancient genogroup (p=0.12). Overall pooled estimate of proportion of modern genotype is 75.5% (CI 95%, 73.03-77.87) and 24.55% (CI 95%, 22.13-26.97) for ancient genotypes from the studies carried out in India. Modern genotypes were more rarely drug sensitive phenotypes with a relative risk (RR) of 0.89 (CI 95%, 0.74-1.07) while MDR cases were more in this group with an odds ratio (OR) of 2.27 (CI 95%, 0-1.07). This study demonstrates a higher proportion of modern genotypes in our region/India; which are more likely to be associated with drug resistance. Future, epidemiological/in vitro studies are required to ascertain the relationship between genotypes and their virulence potential. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.
Genetic Diversity of Mycobacterium tuberculosis Isolates from Tibetans in Tibet, China
Zhao, Xiuqin; Sang, Ba; Lv, Bing; Liu, Zhiguang; Wan, Kanglin
2012-01-01
Background Tuberculosis (TB) is a serious health problem in Tibet where Tibetans are the major ethnic group. Although genotyping of Mycobacterium tuberculosis (M. tuberculosis) isolates is a valuable tool for TB control, our knowledge of population structure of M. tuberculosis circulating in Tibet is limited. Methodology/Principal Findings In our study, a total of 576 M. tuberculosis isolates from Tibetans in Tibet, China, were analyzed via spoligotyping and 24-locus MIRU-VNTR. The Beijing genotype was the most prevalent family (90.63%, n = 522). Shared-type (ST) 1 was the most dominant genotype (88.89%, n = 512). We found that there was no association between the Beijing genotype and sex, age and treatment status. In this sample collection, 7 of the 24 MIRU-VNTR loci were highly or moderately discriminative according to their Hunter-Gaston discriminatory index. An informative set of 12 loci had similar discriminatory power with 24 loci set. Conclusions/Significance The population structure of M. tuberculosis isolates in Tibetans is homogeneous and dominated by Beijing genotype. The analysis of 24-locus MIRU-VNTR data might be useful to select appropriate VNTR loci for the genotyping of M. tuberculosis. PMID:22479472
Genotyping of ancient Mycobacterium tuberculosis strains reveals historic genetic diversity.
Müller, Romy; Roberts, Charlotte A; Brown, Terence A
2014-04-22
The evolutionary history of the Mycobacterium tuberculosis complex (MTBC) has previously been studied by analysis of sequence diversity in extant strains, but not addressed by direct examination of strain genotypes in archaeological remains. Here, we use ancient DNA sequencing to type 11 single nucleotide polymorphisms and two large sequence polymorphisms in the MTBC strains present in 10 archaeological samples from skeletons from Britain and Europe dating to the second-nineteenth centuries AD. The results enable us to assign the strains to groupings and lineages recognized in the extant MTBC. We show that at least during the eighteenth-nineteenth centuries AD, strains of M. tuberculosis belonging to different genetic groups were present in Britain at the same time, possibly even at a single location, and we present evidence for a mixed infection in at least one individual. Our study shows that ancient DNA typing applied to multiple samples can provide sufficiently detailed information to contribute to both archaeological and evolutionary knowledge of the history of tuberculosis.
Addo, Kennedy Kwasi; Addo, Samuel Ofori; Mensah, Gloria Ivy; Mosi, Lydia; Bonsu, Frank Adae
2017-12-02
Mycobacterium tuberculosis complex (MTBC) and Non-tuberculosis Mycobacterium (NTM) infections differ clinically, making rapid identification and drug susceptibility testing (DST) very critical for infection control and drug therapy. This study aims to use World Health Organization (WHO) approved line probe assay (LPA) to differentiate mycobacterial isolates obtained from tuberculosis (TB) prevalence survey in Ghana and to determine their drug resistance patterns. A retrospective study was conducted whereby a total of 361 mycobacterial isolates were differentiated and their drug resistance patterns determined using GenoType Mycobacterium Assays: MTBC and CM/AS for differentiating MTBC and NTM as well MTBDRplus and NTM-DR for DST of MTBC and NTM respectively. Out of 361 isolates, 165 (45.7%) MTBC and 120 (33.2%) NTM (made up of 14 different species) were identified to the species levels whiles 76 (21.1%) could not be completely identified. The MTBC comprised 161 (97.6%) Mycobacterium tuberculosis and 4 (2.4%) Mycobacterium africanum. Isoniazid and rifampicin monoresistant MTBC isolates were 18/165 (10.9%) and 2/165(1.2%) respectively whiles 11/165 (6.7%) were resistant to both drugs. Majority 42/120 (35%) of NTM were M. fortuitum. DST of 28 M. avium complex and 8 M. abscessus complex species revealed that all were susceptible to macrolides (clarithromycin, azithromycin) and aminoglycosides (kanamycin, amikacin, and gentamicin). Our research signifies an important contribution to TB control in terms of knowledge of the types of mycobacterium species circulating and their drug resistance patterns in Ghana.
Srilohasin, Prapaporn; Tokunaga, Katsushi; Nishida, Nao; Prammananan, Therdsak; Smittipat, Nat; Mahasirimongkol, Surakameth; Chaiyasirinroje, Boonchai; Yanai, Hideki; Palittapongarnpim, Prasit
2014-01-01
This study examined the genetic diversity and dynamicity of circulating Mycobacterium tuberculosis strains in Thailand using nearly neutral molecular markers. The single nucleotide polymorphism (SNP)-based genotypes of 1,414 culture-positive M. tuberculosis isolates from 1,282 pulmonary tuberculosis (PTB) and 132 extrapulmonary TB (EPTB) patients collected from 1995 to 2011 were characterized. Among the eight SNP cluster groups (SCG), SCG2 (44.1%), which included the Beijing (BJ) genotype, and SCG1 (39.4%), an East African Indian genotype, were dominant. Comparisons between the genotypes of M. tuberculosis isolates causing PTB and EPTB in HIV-negative cases revealed similar prevalence trends although genetic diversity was higher in the PTB patients. The identification of 10 reported sequence types (STs) and three novel STs was hypothesized to indicate preferential expansion of the SCG2 genotype, especially the modern BJ ST10 (15.6%) and ancestral BJ ST19 (13.1%). An association between SCG2 and SCG1 genotypes and particular patient age groups implies the existence of different genetic advantages among the bacterial populations. The results revealed that increasing numbers of young patients were infected with M. tuberculosis SCGs 2 and 5, which contrasts with the reduction of the SCG1 genotype. Our results indicate the selection and dissemination of potent M. tuberculosis genotypes in this population. The determination of heterogeneity and dynamic population changes of circulating M. tuberculosis strains in countries using the Mycobacterium bovis BCG (bacillus Calmette-Guérin) vaccine are beneficial for vaccine development and control strategies. PMID:25297330
Chaidir, Lidya; Sengstake, Sarah; de Beer, Jessica; Oktavian, Antonius; Krismawati, Hana; Muhapril, Erfin; Kusumadewi, Inri; Annisa, Jessi; Anthony, Richard; van Soolingen, Dick; Achmad, Tri Hanggono; Marzuki, Sangkot; Alisjahbana, Bachti; van Crevel, Reinout
2016-04-01
Mycobacterium tuberculosis genotype distribution is different between West and Central Indonesia, but there are no data on the most Eastern part, Papua. We aimed to identify the predominant genotypes of M. tuberculosis responsible for tuberculosis in coastal Papua, their transmission, and the association with patient characteristics. A total of 199 M. tuberculosis isolates were collected. Spoligotyping was applied to describe the population structure of M. tuberculosis, lineage identification was performed using a combination of lineage-specific markers, and genotypic clusters were identified using a combination of 24-locus-MIRU-VNTR and spoligotyping. A high degree of genetic diversity was observed among isolates based on their spoligopatterns. Strains from modern lineage 4 made up almost half of strains (46.9%), being more abundant than the ancient lineage 1 (33.7%), and modern lineage 2 (19.4%). Thirty-five percent of strains belonged to genotypic clusters, especially strains in the Beijing genotype. Previous TB treatment and mutations associated with drug resistance were more common in patients infected with strains of the Beijing genotype. Papua shows a different distribution of M. tuberculosis genotypes compared to other parts of Indonesia. Clustering and drug resistance of modern strains recently introduced to Papua may contribute to the high tuberculosis burden in this region. Copyright © 2016 Elsevier B.V. All rights reserved.
Clarke, Charlene; Van Helden, Paul; Miller, Michele; Parsons, Sven
2016-04-26
Members of the Mycobacterium tuberculosis complex (MTC) cause tuberculosis (TB) in both animals and humans. In this article, three animal-adapted MTC strains that are endemic to the southern African subregion - that is, Mycobacterium suricattae, Mycobacterium mungi, and the dassie bacillus - are reviewed with a focus on clinical and pathological presentations, geographic distribution, genotyping methods, diagnostic tools and evolution. Moreover, factors influencing the transmission and establishment of TB pathogens in novel host populations, including ecological, immunological and genetic factors of both the host and pathogen, are discussed. The risks associated with these infections are currently unknown and further studies will be required for greater understanding of this disease in the context of the southern African ecosystem.
Clarke, Charlene; Van Helden, Paul; Miller, Michele; Parsons, Sven
2016-04-26
Members of the Mycobacterium tuberculosis complex (MTC) cause tuberculosis (TB) in both animals and humans. In this article, three animal-adapted MTC strains that are endemic to the southern African subregion - that is, Mycobacterium suricattae, Mycobacterium mungi, and the dassie bacillus - are reviewed with a focus on clinical and pathological presentations, geographic distribution, genotyping methods, diagnostic tools and evolution. Moreover, factors influencing the transmission and establishment of TB pathogens in novel host populations, including ecological, immunological and genetic factors of both the host and pathogen, are discussed. The risks associated with these infections are currently unknown and further studies will be required for greater understanding of this disease in the context of the southern African ecosystem.
Amato, B; Di Marco Lo Presti, V; Gerace, E; Capucchio, M T; Vitale, M; Zanghì, P; Pacciarini, M L; Marianelli, C; Boniotti, M B
2018-04-01
Bovine tuberculosis (bTB) is an important zoonosis, which has been re-emerging in different ecological scenarios. In Sicily, Italy, from 2004 to 2014, an anatomopathological survey for tuberculosis-like lesions both in farmed and wild animals was performed. The isolates were genotyped using spoligotyping and Mycobacterial Interspersed Repetitive Units-Variable Number of Tandem Repeats (MIRU-VNTR) techniques. High prevalence of lesions was observed for cattle (4%), pigs (4.9%) and wild boars (6.8%), and a total of 625 Mycobacterium bovis isolates were identified. Genotyping analysis showed the presence of 37 different spoligotypes including fifteen spoligotypes not present in other Italian regions and 266 MIRU-VNTR profiles. Spoligotype SB0120 exhibited the highest prevalence in cattle (50%) and pigs (56%) and the highest genetic variety with 126 different MIRU-VNTR profiles. The isolation of M. bovis in a farmer underlines the importance of M. bovis identification during the human TB diagnostic processes. This study supported the use of the genotyping analysis as a valuable tool for the evaluation of the epidemiological role of pigs and other domestic reservoirs such as goats and the role of wildlife in the maintenance of bTB infection. © 2017 Blackwell Verlag GmbH.
The Evolution of Strain Typing in the Mycobacterium tuberculosis Complex.
Merker, Matthias; Kohl, Thomas A; Niemann, Stefan; Supply, Philip
2017-01-01
Tuberculosis (TB) is a contagious disease with a complex epidemiology. Therefore, molecular typing (genotyping) of Mycobacterium tuberculosis complex (MTBC) strains is of primary importance to effectively guide outbreak investigations, define transmission dynamics and assist global epidemiological surveillance of the disease. Large-scale genotyping is also needed to get better insights into the biological diversity and the evolution of the pathogen. Thanks to its shorter turnaround and simple numerical nomenclature system, mycobacterial interspersed repetitive unit-variable-number tandem repeat (MIRU-VNTR) typing, based on 24 standardized plus 4 hypervariable loci, optionally combined with spoligotyping, has replaced IS6110 DNA fingerprinting over the last decade as a gold standard among classical strain typing methods for many applications. With the continuous progress and decreasing costs of next-generation sequencing (NGS) technologies, typing based on whole genome sequencing (WGS) is now increasingly performed for near complete exploitation of the available genetic information. However, some important challenges remain such as the lack of standardization of WGS analysis pipelines, the need of databases for sharing WGS data at a global level, and a better understanding of the relevant genomic distances for defining clusters of recent TB transmission in different epidemiological contexts. This chapter provides an overview of the evolution of genotyping methods over the last three decades, which culminated with the development of WGS-based methods. It addresses the relative advantages and limitations of these techniques, indicates current challenges and potential directions for facilitating standardization of WGS-based typing, and provides suggestions on what method to use depending on the specific research question.
Silaigwana, Blessing; Green, Ezekiel; Ndip, Roland N
2012-06-01
Mycobacterium tuberculosis complex (MTBC) causes tuberculosis (TB) in humans and animals. We investigated the presence of MTBC in cattle milk and its drug resistance using polymerase chain reaction (PCR). Two hundred samples (100 mL each) were obtained from a dairy farm in the Nkonkobe region of South Africa. The samples were processed using the modified Petroff method. DNA was isolated using a Zymo Bacterial DNA kit and amplified using Seeplex(®) MTB Nested ACE assay. The Genotype(®) Mycobacterium tuberculosis-multidrug resistantplus (MTBDRplus) assay was used to perform drug susceptibility and detection of mutations conferring resistance to isoniazid (INH) and rifampicin (RIF). Eleven samples tested positive for MTBC DNA using the Seeplex(®) MTB Nested ACE assay. The Genotype(®) MTBDRplus assay showed that 10/11 samples were resistant to both INH and RIF i.e., multi-drug resistant (MDR). The most and least frequent rpoB mutations detected in RIF resistant samples were H526Y (9/10) and D516V (2/10) respectively. None of the INH resistant samples harbored mutations in the katG gene. However, all of them harbored the T8A mutation in the inhA gene. These results have clinical and epidemiological significance and calls for further studies and necessary actions to delineate the situation.
Ouassa, Timothée; Borroni, Emanuele; Loukou, Guillaume Yao; Faye-Kette, Hortense; Kouakou, Jacquemin; Menan, Hervé; Cirillo, Daniela Maria
2012-01-01
Genotyping methods are useful tools to provide information on tuberculosis epidemic. They can allow a better response from health authorities and the implementation of measures for tuberculosis control. This study aimed to identify the main lineages and clades of Mycobacterium tuberculosis complex strains circulating in Côte d'Ivoire. Strains isolated from sputum samples of patients ongoing retreatment from all the country were characterized by spoligotyping and by MIRU-VNTR. Profiles obtained by spoligotyping were first compared to the SITVIT/SpolDB4 database for family assignment. Of 194 strains analysed, 146 (75.3%) belonged to the T lineage. The most predominant spoligotype was the shared international type 53 with 135 strains (69.6%). In contrast with neighbouring countries, LAM (11 strains, 5.7%) and H (9 strains 4.6%) lineages were slightly represented. Only 3 Beijing strains (1.5%) and 4 strains of Mycobacterium africanum (2%) were found. Analysis of the results obtained with MIRU-VNTR revealed also a high level of clustering. The population of Mycobacterium tuberculosis complex strains among retreatment cases in Côte d'Ivoire exhibits a low diversity, allowing to assume recent transmission and locally based infection.
Tam, Kingsley King-Gee; Leung, Kenneth Siu-Sing; To, Sabrina Wai-Chi; Siu, Gilman Kit-Hang; Lau, Terrence Chi-Kong; Shek, Victor Chi-Man; Tse, Cindy Wing-Sze; Wong, Samson Sai-Yin; Ho, Pak-Leung; Yam, Wing-Cheong
2017-10-01
Abbott RealTime MTB (Abbott-RT) in conjunction with Abbott RealTime MTB RIF/INH Resistance (Abbott-RIF/INH) is a new, high-throughput automated nucleic acid amplification platform (Abbott-MDR) for detection of Mycobacterium tuberculosis complex (MTBC) and the genotypic markers for rifampicin (RIF) and isoniazid (INH) resistance directly from respiratory specimens. This prospective study evaluated the diagnostic performance of this new platform for MTBC and multidrug-resistant tuberculosis (MDR-TB) using 610 sputum specimens in a tuberculosis high-burden setting. Using conventional culture results and clinical background as reference standards, Abbott-RT exhibited an overall sensitivity and specificity of 95.2% and 99.8%, respectively. Genotypic RIF/INH resistance of 178 "MTB detected" specimens was subsequently analyzed by Abbott-RIF/INH. Compared to phenotypic drug susceptibility test results, Abbott-RIF/INH detected resistance genotypic markers in 84.6% MDR-TB, 80% mono-RIF-resistant and 66.7% mono-INH-resistant specimens. Two of the RIF-resistant specimens carried a novel single, nonsense mutation at rpoB Q513 and in silico simulation demonstrated that the truncated RpoB protein failed to bind with other subunits for transcription. Overall, Abbott-MDR platform provided high throughput and reliable diagnosis of MDR-TB within a TB high-burden region. Copyright © 2017 Elsevier Inc. All rights reserved.
Chen, L Y; Yang, X; Ru, H H; Yang, H J; Yan, S Q; Ma, L; Chen, J O; Yang, R; Xu, L
2018-01-06
Objective: To understand the characteristics of genotypes of Mycobacterium tuberculosis isolates in Yunnan province, and provide the molecular epidemiological evidence for prevention and control of tuberculosis in Yunnan Province. Methods: Mycobacterium Tuberculosis isolates were collected from 6 prefectures of Yunnan province in 2014 and their Genetypes of Mycobacterium tuberculosis isolates were obtained using spoligotyping and multiple locus variable numbers of tandem repeats analysis (MLVA). The results of spoligotyping were entered into the SITVITWEB database to obtain the Spoligotyping International Type (SIT) patterns and the sublineages of MTB isolates. The genoyping patterns were clustered with BioNumerics (version 5.0). Results: A total of 271 MTB isolates represented patients were collected from six prefectures in Yunnan province. Out of these patients, 196 (72.3%) were male. The mean age of the patients was (41.9±15.1) years. The most MTB isolates were from Puer, totally 94 iusolates(34.69%). Spoligotyping analysis revealed that 151 (55.72%) MTB isolates belonged to the Beijing genotype, while the other 120 (44.28%) were from non-Beijing genotype; 40 genotypes were consisted of 24 unique genotypes and 16 clusters. The 271 isolates were differentiated into 30 clusters (2 to 17 isolates per cluster) and 177 unique genotypes, showing a clustering rate of 23.62%. Beijing genotype strains showed higher clustering rate than non-Beijing genotype strains (29.14% vs 16.67%). The HGI of 12-locus VNTR in total MTB strains, Beijing genotype strains and non-Beijing genotype was 0.993, 0.982 and 0.995 respectively. Conclusion: The Beijing genotype was the predominant genotype in Yunnan Province, the characteristics of Mycobacterium tuberculosis showed high genetic diversity. The genotyping data reflect the potential recent ongoing transmission in some area, which highlights the urgent need for early diagnosis and treatment of the infectious TB cases, to cut off the transmission and avoid a large TB outbreak.
Fabre, Michel; Koeck, Jean-Louis; Le Flèche, Philippe; Simon, Fabrice; Hervé, Vincent; Vergnaud, Gilles; Pourcel, Christine
2004-01-01
We have analyzed, using complementary molecular methods, the diversity of 43 strains of “Mycobacterium canettii” originating from the Republic of Djibouti, on the Horn of Africa, from 1998 to 2003. Genotyping by multiple-locus variable-number tandem repeat analysis shows that all the strains belong to a single but very distant group when compared to strains of the Mycobacterium tuberculosis complex (MTBC). Thirty-one strains cluster into one large group with little variability and five strains form another group, whereas the other seven are more diverged. In total, 14 genotypes are observed. The DR locus analysis reveals additional variability, some strains being devoid of a direct repeat locus and others having unique spacers. The hsp65 gene polymorphism was investigated by restriction enzyme analysis and sequencing of PCR amplicons. Four new single nucleotide polymorphisms were discovered. One strain was characterized by three nucleotide changes in 441 bp, creating new restriction enzyme polymorphisms. As no sequence variability was found for hsp65 in the whole MTBC, and as a single point mutation separates M. tuberculosis from the closest “M. canettii” strains, this diversity within “M. canettii” subspecies strongly suggests that it is the most probable source species of the MTBC rather than just another branch of the MTBC. PMID:15243089
Diversity of Mycobacterium tuberculosis lineages in French Polynesia.
Osman, Djaltou Aboubaker; Phelippeau, Michael; Drancourt, Michel; Musso, Didier
2017-04-01
French Polynesia is an overseas territory located in the South Pacific. The incidence of tuberculosis in French Polynesia has been stable since 2000 with an average of 20 cases/y/100,000 inhabitants. Molecular epidemiology of Mycobacterium tuberculosis in French Polynesia is unknown because M. tuberculosis isolates have not been routinely genotyped. From 2009 to 2012, 34 isolates collected from 32 French Polynesian patients were identified as M. tuberculosis by probe hybridization. These isolates were genotyped using spoligotyping and 24-loci mycobacterial interspersed repetitive units (MIRUs)-variable number of tandem repeat (VNTR). Spoligotype patterns obtained using commercial kits were compared with the online international database SITVIT. MIRU-VNTR genotyping was performed using an in-house protocol based on capillary electrophoresis sizing for 24-loci MIRU-VNTR genotyping. The results of the spoligotyping method revealed that 25 isolates grouped into six previously described spoligotypes [H1, H3, U likely (S), T1, Manu, and Beijing] and nine isolates grouped into six new spoligotypes. Comparison with the international database MIRU-VNTRplus distributed 30 isolates into five lineages (Haarlem, Latin American Mediterranean, S, X, and Beijing) and four as unassigned isolates. Genotyping identified four phylogenetic lineages belonging to the modern Euro-American subgroup, one Beijing genotype responsible for worldwide pandemics, including remote islands in the South Pacific, and one Manu genotype of the ancestral lineage of M. tuberculosis. Copyright © 2015. Published by Elsevier B.V.
Mizukoshi, Fuminori; Miyoshi-Akiyama, Tohru; Iwai, Hiroki; Suzuki, Takako; Kiritani, Reiko; Kirikae, Teruo; Funatogawa, Keiji
2017-05-25
Foreign-born patients with tuberculosis (TB) may introduce globally disseminated isolates of Mycobacterium tuberculosis into large cities in Japan. The risk of dissemination of these isolates into local regions, however, has not been determined. This study analyzed the molecular epidemiology of M. tuberculosis isolates obtained from TB patients living in a local region of Japan. Whole genome sequences of 169 M. tuberculosis isolates, obtained from 148 Japanese-born and 21 foreign-born patients living in Tochigi, Japan, were analyzed using the Comprehensive analysis server for the Mycobacterium t u b erculosis complex (CASTB). The 169 isolates were clustered into four clades; Lineage 2 (111 isolates 65.7%), Lineage 4 (43 isolates, 25.4%), Lineage 1 (13 isolates, 7.7%), and Lineage 3 (2 isolates, 1.2%). Of the 111 isolates belonging to Lineage 2, 79 (71.2%) were of the atypical Beijing sub-genotype. Of the 13 Lineage 1 isolates, nine (69.2%) were from foreign-born patients. The isolates belonging to Lineage 4 were further clustered into three clades, two containing isolates shared by both Japanese- and foreign-born patients. The two isolates belonging to Lineage 3 were obtained from foreign-born patients. The genotypic diversity of M. tuberculosis in a local region of Japan is increased primarily by the presence of isolates obtained from foreign-born patients.
High clustering rates of multidrug-resistant Mycobacterium tuberculosis genotypes in Panama
2013-01-01
Background Tuberculosis continues to be one of the leading causes of death worldwide and in the American region. Although multidrug-resistant tuberculosis (MDR-TB) remains a threat to TB control in Panama, few studies have focused in typing MDR-TB strains. The aim of our study was to characterize MDR Mycobacterium tuberculosis clinical isolates using PCR-based genetic markers. Methods From 2002 to 2004, a total of 231 Mycobacterium tuberculosis isolates from TB cases country-wide were screened for antibiotic resistance, and MDR-TB isolates were further genotyped by double repetitive element PCR (DRE-PCR), (GTG)5-PCR and spoligotyping. Results A total of 37 isolates (0.85%) were resistant to both isoniazid (INH) and rifampicin (RIF). Among these 37 isolates, only two (5.4%) were resistant to all five drugs tested. Dual genotyping using DRE-PCR and (GTG)5-PCR of MDR Mycobacterium tuberculosis isolates revealed eight clusters comprising 82.9% of the MDR-TB strain collection, and six isolates (17.1%) showed unique fingerprints. The spoligotyping of MDR-TB clinical isolates identified 68% as members of the 42 (LAM9) family genotype. Conclusion Our findings suggest that MDR Mycobacterium tuberculosis is highly clustered in Panama’s metropolitan area corresponding to Panama City and Colon City, and our study reveals the genotype distribution across the country. PMID:24053690
Liu, Jie; Wang, Hui Zhu; Lian, Lu Lu; Yu, Yan Hua; Zhao, Xiu Qin; Guo, Cai Ping; Liu, Hai Can; Liu, Shu Mei; Zhao, Hui; Zeng, Zhao Ying; Zhao, Xiu Ying; Wan, Kang Lin
2015-03-01
70 clinical Mycobacterium tuberculosis strains isolated from AIDS patients in two HIV/AIDS referral hospitals in Beijing were used in this study. M. tuberculosis and non-tuberculosis mycobacterium (NTM) were identified by using multi-locus PCR. M. tuberculosis was genotyped by using 15-locus MIRU-VNTR technique and spoligotyping afterwards. Meanwhile, the drug susceptibilities of the strains to the four first-line anti TB drugs (rifampin, isoniazid, streptomycin, and ethambutol) and the four second-line anti-TB drugs (capreomycin, kanamycin, ofloxacin, and ethionanide) were tested with proportional method. In this study, M. tuberculosis and NTM strains isolated from AIDS patients with TB-like symptoms were identified and genotyping analysis indicated that Beijing genotype was the predominant genotype. In addition, the prevalence of drug-resistant TB, especially the prevalence of XDR-TB, was higher than that in TB patients without HIV infection. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Sambrano, Dilcia; Correa, Ricardo; Almengor, Pedro; Domínguez, Amada; Vega, Silvio; Goodridge, Amador
2014-01-01
Understanding Mycobacterium tuberculosis biodiversity and transmission is significant for tuberculosis control. This short report aimed to determine the genetic diversity of M. tuberculosis isolates from an outpatient clinic in Panama City. A total of 62 M. tuberculosis isolates were genotyped by 12 loci mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) and Spoligotyping. Forty-five (72.6%) of the isolates showed unique MIRU-VNTR genotypes, and 13 (21%) of the isolates were grouped into four clusters. Four isolates showed polyclonal MIRU-VNTR genotypes. The MIRU-VNTR Hunter-Gaston discriminatory index reached 0.988. The Spoligotyping analysis revealed 16 M. tuberculosis families, including Latin American-Mediterranean, Harlem, and Beijing. These findings suggest a wide genetic diversity of M. tuberculosis isolates at one outpatient clinic. A detailed molecular epidemiology survey is now warranted, especially following second massive immigration for local Panama Canal expansion activities. PMID:24865686
Association between tuberculosis and atopy: role of the CD14-159C/T polymorphism.
Baççioğlu Kavut, A; Kalpaklioğlu, F; Birben, E; Ayaslioğlu, E
2012-01-01
The development of allergic hypersensitivity depends on both genetic and environmental factors. Different amounts of microbial products could affect patients with atopy and different genotypes. We aimed to evaluate the role of varying degrees of exposure to infection by Mycobacterium tuberculosis (tuberculosis) in atopic patients and analyze the association with genetic factors. We performed CD14-159C/T genotyping in atopic patients (n=118) and healthy individuals (n=62) and recorded the following variables: rural lifestyle, exposure to persons with tuberculosis, bacille Calmette-Guerin (BCG) vaccination, tuberculin skin test (TST), skin prick test, and phenotypes of atopy. Blood samples were analyzed for soluble-CD14 (sCD14), interferon (IFN) y, total immunoglobulin (Ig) E, and eosinophil levels. A score was used to identify the likelihood of exposure to tuberculosis. Almost all the study participants had had a BCG vaccination, and half had a positive TST result. No differences were observed between atopic patients with high/low tuberculosis scores and CD14 genotypes in terms of atopic phenotypes, allergen sensitization, and levels of total IgE, sCD14, and IFN-y. However, the frequency of asthma was higher in atopic patients with a high tuberculosis score and was not associated with CD14 genotypes. Eosinophil counts in blood were higher in atopic patients with a high tuberculosis score and CC+CT genotypes. These results suggest that the C allele of the CD14-159C/T polymorphism has a marked effect on eosinophil levels in atopic patients with increased exposure to tuberculosis. In addition, the degree of exposure to tuberculosis in atopic patients may modify the development of asthma.
Co-evolution of Mycobacterium tuberculosis and Homo sapiens
Brites, Daniela; Gagneux, Sebastien
2015-01-01
The causative agent of human tuberculosis (TB), Mycobacterium tuberculosis, is an obligate pathogen that evolved to exclusively persist in human populations. For M. tuberculosis to transmit from person to person, it has to cause pulmonary disease. Therefore, M. tuberculosis virulence has likely been a significant determinant of the association between M. tuberculosis and humans. Indeed, the evolutionary success of some M. tuberculosis genotypes seems at least partially attributable to their increased virulence. The latter possibly evolved as a consequence of human demographic expansions. If co-evolution occurred, humans would have counteracted to minimize the deleterious effects of M. tuberculosis virulence. The fact that human resistance to infection has a strong genetic basis is a likely consequence of such a counter-response. The genetic architecture underlying human resistance to M. tuberculosis remains largely elusive. However, interactions between human genetic polymorphisms and M. tuberculosis genotypes have been reported. Such interactions are consistent with local adaptation and allow for a better understanding of protective immunity in TB. Future ‘genome-to-genome’ studies, in which locally associated human and M. tuberculosis genotypes are interrogated in conjunction, will help identify new protective antigens for the development of better TB vaccines. PMID:25703549
Representativeness of Tuberculosis Genotyping Surveillance in the United States, 2009-2010.
Shak, Emma B; France, Anne Marie; Cowan, Lauren; Starks, Angela M; Grant, Juliana
2015-01-01
Genotyping of Mycobacterium tuberculosis isolates contributes to tuberculosis (TB) control through detection of possible outbreaks. However, 20% of U.S. cases do not have an isolate for testing, and 10% of cases with isolates do not have a genotype reported. TB outbreaks in populations with incomplete genotyping data might be missed by genotyping-based outbreak detection. Therefore, we assessed the representativeness of TB genotyping data by comparing characteristics of cases reported during January 1, 2009-December 31, 2010, that had a genotype result with those cases that did not. Of 22,476 cases, 14,922 (66%) had a genotype result. Cases without genotype results were more likely to be patients <19 years of age, with unknown HIV status, of female sex, U.S.-born, and with no recent history of homelessness or substance abuse. Although cases with a genotype result are largely representative of all reported U.S. TB cases, outbreak detection methods that rely solely on genotyping data may underestimate TB transmission among certain groups.
Representativeness of Tuberculosis Genotyping Surveillance in the United States, 2009–2010
Shak, Emma B.; Cowan, Lauren; Starks, Angela M.; Grant, Juliana
2015-01-01
Genotyping of Mycobacterium tuberculosis isolates contributes to tuberculosis (TB) control through detection of possible outbreaks. However, 20% of U.S. cases do not have an isolate for testing, and 10% of cases with isolates do not have a genotype reported. TB outbreaks in populations with incomplete genotyping data might be missed by genotyping-based outbreak detection. Therefore, we assessed the representativeness of TB genotyping data by comparing characteristics of cases reported during January 1, 2009–December 31, 2010, that had a genotype result with those cases that did not. Of 22,476 cases, 14,922 (66%) had a genotype result. Cases without genotype results were more likely to be patients <19 years of age, with unknown HIV status, of female sex, U.S.-born, and with no recent history of homelessness or substance abuse. Although cases with a genotype result are largely representative of all reported U.S. TB cases, outbreak detection methods that rely solely on genotyping data may underestimate TB transmission among certain groups. PMID:26556930
Wang, Qi; Lau, Susanna K P; Liu, Fei; Zhao, Yanlin; Li, Hong Min; Li, Bing Xi; Hu, Yong Liang; Woo, Patrick C Y; Liu, Cui Hua
2014-01-01
Despite the large number of drug-resistant tuberculosis (TB) cases in China, few studies have comprehensively analyzed the drug resistance-associated gene mutations and genotypes in relation to the clinical characteristics of M. tuberculosis (Mtb) isolates. We thus analyzed the phenotypic and genotypic drug resistance profiles of 115 Mtb clinical isolates recovered from a tuberculosis referral hospital in Beijing, China. We also performed genotyping by 28 loci MIRU-VNTR analysis. Socio-demographic and clinical data were retrieved from medical records and analyzed. In total, 78 types of mutations (including 42 previously reported and 36 newly identified ones) were identified in 115 Mtb clinical isolates. There was significant correlation between phenotypic and genotypic drug resistance rates for first-line anti-TB drugs (P<0.001). Genotyping revealed 101 MIRU-VNTR types, with 20 isolates (17.4%) being clustered and 95 isolates (82.6%) having unique genotypes. Higher proportion of re-treatment cases was observed among patients with clustered isolates than those with unique MIRU-VNTR genotypes (75.0% vs. 41.1%). Moreover, clinical epidemiological links were identified among patients infected by Mtb strains belonging to the same clusters, suggesting a potential of transmission among patients. Our study provided information on novel potential drug resistance-associated mutations in Mtb. In addition, the genotyping data from our study suggested that enforcement of the implementation of genotyping in diagnostic routines would provide important information for better monitor and control of TB transmission.
Ritacco, Viviana; López, Beatriz; Cafrune, Patricia I; Ferrazoli, Lucilaine; Suffys, Philip N; Candia, Norma; Vásquez, Lucy; Realpe, Teresa; Fernández, Jorge; Lima, Karla V; Zurita, Jeannete; Robledo, Jaime; Rossetti, Maria L; Kritski, Afranio L; Telles, Maria A; Palomino, Juan C; Heersma, Herre; van Soolingen, Dick; Kremer, Kristin; Barrera, Lucía
2008-08-01
The frequency of the Beijing genotype of Mycobacterium tuberculosis as a cause of tuberculosis (TB) in South America was determined by analyzing genotypes of strains isolated from patients that had been diagnosed with the disease between 1997 and 2003 in seven countries of the subcontinent. In total, 19 of the 1,202 (1.6%) TB cases carried Beijing isolates, including 11 of the 185 patients from Peru (5.9%), five of the 512 patients from Argentina (1.0%), two of the 252 Brazilian cases (0.8%), one of the 166 patients from Paraguay (0.6%) and none of the samples obtained from Chile (35), Colombia (36) and Ecuador (16). Except for two patients that were East Asian immigrants, all cases with Beijing strains were native South Americans. No association was found between carrying a strain with the Beijing genotype and having drug or multi-drug resistant disease. Our data show that presently transmission of M. tuberculosis strains of the Beijing genotype is not frequent in Latin America. In addition, the lack of association of drug resistant TB and infection with M. tuberculosis of the Beijing genotype observed presently demands efforts to define better the contribution of the virulence and lack of response to treatment to the growing spread of Beijing strains observed in other parts of the world.
Characterisation of pks15/1 in clinical isolates of Mycobacterium tuberculosis from Mexico
Zenteno-Cuevas, Roberto; Silva-Hernández, Francisco X; Mendoza-Damián, Fabiola; Ramírez-Hernández, Maria Dolores; Vázquez-Medina, Karen; Widrobo-García, Lorena; Cuellar-Sanchez, Aremy; Muñíz-Salazar, Raquel; Enciso-Moreno, Leonor; Pérez-Navarro, Lucia Monserrat; Enciso-Moreno, José Antonio
2013-01-01
Tuberculosis (TB) is an infectocontagious respiratory disease caused by members of the Mycobacterium tuberculosis complex. A 7 base pair (bp) deletion in the locus polyketide synthase (pks)15/1 is described as polymorphic among members of the M. tuberculosis complex, enabling the identification of Euro-American, Indo-Oceanic and Asian lineages. The aim of this study was to characterise this locus in TB isolates from Mexico. One hundred twenty clinical isolates were recovered from the states of Veracruz and Estado de Mexico. We determined the nucleotide sequence of a ± 400 bp fragment of the locus pks15/1, while genotypic characterisation was performed by spoligotyping. One hundred and fifty isolates contained the 7 bp deletion, while five had the wild type locus. Lineages X (22%), LAM (18%) and T (17%) were the most frequent; only three (2%) of the isolates were identified as Beijing and two (1%) EAI-Manila. The wild type pks15/1 locus was observed in all Asian lineage isolates tested. Our results confirm the utility of locus pks15/1 as a molecular marker for identifying Asian lineages of the M. tuberculosis complex. This marker could be of great value in the epidemiological surveillance of TB, especially in countries like Mexico, where the prevalence of such lineages is unknown. PMID:24037193
Balcells, María Elvira; García, Patricia; Meza, Paulina; Peña, Carlos; Cifuentes, Marcela; Couvin, David; Rastogi, Nalin
2015-01-01
Tuberculosis (TB) remains a significant public health problem worldwide, but the ecology of the prevalent mycobacterial strains, and their transmission, can vary depending on country and region. Chile is a country with low incidence of TB, that has a geographically isolated location in relation to the rest of South American countries due to the Andes Mountains, but recent migration from neighboring countries has changed this situation. We aimed to assess the genotypic diversity of Mycobacterium tuberculosis complex (MTBC) strains in Santiago, Chile, and compare with reports from other Latin-American countries. We analyzed MTBC isolates from pulmonary tuberculosis cases collected between years 2008 and 2013 in Central Santiago, using two genotyping methods: spoligotyping and 12-loci mycobacterial interspersed repetitive unit-variable number of tandem repeats (MIRU-VNTRs). Data obtained were analyzed and compared to the SITVIT2 database. Mean age of the patients was 47.5 years and 61% were male; 11.6% were migrants. Of 103 strains (1 isolate/patient) included, there were 56 distinct spoligotype patterns. Of these, 16 strains (15.5%) corresponded to orphan strains in the SITVIT2 database, not previously reported. Latin American and Mediterranean (LAM) (34%) and T (33%) lineages were the most prevalent strains, followed by Haarlem lineage (16.5%). Beijing family was scarcely represented with only two cases (1.9%), one of them isolated from a Peruvian migrant. The most frequent clustered spoligotypes were SIT33/LAM3 (10.7%), SIT53/T1 (8.7%), SIT50/H3 (7.8%), and SIT37/T3 (6.8%). We conclude that LAM and T genotypes are the most prevalent genotypes of MTBC in Santiago, Chile, and together correspond to almost two thirds of analyzed strains, which is similar to strain distribution reported from other countries of Latin America. Nevertheless, the high proportion of SIT37/T3, which was rarely found in other Latin American countries, may underline a specific history or demographics of Chile related to probable human migrations and evolutions. PMID:25671320
Balcells, María Elvira; García, Patricia; Meza, Paulina; Peña, Carlos; Cifuentes, Marcela; Couvin, David; Rastogi, Nalin
2015-01-01
Tuberculosis (TB) remains a significant public health problem worldwide, but the ecology of the prevalent mycobacterial strains, and their transmission, can vary depending on country and region. Chile is a country with low incidence of TB, that has a geographically isolated location in relation to the rest of South American countries due to the Andes Mountains, but recent migration from neighboring countries has changed this situation. We aimed to assess the genotypic diversity of Mycobacterium tuberculosis complex (MTBC) strains in Santiago, Chile, and compare with reports from other Latin-American countries. We analyzed MTBC isolates from pulmonary tuberculosis cases collected between years 2008 and 2013 in Central Santiago, using two genotyping methods: spoligotyping and 12-loci mycobacterial interspersed repetitive unit-variable number of tandem repeats (MIRU-VNTRs). Data obtained were analyzed and compared to the SITVIT2 database. Mean age of the patients was 47.5 years and 61% were male; 11.6% were migrants. Of 103 strains (1 isolate/patient) included, there were 56 distinct spoligotype patterns. Of these, 16 strains (15.5%) corresponded to orphan strains in the SITVIT2 database, not previously reported. Latin American and Mediterranean (LAM) (34%) and T (33%) lineages were the most prevalent strains, followed by Haarlem lineage (16.5%). Beijing family was scarcely represented with only two cases (1.9%), one of them isolated from a Peruvian migrant. The most frequent clustered spoligotypes were SIT33/LAM3 (10.7%), SIT53/T1 (8.7%), SIT50/H3 (7.8%), and SIT37/T3 (6.8%). We conclude that LAM and T genotypes are the most prevalent genotypes of MTBC in Santiago, Chile, and together correspond to almost two thirds of analyzed strains, which is similar to strain distribution reported from other countries of Latin America. Nevertheless, the high proportion of SIT37/T3, which was rarely found in other Latin American countries, may underline a specific history or demographics of Chile related to probable human migrations and evolutions.
Ismail, Fazli; Couvin, David; Farakhin, Izzah; Abdul Rahman, Zaidah; Rastogi, Nalin; Suraiya, Siti
2014-01-01
Background Tuberculosis (TB) still constitutes a major public health problem in Malaysia. The identification and genotyping based characterization of Mycobacterium tuberculosis complex (MTBC) isolates causing the disease is important to determine the effectiveness of the control and surveillance programs. Objectives This study intended a first assessment of spoligotyping-based MTBC genotypic diversity in Malaysia followed by a comparison of strains with those prevailing in neighboring countries by comparison with an international MTBC genotyping database. Methods Spoligotyping was performed on a total of 220 M. tuberculosis clinical isolates collected in Kelantan and Kuala Lumpur. The results were compared with the SITVIT2 international database of the Pasteur Institute of Guadeloupe. Results Spoligotyping revealed 77 different patterns: 22 corresponded to orphan patterns while 55 patterns containing 198 isolates were assigned a Spoligo International Type (SIT) designation in the database (the latter included 6 newly created SITs). The eight most common SITs grouped 141 isolates (5 to 56 strains per cluster) as follows: SIT1/Beijing, n = 56, 25.5%; SIT745/EAI1-SOM, n = 33, 15.0%; SIT591/EAI6-BGD1, n = 13, 5.9%; SIT256/EAI5, n = 12, 5.5%; SIT236/EAI5, n = 10, 4.6%; SIT19/EAI2-Manila, n = 9, 4.1%; SIT89/EAI2-Nonthaburi, n = 5, 2.3%; and SIT50/H3, n = 3, 1.4%. The association between city of isolation and lineages was statistically significant; Haarlem and T lineages being higher in Kuala Lumpur (p<0.01). However, no statistically significant differences were noted when comparing drug resistance vs. major lineages, nor between gender and clades. Conclusions The ancestral East-African-Indian (EAI) lineage was most predominant followed by the Beijing lineage. A comparison of strains with those prevailing in neighboring countries in South Asia, East Asia and South East Asia underlined the phylogeographical specificity of SIT745 for Malaysia, and its probable ongoing evolution with locally evolved strains sharing a specific signature characterized by absence of spacers 37, 38, and 40. Pending complementary genotyping confirmation, we propose that SIT745/EAI-SOM is tentatively reclassified as SIT745/EAI-MYS. PMID:25502956
Singh, Binit Kumar; Sharma, Surendra K; Sharma, Rohini; Sreenivas, Vishnubhatla; Myneedu, Vithal P; Kohli, Mikashmi; Bhasin, Dinkar; Sarin, Sanjay
2017-01-01
To evaluate the performance of Genotype MTBDRplus VER 2.0 in the diagnosis of Mycobacterium tuberculosis (MTB) in sputum smear-negative pulmonary TB cases. A total of 572 Ziehl-Neelsen sputum smear-negative samples were selected and subjected to line probe assay (Genotype MTBDRplus VER 2.0), and culture in mycobacterial growth indicator tube (MGIT-960). Immunochromatographic test was used to confirm the MTB-complex (MTBC) in culture-positive samples and phenotypic drug-susceptibility testing was done using MGIT-960. The line probe assay was able to diagnose MTBC in 38.2% (213/558) of specimens after excluding 14 nontuberculous mycobacteria. Sensitivity and specificity of the assay were 68.4% and 89.3% respectively, considering MGIT-960 culture as gold standard after excluding contaminated and invalid results. On comparing with composite reference standard, the assay had 71.5% sensitivity and 100% specificity in the diagnosis of tuberculosis. The sensitivity and specificity for detecting resistance to rifampicin (RMP) were 100% and 99.24% respectively and for resistance to isoniazid (INH) were 97.62% and 98.55%, respectively. Genotype MTBDRplus VER 2.0 is a rapid and precise diagnostic tool for detection of MTB in sputum smear-negative samples. It also facilitates accurate diagnosis of RMP and INH resistance within turn around-time.
Séraphin, Marie Nancy; Lauzardo, Michael
2015-12-01
As tuberculosis (TB) incidence decreases in the US, foreign-born persons continue to account for a larger proportion of the burden. In these cross-sectional analyses of 1149 culture-confirmed TB cases genotyped using spoligotyping and 24-locus MIRU, we show that over a quarter of cases among the foreign-born population in Florida resulted from recent transmission of the Mycobacterium tuberculosis complex. In addition, over a third of these cases occurred among persons who had immigrated 5 years or less prior to their diagnosis. Although recent immigration was not a significant predictor of TB transmission, younger age, birthplace in the Americas, homelessness, drug use and TB lineage are risk factors for TB transmission among the foreign-born population in Florida. These data provide actionable insights into TB transmission among the foreign-born population in Florida. Copyright © 2015 Elsevier B.V. All rights reserved.
Chae, Hansong; Han, Seung Jung; Kim, Su-Young; Ki, Chang-Seok; Huh, Hee Jae; Yong, Dongeun
2017-01-01
ABSTRACT The prevalence of tuberculosis continues to be high, and nontuberculous mycobacterial (NTM) infection has also emerged worldwide. Moreover, differential and accurate identification of mycobacteria to the species or subspecies level is an unmet clinical need. Here, we developed a one-step multiplex PCR assay using whole-genome analysis and bioinformatics to identify novel molecular targets. The aims of this assay were to (i) discriminate between the Mycobacterium tuberculosis complex (MTBC) and NTM using rv0577 or RD750, (ii) differentiate M. tuberculosis (M. tuberculosis) from MTBC using RD9, (iii) selectively identify the widespread M. tuberculosis Beijing genotype by targeting mtbk_20680, and (iv) simultaneously detect five clinically important NTM (M. avium, M. intracellulare, M. abscessus, M. massiliense, and M. kansasii) by targeting IS1311, DT1, mass_3210, and mkan_rs12360. An initial evaluation of the multiplex PCR assay using reference strains demonstrated 100% specificity for the targeted Mycobacterium species. Analytical sensitivity ranged from 1 to 10 pg for extracted DNA and was 103 and 104 CFU for pure cultures and nonhomogenized artificial sputum cultures, respectively, of the targeted species. The accuracy of the multiplex PCR assay was further evaluated using 55 reference strains and 94 mycobacterial clinical isolates. Spoligotyping, multilocus sequence analysis, and a commercial real-time PCR assay were employed as standard assays to evaluate the multiplex PCR assay with clinical M. tuberculosis and NTM isolates. The PCR assay displayed 100% identification agreement with the standard assays. Our multiplex PCR assay is a simple, convenient, and reliable technique for differential identification of MTBC, M. tuberculosis, M. tuberculosis Beijing genotype, and major NTM species. PMID:28659320
Chae, Hansong; Han, Seung Jung; Kim, Su-Young; Ki, Chang-Seok; Huh, Hee Jae; Yong, Dongeun; Koh, Won-Jung; Shin, Sung Jae
2017-09-01
The prevalence of tuberculosis continues to be high, and nontuberculous mycobacterial (NTM) infection has also emerged worldwide. Moreover, differential and accurate identification of mycobacteria to the species or subspecies level is an unmet clinical need. Here, we developed a one-step multiplex PCR assay using whole-genome analysis and bioinformatics to identify novel molecular targets. The aims of this assay were to (i) discriminate between the Mycobacterium tuberculosis complex (MTBC) and NTM using rv0577 or RD750, (ii) differentiate M. tuberculosis ( M. tuberculosis ) from MTBC using RD9, (iii) selectively identify the widespread M. tuberculosis Beijing genotype by targeting mtbk_20680 , and (iv) simultaneously detect five clinically important NTM ( M. avium , M. intracellulare , M. abscessus , M. massiliense , and M. kansasii ) by targeting IS 1311 , DT1, mass_3210 , and mkan_rs12360 An initial evaluation of the multiplex PCR assay using reference strains demonstrated 100% specificity for the targeted Mycobacterium species. Analytical sensitivity ranged from 1 to 10 pg for extracted DNA and was 10 3 and 10 4 CFU for pure cultures and nonhomogenized artificial sputum cultures, respectively, of the targeted species. The accuracy of the multiplex PCR assay was further evaluated using 55 reference strains and 94 mycobacterial clinical isolates. Spoligotyping, multilocus sequence analysis, and a commercial real-time PCR assay were employed as standard assays to evaluate the multiplex PCR assay with clinical M. tuberculosis and NTM isolates. The PCR assay displayed 100% identification agreement with the standard assays. Our multiplex PCR assay is a simple, convenient, and reliable technique for differential identification of MTBC, M. tuberculosis , M. tuberculosis Beijing genotype, and major NTM species. Copyright © 2017 American Society for Microbiology.
Sambrano, Dilcia; Correa, Ricardo; Almengor, Pedro; Domínguez, Amada; Vega, Silvio; Goodridge, Amador
2014-08-01
Understanding Mycobacterium tuberculosis biodiversity and transmission is significant for tuberculosis control. This short report aimed to determine the genetic diversity of M. tuberculosis isolates from an outpatient clinic in Panama City. A total of 62 M. tuberculosis isolates were genotyped by 12 loci mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) and Spoligotyping. Forty-five (72.6%) of the isolates showed unique MIRU-VNTR genotypes, and 13 (21%) of the isolates were grouped into four clusters. Four isolates showed polyclonal MIRU-VNTR genotypes. The MIRU-VNTR Hunter-Gaston discriminatory index reached 0.988. The Spoligotyping analysis revealed 16 M. tuberculosis families, including Latin American-Mediterranean, Harlem, and Beijing. These findings suggest a wide genetic diversity of M. tuberculosis isolates at one outpatient clinic. A detailed molecular epidemiology survey is now warranted, especially following second massive immigration for local Panama Canal expansion activities. © The American Society of Tropical Medicine and Hygiene.
Sharma, Surendra K; Jha, Brajesh Kumar; Sharma, Abhishek; Sreenivas, V; Upadhyay, Vishwanath; Jaisinghani, Chandrita; Singla, Rohit; Mishra, Hemant Kumar; Soneja, Manish
2016-12-01
The N-acetyltransferase 2 (NAT2) gene encodes an enzyme which both activates and deactivates arylamine and other drugs and carcinogens. This study was aimed to investigate the role of NAT2 gene polymorphism in anti-tuberculosis drug-induced hepatotoxicity (DIH). In this prospective study, polymerase chain reaction-restriction fragment length polymorphism results for NAT2 gene were compared between 185 tuberculosis patients who did not develop DIH and 105 tuberculosis patients who developed DIH while on anti-tuberculosis drugs. Frequency of slow-acetylator genotype was commonly encountered and was not significantly different between DIH (82.8%) and non-DIH (77.2%) patients. However, the genotypic distribution of variant NAT2FNx015/FNx017 amongst slow-acetylator genotypes was significantly higher in DIH (56%) group as compared to non-DIH (39%) group (odds ratio 2.02; P=0.006). The present study demonstrated no association between NAT2 genotype and DIH in the north Indian patients with tuberculosis.
Gurjav, Ulziijargal; Outhred, Alexander C.; Jelfs, Peter; McCallum, Nadine; Wang, Qinning; Hill-Cawthorne, Grant A.; Marais, Ben J.; Sintchenko, Vitali
2016-01-01
Australia has a low tuberculosis incidence rate with most cases occurring among recent immigrants. Given suboptimal cluster resolution achieved with 24-locus mycobacterium interspersed repetitive unit (MIRU-24) genotyping, the added value of whole genome sequencing was explored. MIRU-24 profiles of all Mycobacterium tuberculosis culture-confirmed tuberculosis cases diagnosed between 2009 and 2013 in New South Wales (NSW), Australia, were examined and clusters identified. The relatedness of cases within the largest MIRU-24 clusters was assessed using whole genome sequencing and phylogenetic analyses. Of 1841 culture-confirmed TB cases, 91.9% (1692/1841) had complete demographic and genotyping data. East-African Indian (474; 28.0%) and Beijing (470; 27.8%) lineage strains predominated. The overall rate of MIRU-24 clustering was 20.1% (340/1692) and was highest among Beijing lineage strains (35.7%; 168/470). One Beijing and three East-African Indian (EAI) clonal complexes were responsible for the majority of observed clusters. Whole genome sequencing of the 4 largest clusters (30 isolates) demonstrated diverse single nucleotide polymorphisms (SNPs) within identified clusters. All sequenced EAI strains and 70% of Beijing lineage strains clustered by MIRU-24 typing demonstrated distinct SNP profiles. The superior resolution provided by whole genome sequencing demonstrated limited M. tuberculosis transmission within NSW, even within identified MIRU-24 clusters. Routine whole genome sequencing could provide valuable public health guidance in low burden settings. PMID:27737005
Human tuberculosis due to Mycobacterium bovis in the United States, 1995-2005.
Hlavsa, Michele C; Moonan, Patrick K; Cowan, Lauren S; Navin, Thomas R; Kammerer, J Steve; Morlock, Glenn P; Crawford, Jack T; Lobue, Philip A
2008-07-15
Understanding the epidemiology of human Mycobacterium bovis tuberculosis (TB) in the United States is imperative; this disease can be foodborne or airborne, and current US control strategies are focused on TB due to Mycobacterium tuberculosis and airborne transmission. The National TB Genotyping Service's work has allowed systematic identification of M. tuberculosis-complex isolates and enabled the first US-wide study of M. bovis TB. Results of spacer oligonucleotide and mycobacterial interspersed repetitive units typing were linked to corresponding national surveillance data for TB cases reported for the period 2004-2005 and select cases for the period 1995-2003. We also used National TB Genotyping Service data to evaluate the traditional antituberculous drug resistance-based case definition of M. bovis TB. Isolates from 165 (1.4%) of 11,860 linked cases were identified as M. bovis. Patients who were not born in the United States, Hispanic patients, patients <15 years of age, patients reported to be HIV infected, and patients with extrapulmonary disease each had increased adjusted odds of having M. bovis versus M. tuberculosis TB. Most US-born, Hispanic patients with TB due to M. bovis (29 [90.6%] of 32) had extrapulmonary disease, and their overall median age was 9.5 years. The National TB Genotyping Service's data indicated that the pyrazinamide-based case definition's sensitivity was 82.5% (95% confidence interval; 75.3%-87.9%) and that data identified 14 errors in pyrazinamide-susceptibility testing or reporting. The prevalence of extrapulmonary disease in the young, US-born Hispanic population suggests recent transmission of M. bovis, possibly related to foodborne exposure. Because of its significantly different epidemiologic profile, compared with that of M. tuberculosis TB, we recommend routine surveillance of M. bovis TB. Routine surveillance and an improved understanding of M. bovis TB transmission dynamics would help direct the development of additional control measures.
Velayati, Ali Akbar; Farnia, Parissa; Mozafari, Mohadese; Malekshahian, Donya; Farahbod, Amir Masoud; Seif, Shima; Rahideh, Snaz
2015-01-01
BACKGROUND: The potential role of environmental Mycobacterium tuberculosis in the epidemiology of TB remains unknown. We investigated the transmission of M tuberculosis from humans to the environment and the possible transmission of M tuberculosis from the environment to humans. METHODS: A total of 1,500 samples were collected from three counties of the Tehran, Iran metropolitan area from February 2012 to January 2014. A total of 700 water samples (47%) and 800 soil samples (53%) were collected. Spoligotyping and the mycobacterial interspersed repetitive units-variable number of tandem repeats typing method were performed on DNA extracted from single colonies. Genotypes of M tuberculosis strains isolated from the environment were compared with the genotypes obtained from 55 patients with confirmed pulmonary TB diagnosed during the study period in the same three counties. RESULTS: M tuberculosis was isolated from 11 of 800 soil samples (1%) and 71 of 700 water samples (10%). T family (56 of 82, 68%) followed by Delhi/CAS (11 of 82, 13.4%) were the most frequent M tuberculosis superfamilies in both water and soil samples. Overall, 27.7% of isolates in clusters were related. No related typing patterns were detected between soil, water, and clinical isolates. The most frequent superfamily of M tuberculosis in clinical isolates was Delhi/CAS (142, 30.3%) followed by NEW-1 (127, 27%). The bacilli in contaminated soil (36%) and damp water (8.4%) remained reculturable in some samples up to 9 months. CONCLUSIONS: Although the dominant M tuberculosis superfamilies in soil and water did not correspond to the dominant M tuberculosis family in patients, the presence of circulating genotypes of M tuberculosis in soil and water highlight the risk of transmission. PMID:25340935
Puerto, Gloria; Erazo, Lina; Wintaco, Maira; Castro, Claudia; Ribón, Wellman; Guerrero, Martha Inírida
2015-01-01
Introduction Tuberculosis (TB) remains a primary public health problem worldwide. The number of multidrug-resistant tuberculosis (MDR TB) cases has increased in recent years in Colombia. Knowledge of M. tuberculosis genotypes defined by spoligotyping can help determine the circulation of genotypes that must be controlled to prevent the spread of TB. Objective To describe the genotypes of M. tuberculosis using spoligotyping in resistant and drug-sensitive isolates and their possible associations with susceptibility to first-line drugs. Methods An analytical observational study was conducted that included 741 isolates of M. tuberculosis from patients. The isolates originated from 31 departments and were obtained by systematic surveillance between 1999 and 2012. Results In total 61.94% of the isolates were resistant to 1 or more drugs, and 147 isolates were MDR. In total, 170 genotypes were found in the population structure of Colombian M. tuberculosis isolates. The isolates were mainly represented by four families: LAM (39.9%), Haarlem (19%), Orphan (17%) and T (9%). The SIT42 (LAM 9) was the most common genotype and contained 24.7% of the isolates, followed by the genotypes SIT62 (Haarlem1), SIT53 (T1), and SIT50 (H3). A high clustering of isolates was evident with 79.8% of the isolates classified into 32 groups. The Beijing family was associated with resistant isolates, whereas the Haarlem and T families were associated with sensitive isolates. The Haarlem family was also associated with grouped isolates (p = 0.031). Conclusions A high proportion (approximately 80%) of isolates was found in clusters; these clusters were not associated with resistance to first-line drugs. The Beijing family was associated with drug resistance, whereas the T and Haarlem families were associated with susceptibility in the Colombian isolates studied. PMID:26066494
Flores-Treviño, Samantha; Morfín-Otero, Rayo; Rodríguez-Noriega, Eduardo; González-Díaz, Esteban; Pérez-Gómez, Héctor R; Bocanegra-García, Virgilio; Vera-Cabrera, Lucio; Garza-González, Elvira
2015-01-01
Determining the genetic diversity of M. tuberculosis strains allows identification of the distinct Mycobacterium tuberculosis genotypes responsible for tuberculosis in different regions. Several studies have reported the genetic diversity of M. tuberculosis strains in Mexico, but little information is available from the state of Jalisco. Therefore, the aim of this study was to determine the genetic diversity of Mycobacterium tuberculosis clinical isolates from Western Mexico. Sixty-eight M. tuberculosis isolates were tested for susceptibility to first-line drugs using manual Mycobacteria Growth Indicator Tube method and genotyped using spoligotyping and IS6110-restriction fragment length polymorphism (RFLP) pattern analyses. Forty-seven (69.1%) isolates were grouped into 10 clusters and 21 isolates displayed single patterns by spoligotyping. Three of the 21 single patterns corresponded to orphan patterns in the SITVITWEB database, and 1 new type that contained 2 isolates was created. The most prevalent lineages were T (38.2%), Haarlem (17.7%), LAM (17.7%), X (7.4%), S (5.9%), EAI (1.5%) and Beijing (1.5%). Six (12.8%) of the clustered isolates were MDR, and type 406 of the Beijing family was among the MDR isolates. Seventeen (26.2%) isolates were grouped into 8 clusters and 48 isolates displayed single patterns by IS6110-RFLP. Combination of IS6110-RFLP and spoligotyping reduced the clustering rate to 20.0%. The results show that T, Haarlem, and LAM are predominant lineages among clinical isolates of M. tuberculosis in Guadalajara, Mexico. Clustering rates indicated low transmission of MDR strains. We detected a rare Beijing genotype, SIT406, which was a highly resistant strain. This is the first report of this Beijing genotype in Latin America.
Flores-Treviño, Samantha; Morfín-Otero, Rayo; Rodríguez-Noriega, Eduardo; González-Díaz, Esteban; Pérez-Gómez, Héctor R.; Bocanegra-García, Virgilio; Vera-Cabrera, Lucio; Garza-González, Elvira
2015-01-01
Determining the genetic diversity of M. tuberculosis strains allows identification of the distinct Mycobacterium tuberculosis genotypes responsible for tuberculosis in different regions. Several studies have reported the genetic diversity of M. tuberculosis strains in Mexico, but little information is available from the state of Jalisco. Therefore, the aim of this study was to determine the genetic diversity of Mycobacterium tuberculosis clinical isolates from Western Mexico. Sixty-eight M. tuberculosis isolates were tested for susceptibility to first-line drugs using manual Mycobacteria Growth Indicator Tube method and genotyped using spoligotyping and IS6110-restriction fragment length polymorphism (RFLP) pattern analyses. Forty-seven (69.1%) isolates were grouped into 10 clusters and 21 isolates displayed single patterns by spoligotyping. Three of the 21 single patterns corresponded to orphan patterns in the SITVITWEB database, and 1 new type that contained 2 isolates was created. The most prevalent lineages were T (38.2%), Haarlem (17.7%), LAM (17.7%), X (7.4%), S (5.9%), EAI (1.5%) and Beijing (1.5%). Six (12.8%) of the clustered isolates were MDR, and type 406 of the Beijing family was among the MDR isolates. Seventeen (26.2%) isolates were grouped into 8 clusters and 48 isolates displayed single patterns by IS6110-RFLP. Combination of IS6110-RFLP and spoligotyping reduced the clustering rate to 20.0%. The results show that T, Haarlem, and LAM are predominant lineages among clinical isolates of M. tuberculosis in Guadalajara, Mexico. Clustering rates indicated low transmission of MDR strains. We detected a rare Beijing genotype, SIT406, which was a highly resistant strain. This is the first report of this Beijing genotype in Latin America. PMID:25695431
Santos, Paula Fernanda Gonçalves Dos; Costa, Elis Regina Dalla; Ramalho, Daniela M; Rossetti, Maria Lucia; Barcellos, Regina Bones; Nunes, Luciana de Souza; Esteves, Leonardo Souza; Rodenbusch, Rodrigo; Anthony, Richard M; Bergval, Indra; Sengstake, Sarah; Viveiros, Miguel; Kritski, Afrânio; Oliveira, Martha M
2017-06-01
To cope with the emergence of multidrug-resistant tuberculosis (MDR-TB), new molecular methods that can routinely be used to screen for a wide range of drug resistance related genetic markers in the Mycobacterium tuberculosis genome are urgently needed. To evaluate the performance of multiplex ligaton-dependent probe amplification (MLPA) against Genotype® MTBDRplus to detect resistance to isoniazid (INHr) and rifampicin (RIFr). 96 culture isolates characterised for identification, drug susceptibility testing (DST) and sequencing of rpoB, katG, and inhA genes were evaluated by the MLPA and Genotype®MTBDRplus assays. With sequencing as a reference standard, sensitivity (SE) to detect INHr was 92.8% and 85.7%, and specificity (SP) was 100% and 97.5%, for MLPA and Genotype®MTBDRplus, respectively. In relation to RIFr, SE was 87.5% and 100%, and SP was 100% and 98.8%, respectively. Kappa value was identical between Genotype®MTBDRplus and MLPA compared with the standard DST and sequencing for detection of INHr [0.83 (0.75-0.91)] and RIFr [0.93 (0.88-0.98)]. Compared to Genotype®MTBDRplus, MLPA showed similar sensitivity to detect INH and RIF resistance. The results obtained by the MLPA and Genotype®MTBDRplus assays indicate that both molecular tests can be used for the rapid detection of drug-resistant TB with high accuracy. MLPA has the added value of providing information on the circulating M. tuberculosis lineages.
Gurjav, Ulziijargal; Jelfs, Peter; Hill-Cawthorne, Grant A; Marais, Ben J; Sintchenko, Vitali
2016-06-01
In recent years the State of New South Wales (NSW), Australia, has maintained a low tuberculosis incidence rate with little evidence of local transmission. Nearly 90% of notified tuberculosis cases occurred in people born in tuberculosis-endemic countries. We analyzed geographic, epidemiological and genotypic data of all culture-confirmed tuberculosis cases to identify the bacterial and demographic determinants of tuberculosis hotspot areas in NSW. Standard 24-loci mycobacterium interspersed repetitive unit-variable number tandem repeat (MIRU-24) typing was performed on all isolates recovered between 2009 and 2013. In total 1692/1841 (91.9%) cases with confirmed Mycobacterium tuberculosis infection had complete MIRU-24 and demographic data and were included in the study. Despite some year-to-year variability, spatio-temporal analysis identified four tuberculosis hotspots. The incidence rate and the relative risk of tuberculosis in these hotspots were 2- to 10-fold and 4- to 8-fold higher than the state average, respectively. MIRU-24 profiles of M. tuberculosis isolates associated with these hotspots revealed high levels of heterogeneity. This suggests that these spatio-temporal hotspots, within this low incidence setting, can represent areas of predominantly imported infection rather than clusters of cases due to local transmission. These findings provide important epidemiological insight and demonstrate the value of combining tuberculosis genotyping and spatiotemporal data to guide better-targeted public health interventions. Copyright © 2015 Elsevier B.V. All rights reserved.
Bolado-Martínez, Enrique; Candia-Plata, Maria Del Carmen; Zenteno-Cuevas, Roberto; Mendoza Damián, Fabiola; Avilés-Acosta, Magali; Álvarez-Hernández, Gerardo
2015-11-01
Tuberculosis is a public health problem across Mexico. This paper aims to select a panel, with a minimum number of repetitive elements (MIRU-VNTR) for genotypic characterization of Mycobacterium tuberculosis (M. tuberculosis) clinical isolates. In this study, a full panel of 24 MIRU-VNTR loci was used to discriminate 65 clinical isolates of M. tuberculosis from three different geographical regions of Mexico. Those loci with the highest discriminatory power were subsequently selected. The panel, including five loci, was obtained by selecting the highest values of allelic diversity among the genotypes obtained. The dendrogram, generated by the panel MIRU-VNTR 5, showed a high discriminatory power with 65 unique genotype profiles and formed clusters according to the geographical region of origin. The panel MIRU-VNTR 5 can be useful for characterizing clinical isolates of M. tuberculosis in Mexico. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
LÓPEZ, B; AGUILAR, D; OROZCO, H; BURGER, M; ESPITIA, C; RITACCO, V; BARRERA, L; KREMER, K; HERNANDEZ-PANDO, R; HUYGEN, K; VAN SOOLINGEN, D
2003-01-01
In the last decade, an unprecedented genetic diversity has been disclosed among Mycobacterium tuberculosis strains found worldwide. However, well-conserved genotypes seem to prevail in areas with high incidence of tuberculosis. As this may be related to selective advantages, such as advanced mechanisms to circumvent [M. bovis Bacille Calmette–Guerin (BCG)-induced] host defence mechanisms, we investigated the influence of strain diversity on the course of experimental disease. Twelve M. tuberculosis strains, representing four major genotype families found worldwide today, and the laboratory strain H37Rv were each used to infect BALB/c mice by direct intratracheal injection. Compared with H37Rv, infections with Beijng strains were characterized by extensive pneumonia, early but ephemeral tumour necrosis factor-alpha (TNF-α) and inducible isoform of nitric oxide synthetase (iNOS) expression, and significantly higher earlier mortality. Conversely, Canetti strains induced limited pneumonia, sustained TNF-α and iNOS expression in lungs, and almost 100% survival. Strains of the Somali and the Haarlem genotype families displayed less homogeneous, intermediate rates of survival. Previous BCG vaccination protected less effectively against infection with Beijing strains than against the H37Rv strain. In conclusion, genetically different M. tuberculosis strains evoked markedly different immunopathological events. Bacteria with the Beijing genotype, highly prevalent in Asia and the former USSR, elicited a non-protective immune response in mice and were the most virulent. Future immunological research, particularly on candidate vaccines, should include a broad spectrum of M. tuberculosis genotypes rather than a few laboratory strains. PMID:12823275
Wamala, Dan; Okee, Moses; Kigozi, Edgar; Couvin, David; Rastogi, Nalin; Joloba, Moses; Kallenius, Gunilla
2015-09-01
In Uganda, the emerging Uganda genotype of Mycobacterium tuberculosis is the most common cause of pulmonary tuberculosis (PTB), and accounts for up to 70% of isolates. Extrapulmonary TB (EPTB) is less studied in Uganda. Molecular characterization using deletion analysis and spoligotyping was performed on 121 M. tuberculosis isolates from lymph node fine needle biopsy aspirates of Ugandan patients with tuberculous lymphadenitis. The evolutionary relationships and worldwide distribution of the spoligotypes were analyzed. Mycobacterium tuberculosis was the only cause of EPTB in this study. The T2 sublineage was the most predominant lineage and the Uganda genotype was the dominant genotype. There were 54 spoligotype patterns among the 121 study isolates. The dominant spoligotypes were shared international types (SIT) SIT420, SIT53, SIT 135, SIT 128 and SIT590 in descending order. All but SIT420 were previously reported in pulmonary TB in this setting. The phylogenetic analysis showed a long descendant branch of spoligotypes belonging to the T2-Uganda sublineage containing specifically SITs 135, 128 and 420. In most cases, the spoligotypes were similar to those causing PTB, but the Uganda genotype was found to be less common in EPTB than previously reported for PTB in Uganda. The phylogenetic analysis and the study of the worldwide distribution of clustered spoligotypes indicate an ongoing evolution of the Uganda genotype, with the country of Uganda at the center of this evolution.
Comas, Iñaki; Hailu, Elena; Kiros, Teklu; Bekele, Shiferaw; Mekonnen, Wondale; Gumi, Balako; Tschopp, Rea; Ameni, Gobena; Hewinson, R. Glyn; Robertson, Brian D.; Goig, Galo A.; Stucki, David; Gagneux, Sebastien; Aseffa, Abraham; Young, Douglas; Berg, Stefan
2015-01-01
Summary Colonial medical reports claimed that tuberculosis (TB) was largely unknown in Africa prior to European contact, providing a “virgin soil” for spread of TB in highly susceptible populations previously unexposed to the disease [1, 2]. This is in direct contrast to recent phylogenetic models which support an African origin for TB [3, 4, 5, 6]. To address this apparent contradiction, we performed a broad genomic sampling of Mycobacterium tuberculosis in Ethiopia. All members of the M. tuberculosis complex (MTBC) arose from clonal expansion of a single common ancestor [7] with a proposed origin in East Africa [3, 4, 8]. Consistent with this proposal, MTBC lineage 7 is almost exclusively found in that region [9, 10, 11]. Although a detailed medical history of Ethiopia supports the view that TB was rare until the 20th century [12], over the last century Ethiopia has become a high-burden TB country [13]. Our results provide further support for an African origin for TB, with some genotypes already present on the continent well before European contact. Phylogenetic analyses reveal a pattern of serial introductions of multiple genotypes into Ethiopia in association with human migration and trade. In place of a “virgin soil” fostering the spread of TB in a previously naive population, we propose that increased TB mortality in Africa was driven by the introduction of European strains of M. tuberculosis alongside expansion of selected indigenous strains having biological characteristics that carry a fitness benefit in the urbanized settings of post-colonial Africa. PMID:26687624
Comas, Iñaki; Hailu, Elena; Kiros, Teklu; Bekele, Shiferaw; Mekonnen, Wondale; Gumi, Balako; Tschopp, Rea; Ameni, Gobena; Hewinson, R Glyn; Robertson, Brian D; Goig, Galo A; Stucki, David; Gagneux, Sebastien; Aseffa, Abraham; Young, Douglas; Berg, Stefan
2015-12-21
Colonial medical reports claimed that tuberculosis (TB) was largely unknown in Africa prior to European contact, providing a "virgin soil" for spread of TB in highly susceptible populations previously unexposed to the disease [1, 2]. This is in direct contrast to recent phylogenetic models which support an African origin for TB [3-6]. To address this apparent contradiction, we performed a broad genomic sampling of Mycobacterium tuberculosis in Ethiopia. All members of the M. tuberculosis complex (MTBC) arose from clonal expansion of a single common ancestor [7] with a proposed origin in East Africa [3, 4, 8]. Consistent with this proposal, MTBC lineage 7 is almost exclusively found in that region [9-11]. Although a detailed medical history of Ethiopia supports the view that TB was rare until the 20(th) century [12], over the last century Ethiopia has become a high-burden TB country [13]. Our results provide further support for an African origin for TB, with some genotypes already present on the continent well before European contact. Phylogenetic analyses reveal a pattern of serial introductions of multiple genotypes into Ethiopia in association with human migration and trade. In place of a "virgin soil" fostering the spread of TB in a previously naive population, we propose that increased TB mortality in Africa was driven by the introduction of European strains of M. tuberculosis alongside expansion of selected indigenous strains having biological characteristics that carry a fitness benefit in the urbanized settings of post-colonial Africa. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Izumi, Kiyohiko; Ohkado, Akihiro; Uchimura, Kazuhiro; Murase, Yoshiro; Tatsumi, Yuriko; Kayebeta, Aya; Watanabe, Yu; Ishikawa, Nobukatsu
2015-01-01
Identifying ongoing tuberculosis infection sites is crucial for breaking chains of transmission in tuberculosis-prevalent urban areas. Previous studies have pointed out that detection of local accumulation of tuberculosis patients based on their residential addresses may be limited by a lack of matching between residences and tuberculosis infection sites. This study aimed to identify possible tuberculosis hotspots using TB genotype clustering statuses and a concept of "activity space", a place where patients spend most of their waking hours. We further compared the spatial distribution by different residential statuses and describe urban environmental features of the detected hotspots. Culture-positive tuberculosis patients notified to Shinjuku city from 2003 to 2011 were enrolled in this case-based cross-sectional study, and their demographic and clinical information, TB genotype clustering statuses, and activity space were collected. Spatial statistics (Global Moran's I and Getis-Ord Gi* statistics) identified significant hotspots in 152 census tracts, and urban environmental features and tuberculosis patients' characteristics in these hotspots were assessed. Of the enrolled 643 culture-positive tuberculosis patients, 416 (64.2%) were general inhabitants, 42 (6.5%) were foreign-born people, and 184 were homeless people (28.6%). The percentage of overall genotype clustering was 43.7%. Genotype-clustered general inhabitants and homeless people formed significant hotspots around a major railway station, whereas the non-clustered general inhabitants formed no hotspots. This suggested the detected hotspots of activity spaces may reflect ongoing tuberculosis transmission sites and were characterized by smaller residential floor size and a higher proportion of non-working households. Activity space-based spatial analysis suggested possible TB transmission sites around the major railway station and it can assist in further comprehension of TB transmission dynamics in an urban setting in Japan.
Diversity and Evolution of Mycobacterium tuberculosis: Moving to Whole-Genome-Based Approaches
Niemann, Stefan; Supply, Philip
2014-01-01
Genotyping of clinical Mycobacterium tuberculosis complex (MTBC) strains has become a standard tool for epidemiological tracing and for the investigation of the local and global strain population structure. Of special importance is the analysis of the expansion of multidrug (MDR) and extensively drug-resistant (XDR) strains. Classical genotyping and, more recently, whole-genome sequencing have revealed that the strains of the MTBC are more diverse than previously anticipated. Globally, several phylogenetic lineages can be distinguished whose geographical distribution is markedly variable. Strains of particular (sub)lineages, such as Beijing, seem to be more virulent and associated with enhanced resistance levels and fitness, likely fueling their spread in certain world regions. The upcoming generalization of whole-genome sequencing approaches will expectedly provide more comprehensive insights into the molecular and epidemiological mechanisms involved and lead to better diagnostic and therapeutic tools. PMID:25190252
Alvarado-Esquivel, Cosme; García-Corral, Nora; Carrero-Dominguez, David; Enciso-Moreno, José Antonio; Gurrola-Morales, Teodoro; Portillo-Gómez, Leopoldo; Rossau, Rudi; Mijs, Wouter
2009-01-01
Background Little information is available on the molecular epidemiology in Mexico of Mycobacterium species infecting extrapulmonary sites in humans. This study used molecular methods to determine the Mycobacterium species present in tissues and body fluids in specimens obtained from patients in Mexico with extrapulmonary disease. Methods Bacterial or tissue specimens from patients with clinical or histological diagnosis of extrapulmonary tuberculosis were studied. DNA extracts from 30 bacterial cultures grown in Löwenstein Jensen medium and 42 paraffin-embedded tissues were prepared. Bacteria were cultured from urine, cerebrospinal fluid, pericardial fluid, gastric aspirate, or synovial fluid samples. Tissues samples were from lymph nodes, skin, brain, vagina, and peritoneum. The DNA extracts were analyzed by PCR and by line probe assay (INNO-LiPA MYCOBACTERIA v2. Innogenetics NV, Gent, Belgium) in order to identify the Mycobacterium species present. DNA samples positive for M. tuberculosis complex were further analyzed by PCR and line probe assay (INNO-LiPA Rif.TB, Innogenetics NV, Gent, Belgium) to detect mutations in the rpoB gene associated with rifampicin resistance. Results Of the 72 DNA extracts, 26 (36.1%) and 23 (31.9%) tested positive for Mycobacterium species by PCR or line probe assay, respectively. In tissues, M. tuberculosis complex and M. genus were found in lymph nodes, and M. genus was found in brain and vagina specimens. In body fluids, M. tuberculosis complex was found in synovial fluid. M. gordonae, M. smegmatis, M. kansasii, M. genus, M. fortuitum/M. peregrinum complex and M. tuberculosis complex were found in urine. M. chelonae/M. abscessus was found in pericardial fluid and M. kansasii was found in gastric aspirate. Two of M. tuberculosis complex isolates were also PCR and LiPA positive for the rpoB gene. These two isolates were from lymph nodes and were sensitive to rifampicin. Conclusion 1) We describe the Mycobacterium species diversity in specimens derived from extrapulmonary sites in symptomatic patients in Mexico; 2) Nontuberculous mycobacteria were found in a considerable number of patients; 3) Genotypic rifampicin resistance in M. tuberculosis complex infections in lymph nodes was not found. PMID:19272158
Schön, T; Miotto, P; Köser, C U; Viveiros, M; Böttger, E; Cambau, E
2017-03-01
Drug-resistance testing, or antimicrobial susceptibility testing (AST), is mandatory for Mycobacterium tuberculosis in cases of failure on standard therapy. We reviewed the different methods and techniques of phenotypic and genotypic approaches. Although multiresistant and extensively drug-resistant (MDR/XDR) tuberculosis is present worldwide, AST for M. tuberculosis (AST-MTB) is still mainly performed according to the resources available rather than the drug-resistance rates. Phenotypic methods, i.e. culture-based AST, are commonly used in high-income countries to confirm susceptibility of new cases of tuberculosis. They are also used to detect resistance in tuberculosis cases with risk factors, in combination with genotypic tests. In low-income countries, genotypic methods screening hot-spot mutations known to confer resistance were found to be easier to perform because they avoid the culture and biosafety constraint. Given that genotypic tests can rapidly detect the prominent mechanisms of resistance, such as the rpoB mutation for rifampicin resistance, we are facing new challenges with the observation of false-resistance (mutations not conferring resistance) and false-susceptibility (mutations different from the common mechanism) results. Phenotypic and genotypic approaches are therefore complementary for obtaining a high sensitivity and specificity for detecting drug resistances and susceptibilities to accurately predict MDR/XDR cure and to gather relevant data for resistance surveillance. Although AST-MTB was established in the 1960s, there is no consensus reference method for MIC determination against which the numerous AST-MTB techniques can be compared. This information is necessary for assessing in vitro activity and setting breakpoints for future anti-tuberculosis agents. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Ritacco, Viviana; Iglesias, María-José; Ferrazoli, Lucilaine; Monteserin, Johana; Dalla Costa, Elis R; Cebollada, Alberto; Morcillo, Nora; Robledo, Jaime; de Waard, Jacobus H; Araya, Pamela; Aristimuño, Liselotte; Díaz, Raúl; Gavin, Patricia; Imperiale, Belen; Simonsen, Vera; Zapata, Elsa M; Jiménez, María S; Rossetti, Maria L; Martin, Carlos; Barrera, Lucía; Samper, Sofia
2012-06-01
Multidrug-resistant Mycobacterium tuberculosis strain diversity in Ibero-America was examined by comparing extant genotype collections in national or state tuberculosis networks. To this end, genotypes from over 1000 patients with multidrug-resistant tuberculosis diagnosed from 2004 through 2008 in Argentina, Brazil, Chile, Colombia, Venezuela and Spain were compared in a database constructed ad hoc. Most of the 116 clusters identified by IS6110 restriction fragment length polymorphism were small and restricted to individual countries. The three largest clusters, of 116, 49 and 25 patients, were found in Argentina and corresponded to previously documented locally-epidemic strains. Only 13 small clusters involved more than one country, altogether accounting for 41 patients, of whom 13 were, in turn, immigrants from Latin American countries different from those participating in the study (Peru, Ecuador and Bolivia). Most of these international clusters belonged either to the emerging RD(Rio) LAM lineage or to the Haarlem family of M. tuberculosis and four were further split by country when analyzed with spoligotyping and rifampin resistance-conferring mutations, suggesting that they did not represent ongoing transnational transmission events. The Beijing genotype accounted for 1.3% and 10.2% of patients with multidrug-resistant tuberculosis in Latin America and Spain, respectively, including one international cluster of two cases. In brief, Euro-American genotypes were widely predominant among multidrug-resistant M. tuberculosis strains in Ibero-America, reflecting closely their predominance in the general M. tuberculosis population in the region, and no evidence was found of acknowledged outbreak strains trespassing country borders. Copyright © 2011 Elsevier B.V. All rights reserved.
Luetkemeyer, Anne F; Kendall, Michelle A; Wu, Xingye; Lourenço, Maria Cristina; Jentsch, Ute; Swindells, Susan; Qasba, Sarojini S; Sanchez, Jorge; Havlir, Diane V; Grinsztejn, Beatriz; Sanne, Ian M; Firnhaber, Cynthia
2014-04-01
Limited performance data from line probe assays (LPAs), nucleic acid tests used for the rapid diagnosis of tuberculosis (TB), nontuberculosis mycobacteria (NTM), and Mycobacterium tuberculosis drug resistance are available for HIV-infected individuals, in whom paucibacillary TB is common. In this study, the strategy of testing sputum with GenoType MTBDRplus (MTBDR-Plus) and GenoType Direct LPA (Direct LPA) was compared to a gold standard of one mycobacterial growth indicator tube (MGIT) liquid culture. HIV-positive (HIV(+)) individuals with suspected TB from southern Africa and South America with <7 days of TB treatment had 1 sputum specimen tested with Direct LPA, MTBDR-Plus LPA, smear microscopy, MGIT, biochemical identification of mycobacterial species, and culture-based drug-susceptibility testing (DST). Of 639 participants, 59.3% were MGIT M. tuberculosis culture positive, of which 276 (72.8%) were acid-fast bacillus (AFB) smear positive. MTBDR-Plus had a sensitivity of 81.0% and a specificity of 100%, with sensitivities of 44.1% in AFB smear-negative versus 94.6% in AFB smear-positive specimens. For specimens that were positive for M. tuberculosis by MTBDR-Plus, the sensitivity and specificity for rifampin resistance were 91.7% and 96.6%, respectively, and for isoniazid (INH) they were 70.6% and 99.1%. The Direct LPA had a sensitivity of 88.4% and a specificity of 94.6% for M. tuberculosis detection, with a sensitivity of 72.5% in smear-negative specimens. Ten of 639 MGIT cultures grew Mycobacterium avium complex or Mycobacterium kansasii, half of which were detected by Direct LPA. Both LPA assays performed well in specimens from HIV-infected individuals, including in AFB smear-negative specimens, with 72.5% sensitivity for M. tuberculosis identification with the Direct LPA and 44.1% sensitivity with MTBDR-Plus. LPAs have a continued role for use in settings where rapid identification of INH resistance and clinically relevant NTM are priorities.
MIRU-VNTR typing of drug-resistant tuberculosis isolates in Greece.
Rovina, Nikoletta; Karabela, Simona; Constantoulakis, Pantelis; Michou, Vassiliki; Konstantinou, Konstantinos; Sgountzos, Vassileios; Roussos, Charis; Poulakis, Nikolaos
2011-08-01
The increasing immigration rate in Greece from countries with a high prevalence of Mycobacterium tuberculosis (MTB) and multidrug-resistant tuberculosis (MDR-TB) may have an impact οn the number of MDR-TB cases in Greece. The aim of this study was to genotypically characterize the MTB isolates from patients with pulmonary drug-resistant tuberculosis (DR-TB) in Greece, and to determine whether there is any association between the prevalent genotypes and drug resistance. Fifty-three drug-resistant MTB strains isolated from culture specimens of clinical material from native Greeks and immigrant patients with pulmonary tuberculosis were genotyped using the mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) method. The phylogenetically distinct groups of isolates identified were: the Beijing (34%), the LAM (11%), the Haarlem (24.5%), the Uganda I (9.4%), the Ural (3.8%), the Delhi/CAS (9.4%) and the Cameroon (3.8%) families. Greek patients were more likely to have monoresistant and polyresistant TB with the most prevalent isolates belonging to the Haarlem family. Among foreign-born patients with MDR-TB, the most prevalent genotypes belonged to the Beijing family. MIRU-VNTR rapidly obtained clinically useful genotyping data, by characterizing clonal MTB heterogeneity in the isolated strains. Our results underline the need for more effective antituberculosis control programs in order to control the expansion of DR-TB in Greece.
Chandramuki, Akepati; Khanna, Neelam; Shashkina, Elena; Kurepina, Natalia; Mathema, Barun; Kreiswirth, Barry N; Venkataswamy, Manjunatha M
2017-01-01
Specific genotypes of Mycobacterium tuberculosis (MTB) have been reported to cause outbreaks of pulmonary tuberculosis (TB) in geographical areas that are endemic to TB. However, since there is little epidemiological evidence on the association of particular genotypes that cause tuberculous meningitis (TBM), we sought to investigate the association of specific MTB strains with infection of the central nervous system (CNS). We carried out a genetic characterisation of 89 MTB isolates from TBM patients at a Southern Indian tertiary neurocare centre and compared the genotypes with strains of pulmonary TB isolated from Indian immigrants in New York City. We applied the standard methods of genotyping of MTB, namely, IS6110-based restriction fragment length polymorphism and spoligotyping for strain identification, along with principal genetic grouping and single-nucleotide polymorphism cluster analysis. The analysis revealed a high-level of diversity amongst the strain population. The genotypes of the isolates from TBM patients paralleled the pulmonary TB strain population recovered from the Indian immigrants in NYC. We conclude that there is no apparent association between genotypes of MTB and propensity to infect CNS tissue.
Warren, R; Richardson, M; Sampson, S; Hauman, J H; Beyers, N; Donald, P R; van Helden, P D
1996-01-01
Two highly polymorphic Mycobacterium tuberculosis genomic domains, characterized by hybridization to the oligonucleotide (GTG)5, were identified as potential DNA fingerprinting probes. These domains were cloned [pMTB484(1) and pMTB484(2K4), respectively] and shown to be useful for genotype analysis by Southern blotting. These probes were used to genotype geographically linked strains of M. tuberculosis previously shown to have identical IS6110 fingerprints. Subsequent DNA fingerprints generated with MTB484(1) and MTB484(2K4) showed a high degree of polymorphism, allowing subclassification of IS6110-defined clusters into composites of smaller clusters and unique strains. Correlation of the molecular data with patient interviews and clinical records confirmed the sensitivity of these probes, as contacts were established only within subclusters. These findings demonstrate the requirement for multiple probes to accurately classify M. tuberculosis strains, even those with high copy numbers of IS6110. The enhanced accuracy of strain typing should, in turn, further our understanding of the epidemiology of tuberculosis. PMID:8862588
Genotypes of Mycobacterium tuberculosis in patients at risk of drug resistance in Bolivia.
Monteserin, Johana; Camacho, Mirtha; Barrera, Lucía; Palomino, Juan Carlos; Ritacco, Viviana; Martin, Anandi
2013-07-01
Bolivia ranks among the 10 Latin American countries with the highest rates of tuberculosis (TB) and multidrug resistant (MDR) TB. In view of this, and of the lacking information on the population structure of Mycobacterium tuberculosis in the country, we explored genotype associations with drug resistance and clustering by analyzing isolates collected in 2010 from 100 consecutive TB patients at risk of drug resistance in seven of the nine departments in which Bolivia is divided. Fourteen isolates were MDR, 29 had other drug resistance profiles, and 57 were pansusceptible. Spoligotype family distribution was: Haarlem 39.4%, LAM 26.3%, T 22.2%, S 2.0%, X 1.0%, orphan 9.1%, with very low intra-family diversity and absence of Beijing genotypes. We found 66 different MIRU-VNTR patterns; the most frequent corresponded to Multiple Locus Variable Analysis (MLVA) MtbC15 patterns 860, 372 and 873. Twelve clusters, each with identical MIRU-VNTR and spoligotypes, gathered 35 patients. We found no association of genotype with drug resistant or MDR-TB. Clustering associated with SIT 50 and the H3 subfamily to which it belongs (p<0.0001). The largest cluster involved isolates from three departments and displayed a genotype (SIT 50/MLVA 860) previously identified in Bolivian migrants into Spain and Argentina suggesting that this genotype is widespread among Bolivian patients. Our study presents a first overview of M. tuberculosis genotypes at risk of drug resistance circulating in Bolivia. However, results should be taken cautiously because the sample is small and includes a particular subset of M. tuberculosis population. Copyright © 2013 Elsevier B.V. All rights reserved.
Lahlou, Ouafae; Millet, Julie; Chaoui, Imane; Sabouni, Radia; Filali-Maltouf, Abdelkarim; Akrim, Mohammed; El Mzibri, Mohammed; Rastogi, Nalin; El Aouad, Rajae
2012-01-01
Background Tuberculosis (TB) remains a major health problem in Morocco. Characterization of circulating Mycobacterium tuberculosis genotypic lineages, important to understand the dynamic of the disease, was hereby addressed for the first time at a national level. Methodology/Principal Findings Spoligotyping was performed on a panel of 592 M. tuberculosis complex strains covering a 2-year period (2004–2006). It identified 129 patterns: 105 (n = 568 strains) corresponded to a SIT number in the SITVIT2 database, while 24 patterns were labeled as orphan. A total of 523 (88.3%) strains were clustered vs. 69 or 11.7% unclustered. Classification of strains within 3 large phylogenetical groups was as follows: group 1– ancestral/TbD1+/PGG1 (EAI, Bovis, Africanum), group 2– modern/TbD1−/PGG1 group (Beijing, CAS), group 3– evolutionary recent/TbD1−/PGG2/3 (Haarlem, X, S, T, LAM; alternatively designated as the Euro-American lineage). As opposed to group 3 strains (namely LAM, Haarlem, and T) that predominated (86.5% of all isolates), 6 strains belonged to group 2 (Beijing n = 5, CAS n = 1), and 3 strains (BOV_1 n = 2, BOV_4-CAPRAE) belonged to ancestral group 1 (EAI and AFRI lineage strains were absent). 12-loci MIRU-VNTR typing of the Casablanca subgroup (n = 114 strains) identified 71 patterns: 48 MITs and 23 orphan patterns; it allowed to reduce the clustering rate from 72.8% to 29.8% and the recent transmission rate from 64% to 20.2%. Conclusion The M. tuberculosis population structure in Morocco is highly homogeneous, and is characterized by the predominance of the Euro-American lineages, namely LAM, Haarlem, and T, which belong to the “evolutionary recent” TbD1−/PGG2/3 phylogenetic group. The combination of spoligotyping and MIRUs decreased the clustering rate significantly, and should now be systematically applied in larger studies. The methods used in this study appear well suited to monitor the M. tuberculosis population structure for an enhanced TB management program in Morocco. PMID:23077552
Visser, Marianne E; Stead, Michael C; Walzl, Gerhard; Warren, Rob; Schomaker, Michael; Grewal, Harleen M S; Swart, Elizabeth C; Maartens, Gary
2012-01-01
Time to detection (TTD) on automated liquid mycobacterial cultures is an emerging biomarker of tuberculosis outcomes. The M. tuberculosis W-Beijing genotype is spreading globally, indicating a selective advantage. There is a paucity of data on the association between baseline TTD and W-Beijing genotype and tuberculosis outcomes. To assess baseline predictors of failure of sputum culture conversion, within the first 2 months of antitubercular therapy, in participants with pulmonary tuberculosis. Between May 2005 and August 2008 we conducted a prospective cohort study of time to sputum culture conversion in ambulatory participants with first episodes of smear and culture positive pulmonary tuberculosis attending two primary care clinics in Cape Town, South Africa. Rifampicin resistance (diagnosed on phenotypic susceptibility testing) was an exclusion criterion. Sputum was collected weekly for 8 weeks for mycobacterial culture on liquid media (BACTEC MGIT 960). Due to missing data, multiple imputation was performed. Time to sputum culture conversion was analysed using a Cox-proportional hazards model. Bayesian model averaging determined the posterior effect probability for each variable. 113 participants were enrolled (30.1% female, 10.5% HIV-infected, 44.2% W-Beijing genotype, and 89% cavities). On Kaplan Meier analysis 50.4% of participants underwent sputum culture conversion by 8 weeks. The following baseline factors were associated with slower sputum culture conversion: TTD (adjusted hazard ratio (aHR) = 1.11, 95% CI 1.02; 1.2), lung cavities (aHR = 0.13, 95% CI 0.02; 0.95), ever smoking (aHR = 0.32, 95% CI 0.1; 1.02) and the W-Beijing genotype (aHR = 0.51, 95% CI 0.25; 1.07). On Bayesian model averaging, posterior probability effects were strong for TTD, lung cavitation and smoking and moderate for W-Beijing genotype. We found that baseline TTD, smoking, cavities and W-Beijing genotype were associated with delayed 2 month sputum culture. Larger studies are needed to confirm the relationship between the W-Beijing genotype and sputum culture conversion.
Tuberculosis in ageing: high rates, complex diagnosis and poor clinical outcomes.
Cruz-Hervert, Luis Pablo; García-García, Lourdes; Ferreyra-Reyes, Leticia; Bobadilla-del-Valle, Miriam; Cano-Arellano, Bulmaro; Canizales-Quintero, Sergio; Ferreira-Guerrero, Elizabeth; Báez-Saldaña, Renata; Téllez-Vázquez, Norma; Nava-Mercado, Ariadna; Juárez-Sandino, Luis; Delgado-Sánchez, Guadalupe; Fuentes-Leyra, César Alejandro; Montero-Campos, Rogelio; Martínez-Gamboa, Rosa Areli; Small, Peter M; Sifuentes-Osornio, José; Ponce-de-León, Alfredo
2012-07-01
worldwide, the frequency of tuberculosis among older people almost triples that observed among young adults. to describe clinical and epidemiological consequences of pulmonary tuberculosis among older people. we screened persons with a cough lasting more than 2 weeks in Southern Mexico from March 1995 to February 2007. We collected clinical and mycobacteriological information (isolation, identification, drug-susceptibility testing and IS6110-based genotyping and spoligotyping) from individuals with bacteriologically confirmed pulmonary tuberculosis. Patients were treated in accordance with official norms and followed to ascertain treatment outcomes, retreatment, and vital status. eight hundred ninety-three tuberculosis patients were older than 15 years of age; of these, 147 (16.5%) were 65 years of age or older. Individuals ≥ 65 years had significantly higher rates of recently transmitted and reactivated tuberculosis. Older age was associated with treatment failure (OR=5.37; 95% CI: 1.06-27.23; P=0.042), and death due to tuberculosis (HR=3.52; 95% CI: 1.78-6.96; P<0.001) adjusting for sociodemographic and clinical variables. community-dwelling older individuals participate in chains of transmission indicating that tuberculosis is not solely due to the reactivation of latent disease. Untimely and difficult diagnosis and a higher risk of poor outcomes even after treatment completion emphasise the need for specific strategies for this vulnerable group.
Whelan, Adam O.; Coad, Michael; Cockle, Paul J.; Hewinson, Glyn; Vordermeier, Martin; Gordon, Stephen V.
2010-01-01
Experiments in the late 19th century sought to define the host specificity of the causative agents of tuberculosis in mammals. Mycobacterium tuberculosis, the human tubercle bacillus, was independently shown by Smith, Koch, and von Behring to be avirulent in cattle. This finding was erroneously used by Koch to argue the converse, namely that Mycobacterium bovis, the agent of bovine tuberculosis, was avirulent for man, a view that was subsequently discredited. However, reports in the literature of M. tuberculosis isolation from cattle with tuberculoid lesions suggests that the virulence of M. tuberculosis for cattle needs to be readdressed. We used an experimental bovine infection model to test the virulence of well-characterized strains of M. tuberculosis and M. bovis in cattle, choosing the genome-sequenced strains M. tuberculosis H37Rv and M. bovis 2122/97. Cattle were infected with approximately 106 CFU of M. tuberculosis H37Rv or M. bovis 2122/97, and sacrificed 17 weeks post-infection. IFN-γ and tuberculin skin tests indicated that both M. bovis 2122 and M. tuberculosis H37Rv were equally infective and triggered strong cell-mediated immune responses, albeit with some indication of differential antigen-specific responses. Postmortem examination revealed that while M. bovis 2122/97–infected animals all showed clear pathology indicative of bovine tuberculosis, the M. tuberculosis–infected animals showed no pathology. Culturing of infected tissues revealed that M. tuberculosis was able to persist in the majority of animals, albeit at relatively low bacillary loads. In revisiting the early work on host preference across the M. tuberculosis complex, we have shown M. tuberculosis H37Rv is avirulent for cattle, and propose that the immune status of the animal, or genotype of the infecting bacillus, may have significant bearing on the virulence of a strain for cattle. This work will serve as a baseline for future studies into the genetic basis of host preference, and in particular the molecular basis of virulence in M. bovis. PMID:20049086
Meenakshi, P; Ramya, S; Shruthi, T; Lavanya, J; Mohammed, H H; Mohammed, S A; Vijayalakshmi, V; Sumanlatha, G
2013-07-01
Tuberculosis (TB) constitutes the major cause of death due to infectious diseases. Cytokines play a major role in defence against Mycobacterium tuberculosis infection. Polymorphisms in the genes encoding various cytokines have been associated with tuberculosis susceptibility. Household contacts (HHC) are at increased risk of developing the disease. In this study, we examined the association of IL-1β and IL-10 cytokine gene polymorphisms with risk of developing tuberculosis in TB patients, their HHC and healthy controls (HC) using JavaStat and SPSS. Multifactor dimensionality reduction (MDR) analyses were performed to explore the potential gene-gene interactions. The genotype and allele frequencies of IL-1β +3954C/T polymorphism did not vary significantly between TB patients and HC. GG (P < 0.005, OR = 0.219 and 95% CI = 0.059-0.735) and GA (P < 0.0001, OR = 2.938 and 95% CI = 1.526-5.696) genotypes of IL-10-1082 G/A polymorphism were found to be significantly associated with patients versus HC. HHC with CC (P < 0.03, OR = 1.833 and 95% CI = 1.1-3.35) genotype in IL-1β and GA (P < 0.0001, OR = 4.612 and 95% CI = 2.225-9.702) genotype in IL-10 were at increased risk of developing tuberculosis. MDR tests revealed high-risk genotypes in IL-1β and IL-10 based on the association model. Our results demonstrate that the polymorphisms of IL-1β and IL-10 genes may be valuable markers to predict the risk for the development of TB in household contacts. © 2013 John Wiley & Sons Ltd.
Meaza, Abyot; Kebede, Abebaw; Yaregal, Zelalem; Dagne, Zekarias; Moga, Shewki; Yenew, Bazezew; Diriba, Getu; Molalign, Helina; Tadesse, Mengistu; Adisse, Desalegn; Getahun, Muluwork; Desta, Kassu
2017-04-17
Multi drug resistant tuberculosis (MDR-TB) poses formidable challenges to TB control due to its complex diagnostic and treatment challenges and often associated with a high rate of mortality. Accurate and rapid detection of MDR-TB is critical for timely initiation of treatment. Line Probe Assay (LPA) is a qualitative in vitro diagnostic test based on DNA-STRIP technology for the identification of the M. tuberculosis complex and its resistance to rifampicin (RMP) and/or isoniazid (INH). Hain Lifescience, GmbH, Germany has improved the sensitivity of Genotype MTBDRplus VER 2.0 LPA for the detection of MDR-TB; with the possibility of applying the tool in smear negative sputum samples. A cross sectional study was conducted on 274 presumptive MDR-TB patients referred to the National TB Reference Laboratory (NTRL), Ethiopian Public Health Institute (EPHI) who submitted sputum samples for laboratory diagnosis of drug resistant-TB testing. Seventy-two smear and culture positive samples processed in smear positive direct LPA category and 197 smear negative sputum samples were processed for direct LPA. Among the smear negative samples 145 (73.6%) were culture negative and 26 (13.2%) were culture positive. All specimens were processed using NALC-NaOH method and ZN smear microscopy done from sediments. Genotype MTBDRplus VER 2.0 done from processed sputum sediments and the result was compared against the reference, BACTEC MGIT 960 culture and DST. Sensitivity, specificity, PPV and NPV of Genotype MTBDRplus VER 2.0 assay was determined and P-value <0.05 was considered as statistically significant. The sensitivity, specificity, PPV and NPV of Genotype MTBDRplus VER 2.0 LPA were 96.4, 100, 100 and 96.9%, respectively for the detection of MDR-TB from direct smear positive sputum samples. The sensitivity, specificity, PPV and NPV of Genotype MTBDR plus VER 2.0 LPA were 77.8, 97.2, 82.4 and 97.2%, respectively, for the detection of M. tuberculosis from direct smear negative sputum samples. Fourteen (53.8%) samples had valid results with LPA among the 26 smear negative culture positive samples. The remaining 8 (30.8%) and 4 (15.4%) were invalid and negative with LPA, respectively. The sensitivity and specificity of Genotype MTBDRplus VER 2.0 LPA were 100% for the detection of MDR-TB among 14 direct smear negative and culture positive sputum samples. The most common mutations associated with RMP and INH resistance were S531L and S315TL, respectively. A single rare mutation (C15T/A16G) was detected for INH resistance. The diagnostic performance of Genotype MTBDRplus VER 2.0 LPA in direct smear positive sputum sample was highly sensitive and specific for early detection of MDR-TB. However, the diagnostic performance of this molecular assay in direct smear negative sputum sample was low and showed a high level of invalid results for detection of M. tuberculosis and its resistance to RMP and/or INH so it is unlikely to implement Genotype MTBDRplus VER 2.0 for the detection of MDR-TB in direct smear negative sample in our routine settings. The sensitivity of the assay should be improved for detection of MDR-TB in direct smear negative sputum specimens.
Du, Yanfen; Qi, Yingfang; Yu, Lu; Lin, Jingkai; Liu, Siguo; Ni, Hongbo; Pang, Hai; Liu, Huifang; Si, Wei; Zhao, Hailing; Wang, Chunlai
2011-06-01
We studied throat swabs and corresponding serum samples collected from 1067 protein purified derivative (PPD)-tuberculin skin test (TST) positive cattle from different regions of China. The 1067 throat swabs were inoculated onto modified Löwenstein-Jensen medium for the isolation and culture of Mycobacteria. Acid-fast bacilli were identified using traditional biochemical methods, polymerase chain reaction (PCR) amplification and multiplex PCR. They were distinguished as Mycobacterium tuberculosis complex (MTBC) and non-tuberculous mycobacteria (NTM) strains. An indirect Enzyme-Linked Immunosorbent Assay (ELISA) was applied to detect specific antibodies against bovine TB (bTB). Correlations among the ELISA, bacteriology and TST were analyzed and compared. Spoligotyping and variable number tandem repeats-mycobacterial interspersed repetitive unit (VNTR-MIRU) analysis were used to genotype the MTBC. In total, 111 strains of Mycobacteria were cultured from the 1067 throat swab samples, including 43 stains of MTBC (14 strains of Mycobacterium bovis and 29 of Mycobacterium tuberculosis) and 68 strains of NTM. Thirty-eight MTBC strains and four NTM strains were isolated from 72 throat swab samples that the ELISA determined were antibody positive; five MTBC strains and 64 NTM strains were isolated from 995 throat swab samples that were antibody negative on the ELISA. The positive isolation rates of MTBC and NTM were 38.7% (43/111) and 61.3% (68/111), respectively. The concordance rate of cultured MTBC with a positive result on the indirect ELISA for antibody was 52.8% (38/72), which was much higher than the positive rate for TST (4.0%; 43/1067). Genotyping of the 43 strains of MTBC isolated, using spoligotyping and VNTR-MIRU, showed that the 43 isolates had 26 genotypes; 16 strains had a unique genotype. Two groups of six strains and two strains, respectively, showed the same spoligotyping pattern, and belonged to the Beijing family and Beijing-like family, respectively. Combined application of spoligotyping and VNTR-MIRU typing would improve the molecular epidemiological investigation and monitoring of the etiology of bTB in China. Copyright © 2010 Elsevier Ltd. All rights reserved.
Séraphin, Marie Nancy; Lauzardo, Michael; Morris, J. Glenn; Blackburn, Jason K.
2016-01-01
Background Tuberculosis (TB) is caused by members of the Mycobacterium tuberculosis complex (MTBC). Although the MTBC is highly clonal, between-strain genetic diversity has been observed. In low TB incidence settings, immigration may facilitate the importation of MTBC strains with a potential to complicate TB control efforts. Methods We investigated the genetic diversity and spatiotemporal clustering of 2,510 MTBC strains isolated in Florida, United States, between 2009 and 2013 and genotyped using spoligotyping and 24-locus MIRU-VNTR. We mapped the genetic diversity to the centroid of patient residential zip codes using a geographic information system (GIS). We assessed transmission dynamics and the influence of immigration on genotype clustering using space-time permutation models adjusted for foreign-born population density and county-level HIV risk and multinomial models stratified by country of birth and timing of immigration in SaTScan. Principal Findings Among the 2,510 strains, 1,245 were reported among foreign-born persons; including 408 recent immigrants (<5 years). Strain allelic diversity (h) ranged from low to medium in most locations and was most diverse in urban centers where foreign-born population density was also high. Overall, 21.5% of cases among U.S.-born persons and 4.6% among foreign-born persons clustered genotypically and spatiotemporally and involved strains of the Haarlem family. One Haarlem space-time cluster identified in the mostly rural northern region of Florida included US/Canada-born individuals incarcerated at the time of diagnosis; two clusters in the mostly urban southern region of Florida were composed predominantly of foreign-born persons. Both groups had HIV prevalence above twenty percent. Conclusions/Significance Almost five percent of TB cases reported in Florida during 2009–2013 were potentially due to recent transmission. Improvements to TB screening practices among the prison population and recent immigrants are likely to impact TB control. Due to the monomorphic nature of available markers, whole genome sequencing is needed to conclusively delineate recent transmission events between U.S. and foreign-born persons. PMID:27093156
Mbugi, Erasto V.; Katale, Bugwesa Z.; Streicher, Elizabeth M.; Keyyu, Julius D.; Kendall, Sharon L.; Dockrell, Hazel M.; Michel, Anita L.; Rweyemamu, Mark M.; Warren, Robin M.; Matee, Mecky I.; van Helden, Paul D.; Couvin, David; Rastogi, Nalin
2016-01-01
The aim of this study was to assess and characterize Mycobacterium tuberculosis complex (MTBC) genotypic diversity in Tanzania, as well as in neighbouring East and other several African countries. We used spoligotyping to identify a total of 293 M. tuberculosis clinical isolates (one isolate per patient) collected in the Bunda, Dar es Salaam, Ngorongoro and Serengeti areas in Tanzania. The results were compared with results in the SITVIT2 international database of the Pasteur Institute of Guadeloupe. Genotyping and phylogeographical analyses highlighted the predominance of the CAS, T, EAI, and LAM MTBC lineages in Tanzania. The three most frequent Spoligotype International Types (SITs) were: SIT21/CAS1-Kili (n = 76; 25.94%), SIT59/LAM11-ZWE (n = 22; 7.51%), and SIT126/EAI5 tentatively reclassified as EAI3-TZA (n = 18; 6.14%). Furthermore, three SITs were newly created in this study (SIT4056/EAI5 n = 2, SIT4057/T1 n = 1, and SIT4058/EAI5 n = 1). We noted that the East-African-Indian (EAI) lineage was more predominant in Bunda, the Manu lineage was more common among strains isolated in Ngorongoro, and the Central-Asian (CAS) lineage was more predominant in Dar es Salaam (p-value<0.0001). No statistically significant differences were noted when comparing HIV status of patients vs. major lineages (p-value = 0.103). However, when grouping lineages as Principal Genetic Groups (PGG), we noticed that PGG2/3 group (Haarlem, LAM, S, T, and X) was more associated with HIV-positive patients as compared to PGG1 group (Beijing, CAS, EAI, and Manu) (p-value = 0.03). This study provided mapping of MTBC genetic diversity in Tanzania (containing information on isolates from different cities) and neighbouring East African and other several African countries highlighting differences as regards to MTBC genotypic distribution between Tanzania and other African countries. This work also allowed underlining of spoligotyping patterns tentatively grouped within the newly designated EAI3-TZA lineage (remarkable by absence of spacers 2 and 3, and represented by SIT126) which seems to be specific to Tanzania. However, further genotyping information would be needed to confirm this specificity. PMID:27149626
Rasigade, Jean-Philippe; Barbier, Maxime; Dumitrescu, Oana; Pichat, Catherine; Carret, Gérard; Ronnaux-Baron, Anne-Sophie; Blasquez, Ghislaine; Godin-Benhaim, Christine; Boisset, Sandrine; Carricajo, Anne; Jacomo, Véronique; Fredenucci, Isabelle; Pérouse de Montclos, Michèle; Flandrois, Jean-Pierre; Ader, Florence; Supply, Philip; Lina, Gérard; Wirth, Thierry
2017-01-01
The transmission dynamics of tuberculosis involves complex interactions of socio-economic and, possibly, microbiological factors. We describe an analytical framework to infer factors of epidemic success based on the joint analysis of epidemiological, clinical and pathogen genetic data. We derive isolate-specific, genetic distance-based estimates of epidemic success, and we represent success-related time-dependent concepts, namely epidemicity and endemicity, by restricting analysis to specific time scales. The method is applied to analyze a surveillance-based cohort of 1,641 tuberculosis patients with minisatellite-based isolate genotypes. Known predictors of isolate endemicity (older age, native status) and epidemicity (younger age, sputum smear positivity) were identified with high confidence (P < 0.001). Long-term epidemic success also correlated with the ability of Euro-American and Beijing MTBC lineages to cause active pulmonary infection, independent of patient age and country of origin. Our results demonstrate how important insights into the transmission dynamics of tuberculosis can be gained from active surveillance data. PMID:28349973
Human Tuberculosis Caused by Mycobacterium bovis in the United States, 2006-2013.
Scott, Colleen; Cavanaugh, Joseph S; Pratt, Robert; Silk, Benjamin J; LoBue, Philip; Moonan, Patrick K
2016-09-01
Using genotyping techniques that have differentiated Mycobacterium bovis from Mycobacterium tuberculosis since 2005, we review the epidemiology of human tuberculosis caused by M. bovis in the United States and validate previous findings nationally. All tuberculosis cases with a genotyped M. tuberculosis complex isolate reported during 2006-2013 in the United States were eligible for analysis. We used binomial regression to identify characteristics independently associated with M. bovis disease using adjusted prevalence ratios (aPRs) and corresponding 95% confidence intervals (CIs). During 2006-2013, the annual percentages of tuberculosis cases attributable to M. bovis remained consistent nationally (range, 1.3%-1.6%) among all tuberculosis cases (N = 59 273). Compared with adults 25-44 years of age, infants aged 0-4 years (aPR, 1.9 [95% CI, 1.4-2.8]) and children aged 5-14 years (aPR, 4.0 [95% CI, 3.1-5.3]) had higher prevalences of M. bovis disease. Patients who were foreign-born (aPR, 1.4 [95% CI, 1.2-1.7]), Hispanic (aPR, 3.9 [95% CI, 3.0-5.0]), female (aPR, 1.4 [95% CI, 1.3-1.6]), and resided in US-Mexico border counties (aPR, 2.0 [95% CI, 1.7-2.4]) also had higher M. bovis prevalences. Exclusively extrapulmonary disease (aPR, 3.7 [95% CI, 3.3-4.2]) or disease that was both pulmonary and extrapulmonary (aPR, 2.4 [95% CI, 2.1-2.9]) were associated with a higher prevalence of M. bovis disease. Children, foreign-born persons, Hispanics, and females are disproportionately affected by M. bovis, which was independently associated with extrapulmonary disease. Targeted prevention efforts aimed at Hispanic mothers and caregivers are warranted. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Wada, Takayuki; Iwamoto, Tomotada; Tamaru, Aki; Seto, Junji; Ahiko, Tadayuki; Yamamoto, Kaori; Hase, Atushi; Maeda, Shinji; Yamamoto, Taro
2015-01-01
Mycobacterium tuberculosis transmission routes can be estimated from genotypic analysis of clinical isolates from patients. In Japan, still a middle-incidence country of TB, a unique genotype strain designated as ‘M-strain’ has been isolated nationwide recently. To ascertain the history of the wide spread of the strain, 10 clinical isolates from different areas were subjected to genome-wide analysis based on deep sequencers. Results show that all isolates possessed common mutations to those of referential strains. The greatest number of accumulated single nucleotide variants (SNVs) from the oldest coalescence was 13 nucleotides, indicating high clonality of these isolates. When an SNV common to the isolates was used as a surrogate marker of the clone, authentic clonal isolates with variation in a reliable subset of variable number of tandem repeat (VNTR) genotyping method can be selected successfully from clinical isolates populations of M. tuberculosis. When the authentic clones can also be assigned to sub-clonal groups by SNVs derived from the genomic comparison, they are classifiable into three sub-clonal groups with a bias of geographical origins. Feedback from genomic analysis of clinical isolates of M. tuberculosis to genotypic markers will be an efficient strategy for the big data in various settings for public health actions against TB. PMID:25734518
Li, C; Li, G L; Luo, Q; Li, S J; Wang, R B; Lou, Y L; Lyu, J X; Wan, K L
2017-02-10
Objective: To investigate the relationship between D-cycloserine resistance and the gene mutations of alrA , ddlA and cycA of Mycobacterium ( M. ) tuberculosis , as well as the association between D-cycloserine resistance and spoligotyping genotyping. Methods: A total of 145 M. tuberculosis strains were selected from the strain bank. D-cycloserine resistant phenotypes of the strains were determined by the proportion method and the minimal inhibitory concentration was determined by resazurin microtiter assay. PCR amplification and DNA direct sequencing methods were used for the analysis of gene mutations. Relationship between the resistance phenotype and genotype was analyzed by chi -square test. Results: Of the 145 clinically collected strains, 24 (16.6%) of them were D-cycloserine resistant and 121 (83.4%) were sensitive. There were only synonymous mutations noticed on alrA , ddlA and cycA in sensitive strains. Of the 24 D-cycloserine resistant strains, 3 (12.5%) isolates' cycA and 1 (4.2%) isolates' alrA happened to be non-synonymous mutations, in which the codes were 188, 318 and 508 of cycA , and 261 of alrA , respectively. Results on drug sensitivity tests confirmed the minimal inhibitory concentration of the mutant strains were all increased to some degrees. The D-cycloserine resistant rates of 88 Beijing genotype and 57 non-Beijing genotype strains were 20.5% and 10.5% , respectively, but with no statistically significant difference ( χ (2) =2.47, P >0.05). Conclusions: The non-synonymous mutations of alrA and cycA might contribute to one of the mechanisms of M. tuberculosis D-cycloserine resistance. M. tuberculosis Beijing genotype or non-Beijing genotype was not considered to be associated with the D-cycloserine resistance.
Recurrent tuberculosis in an urban area in China: Relapse or exogenous reinfection?
Shen, Xin; Yang, Chongguang; Wu, Jie; Lin, Senlin; Gao, Xu; Wu, Zheyuan; Tian, Jiyun; Gan, Mingyu; Luo, Tao; Wang, Lili; Yu, Chenlei; Mei, Jian; Pan, Qichao; DeRiemer, Kathryn; Yuan, ZhengAn; Gao, Qian
2017-03-01
Recurrent tuberculosis is an important indicator of the effectiveness of tuberculosis control and can occur by relapse or exogenous reinfection. We conducted a retrospective cohort study on all bacteriologically confirmed tuberculosis cases that were successfully treated between 2000 and 2012 in Shanghai, an urban area with a high number but a low prevalence rate of tuberculosis cases and a low prevalence of HIV infection. Genotyping the Mycobacterium tuberculosis from clinical isolates was used to distinguish between relapse and reinfection. In total, 5.3% (710/13,417) of successfully treated cases had a recurrence, a rate of 7.55 (95% CI 7.01-8.13) episodes per 1000 person-years, more than 18 times the rate of tuberculosis in the general population. Patients who were male, age 30-59, retreatment cases, had cavitation, diabetes, drug-resistant or multidrug-resistant tuberculosis in their initial episode of tuberculosis, were at high risk for a recurrence. Among 141 recurrent cases that had paired isolates, 59 (41.8%) had different genotypes, indicating reinfection with a different strain. Patients who completed treatment were still at high risk of another episode of tuberculosis and exogenous reinfection contributed a significant proportion of the recurrent tuberculosis cases. Targeted control strategies are needed to prevent new tuberculosis infections in this setting. Copyright © 2017 Elsevier Ltd. All rights reserved.
Recurrent tuberculosis in an urban area in China: relapse or exogenous reinfection?
Shen, Xin; Yang, Chongguang; Wu, Jie; Lin, Senlin; Gao, Xu; Wu, Zheyuan; Tian, Jiyun; Gan, Mingyu; Luo, Tao; Wang, Lili; Yu, Chenlei; Mei, Jian; Pan, Qichao; DeRiemer, Kathryn; Yuan, ZhengAn; Gao, Qian
2017-01-01
Recurrent tuberculosis is an important indicator of the effectiveness of tuberculosis control and can occur by relapse or exogenous reinfection. We conducted a retrospective cohort study on all bacteriologically confirmed tuberculosis cases that were successfully treated between 2000 and 2012 in Shanghai, an urban area with a high number but a low prevalence rate of tuberculosis cases and a low prevalence of HIV infection. Genotyping the Mycobacterium tuberculosis from clinical isolates was used to distinguish between relapse and reinfection. In total, 5.3% (710/13,417) of successfully treated cases had a recurrence, a rate of 7.55 (95% CI 7.01–8.13) episodes per 1000 person-years, more than 18 times the rate of tuberculosis in the general population. Patients who were male, age 30–59, retreatment cases, had cavitation, diabetes, drug-resistant or multidrug-resistant tuberculosis in their initial episode of tuberculosis, were at high risk for a recurrence. Among 141 recurrent cases that had paired isolates, 59 (41.8%) had different genotypes, indicating reinfection with a different strain. Patients who completed treatment were still at high risk of another episode of tuberculosis and exogenous reinfection contributed a significant proportion of the recurrent tuberculosis cases. Targeted control strategies are needed to prevent new tuberculosis infections in this setting. PMID:28237039
Tuberculosis in ageing: high rates, complex diagnosis and poor clinical outcomes
Cruz-Hervert, Luis Pablo; García-García, Lourdes; Ferreyra-Reyes, Leticia; Bobadilla-del-Valle, Miriam; Cano-Arellano, Bulmaro; Canizales-Quintero, Sergio; Ferreira-Guerrero, Elizabeth; Báez-Saldaña, Renata; Téllez-Vázquez, Norma; Nava-Mercado, Ariadna; Juárez-Sandino, Luis; Delgado-Sánchez, Guadalupe; Fuentes-Leyra, César Alejandro; Montero-Campos, Rogelio; Martínez-Gamboa, Rosa Areli; Small, Peter M.; Sifuentes-Osornio, José; Ponce-de-León, Alfredo
2012-01-01
Background: worldwide, the frequency of tuberculosis among older people almost triples that observed among young adults. Objective: to describe clinical and epidemiological consequences of pulmonary tuberculosis among older people. Methods: we screened persons with a cough lasting more than 2 weeks in Southern Mexico from March 1995 to February 2007. We collected clinical and mycobacteriological information (isolation, identification, drug-susceptibility testing and IS6110-based genotyping and spoligotyping) from individuals with bacteriologically confirmed pulmonary tuberculosis. Patients were treated in accordance with official norms and followed to ascertain treatment outcomes, retreatment, and vital status. Results: eight hundred ninety-three tuberculosis patients were older than 15 years of age; of these, 147 (16.5%) were 65 years of age or older. Individuals ≥65 years had significantly higher rates of recently transmitted and reactivated tuberculosis. Older age was associated with treatment failure (OR = 5.37; 95% CI: 1.06–27.23; P = 0.042), and death due to tuberculosis (HR = 3.52; 95% CI: 1.78–6.96; P < 0.001) adjusting for sociodemographic and clinical variables. Conclusions: community-dwelling older individuals participate in chains of transmission indicating that tuberculosis is not solely due to the reactivation of latent disease. Untimely and difficult diagnosis and a higher risk of poor outcomes even after treatment completion emphasise the need for specific strategies for this vulnerable group. PMID:22431155
Wu, Linlin; Hu, Yi; Li, Dange; Jiang, Weili; Xu, Biao
2015-04-01
We investigated whether polymorphisms in the toll-like receptor genes or gene-gene interactions are associated with susceptibility to latent tuberculosis infection (LTBI) or subsequent pulmonary tuberculosis (PTB) in a Chinese population. Two matched case-control studies were undertaken. Previously reported polymorphisms in the toll-like receptors (TLRs) were compared between 422 healthy controls (HC) and 205 LTBI patients and between 205 LTBI patients and 109 PTB patients, to assess whether these polymorphisms and their interactions are associated with LTBI or PTB. A PCR-based restriction fragment length polymorphism analysis was used to detect genetic polymorphisms in the TLR genes. Nonparametric multifactor dimensionality reduction (MDR) was used to analyze the effects of interactions between complex disease genes and other genes or environmental factors. Sixteen markers in TLR1, TLR2, TLR4, TLR6, TLR8, TLR9, and TIRAP were detected. In TLR2, the frequencies of the CC genotype (OR = 2.262; 95% CI: 1.433-3.570) and C allele (OR = 1.566; 95% CI: 1.223-1.900) in single-nucleotide polymorphism (SNP) rs3804100 were significantly higher in the LTBI group than in the HC group, whereas the GA genotype of SNP rs5743708 was associated with PTB (OR = 6.087; 95% CI: 1.687-21.968). The frequencies of the GG genotype of SNP rs7873784 in TLR4 (OR = 2.136; 95% CI: 1.312-3.478) and the CC genotype of rs3764879 in TLR8 (OR = 1.982; 95% CI: 1.292-3.042) were also significantly higher in the PTB group than in the HC group. The TC genotype frequency of SNP rs5743836 in TLR9 was significantly higher in the LTBI group than in the HC group (OR = 1.664; 95% CI: 1.201-2.306). An MDR analysis of gene-gene and gene-environment interactions identified three SNPs (rs10759932, rs7873784, and rs10759931) that predicted LTBI with 84% accuracy (p = 0.0004) and three SNPs (rs3804100, rs1898830, and rs10759931) that predicted PTB with 80% accuracy (p = 0.0001). Our results suggest that genetic variation in TLR2, 4, 8 and 9, implicating TLR-related pathways affecting the innate immunity response, modulate LTBI and PTB susceptibility in Chinese.
Aung, Wah Wah; Ei, Phyu Win; Nyunt, Wint Wint; Swe, Thyn Lei; Lwin, Thandar; Htwe, Mi Mi; Kim, Kyung Jun; Lee, Jong Seok; Kim, Chang Ki; Cho, Sang Nae; Song, Sun Dae; Chang, Chulhun L
2015-09-01
Tuberculosis (TB) is one of the most serious health problems in Myanmar. Because TB drug resistance is associated with genetic mutation(s) relevant to responses to each drug, genotypic methods for detecting these mutations have been proposed to overcome the limitations of classic phenotypic drug susceptibility testing (DST). We explored the current estimates of drug-resistant TB and evaluated the usefulness of genotypic DST in Myanmar. We determined the drug susceptibility of Mycobacterium tuberculosis isolated from sputum smear-positive patients with newly diagnosed pulmonary TB at two main TB centers in Myanmar during 2013 by using conventional phenotypic DST and the GenoType MTBDRplus assay (Hain Lifescience, Germany). Discrepant results were confirmed by sequencing the genes relevant to each type of resistance (rpoB for rifampicin; katG and inhA for isoniazid). Of 191 isolates, phenotypic DST showed that 27.7% (n=53) were resistant to at least one first-line drug and 20.9% (n=40) were resistant to two or more, including 18.3% (n=35) multidrug-resistant TB (MDR-TB) strains. Monoresistant strains accounted for 6.8% (n=13) of the samples. Genotypic assay of 189 isolates showed 17.5% (n=33) MDR-TB and 5.3% (n=10) isoniazid-monoresistant strains. Genotypic susceptibility results were 99.5% (n=188) concordant and agreed almost perfectly with phenotypic DST (kappa=0.99; 95% confidence interval 0.96-1.01). The results highlight the burden of TB drug resistance and prove the usefulness of the genotypic DST in Myanmar.
The Association between Mycobacterium Tuberculosis Genotype and Drug Resistance in Peru
Grandjean, Louis; Iwamoto, Tomotada; Lithgow, Anna; Gilman, Robert H; Arikawa, Kentaro; Nakanishi, Noriko; Martin, Laura; Castillo, Edith; Alarcon, Valentina; Coronel, Jorge; Solano, Walter; Aminian, Minoo; Guezala, Claudia; Rastogi, Nalin; Couvin, David; Sheen, Patricia; Zimic, Mirko; Moore, David AJ
2015-01-01
Background The comparison of Mycobacterium tuberculosis bacterial genotypes with phenotypic, demographic, geospatial and clinical data improves our understanding of how strain lineage influences the development of drug-resistance and the spread of tuberculosis. Methods To investigate the association of Mycobacterium tuberculosis bacterial genotype with drug-resistance. Drug susceptibility testing together with genotyping using both 15-loci MIRU-typing and spoligotyping, was performed on 2,139 culture positive isolates, each from a different patient in Lima, Peru. Demographic, geospatial and socio-economic data were collected using questionnaires, global positioning equipment and the latest national census. Results The Latin American Mediterranean (LAM) clade (OR 2.4, p<0.001) was significantly associated with drug-resistance and alone accounted for more than half of all drug resistance in the region. Previously treated patients, prisoners and genetically clustered cases were also significantly associated with drug-resistance (OR's 2.5, 2.4 and 1.8, p<0.001, p<0.05, p<0.001 respectively). Conclusions Tuberculosis disease caused by the LAM clade was more likely to be drug resistant independent of important clinical, genetic and socio-economic confounding factors. Explanations for this include; the preferential co-evolution of LAM strains in a Latin American population, a LAM strain bacterial genetic background that favors drug-resistance or the "founder effect" from pre-existing LAM strains disproportionately exposed to drugs. PMID:25984723
Sun, Honghu; Zhang, Congcong; Xiang, Ling; Pi, Rui; Guo, Zhen; Zheng, Chao; Li, Song; Zhao, Yuding; Tang, Ke; Luo, Mei; Rastogi, Nalin; Li, Yuqing; Sun, Qun
2016-01-01
Mutations in rpsL, rrs, and gidB are well linked to streptomycin (STR) resistance, some of which are suggested to be potentially associated with Mycobacterium tuberculosis genotypic lineages in certain geographic regions. In this study, we aimed to investigate the mutation characteristics of streptomycin resistance and the relationship between the polymorphism of drug-resistant genes and the lineage of M. tuberculosis isolates in Sichuan, China. A total of 227 M. tuberculosis clinical isolates, including 180 STR-resistant and 47 pan-susceptible isolates, were analyzed for presence of mutations in the rpsL, rrs and gidB loci. Mutation K43R in rpsL was strongly associated with high-level streptomycin resistance (P < 0.01), while mutations in rrs and gidB potentially contributed to low-level resistance (P < 0.05). No general association was exhibited between STR resistance and Beijing genotype, however, in STR-resistant strains, Beijing genotype was significantly correlated with high-level STR resistance, as well as the rpsL mutation K43R (P < 0.01), indicating that Beijing genotype has an evolutionary advantage under streptomycin pressure. Notably, in all isolates of Beijing genotype, a dual mutation E92D (a276c) and A205A (a615g) in gidB was detected, suggesting a highly significant association between this dual mutation and Beijing genotype. Copyright © 2015 Elsevier Ltd. All rights reserved.
Current knowledge and pending challenges in zoonosis caused by Mycobacterium bovis: a review.
Pérez-Lago, Laura; Navarro, Yurena; García-de-Viedma, Darío
2014-10-01
Mycobacterium bovis is both the causative agent of bovine tuberculosis (TB) and a zoonotic pathogen. In humans, considerably fewer cases of TB are caused by M. bovis than M. tuberculosis; nevertheless, diagnostic limitations mean that currently available data on prevalence grossly underestimate the true dimension of the problem. The routes of transmission from animals to humans are well known and include direct exposure to infected animals or consumption of contaminated animal products. Application of fingerprinting tools facilitates analysis of the molecular epidemiology of M. bovis in animal-to-human and human-to-human transmission. Apart from cattle and M. bovis, other animal species and members within the M. tuberculosis complex can contribute to the zoonosis. Improvements in diagnostic techniques, application of more advanced discriminatory genotyping tools, and collaboration between veterinary and human health care researchers are key to our understanding of this zoonosis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Genetic diversity of the Mycobacterium tuberculosis complex in San Luis Potosí, México.
López-Rocha, Estela; Juárez-Álvarez, Julio; Riego-Ruiz, Lina; Enciso-Moreno, Leonor; Ortega-Aguilar, Francisco; Hernández-Nieto, Julián; Enciso-Moreno, José A; López-Revilla, Rubén
2013-05-01
Although epidemiologic and socioeconomic criteria and biomedical risk factors indicate high-priority for tuberculosis (TB) control in Mexico, molecular epidemiology studies of the disease in the country are scarce. Complete sociodemographic and clinical data were obtained from 248 of the 432 pulmonary TB (PTB) cases confirmed from 2006 to 2010 on the population under epidemiological surveillance in the state of San Luis Potosí, México. From most PTB cases with complete data Mycobacterium tuberculosis complex (MTC) isolates were recovered and their spoligotypes, lineages and families, geographic distribution and drug resistance determined. Pulmonary tuberculosis incidence ranged from 2.4 to 33.4 (cases per 100,000 inhabitants) in the six state sanitary jurisdictions that were grouped in regions of low (jurisdictions I-II-III), intermediate (jurisdictions IV-V) and high incidence (jurisdiction VI) with 6.2, 17.3 and 33.4 rates, respectively. Most patients were poor, 50-years-median-age males and housewives. Among the 237 MTC spoligotyped isolates, 232 corresponded to M. tuberculosis (104 spoligotypes in 24 clusters) and five to M. bovis. The predominant Euro-American lineage was distributed all over the state, the East-Asian lineage (Beijing family) in the capital city, the Indo-Oceanic (Manila family) in eastern localities, and M. bovis in rural localities. In San Luis Potosí TB affects mainly poor male adults and is caused by M. tuberculosis and to a minor extent by M. bovis. There is great genotypic diversity among M. tuberculosis strains, the Euro-American lineage being much more prevalent than the Indo-Oceanic and East-Asian lineages. The frequency of resistant strains is relatively low and not associated to any particular lineage.
Genetic diversity of the Mycobacterium tuberculosis Complex in San Luis Potosí, México
2013-01-01
Background Although epidemiologic and socioeconomic criteria and biomedical risk factors indicate high-priority for tuberculosis (TB) control in Mexico, molecular epidemiology studies of the disease in the country are scarce. Methods Complete sociodemographic and clinical data were obtained from 248 of the 432 pulmonary TB (PTB) cases confirmed from 2006 to 2010 on the population under epidemiological surveillance in the state of San Luis Potosí, México. From most PTB cases with complete data Mycobacterium tuberculosis complex (MTC) isolates were recovered and their spoligotypes, lineages and families, geographic distribution and drug resistance determined. Results Pulmonary tuberculosis incidence ranged from 2.4 to 33.4 (cases per 100,000 inhabitants) in the six state sanitary jurisdictions that were grouped in regions of low (jurisdictions I-II-III), intermediate (jurisdictions IV-V) and high incidence (jurisdiction VI) with 6.2, 17.3 and 33.4 rates, respectively. Most patients were poor, 50-years-median-age males and housewives. Among the 237 MTC spoligotyped isolates, 232 corresponded to M. tuberculosis (104 spoligotypes in 24 clusters) and five to M. bovis. The predominant Euro-American lineage was distributed all over the state, the East-Asian lineage (Beijing family) in the capital city, the Indo-Oceanic (Manila family) in eastern localities, and M. bovis in rural localities. Conclusions In San Luis Potosí TB affects mainly poor male adults and is caused by M. tuberculosis and to a minor extent by M. bovis. There is great genotypic diversity among M. tuberculosis strains, the Euro-American lineage being much more prevalent than the Indo-Oceanic and East-Asian lineages. The frequency of resistant strains is relatively low and not associated to any particular lineage. PMID:23635381
Alba Álvarez, Luz María; García García, José María; Pérez Hernández, M Dolores; Martínez González, Susana; Palacios Gutiérrez, Juan José
2017-04-01
To determine the utility of molecular techniques in the diagnosis of resistance and the extent of resistance to first-line drugs in our region. From 2004 to 2013, 1,889 strains of Mycobacterium tuberculosis complex isolated in Asturias, Spain, were studied using phenotypic (Clinical and Laboratory Standards Institute guidelines) and molecular (INNOLiPA RIF-TB © ; GenotypeMDRplus © ; GenotypeMDRsl © ) sensitivity tests. 1,759 strains (94.52%) were sensitive to all first-line drugs, and 102 strains (5.48%) showed some resistance: 81 strains (4.35%) were resistant to 1 single drug, 14 (0.75%) were polyresistant, and 7 (0.37%) were multiresistant (resistant to rifampicin and isoniazid). In total, 137 resistances were identified: 60 to isoniazid (3.22%), 7 to rifampicin (0.37%), 9 to pyrazinamide (0.48%), 11 to ethambutol (0.59%), and 50 to streptomycin (2.68%). Of the mutations detected, 75.9% (63/83) correlated with resistance, while 24.09% of mutations detected (20/83) were not associated with resistance; 16 of these involved a silent mutation at codon 514 of the rpoB gene. Between 0 and 90% of strains, depending on the drug under consideration, were resistant even when no gene mutations were detected using marketed systems. Molecular techniques are very useful, particularly for obtaining rapid results, but these must be confirmed with standard phenotypic sensitivity testing. The rate of resistance in our region is low and multi-drug resistantcases (0.37%) are sporadic. Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.
Pooideh, Mohammad; Jabbarzadeh, Ismail; Ranjbar, Reza; Saifi, Mahnaz
2015-01-01
Background: Tuberculosis (TB) is a widespread infectious disease. Today, TB has created a public health crisis in the world. Genotyping of Mycobacterium tuberculosis isolates is useful for surveying the dynamics of TB infection, identifying new outbreaks, and preventing the disease. Different molecular methods for clustering of M. tuberculosis isolates have been used. Objectives: During a one year study of genotyping, 100 M. tuberculosis isolates from patients referred to Pasteur Institute of Iran were collected and their genotyping was accomplished using pulsed field gel electrophoresis (PFGE) method. Materials and Methods: Identification of all M. tuberculosis isolates was accomplished using standard biochemical and species-specific polymerase chain reaction (PCR) methods. Antibiotic susceptibility tests were performed using proportional method. After preparing PFGE plaques for each isolate of M. tuberculosis, XbaI restriction enzyme was applied for genome digestion. Finally, the digested DNA fragments were separated on 1% agarose gel and analyzed with GelCompar II software. Results: Genotyping of the studied isolates in comparison with the molecular weight marker revealed two common types; pulsotype A with 71 isolates and one multidrug resistant mycobacterium (MDR) case, and pulsotype B including 29 isolates and three MDR cases. No correlation between the antibiotypes and pulsotypes was observed. Conclusions: Molecular epidemiology studies of infectious diseases have been useful when bacterial isolates have been clustered in a period of time and in different geographical regions with variable antibiotic resistance patterns. In spite of high geographical differences and different antibiotic resistant patterns, low genetic diversity among the studied TB isolates may refer to the low rate of mutations in XbaI restriction sites in the mycobacterial genome. We also identified three MDR isolates in low-incidence pulsotype B, which could be disseminated and is highly important to consider in TB surveillance programs to prevent the spread of MDR-TB isolates in the population. PMID:26396714
Viazovaia, A A; Solov'eva, N S; Zhuravlev, V Iu; Mokrousov, I V; Manicheva, O A; Vishnevskiĭ, B I; Narvskaia, O V
2013-01-01
Molecular-genetic characteristic of M. tuberculosis strains isolated from operation material of patients with tuberculous spondylitis. 107 strains of M. tuberculosis isolated in 2007 - 2011 from patients with spine tuberculosis were studied by methods of spoligotyping and MIRU-VNTR by 12 and 24 loci. Strains of genetic family Beijing dominated (n = 80), 78% of those had multiple drug resistance (MDR). Strains of genetic families T, H3 (Ural), LAM, Manu, H4 and S were also detected. Differentiating of 80 strains of Beijing genotype by MIRU-VNTR method by 24 loci revealed 24 variants (HGI = 0.83) including 7 clusters, the largest of those (100-32) included 23 strains (87% MDR). The leading role of Beijing genotype M. tuberculosis strains in development of tuberculous spondylitis with multiple drug resistance of the causative agent is shown.
Definition of the Beijing/W lineage of Mycobacterium tuberculosis on the basis of genetic markers.
Kremer, Kristin; Glynn, Judith R; Lillebaek, Troels; Niemann, Stefan; Kurepina, Natalia E; Kreiswirth, Barry N; Bifani, Pablo J; van Soolingen, Dick
2004-09-01
Mycobacterium tuberculosis Beijing genotype strains are highly prevalent in Asian countries and in the territory of the former Soviet Union. They are increasingly reported in other areas of the world and are frequently associated with tuberculosis outbreaks and drug resistance. Beijing genotype strains, including W strains, have been characterized by their highly similar multicopy IS6110 restriction fragment length polymorphism (RFLP) patterns, deletion of spacers 1 to 34 in the direct repeat region (Beijing spoligotype), and insertion of IS6110 in the genomic dnaA-dnaN locus. In this study the suitability and comparability of these three genetic markers to identify members of the Beijing lineage were evaluated. In a well-characterized collection of 1,020 M. tuberculosis isolates representative of the IS6110 RFLP genotypes found in The Netherlands, strains of two clades had spoligotypes characteristic of the Beijing lineage. A set of 19 Beijing reference RFLP patterns was selected to retrieve all Beijing strains from the Dutch database. These reference patterns gave a sensitivity of 98.1% and a specificity of 99.7% for identifying Beijing strains (defined by spoligotyping) in an international database of 1,084 strains. The usefulness of the reference patterns was also assessed with large DNA fingerprint databases in two other European countries and for identification strains from the W lineage found in the United States. A standardized definition for the identification of M. tuberculosis strains belonging to the Beijing/W lineage, as described in this work, will facilitate further studies on the spread and characterization of this widespread genotype family of M. tuberculosis strains.
Mathuria, Jitendra P; Srivastava, Govind N; Sharma, Pragya; Mathuria, Bharat L; Ojha, Sanjay; Katoch, Vishwa M; Anupurba, Shampa
The global presence and rapid dissemination of Beijing genotype of Mycobacterium tuberculosis, makes it an important issue of public health. Its presence and association with multi-drug resistance has been shown in many settings. In present study we tried to find its prevalence and association with drug resistance in North India. One hundred and twenty four M. tuberculosis isolates were analyzed with spoligotyping, further drug susceptibility testing was done by 1% proportional method. Out of these, 11 (8.9%) M. tuberculosis isolates were identified as Beijing and 113 (91.1%) as non-Beijing genotypes. While looking at their drug susceptibility patterns, 6 (54.5%) & 22 (19.5%) were found to be multi drug resistant (MDR) among Beijing and non-Beijing isolates respectively. Our study concluded that the Beijing strains were not so common in north India and these strains do not fully associate with MDR. Copyright © 2017 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.
Predominance of Ancestral Lineages of Mycobacterium tuberculosis in India
Gutierrez, M. Cristina; Ahmed, Niyaz; Willery, Eve; Narayanan, Sujatha; Hasnain, Seyed E.; Chauhan, Devendra S.; Katoch, Vishwa M.; Vincent, Véronique; Locht, Camille
2006-01-01
Although India has the highest prevalence of tuberculosis (TB) worldwide, the genetic diversity of Mycobacterium tuberculosis in India is largely unknown. A collection of 91 isolates originating from 12 different regions spread across the country were analyzed by genotyping using 21 loci with variable-number tandem repeats (VNTRs), by spoligotyping, by principal genetic grouping (PGG), and by deletion analysis of M. tuberculosis–specific deletion region 1. The isolates showed highly diverse VNTR genotypes. Nevertheless, highly congruent groupings identified by using the 4 independent sets of markers permitted a clear definition of 3 prevalent PGG1 lineages, which corresponded to the "ancestral" East African–Indian, the Delhi, and the Beijing/W genogroups. A few isolates from PGG2 lineages and a single representative of the presumably most recent PGG3 were identified. These observations suggest a predominance of ancestral M. tuberculosis genotypes in the Indian subcontinent, which supports the hypothesis that India is an ancient endemic focus of TB. PMID:17073085
Harishankar, M; Selvaraj, P
2016-06-01
Vitamin D receptor (VDR) gene variants have been shown to be regulating the immune response in tuberculosis. We studied the regulatory role of VDR promoter Cdx-2 and 3'UTR TaqI gene variants on chemokine levels from culture filtrate antigen (CFA) stimulated with or without 1,25(OH)2D3 treated peripheral blood mononuclear cells of 50 pulmonary tuberculosis patients (PTB) and 51 normal healthy controls (HCs). In CFA with 1,25(OH)2D3 treated cultures, the MIP-1α, MIP-1β, RANTES levels were significantly decreased in Cdx-2 AA genotype compared to GG genotype, while a significantly increased MIG level was observed in Cdx-2 AA genotype (p<0.05). In TaqI polymorphism, tt genotype significantly decreased MIP-1β and RANTES levels compared to TT genotype. Moreover, a significantly increased level of IP-10 and MIG was observed in TaqI tt genotype compared with TT genotype (p<0.05). The results suggests that the 1,25(OH)2D3 may alter the chemokine response through the VDR polymorphic variants during infection. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Prospective Genotyping of Mycobacterium tuberculosis from Fresh Clinical Samples
Bidovec-Stojkovič, Urška; Seme, Katja; Žolnir-Dovč, Manca; Supply, Philip
2014-01-01
Shorter time-to-result is key for improving molecular-guided epidemiological investigation of tuberculosis (TB) cases. We performed a prospective study to evaluate the use of standardized MIRU-VNTR (mycobacterial interspersed repetitive-unit-variable-number tandem-repeat) typing of Mycobacterium tuberculosis directly on 79 fresh clinical samples from 26 TB patients consecutively enrolled over a 17-month period. Overall, complete 24-locus types were obtained for 18 out of the 26 (69.2%) patients and 14 of the 16 grade 3+ and grade 2+ samples (87.5%). The degree of completion of the genotypes obtained significantly correlated with smear microscopy grade both for 26 first samples (p = 0.0003) and for 53 follow-up samples (p = 0.002). For 20 of the 26 patients for whom complete or even incomplete M. tuberculosis isolate genotypes were obtained, typing applied to the clinical samples allowed the same unambiguous conclusions regarding case clustering or uniqueness as those that could have been drawn based on the corresponding cultured isolates. Standard 24 locus MIRU-VNTR typing of M. tuberculosis can be applied directly to fresh clinical samples, with typeability depending on the bacterial load in the sample. PMID:25313883
Genotyping and drug resistance patterns of M. tuberculosis strains in Pakistan.
Tanveer, Mahnaz; Hasan, Zahra; Siddiqui, Amna R; Ali, Asho; Kanji, Akbar; Ghebremicheal, Solomon; Hasan, Rumina
2008-12-24
The incidence of tuberculosis in Pakistan is 181/100,000 population. However, information about transmission and geographical prevalence of Mycobacterium tuberculosis strains and their evolutionary genetics as well as drug resistance remains limited. Our objective was to determine the clonal composition, evolutionary genetics and drug resistance of M. tuberculosis isolates from different regions of the country. M. tuberculosis strains isolated (2003-2005) from specimens submitted to the laboratory through collection units nationwide were included. Drug susceptibility was performed and strains were spoligotyped. Of 926 M. tuberculosis strains studied, 721(78%) were grouped into 59 "shared types", while 205 (22%) were identified as "Orphan" spoligotypes. Amongst the predominant genotypes 61% were Central Asian strains (CAS ; including CAS1, CAS sub-families and Orphan Pak clusters), 4% East African-Indian (EAI), 3% Beijing, 2% poorly defined TB strains (T), 2% Haarlem and LAM (0.2). Also TbD1 analysis (M. tuberculosis specific deletion 1) confirmed that CAS1 was of "modern" origin while EAI isolates belonged to "ancestral" strain types.Prevalence of CAS1 clade was significantly higher in Punjab (P < 0.01, Pearsons Chi-square test) as compared with Sindh, North West Frontier Province and Balochistan provinces. Forty six percent of isolates were sensitive to five first line antibiotics tested, 45% were Rifampicin resistant, 50% isoniazid resistant. MDR was significantly associated with Beijing strains (P = 0.01, Pearsons Chi-square test) and EAI (P = 0.001, Pearsons Chi-square test), but not with CAS family. Our results show variation of prevalent M. tuberculosis strain with greater association of CAS1 with the Punjab province. The fact that the prevalent CAS genotype was not associated with drug resistance is encouraging. It further suggests a more effective treatment and control programme should be successful in reducing the tuberculosis burden in Pakistan.
Genotyping of Mycobacterium tuberculosis: application in epidemiologic studies
Kato-Maeda, Midori; Metcalfe, John Z.; Flores, Laura
2014-01-01
Genotyping is used to track specific isolates of Mycobacterium tuberculosis in a community. It has been successfully used in epidemiologic research (termed ‘molecular epidemiology’) to study the transmission dynamics of TB. In this article, we review the genetic markers used in molecular epidemiologic studies including the use of whole-genome sequencing technology. We also review the public health application of molecular epidemiologic tools. PMID:21366420
Molecular epidemiology of tuberculosis after declining incidence, New York City, 2001-2003.
Driver, C R; Kreiswirth, B; Macaraig, M; Clark, C; Munsiff, S S; Driscoll, J; Zhao, B
2007-05-01
Tuberculosis incidence in New York City (NYC) declined between 1992 and 2000 from 51.1 to 16.6 cases per 100,000 population. In January 2001, universal real-time genotyping of TB cases was implemented in NYC. Isolates from culture-confirmed tuberculosis cases from 2001 to 2003 were genotyped using IS6110 and spoligotype to describe the extent and factors associated with genotype clustering after declining TB incidence. Of 2408 (91.8%) genotyped case isolates, 873 (36.2%) had a pattern indistinguishable from that of another study period case, forming 212 clusters; 248 (28.4%) of the clustered cases had strains believed to have been widely transmitted during the epidemic years in the early 1990s in NYC. An estimated 27.4% (873 minus 212) of the 2408 cases were due to recent infection that progressed to active disease during the study period. Younger age, birth in the United States, homelessness, substance abuse and presence of TB symptoms were independently associated with greater odds of clustering.
Millán-Lou, M I; Ollé-Goig, J E; Tortola, M T; Martin, C; Samper, S
2016-02-01
On detecting a high prevalence of multidrug-resistant tuberculosis (TB) in Djibouti, 32 Mycobacterium tuberculosis isolates of patients hospitalised in the TB referral centre of the capital were genotyped. A high variety of M. tuberculosis lineages, including lineage 1, Indo-Oceanic, lineage 2, East-Asian, lineage 3, East-African Indian and lineage 4, Euro-American, were detected.
Zelner, Jonathan L.; Murray, Megan B.; Becerra, Mercedes C.; Galea, Jerome; Lecca, Leonid; Calderon, Roger; Yataco, Rosa; Contreras, Carmen; Zhang, Zibiao; Manjourides, Justin; Grenfell, Bryan T.; Cohen, Ted
2016-01-01
Background. We aimed to identify and determine the etiology of “hotspots” of concentrated multidrug-resistant tuberculosis (MDR-tuberculosis) risk in Lima, Peru. Methods. From 2009 to 2012, we conducted a prospective cohort study among households of tuberculosis cases from 106 health center (HC) areas in Lima, Peru. All notified tuberculosis cases and their household contacts were followed for 1 year. Symptomatic individuals were screened by microscopy and culture; positive cultures were tested for drug susceptibility (DST) and genotyped by 24-loci mycobacterial interspersed repetitive units-variable-number tandem repeats (MIRU-VNTR). Results. 3286 individuals with culture-confirmed disease, DST, and 24-loci MIRU-VNTR were included in our analysis. Our analysis reveals: (1) heterogeneity in annual per-capita incidence of tuberculosis and MDR-tuberculosis by HC, with a rate of MDR-tuberculosis 89 times greater (95% confidence interval [CI], 54,185) in the most-affected versus the least-affected HC; (2) high risk for MDR-tuberculosis in a region spanning several HCs (odds ratio = 3.19, 95% CI, 2.33, 4.36); and (3) spatial aggregation of MDR-tuberculosis genotypes, suggesting localized transmission. Conclusions. These findings reveal that localized transmission is an important driver of the epidemic of MDR-tuberculosis in Lima. Efforts to interrupt transmission may be most effective if targeted to this area of the city. PMID:26175455
Bidovec-Stojkovic, Urska; Zolnir-Dovc, Manca; Supply, Philip
2011-10-01
Slovenia is one of the few countries where IS6110 RFLP is applied for genotyping M. tuberculosis at a nationwide level, which has been in effect since 2000. Based on S6110 RFLP clustering, typical risk factors and routes of M. tuberculosis transmission were identified, such as alcohol abuse, homelessness, and bars. However, IS6110 RFLP typing suffers from important limitations including a long wait for results, which reduces the potential benefit of molecular-guided tuberculosis (TB) control. PCR-based 24-locus MIRU-VNTR typing combined with spoligotyping has recently emerged as a potential alternative for faster, large-scale genotyping of M. tuberculosis. We compared these genotyping methods for analyzing 196 Slovenian Mycobacterium tuberculosis isolates representing 97.5% of all culture-positive cases included in the Slovenian TB Registry in 2008. IS6110 RFLP and 24-locus MIRU-VNTR typing combined with spoligotyping identified 157 and 155 distinct profiles, 135 and 125 unique isolates, and 61 and 71 clustered isolates grouped into 22 and 29 clusters, respectively. The discriminatory indexes were very close, at 0.9963 and 0.9965, respectively. The majority of the molecular clusters defined by either of the two methods were identical, including in the few cases for which epidemiological links were available. The differences frequently consisted of single-band changes in IS6170-RFLP profiles subdividing a MIRU-VNTR/spoligotype-based cluster. Our one-year nationwide study showed that the results of 24-locus MIRU-VNTR typing combined with spoligotyping reached a high level of concordance with those obtained from IS6110 RFLP typing. Copyright © 2011 Elsevier Ltd. All rights reserved.
Genotypic diversity of Mycobacterium tuberculosis in Buenos Aires, Argentina.
Monteserin, Johana; Paul, Roxana; Gravina, Elida; Reniero, Ana; Hernandez, Teresa; Mazzeo, Eduardo; Togneri, Ana; Simboli, Norberto; López, Beatriz; Couvin, David; Rastogi, Nalin; Ritacco, Viviana
2018-04-06
Buenos Aires is an overpopulated port city historically inhabited by people of European descent. Together with its broader metropolitan area, the city exhibits medium tuberculosis rates, and receives migrants, mainly from tuberculosis highly endemic areas of Argentina and neighboring countries. This work was aimed to gain insight into the Mycobacterium tuberculosis population structure in two suburban districts of Buenos Aires which are illustrative of the overall situation of tuberculosis in Argentina. The Lineage 4 Euro-American accounted for >99% of the 816 isolates analyzed (one per patient). Frequencies of spoligotype families were T 35.9%, LAM 33.2%, Haarlem 19.5%, S 3.2%, X 1.5%, Ural 0.7%, BOV 0.2%, Beijing 0.2%, and Cameroon 0.2%. Unknown signatures accounted for 5.3% isolates. Of 55 spoligotypes not matching any extant shared international type (SIT) in SITVIT database, 22 fitted into 15 newly-issued SITs. Certain autochthonous South American genotypes were found to be actively evolving. LAM3, which is wild type for RD rio , was the predominant LAM subfamily in both districts and the RD rio signature was rare among autochthonous, newly created, SITs and orphan patterns. Two genotypes that are rarely observed in neighboring countries ̶ SIT2/H2 and SIT159/T1 Tuscany ̶ were conspicuously represented in Argentina. The infrequent Beijing patterns belonged to Peruvian patients. We conclude that the genotype diversity observed reflects the influence of the Hispanic colonization and more recent immigration waves from Mediterranean and neighboring countries. Unlike in Brazil, the RD rio type does not play a major role in the tuberculosis epidemic in Buenos Aires. Copyright © 2018 Elsevier B.V. All rights reserved.
Martinez-Orozco, Jose Arturo; Nuñez-Luna, Blanca A; Narváez-Diaz, Luis A; Pilar, Mariela Segura-Del; Mujica-Sanchez, Mario; Salazar-Lezama, Miguel Angel; Mireles-Davalos, Christian D
2017-01-01
Abstract Background Drug resistance tuberculosis, specially MDR and XDR are a big challenge for diagnosis and treatment. In Mexico the prevalence of MDR is between 3–5%, a number probably underestimated due to lack of diagnostic tests for susceptibility. The National Institute of Respiratory Diseases in Mexico City is the national referral center for MDR/XDR tuberculosis. In our country there is no data about the gene mutations involved in drug resistance to first line antituberculosis treatment nor the clinical characteristics that accompany these findings. Objective: Evaluate the prevalence of genotyping profiles according to a line probe assay (LPA) in patients with drug resistance tuberculosis and their associated clinical characteristics Methods Retrospective cohort from 2010 to 2014 of M. tuberculosis isolates with any type of resistance to first line antituberculosis drugs identified by MGIT SIRE and in which GenoType MTBDRplus/sl were performed, we evaluate prevalence of genotyping profiles according to the LPA within the isolates and gather data from those with complete medical records to asses clinical characteristics. Results In 52 and 33 isolates phenotyping and genotyping MTBDRplus/sl respectively were performed, 41 resistant to Isoniazid INH with 75% genotypic concordance, 33 resistant to rifampicin RIF with 75.6% concordance, 14 to streptomycin SM with 23% concordance and 10 to ethambutol EMB with 100% concordance, 54% MDR tuberculosis. The genotyping profile for RIF was absence of probes rpoB Wild Type 8 (WT) 57.7%, WT 7 30.8% and presence of rpoB mutation 3 (MUT) 19.2%. For INH absence of InhA WT2 48.1% and InhA WT1 19.2%. For EMB absence of embB WT1 30.8% and for SM absence of rrs WT1 (19%). Absence of InhA WT1 was associated with female (P = 0.01) and DM2 (P = 0.032) patients, other clinical/biochemical characteristics and mortality was not different in patients with o without the genotypic profile for each drug. Cavitary disease by CT was more frequent in patients with WT probe absence in RIF and INH than those who did not have a LPA suggestive of resistance for this drugs. Conclusion Wild Type probe absense is the frequent finding in our isolates according to LPA in RIF, INH, EMB and SM, intrisic host factors and clinical characteristics seem not to be related to a particular resistant gene profile. Disclosures All authors: No reported disclosures.
Noguti, Erika Noda; Leite, Clarice Queico Fujimura; Malaspina, Ana Carolina; Santos, Adolfo Carlos Barreto; Hirata, Rosário Dominguez Crespo; Hirata, Mario Hiroyuki; Mamizuka, Elsa Massae; Cardoso, Rosilene Fressatti
2010-09-01
The purpose of this study was to provide information about the genetic diversity and prevalent genotype of Mycobacterium tuberculosis in a low-endemic setting in northwestern state of Paraná in Southern Brazil. We employed spoligotyping and mycobacterial interspersed repetitive units-variable number tandem repeat (MIRU-VNTR) techniques to genotype M. tuberculos isisolates from patients with pulmonary tuberculosis (TB). The 93 isolates analyzed by spoligotyping were divided into 36 different patterns, 30 of which were described in the SITVIT database. Latin American and Mediterranean, Haarlem and T families were responsible for 26.9%, 17.2% and 11.8% of TB cases, respectively. From the 84 isolates analyzed by MIRU-VNTR, 58 shared a unique pattern and the remaining 26 belonged to nine clusters. The MIRU loci 40, 23, 10 and 16 were the most discriminatory. A combination of MIRU-VNTR and spoligotyping resulted in 85.7% discriminatory power (Hunter-Gaston index = 0.995). Thus, combining spoligotyping and MIRU-VNTR typing proved to be most useful for epidemiological study in this low-endemic setting in Southern Brazil. The current study demonstrated that there is significant diversity in circulating strains in the city of Maringá and the surrounding regions, with no single genotype of M. tuberculosis predominating.
Deng, Yun-feng; Zhang, Yan-an; Zheng, Jian-li; Jing, Hui; Wang, Yan; Wang, Hai-ying; Ma, Xin; Liu, Zhi-min
2010-03-01
To establish the molecular characteristics of Mycobacterium tuberculosis and on factors influencing the recent transmission of drug resistant isolates in Shandong. Mycobacterium tuberculosis isolated from active pulmonary tuberculosis patients of 13 counties were genotyped by mycobacterial interspersed repetitive units (MIRU) methods. 12 loci of MIRU were detected in 558 isolates and a total of 143 MIRU patterns were confirmed. 66 isolates had distinct patterns, and 481 (86.2%) strains were in clusters. Shandong cluster included 177 strains with 74.6% of the isolates belonged to Beijing family. The recent transmission index of multi-drug resistance strains was in lower level, comparing to the susceptible strains. Our results showed that the Shandong cluster isolates had capacities of facilitating person-to-person transmission and high level of drug resistance.
Perdigão, João; Clemente, Sofia; Ramos, Jorge; Masakidi, Pedro; Machado, Diana; Silva, Carla; Couto, Isabel; Viveiros, Miguel; Taveira, Nuno; Portugal, Isabel
2016-12-01
Despite the important role that the African region plays in a global tuberculosis (TB) epidemiological context, many countries in the region still lack data on the prevalence of specific Mycobacterium tuberculosis strains and drug resistance. This is the case for Angola, which presently lacks any data concerning drug-resistance rates and prevalence of specific M. tuberculosis genotypes and respective population structure. In this study, we made the first characterization of the genetic diversity and drug resistance of M. tuberculosis complex strains circulating in Luanda, Angola's most important setting concerning TB epidemiology. We have analyzed 89 M. tuberculosis isolates recovered from the same number of patients. All clinical isolates were genotyped by spoligotyping and 24-loci mycobacterial interspersed repetitive unit-variable number of tandem repeats (MIRU-VNTRs). First-line drug-susceptibility testing was performed by the standard BACTEC 960 Mycobacteria Growth Indicator Tube (MGIT) procedure. We have detected 33 different spoligotype profiles corresponding to 24 different shared international types (SITs) and nine orphan profiles. SIT 20 (LAM1) was the most prevalent (n=16, 18.2%) followed by SIT 42 (LAM9; n=15, 17.1%). Overall, the M. tuberculosis population structure in this sample was dominated by LAM (64.8%) and T (33.0%) strains. Twenty-four-loci MIRU-VNTR analysis revealed that a total of 13 isolates were grouped into five distinct clusters. Drug-susceptibility testing revealed a worrying situation concerning resistance rates. Drug-susceptibility data showed that 22 (24.7%) of the 89 clinical isolates were resistant to one or more antibacillary drugs of which four (4.5%) were multidrug resistant (MDR). Drug-resistant isolates were found across distinct clades and MIRU-VNTR clusters. This first cross-sectional study conducted in Luanda, Angola, provides a framework for future studies and programmatic management of TB in Angola. We provide sufficient evidence for cluster-based transmission with a high predominance of LAM strains, with differential geographic dispersion. The moderate rate of MDR-TB found in this sample has major public health implications and highlights the need for further studies specifically focused on MDR-TB transmission. Copyright © 2016.
Insight into multidrug-resistant Beijing genotype Mycobacterium tuberculosis isolates in Myanmar.
San, Lai Lai; Aye, Khin Saw; Oo, Nan Aye Thida; Shwe, Mu Mu; Fukushima, Yukari; Gordon, Stephen V; Suzuki, Yasuhiko; Nakajima, Chie
2018-06-21
Myanmar is a WHO high tuberculosis (TB) burden country with a high multidrug-resistant (MDR)-TB burden. Significantly a high prevalence of the Beijing genotype of Mycobacterium tuberculosis (MTB) among MDR-MTB has been reported previously. To explore whether an association exists between the prevalence of the Beijing MTB genotype and MDR-TB in Myanmar, we performed detailed genetic characterization of TB clinical isolates. A total of 265 MDR-MTB clinical isolates collected in 2010 and 2012 were subjected to spoligotyping, mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) analysis, SNP typing and drug resistance-associated gene sequencing including rpoC to detect potential compensatory evolution. Of the total MDR-MTB isolates, 79.2% (210/265) were of the Beijing genotype, the majority of which were the "modern" subtype. Beijing genotype isolates were differentiated by 15-loci MIRU-VNTR and a high clustering rate (53.0%) was observed in the modern subtype. These MIRU-VNTR patterns were similar to Beijing genotype clones spreading across Russia and Central Asia. High prevalence of katG Ser315Thr, and genetic evidence of XDR and pre-XDR and compensatory mutations in rpoC were observed among clustered isolates. MDR-MTB strains of the Beijing genotype might be spreading in Myanmar and present a major challenge to TB control in this country. Copyright © 2018. Published by Elsevier Ltd.
Aristimuño, Liselotte; Armengol, Raimond; Cebollada, Alberto; España, Mercedes; Guilarte, Alexis; Lafoz, Carmen; Lezcano, María A; Revillo, María J; Martín, Carlos; Ramírez, Carmen; Rastogi, Nalin; Rojas, Janet; de Salas, Albina Vázques; Sola, Christophe; Samper, Sofía
2006-01-01
Background Molecular typing of Mycobacterium tuberculosis strains has become a valuable tool in the epidemiology of tuberculosis (TB) by allowing detection of outbreaks, tracking of epidemics, identification of genotypes and transmission events among patients who would have remained undetected by conventional contact investigation. This is the first genetic biodiversity study of M. tuberculosis in Venezuela. Thus, we investigated the genetic patterns of strains isolated in the first survey of anti-tuberculosis drug-resistance realised as part of the Global Project of Anti-tuberculosis Drug Resistance Surveillance (WHO/IUATLD). Results Clinical isolates (670/873) were genotyped by spoligotyping. The results were compared with the international spoligotyping database (SpolDB4). Multidrug resistant (MDR) strains (14/18) were also analysed by IS6110-RFLP assays, and resistance to isoniazid and rifampicin was characterised. Spoligotyping grouped 82% (548/670) of the strains into 59 clusters. Twenty new spoligotypes (SITs) specific to Venezuela were identified. Eight new inter-regional clusters were created. The Beijing genotype was not found. The genetic network shows that the Latin American and Mediterranean family constitutes the backbone of the genetic TB population-structure in Venezuela, responsible of >60% of total TB cases studied. MDR was 0.5% in never treated patients and 13.5% in previously treated patients. Mutations in rpoB gene and katG genes were detected in 64% and 43% of the MDR strains, respectively. Two clusters were found to be identical by the four different analysis methods, presumably representing cases of recent transmission of MDR tuberculosis. Conclusion This study gives a first overview of the M. tuberculosis strains circulating in Venezuela during the first survey of anti-tuberculosis drug-resistance. It may aid in the creation of a national database that will be a valuable support for further studies. PMID:17032442
Feuerriegel, Silke; Köser, Claudio U.; Baù, Davide; Rüsch-Gerdes, Sabine; Summers, David K.; Archer, John A. C.; Marti-Renom, Marc A.; Niemann, Stefan
2011-01-01
PA-824 is a promising drug candidate for the treatment of tuberculosis (TB). It is in phase II clinical trials as part of the first newly designed regimen containing multiple novel antituberculosis drugs (PA-824 in combination with moxifloxacin and pyrazinamide). However, given that the genes involved in resistance against PA-824 are not fully conserved in the Mycobacterium tuberculosis complex (MTBC), this regimen might not be equally effective against different MTBC genotypes. To investigate this question, we sequenced two PA-824 resistance genes (fgd1 [Rv0407] and ddn [Rv3547]) in 65 MTBC strains representing major phylogenetic lineages. The MICs of representative strains were determined using the modified proportion method in the Bactec MGIT 960 system. Our analysis revealed single-nucleotide polymorphisms in both genes that were specific either for several genotypes or for individual strains, yet none of these mutations significantly affected the PA-824 MICs (≤0.25 μg/ml). These results were supported by in silico modeling of the mutations identified in Fgd1. In contrast, “Mycobacterium canettii” strains displayed a higher MIC of 8 μg/ml. In conclusion, we found a large genetic diversity in PA-824 resistance genes that did not lead to elevated PA-824 MICs. In contrast, M. canettii strains had MICs that were above the plasma concentrations of PA-824 documented so far in clinical trials. As M. canettii is also intrinsically resistant against pyrazinamide, new regimens containing PA-824 and pyrazinamide might not be effective in treating M. canettii infections. This finding has implications for the design of multiple ongoing clinical trials. PMID:21930879
Application of modern microbiological diagnostic methods for tuberculosis in Macha, Zambia.
Verweij, K E; Kamerik, A R; van Ingen, J; van Dijk, J H; Sikwangala, P; Thuma, P; Nouwen, J L; van Soolingen, D
2010-09-01
Macha, Zambia. To assess the benefits of auramine-O staining fluorescence microscopy and Mycobacterial Growth Indicator Tube (MGIT) liquid culture with molecular identification in tuberculosis (TB) diagnostics. One hundred patients suspected of TB were subjected to three sputum sample examinations applying Ziehl-Neelsen (ZN) and auramine-O staining and MGIT culture. Positive cultures were identified using the GenoType CM assay; cultures identified as Mycobacterium tuberculosis complex were the gold standard for a diagnosis of TB. The 100 patients produced 271 sputum samples; of these, 30 patients had positive cultures. M. tuberculosis complex bacilli were isolated in 17 (56.7%) patients, non-tuberculous mycobacteria (NTM) in 11 (36.7%) and other acid-fast bacilli in two. Forty-eight samples (17.7%) were contaminated. Auramine-O detected 16 (57.1%) patients culture-positive for mycobacteria and 12 patients with culture-proven TB, vs. respectively 8 (28.6%, P = 0.008) and 7 (41.2%, P = 0.044) for ZN. Three of eight auramine-positive/ZN-negative patients were culture-positive for NTM only. The auramine-O method significantly increases sensitivity, although the higher NTM detection rate implies that this does not in itself lead to a more accurate diagnosis of TB. MGIT culture is highly sensitive, although contamination rates were a drawback; the high frequency of NTM isolation warrants a robust identification method.
The Evolutionary History, Demography, and Spread of the Mycobacterium tuberculosis Complex.
Barbier, Maxime; Wirth, Thierry
2016-08-01
With the advent of next-generation sequencing technology, the genotyping of clinical Mycobacterium tuberculosis strains went through a major breakup that dramatically improved the field of molecular epidemiology but also revolutionized our deep understanding of the M. tuberculosis complex evolutionary history. The intricate paths of the pathogen and its human host are reflected by a common geographical origin in Africa and strong biogeographical associations that largely reflect the past migration waves out of Africa. This long coevolutionary history is cardinal for our understanding of the host-pathogen dynamic, including past and ongoing demographic components, strains' genetic background, as well as the immune system genetic architecture of the host. Coalescent- and Bayesian-based analyses allowed us to reconstruct population size changes of M. tuberculosis through time, to date the most recent common ancestor and the several phylogenetic lineages. This information will ultimately help us to understand the spread of the Beijing lineage, the rise of multidrug-resistant sublineages, or the fall of others in the light of socioeconomic events, antibiotic programs, or host population densities. If we leave the present and go through the looking glass, thanks to our ability to handle small degraded molecules combined with targeted capture, paleomicrobiology covering the Pleistocene era will possibly unravel lineage replacements, dig out extinct ones, and eventually ask for major revisions of the current model.
Yorsangsukkamol, Juthaporn; Chaiprasert, Angkana; Palaga, Tanapat; Prammananan, Therdsak; Faksri, Kiatichai; Palittapongarnpim, Prasit; Prayoonwiwat, Narapon
2011-09-01
A previous study of IS6110 RFLP and spoligotyping of M. tuberculosis isolates from 152 Thai patients with tuberculous meningitis revealed a significantly higher percentage (57%) of the Beijing genotype as compared to isolates obtained from pulmonary tuberculosis. We postulated that the M. tuberculosis Beijing genotype is likely to be more virulent than others. Ten M. tuberculosis cerebrospinal fluid (CSF) isolates from five RFLP groups, together with different characteristics of pks15/1, M. tuberculosis H37Rv and M. bovis BCG, were investigated for their virulence in vitro. In this study, THP-1 cells were used as host cells to determine the intracellular growth and the induction of MMP9, VEGF, TNF-alpha and apoptosis. Determinations of the cytokine production and apoptosis were based on available commercial kits using ELISA techniques. No significant difference in intracellular multiplication was found between the M. tuberculosis CSF isolates. Three isolates, consisting of 2 Nonthaburi and 1 heterogeneous isolate, were found to stimulate high TNF-alpha and MMP-9 production during the early infection period.They were isolated from 3 different patients, 2 of whom died with initial stages II and III. This result suggested that there might be an association between TNF-alpha and MMP-9 production that could account for the specific virulent nature of Nonthaburi strains. VEGF production was determined and comparable levels were found in all isolates. No significant apoptosis was detected in M. tuberculosis CSF isolates. No significant differences suggesting that the 2 Beijing strains are more virulent than the others were observed. The predominance of the Beijing strains in cases of tuberculous meningitis (TBM) in Thai patients is not a result of their hypervirulence.
Kozińska, Monika; Augustynowicz-Kopeć, Ewa
2015-01-01
In total, 1095 Mycobacterium tuberculosis clinical isolates from 282 patients with drug-resistant and 813 with drug-sensitive tuberculosis (TB) in Poland during 2007-2011 were analysed. Seventy-one (6.5%) patients were found to have strains of Beijing genotype as defined by spoligotyping. The majority of patients were Polish-born; among foreign-born a large proportion came from Chechnya and Vietnam. Analysis showed strong associations between Beijing genotype infection and MDR, pre-XDR and XDR resistance, with a considerable relative risk among new patients, suggesting that this is due to increased spread of drug-resistant strains rather than acquisition of resistance during treatment.
Peñuelas-Urquides, Katia; Martínez-Rodríguez, Herminia Guadalupe; Enciso-Moreno, José Antonio; Molina-Salinas, Gloria María; Silva-Ramírez, Beatriz; Padilla-Rivas, Gerardo Raymundo; Vera-Cabrera, Lucio; Torres-de-la-Cruz, Víctor Manuel; Martínez-Martínez, Yazmin Berenice; Ortega-García, Jorge Luis; Garza-Treviño, Elsa Nancy; Enciso-Moreno, Leonor; Saucedo-Cárdenas, Odila; Becerril-Montes, Pola; Said-Fernández, Salvador
2014-09-01
The characteristics of tuberculosis (TB) patients related to a chain of recent TB transmissions were investigated. Mycobacterium tuberculosis (MTB) isolates (120) were genotyped using the restriction fragment length polymorphism-IS6110 (R), spacer oligotyping (S) and mycobacterial interspersed repetitive units-variable number of tandem repeats (M) methods. The MTB isolates were clustered and the clusters were grouped according to the similarities of their genotypes. Spearman's rank correlation coefficients between the groups of MTB isolates with similar genotypes and those patient characteristics indicating a risk for a pulmonary TB (PTB) chain transmission were ana- lysed. The isolates showing similar genotypes were distributed as follows: SMR (5%), SM (12.5%), SR (1.67%), MR (0%), S (46.67%), M (5%) and R (0%). The remaining 35 cases were orphans. SMR exhibited a significant correlation (p < 0.05) with visits to clinics, municipalities and comorbidities (primarily diabetes mellitus). S correlated with drug consumption and M with comorbidities. SMR is needed to identify a social network in metropolitan areas for PTB transmission and S and M are able to detect risk factors as secondary components of a transmission chain of TB.
Yang, Chongguang; Shen, Xin; Peng, Ying; Lan, Rushu; Zhao, Yuling; Long, Bo; Luo, Tao; Sun, Guomei; Li, Xia; Qiao, Ke; Gui, Xiaohong; Wu, Jie; Xu, Jiying; Li, Fabin; Li, Dingyue; Liu, Feiying; Shen, Mei; Hong, Jianjun; Mei, Jian; DeRiemer, Kathryn; Gao, Qian
2015-01-01
Background. Understanding the transmission of Mycobacterium tuberculosis is essential for the development of efficient tuberculosis control strategies. China has the second-largest tuberculosis burden in the world. Recent transmission and infection with M. tuberculosis, particularly drug-resistant strains, may account for many new tuberculosis cases. Methods. We performed a population-based molecular epidemiologic study of pulmonary tuberculosis in China during 1 July 2009 to 30 June 2012. We defined clusters as cases with identical variable number tandem repeat genotype patterns and identified the risk factors associated with clustering, by logistic regression. Relative transmission rates were estimated by the sputum smear status and drug susceptibility status of tuberculosis patients. Results. Among 2274 culture-positive tuberculosis patients with genotyped isolates, there were 705 (31.0%) tuberculosis patients in 287 clusters. Multidrug-resistant (MDR) tuberculosis (adjusted odds ratio [aOR], 1.86; 95% confidence interval [CI], 1.25–2.63) and infection with a Beijing family strain (aOR, 1.56; 95% CI, 1.23–2.96) were associated with clustering. Eighty-four of 280 (30.0%) clusters had a putative source case that was sputum smear negative, and 30.6% of their secondary cases were attributed to transmission by sputum smear–negative patients. The relative transmission rate for sputum smear negative compared with sputum smear–positive patients was 0.89 (95% CI, .68–1.10), and was 1.51 (95% CI, 1.00–2.24) for MDR tuberculosis vs drug-susceptible tuberculosis. Conclusions. Recent transmission of M. tuberculosis, including MDR strains, contributes substantially to tuberculosis disease in China. Sputum smear–negative cases were responsible for at least 30% of the secondary cases. Interventions to reduce the transmission of M. tuberculosis should be implemented in China. PMID:25829000
Dou, Horng-Yunn; Chen, Yih-Yuan; Kou, Shu-Chen; Su, Ih-Jen
2015-06-01
Taiwan is a relatively isolated island, serving as a mixing vessel for colonization by different waves of ethnic and migratory groups over the past 4 centuries. The potential transmission pattern of Mycobacterium tuberculosis in different ethnic and migratory populations remains to be elucidated. By using mycobacterial tandem repeat sequences as genetic markers, the prevalence of M. tuberculosis strains in Taiwan revealed a close link to the historical migration. Interestingly, the M. tuberculosis strain in the aborigines of Eastern and Central Taiwan had a dominance of the Haarlem (Dutch) strain while those in Southern Taiwan had a dominance of the East-African Indian (EAI) strain. The prevalence of different M. tuberculosis strains in specific ethnic populations suggests that M. tuberculosis transmission is limited and restricted to close contact. The prevalence of the Beijing modern strain in the young population causes a concern for M. tuberculosis control, because of high virulence and drug resistance. Furthermore, our data using molecular genotyping should provide valuable information on the historical study of the origin and migration of aborigines in Taiwan. Copyright © 2014. Published by Elsevier B.V.
Yang, Chongguang; Gao, Qian
2018-02-01
Tuberculosis (TB) has remained an ongoing concern in China. The national scale-up of the Directly Observed Treatment, Short Course (DOTS) program has accelerated the fight against TB in China. Nevertheless, many challenges still remain, including the spread of drug-resistant strains, high disease burden in rural areas, and enormous rural-to-urban migrations. Whether incident active TB represents recent transmission or endogenous reactivation has helped to prioritize the strategies for TB control. Evidence from molecular epidemiology studies has delineated the recent transmission of Mycobacterium tuberculosis (M. tuberculosis) strains in many settings. However, the transmission patterns of TB in most areas of China are still not clear. Studies carried out to date could not capture the real burden of recent transmission of the disease in China because of the retrospective study design, incomplete sampling, and use of low-resolution genotyping methods. We reviewed the implementations of molecular epidemiology of TB in China, the estimated disease burden due to recent transmission of M. tuberculosis strains, the primary transmission of drug-resistant TB, and the evaluation of a feasible genotyping method of M. tuberculosis strains in circulation.
Hu, Yanjie; Chen, Suting; Yu, Xia; Dai, Guangming; Dong, Lingling; Li, Yunxu; Zhao, Liping; Huang, Hairong
2016-07-01
NAT2 genotype is an indicator for isoniazid dosage adjusting for tuberculosis treatment. Multicolor melting curve analysis (MMCA) was evaluated as a potential method for NAT2 genotyping. 352 blood samples were analyzed by MMCA kit (Zeesan Biotech Co., Xiamen, China) targeting NAT2 SNPs at T341C, C481T, G590A and G857A, and direct sequencing was used as control. The sensitivity, specificity and accuracy of the MMCA assay for rapid NAT2 genotype detection were 97.9, 99.6 and 99.1% respectively, whereas for intermediate genotypes the values were 99.5, 98.7 and 99.1%, respectively, and for slow genotypes the values were 100% for the three aspects. The 24 saliva and blood for the control samples were also successfully analyzed using the MMCA assay, both produced uniform outcomes. The MMCA assay described in our study is very promising for the efficient determination of NAT2 genotype, and can facilitate the personalized dosing of isoniazid.
Machado, Luzia Neri C.; Marcondes, Nadir R.; Leite, Clarice Q. Fijimura; Santos, Adolfo C. Barreto; Pavan, Fernando Rogério; Baldin, Vanessa Pietrowski; Castilho, Aline Lemes; Siqueira, Vera Lúcia D.; Baeza, Lilian Cristiane; Berghs, Henri; Cardoso, Rosilene Fressatti
2014-01-01
Background At the triple border Brazil/Paraguay/Argentina there is easy mobility from one city to another for economic and tourism activities. This constant and fast population mobility is mainly to visit Iguazu Falls, in the Iguazu River, on the border of the Brazilian state of Paraná and the Argentina. As the incidence of tuberculosis is high in this setting, our study aimed to establish a first baseline of circulating genotypic lineages of Mycobacterium tuberculosis. Methodology/Principal Findings This study included 120 patients from 10 cities in southwestern Paraná, Brazil with pulmonary symptoms, from July 2009 to July 2011. Information about sex, age, clinical features and address was collected by reviewing the national tuberculosis notification database. Of these, 96 (80%) isolates were identified as M. tuberculosis and 22 (22.9%) were drug resistant (20, 20.8% INH mono-resistant and 2, 2.1% multidrug-resistant). All isolates were subjected to genotyping by Spoligotyping and MIRU-VNTR typing. The distribution of the isolates analyzed by spoligotyping revealed 30 distinct patterns. The four mainly detected clades were Latin American and Mediterranean (LAM), ill-defined T, Haarlem (H) and S. The MIRU-VNTR showed 85 distinct patterns. Spoligotyping combined to MIRU-VNTR allowed 90 distinct patterns. Conclusions/Significance Our study demonstrated that there is significant molecular diversity in circulating M. tuberculosis, with predominance of the LAM and T clades in cities of southwestern Paraná, Brazil, bordering Argentina and Paraguay. PMID:25202909
Machado, Luzia Neri C; Marcondes, Nadir R; Leite, Clarice Q Fijimura; Santos, Adolfo C Barreto; Pavan, Fernando Rogério; Baldin, Vanessa Pietrowski; Castilho, Aline Lemes; Siqueira, Vera Lúcia D; Baeza, Lilian Cristiane; Berghs, Henri; Cardoso, Rosilene Fressatti
2014-01-01
At the triple border Brazil/Paraguay/Argentina there is easy mobility from one city to another for economic and tourism activities. This constant and fast population mobility is mainly to visit Iguazu Falls, in the Iguazu River, on the border of the Brazilian state of Paraná and the Argentina. As the incidence of tuberculosis is high in this setting, our study aimed to establish a first baseline of circulating genotypic lineages of Mycobacterium tuberculosis. This study included 120 patients from 10 cities in southwestern Paraná, Brazil with pulmonary symptoms, from July 2009 to July 2011. Information about sex, age, clinical features and address was collected by reviewing the national tuberculosis notification database. Of these, 96 (80%) isolates were identified as M. tuberculosis and 22 (22.9%) were drug resistant (20, 20.8% INH mono-resistant and 2, 2.1% multidrug-resistant). All isolates were subjected to genotyping by Spoligotyping and MIRU-VNTR typing. The distribution of the isolates analyzed by spoligotyping revealed 30 distinct patterns. The four mainly detected clades were Latin American and Mediterranean (LAM), ill-defined T, Haarlem (H) and S. The MIRU-VNTR showed 85 distinct patterns. Spoligotyping combined to MIRU-VNTR allowed 90 distinct patterns. Our study demonstrated that there is significant molecular diversity in circulating M. tuberculosis, with predominance of the LAM and T clades in cities of southwestern Paraná, Brazil, bordering Argentina and Paraguay.
Genotyping and drug resistance patterns of M. tuberculosis strains in Pakistan
Tanveer, Mahnaz; Hasan, Zahra; Siddiqui, Amna R; Ali, Asho; Kanji, Akbar; Ghebremicheal, Solomon; Hasan, Rumina
2008-01-01
Background The incidence of tuberculosis in Pakistan is 181/100,000 population. However, information about transmission and geographical prevalence of Mycobacterium tuberculosis strains and their evolutionary genetics as well as drug resistance remains limited. Our objective was to determine the clonal composition, evolutionary genetics and drug resistance of M. tuberculosis isolates from different regions of the country. Methods M. tuberculosis strains isolated (2003–2005) from specimens submitted to the laboratory through collection units nationwide were included. Drug susceptibility was performed and strains were spoligotyped. Results Of 926 M. tuberculosis strains studied, 721(78%) were grouped into 59 "shared types", while 205 (22%) were identified as "Orphan" spoligotypes. Amongst the predominant genotypes 61% were Central Asian strains (CAS ; including CAS1, CAS sub-families and Orphan Pak clusters), 4% East African-Indian (EAI), 3% Beijing, 2% poorly defined TB strains (T), 2% Haarlem and LAM (0.2). Also TbD1 analysis (M. tuberculosis specific deletion 1) confirmed that CAS1 was of "modern" origin while EAI isolates belonged to "ancestral" strain types. Prevalence of CAS1 clade was significantly higher in Punjab (P < 0.01, Pearsons Chi-square test) as compared with Sindh, North West Frontier Province and Balochistan provinces. Forty six percent of isolates were sensitive to five first line antibiotics tested, 45% were Rifampicin resistant, 50% isoniazid resistant. MDR was significantly associated with Beijing strains (P = 0.01, Pearsons Chi-square test) and EAI (P = 0.001, Pearsons Chi-square test), but not with CAS family. Conclusion Our results show variation of prevalent M. tuberculosis strain with greater association of CAS1 with the Punjab province. The fact that the prevalent CAS genotype was not associated with drug resistance is encouraging. It further suggests a more effective treatment and control programme should be successful in reducing the tuberculosis burden in Pakistan. PMID:19108722
Ifticene, Malika; Kaïdi, Saïd; Khechiba, Mesbah-Mounir; Yala, Djamel; Boulahbal, Fadila
2015-12-01
Molecular typing tools, including spoligotyping, are currently widely used in the monitoring and study of the dynamics of tuberculosis epidemics. A study of the molecular profile of a sample of 129 Myobacterium tuberculosis strains isolated during 2011 was carried out in the National Reference Laboratory for Tuberculosis and Mycobacteria at the Pasteur Institute of Algeria. This sample was selected at random from a set of 350 strains isolated from tuberculosis patients from central and eastern areas of the country. Genotypic analysis helped to clarify the frequencies of the different genotypes in the current study population: H family, 29%; LAM family, 26%; T family, 25%; S family, 5%, and other genomic families, including orphan strains, 15%. The study of strains isolated between January and December 2011 has allowed insight into the frequency of different genomic families and the importance of existing clusters in the population of central and eastern Algeria. Copyright © 2015 Asian African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.
Vyazovaya, A A; Mokrousov, I V; Zhuravlev, V Yu; Solovieva, N S; Otten, T F; Manicheva, O A; Vishnevsky, B I; Narvskaya, O V
2016-01-01
The goal of this work was to study the genotypic characteristics of the multidrug-resistant (MDR, i.e., resistant to at least rifampicine and isoniazid) Mycobacterium tuberculosis strains isolated in 2011-2012 from tuberculosis (TB) patients in the Northwest Russia. Spoligotyping of 195 M. tuberculosis isolates identified 14 different spoligotypes and assigned isolates to the genetic families Beijing (n = 162, 83%), LAM (n = 15), H3/URAL (n = 14), as well as T, Haarlem and X. Spoligotypes SIT1 (Beijing), SIT42 (LAM) and SIT262 (H3/URAL) were the most prevalent. Irrespective to the genotype, all the isolates were resistant to streptomycin. The multidrug resistance was accompanied by the resistance to ethionamide (56%), amikacin (31%), kanamycin (40%), and capreomycin (33%). The ethambutol resistance was found in 71% (n = 115) and 42% (n = 14) of the Beijing and non-Beijing strains, respectively (p < 0.05). In conclusion, the multidrug resistant M. tuberculosis population circulating in the Northwest Russia continues to be dominated by the Beijing family strains.
Randhawa, April K.; Chau, Tran T. H.; Bang, Nguyen D.; Yen, Nguyen T. B.; Farrar, Jeremy J.; Dunstan, Sarah J.; Hawn, Thomas R.
2012-01-01
(See the editorial commentary by Wilkinson, on pages 525–7.) Background. Tuberculosis has been associated with genetic variation in host immunity. We hypothesized that single-nucleotide polymorphisms (SNPs) in SIGIRR, a negative regulator of Toll-like receptor/IL-1R signaling, are associated with susceptibility to tuberculosis. Methods. We used a case-population study design in Vietnam with cases that had either tuberculous meningitis or pulmonary tuberculosis. We genotyped 6 SNPs in the SIGIRR gene region (including the adjacent genes PKP3 and TMEM16J) in a discovery cohort of 352 patients with tuberculosis and 382 controls. Significant associations were genotyped in a validation cohort (339 patients with tuberculosis, 376 controls). Results. Three SNPs (rs10902158, rs7105848, rs7111432) were associated with tuberculosis in discovery and validation cohorts. The polymorphisms were associated with both tuberculous meningitis and pulmonary tuberculosis and were strongest with a recessive genetic model (odds ratios, 1.5–1.6; P = .0006–.001). Coinheritance of these polymorphisms with previously identified risk alleles in Toll-like receptor 2 and TIRAP was associated with an additive risk of tuberculosis susceptibility. Conclusions. These results demonstrate a strong association of SNPs in the PKP3-SIGIRR-TMEM16J gene region and tuberculosis in discovery and validation cohorts. To our knowledge, these are the first associations of polymorphisms in this region with any disease. PMID:22223854
Macías Parra, Mercedes; Kumate Rodríguez, Jesús; Arredondo García, José Luís; López-Vidal, Yolanda; Castañón-Arreola, Mauricio; Balandrano, Susana; Rastogi, Nalin; Gutiérrez Castrellón, Pedro
2011-01-01
The aim of this study was to determine the frequency of drug resistance and the clonality of genotype patterns in M. tuberculosis clinical isolates from pediatric patients in Mexico (n = 90 patients from 19 states; time period—January 2002 to December 2003). Pulmonary disease was the most frequent clinical manifestation (71%). Children with systemic tuberculosis (TB) were significantly younger compared to patients with localized TB infections (mean 7.7 ± 6.2 years versus 15 ± 3.4 years P = 0.001). Resistance to any anti-TB drug was detected in 24/90 (26.7%) of the isolates; 21/90 (23.3%) and 10/90 (11.1%) were resistant to Isoniazid and Rifampicin, respectively, and 10/90 (11.1%) strains were multidrug-resistant (MDR). Spoligotyping produced a total of 55 different patterns; 12/55 corresponded to clustered isolates (n = 47, clustering rate of 52.2%), and 43/55 to unclustered isolates (19 patterns were designated as orphan by the SITVIT2 database). Database comparison led to designation of 36 shared types (SITs); 32 SITs (n = 65 isolates) matched a preexisting shared type in SITVIT2, whereas 4 SITs (n = 6 isolates) were newly created. Lineage classification based on principal genetic groups (PGG) revealed that 10% of the strains belonged to PGG1 (Bovis and Manu lineages). Among PGG2/3 group, the most predominant clade was the Latin-American and Mediterranean (LAM) in 27.8% of isolates, followed by Haarlem and T lineages. The number of single drug-resistant (DR) and multidrug-resistant (MDR-TB) isolates in this study was similar to previously reported in studies from adult population with risk factors. No association between the spoligotype, age, region, or resistance pattern was observed. However, contrary to a study on M. tuberculosis spoligotyping in Acapulco city that characterized a single cluster of SIT19 corresponding to the EAI2-Manila lineage in 70 (26%) of patients, not a single SIT19 isolate was found in our pediatric patient population. Neither did we find any shared type belonging to the EAI family which represents ancestral PGG1 strains within the M. tuberculosis complex. We conclude that the population structure of pediatric TB in our setting is different from the one prevailing in adult TB patient population of Guerrero. PMID:22567263
Liu, Jie; Li, Junlian; Liu, Jiao; Zhao, Xiuqin; Lian, Lulu; Liu, Haican; Lu, Bing; Yu, Qin; Zhang, Jingrui; Qi, Yingcheng; Wan, Kanglin
2017-01-01
Objectives. We studied the genetic diversity of clinical isolates from patients with tuberculosis in the multiethnic area of Xinjiang autonomous region in China. A total of 311 clinical M. tuberculosis isolates were collected in 2006 and 2011 and genotyped by two genotyping methods. All isolates were grouped into 68 distinct spoligotypes using the spoligotyping method. The Beijing family was dominant, followed by T1 and CAS. MIRU-VNTR results showed that a total of 195 different VNTR types were identified. Ten of the 15 loci were highly or moderately discriminant according to their HGDI scores, and 13 loci had good discriminatory power in non-Beijing family strains, whereas only two loci had good discriminatory power in Beijing family strains. Chi-square tests demonstrated that there were no correlations between four characteristics (sex, age, type of case, and treatment history) and the Beijing family. In summary, Beijing family strains were predominant in Xinjiang, and the VNTR-15 China locus-set was suitable for genotyping all Xinjiang strains, but not for the Beijing family strains. Thus, these data suggested that different genotype distributions may exist in different regions; MLVA locus-sets should be adjusted accordingly, with newly added loci to increase resolution if necessary.
Munro-Rojas, Daniela; Fernandez-Morales, Esdras; Zarrabal-Meza, José; Martínez-Cazares, Ma. Teresa; Parissi-Crivelli, Aurora; Fuentes-Domínguez, Javier; Séraphin, Marie Nancy; Lauzardo, Michael; González-y-Merchand, Jorge Alberto; Rivera-Gutierrez, Sandra
2018-01-01
Background Mexico is one of the most important contributors of drug and multidrug-resistant tuberculosis in Latin America; however, knowledge of the genetic diversity of drug-resistant tuberculosis isolates is limited. Methods In this study, the genetic structure of 112 Mycobacterium tuberculosis strains from the southeastern Mexico was determined by spoligotyping and 24-loci MIRU-VNTRs. Findings The results show eight major lineages, the most of which was T1 (24%), followed by LAM (16%) and H (15%). A total of 29 (25%) isolates were identified as orphan. The most abundant SITs were SIT53/T1 and SIT42/LAM9 with 10 isolates each and SIT50/H3 with eight isolates. Fifty-two spoligotype patterns, twenty-seven clusters and ten clonal complexes were observed, demonstrating an important genetic diversity of drug and multidrug-resistant tuberculosis isolates in circulation and transmission level of these aggravated forms of tuberculosis. Being defined as orphan or as part of an orphan cluster, was a risk factor for multidrug resistant-tuberculosis (OR 2.5, IC 1.05–5.86 and OR 3.3, IC 1–11.03, respectively). Multiple correspondence analyses showed association of some clusters and SITs with specific geographical locations. Conclusions Our study provides one of the most detailed description of the genetic structure of drug and multidrug-resistant tuberculosis strains in southeast Mexico, establishing for the first time a baseline of the genotypes observed in resistant isolates circulating, however further studies are required to better elucidate the genetic structure of tuberculosis in region and the factors that could be participating in their dispersion. PMID:29543819
Cardoso Oelemann, Maranibia; Gomes, Harrison M.; Willery, Eve; Possuelo, Lia; Batista Lima, Karla Valéria; Allix-Béguec, Caroline; Locht, Camille; Goguet de la Salmonière, Yves-Olivier L.; Gutierrez, Maria Cristina; Suffys, Philip; Supply, Philip
2011-01-01
Background Genotyping of Mycobacterium tuberculosis isolates is a powerful tool for epidemiological control of tuberculosis (TB) and phylogenetic exploration of the pathogen. Standardized PCR-based typing, based on 15 to 24 mycobacterial interspersed repetitive unit-variable number of tandem repeat (MIRU-VNTR) loci combined with spoligotyping, has been shown to have adequate resolution power for tracing TB transmission and to be useful for predicting diverse strain lineages in European settings. Its informative value needs to be tested in high TB-burden countries, where the use of genotyping is often complicated by dominance of geographically specific, genetically homogeneous strain lineages. Methodology/Principal Findings We tested this genotyping system for molecular epidemiological analysis of 369 M. tuberculosis isolates from 3 regions of Brazil, a high TB-burden country. Deligotyping, targeting 43 large sequence polymorphisms (LSPs), and the MIRU-VNTRplus identification database were used to assess phylogenetic predictions. High congruence between the different typing results consistently revealed the countrywide supremacy of the Latin-American-Mediterranean (LAM) lineage, comprised of three main branches. In addition to an already known RDRio branch, at least one other branch characterized by a phylogenetically informative LAM3 spoligo-signature seems to be globally distributed beyond Brazil. Nevertheless, by distinguishing 321 genotypes in this strain population, combined MIRU-VNTR typing and spoligotyping demonstrated the presence of multiple distinct clones. The use of 15 to 24 loci discriminated 21 to 25% more strains within the LAM lineage, compared to a restricted lineage-specific locus set suggested to be used after SNP analysis. Noteworthy, 23 of the 28 molecular clusters identified were exclusively composed of patient isolates from a same region, consistent with expected patterns of mostly local TB transmission. Conclusions/Significance Standard MIRU-VNTR typing combined with spoligotyping can reveal epidemiologically meaningful clonal diversity behind a dominant M. tuberculosis strain lineage in a high TB-burden country and is useful to explore international phylogenetical ramifications. PMID:21464915
Brudey, Karine; Filliol, Ingrid; Ferdinand, Séverine; Guernier, Vanina; Duval, Philippe; Maubert, Bertrand; Sola, Christophe; Rastogi, Nalin
2006-01-01
The three French overseas departments of the Americas are characterized both by insular (Guadeloupe and Martinique) and continental (French Guiana) settings with a tuberculosis case detection rate that varies from less than 10 per 100,000 per year in insular areas to an estimated incidence of more than 55 per 100,000 in French Guiana. Under a long-term genotyping program, more than three-fourths of all the Mycobacterium tuberculosis isolates (n = 744) received from the three settings were fingerprinted over a 10-year period (1994 to 2003) by spoligotyping and variable number of tandem DNA repeats (VNTRs) in order to understand the current trends in their detection rates, drug resistance, and groups and subpopulations at risk of contracting the disease and to pinpoint the circulating phylogeographical clades of the bacilli. The major difference in the study populations was the nationality of the patients, with a high percentage of immigrants from high-incidence neighboring countries in French Guiana and a low but increasing percentage in the French Caribbean. The rate of recent transmission was calculated to be 49.3% in French Guiana, compared to 27.2% and 16.9% in Guadeloupe and Martinique, respectively. At the phylogeographic level, 77.9% of the isolates studied belonged to four major clades (Haarlem, Latin-American and Mediterranean, T, and X) which are already reported from neighboring Caribbean islands in an international database and may underline potential interregional transmission events. PMID:16390968
Bouklata, Nada; Supply, Philip; Jaouhari, Sanae; Charof, Reda; Seghrouchni, Fouad; Sadki, Khalid; El Achhab, Youness; Nejjari, Chakib; Filali-Maltouf, Abdelkarim
2015-01-01
Background Standard 24-locus Mycobacterial Interspersed Repetitive Unit Variable Number Tandem Repeat (MIRU-VNTR) typing allows to get an improved resolution power for tracing TB transmission and predicting different strain (sub) lineages in a community. Methodology During 2010–2012, a total of 168 Mycobacterium tuberculosis Complex (MTBC) isolates were collected by cluster sampling from 10 different Moroccan cities, and centralized by the National Reference Laboratory of Tuberculosis over the study period. All isolates were genotyped using spoligotyping, and a subset of 75 was genotyped using 24-locus based MIRU-VNTR typing, followed by first line drug susceptibility testing. Corresponding strain lineages were predicted using MIRU-VNTRplus database. Principal Findings Spoligotyping resulted in 137 isolates in 18 clusters (2–50 isolates per cluster: clustering rate of 81.54%) corresponding to a SIT number in the SITVIT database, while 31(18.45%) patterns were unique of which 10 were labelled as “unknown” according to the same database. The most prevalent spoligotype family was LAM; (n = 81 or 48.24% of isolates, dominated by SIT42, n = 49), followed by Haarlem (23.80%), T superfamily (15.47%), >Beijing (2.97%), > U clade (2.38%) and S clade (1.19%). Subsequent 24-Locus MIRU-VNTR typing identified 64 unique types and 11 isolates in 5 clusters (2 to 3isolates per cluster), substantially reducing clusters defined by spoligotyping only. The single cluster of three isolates corresponded to two previously treated MDR-TB cases and one new MDR-TB case known to be contact a same index case and belonging to a same family, albeit residing in 3 different administrative regions. MIRU-VNTR loci 4052, 802, 2996, 2163b, 3690, 1955, 424, 2531, 2401 and 960 were highly discriminative in our setting (HGDI >0.6). Conclusions 24-locus MIRU-VNTR typing can substantially improve the resolution of large clusters initially defined by spoligotyping alone and predominating in Morocco, and could therefore be used to better study tuberculosis transmission in a population-based, multi-year sample context. PMID:26285026
Hemanth Kumar, A K; Ramesh, K; Kannan, T; Sudha, V; Haribabu, Hemalatha; Lavanya, J; Swaminathan, Soumya; Ramachandran, Geetha
2017-01-01
Variations in the N-acetyltransferase (NAT2) gene among different populations could affect the metabolism and disposition of isoniazid (INH). This study was performed to genotype NAT2 gene polymorphisms in tuberculosis (TB) patients from Chennai, India, and compare plasma INH concentrations among the different genotypes. Adult patients with TB treated in the Revised National TB Control Programme (RNTCP) in Chennai, Tamil Nadu, were genotyped for NAT2 gene polymorphism, and two-hour post-dosing INH concentrations were compared between the different genotypes. Plasma INH was determined by high-performance liquid chromatography. Genotyping of the NAT2 gene polymorphism was performed by real-time polymerase chain reaction method. Among the 326 patients genotyped, there were 189 (58%), 114 (35%) and 23 (7%) slow, intermediate and fast acetylators, respectively. The median two-hour INH concentrations in slow, intermediate and fast acetylators were 10.2, 8.1 and 4.1 μg/ml, respectively. The differences in INH concentrations among the three genotypes were significant (P<0.001). Genotyping of TB patients from south India for NAT2 gene polymorphism revealed that 58 per cent of the study population comprised slow acetylators. Two-hour INH concentrations differed significantly among the three genotypes.
Sia, Irene G; Buckwalter, Seanne P; Doerr, Kelly A; Lugos, Sonia; Kramer, Rebecca; Orillaza-Chi, Ruth; Quelapio, Maria Imelda; Tupasi, Thelma E; Wengenack, Nancy L
2013-12-05
The Philippines has an extremely high rate of tuberculosis but little is known about M. tuberculosis genotypes and transmission dynamics in this country. The aim of this study was to determine the proportion of household contacts who develop active TB due to direct transmission from an index case in that household. Mycobacterium tuberculosis isolates from household contacts of tuberculosis patients in the Philippines were characterized using restriction-fragment-length polymorphism analysis, spoligotyping, and mycobacterial interspersed repetitive units - variable number tandem repeats typing (12-loci) to determine their utility in elucidating transmission in an area of high tuberculosis prevalence. Drug susceptibility patterns for these isolates were also determined. Spoligotyping and MIRU-VNTR typing results matched in 10 (62.5%) of 16 index patient-household contact pairs while IS6110 fingerprints matched in only six (37.5%) pairs. Only 3/16 (18.8%) index patient-household contact pairs had identical drug susceptibility results. Strain typing of M. tuberculosis isolates from household contacts in the Philippines indicates that transmission of strains does not necessarily occur directly from the index patient living in close proximity in the same household but rather that community-based transmission also frequently occurs. Accurate susceptibility testing of all isolates is necessary to insure optimal care of both the index patients and any culture-positive household contacts.
Botelho, Ana; Canto, Ana; Leão, Célia; Cunha, Mónica V
2015-01-01
Typical CRISPR (clustered, regularly interspaced, short palindromic repeat) regions are constituted by short direct repeats (DRs), interspersed with similarly sized non-repetitive spacers, derived from transmissible genetic elements, acquired when the cell is challenged with foreign DNA. The analysis of the structure, in number and nature, of CRISPR spacers is a valuable tool for molecular typing since these loci are polymorphic among strains, originating characteristic signatures. The existence of CRISPR structures in the genome of the members of Mycobacterium tuberculosis complex (MTBC) enabled the development of a genotyping method, based on the analysis of the presence or absence of 43 oligonucleotide spacers separated by conserved DRs. This method, called spoligotyping, consists on PCR amplification of the DR chromosomal region and recognition after hybridization of the spacers that are present. The workflow beneath this methodology implies that the PCR products are brought onto a membrane containing synthetic oligonucleotides that have complementary sequences to the spacer sequences. Lack of hybridization of the PCR products to a specific oligonucleotide sequence indicates absence of the correspondent spacer sequence in the examined strain. Spoligotyping gained great notoriety as a robust identification and typing tool for members of MTBC, enabling multiple epidemiological studies on human and animal tuberculosis.
Tuberculosis Caused by Mycobacterium africanum, United States, 2004-2013.
Sharma, Aditya; Bloss, Emily; Heilig, Charles M; Click, Eleanor S
2016-03-01
Mycobacterium africanum is endemic to West Africa and causes tuberculosis (TB). We reviewed reported cases of TB in the United States during 2004-2013 that had lineage assigned by genotype (spoligotype and mycobacterial interspersed repetitive unit variable number tandem repeats). M. africanum caused 315 (0.4%) of 73,290 TB cases with lineage assigned by genotype. TB caused by M. africanum was associated more with persons from West Africa (adjusted odds ratio [aOR] 253.8, 95% CI 59.9-1,076.1) and US-born black persons (aOR 5.7, 95% CI 1.2-25.9) than with US-born white persons. TB caused by M. africanum did not show differences in clinical characteristics when compared with TB caused by M. tuberculosis. Clustered cases defined as >2 cases in a county with identical 24-locus mycobacterial interspersed repetitive unit genotypes, were less likely for M. africanum (aOR 0.1, 95% CI 0.1-0.4), which suggests that M. africanum is not commonly transmitted in the United States.
Peñuelas-Urquides, Katia; Martínez-Rodríguez, Herminia Guadalupe; Enciso-Moreno, José Antonio; Molina-Salinas, Gloria María; Silva-Ramírez, Beatriz; Padilla-Rivas, Gerardo Raymundo; Vera-Cabrera, Lucio; Torres-de-la-Cruz, Víctor Manuel; Martínez-Martínez, Yazmin Berenice; Ortega-García, Jorge Luis; Garza-Treviño, Elsa Nancy; Enciso-Moreno, Leonor; Saucedo-Cárdenas, Odila; Becerril-Montes, Pola; Said-Fernández/, Salvador
2014-01-01
The characteristics of tuberculosis (TB) patients related to a chain of recent TB transmissions were investigated. Mycobacterium tuberculosis (MTB) isolates (120) were genotyped using the restriction fragment length polymorphism-IS6110 (R), spacer oligotyping (S) and mycobacterial interspersed repetitive units-variable number of tandem repeats (M) methods. The MTB isolates were clustered and the clusters were grouped according to the similarities of their genotypes. Spearman’s rank correlation coefficients between the groups of MTB isolates with similar genotypes and those patient characteristics indicating a risk for a pulmonary TB (PTB) chain transmission were ana- lysed. The isolates showing similar genotypes were distributed as follows: SMR (5%), SM (12.5%), SR (1.67%), MR (0%), S (46.67%), M (5%) and R (0%). The remaining 35 cases were orphans. SMR exhibited a significant correlation (p < 0.05) with visits to clinics, municipalities and comorbidities (primarily diabetes mellitus). S correlated with drug consumption and M with comorbidities. SMR is needed to identify a social network in metropolitan areas for PTB transmission and S and M are able to detect risk factors as secondary components of a transmission chain of TB. PMID:25317710
Childhood tuberculosis and malnutrition.
Jaganath, Devan; Mupere, Ezekiel
2012-12-15
Despite the burden of both malnutrition and tuberculosis in children worldwide, there are few studies on the mechanisms that underlie this relationship. From available research, it appears that malnutrition is a predictor of tuberculosis disease and is associated with worse outcomes. This is supported through several lines of evidence, including the role of vitamin D receptor genotypes, malnutrition's effects on immune development, respiratory infections among malnourished children, and limited work specifically on pediatric tuberculosis and malnutrition. Nutritional supplementation has yet to suggest significant benefits on the course of tuberculosis in children. There is a critical need for research on childhood tuberculosis, specifically on how nutritional status affects the risk and progression of tuberculosis and whether nutritional supplementation improves clinical outcomes or prevents disease.
Weisenberg, Scott A.; Gibson, Andrea L.; Huard, Richard C.; Kurepina, Natalia; Bang, Heejung; Lazzarini, Luiz C O.; Chiu, Yalin; Li, Jiehui; Ahuja, Shama; Driscoll, Jeff; Kreiswirth, Barry N.; Ho, John L.
2011-01-01
Background Genetic tracking of Mycobacterium tuberculosis is a cornerstone of tuberculosis (TB) control programs. The RDRio M. tuberculosis sublineage was previously associated with TB in Brazil. We investigated 3847 M. tuberculosis isolates and registry data from New York City (NYC) (2001–2005) to: 1) affirm the position of RDRio strains within the M. tuberculosis phylogenetic structure, 2) determine its prevalence, and 3) define transmission, demographic, and clinical characteristics associated with RDRio TB. Methods Isolates classified as RDRio or non-RDRio M. tuberculosis by multiplex PCR were further classified as clustered (≥2 isolates) or unique based primarily upon IS6110-RFLP patterns and lineage-specific cluster proportions were calculated. The secondary case rate of RDRio was compared with other prevalent M. tuberculosis lineages. Genotype data were merged with the data from the NYC TB Registry to assess demographic and clinical characteristics. Results RDRio strains were found to: 1) be restricted to the Latin American-Mediterranean family, 2) cause approximately 8% of TB cases in NYC, and 3) be associated with heightened transmission as shown by: i) a higher cluster proportion compared to other prevalent lineages, ii) a higher secondary case rate, and iii) cases in children. Furthermore, RDRio strains were significantly associated with US-born Black or Hispanic race, birth in Latin American and Caribbean countries, and isoniazid resistance. Conclusions The RDRio genotype is a single M. tuberculosis strain population that is emerging in NYC. The findings suggest that expanded RDRio case and exposure identification could be of benefit due to its association with heightened transmission. PMID:21835266
Genotypic characteristics of Mycobacterium tuberculosis circulating in Xinjiang, China.
Yuan, Li; Mi, Ligu; Li, Yongxiang; Zhang, Hui; Zheng, Fang; Li, Zhuoya
2016-02-01
Tuberculosis (TB), a chronic infectious disease caused by Mycobacterium tuberculosis (MTB), poses a serious threat to human health. We investigated the genotypes of MTB in the high prevalence province Xinjiang, China. From March 2010 to May 2013, 381 MTB isolates from patients with pulmonary TB were analyzed by molecular typing of 24 mycobacterial interspersed repetitive unit-variable number tandem repeat loci and PCR detection of the deleted regions of difference of the Beijing/W lineage and its sublineages. These isolates were shown to be highly polymorphic and to be composed of 345 unique genotypes, including 30 genotype clusters consisting of 2 or 3 strains and 315 individual genotypes. The genotype clustering rate was 17.32% and recent transmission index was low (9.45%). The Beijing/W lineage strains accounted for 57.48% of the isolates, and this predominant family strain was further subdivided into four sublineages: 181 (69.86%), 207 (14.61%), 105 (10.96%), and 150 (4.56%). The Beijing/W lineage (especially sublineage 181) strains were predominant and were associated with the transmissibility of TB in Xinjiang. Based on our data, we hypothesize that the circulating MTB strains in Xinjiang have significant genetic diversity and that the majority of the TB in Xinjiang may be explained by non-recent transmission emerging by endogenous reactivation. The possibility of outbreak is low, and current measures to control TB should first focus on standardized treatment of TB patients to prevent reactivation of latent infections.
Dreyer, A. W.; Koornhof, H. J.; Omar, S. V.; da Silva, P.; Bhyat, Z.; Ismail, N. A.
2016-01-01
ABSTRACT Early detection of resistance to second-line antituberculosis drugs is important for the management of multidrug-resistant tuberculosis (MDR-TB). The GenoType MTBDRsl version 2.0 (VER 2.0) line probe assay has been redesigned for molecular detection of resistance-conferring mutations of fluoroquinolones (FLQ) (gyrA and gyrB genes) and second-line injectable drugs (SLID) (rrs and eis genes). The study evaluated the diagnostic performance of the GenoType MTBDRsl VER 2.0 assay for the detection of second-line drug resistance compared with phenotypic drug susceptibility testing (DST), using the Bactec MGIT 960 system on Mycobacterium tuberculosis complex isolates from South Africa. A total of 268 repository isolates collected between 2012 and 2014, which were rifampin monoresistant or MDR based on DST, were selected. MTBDRsl VER 2.0 testing was performed on these isolates and the results analyzed. The MTBDRsl VER 2.0 sensitivity and specificity indices for culture isolates were the following: FLQ, 100% (95% confidence interval [CI] 95.8 to 100%) and 98.9% (95% CI, 96.1 to 99.9%); SLID, 89.2% (95% CI, 79.1 to 95.6%) and 98.5% (95% CI, 95.7 to 99.7%). The sensitivity and specificity observed for individual SLID were the following: amikacin, 93.8% (95% CI, 79.2 to 99.2%) and 98.5% (95% CI, 95.5 to 99.7%); kanamycin, 89.2% (95% CI, 79.1 to 95.6%) and 98.5% (95% CI, 95.5 to 99.7%); and capreomycin, 86.2% (95% CI, 68.3 to 96.1%) and 95.9% (95% CI, 92.2 to 98.2%). An interoperator reproducibility of 100% and an overall interlaboratory performance of 93% to 96% were found. The overall improvement in sensitivity and specificity with excellent reproducibility makes the GenoType MTBDRsl VER 2.0 a highly suitable tool for rapid screening of clinical isolates for second-line drug resistance for use in high-burden TB/HIV settings. PMID:27974543
Shah, Javeed A; Musvosvi, Munyaradzi; Shey, Muki; Horne, David J; Wells, Richard D; Peterson, Glenna J; Cox, Jeffery S; Daya, Michelle; Hoal, Eileen G; Lin, Lin; Gottardo, Raphael; Hanekom, Willem A; Scriba, Thomas J; Hatherill, Mark; Hawn, Thomas R
2017-08-15
The molecular mechanisms that regulate tuberculosis susceptibility and bacillus Calmette-Guérin (BCG)-induced immunity are mostly unknown. However, induction of the adaptive immune response is a critical step in host control of Mycobacterium tuberculosis. Toll-interacting protein (TOLLIP) is a ubiquitin-binding protein that regulates innate immune responses, including Toll-like receptor signaling, which initiate adaptive immunity. TOLLIP variation is associated with susceptibility to tuberculosis, but the mechanism by which it regulates tuberculosis immunity is poorly understood. To identify functional TOLLIP variants and evaluate the role of TOLLIP variation on innate and adaptive immune responses to mycobacteria and susceptibility to tuberculosis. We used human cellular immunology approaches to characterize the role of a functional TOLLIP variant on monocyte mRNA expression and M. tuberculosis-induced monocyte immune functions. We also examined the association of TOLLIP variation with BCG-induced T-cell responses and susceptibility to latent tuberculosis infection. We identified a functional TOLLIP promoter region single-nucleotide polymorphism, rs5743854, which was associated with decreased TOLLIP mRNA expression in infant monocytes. After M. tuberculosis infection, TOLLIP-deficient monocytes demonstrated increased IL-6, increased nitrite, and decreased bacterial replication. The TOLLIP-deficiency G/G genotype was associated with decreased BCG-specific IL-2 + CD4 + T-cell frequency and proliferation. This genotype was also associated with increased susceptibility to latent tuberculosis infection. TOLLIP deficiency is associated with decreased BCG-specific T-cell responses and increased susceptibility to tuberculosis. We hypothesize that the heightened antibacterial monocyte responses after vaccination of TOLLIP-deficient infants are responsible for decreased BCG-specific T-cell responses. Activating TOLLIP may provide a novel adjuvant strategy for BCG vaccination.
Ganachari, Malathesha; Ruiz-Morales, Jorge A; Gomez de la Torre Pretell, Juan C; Dinh, Jeffrey; Granados, Julio; Flores-Villanueva, Pedro O
2010-01-25
We previously reported that the -2518 MCP-1 genotype GG increases the likelihood of developing tuberculosis (TB) in non-BCG-vaccinated Mexicans and Koreans. Here, we tested the hypothesis that this genotype, alone or together with the -1607 MMP-1 functional polymorphism, increases the likelihood of developing TB in BCG-vaccinated individuals. We conducted population-based case-control studies of BCG-vaccinated individuals in Mexico and Peru that included 193 TB cases and 243 healthy tuberculin-positive controls from Mexico and 701 TB cases and 796 controls from Peru. We also performed immunohistochemistry (IHC) analysis of lymph nodes from carriers of relevant two-locus genotypes and in vitro studies to determine how these variants may operate to increase the risk of developing active disease. We report that a joint effect between the -2518 MCP-1 genotype GG and the -1607 MMP-1 genotype 2G/2G consistently increases the odds of developing TB 3.59-fold in Mexicans and 3.9-fold in Peruvians. IHC analysis of lymph nodes indicated that carriers of the two-locus genotype MCP-1 GG MMP-1 2G/2G express the highest levels of both MCP-1 and MMP-1. Carriers of these susceptibility genotypes might be at increased risk of developing TB because they produce high levels of MCP-1, which enhances the induction of MMP-1 production by M. tuberculosis-sonicate antigens to higher levels than in carriers of the other two-locus MCP-1 MMP-1 genotypes studied. This notion was supported by in vitro experiments and luciferase based promoter activity assay. MMP-1 may destabilize granuloma formation and promote tissue damage and disease progression early in the infection. Our findings may foster the development of new and personalized therapeutic approaches targeting MCP-1 and/or MMP-1.
Ganachari, Malathesha; Ruiz-Morales, Jorge A.; Gomez de la Torre Pretell, Juan C.; Dinh, Jeffrey; Granados, Julio; Flores-Villanueva, Pedro O.
2010-01-01
We previously reported that the – 2518 MCP-1 genotype GG increases the likelihood of developing tuberculosis (TB) in non-BCG-vaccinated Mexicans and Koreans. Here, we tested the hypothesis that this genotype, alone or together with the – 1607 MMP-1 functional polymorphism, increases the likelihood of developing TB in BCG-vaccinated individuals. We conducted population-based case-control studies of BCG-vaccinated individuals in Mexico and Peru that included 193 TB cases and 243 healthy tuberculin-positive controls from Mexico and 701 TB cases and 796 controls from Peru. We also performed immunohistochemistry (IHC) analysis of lymph nodes from carriers of relevant two-locus genotypes and in vitro studies to determine how these variants may operate to increase the risk of developing active disease. We report that a joint effect between the – 2518 MCP-1 genotype GG and the – 1607 MMP-1 genotype 2G/2G consistently increases the odds of developing TB 3.59-fold in Mexicans and 3.9-fold in Peruvians. IHC analysis of lymph nodes indicated that carriers of the two-locus genotype MCP-1 GG MMP-1 2G/2G express the highest levels of both MCP-1 and MMP-1. Carriers of these susceptibility genotypes might be at increased risk of developing TB because they produce high levels of MCP-1, which enhances the induction of MMP-1 production by M. tuberculosis-sonicate antigens to higher levels than in carriers of the other two-locus MCP-1 MMP-1 genotypes studied. This notion was supported by in vitro experiments and luciferase based promoter activity assay. MMP-1 may destabilize granuloma formation and promote tissue damage and disease progression early in the infection. Our findings may foster the development of new and personalized therapeutic approaches targeting MCP-1 and/or MMP-1. PMID:20111728
Ruesen, Carolien; Riza, Anca Lelia; Florescu, Adriana; Chaidir, Lidya; Editoiu, Cornelia; Aalders, Nicole; Nicolosu, Dragos; Grecu, Victor; Ioana, Mihai; van Crevel, Reinout; van Ingen, Jakko
2018-06-26
Mycobacterium tuberculosis drug resistance poses a major threat to tuberculosis control. Current phenotypic tests for drug susceptibility are time-consuming, technically complex, and expensive. Whole genome sequencing is a promising alternative, though the impact of different drug resistance mutations on the minimum inhibitory concentration (MIC) remains to be investigated. We examined the genomes of 72 phenotypically drug-resistant Mycobacterium tuberculosis isolates from 72 Romanian patients for drug resistance mutations. MICs for first- and second-line drugs were determined using the MycoTB microdilution method. These MICs were compared to macrodilution critical concentration testing by the Mycobacterium Growth Indicator Tube (MGIT) platform and correlated to drug resistance mutations. Sixty-three (87.5%) isolates harboured drug resistance mutations; 48 (66.7%) were genotypically multidrug-resistant. Different drug resistance mutations were associated with different MIC ranges; katG S315T for isoniazid, and rpoB S450L for rifampicin were associated with high MICs. However, several mutations such as in rpoB, rrs and rpsL, or embB were associated with MIC ranges including the critical concentration for rifampicin, aminoglycosides or ethambutol, respectively. Different resistance mutations lead to distinct MICs, some of which may still be overcome by increased dosing. Whole genome sequencing can aid in the timely diagnosis of Mycobacterium tuberculosis drug resistance and guide clinical decision-making.
Rabodoarivelo, Marie Sylvianne; Imperiale, Bélen; andrianiavomikotroka, Rina; Brandao, Angela; Kumar, Parveen; Singh, Sarman; Ferrazoli, Lucilaine; Morcillo, Nora; Rasolofo, Voahangy; Palomino, Juan Carlos; Vandamme, Peter; Martin, Anandi
2015-01-01
Background Detection of drug-resistant tuberculosis is essential for the control of the disease but it is often hampered by the limitation of transport and storage of samples from remote locations to the reference laboratory. We performed a retrospective field study to evaluate the performance of four supports enabling the transport and storage of samples to be used for molecular detection of drug resistance using the GenoType MTBDRplus. Methods Two hundred Mycobacterium tuberculosis strains were selected and spotted on slides, FTA cards, GenoCards, and in ethanol. GenoType MTBDRplus was subsequently performed with the DNA extracted from these supports. Sensitivity and specificity were calculated and compared to the results obtained by drug susceptibility testing. Results For all supports, the overall sensitivity and specificity for detection of resistance to RIF was between 95% and 100%, and for INH between 95% and 98%. Conclusion The four transport and storage supports showed a good sensitivity and specificity for the detection of resistance to RIF and INH in M. tuberculosis strains using the GenoType MTBDRplus. These supports can be maintained at room temperature and could represent an important alternative cost-effective method useful for rapid molecular detection of drug-resistant TB in low-resource settings. PMID:26431352
Ethnic Variation in Inflammatory Profile in Tuberculosis
Coussens, Anna K.; Wilkinson, Robert J.; Nikolayevskyy, Vladyslav; Elkington, Paul T.; Hanifa, Yasmeen; Islam, Kamrul; Timms, Peter M.; Bothamley, Graham H.; Claxton, Alleyna P.; Packe, Geoffrey E.; Darmalingam, Mathina; Davidson, Robert N.; Milburn, Heather J.; Baker, Lucy V.; Barker, Richard D.; Drobniewski, Francis A.; Mein, Charles A.; Bhaw-Rosun, Leena; Nuamah, Rosamond A.; Griffiths, Christopher J.; Martineau, Adrian R.
2013-01-01
Distinct phylogenetic lineages of Mycobacterium tuberculosis (MTB) cause disease in patients of particular genetic ancestry, and elicit different patterns of cytokine and chemokine secretion when cultured with human macrophages in vitro. Circulating and antigen-stimulated concentrations of these inflammatory mediators might therefore be expected to vary significantly between tuberculosis patients of different ethnic origin. Studies to characterise such variation, and to determine whether it relates to host or bacillary factors, have not been conducted. We therefore compared circulating and antigen-stimulated concentrations of 43 inflammatory mediators and 14 haematological parameters (inflammatory profile) in 45 pulmonary tuberculosis patients of African ancestry vs. 83 patients of Eurasian ancestry in London, UK, and investigated the influence of bacillary and host genotype on these profiles. Despite having similar demographic and clinical characteristics, patients of differing ancestry exhibited distinct inflammatory profiles at presentation: those of African ancestry had lower neutrophil counts, lower serum concentrations of CCL2, CCL11 and vitamin D binding protein (DBP) but higher serum CCL5 concentrations and higher antigen-stimulated IL-1 receptor antagonist and IL-12 secretion. These differences associated with ethnic variation in host DBP genotype, but not with ethnic variation in MTB strain. Ethnic differences in inflammatory profile became more marked following initiation of antimicrobial therapy, and immunological correlates of speed of elimination of MTB from the sputum differed between patients of African vs. Eurasian ancestry. Our study demonstrates a hitherto unappreciated degree of ethnic heterogeneity in inflammatory profile in tuberculosis patients that associates primarily with ethnic variation in host, rather than bacillary, genotype. Candidate immunodiagnostics and immunological biomarkers of response to antimicrobial therapy should be derived and validated in tuberculosis patients of different ethnic origin. PMID:23853590
Dai, Yaoyao; Zhang, Xia; Pan, Hongqiu; Tang, Shaowen; Shen, Hongbing; Wang, Jianming
2011-10-22
Recently, one genome-wide association study identified a susceptibility locus of rs4331426 on chromosome 18q11.2 for tuberculosis in the African population. To validate the significance of this susceptibility locus in other areas, we conducted a case-control study in the Chinese population. The present study consisted of 578 cases and 756 controls. The SNP rs4331426 and other six tag SNPs in the 100 Kbp up and down stream of rs4331426 on chromosome 18q11.2 were genotyped by using the Taqman-based allelic discrimination system. As compared with the findings from the African population, genetic variation of the SNP rs4331426 was rare among the Chinese. No significant differences were observed in genotypes or allele frequencies of the tag SNPs between cases and controls either before or after adjusting for age, sex, education, smoking, and drinking history. However, we observed strong linkage disequilibrium of SNPs. Constructed haplotypes within this block were linked the altered risks of tuberculosis. For example, in comparison with the common haplotype AA(rs8087945-rs12456774), haplotypes AG(rs8087945-rs12456774) and GA(rs8087945-rs12456774) were associated with a decreased risk of tuberculosis, with the adjusted odds ratio(95% confidence interval) of 0.34(0.27-0.42) and 0.22(0.16-0.29), respectively. Susceptibility locus of rs4331426 discovered in the African population could not be validated in the Chinese population. None of genetic polymorphisms we genotyped were related to tuberculosis in the single-point analysis. However, haplotypes on chromosome 18q11.2 might contribute to an individual's susceptibility. More work is necessary to identify the true causative variants of tuberculosis.
Lan, R; Yang, C; Lan, L; Ou, J; Qiao, K; Liu, F; Gao, Q
2011-12-01
Tuberculosis (TB) remains the leading cause of death among human immunodeficiency virus (HIV) infected persons. The prevalence of infection with Mycobacterium tuberculosis and non-tuberculous mycobacteria (NTM) in HIV-infected patients in China is unknown. To estimate the prevalence of M. tuberculosis and NTM in HIV-infected patients in Guangxi Province, determine their drug resistance profiles, and evaluate the genotype patterns of M. tuberculosis strains. Samples were collected from two HIV designated hospitals in Guangxi Province between 2005 and 2008. HIV-infected patients who were culture-positive for mycobacteria were included. Drug susceptibility testing was performed for mycobacterial isolates. NTM species was identified by sequencing, and M. tuberculosis isolates were genotyped using the variable number of tandem repeats method. M. tuberculosis and NTM were identified in respectively 117 (53%) and 102 (47%) HIV-infected patients. Drug resistance was found in 27% and multi-drug-resistant TB (MDR-TB) in 11% of the patients with TB. Previous treatment for TB was significantly associated with MDR-TB. Twenty (17%) TB patients belonged to eight VNTR-defined clusters. The high frequency of NTM among HIV-infected patients raises concerns about accurate species identification before the determination of appropriate treatment. The potential for TB transmission exists among HIV-infected patients. Intensified screening and effective treatment of TB-HIV co-infected patients is urgently needed.
Childhood Tuberculosis and Malnutrition
Jaganath, Devan; Mupere, Ezekiel
2012-01-01
Despite the burden of both malnutrition and tuberculosis in children worldwide, there are few studies on the mechanisms that underlie this relationship. From available research, it appears that malnutrition is a predictor of tuberculosis disease and is associated with worse outcomes. This is supported through several lines of evidence, including the role of vitamin D receptor genotypes, malnutrition's effects on immune development, respiratory infections among malnourished children, and limited work specifically on pediatric tuberculosis and malnutrition. Nutritional supplementation has yet to suggest significant benefits on the course of tuberculosis in children. There is a critical need for research on childhood tuberculosis, specifically on how nutritional status affects the risk and progression of tuberculosis and whether nutritional supplementation improves clinical outcomes or prevents disease. PMID:23033147
Hemanth Kumar, A. K.; Ramesh, K.; Kannan, T.; Sudha, V.; Haribabu, Hemalatha; Lavanya, J.; Swaminathan, Soumya; Ramachandran, Geetha
2017-01-01
Background & objectives: Variations in the N-acetyltransferase (NAT2) gene among different populations could affect the metabolism and disposition of isoniazid (INH). This study was performed to genotype NAT2 gene polymorphisms in tuberculosis (TB) patients from Chennai, India, and compare plasma INH concentrations among the different genotypes. Methods: Adult patients with TB treated in the Revised National TB Control Programme (RNTCP) in Chennai, Tamil Nadu, were genotyped for NAT2 gene polymorphism, and two-hour post-dosing INH concentrations were compared between the different genotypes. Plasma INH was determined by high-performance liquid chromatography. Genotyping of the NAT2 gene polymorphism was performed by real-time polymerase chain reaction method. Results: Among the 326 patients genotyped, there were 189 (58%), 114 (35%) and 23 (7%) slow, intermediate and fast acetylators, respectively. The median two-hour INH concentrations in slow, intermediate and fast acetylators were 10.2, 8.1 and 4.1 μg/ml, respectively. The differences in INH concentrations among the three genotypes were significant (P<0.001). Interpretation & conclusions: Genotyping of TB patients from south India for NAT2 gene polymorphism revealed that 58 per cent of the study population comprised slow acetylators. Two-hour INH concentrations differed significantly among the three genotypes. PMID:28574024
Hofmann-Thiel, Sabine; Molodtsov, Nikolay; Antonenka, Uladzimir; Hoffmann, Harald
2016-12-01
The Abbott RealTime MTB (RT MTB) assay is a new automated nucleic acid amplification test for the detection of Mycobacterium tuberculosis complex (MTBC) in clinical specimens. In combination with the RealTime MTB INH/RIF (RT MTB INH/RIF) resistance assay, which can be applied to RT MTB-positive specimens as an add-on assay, the tests also indicate the genetic markers of resistance to isoniazid (INH) and rifampin (RIF). We aimed to evaluate the diagnostic sensitivity and specificity of RT MTB using different types of respiratory and extrapulmonary specimens and to compare performance characteristics directly with those of the FluoroType MTB assay. The resistance results obtained by RT MTB INH/RIF were compared to those from the GenoType MTBDRplus and from phenotypic drug susceptibility testing. A total of 715 clinical specimens were analyzed. Compared to culture, the overall sensitivity of RT MTB was 92.1%; the sensitivity rates for smear-positive and smear-negative samples were 100% and 76.2%, respectively. The sensitivities of smear-negative specimens were almost identical for respiratory (76.3%) and extrapulmonary (76%) specimens. Specificity rates were 100% and 95.8% for culture-negative specimens and those that grew nontuberculous mycobacteria, respectively. RT MTB INH/RIF was applied to 233 RT MTB-positive samples and identified resistance markers in 7.7% of samples. Agreement with phenotypic and genotypic drug susceptibility testing was 99.5%. In conclusion, RT MTB and RT MTB INH/RIF allow for the rapid and accurate diagnosis of tuberculosis (TB) in different types of specimens and reliably indicate resistance markers. The strengths of this system are the comparably high sensitivity with paucibacillary specimens, its ability to detect INH and RIF resistance, and its high-throughput capacities. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Ku, Bok Kyung; Jeon, Bo-Young; Kim, Jae Myung; Jang, Young-Boo; Lee, Hyeyoung; Choi, Jae Young; Jung, Suk Chan; Nam, Hyang-Mi; Park, Hun; Cho, Sang-Nae
2018-01-31
Bovine tuberculosis is a chronic contagious disease responsible for major agricultural economic losses. Abattoir monitoring and trace-back systems are an appropriate method to control bovine tuberculosis, particularly in beef cattle. In the present study, a trace-back system was applied to bovine tuberculosis cases in Korean native Hanwoo beef cattle. Bovine tuberculosis was detected in three index beef cattle during abattoir monitoring in Jeonbuk Province, Korea, and the original herds were traced back from each index cow. All cattle in each original herd were subjected to tuberculin skin test. The positive rates in the tuberculin skin test were 64.6% (62 of 96), 4.8% (2 of 42), and 8.1% (3 of 37) at farms A, B, and C, respectively. On post-mortem examination of 56 tuberculin-positive cattle, 62% had granulomatous lesions, and Mycobacterium bovis was cultured from 40 (71.4%) of the cattle. Molecular typing by spoligotyping and the mycobacterial interspersed repetitive unit-variable-number tandem repeat assay revealed the genotype of the M. bovis strains from the index cattle were same as the M. bovis genotype in each original herd. The results suggest that tracing back from index cattle to the original herd is an effective method to control bovine tuberculosis in beef cattle.
Franco, Marília Masello Junqueira; Ribeiro, Márcio Garcia; Pavan, Fernando Rogério; Miyata, Marcelo; Heinemann, Marcos Bryan; de Souza Filho, Antonio Francisco; Cardoso, Rosilene Fressatti; de Almeida, Aryadne Larissa; Sakate, Ricardo Ichiro; Paes, Antonio Carlos
2017-05-01
In developing nations, 10-20% of the human cases of tuberculosis are caused by Mycobacterium bovis. However, this percentage may be underestimated because most laboratories in developing countries do not routinely perform mycobacterial cultures, and only a few have the systems in place to identify M. bovis. There are few studies investigating genotypic diversity and drug resistance in M. bovis from animal and/or human infections. The genotypic diversity of M. bovis strains obtained from bovine lymph nodes were investigated by spacer oligonucleotide typing (spoligotyping) and mycobacterial interspersed repetitive unit-variable-number tandem repeat typing (MIRU-VNTR). The phenotypic resistance to isoniazid and rifampicin and MIC values of the isolates were determined using the resazurin microtiter assay plate method (REMA). The evaluation of the possible genetic basis for such resistance was performed with GenoType MTBDRplus. Sixty-seven isolates were obtained, of which 11 (16%) were MDR-TB, 8 (12%) were isoniazid-resistant, and 2 (3%) were rifampicin-resistant. Mutations associated with drug resistance were not found. Genotyping techniques enabled the grouping of the strains into 12 clusters and 21 isolates with unique profiles. The high frequency of M. bovis reinforces the impact of the pathogen as a major causal agent of bovine tuberculosis in the study area. The resistance of the strains to drugs used for first-line treatment of human tuberculosis raises public health concerns. Further studies are required to elucidate the basis of drug resistance and genotypic diversity in M. bovis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kisa, Ozgul; Tarhan, Gulnur; Gunal, Selami; Albay, Ali; Durmaz, Riza; Saribas, Zeynep; Zozio, Thierry; Alp, Alpaslan; Ceyhan, Ismail; Tombak, Ahmet; Rastogi, Nalin
2012-01-01
Background Investigation of genetic heterogeneity and spoligotype-defined lineages of drug-resistant Mycobacterium tuberculosis clinical isolates collected during a three-year period in two university hospitals and National Tuberculosis Reference and Research Laboratory in Ankara, Turkey. Methods and Findings A total of 95 drug-resistant M. tuberculosis isolates collected from three different centers were included in this study. Susceptibility testing of the isolates to four major antituberculous drugs was performed using proportion method on Löwenstein–Jensen medium and BACTEC 460-TB system. All clinical isolates were typed by using spoligotyping and IS6110-restriction fragment length polymorphism (RFLP) methods. Seventy-three of the 95 (76.8%) drug resistant M. tuberculosis isolates were isoniazid-resistant, 45 (47.4%) were rifampicin-resistant, 32 (33.7%) were streptomycin-resistant and 31 (32.6%) were ethambutol-resistant. The proportion of multidrug-resistant isolates (MDR) was 42.1%. By using spoligotyping, 35 distinct patterns were observed; 75 clinical isolates were grouped in 15 clusters (clustering rate of 79%) and 20 isolates displayed unique patterns. Five of these 20 unique patterns corresponded to orphan patterns in the SITVIT2 database, while 4 shared types containing 8 isolates were newly created. The most prevalent M. tuberculosis lineages were: Haarlem (23/95, 24.2%), ill-defined T superfamily (22/95, 23.2%), the Turkey family (19/95, 20%; previously designated as LAM7-TUR), Beijing (6/95, 6.3%), and Latin-America & Mediterranean (LAM, 5/95 or 5.3%), followed by Manu (3/95, 3.2%) and S (1/95, 1%) lineages. Four of the six Beijing family isolates (66.7%) were MDR. A combination of IS6110-RFLP and spoligotyping reduced the clustering rate from 79% to 11.5% among the drug resistant isolates. Conclusions The results obtained showed that ill-defined T, Haarlem, the Turkey family (previously designated as LAM7-TUR family with high phylogeographical specifity for Turkey), Beijing and LAM were predominant lineages observed in almost 80% of the drug-Resistant M. tuberculosis complex clinical isolates in Ankara, Turkey. PMID:22279583
Mycobacterium tuberculosis causing tuberculous lymphadenitis in Maputo, Mozambique.
Viegas, Sofia Omar; Ghebremichael, Solomon; Massawo, Leguesse; Alberto, Matos; Fernandes, Fabíola Couto; Monteiro, Eliane; Couvin, David; Matavele, José Maiane; Rastogi, Nalin; Correia-Neves, Margarida; Machado, Adelina; Carrilho, Carla; Groenheit, Ramona; Källenius, Gunilla; Koivula, Tuija
2015-11-21
The zoonosis bovine tuberculosis (TB) is known to be responsible for a considerable proportion of extrapulmonary TB. In Mozambique, bovine TB is a recognised problem in cattle, but little has been done to evaluate how Mycobacterium bovis has contributed to human TB. We here explore the public health risk for bovine TB in Maputo, by characterizing the isolates from tuberculous lymphadenitis (TBLN) cases, a common manifestation of bovine TB in humans, in the Pathology Service of Maputo Central Hospital, in Mozambique, during one year. Among 110 patients suspected of having TBLN, 49 had a positive culture result. Of those, 48 (98%) were positive for Mycobacterium tuberculosis complex and one for nontuberculous mycobacteria. Of the 45 isolates analysed by spoligotyping and Mycobacterial Interspersed Repetitive Unit-Variable Number Tandem Repeat (MIRU-VNTR), all were M. tuberculosis. No M. bovis was found. Cervical TBLN, corresponding to 39 (86.7%) cases, was the main cause of TBLN and 66.7% of those where from HIV positive patients. We found that TBLN in Maputo was caused by a variety of M. tuberculosis strains. The most prevalent lineage was the EAI (n = 19; 43.2%). Particular common spoligotypes were SIT 48 (EAI1_SOM sublineage), SIT 42 (LAM 9), SIT 1 (Beijing) and SIT53 (T1), similar to findings among pulmonary cases. M. tuberculosis was the main etiological agent of TBLN in Maputo. M. tuberculosis genotypes were similar to the ones causing pulmonary TB, suggesting that in Maputo, cases of TBLN arise from the same source as pulmonary TB, rather than from an external zoonotic source. Further research is needed on other forms of extrapulmonary TB and in rural areas where there is high prevalence of bovine TB in cattle, to evaluate the risk of transmission of M. bovis from cattle to humans.
Jiménez-Pajares, María Soledad; Herrera, Laura; Valverde, Azucena; Saiz, Pilar; Sáez-Nieto, Juan Antonio
2005-05-01
Mycobacterium kansasii is an opportunistic pathogen that mainly causes pulmonary infections. This species accounted for 9.7% of Mycobacteria other than tuberculosis complex identified in the reference laboratory of the Spanish Centro Nacional de Microbiologia during the period of 2000-2003. In this study we analyzed the phenotypic and genotypic characteristics of 298 M. kansasii strains isolated over this 4-year period. The phenotypic characteristics were determined by conventional methods: biochemical testing, culture and morphological study. Genotypic characteristics were studied using PCR restriction fragment analysis of a fragment of the hsp65 gene and digestion with BstEII and HaeIII, according to the method of Telenti. Among the total of tested strains, 57.4% had the typical phenotypic characteristics described for M. kansasii. The rest had atypical patterns that we grouped into 17 biotypes. Strains belonging to six of the seven described genotypes were identified, with 86.6% of the strains falling into genotype I. Analysis of the phenotypic characteristics of M. kansasii showed a higher discrimination index for intraspecific differentiation than genotypic methods. Nevertheless, the high variability of phenotypic characteristics, some of which were very specific for the species (e.g., photochromogenicity), could complicate their identification. Hence both conventional and molecular methods should be used to accurately identify the atypical isolates.
Jiao, Weiwei; Liu, Zhiguang; Han, Rui; Zhao, Xiuqin; Dong, Fang; Dong, Haiyan; Huang, Hairong; Tian, Jianling; Li, Qinjing; Lian, Lulu; Yin, Qingqin; Song, Wenqi; Wan, Kanglin; Shen, A-Dong
2013-01-01
Tuberculosis (TB) is still a big threat to human health, especially in children. However, an isolation of Mycobacterium tuberculosis culture from pediatric cases remains a challenge. In order to provide some scientific basis for children TB control, we investigated the genotyping and drug resistance characteristics of M. tuberculosis isolates from pediatric cases in China. In this study, a total of 440 strains including 90 from children (<15 years), 159 from adolescents (15-18 years) and 191 from adults (>18 years) isolated in 25 provinces across China were subjected to spoligotyping and drug susceptibility testing. As a result, Beijing family strains were shown to remain predominant in China (85.6%, 81.1% and 75.4% in three above groups, respectively), especially among new children cases (91.0% vs. 69.6% in previously treated cases, P=0.03). The prevalence of the Beijing genotype isolates was higher in northern and central China in the total collection (85.1% in northern and 83.9% in central vs. 61.6% in southern China, P<0.001) and a similar trend was seen in all three age groups (P=0.708, <0.001 and 0.025, respectively). In adolescents, the frequencies of isoniazid (INH)-resistant and ethambutol (EMB)-resistant isolates were significantly higher among Beijing strains compared to non-Beijing genotype strains (P=0.028 for INH and P=0.027 for EMB). Furthermore, strong association was observed between resistance to rifampicine (RIF), streptomycin (STR) and multidrug resistance (MDR) among Beijing compared to non-Beijing strains in previously treated cases of children (P=0.01, 0.01 and 0.025, respectively). Beijing family was more prevalent in northern and central China compared to southern China and these strains were predominant in all age groups. The genetic diversity of M. tuberculosis isolates from children was similar to that found in adolescents and adults. Beijing genotype was associated with RIF, STR and MDR resistance in previously treated children.
Characterization of the genetic diversity of Mycobacterium tuberculosis in São Paulo city, Brazil.
Mendes, Natália H; Melo, Fernando Af; Santos, Adolfo Cb; Pandolfi, José Rc; Almeida, Elisabete A; Cardoso, Rosilene F; Berghs, Henri; David, Suzana; Johansen, Faber K; Espanha, Lívia G; Leite, Sergio Ra; Leite, Clarice Qf
2011-07-29
Tuberculosis is a major health problem in São Paulo, Brazil, which is the most populous and one of the most cosmopolitan cities in South America. To characterize the genetic diversity of Mycobacterium tuberculosis in the population of this city, the genotyping techniques of spoligotyping and MIRU were applied to 93 isolates collected in two consecutive years from 93 different tuberculosis patients residing in São Paulo city and attending the Clemente Ferreira Institute (the reference clinic for the treatment of tuberculosis). Spoligotyping generated 53 different spoligotype patterns. Fifty-one isolates (54.8%) were grouped into 13 spoligotyping clusters. Seventy- two strains (77.4%) showed spoligotypes described in the international databases (SpolDB4, SITVIT), and 21 (22.6%) showed unidentified patterns. The most frequent spoligotype families were Latin American Mediterranean (LAM) (26 isolates), followed by the T family (24 isolates) and Haarlem (H) (11 isolates), which together accounted for 65.4% of all the isolates. These three families represent the major genotypes found in Africa, Central America, South America and Europe. Six Spoligo-International-types (designated SITs by the database) comprised 51.8% (37/72) of all the identified spoligotypes (SIT53, SIT50, SIT42, SIT60, SIT17 and SIT1). Other SITs found in this study indicated the great genetic diversity of M. tuberculosis, reflecting the remarkable ethnic diversity of São Paulo city inhabitants. The MIRU technique was more discriminatory and did not identify any genetic clusters with 100% similarity among the 93 isolates. The allelic analysis showed that MIRU loci 26, 40, 23 and 10 were the most discriminatory. When MIRU and spoligotyping techniques were combined, all isolates grouped in the 13 spoligotyping clusters were separated. Our data indicated the genomic stability of over 50% of spoligotypes identified in São Paulo and the great genetic diversity of M. tuberculosis isolates in the remaining SITs, reflecting the large ethnic mix of the São Paulo city inhabitants. The results also indicated that in this city, M. tuberculosis isolates acquired drug resistance independently of genotype and that resistance was more dependent on the selective pressure of treatment failure and the environmental circumstances of patients.
Biadglegne, Fantahun; Merker, Matthias; Sack, Ulrich; Rodloff, Arne C.; Niemann, Stefan
2015-01-01
Background Recently, newly defined clades of Mycobacterium tuberculosis complex (MTBC) strains, namely Ethiopia 1–3 and Ethiopia H37Rv-like strains, and other clades associated with pulmonary TB (PTB) were identified in Ethiopia. In this study, we investigated whether these new strain types exhibit an increased ability to cause TB lymphadenitis (TBLN) and raised the question, if particular MTBC strains derived from TBLN patients in northern Ethiopia are genetically adapted to their local hosts and/or to the TBLN. Methods Genotyping of 196 MTBC strains isolated from TBLN patients was performed by spoligotyping and 24-loci mycobacterial interspersed repetitive unit-variable number of tandem repeats (MIRU-VNTR) typing. A statistical analysis was carried out to see possible associations between patient characteristics and phylogenetic MTBC strain classification. Results Among 196 isolates, the majority of strains belonged to the Delhi/CAS (38.8%) lineage, followed by Ethiopia 1 (9.7%), Ethiopia 3 (8.7%), Ethiopia H37RV-like (8.2%), Ethiopia 2 and Haarlem (7.7% each), URAL (3.6%), Uganda l and LAM (2% each), S-type (1.5%), X-type (1%), and 0.5% isolates of TUR, EAI, and Beijing genotype, respectively. Overall, 15 strains (7.7%) could not be allocated to a previously described phylogenetic lineage. The distribution of MTBC lineages is similar to that found in studies of PTB samples. The cluster rate (35%) in this study is significantly lower (P = 0.035) compared to 45% in the study of PTB in northwestern Ethiopia. Conclusion In the studied area, lymph node samples are dominated by Dehli/CAS genotype strains and strains of largely not yet defined clades based on MIRU-VNTR 24-loci nomenclature. We found no indication that strains of particular genotypes are specifically associated with TBLN. However, a detailed analysis of specific genetic variants of the locally contained Ethiopian clades by whole genome sequencing may reveal new insights into the host-pathogen co-evolution and specific features that are related to the local host immune system. PMID:26376441
Mycobacterium bovis in Panama, 2013
Acosta, Fermín; Chernyaeva, Ekatherina; Mendoza, Libardo; Sambrano, Dilcia; Correa, Ricardo; Rotkevich, Mikhail; Tarté, Miroslava; Hernández, Humberto; Velazco, Bredio; de Escobar, Cecilia; de Waard, Jacobus H.
2015-01-01
Panama remains free of zoonotic tuberculosis caused by Mycobacterium bovis. However, DNA fingerprinting of 7 M. bovis isolates from a 2013 bovine tuberculosis outbreak indicated minimal homology with strains previously circulating in Panama. M. bovis dispersion into Panama highlights the need for enhanced genotype testing to track zoonotic infections. PMID:25988479
Epidemiologic Consequences of Microvariation in Mycobacterium tuberculosis
Mathema, Barun; Kurepina, Natalia; Yang, Guibin; Shashkina, Elena; Manca, Claudia; Mehaffy, Carolina; Bielefeldt-Ohmann, Helle; Ahuja, Shama; Fallows, Dorothy A.; Izzo, Angelo; Bifani, Pablo; Dobos, Karen; Kaplan, Gilla
2012-01-01
Background. Evidence from genotype-phenotype studies suggests that genetic diversity in pathogens have clinically relevant manifestations that can impact outcome of infection and epidemiologic success. We studied 5 closely related Mycobacterium tuberculosis strains that collectively caused extensive disease (n = 862), particularly among US-born tuberculosis patients. Methods. Representative isolates were selected using population-based genotyping data from New York City and New Jersey. Growth and cytokine/chemokine response were measured in infected human monocytes. Survival was determined in aerosol-infected guinea pigs. Results. Multiple genotyping methods and phylogenetically informative synonymous single nucleotide polymorphisms showed that all strains were related by descent. In axenic culture, all strains grew similarly. However, infection of monocytes revealed 2 growth phenotypes, slower (doubling ∼55 hours) and faster (∼25 hours). The faster growing strains elicited more tumor necrosis factor α and interleukin 1β than the slower growing strains, even after heat killing, and caused accelerated death of infected guinea pigs (∼9 weeks vs 24 weeks) associated with increased lung inflammation/pathology. Epidemiologically, the faster growing strains were associated with human immunodeficiency virus and more limited in spread, possibly related to their inherent ability to induce a strong protective innate immune response in immune competent hosts. Conclusions. Natural variation, with detectable phenotypic changes, among closely related clinical isolates of M. tuberculosis may alter epidemiologic patterns in human populations. PMID:22315279
Liu, Fang; Jiao, An-xia; Wu, Xi-rong; Zhao, Wei; Yin, Qing-qin; Qi, Hui; Jiao, Wei-wei; Xiao, Jing; Sun, Lin; Shen, Chen; Tian, Jian-ling; Shen, Dan; Jacqz-Aigrain, Evelyne; Shen, A-dong
2014-01-01
Anti-tuberculosis drug induced hepatotoxicity (ATDH) is a major adverse drug reaction associated for anti-tuberculosis therapy. The glutathione S-transferases (GST) plays a crucial role in the detoxification of hepatotoxic metabolites of anti-tuberculosis drugs.An association between GSTM1/GSTT1 null mutations and increased risk of ATDH has been demonstrated in adults. Given the ethnic differences and developmental changes, our study aims to investigate the potential impacts of GSTM1/GSTT1 genotypes on the development of ATDH in Han Chinese children treated with anti-tuberculosis therapy. Children receiving anti-tuberculosis therapy with or without evidence of ATDH were considered as the cases or controls, respectively. The GSTM1 and GSTT1 genotyping were performed using the polymerase chain reaction. One hundred sixty-three children (20 cases and 143 controls) with a mean age of 4.7 years (range: 2 months-14.1 years) were included. For the GSTM1, 14 (70.0%) cases and 96 (67.1%) controls had homozygous null mutations. For the GSTT1, 13 (65.0%) cases and 97 (67.8%) controls had homozygous null mutations. Neither the GSTM1, nor the GSTT1 polymorphism was significantly correlated with the occurrence of ATHD. Our results did not support the GSTM1 and GSTT1 polymorphisms as the predictors of ADTH in Chinese Han children treated with anti-tuberculosis drugs. An age-related association between pharmacogenetics and ATHD need to be confirmed in the further study.
Sun, Lin; Jin, Ya-qiong; Shen, Chen; Qi, Hui; Chu, Ping; Yin, Qing-qin; Li, Jie-qiong; Tian, Jian-ling; Jiao, Wei-wei; Xiao, Jing; Shen, A-dong
2014-01-01
Tuberculosis (TB) is the leading cause of death due to an infectious disease worldwide, particularly in developing countries. A series of candidate genes have been suggested to be associated with development of TB disease. Among them, the human Cytokine-inducible Src homology 2(SH2) domain protein (CISH) gene has been very recently reported to be involved in T cell activation and differentiation in response to Mycobacterium tuberculosis infection. Here, we studied the association between CISH promoter polymorphisms and pediatric TB. A case-control study enrolled 352 TB patients and 527 healthy controls, who were of Han Chinese ethnicity and aged from 0.2 to 18 years. CISH gene promoter SNPs rs414171, rs622502 and rs809451 were genotyped in all subjects and transcriptional activity, mRNA level, and plasma cytokine level of subjects with different genotypes were further examined. Carriers with rs414171TT homozygotes and rs809451GC heterozygotes had a 1.78-fold (95% CI,1.16-2.74) and 1.86-fold (95% CI, 1.26-2.74) excess risk of developing TB compared to those with wild-type genotypes. A greater risk of TB disease was observed in population carrying C(-809451)-T(-414171)-C(-622502) haplotype (OR 3.66, 95% CI:2.12-6.32). The G(-809451)-A(-414171)-C(-622502)-containing CISH promoter drove a 5.43-fold increased reporter expression compared to the C(-809451)-T(-414171)-C(-622502)-containing counterpart in Hela cell lines (P = 0.0009). PBMCs carrying rs414171TT homozygotes and rs809451GC heterozygotes showed a reduced CISH mRNA level compared to cells carrying wild type genotypes. Individuals with the rs414171TT genotype had significantly increased IL-12p40 and IL-10 production. In conclusion, CISH promoter rs414171 and rs809451 polymorphisms may play a vital role in mediating individual susceptibility to tuberculosis.
Transmission of Extensively Drug-Resistant Tuberculosis in South Africa
Shah, N. Sarita; Auld, Sara C.; Brust, James C.M.; Mathema, Barun; Ismail, Nazir; Moodley, Pravi; Mlisana, Koleka; Allana, Salim; Campbell, Angela; Mthiyane, Thuli; Morris, Natashia; Mpangase, Primrose; van der Meulen, Hermina; Omar, Shaheed V.; Brown, Tyler S.; Narechania, Apurva; Shaskina, Elena; Kapwata, Thandi; Kreiswirth, Barry; Gandhi, Neel R.
2017-01-01
BACKGROUND Drug-resistant tuberculosis threatens recent gains in the treatment of tuberculosis and human immunodeficiency virus (HIV) infection worldwide. A widespread epidemic of extensively drug-resistant (XDR) tuberculosis is occurring in South Africa, where cases have increased substantially since 2002. The factors driving this rapid increase have not been fully elucidated, but such knowledge is needed to guide public health interventions. METHODS We conducted a prospective study involving 404 participants in KwaZulu-Natal Province, South Africa, with a diagnosis of XDR tuberculosis between 2011 and 2014. Interviews and medical-record reviews were used to elicit information on the participants’ history of tuberculosis and HIV infection, hospitalizations, and social networks. Mycobacterium tuberculosis isolates underwent insertion sequence (IS)6110 restriction-fragment– length polymorphism analysis, targeted gene sequencing, and whole-genome sequencing. We used clinical and genotypic case definitions to calculate the proportion of cases of XDR tuberculosis that were due to inadequate treatment of multidrug-resistant (MDR) tuberculosis (i.e., acquired resistance) versus those that were due to transmission (i.e., transmitted resistance). We used social-network analysis to identify community and hospital locations of transmission. RESULTS Of the 404 participants, 311 (77%) had HIV infection; the median CD4+ count was 340 cells per cubic millimeter (interquartile range, 117 to 431). A total of 280 participants (69%) had never received treatment for MDR tuberculosis. Genotypic analysis in 386 participants revealed that 323 (84%) belonged to 1 of 31 clusters. Clusters ranged from 2 to 14 participants, except for 1 large cluster of 212 participants (55%) with a LAM4/KZN strain. Person-to-person or hospital-based epidemiologic links were identified in 123 of 404 participants (30%). CONCLUSIONS The majority of cases of XDR tuberculosis in KwaZulu-Natal, South Africa, an area with a high tuberculosis burden, were probably due to transmission rather than to inadequate treatment of MDR tuberculosis. These data suggest that control of the epidemic of drug-resistant tuberculosis requires an increased focus on interrupting transmission. (Funded by the National Institute of Allergy and Infectious Diseases and others.) PMID:28099825
Silva, Carla; Perdigão, João; Jordão, Luísa; Portugal, Isabel
2014-12-01
Multidrug tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) cases constitute a serious health problem in Portugal, of which the majority of isolates belong to the Lisboa family and the Q1 cluster, highly related to the Lisboa family. Here we sought to investigate the molecular basis of resistant TB as well as to determine the prevalence of specific drug resistance mutations and their association with MDR-TB and/or XDR-TB. In total, 74 Mycobacterium tuberculosis clinical isolates collected in Lisbon Health Region were genotyped by 24-loci mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR), and the mutational profile associated with first- and second-line drug resistance was studied. Seven new mutations were found, whilst the remaining 28 mutations had been previously associated with drug resistance. None of the mutations was specifically associated with MDR-TB. The mutational patterns observed among isolates belonging to Lisboa3 and Q1 clusters were also observed in isolates with unique MIRU-VNTR patterns but closely related to these strains. Such data suggest that the genotyping technique employed discriminates isolates with the same mutational profile. To establish the most adequate genotyping technique, the discriminatory power of three different MIRU-VNTR sets was analysed. The 15-loci MIRU-VNTR set showed adequate discriminatory power, comparable with the 24-loci set, allowing clustering of 60% and 86% of the MDR-TB and XDR-TB isolates, respectively, the majority of which belonged to the Lisboa3 and Q1 clusters. From an epidemiological standpoint, this study suggests combined mutational and genotyping analysis as a valuable tool for drug resistance surveillance. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Lavender, Caroline; Globan, Maria; Sievers, Aina; Billman-Jacobe, Helen; Fyfe, Janet
2005-01-01
Elucidation of the molecular basis of isoniazid (INH) resistance in Mycobacterium tuberculosis has led to the development of different genotypic approaches for the rapid detection of INH resistance in clinical isolates. Mutations in katG, in particular the S315T substitution, are responsible for INH resistance in a large proportion of tuberculosis cases. However, the frequency of the katG S315T substitution varies with population samples. In this study, 52 epidemiologically unrelated clinical INH-resistant M. tuberculosis isolates collected in Australia were screened for mutations at katG codon 315 and the fabG1-inhA regulatory region. Importantly, 52 INH-sensitive isolates, selected to reflect the geographic and genotypic diversity of the isolates, were also included for comparison. The katG S315T substitution and fabG1-inhA −15 C-to-T mutation were identified in 34 and 13 of the 52 INH-resistant isolates, respectively, and none of the INH-sensitive isolates. Three novel katG mutations, D117A, M257I, and G491C, were identified in three INH-resistant strains with a wild-type katG codon 315, fabG1-inhA regulatory region, and inhA structural gene. When analyzed for possible associations between resistance mechanisms, resistance phenotype, and genotypic groups, it was found that neither the katG S315T nor fabG1-inhA −15 C-to-T mutation clustered with any one genotypic group, but that the −15 C-to-T substitution was associated with isolates with intermediate INH resistance and isolates coresistant to ethionamide. In total, 90.4% of unrelated INH-resistant isolates could be identified by analysis of just two loci: katG315 and the fabG1-inhA regulatory region. PMID:16189082
Qi, Hui; Sun, Lin; Wu, Xirong; Jin, Yaqiong; Xiao, Jing; Wang, Shengfeng; Shen, Chen; Chu, Ping; Qi, Zhan; Xu, Fang; Guo, Yajie; Jiao, Weiwei; Tian, Jianling; Shen, Adong
2015-03-01
Toll-like receptor 1 (TLR1) recognizes lipopeptides with TLR2, and affects immune response to Mycobacterium tuberculosis infection. Here, we report results of the first case-control pediatric study of the TLR1 single-nucleotide polymorphisms and susceptibility to tuberculosis (TB). A pediatric case-control study enrolled 340 TB patients and 366 healthy controls, all Han Chinese from North China. Significant differences of the allelic and genotypic distributions of rs5743618 in TLR1 gene were observed between TB group and control group and, G allele of rs5743618 was associated with increased risk for TB (OR: 2.40, 95%CI: 1.41-4.07, P = 0.0009). TLR1 rs5743618 -GT genotype was related to reduction in surface expression of TLR1 in monocytes and granulocytes regardless of stimulation with inactivated H37Rv. In addition, after stimulated with inactivated lysate of M. tuberculosis strain H37Rv, samples of peripheral blood mononuclear cells (PBMCs) from children with the rs5743618 GT genotypes showed a decreased level of Tumor Necrosis Factor-a (TNF-a) and CXC chemokine ligand 10 (CXCL10) production, invariable production of interleukin-6 (IL-6) and IL-8 and increased production of IL-10 ex vivo. To conclude, TLR1 rs5743618 G allele was found associated to susceptibility to TB in Han Chinese pediatric population. TLR1 rs5743618-GT genotype carriers may have reduced immune response to MTB infection although further study is warranted to test this conclusion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Guo, Qian; Yu, Yan; Zhu, Yan Ling; Zhao, Xiu Qin; Liu, Zhi Guang; Zhang, Yuan Yuan; Li, Gui Lian; Wei, Jian Hao; Wu, Yi Mou; Wan, Kang Lin
2015-01-01
A PCR-reverse dot blot hybridization (RDBH) assay was developed for rapid detection of rpoB gene mutations in 'hot mutation region' of Mycobacterium tuberculosis (M. tuberculosis). 12 oligonucleotide probes based on the wild-type and mutant genotype rpoB sequences of M. tuberculosis were designed to screen the most frequent wild-type and mutant genotypes for diagnosing RIF resistance. 300 M. tuberculosis clinical isolates were detected by RDBH, conventional drug-susceptibility testing (DST) and DNA sequencing to evaluate the RDBH assay. The sensitivity and specificity of the RDBH assay were 91.2% (165/181) and 98.3% (117/119), respectively, as compared to DST. When compared with DNA sequencing, the accuracy, positive predictive value (PPV) and negative predictive value (NPV) of the RDBH assay were 97.7% (293/300), 98.2% (164/167), and 97.0% (129/133), respectively. Furthermore, the results indicated that the most common mutations were in codons 531 (48.6%), 526 (25.4%), 516 (8.8%), and 511 (6.6%), and the combinative mutation rate was 15 (8.3%). One and two strains of insertion and deletion were found among all strains, respectively. Our findings demonstrate that the RDBH assay is a rapid, simple and sensitive method for diagnosing RIF-resistant tuberculosis. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
NASA Astrophysics Data System (ADS)
Marwoto; Agung Prasetyo, Afiono; Reviono; Suradi
2018-05-01
CC chemokine receptor-2 (CCR2) play important roles in inflammation. The CCR2 V64I polymorphism already reported associated with many diseases; however, the association of CCR2 V64I polymorphism with tuberculosis is still unknown. Also, there is no report about the presentation of CCR2 V64I polymorphisms in Indonesian tuberculosis patients with rifampicin-mono resistant status has ever been published, to the best of our knowledge. This study evaluated the presence of CCR2 V64I polymorphisms in Javanese rifampicin-mono resistant tuberculosis patients. In an ongoing molecular epidemiology study of human genomic polymorphisms and infection, 51 Javanese rifampicin-mono resistant tuberculosis patients in Dr. Moewardi General Hospital in Surakarta were enrolled in the study. The blood samples were aliquoted and fractionated. The nucleic acids were extracted from all blood samples and subjected to the CCR2 V64I polymorphisms detection by a polymerase chain reaction-sequence-specific primer (PCR-SSP) technique. PCR products were analyzed in 3% agarose. CCR2 64V and 64I homozygote were found in 23.5% (12/51) and 23.5% (12/51) blood samples, respectively. The CCR2 VI genotype was found in 52.9% (27/51) blood samples. The CCR2 VI genotype was found predominant in Javanese rifampicin-mono resistant tuberculosis patients and may have anassociation with the clinical progression.
The Guinea-Bissau Family of Mycobacterium tuberculosis Complex Revisited
Groenheit, Ramona; Ghebremichael, Solomon; Svensson, Jenny; Rabna, Paulo; Colombatti, Raffaella; Riccardi, Fabio; Couvin, David; Hill, Véronique; Rastogi, Nalin; Koivula, Tuija; Källenius, Gunilla
2011-01-01
The Guinea-Bissau family of strains is a unique group of the Mycobacterium tuberculosis complex that, although genotypically closely related, phenotypically demonstrates considerable heterogeneity. We have investigated 414 M. tuberculosis complex strains collected in Guinea-Bissau between 1989 and 2008 in order to further characterize the Guinea-Bissau family of strains. To determine the strain lineages present in the study sample, binary outcomes of spoligotyping were compared with spoligotypes existing in the international database SITVIT2. The major circulating M. tuberculosis clades ranked in the following order: AFRI (n = 195, 47.10%), Latin-American-Mediterranean (LAM) (n = 75, 18.12%), ill-defined T clade (n = 53, 12.8%), Haarlem (n = 37, 8.85%), East-African-Indian (EAI) (n = 25, 6.04%), Unknown (n = 12, 2.87%), Beijing (n = 7, 1.68%), X clade (n = 4, 0.96%), Manu (n = 4, 0.97%), CAS (n = 2, 0.48%). Two strains of the LAM clade isolated in 2007 belonged to the Cameroon family (SIT61). All AFRI isolates except one belonged to the Guinea-Bissau family, i.e. they have an AFRI_1 spoligotype pattern, they have a distinct RFLP pattern with low numbers of IS6110 insertions, and they lack the regions of difference RD7, RD8, RD9 and RD10, RD701 and RD702. This profile classifies the Guinea-Bissau family, irrespective of phenotypic biovar, as part of the M. africanum West African 2 lineage, or the AFRI_1 sublineage according to the spoligtyping nomenclature. Guinea-Bissau family strains display a variation of biochemical traits classically used to differentiate M. tuberculosis from M. bovis. Yet, the differential expression of these biochemical traits was not related to any genes so far investigated (narGHJI and pncA). Guinea-Bissau has the highest prevalence of M. africanum recorded in the African continent, and the Guinea-Bissau family shows a high phylogeographical specificity for Western Africa, with Guinea-Bissau being the epicenter. Trends over time however indicate that this family of strains is waning in most parts of Western Africa, including Guinea-Bissau (p = 0.048). PMID:21533101
Zhao, Jingge; Matsuba, Takashi; Zhang, Xiaoyan; Leano, Susan; Nakajima, Chie; Chagan-Yasutan, Haorile; Telan, Elizabeth Freda; Suzuki, Yasuhiko; Hattori, Toshio
2017-05-15
Strains of the Beijing genotype of Mycobacterium tuberculosis (MTB) are reportedly associated with the virulence of tuberculosis (TB) infection, unfavorable outcomes of anti-TB treatment, and the global TB pandemic. Rv0679c, a hypothetical membrane protein related to host cell invasion, has a Beijing genotype-specific mutation at residue 142 (Asn142Lys). Antigenicity differences between Rv0679c-Asn142 (N-type) and Rv0679c-Lys142 (K-type) have been previously observed in mice antigen-antibody responses. However, the immune response to Rv0679c in humans remains unknown. Therefore, we aimed to investigate the anti-Rv0679c immune response in TB patients from the endemic and non-endemic regions of the Beijing MTB genotype. We analyzed the Rv0679c-specific antibody responses in 84 subjects from the endemic region of the Beijing genotype MTB in China, including 45 pulmonary TB patients (C-PTB) and 39 healthy controls (C-HC), and 81 subjects from the Philippines (the endemic region of the non-Beijing genotype), including 51 pulmonary TB patients (P-PTB) and 30 healthy controls (P-HC). Anti-tuberculous-glycolipid (TBGL) antigen was used as the control antibody. TBGL IgG titers were higher in both C-PTB and P-PTB than those in their corresponding HC (C-PTB median 4.2, P-PTB median 11.2; C-PTB vs. P-PTB, p > 0.05), suggesting immune response comparability in PTB from two different countries. C-PTB showed a higher response compared to C-HC for anti-K-type IgG (53.3%) than anti-N-type IgG (6.67%); this response was not observed in P-PTB (both N-type and K-type 9.80%). Dimorphic antigen Rv0679c was found to be associated with distinct immune response patterns, indicating the role of Beijing/non-Beijing genotype of MTB in stimulating specific responses in TB patients from the endemic region of Beijing MTB. Meanwhile, reactions to Rv0679c in patients and HC from non-endemic regions of the Beijing MTB may be caused by the response to the common epitope of Rv0679c N/K-type.
Hu, Y; Mathema, B; Zhao, Q; Chen, L; Lu, W; Wang, W; Kreiswirth, B; Xu, B
2015-12-01
Multidrug-resistant tuberculosis (MDR-TB) is prevalent in countries with a high TB burden, like China. As little is known about the emergence and spread of second-line drug (SLD) -resistant TB, we investigate the emergence and transmission of SLD-resistant Mycobacterium tuberculosis in rural China. In a multi-centre population-based study, we described the bacterial population structure and the transmission characteristics of SLD-resistant TB using Spoligotyping in combination with genotyping based on 24-locus MIRU-VNTR (mycobacterial interspersed repetitive unit-variable-number tandem repeat) plus four highly variable loci for the Beijing family, in four rural Chinese regions with diverse geographic and socio-demographic characteristics. Transmission networks among genotypically clustered patients were constructed using social network analysis. Of 1332 M. tuberculosis patient isolates recovered, the Beijing family represented 74.8% of all isolates and an association with MDR and simultaneous resistance between first-line drugs and SLDs. The genotyping analysis revealed that 189 isolates shared MIRU-VNTR patterns in 78 clusters with clustering rate and recent transmission rate of 14.2% and 8.3%, respectively. Fifty-three SLD-resistant isolates were observed in 31 clusters, 30 of which contained the strains with different drug susceptibility profiles and genetic mutations. In conjunction with molecular data, socio-network analysis indicated a key role of Central Township in the transmission across a highly interconnected network where SLD resistance accumulation occurred during transmission. SLD-resistant M. tuberculosis has been spreading in rural China with Beijing family being the dominant strains. Primary transmission of SLD-resistant strains in the population highlights the importance of routine drug susceptibility testing and effective anti-tuberculosis regimens for drug-resistant TB. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Ocheretina, Oksana; Escuyer, Vincent E.; Mabou, Marie-Marcelle; Royal-Mardi, Gertrude; Collins, Sean; Vilbrun, Stalz C.; Pape, Jean W.; Fitzgerald, Daniel W.
2014-01-01
The World Health Organization has recommended use of molecular-based tests MTBDRplus and GeneXpert MTB/RIF to diagnose multidrug-resistant tuberculosis in developing and high-burden countries. Both tests are based on detection of mutations in the Rifampin (RIF) Resistance-Determining Region of DNA-dependent RNA Polymerase gene (rpoB). Such mutations are found in 95–98% of Mycobacterium tuberculosis strains determined to be RIF-resistant by the “gold standard” culture-based drug susceptibility testing (DST). We report the phenotypic and genotypic characterization of 153 consecutive clinical Mycobacterium tuberculosis strains diagnosed as RIF-resistant by molecular tests in our laboratory in Port-au-Prince, Haiti. 133 isolates (86.9%) were resistant to both RIF and Isoniazid and 4 isolates (2.6%) were RIF mono-resistant in MGIT SIRE liquid culture-based DST. However the remaining 16 isolates (10.5%) tested RIF-sensitive by the assay. Five strains with discordant genotypic and phenotypic susceptibility results had RIF minimal inhibitory concentration (MIC) close to the cut-off value of 1 µg/ml used in phenotypic susceptibility assays and were confirmed as resistant by DST on solid media. Nine strains had sub-critical RIF MICs ranging from 0.063 to 0.5 µg/ml. Finally two strains were pan-susceptible and harbored a silent rpoB mutation. Our data indicate that not only detection of the presence but also identification of the nature of rpoB mutation is needed to accurately diagnose resistance to RIF in Mycobacterium tuberculosis. Observed clinical significance of low-level resistance to RIF supports the re-evaluation of the present critical concentration of the drug used in culture-based DST assays. PMID:24599230
Andreevskaia, S N; Chernousova, L N; Smirnova, T G; Larionova, E E; Kuz'min, A V
2006-01-01
The investigation was carried out on 134 M. tuberculosis isolated from 134 patients treated at the Central Research Institute of Tuberculosis, Russian Academy of Medical Sciences. The patients were divided into 2 groups: 1) those who were natives of Moscow and the Moscow Region (MR patients); 2) those who were migrants to the Moscow Region from Azerbaijan, Daghestan, Chechnya, Ingushetia, Karachai-Cherkessia, North Ossetia (the Caucasian Region) (CR patients) who had fallen in the place of birth. Genotyping by the polymorphism of lengths of the restriction fragments containing the insertion sequence IS6110 revealed a genetic diversity of M. tuberculosis strains. The examined M. tuberculosis strains belonged to 13 genotypic families. The W and AI families were prevalent. The family W M. tuberculosis strains isolated from the Caucasians were highly clustered, as confirmed by the overwhelming predominance of the strain variant W148 (19.7%). The spectrum of the strain variants of the W family, and those of the AI family in particular, greatly differed in MR and CR patients. Only one strain variant AI12 occurring both in MR and CR patients was detected. A study of the transmission activity coefficient (TAC) of the families W and AI indicated that the transmission activity of W strains was significantly higher than that of M. tuberculosis strains of the AI family. A comparative analysis of the TAC of M. tuberculosis strains of the AI family demonstrated that the transmission activity of the strains of this family was identical no matter where a patient had fallen ill (1.59 and 1.41% in the Moscow and Caucasian Regions, respectively). Unlike M. tuberculosis strains of the AI family, the TAC of W strains isolated from the patients infected in the Moscow Region (28.17 and 19.05%, respectively), which suggests the more intensive transmission of the pathogen M. tuberculosis of the W family in the Caucasian Region.
Kohl, Thomas A; Diel, Roland; Harmsen, Dag; Rothgänger, Jörg; Walter, Karen Meywald; Merker, Matthias; Weniger, Thomas; Niemann, Stefan
2014-07-01
Whole-genome sequencing (WGS) allows for effective tracing of Mycobacterium tuberculosis complex (MTBC) (tuberculosis pathogens) transmission. However, it is difficult to standardize and, therefore, is not yet employed for interlaboratory prospective surveillance. To allow its widespread application, solutions for data standardization and storage in an easily expandable database are urgently needed. To address this question, we developed a core genome multilocus sequence typing (cgMLST) scheme for clinical MTBC isolates using the Ridom SeqSphere(+) software, which transfers the genome-wide single nucleotide polymorphism (SNP) diversity into an allele numbering system that is standardized, portable, and not computationally intensive. To test its performance, we performed WGS analysis of 26 isolates with identical IS6110 DNA fingerprints and spoligotyping patterns from a longitudinal outbreak in the federal state of Hamburg, Germany (notified between 2001 and 2010). The cgMLST approach (3,041 genes) discriminated the 26 strains with a resolution comparable to that of SNP-based WGS typing (one major cluster of 22 identical or closely related and four outlier isolates with at least 97 distinct SNPs or 63 allelic variants). Resulting tree topologies are highly congruent and grouped the isolates in both cases analogously. Our data show that SNP- and cgMLST-based WGS analyses facilitate high-resolution discrimination of longitudinal MTBC outbreaks. cgMLST allows for a meaningful epidemiological interpretation of the WGS genotyping data. It enables standardized WGS genotyping for epidemiological investigations, e.g., on the regional public health office level, and the creation of web-accessible databases for global TB surveillance with an integrated early warning system. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Kozińska, Monika; Zientek, Jerzy; Augustynowicz-Kopeć, Ewa; Zwolska, Zofia; Kozielski, Jerzy
2016-01-01
In 2007, Poland, the Czech Republic, and Slovakia joined the Schengen Agreement, abolishing restrictions on people crossing the borders. Currently, these areas are places of population movements for economic, family, and touristic reasons. This favors the transmission of infectious diseases, including tuberculosis, and requires enhanced control over the spread of the source of infection in the population of patients living in the border areas. The aim of this study was to investigate the genetic relatedness among Mycobacterium tuberculosis complex strains isolated from patients living in 3 border areas: Poland, the Czech Republic, and Slovakia. PATIENTS AND METHODS The study group consisted of 209 patients with tuberculosis diagnosed and treated between 2007 and 2011 in health care facilities in the Silesia Province in Poland (121 patients [58%]), Žilina in Slovakia (57 [27%]), and the Moravian-Silesian Region in the Czech Republic (31 [15%]). Genotyping of strains was performed using spoligotyping and IS6110-Mtb1-Mtb2 polymerase chain reaction. Among 209 strains, 23 molecular families (clusters) were identified. Seventeen clusters were identified as national. Six international clusters consisted of 30 strains isolated from patients of various nationalities. We identified 6 potential outbreaks of tuberculosis transmission between patients of different nationalities. The circumstances favorable to potential contacts of patients included mainly travelling to the neighboring countries, hospital stays, and addictions. However, there was no evidence of an epidemiological link between these patients, so it may be assumed that if they had come in contact with one another, it was accidental. We observed that the greater incidence of tuberculosis on the Polish territory did not affect the incidence in the Czech Republic or Slovakia over the analysis period.
Chen, H X; Cai, C; Liu, J Y; Zhang, Z G; Yuan, M; Jia, J N; Sun, Z G; Huang, H R; Gao, J M; Li, W M
2017-06-10
Objective: Using the standard genotype method, variable number of tandem repeats (VNTR), we constructed a VNTR database to cover all provinces and proposed a set of optimized VNTR loci combinations for each province, in order to improve the preventive and control programs on tuberculosis, in China. Methods: A total of 15 loci VNTR was used to analyze 4 116 Mycobacterium tuberculosis strains, isolated from national survey of Drug Resistant Tuberculosis, in 2007. Hunter-Gaston Index (HGI) was also used to analyze the discriminatory power of each VNTR site. A set combination of 12-VNTR, 10-VNTR, 8-VNTR and 5-VNTR was respectively constructed for each province, based on 1) epidemic characteristics of M. tuberculosis lineages in China, with high discriminatory power and genetic stability. Results: Through the completed 15 loci VNTR patterns of 3 966 strains under 96.36 % (3 966/4 116) coverage, we found seven high HGI loci (including QUB11b and MIRU26) as well as low stable loci (including QUB26, MIRU16, Mtub21 and QUB11b) in several areas. In all the 31 provinces, we found an optimization VNTR combination as 10-VNTR loci in Inner Mongolia, Chongqing and Heilongjiang, but with 8-VNTR combination shared in other provinces. Conclusions: It is necessary to not only use the VNTR database for tracing the source of infection and cluster of M. tuberculosis in the nation but also using the set of optimized VNTR combinations in monitoring those local epidemics and M. tuberculosis (genetics in local) population.
Polymorphisms in the prostaglandin receptor EP2 gene confers susceptibility to tuberculosis.
Liang, Li; Zhang, Qing; Luo, Liu-Lin; Yue, Jun; Zhao, Yan-Lin; Han, Min; Liu, Li-Rong; Xiao, He-Ping
2016-12-01
Prostaglandin E2 (PGE2) is an important lipid mediator of the inflammatory immune response during acute and chronic infections. PGE2 modulates a variety of immune functions via four receptors (EP1-EP4), which mediate distinct PGE2 effects. Mice lacking EP2 are more susceptible to infection by Mycobacterium tuberculosis (M.tb), have a higher bacterial load, and increase size and number of granulomatous lesions. Our aim was to assess whether single nucleotide polymorphisms (SNPs) in EP2 increase the risk of tuberculosis. DNA re-sequencing revealed five common EP2 variants in the Chinese Han population. We sequenced the EP2 gene from 600 patients and 572 healthy controls to measure SNP frequencies in association with tuberculosis infections (TB) within the population. The rs937337 polymorphism is associated with increased risk to tuberculosis (p=0.0044, odds ratio [OR], 1.67; 95% confidential interval,1.22-2.27). The rs937337 AA genotype and the rs1042618 CC genotype were significantly associated with TB. An estimation of the frequencies of haplotypes revealed a single protective haplotype GACGC for tuberculosis (p=0.00096, odds ratio [OR], 0.56; 95% confidential interval, 0.41-0.77). Furthermore, we determined that the remaining SNPs of EP2 were nominally associated with clinical patterns of disease. We identified genetic polymorphisms in EP2 associated with susceptibility to tuberculosis within a Chinese population. Our data support that EP2 SNPs are genetic predispositions of increased susceptibility to TB and to different clinical patterns of disease. Copyright © 2016 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Bovine tuberculosis is a ‘neglected zoonosis’ and its contribution to the proportion of Mycobacterium tuberculosis complex infections in humans is unknown. A retrospective study on archived Mycobacterium tuberculosis complex (MTC) isolates from a reference laboratory in Uganda was undertaken to iden...
Characterization of the genetic diversity of Mycobacterium tuberculosis in São Paulo city, Brazil
2011-01-01
Background Tuberculosis is a major health problem in São Paulo, Brazil, which is the most populous and one of the most cosmopolitan cities in South America. To characterize the genetic diversity of Mycobacterium tuberculosis in the population of this city, the genotyping techniques of spoligotyping and MIRU were applied to 93 isolates collected in two consecutive years from 93 different tuberculosis patients residing in São Paulo city and attending the Clemente Ferreira Institute (the reference clinic for the treatment of tuberculosis). Findings Spoligotyping generated 53 different spoligotype patterns. Fifty-one isolates (54.8%) were grouped into 13 spoligotyping clusters. Seventy- two strains (77.4%) showed spoligotypes described in the international databases (SpolDB4, SITVIT), and 21 (22.6%) showed unidentified patterns. The most frequent spoligotype families were Latin American Mediterranean (LAM) (26 isolates), followed by the T family (24 isolates) and Haarlem (H) (11 isolates), which together accounted for 65.4% of all the isolates. These three families represent the major genotypes found in Africa, Central America, South America and Europe. Six Spoligo-International-types (designated SITs by the database) comprised 51.8% (37/72) of all the identified spoligotypes (SIT53, SIT50, SIT42, SIT60, SIT17 and SIT1). Other SITs found in this study indicated the great genetic diversity of M. tuberculosis, reflecting the remarkable ethnic diversity of São Paulo city inhabitants. The MIRU technique was more discriminatory and did not identify any genetic clusters with 100% similarity among the 93 isolates. The allelic analysis showed that MIRU loci 26, 40, 23 and 10 were the most discriminatory. When MIRU and spoligotyping techniques were combined, all isolates grouped in the 13 spoligotyping clusters were separated. Conclusions Our data indicated the genomic stability of over 50% of spoligotypes identified in São Paulo and the great genetic diversity of M. tuberculosis isolates in the remaining SITs, reflecting the large ethnic mix of the São Paulo city inhabitants. The results also indicated that in this city, M. tuberculosis isolates acquired drug resistance independently of genotype and that resistance was more dependent on the selective pressure of treatment failure and the environmental circumstances of patients. PMID:21801364
2011-01-01
Background Sudan is a large country with a diverse population and history of civil conflict. Poverty levels are high with a gross national income per capita of less than two thousand dollars. The country has a high burden of tuberculosis (TB) with an estimated 50,000 incident cases during 2009, when the estimated prevalence was 209 cases per 100,000 of the population. Few studies have been undertaken on TB in Sudan and the prevalence of drug resistant disease is not known. Methods In this study Mycobacterium tuberculosis isolates from 235 patients attending three treatment centers in Sudan were screened for susceptibility to isoniazid, rifampicin, ethambutol and streptomycin by the proportion method on Lowenstein Jensen media. 232 isolates were also genotyped by spoligotyping. Demographic details of patients were recorded using a structured questionnaire. Statistical analyses were conducted to examine the associations between drug resistance with risk ratios computed for a set of risk factors (gender, age, case status - new or relapse, geographic origin of the patient, spoligotype, number of people per room, marital status and type of housing). Results Multi drug-resistant tuberculosis (MDR-TB), being resistance to at least rifampicin and isoniazid, was found in 5% (95% CI: 2,8) of new cases and 24% (95% CI: 14,34) of previously treated patients. Drug resistance was associated with previous treatment with risk ratios of 3.51 (95% CI: 2.69-4.60; p < 0.001) for resistance to any drug and 5.23 (95% CI: 2.30-11.90; p < 0.001) for MDR-TB. Resistance was also associated with the geographic region of origin of the patient, being most frequently observed in patients from the Northern region and least in the Eastern region with risk ratios of 7.43 (95%CI:3.42,16.18; p: < 0.001) and 14.09 (95%CI:1.80,110.53; p:0.026) for resistance to any drug and MDR-TB. The major genotype observed was of the Central Asia spoligotype family (CAS1_Delhi), representing 49% of the 232 isolates examined. Conclusions We conclude that emergence of drug resistant tuberculosis has the potential to be a serious public health problem in Sudan and that strengthened tuberculosis control and improved monitoring of therapy is needed. Further surveillance is required to fully ascertain the extent of the problem. PMID:21846389
Namburete, Evangelina
2017-01-01
Abstract Background Both Mozambique and Brazil are countries with a high burden of tuberculosis. Isoniazid (INH) is one of the cornerstones of tuberculosis treatment and, depending on the mutated gene (katG or inhA), the organism may be susceptible to high doses of INH (inhA mutation) or to ethionamide (-Eth-KatG mutation). Methods To analyze isoniazid genotypic resistance profile in Mycobacterium tuberculosis to guide decision making about management of resistant tuberculosis. Descriptive study of 311 M. tuberculosis isolated from Ribeirão Preto, Brazil (2011–2014) and 155 isolates from Beira, Mozambique (2014–2015). Drug resistance patterns and the specific genes mutations were determined using Genotype MTBDRplus (Hain Lifescience GmbH, Germany). Results Mutations in katG gene were detected in 13/22 (59%) of Brazilian and in 32/38 (84.2%) of Mozambican isolates. Unique inhA mutations were observed in 8/22 (36%) isolates in Brazil and 4/38 (10.5%) in Mozambique. Both katG and inhA mutations where detected in 1/22 (5%) and 2/38(5.2%), respectively. katG mutations were more frequent among INH previously treated patients. Conclusion There is a geographical variation of INH mutations and the new molecular tests can be used to guide and accelerate decision making towards the use of ETH or high doses of INH based on detected mutations. Disclosures All authors: No reported disclosures.
Characterizing tuberculosis genotype clusters along the United States-Mexico border.
Baker, B J; Moonan, P K
2014-03-01
We examined the growth of tuberculosis (TB) genotype clusters during 2005-2010 in the United States, categorized by country of origin and ethnicity of the index case and geographic proximity to the US-Mexico border at the time of TB diagnosis. Nationwide, 38.9% of cases subsequent to Mexico-born index cases were US-born. Among clusters following US-born Hispanic and US-born non-Hispanic index cases, respectively 29.2% and 5.3% of subsequent cluster members were Mexico-born. In border areas, the majority of subsequent cases were Mexico-born following US-born Hispanic (56.4%) and US-born non-Hispanic (55.6%) index cases. These findings suggest that TB transmission commonly occurs between US-born and Mexico-born persons. Along the US-Mexico border, prioritizing TB genotype clusters following US-born index cases for investigation may prevent subsequent cases among both US-born and Mexico-born persons.
Hernández Pando, Rogelio
2011-01-01
Cerebral tuberculosis is a severe type of extrapulmonary disease that is highly predominant in children. It is thought that meningeal tuberculosis, the most common form of cerebral tuberculosis, begins with respiratory infection followed by early haematogenous dissemination to extrapulmonary sites involving the brain. Host genetic susceptibility factors and specific mycobacteria substrains could be involved in the development of this serious form of tuberculosis. In this editorial the different animal models of cerebral tuberculosis are commented, highlighting a recently described murine model in which BALB/c mice were infected by the intratracheal route with clinical isolates, which exhibited rapid dissemination and brain infection. These strains were isolated from the cerebrospinal fluid of patients with meningeal tuberculosis; they showed specific genotype and induced a peculiar immune response in the infected brain. This model could be a useful tool to study host and bacilli factors involved in the pathogenesis of the most severe form of tuberculosis. PMID:22135568
Abdel-Moein, Khaled A; Hamed, Osman; Fouad, Heba
2016-12-01
Tuberculosis is a re-emerging disease causing a growing public health burden. The current study was conducted to investigate the occurrence of Mycobacterium tuberculosis among cattle and buffaloes with tuberculous lesions. Typical tuberculous lesions were collected from 34 cattle and 34 buffaloes (Bubalus bubalis) through postmortem examination of slaughtered animals in abattoirs. DNAs were extracted from samples, and M. tuberculosis was identified by PCR. Positive samples were examined for resistance against rifampicin and isoniazid using GenoType MTBDRplus. Moreover, sera from 90 slaughterhouse workers, butchers, or meat inspectors were examined for the presence of M. tuberculosis antibodies using ELISA. Five cattle (14.7 %) and three buffaloes (8.8 %) tested positive. M. tuberculosis from one cattle was resistant to rifampicin and another was resistant to isoniazid. In addition, the seroprevalence of M. tuberculosis IgG among examined humans was 5.6 %. The occurrence of M. tuberculosis in cattle and buffaloes is a public health concern.
Vitamin D receptor gene methylation is associated with ethnicity, tuberculosis and TaqI polymorphism
Andraos, Charlene; Koorsen, Gerrit; Knight, Julian C; Bornman, Liza
2014-01-01
The Vitamin D Receptor (VDR) gene encodes a transcription factor which, on activation by vitamin D, modulates diverse biological processes including calcium homeostasis and immune function. Genetic variation involving VDR shows striking differences in allele frequency between populations and has been associated with disease susceptibility including tuberculosis and autoimmunity, although results have often been conflicting. We hypothesized that methylation of VDR may be population specific and that the combination of differential methylation and genetic variation may characterise TB predisposition. We use bisulphite conversion and/or pyrosequencing to analyse the methylation status of 17 CpGs of VDR and to genotype 7 SNPs in the 3′ CpG Island (CGI 1060), including the commonly studied SNPs ApaI (rs7975232) and TaqI (rs731236). We show that for lymphoblastoid cell lines from two ethnically diverse populations (Yoruba from HapMap, n=30 and Caucasians, n=30) together with TB cases (n=32) and controls (n=29) from the Venda population of South Africa there are methylation variable positions (MVPs) in the 3′ end that significantly distinguish ethnicity (9/17 CpGs) and TB status (3/17 CpGs). Moreover methylation status shows complex association with TaqI genotype highlighting the need to consider both genetic and epigenetic variants in genetic studies of VDR association with disease. PMID:21168462
Zhang, Qiufen; Wan, Baoshan; Zhou, Aiping; Ni, Jinjing; Xu, Zhihong; Li, Shuxian; Tao, Jing; Yao, YuFeng
2016-05-15
Mycobacterium tuberculosis (M.tb) is one of the most prevalent bacterial pathogens in the world. With geographical wide spread and hypervirulence, Beijing/W family is the most successful M.tb lineage. China is a country of high tuberculosis (TB) and high multiple drug-resistant TB (MDR-TB) burden, and the Beijing/W family strains take the largest share of MDR strains. To study the genetic basis of Beijing/W family strains' virulence and drug resistance, we performed the whole genome sequencing of M.tb strain W146, a clinical Beijing/W genotype MDR isolated from Wuxi, Jiangsu province, China. Compared with genome sequence of M.tb strain H37Rv, we found that strain W146 lacks three large fragments and the missing of furA-katG operon confers isoniazid resistance. Besides the missing of furA-katG operon, strain W146 harbored almost all known drug resistance-associated mutations. Comparison analysis of single nucleotide polymorphisms (SNPs) and indels between strain W146 and Beijing/W genotype strains and non-Beijing/W genotype strains revealed that strain W146 possessed some unique mutations, which may be related to drug resistance, transmission and pathogenicity. These findings will help to understand the large sequence polymorphisms (LSPs) and the transmission and drug resistance related genetic characteristics of the Beijing/W genotype of M.tb. Copyright © 2016 Elsevier B.V. All rights reserved.
Mycobacterium tuberculosis Infection of Domesticated Asian Elephants, Thailand
Angkawanish, Taweepoke; Sirimalaisuwan, Anucha; Kaewsakhorn, Thattawan; Boonsri, Kittikorn; Rutten, Victor P.M.G.
2010-01-01
Four Asian elephants were confirmed to be infected with Mycobacterium tuberculosis by bacterial culture, other diagnostic procedures, and sequencing of 16S–23S rDNA internal transcribed spacer region, 16S rRNA, and gyrase B gene sequences. Genotyping showed that the infectious agents originated from 4 sources in Thailand. To identify infections, a combination of diagnostic assays is essential. PMID:21122228
A case of Manila type Mycobacterium tuberculosis infection in Japan
Usami, Osamu; Nakajima, Chie; Endo, Shiro; Inomata, Shinya; Kanamori, Hajime; Hirakata, Yoichi; Uchiyama, Bine; Kaku, Mitsuo; Suzuki, Yasuhiko; Hattori, Toshio
2015-01-01
Key Clinical Message A 76-year-old Japanese woman contracted a Mycobacterium tuberculosis (TB, Manila type) infection in Japan, despite never having traveled. However, her son was treated for TB in the Philippines 3 years before he stayed at her house. Spoligotyping allows us to identify the TB genotype and identify the route of infection. PMID:26273455
Katragkou, Aspasia; Antachopoulos, Charalampos; Hatziagorou, Elpis; Sdougka, Maria; Roilides, Emmanuel; Tsanakas, John
2013-04-01
Extensively drug-resistant (XDR) tuberculosis (TB) represents a serious and growing problem in both endemic and non-endemic countries. We describe a 2.5-year-old girl with XDR-pulmonary TB and an 18-month-old boy with pre-XDR-central nervous system TB. Patients received individualized treatment with second-line anti-TB agents based on genotypic and phenotypic drug susceptibility testing results. Both children achieved culture conversion 3 months and 1 month after treatment initiation, respectively. The child with XDR-pulmonary TB showed evidence of cure while treatment adverse events were managed without treatment interruption. The child with pre-XDR-central nervous system TB after 6-month hospitalization with multiple infectious complications had a dismal end due to hepatic insufficiency possibly related to anti-TB treatment. This is the first report of children with pre-XDR and XDR TB in Greece, emphasizing the public health dimensions and management complexity of XDR TB.
Maltez, Fernando; Martins, Teresa; Póvoas, Diana; Cabo, João; Peres, Helena; Antunes, Francisco; Perdigão, João; Portugal, Isabel
2017-03-31
Beijing family strains of Mycobacterium tuberculosis are associated with multidrug-resistance. Although strains of the Lisboa family are the most common among multidrug-resistant and extensively drug-resistant patients in the region, several studies have reported the presence of the Beijing family. However, the features of patients from whom they were isolated, are not yet known. Retrospective study involving 104 multidrug-resistant and extensively drug-resistant strains of Mycobacterium tuberculosis, from the same number of patients, isolated and genotyped between 1993 and 2015 in Lisbon. We assessed the prevalence of strains of both families and the epidemiologic and clinical features of those infected with Beijing family strains. Seventy-four strains (71.2%) belonged to the Lisboa family, 25 (24.0%) showed a unique genotypic pattern and five (4.8%) belonged to the Beijing family, the latter identified after 2009. Those infected with Beijing family strains were angolan (n = 1), ukrainian (n = 2) and portuguese (n = 2), mainly young-aged and, four of five immunocompetent and with no past history of tuberculosis. All had multidrug-resistant tuberculosis. We did not find any distinctive clinical or radiological features, neither a predominant resistance pattern. Cure rate was high (four patients). Although the number of infected patients with Beijing strains was small, it suggests an important proportion of primary tuberculosis, a potential for transmission in the community but also a better clinical outcome when compared to other reported strains, such as W-Beijing and Lisboa. Although Lisboa family strains account for most of the multidrug and extensively drug-resistant tuberculosis cases in Lisbon area, Beijing strains are transmitted in the city and might change the local characteristics of the epidemics.
2010-01-01
Background Tuberculosis persists as a public health problem in Honduras. A better knowledge of the molecular characteristics of Mycobacterium tuberculosis strains will contribute to understand the transmission dynamics of the disease within the country. The aim of this study was to provide an insight of the genetic biodiversity of M. tuberculosis clinical isolates collected in Honduras between 1994 and 2002. Genotyping was performed using spoligotyping and RFLP. The spoligotypes obtained were compared with the SITVIT2 proprietary database of the Pasteur Institute of Guadeloupe. Results Spoligotyping grouped 84% of the isolates into 27 clusters (2 to 43 strains per cluster). Of the 44 shared international types (SITs) identified among the Honduran stains, 8 SITs were newly identified either within the present study or after match with an orphan type previously identified in the SITVIT2 database. In addition, 16 patterns corresponded to orphan, previously unreported isolates. The Latin American Mediterranean (LAM) lineage was the most common in this study; 55% of the strains belonged to this family. Other genotypes found were Haarlem (16%), T (16%), X-clade (6%), Unknown signature (5%) and S (1%). Only one Beijing strain was identified (0.5%). We observed a high degree of diversity after characterizing the 43 isolates belonging to the main spoligotyping cluster (SIT 33, LAM3) with IS6110-RFLP. A total of 35 different RFLP-fingerprints were detected, of which 6 patterns corresponded to the same number of clusters comprising 14 strains. Conclusions The findings obtained in this study show that tuberculosis transmission in Honduras is due to modern M. tuberculosis lineages with high level of biodiversity. PMID:20678242
Gomgnimbou, Michel Kiréopori; Abadia, Edgar; Zhang, Jian; Refrégier, Guislaine; Panaiotov, Stefan; Bachiyska, Elizabeta; Sola, Christophe
2012-10-01
We developed "spoligoriftyping," a 53-plex assay based on two preexisting methods, the spoligotyping and "rifoligotyping" assays, by combining them into a single assay. Spoligoriftyping allows simultaneous spoligotyping (i.e., clustered regularly interspaced short palindromic repeat [CRISPR]-based genotyping) and characterization of the main rifampin drug resistance mutations on the rpoB hot spot region in a few hours. This test partly uses the dual-priming-oligonucleotide (DPO) principle, which allows simultaneous efficient amplifications of rpoB and the CRISPR locus in the same sample. We tested this method on a set of 114 previously phenotypically and genotypically characterized multidrug-resistant (MDR) Mycobacterium tuberculosis or drug-susceptible M. tuberculosis DNA extracted from clinical isolates obtained from patients from Bulgaria, Nigeria, and Germany. We showed that our method is 100% concordant with rpoB sequencing results and 99.95% (3,911/3,913 spoligotype data points) correlated with classical spoligotyping results. The sensitivity and specificity of our assay were 99 and 100%, respectively, compared to those of phenotypic drug susceptibility testing. Such assays pave the way to the implementation of locally and specifically adapted methods of performing in a single tube both drug resistance mutation detection and genotyping in a few hours.
Liu, Y; Wang, S; Lu, H; Chen, W; Wang, W
2016-06-01
Among the most prevalent Mycobacterium tuberculosis (Mtb) strains worldwide is the Beijing genotype, which has caused large outbreaks of tuberculosis (TB). Characteristics facilitating the dissemination of Beijing family strains remain unknown, but they are presumed to have been acquired through evolution of the lineage. To explore the genetic diversity of the Beijing family Mtb and explore the discriminatory ability of mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) loci in several regions of East Asia, a cross-sectional study was conducted with a total of 163 Beijing strains collected from registered TB patients between 1 June 2009 and 31 November 2010 in Funing County, China. The isolated strains were analysed by 15-MIRU-VNTR loci typing and compared with published MIRU-VNTR profiles of Beijing strains. Synonymous single nucleotide polymorphisms at 10 chromosomal positions were also analysed. The combination of SNP and MIRU-VNTR typing may be used to assess Mtb genotypes in areas dominated by Beijing strains. The modern subfamily in Shanghai overlapped with strains from other countries, whereas the ancient subfamily was genetically differentiated across several countries. Modern subfamilies, especially ST10, were prevalent. Qub11b and four other loci (MIRU 26, Mtub21, Qub26, Mtub04) could be used to discriminate Beijing strains.
Modern and ancestral genotypes of Mycobacterium tuberculosis from Andhra Pradesh, India.
Thomas, Shirly K; Iravatham, Chitra C; Moni, Bottu Heleena; Kumar, Ashutosh; Archana, Bandaru V; Majid, Mohammad; Priyadarshini, Yerra; Rani, Pittu Sandhya; Valluri, Vijayalakshmi; Hasnain, Seyed E; Ahmed, Niyaz
2011-01-01
Traditionally, the distribution of the Mycobacterium tuberculosis genotypes in India has been characterized by widespread prevalence of ancestral lineages (TbD1+ strains and variants) in the south and the modern forms (TbD1(-) CAS and variants) predominating in the north of India. The pattern was, however, not clearly known in the south-central region such as Hyderabad and the rest of the state of Andhra Pradesh where the prevalence of both tuberculosis (TB) and human immunodeficiency virus (HIV) infection is one of the highest in the country; this area has been the hotspot of TB vaccine trials. Spoligotyping of 101 clinical isolates obtained from Hyderabad and rural Andhra Pradesh confirmed the occurrence of major genogroups such as the ancestral (or the TbD1+ type or the East African Indian (EAI) type), the Central Asian (CAS) or Delhi type and the Beijing lineage in Andhra Pradesh. Sixty five different spoligotype patterns were observed for the isolates included in this study; these were further analyzed based on specific genetic signatures/mutations. It was found that the major genogroups, CAS and "ancestral," were almost equally prevalent in our collection but followed a north-south compartmentalization as was also reported previously. However, we observed a significant presence of MANU lineage in south Andhra Pradesh, which was earlier reported to be overwhelmingly present in Mumbai. This study portrays genotypic diversity of M. tuberculosis from the Indian state of Andhra Pradesh and provides a much needed snapshot of the strain diversity that will be helpful in devising effective TB control programs in this part of the world.
Li, Xiao Ying; Li, Ying; Zhang, Yao; Kang, Wan Li; Zhao, Li Ping; Ding, Peng Ju; Dai, Wen Tao; Huang, Hai Rong; Huang, Yan Feng; Li, Wei Min
2015-07-01
Our study was to investigate the epidemiological characteristics of M.tuberculosis from a national tuberculosis referral center in China. All strains isolated from TB patients, were genotyped by the RD105 deletion, 8 and 51 SNP loci and VNTR. The high differentiation SNPs of modern Beijing strains were analyzed for protein function and structure. 413 M. tuberculosis were included. Of 379 Beijing lineage M. tuberculosis, 'modern' and 'ancient' strains respectively represented 85.5% (324/379) and 14.5% (55/379). Rv2494 (V48A) and Rv0245 (S103F) were confirmed as high differentiation SNPs associated with modern strains. In a word, Modern Beijing lineage M.tuberculosis was dominant and the structural models suggested that modern sub-lineage may more easily survive in 'extreme' host condition. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Vyazovaya, Anna; Mokrousov, Igor; Solovieva, Natalia; Mushkin, Alexander; Manicheva, Olga; Vishnevsky, Boris; Zhuravlev, Viacheslav; Narvskaya, Olga
2015-04-01
Extrapulmonary and, in particular, spinal tuberculosis (TB) constitutes a minor but significant part of the total TB incidence. In spite of this, almost no studies on the genetic diversity and drug resistance of Mycobacterium tuberculosis isolates from spinal TB patients have been published to date. Here, we report results of the first Russian and globally largest molecular study of M. tuberculosis isolates recovered from patients with tuberculous spondylitis (TBS). The majority of 107 isolates were assigned to the Beijing genotype (n = 80); the other main families were T (n = 11), Ural (n = 7), and LAM (n = 4). Multidrug resistance (MDR) was more frequently found among Beijing (90.5%) and, intriguingly, Ural (71.4%) isolates than other genotypes (5%; P < 0.001). The extremely drug-resistant (XDR) phenotype was exclusively found in the Beijing isolates (n = 7). A notable prevalence of the rpoB531 and katG315 mutations in Beijing strains that were similarly high in both TBS (this study) and published pulmonary TB (PTB) samples from Russia shows that TBS and PTB Beijing strains follow the same paradigm of acquisition of rifampin (RIF) and isoniazid (INH) resistance. The 24-locus mycobacterial interspersed repetitive unit-variable-number tandem-repeat (MIRU-VNTR) subtyping of 80 Beijing isolates further discriminated them into 24 types (Hunter Gaston index [HGI] = 0.83); types 100-32 and 94-32 represented the largest groups. A genotype of Russian successful clone B0/W148 was identified in 30 of 80 Beijing isolates. In conclusion, this study highlighted a crucial impact of the Beijing genotype and the especially prominent role of its MDR-associated successful clone B0/W148 cluster in the development of spinal MDR-TB in Russian patients. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Butov, Dmytro O; Kuzhko, Mykhaylo M; Makeeva, Natalia I; Butova, Tetyana S; Stepanenko, Hanna L; Dudnyk, Andrii B
2016-01-01
Multi-drug resistant tuberculosis (MDR TB) is a significant health problem in some parts of the world. Three major cytokines involved in TB immunopathogenesis include IL-2, IL-4 and IL-10. The susceptibility to MDR TB may be genetically determined. The aim of the study was to assess the association of IL-2, IL-4, IL-10 gene polymorphisms with multi-drug resistant tuberculosis (MDR TB) in Ukrainian population. We observed 140 patients suffering from infiltrative pulmonary tuberculosis (PT) and 30 apparently healthy subjects. The patients were assigned to two groups whether they suffer or do not suffer from pulmonary MDR TB. Interleukin gene (IL) polymorphisms, particularly T330G polymorphism in the IL-2 gene, C589T polymorphism in the IL-4 gene and G1082A polymorphism in the IL-10 gene were studied through polymerase chain reaction. Circulating levels of IL-2, IL-4 and IL-10 in venous blood were estimated using ELISA. Prior to treatment, patients with PT showed significant increase of IL-2 levels and decrease of IL-4 and IL-10 levels compared to apparently healthy subjects. Circulating IL-4 and IL-10 levels were significantly decreased whilst serum IL-2 level was significantly increased in patients with MDR TB compared to non-MDR TB. Low IL-4 and IL-10 secretion and considerable IL-2 alterations were shown to be significantly associated with mutations of homozygous and heterozygous genotypes affecting C589T polymorphism in the IL-4 gene, G1082A polymorphism in the IL-10 gene and T330G polymorphism in the IL-2 gene in patients with PT. Heterozygous genotype and mutations homozygous genotypes gene in polymorphisms determining specified cytokines' production is a PT risk factor and may lead to disease progression into chronic phase. Heterozygous genotype of aforementioned cytokine genetic polymorphisms was significantly the most frequent in patients with MDR TB.
Genetic diversity and distribution of Mycobacterium tuberculosis genotypes in Limpopo, South Africa.
Maguga-Phasha, N T C; Munyai, N S; Mashinya, F; Makgatho, M E; Mbajiorgu, E F
2017-12-12
Tuberculosis remains a major health problem and knowledge of the diversity of Mycobacterium tuberculosis strains in specific geographical regions can contribute to the control of the disease. This study describes the genetic profile of M. tuberculosis in five districts of Limpopo Province. A total 487 isolates were collected from the National Health Laboratory Services from all regions/districts of Limpopo Province. Only 215 isolates were confirmed to be M. tuberculosis by Bactec Mycobacterium Growth Indicator Tube 960® and Rhodamine-Auramine staining. Isolates were subcultured on Löwenstein-Jensen medium agar slants to validate purity. They were spoligotyped and data analysed using the international spoligotyping database 4 (SpolDB4). Of the 215 isolates, 134 (62.3%) were genotyped into 21 genotype families while 81 (37.7%) were orphans. The 81 orphans were further subjected to resolution employing SpolDB3/RIM. Overall, the study revealed a high diversity of strains of 32 predominantly the non-Beijing lineages: the LAM- LAM3 (9.8%), LAM9 (4.7%) and LAM11- ZWE (3.3%), the T-T1(15.0%), T2 (0.9%), T2-T3 (1.4%), the CAS-CAS1-Delhi 5 (1.9%) and CAS1-KILI (1.4%) the MANU2 (1.4%), U (0.5%), X-X1(1.4%), X3 (1.9%), S (9.8%), CAS (1.4%), LAM7(0.9%), T3(0.5%), LAM8(4.7%), T4(1.4%), X2(0.4%), AI5(1.9%), LAM1(0.5%), FAMILY33 (1.9%), EAI4(1.4%), M. microti (1.9%). The Beijing and Beijing-like families were (14.9%) and (0.9%), respectively. A total of 28(13%) clusters and 77(36%) unique cases were identified. Beijing strain (SIT 1) formed the biggest cluster constituting 14%, followed by LAM3 (SIT 33), T1 (SIT 53) and LAM4 (SIT 811) with 7%, 5.1% and 2.8%, respectively. The Beijing family was the only genotype found in all the five districts and was predominant in Mopani (18.8%), Sekhukhune (23.7%) and Vhembe (23.3%). Dominant genotypes in Capricorn and Waterberg were LAM3 (11.9%) and T1 (13.3%), respectively. A wide diversity of lineages was demonstrated at district level. A high number of clusters per district provided evidence of on-going transmission in this Province.
Aubry, Alexandra; Sougakoff, Wladimir; Bodzongo, Pamela; Delcroix, Guy; Armand, Sylvie; Millot, Gérald; Jarlier, Vincent; Courcol, René; Lemaître, Nadine
2014-01-01
Tuberculosis (TB) is one of the major public health problems in Congo. However, data concerning Mycobacterium tuberculosis drug resistance are lacking because of the insufficient processing capacity. So, the aim of this study was to investigate for the first time the resistance patterns and the strain lineages of a sample of M. tuberculosis complex (MTBC) isolates collected in the two main cities of Congo. Over a 9-day period, 114 smear-positive sputa isolated from 114 patients attending centers for the diagnosis and treatment of TB in Brazzaville and Pointe Noire were collected for culture and drug susceptibility testing (DST). Detection of mutations conferring drug resistance was performed by using line probe assays (GenoType MTBDRplus and MTBDRsl) and DNA sequencing. Strain lineages were determined by MIRU-VNTR genotyping. Of the 114 sputa, 46 were culture positive for MTBC. Twenty-one (46%) were resistant to one or more first-line antiTB drugs. Of these, 15 (71%) were multidrug resistant (MDR). The most prevalent mutations involved in rifampin and isoniazid resistance, D516V (60%) in rpoB and S315T (87%) in katG respectively, were well detected by MTBDRplus assay. All the 15 MDR strains were susceptible to fluoroquinolone and injectable second-line drug. No mutation was detected in the rrs locus involved in resistance to amikacin and capreomycin by both the MTBDRsl assay and DNA sequencing. By contrast, 9 MDR strains belonging to the same cluster related to T-family were identified as being falsely resistant to fluoroquinolone by the MTBDRsl assay due to the presence of a double substitution T80A-A90G in GyrA. Taken together, these data revealed a possible spread of a particular MDR clone in Congo, misidentified as fluoroquinolone resistant by MTBDRsl assay. Thus, this test cannot replace gold-standard culture method and should be interpreted carefully in view of the patient's native land.
Varghese, Bright; Supply, Philip; Shoukri, Mohammed; Allix-Beguec, Caroline; Memish, Ziad; Abuljadayel, Naila; Al-Hakeem, Raafat; AlRabiah, Fahad; Al-Hajoj, Sahal
2013-01-01
Background Eastern province of Saudi Arabia is an industrial zone with large immigrant population and high level of tuberculosis case notification among immigrants. The impact of immigration and current trends of tuberculosis transmission among immigrants and autochthonous population in the region had not been investigated so far using molecular tools. Methodology During 2009- 2011, a total of 524 Mycobacterium tuberculosis isolates were collected from the central tuberculosis reference laboratory, representing an estimated 79.2% of the culture-positive tuberculosis cases over the study period in the province. These isolates were genotyped by using 24 locus-based MIRU-VNTR typing and spoligotyping followed by first line drug susceptibility testing. The molecular clustering profiles and phylogenetic diversity of isolates were determined and compared to the geographical origins of the patients. Principle Findings Genotyping showed an overall predominance of Delhi/CAS (29.4%), EAI (23.8%) and Ghana (13.3%) lineages, with slightly higher proportions of Delhi/CAS among autochthonous population (33.3 %) and EAI (30.9%) among immigrants. Rate of any drug resistance was 20.2% with 2.5% of multi-drug resistance. Strain cluster analysis indicated 42 clusters comprising 210 isolates, resulting in a calculated recent transmission index of 32.1%. Overall shared cluster ratio was 78.6% while 75.8% were shared between autochthonous population and immigrant population with a predominance of immigrants from South east Asia (40.7%). In contrast, cross national transmission within the immigrant population was limited (24.2%). Younger age (15-30- p value-0.043, 16-45, p value 0.030), Saudi nationality (p value-0.004) and South East Asian origin (p value-0.011) were identified as significant predisposing factors for molecular strain clustering. Conclusions The high proportion of molecular clusters shared among the autochthonous and immigrant populations suggests a high permeability of tuberculosis transmission between both populations in the province. These results prompt for the need to strengthen the current tuberculosis control strategies and surveillance programs. PMID:24147042
Relapse, re-infection and mixed infections in tuberculosis disease.
McIvor, Amanda; Koornhof, Hendrik; Kana, Bavesh Davandra
2017-04-01
Tuberculosis (TB) disease can be characterized by genotypic and phenotypic complexity in Mycobacterium tuberculosis bacilli within a single patient. This microbiological heterogeneity has become an area of intense study due its perceived importance in drug tolerance, drug resistance and as a surrogate measure of transmission rates. This review presents a descriptive analysis of research describing the prevalence of mixed-strain TB infections in geographically distinct locations. Despite significant variation in disease burden and a rampant human immunodeficiency virus (HIV)-TB co-epidemic, there was no difference in the prevalence range of mixed infections reported in African countries when compared to the rest of the world. The occurrence of recurrent TB was associated with a higher prevalence of mixed-strain infections, but this difference was not reported as statistically significant. These interpretations were limited by differences in the design and overall size of the studies assessed. Factors such as sputum quality, culture media, number of repeated culture steps, molecular typing methods and HIV-infection status can affect the detection of mixed-strain infection. It is recommended that future clinical studies should focus on settings with varying TB burdens, with a common sample processing protocol to gain further insight into these phenomena and develop novel transmission blocking strategies. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Eini, Peyman; Shirvani, Maria; Hajilooi, Mehrdad; Esna-Ashari, Farzaneh
2018-02-12
The inflammatory response to Mycobacterium tuberculosis bacilli influences tuberculosis (TB) progression. In this study, we aimed to identify the Phe206Leu polymorphism and serum L-selectin level in TB patients, compared to healthy individuals. Ninety patients with a diagnosis of TB and 90 healthy controls were selected in this study. The serum L-selectin level was determined, using ELISA. L-selectin polymorphism was also evaluated using PCR. For data analysis, SPSS was used at a significance level of 0.05. According to the findings, the mean±SD age of the participants was 57.5 ± 18.4 and 56.5 ± 17.5 years in the TB and healthy groups, respectively. The TB group showed a significantly higher serum L-selectin level (1721.1 ± 330.9) versus the healthy controls (1624 ± 279). The L-selectin Phe allele frequencies were higher than the Leu allele frequencies in the main population, whereas the patients and controls were not significantly different. Eight (0.04%) subjects had Leu/Leu genotypes, 84 (46.6%) carried Phe/Leu genotypes, and 88 (48.8%) had Phe/Phe genotypes. Our results showed that the groups were not significantly different regarding L-selectin genotypes. TB patients had a significantly higher serum L-selectin level, compared to the controls. Based on the findings, the incidence of TB and L-selectin polymorphism in the Phe206Leu gene had no significant association. © 2018 Wiley Periodicals, Inc.
Narendran, Gopalan; Kavitha, Dhanasekaran; Karunaianantham, Ramesh; Gil-Santana, Leonardo; Almeida-Junior, Jilson L; Reddy, Sirasanambatti Devarajulu; Kumar, Marimuthu Makesh; Hemalatha, Haribabu; Jayanthi, Nagesh Nalini; Ravichandran, Narayanan; Krishnaraja, Raja; Prabhakar, Angamuthu; Manoharan, Tamizhselvan; Nithyananthan, Lokeswaran; Arjunan, Gunasundari; Natrajan, Mohan; Swaminathan, Soumya; Andrade, Bruno B
2016-01-01
Paradoxical tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) is an inflammatory phenomenon complicating HIV management in coincidental tuberculosis (TB) infection, upon immune reconstitution driven by antiretroviral therapy (ART). Leukotriene A4 hydroxylase (LTA4H), an enzyme which converts LTA4 to LTB4, regulates the balance between the anti-inflammatory lipoxins and pro-inflammatory LTB4, with direct implications in TB-driven inflammation. In humans, a single nucleotide polymorphism (SNP) in the LTA4H promoter which regulates its transcriptional activity (rs17525495) has been identified and described to impact clinical severity of TB presentation and response to corticosteroid therapy. Notably, the role of LTA4H on TB-IRIS has not been previously evaluated. Here, we performed an exploratory investigation testing the association of LTA4H polymorphism with respect to frequency of TB-IRIS occurrence and severity of TB-IRIS presentation in HIV-TB co-infected individuals. Genotypic evaluation of the LTA4H enzyme from available samples was retrospectively correlated with clinical data captured in case sheets including IRIS details. The cohort included patients recruited from a prospective cohort study nested within a randomized clinical trial (NCT0933790) of ART-naïve HIV+ patients with newly diagnosed rifampicin sensitive pulmonary TB in South India. Frequency of the wild type genotype (CC), as well as of the mutant genotypes (CT or TT) in the IRIS and non-IRIS patients was estimated. Comparative analyses were performed between wild genotype (CC) and the mutant genotypes (CT or TT) and tested for association between the LTA4H polymorphisms and IRIS incidence and clinical severity. A total of 142 eligible ART-naïve patients were included in the analyses. Eighty-six individuals exhibited the wild genotype (CC) while 56 had mutant genotypes (43-CT and only 13-TT). Variant allele frequency was 0.23 and 0.26 in non-IRIS group and in IRIS group, respectively. Upon ART initiation, 51 patients developed IRIS while 91 did not. IRIS incidence was 34% and 37% in the wild (CC) and mutant type (CT/TT), respectively (p = 0.858) with a higher frequency of severe IRIS presentation in the mutant genotype group compared to the wild type genotype (p = 0.0006). A logistic regression model confirmed the association between the presence of CT/TT genotypes and occurrence of severe IRIS. Corticosteroid therapy successfully resolved IRIS in all cases irrespective of the LTA4H genotype. A higher incidence of severe IRIS among patients with mutant LTA4H genotypes (CT and TT) was observed compared to the wild type, despite similar IRIS incidence and immune restoration in both groups. Steroids were effective in alleviating IRIS in all the genotypes.
Lisdawati, Vivi; Puspandari, Nelly; Rif'ati, Lutfah; Soekarno, Triyani; M, Melatiwati; K, Syamsidar; Ratnasari, Lies; Izzatun, Nur; Parwati, Ida
2015-08-22
Genotyping of Mycobacterium tuberculosis helps to understand the molecular epidemiology of tuberculosis and to address evolutionary questions about the disease spread. Certain genotypes also have implications for the spread of infection and treatment. Indonesia is a very diverse country with a population with multiple ethnicities and cultures and a history of many trade and tourism routes. This study describes the first attempt to map the molecular epidemiology of TB in the Indonesian archipelago. From 2008 to 2011, 404 clinical specimens from sputum-smear (SS+) TB patients, age ≥15 years, were collected from 16 TB referral primary health centers (PHC) in 16 provincial capitals in Indonesia. Susceptibility testing to first line drugs was conducted for 262 samples using the agar proportion method as per WHO guidelines. Spoligotyping was done on all samples. Ninety-three of the 404 samples (23 %) were from the Beijing family, making it the predominant family in the country. However, the geographic distribution of the family varied by region with 86/294 (29.3 %) in the western region, 6/72 (8.3 %) in the central region, and 2/72 (2.8 %) in the eastern region (p < 0.001). The predominant genotype in the central and eastern regions was from the East-African-Indian (EAI) family, comprising 15.3 % (11/72), and 26.3 % (10/38) of the isolates, respectively. Drug susceptibility to first-line anti-TB drugs was tested in 262 isolates. 162 (61.8 %) isolates were susceptible to all TB drugs, 70 (26.7 %) were mono-resistant 16 (6.1 %) were poly-resistant, and 14 (5.4 %) were multi-drug resistant (MDR). The proportion of Beijing family isolates in the susceptible, mono-resistant, poly-resistant, and MDR groups was 33/162 (20.4 %), 28/70 (40.0 %), 6/16 (37.5 %), and 3/14 (21.4 %), respectively. Overall, resistance of the Beijing family isolates to any of the first line TB drugs was significantly higher than non-Beijing families [37/71 (52.1 %) vs. 63/191 (33.0 %) (p-value = 0.003)]. The distribution of Mycobacterium tuberculosis genotypes in Indonesia showed high genetic diversity and tended to vary by geographic regions. Drug susceptibility testing confirmed that the Beijing family of M.tb in Indonesia exhibited greater resistance to first line anti-TB drugs than did other families.
Yang, Jinghui; Chen, Jin; Yue, Jun; Liu, Lirong; Han, Min; Wang, Hongxiu
2014-12-01
Two single nucleotide polymorphisms in Leukotriene A4 hydrolase (LTA4H) gene were reported to be associated with protection from pulmonary tuberculosis in Vietnamese population. But these associations were not found in the Russians. To investigate the association of LTA4H polymorphisms with tuberculosis in a Han Chinese population in Eastern China, we genotyped 5 SNPs of LTA4H gene in 743 of pulmonary tuberculosis patients, 372 of extra-pulmonary tuberculosis patients and 888 of healthy controls individuals. The CC and TT homozygotes of rs1978331 and rs2540474 were identified to have higher rates (P < 0.01) and be risk factors in the patients with extra-pulmonary tuberculosis (OR = 1.412; 95% CI = 1.104-1.804 and(OR = 1.380; 95% CI = 1.080-1.764). However, no significant association was found between any of the SNPs and pulmonary tuberculosis. In the extra-pulmonary tuberculosis subgroups. LTA4H gene were significantly associated with tuberculous meningitis, lymph node tuberculosis, bone tuberculosis and other extra-pulmonary tuberculosis except for pleural tuberculosis. The present findings suggest that polymorphisms in the LTA4H gene may affect susceptibility to extra-pulmonary tuberculosis and change the risk of developing the disease in the Han nationality in the East China. Copyright © 2014 Elsevier Ltd. All rights reserved.
Salinas-Delgado, Yvain; Galaviz-Hernández, Carlos; Toral, René García; Ávila Rejón, Carmen A; Reyes-Lopez, Miguel A; Martínez, Antonio Rojas; Martínez-Aguilar, Gerardo; Sosa-Macías, Martha
2015-09-01
Polymorphisms in SLC11A1/NRAMP1 have shown an important association with susceptibility to tuberculosis and progression to active disease. However, whether there is an association of these polymorphisms with treatment failure is unknown. The aim of this study was to determine the association of SLC11A1 polymorphisms with treatment failure in Mexican subjects with pulmonary tuberculosis. Thirty-three subjects with treatment failure were paired by age and body mass index with 33 patients who successfully completed treatment and were considered cured. We assessed the polymorphisms of SLC11A1 in the regions of D543N and INT4 via polymerase chain reaction real-time TaqMan® single nucleotide polymorphism (SNP) genotyping. We found that D543N (G/A genotype) was associated with treatment failure in patients with pulmonary tuberculosis [odds ratio (OR) 11.61, 95% confidence interval (CI) 3.66-36.78]. When adjusted by gender, this association remained significant in males (OR 11.09, 95% CI 3.46-35.51). In our male population, the presence of the D543N polymorphism of SLC11A1 is a risk factor for treatment failure. This finding should be confirmed in other populations.
Sekizuka, Tsuyoshi; Yamashita, Akifumi; Murase, Yoshiro; Iwamoto, Tomotada; Mitarai, Satoshi; Kato, Seiya; Kuroda, Makoto
2015-01-01
Whole-genome sequencing (WGS) with next-generation DNA sequencing (NGS) is an increasingly accessible and affordable method for genotyping hundreds of Mycobacterium tuberculosis (Mtb) isolates, leading to more effective epidemiological studies involving single nucleotide variations (SNVs) in core genomic sequences based on molecular evolution. We developed an all-in-one web-based tool for genotyping Mtb, referred to as the Total Genotyping Solution for TB (TGS-TB), to facilitate multiple genotyping platforms using NGS for spoligotyping and the detection of phylogenies with core genomic SNVs, IS6110 insertion sites, and 43 customized loci for variable number tandem repeat (VNTR) through a user-friendly, simple click interface. This methodology is implemented with a KvarQ script to predict MTBC lineages/sublineages and potential antimicrobial resistance. Seven Mtb isolates (JP01 to JP07) in this study showing the same VNTR profile were accurately discriminated through median-joining network analysis using SNVs unique to those isolates. An additional IS6110 insertion was detected in one of those isolates as supportive genetic information in addition to core genomic SNVs. The results of in silico analyses using TGS-TB are consistent with those obtained using conventional molecular genotyping methods, suggesting that NGS short reads could provide multiple genotypes to discriminate multiple strains of Mtb, although longer NGS reads (≥300-mer) will be required for full genotyping on the TGS-TB web site. Most available short reads (~100-mer) can be utilized to discriminate the isolates based on the core genome phylogeny. TGS-TB provides a more accurate and discriminative strain typing for clinical and epidemiological investigations; NGS strain typing offers a total genotyping solution for Mtb outbreak and surveillance. TGS-TB web site: https://gph.niid.go.jp/tgs-tb/. PMID:26565975
Malaghini, Marcelo; Brockelt, Sonia Regina; Burger, Marion; Kritski, Afrânio; Thomaz-Soccol, Vanete
2009-01-01
Sequence IS6110 has been successfully used throughout the world for characterizing the Mycobacterium tuberculosis lineages. The aim of this study was to obtain data about circulating strains of M. tuberculosis in patients from the State of Parana in southern Brazil. Sixty-two clinical specimens obtained from sputum, bronchial aspirate, biopsy and urine from 62 patients clinically diagnosed with tuberculosis and admitted to the SUS-Brazil - The Brazilian Centralized Health Service System - were genotyped by the mixed-linker PCR DNA fingerprinting technique. The analysis demonstrated that the number of copies of the IS6110 sequence per isolates varied from four to 13 bands, with an average number of 8.5. From this, 93% of the isolates presented multiple copies. Isolates with no copies of the IS6110 element were not observed. The genetic analysis by UPGMA grouped the 62 isolates by similarity into three different groups: the first group contained two strains, the second was composed of 23, and the third, a more heterogeneous group, contained 37 isolates. Only two isolates (3.2%) formed a cluster; in other words, they presented a pattern of polymorphism with similarity above 95%. Such findings suggest that in the State of Parana, illness predominantly develops through reactivation of the latent infection as opposed to exogenous transmission. The methodology used (mixed-linker PCR DNA fingerprinting) allowed for 93.5% differentiation of the isolates tested, and proved to be a powerful tool for differentiation in the molecular genotyping of M. tuberculosis.
Fiebig, Lena; Kohl, Thomas A; Popovici, Odette; Mühlenfeld, Margarita; Indra, Alexander; Homorodean, Daniela; Chiotan, Domnica; Richter, Elvira; Rüsch-Gerdes, Sabine; Schmidgruber, Beatrix; Beckert, Patrick; Hauer, Barbara; Niemann, Stefan; Allerberger, Franz; Haas, Walter
2017-01-01
Molecular surveillance of multidrug-resistant tuberculosis (MDR-TB) using 24-loci MIRU-VNTR in the European Union suggests the occurrence of international transmission. In early 2014, Austria detected a molecular MDR-TB cluster of five isolates. Links to Romania and Germany prompted the three countries to investigate possible cross-border MDR-TB transmission jointly. We searched genotyping databases, genotyped additional isolates from Romania, used whole genome sequencing (WGS) to infer putative transmission links, and investigated pairwise epidemiological links and patient mobility. Ten isolates from 10 patients shared the same 24-loci MIRU-VNTR pattern. Within this cluster, WGS defined two subgroups of four patients each. The first comprised an MDR-TB patient from Romania who had sought medical care in Austria and two patients from Austria. The second comprised patients, two of them epidemiologically linked, who lived in three different countries but had the same city of provenance in Romania. Our findings strongly suggested that the two cases in Austrian citizens resulted from a newly introduced MDR-TB strain, followed by domestic transmission. For the other cases, transmission probably occurred in the same city of provenance. To prevent further MDR-TB transmission, we need to ensure universal access to early and adequate therapy and collaborate closely in tuberculosis care beyond administrative borders. PMID:28106529
de Neeling, Albert; Rasmussen, Erik Michael; Norman, Anders; Mulder, Arnout; van Hunen, Rianne; de Vries, Gerard; Haddad, Walid; Anthony, Richard; Lillebaek, Troels; van der Hoek, Wim; van Soolingen, Dick
2017-01-01
ABSTRACT In many countries, Mycobacterium tuberculosis isolates are routinely subjected to variable-number tandem-repeat (VNTR) typing to investigate M. tuberculosis transmission. Unexpectedly, cross-border clusters were identified among African refugees in the Netherlands and Denmark, although transmission in those countries was unlikely. Whole-genome sequencing (WGS) was applied to analyze transmission in depth and to assess the precision of VNTR typing. WGS was applied to 40 M. tuberculosis isolates from refugees in the Netherlands and Denmark (most of whom were from the Horn of Africa) that shared the exact same VNTR profile. Cluster investigations were undertaken to identify in-country epidemiological links. Combining WGS results for the isolates (all members of the central Asian strain [CAS]/Delhi genotype), from both European countries, an average genetic distance of 80 single-nucleotide polymorphisms (SNPs) (maximum, 153 SNPs) was observed. The few pairs of isolates with confirmed epidemiological links, except for one pair, had a maximum distance of 12 SNPs. WGS divided this refugee cluster into several subclusters of patients from the same country of origin. Although the M. tuberculosis cases, mainly originating from African countries, shared the exact same VNTR profile, most were clearly distinguished by WGS. The average genetic distance in this specific VNTR cluster was 2 times greater than that in other VNTR clusters. Thus, identical VNTR profiles did not represent recent direct M. tuberculosis transmission for this group of patients. It appears that either these strains from Africa are extremely conserved genetically or there is ongoing transmission of this genotype among refugees on their long migration routes from Africa to Europe. PMID:29167288
Jajou, Rana; de Neeling, Albert; Rasmussen, Erik Michael; Norman, Anders; Mulder, Arnout; van Hunen, Rianne; de Vries, Gerard; Haddad, Walid; Anthony, Richard; Lillebaek, Troels; van der Hoek, Wim; van Soolingen, Dick
2018-02-01
In many countries, Mycobacterium tuberculosis isolates are routinely subjected to variable-number tandem-repeat (VNTR) typing to investigate M. tuberculosis transmission. Unexpectedly, cross-border clusters were identified among African refugees in the Netherlands and Denmark, although transmission in those countries was unlikely. Whole-genome sequencing (WGS) was applied to analyze transmission in depth and to assess the precision of VNTR typing. WGS was applied to 40 M. tuberculosis isolates from refugees in the Netherlands and Denmark (most of whom were from the Horn of Africa) that shared the exact same VNTR profile. Cluster investigations were undertaken to identify in-country epidemiological links. Combining WGS results for the isolates (all members of the central Asian strain [CAS]/Delhi genotype), from both European countries, an average genetic distance of 80 single-nucleotide polymorphisms (SNPs) (maximum, 153 SNPs) was observed. The few pairs of isolates with confirmed epidemiological links, except for one pair, had a maximum distance of 12 SNPs. WGS divided this refugee cluster into several subclusters of patients from the same country of origin. Although the M. tuberculosis cases, mainly originating from African countries, shared the exact same VNTR profile, most were clearly distinguished by WGS. The average genetic distance in this specific VNTR cluster was 2 times greater than that in other VNTR clusters. Thus, identical VNTR profiles did not represent recent direct M. tuberculosis transmission for this group of patients. It appears that either these strains from Africa are extremely conserved genetically or there is ongoing transmission of this genotype among refugees on their long migration routes from Africa to Europe. Copyright © 2018 Jajou et al.
Millet, Julie; Berchel, Mylène; Bomer, Anne-Gaël; Schuster, Franziska; Paasch, Delaina; Cadelis, Gilbert
2014-01-01
The population of the French Departments of the Americas (FDA) is highly influenced by the intense migratory flows with mainland France and surrounding countries of the Caribbean and Latin America, some of which have high incidence rates of tuberculosis (Haiti: 230/100,000; Guyana: 111/100,000; and Suriname: 145/100,000) and drug resistance. Since the development of drug resistance to conventional antituberculous drugs has a major impact on the treatment success of tuberculosis, we therefore decided to review carefully Mycobacterium tuberculosis drug resistance and associated genotypic lineages in the FDA over a seventeen-year period (January 1995–December 2011). A total of 1239 cases were studied, including 153 drug-resistant and 26 multidrug-resistant- (MDR-) TB cases, representing 12.3% and 2.1% of the TB cases in our study setting. A significantly higher proportion of M. tuberculosis isolates among relapse cases showed drug resistance to isoniazid (22.5%, P = 0.002), rifampicin (20.0%, P < 0.001), or both (MDR-TB, 17.5%; P < 0.001). Determination of spoligotyping based phylogenetic clades showed that among the five major lineages observed—T family (30.1%); Latin-American and Mediterranean (LAM, 23.7%); Haarlem (H, 22.2%); East-African Indian (EAI, 7.2%); and X family (6.5%)—two lineages, X and LAM, were overrepresented in drug-resistant and MDR-TB cases, respectively. Finally, 19 predominant spoligotypes were identified for the 1239 isolates of M. tuberculosis in our study among which 4 were significantly associated with drug resistance corresponding to SIT20/LAM1, SIT64/LAM6, SIT45/H1, and SIT46/undefined lineage. PMID:24738068
Millet, Julie; Streit, Elisabeth; Berchel, Mylène; Bomer, Anne-Gaël; Schuster, Franziska; Paasch, Delaina; Vanhomwegen, Jessica; Cadelis, Gilbert; Rastogi, Nalin
2014-01-01
THE population of the French Departments of the Americas (FDA) is highly influenced by the intense migratory flows with mainland france and surrounding countries of the Caribbean and Latin America, some of which have high incidence rates of tuberculosis (Haiti: 230/100,000; Guyana: 111/100,000; and Suriname: 145/100,000) and drug resistance. Since the development of drug resistance to conventional antituberculous drugs has a major impact on the treatment success of tuberculosis, we therefore decided to review carefully Mycobacterium tuberculosis drug resistance and associated genotypic lineages in the FDA over a seventeen-year period (January 1995-December 2011). A total of 1239 cases were studied, including 153 drug-resistant and 26 multidrug-resistant- (MDR-) TB cases, representing 12.3% and 2.1% of the TB cases in our study setting. A significantly higher proportion of M. tuberculosis isolates among relapse cases showed drug resistance to isoniazid (22.5%, P = 0.002), rifampicin (20.0%, P < 0.001), or both (MDR-TB, 17.5%; P < 0.001). Determination of spoligotyping based phylogenetic clades showed that among the five major lineages observed--T family (30.1%); Latin-American and Mediterranean (LAM, 23.7%); Haarlem (H, 22.2%); East-African Indian (EAI, 7.2%); and X family (6.5%)--two lineages, X and LAM, were overrepresented in drug-resistant and MDR-TB cases, respectively. Finally, 19 predominant spoligotypes were identified for the 1239 isolates of M. tuberculosis in our study among which 4 were significantly associated with drug resistance corresponding to SIT20/LAM1, SIT64/LAM6, SIT45/H1, and SIT46/undefined lineage.
Multidrug and extensively drug-resistant tuberculosis.
Maitre, T; Aubry, A; Jarlier, V; Robert, J; Veziris, N
2017-02-01
The emergence of drug-resistant tuberculosis (TB) compromises global tuberculosis control. The incidence of multidrug-resistant strains (MDR) defined as resistant to the two main antituberculosis drugs, rifampicin and isoniazid, was raised in the 1990s. Ten percent of these strains have developed additional resistance to the main second-line antituberculosis drugs: fluoroquinolones and aminoglycosides. These strains are defined as extensively drug-resistant (XDR). The prognosis of MDR-TB and XDR-TB is poor due to limited therapeutic resources. However, many new innovations may lead to a radical change in this field. Genotypic testing is now able to detect drug resistance within a few hours. Genotypic diagnosis of rifampicin resistance is now recommended in France for each new case of TB. The currently recommended treatment for MDR-TB is long (18-24 months) and toxic. It is, however, on the verge of being replaced by a 9-month treatment. New antituberculosis drugs such as bedaquiline and delamanid should also improve the prognosis of MDR-TB and XDR-TB. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Mixed infections in tuberculosis: The missing part in a puzzle.
Tarashi, Samira; Fateh, Abolfazl; Mirsaeidi, Mehdi; Siadat, Seyed Davar; Vaziri, Farzam
2017-12-01
The mixed strains infection phenomenon is a major problem posing serious challenges in control of tuberculosis (TB). In patients with mixed infection, several different strains of Mycobacterium tuberculosis can be isolated simultaneously. Although different genotyping methods and various molecular approaches can be employed for detection of mixed infection in clinical samples, the MIRU-VNTR technique is more sensitive with higher discriminative power than many widely used techniques. Furthermore, the recent introduction of whole genome sequencing (WGS) promises to reveal more details about mixed infection with high resolution. WGS has been used for detection of mixed infection with high sensitivity and discriminatory, but the technology is currently limited to developed countries. Mixed infection may involve strains with different susceptibility patterns, which may alter the treatment outcome. In this report, we review the current concepts of mixed strains infection and also infection involving strains with a different susceptibility pattern in TB. We evaluate the importance of identifying mixed infection for diagnosis as well as treatment and highlight the accuracy and clinical utility of direct genotyping of clinical specimens. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tuberculosis among the homeless, United States, 1994-2010.
Bamrah, S; Yelk Woodruff, R S; Powell, K; Ghosh, S; Kammerer, J S; Haddad, M B
2013-11-01
1) To describe homeless persons diagnosed with tuberculosis (TB) during the period 1994-2010, and 2) to estimate a TB incidence rate among homeless persons in the United States. TB cases reported to the National Tuberculosis Surveillance System were analyzed by origin of birth. Incidence rates were calculated using the US Department of Housing and Urban Development homeless population estimates. Analysis of genotyping results identified clustering as a marker for transmission among homeless TB patients. Of 270,948 reported TB cases, 16,527 (6%) were homeless. The TB incidence rate among homeless persons ranged from 36 to 47 cases per 100,000 population in 2006-2010. Homeless TB patients had over twice the odds of not completing treatment and of belonging to a genotype cluster. US- and foreign-born homeless TB patients had respectively 8 and 12 times the odds of substance abuse. Compared to the general population, homeless persons had an approximately 10-fold increase in TB incidence, were less likely to complete treatment and more likely to abuse substances. Public health outreach should target homeless populations to reduce the excess burden of TB in this population.
Genotypic characterization of drug resistant Mycobacterium tuberculosis in Quebec, 2002-2012.
Spinato, Joanna; Boivin, Élyse; Bélanger-Trudelle, Émilie; Fauchon, Huguette; Tremblay, Cécile; Soualhine, Hafid
2016-07-26
The increasing emergence of drug-resistant tuberculosis presents a threat to the effective control of tuberculosis (TB). Rapid detection of drug-resistance is more important than ever to address this scourge. The purpose of this study was to genotypically characterize the first-line antitubercular drug-resistant isolates collected over 11 years in Quebec. The main mutations found in our resistant strains collection (n = 225) include: the S315T substitution in katG (50.2 %), the -15 C/T mutation in the inhA promoter (29 %); the S531L substitution in rpoB (43 %); the deletion 8 bp 446 / + R140S in pncA (72.9 %); the M306I (35.7 %) and M306V (21.4 %) substitutions in embB. Ten of the mutations in katG and 4 mutations identified in pncA were previously undescribed. Screening of mutations conferring resistance to first-line antituberculous drugs using DNA-sequencing approach seems to be feasible and would drastically shorten the time to determine the resistance profile compared to the proportion method.
NASA Astrophysics Data System (ADS)
Octavianty, Toharudin, Toni; Jaya, I. G. N. Mindra
2017-03-01
Tuberculosis (TB) is a disease caused by a bacterium, called Mycobacterium tuberculosis, which typically attacks the lungs but can also affect the kidney, spine, and brain (Centers for Disease Control and Prevention). Indonesia had the largest number of TB cases after India (Global Tuberculosis Report 2015 by WHO). The distribution of Mycobacterium tuberculosis genotypes in Indonesia showed the high genetic diversity and tended to vary by geographic regions. For instance, in Bandung city, the prevalence rate of TB morbidity is quite high. A number of TB patients belong to the counted data. To determine the factors that significantly influence the number of tuberculosis patients in each location of the observations can be used statistical analysis tool that is Geographically Weighted Poisson Regression Semiparametric (GWPRS). GWPRS is an extension of the Poisson regression and GWPR that is influenced by geographical factors, and there is also variables that influence globally and locally. Using the TB Data in Bandung city (in 2015), the results show that the global and local variables that influence the number of tuberculosis patients in every sub-district.
Camacho, Frank; Huggett, Jim; Kim, Louise; Infante, Juan F; Lepore, Marco; Perez, Viviana; Sarmiento, María E; Rook, Graham; Acosta, Armando
2013-01-01
The development of molecules specific for M. tuberculosis-infected cells has important implications, as these tools may facilitate understanding of the mechanisms regulating host pathogen interactions in vivo. In addition, development of new tools capable to targeting M. tuberculosis-infected cells may have potential applications to diagnosis, treatment, and prevention of tuberculosis (TB). Due to the lack of CD1b polymorphism, M. tuberculosis lipid-CD1b complexes could be considered as universal tuberculosis infection markers. The aim of the present study was to display on the PIII surface protein of m13 phage, a human αβ single-chain T-cell receptor molecule specific for CD1b:2-stearoyl-3-hydroxyphthioceranoyl-2´-sulfate-α-α´-D-trehalose (Ac₂SGL) which is a complex presented by human cells infected with M. tuberculosis. The results showed the pIII fusion particle was successfully displayed on the phage surface. The study of the recognition of the recombinant phage in ELISA and immunohistochemistry showed the recognition of CD1b:Ac₂SGL complexes and cells in human lung tissue from a tuberculosis patient respectively, suggesting the specific recognition of the lipid-CD1b complex.
Impact of pe_pgrs33 Gene Polymorphisms on Mycobacterium tuberculosis Infection and Pathogenesis.
Camassa, Serena; Palucci, Ivana; Iantomasi, Raffaella; Cubeddu, Tiziana; Minerva, Mariachiara; De Maio, Flavio; Jouny, Samuel; Petruccioli, Elisa; Goletti, Delia; Ria, Francesco; Sali, Michela; Sanguinetti, Maurizio; Manganelli, Riccardo; Rocca, Stefano; Brodin, Priscille; Delogu, Giovanni
2017-01-01
PE_PGRS33 is a surface-exposed protein of Mycobacterium tuberculosis ( Mtb ) which exerts its role in macrophages entry and immunomodulation. In this study, we aimed to investigate the polymorphisms in the pe_pgrs33 gene of Mtb clinical isolates and evaluate their impact on protein functions. We sequenced pe_pgrs33 in a collection of 135 clinical strains, genotyped by 15-loci MIRU-VNTR and spoligotyping and belonging to the Mtb complex (MTBC). Overall, an association between pe_pgrs33 alleles and MTBC genotypes was observed and a dN/dS ratio of 0.64 was obtained, suggesting that a purifying selective pressure is acting on pe_pgrs33 against deleterious SNPs. Among a total of 19 pe_pgrs33 alleles identified in this study, 5 were cloned and used to complement the pe_pgrs33 knock-out mutant strain of Mtb H37Rv ( Mtb Δ33) to assess the functional impact of the respective polymorphisms in in vitro infections of primary macrophages. In human monocyte-derived macrophages (MDMs) infection, large in-frame and frameshift mutations were unable to restore the phenotype of Mtb H37Rv, impairing the cell entry capacity of Mtb , but neither its intracellular replication rate nor its immunomodulatory properties. In vivo studies performed in the murine model of tuberculosis (TB) demonstrated that the Mtb Δ33 mutant strain was not impaired in the ability to infect and replicate in the lung tissue compared to the parental strain. Interestingly, Mtb Δ33 showed an enhanced virulence during the chronic steps of infection compared to Mtb H37Rv. Similarly, the complementation of Mtb Δ33 with a frameshift allele also resulted in a Mtb strain capable of causing a surprisingly enhanced tissue damage in murine lungs, during the chronic steps of infection. Together, these results further support the role of PE_PGRS33 in the pathogenesis and virulence of Mtb .
Tekin, Kemal; Albay, Ali; Simsek, Hulya; Sig, Ali Korhan; Guney, Mustafa
2017-01-01
Objective: The present study aimed to evaluate the performances of the BACTEC MGIT 960 SL DST kit and the GenoType MTBDRsl test for detecting second-line antituberculosis drug resistance in Multidrug-resistant TB (MDR-TB) cases. Materials and Methods: Forty-six MDR-TB strains were studied. Second-line antituberculosis drug resistances were detected using the BACTEC MGIT 960 SL DST kit and the GenoType MTBDRsl test. The Middlebrook 7H10 agar proportion method was used as the reference test. Results: The sensitivity and specificity values for the BACTEC MGIT 960 SL DST kit were both 100% for amikacin, kanamycin, capreomycin (4 µg/mL), and ofloxacin; 100% and 95.3%, respectively, for capreomycin (10 µg/mL); and 85.7% and 100%, respectively, for moxifloxacin (0.5 µg/mL). The sensitivity and specificity values for the GenoType MTBDRsl test to detect fluoroquinolone and aminoglycoside/cyclic peptide resistance were 88.9% and 100%, respectively, for ofloxacin and 85.7% and 94.9%, respectively, for moxifloxacin (0.5 µg/mL). The accuracy of the GenoType MTBDRsl assay for kanamycin, capreomycin, ofloxacin, and moxifloxacin was lower than that of the BACTEC MGIT 960 SL DST. Conclusion: The BACTEC MGIT 960 SL DST kit and the GenoType MTBDRsl were successful in detecting second-line antituberculosis drug resistance. Preliminary results of the GenoType MTBDRsl are very valuable for early treatment decisions, but we still recommend additional BACTEC MGIT 960 SL DST kit usage in the routine evaluation of drug-resistant tuberculosis. PMID:29123441
Tekin, Kemal; Albay, Ali; Simsek, Hulya; Sig, Ali Korhan; Guney, Mustafa
2017-10-01
The present study aimed to evaluate the performances of the BACTEC MGIT 960 SL DST kit and the GenoType MTBDRsl test for detecting second-line antituberculosis drug resistance in Multidrug-resistant TB (MDR-TB) cases. Forty-six MDR-TB strains were studied. Second-line antituberculosis drug resistances were detected using the BACTEC MGIT 960 SL DST kit and the GenoType MTBDRsl test. The Middlebrook 7H10 agar proportion method was used as the reference test. The sensitivity and specificity values for the BACTEC MGIT 960 SL DST kit were both 100% for amikacin, kanamycin, capreomycin (4 µg/mL), and ofloxacin; 100% and 95.3%, respectively, for capreomycin (10 µg/mL); and 85.7% and 100%, respectively, for moxifloxacin (0.5 µg/mL). The sensitivity and specificity values for the GenoType MTBDRsl test to detect fluoroquinolone and aminoglycoside/cyclic peptide resistance were 88.9% and 100%, respectively, for ofloxacin and 85.7% and 94.9%, respectively, for moxifloxacin (0.5 µg/mL). The accuracy of the GenoType MTBDRsl assay for kanamycin, capreomycin, ofloxacin, and moxifloxacin was lower than that of the BACTEC MGIT 960 SL DST. The BACTEC MGIT 960 SL DST kit and the GenoType MTBDRsl were successful in detecting second-line antituberculosis drug resistance. Preliminary results of the GenoType MTBDRsl are very valuable for early treatment decisions, but we still recommend additional BACTEC MGIT 960 SL DST kit usage in the routine evaluation of drug-resistant tuberculosis.
Azuma, Junichi; Ohno, Masako; Kubota, Ryuji; Yokota, Soichiro; Nagai, Takayuki; Tsuyuguchi, Kazunari; Okuda, Yasuhisa; Takashima, Tetsuya; Kamimura, Sayaka; Fujio, Yasushi; Kawase, Ichiro
2013-05-01
This study is a pharmacogenetic clinical trial designed to clarify whether the N-acetyltransferase 2 gene (NAT2) genotype-guided dosing of isoniazid improves the tolerability and efficacy of the 6-month four-drug standard regimen for newly diagnosed pulmonary tuberculosis. In a multicenter, parallel, randomized, and controlled trial with a PROBE design, patients were assigned to either conventional standard treatment (STD-treatment: approx. 5 mg/kg of isoniazid for all) or NAT2 genotype-guided treatment (PGx-treatment: approx. 7.5 mg/kg for patients homozygous for NAT2 4: rapid acetylators; 5 mg/kg, patients heterozygous for NAT2 4: intermediate acetylators; 2.5 mg/kg, patients without NAT2 4: slow acetylators). The primary outcome included incidences of 1) isoniazid-related liver injury (INH-DILI) during the first 8 weeks of therapy, and 2) early treatment failure as indicated by a persistent positive culture or no improvement in chest radiographs at the 8th week. One hundred and seventy-two Japanese patients (slow acetylators, 9.3 %; rapid acetylators, 53.5 %) were enrolled in this trial. In the intention-to-treat (ITT) analysis, INH-DILI occurred in 78 % of the slow acetylators in the STD-treatment, while none of the slow acetylators in the PGx-treatment experienced either INH-DILI or early treatment failure. Among the rapid acetylators, early treatment failure was observed with a significantly lower incidence rate in the PGx-treatment than in the STD-treatment (15.0 % vs. 38 %). Thus, the NAT2 genotype-guided regimen resulted in much lower incidences of unfavorable events, INH-DILI or early treatment failure, than the conventional standard regimen. Our results clearly indicate a great potential of the NAT2 genotype-guided dosing stratification of isoniazid in chemotherapy for tuberculosis.
Pasechnik, Oksana; Dymova, Maya Alexandrovna; Stasenko, Vladimir Leonidovich; Blokh, Aleksey Igorevich; Tatarintseva, Marina Petrovna; Kolesnikova, Lyubov Pavlovna; Filipenko, Maksim Leonidovich
2017-01-01
Background & objectives: A complicated epidemiological situation characterized by significantly high tuberculosis (TB) morbidity is observed in West Siberia. This study was aimed to investigate the genetic characteristics of Mycobacterium tuberculosis circulating in the southern part of West Siberia (in the Omsk region). Methods: From March 2013 to January 2015, 100 isolates of M. tuberculosis were obtained from patients with pulmonary TB living in the Omsk region. Drug susceptibility testing was performed on Lowenstein-Jensen medium (absolute concentration method). Genetic typing of isolates was carried out by variable number tandem repeats of mycobacterial interspersed repetitive units (MIRU-VNTR) typing and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. The genetic types and characteristics of cluster strains were determined using 15 MIRU-VNTR loci. Results: Thirty six VNTR types were found. Twenty six (26.0%) isolates had a unique profile, and the remaining 74 were grouped in 10 clusters containing from 2 to 23 isolates. The Beijing genotype was found in 72 isolates, 61 (85.0%) of which were part of five clusters that included two large clusters containing 23 isolates. Other genetic families, such as Latin-American Mediterranean (LAM, 11.0%), S family (2.0%) and Haarlem (4.0%), were also detected. The genetic family of 11 isolates could not be determined. Six different VNTR profiles were found in these non-classified isolates. Only 16 per cent of isolates were sensitive to anti-TB drugs. The katG315 (94.8%) and rpoB531 (92.2%) mutations were identified in 77 multidrug-resistant M. tuberculosis isolates. Interpretation & conclusions: This study showed that the M. tuberculosis population in the Omsk region was heterogeneous. The Beijing genotype predominated and was actively spreading. The findings obtained point to the need for the implementation of more effective preventive measures to stop the spread of drug-resistant M. tuberculosis strains. PMID:29168460
Innate immune response to Mycobacterium tuberculosis Beijing and other genotypes.
Wang, Chongzhen; Peyron, Pascale; Mestre, Olga; Kaplan, Gilla; van Soolingen, Dick; Gao, Qian; Gicquel, Brigitte; Neyrolles, Olivier
2010-10-25
As a species, Mycobacterium tuberculosis is more diverse than previously thought. In particular, the Beijing family of M. tuberculosis strains is spreading and evaluating throughout the world and this is giving rise to public health concerns. Genetic diversity within this family has recently been delineated further and a specific genotype, called Bmyc10, has been shown to represent over 60% of all Beijing clinical isolates in several parts of the world. How the host immune system senses and responds to various M. tuberculosis strains may profoundly influence clinical outcome and the relative epidemiological success of the different mycobacterial lineages. We hypothesised that the success of the Bmyc10 group may, at least in part, rely upon its ability to alter innate immune responses and the secretion of cytokines and chemokines by host phagocytes. We infected human macrophages and dendritic cells with a collection of genetically well-defined M. tuberculosis clinical isolates belonging to various mycobacterial families, including Beijing. We analyzed cytokine and chemokine secretion on a semi-global level using antibody arrays allowing the detection of sixty-five immunity-related soluble molecules. Our data indicate that Beijing strains induce significantly less interleukin (IL)-6, tumor necrosis factor (TNF), IL-10 and GRO-α than the H37Rv reference strain, a feature that is variously shared by other modern and ancient M. tuberculosis families and which constitutes a signature of the Beijing family as a whole. However, Beijing strains did not differ relative to each other in their ability to modulate cytokine secretion. Our results confirm and expand upon previous reports showing that M. tuberculosis Beijing strains in general are poor in vitro cytokine inducers in human phagocytes. The results suggest that the epidemiological success of the Beijing Bmyc10 is unlikely to rely upon any specific ability of this group of strains to impair anti-mycobacterial innate immunity.
Zhang, Zhijian; Lu, Jie; Liu, Min; Wang, Yufeng; Qu, Geping; Li, Hongxia; Wang, Jichun; Pang, Yu; Liu, Changting; Zhao, Yanlin
2015-04-01
The aim of this study was to explore the population structure of multidrug-resistant (MDR) tuberculosis strains and distribution of resistance-associated nucleotide alteration among the different genotype MDR strains in China. The genotypes of 376 MDR strain were analyzed by 15-loci MIRU-VNTR and RD105 deletion-targeted multiplex PCR (DTM-PCR) method. In addition, all the MDR isolates were sequenced for genetic mutations conferring rifampicin (rpoB) and isonizid resistance (katG, inhA and oxyR-ahpC). Among the 376 MDR isolates, 261 (69.4%) belonged to Beijing genotype, including 177 modern Beijing strains (67.8%) and 84 ancient Beijing (32.2%) strains. The percentages of streptomycin-resistant, kanamycin-resistant, pre-XDR and XDR TB in modern Beijing genotype were significantly lower than ancient genotype (P < 0.05). The Beijing MDR strains had significantly higher proportions of ofloxacin-resistant and pre-XDR isolates than non-Beijing strains (P < 0.01). In addition, the clustering rate of modern Beijing strains was significantly higher than that of ancient Beijing strains (46.3% vs. 11.9%, P < 0.01). 94.7% and 79.3% of MDR isolates harbored genetic mutations conferring rifampicin and isonizid resistance, respectively, and the most prevalent mutation was located in codon rpoB531 and katG315. In addition, the rpoB531 and katG mutation were more frequently observed among Beijing genotype strains than non-Beijing strains, while non-Beijing genotype showed stronger association with isolates lacking mutation in rifampicin resistance determination region (P < 0.05). Our findings demonstrated that ancient Beijing MDR strains were associated with drug resistance, while modern Beijing MDR strains were more likely to be clustered. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Pichat, Catherine; Couvin, David; Carret, Gérard; Frédénucci, Isabelle; Jacomo, Véronique; Carricajo, Anne; Boisset, Sandrine; Dumitrescu, Oana; Flandrois, Jean-Pierre; Lina, Gérard; Rastogi, Nalin
2016-01-01
The present work relates to identification and a deep molecular characterization of circulating Mycobacterium tuberculosis complex (MTBC) strains in the Rhône-Alpes region, France from 2000 to 2010. It aimed to provide with a first snapshot of MTBC genetic diversity in conjunction with bacterial drug resistance, type of disease and available demographic and epidemiologic characteristics over an eleven-year period, in the south-east of France. Mycobacterium tuberculosis complex (MTBC) strains isolated in the Rhône-Alpes region, France (n = 2257, 1 isolate per patient) between 2000 and 2010 were analyzed by spoligotyping. MIRU-VNTR typing was applied on n = 1698 strains (with full results available for 974 strains). The data obtained were compared with the SITVIT2 database, followed by detailed genotyping, phylogenetic, and epidemiologic analyses in correlation with anonymized data on available demographic, and epidemiologic characteristics, and location of disease (pulmonary or extrapulmonary TB). The most predominant spoligotyping clusters were SIT53/T1 (n = 346, 15.3%) > SIT50/H3 (n = 166, 7.35%) > SIT42/LAM9 (n = 125, 5.5%) > SIT1/Beijing (n = 72, 3.2%) > SIT47/H1 (n = 71, 3.1%). Evolutionary-recent strains belonging to the Principal Genetic Group (PGG) 2/3, or Euro-American lineages (T, LAM, Haarlem, X, S) were predominant and represented 1768 or 78.33% of all isolates. For strains having drug resistance information (n = 1119), any drug resistance accounted for 14.83% cases vs. 1.52% for multidrug resistance (MDR); and was significantly more associated with age group 21-40 years (p-value<0.001). Extra-pulmonary TB was more common among female patients while pulmonary TB predominated among men (p-value<0.001; OR = 2.16 95%CI [1.69; 2.77]). Also, BOV and CAS lineages were significantly well represented in patients affected by extra-pulmonary TB (p-value<0.001). The origin was known for 927/2257 patients: 376 (40.6%) being French-born vs. 551 (59.4%) Foreign-born. French patients were significantly older (mean age: 58.42 yrs 95%CI [56.04; 60.80]) than Foreign-born patients (mean age: 42.38 yrs. 95%CI [40.75; 44.0]). The study underlined the importance of imported TB cases on the genetic diversity and epidemiologic characteristics of circulating MTBC strains in Rhône-Alpes region, France over a large time-period. It helps better understand intricate relationships between certain lineages and geographic origin of the patients, and pinpoints genotypic and phylogenetic specificities of prevailing MTBC strains. Lastly, it also demonstrated a slow decline in isolation of M. africanum lineage in this region between 2000 and 2010.
Dudley, Matthew Z.; Sheen, Patricia; Gilman, Robert H.; Ticona, Eduardo; Friedland, Jon S.; Kirwan, Daniela E.; Caviedes, Luz; Rodriguez, Richard; Cabrera, Lilia Z.; Coronel, Jorge; Grandjean, Louis; Moore, David A. J.; Evans, Carlton A.; Huaroto, Luz; Chávez-Pérez, Víctor; Zimic, Mirko
2016-01-01
Hospital infection control measures are crucial to tuberculosis (TB) control strategies within settings caring for human immunodeficiency virus (HIV)–positive patients, as these patients are at heightened risk of developing TB. Pyrazinamide (PZA) is a potent drug that effectively sterilizes persistent Mycobacterium tuberculosis bacilli. However, PZA resistance associated with mutations in the nicotinamidase/pyrazinamidase coding gene, pncA, is increasing. A total of 794 patient isolates obtained from four sites in Lima, Peru, underwent spoligotyping and drug resistance testing. In one of these sites, the HIV unit of Hospital Dos de Mayo (HDM), an isolation ward for HIV/TB coinfected patients opened during the study as an infection control intervention: circulating genotypes and drug resistance pre- and postintervention were compared. All other sites cared for HIV-negative outpatients: genotypes and drug resistance rates from these sites were compared with those from HDM. HDM patients showed high concordance between multidrug resistance, PZA resistance according to the Wayne method, the two most common genotypes (spoligotype international type [SIT] 42 of the Latino American-Mediterranean (LAM)-9 clade and SIT 53 of the T1 clade), and the two most common pncA mutations (G145A and A403C). These associations were absent among community isolates. The infection control intervention was associated with 58–92% reductions in TB caused by SIT 42 or SIT 53 genotypes (odds ratio [OR] = 0.420, P = 0.003); multidrug-resistant TB (OR = 0.349, P < 0.001); and PZA-resistant TB (OR = 0.076, P < 0.001). In conclusion, pncA mutation typing, with resistance testing and spoligotyping, was useful in identifying a nosocomial TB outbreak and demonstrating its resolution after implementation of infection control measures. PMID:27928075
Isoniazid resistant tuberculosis- a cause for concern?
HR, Stagg; MC, Lipman; TD, McHugh; HE, Jenkins
2017-01-01
SUMMARY The drug isoniazid (INH) is a key component of global tuberculosis (TB) control programmes. It is estimated, however, that 16.1% of TB disease cases in Former Soviet Union countries and 7.5% of cases outside of those settings have non-multidrug resistant (MDR) INH resistance. Resistance has been linked to poorer treatment outcomes, post-treatment relapse and death, at least for specific sites of disease. Multiple genetic loci are associated with phenotypic resistance, but the relationship between genotype and phenotype is complex. This restricts the use of rapid sequencing techniques as part of the diagnostic process to determine the most appropriate treatment regimens for patients. The burden of resistance also influences the usefulness of INH preventative therapy (IPT). Despite seven decades of the use of INH our knowledge in key areas- such as the epidemiology of resistant strains, their clinical consequences, and their exact role in fuelling the MDR TB epidemic- is limited. The importance of non-MDR INH resistance needs to be re-evaluated both globally and by national TB control programmes. PMID:28234075
Dawson, Kara L; Bell, Anita; Kawakami, R Pamela; Coley, Kathryn; Yates, Gary; Collins, Desmond M
2012-09-01
Mycobacterium orygis, previously called the oryx bacillus, is a member of the Mycobacterium tuberculosis complex and has been reported only recently as a cause of human tuberculosis in patients of South Asian origin. We present the first case documenting the transmission of this organism from a human to a cow.
Ponce, Gema; Sanca, Lilica; Mané, Morto; Armada, Ana; Machado, Diana; Vieira, Fina; Gomes, Victor F.; Martins, Elisabete; Colombatti, Raffaella; Riccardi, Fabio; Perdigão, João; Sotero, Joana; Portugal, Isabel; Couto, Isabel; Atouguia, Jorge; Rodrigues, Amabélia; Viveiros, Miguel
2015-01-01
Background This study aimed to evaluate the usefulness of the Xpert MTB/RIF assay for the rapid direct detection of M. tuberculosis complex (MTBC) strains and rifampicin resistance associated mutations in a resource-limited setting such as Guinea-Bissau and its implications in the management of tuberculosis (TB) and drug resistant tuberculosis, complementing the scarce information on resistance and genotypic diversity of MTBC strains in this West African country. Methods and Results This cross-sectional prospective study included 100 consecutive TB patients with positive acid-fast smears at two months of anti-tuberculosis treatment or in a re-treatment situation, between May and December 2012. Resistance to rifampicin was detected using the GeneXpert system and the Xpert MTB/RIF assay. MTBC isolates obtained with the BACTEC MGIT 960 system were tested for susceptibility to first- and second-line anti-tuberculosis drugs. Overall, the prevalence of multidrug-resistant tuberculosis (MDR-TB) was found to be 9 cases. Of these, 67% (6 patients) of confirmed MDR-TB cases had no past history of TB treatment and 33% (3 patients) were previously treated cases. Extensively drug-resistant TB was not found. Molecular typing of the MDR-TB strains revealed recent transmission patterns of imported MDR strains. Conclusions The Xpert MTB/RIF assay was reliable for the detection of rifampicin resistant MTBC strains directly from sputum samples of patients undergoing first-line treatment for two months, being more trustworthy than the simple presence of acid-fast bacilli in the smear. Its implementation is technically simple, does not require specialized laboratory infrastructures and is suitable for resource-limited settings when a regular source of electricity and maintenance is available as well as financial and operation sustainability is guaranteed by the health authorities. A high prevalence of MDR-TB among patients at risk of MDR-TB after two months of first-line treatment was found, in support of the WHO recommendations for its use in the management of this risk group. PMID:26017968
Narendran, Gopalan; Kavitha, Dhanasekaran; Karunaianantham, Ramesh; Gil-Santana, Leonardo; Almeida-Junior, Jilson L.; Reddy, Sirasanambatti Devarajulu; Kumar, Marimuthu Makesh; Hemalatha, Haribabu; Jayanthi, Nagesh Nalini; Ravichandran, Narayanan; Krishnaraja, Raja; Prabhakar, Angamuthu; Manoharan, Tamizhselvan; Nithyananthan, Lokeswaran; Arjunan, Gunasundari; Natrajan, Mohan; Swaminathan, Soumya
2016-01-01
Background Paradoxical tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) is an inflammatory phenomenon complicating HIV management in coincidental tuberculosis (TB) infection, upon immune reconstitution driven by antiretroviral therapy (ART). Leukotriene A4 hydroxylase (LTA4H), an enzyme which converts LTA4 to LTB4, regulates the balance between the anti-inflammatory lipoxins and pro-inflammatory LTB4, with direct implications in TB-driven inflammation. In humans, a single nucleotide polymorphism (SNP) in the LTA4H promoter which regulates its transcriptional activity (rs17525495) has been identified and described to impact clinical severity of TB presentation and response to corticosteroid therapy. Notably, the role of LTA4H on TB-IRIS has not been previously evaluated. Here, we performed an exploratory investigation testing the association of LTA4H polymorphism with respect to frequency of TB-IRIS occurrence and severity of TB-IRIS presentation in HIV-TB co-infected individuals. Methods Genotypic evaluation of the LTA4H enzyme from available samples was retrospectively correlated with clinical data captured in case sheets including IRIS details. The cohort included patients recruited from a prospective cohort study nested within a randomized clinical trial (NCT0933790) of ART-naïve HIV+ patients with newly diagnosed rifampicin sensitive pulmonary TB in South India. Frequency of the wild type genotype (CC), as well as of the mutant genotypes (CT or TT) in the IRIS and non-IRIS patients was estimated. Comparative analyses were performed between wild genotype (CC) and the mutant genotypes (CT or TT) and tested for association between the LTA4H polymorphisms and IRIS incidence and clinical severity. Results A total of 142 eligible ART-naïve patients were included in the analyses. Eighty-six individuals exhibited the wild genotype (CC) while 56 had mutant genotypes (43-CT and only 13-TT). Variant allele frequency was 0.23 and 0.26 in non-IRIS group and in IRIS group, respectively. Upon ART initiation, 51 patients developed IRIS while 91 did not. IRIS incidence was 34% and 37% in the wild (CC) and mutant type (CT/TT), respectively (p = 0.858) with a higher frequency of severe IRIS presentation in the mutant genotype group compared to the wild type genotype (p = 0.0006). A logistic regression model confirmed the association between the presence of CT/TT genotypes and occurrence of severe IRIS. Corticosteroid therapy successfully resolved IRIS in all cases irrespective of the LTA4H genotype. Conclusion A higher incidence of severe IRIS among patients with mutant LTA4H genotypes (CT and TT) was observed compared to the wild type, despite similar IRIS incidence and immune restoration in both groups. Steroids were effective in alleviating IRIS in all the genotypes. PMID:27643598
Multidrug-resistant tuberculosis in Lisbon, Portugal: a molecular epidemiological perspective.
Perdigão, João; Macedo, Rita; João, Inês; Fernandes, Elisabete; Brum, Laura; Portugal, Isabel
2008-06-01
Portugal has the fourth highest tuberculosis (TB) incidence rate in the European Union (EU). Thirty-nine percent of all cases originate in Lisbon Health Region. Portugal also presents high levels of multidrug-resistant tuberculosis (MDR-TB) (1.5%, primary rate and 2.4%, in retreatment cases). In the present study we have characterized 58 MDR-TB clinical isolates by: (i) determining the resistance profile to first- and second-line drugs used in the treatment of tuberculosis; (ii) genotyping all isolates by MIRU-VNTR; (iii) analyzing mutations conferring resistance to isoniazid, rifampicin, streptomycin, and ethambutol, in katG, mabA-inhA, rpoB, rpsL, rrs, and pncA genes. We have therefore established the prevalence of the most common mutations associated with drug resistance in the Lisbon Health Region: C-15T in mabA-inhA for isoniazid; S531L in rpoB for rifampicin; K43R in rpsL for streptomycin; and V125G in pncA for pyrazinamide. By genotyping all isolates and combining with the mutational results, we were able to assess the isolates' genetic relatedness and determine possible transmission events. Strains belonging to family Lisboa, characterized several years ago, are still responsible for the majority of the MDR-TB. Even more alarming is the high prevalence of extensive drug-resistant tuberculosis (XDR-TB) among the MDR-TB isolates, which was found to be 53%. The TB status in Portugal therefore requires urgent attention to contain the strains continuously responsible for MDR-TB and now, XDR-TB.
Liang, Bin; Tan, Yaoju; Li, Zi; Tian, Xueshan; Du, Chen; Li, Hui; Li, Guoli; Yao, Xiangyang; Wang, Zhongan; Xu, Ye; Li, Qingge
2018-02-01
Detection of heteroresistance of Mycobacterium tuberculosis remains challenging using current genotypic drug susceptibility testing methods. Here, we described a melting curve analysis-based approach, termed DeepMelt, that can detect less-abundant mutants through selective clamping of the wild type in mixed populations. The singleplex DeepMelt assay detected 0.01% katG S315T in 10 5 M. tuberculosis genomes/μl. The multiplex DeepMelt TB/INH detected 1% of mutant species in the four loci associated with isoniazid resistance in 10 4 M. tuberculosis genomes/μl. The DeepMelt TB/INH assay was tested on a panel of DNA extracted from 602 precharacterized clinical isolates. Using the 1% proportion method as the gold standard, the sensitivity was found to be increased from 93.6% (176/188, 95% confidence interval [CI] = 89.2 to 96.3%) to 95.7% (180/188, 95% CI = 91.8 to 97.8%) compared to the MeltPro TB/INH assay. Further evaluation of 109 smear-positive sputum specimens increased the sensitivity from 83.3% (20/24, 95% CI = 64.2 to 93.3%) to 91.7% (22/24, 95% CI = 74.2 to 97.7%). In both cases, the specificity remained nearly unchanged. All heteroresistant samples newly identified by the DeepMelt TB/INH assay were confirmed by DNA sequencing and even partially by digital PCR. The DeepMelt assay may fill the gap between current genotypic and phenotypic drug susceptibility testing for detecting drug-resistant tuberculosis patients. Copyright © 2018 American Society for Microbiology.
Cudahy, Patrick G.T; Schumacher, Samuel G.; Steingart, Karen R.; Pai, Madhukar; Denkinger, Claudia M.
2017-01-01
Only 25% of multidrug-resistant tuberculosis (MDR-TB) cases are currently diagnosed. Line probe assays (LPAs) enable rapid drug-susceptibility testing for rifampicin (RIF) and isoniazid (INH) resistance and Mycobacterium tuberculosis detection. Genotype MTBDRplusV1 was WHO-endorsed in 2008 but newer LPAs have since been developed. This systematic review evaluated three LPAs: Hain Genotype MTBDRplusV1, MTBDRplusV2 and Nipro NTM+MDRTB. Study quality was assessed with QUADAS-2. Bivariate random-effects meta-analyses were performed for direct and indirect testing. Results for RIF and INH resistance were compared to phenotypic and composite (incorporating sequencing) reference standards. M. tuberculosis detection results were compared to culture. 74 unique studies were included. For RIF resistance (21 225 samples), pooled sensitivity and specificity (with 95% confidence intervals) were 96.7% (95.6–97.5%) and 98.8% (98.2–99.2%). For INH resistance (20 954 samples), pooled sensitivity and specificity were 90.2% (88.2–91.9%) and 99.2% (98.7–99.5%). Results were similar for direct and indirect testing and across LPAs. Using a composite reference standard, specificity increased marginally. For M. tuberculosis detection (3451 samples), pooled sensitivity was 94% (89.4–99.4%) for smear-positive specimens and 44% (20.2–71.7%) for smear-negative specimens. In patients with pulmonary TB, LPAs have high sensitivity and specificity for RIF resistance and high specificity and good sensitivity for INH resistance. This meta-analysis provides evidence for policy and practice. PMID:28100546
Malama, Sydney; Muma, John; Munyeme, Musso; Mbulo, Grace; Muwonge, Adrian; Shamputa, Isdore Chola; Djønne, Berit; Godfroid, Jacques; Johansen, Tone Bjordal
2014-12-01
Mycobacterium tuberculosis, the causative agent of tuberculosis in humans, is considered primarily a human pathogen. It has, however, been reported in a wide range of domestic and wild animals, often living in close prolonged contact with humans. Sputum samples in which acid fast bacteria were detected in smears were collected from patients at three health facilities in Namwala district, Zambia. Samples from cattle presenting gross lesions compatible with bovine tuberculosis were collected at a local abattoir in the same district. Isolated mycobacteria were identified and genotyped using classical molecular methods. From a total of 33 isolates of M. tuberculosis detected (30 from humans and 3 from cattle), two cattle isolates shared the same spoligotype and MIRU-VNTR pattern with a human patient. This study has for the first time documented the isolation of M. tuberculosis from cattle in Zambia and provides molecular evidence of an epidemiological link between M. tuberculosis isolates from humans and cattle in Namwala district. A possible spill back of M. tuberculosis to humans cannot be excluded and therefore further studies documenting to what extent M. tuberculosis is shed in cattle milk are needed. This finding further suggests that veterinary public health measures to control human TB, should also take into account the bovine reservoir.
Larcombe, Linda; Mookherjee, Neeloffer; Slater, Joyce; Slivinski, Caroline; Dantouze, Joe; Singer, Matthew; Whaley, Chris; Denechezhe, Lizette; Matyas, Sara; Decter, Kate; Turner-Brannen, Emily; Ramsey, Clare; Nickerson, Peter; Orr, Pamela
2015-01-01
Background Canadian First Nation populations have experienced endemic and epidemic tuberculosis (TB) for decades. Vitamin D–mediated induction of the host defence peptide LL-37 is known to enhance control of pathogens such as Mycobacterium tuberculosis. Objective Evaluate associations between serum levels of 25-hydroxy vitamin D (25(OH)D) and LL-37, in adult Dene First Nation participants (N = 34) and assess correlations with single nucleotide polymorphisms (SNPs) in the vitamin D receptor (VDR) and vitamin D binding protein (VDBP). Design Venous blood was collected from all participants at baseline (winter and summer) and in conjunction with taking vitamin D supplements (1,000 IU/day) (winter and summer). Samples were analysed using ELISA for concentrations of vitamin D and LL-37, and SNPs in the VDR and VDBP regions were genotyped. Results Circulating levels of 25(OH)D were not altered by vitamin D supplementation, but LL-37 levels were significantly decreased. VDBP and VDR SNPs did not correlate with serum concentrations of 25(OH)D, but LL-37 levels significantly decreased in individuals with VDBP D432E T/G and T/T, and with VDR SNP Bsm1 T/T genotypes. Conclusions Our findings suggest that vitamin D supplementation may not be beneficial as an intervention to boost innate immune resistance to M. tuberculosis in the Dene population. PMID:26294193
Hall, Leslie; Jude, Kurt P; Clark, Shirley L; Dionne, Kim; Merson, Ryan; Boyer, Ana; Parrish, Nicole M; Wengenack, Nancy L
2012-11-01
The Sensititre MycoTB plate (TREK Diagnostic Systems, Cleveland, OH) uses a microtiter plate MIC format for susceptibility testing of Mycobacterium tuberculosis complex isolates against first- and second-line antituberculosis agents. Categorical agreement versus the agar proportion method for 122 M. tuberculosis complex isolates was 94% to 100%.
Mokrousov, Igor; Vyazovaya, Anna; Otten, Tatiana; Zhuravlev, Viacheslav; Pavlova, Elena; Tarashkevich, Larisa; Krishevich, Valery; Vishnevsky, Boris; Narvskaya, Olga
2012-01-01
This study aimed to characterize the population structure of Mycobacterium tuberculosis in Pskov oblast in northwestern Russia, to view it in the geographical context, to compare drug resistance properties across major genetic families. Ninety M. tuberculosis strains from tuberculosis (TB) patients, permanent residents in Pskov oblast were subjected to LAM-specific IS6110-PCR and spoligotyping, followed by comparison with SITVITWEB and MIRU-VNTRplus databases. The Beijing genotype (n = 40) was found the most prevalent followed by LAM (n = 18), T (n = 13), Haarlem (n = 10), Ural (n = 5), and Manu2 (n = 1); the family status remained unknown for 3 isolates. The high rate of Beijing genotype and prevalence of LAM family are similar to those in the other Russian settings. A feature specific for M. tuberculosis population in Pskov is a relatively higher rate of Haarlem and T types. Beijing strains were further typed with 12-MIRU (followed by comparison with proprietary global database) and 3 hypervariable loci QUB-3232, VNTR-3820, VNTR-4120. The 12-MIRU typing differentiated 40 Beijing strains into 14 types (HGI = 0.82) while two largest types were M2 (223325153533) prevalent throughout former USSR and M11 (223325173533) prevalent in Russia and East Asia. The use of 3 hypervariable loci increased a discrimination of the Beijing strains (18 profiles, HGI = 0.89). Both major families Beijing and LAM had similar rate of MDR strains (62.5 and 55.6%, respectively) that was significantly higher than in other strains (21.9%; P = 0.001 and 0.03, respectively). The rpoB531 mutations were more frequently found in Beijing strains while LAM drug resistant strains mainly harbored rpoB516 and inhA −15 mutations. Taken together with a high rate of multidrug resistance among Beijing strains from new TB cases (79.3% versus 44.4% in LAM), these findings suggest the critical impact of the Beijing genotype on the current situation with MDR-TB in the Pskov region in northwestern Russia. PMID:22844457
Risk factors for pulmonary cavitation in tuberculosis patients from China.
Zhang, Liqun; Pang, Yu; Yu, Xia; Wang, Yufeng; Lu, Jie; Gao, Mengqiu; Huang, Hairong; Zhao, Yanlin
2016-10-12
Pulmonary cavitation is one of the most frequently observed clinical characteristics in tuberculosis (TB). The objective of this study was to investigate the potential risk factors associated with cavitary TB in China. A total of 385 smear-positive patients were enrolled in the study, including 192 (49.9%) patients with cavitation as determined by radiographic findings. Statistical analysis revealed that the distribution of patients with diabetes in the cavitary group was significantly higher than that in the non-cavitary group (adjusted odds ratio (OR) (95% confidence interval (CI)):12.08 (5.75-25.35), P<0.001). Similarly, we also found that the proportion of individuals with multidrug-resistant TB in the cavitary group was also higher than that in the non-cavitary group (adjusted OR (95% CI): 2.48 (1.52-4.07), P<0.001). Of the 385 Mycobacterium tuberculosis strains, 330 strains (85.7%) were classified as the Beijing genotype, which included 260 strains that belonged to the modern Beijing sublineage and 70 to the ancient Beijing sublineage. In addition, there were 80 and 31 strains belonging to large and small clusters, respectively. Statistical analysis revealed that cavitary disease was observed more frequently among the large clusters than the small clusters (P=0.037). In conclusion, our findings demonstrate that diabetes and multidrug resistance are risk factors associated with cavitary TB. In addition, there was no significant difference in the cavitary presentation between patients infected with the Beijing genotype strains and those infected with the non-Beijing genotype strains.
Fiebig, Lena; Kohl, Thomas A; Popovici, Odette; Mühlenfeld, Margarita; Indra, Alexander; Homorodean, Daniela; Chiotan, Domnica; Richter, Elvira; Rüsch-Gerdes, Sabine; Schmidgruber, Beatrix; Beckert, Patrick; Hauer, Barbara; Niemann, Stefan; Allerberger, Franz; Haas, Walter
2017-01-12
Molecular surveillance of multidrug-resistant tuberculosis (MDR-TB) using 24-loci MIRU-VNTR in the European Union suggests the occurrence of international transmission. In early 2014, Austria detected a molecular MDR-TB cluster of five isolates. Links to Romania and Germany prompted the three countries to investigate possible cross-border MDR-TB transmission jointly. We searched genotyping databases, genotyped additional isolates from Romania, used whole genome sequencing (WGS) to infer putative transmission links, and investigated pairwise epidemiological links and patient mobility. Ten isolates from 10 patients shared the same 24-loci MIRU-VNTR pattern. Within this cluster, WGS defined two subgroups of four patients each. The first comprised an MDR-TB patient from Romania who had sought medical care in Austria and two patients from Austria. The second comprised patients, two of them epidemiologically linked, who lived in three different countries but had the same city of provenance in Romania. Our findings strongly suggested that the two cases in Austrian citizens resulted from a newly introduced MDR-TB strain, followed by domestic transmission. For the other cases, transmission probably occurred in the same city of provenance. To prevent further MDR-TB transmission, we need to ensure universal access to early and adequate therapy and collaborate closely in tuberculosis care beyond administrative borders. This article is copyright of The Authors, 2017.
Bax, Hannelore I; Bakker-Woudenberg, Irma A J M; de Vogel, Corné P; van der Meijden, Aart; Verbon, Annelies; de Steenwinkel, Jurriaan E M
2017-07-01
Novel treatment strategies for tuberculosis are urgently needed. Many different preclinical models assessing anti-tuberculosis drug activity are available, but it is yet unclear which combination of models is most predictive of clinical treatment efficacy. The aim of this study was to determine the role of our in vitro time kill-kinetics assay as an asset to a predictive preclinical modeling framework assessing anti-tuberculosis drug activity. The concentration- and time-dependent mycobacterial killing capacities of six anti-tuberculosis drugs were determined during exposure as single drugs or in dual, triple and quadruple combinations towards a Mycobacterium tuberculosis Beijing genotype strain and drug resistance was assessed. Streptomycin, rifampicin and isoniazid were most active against fast-growing M. tuberculosis. Isoniazid with rifampicin or high dose ethambutol were the only synergistic drug combinations. The addition of rifampicin or streptomycin to isoniazid prevented isoniazid resistance. In vitro ranking showed agreement with early bactericidal activity in tuberculosis patients for some but not all anti-tuberculosis drugs. The time-kill kinetics assay provides important information on the mycobacterial killing dynamics of anti-tuberculosis drugs during the early phase of drug exposure. As such, this assay is a valuable component of the preclinical modeling framework. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mycobacterium tuberculosis infection in cattle from the Eastern Cape Province of South Africa.
Hlokwe, Tiny Motlatso; Said, Halima; Gcebe, Nomakorinte
2017-10-10
Mycobacterium tuberculosis is the main causative agent of tuberculosis (TB) in human and Mycobacterium bovis commonly causes tuberculosis in animals. Transmission of tuberculosis caused by both pathogens can occur from human to animals and vice versa. In the current study, M. tuberculosis, as confirmed by polymerase chain reaction (PCR) using primers targeting 3 regions of difference (RD4, RD9 and RD12) on the genomes, was isolated from cattle originating from two epidemiologically unrelated farms in the Eastern Cape (E.C) Province of South Africa. Although the isolates were genotyped with variable number of tandem repeat (VNTR) typing, no detailed epidemiological investigation was carried out on the respective farms to unequivocally confirm or link humans as sources of TB transmission to cattle, a move that would have embraced the 'One Health' concept. In addition, strain comparison with human M. tuberculosis in the database from the E.C Province and other provinces in the country did not reveal any match. This is the first report of cases of M. tuberculosis infection in cattle in South Africa. The VNTR profiles of the M. tuberculosis strains identified in the current study will form the basis for creating M. tuberculosis VNTR database for animals including cattle for future epidemiological studies. Our findings however, call for urgent reinforcement of collaborative efforts between the veterinary and the public health services of the country.
Fanosie, Alemu; Gelaw, Baye; Tessema, Belay; Tesfay, Wogahta; Admasu, Aschalew; Yitayew, Gashaw
2016-01-01
Extrapulmonary Tuberculosis (EPTB) and Human Immunodeficiency Virus (HIV) infection are interrelated as a result of immune depression. The aim of this study was to determine the prevalence of Mycobacterium tuberculosis complex isolates and the burden of HIV co-infection among EPTB suspected patients. An institution based cross-sectional study was conducted among EPTB suspected patients at the University of Gondar Hospital. Socio-demographic characteristics and other clinical data were collected using a pretested questionnaire. GeneXpert MTB/RIF assay was performed to diagnosis Mycobacterium tuberculosis complex and Rifampicin resistance. All samples were also investigated by cytology and culture. The HIV statuses of all patients were screened initially by KHB, and all positive cases were further re-tested by STAT-pack. Data was analyzed using SPSS version 20 computer software and a P-value of < 0.05 was taken as statistically significant. A total of 141 extrapulmonary suspected patients were enrolled in this study. The overall prevalence of culture confirmed extrapulmonary tuberculosis infection was 29.8%, but the GeneXpert result showed a 26.2% prevalence of Mycobacterium tuberculosis complex infection. The 78.4% prevalence of extrapulmonary tuberculosis infection was found to be higher among the adult population. The prevalence of HIV infection among EPTB suspected patients was 14.1%, while it was 32.4% among GeneXpert-confirmed extrapulmonary TB cases (12/37). Tuberculosis lymphadenitis was the predominant (78.4%) type of EPTB infection followed by tuberculosis cold abscess (10.7%). Adult hood, previous history of contact with known pulmonary tuberculosis patients, and HIV co-infection showed a statistically significant association with extrapulmonary tuberculosis infection (P<0.013). The prevalence of culture confirmed-EPTB infection was high, and a higher EPTB-HIV co-infection was also observed.
Karimi, Hind; En-Nanai, Latifa; Oudghiri, Amal; Chaoui, Imane; Laglaoui, Amin; Bourkadi, Jamal Eddine; El Mzibri, Mohammed; Abid, Mohammed
2018-03-01
In Morocco, tuberculosis (TB) is a major public health problem with high morbidity and mortality. The main problem faced by the national TB programme is the high rate of drug-resistant (DR), particularly multi-drug resistant (MDR) strains. Diagnosis of DR-TB is mainly performed by conventional techniques that are time consuming with limited efficacy. In 2014, the GenoType ® MTBDRplus assay was introduced in Morocco for drug susceptibility testing (DST). In this regard, the present study was planned to assess the diagnostic accuracy of the GenoType ® MTBDRplus assay. A total of 70 samples from suspected TB cases in Tangier (Morocco) were analysed by conventional DST and GenoType ® MTBDRplus assay. Among the 70 samples, 37.1% were MDR, whereas monoresistance to isoniazid (INH) and rifampicin (RIF) was detected in 186% and 17.1% of strains, respectively, by DST. Using the GenoType ® MTBDRplus approach, 12 isolates (17.1%) were identified as INH monoresistant, 9 (12.9%) as RIF monoresistant and 26 (37.1%) as MDR. rpoB531 and katG315 mutations were the most common mutations associated with resistance to RIF and INH, respectively. Significantly, all phenotypically MDR strains were also MDR by GenoType ® MTBDRplus. The sensitivity of GenoType ® MTBDRplus was 92.1% for RIF resistance and 97.4% for INH resistance, whereas the specificity was 100% for the two tested drugs. GenoType ® MTBDRplus assay is a rapid, reliable and accurate tool for the detection of DR-TB in clinical specimens. Its routine use will be of a great interest to prevent the dissemination of DR-TB in the community. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.
Richardson, Marty; Kirkham, Jamie; Dwan, Kerry; Sloan, Derek; Davies, Geraint; Jorgensen, Andrea
2017-07-13
Tuberculosis patients receiving anti-tuberculosis treatment may experience serious adverse drug reactions, such as hepatotoxicity. Genetic risk factors, such as polymorphisms of the NAT2, CYP2E1 and GSTM1 genes, may increase the risk of experiencing such toxicity events. Many pharmacogenetic studies have investigated the association between genetic variants and anti-tuberculosis drug-related toxicity events, and several meta-analyses have synthesised data from these studies, although conclusions from these meta-analyses are conflicting. Many meta-analyses also have serious methodological limitations, such as applying restrictive inclusion criteria, or not assessing the quality of included studies. Most also only consider hepatotoxicity outcomes and specific genetic variants. The purpose of this systematic review and meta-analysis is to give a comprehensive evaluation of the evidence base for associations between any genetic variant and anti-tuberculosis drug-related toxicity. We will search for studies in MEDLINE, EMBASE, BIOSIS and Web of Science. We will also hand search reference lists from relevant studies and contact experts in the field. We will include cohort studies, case-control studies and randomised controlled trials that recruited patients with tuberculosis who were either already established on anti-tuberculosis treatment or were commencing treatment and who were genotyped to investigate the effect of genetic variants on any anti-tuberculosis drug-related toxicity outcome. One author will screen abstracts to identify potentially relevant studies and will then obtain the full text for each potentially relevant study in order to assess eligibility. At each of these stages, a second author will independently screen/assess 10% of studies. Two authors will independently extract data and assess the quality of studies using a pre-piloted data extraction form. If appropriate, we will pool estimates of effect for each genotype on each outcome using meta-analyses stratified by ethnicity. Our review and meta-analysis will update and add to the existing research in this field. By not restricting the scope of the review to a specific drug, genetic variant, or toxicity outcome, we hope to synthesise data for associations between genetic variants and anti-tuberculosis drug-related toxicity outcomes that have previously not been summarised in systematic reviews, and consequently, add to the knowledge base of the pharmacogenetics of anti-tuberculosis drugs. PROSPERO CRD42017068448.
Bolado-Martínez, Enrique; Pérez-Mendoza, Ansix; Alegría-Morquecho, Francisco Monserrat; Candia-Plata, María del Carmen; Aguayo-Verdugo, María del Rosario; Alvarez-Hernández, Gerardo
2012-01-01
To perform the analysis of specific regions of the major genes associated with resistance to isoniazid or rifampin. Twenty two M. tuberculosis strains, isolated from human samples obtained in Sonora, Mexico. Specific primers for hotspots of the rpoB, katG, inhA genes and the ahpC-oxyR intergenic region were used. The purified PCR products were sequenced. Mutations in the promoter of inhA, the ahpC-oxyR region, and codon 315 of katG and in 451 or 456 codons of rpoB, were identified. Detection of mutations not previously reported requires further genotypic analysis of Mycobacterium tuberculosis isolates in Sonora.
Molecular Strain Typing of Mycobacterium tuberculosis: a Review of Frequently Used Methods
2016-01-01
Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, remains one of the most serious global health problems. Molecular typing of M. tuberculosis has been used for various epidemiologic purposes as well as for clinical management. Currently, many techniques are available to type M. tuberculosis. Choosing the most appropriate technique in accordance with the existing laboratory conditions and the specific features of the geographic region is important. Insertion sequence IS6110-based restriction fragment length polymorphism (RFLP) analysis is considered the gold standard for the molecular epidemiologic investigations of tuberculosis. However, other polymerase chain reaction-based methods such as spacer oligonucleotide typing (spoligotyping), which detects 43 spacer sequence-interspersing direct repeats (DRs) in the genomic DR region; mycobacterial interspersed repetitive units–variable number tandem repeats, (MIRU-VNTR), which determines the number and size of tandem repetitive DNA sequences; repetitive-sequence-based PCR (rep-PCR), which provides high-throughput genotypic fingerprinting of multiple Mycobacterium species; and the recently developed genome-based whole genome sequencing methods demonstrate similar discriminatory power and greater convenience. This review focuses on techniques frequently used for the molecular typing of M. tuberculosis and discusses their general aspects and applications. PMID:27709842
Molecular Strain Typing of Mycobacterium tuberculosis: a Review of Frequently Used Methods.
Ei, Phyu Win; Aung, Wah Wah; Lee, Jong Seok; Choi, Go Eun; Chang, Chulhun L
2016-11-01
Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, remains one of the most serious global health problems. Molecular typing of M. tuberculosis has been used for various epidemiologic purposes as well as for clinical management. Currently, many techniques are available to type M. tuberculosis. Choosing the most appropriate technique in accordance with the existing laboratory conditions and the specific features of the geographic region is important. Insertion sequence IS6110-based restriction fragment length polymorphism (RFLP) analysis is considered the gold standard for the molecular epidemiologic investigations of tuberculosis. However, other polymerase chain reaction-based methods such as spacer oligonucleotide typing (spoligotyping), which detects 43 spacer sequence-interspersing direct repeats (DRs) in the genomic DR region; mycobacterial interspersed repetitive units-variable number tandem repeats, (MIRU-VNTR), which determines the number and size of tandem repetitive DNA sequences; repetitive-sequence-based PCR (rep-PCR), which provides high-throughput genotypic fingerprinting of multiple Mycobacterium species; and the recently developed genome-based whole genome sequencing methods demonstrate similar discriminatory power and greater convenience. This review focuses on techniques frequently used for the molecular typing of M. tuberculosis and discusses their general aspects and applications.
Copin, Richard; Wang, Xueying; Louie, Eddie; Escuyer, Vincent; Coscolla, Mireia; Gagneux, Sebastien; Palmer, Guy H; Ernst, Joel D
2016-12-01
Molecular epidemiological assessments, drug treatment optimization, and development of immunological interventions all depend on understanding pathogen adaptation and genetic variation, which differ for specific pathogens. Mycobacterium tuberculosis is an exceptionally successful human pathogen, yet beyond knowledge that this bacterium has low overall genomic variation but acquires drug resistance mutations, little is known of the factors that drive its population genomic characteristics. Here, we compared the genetic diversity of the bacteria that established infection to the bacterial populations obtained from infected tissues during murine M. tuberculosis pulmonary infection and human disseminated M. bovis BCG infection. We found that new mutations accumulate during in vitro culture, but that in vivo, purifying selection against new mutations dominates, indicating that M. tuberculosis follows a dominant lineage model of evolution. Comparing bacterial populations passaged in T cell-deficient and immunocompetent mice, we found that the presence of T cells is associated with an increase in the diversity of the M. tuberculosis genome. Together, our findings put M. tuberculosis genetic evolution in a new perspective and clarify the impact of T cells on sequence diversity of M. tuberculosis.
Peres, Renata Lyrio; Vinhas, Solange Alves; Ribeiro, Fabíola Karla Correa; Palaci, Moisés; do Prado, Thiago Nascimento; Reis-Santos, Bárbara; Zandonade, Eliana; Suffys, Philip Noel; Golub, Jonathan E; Riley, Lee W; Maciel, Ethel Leonor
2018-02-08
Tuberculosis (TB) transmission is influenced by patient-related risk, environment and bacteriological factors. We determined the risk factors associated with cluster size of IS6110 RFLP based genotypes of Mycobacterium tuberculosis (Mtb) isolates from Vitoria, Espirito Santo, Brazil. Cross-sectional study of new TB cases identified in the metropolitan area of Vitoria, Brazil between 2000 and 2010. Mtb isolates were genotyped by the IS6110 RFLP, spoligotyping and RD Rio . The isolates were classified according to genotype cluster sizes by three genotyping methods and associated patient epidemiologic characteristics. Regression Model was performed to identify factors associated with cluster size. Among 959 Mtb isolates, 461 (48%) cases had an isolate that belonged to an RFLP cluster, and six clusters with ten or more isolates were identified. Of the isolates spoligotyped, 448 (52%) were classified as LAM and 412 (48%) as non-LAM. Our regression model found that 6-9 isolates/RFLP cluster were more likely belong to the LAM family, having the RD Rio genotype and to be smear-positive (adjusted OR = 1.17, 95% CI 1.08-1.26; adjusted OR = 1.25, 95% CI 1.14-1.37; crude OR = 2.68, 95% IC 1.13-6.34; respectively) and living in a Serra city neighborhood decrease the risk of being in the 6-9 isolates/RFLP cluster (adjusted OR = 0.29, 95% CI, 0.10-0.84), than in the others groups. Individuals aged 21 to 30, 31 to 40 and > 50 years were less likely of belonging the 2-5 isolates/RFLP cluster than unique patterns compared to individuals < 20 years of age (adjusted OR = 0.49, 95% CI 0.28-0.85, OR = 0.43 95% CI 0.24-0.77and OR = 0. 49, 95% CI 0.26-0.91), respectively. The extrapulmonary disease was less likely to occur in those infected with strains in the 2-5 isolates/cluster group (adjustment OR = 0.45, 95% CI 0.24-0.85) than unique patterns. We found that a large proportion of new TB infections in Vitoria is caused by prevalent Mtb genotypes belonging to the LAM family and RD Rio genotypes. Such information demonstrates that some genotypes are more likely to cause recent transmission. Targeting interventions such as screening in specific areas and social risk groups, should be a priority for reducing transmission.
Blanco-Guillot, Francles; Delgado-Sánchez, Guadalupe; Mongua-Rodríguez, Norma; Cruz-Hervert, Pablo; Ferreyra-Reyes, Leticia; Ferreira-Guerrero, Elizabeth; Yanes-Lane, Mercedes; Montero-Campos, Rogelio; Bobadilla-Del-Valle, Miriam; Torres-González, Pedro; Ponce-de-León, Alfredo; Sifuentes-Osornio, José; Garcia-Garcia, Lourdes
2017-01-01
Many studies have explored the relationship between diabetes mellitus (DM) and tuberculosis (TB) demonstrating increased risk of TB among patients with DM and poor prognosis of patients suffering from the association of DM/TB. Owing to a paucity of studies addressing this question, it remains unclear whether patients with DM and TB are more likely than TB patients without DM to be grouped into molecular clusters defined according to the genotype of the infecting Mycobacterium tuberculosis bacillus. That is, whether there is convincing molecular epidemiological evidence for TB transmission among DM patients. Objective: We performed a systematic review and meta-analysis to quantitatively evaluate the propensity for patients with DM and pulmonary TB (PTB) to cluster according to the genotype of the infecting M. tuberculosis bacillus. We conducted a systematic search in MEDLINE and LILACS from 1990 to June, 2016 with the following combinations of key words "tuberculosis AND transmission" OR "tuberculosis diabetes mellitus" OR "Mycobacterium tuberculosis molecular epidemiology" OR "RFLP-IS6110" OR "Spoligotyping" OR "MIRU-VNTR". Studies were included if they met the following criteria: (i) studies based on populations from defined geographical areas; (ii) use of genotyping by IS6110- restriction fragment length polymorphism (RFLP) analysis and spoligotyping or mycobacterial interspersed repetitive unit-variable number of tandem repeats (MIRU-VNTR) or other amplification methods to identify molecular clustering; (iii) genotyping and analysis of 50 or more cases of PTB; (iv) study duration of 11 months or more; (v) identification of quantitative risk factors for molecular clustering including DM; (vi) > 60% coverage of the study population; and (vii) patients with PTB confirmed bacteriologically. The exclusion criteria were: (i) Extrapulmonary TB; (ii) TB caused by nontuberculous mycobacteria; (iii) patients with PTB and HIV; (iv) pediatric PTB patients; (v) TB in closed environments (e.g. prisons, elderly homes, etc.); (vi) diabetes insipidus and (vii) outbreak reports. Hartung-Knapp-Sidik-Jonkman method was used to estimate the odds ratio (OR) of the association between DM with molecular clustering of cases with TB. In order to evaluate the degree of heterogeneity a statistical Q test was done. The publication bias was examined with Begg and Egger tests. Review Manager 5.3.5 CMA v.3 and Biostat and Software package R were used. Selection criteria were met by six articles which included 4076 patients with PTB of which 13% had DM. Twenty seven percent of the cases were clustered. The majority of cases (48%) were reported in a study in China with 31% clustering. The highest incidence of TB occurred in two studies from China. The global OR for molecular clustering was 0.84 (IC 95% 0.40-1.72). The heterogeneity between studies was moderate (I2 = 55%, p = 0.05), although there was no publication bias (Beggs test p = 0.353 and Eggers p = 0.429). There were very few studies meeting our selection criteria. The wide confidence interval indicates that there is not enough evidence to draw conclusions about the association. Clustering of patients with DM in TB transmission chains should be investigated in areas where both diseases are prevalent and focus on specific contexts.
Molecular characteristics of MDR Mycobacterium tuberculosis strains isolated in Fujian, China.
Chen, Qiuyang; Pang, Yu; Liang, Qingfu; Lin, Shufang; Wang, Yufeng; Lin, Jian; Zhao, Yong; Wei, Shuzhen; Zheng, Jinfeng; Zheng, Suhua
2014-03-01
Of 75 MDR isolates from Fujian Province, the sensitivity of RIF, INH, EMB, SM, OFLX and KAN resistance by DNA sequencing was 96.0%, 96.0%, 66.7%, 66.0%, 84.2% and 75.0%, respectively. We also identified that minority mutations in the mixed Mycobacterium tuberculosis population may be responsible for two "false-negative" results. In addition, Beijing genotype is still the predominant sublineage in the MDR TB cases from Fujian. Copyright © 2013 Elsevier Ltd. All rights reserved.
Molecular characterization of Mycobacterium tuberculosis isolates from elephants of Nepal.
Paudel, Sarad; Mikota, Susan K; Nakajima, Chie; Gairhe, Kamal P; Maharjan, Bhagwan; Thapa, Jeewan; Poudel, Ajay; Shimozuru, Michito; Suzuki, Yasuhiko; Tsubota, Toshio
2014-05-01
Mycobacterium tuberculosis was cultured from the lung tissues of 3 captive elephants in Nepal that died with extensive lung lesions. Spoligotyping, TbD1 detection and multi-locus variable number of tandem repeat analysis (MLVA) results suggested 3 isolates belonged to a specific lineage of Indo-Oceanic clade, EAI5 SIT 138. One of the elephant isolates had a new synonymous single nucleotide polymorphism (SNP) T231C in the gyrA sequence, and the same SNP was also found in human isolates in Nepal. MLVA results and transfer history of the elephants suggested that 2 of them might be infected with M. tuberculosis from the same source. These findings indicated the source of M. tuberculosis infection of those elephants were local residents, presumably their handlers. Further investigation including detailed genotyping of elephant and human isolates is needed to clarify the infection route and eventually prevent the transmission of tuberculosis to susceptible hosts. Copyright © 2014 Elsevier Ltd. All rights reserved.
Luo, Dan; Zhao, Jinming; Lin, Mei; Liu, Feiying; Huang, Shuhai; Zhang, Yingkun; Huang, Minying; Li, Juan; Zhou, Yang; Lan, Rushu; Zhao, Yanlin
2017-05-01
Drug-resistant Mycobacterium tuberculosis strains are a major threat to the control of tuberculosis (TB), but the prevalence of drug-resistant TB is still unknown in the southern ethnic region of China. A cluster-randomized sampling method was used to include the study population. Isolates were tested for resistance to 6 antituberculosis drugs, and genotyped to identify Beijing strains. Overall, 11.3% (139/1229) of new cases and 33.0% (126/382) of retreated cases had drug-resistant tuberculosis. Multiple previous TB treatment episodes and multiple treatment interruptions were risk factors for both drug-resistant and multidrug-resistant TB among retreated cases. A total of 53.2% of the patients were infected with a Beijing strain of M tuberculosis. Infection with a Beijing strain was significantly associated with drug resistance among new cases (odds ratio, 1.44; 95% CI, 1.01-2.07). Novel strategies to rapid diagnosis and effective treatment are urgently needed to prevent the development of drug resistance.
Hajimiri, Elahe Sadat; Masoomi, Morteza; Ebrahimzadeh, Nayereh; Fateh, Abolfazl; Hadizadeh Tasbiti, Alireza; Rahimi Jamnani, Fatemeh; Bahrmand, Ahmad Reza; Mirsaeidi, Mehdi; Vaziri, Farzam; Siadat, Seyed Davar
2016-04-01
Recent studies using molecular epidemiological techniques have demonstrated mixed infection with multiple strains of Mycobacterium tuberculosis especially in countries with high tuberculosis (TB) burden. We aimed to determine the prevalence of mixed infection among patients with TB in the capital of Iran as a country with moderate incidence rate. Samples were collected randomly from January 2011 to December 2013 in Tehran, capital of Iran. A total of 75 M. tuberculosis isolates were genotyped by 24 loci mycobacterial interspersed repetitive unit-variable number tandem repeat typing (MIRU-VNTR) for screening the mixed infection. Twenty patients (20/75) were identified with mixed infection, and the estimated rate of mixed infection was 26.6%. Thirteen out of the 24 loci were able to detect the mixed infection in our study. Mixed infections occur at high prevalence among studied Iranian TB patients. Further research is inevitable to evaluate the association of mixed infection and disease progression and treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jiang, Haiqin; Jin, Yali; Vissa, Varalakshmi; Zhang, Liangfen; Liu, Weijun; Qin, Lianhua; Wan, Kanglin; Wu, Xiaocui; Wang, Hongsheng; Liu, Weida; Wang, Baoxi
2017-04-06
Cutaneous tuberculosis (CTB) is probably underreported due to difficulties in detection and diagnosis. To address this issue, genotypes of Mycobacterium tuberculosis strains isolated from 30 patients with CTB were mapped at multiple loci, namely, RD105 deletions, spacer oligonucleotides, and Mycobacterial Interspersed Repetitive Unit-Variable Number Tandem Repeats (MIRU-VNTRs). Fifty-eight strains of pulmonary tuberculosis (PTB) were mapped as experimental controls. Drug resistance-associated gene mutations were determined by amplicon sequencing of target regions within 7 genes. Beijing family isolates were the most prevalent strains in CTB and PTB. MIRU-VNTR typing separated the Beijing strains from the non-Beijing strains, and the majority of CTB could be separated from PTB counterparts. Drug resistance determining regions showed only one CTB strain expressing isomazid resistance. Thus, while the CTB strains belonged to the same phylogenetic lineages and sub-lineages as the PTB strains, they differed at the level of several MIRU-VNTRs and in the proportion of drug resistance.
Genetic markers, genotyping methods & next generation sequencing in Mycobacterium tuberculosis
Desikan, Srinidhi; Narayanan, Sujatha
2015-01-01
Molecular epidemiology (ME) is one of the main areas in tuberculosis research which is widely used to study the transmission epidemics and outbreaks of tubercle bacilli. It exploits the presence of various polymorphisms in the genome of the bacteria that can be widely used as genetic markers. Many DNA typing methods apply these genetic markers to differentiate various strains and to study the evolutionary relationships between them. The three widely used genotyping tools to differentiate Mycobacterium tuberculosis strains are IS6110 restriction fragment length polymorphism (RFLP), spacer oligotyping (Spoligotyping), and mycobacterial interspersed repeat units - variable number of tandem repeats (MIRU-VNTR). A new prospect towards ME was introduced with the development of whole genome sequencing (WGS) and the next generation sequencing (NGS) methods, where the entire genome is sequenced that not only helps in pointing out minute differences between the various sequences but also saves time and the cost. NGS is also found to be useful in identifying single nucleotide polymorphisms (SNPs), comparative genomics and also various aspects about transmission dynamics. These techniques enable the identification of mycobacterial strains and also facilitate the study of their phylogenetic and evolutionary traits. PMID:26205019
Faccini, M; Cantoni, S; Ciconali, G; Filipponi, M T; Mainardi, G; Marino, A F; Senatore, S; Codecasa, L R; Ferrarese, M; Gesu, G; Mazzola, E; Filia, A
2015-10-01
A contact investigation following a case of infectious tuberculosis (TB) reported in a call centre in Milan (Italy) led to the identification of three additional cases that had occurred in employees of the same workplace during the previous 5 years, one of whom was the probable source case. Thirty-three latent infections were also identified. At the time of diagnosis, the source case, because of fear of stigma related to TB, claimed to be unemployed and a contact investigation was not performed in the workplace. Cases were linked through genotyping of Mycobacterium tuberculosis. TB stigma has been described frequently, mainly in high-incidence settings, and is known to influence health-seeking behaviours and treatment adherence. The findings in this report highlight that TB-associated stigma may also lead to incomplete contact investigations. Little is known about the causes and impact of TB-related stigma in low-incidence countries and this warrants further exploration. Research is also needed to evaluate the effectiveness of specific interviewing techniques and training interventions for staff in reducing feelings of stigma in TB patients. Finally, the outbreak emphasizes the importance of integrating routine contact investigations with genotyping.
Tuberculosis among the homeless, United States, 1994–2010
Bamrah, S.; Yelk Woodruff, R. S.; Powell, K.; Ghosh, S.; Kammerer, J. S.; Haddad, M. B.
2016-01-01
SUMMARY OBJECTIVES 1) To describe homeless persons diagnosed with tuberculosis (TB) during the period 1994–2010, and 2) to estimate a TB incidence rate among homeless persons in the United States. METHODS TB cases reported to the National Tuberculosis Surveillance System were analyzed by origin of birth. Incidence rates were calculated using the US Department of Housing and Urban Development homeless population estimates. Analysis of genotyping results identified clustering as a marker for transmission among homeless TB patients. RESULTS Of 270 948 reported TB cases, 16 527 (6%) were homeless. The TB incidence rate among homeless persons ranged from 36 to 47 cases per 100 000 population in 2006–2010. Homeless TB patients had over twice the odds of not completing treatment and of belonging to a genotype cluster. US- and foreign-born homeless TB patients had respectively 8 and 12 times the odds of substance abuse. CONCLUSIONS Compared to the general population, homeless persons had an approximately 10-fold increase in TB incidence, were less likely to complete treatment and more likely to abuse substances. Public health outreach should target homeless populations to reduce the excess burden of TB in this population. PMID:24125444
Molecular epidemiology and evolutionary genetics of Mycobacterium tuberculosis in Taipei.
Dou, Horng-Yunn; Tseng, Fan-Chen; Lin, Chih-Wei; Chang, Jia-Ru; Sun, Jun-Ren; Tsai, Wen-Shing; Lee, Shi-Yi; Su, Ih-Jen; Lu, Jang-Jih
2008-12-22
The control of tuberculosis in densely populated cities is complicated by close human-to-human contacts and potential transmission of pathogens from multiple sources. We conducted a molecular epidemiologic analysis of 356 Mycobacterium tuberculosis (MTB) isolates from patients presenting pulmonary tuberculosis in metropolitan Taipei. Classical antibiogram studies and genetic characterization, using mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing and spoligotyping, were applied after culture. A total of 356 isolates were genotyped by standard spoligotyping and the strains were compared with in the international spoligotyping database (SpolDB4). All isolates were also categorized using the 15 loci MIRU-VNTR typing method and combin with NTF locus and RD deletion analyses. Of 356 isolates spoligotyped, 290 (81.4%) displayed known spoligotypes and 66 were not identified in the database. Major spoligotypes found were Beijing lineages (52.5%), followed by Haarlem lineages (13.5%) and EAI plus EAI-like lineages (11%). When MIRU-VNTR was employed, 140 patterns were identified, including 36 clusters by 252 isolates and 104 unique patterns, and the largest cluster comprised 95 isolates from the Beijing family. The combination of spoligotyping and MIRU-VNTR revealed that 236 (67%) of the 356 isolates were clustered in 43 genotypes. Strains of the Beijing family was more likely to be of modern strain and a higher percentage of multiple drug resistance than other families combined (P = 0.08). Patients infected with Beijing strains were younger than those with other strains (mean 58.7 vs. 64.2, p = 0.02). Moreover, 85.3% of infected persons younger than 25 years had Beijing modern strain, suggesting a possible recent spread in the young population by this family of TB strain in Taipei. Our data on MTB genotype in Taipei suggest that MTB infection has not been optimally controlled. Control efforts should be reinforced in view of the high prevalence of the Beijing strain in young population and association with drug resistance.
Molecular epidemiology and evolutionary genetics of Mycobacterium tuberculosis in Taipei
Dou, Horng-Yunn; Tseng, Fan-Chen; Lin, Chih-Wei; Chang, Jia-Ru; Sun, Jun-Ren; Tsai, Wen-Shing; Lee, Shi-Yi; Su, Ih-Jen; Lu, Jang-Jih
2008-01-01
Background The control of tuberculosis in densely populated cities is complicated by close human-to-human contacts and potential transmission of pathogens from multiple sources. We conducted a molecular epidemiologic analysis of 356 Mycobacterium tuberculosis (MTB) isolates from patients presenting pulmonary tuberculosis in metropolitan Taipei. Classical antibiogram studies and genetic characterization, using mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing and spoligotyping, were applied after culture. Methods A total of 356 isolates were genotyped by standard spoligotyping and the strains were compared with in the international spoligotyping database (SpolDB4). All isolates were also categorized using the 15 loci MIRU-VNTR typing method and combin with NTF locus and RD deletion analyses. Results Of 356 isolates spoligotyped, 290 (81.4%) displayed known spoligotypes and 66 were not identified in the database. Major spoligotypes found were Beijing lineages (52.5%), followed by Haarlem lineages (13.5%) and EAI plus EAI-like lineages (11%). When MIRU-VNTR was employed, 140 patterns were identified, including 36 clusters by 252 isolates and 104 unique patterns, and the largest cluster comprised 95 isolates from the Beijing family. The combination of spoligotyping and MIRU-VNTR revealed that 236 (67%) of the 356 isolates were clustered in 43 genotypes. Strains of the Beijing family was more likely to be of modern strain and a higher percentage of multiple drug resistance than other families combined (P = 0.08). Patients infected with Beijing strains were younger than those with other strains (mean 58.7 vs. 64.2, p = 0.02). Moreover, 85.3% of infected persons younger than 25 years had Beijing modern strain, suggesting a possible recent spread in the young population by this family of TB strain in Taipei. Conclusion Our data on MTB genotype in Taipei suggest that MTB infection has not been optimally controlled. Control efforts should be reinforced in view of the high prevalence of the Beijing strain in young population and association with drug resistance. PMID:19102768
Gelfond, Jon; Johnson-Pais, Teresa L.; Engle, Melissa; Peloquin, Charles A.; Johnson, John L.; Sizemore, Erin E.; Mac Kenzie, William R.
2018-01-01
ABSTRACT Moxifloxacin exhibits concentration-dependent prolongation of human QTc intervals and bactericidal activity against Mycobacterium tuberculosis. However, moxifloxacin plasma concentrations are variable between patients. We evaluated whether human gene polymorphisms affect moxifloxacin plasma concentrations in tuberculosis patients from two geographic regions. We enrolled a convenience sample of 49 adults with drug-sensitive pulmonary tuberculosis from Africa and the United States enrolled in two treatment trials of moxifloxacin as part of multidrug therapy. Pharmacokinetic parameters were evaluated by noncompartmental techniques. Human single-nucleotide polymorphisms of transporter genes were evaluated by analysis of covariance (ANCOVA) on moxifloxacin exposure and the peak (maximum) concentration (Cmax). The moxifloxacin area under the concentration-time curve from 0 to 24 h (AUC0–24) and Cmax were significantly increased by the drug milligram-per-kilogram dosage and the genotype of variant g.−11187G>A in the SLCO1B1 gene (rs4149015) but not by geographic region. The median moxifloxacin AUC0–24 was 46% higher and the median Cmax was 30% higher in 4 (8%) participants who had the SLCO1B1 g.−11187 AG genotype than in 45 participants who had the wild-type GG genotype (median AUC0–24 from the model, 34.4 versus 23.6 μg · h/ml [P = 0.005, ANCOVA]; median Cmax from the model, 3.5 versus 2.7 μg/ml [P = 0.009, ANCOVA]). Because moxifloxacin exhibits concentration-dependent prolongation of human QTc intervals and prolonged QTc intervals are associated with cardiac arrhythmia, further study is needed to evaluate the risk associated with the SLCO1B1 g.−11187G>A variant. (This study has been registered at ClinicalTrials.gov under identifier NCT00164463.) PMID:29463526
Martins, Maria Conceição; Giampaglia, Carmen M Saraiva; Oliveira, Rosângela S; Simonsen, Vera; Latrilha, Fábio Oliveira; Moniz, Letícia Lisboa; Couvin, David; Rastogi, Nalin; Ferrazoli, Lucilaine
2013-03-01
São Paulo is the most populous Brazilian state and reports the largest number of tuberculosis cases in the country annually (over 18,500). This study included 193 isolates obtained during the 2nd Nationwide Survey on Mycobacterium tuberculosis Drug Resistance that was conducted in São Paulo state and 547 isolates from a laboratory based study of drug resistance that were analyzed by the Mycobacteria Reference Laboratory at the Institute Adolfo Lutz. Both studies were conducted from 2006 to 2008 and sought to determine the genetic diversity and pattern of drug resistance of M. tuberculosis isolates (MTC) circulating in São Paulo. The patterns obtained from the spoligotyping analysis demonstrated that 51/740 (6.9%) of the isolates corresponded to orphan patterns and that 689 (93.1%) of the isolates distributed into 144 shared types, including 119 that matched a preexisting shared type in the SITVIT2 database and 25 that were new isolates. A total of 77/144 patterns corresponded to unique isolates, while the remaining 67 corresponded to clustered patterns (n=612 isolates clustered into groups of 2-84 isolates each). The evolutionarily ancient PGG1 lineages (Beijing, CAS1-DEL, EAI3-IND, and PINI2) were rarely detected in São Paulo and comprised only 13/740, or 1.76%, of the total isolates; all of the remaining 727/740, or 98.24%, of the MTC isolates from São Paulo state were from the recent PGG2/3 evolutionary isolates belonging to the LAM, T, S, X, and Haarlem lineages, i.e., the Euro-American group. This study provides the first overview of circulating genotypes of M. tuberculosis in São Paulo state and demonstrates that the clustered shared types containing seven or more M. tuberculosis isolates that are spread in São Paulo state included both resistant and susceptible isolates. Copyright © 2012 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Mycobacterium tuberculosis and Mycobacterium bovis are responsible for tuberculosis in humans or animals, respectively. Both species are closely related and belong to the Mycobacterium tuberculosis complex (MTC). M. tuberculosis is the most ancient species from which M. bovis and the other members o...
Hong, M-S; Kim, Y; Cho, E-J; Lee, J-S; Kwak, H-K; Kim, J-H; Kim, C-T; Cho, J-S; Park, S-K; Jeon, D; Choi, Y-I; Lee, H; Eum, S-Y
2017-11-01
Mycobacterium tuberculosis (Mtb) in sputum originates from lung cavities in tuberculosis (TB) patients. But drug susceptibility testing (DST) of sputum Mtb can not be conducted the same as in the lung because mutagenesis of bacilli may be happening in the lung during treatment and result in the possibility of the presence of heterogeneous drug-resistant subpopulations in the different lung lesions. This could be one of the reasons for low cure rates for multi-drug resistant (MDR)-TB. We studied the resected lungs of nine surgery patients with chronic TB. The isolates isolated from the sputum and different lung lesions of each patient were tested for phenotypic DST and genotyped using restriction fragment length polymorphism (RFLP) typing method. Genetic analysis to resistance to first and second line drugs was also performed. Five of nine patients were MDR-TB and three XDR-TB. DST results for ten anti-TB drugs were in accordance among different lung lesions in eight patients. However, only three of these eight patients showed the concordance of DST with sputum. Even though the isolates were heteroresistant, genotyping them by RFLP showed the clonal population in each individual patient. Six of eight followed-up patients achieved successful cure. In conclusion, the heteroresistance between sputum and lung lesions and a clonal population without mixed infection might provide useful information in establishing treatment regimen and surgery decision for MDR- and XDR-TB.
Mycobacterium bovis and Other Uncommon Members of the Mycobacterium tuberculosis Complex.
Esteban, Jaime; Muñoz-Egea, Maria-Carmen
2016-12-01
Since its discovery by Theobald Smith, Mycobacterium bovis has been a human pathogen closely related to animal disease. At present, M. bovis tuberculosis is still a problem of importance in many countries and is considered the main cause of zoonotic tuberculosis throughout the world. Recent development of molecular epidemiological tools has helped us to improve our knowledge about transmission patterns of this organism, which causes a disease indistinguishable from that caused by Mycobacterium tuberculosis. Diagnosis and treatment of this mycobacterium are similar to those for conventional tuberculosis, with the important exceptions of constitutive resistance to pyrazinamide and the fact that multidrug-resistant and extremely drug-resistant M. bovis strains have been described. Among other members of this complex, Mycobacterium africanum is the cause of many cases of tuberculosis in West Africa and can be found in other areas mainly in association with immigration. M. bovis BCG is the currently available vaccine for tuberculosis, but it can cause disease in some patients. Other members of the M. tuberculosis complex are mainly animal pathogens with only exceptional cases of human disease, and there are even some strains, like "Mycobacterium canettii," which is a rare human pathogen that could have an important role in the knowledge of the evolution of tuberculosis in the history.
Fanosie, Alemu; Gelaw, Baye; Tessema, Belay; Tesfay, Wogahta; Admasu, Aschalew; Yitayew, Gashaw
2016-01-01
Background Extrapulmonary Tuberculosis (EPTB) and Human Immunodeficiency Virus (HIV) infection are interrelated as a result of immune depression. The aim of this study was to determine the prevalence of Mycobacterium tuberculosis complex isolates and the burden of HIV co-infection among EPTB suspected patients. Method An institution based cross-sectional study was conducted among EPTB suspected patients at the University of Gondar Hospital. Socio-demographic characteristics and other clinical data were collected using a pretested questionnaire. GeneXpert MTB/RIF assay was performed to diagnosis Mycobacterium tuberculosis complex and Rifampicin resistance. All samples were also investigated by cytology and culture. The HIV statuses of all patients were screened initially by KHB, and all positive cases were further re-tested by STAT-pack. Data was analyzed using SPSS version 20 computer software and a P-value of < 0.05 was taken as statistically significant. Results A total of 141 extrapulmonary suspected patients were enrolled in this study. The overall prevalence of culture confirmed extrapulmonary tuberculosis infection was 29.8%, but the GeneXpert result showed a 26.2% prevalence of Mycobacterium tuberculosis complex infection. The 78.4% prevalence of extrapulmonary tuberculosis infection was found to be higher among the adult population. The prevalence of HIV infection among EPTB suspected patients was 14.1%, while it was 32.4% among GeneXpert-confirmed extrapulmonary TB cases (12/37). Tuberculosis lymphadenitis was the predominant (78.4%) type of EPTB infection followed by tuberculosis cold abscess (10.7%). Adult hood, previous history of contact with known pulmonary tuberculosis patients, and HIV co-infection showed a statistically significant association with extrapulmonary tuberculosis infection (P<0.013). Conclusion The prevalence of culture confirmed-EPTB infection was high, and a higher EPTB-HIV co-infection was also observed. PMID:26950547
Manning, Thomas; Mikula, Rachel; Wylie, Greg; Phillips, Dennis; Jarvis, Jackie; Zhang, Fengli
2015-02-01
The bacterium responsible for tuberculosis is increasing its resistance to antibiotics resulting in new multidrug-resistant Mycobacterium tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). In this study, several analytical techniques including NMR, FT-ICR, MALDI-MS, LC-MS and UV/Vis are used to study the copper-Rifampicin-Polyethylene glycol (PEG-3350) complex. The copper (II) cation is a carrier for the antibiotic Rifampicin as well as nutrients for the bacterium. The NIH-NIAID cell line containing several Tb strains (including antibiotic resistant strains) is tested against seven copper-PEG-RIF complex variations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Admixed Phylogenetic Distribution of Drug Resistant Mycobacterium tuberculosis in Saudi Arabia
Varghese, Bright; Supply, Philip; Allix-Béguec, Caroline; Shoukri, Mohammed; Al-Omari, Ruba; Herbawi, Mais; Al-Hajoj, Sahal
2013-01-01
Background The phylogeographical structure of Mycobacterium tuberculosis is generally bimodal in low tuberculosis (TB) incidence countries, where genetic lineages of the isolates generally differ with little strain clustering between autochthonous and foreign-born TB patients. However, less is known on this structure in Saudi Arabia—the most important hub of human migration as it hosts a total population of expatriates and pilgrims from all over the world which is equal to that of its citizens. Methodology We explored the mycobacterial phylogenetic structure and strain molecular clustering in Saudi Arabia by genotyping 322 drug-resistant clinical isolates collected over a 12-month period in a national drug surveillance survey, using 24 locus-based MIRU-VNTR typing and spoligotyping. Principal Findings In contrast to the cosmopolitan population of the country, almost all the known phylogeographic lineages of M. tuberculosis complex (with noticeable exception of Mycobacterium africanum/West-African 1 and 2) were detected, with Delhi/CAS (21.1%), EAI (11.2%), Beijing (11.2%) and main branches of the Euro-American super-lineage such as Ghana (14.9%), Haarlem (10.6%) and Cameroon (7.8%) being represented. Statistically significant associations of strain lineages were observed with poly-drug resistance and multi drug resistance especially among previously treated cases (p value of < = 0.001 for both types of resistance), with relative over-representation of Beijing strains in the latter category. However, there was no significant difference among Saudi and non-Saudi TB patients regarding distribution of phylogenetic lineages (p = 0.311). Moreover, 59.5% (22/37) of the strain molecular clusters were shared between the Saudi born and immigrant TB patients. Conclusions Specific distribution of M. tuberculosis phylogeographic lineages is not observed between the autochthonous and foreign-born populations. These observations might reflect both socially favored ongoing TB transmission between the two population groups, and historically deep-rooted, prolonged contacts and trade relations of the peninsula with other world regions. More vigorous surveillance and strict adherence to tuberculosis control policies are urgently needed in the country. PMID:23383340
Luo, Tao; Comas, Iñaki; Luo, Dan; Lu, Bing; Wu, Jie; Wei, Lanhai; Yang, Chongguang; Liu, Qingyun; Gan, Mingyu; Sun, Gang; Shen, Xin; Liu, Feiying; Gagneux, Sebastien; Mei, Jian; Lan, Rushu; Wan, Kanglin; Gao, Qian
2015-01-01
The Beijing family is the most successful genotype of Mycobacterium tuberculosis and responsible for more than a quarter of the global tuberculosis epidemic. As the predominant genotype in East Asia, the Beijing family has been emerging in various areas of the world and is often associated with disease outbreaks and antibiotic resistance. Revealing the origin and historical dissemination of this strain family is important for understanding its current global success. Here we characterized the global diversity of this family based on whole-genome sequences of 358 Beijing strains. We show that the Beijing strains endemic in East Asia are genetically diverse, whereas the globally emerging strains mostly belong to a more homogenous subtype known as “modern” Beijing. Phylogeographic and coalescent analyses indicate that the Beijing family most likely emerged around 30,000 y ago in southern East Asia, and accompanied the early colonization by modern humans in this area. By combining the genomic data and genotyping result of 1,793 strains from across China, we found the “modern” Beijing sublineage experienced massive expansions in northern China during the Neolithic era and subsequently spread to other regions following the migration of Han Chinese. Our results support a parallel evolution of the Beijing family and modern humans in East Asia. The dominance of the “modern” Beijing sublineage in East Asia and its recent global emergence are most likely driven by its hypervirulence, which might reflect adaption to increased human population densities linked to the agricultural transition in northern China. PMID:26080405
USDA-ARS?s Scientific Manuscript database
Tuberculosis (TB) in animals and humans may result from exposure to bacilli within the Mycobacterium tuberculosis complex (i.e., M. tuberculosis, M. bovis, M. africanum, M. pinnipedii, M. microti, M. caprae, or M. canetti). Mycobacterium bovis is the species most often isolated from tuberculous catt...
USDA-ARS?s Scientific Manuscript database
Tuberculosis (TB) in animals and humans may result from exposure to bacilli within the Mycobacterium tuberculosis complex (i.e., M. tuberculosis, M. bovis, M. africanum, M. pinnipedii, M. microti, M. caprae, or M. canetti) . Mycobacterium bovis is the species most often isolated from tuberculous cat...
Dudley, Matthew Z; Sheen, Patricia; Gilman, Robert H; Ticona, Eduardo; Friedland, Jon S; Kirwan, Daniela E; Caviedes, Luz; Rodriguez, Richard; Cabrera, Lilia Z; Coronel, Jorge; Grandjean, Louis; Moore, David A J; Evans, Carlton A; Huaroto, Luz; Chávez-Pérez, Víctor; Zimic, Mirko
2016-12-07
Hospital infection control measures are crucial to tuberculosis (TB) control strategies within settings caring for human immunodeficiency virus (HIV)-positive patients, as these patients are at heightened risk of developing TB. Pyrazinamide (PZA) is a potent drug that effectively sterilizes persistent Mycobacterium tuberculosis bacilli. However, PZA resistance associated with mutations in the nicotinamidase/pyrazinamidase coding gene, pncA, is increasing. A total of 794 patient isolates obtained from four sites in Lima, Peru, underwent spoligotyping and drug resistance testing. In one of these sites, the HIV unit of Hospital Dos de Mayo (HDM), an isolation ward for HIV/TB coinfected patients opened during the study as an infection control intervention: circulating genotypes and drug resistance pre- and postintervention were compared. All other sites cared for HIV-negative outpatients: genotypes and drug resistance rates from these sites were compared with those from HDM. HDM patients showed high concordance between multidrug resistance, PZA resistance according to the Wayne method, the two most common genotypes (spoligotype international type [SIT] 42 of the Latino American-Mediterranean (LAM)-9 clade and SIT 53 of the T1 clade), and the two most common pncA mutations (G145A and A403C). These associations were absent among community isolates. The infection control intervention was associated with 58-92% reductions in TB caused by SIT 42 or SIT 53 genotypes (odds ratio [OR] = 0.420, P = 0.003); multidrug-resistant TB (OR = 0.349, P < 0.001); and PZA-resistant TB (OR = 0.076, P < 0.001). In conclusion, pncA mutation typing, with resistance testing and spoligotyping, was useful in identifying a nosocomial TB outbreak and demonstrating its resolution after implementation of infection control measures. © The American Society of Tropical Medicine and Hygiene.
Bravo, Lulette Tricia C.; Tuohy, Marion J.; Ang, Concepcion; Destura, Raul V.; Mendoza, Myrna; Procop, Gary W.; Gordon, Steven M.; Hall, Geraldine S.; Shrestha, Nabin K.
2009-01-01
After isoniazid and rifampin (rifampicin), the next pivotal drug class in Mycobacterium tuberculosis treatment is the fluoroquinolone class. Mutations in resistance-determining regions (RDR) of the rpoB, katG, and gyrA genes occur with frequencies of 97%, 50%, and 85% among M. tuberculosis isolates resistant to rifampin, isoniazid, and fluoroquinolones, respectively. Sequences are highly conserved, and certain mutations correlate well with phenotypic resistance. We developed a pyrosequencing assay to determine M. tuberculosis genotypic resistance to rifampin, isoniazid, and fluoroquinolones. We characterized 102 M. tuberculosis clinical isolates from the Philippines for susceptibility to rifampin, isoniazid, and ofloxacin by using the conventional submerged-disk proportion method and validated our pyrosequencing assay using these isolates. DNA was extracted and amplified by using PCR primers directed toward the RDR of the rpoB, katG, and gyrA genes, and pyrosequencing was performed on the extracts. The M. tuberculosis H37Rv strain (ATCC 25618) was used as the reference strain. The sensitivities and specificities of pyrosequencing were 96.7% and 97.3%, 63.8% and 100%, and 70.0% and 100% for the detection of resistance to rifampin, isoniazid, and ofloxacin, respectively. Pyrosequencing is thus a rapid and accurate method for detecting M. tuberculosis resistance to these three drugs. PMID:19846642
Manning, Thomas; Plummer, Sydney; Baker, Tess; Wylie, Greg; Clingenpeel, Amy C; Phillips, Dennis
2015-10-15
The bacterium responsible for causing tuberculosis has evolved resistance to antibiotics used to treat the disease, resulting in new multidrug resistant Mycobacterium tuberculosis (MDR-TB) and extensively drug resistant M. tuberculosis (XDR-TB) strains. Analytical techniques (1)H and (13)C Nuclear Magnetic Resonance (NMR), Fourier Transform-Ion Cyclotron Resonance with Electrospray Ionization (FT-ICR/ESI), and Matrix Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-TOF-MS) were used to study different aspects of the Cu(II)-polyethylene glycol (PEG-3350)-sucrose-isoniazid and Cu(II)-polyethylene glycol (PEG3350)-glucose-isoniazid complexes. The Cu(II) cation, sucrose or glucose, and the aggregate formed by PEG primarily serve as a composite drug delivery agent for the frontline antibiotic, however the improvement in MIC values produced with the CU-PEG-SUC-INH complex suggest an additional effect. Several Cu-PEG-SUC-INH complex variations were tested against INH resistant and nonresistant strains of M. tuberculosis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Florea, Dragoş; Oţelea, Dan; Olaru, Ioana D.; Hristea, Adriana
2016-01-01
Background The need to limit the spread of drug-resistant Mycobacterium tuberculosis requires rapid detection of resistant strains. The present study aimed to evaluate a commercial assay using broad-range PCR coupled with electrospray ionization mass spectrometry (PCR/ESI-MS) for the rapid detection of isoniazid (INH) and rifampin (RIF) resistance in M. tuberculosis strains isolated from Romanian patients with pulmonary tuberculosis. Methods PCR/ESI-MS was used to detect genotypic resistance to RIF and INH in a panel of 63 M. tuberculosis isolates phenotypically characterized using the absolute concentration method on Löwenstein-Jensen medium. Results Thirty-eight (60%) strains were susceptible to both drugs, 22 (35%) were RIF and INH resistant, one was INH mono-resistant and two were RIF mono-resistant. The sensitivity for INH and RIF resistance mutations detection were 100% and 92% respectively, with a specificity of more than 95% for each drug. Conclusion PCR/ESI-MS is a good method for the detection of RIF and INH resistance and might represent an alternative to other rapid diagnostic tests for the detection of genetic markers of resistance in M. tuberculosis isolates. PMID:27019827
Morcillo, N; Zumarraga, M; Imperiale, B; Di Giulio, B; Chirico, C; Kuriger, A; Alito, A; Kremer, K; Cataldi, A
2007-01-01
In 2003, the incidence of tuberculosis in Argentina showed an increase compared to 2002. The severe national crisis at the end of the 90s has probably strongly contributed to this situation. The goal of this work was to estimate the extent of the spread of the most predominant Mycobacterium tuberculosis strains and to assess the spread of predominant M. tuberculosis clusters as determined by spoligotyping and IS6110 RFLP. The study involved 590 pulmonary, smear-positive TB cases receiving medical attention at health centers and hospitals in Northern Buenos Aires (NBA) suburbs, from October 2001 to December 2002. From a total of 208 clinical isolates belonging to 6 major clusters, 63 (30.2%) isolates had identical spoligotyping and IS6110 RFLP pattern. Only 22.2% were shown to have epidemiological connections with another member of their respective cluster. In these major clusters, 30.2% of the 208 TB cases studied by both molecular techniques and contact tracing could be convincingly attributable to a recently acquired infection. This knowledge may be useful to assess the clonal distribution of predominant M. tuberculosis clusters in Argentina, which may make an impact on TB control strategies.
Detection and Characteristics of Rifampicin-Resistant Isolates of Mycobacterium tuberculosis.
Cherednichenko, A G; Dymova, M A; Solodilova, O A; Petrenko, T I; Prozorov, A I; Filipenko, M L
2016-03-01
Genotyping and analysis the drug resistance of 59 isolates of M. tuberculosis obtained from patients living in Altai Territory were performed using a BACTEC MGIT 960 fluorometric system by means of VNTR typing (variable number tandem repeat), PCR-RFLP analysis, and sequence analysis. The occurrence frequency was highest for isolates of the Beijing family (n=30, 50.8%). Analysis of mutation spectrum in the rpoB gene associated with rifampicin resistance revealed the major mutation (codon 531 of the rpoB gene) in 93% samples, which allows us to use rapid test systems.
Reddington, Kate; O'Grady, Justin; Dorai-Raj, Siobhan; Maher, Majella; van Soolingen, Dick; Barry, Thomas
2011-01-01
Tuberculosis (TB) in humans is caused by members of the Mycobacterium tuberculosis complex (MTC). Rapid detection of the MTC is necessary for the timely initiation of antibiotic treatment, while differentiation between members of the complex may be important to guide the appropriate antibiotic treatment and provide epidemiological information. In this study, a multiplex real-time PCR diagnostics assay using novel molecular targets was designed to identify the MTC while simultaneously differentiating between M. tuberculosis and M. canettii. The lepA gene was targeted for the detection of members of the MTC, the wbbl1 gene was used for the differentiation of M. tuberculosis and M. canettii from the remainder of the complex, and a unique region of the M. canettii genome, a possible novel region of difference (RD), was targeted for the specific identification of M. canettii. The multiplex real-time PCR assay was tested using 125 bacterial strains (64 MTC isolates, 44 nontuberculosis mycobacteria [NTM], and 17 other bacteria). The assay was determined to be 100% specific for the mycobacteria tested. Limits of detection of 2.2, 2.17, and 0.73 cell equivalents were determined for M. tuberculosis/M. canettii, the MTC, and M. canettii, respectively, using probit regression analysis. Further validation of this diagnostics assay, using clinical samples, should demonstrate its potential for the rapid, accurate, and sensitive diagnosis of TB caused by M. tuberculosis, M. canettii, and the other members of the MTC. PMID:21123525
Blanco-Guillot, Francles; Delgado-Sánchez, Guadalupe; Mongua-Rodríguez, Norma; Cruz-Hervert, Pablo; Ferreyra-Reyes, Leticia; Ferreira-Guerrero, Elizabeth; Yanes-Lane, Mercedes; Montero-Campos, Rogelio; Bobadilla-del-Valle, Miriam; Torres-González, Pedro; Ponce-de-León, Alfredo; Sifuentes-Osornio, José; Garcia-Garcia, Lourdes
2017-01-01
Introduction Many studies have explored the relationship between diabetes mellitus (DM) and tuberculosis (TB) demonstrating increased risk of TB among patients with DM and poor prognosis of patients suffering from the association of DM/TB. Owing to a paucity of studies addressing this question, it remains unclear whether patients with DM and TB are more likely than TB patients without DM to be grouped into molecular clusters defined according to the genotype of the infecting Mycobacterium tuberculosis bacillus. That is, whether there is convincing molecular epidemiological evidence for TB transmission among DM patients. Objective: We performed a systematic review and meta-analysis to quantitatively evaluate the propensity for patients with DM and pulmonary TB (PTB) to cluster according to the genotype of the infecting M. tuberculosis bacillus. Materials and methods We conducted a systematic search in MEDLINE and LILACS from 1990 to June, 2016 with the following combinations of key words “tuberculosis AND transmission” OR “tuberculosis diabetes mellitus” OR “Mycobacterium tuberculosis molecular epidemiology” OR “RFLP-IS6110” OR “Spoligotyping” OR “MIRU-VNTR”. Studies were included if they met the following criteria: (i) studies based on populations from defined geographical areas; (ii) use of genotyping by IS6110- restriction fragment length polymorphism (RFLP) analysis and spoligotyping or mycobacterial interspersed repetitive unit-variable number of tandem repeats (MIRU-VNTR) or other amplification methods to identify molecular clustering; (iii) genotyping and analysis of 50 or more cases of PTB; (iv) study duration of 11 months or more; (v) identification of quantitative risk factors for molecular clustering including DM; (vi) > 60% coverage of the study population; and (vii) patients with PTB confirmed bacteriologically. The exclusion criteria were: (i) Extrapulmonary TB; (ii) TB caused by nontuberculous mycobacteria; (iii) patients with PTB and HIV; (iv) pediatric PTB patients; (v) TB in closed environments (e.g. prisons, elderly homes, etc.); (vi) diabetes insipidus and (vii) outbreak reports. Hartung-Knapp-Sidik-Jonkman method was used to estimate the odds ratio (OR) of the association between DM with molecular clustering of cases with TB. In order to evaluate the degree of heterogeneity a statistical Q test was done. The publication bias was examined with Begg and Egger tests. Review Manager 5.3.5 CMA v.3 and Biostat and Software package R were used. Results Selection criteria were met by six articles which included 4076 patients with PTB of which 13% had DM. Twenty seven percent of the cases were clustered. The majority of cases (48%) were reported in a study in China with 31% clustering. The highest incidence of TB occurred in two studies from China. The global OR for molecular clustering was 0.84 (IC 95% 0.40–1.72). The heterogeneity between studies was moderate (I2 = 55%, p = 0.05), although there was no publication bias (Beggs test p = 0.353 and Eggers p = 0.429). Conclusion There were very few studies meeting our selection criteria. The wide confidence interval indicates that there is not enough evidence to draw conclusions about the association. Clustering of patients with DM in TB transmission chains should be investigated in areas where both diseases are prevalent and focus on specific contexts. PMID:28902922
Black, Anne T; Hamblion, Esther L; Buttivant, Helen; Anderson, Sarah R; Stone, Madeline; Casali, Nicola; Drobniewski, Francis; Nwoguh, Francisca; Marshall, Ben G; Booth, Linda
2017-07-05
We describe an outbreak that contributed to a near doubling of the incidence of tuberculosis in Southampton, UK. We examine the importance of 24 locus mycobacterial interspersed repetitive unit variable number tandem repeat (MIRU-VNTR) genotyping in its identification and management and the role of whole genome sequencing (WGS) in tracing the spread of the strain. Outbreak cases were defined as those diagnosed between January and December 2011 with indistinguishable 24 locus-MIRU-VNTR genotypes or, cases linked epidemiologically. A cluster questionnaire was administered by TB nurses to identify contacts and social settings. Overall, 25 patients fulfilled the case definition. No cases with this MIRU-VNTR genotype had been detected in the UK previously. Connections were found between all cases through household contacts or social venues including a football club, Internet cafe and barber's shop. Public health actions included extended contact tracing, venue screening and TB awareness-raising. The outbreak resulted in a high rate of transmission and high incidence of clinical disease among contacts. This outbreak illustrates the value of combining active case-finding with prospective MIRU-VNTR genotyping to identify settings to undertake public health action. In addition WGS revealed that the VNTR-defined cluster was a single outbreak and that active TB transmission not reactivation was responsible for this outbreak in non-UK born individuals. © The Author 2017. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Singh, Urvashi Balbir; Arora, Jyoti; Suresh, Naga; Pant, Hema; Rana, Tanu; Sola, Christophe; Rastogi, Nalin; Pande, Jitendra Nath
2007-07-01
Spoligotyping was performed on 540 Mycobacterium tuberculosis isolates in order to evaluate the genetic biodiversity of tubercle bacilli in India. One hundred and forty seven patterns were unique and 393 were grouped in 48 clusters. Comparison with an international spoligotype database showed that the most predominant clades among tuberculosis (TB) isolates were Central Asian (CAS) and East-African Indian (EAI) with shared-types (ST) ST26 and ST11 alone being responsible for 34% of all TB cases. Twenty one (3.8%) isolates belonged to the Beijing genotype. Marked variations were observed among circulating strains, STs belonging to CAS family predominated in the North, whereas the EAI family was more common in the Southern India. TB in India is predominantly caused by strains belonging to the principal genetic group 1 (PGG1), suggesting that most of the TB burden in India may be traced to ancestral clones of the tubercle bacilli. This study gives an insight into the global M. tuberculosis genetic biodiversity in India, the predominant spoligotypes and their impact on disease transmission.
Považan, Anika; Vukelić, Anka; Savković, Tijana; Kurucin, Tatjana
2012-01-01
A new, simple immunochromatographic assay for rapid identification of Mycobacterium tuberculosis complex in liquid cultures has been developed. The principle of the assay is binding of the Mycobacterium tuberculosis complex specific antigen to the monoclonal antibody conjugated on the test strip. The aim of this study is evaluation of the performance of immunochromatographic assay in identification of Mycobacterium tuberculosis complex in primary positive liquid cultures of BacT/Alert automated system. A total of 159 primary positive liquid cultures were tested using the immunochromatographic assay (BD MGIT TBc ID) and the conventional subculture, followed by identification using biochemical tests. Of 159 positive liquid cultures, using the conventional method, Mycobacterium tuberculos is was identified in 119 (74.8%), nontuberculous mycobacteria were found in 4 (2.5%), 14 (8.8%) cultures were contaminated and 22 (13.8%) cultures were found to be negative. Using the immunochromatographic assay, Mycobacterium tuberculosis complex was detected in 118 (74.2%) liquid cultures, and 41 (25.8%) tests were negative. Sensitivity, specificity, positive and negative predictive values of the test were 98.3%; 97.5%; 99.15%; 95.12%, respectively. The value of kappa test was 0.950, and McNemar test was 1.00. The immunochromatographic assay is a simple and rapid test which represents a suitable alternative to the conventional subculture method for the primary identification of Mycobacterium tuberculosis complex in liquid cultures of BacT/Alert automated system. PMID:22364301
Synthesis of biocompatible nanoparticle drug complexes for inhibition of mycobacteria
NASA Astrophysics Data System (ADS)
Bhave, Tejashree; Ghoderao, Prachi; Sanghavi, Sonali; Babrekar, Harshada; Bhoraskar, S. V.; Ganesan, V.; Kulkarni, Anjali
2013-12-01
Tuberculosis (TB) is one of the most critical infectious diseases affecting the world today. Current TB treatment involves six months long daily administration of four oral doses of antibiotics. Due to severe side effects and the long treatment, a patient's adherence is low and this results in relapse of symptoms causing an alarming increase in the prevalence of multi-drug resistant (MDR) TB. Hence, it is imperative to develop a new drug delivery technology wherein these effects can be reduced. Rifampicin (RIF) is one of the widely used anti-tubercular drugs (ATD). The present study discusses the development of biocompatible nanoparticle-RIF complexes with superior inhibitory activity against both Mycobacterium smegmatis (M. smegmatis) and Mycobacterium tuberculosis (M. tuberculosis). Iron oxide nanoparticles (NPs) synthesized by gas phase condensation and NP-RIF complexes were tested against M. smegmatis SN2 strain as well as M. tuberculosis H37Rv laboratory strain. These complexes showed significantly better inhibition of M. smegmatis SN2 strain at a much lower effective concentration (27.5 μg ml-1) as compared to neat RIF (125 μg ml-1). Similarly M. tuberculosis H37Rv laboratory strain was susceptible to both nanoparticle-RIF complex and neat RIF at a minimum inhibitory concentration of 0.22 and 1 μg ml-1, respectively. Further studies are underway to determine the efficacy of NPs-RIF complexes in clinical isolates of M. tuberculosis as well as MDR isolates.
Toyota, Makoto
2012-12-01
To evaluate the various transmission routes of tuberculosis in an outbreak among young adults in order to develop an effective method for contact investigations. We reviewed the records of 21 tuberculosis patients involved in an outbreak of tuberculosis; the records were collected by conventional epidemiological studies. Mycobacterium tuberculosis isolates were genotyped using IS6110-based restriction fragment length polymorphism (RFLP). The index patient was a 26-year-old man whose 32-year-old brother was identified as the source patient of tuberculosis through a contact investigation. Investigation of their contacts led to the identification of 10 tuberculosis patients. Further, 5 more patients with only casual contact with the index or source patients developed tuberculosis 18-25 months after identification of the index patient. The RFLP analysis of strains obtained from these 5 patients as well as the index and source patients revealed an identical pattern. Further, 4 persons, among those who had epidemiological links with some of the above-mentioned 5 patients, developed tuberculosis 22-34 months after identification of the index patient. All 21 patients were relatively young. In total, 15 strains obtained from these patients were sent for the RFLP analysis, all of which showed an identical pattern. The epidemiological links were categorized into a household environment, an entertainment area, a university, a music band, and a construction site. Molecular epidemiology can provide insights into the process of tuberculosis transmission, which may otherwise go unrecognized by conventional contact investigations. Additionally, it can play an important role in identifying places of tuberculosis outbreaks and routes of transmission in a contact investigation.
2013-01-01
Background Tuberculosis (TB) is a major cause of mortality and suffering worldwide, with over 95% of TB deaths occurring in low- and middle-income countries. In recent years, molecular typing methods have been widely used in epidemiological studies to aid the control of TB, but this usage has not been the case with many African countries, including Cameroon. The aims of the present investigation were to identify and evaluate the diversity of the Mycobacterium tuberculosis complex (MTBC) isolates circulating in two ecological zones of Cameroon, seven years after the last studies in the West Region, and after the re-organization of the National TB Control Program (NTBCP). These were expected to shed light also on the transmission of TB in the country. The study was conducted from February to July 2009. During this period, 169 patients with symptomatic disease and with sputum cultures that were positive for MTBC were randomly selected for the study from amongst 964 suspected patients in the savannah mosaic zone (West and North West regions) and the tropical rainforest zone (Central region). After culture and diagnosis, DNA was extracted from each of the MTBC isolates and transported to the BecA-ILRI Hub in Nairobi, Kenya for molecular analysis. Methods Genetic characterization was done by mycobacterial interspersed repetitive unit–variable number tandem repeat typing (MIRU-VNTR) and Spoligotyping. Results Molecular analysis showed that all TB cases reported in this study were caused by infections with Mycobacterium tuberculosis (98.8%) and Mycobacterium africanum (M. africanum) (1.2%) respectively. We did not detect any M. bovis. Comparative analyses using spoligotyping revealed that the majority of isolates belong to major clades of M. tuberculosis: Haarlem (7.6%), Latin American-Mediterranean (34.4%) and T clade (26.7%); the remaining isolates (31.3%) where distributed among the minor clades. The predominant group of isolates (34.4%) corresponded to spoligotype 61, previously described as the “Cameroon family. Further analysis based on MIRU-VNTR profiles had greater resolving power than spoligotyping and defined additional genotypes in the same spoligotype cluster. Conclusion The molecular characterization of MTBC strains from humans in two ecological regions of Cameroon has shown that M. tuberculosis sensu stricto is the predominant agent of TB cases in the zones. Three decades ago, TB was reported to be caused by M. africanum in 56.0% of cases. The present findings are consistent with a major shift in the prevalence of M. tuberculosis in Cameroon. PMID:24028382
Tuberculosis in domestic livestock: pathogenesis, transmission, and vaccination
USDA-ARS?s Scientific Manuscript database
The Mycobacterium tuberculosis complex includes agents such as M. tuberculosis and M. bovis, the cause of tuberculosis in most animals and a zoonotic pathogen. Mycobacterium bovis has one of the broadest host ranges of any pathogen, infecting most mammals, including humans. Models are used to study ...
Perdigão, João; Silva, Hugo; Machado, Diana; Macedo, Rita; Maltez, Fernando; Silva, Carla; Jordao, Luisa; Couto, Isabel; Mallard, Kim; Coll, Francesc; Hill-Cawthorne, Grant A; McNerney, Ruth; Pain, Arnab; Clark, Taane G; Viveiros, Miguel; Portugal, Isabel
2014-11-18
Multidrug- (MDR) and extensively drug resistant (XDR) tuberculosis (TB) presents a challenge to disease control and elimination goals. In Lisbon, Portugal, specific and successful XDR-TB strains have been found in circulation for almost two decades. In the present study we have genotyped and sequenced the genomes of 56 Mycobacterium tuberculosis isolates recovered mostly from Lisbon. The genotyping data revealed three major clusters associated with MDR-TB, two of which are associated with XDR-TB. Whilst the genomic data contributed to elucidate the phylogenetic positioning of circulating MDR-TB strains, showing a high predominance of a single SNP cluster group 5. Furthermore, a genome-wide phylogeny analysis from these strains, together with 19 publicly available genomes of Mycobacterium tuberculosis clinical isolates, revealed two major clades responsible for M/XDR-TB in the region: Lisboa3 and Q1 (LAM).The data presented by this study yielded insights on microevolution and identification of novel compensatory mutations associated with rifampicin resistance in rpoB and rpoC. The screening for other structural variations revealed putative clade-defining variants. One deletion in PPE41, found among Lisboa3 isolates, is proposed to contribute to immune evasion and as a selective advantage. Insertion sequence (IS) mapping has also demonstrated the role of IS6110 as a major driver in mycobacterial evolution by affecting gene integrity and regulation. Globally, this study contributes with novel genome-wide phylogenetic data and has led to the identification of new genomic variants that support the notion of a growing genomic diversity facing both setting and host adaptation.
Martín, Ana; Herranz, Marta; Lirola, Miguel Martínez; Fernández, Rosa Fernández; Bouza, Emilio; García de Viedma, Darío
2008-02-14
The phenomenon of misdiagnosing tuberculosis (TB) by laboratory cross-contamination when culturing Mycobacterium tuberculosis (MTB) has been widely reported and it has an obvious clinical, therapeutic and social impact. The final confirmation of a cross-contamination event requires the molecular identification of the same MTB strain cultured from both the potential source of the contamination and from the false-positive candidate. The molecular tool usually applied in this context is IS6110-RFLP which takes a long time to provide an answer, usually longer than is acceptable for microbiologists and clinicians to make decisions. Our purpose in this study is to evaluate a novel PCR-based method, MIRU-VNTR as an alternative to assure a rapid and optimized analysis of cross-contamination alerts. MIRU-VNTR was prospectively compared with IS6110-RFLP for clarifying 19 alerts of false positivity from other laboratories. MIRU-VNTR highly correlated with IS6110-RFLP, reduced the response time by 27 days and clarified six alerts unresolved by RFLP. Additionally, MIRU-VNTR revealed complex situations such as contamination events involving polyclonal isolates and a false-positive case due to the simultaneous cross-contamination from two independent sources. Unlike standard RFLP-based genotyping, MIRU-VNTR i) could help reduce the impact of a false positive diagnosis of TB, ii) increased the number of events that could be solved and iii) revealed the complexity of some cross-contamination events that could not be dissected by IS6110-RFLP.
de Beer, Jessica L.; Kremer, Kristin; Ködmön, Csaba; Supply, Philip
2012-01-01
Although variable-number tandem-repeat (VNTR) typing has gained recognition as the new standard for the DNA fingerprinting of Mycobacterium tuberculosis complex (MTBC) isolates, external quality control programs have not yet been developed. Therefore, we organized the first multicenter proficiency study on 24-locus VNTR typing. Sets of 30 DNAs of MTBC strains, including 10 duplicate DNA samples, were distributed among 37 participating laboratories in 30 different countries worldwide. Twenty-four laboratories used an in-house-adapted method with fragment sizing by gel electrophoresis or an automated DNA analyzer, nine laboratories used a commercially available kit, and four laboratories used other methods. The intra- and interlaboratory reproducibilities of VNTR typing varied from 0% to 100%, with averages of 72% and 60%, respectively. Twenty of the 37 laboratories failed to amplify particular VNTR loci; if these missing results were ignored, the number of laboratories with 100% interlaboratory reproducibility increased from 1 to 5. The average interlaboratory reproducibility of VNTR typing using a commercial kit was better (88%) than that of in-house-adapted methods using a DNA analyzer (70%) or gel electrophoresis (50%). Eleven laboratories using in-house-adapted manual typing or automated typing scored inter- and intralaboratory reproducibilities of 80% or higher, which suggests that these approaches can be used in a reliable way. In conclusion, this first multicenter study has documented the worldwide quality of VNTR typing of MTBC strains and highlights the importance of international quality control to improve genotyping in the future. PMID:22170917
Tanveer, Mahnaz; Hasan, Zahra; Kanji, Akbar; Hussain, Rabia; Hasan, Rumina
2009-06-01
Pakistan ranks eighth in terms of tuberculosis burden worldwide, with an incidence of 181/100000. The predominant genotypes of Mycobacterium tuberculosis are reported to be the Central Asian strain 1 (CAS1) and Beijing families.Mycobacteriumtuberculosis down-regulates host pro-inflammatory cytokines, which are essential for protection against infection. There is currently little information regarding the interaction of the CAS1 genotype with host cells. We studied the growth rates of CAS1 and Beijing clinical isolates, and their ability to induce cytokines compared with the laboratory reference strain H37Rv. Host responses were studied using a THP-1 monocytic cell line model and an ex vivo whole blood assay. Growth rates of CAS1 and Beijing isolates were significantly lower (P=0.011) compared with H37Rv. All clinical isolates induced significantly lower levels of TNF-alpha secretion (P=0.003) than H37Rv in THP-1 cells and in the whole blood assay of healthy donors (n=8). They also induced lower IFN-gamma secretion in the whole blood assay (P<0.001). A positive correlation was observed between the growth indices (GI) of H37Rv, Beijing and CAS1 strains and the TNF-alpha responses they induced [Pearson's correlation coefficient (R(2)): 0.936, 0.775 and 0.55, respectively], and also between GI and IFN-gamma production (R(2): 0.422, 0.946, 0.674). These findings suggest that reduced growth rate, together with down-modulation of pro-inflammatory cytokines, is a contributory mechanism for the predominance of the CAS genotype.
Solari, Lely; Gutiérrez, Alfonso; Suárez, Carmen; Jave, Oswaldo; Castillo, Edith; Yale, Gloria; Ascencios, Luis; Quispe, Neyda; Valencia, Eddy; Suárez, Víctor
2011-01-01
To evaluate the costs of three methods for the diagnosis of drug susceptibility in tuberculosis, and to compare the cost per case of Multidrug-resistant tuberculosis (MDR TB) diagnosed with these (MODS, GRIESS and Genotype MTBDR plus®) in 4 epidemiologic groups in Peru. In the basis of programmatic figures, we divided the population in 4 groups: new cases from Lima/Callao, new cases from other provinces, previously treated patients from Lima/Callao and previously treated from other provinces. We calculated the costs of each test with the standard methodology of the Ministry of Health, from the perspective of the health system. Finally, we calculated the cost per patient diagnosed with MDR TB for each epidemiologic group. The estimated costs per test for MODS, GRIESS, and Genotype MTBDR plus® were 14.83. 15.51 and 176.41 nuevos soles respectively (the local currency, 1 nuevos sol=0.36 US dollars for August, 2011). The cost per patient diagnosed with GRIESS and MODS was lower than 200 nuevos soles in 3 out of the 4 groups. The costs per diagnosed MDR TB were higher than 2,000 nuevos soles with Genotype MTBDR plus® in the two groups of new patients, and lower than 1,000 nuevos soles in the group of previously treated patients. In high-prevalence groups, like the previously treated patients, the costs per diagnosis of MDR TB with the 3 evaluated tests were low, nevertheless, the costs with the molecular test in the low- prevalence groups were high. The use of the molecular tests must be optimized in high prevalence areas.
Bovine Tuberculosis Vaccine Efficacy Studies: Neonatal Calves and White-tailed Deer
USDA-ARS?s Scientific Manuscript database
Introduction Tuberculosis (TB) in humans and animals may result from exposure to bacilli within the Mycobacterium tuberculosis complex (i.e., M. tuberculosis, M. bovis, M. africanum, M. pinnipedi, M. microti, M. caprae, or M. canetti)(#1). Mycobacterium bovis is the species most often isolated from ...
Bauskenieks, Matiss; Pole, Ilva; Skenders, Girts; Jansone, Inta; Broka, Lonija; Nodieva, Anda; Ozere, Iveta; Kalvisa, Adrija; Ranka, Renate; Baumanis, Viesturs
2015-03-01
Mutations causing resistance to aminoglycosides, such as kanamycin (KAN), amikacin (AMK), and streptomycin, are not completely understood. In this study, polymorphisms of aminoglycoside resistance influencing genes such as rrs, eis, rpsL, and gidB in 41 drug-resistant and 17 pan-sensitive Mycobacterium tuberculosis clinical isolates in Latvia were analyzed. Mutation A1400G in rrs gene was detected in 92% isolates with high resistance level to KAN and diverse MIC level to AMK. Mutations in promoter region of eis were detected in 80% isolates with low-level MIC of KAN. The association of K43R mutation in rpsL gene, a mutation in the rrs gene at position 513, and various polymorphisms in gidB gene with distinct genetic lineages of M. tuberculosis was observed. The results of this study suggest that association of different controversial mutations of M. tuberculosis genes to the drug resistance phenotype should be done in respect to genetic lineages. Copyright © 2015 Elsevier Inc. All rights reserved.
Mahomed, Sharana; Dlamini-Mvelase, Nomonde R; Dlamini, Moses; Mlisana, Koleka
2017-01-01
For the optimal recovery of Mycobacterium tuberculosis from the BACTEC™ Mycobacterium Growth Indicator Tube 960™ system, an incubation period of 42-56 days is recommended by the manufacturer. Due to logistical reasons, it is common practice to follow an incubation period of 42 days. We undertook a retrospective study to document positive Mycobacterium Growth Indicator Tube cultures beyond the 42-day incubation period. In total, 98/110 (89%) were positive for M. tuberculosis complex. This alerted us to M. tuberculosis growth detection failure at 42 days.
Qrafli, Mounia; Amar, Youssef; Bourkadi, Jamaleddine; Ben Amor, Jouda; Iraki, Ghali; Bakri, Youssef; Amzazi, Saaîd; Lahlou, Ouafae; Seghrouchni, Fouad; El Aouad, Rajae; Sadki, Khalid
2014-01-01
Introduction Despite the medical progress in treatment. Tuberculosis (TB) continues to be a serious global health problem. A genome-wide linkage study identified a major susceptibility locus on chromosomal region 8q12-q13 in Moroccan TB patients. The CYP7A1 gene is located in this region and codes for cholesterol 7a-hydroxylase, an enzyme involved in cholesterol catabolism. Methods We selected three SNPs (rs3808607, rs8192875 and rs8192879) and studied their genotype and allele frequencies distribution in patients with pulmonary (PTB) or pleural TB (pTB), and compared them to Healthy Controls (HC). Genotyping of rs8192875 and rs8192879 SNPs was carried out using the Taq Man SNP genotyping Assay while rs3808607 was investigated by PCR-RFLP. Results We reported here for the first time a statistically significant increase in the AA homozygote genotype frequency of rs3808607 in PTB patients compared to HC (p = 0.02, OR = 1.93, 95% CI: 1.93 (1.07;3.49). The increased risk of developing TB was maintained when we combined the groups of patients (PTB-pTB) (p = 0.01, OR= 1.91, 95% CI = (1.07 - 3.42). In contrast, no genetic association was observed between the rs8192875 or rs8192879 polymorphisms and TB. Conclusion Our investigations suggest that rs3808607 may play a role in susceptibility to TB in a Moroccan population. PMID:25360185
Parvaresh, Laila; Crighton, Taryn; Martinez, Elena; Bustamante, Andrea; Chen, Sharon; Sintchenko, Vitali
2018-06-07
The recurrence of tuberculosis (TB) disease in treated patients can serve as a marker of the efficacy of TB control programs. Recurrent disease represents either endogenous reactivation with the same strain of Mycobacterium tuberculosis due to non-compliance or inadequate therapy or exogenous reinfection with a new strain. Genotyping or whole genome sequencing (WGS) of M. tuberculosis isolates from initial and recurrent cases can differentiate between reinfection and reactivation. This study examined cases of recurrent TB in New South Wales, Australia, using genotyping and WGS. Culture-confirmed TB cases diagnosed at least 12 months apart between January 2011 and December 2016 were included. Isolates of M. tuberculosis from patients were compared using 24-locus Mycobacterial Interspersed Repetitive Unit Variable Number Tandem Repeat (MIRU-24) typing and WGS. Eighteen cases of recurrent disease were identified but isolates from only 15 (83%) were available for study. MIRU-24 findings classified 13 (13/15; 87%) as reactivation and two (13%), as reinfection. Sequencing 13 cultivable paired isolates demonstrated 11 reactivations and two reinfections. There was genomic similarity in 10 out of 13 pairs while one case (1/13; 8%) had 12 SNPS differences. Two other cases (2/13;15%) had > 200 SNPs differences and were classified as reinfection. No phenotypic or genomic evidence of drug resistance was observed. TB control programs can achieve consistently low rates of recurrent disease in low incidence settings. WGS of implicated isolates augments the differentiation between reactivation and reinfection and indicates that the majority of recurrences are due to reactivation rather than reinfection. Predominance of reactivation over reinfection indicates high-quality public health practices and a low risk of local transmission. This study was approved by the Western Sydney Local Health District (WSLHD) Human Research Ethics Committee (HREC Ref: AU RED LNR/17/WMEAD/190; SSA Ref: LNR SSA/17/WMEAD/191).
Sinha, Ekata; Biswas, Sanjay K; Mittal, Mayank; Bajaj, Bharat; Singh, Vandana; Arela, Nidhi; Katoch, Vishwa M; Mohanty, Keshar Kunja
2014-08-01
Infection with Mycobacteriumtuberculosis possibly depends on host genetic factors and is thought to be the major cause of differential susceptibility to the disease. In the present study, 205 pulmonary tuberculosis cases and 127 healthy controls were studied for the association of Toll-like Receptor (TLR) variants (TLR1 variants 743A>G and 1805T>G, and TLR6 variant 745 C>T) in north Indian population. The frequency of heterozygous genotypes (AG) in TB cases (0.47) and HCs (0.61), differed significantly (p value = 0.02). The association of AG genotypes in HCs was adjusted for gender as gender was observed to be a confounder and M-H OR was found to be 0.62 (p = 0.044). On categorizing the cases basing on AFB smear positivity, the heterozygous genotypes (AG) was found to be associated with low bacillary load (scanty and 1+) (P = 0.002). No association was observed for either TLR1 1805 T>G or TLR6 745 C>T polymorphism. Level of serum IL6 was found to be significantly higher among healthy controls with TLR1 GG genotype compared to healthy controls with AA (p = 0.035) and AG (p = 0.005) genotypes. Thus, it may be suggested that the heterozygous condition for TLR1 743 A>G provide resistance from the disease. However, in depth study is required to understand the mechanism for possible protective responses. Copyright © 2014 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Juarez-Eusebio, Dulce Maria; Munro-Rojas, Daniela; Muñiz-Salazar, Raquel; Laniado-Laborín, Rafael; Martinez-Guarneros, Jose Armando; Flores-López, Carlos A; Zenteno-Cuevas, Roberto
2017-11-01
Mexico is one of the most important contributors of multidrug resistance tuberculosis (MDR-TB) in Latin-America, however little is known about the molecular characteristics of these strains. For this reason, the objective of this work was to determine the genotype and characterize polymorphisms in genes associated with resistance to rifampicin, isoniazid, and second-line drugs in isolates from two regions of Mexico with high prevalence of drug resistant tuberculosis. Clinical isolates from individuals with confirmed MDR-TB were genotyped using MIRU-VNTR 12 loci. To characterize the polymorphisms in genes associated with resistance to rifampicin, isoniazid and second-line drugs; rpoB, katG, inhA, rrs, eis, gyrA, gyrB and tlyA were sequenced. 22 (41%) of the 54 MDR-TB isolates recovered were from the state of Baja California, while 32 (59%) were from Veracruz. The results show the katGS315T mutation was observed in 20% (11/54) of the isolates, while rpoBS315L was present in 33% (18/54). rrs had three polymorphisms (T1239C, ntA1401C and ntA1401G), gyrB presented no modifications, whereas gyrA showed five (S95T, F60Y, A90V, S91P and P124A), eis two (G-10A and A431G) and tlyA one (insertion at codon 67). Only 20% (11/54) of isolates were confirmed as MDR-TB by sequencing, and no mutations at any of the genes sequenced were observed in 43% (23/54) of the strains. Two isolates were recognized with the proper set of mutations like pre-XDR and one was XDR-TB. Eighteen isolates were classified as orphans and the remaining thirty-six were distributed in fourteen lineages, the most frequent were S (11%), Haarlem (9%), Ghana (9%) and LAM (7%). Out of the fourteen clusters identified, seven included unknown genotypes and nine had lineages. This is one of the most detailed analyses of genotypic characteristics and mutations associated with drug resistance to first and second-line drugs in MDR-TB isolates from Mexico. An important genetic variability and significant discrepancy between phenotypic tests and polymorphisms was observed. Our results set the need to screen additional loci as well as implement a molecular epidemiological surveillance system of MDR-TB in the country. Copyright © 2016 Elsevier B.V. All rights reserved.
Transmission of multidrug-resistant tuberculosis in the USA: a cross-sectional study.
Moonan, Patrick K; Teeter, Larry D; Salcedo, Katya; Ghosh, Smita; Ahuja, Shama D; Flood, Jennifer; Graviss, Edward A
2013-09-01
Multidrug-resistant (MDR) tuberculosis is a potential threat to tuberculosis elimination, but the extent of MDR tuberculosis disease in the USA that is attributable to transmission within the country is unknown. We assessed transmission of MDR tuberculosis and potential contributing factors in the USA. In a cross-sectional study, clinical, demographic, epidemiological, and Mycobacterium tuberculosis genotype data were obtained during routine surveillance of all verified cases of MDR tuberculosis reported from eight states in the USA (California from Jan 1, 2007, to Dec 31, 2009; Texas from Jan 1, 2007, to March 31, 2009; and the states of Colorado, Maryland, Massachusetts, New York, Tennessee, and Washington from Jan 1, 2007 to Dec 31, 2008). In-depth interviews and health-record abstraction were done for all who consented to ascertain potential interpersonal connections. 168 cases of MDR tuberculosis were reported in the eight states during our study period. 92 individuals (55%) consented to in-depth interview. 20 (22%) of these individuals developed MDR tuberculosis as a result of transmission in the USA; a source case was identified for eight of them (9%). 20 individuals (22%) had imported active tuberculosis (ie, culture-confirmed disease within 3 months of entry into the USA). 38 (41%) were deemed to have reactivation of disease, of whom 14 (15%) had a known previous episode of tuberculosis outside the USA. Five individuals (5%) had documented treatment of a previous episode in the USA, and so were deemed to have relapsed. For nine cases (10%), insufficient evidence was available to definitively classify reason for presentation. About a fifth of cases of MDR tuberculosis in the USA can be linked to transmission within the country. Many individuals acquire MDR tuberculosis before entry into the USA. MDR tuberculosis needs to be diagnosed rapidly to reduce potential infectious periods, and clinicians should consider latent tuberculosis infection treatment-tailored to the results of drug susceptibility testing of the putative source case-for exposed individuals. Centers for Disease Control and Prevention. Copyright © 2013 Elsevier Ltd. All rights reserved.
Shen, Chen; Wu, Xi-rong; Jiao, Wei-wei; Sun, Lin; Feng, Wei-xing; Xiao, Jing; Miao, Qing; Liu, Fang; Yin, Qing-qin; Zhang, Chen-guang; Guo, Ya-jie; Shen, A-dong
2013-01-01
A susceptibility locus for tuberculosis, a re-emerging infectious disease throughout the world, was previously discovered to exist on chromosome 11p15. IFITM3 gene encoding for interferon inducible transmembrane protein 3, is located at 11p15. It acts as an effector molecule for interferon-gamma, which is essential for anti-tuberculosis immune response. In order to investigate the association between susceptibility to TB and genetic polymorphisms of the IFITM3 core promoter, a case-control study including 368 TB patients and 794 healthy controls was performed in Han Chinese children in northern China. The rs3888188 polymorphism showed significant association with susceptibility to TB. The rs3888188 G allele, acting recessively, was more frequent in TB patients (95% confidence interval: 1.08-1.56, Bonferroni P-value: 0.039). We further assessed the effect of rs3888188 polymorphism on IFITM3 transcription in vitro. As based on luciferase promoter assays, the promoter activity of haplotypes with rs3888188 G allele was lower than that of haplotypes with rs3888188 T allele. Moreover, peripheral-blood mononuclear cells carrying rs3888188 GG genotype showed a reduced IFITM3 mRNA level compared to cells carrying TT or GT genotype. In conclusion, rs3888188, a functional promoter polymorphism of IFITM3, was identified to influence the risk for pediatric TB in Han Chinese population.
Mandewale, Mustapha C.; Thorat, Bapu; Shelke, Dnyaneshwar; Yamgar, Ramesh
2015-01-01
A new series of quinoline hydrazone derivatives and their metal complexes have been synthesized and their biological properties have been evaluated against Mycobacterium tuberculosis (H37 RV strain). Most of the newly synthesized compounds displayed 100% inhibitory activity at a concentration of 6.25–25 μg/mL, against Mycobacterium tuberculosis. Fluorescence properties of all the synthesized compounds have been studied. PMID:26759537
Rückert, Christian; Nübel, Ulrich; Blom, Jochen; Wirth, Thierry; Jaenicke, Sebastian; Schuback, Sieglinde; Rüsch-Gerdes, Sabine; Supply, Philip; Kalinowski, Jörn; Niemann, Stefan
2013-01-01
Background Understanding Mycobacterium tuberculosis (Mtb) transmission is essential to guide efficient tuberculosis control strategies. Traditional strain typing lacks sufficient discriminatory power to resolve large outbreaks. Here, we tested the potential of using next generation genome sequencing for identification of outbreak-related transmission chains. Methods and Findings During long-term (1997 to 2010) prospective population-based molecular epidemiological surveillance comprising a total of 2,301 patients, we identified a large outbreak caused by an Mtb strain of the Haarlem lineage. The main performance outcome measure of whole genome sequencing (WGS) analyses was the degree of correlation of the WGS analyses with contact tracing data and the spatio-temporal distribution of the outbreak cases. WGS analyses of the 86 isolates revealed 85 single nucleotide polymorphisms (SNPs), subdividing the outbreak into seven genome clusters (two to 24 isolates each), plus 36 unique SNP profiles. WGS results showed that the first outbreak isolates detected in 1997 were falsely clustered by classical genotyping. In 1998, one clone (termed “Hamburg clone”) started expanding, apparently independently from differences in the social environment of early cases. Genome-based clustering patterns were in better accordance with contact tracing data and the geographical distribution of the cases than clustering patterns based on classical genotyping. A maximum of three SNPs were identified in eight confirmed human-to-human transmission chains, involving 31 patients. We estimated the Mtb genome evolutionary rate at 0.4 mutations per genome per year. This rate suggests that Mtb grows in its natural host with a doubling time of approximately 22 h (400 generations per year). Based on the genome variation discovered, emergence of the Hamburg clone was dated back to a period between 1993 and 1997, hence shortly before the discovery of the outbreak through epidemiological surveillance. Conclusions Our findings suggest that WGS is superior to conventional genotyping for Mtb pathogen tracing and investigating micro-epidemics. WGS provides a measure of Mtb genome evolution over time in its natural host context. Please see later in the article for the Editors' Summary PMID:23424287
Characterization of Mycobacterium tuberculosis Complex DNAs from Egyptian Mummies by Spoligotyping
Zink, Albert R.; Sola, Christophe; Reischl, Udo; Grabner, Waltraud; Rastogi, Nalin; Wolf, Hans; Nerlich, Andreas G.
2003-01-01
Bone and soft tissue samples from 85 ancient Egyptian mummies were analyzed for the presence of ancient Mycobacterium tuberculosis complex DNA (aDNA) and further characterized by spoligotyping. The specimens were obtained from individuals from different tomb complexes in Thebes West, Upper Egypt, which were used for upper social class burials between the Middle Kingdom (since ca. 2050 BC) and the Late Period (until ca. 500 BC). A total of 25 samples provided a specific positive signal for the amplification of a 123-bp fragment of the repetitive element IS6110, indicating the presence of M. tuberculosis DNA. Further PCR-based tests for the identification of subspecies failed due to lack of specific amplification products in the historic tissue samples. Of these 25 positive specimens, 12 could be successfully characterized by spoligotyping. The spoligotyping signatures were compared to those in an international database. They all show either an M. tuberculosis or an M. africanum pattern, but none revealed an M. bovis-specific pattern. The results from a Middle Kingdom tomb (used exclusively between ca. 2050 and 1650 BC) suggest that these samples bear an M. africanum-type specific spoligotyping signature. The samples from later periods provided patterns typical for M. tuberculosis. This study clearly demonstrates that spoligotyping can be applied to historic tissue samples. In addition, our results do not support the theory that M. tuberculosis originated from the M. bovis type but, rather, suggest that human M. tuberculosis may have originated from a precursor complex probably related to M. africanum. PMID:12517873
Resolving misassembled cattle immune gene clusters with hierarchical, long read sequencing
USDA-ARS?s Scientific Manuscript database
Animal health is a critical component of productivity; however, current genomic selection genotyping tools have a paucity of genetic markers within key immune gene clusters (IGC) involved in the cattle innate and adaptive immune systems. With diseases such as Bovine Tuberculosis and Johne’s disease ...
USDA-ARS?s Scientific Manuscript database
Mycobacterium bovis (M. bovis) causes tuberculosis in white-tailed deer (WTD). Natural infection of WTD with M. bovis is most closely mimicked by instilling inoculum into palatine tonsilar crypts. One hundred fifty days after intratonsilar inoculation, M. bovis was cultured from 30 tissues originati...
Colvin, C J; Leon, N; Wills, C; van Niekerk, M; Bissell, K; Naidoo, P
2015-11-01
Lack of innovation in diagnostics has contributed to tuberculosis (TB) remaining a global health challenge. It is critical to understand how new diagnostic technologies are translated into policies and how these are implemented. To examine policy transfer for two rapid molecular diagnostic tests, GenoType(®) MDRTBplus and Xpert(®) MTB/RIF, to understand policy development, uptake and implementation in South Africa. A policy transfer analysis framework integrating the key dimensions of policy transfer into one coherent model was used. Two phases of key informant interviews were undertaken with a wide range of stakeholders. Both tests were developed through innovative partnerships and responded to urgent public health needs. GenoType was introduced through a process that was more inclusive than that for Xpert. National policy and planning processes were opaque for both tests. Their implementation, maintenance and expansion suffered from poor communication and coordination, insufficient attention to resource implications, technical challenges and a lack of broader health systems thinking. Our analysis identified the risks and benefits of partnerships for technological innovation, the complex intersections between global and national actors and the impact of health systems on policy transfer, and the risks of rescue- and technology-focused thinking in addressing public health challenges.
Revisiting the Evolution of Mycobacterium bovis
Mostowy, Serge; Inwald, Jackie; Gordon, Steve; Martin, Carlos; Warren, Rob; Kremer, Kristin; Cousins, Debby; Behr, Marcel A.
2005-01-01
Though careful consideration has been placed towards genetic characterization of tubercle bacillus isolates causing disease in humans, those causing disease predominantly among wild and domesticated mammals have received less attention. In contrast to Mycobacterium tuberculosis, whose host range is largely specific to humans, M. bovis and “M bovis-like” organisms infect a broad range of animal species beyond their most prominent host in cattle. To determine whether strains of variable genomic content are associated with distinct distributions of disease, the DNA contents of M. bovis or M. bovis-like isolates from a variety of hosts were investigated via Affymetrix GeneChip. Consistent with previous genomic analysis of the M. tuberculosis complex (MTC), large sequence polymorphisms of putative diagnostic and biological consequence were able to unambiguously distinguish interrogated isolates. The distribution of deleted regions indicates organisms genomically removed from M. bovis and also points to structured genomic variability within M. bovis. Certain genomic profiles spanned a variety of hosts but were clustered by geography, while others associated primarily with host type. In contrast to the prevailing assumption that M. bovis has broad host capacity, genomic profiles suggest that distinct MTC lineages differentially infect a variety of mammals. From this, a phylogenetic stratification of genotypes offers a predictive framework upon which to base future genetic and phenotypic studies of the MTC. PMID:16159772
Gormley, E; Corner, L A L; Costello, E; Rodriguez-Campos, S
2014-10-01
The primary isolation of a Mycobacterium sp. of the Mycobacterium tuberculosis complex from an infected animal provides a definitive diagnosis of tuberculosis. However, as Mycobacterium bovis and Mycobacterium caprae are difficult to isolate, particularly for animals in the early stages of disease, success is dependent on the optimal performance of all aspects of the bacteriological process, from the initial choice of tissue samples at post-mortem examination or clinical samples, to the type of media and conditions used to cultivate the microorganism. Each step has its own performance characteristics, which can contribute to sensitivity and specificity of the procedure, and may need to be optimized in order to achieve the gold standard diagnosis. Having isolated the slow-growing mycobacteria, species identification and fine resolution strain typing are keys to understanding the epidemiology of the disease and to devise strategies to limit transmission of infection. New technologies have emerged that can now even discriminate different isolates from the same animal. In this review we highlight the key factors that contribute to the accuracy of bacteriological diagnosis of M. bovis and M. caprae, and describe the development of advanced genotyping techniques that are increasingly used in diagnostic laboratories for the purpose of supporting detailed epidemiological investigations. Copyright © 2014 Elsevier Ltd. All rights reserved.
2010-01-01
Background The prevalence of infections with Mycobacterium tuberculosis (MTb) and nontuberculous mycobacteria (NTM) species in HIV-infected patients in Mexico is unknown. The aims of this study were to determine the frequency of MTb and NTM species in HIV-infected patients from Mexico City, to evaluate the genotypic diversity of the Mycobacterium tuberculosis complex strains, to determine their drug resistance profiles by colorimetric microplate Alamar Blue assay (MABA), and finally, to detect mutations present in katG, rpoB and inhA genes, resulting in isoniazid (INH) and rifampin (RIF) resistance. Results Of the 67 mycobacterial strains isolated, 48 were identified as MTb, 9 as M. bovis, 9 as M. avium and 1 as M. intracellulare. IS6110-RFLP of 48 MTb strains showed 27 profiles. Spoligotyping of the 48 MTb strains yielded 21 patterns, and 9 M. bovis strains produced 7 patterns. Eleven new spoligotypes patterns were found. A total of 40 patterns were produced from the 48 MTb strains when MIRU-VNTR was performed. Nineteen (39.6%) MTb strains were resistant to one or more drugs. One (2.1%) multidrug-resistant (MDR) strain was identified. A novel mutation was identified in a RIF-resistant strain, GAG → TCG (Glu → Ser) at codon 469 of rpoB gene. Conclusions This is the first molecular analysis of mycobacteria isolated from HIV-infected patients in Mexico, which describe the prevalence of different mycobacterial species in this population. A high genetic diversity of MTb strains was identified. New spoligotypes and MIRU-VNTR patterns as well as a novel mutation associated to RIF-resistance were found. This information will facilitate the tracking of different mycobacterial species in HIV-infected individuals, and monitoring the spread of these microorganisms, leading to more appropriate measures for tuberculosis control. PMID:20236539
Schöning, Janne Marie; Cerny, Nadine; Prohaska, Sarah; Wittenbrink, Max M.; Smith, Noel H.; Bloemberg, Guido; Pewsner, Mirjam; Schiller, Irene; Origgi, Francesco C.; Ryser-Degiorgis, Marie-Pierre
2013-01-01
Bovine tuberculosis (bTB) caused by Mycobacterium bovis or M. caprae has recently (re-) emerged in livestock and wildlife in all countries bordering Switzerland (CH) and the Principality of Liechtenstein (FL). Comprehensive data for Swiss and Liechtenstein wildlife are not available so far, although two native species, wild boar (Sus scrofa) and red deer (Cervus elaphus elaphus), act as bTB reservoirs elsewhere in continental Europe. Our aims were (1) to assess the occurrence of bTB in these wild ungulates in CH/FL and to reinforce scanning surveillance in all wild mammals; (2) to evaluate the risk of a future bTB reservoir formation in wild boar and red deer in CH/FL. Tissue samples collected from 2009 to 2011 from 434 hunted red deer and wild boar and from eight diseased ungulates with tuberculosis-like lesions were tested by direct real-time PCR and culture to detect mycobacteria of the Mycobacterium tuberculosis complex (MTBC). Identification of suspicious colonies was attempted by real-time PCR, genotyping and spoligotyping. Information on risk factors for bTB maintenance within wildlife populations was retrieved from the literature and the situation regarding identified factors was assessed for our study areas. Mycobacteria of the MTBC were detected in six out of 165 wild boar (3.6%; 95% CI: 1.4–7.8) but none of the 269 red deer (0%; 0–1.4). M. microti was identified in two MTBC-positive wild boar, while species identification remained unsuccessful in four cases. Main risk factors for bTB maintenance worldwide, including different causes of aggregation often resulting from intensive wildlife management, are largely absent in CH and FL. In conclusion, M. bovis and M. caprae were not detected but we report for the first time MTBC mycobacteria in Swiss wild boar. Present conditions seem unfavorable for a reservoir emergence, nevertheless increasing population numbers of wild ungulates and offal consumption may represent a risk. PMID:23349839
Kalo, Deepika; Kant, Surya; Srivastava, Kanchan; Sharma, Ajay K
2017-01-01
Background: Tuberculosis (TB), a highly contagious disease that sees no gender, age, or race is mainly a disease of lungs. According to World Health Organization, a TB patient can be completely cured with 6–9 months of anti-TB treatment under directly observed treatment short course. Objectives: The aim of this study was to check the mono, multi- and triple-drug resistance to first line drugs (FLDs) among TB patients and to access their genetic profile using DR 3074, DR 0270, DR 0642, DR 2068, and DR 4110 using molecular techniques. Material and Methods: To gain a better understanding of drug resistant TB, we characterized 121 clinical isolates recovered from 159 drug resistant pulmonary tuberculosis patients by IS6110 genotyping. MTB isolates recovered from HIV- negative, and smear positive cases of both genders, age varied from 18 to 70 years with drug resistant-TB that was refractory to chemotherapy given for > 12 months. Of a total of 159 sputum smear positive patients sum number of male and female patients was 121 (76.10%) and 38 (23.89%), respectively. Among these patients, number of literate and illiterate patients were 123 (77.3%) and 36 (22.6%). 25 (15.7%) patients had farming as their occupation, 80 (50.3%) had nonagricultural occupation and 54 (33.9%) women were housewives. Results: Mono drug resistant, multi-drug resistant, and totally drug resistant (TDR) cases of TB were calculated as 113.83%, 125.1%, and 67.9%. Isoniazid showed the highest percentage of resistance among the patients. Conclusion: Any noncompliance to TB medications, lack of knowledge, and poor management in health centers, etc., results in the emergence of deadly direct repeat forms of TB, which are further complicated and complex to treat. PMID:28360464
Therese, K Lily; Gayathri, R; Balasubramanian, S; Natrajan, S; Madhavan, H N
2012-01-01
Multidrug-resistant TB (MDR-TB) has been reported in almost all parts of the world. Childhood TB is accorded low priority by national TB control programs. Probable reasons include diagnostic difficulties, limited resources, misplaced faith in BCG and lack of data on treatment. Good data on the burden of all forms of TB among children in India are not available. To study the drug sensitivity pattern of tuberculosis in children aged from 3 months to 18 years and the outcome of drug-resistant tuberculosis by BACTEC culture system and PCR-based DNA sequencing technique. This is a retrospective study. One hundred and fifty-nine clinical specimens were processed for Ziehl-Neelsen stain, Mycobacterial culture by BACTEC method, phenotypic DST for first-line drugs for Mycobacterium tuberculosis (M. tuberculosis) isolates and PCR-based DNA sequencing was performed for the M. tuberculosis isolates targeting rpoB, katG, inhA, oxyR-ahpC, rpsL, rrs and pncA. Out of the 159 Mycobacterial cultures performed during the study period, 17 clinical specimens (10.7%) were culture positive for M. tuberculosis. Among the 17 M. tuberculosis isolates, 2 were multidrug-resistant TB. PCR-based DNA sequencing revealed the presence of many novel mutations targeting katG, inhA, oxyR-ahpC and pncA and the most commonly reported mutation Ser531Leu in the rpoB gene. This study underlines the urgent need to take efforts to develop methods for rapid detection and drug susceptibility of tubercle bacilli in the pediatric population.
Brown, Tyler S; Narechania, Apurva; Walker, John R; Planet, Paul J; Bifani, Pablo J; Kolokotronis, Sergios-Orestis; Kreiswirth, Barry N; Mathema, Barun
2016-11-21
Whole genome sequencing (WGS) has rapidly become an important research tool in tuberculosis epidemiology and is likely to replace many existing methods in public health microbiology in the near future. WGS-based methods may be particularly useful in areas with less diverse Mycobacterium tuberculosis populations, such as New York City, where conventional genotyping is often uninformative and field epidemiology often difficult. This study applies four candidate strategies for WGS-based identification of emerging M. tuberculosis subpopulations, employing both phylogenomic and population genetics methods. M. tuberculosis subpopulations in New York City and New Jersey can be distinguished via phylogenomic reconstruction, evidence of demographic expansion and subpopulation-specific signatures of selection, and by determination of subgroup-defining nucleotide substitutions. These methods identified known historical outbreak clusters and previously unidentified subpopulations within relatively monomorphic M. tuberculosis endemic clone groups. Neutrality statistics based on the site frequency spectrum were less useful for identifying M. tuberculosis subpopulations, likely due to the low levels of informative genetic variation in recently diverged isolate groups. In addition, we observed that isolates from New York City endemic clone groups have acquired multiple non-synonymous SNPs in virulence- and growth-associated pathways, and relatively few mutations in drug resistance-associated genes, suggesting that overall pathoadaptive fitness, rather than the acquisition of drug resistance mutations, has played a central role in the evolutionary history and epidemiology of M. tuberculosis subpopulations in New York City. Our results demonstrate that some but not all WGS-based methods are useful for detection of emerging M. tuberculosis clone groups, and support the use of phylogenomic reconstruction in routine tuberculosis laboratory surveillance, particularly in areas with relatively less diverse M. tuberculosis populations. Our study also supports the use of wider-reaching phylogenomic and population genomic methods in tuberculosis public health practice, which can support tuberculosis control activities by identifying genetic polymorphisms contributing to epidemiological success in local M. tuberculosis populations and possibly explain why certain isolate groups are apparently more successful in specific host populations.
Mittal, M; Chakravarti, S; Sharma, V; Sanjeeth, B S; Churamani, C P; Kanwar, N S
2014-04-01
Bovine tuberculosis, caused by Mycobacterium bovis, remains one of the most important zoonotic health concerns worldwide. The transmission of Mycobacterium tuberculosis from humans to animals also occurs especially in countries where there is close interaction of humans with the animals. In the present study, thirty bovine lung tissue autopsy samples from an organized dairy farm located in North India were screened for the presence of Mycobacterium tuberculosis complex by smear microscopy, histopathological findings and PCR. Differential diagnosis of M. tuberculosis and M. bovis was made based on the deletion of mce-3 operon in M. bovis. The present study found eight of these samples positive for M. tuberculosis by multiplex PCR. Sequencing was performed on two PCR-positive representative samples and on annotation, and BLAST analysis confirmed the presence of gene fragment specific to Mycobacterium tuberculosis. The presence of M. tuberculosis in all the positive samples raises the possibility of human-to-cattle transmission and possible adaptation of this organism in bovine tissues. This study accentuates the importance of screening and differential diagnosis of Mycobacterium tuberculosis complex in humans and livestock for adopting effective TB control and eradication programmes. © 2014 Blackwell Verlag GmbH.
Furini, Adriana Antônia da Cruz; Pedro, Heloisa da Silveira Paro; Rodrigues, Jean Francisco; Montenegro, Lilian Maria Lapa; Machado, Ricardo Luiz Dantas; Franco, Célia; Schindler, Haiana Charifker; Batista, Ida Maria Foschiani Dias; Rossit, Andrea Regina Baptista
2013-01-01
OBJECTIVE: To compare the performance of nested polymerase chain reaction (NPCR) with that of cultures in the detection of the Mycobacterium tuberculosis complex in pulmonary and extrapulmonary specimens. METHODS: We analyzed 20 and 78 pulmonary and extrapulmonary specimens, respectively, of 67 hospitalized patients suspected of having tuberculosis. An automated microbial system was used for the identification of Mycobacterium spp. cultures, and M. tuberculosis IS6110 was used as the target sequence in the NPCR. The kappa statistic was used in order to assess the level of agreement among the results. RESULTS: Among the 67 patients, 6 and 5, respectively, were diagnosed with pulmonary and extrapulmonary tuberculosis, and the NPCR was positive in all of the cases. Among the 98 clinical specimens, smear microscopy, culture, and NPCR were positive in 6.00%, 8.16%, and 13.26%, respectively. Comparing the results of NPCR with those of cultures (the gold standard), we found that NPCR had a sensitivity and specificity of 100% and 83%, respectively, in pulmonary specimens, compared with 83% and 96%, respectively, in extrapulmonary specimens, with good concordance between the tests (kappa, 0.50 and 0.6867, respectively). CONCLUSIONS: Although NPCR proved to be a very useful tool for the detection of M. tuberculosis complex, clinical, epidemiological, and other laboratory data should also be considered in the diagnosis and treatment of pulmonary and extrapulmonary tuberculosis. PMID:24473765
Grandjean, Louis; Gilman, Robert H.; Martin, Laura; Soto, Esther; Castro, Beatriz; Lopez, Sonia; Coronel, Jorge; Castillo, Edith; Alarcon, Valentina; Lopez, Virginia; San Miguel, Angela; Quispe, Neyda; Asencios, Luis; Dye, Christopher; Moore, David A. J.
2015-01-01
Background The “fitness” of an infectious pathogen is defined as the ability of the pathogen to survive, reproduce, be transmitted, and cause disease. The fitness of multidrug-resistant tuberculosis (MDRTB) relative to drug-susceptible tuberculosis is cited as one of the most important determinants of MDRTB spread and epidemic size. To estimate the relative fitness of drug-resistant tuberculosis cases, we compared the incidence of tuberculosis disease among the household contacts of MDRTB index patients to that among the contacts of drug-susceptible index patients. Methods and Findings This 3-y (2010–2013) prospective cohort household follow-up study in South Lima and Callao, Peru, measured the incidence of tuberculosis disease among 1,055 household contacts of 213 MDRTB index cases and 2,362 household contacts of 487 drug-susceptible index cases. A total of 35/1,055 (3.3%) household contacts of 213 MDRTB index cases developed tuberculosis disease, while 114/2,362 (4.8%) household contacts of 487 drug-susceptible index patients developed tuberculosis disease. The total follow-up time for drug-susceptible tuberculosis contacts was 2,620 person-years, while the total follow-up time for MDRTB contacts was 1,425 person-years. Using multivariate Cox regression to adjust for confounding variables including contact HIV status, contact age, socio-economic status, and index case sputum smear grade, the hazard ratio for tuberculosis disease among MDRTB household contacts was found to be half that for drug-susceptible contacts (hazard ratio 0.56, 95% CI 0.34–0.90, p = 0.017). The inference of transmission in this study was limited by the lack of genotyping data for household contacts. Capturing incident disease only among household contacts may also limit the extrapolation of these findings to the community setting. Conclusions The low relative fitness of MDRTB estimated by this study improves the chances of controlling drug-resistant tuberculosis. However, fitter multidrug-resistant strains that emerge over time may make this increasingly difficult. PMID:26103620
Clinical Case Definitions for Classification of Intrathoracic Tuberculosis in Children: An Update
Graham, Stephen M.; Cuevas, Luis E.; Jean-Philippe, Patrick; Browning, Renee; Casenghi, Martina; Detjen, Anne K.; Gnanashanmugam, Devasena; Hesseling, Anneke C.; Kampmann, Beate; Mandalakas, Anna; Marais, Ben J.; Schito, Marco; Spiegel, Hans M. L.; Starke, Jeffrey R.; Worrell, Carol; Zar, Heather J.
2015-01-01
Consensus case definitions for childhood tuberculosis have been proposed by an international expert panel, aiming to standardize the reporting of cases in research focusing on the diagnosis of intrathoracic tuberculosis in children. These definitions are intended for tuberculosis diagnostic evaluation studies of symptomatic children with clinical suspicion of intrathoracic tuberculosis, and were not intended to predefine inclusion criteria into such studies. Feedback from researchers suggested that further clarification was required and that these case definitions could be further improved. Particular concerns were the perceived complexity and overlap of some case definitions, as well as the potential exclusion of children with acute onset of symptoms or less severe disease. The updated case definitions proposed here incorporate a number of key changes that aim to reduce complexity and improve research performance, while maintaining the original focus on symptomatic children suspected of having intrathoracic tuberculosis. The changes proposed should enhance harmonized classification for intrathoracic tuberculosis disease in children across studies, resulting in greater comparability and the much-needed ability to pool study results. PMID:26409281
Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis
Bos, Kirsten I.; Harkins, Kelly M.; Herbig, Alexander; Coscolla, Mireia; Weber, Nico; Comas, Iñaki; Forrest, Stephen A.; Bryant, Josephine M.; Harris, Simon R.; Schuenemann, Verena J.; Campbell, Tessa J.; Majander, Kerrtu; Wilbur, Alicia K.; Guichon, Ricardo A.; Wolfe Steadman, Dawnie L.; Cook, Della Collins; Niemann, Stefan; Behr, Marcel A.; Zumarraga, Martin; Bastida, Ricardo; Huson, Daniel; Nieselt, Kay; Young, Douglas; Parkhill, Julian; Buikstra, Jane E.; Gagneux, Sebastien; Stone, Anne C.; Krause, Johannes
2015-01-01
Modern strains of Mycobacterium tuberculosis from the Americas are closely related to those from Europe, supporting the assumption that human tuberculosis was introduced post-contact1. This notion, however, is incompatible with archaeological evidence of pre-contact tuberculosis in the New World2. Comparative genomics of modern isolates suggests that M. tuberculosis attained its worldwide distribution following human dispersals out of Africa during the Pleistocene epoch3, although this has yet to be confirmed with ancient calibration points. Here we present three 1,000-year-old mycobacterial genomes from Peruvian human skeletons, revealing that a member of the M. tuberculosis complex caused human disease before contact. The ancient strains are distinct from known human-adapted forms and are most closely related to those adapted to seals and sea lions. Two independent dating approaches suggest a most recent common ancestor for the M. tuberculosis complex less than 6,000 years ago, which supports a Holocene dispersal of the disease. Our results implicate sea mammals as having played a role in transmitting the disease to humans across the ocean. PMID:25141181
Oligonucleotide (GTG)5 as an epidemiological tool in the study of nontuberculous mycobacteria.
Cilliers, F J; Warren, R M; Hauman, J H; Wiid, I J; van Helden, P D
1997-01-01
Analysis of restriction fragment length polymorphisms in the genome of Mycobacterium tuberculosis (DNA fingerprinting) has proved to be a useful epidemiological tool in the study of tuberculosis within populations or communities. However, to date, no similar method has been developed to study the epidemiology of nontuberculous mycobacteria (NTM). In this communication, we report that a simple oligonucleotide repeat, (GTG)5, can be used to accurately genotype all species and strains of NTM tested. We suggest that this technology is an easily applied and accurate tool which can be used for the study of the epidemiology of NTM. PMID:9163479
A Tuberculosis Outbreak Fueled by Cross-Border Travel and Illicit Substances: Nevada and Arizona
Blake, Haley; Ricks, Philip; Miramontes, Roque; Bamrah, Sapna; Chee, Carla; Hickstein, Laurie
2014-01-01
Objectives From May 2006 to August 2008, the Southern Nevada Health District identified eight tuberculosis (TB) cases in six adults and two children in a Hispanic community. We conducted an outbreak investigation to determine the extent of TB transmission and prevent additional cases. Methods We investigated TB cases in Nevada and Arizona with the outbreak genotype or cases with suspected epidemiologic links to this cluster but without genotyping data. We reviewed medical records and interviewed patients and contacts. Subsequently, genotype surveillance was conducted for approximately four years to monitor additional outbreak-related cases. Results Eight outbreak cases were identified among six adults and two children. All patients were Hispanic and five were U.S.-born. The index patient was diagnosed while detained in Immigration and Customs Enforcement custody but deported before treatment completion. He was lost to follow-up for two years, during which time he served as the source for six secondary TB cases, including his own child. Along with the index patient, five patients reportedly engaged in the sale or use of methamphetamine. Follow-up surveillance in the two states identified eight additional cases with the outbreak genotype; three had epidemiologic links to the index case. Conclusions We found that incomplete TB treatment led to extensive TB transmission. We recommend thorough discharge planning and active measures to ensure continuity of care and TB treatment completion for people in custody at higher risk for loss to follow-up, which likely includes those engaged in the sale or use of illicit substances. PMID:24381363
Understanding the Mechanisms of Immunopathogenesis of Human and Bovine Tuberculosis
USDA-ARS?s Scientific Manuscript database
Extensive investigations have revealed that zoonotic pathogens in the Mycobacterium tuberculosis complex (MTBC) evolved from a common ancestor. Although all the members can cause disease in one or more species of mammals, Mycobacterium tuberculosis (Mtb) and M. bovis (Mbv) are the major pathogens ...
Lilic, Mirjana; Palka, Margaret; Mooney, Rachel Anne; Landick, Robert
2018-01-01
Fidaxomicin (Fdx) is an antimicrobial RNA polymerase (RNAP) inhibitor highly effective against Mycobacterium tuberculosis RNAP in vitro, but clinical use of Fdx is limited to treating Clostridium difficile intestinal infections due to poor absorption. To identify the structural determinants of Fdx binding to RNAP, we determined the 3.4 Å cryo-electron microscopy structure of a complete M. tuberculosis RNAP holoenzyme in complex with Fdx. We find that the actinobacteria general transcription factor RbpA contacts fidaxomycin, explaining its strong effect on M. tuberculosis. Additional structures define conformational states of M. tuberculosis RNAP between the free apo-holoenzyme and the promoter-engaged open complex ready for transcription. The results establish that Fdx acts like a doorstop to jam the enzyme in an open state, preventing the motions necessary to secure promoter DNA in the active site. Our results provide a structural platform to guide development of anti-tuberculosis antimicrobials based on the Fdx binding pocket. PMID:29480804
Characterization of extensively drug-resistant Mycobacterium tuberculosis in Nepal.
Poudel, Ajay; Maharjan, Bhagwan; Nakajima, Chie; Fukushima, Yukari; Pandey, Basu D; Beneke, Antje; Suzuki, Yasuhiko
2013-01-01
The emergence of extensively drug-resistant tuberculosis (XDR-TB) has raised public health concern for global control of TB. Although molecular characterization of drug resistance-associated mutations in multidrug-resistant isolates in Nepal has been made, mutations in XDR isolates and their genotypes have not been reported previously. In this study, we identified and characterized 13 XDR Mycobacterium tuberculosis isolates from clinical isolates in Nepal. The most prevalent mutations involved in rifampicin, isoniazid, ofloxacin, and kanamycin/capreomycin resistance were Ser531Leu in rpoB gene (92.3%), Ser315Thr in katG gene (92.3%), Asp94Gly in gyrA gene (53.9%) and A1400G in rrs gene (61.5%), respectively. Spoligotyping and multilocus sequence typing revealed that 69% belonged to Beijing family, especially modern types. Further typing with 26-loci variable number of tandem repeats suggested the current spread of XDR M. tuberculosis. Our result highlights the need to reinforce the TB policy in Nepal with regard to control and detection strategies. Copyright © 2012 Elsevier Ltd. All rights reserved.
Novel Mycobacterium tuberculosis complex pathogen, M. mungi.
Alexander, Kathleen A; Laver, Pete N; Michel, Anita L; Williams, Mark; van Helden, Paul D; Warren, Robin M; Gey van Pittius, Nicolaas C
2010-08-01
Seven outbreaks involving increasing numbers of banded mongoose troops and high death rates have been documented. We identified a Mycobacterium tuberculosis complex pathogen, M. mungi sp. nov., as the causative agent among banded mongooses that live near humans in Chobe District, Botswana. Host spectrum and transmission dynamics remain unknown.
USDA-ARS?s Scientific Manuscript database
Wild banded mongooses (Mungos mungo) in northeastern Botswana and Northwest Zimbabwe are infected with a novel Mycobacterium tuberculosis complex pathogen (MTC), M. mungi. This pathogen is transmitted environmentally between mongoose hosts through exposure to infected scent marks used in olfactory c...
Moreno, C; Garrigó, M; Sánchez, F; Coll, P
1994-05-01
The usefulness of the microscopic examination of Bactec 12B and 13A growth medium as a method for the possible identification of M. tuberculosis complex, M. avium complex, M. xenopi, and M. kansasii was performed out to guide the selection of different genetic identification probes and, in the case of M. xenopi, the selection of the temperature of subcultures incubation. Upon detection of an index of growth greater than 100 in Bactec tubes, staining was performed by the Ziehl-Neelsen technique. On the basis of the morphology observed, the possible identification was performed by genetic probes. Subcultures were used for definitive identification. Three hundred forty-four positive samples were studied by radiometric technique. A total of 190 strains were identified as M. tuberculosis, 88 strains as M. avium-intracellulare (MAI), 33 strains as M. xenopi, 14 strains as M. kansasii and 19 strains were identified as: M. gordonae (10), unpigmented rapid growth microbacteria (7), and M. simiae (2). Sensitivity, specificity, positive predictive value, and negative predictive value were 97.9%, 95.4%, 96.4%, and 97.3%, respectively for M. tuberculosis complex, 84.0%, 99.2%, 97.3% 94.7% for M. avium complex; 63.6%, 98.3%, 80.7%, 96.2% for M. xenopi; 35.7%, 98.1%, 45.5% 97.2% for M. kansasii. The morphology of M. tuberculosis complex examined in the radiometric system in useful to differentiate this species from other microbacteria (MOTT), allowing the selection of specific probe used. Within the MOTT, M. avium complex also has morphological characteristics which are useful for its differentiation, the morphology usually described for the remaining species was frequently not observed.
Priyadarshini, P; Tiwari, K; Das, A; Kumar, D; Mishra, M N; Desikan, P; Nath, G
2017-02-01
To evaluate the sensitivity and specificity of a new nested set of primers designed for the detection of Mycobacterium tuberculosis complex targeting a highly conserved heat shock protein gene (hsp65). The nested primers were designed using multiple sequence alignment assuming the nucleotide sequence of the M. tuberculosis H37Rv hsp65 genome as base. Multidrug-resistant Mycobacterium species along with other non-mycobacterial and fungal species were included to evaluate the specificity of M. tuberculosis hsp65 gene-specific primers. The sensitivity of the primers was determined using serial 10-fold dilutions, and was 100% as shown by the bands in the case of M. tuberculosis complex. None of the other non M. tuberculosis complex bacterial and fungal species yielded any band on nested polymerase chain reaction (PCR). The first round of amplification could amplify 0.3 ng of the template DNA, while nested PCR could detect 0.3 pg. The present hsp65-specific primers have been observed to be sensitive, specific and cost-effective, without requiring interpretation of biochemical tests, real-time PCR, sequencing or high-performance liquid chromatography. These primer sets do not have the drawbacks associated with those protocols that target insertion sequence 6110, 16S rDNA, rpoB, recA and MPT 64.
Chaoui, Imane; Zozio, Thierry; Lahlou, Ouafae; Sabouni, Radia; Abid, Mohammed; El Aouad, Rajae; Akrim, Mohammed; Amzazi, Said; Rastogi, Nalin; El Mzibri, Mohammed
2014-01-01
In the present study, Mycobacterium tuberculosis complex (MTBC) clinical isolates from culture-positive TB patients in Morocco were studied by spoligotyping and 12-loci MIRU-VNTR typing methods to characterize prevalent genotypes (n = 219 isolates from 208 patients). Spoligotyping resulted in 39 unique patterns and 167 strains in 30 clusters (2-50 strains per cluster). Comparison with international database showed that 29 of 39 unique patterns matched existing shared spoligotype international types (SITs). Nine shared types containing 10 strains were newly created (SIT 2891 to SIT 2899); this led to the description of 69 SITs with 206 strains and two orphan patterns. The most prevalent spoligotype was SIT42 (LAM; n = 50 or 24% of isolates). The repartition of strains according to major MTBC clades was as follows LAM (46.1%)> Haarlem (26%) >ill-defined T superfamily (22.6%) and S clade (0.96%). On the other hand, Beijing, CAS (Central Asian) and EAI (East-African Indian) strains were absent in this setting. Subsequent 12-Loci MIRU typing resulted in a total of 25 SIT/MIT clusters (n = 66 isolates, 2-6 isolates per cluster), with a resulting recent transmission rate of 22.3%. The MIRU-VNTR patterns corresponded to 69 MITs for 138 strains and 46 orphan patterns. The most frequent patterns were MIT43 (n = 8), MIT9 (n = 7) and MIT42 (n = 7). HGDI analysis of the 12 MIRU loci showed that loci 10, 23 and 40 were highly discriminative in our setting. The results also underlined the usefulness of spoligotyping and MIRU-VNTR to detect mixed infections among certain of our TB patients. Globally, the results obtained showed that TB is almost exclusively transmitted in Morocco through evolutionary-modern MTBC lineages belonging to principal genetic groups 2/3 strains (Haarlem, LAM, T), with a high level of biodiversity seen by MIRU typing. This study provides with a 1st global snapshot of MTBC population structure in Morocco, and validates the potential use of spoligotyping in conjunction with minisatellites for future investigations in Morocco that should in future ideally include optimized 15- or 24-loci MIRU-VNTRs. Copyright © 2013 Elsevier B.V. All rights reserved.
Palacios, Juan José; Navarro, Yurena; Romero, Beatriz; Penedo, Ana; Menéndez González, Ángela; Pérez Hernández, M Dolores; Fernández-Verdugo, Ana; Copano, Francisca; Torreblanca, Aurora; Bouza, Emilio; Domínguez, Lucas; de Juan, Lucía; García-de-Viedma, Darío
2016-11-15
Human Mycobacterium bovis infections are considered to be due to reactivations, when involve elderly people, or to recent transmissions, when exposure is occupational. We determined the cause of M. bovis infections by genotyping M. bovis isolates in a population-based study integrating human and animal databases. Among the 1,586 tuberculosis (TB) cases in Asturias, Northern Spain (1,080,000 inhabitants), 1,567 corresponded to M. tuberculosis and 19 to M. bovis. The number of human isolates sharing genotype with cattle isolates was higher than expected (47%) for a setting with low prevalence of bovine TB and efficient control programs in cattle. The risk of exposure to infected animals was probable/possible in most of these matched cases (77.7%). Recent transmission was the likely explanation of most M. bovis infections in elderly people. A potential human-to-human transmission was found. Our study illustrates a model of collaboration between human and animal health professionals to provide a precise snapshot of the transmission of M. bovis in the human-animal interface. Copyright © 2016 Elsevier B.V. All rights reserved.
High rate of drug resistance among tuberculous meningitis cases in Shaanxi province, China
Wang, Ting; Feng, Guo-Dong; Pang, Yu; Liu, Jia-Yun; Zhou, Yang; Yang, Yi-Ning; Dai, Wen; Zhang, Lin; Li, Qiao; Gao, Yu; Chen, Ping; Zhan, Li-Ping; Marais, Ben J; Zhao, Yan-Lin; Zhao, Gang
2016-01-01
The clinical and mycobacterial features of tuberculous meningitis (TBM) cases in China are not well described; especially in western provinces with poor tuberculosis control. We prospectively enrolled patients in whom TBM was considered in Shaanxi Province, northwestern China, over a 2-year period (September 2010 to December 2012). Cerebrospinal fluid specimens were cultured for Mycobacterium tuberculosis; with phenotypic and genotypic drug susceptibility testing (DST), as well as genotyping of all positive cultures. Among 350 patients included in the study, 27 (7.7%) had culture-confirmed TBM; 84 (24.0%) had probable and 239 (68.3%) had possible TBM. DST was performed on 25/27 (92.3%) culture positive specimens; 12/25 (48.0%) had “any resistance” detected and 3 (12.0%) were multi-drug resistant (MDR). Demographic and clinical features of drug resistant and drug susceptible TBM cases were similar. Beijing was the most common genotype (20/25; 80.0%) with 9/20 (45%) of the Beijing strains exhibiting drug resistance; including all 3 MDR strains. All (4/4) isoniazid resistant strains had mutations in the katG gene; 75% (3/4) of strains with phenotypic rifampicin resistance had mutations in the rpoB gene detected by Xpert MTB/RIF®. High rates of drug resistance were found among culture-confirmed TBM cases; most were Beijing strains. PMID:27143630
Doll, Mark A; Salazar-González, Raúl A; Bodduluri, Srineil; Hein, David W
2017-07-01
Cryopreserved human hepatocytes were used to investigate the role of arylamine N -acetyltransferase 2 (NAT2; EC 2.3.1.5) polymorphism on the N -acetylation of isoniazid (INH). NAT2 genotype was determined by Taqman allelic discrimination assay and INH N -acetylation was measured by high performance liquid chromatography. INH N -acetylation rates in vitro exhibited a robust and highly significant ( P <0.005) NAT2 phenotype-dependent metabolism. N -acetylation rates in situ were INH concentration- and time-dependent. Following incubation for 24 h with 12.5 or 100 µmol/L INH, acetyl-INH concentrations varied significantly ( P = 0.0023 and P = 0.0002) across cryopreserved human hepatocytes samples from rapid, intermediate, and slow acetylators, respectively. The clear association between NAT2 genotype and phenotype supports use of NAT2 genotype to guide INH dosing strategies in the treatment and prevention of tuberculosis.
Vinuesa, Víctor; Borrás, Rafael; Briones, María Luisa; Clari, María Ángeles; Cresencio, Vicenta; Giménez, Estela; Muñoz, Carmen; Oltra, Rosa; Servera, Emilio; Scheelje, Talia; Tornero, Carlos; Navarro, David
2018-05-01
The potential impact of routine real-time PCR testing of respiratory specimens from patients with presumptive tuberculosis in terms of diagnostic accuracy and time to tuberculosis treatment inception in low-prevalence settings remains largely unexplored. We conducted a prospective intervention cohort study. Respiratory specimens from 1,020 patients were examined by acid-fast bacillus smear microscopy, tested by a real-time Mycobacterium tuberculosis complex PCR assay (Abbott RealTi me MTB PCR), and cultured in mycobacterial media. Seventeen patients tested positive by PCR (5 were acid-fast bacillus smear positive and 12 acid-fast bacillus smear negative), and Mycobacterium tuberculosis was recovered from cultures for 12 of them. Patients testing positive by PCR and negative by culture ( n = 5) were treated and deemed to have responded to antituberculosis therapy. There were no PCR-negative/culture-positive cases, and none of the patients testing positive for nontuberculous mycobacteria ( n = 20) yielded a positive PCR result. The data indicated that routine testing of respiratory specimens from patients with presumptive tuberculosis by the RealTi me MTB PCR assay improves the tuberculosis diagnostic yield and may reduce the time to antituberculosis treatment initiation. On the basis of our data, we propose a novel mycobacterial laboratory algorithm for tuberculosis diagnosis. Copyright © 2018 American Society for Microbiology.
Evolution of Mycobacterium tuberculosis.
Behr, Marcel A
2013-01-01
Genomic studies have provided a refined understanding of the genetic diversity within the Mycobacterium genus, and more specifically within Mycobacterium tuberculosis. These results have informed a new perspective on the macro- and micro-evolution of the tubercle bacillus. In the first step, a M. kansasii-like opportunistic pathogen acquired new genes, through horizontal gene transfer, that enabled it to better exploit an intracellular niche and ultimately evolve into a professional pathogen. In the second step, different subspecies and strains of the M. tuberculosis complex emerged through mutation and deletion of unnecessary DNA. Understanding the differences between M. tuberculosis and related less pathogenic mycobacteria is expected to reveal key bacterial virulence mechanisms and provide opportunities to understand host resistance to mycobacterial infection. Understanding differences within the M. tuberculosis complex and the evolutionary forces shaping these differences is important for investigating the basis of its success as both a symbiont and a pathogen.
Integrating knowledge of Mycobacterium tuberculosis pathogenesis for the design of better vaccines.
Mascart, Françoise; Locht, Camille
2015-01-01
Today, tuberculosis (TB) still remains one of the main global causes of mortality and morbidity, and an effective vaccine against both TB disease and Mycobacterium tuberculosis infection is essential to reach the updated post-2015 Millennium development goal of eradicating TB by 2050. During the last two decades much knowledge has accumulated on the pathogenesis of TB and the immune responses to infection by M. tuberculosis. Furthermore, many vaccine candidates are under development, and close to 20 of them have entered clinical assessment at various levels. Nevertheless, the M. tuberculosis-host interaction is very complex, and the full complexity of this interaction is still not sufficiently well understood to develop novel, rationally designed vaccines. However, some of the recent knowledge is now integrated into the design of various types of vaccine candidates to be used either as pre-exposure, as post-exposure or as therapeutic vaccines, as will be discussed in this paper.
Virulence factors of the Mycobacterium tuberculosis complex
Forrellad, Marina A.; Klepp, Laura I.; Gioffré, Andrea; Sabio y García, Julia; Morbidoni, Hector R.; Santangelo, María de la Paz; Cataldi, Angel A.; Bigi, Fabiana
2013-01-01
The Mycobacterium tuberculosis complex (MTBC) consists of closely related species that cause tuberculosis in both humans and animals. This illness, still today, remains to be one of the leading causes of morbidity and mortality throughout the world. The mycobacteria enter the host by air, and, once in the lungs, are phagocytated by macrophages. This may lead to the rapid elimination of the bacillus or to the triggering of an active tuberculosis infection. A large number of different virulence factors have evolved in MTBC members as a response to the host immune reaction. The aim of this review is to describe the bacterial genes/proteins that are essential for the virulence of MTBC species, and that have been demonstrated in an in vivo model of infection. Knowledge of MTBC virulence factors is essential for the development of new vaccines and drugs to help manage the disease toward an increasingly more tuberculosis-free world. PMID:23076359
DNA Replication Fidelity in the Mycobacterium tuberculosis Complex.
Warner, Digby F; Rock, Jeremy M; Fortune, Sarah M; Mizrahi, Valerie
2017-01-01
Mycobacterium tuberculosis is genetically isolated, with no evidence for horizontal gene transfer or the acquisition of episomal genetic information in the modern evolution of strains of the Mycobacterium tuberculosis complex. When considered in the context of the specific features of the disease M. tuberculosis causes (e.g., transmission via cough aerosol, replication within professional phagocytes, subclinical persistence, and stimulation of a destructive immune pathology), this implies that to understand the mechanisms ensuring preservation of genomic integrity in infecting mycobacterial populations is to understand the source of genetic variation, including the emergence of microdiverse sub-populations that may be linked to the acquisition of drug resistance. In this chapter, we focus on mechanisms involved in maintaining DNA replication fidelity in M. tuberculosis, and consider the potential to target components of the DNA replication machinery as part of novel therapeutic regimens designed to curb the emerging threat of drug-resistance.
Hu, Yi; Mathema, Barun; Zhao, Qi; Zheng, Xubin; Li, Dange; Jiang, Weili; Wang, Weibing; Xu, Biao
2016-03-01
Highly lethal outbreaks of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis are increasing. Mycobacterium tuberculosis variant Beijing family and its members is regarded as a successful clone of M. tuberculosis that is associated with drug resistance in China. Understanding the genetic characteristics and molecular mechanism of drug resistant tuberculosis within Beijing family may help to clarify its origin and evolutionary history and the driving forces behind its emergence and current dissemination. Totally of 1222 Mycobacterium tuberculosis isolates were recovered from patients in six counties of two provinces in eastern China within 2010/2012. Strain lineage and its major subgroups were studied respectively by using Spoligotyping and MIRU-VNTR. The 1st-line drug susceptibility was analyzed by proportional method and 2nd-line drug susceptibility was determined by the HAINs MTBDRsl test. The genetic characterization of drug resistance was analyzed by sequencing the previously reported genes and loci associated with drug resistance together with the multiple genotyping including MIRU-VNTR, Spoligotyping and LSP genotyping. Of the 1222 Mtb isolates, 298 (24.4%) were resistant to 1st-line drug and 73 (5.9%) were simultaneously resistant to INH and RIF namely MDR-TB. Respectively 23.8% of 1st-line drug resistant TB and 12.0% of the drug susceptible TB contained the mutation associated with 2nd-line drugs by HAINs test. The Spoligotyping of 1222 Mtb isolates revealed the 967 (79.1%) of the isolates belonged to the W-Beijing family. Within W-Beijing family, 78.8% MDR-TB were observed in the isolates with simultaneous deletion of RD105 and RD207, with sub-lineage 181 accounting for 75% of MDR-TB. Analysis of 24 MIRU-VNTR loci revealed that 88.2% (15/17) of MDR and extensively drug resistant (XDR) clustered isolates were sub-lineage 181. Sublineage 181 might have the capacity to spread throughout the general community in rural China. This is the first report on the extensive association of sub-lineage 181 with MDR TB and possibly pre-XDR TB and XDR TB. It is important to monitor sublineage 181 to verify its heightened transmission and understand its importance in the global MDR-TB and XDR-TB epidemics. Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Tuberculosis (TB) is a premier example of a disease complex with pathogens primarily affecting humans (i.e., Mycobacterium tuberculosis) or livestock and wildlife (i.e., Mycobacterium bovis) and with a long history of inclusive collaborations between physicians and veterinarians. Advances with the s...
Vaccination of white-tailed deer (Odocoileus virginianus) for protection against bovine tuberculosis
USDA-ARS?s Scientific Manuscript database
Bovine tuberculosis (bTB), caused by Mycobacterium bovis and other related species in the M. tuberculosis complex, pose a serious continual threat to the health and economic wellbeing of wildlife, livestock, and humans worldwide. Wildlife reservoirs of bTB play a very important role in the epidemio...
Schoepf, Karl; Prodinger, Wolfgang M.; Glawischnig, Walter; Hofer, Erwin; Revilla-Fernandez, Sandra; Hofrichter, Johannes; Fritz, Johannes; Köfer, Josef; Schmoll, Friedrich
2012-01-01
A survey of 143 hunter-harvested red deer for tuberculosis was conducted in an Alpine area in Western Austria over two subsequent years. There, single tuberculosis cases caused by Mycobacterium caprae had been detected in cattle and red deer over the preceding decade. The area under investigation covered approximately 500 km2, divided into five different hunting plots. Lymph nodes of red deer were examined grossly and microscopically for typical tuberculosis-like lesions and additionally by microbiological culturing. Executing a detailed hunting plan, nine M. caprae isolates were obtained. Six out of nine originated from one single hunting plot with the highest estimated prevalence of tuberculosis, that is, 23.1%. All isolates were genotyped by mycobacterial interspersed repetitive unit—variable number of tandem repeat (MIRU-VNTR) typing of 24 standard loci plus VNTR 1982. All nine isolates belonged to a single cluster termed “Lechtal” which had been found in cattle and red deer in the region, demonstrating a remarkable dominance and stability over ten years. This is the first report on a systematic prospective study investigating the prevalence and strain variability of M. caprae infection in red deer in Austria and in the Alpine countries. PMID:23762580
Spoligotyping of Mycobacterium tuberculosis isolates at a tertiary care hospital in India.
Suzana, Shirly; Shanmugam, Sivakumar; Uma Devi, K R; Swarna Latha, P N; Michael, Joy S
2017-06-01
Spoligotyping is a valuable genotyping tool to study the genetic diversity and molecular epidemiology of Mycobacterium tuberculosis (M. tb). The aim of this study was to analyse different spoligotype patterns of M. tb strains isolated from patients with tuberculosis from different parts of India. A total of 163 M. tb isolates were spoligotyped between January 2014 and January 2015. About 47% (n = 77) were from patients with extrapulmonary tuberculosis; of these, 10 were MDR, and seven were Pre-XDR. Of the 86 M. tb isolates from patients with pulmonary tuberculosis, 25 were MDR, and 25 were Pre-XDR. We found 61 spoligo patterns, 128 clusters in the spoligotype data base (spoldb4 data base) with spoligo international type (SIT) number and 35 true unique isolates. The most pre-dominant spoligotype was EAI lineage (56), followed by Beijing (28), CAS (20), T(9), U(7), X(3), H(3), BOVIS_1 BCG(1) and LAM(1). Although our study identified EAI, CAS and Beijing strain lineages as pre-dominant, we also found a large number of orphan strains (20%) in our study. Beijing strains were more significantly associated with MDR TB than CAS and EAI lineages. Further studies on large sample sizes would help to clearly describe the epidemiology of M. tb in India. © 2017 John Wiley & Sons Ltd.
Perdigão, João; Clemente, Sofia; Ramos, Jorge; Masakidi, Pedro; Machado, Diana; Silva, Carla; Couto, Isabel; Viveiros, Miguel; Taveira, Nuno; Portugal, Isabel
2017-02-23
Tuberculosis (TB) poses a serious public health problem in Angola. No surveillance data on drug resistance is available and nothing is known regarding the genetic diversity and population structure of circulating Mycobacterium tuberculosis strains. Here, we have genotyped and evaluated drug susceptibility of 89 Mycobacterium tuberculosis clinical isolates from Luanda. Thirty-three different spoligotype profiles corresponding to 24 different Shared International Types (SIT) and 9 orphan profiles were detected. SIT 20 (LAM1) was the most prevalent (n = 16, 18.2%) followed by SIT 42 (LAM9; n = 15, 17.1%). Overall, the M. tuberculosis population structure in this sample was dominated by LAM (64.8%) and T (33.0%) strains. Twenty-four-loci MIRU-VNTR analysis revealed that a total of 13 isolates were grouped in 5 distinct clusters. Drug susceptibility data showed that 22 (24.7%) of the 89 clinical isolates were resistant to one or more antibacillary drugs of which 4 (4.5%) were multidrug resistant. In conclusion, this study demonstrates a high predominance of LAM strains circulating in the Luanda setting and the presence of recent transmission events. The rate and the emergence dynamics of drug resistant TB found in this sample are significant and highlight the need of further studies specifically focused on MDR-TB transmission.
Gupta, Renu; Thakur, Rajeev; Kushwaha, Suman; Jalan, Nupur; Rawat, Pumanshi; Gupta, Piyush; Aggarwal, Amitesh; Gupta, Meena; Manchanda, Vikas
2018-01-01
Heteroresistant Mycobacterium tuberculosis (mixture of susceptible and resistant subpopulations) is thought to be a preliminary stage to full resistance and timely detection, initiation of correct treatment is vital for successful anti tubercular therapy. The aim of this study was to detect multi drug resistant (MDR) and heteroresistant M. tuberculosis with the associated gene mutations from patients of tuberculous meningitis. A total of 197 M. tuberculosis isolates from 478 patients of TBM were isolated from July 2012 to July 2015 and subjected to drug susceptibility testing (DST) by BACTEC MGIT and Genotype MTBDR line probe assay (LPA). Heteroresistance was defined as presence of both WT and mutant genes in LPA. Of 197 M. tuberculosis isolates, 11 (5.6%) were MDR, 23 (11.6%), 1 (0.5%) were mono resistant to isoniazid (INH) and rifampicin (RMP) respectively. Heteroresistance was detected in 8 (4%), 2 (1%) isolates to INH and RMP respectively. INH heteroresistant strains had WT bands with mutation band S315T1 whereas RMP heteroresistant strains had WT bands with mutation band S531L. The prevalence of MDR M. tuberculosis was 5.6% in TBM patients with the most common mutation being ΔWT band with S315T1 for INH and ΔWT band with S531T for RMP. MGIT DST was found to be more sensitive for detecting overall resistance in M. tuberculosis but inclusion of LPA not only reduced time for early initiation of appropriate treatment but also enabled detection of heteroresistance in 8 (4%), 2 (1%) isolates for INH and RMP respectively. Copyright © 2017 Tuberculosis Association of India. Published by Elsevier B.V. All rights reserved.
Chigutsa, Emmanuel; Faurholt-Jepsen, Daniel; PrayGod, George; Range, Nyagosya; Castel, Sandra; Wiesner, Lubbe; Hagen, Christian Munch; Christiansen, Michael; Changalucha, John; McIlleron, Helen; Friis, Henrik; Andersen, Aase Bengaard
2015-01-01
Exposure to lower-than-therapeutic levels of anti-tuberculosis drugs is likely to cause selection of resistant strains of Mycobacterium tuberculosis and treatment failure. The first-line anti-tuberculosis (TB) regimen consists of rifampicin, isoniazid, pyrazinamide, and ethambutol, and correct management reduces risk of TB relapse and development of drug resistance. In this study we aimed to investigate the effect of standard of care plus nutritional supplementation versus standard care on the pharmacokinetics of isoniazid, pyrazinamide and ethambutol among sputum smear positive TB patients with and without HIV. In a clinical trial in 100 Tanzanian TB patients, with or without HIV infection, drug concentrations were determined at 1 week and 2 months post initiation of anti-TB medication. Data was analysed using population pharmacokinetic modelling. The effect of body size was described using allometric scaling, and the effects of nutritional supplementation, HIV, age, sex, CD4+ count, weight-adjusted dose, NAT2 genotype, and time on TB treatment were investigated. The kinetics of all drugs was well characterised using first-order elimination and transit compartment absorption, with isoniazid and ethambutol described by two-compartment disposition models, and pyrazinamide by a one-compartment model. Patients with a slow NAT2 genotype had higher isoniazid exposure and a lower estimate of oral clearance (15.5 L/h) than rapid/intermediate NAT2 genotype (26.1 L/h). Pyrazinamide clearance had an estimated typical value of 3.32 L/h, and it was found to increase with time on treatment, with a 16.3% increase after the first 2 months of anti-TB treatment. The typical clearance of ethambutol was estimated to be 40.7 L/h, and was found to decrease with age, at a rate of 1.41% per year. Neither HIV status nor nutritional supplementations were found to affect the pharmacokinetics of these drugs in our cohort of patients. PMID:26501782
Iwamoto, Tomotada; Grandjean, Louis; Arikawa, Kentaro; Nakanishi, Noriko; Caviedes, Luz; Coronel, Jorge; Sheen, Patricia; Wada, Takayuki; Taype, Carmen A.; Shaw, Marie-Anne; Moore, David A. J.; Gilman, Robert H.
2012-01-01
Beijing family strains of Mycobacterium tuberculosis have attracted worldwide attention because of their wide geographical distribution and global emergence. Peru, which has a historical relationship with East Asia, is considered to be a hotspot for Beijing family strains in South America. We aimed to unveil the genetic diversity and transmission characteristics of the Beijing strains in Peru. A total of 200 Beijing family strains were identified from 2140 M. tuberculosis isolates obtained in Lima, Peru, between December 2008 and January 2010. Of them, 198 strains were classified into sublineages, on the basis of 10 sets of single nucleotide polymorphisms (SNPs). They were also subjected to variable number tandem-repeat (VNTR) typing using an international standard set of 15 loci (15-MIRU-VNTR) plus 9 additional loci optimized for Beijing strains. An additional 70 Beijing family strains, isolated between 1999 and 2006 in Lima, were also analyzed in order to make a longitudinal comparison. The Beijing family was the third largest spoligotyping clade in Peru. Its population structure, by SNP typing, was characterized by a high frequency of Sequence Type 10 (ST10), which belongs to a modern subfamily of Beijing strains (178/198, 89.9%). Twelve strains belonged to the ancient subfamily (ST3 [n = 3], ST25 [n = 1], ST19 [n = 8]). Overall, the polymorphic information content for each of the 24 loci values was low. The 24 loci VNTR showed a high clustering rate (80.3%) and a high recent transmission index (RTIn−1 = 0.707). These strongly suggest the active and on-going transmission of Beijing family strains in the survey area. Notably, 1 VNTR genotype was found to account for 43.9% of the strains. Comparisons with data from East Asia suggested the genotype emerged as a uniquely endemic clone in Peru. A longitudinal comparison revealed the genotype was present in Lima by 1999. PMID:23185395
Iwamoto, Tomotada; Grandjean, Louis; Arikawa, Kentaro; Nakanishi, Noriko; Caviedes, Luz; Coronel, Jorge; Sheen, Patricia; Wada, Takayuki; Taype, Carmen A; Shaw, Marie-Anne; Moore, David A J; Gilman, Robert H
2012-01-01
Beijing family strains of Mycobacterium tuberculosis have attracted worldwide attention because of their wide geographical distribution and global emergence. Peru, which has a historical relationship with East Asia, is considered to be a hotspot for Beijing family strains in South America. We aimed to unveil the genetic diversity and transmission characteristics of the Beijing strains in Peru. A total of 200 Beijing family strains were identified from 2140 M. tuberculosis isolates obtained in Lima, Peru, between December 2008 and January 2010. Of them, 198 strains were classified into sublineages, on the basis of 10 sets of single nucleotide polymorphisms (SNPs). They were also subjected to variable number tandem-repeat (VNTR) typing using an international standard set of 15 loci (15-MIRU-VNTR) plus 9 additional loci optimized for Beijing strains. An additional 70 Beijing family strains, isolated between 1999 and 2006 in Lima, were also analyzed in order to make a longitudinal comparison. The Beijing family was the third largest spoligotyping clade in Peru. Its population structure, by SNP typing, was characterized by a high frequency of Sequence Type 10 (ST10), which belongs to a modern subfamily of Beijing strains (178/198, 89.9%). Twelve strains belonged to the ancient subfamily (ST3 [n=3], ST25 [n=1], ST19 [n=8]). Overall, the polymorphic information content for each of the 24 loci values was low. The 24 loci VNTR showed a high clustering rate (80.3%) and a high recent transmission index (RTI(n-1)=0.707). These strongly suggest the active and on-going transmission of Beijing family strains in the survey area. Notably, 1 VNTR genotype was found to account for 43.9% of the strains. Comparisons with data from East Asia suggested the genotype emerged as a uniquely endemic clone in Peru. A longitudinal comparison revealed the genotype was present in Lima by 1999.
Berg, Stefan; Schelling, Esther; Hailu, Elena; Firdessa, Rebuma; Gumi, Balako; Erenso, Girume; Gadisa, Endalamaw; Mengistu, Araya; Habtamu, Meseret; Hussein, Jemal; Kiros, Teklu; Bekele, Shiferaw; Mekonnen, Wondale; Derese, Yohannes; Zinsstag, Jakob; Ameni, Gobena; Gagneux, Sebastien; Robertson, Brian D; Tschopp, Rea; Hewinson, Glyn; Yamuah, Lawrence; Gordon, Stephen V; Aseffa, Abraham
2015-03-03
Ethiopia, a high tuberculosis (TB) burden country, reports one of the highest incidence rates of extra-pulmonary TB dominated by cervical lymphadenitis (TBLN). Infection with Mycobacterium bovis has previously been excluded as the main reason for the high rate of extrapulmonary TB in Ethiopia. Here we examined demographic and clinical characteristics of 953 pulmonary (PTB) and 1198 TBLN patients visiting 11 health facilities in distinct geographic areas of Ethiopia. Clinical characteristics were also correlated with genotypes of the causative agent, Mycobacterium tuberculosis. No major patient or bacterial strain factor could be identified as being responsible for the high rate of TBLN, and there was no association with HIV infection. However, analysis of the demographic data of involved patients showed that having regular and direct contact with live animals was more associated with TBLN than with PTB, although no M. bovis was isolated from patients with TBLN. Among PTB patients, those infected with Lineage 4 reported "contact with other TB patient" more often than patients infected with Lineage 3 did (OR = 1.6, CI 95% 1.0-2.7; p = 0.064). High fever, in contrast to low and moderate fever, was significantly associated with Lineage 4 (OR = 2.3; p = 0.024). On the other hand, TBLN cases infected with Lineage 4 tended to get milder symptoms overall for the constitutional symptoms than those infected with Lineage 3. The study suggests a complex role for multiple interacting factors in the epidemiology of extrapulmonary TB in Ethiopia, including factors that can only be derived from population-based studies, which may prove to be significant for TB control in Ethiopia.
Magnitude and sources of bias in the detection of mixed strain M. tuberculosis infection.
Plazzotta, Giacomo; Cohen, Ted; Colijn, Caroline
2015-03-07
High resolution tests for genetic variation reveal that individuals may simultaneously host more than one distinct strain of Mycobacterium tuberculosis. Previous studies find that this phenomenon, which we will refer to as "mixed infection", may affect the outcomes of treatment for infected individuals and may influence the impact of population-level interventions against tuberculosis. In areas where the incidence of TB is high, mixed infections have been found in nearly 20% of patients; these studies may underestimate the actual prevalence of mixed infection given that tests may not be sufficiently sensitive for detecting minority strains. Specific reasons for failing to detect mixed infections would include low initial numbers of minority strain cells in sputum, stochastic growth in culture and the physical division of initial samples into parts (typically only one of which is genotyped). In this paper, we develop a mathematical framework that models the study designs aimed to detect mixed infections. Using both a deterministic and a stochastic approach, we obtain posterior estimates of the prevalence of mixed infection. We find that the posterior estimate of the prevalence of mixed infection may be substantially higher than the fraction of cases in which it is detected. We characterize this bias in terms of the sensitivity of the genotyping method and the relative growth rates and initial population sizes of the different strains collected in sputum. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
2013-01-01
Background Identifying people at higher risk of developing tuberculosis with human immunodeficiency virus (HIV) infection may improve clinical management of co-infections. Iron influences tuberculosis (TB) pathogenesis, but understanding the exact mechanisms of how and timing of when iron is involved remains challenging since biological samples are rarely available from the disease susceptibility period due to the difficulty in predicting in who and when, if ever, TB will develop. The objective of this research was to determine how host iron status measured at HIV diagnosis and genotypes related to host iron metabolism were associated with incident TB. Methods Archived clinical data, plasma and DNA were analyzed from 1139 adult participants in a large HIV-1, HIV-2 and dual seroprevalent cohort based at the Medical Research Council Laboratories in The Gambia. Incident pulmonary and/or extrapulmonary TB diagnoses a minimum of 28 days after HIV diagnosis were independently re-confirmed using available evidence (n=152). Multiple host iron status biomarkers, Haptoglobin and solute carrier family 11, member 1 (SLC11A1) genotypes were modeled to characterize how indicators of host iron metabolism were associated with TB susceptibility. Results Hemoglobin (incidence rate ratio, IRR=0.88, 95% CI=0.79-0.98), plasma transferrin (IRR=0.53, 0.33-0.84) and ferritin (IRR=1.26, 1.05-1.51) were significantly associated with TB after adjusting for TB susceptibility factors. While genotype associations were not statistically significant, SLC11A1 associations replicated similar directions as reported in HIV-seronegative meta-analyses. Conclusions Evidence of host iron redistribution at HIV diagnosis was associated with incident TB, and genetic influences on iron homeostasis may be involved. Low hemoglobin was associated with subsequent diagnosis of TB, but when considered in combination with additional iron status biomarkers, the collective findings point to a mechanism whereby anemia and iron redistribution are likely due to viral and/or bacteria-driven processes and the host immune response to infection. As a result, iron supplementation may not be efficacious or safe under these circumstances. Clinical and nutritional management of HIV and Mycobacterium tuberculosis co-infected individuals, especially in regions where food insecurity and malnutrition co-exist, may be further improved when the iron-related TB risk factors identified here are better understood and managed to favor host rather than pathogen outcomes. PMID:23360117
Lagos, Jaime; Couvin, David; Arata, Loredana; Tognarelli, Javier; Aguayo, Carolina; Leiva, Tamara; Arias, Fabiola; Hormazabal, Juan Carlos; Rastogi, Nalin; Fernández, Jorge
2016-01-01
Tuberculosis (TB), caused by the pathogen Mycobacterium tuberculosis (MTB), remains a disease of high importance to global public health. Studies into the population structure of MTB have become vital to monitoring possible outbreaks and also to develop strategies regarding disease control. Although Chile has a low incidence of MTB, the current rates of migration have the potential to change this scenario. We collected and analyzed a total of 458 M. tuberculosis isolates (1 isolate per patient) originating from all 15 regions of Chile. The isolates were genotyped using the spoligotyping method and the data obtained were analyzed and compared with the SITVIT2 database. A total of 169 different patterns were identified, of which, 119 patterns (408 strains) corresponded to Spoligotype International Types (SITs) and 50 patterns corresponded to orphan strains. The most abundantly represented SITs/lineages were: SIT53/T1 (11.57%), SIT33/LAM3 (9.6%), SIT42/LAM9 (9.39%), SIT50/H3 (5.9%), SIT37/T3 (5%); analysis of the spoligotyping minimum spanning tree as well as spoligoforest were suggestive of a recent expansion of SIT42, SIT50 and SIT37; all of which potentially evolved from SIT53. The most abundantly represented lineages were LAM (40.6%), T (34.1%) and Haarlem (13.5%). LAM was more prevalent in the Santiago (43.6%) and Concepción (44.1%) isolates, rather than the Iquique (29.4%) strains. The proportion of X lineage was appreciably higher in Iquique and Concepción (11.7% in both) as compared to Santiago (1.6%). Global analysis of MTB lineage distribution in Chile versus neighboring countries showed that evolutionary recent lineages (LAM, T and Haarlem) accounted together for 88.2% of isolates in Chile, a pattern which mirrored MTB lineage distribution in neighboring countries (n = 7378 isolates recorded in SITVIT2 database for Peru, Brazil, Paraguay, and Argentina; and published studies), highlighting epidemiological advantage of Euro-American lineages in this region. Finally, we also observed exclusive emergence of patterns SIT4014/X1 and SIT4015 (unknown lineage signature) that have hitherto been found exclusively in Chile, indicating that conditions specific to Chile, along with the unique genetic makeup of the Chilean population, might have allowed for a possible co-evolution leading to the success of these emerging genotypes. PMID:27518286
Viveiros, M; Pinheiro, S; Moreira, P; Pacheco, T; Brum, L
1999-06-01
Egas Moniz Hospital, Lisbon, Portugal. To evaluate the Ligase Chain Reaction (LCx) Mycobacterium tuberculosis Assay for the direct detection of M. tuberculosis complex in respiratory specimens after smear observation, and its suitability for non-respiratory clinical specimens. Analysis of 156 specimens collected from 123 patients with pulmonary tuberculosis and/or extrapulmonary involvement. Among 93 pulmonary secretions and 63 extra-pulmonary samples and after resolution of discrepancies based on clinical and laboratory findings, two pulmonary samples from a patient with a diagnosis of sarcoidosis, four samples of cerebrospinal and one of seminal fluid were considered as false positives. Two tissue biopsy samples, one pericardial effusion and one pulmonary secretion from patients strongly suspected of having tuberculosis were considered as false negatives for the assay, without inhibition of amplification. All specimens yielding M. avium on culture were LCx negative. The LCx Mycobacterium tuberculosis Assay was found to be useful for the rapid identification of M. tuberculosis complex in all types of specimens. It revealed a high specificity both in pulmonary and extrapulmonary products, and a sensitivity of 97% for the pulmonary secretions and of 75% for the extra-pulmonary specimens, independently of the bacilloscopy results.
Manson, Abigail L; Abeel, Thomas; Galagan, James E; Sundaramurthi, Jagadish Chandrabose; Salazar, Alex; Gehrmann, Thies; Shanmugam, Siva Kumar; Palaniyandi, Kannan; Narayanan, Sujatha; Swaminathan, Soumya; Earl, Ashlee M
2017-06-01
India is home to 25% of all tuberculosis cases and the second highest number of multidrug resistant cases worldwide. However, little is known about the genetic diversity and resistance determinants of Indian Mycobacterium tuberculosis, particularly for the primary lineages found in India, lineages 1 and 3. We whole genome sequenced 223 randomly selected M. tuberculosis strains from 196 patients within the Tiruvallur and Madurai districts of Tamil Nadu in Southern India. Using comparative genomics, we examined genetic diversity, transmission patterns, and evolution of resistance. Genomic analyses revealed (11) prevalence of strains from lineages 1 and 3, (11) recent transmission of strains among patients from the same treatment centers, (11) emergence of drug resistance within patients over time, (11) resistance gained in an order typical of strains from different lineages and geographies, (11) underperformance of known resistance-conferring mutations to explain phenotypic resistance in Indian strains relative to studies focused on other geographies, and (11) the possibility that resistance arose through mutations not previously implicated in resistance, or through infections with multiple strains that confound genotype-based prediction of resistance. In addition to substantially expanding the genomic perspectives of lineages 1 and 3, sequencing and analysis of M. tuberculosis whole genomes from Southern India highlight challenges of infection control and rapid diagnosis of resistant tuberculosis using current technologies. Further studies are needed to fully explore the complement of diversity and resistance determinants within endemic M. tuberculosis populations. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
Pérez-Lago, L; Palacios, J J; Herranz, M; Ruiz Serrano, M J; Bouza, E; García-de-Viedma, D
2015-02-01
The analysis of microevolution events, its functional relevance and impact on molecular epidemiology strategies, constitutes one of the most challenging aspects of the study of clonal complexity in infection by Mycobacterium tuberculosis. In this study, we retrospectively evaluated whether two improved sampling schemes could provide access to the clonal complexity that is undetected by the current standards (analysis of one isolate from one sputum). We evaluated in 48 patients the analysis by mycobacterial interspersed repetitive unit-variable number tandem repeat of M. tuberculosis isolates cultured from bronchial aspirate (BAS) or bronchoalveolar lavage (BAL) and, in another 16 cases, the analysis of a higher number of isolates from independent sputum samples. Analysis of the isolates from BAS/BAL specimens revealed clonal complexity in a very high proportion of cases (5/48); in most of these cases, complexity was not detected when the isolates from sputum samples were analysed. Systematic analysis of isolates from multiple sputum samples also improved the detection of clonal complexity. We found coexisting clonal variants in two of 16 cases that would have gone undetected in the analysis of the isolate from a single sputum specimen. Our results suggest that analysis of isolates from BAS/BAL specimens is highly efficient for recording the true clonal composition of M. tuberculosis in the lungs. When these samples are not available, we recommend increasing the number of isolates from independent sputum specimens, because they might not harbour the same pool of bacteria. Our data suggest that the degree of clonal complexity in tuberculosis has been underestimated because of the deficiencies inherent in a simplified procedure. Copyright © 2014 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Varma-Basil, Mandira; Narang, Anshika; Chakravorty, Soumitesh; Garima, Kushal; Gupta, Shraddha; Kumar Sharma, Naresh; Giri, Astha; Zozio, Thierry; Couvin, David; Hanif, Mahmud; Bhatnagar, Anuj; Menon, Balakrishnan; Niemann, Stefan; Rastogi, Nalin; Alland, David; Bose, Mridula
2016-09-01
Several attempts have been made to associate phylogenetic differences among Mycobacterium tuberculosis strains to variations in the clinical outcome of the disease and to drug resistance. We genotyped 139 clinical isolates of M. tuberculosis obtained from patients of pulmonary tuberculosis in North Delhi region. The isolates were analyzed using nine Single nucleotide polymorphism (SNP) markers, spoligotyping and MIRU-VNTRs; and the results were correlated with their drug susceptibility profile. Results of SNP cluster group (SCG) analysis (available for 138 isolates) showed that the most predominant cluster was SCG 3a, observed in 58.7% (81/138) of the isolates with 44.4% (36/81) of these being drug susceptible, while 16% (13/81) were multidrug resistant (MDR). Of the ancestral cluster SCG 1 observed in 19.5% (27/138) of the isolates, 14.8% (4/27) were MDR while 44.4% (12/27) were drug susceptible. SCG 2 formed 5.79% (8/138) of the isolates and 50% (4/8) of these were multidrug resistant (MDR). Spoligotyping subdivided the strains into 45 shared types (n = 125) and 14 orphan strains. The orphan strains were mostly associated with SCG 3a or SCG 1, reflecting the principal SCGs found in the Indian population. SCG 1 and SCG 2 genotypes were concordant with the East African Indian (EAI) and Beijing families respectively. Central Asian (CAS) clade and its sublineages were predominantly associated with SCG 3a. No consistent association was seen between the SCGs and Harlem, T or X clades. The 15 loci MIRU-VNTR typing revealed 123/136 isolates to be unclustered, while 13 isolates were present in 6 clusters of 2-3 isolates each. However, correlating the cluster analysis with patient details did not suggest any evidence of recent transmission. In conclusion, though our study revealed the preponderance of SCG 1 and 3a in the M. tuberculosis population circulating in the region, the diversity of strains highlights the changes occurring within lineages and reemphasizes the importance of cluster investigations in extended studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Martínez, Luz Maira Wintaco; Castro, Gloria Puerto; Guerrero, Martha Inírida
2016-02-01
Developing a fast, inexpensive, and specific test that reflects the mutations present in Mycobacterium tuberculosis isolates according to geographic region is the main challenge for drug-resistant tuberculosis (TB) control. The objective of this study was to develop a molecular platform to make a rapid diagnosis of multidrug-resistant (MDR) and extensively drug-resistant TB based on single nucleotide polymorphism (SNP) mutations present in therpoB, katG, inhA,ahpC, and gyrA genes from Colombian M. tuberculosis isolates. The amplification and sequencing of each target gene was performed. Capture oligonucleotides, which were tested before being used with isolates to assess the performance, were designed for wild type and mutated codons, and the platform was standardised based on the reverse hybridisation principle. This method was tested on DNA samples extracted from clinical isolates from 160 Colombian patients who were previously phenotypically and genotypically characterised as having susceptible or MDR M. tuberculosis. For our method, the kappa index of the sequencing results was 0,966, 0,825, 0,766, 0,740, and 0,625 forrpoB, katG, inhA,ahpC, and gyrA, respectively. Sensitivity and specificity were ranked between 90-100% compared with those of phenotypic drug susceptibility testing. Our assay helps to pave the way for implementation locally and for specifically adapted methods that can simultaneously detect drug resistance mutations to first and second-line drugs within a few hours.
Polymorphisms of 20 regulatory proteins between Mycobacterium tuberculosis and Mycobacterium bovis.
Bigi, María M; Blanco, Federico Carlos; Araújo, Flabio R; Thacker, Tyler C; Zumárraga, Martín J; Cataldi, Angel A; Soria, Marcelo A; Bigi, Fabiana
2016-08-01
Mycobacterium tuberculosis and Mycobacterium bovis are responsible for tuberculosis in humans and animals, respectively. Both species are closely related and belong to the Mycobacterium tuberculosis complex (MTC). M. tuberculosis is the most ancient species from which M. bovis and other members of the MTC evolved. The genome of M. bovis is over >99.95% identical to that of M. tuberculosis but with seven deletions ranging in size from 1 to 12.7 kb. In addition, 1200 single nucleotide mutations in coding regions distinguish M. bovis from M. tuberculosis. In the present study, we assessed 75 M. tuberculosis genomes and 23 M. bovis genomes to identify non-synonymous mutations in 202 coding sequences of regulatory genes between both species. We identified species-specific variants in 20 regulatory proteins and confirmed differential expression of hypoxia-related genes between M. bovis and M. tuberculosis. © 2016 The Societies and John Wiley & Sons Australia, Ltd.
Sy, Sherwin K B; de Kock, Lizanne; Diacon, Andreas H; Werely, Cedric J; Xia, Huiming; Rosenkranz, Bernd; van der Merwe, Lize; Donald, Peter R
2015-07-01
The aim of this study was to examine the relationships between N-acetyltransferase genotypes, pharmacokinetics, and tolerability of granular slow-release para-aminosalicylic acid (GSR-PAS) in tuberculosis patients. The study was a randomized, two-period, open-label, crossover design wherein each patient received 4 g GSR-PAS twice daily or 8 g once daily alternately. The PAS concentration-time profiles were modeled by a one-compartment disposition model with three transit compartments in series to describe its absorption. Patients' NAT1 and NAT2 genotypes were determined by sequencing and restriction enzyme analysis, respectively. The number of daily vomits was modeled by a Poisson probability mass function. Comparisons of other tolerability measures by regimens, gender, and genotypes were evaluated by a linear mixed-effects model. The covariate effects associated with efavirenz, gender, and NAT1*3, NAT1*14, and NAT2*5 alleles corresponded to 25, 37, -17, -48, and -27% changes, respectively, in oral clearance of PAS. The NAT1*10 allele did not influence drug clearance. The time above the MIC of 1 mg/liter was significantly different between the two regimens but not influenced by the NAT1 or NAT2 genotypes. The occurrence and intensity of intolerance differed little between regimens. Four grams of GSR-PAS twice daily but not 8 g once daily ensured concentrations exceeding the MIC (1 mg/liter) throughout the dosing interval; PAS intolerance was not related to maximum PAS concentrations over the doses studied and was not more frequent after once-daily dosing. We confirm that the slow phenotype conferred by the NAT1*14 and NAT1*3 alleles resulted in higher PAS exposure but found no evidence of increased activity of the NAT1*10 allele. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Detection of M. tuberculosis using DNA chips combined with an image analysis system.
Huang, T-S; Liu, Y-C; Bair, C-H; Sy, C-L; Chen, Y-S; Tu, H-Z; Chen, B-C
2008-01-01
To develop a packaged DNA chip assay (the DR. MTBC Screen assay) for direct detection of the Mycobacterium tuberculosis complex. We described a DNA chip assay based on the IS6110 gene that can be used for the detection of M. tuberculosis complex. Probes were spotted onto the polystyrene strips in the wells of 96-well microtitre plates and used for hybridisation with biotin-labelled amplicon to yield a pattern of visualised positive spots. The plate image was scanned, analysed and interpreted automatically. The results corresponded well with those obtained by conventional culture as well as clinical diagnosis, with sensitivity and specificity rates of respectively 83.8% and 94.2%, and 84.6% and 96.3%. We conclude that the DR. MTBC Screen assay can detect M. tuberculosis complex rapidly in respiratory specimens, readily adapts to routine work and provides a flexible choice to meet different cost-effectiveness and automation needs in TB-endemic countries. The cost for reagents is around US$10 per sample.
Hillemann, D; Rüsch-Gerdes, S; Richter, E
2005-12-01
The usefulness of a low-tech rapid test for culture confirmation of Mycobacterium tuberculosis complex, Capilia TB, was tested on 172 mycobacteria-positive clinical samples. The overall sensitivity and specificity were 92.4% and 100%, respectively. In three of nine false-negative isolates a mutation in the mpb64 gene could be detected.
Chewing the fat: lipid metabolism and homeostasis during M. tuberculosis infection.
Lovewell, Rustin R; Sassetti, Christopher M; VanderVen, Brian C
2016-02-01
The interplay between Mycobacterium tuberculosis lipid metabolism, the immune response and lipid homeostasis in the host creates a complex and dynamic pathogen-host interaction. Advances in imaging and metabolic analysis techniques indicate that M. tuberculosis preferentially associates with foamy cells and employs multiple physiological systems to utilize exogenously derived fatty-acids and cholesterol. Moreover, novel insights into specific host pathways that control lipid accumulation during infection, such as the PPARγ and LXR transcriptional regulators, have begun to reveal mechanisms by which host immunity alters the bacterial micro-environment. As bacterial lipid metabolism and host lipid regulatory pathways are both important, yet inherently complex, components of active tuberculosis, delineating the heterogeneity in lipid trafficking within disease states remains a major challenge for therapeutic design. Copyright © 2015. Published by Elsevier Ltd.
Viveiros, Miguel; Leandro, Clara; Rodrigues, Liliana; Almeida, Josefina; Bettencourt, Rosário; Couto, Isabel; Carrilho, Lurdes; Diogo, José; Fonseca, Ana; Lito, Luís; Lopes, João; Pacheco, Teresa; Pessanha, Mariana; Quirim, Judite; Sancho, Luísa; Salfinger, Max; Amaral, Leonard
2005-01-01
The INNO-LiPA Rif.TB assay for the identification of Mycobacterium tuberculosis complex strains and the detection of rifampin (RIF) resistance has been evaluated with 360 smear-positive respiratory specimens from an area of high incidence of multidrug-resistant tuberculosis (MDR-TB). The sensitivity when compared to conventional identification/culture methods was 82.2%, and the specificity was 66.7%; the sensitivity and specificity were 100.0% and 96.9%, respectively, for the detection of RIF resistance. This assay has the potential to provide rapid information that is essential for the effective management of MDR-TB. PMID:16145166
[Tuberculosis of the lymphatic nodes and coexisting invasion with Toxoplasma gondii].
Kociecka, W; Simon, E; Szymaczek-Meyer, L; Pakuła, M
Six cases of the peripheral lymphatic nodes tuberculosis with positive serologic reactions to Toxoplasma gondii antigen are presented. It was shown, that independently of a complex of clinical examinations histologic examination is decisive for the diagnosis of lymphatic nodes tuberculosis with coexisting toxoplasmosis. A positive serologic reaction with T. gondii antigen in patients with lymphatic nodes tuberculosis may reflect inactive infection with T. gondii. Use of anti-toxoplasmosis drugs may be not necessary in such cases.
The Cyclic Peptide Ecumicin Targeting ClpC1 Is Active against Mycobacterium tuberculosis In Vivo
Gao, Wei; Kim, Jin-Yong; Anderson, Jeffrey R.; Akopian, Tatos; Hong, Seungpyo; Jin, Ying-Yu; Kandror, Olga; Kim, Jong-Woo; Lee, In-Ae; Lee, Sun-Young; McAlpine, James B.; Mulugeta, Surafel; Sunoqrot, Suhair; Wang, Yuehong; Yang, Seung-Hwan; Yoon, Tae-Mi; Goldberg, Alfred L.; Pauli, Guido F.; Cho, Sanghyun
2014-01-01
Drug-resistant tuberculosis (TB) has lent urgency to finding new drug leads with novel modes of action. A high-throughput screening campaign of >65,000 actinomycete extracts for inhibition of Mycobacterium tuberculosis viability identified ecumicin, a macrocyclic tridecapeptide that exerts potent, selective bactericidal activity against M. tuberculosis in vitro, including nonreplicating cells. Ecumicin retains activity against isolated multiple-drug-resistant (MDR) and extensively drug-resistant (XDR) strains of M. tuberculosis. The subcutaneous administration to mice of ecumicin in a micellar formulation at 20 mg/kg body weight resulted in plasma and lung exposures exceeding the MIC. Complete inhibition of M. tuberculosis growth in the lungs of mice was achieved following 12 doses at 20 or 32 mg/kg. Genome mining of lab-generated, spontaneous ecumicin-resistant M. tuberculosis strains identified the ClpC1 ATPase complex as the putative target, and this was confirmed by a drug affinity response test. ClpC1 functions in protein breakdown with the ClpP1P2 protease complex. Ecumicin markedly enhanced the ATPase activity of wild-type (WT) ClpC1 but prevented activation of proteolysis by ClpC1. Less stimulation was observed with ClpC1 from ecumicin-resistant mutants. Thus, ClpC1 is a valid drug target against M. tuberculosis, and ecumicin may serve as a lead compound for anti-TB drug development. PMID:25421483
Descriptive review of tuberculosis surveillance systems across the circumpolar regions.
Bourgeois, Annie-Claude; Zulz, Tammy; Soborg, Bolette; Koch, Anders
2016-01-01
Tuberculosis is highly prevalent in many Arctic areas. Members of the International Circumpolar Surveillance Tuberculosis (ICS-TB) Working Group collaborate to increase knowledge about tuberculosis in Arctic regions. To establish baseline knowledge of tuberculosis surveillance systems used by ICS-TB member jurisdictions. Three questionnaires were developed to reflect the different surveillance levels (local, regional and national); all 3 were forwarded to the official representative of each of the 15 ICS-TB member jurisdictions in 2013. Respondents self-identified the level of surveillance conducted in their region and completed the applicable questionnaire. Information collected included surveillance system objectives, case definitions, data collection methodology, storage and dissemination. Thirteen ICS-TB jurisdictions [Canada (Labrador, Northwest Territories, Nunavik, Nunavut, Yukon), Finland, Greenland, Norway, Sweden, Russian Federation (Arkhangelsk, Khanty-Mansiysk Autonomous Okrug, Yakutia (Sakha Republic), United States (Alaska)] voluntarily completed the survey - representing 2 local, 7 regional and 4 national levels. Tuberculosis reporting is mandatory in all jurisdictions, and case definitions are comparable across regions. The common objectives across systems are to detect outbreaks, and inform the evaluation/planning of public health programmes and policies. All jurisdictions collect data on confirmed active tuberculosis cases and treatment outcomes; 11 collect contact tracing results. Faxing of standardized case reporting forms is the most common reporting method. Similar core data elements are collected; 8 regions report genotyping results. Data are stored using customized programmes (n=7) and commercial software (n=6). Nine jurisdictions provide monthly, bi-annual or annual reports to principally government and/or scientific/medical audiences. This review successfully establishes baseline knowledge on similarities and differences among circumpolar tuberculosis surveillance systems. The similarity in case definitions will allow for description of the epidemiology of TB based on surveillance data in circumpolar regions, further study of tuberculosis trends across regions, and recommendation of best practices to improve surveillance activities.
Descriptive review of tuberculosis surveillance systems across the circumpolar regions
Bourgeois, Annie-Claude; Zulz, Tammy; Soborg, Bolette; Koch, Anders
2016-01-01
Background Tuberculosis is highly prevalent in many Arctic areas. Members of the International Circumpolar Surveillance Tuberculosis (ICS-TB) Working Group collaborate to increase knowledge about tuberculosis in Arctic regions. Objective To establish baseline knowledge of tuberculosis surveillance systems used by ICS-TB member jurisdictions. Design Three questionnaires were developed to reflect the different surveillance levels (local, regional and national); all 3 were forwarded to the official representative of each of the 15 ICS-TB member jurisdictions in 2013. Respondents self-identified the level of surveillance conducted in their region and completed the applicable questionnaire. Information collected included surveillance system objectives, case definitions, data collection methodology, storage and dissemination. Results Thirteen ICS-TB jurisdictions [Canada (Labrador, Northwest Territories, Nunavik, Nunavut, Yukon), Finland, Greenland, Norway, Sweden, Russian Federation (Arkhangelsk, Khanty-Mansiysk Autonomous Okrug, Yakutia (Sakha Republic), United States (Alaska)] voluntarily completed the survey – representing 2 local, 7 regional and 4 national levels. Tuberculosis reporting is mandatory in all jurisdictions, and case definitions are comparable across regions. The common objectives across systems are to detect outbreaks, and inform the evaluation/planning of public health programmes and policies. All jurisdictions collect data on confirmed active tuberculosis cases and treatment outcomes; 11 collect contact tracing results. Faxing of standardized case reporting forms is the most common reporting method. Similar core data elements are collected; 8 regions report genotyping results. Data are stored using customized programmes (n=7) and commercial software (n=6). Nine jurisdictions provide monthly, bi-annual or annual reports to principally government and/or scientific/medical audiences. Conclusion This review successfully establishes baseline knowledge on similarities and differences among circumpolar tuberculosis surveillance systems. The similarity in case definitions will allow for description of the epidemiology of TB based on surveillance data in circumpolar regions, further study of tuberculosis trends across regions, and recommendation of best practices to improve surveillance activities. PMID:27121178
Descriptive review of tuberculosis surveillance systems across the circumpolar regions.
Bourgeois, Annie-Claude; Zulz, Tammy; Soborg, Bolette; Koch, Anders; On Behalf Of The International Circumpolar Surveillance-Tuberculosis Working Group
2016-01-01
Background Tuberculosis is highly prevalent in many Arctic areas. Members of the International Circumpolar Surveillance Tuberculosis (ICS-TB) Working Group collaborate to increase knowledge about tuberculosis in Arctic regions. Objective To establish baseline knowledge of tuberculosis surveillance systems used by ICS-TB member jurisdictions. Design Three questionnaires were developed to reflect the different surveillance levels (local, regional and national); all 3 were forwarded to the official representative of each of the 15 ICS-TB member jurisdictions in 2013. Respondents self-identified the level of surveillance conducted in their region and completed the applicable questionnaire. Information collected included surveillance system objectives, case definitions, data collection methodology, storage and dissemination. Results Thirteen ICS-TB jurisdictions [Canada (Labrador, Northwest Territories, Nunavik, Nunavut, Yukon), Finland, Greenland, Norway, Sweden, Russian Federation (Arkhangelsk, Khanty-Mansiysk Autonomous Okrug, Yakutia (Sakha Republic), United States (Alaska)] voluntarily completed the survey - representing 2 local, 7 regional and 4 national levels. Tuberculosis reporting is mandatory in all jurisdictions, and case definitions are comparable across regions. The common objectives across systems are to detect outbreaks, and inform the evaluation/planning of public health programmes and policies. All jurisdictions collect data on confirmed active tuberculosis cases and treatment outcomes; 11 collect contact tracing results. Faxing of standardized case reporting forms is the most common reporting method. Similar core data elements are collected; 8 regions report genotyping results. Data are stored using customized programmes (n=7) and commercial software (n=6). Nine jurisdictions provide monthly, bi-annual or annual reports to principally government and/or scientific/medical audiences. Conclusion This review successfully establishes baseline knowledge on similarities and differences among circumpolar tuberculosis surveillance systems. The similarity in case definitions will allow for description of the epidemiology of TB based on surveillance data in circumpolar regions, further study of tuberculosis trends across regions, and recommendation of best practices to improve surveillance activities.
[Tuberculosis in ancient Egypt].
Ziskind, B; Halioua, B
2007-12-01
Did Tuberculosis plague Ancient Egypt five millennia ago? Some medical papyri appear to evoke tuberculosis. Egyptian physicians did not individualize it, but they seem to have noticed some of its clinical expressions, such as cough, cervical adenitis, and cold abscesses. In Egyptian iconography, some cases of hump-backs were probably due to Pott's disease of the spine Descriptive paleopathology, born with the 20th century, has identified pulmonary and especially spinal lesions compatible with tuberculosis. Progress of molecular biology has made a decisive contribution with the diagnosis of tuberculosis on ancient samples. Tuberculosis has been identified using PCR in nearly a third of the Egyptian mummies recently examined. Spoligotyping has made it possible to re-evaluate the phylogenic tree of the Mycobacterium tuberculosis complex in Ancient Egypt. Tuberculosis certainly plagued the Nile Valley and appears to have been an important cause of mortality in Ancient Egypt.
Impact of Genetic Diversity on the Biology of Mycobacterium tuberculosis Complex Strains.
Niemann, Stefan; Merker, Matthias; Kohl, Thomas; Supply, Philip
2016-11-01
Tuberculosis (TB) remains the most deadly bacterial infectious disease worldwide. Its treatment and control are threatened by increasing numbers of multidrug-resistant (MDR) or nearly untreatable extensively drug-resistant (XDR) strains. New concepts are therefore urgently needed to understand the factors driving the TB epidemics and the spread of different strain populations, especially in association with drug resistance. Classical genotyping and, more recently, whole-genome sequencing (WGS) revealed that the world population of tubercle bacilli is more diverse than previously thought. Several major phylogenetic lineages can be distinguished, which are associated with their sympatric host population. Distinct clonal (sub)populations can even coexist within infected patients. WGS is now used as the ultimate approach for differentiating clinical isolates and for linking phenotypic to genomic variation from lineage to strain levels. Multiple lines of evidence indicate that the genetic diversity of TB strains translates into pathobiological consequences, and key molecular mechanisms probably involved in differential pathoadaptation of some main lineages have recently been identified. Evidence also accumulates on molecular mechanisms putatively fostering the emergence and rapid expansion of particular MDR and XDR strain groups in some world regions. However, further integrative studies will be needed for complete elucidation of the mechanisms that allow the pathogen to infect its host, acquire multidrug resistance, and transmit so efficiently. Such knowledge will be key for the development of the most effective new diagnostics, drugs, and vaccination strategies.
Microbe Profile: Mycobacterium tuberculosis: Humanity's deadly microbial foe.
Gordon, Stephen V; Parish, Tanya
2018-04-01
Mycobacterium tuberculosis is an expert and deadly pathogen, causing the disease tuberculosis (TB) in humans. It has several notable features: the ability to enter non-replicating states for long periods and cause latent infection; metabolic remodelling during chronic infection; a thick, waxy cell wall; slow growth rate in culture; and intrinsic drug resistance and antibiotic tolerance. As a pathogen, M. tuberculosis has a complex relationship with its host, is able to replicate inside macrophages, and expresses diverse immunomodulatory molecules. M. tuberculosis currently causes over 1.8 million deaths a year, making it the world's most deadly human pathogen.
Sezen, Figen; Albayrak, Nurhan; Özkara, Şeref; Karagöz, Alper; Alp, Alpaslan; Duyar Ağca, Filiz; İnan Süer, Asiye; Müderris, Tuba; Ceyhan, İsmail; Durmaz, Rıza; Ertek, Mustafa
2015-04-01
The most effective method for monitoring country-level drug resistance frequency and to implement the necessary control measures is the establishment of a laboratory-based surveillance system. The aim of this study was to summarize the follow up trend of the drug-resistant tuberculosis (TB) cases, determine the load of resistance and evaluate the capacities of laboratories depending on laboratory quality assurance system for the installation work of National Tuberculosis Laboratory Surveillance Network (TuLSA) which has started in Ankara in 2011. TuLSA studies was carried out under the coordination of National Tuberculosis Reference Laboratory (NRL) with the participation of TB laboratories and dispensaries. Specimens of TB patients, reported from health institutions, were followed in TB laboratories, and the epidemiological information was collected from the dispensaries. One isolate per patient with the drug susceptibility test (DST) results were sent to NRL from TB laboratories and in NRL the isolates were rechecked with the genotypical (MTBDRplus, Hain Lifescience, Germany) and phenotypical (MGIT 960, BD, USA) DST methods. Molecular epidemiological analysis were also performed by spoligotyping and MIRU/VNTR. Second-line DST was applied to the isolates resistant to rifampin. A total of 1276 patients were reported between January 1st to December 31th 2011, and 335 cases were defined as "pulmonary TB from Ankara province". The mean age of those patients was 43.4 ± 20 years, and 67.5% were male. Three hundred seventeen (94.6%) patients were identified as new cases. The average sample number obtained from pulmonary TB cases was 3.26 ± 2.88, and 229 (68.3%) of them was culture positive. DST was applied to all culture positive isolates; 90.4% (207/229) of cases were susceptible to the five drugs tested (ethambutol, isoniazid, pyrazinamide, rifampicin, streptomycin). Eight (3.5%) of the isolates were multidrug-resistant (MDR-TB), while no extensively drug-resistant strains were detected. MDR-TB is likely to occur in 63.3 times more among previously treated cases, and 73.3 times more in legal aliens. The achievement of therapy among pulmonary TB cases was 91.9%. Spoligotyping performed for 221 M.tuberculosis complex isolates, showed that all strains were clustered in nine groups. SIT 41 (105/221; 47.5%) was the most frequent spoligotype detected, and clustering rate based on MIRU-VNTR results were found as 16.3%. All of the clustered strains were sensitive while all of MDR-TB isolates showed specific MIRU-VNTR profiles. In conclusion, TuLSA studies started in Ankara in 2011 and the system is still expanding in the country. Our data obtained with TuLSA have been published as a regional surveillance data in the WHO Global Tuberculosis Report 2011, and as a national surveillance data in Global Tuberculosis Report 2012.
Ssengooba, Willy; de Jong, Bouke C; Joloba, Moses L; Cobelens, Frank G; Meehan, Conor J
2016-08-05
In the context of advanced immunosuppression, M. tuberculosis is known to cause detectable mycobacteremia. However, little is known about the intra-patient mycobacterial microevolution and the direction of seeding between the sputum and blood compartments. From a diagnostic study of HIV-infected TB patients, 51 pairs of concurrent blood and sputum M. tuberculosis isolates from the same patient were available. In a previous analysis, we identified a subset with genotypic concordance, based on spoligotyping and 24 locus MIRU-VNTR. These paired isolates with identical genotypes were analyzed by whole genome sequencing and phylogenetic analysis. Of the 25 concordant pairs (49 % of the 51 paired isolates), 15 (60 %) remained viable for extraction of high quality DNA for whole genome sequencing. Two patient pairs were excluded due to poor quality sequence reads. The median CD4 cell count was 32 (IQR; 16-101)/mm(3) and ten (77 %) patients were on ART. No drug resistance mutations were identified in any of the sequences analyzed. Three (23.1 %) of 13 patients had SNPs separating paired isolates from blood and sputum compartments, indicating evidence of microevolution. Using a phylogenetic approach to identify the ancestral compartment, in two (15 %) patients the blood isolate was ancestral to the sputum isolate, in one (8 %) it was the opposite, and ten (77 %) of the pairs were identical. Among HIV-infected patients with poor cellular immunity, infection with multiple strains of M. tuberculosis was found in half of the patients. In those patients with identical strains, whole genome sequencing indicated that M. tuberculosis intra-patient microevolution does occur in a few patients, yet did not reveal a consistent direction of spread between sputum and blood. This suggests that these compartments are highly connected and potentially seed each other repeatedly.
Alagappan, Chitra; Shivekar, Smita Sunil; Brammacharry, Usharani; Kapalamurthy, Vidya Raj Cuppusamy; Sakkaravarthy, Anbazhagi; Subashkumar, Rathinasamy; Muthaiah, Muthuraj
2018-03-28
The prevalence of isoniazid mono resistance is high in India. We investigated the molecular epidemiological characteristics association with the isoniazid resistance mutations in Mycobacterium tuberculosis in codon katG315 and in the promoter region of the inhA gene. Sputum specimens of smear-positive tuberculosis patients were subjected to Genotype MTBDRplus testing to identify katG and inhA mutations. Seventeen publications along with this current study assessed 14,100 genotypically resistant isolates for mutations in katG inclusive of codon position 315. In total, 1821 of 15438 isoniazid-resistant strains (11.8%) had detectable mutations: 71.0% in katG codon 315 (katG315) and 29.0% in the inhA promoter region. Economically active age group had 89.1%, paediatric age group had 0.4% and in the age group >60years had 10.5% isoniazid mono resistant and in males and females were 17.7% and 15.9% respectively. The meta-analysis derived a pooled katGS315T resistant TB prevalence of 64.5% (95% CI; 0.593±0.754%) with Q value 732.19, I2 98.35% and p-0.000 for treated TB cases. Isoniazid resistant was transferred widely and its prevalence and transmission of INH resistant isolates especially with katG315Thr mutation was confirmed. Therefore, it is important to diagnose the katG315Thr mutants among INH-resistant strains as it could be seen as a risk factor for subsequent development of MDR-TB. Prompt detection of the patients with INH resistant strains would expedite the modification of treatment regimens and appropriate infection control measures could be taken in time to diminish the risk of further development and transmission of MDR-TB. Copyright © 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.
2014-10-22
The Food and Drug Administration (FDA) is classifying nucleic acid-based in vitro diagnostic devices for the detection of Mycobacterium tuberculosis complex (MTB-complex) and the genetic mutations associated with MTB-complex antibiotic resistance in respiratory specimens devices into class II (special controls). The Agency is classifying the device into class II (special controls) because special controls, in addition to general controls, will provide a reasonable assurance of safety and effectiveness of the device.
Extensive Drug Resistance Acquired During Treatment of Multidrug-Resistant Tuberculosis
Cegielski, J. Peter; Dalton, Tracy; Yagui, Martin; Wattanaamornkiet, Wanpen; Volchenkov, Grigory V.; Via, Laura E.; Van Der Walt, Martie; Tupasi, Thelma; Smith, Sarah E.; Odendaal, Ronel; Leimane, Vaira; Kvasnovsky, Charlotte; Kuznetsova, Tatiana; Kurbatova, Ekaterina; Kummik, Tiina; Kuksa, Liga; Kliiman, Kai; Kiryanova, Elena V.; Kim, HeeJin; Kim, Chang-ki; Kazennyy, Boris Y.; Jou, Ruwen; Huang, Wei-Lun; Ershova, Julia; Erokhin, Vladislav V.; Diem, Lois; Contreras, Carmen; Cho, Sang Nae; Chernousova, Larisa N.; Chen, Michael P.; Caoili, Janice Campos; Bayona, Jaime; Akksilp, Somsak; Calahuanca, Gloria Yale; Wolfgang, Melanie; Viiklepp, Piret; Vasilieva, Irina A.; Taylor, Allison; Tan, Kathrine; Suarez, Carmen; Sture, Ingrida; Somova, Tatiana; Smirnova, Tatyana G.; Sigman, Erika; Skenders, Girts; Sitti, Wanlaya; Shamputa, Isdore C.; Riekstina, Vija; Pua, Kristine Rose; Therese, M.; Perez, C.; Park, Seungkyu; Norvaisha, Inga; Nemtsova, Evgenia S.; Min, Seonyeong; Metchock, Beverly; Levina, Klavdia; Lei, Yung-Chao; Lee, Jongseok; Larionova, Elena E.; Lancaster, Joey; Jeon, Doosoo; Jave, Oswaldo; Khorosheva, Tatiana; Hwang, Soo Hee; Huang, Angela Song-En; Gler, M. Tarcela; Dravniece, Gunta; Eum, Seokyong; Demikhova, Olga V.; Degtyareva, Irina; Danilovits, Manfred; Cirula, Anda; Cho, Eunjin; Cai, Ying; Brand, Jeanette; Bonilla, Cesar; Barry, Clifton E.; Asencios, Luis; Andreevskaya, Sofia N.; Akksilp, Rattanawadee
2014-01-01
Background. Increasing access to drugs for the treatment of multidrug-resistant (MDR) tuberculosis is crucial but could lead to increasing resistance to these same drugs. In 2000, the international Green Light Committee (GLC) initiative began to increase access while attempting to prevent acquired resistance. Methods. To assess the GLC's impact, we followed adults with pulmonary MDR tuberculosis from the start to the end of treatment with monthly sputum cultures, drug susceptibility testing, and genotyping. We compared the frequency and predictors of acquired resistance to second-line drugs (SLDs) in 9 countries that volunteered to participate, 5 countries that met GLC criteria, and 4 countries that did not apply to the GLC. Results. In total, 832 subjects were enrolled. Of those without baseline resistance to specific SLDs, 68 (8.9%) acquired extensively drug-resistant (XDR) tuberculosis, 79 (11.2%) acquired fluoroquinolone (FQ) resistance, and 56 (7.8%) acquired resistance to second-line injectable drugs (SLIs). The relative risk (95% confidence interval [CI]) of acquired resistance was lower at GLC-approved sites: 0.27 (.16–.47) for XDR tuberculosis, 0.28 (.17–.45) for FQ, and 0.15 (.06–.39) to 0.60 (.34–1.05) for 3 different SLIs. The risk increased as the number of potentially effective drugs decreased. Controlling for baseline drug resistance and differences between sites, the odds ratios (95% CIs) were 0.21 (.07–.62) for acquired XDR tuberculosis and 0.23 (.09–.59) for acquired FQ resistance. Conclusions. Treatment of MDR tuberculosis involves substantial risk of acquired resistance to SLDs, increasing as baseline drug resistance increases. The risk was significantly lower in programs documented by the GLC to meet specific standards. PMID:25057101
Reis, Ana Julia; David, Simone Maria Martini de; Nunes, Luciana de Souza; Valim, Andreia Rosane de Moura; Possuelo, Lia Gonçalves
2016-01-01
We conducted a cross-sectional, retrospective study, characterized by classical and molecular epidemiology, involving M. tuberculosis isolates from a regional prison in southern Brazil. Between January of 2011 and August of 2014, 379 prisoners underwent sputum smear microscopy and culture; 53 (13.9%) were diagnosed with active tuberculosis. Of those, 8 (22.9%) presented with isoniazid-resistant tuberculosis. Strain genotyping was carried out by 15-locus mycobacterial interspersed repetitive unit-variable-number tandem-repeat analysis; 68.6% of the patients were distributed into five clusters, and 87.5% of the resistant cases were in the same cluster. The frequency of drug-resistant tuberculosis cases and the rate of recent transmission were high. Our data suggest the need to implement an effective tuberculosis control program within the prison system. RESUMO Estudo transversal, retrospectivo, com isolados de M. tuberculosis de pacientes de um presídio regional no sul do Brasil, caracterizado através de epidemiologia clássica e molecular. Entre janeiro de 2011 e agosto de 2014, 379 detentos foram submetidos a baciloscopia e cultura, sendo 53 (13,9%) diagnosticados com tuberculose ativa. Desses, 8 (22,9%) apresentavam tuberculose resistente a isoniazida. A genotipagem das cepas foi realizada por 15-locus mycobacterial interspersed repetitive units-variable number of tandem repeat analysis; 68,6% dos pacientes estavam distribuídos em cinco clusters, e 87,5% dos casos resistentes estavam em um mesmo cluster. Verificou-se uma frequência elevada de casos de resistência e alta taxa de transmissão recente. Estes dados sugerem a necessidade da implantação de um programa efetivo de controle da tuberculose no sistema prisional.
Yacoob, Fahmiya Leena; Philomina Jose, Beena; Karunakaran Lelitha, Sarada Devi; Sreenivasan, Sreelatha
2016-01-01
In a high tuberculosis burdened country like India, rapid, cost-effective, and reliable diagnostic tools for tuberculosis are an urgent need of the hour to prevent inappropriate treatment strategies and further spread of resistance. This study aimed to estimate the proportion of new smear-positive tuberculosis cases with primary resistance to rifampicin and/or isoniazid as well as identify the common mutations associated with it. Sputum of 200 newly diagnosed smear-positive cases of 1+ score and above was directly subjected to Line Probe Assay using the GenoType MTBDRplus assay kit. All samples were inoculated onto solid media and 61 samples were inoculated in automated liquid culture also. The Line Probe Assay gave hundred percent interpretable results with 2.5% of the study population showing resistant pattern. Only 1% of the cases were primary multidrug resistant tuberculosis and 1.5% showed isoniazid monoresistance. S531L and C15T were the most common genetic mutations seen for rifampicin and isoniazid resistance, respectively. 40% had absent rpoB wild type 8 band indicating probable silent mutation after clinical correlation. The average turnaround time for Line Probe Assay was far less (3.8 days) as compared to solid and liquid cultures (35.6 days and 13.5 days, resp.).
Vinhas, Solange Alves; Jones-López, Edward C; Ribeiro Rodrigues, Rodrigo; Gaeddert, Mary; Peres, Renata Lyrio; Marques-Rodrigues, Patricia; de Aguiar, Paola Poloni Lobo; White, Laura Forsberg; Alland, David; Salgame, Padmini; Hom, David; Ellner, Jerrold J; Dietze, Reynaldo; Collins, Lauren F; Shashkina, Elena; Kreiswirth, Barry; Palaci, Moisés
2017-05-01
Molecular epidemiologic studies have shown that the dynamics of tuberculosis transmission varies geographically. We sought to determine which strains of Mycobacterium tuberculosis (MTB) were infecting household contacts (HHC), and which were causing clusters of tuberculosis (TB) disease in Vitoria-ES, Brazil. A total of 741 households contacts (445 TST +) and 139 index cases were characterized according to the proportion of contacts in each household that had a tuberculin skin test positive: low (LT) (≤40% TST+), high (HT) (≥70% TST+) and (40-70% TST+) intermediate (IT) transmission. IS6110-RFLP and spoligotyping analysis were performed only 139 MTB isolates from index cases and 841 community isolates. Clustering occurred in 45% of the entire study population. There was no statistically significant association between MTB household transmission category and clustering. Within the household study population, the proportion of clusters in HT and LT groups was similar (31% and 36%, respectively; p = 0.82). Among index cases isolates associated with households demonstrating TST conversion, the frequency of unique pattern genotypes was higher for index cases of the LT compared to HT households (p = 0.03). We concluded that clusters and lineages associated with MTB infection in HT households had no proclivity for increased transmission of TB in the community. Copyright © 2017 Elsevier Ltd. All rights reserved.
Flores-Treviño, Samantha; Morfín-Otero, Rayo; Rodríguez-Noriega, Eduardo; González-Díaz, Esteban; Pérez-Gómez, Héctor Raúl; Mendoza-Olazarán, Soraya; Balderas-Rentería, Isaías; González, Gloria María; Garza-González, Elvira
2015-03-01
The emergence of multidrug-resistant (MDR) Mycobacterium tuberculosis strains has become a worldwide health care problem, making treatment of tuberculosis difficult. The aim of this study was to determine phenotypic resistance and gene mutations associated with MDR of clinical isolates of Mycobacterium tuberculosis from Guadalajara, Mexico. One hundred and five isolates were subjected to drug susceptibility testing to first line drugs using the proportion and Mycobacteria Growth Indicator Tube (MGIT) methods. Genes associated with isoniazid (inhA, katG, ahpC) and rifampicin (rpoB) resistance were analyzed by either pyrosequencing or PCR-RFLP. Resistance to any drug was detected in 48.6% of isolates, of which 40% were isoniazid-resistant, 20% were rifampicin-resistant and 19% were MDR. Drug-resistant isolates had the following frequency of mutations in rpoB (48%), katG (14%), inhA (26%), ahpC (26%). Susceptible isolates also had a mutation in ahpC (29%). This is the first analysis of mutations associated with MDR of M. tuberculosis in Guadalajara. Commonly reported mutations worldwide were found in rpoB, katG and inhA genes. Substitution C to T in position -15 of the ahpC gene may possibly be a polymorphism. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Recent Transmission of Tuberculosis - United States, 2011-2014.
Yuen, Courtney M; Kammerer, J Steve; Marks, Kala; Navin, Thomas R; France, Anne Marie
2016-01-01
Tuberculosis is an infectious disease that may result from recent transmission or from an infection acquired many years in the past; there is no diagnostic test to distinguish the two causes. Cases resulting from recent transmission are particularly concerning from a public health standpoint. To describe recent tuberculosis transmission in the United States, we used a field-validated plausible source-case method to estimate cases likely resulting from recent transmission during January 2011-September 2014. We classified cases as resulting from either limited or extensive recent transmission based on transmission cluster size. We used logistic regression to analyze patient characteristics associated with recent transmission. Of 26,586 genotyped cases, 14% were attributable to recent transmission, 39% of which were attributable to extensive recent transmission. The burden of cases attributed to recent transmission was geographically heterogeneous and poorly predicted by tuberculosis incidence. Extensive recent transmission was positively associated with American Indian/Alaska Native (adjusted prevalence ratio [aPR] = 3.6 (95% confidence interval [CI] 2.9-4.4), Native Hawaiian/Pacific Islander (aPR = 3.2, 95% CI 2.3-4.5), and black (aPR = 3.0, 95% CI 2.6-3.5) race, and homelessness (aPR = 2.3, 95% CI 2.0-2.5). Extensive recent transmission was negatively associated with foreign birth (aPR = 0.2, 95% CI 0.2-0.2). Tuberculosis control efforts should prioritize reducing transmission among higher-risk populations.
Extensively drug-resistant tuberculosis (XDR-TB) in Morocco.
Ennassiri, Wifak; Jaouhari, Sanae; Cherki, Wafa; Charof, Reda; Filali-Maltouf, Abdelkarim; Lahlou, Ouafae
2017-12-01
Extensively drug-resistant tuberculosis (XDR-TB) has recently been identified as a major global health threat. The aim of this study was to evaluate the presence of XDR-TB among Mycobacterium tuberculosis isolates in Morocco and its association with demographic, clinical and epidemiological features. A total of 524 patients from the Moroccan National Tuberculosis Reference Laboratory, representative of all of the geographic regions, were subject to first-line drug susceptibility testing (DST). Subsequently, 155 isolates found to be multidrug-resistant tuberculosis (MDR-TB) underwent second-line DST. Moreover, to enhance our understanding of the genetic basis of these drug-resistant strains, drug resistance-associated mutations were investigated in isolates either identified as pre-XDR- and XDR-TB or suspected resistant using the GenoType ® MTBDRsl V1.0 assay. In this study, 4 (2.6%) XDR-TB and 18 (11.6%) pre-XDR-TB isolates were identified. Agreement between the MTBDRsl assay results and phenotypic DST was 95.2% for ofloxacin, 81.0% for kanamycin and 95.2% for amikacin. To the best of our knowledge, this is the first study to evaluate the frequency of XDR-TB in Morocco. These results highlight the need to reinforce the TB management policy in Morocco with regard to control and detection strategies in order to prevent further spread of XDR-TB isolates. Copyright © 2017. Published by Elsevier Ltd.
Sanou, Adama; Tarnagda, Zekiba; Kanyala, Estelle; Zingué, Dezemon; Nouctara, Moumini; Ganamé, Zakaria; Combary, Adjima; Hien, Hervé; Dembele, Mathurin; Kabore, Antoinette; Meda, Nicolas; Van de Perre, Philippe; Neveu, Dorine; Bañuls, Anne Laure; Godreuil, Sylvain
2014-10-01
In sub-Saharan Africa, bovine tuberculosis (bTB) is a potential hazard for animals and humans health. The goal of this study was to improve our understanding of bTB epidemiology in Burkina Faso and especially Mycobacterium bovis transmission within and between the bovine and human populations. Twenty six M. bovis strains were isolated from 101 cattle carcasses with suspected bTB lesions during routine meat inspections at the Bobo Dioulasso and Ouagadougou slaughterhouses. In addition, 7 M. bovis strains were isolated from 576 patients with pulmonary tuberculosis. Spoligotyping, RDAf1 deletion and MIRU-VNTR typing were used for strains genotyping. The isolation of M. bovis strains was confirmed by spoligotyping and 12 spoligotype signatures were detected. Together, the spoligotyping and MIRU-VNTR data allowed grouping the 33 M. bovis isolates in seven clusters including isolates exclusively from cattle (5) or humans (1) or from both (1). Moreover, these data (genetic analyses and phenetic tree) showed that the M. bovis isolates belonged to the African 1 (Af1) clonal complex (81.8%) and the putative African 5 (Af5) clonal complex (18.2%), in agreement with the results of RDAf1 deletion typing. This is the first detailed molecular characterization of M. bovis strains from humans and cattle in Burkina Faso. The distribution of the two Af1 and putative Af5 clonal complexes is comparable to what has been reported in neighbouring countries. Furthermore, the strain genetic profiles suggest that M. bovis circulates across the borders and that the Burkina Faso strains originate from different countries, but have a country-specific evolution. The genetic characterization suggests that, currently, M. bovis transmission occurs mainly between cattle, occasionally between cattle and humans and potentially between humans. This study emphasizes the bTB risk in cattle but also in humans and the difficulty to set up proper disease control strategies in Burkina Faso.
Court, Michael H; Almutairi, Fawziah E; Greenblatt, David J; Hazarika, Suwagmani; Sheng, Hongyan; Klein, Kathrin; Zanger, Ulrich M; Bourgea, Joanne; Patten, Christopher J; Kwara, Awewura
2014-07-01
Efavirenz is commonly used to treat patients coinfected with human immunodeficiency virus and tuberculosis. Previous clinical studies have observed paradoxically elevated efavirenz plasma concentrations in patients with the CYP2B6*6/*6 genotype (but not the CYP2B6*1/*1 genotype) during coadministration with the commonly used four-drug antituberculosis therapy. This study sought to elucidate the mechanism underlying this genotype-dependent drug-drug interaction. In vitro studies were conducted to determine whether one or more of the antituberculosis drugs (rifampin, isoniazid, pyrazinamide, or ethambutol) potently inhibit efavirenz 8-hydroxylation by CYP2B6 or efavirenz 7-hydroxylation by CYP2A6, the main mechanisms of efavirenz clearance. Time- and concentration-dependent kinetics of inhibition by the antituberculosis drugs were determined using genotyped human liver microsomes (HLMs) and recombinant CYP2A6, CYP2B6.1, and CYP2B6.6 enzymes. Although none of the antituberculosis drugs evaluated at up to 10 times clinical plasma concentrations were found to inhibit efavirenz 8-hydroxylation by HLMs, both rifampin (apparent inhibition constant [Ki] = 368 μM) and pyrazinamide (Ki = 637 μM) showed relatively weak inhibition of efavirenz 7-hydroxylation. Importantly, isoniazid demonstrated potent time-dependent inhibition of efavirenz 7-hydroxylation in both HLMs (inhibitor concentration required for half-maximal inactivation [KI] = 30 μM; maximal rate constant of inactivation [kinact] = 0.023 min(-1)) and recombinant CYP2A6 (KI = 15 μM; kinact = 0.024 min(-1)) and also formed a metabolite intermediate complex consistent with mechanism-based inhibition. Selective inhibition of the CYP2B6.6 allozyme could not be demonstrated for any of the antituberculosis drugs using either recombinant enzymes or CYP2B6*6 genotype HLMs. In conclusion, the results of this study identify isoniazid as the most likely perpetrator of this clinically important drug-drug interaction through mechanism-based inactivation of CYP2A6. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Abdeldaim, Guma; Svensson, Erik; Blomberg, Jonas; Herrmann, Björn
2016-11-01
A duplex real-time PCR based on the rnpB gene was developed for Mycobacterium spp. The assay was specific for the Mycobacterium tuberculosis complex (MTB) and also detected all 19 tested species of non-tuberculous mycobacteria (NTM). The assay was evaluated on 404 clinical samples: 290 respiratory samples and 114 from tissue and other non-respiratory body sites. M. tuberculosis was detected by culture in 40 samples and in 30 samples by the assay. The MTB assay showed a sensitivity similar to Roche Cobas Amplicor MTB-PCR (Roche Molecular Systems, Pleasanton, CA, USA). There were only nine samples with non-tuberculous mycobacteria detected by culture. Six of them were detected by the PCR assay. © 2016 APMIS. Published by John Wiley & Sons Ltd.
Chatterjee, Anirvan; Nilgiriwala, Kayzad; Saranath, Dhananjaya; Rodrigues, Camilla; Mistry, Nerges
2017-12-01
Amplification of drug resistance in Mycobacterium tuberculosis (M.tb) and its transmission are significant barriers in controlling tuberculosis (TB) globally. Diagnostic inaccuracies and delays impede appropriate drug administration, which exacerbates primary and secondary drug resistance. Increasing affordability of whole genome sequencing (WGS) and exhaustive cataloguing of drug resistance mutations is poised to revolutionise TB diagnostics and facilitate personalized drug therapy. However, application of WGS for diagnostics in high endemic areas is yet to be demonstrated. We report WGS of 74 clinical TB isolates from Mumbai, India, characterising genotypic drug resistance to first- and second-line anti-TB drugs. A concordance analysis between phenotypic and genotypic drug susceptibility of a subset of 29 isolates and the sensitivity of resistance prediction to the 4 drugs was calculated, viz. isoniazid-100%, rifampicin-100%, ethambutol-100% and streptomycin-85%. The whole genome based phylogeny showed almost equal proportion of East Asian (27/74) and Central Asian (25/74) strains. Interestingly we also found a clonal group of 9 isolates, of which 7 patients were found to be from the same geographical location and accessed the same health post. This provides the first evidence of epidemiological linkage for tracking TB transmission in India, an approach which has the potential to significantly improve chances of End-TB goals. Finally, the use of Mykrobe Predictor, as a standalone drug resistance and strain typing tool, requiring just few minutes to analyse raw WGS data into tabulated results, implies the rapid clinical applicability of WGS based TB diagnosis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Genetic Diversity of Mycobacterium tuberculosis Isolates in the Metropolitan Area of Rome.
Cannas, Angela; Camassa, Serena; Sali, Michela; Butera, Ornella; Mazzarelli, Antonio; Sanguinetti, Maurizio; Di Caro, Antonino; Delogu, Giovanni; Girardi, Enrico
2018-06-14
The presence in a geographic area of Mycobacterium tuberculosis (Mtb) strains belonging to different phylogeographic lineages and showing different drug susceptibility patterns may suggest recent transmission, with implications in terms of patient clinical management and disease control. The aim of this study was to carry out a preliminary epidemiological investigation of tuberculosis (TB) cases in Rome. A total of 232 Mtb isolates, collected from new or previously treated patients, admitted between 2008 and 2014 at 2 hospital settings in Rome with a diagnosis of TB, were analyzed by spoligotyping and analyzing 24 variable-number tandem repeats (VNTR) mycobacterial interspersed repetitive-unit (MIRU) loci. The SITVIT2 database and the MIRU-VNTRplus web applications were used to identify the strain genotypes and to generate phylogenetic trees. Based on the position on the phylogenetic tree, 97.4% of the strains were associated with 1 of the 7 main lineages. The Euro-American lineage was the most commonly represented (81.9%) within both Italian and foreign-born populations, although all main lineages were present. The highest frequency of drug-resistant strains was found among the East-Asian lineage (Beijing genotype) isolated from foreign-born patients. Dynamics of TB transmission in Rome indicate recent spread of Mtb strains belonging to phylogeographic lineages and clades usually found in countries and geographic areas with a high incidence of TB, similarly to what is observed in most metropolitan areas in Western Europe. Knowledge from molecular and classical epidemiology provides an important tool for disease control. © 2018 S. Karger AG, Basel.
VanderEnde, Daniel S.; Holland, David P.; Haddad, Maryam B.; Yarn, Benjamin; Yamin, Aliya S.; Mohamed, Omar; Sales, Rose-Marie F.; DiMiceli, Lauren E.; Burns-Grant, Gail; Reaves, Erik J.; Gardner, Tracie J.; Ray, Susan M.
2017-01-01
Objectives: Our objective was to describe and determine the factors contributing to a recent drug-resistant tuberculosis (TB) outbreak in Georgia. Methods: We defined an outbreak case as TB diagnosed from March 2008 through December 2015 in a person residing in Georgia at the time of diagnosis and for whom (1) the genotype of the Mycobacterium tuberculosis isolate was consistent with the outbreak strain or (2) TB was diagnosed clinically without a genotyped isolate available and connections were established to another outbreak-associated patient. To determine factors contributing to transmission, we interviewed patients and reviewed health records, homeless facility overnight rosters, and local jail booking records. We also assessed infection control measures in the 6 homeless facilities involved in the outbreak. Results: Of 110 outbreak cases in Georgia, 86 (78%) were culture confirmed and isoniazid resistant, 41 (37%) occurred in people with human immunodeficiency virus coinfection (8 of whom were receiving antiretroviral treatment at the time of TB diagnosis), and 10 (9%) resulted in TB-related deaths. All but 8 outbreak-associated patients had stayed overnight or volunteered extensively in a homeless facility; all these facilities lacked infection control measures. At least 9 and up to 36 TB cases outside Georgia could be linked to this outbreak. Conclusions: This article highlights the ongoing potential for long-lasting and far-reaching TB outbreaks, particularly among populations with untreated human immunodeficiency virus infection, mental illness, substance abuse, and homelessness. To prevent and control TB outbreaks, health departments should work with overnight homeless facilities to implement infection control measures and maintain searchable overnight rosters. PMID:28257261
Millet, J; Berchel, M; Prudenté, F; Streit, E; Bomer, A-G; Schuster, F; Vanhomwegen, J; Paasch, D; Galbert, I; Valery, E; Aga, R; Rastogi, N
2014-05-01
This is the first overview on resistant and multidrug resistant isolates of Mycobacterium tuberculosis circulating in the French Department of the Americas (Guadeloupe, Martinique, and French Guiana) over 17 years (January 1995-December 2011). A total of 1,239 cases were studied: 1,199 new cases (primary and multidrug resistance of 11.8 and 1.6% respectively), and 40 persistent (defined as cases with a previous history of positive culture over 6 months interval and whose spoligotypes remain unchanged), in which significantly higher proportions of resistance to at least isoniazid (22.5%, P = 0.002), rifampicin (20.0%, P < 0.001), and multidrug resistance (17.5%, P < 0.001) were observed as compared to new cases. The 281 spoligotypes obtained showed the presence of five major lineages, T (29.9%), LAM (23.9%), Haarlem (22.1%), EAI (7.1%), and X (6.7%). Two of these lineages, X and LAM, predominate among resistant and multidrug resistant isolates respectively (X: 10.5% of resistant isolates, P = 0.04; LAM: 42.3% of multidrug resistant isolates, P = 0.02). Four of the 19 major spoligo-profiles, corresponding to SIT 20, 64, 45, and 46, were significantly associated with drug resistance. Among them, genotype SIT 20, associated with monoresistance to isoniazid and multidrug resistance, would be actively and persistently in circulation, since 1999, in French Guiana, department in which one may also observe the presence of strains of M. tuberculosis phylogeographically associated to Guiana and Suriname (SIT 131 and SIT 1340).
Bienvenu, Emile; Swart, Marelize; Dandara, Collet; Ashton, Michael
2014-02-01
Efavirenz (EFV) exhibits interindividual pharmacokinetic variability caused by differences in cytochrome P450 (CYP) expression. Most tuberculosis (TB) drugs interact with the CYP metabolizing enzymes, while the clinical validity of genotyping in predicting EFV plasma levels in Rwandan subjects is not known. We investigated in patients co-infected with human immunodeficiency virus (HIV) and TB recruited in Rwanda the effects of 10 SNPs in five drug-metabolizing enzymes on EFV plasma levels and treatment response when patients are treated with EFV-containing therapy alone (n=28) and when combined with rifampicin-based TB treatment (n=62), and the validity of genotyping for CYP2B6 single nucleotide polymorphisms in predicting supra-therapeutic EFV levels. There was a significant difference between CYP1A2 -739T/G and T/T genotypes when patients were treated with EFV-containing therapy combined with rifampicin-based TB treatment, but not when EFV-containing therapy was alone. CYP2B6 516T/T genotype was associated with high EFV levels compared to other CYP2B6 516G>T genotypes in the presence and in the absence of rifampicin-based TB treatment. Predictive factors of EFV plasma levels in the presence of rifampicin-based TB treatment were CYP2A6 1093G>A, CYP2B6 516G>T, and CYP2B6 983T>C accounting for 27%, 43%, and 29% of the total variance in EFV levels, respectively. There was a high positive predictive value (PPV) (100%) for CYP2B6 516T/T and 983T/T genotypes in predicting EFV plasma levels above the therapeutic range, but this PPV decreased in the presence of rifampicin-based TB treatment. Rifampicin-based TB treatment was also shown to affect EFV plasma levels significantly, but did not affect the significant reduction of HIV-RNA copies. These results indicate that genotyping for CYP2B6 SNPs could be used as a tool in predicting supra-therapeutic EFV plasma levels, which could minimize adverse drug events. Copyright © 2013 Elsevier B.V. All rights reserved.
A 3'UTR polymorphism of IL-6R is associated with Chinese pediatric tuberculosis.
Shen, Chen; Qi, Hui; Sun, Lin; Xiao, Jing; Yin, Qing-qin; Jiao, Wei-wei; Wu, Xi-rong; Tian, Jian-ling; Han, Rui; Shen, A-dong
2014-01-01
IL-6 is a proinflammatory cytokine that plays a critical role in host defense against tuberculosis (TB). Genetic polymorphisms of IL-6 and its receptor IL-6R had been discussed in adult TB recently. However, their role in pediatric TB is still unclear. Due to the obvious differences in TB pathophysiology in children, which may also reflect differences in genetic background, further association studies in pediatric populations are needed. A case-control study was carried out in a Chinese pediatric population including 353 TB patients and 400 healthy controls. Tag-SNPs of IL-6 and IL-6R genes were selected by Haploview software, genotyped using MassArray, and analyzed statistically. One polymorphism, rs2229238, in the 3'UTR region of IL-6R was observed to be associated with increased resistance to TB (adjusted P = 0.03). The rs2229238 T allele contributed to a reduced risk to TB in recessive heritable model (OR, 0.53; 95% CI, 0.35-0.78). By tag-SNP genotyping based case-control study, we identified a genetic polymorphism in the IL-6R 3'UTR that regulates host resistance to pediatric TB in a Chinese population.
Taş, Dilaver; Taşçı, Cantürk; Demirer, Ersin; Sezer, Ogün; Okutan, Oğuzhan; Kartaloğlu, Zafer
2012-01-01
Tuberculosis is an important health care problem worldwide as well as in Turkey and the control programmes are still in progress. Epidemiological data are necessary to conduct control studies related to the disease. Tuberculosis incidence and drug resistance rates are two necessary parameters which should be monitored for the effective establishment of tuberculosis control. In this objective, tuberculosis incidence and drug resistance rates were studied in young subjects performing their compulsory military service in Turkish Armed Forces. The study was performed in 14 military hospitals which served for the country-wide soldier patients. Based on the computerized medical database of these military hospitals, conscripts diagnosed with tuberculosis between January 01, 2009 and December 31, 2009 were retrospectively evaluated. Drug sensitivity tests of the Mycobacterium tuberculosis complex isolates were done prior to the treatment in the two military medical training hospitals of the two big cities of Turkey (Ankara and Istanbul). There were a total of 259 new tuberculosis cases in 2009 and they were all male with a mean age of 22.51 ± 4.63 years. The number of patients with pulmonary, extrapulmonary (pleuresia, lymphadenitis, others) and both pulmonary and extrapulmonary involvements were 175 (67.5%), 72 (27.8%) and 12 (4.6%), respectively. The total rate of pulmonary tuberculosis cases was 72.2% (187/259) and 64.7% (121/187) of them were smear positive. Since the number of soldiers in Turkish army in the midyear was 537.200; total tuberculosis, pulmonary tuberculosis and smear-positive pulmonary tuberculosis incidences were estimated as 48.2/100.000, 34.8/100.000 and 22.5/100.000, respectively. Drug sensitivity tests was performed for the M.tuberculosis complex strains isolated from 104 cases. Primary resistance rate to at least one drug was detected as 16.3% (n= 17), while the rates of resistance for isoniazid, rifampicin, ethambutol and streptomycin were 12.5% (n= 13), 7.7% (n= 8), 5.8% (n= 6) and 0.9% (n= 1), respectively. Multidrug resistant tuberculosis (isoniazid + rifampicin resistance) was detected in 6 (5.8%) patients. Our data indicated that although tuberculosis incidence among young soldiers was moderately high, a decreasing trend was observed when compared to the previous years. However, the rates of primary anti-tuberculosis drug resistance and multi-drug resistance were found to be high in our study. To decrease the incidence of tuberculosis and multidrug resistant tuberculosis, drug sensitivity tests should be performed for each patient and national tuberculosis programme should be established effectively.
Gama, Ntombenhle H; Elkhadir, Afag Y F; Gordhan, Bhavna G; Kana, Bavesh D; Darkwa, James; Meyer, Debra
2016-08-01
Treatment of human immunodeficiency virus (HIV) is currently complicated by increased prevalence of co-infection with Mycobacterium tuberculosis. The development of drug candidates that offer the simultaneous management of HIV and tuberculosis (TB) would be of great benefit in the holistic treatment of HIV/AIDS, especially in sub-Saharan Africa which has the highest global prevalence of HIV-TB coinfection. Bis(diphenylphosphino)-2-pyridylpalladium(II) chloride (1), bis(diphenylphosphino)-2-pyridylplatinum(II) chloride (2), bis(diphenylphosphino)-2-ethylpyridylpalladium(II) chloride (3) and bis(diphenylphosphino)-2-ethylpyridylplatinum(II) (4) were investigated for the inhibition of HIV-1 through interactions with the viral protease. The complexes were subsequently assessed for biological potency against Mycobacterium tuberculosis H37Rv by determining the minimal inhibitory concentration (MIC) using broth microdilution. Complex (3) showed the most significant and competitive inhibition of HIV-1 protease (p = 0.014 at 100 µM). Further studies on its in vitro effects on whole virus showed reduced viral infectivity by over 80 % at 63 µM (p < 0.05). In addition, the complex inhibited the growth of Mycobacterium tuberculosis at an MIC of 5 µM and was non-toxic to host cells at all active concentrations (assessed by tetrazolium dye and real time cell electronic sensing). In vitro evidence is provided here for the possibility of utilizing a single metal-based compound for the treatment of HIV/AIDS and TB.
Extended spectrum of antibiotic susceptibility for tuberculosis, Djibouti.
Bouzid, Fériel; Astier, Hélène; Osman, Djaltou Aboubaker; Javelle, Emilie; Hassan, Mohamed Osman; Simon, Fabrice; Garnotel, Eric; Drancourt, Michel
2018-02-01
In the Horn of Africa, there is a high prevalence of tuberculosis that is reported to be partly driven by multidrug-resistant (MDR) Mycobacterium tuberculosis strictu sensu strains. We conducted a prospective study to investigate M. tuberculosis complex species causing tuberculosis in Djibouti, and their in vitro susceptibility to standard anti-tuberculous antibiotics in addition to clofazimine, minocycline, chloramphenicol and sulfadiazine. Among the 118 mycobacteria isolates from 118 successive patients with suspected pulmonary tuberculosis, 111 strains of M. tuberculosis, five Mycobacterium canettii, one 'Mycobacterium simulans' and one Mycobacterium kansasii were identified. Drug-susceptibility tests performed on the first 78 isolates yielded nine MDR M. tuberculosis isolates. All isolates were fully susceptible to clofazimine, minocycline and chloramphenicol, and 75 of 78 isolates were susceptible to sulfadiazine. In the Horn of Africa, patients with confirmed pulmonary tuberculosis caused by an in vitro susceptible strain may benefit from anti-leprosy drugs, sulfamides and phenicol antibiotics. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Bovine tuberculosis in livestock and wild boar on the Mediterranean island, Corsica.
Richomme, Céline; Boschiroli, María Laura; Hars, Jean; Casabianca, François; Ducrot, Christian
2010-04-01
The zoonotic agent of bovine tuberculosis (bTB), Mycobacterium bovis, can be transmitted between domestic and wild animals, threatening wildlife populations and control programs for bTB in cattle. In Corsica, a French Mediterranean island where domestic and wild species have close interactions, bTB cases have been reported in cattle, pigs, and wild boar. Moreover, genotypes of M. bovis found in wild and domestic animals from the same area were identical. These data strongly suggest that wild and domestic animals are associated in an epidemiologic bTB-transmission cycle. More investigations are needed, not only to understand the role played by each species in order to implement appropriate control measures, but also to assess the risk of transmission to humans.
Tadesse, Mulualem; Aragaw, Dossegnaw; Dimah, Belayneh; Efa, Feyisa; Abebe, Gemeda
2016-12-01
Accurate and rapid detection of drug-resistant strains of tuberculosis (TB) is critical for early initiation of treatment and for limiting the transmission of drug-resistant TB. Here, we investigated the accuracy of Xpert MTB/RIF for detection of rifampicin (RIF) resistance, and whether this detection predicts the presence of multidrug resistant (MDR) TB in Southwest Ethiopia. Smear- or culture-positive sputa obtained from TB patients with increased suspicion of drug resistance were included in this study. GenoType MTBDRplus line-probe assays (LPAs) and Xpert MTB/RIF tests were performed on smear-positive sputum specimens and on cultured isolates for smear-negative specimens. We performed routine drug-susceptibility testing using LPA as the reference standard for confirmation of RIF and isoniazid (INH) resistance. First-line drug-susceptibility results were available for 67 Mycobacterium tuberculosis complex-positive sputum specimens using the LPA test, with our preliminary results indicating that 30% (20/67) were MDR-TB, 3% (2/67) were RIF monoresistant, 6% (4/67) were INH monoresistant, and 61% (41/67) were susceptible to both RIF and INH. Relative to routine RIF-susceptibility testing (LPA), Xpert MTB/RIF detected all RIF resistance correctly, with 100% sensitivity and 97.8% specificity and a positive-predictive value of 95.7%. Of the 23 RIF-resistant strains according to Xpert MTB/RIF, 87% (20/23) were resistant to both RIF and INH (MDR), 8.7% (2/23) were RIF monoresistant, and 4.3% (1/23) were sensitive to RIF according to the LPA test. A high proportion of RIF resistance was documented among patients previously categorized as failure cases (50%, 10/20), followed by relapse cases (31.6%, 6/19) and defaulters (28.6%, 2/7). Xpert MTB/RIF was highly effective at identifying RIF-resistant strains in smear- or culture-positive samples. RIF resistance based on Xpert MTB/RIF results could be used to estimate MDR and allow rapid initiation of MDR-TB treatment in regions with high levels of drug-resistant TB. Copyright © 2016.
Paradoxical results of two automated real-time PCR assays in the diagnosis of pleural tuberculosis.
Morales-López, Soraya E; Yepes, Jayr A; Anzola, Irina; Aponte, Hernán; Llerena-Polo, Claudia R
2017-01-01
Tuberculosis (TB) is a major cause of worldwide mortality. We report the case of a non-HIV-infected woman with clinical suspicion of pleural tuberculosis and contradictory results between Xpert ® MTB/RIF and Abbott RealTime MTB assays from pleural fluid specimen. Liquid and solid cultures for tuberculosis were performed with negative results. The patient received treatment, and clinical improvement was observed. Both techniques detect Mycobacterium tuberculosis complex, but they have different targets and limits of detection. Abbott RealTime MTB results correlated well with the clinical findings of the patient. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
HIV/AIDS and Infections: MedlinePlus Health Topic
... are many types of OIs: Bacterial infections, including tuberculosis and a serious related disease, Mycobacterium avium complex ( ... for Disease Control and Prevention) Also in Spanish Tuberculosis: The Connection between TB and HIV (the AIDS ...
Pholwat, Suporn; Liu, Jie; Stroup, Suzanne; Gratz, Jean; Banu, Sayera; Rahman, S M Mazidur; Ferdous, Sara Sabrina; Foongladda, Suporn; Boonlert, Duangjai; Ogarkov, Oleg; Zhdanova, Svetlana; Kibiki, Gibson; Heysell, Scott; Houpt, Eric
2015-02-24
Genotypic methods for drug susceptibility testing of Mycobacterium tuberculosis are desirable to speed the diagnosis and proper therapy of tuberculosis (TB). However, the numbers of genes and polymorphisms implicated in resistance have proliferated, challenging diagnostic design. We developed a microfluidic TaqMan array card (TAC) that utilizes both sequence-specific probes and high-resolution melt analysis (HRM), providing two layers of detection of mutations. Twenty-seven primer pairs and 40 probes were designed to interrogate 3,200 base pairs of critical regions of the inhA, katG, rpoB, embB, rpsL, rrs, eis, gyrA, gyrB, and pncA genes. The method was evaluated on 230 clinical M. tuberculosis isolates from around the world, and it yielded 96.1% accuracy (2,431/2,530) in comparison to that of Sanger sequencing and 87% accuracy in comparison to that of the slow culture-based susceptibility testing. This TAC-HRM method integrates assays for 10 genes to yield fast, comprehensive, and accurate drug susceptibility results for the 9 major antibiotics used to treat TB and could be deployed to improve treatment outcomes. Multidrug-resistant tuberculosis threatens global tuberculosis control efforts. Optimal therapy utilizes susceptibility test results to guide individualized treatment regimens; however, the susceptibility testing methods in use are technically difficult and slow. We developed an integrated TaqMan array card method with high-resolution melt analysis that interrogates 10 genes to yield a fast, comprehensive, and accurate drug susceptibility result for the 9 major antituberculosis antibiotics. Copyright © 2015 Pholwat et al.
Dielectrophoretic characterization of antibiotic-treated Mycobacterium tuberculosis complex cells.
Inoue, Shinnosuke; Lee, Hyun-Boo; Becker, Annie L; Weigel, Kris M; Kim, Jong-Hoon; Lee, Kyong-Hoon; Cangelosi, Gerard A; Chung, Jae-Hyun
2015-10-01
Multi-drug resistant tuberculosis (MDR-TB) has become a serious concern for proper treatment of patients. As a phenotypic method, dielectrophoresis can be useful but is yet to be attempted to evaluate Mycobacterium tuberculosis complex cells. This paper investigates the dielectrophoretic behavior of Mycobacterium bovis (Bacillus Calmette-Guérin, BCG) cells that are treated with heat or antibiotics rifampin (RIF) or isoniazid (INH). The experimental parameters are designed on the basis of our sensitivity analysis. The medium conductivity (σ(m)) and the frequency (f) for a crossover frequency (f(xo1)) test are decided to detect the change of σ(m)-f(xo1) in conjunction with the drug mechanism. Statistical modeling is conducted to estimate the distributions of viable and nonviable cells from the discrete measurement of f (xo1). Finally, the parameters of the electrophysiology of BCG cells, C(envelope) and σ(cyto), are extracted through a sampling algorithm. This is the first evaluation of the dielectrophoresis (DEP) approach as a means to assess the effects of antimicrobial drugs on M. tuberculosis complex cells.
Machado, Diana; Coelho, Tatiane S; Perdigão, João; Pereira, Catarina; Couto, Isabel; Portugal, Isabel; Maschmann, Raquel De Abreu; Ramos, Daniela F; von Groll, Andrea; Rossetti, Maria L R; Silva, Pedro A; Viveiros, Miguel
2017-01-01
Numerous studies show efflux as a universal bacterial mechanism contributing to antibiotic resistance and also that the activity of the antibiotics subject to efflux can be enhanced by the combined use of efflux inhibitors. Nevertheless, the contribution of efflux to the overall drug resistance levels of clinical isolates of Mycobacterium tuberculosis is poorly understood and still is ignored by many. Here, we evaluated the contribution of drug efflux plus target-gene mutations to the drug resistance levels in clinical isolates of M. tuberculosis . A panel of 17 M. tuberculosis clinical strains were characterized for drug resistance associated mutations and antibiotic profiles in the presence and absence of efflux inhibitors. The correlation between the effect of the efflux inhibitors and the resistance levels was assessed by quantitative drug susceptibility testing. The bacterial growth/survival vs. growth inhibition was analyzed through the comparison between the time of growth in the presence and absence of an inhibitor. For the same mutation conferring antibiotic resistance, different MICs were observed and the different resistance levels found could be reduced by efflux inhibitors. Although susceptibility was not restored, the results demonstrate the existence of a broad-spectrum synergistic interaction between antibiotics and efflux inhibitors. The existence of efflux activity was confirmed by real-time fluorometry. Moreover, the efflux pump genes mmr, mmpL7, Rv1258c, p55 , and efpA were shown to be overexpressed in the presence of antibiotics, demonstrating the contribution of these efflux pumps to the overall resistance phenotype of the M. tuberculosis clinical isolates studied, independently of the genotype of the strains. These results showed that the drug resistance levels of multi- and extensively-drug resistant M. tuberculosis clinical strains are a combination between drug efflux and the presence of target-gene mutations, a reality that is often disregarded by the tuberculosis specialists in favor of the almost undisputed importance of antibiotic target-gene mutations for the resistance in M. tuberculosis .
Methods for determining the antimicrobial susceptibility of mycobacteria.
Alcaide, Fernando; Esteban, Jaime; González-Martin, Julià; Palacios, Juan-José
2017-10-01
Mycobacteria are a large group of microorganisms, multiple species of which are major causes of morbidity and mortality, such as tuberculosis and leprosy. At present, the emergence and spread of multidrug-resistant strains of Mycobacterium tuberculosis complex are one of the most serious health problems worldwide. Furthermore, in contrast to M. tuberculosis and Mycobacterium leprae, non-tuberculous mycobacteria (NTM) are more frequently isolated and, in many cases, treatment is based on drug susceptibility testing. This article is a review of the different methods to determine the in vitro drug susceptibility of M. tuberculosis complex and the most relevant NTM isolates. The molecular techniques currently used for rapid detection of resistance of clinical specimens are also analysed. Copyright © 2016 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Lösch, Sandra; Kim, Mi-Ra; Dutour, Olivier; Courtaud, Patrice; Maixner, Frank; Romon, Thomas; Sola, Christophe; Zink, Albert
2015-06-01
During the American colonization in the 18th and 19th century, Africans were captured and shipped to America. Harsh living and working conditions often led to chronic diseases and high mortality rates. Slaves in the Caribbean were forced to work mainly on sugar plantations. They were buried in cemeteries like Anse Sainte-Marguerite on the isle of Grande-Terre (Guadeloupe) which was examined by archaeologists and physical anthropologists. Morphological studies on osseous remains of 148 individuals revealed 15 cases with signs for bone tuberculosis and a high frequency of periosteal reactions which indicates early stages of the disease. 11 bone samples from these cemeteries were analysed for ancient DNA. The samples were extracted with established procedures and examined for the cytoplasmic multicopy β-actin gene and Mycobacterium tuberculosis complex DNA (IS 6110) by PCR. An amplification product for M. tuberculosis with the size of 123 bp was obtained. Sequencing confirmed the result. This study shows evidence of M. tuberculosis complex DNA in a Caribbean slave population. Copyright © 2015 Elsevier Ltd. All rights reserved.
2009-01-01
Background Tuberculosis remains an endemic public health problem, but the ecology of the TB strains prevalent, and their transmission, can vary by country and by region. We sought to investigate the prevalence of Mycobacterium tuberculosis strains in different regions of Venezuela. A previous study identified the most prevalent strains in Venezuela but did not show geographical distribution nor identify clonal genotypes. To better understand local strain ecology, we used spoligotyping to analyze 1298 M. tuberculosis strains isolated in Venezuela from 1997 to 2006, predominantly from two large urban centers and two geographically distinct indigenous areas, and then studied a subgroup with MIRU-VNTR 24 loci. Results The distribution of spoligotype families is similar to that previously reported for Venezuela and other South American countries: LAM 53%, T 10%, Haarlem 5%, S 1.9%, X 1.2%, Beijing 0.4%, and EAI 0.2%. The six most common shared types (SIT's 17, 93, 605, 42, 53, 20) accounted for 49% of the isolates and were the most common in almost all regions, but only a minority were clustered by MIRU-VNTR 24. One exception was the third most frequent overall, SIT 605, which is the most common spoligotype in the state of Carabobo but infrequent in other regions. MIRU-VNTR homogeneity suggests it is a clonal group of strains and was named the "Carabobo" genotype. Epidemiologic comparisons showed that patients with SIT 17 were younger and more likely to have had specimens positive for Acid Fast Bacilli on microscopy, and patients with SIT 53 were older and more commonly smear negative. Female TB patients tended to be younger than male patients. Patients from the high incidence, indigenous population in Delta Amacuro state were younger and had a nearly equal male:female distribution. Conclusion Six SIT's cause nearly half of the cases of tuberculosis in Venezuela and dominate in nearly all regions. Strains with SIT 17, the most common pattern overall may be more actively transmitted and SIT 53 strains may be less virulent and associated with reactivation of past infections in older patients. In contrast to other common spoligotypes, strains with SIT 605 form a clonal group centered in the state of Carabobo. PMID:19660112
Thuong, Nguyen T T; Heemskerk, Dorothee; Tram, Trinh T B; Thao, Le T P; Ramakrishnan, Lalita; Ha, Vu T N; Bang, Nguyen D; Chau, Tran T H; Lan, Nguyen H; Caws, Maxine; Dunstan, Sarah J; Chau, Nguyen V V; Wolbers, Marcel; Mai, Nguyen T H; Thwaites, Guy E
2017-04-01
Tuberculous meningitis (TBM) is the most devastating form of tuberculosis, yet very little is known about the pathophysiology. We hypothesized that the genotype of leukotriene A4 hydrolase (encoded by LTA4H), which determines inflammatory eicosanoid expression, influences intracerebral inflammation, and predicts survival from TBM. We characterized the pretreatment clinical and intracerebral inflammatory phenotype and 9-month survival of 764 adults with TBM. All were genotyped for single-nucleotide polymorphism rs17525495, and inflammatory phenotype was defined by cerebrospinal fluid (CSF) leukocyte and cytokine concentrations. LTA4H genotype predicted survival of human immunodeficiency virus (HIV)-uninfected patients, with TT-genotype patients significantly more likely to survive TBM than CC-genotype patients, according to Cox regression analysis (univariate P = .040 and multivariable P = .037). HIV-uninfected, TT-genotype patients had high CSF proinflammatory cytokine concentrations, with intermediate and lower concentrations in those with CT and CC genotypes. Increased CSF cytokine concentrations correlated with more-severe disease, but patients with low CSF leukocytes and cytokine concentrations were more likely to die from TBM. HIV infection independently predicted death due to TBM (hazard ratio, 3.94; 95% confidence interval, 2.79-5.56) and was associated with globally increased CSF cytokine concentrations, independent of LTA4H genotype. LTA4H genotype and HIV infection influence pretreatment inflammatory phenotype and survival from TBM. LTA4H genotype may predict adjunctive corticosteroid responsiveness in HIV-uninfected individuals. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
Cowan, Lauren S; Diem, Lois; Brake, Mary Catherine; Crawford, Jack T
2004-01-01
Spoligotyping using Luminex technology was shown to be a highly reproducible method suitable for high-throughput analysis. Spoligotyping of 48 isolates using the traditional membrane-based assay and the Luminex assay yielded concordant results for all isolates. The Luminex platform provides greater flexibility and cost effectiveness than the membrane-based assay.
Zetola, N M; Modongo, C; Moonan, P K; Click, E; Oeltmann, J E; Shepherd, J; Finlay, A
2016-05-09
Mycobacterium tuberculosis (Mtb) is transmitted from person to person via airborne droplet nuclei. At the community level, Mtb transmission depends on the exposure venue, infectiousness of the tuberculosis (TB) index case and the susceptibility of the index case's social network. People living with HIV infection are at high risk of TB, yet the factors associated with TB transmission within communities with high rates of TB and HIV are largely undocumented. The primary aim of the Kopanyo study is to better understand the demographic, clinical, social and geospatial factors associated with TB and multidrug-resistant TB transmission in 2 communities in Botswana, a country where 60% of all patients with TB are also infected with HIV. This manuscript describes the methods used in the Kopanyo study. The study will be conducted in greater Gaborone, which has high rates of HIV and a mobile population; and in Ghanzi, a rural community with lower prevalence of HIV infection and home to the native San population. Kopanyo aims to enrol all persons diagnosed with TB during a 4-year study period. From each participant, sputum will be cultured, and for all Mtb isolates, molecular genotyping (24-locus mycobacterial interspersed repetitive units-variable number of tandem repeats) will be performed. Patients with matching genotype results will be considered members of a genotype cluster, a proxy for recent transmission. Demographic, behavioural, clinical and social information will be collected by interview. Participant residence, work place, healthcare facilities visited and social gathering venues will be geocoded. We will assess relationships between these factors and cluster involvement to better plan interventions for reducing TB transmission. Ethical approval from the Independent Review Boards at the University of Pennsylvania, US Centers for Disease Control and Prevention, Botswana Ministry of Health and University of Botswana has been obtained. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Wu, Shouquan; Wang, You-Juan; Tang, Xiaoyan; Wang, Yu; Wu, Jingcan; Ji, Guiyi; Zhang, Miaomiao; Chen, Guo; Liu, Qianqian; Sandford, Andrew J; He, Jian-Qing
2016-01-01
Anti-tuberculosis drug-induced hepatotoxicity (ATDH) is one of the most common adverse effects associated with tuberculosis (TB) therapy. Animal studies have demonstrated important roles of glutathione S-transferases in the prevention of chemical-induced hepatotoxicity. The aim of this study was to investigate the relationship between single nucleotide polymorphisms (SNPs) of glutathione S-transferase P1 (GSTP1) and ATDH in TB patients. We used two independent samples for this genetic association study. In the initial prospective study, 322 newly diagnosed TB patients were followed up for three months after initiating anti-TB therapy. In an independent retrospective study, 115 ATDH patients and 116 patients without ATDH were selected to verify the results of the prospective study. Tag-SNPs of GSTP1 were genotyped either with the MassARRAY platform or the improved multiple ligase detection reaction (iMLDR) method. The associations between SNPs and ATDH were analyzed by logistic regression analysis adjusting for confounding factors. Of the 322 patients recruited in the prospective cohort, 35 were excluded during the 3 months of follow-up, and 30 were diagnosed with ATDH and were considered as the ATDH group. The remaining 257 subjects without ATDH were considered as the non-ATDH group. After correction for potential confounding factors, significant differences were found for rs1695 (A>G) under an allelic model (OR = 3.876, 95%CI: 1.258011.905; P = 0.018). In the retrospective study, rs1695 allele A also had a higher risk of ATDH (OR = 2.10, 95%CI: 1.17-3.76; P = 0.012). We only found rs4147581AA genotype under a dominant model was related to ATDH in the prospective study (OR = 2.578, 95%CI: 1.076-6.173; P = 0.034). This is the first study to suggest that GSTP1 genotyping can be an important tool for identifying patients who are susceptible to ATDH. This result should be verified in independent large sample studies and also in other ethnic populations.
Update on cutaneous tuberculosis*
Dias, Maria Fernanda Reis Gavazzoni; Bernardes Filho, Fred; Quaresma, Maria Victória; do Nascimento, Leninha Valério; Nery, José Augusto da Costa; Azulay, David Rubem
2014-01-01
Tuberculosis continues to draw special attention from health care professionals and society in general. Cutaneous tuberculosis is an infection caused by M. tuberculosis complex, M. bovis and bacillus Calmette-Guérin. Depending on individual immunity, environmental factors and the type of inoculum, it may present varied clinical and evolutionary aspects. Patients with HIV and those using immunobiological drugs are more prone to infection, which is a great concern in centers where the disease is considered endemic. This paper aims to review the current situation of cutaneous tuberculosis in light of this new scenario, highlighting the emergence of new and more specific methods of diagnosis, and the molecular and cellular mechanisms that regulate the parasite-host interaction. PMID:25387498
Wallis, Carole; Pahalawatta, Vihanga; Frank, Andrea; Ramdin, Neeshan; Viana, Raquel; Abravaya, Klara; Leckie, Gregor; Tang, Ning
2015-01-01
The Abbott RealTime MTB assay is a nucleic acid amplification test (NAAT) for the detection of Mycobacterium tuberculosis complex DNA. The sample inactivation procedure used in the assay, consisting of one part sample treated with 3 parts inactivation reagent for 60 min, effectively reduced viscosity and inactivated M. tuberculosis in clinical specimens. PMID:26085611
Donoghue, Helen D.; Lee, Oona Y.-C.; Minnikin, David E.; Besra, Gurdyal S.; Taylor, John H.; Spigelman, Mark
2010-01-01
‘Dr Granville's mummy’ was described to the Royal Society of London in 1825 and was the first ancient Egyptian mummy to be subjected to a scientific autopsy. The remains are those of a woman, Irtyersenu, aged about 50, from the necropolis of Thebes and dated to about 600 BC. Augustus Bozzi Granville (1783–1872), an eminent physician and obstetrician, described many organs still in situ and attributed the cause of death to a tumour of the ovary. However, subsequent histological investigations indicate that the tumour is a benign cystadenoma. Histology of the lungs demonstrated a potentially fatal pulmonary exudate and earlier studies attempted to associate this with particular disease conditions. Palaeopathology and ancient DNA analyses show that tuberculosis was widespread in ancient Egypt, so a systematic search for tuberculosis was made, using specific DNA and lipid biomarker analyses. Clear evidence for Mycobacterium tuberculosis complex DNA was obtained in lung tissue and gall bladder samples, based on nested PCR of the IS6110 locus. Lung and femurs were positive for specific M. tuberculosis complex cell-wall mycolic acids, demonstrated by high-performance liquid chromatography of pyrenebutyric acid–pentafluorobenzyl mycolates. Therefore, tuberculosis is likely to have been the major cause of death of Irtyersenu. PMID:19793751
In vitro activity of roxithromycin against the Mycobacterium tuberculosis complex.
Rastogi, N; Goh, K S; Ruiz, P; Casal, M
1995-01-01
Roxithromycin has recently been shown to possess significant in vitro activity against a variety of atypical mycobacteria such as the M. avium complex, M. scrofulaceum, M. szulgai, M. malmoense, M. xenopi, M. marinum, and M. kansasii and rare pathogens like M. chelonei and M. fortuitum. In the present investigation, screening of its in vitro activity was further extended by testing it against 34 strains belonging to the M. tuberculosis complex (including M. tuberculosis, M. africanum, M. bovis, and M. bovis BCG). The MICs were determined by the radiometric BACTEC 460-TB methodology at pHs of both 6.8 and 7.4, as well as with 7H10 agar medium by the 1% proportion method. With the exception of M. bovis BCG (MIC ranges, 0.5 to 4 micrograms/ml at pH 6.8 and 0.25 to 2 micrograms/ml at pH 7.4), MICs for all of the isolates were significantly greater (MIC ranges, 32 to > 64 micrograms/ml at pH 6.8 and 16 to > 32 micrograms/ml at pH 7.4) than those reported previously for atypical mycobacteria. Roxithromycin MICs of 64 or > 64 micrograms/ml for all of the M. tuberculosis isolates screened were found by the 7H10 agar medium method. Roxithromycin, however, showed a pH-dependent bactericidal effect against M. tuberculosis because the drug was relatively more active when it was used at pH 7.4 than when it was used at pH 6.8. We conclude that roxithromycin per se is not a drug of choice for the treatment of M. tuberculosis infection or disease; however, considering its pharmacokinetics, eventual anti-tubercle bacillus activity in an in vivo system cannot yet be excluded. We suggest that the use of roxithromycin in chemoprophylactic regimens for the prevention of opportunistic infections (including M. avium complex infections) in patients with AIDS should be carefully monitored, and patients should be enrolled in such a regimen only after it has been excluded that the patient das an underlying infection of disease caused by M. tuberculosis. PMID:7625806
Mortensen, E; Hellinger, W; Keller, C; Cowan, L S; Shaw, T; Hwang, S; Pegues, D; Ahmedov, S; Salfinger, M; Bower, W A
2014-02-01
Solid organ transplant recipients have a higher frequency of tuberculosis (TB) than the general population, with mortality rates of approximately 30%. Although donor-derived TB is reported to account for <5% of TB in solid organ transplants, the source of Mycobacterium tuberculosis infection is infrequently determined. We report 3 new cases of pulmonary TB in lung transplant recipients attributed to donor infection, and review the 12 previously reported cases to assess whether cases could have been prevented and whether any cases that might occur in the future could be detected and investigated more quickly. Specifically, we evaluate whether opportunities existed to determine TB risk on the basis of routine donor history, to expedite diagnosis through routine mycobacterial smears and cultures of respiratory specimens early post transplant, and to utilize molecular tools to investigate infection sources epidemiologically. On review, donor TB risk was present among 7 cases. Routine smears and cultures diagnosed 4 asymptomatic cases. Genotyping was used to support epidemiologic findings in 6 cases. Validated screening protocols, including microbiological testing and newer technologies (e.g., interferon-gamma release assays) to identify unrecognized M. tuberculosis infection in deceased donors, are warranted. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Drug-resistant tuberculosis: An update on disease burden, diagnosis and treatment.
Lange, Christoph; Chesov, Dumitru; Heyckendorf, Jan; Leung, Chi C; Udwadia, Zarir; Dheda, Keertan
2018-04-11
The emergence of antimicrobial resistance against Mycobacterium tuberculosis, the leading cause of mortality due to a single microbial pathogen worldwide, represents a growing threat to public health and economic growth. The global burden of multidrug-resistant tuberculosis (MDR-TB) has recently increased by an annual rate of more than 20%. According to the World Health Organization approximately only half of all patients treated for MDR-TB achieved a successful outcome. For many years, patients with drug-resistant tuberculosis (TB) have received standardized treatment regimens, thereby accelerating the development of MDR-TB through drug-specific resistance amplification. Comprehensive drug susceptibility testing (phenotypic and/or genotypic) is necessary to inform physicians about the best drugs to treat individual patients with tailor-made treatment regimens. Phenotypic drug resistance can now often, but with variable sensitivity, be predicted by molecular drug susceptibility testing based on whole genome sequencing, which in the future could become an affordable method for the guidance of treatment decisions, especially in high-burden/resource-limited settings. More recently, MDR-TB treatment outcomes have dramatically improved with the use of bedaquiline-based regimens. Ongoing clinical trials with novel and repurposed drugs will potentially further improve cure-rates, and may substantially decrease the duration of MDR-TB treatment necessary to achieve relapse-free cure. © 2018 Asian Pacific Society of Respirology.
Asghar, Rana Jawad; Patlan, David E; Miner, Mark C; Rhodes, Halsey D; Solages, Anthony; Katz, Dolly J; Beall, David S; Ijaz, Kashef; Oeltmann, John E
2009-09-01
Persons named by a patient with tuberculosis (TB) are the focus of traditional TB contact investigations. However, patients who use illicit drugs are often reluctant to name contacts. Between January 2004 and May 2005, 18 isoniazid-resistant TB cases with matching Mycobacterium tuberculosis genotypes (spoligotypes) were reported in Miami; most patients frequented crack houses and did not name potentially infected contacts. We reviewed medical records and re-interviewed patients about contacts and locations frequented to describe transmission patterns and make recommendations to control TB in this population. Observed contacts were not named but were encountered at the same crack houses as the patients. Contacts were evaluated for latent TB infection with a tuberculosis skin test (TST). All 18 patients had pulmonary TB. Twelve (67%) reported crack use and 14 (78%) any illicit drug use. Of the 187 contacts evaluated, 91 (49%) were named, 16 (8%) attended a church reported by a patient, 61 (33%) used a dialysis center reported by a patient, and 19 (10%) were observed contacts at local crack houses. Compared to named contacts, observed contacts were eight times as likely to have positive TST results (relative risk = 7.8; 95% confidence interval = 3.8-16.1). Dialysis center and church contacts had no elevated risk of a positive TST result. Testing observed contacts may provide a higher yield than traditional name-based contact investigations for tuberculosis patients who use illicit drugs or frequent venues characterized by illicit drug use.
Genotypic characterization of multi-drug-resistant Mycobacterium tuberculosis isolates in Myanmar.
Aye, Khin Saw; Nakajima, Chie; Yamaguchi, Tomoyuki; Win, Min Min; Shwe, Mu Mu; Win, Aye Aye; Lwin, Thandar; Nyunt, Wint Wint; Ti, Ti; Suzuki, Yasuhiko
2016-03-01
The number of multi-drug-resistant tuberculosis (MDR-TB) cases is rising worldwide. As a countermeasure against this situation, the implementation of rapid molecular tests to identify MDR-TB would be effective. To develop such tests, information on the frequency and distribution of mutations associating with phenotypic drug resistance in Mycobacterium tuberculosis is required in each country. During 2010, the common mutations in the rpoB, katG and inhA of 178 phenotypically MDR M. tuberculosis isolates collected by the National Tuberculosis Control Program (NTP) in Myanmar were investigated by DNA sequencing. Mutations affecting the 81-bp rifampicin (RIF) resistance-determining region (RRDR) of the rpoB were identified in 127 of 178 isolates (71.3%). Two of the most frequently affected codons were 531 and 526, with percentages of 48.3% and 14.0% respectively. For isoniazid (INH) resistance, 114 of 178 MDR-TB isolates (64.0%) had mutations in the katG in which a mutation-conferring amino acid substitution at codon 315 from Ser to Thr was the most common. Mutations in the inhA regulatory region were also detected in 20 (11.2%) isolates, with the majority at position -15. Distinct mutation rate and pattern from surrounding countries might suggest that MDR-TB has developed and spread domestically in Myanmar. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Recent Transmission of Tuberculosis — United States, 2011–2014
Yuen, Courtney M.; Kammerer, J. Steve; Marks, Kala; Navin, Thomas R.; France, Anne Marie
2016-01-01
Tuberculosis is an infectious disease that may result from recent transmission or from an infection acquired many years in the past; there is no diagnostic test to distinguish the two causes. Cases resulting from recent transmission are particularly concerning from a public health standpoint. To describe recent tuberculosis transmission in the United States, we used a field-validated plausible source-case method to estimate cases likely resulting from recent transmission during January 2011–September 2014. We classified cases as resulting from either limited or extensive recent transmission based on transmission cluster size. We used logistic regression to analyze patient characteristics associated with recent transmission. Of 26,586 genotyped cases, 14% were attributable to recent transmission, 39% of which were attributable to extensive recent transmission. The burden of cases attributed to recent transmission was geographically heterogeneous and poorly predicted by tuberculosis incidence. Extensive recent transmission was positively associated with American Indian/Alaska Native (adjusted prevalence ratio [aPR] = 3.6 (95% confidence interval [CI] 2.9–4.4), Native Hawaiian/Pacific Islander (aPR = 3.2, 95% CI 2.3–4.5), and black (aPR = 3.0, 95% CI 2.6–3.5) race, and homelessness (aPR = 2.3, 95% CI 2.0–2.5). Extensive recent transmission was negatively associated with foreign birth (aPR = 0.2, 95% CI 0.2–0.2). Tuberculosis control efforts should prioritize reducing transmission among higher-risk populations. PMID:27082644
First Insights into the Phylogenetic Diversity of Mycobacterium tuberculosis in Nepal
Malla, Bijaya; Stucki, David; Borrell, Sonia; Feldmann, Julia; Maharjan, Bhagwan; Shrestha, Bhawana
2012-01-01
Background Tuberculosis (TB) is a major public health problem in Nepal. Strain variation in Mycobacterium tuberculosis may influence the outcome of TB infection and disease. To date, the phylogenetic diversity of M. tuberculosis in Nepal is unknown. Methods and Findings We analyzed 261 M. tuberculosis isolates recovered from pulmonary TB patients recruited between August 2009 and August 2010 in Nepal. M. tuberculosis lineages were determined by single nucleotide polymorphisms (SNP) typing and spoligotyping. Drug resistance was determined by sequencing the hot spot regions of the relevant target genes. Overall, 164 (62.8%) TB patients were new, and 97 (37.2%) were previously treated. Any drug resistance was detected in 50 (19.2%) isolates, and 16 (6.1%) were multidrug-resistant. The most frequent M. tuberculosis lineage was Lineage 3 (CAS/Delhi) with 106 isolates (40.6%), followed by Lineage 2 (East-Asian lineage, includes Beijing genotype) with 84 isolates (32.2%), Lineage 4 (Euro-American lineage) with 41 (15.7%) isolates, and Lineage 1 (Indo-Oceanic lineage) with 30 isolates (11.5%). Based on spoligotyping, we found 45 different spoligotyping patterns that were previously described. The Beijing (83 isolates, 31.8%) and CAS spoligotype (52, 19.9%) were the dominant spoligotypes. A total of 36 (13.8%) isolates could not be assigned to any known spoligotyping pattern. Lineage 2 was associated with female sex (adjusted odds ratio [aOR] 2.58, 95% confidence interval [95% CI] 1.42–4.67, p = 0.002), and any drug resistance (aOR 2.79; 95% CI 1.43–5.45; p = 0.002). We found no evidence for an association of Lineage 2 with age or BCG vaccination status. Conclusions We found a large genetic diversity of M. tuberculosis in Nepal with representation of all four major lineages. Lineages 3 and 2 were dominating. Lineage 2 was associated with clinical characteristics. This study fills an important gap on the map of the M. tuberculosis genetic diversity in the Asian region. PMID:23300635
Yang, Chongguang; Lu, Liping; Warren, Joshua L; Wu, Jie; Jiang, Qi; Zuo, Tianyu; Gan, Mingyu; Liu, Mei; Liu, Qingyun; DeRiemer, Kathryn; Hong, Jianjun; Shen, Xin; Colijn, Caroline; Guo, Xiaoqin; Gao, Qian; Cohen, Ted
2018-04-19
Massive internal migration from rural to urban areas poses new challenges for tuberculosis control in China. We aimed to combine genomic, spatial, and epidemiological data to describe the dynamics of tuberculosis in an urban setting with large numbers of migrants. We did a population-based study of culture-positive Mycobacterium tuberculosis isolates in Songjiang, Shanghai. We used whole-genome sequencing to discriminate apparent genetic clusters of M tuberculosis sharing identical variable-number-tandem-repeat (VNTR) patterns, and analysed the relations between proximity of residence and the risk of genomically clustered M tuberculosis. Finally, we used genomic, spatial, and epidemiological data to estimate time of infection and transmission links among migrants and residents. Between Jan 1, 2009, and Dec 31, 2015, 1620 cases of culture-positive tuberculosis were recorded, 1211 (75%) of which occurred among internal migrants. 150 (69%) of 218 people sharing identical VNTR patterns had isolates within ten single-nucleotide polymorphisms (SNPs) of at least one other strain, consistent with recent transmission of M tuberculosis. Pairs of strains collected from individuals living in close proximity were more likely to be genetically similar than those from individuals who lived far away-for every additional km of distance between patients' homes, the odds that genotypically matched strains were within ten SNPs of each other decreased by about 10% (OR 0·89 [95% CI 0·87-0·91]; p<0·0001). We inferred that transmission from residents to migrants occurs as commonly as transmission from migrants to residents, and we estimated that more than two-thirds of migrants in genomic clusters were infected locally after migration. The primary mechanism driving local incidence of tuberculosis in urban centres is local transmission between both migrants and residents. Combined analysis of epidemiological, genomic, and spatial data contributes to a richer understanding of local transmission dynamics and should inform the design of more effective interventions. National Natural Science Foundation of China, National Science and Technology Major Project of China, and US National Institutes of Health. Copyright © 2018 Elsevier Ltd. All rights reserved.
de Keijzer, Jeroen; de Haas, Petra E.; de Ru, Arnoud H.; van Veelen, Peter A.; van Soolingen, Dick
2014-01-01
The Mycobacterium tuberculosis Beijing genotype, consisting of the more ancient (atypical) and modern (typical) emerging sublineage, is one of the most prevalent and genetically conserved genotype families and has often been associated with multidrug resistance. In this study, we employed a 2D-LC-FTICR MS approach, combined with dimethylation of tryptic peptides, to systematically compare protein abundance levels of ancient and modern Beijing strains and identify differences that could be associated with successful spread of the modern sublineage. The data is available via ProteomeXchange using the identifier PXD000931. Despite the highly uniform protein abundance ratios in both sublineages, we identified four proteins as differentially regulated between both sublineages, which could explain the apparent increased adaptation of the modern Beijing strains. These proteins are; Rv0450c/MmpL4, Rv1269c, Rv3137, and Rv3283/sseA. Transcriptional and functional analysis of these proteins in a large cohort of 29 Beijing strains showed that the mRNA levels of Rv0450c/MmpL4 are significantly higher in modern Beijing strains, whereas we also provide evidence that Rv3283/sseA is less abundant in the modern Beijing sublineage. Our findings provide a possible explanation for the increased virulence and success of the modern Beijing sublineage. In addition, in the established dataset of 1817 proteins, we demonstrate the pre-existence of several, possibly unique, antibiotic efflux pumps in the proteome of the Beijing strains. This may reflect an increased ability of Beijing strains to escape exposure to antituberculosis drugs. PMID:25022876
Feldman, Melissa; Isaza, Ramiro; Prins, Cindy; Hernandez, Jorge
2013-01-01
Captive elephants infected with tuberculosis are implicated as an occupational source of zoonotic tuberculosis. However, accurate estimates of prevalence and incidence of elephant tuberculosis from well-defined captive populations are lacking in the literature. Studies published in recent years contain a wide range of prevalence estimates calculated from summary data. Incidence estimates of elephant tuberculosis in captive elephants are not available. This study estimated the annual point prevalence, annual incidence, cumulative incidence, and incidence density of tuberculosis in captive elephants within the USA during the past 52 years. We combined existing elephant census records from captive elephants in the USA with tuberculosis culture results obtained from trunk washes or at necropsy. This data set included 15 years where each elephant was screened annually. Between 1960 and 1996, the annual point prevalence of tuberculosis complex mycobacteria for both species was 0. From 1997 through 2011, the median point prevalence within the Asian elephant population was 5.1%, with a range from 0.3% to 6.7%. The incidence density was 9.7 cases/1000 elephant years (95% CI: 7.0-13.4). In contrast, the annual point prevalence during the same time period within the African elephant population remained 0 and the incidence density was 1.5 cases/1000 elephant years (95% CI: 0.7-4.0). The apparent increase in new cases noted after 1996 resulted from a combination of both index cases and the initiation of mandatory annual tuberculosis screening in 1997 for all the elephants. This study found lower annual point prevalence estimates than previously reported in the literature. These discrepancies in prevalence estimates are primarily due to differences in terminology and calculation methods. Using the same intensive testing regime, the incidence of tuberculosis differed significantly between Asian and African elephants. Accurate and species specific knowledge of prevalence and incidence will inform our efforts to mitigate occupational risks associated with captive elephants in the USA.
Vinuesa, Víctor; Navarro, David; Poujois, Sandrine; Zaragoza, Susana; Borrás, Rafael
2016-03-01
The performance of the Abbott Real Time MTB assay for detection of Mycobacterium tuberculosis complex in respiratory specimens was evaluated using a standard culture as the reference. The overall concordance between both methods was 0.95. The assay displayed an excellent sensitivity (100% for smear-positive/92.3% for smear-negative specimens) and specificity (100%). Copyright © 2015 Elsevier Inc. All rights reserved.
Torres-García, Diana; Cruz-Lagunas, Alfredo; García-Sancho Figueroa, Ma Cecilia; Fernández-Plata, Rosario; Baez-Saldaña, Renata; Mendoza-Milla, Criselda; Barquera, Rodrigo; Carrera-Eusebio, Aida; Ramírez-Bravo, Salomón; Campos, Lizeth; Angeles, Javier; Vargas-Alarcón, Gilberto; Granados, Julio; Gopal, Radha; Khader, Shabaana A; Yunis, Edmond J; Zuñiga, Joaquin
2013-09-21
The control of Mycobacterium tuberculosis (Mtb) infection begins with the recognition of mycobacterial structural components by toll like receptors (TLRs) and other pattern recognition receptors. Our objective was to determine the influence of TLRs polymorphisms in the susceptibility to develop tuberculosis (TB) in Amerindian individuals from a rural area of Oaxaca, Mexico with high TB incidence. We carried out a case-control association community based study, genotyping 12 polymorphisms of TLR2, TLR4, TLR6 and TLR9 genes in 90 patients with confirmed pulmonary TB and 90 unrelated exposed but asymptomatic household contacts. We found a significant increase in the frequency of the allele A of the TLR9 gene polymorphism rs352139 (A>G) in the group of TB patients (g.f. = 0.522) when compared with controls (g.f. = 0.383), (Pcorr = 0.01, OR = 1.75). Under the recessive model (A/G + A/A vs G/G) this polymorphism was also significantly associated with TB (Pcorr = 0.01, OR= 2.37). The association of the SNP rs352139 was statistically significant after adjustment by age, gender and comorbidities by regression logistic analysis (Dominant model: p value = 0.016, OR = 2.31; Additive model: p value = 0.023, OR = 1.68). The haplotype GAA of TLR9 SNPs was also associated with TB susceptibility (Pcorr = 0.02). Differences in the genotype or allele frequencies of TLR2, TLR4 and TLR6 polymorphisms between TB patients and healthy contacts were not detected. Our study suggests that the allele A of the intronic polymorphism rs352139 on TLR9 gene might contribute to the risk of developing TB in Mexican Amerindians.
2013-01-01
Background The control of Mycobacterium tuberculosis (Mtb) infection begins with the recognition of mycobacterial structural components by toll like receptors (TLRs) and other pattern recognition receptors. Our objective was to determine the influence of TLRs polymorphisms in the susceptibility to develop tuberculosis (TB) in Amerindian individuals from a rural area of Oaxaca, Mexico with high TB incidence. Methods We carried out a case–control association community based study, genotyping 12 polymorphisms of TLR2, TLR4, TLR6 and TLR9 genes in 90 patients with confirmed pulmonary TB and 90 unrelated exposed but asymptomatic household contacts. Results We found a significant increase in the frequency of the allele A of the TLR9 gene polymorphism rs352139 (A>G) in the group of TB patients (g.f. = 0.522) when compared with controls (g.f. = 0.383), (Pcorr = 0.01, OR = 1.75). Under the recessive model (A/G + A/A vs G/G) this polymorphism was also significantly associated with TB (Pcorr = 0.01, OR= 2.37). The association of the SNP rs352139 was statistically significant after adjustment by age, gender and comorbidities by regression logistic analysis (Dominant model: p value = 0.016, OR = 2.31; Additive model: p value = 0.023, OR = 1.68). The haplotype GAA of TLR9 SNPs was also associated with TB susceptibility (Pcorr = 0.02). Differences in the genotype or allele frequencies of TLR2, TLR4 and TLR6 polymorphisms between TB patients and healthy contacts were not detected. Conclusions Our study suggests that the allele A of the intronic polymorphism rs352139 on TLR9 gene might contribute to the risk of developing TB in Mexican Amerindians. PMID:24053111
Rahman, Arfatur; Sahrin, Mahfuza; Afrin, Sadia; Earley, Keith; Ahmed, Shahriar; Rahman, S M Mazidur; Banu, Sayera
2016-01-01
GeneXpert MTB/RIF (Xpert) and Genotype MTBDRplus (DRplus) are two World Health Organization (WHO) endorsed probe based molecular drug susceptibility testing (DST) methods for rapid diagnosis of drug resistant tuberculosis. Both methods target the same 81 bp Rifampicin Resistance Determining Region (RRDR) of bacterial RNA polymerase β subunit (rpoB) for detection of Rifampicin (RIF) resistance associated mutations using DNA probes. So there is a correspondence of the probes of each other and expected similarity of probe binding. We analyzed 92 sputum specimens by Xpert, DRplus and LJ proportion method (LJ-DST). We compared molecular DSTs with gold standard LJ-DST. We wanted to see the agreement level of two molecular methods for detection of RIF resistance associated mutations. The 81bp RRDR region of rpoB gene of discrepant cases between the two molecular methods was sequenced by Sanger sequencing. The agreement of Xpert and DRplus with LJ-DST for detection of RIF susceptibility was found to be 93.5% and 92.4%, respectively. We also found 92.4% overall agreement of two molecular methods for the detection of RIF susceptibility. A total of 84 out of 92 samples (91.3%) had agreement on the molecular locus of RRDR mutation by DRplus and Xpert. Sanger sequencing of 81bp RRDR revealed that Xpert probes detected seven of eight discrepant cases correctly and DRplus was erroneous in all the eight cases. Although the overall concordance with LJ-DST was similar for both Xpert and DRplus assay, Xpert demonstrated more accuracy in the detection of RIF susceptibility for discrepant isolates compared with DRplus. This observation would be helpful for the improvement of probe based detection of drug resistance associated mutations especially rpoB mutation in M. tuberculosis.
Tuberculosis and homelessness in Montreal: a retrospective cohort study
2011-01-01
Background Montreal is Canada's second-largest city, where mean annual tuberculosis (TB) incidence from 1996 to 2007 was 8.9/100,000. The objectives of this study were to describe the epidemiology of TB among homeless persons in Montreal and assess patterns of transmission and sharing of key locations. Methods We reviewed demographic, clinical, and microbiologic data for all active TB cases reported in Montreal from 1996 to 2007 and identified persons who were homeless in the year prior to TB diagnosis. We genotyped all available Mycobacterium tuberculosis isolates by IS6110 restriction fragment length polymorphism (IS6110-RFLP) and spoligotyping, and used a geographic information system to identify potential locations for transmission between persons with matching isolates. Results There were 20 cases of TB in homeless persons, out of 1823 total reported from 1996-2007. 17/20 were Canadian-born, including 5 Aboriginals. Homeless persons were more likely than non-homeless persons to have pulmonary TB (20/20), smear-positive disease (17/20, odds ratio (OR) = 5.7, 95% confidence interval (CI): 1.7-20), HIV co-infection (12/20, OR = 14, 95%CI: 4.8-40), and a history of substance use. The median duration from symptom onset to diagnosis was 61 days for homeless persons vs. 28 days for non-homeless persons (P = 0.022). Eleven homeless persons with TB belonged to genotype-defined clusters (OR = 5.4, 95%CI: 2.2-13), and ten potential locations for transmission were identified, including health care facilities, homeless shelters/drop-in centres, and an Aboriginal community centre. Conclusions TB cases among homeless persons in Montreal raise concerns about delayed diagnosis and ongoing local transmission. PMID:22034944
Noppert, Grace A; Yang, Zhenhua; Clarke, Philippa; Ye, Wen; Davidson, Peter; Wilson, Mark L
2017-06-01
Using genotyping data of Mycobacterium tuberculosis isolates from new cases reported to the tuberculosis (TB) surveillance program, we evaluated risk factors for recent TB transmission at both the individual- and neighborhood- levels among U.S.-born and foreign-born populations. TB cases (N = 1236) reported in Michigan during 2004 to 2012 were analyzed using multivariable Poisson regression models to examine risk factors for recent transmission cross-sectionally for U.S.-born and foreign-born populations separately. Recent transmission was defined based on spoligotype and 12-locus-mycobacterial interspersed repetitive unit-variable number tandem repeat typing matches of bacteria from cases that were diagnosed within 1 year of each other. Four classes of predictor variables were examined: demographic factors, known TB risk factors, clinical characteristics, and neighborhood-level factors. Overall, 22% of the foreign-born cases resulted from recent transmission. Among the foreign-born, race and being a contact of an infectious TB case were significant predictors of recent transmission. More than half (52%) of U.S.-born cases resulted from recent transmission. Among the U.S.-born, recent transmission was predicted by both individual- and neighborhood-level sociodemographic characteristics. Interventions aimed at reducing TB incidence among foreign-born should focus on reducing reactivation of latent infection. However, reducing TB incidence among the U.S.-born will require decreasing transmission among socially disadvantaged groups at the individual- and neighborhood- levels. This report fills an important knowledge gap regarding the contemporary social context of TB in the United States, thereby providing a foundation for future studies of public health policies that can lead to the development of more targeted, effective TB control. Copyright © 2017 Elsevier Inc. All rights reserved.
Screening for genital tuberculosis in a limited resource country: case report.
Namani, Sadie; Qehaja-Buçaj, Emine; Namani, Diellëza
2017-02-07
Screening for benign or malignant process of pelvis in young females is a challenge for a physician in a limited resource country. Tuberculosis should be always considered in the differential diagnosis of a pelvic mass in countries with high prevalence of tuberculosis. Negative results of analysis of peritoneal fluid for acid-fast staining, late cultures, and unavailability of new diagnostics methods such as polymerase chain reaction and adenosine deaminase of the aspirated fluid from peritoneal cavity can often result in invasive diagnostic procedures such as laparotomy. We report a case of a 24 year old Albanian unemployed female living in urban place in Kosovo who presented with abdominal pain, loss of appetite, fever, headache, a weight loss, nonproductive cough and menstrual irregularity for three weeks. In this example case, the patient with cystic mass in tubo-ovarial complex and elevated serum cancer antigen 125 levels was diagnosed for genital tuberculosis after performing laparotomy. Caseose mass found in left tubo-ovarial complex and histopathological examination of biopsied tissue were the fastest diagnostic tools for confirming pelvis TB. The Lowenstein-Jensen cultures were positive after six weeks and her family history was positive for tuberculosis. Young females with abdominopelvic mass, ascites, a positive family history for tuberculosis and high serum cancer antigen 125, should always raise suspicion of tuberculosis especially in a limited resource country. A laparoscopy combined with peritoneal biopsy should be performed to confirm the diagnosis as this could lead to a prevention of unnecessary laparotomies.
Tuberculosis in Antelopes in a Zoo in Poland--Problem of Public Health.
Krajewska, Monika; Załuski, Michał; Zabost, Anna; Orłowska, Blanka; Augustynowicz-Kopeć, Ewa; Anusz, Krzysztof; Lipiec, Marek; Weiner, Marcin; Szulowski, Krzysztof
2015-01-01
Bovine tuberculosis is an infectious disease that occurs in many species of both domestic and wild animals, as well as those held in captivity. The etiological factor is the acid resistant bacillus (Mycobacterium bovis or Mycobacterium caprae), which is characterized by the major pathogenicity among mycobacteria belonging to the Mycobacterium tuberculosis complex. The material from 8 antelopes from the zoo, suspected for tuberculosis were examined, and M. bovis strains were isolated from 6 of them. The spoligotyping method showing spoligo pattern 676763777777600. In Poland, this spoligotype has not been observed so far.
Gagneux, Sebastien; Helbling, Peter; Battegay, Manuel; Rieder, Hans L.; Pfyffer, Gaby E.; Zwahlen, Marcel; Furrer, Hansjakob; Siegrist, Hans H.; Fehr, Jan; Dolina, Marisa; Calmy, Alexandra; Stucki, David; Jaton, Katia; Janssens, Jean-Paul; Stalder, Jesica Mazza; Bodmer, Thomas; Ninet, Beatrice; Böttger, Erik C.; Egger, Matthias; Barth, J.; Battegay, M.; Bernasconi, E.; Böni, J.; Bucher, H. C.; Burton-Jeangros, A. Calmy; Cavassini, M.; Cellerai, C.; Egger, M.; Elzi, L.; Fehr, J.; Fellay, J.; Flepp, M.; Francioli, P.; Furrer, H.; Fux, C. A.; Gorgievski, M.; Günthard, H.; Haerry, D.; Hasse, B.; Hirschel, B.; Hirsch, H. H.; Hirschel, B.; Hoffmann, M.; Hösli, I.; Kahlert, C.; Kaiser, L.; Kaiser, O.; Kind, C.; Klimkait, T.; Kovari, H.; Ledergerber, B.; Lugano, A. P.; Martinetti, G.; Martinez de Tejada, B.; Metzner, K.; Müller, N.; Nadal, D.; Pantaleo, G.; Rauch, A.; Regenass, S.; Rickenbach, M.; Rudin, C.; Schmid, P.; Schultze, D.; Schöni-Affolter, F.; Schüpbach, J.; Speck, R.; Taffé, P.; Tarr, P.; Telenti, A.; Trkola, A.; Vernazza, P.; Weber, R.; Yerly, S.
2012-01-01
Immigrants from high-burden countries and HIV-coinfected individuals are risk groups for tuberculosis (TB) in countries with low TB incidence. Therefore, we studied their role in transmission of Mycobacterium tuberculosis in Switzerland. We included all TB patients from the Swiss HIV Cohort and a sample of patients from the national TB registry. We identified molecular clusters by spoligotyping and mycobacterial interspersed repetitive-unit–variable-number tandem-repeat (MIRU-VNTR) analysis and used weighted logistic regression adjusted for age and sex to identify risk factors for clustering, taking sampling proportions into account. In total, we analyzed 520 TB cases diagnosed between 2000 and 2008; 401 were foreign born, and 113 were HIV coinfected. The Euro-American M. tuberculosis lineage dominated throughout the study period (378 strains; 72.7%), with no evidence for another lineage, such as the Beijing genotype, emerging. We identified 35 molecular clusters with 90 patients, indicating recent transmission; 31 clusters involved foreign-born patients, and 15 involved HIV-infected patients. Birth origin was not associated with clustering (adjusted odds ratio [aOR], 1.58; 95% confidence interval [CI], 0.73 to 3.43; P = 0.25, comparing Swiss-born with foreign-born patients), but clustering was reduced in HIV-infected patients (aOR, 0.49; 95% CI, 0.26 to 0.93; P = 0.030). Cavitary disease, male sex, and younger age were all associated with molecular clustering. In conclusion, most TB patients in Switzerland were foreign born, but transmission of M. tuberculosis was not more common among immigrants and was reduced in HIV-infected patients followed up in the national HIV cohort study. Continued access to health services and clinical follow-up will be essential to control TB in this population. PMID:22116153
Diagnosis and Treatment of Drug-Resistant Tuberculosis.
Caminero, José A; Cayla, Joan A; García-García, José-María; García-Pérez, Francisco J; Palacios, Juan J; Ruiz-Manzano, Juan
2017-09-01
In the last 2 decades, drug-resistant tuberculosis has become a threat and a challenge to worldwide public health. The diagnosis and treatment of these forms of tuberculosis are much more complex and prognosis clearly worsens as the resistance pattern intensifies. Nevertheless, it is important to remember that with the appropriatesystematic clinical management, most of these patients can be cured. These guidelines itemize the basis for the diagnosis and treatment of all tuberculosis patients, from those infected by strains that are sensitive to all drugs, to those who are extensively drug-resistant. Specific recommendations are given forall cases. The current and future role of new molecular methods for detecting resistance, shorter multi-drug-resistant tuberculosis regimens, and new drugs with activity against Mycobacterium tuberculosis are also addressed. Copyright © 2017 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gandy, J.H.; Pruden, E.L.; Cox, F.R.
1983-12-01
Simple and rapid Bactec methodologies for the determination of neat (unaltered) and heat stable urease activity of mycobacteria are presented. Clinical isolates (63) and stock cultures (32)--consisting of: M. tuberculosis (19), M. bovis (5), M. kansasii (15), M. marinum (4), M. simiae (3), M. scrofulaceum (16), M. gordonae (6), M. szulgai (6), M. flavescens (1), M. gastri (1), M. intracellulare (6), M. fortuitum-chelonei complex (12), and M. smegmatis (1)--were tested for neat urease activity by Bactec radiometry. Mycobacterial isolates (50-100 mg wet weight) were incubated at 35 degrees C for 30 minutes with microCi14C-urea. Urease-positive mycobacteria gave Bactec growth indexmore » (GI) values greater than 100 units, whereas urease-negative species gave values less than 10 GI units. Eighty-three isolates possessing neat urease activity were heated at 80 degrees C for 30 minutes followed by incubation at 35 degrees C for 30 minutes with 1 microCi14C-urea. Mycobacterium tuberculosis-bovis complex demonstrated heat-stable urease activity (GI more than 130 units) and could be distinguished from mycobacteria other than tuberculosis (MOTT), which gave GI values equal to or less than 40 units.« less
Collaborative Effort for a Centralized Worldwide Tuberculosis Relational Sequencing Data Platform.
Starks, Angela M; Avilés, Enrique; Cirillo, Daniela M; Denkinger, Claudia M; Dolinger, David L; Emerson, Claudia; Gallarda, Jim; Hanna, Debra; Kim, Peter S; Liwski, Richard; Miotto, Paolo; Schito, Marco; Zignol, Matteo
2015-10-15
Continued progress in addressing challenges associated with detection and management of tuberculosis requires new diagnostic tools. These tools must be able to provide rapid and accurate information for detecting resistance to guide selection of the treatment regimen for each patient. To achieve this goal, globally representative genotypic, phenotypic, and clinical data are needed in a standardized and curated data platform. A global partnership of academic institutions, public health agencies, and nongovernmental organizations has been established to develop a tuberculosis relational sequencing data platform (ReSeqTB) that seeks to increase understanding of the genetic basis of resistance by correlating molecular data with results from drug susceptibility testing and, optimally, associated patient outcomes. These data will inform development of new diagnostics, facilitate clinical decision making, and improve surveillance for drug resistance. ReSeqTB offers an opportunity for collaboration to achieve improved patient outcomes and to advance efforts to prevent and control this devastating disease. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Clustering of Mycobacterium tuberculosis strains from foreign-born patients in Korea.
Jeon, Christie Y; Kang, Heeyoon; Kim, Mihye; Murray, Megan B; Kim, Heejin; Cho, Eun Hee; Park, Young Kil
2011-12-01
Information on drug resistance and transmission patterns of tuberculosis (TB) in foreign-born patients is lacking in Asia where immigration is increasing. We examined the drug-resistance profiles of 288 Mycobacterium tuberculosis isolates from foreign-born patients in South Korea, and assessed for potential transmission in the host country by analysing their IS6110 genotypes, as well as those of 4780 strains from native Korean TB patients. The prevalence of multidrug-resistant (MDR) TB was 9.7% and 42% among new and previously treated patients, respectively. Chinese nationality was associated with MDR TB (OR(China)=3.0, 95% CI 1.1-9.3). Of the 288 strains, 51 (17.7%) formed 31 clusters, of which 22 were identical to strains from native Koreans. A number of strains belonged to the K family, subtypes known to occur endemically in Korea. MDR TB was common, and clustering patterns showed potential cross-cultural transmission among foreign-born TB patients. Further molecular epidemiological studies of all isolates in the area are needed to determine the extent of international TB transmission in Asia. © 2011 SGM
Araújo, Cristina P; Osório, Ana Luiza A R; Jorge, Klaudia S G; Ramos, Carlos A N; Souza Filho, Antonio F; Vidal, Carlos E S; Vargas, Agueda P C; Roxo, Eliana; Rocha, Adalgiza S; Suffys, Philip N; Fonseca, Antônio A; Silva, Marcio R; Barbosa Neto, José D; Cerqueira, Valíria D; Araújo, Flábio R
2014-01-01
Post-mortem bacterial culture and specific biochemical tests are currently performed to characterize the etiologic agent of bovine tuberculosis. Cultures take up to 90 days to develop. A diagnosis by molecular tests such as PCR can provide fast and reliable results while significantly decreasing the time of confirmation. In the present study, a nested-PCR system, targeting rv2807, with conventional PCR followed by real-time PCR, was developed to detect Mycobacterium tuberculosis complex (MTC) organisms directly from bovine and bubaline tissue homogenates. The sensitivity and specificity of the reactions were assessed with DNA samples extracted from tuberculous and non-tuberculous mycobacteria, as well as other Actinomycetales species and DNA samples extracted directly from bovine and bubaline tissue homogenates. Regarding the analytical sensitivity, DNA of the M. bovis AN5 strain was detected up to 1.5 pg by nested-PCR, whereas DNA of M. tuberculosis H37Rv strain was detected up to 6.1 pg. The nested-PCR system showed 100% analytical specificity for MTC when tested with DNA of reference strains of non-tuberculous mycobacteria and closely-related Actinomycetales. A clinical sensitivity level of 76.7% was detected with tissues samples positive for MTC by means of the culture and conventional PCR. A clinical specificity of 100% was detected with DNA from tissue samples of cattle with negative results in the comparative intradermal tuberculin test. These cattle exhibited no visible lesions and were negative in the culture for MTC. The use of the nested-PCR assay to detect M. tuberculosis complex in tissue homogenates provided a rapid diagnosis of bovine and bubaline tuberculosis.
Araújo, Cristina P.; Osório, Ana Luiza A.R.; Jorge, Klaudia S.G.; Ramos, Carlos A.N.; Souza Filho, Antonio F.; Vidal, Carlos E.S.; Vargas, Agueda P.C.; Roxo, Eliana; Rocha, Adalgiza S.; Suffys, Philip N.; Fonseca, Antônio A.; Silva, Marcio R.; Barbosa Neto, José D.; Cerqueira, Valíria D.; Araújo, Flábio R.
2014-01-01
Post-mortem bacterial culture and specific biochemical tests are currently performed to characterize the etiologic agent of bovine tuberculosis. Cultures take up to 90 days to develop. A diagnosis by molecular tests such as PCR can provide fast and reliable results while significantly decreasing the time of confirmation. In the present study, a nested-PCR system, targeting rv2807, with conventional PCR followed by real-time PCR, was developed to detect Mycobacterium tuberculosis complex (MTC) organisms directly from bovine and bubaline tissue homogenates. The sensitivity and specificity of the reactions were assessed with DNA samples extracted from tuberculous and non-tuberculous mycobacteria, as well as other Actinomycetales species and DNA samples extracted directly from bovine and bubaline tissue homogenates. Regarding the analytical sensitivity, DNA of the M. bovis AN5 strain was detected up to 1.5 pg by nested-PCR, whereas DNA of M. tuberculosis H37Rv strain was detected up to 6.1 pg. The nested-PCR system showed 100% analytical specificity for MTC when tested with DNA of reference strains of non-tuberculous mycobacteria and closely-related Actinomycetales. A clinical sensitivity level of 76.7% was detected with tissues samples positive for MTC by means of the culture and conventional PCR. A clinical specificity of 100% was detected with DNA from tissue samples of cattle with negative results in the comparative intradermal tuberculin test. These cattle exhibited no visible lesions and were negative in the culture for MTC. The use of the nested-PCR assay to detect M. tuberculosis complex in tissue homogenates provided a rapid diagnosis of bovine and bubaline tuberculosis. PMID:25242951
Cowan, Lauren S.; Diem, Lois; Brake, Mary Catherine; Crawford, Jack T.
2004-01-01
Spoligotyping using Luminex technology was shown to be a highly reproducible method suitable for high-throughput analysis. Spoligotyping of 48 isolates using the traditional membrane-based assay and the Luminex assay yielded concordant results for all isolates. The Luminex platform provides greater flexibility and cost effectiveness than the membrane-based assay. PMID:14715809
Blouin, Yann; Hauck, Yolande; Soler, Charles; Fabre, Michel; Vong, Rithy; Dehan, Céline; Cazajous, Géraldine; Massoure, Pierre-Laurent; Kraemer, Philippe; Jenkins, Akinbowale; Garnotel, Eric; Pourcel, Christine; Vergnaud, Gilles
2012-01-01
Molecular and phylogeographic studies have led to the definition within the Mycobacterium tuberculosis complex (MTBC) of a number of geotypes and ecotypes showing a preferential geographic location or host preference. The MTBC is thought to have emerged in Africa, most likely the Horn of Africa, and to have spread worldwide with human migrations. Under this assumption, there is a possibility that unknown deep branching lineages are present in this region. We genotyped by spoligotyping and multiple locus variable number of tandem repeats (VNTR) analysis (MLVA) 435 MTBC isolates recovered from patients. Four hundred and eleven isolates were collected in the Republic of Djibouti over a 12 year period, with the other 24 isolates originating from neighbouring countries. All major M. tuberculosis lineages were identified, with only two M. africanum and one M. bovis isolates. Upon comparison with typing data of worldwide origin we observed that several isolates showed clustering characteristics compatible with new deep branching. Whole genome sequencing (WGS) of seven isolates and comparison with available WGS data from 38 genomes distributed in the different lineages confirms the identification of ancestral nodes for several clades and most importantly of one new lineage, here referred to as lineage 7. Investigation of specific deletions confirms the novelty of this lineage, and analysis of its precise phylogenetic position indicates that the other three superlineages constituting the MTBC emerged independently but within a relatively short timeframe from the Horn of Africa. The availability of such strains compared to the predominant lineages and sharing very ancient ancestry will open new avenues for identifying some of the genetic factors responsible for the success of the modern lineages. Additional deep branching lineages may be readily and efficiently identified by large-scale MLVA screening of isolates from sub-Saharan African countries followed by WGS analysis of a few selected isolates. PMID:23300794
Spoligotype diversity and 5-year trends of bovine tuberculosis in Extremadura, southern Spain.
García-Jiménez, Waldo L; Cortés, María; Benítez-Medina, José M; Hurtado, Inés; Martínez, Remigio; García-Sánchez, Alfredo; Risco, David; Cerrato, Rosario; Sanz, Cristina; Hermoso-de-Mendoza, Miguel; Fernández-Llario, Pedro; Hermoso-de-Mendoza, Javier
2016-12-01
Bovine tuberculosis (bTB) causes significant losses to farming economies worldwide. A better understanding on the epidemiology of this disease and the role that the different hosts develop in the maintenance and spread of bTB is vital to control this zoonotic disease. This study reports the spoligotype diversity and temporal evolution of Mycobacterium tuberculosis Complex (MTBC) isolates obtained from Extremadura (southern Spain). Genotyping data of Mycobacterium bovis (n = 2102) and Mycobacterium caprae (n = 96) isolates from cattle and wildlife species, collected between 2008 and 2012, were used in this study. The isolates resulted clustered into 88 spoligotypes which varied largely in frequency and occurrence in the three hosts. The 20 most frequent patterns represented 91.99 % of the isolates, the spoligotype SB0121 being the clearly predominant and most widely dispersed geographically. The major variety of the spoligotype patterns (78 out of 88) was isolated from the cattle, in fact 50 (56.83 %) of the patterns were found only in this species. Within the spoligotypes shared between the cattle and wildlife species, 17 patterns (1747 isolates) were shared with wild boar and Iberian red deer, 10 patterns (308 isolates) were exclusively shared with wild boar, and only one pattern (two isolates) was shared exclusively with Iberian red deer. The significant number of spoligotypes shared between the three hosts (79.49 %) highlights the components of the multi-host system that allows the bTB maintenance in our study area. The greater percentage of isolates shared by the wild boar and cattle (93.50 %) supports the role of wild boar as main maintenance host for bTB in cattle. These results could be extrapolated to areas with a similar epidemiological scenario and could be helpful for other countries where wild reservoirs represent a handicap for the successful eradication of bTB from livestock.
Tuberculosis disease among Mexico-born individuals living in New York City, 2001-2014.
Stennis, N L; Meissner, J S; Bhavnani, D; Kreiswirth, B; Ahuja, S Desai
2017-06-01
Tuberculosis (TB) has decreased substantially in New York City (NYC), but progress has slowed in recent years. Continued declines will require novel approaches tailored to foreign-born populations. To describe TB epidemiology among the Mexico-born population of NYC to inform interventions in this community. The study included NYC patients with TB disease identified from 2001 to 2014. Incidence rates were compared by country of birth groupings. Demographic and patient characteristics were analyzed for all Mexico-born TB patients. Patients were compared by Mycobacterium bovis vs. non-M. bovis TB strain. Culture-confirmed patients were compared by genotype clustering status. From 2001 to 2014, 621 Mexico-born TB patients were identified in NYC. TB rates were significantly higher among Mexico-born vs. US-born persons every year. Mexico-born patients had lived in the United States for a median 7 years at diagnosis. The geographic distribution of Mexico-born TB patients was similar to that of the total Mexico-born population. Overall, 71% of patients reported previous employment; 52% of non-M. bovis patients were clustered based on genotyping results. Our results provide a foundation to inform future interventions in the Mexico-born population. Additional work is needed to explore possible local TB transmission and health care-seeking practices.
Genotyping did not evidence any contribution of Mycobacterium bovis to human tuberculosis in Brazil.
Rocha, Adalgiza; Elias, Atina R; Sobral, Luciana F; Soares, Diego F; Santos, Alexandre C; Marsico, Ana-Grazia; Hacker, Mariana A; Caldas, Paulo C; Parente, Luiz C; Silva, Marcio R; Fonseca, Leila; Suffys, Philip; Boéchat, Neio
2011-01-01
The contribution of Mycobacterium bovis to the global burden of tuberculosis (TB) in man is likely to be underestimated due to its dysgonic growth characteristics and because of the absence of pyruvate in most used media is disadvantageous for its primary isolation. In Brazil Mycobacterium culture, identification and susceptibility tests are performed only in TB reference centers, usually for selected cases. Moreover, solid, egg-based, glycerol-containing (without pyruvate supplementation) Löwenstein-Jensen (L-J) or Ogawa media are routinely used, unfavouring M. bovis isolation. To determine the importance of M. bovis as a public health threat in Brazil we investigated 3046 suspected TB patients inoculating their clinical samples onto routine L-J and L-J pyruvate enriched media. A total of 1796 specimens were culture positive for Mycobacterium spp. and 702 TB cases were confirmed. Surprisingly we did not detect one single case of M. bovis in the resulting collection of 1674 isolates recovered from M. bovis favourable medium analyzed by conventional and molecular speciation methods. Also, bacillary DNA present on 454 sputum smears from 223 TB patients were OxyR genotyped and none was recognized as M. bovis. Our data indicate that M. bovis importance on the burden of human TB in Brazil is marginal. Copyright © 2010 Elsevier Ltd. All rights reserved.
Gao, L; Tao, Y; Zhang, L; Jin, Q
2010-01-01
Host genetic susceptibility has been suggested as one of the most important explanations for inter-individual differences in tuberculosis (TB) risk. The vitamin D receptor (VDR) gene has been studied as a candidate locus due to genetic polymorphisms that affects the activity of the receptor and subsequent downstream vitamin D-mediated effects. We reviewed published studies on VDR polymorphisms and TB susceptibility up to 15 April 2009 and quantitatively summarised associations of the most widely studied polymorphisms (FokI, TaqI, ApaI and BsmI) using meta-analysis. A total of 23 eligible studies were included in this review. Heterogeneous results were observed, which may be partly explained by the differences between populations. Among Asians, the FokI ff genotype showed a pronounced positive association (OR 2.0, 95%CI 1.3-3.2), a significant inverse association was observed for the BsmI bb genotype (OR 0.5, 95%CI 0.4-0.8), and marginal significant associations were found for TaqI and ApaI polymorphisms. However, none of the polymorphisms was significantly related to TB among Africans or South Americans. The association of VDR polymorphisms with risk of TB observed in our analyses supports the hypothesis that vitamin D deficiency might play a role as risk factor during the development of TB.
Jails, a neglected opportunity for tuberculosis prevention.
MacNeil, Jessica R; McRill, Cheryl; Steinhauser, Gale; Weisbuch, Jonathan B; Williams, Elizabeth; Wilson, Mark L
2005-02-01
The proportion of tuberculosis (TB) cases diagnosed among residents of correctional facilities in Arizona increased from 2.7% in 1993 to 8.0% in 2000, while the national average remained at approximately 4%. The purpose of this study was to determine the proportion of TB cases in Maricopa County, Arizona with a history of incarceration in the local county jail, and to describe missed opportunities for the prevention and early detection of active TB cases in this population. A cross-match was used to identify persons reported to have TB in Maricopa County in 1999 and 2000 who also had a history of incarceration in the county jail. Jail medical records of cases were reviewed to determine if they had been screened for TB while incarcerated and the type of screening received. TB isolates for cases who had been in jail were genotyped using IS6110 restriction fragment-length polymorphism (RFLP) with secondary spoligotyping. Nearly one quarter (24.3%) of TB cases had a history of incarceration in the county jail. Most (82.8%) received no TB screening while in jail. Of 34 cases with available isolates, six shared a single genotype by RFLP and spoligotyping. Increased screening and treatment of latent TB infection in jails might assist with TB control in the community.
NASA Technical Reports Server (NTRS)
Dhople, Arvind M.
1994-01-01
In ominous projections issued by both U.S. Public Health Service and the World Health Organization, the epidemic of HIV infection will continue to rise more rapidly worldwide than predicted earlier. The AIDS patients are susceptible to diseases called opportunistic infections of which tuberculosis and Mycobacterium avium complex (MAC) infection are most common. This has created an urgent need to uncover new drugs for the treatment of these infections. In the seventies, NASA scientists at Goddard Space Flight Center, Greenbelt, MD, had adopted a biochemical indicator, adenosine triphosphate (ATP), to detect presence of life in extraterrestrial space. We proposed to develop ATP assay technique to determine sensitivity of antibacterial compounds against MAC and M. tuberculosis.
Miller, J; Jenny, A; Rhyan, J; Saari, D; Suarez, D
1997-07-01
A presumptive diagnosis of tuberculosis can be made if a tissue has characteristic histopathologic changes and acid-fast organisms. However, definitive diagnosis requires culture and species identification of the causative mycobacterium, a process that takes several weeks to complete. The purpose of work reported here was to determine if formalin-fixed, paraffin-embedded tissues could be tested by polymerase chain reaction (PCR) to provide a more rapid diagnosis of tuberculosis. Nondecalcified tissues from cases of tuberculosis in cattle and elk (Cervus elaphus) were examined. The primers used for PCR amplified a 123-bp fragment of IS6110, an insertion sequence that is specific for organisms in the Mycobacterium tuberculosis complex (M. tuberculosis, M. bovis, M. microti, M. africanum). The PCR test detected this sequence in tissues from 92 of 99 (93%) tuberculosis cases, including 3 of 4 elk. In 80 tissues, the positive results were obtained using material prepared by immersion of paraffin sections in water containing a detergent, followed by alternating boil/freeze cycles. The remaining positive results were obtained with DNA isolated from the crude tissue extracts by proteinase K digestion and phenol/chloroform purification. Accuracy of the IS6110 PCR test was demonstrated by negative test results on 31 tissues that had either nonmycobacterial granulomas or granulomatous lesions caused by other mycobacteria (M. paratuberculosis or M. avium). The findings of this study show that a PCR test usually can provide a rapid diagnosis of tuberculosis when it is applied to paraffin sections that have characteristic lesions and acid-fast organisms.
Riojas, Marco A; McGough, Katya J; Rider-Riojas, Cristin J; Rastogi, Nalin; Hazbón, Manzour Hernando
2018-01-01
The species within the Mycobacterium tuberculosis Complex (MTBC) have undergone numerous taxonomic and nomenclatural changes, leaving the true structure of the MTBC in doubt. We used next-generation sequencing (NGS), digital DNA-DNA hybridization (dDDH), and average nucleotide identity (ANI) to investigate the relationship between these species. The type strains of Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and Mycobacterium pinnipedii were sequenced via NGS. Pairwise dDDH and ANI comparisons between these, previously sequenced MTBC type strain genomes (including 'Mycobacterium canettii', 'Mycobacterium mungi' and 'Mycobacterium orygis') and M. tuberculosis H37Rv T were performed. Further, all available genome sequences in GenBank for species in or putatively in the MTBC were compared to H37Rv T . Pairwise results indicated that all of the type strains of the species are extremely closely related to each other (dDDH: 91.2-99.2 %, ANI: 99.21-99.92 %), greatly exceeding the respective species delineation thresholds, thus indicating that they belong to the same species. Results from the GenBank genomes indicate that all the strains examined are within the circumscription of H37Rv T (dDDH: 83.5-100 %). We, therefore, formally propose a union of the species of the MTBC as M. tuberculosis. M. africanum, M. bovis, M. caprae, M. microti and M. pinnipedii are reclassified as later heterotypic synonyms of M. tuberculosis. 'M. canettii', 'M. mungi', and 'M. orygis' are classified as strains of the species M. tuberculosis. We further recommend use of the infrasubspecific term 'variant' ('var.') and infrasubspecific designations that generally retain the historical nomenclature associated with the groups or otherwise convey such characteristics, e.g. M. tuberculosis var. bovis.
Blanco-Guillot, Francles; Castañeda-Cediel, M Lucía; Cruz-Hervert, Pablo; Ferreyra-Reyes, Leticia; Delgado-Sánchez, Guadalupe; Ferreira-Guerrero, Elizabeth; Montero-Campos, Rogelio; Bobadilla-Del-Valle, Miriam; Martínez-Gamboa, Rosa Areli; Torres-González, Pedro; Téllez-Vazquez, Norma; Canizales-Quintero, Sergio; Yanes-Lane, Mercedes; Mongua-Rodríguez, Norma; Ponce-de-León, Alfredo; Sifuentes-Osornio, José; García-García, Lourdes
2018-01-01
Genotyping and georeferencing in tuberculosis (TB) have been used to characterize the distribution of the disease and occurrence of transmission within specific groups and communities. The objective of this study was to test the hypothesis that diabetes mellitus (DM) and pulmonary TB may occur in spatial and molecular aggregations. Retrospective cohort study of patients with pulmonary TB. The study area included 12 municipalities in the Sanitary Jurisdiction of Orizaba, Veracruz, México. Patients with acid-fast bacilli in sputum smears and/or Mycobacterium tuberculosis in sputum cultures were recruited from 1995 to 2010. Clinical (standardized questionnaire, physical examination, chest X-ray, blood glucose test and HIV test), microbiological, epidemiological, and molecular evaluations were carried out. Patients were considered "genotype-clustered" if two or more isolates from different patients were identified within 12 months of each other and had six or more IS6110 bands in an identical pattern, or < 6 bands with identical IS6110 RFLP patterns and spoligotype with the same spacer oligonucleotides. Residential and health care centers addresses were georeferenced. We used a Jeep hand GPS. The coordinates were transferred from the GPS files to ArcGIS using ArcMap 9.3. We evaluated global spatial aggregation of patients in IS6110-RFLP/ spoligotype clusters using global Moran´s I. Since global distribution was not random, we evaluated "hotspots" using Getis-Ord Gi* statistic. Using bivariate and multivariate analysis we analyzed sociodemographic, behavioral, clinic and bacteriological conditions associated with "hotspots". We used STATA® v13.1 for all statistical analysis. From 1995 to 2010, 1,370 patients >20 years were diagnosed with pulmonary TB; 33% had DM. The proportion of isolates that were genotyped was 80.7% (n = 1105), of which 31% (n = 342) were grouped in 91 genotype clusters with 2 to 23 patients each; 65.9% of total clusters were small (2 members) involving 35.08% of patients. Twenty three (22.7) percent of cases were classified as recent transmission. Moran`s I indicated that distribution of patients in IS6110-RFLP/spoligotype clusters was not random (Moran`s I = 0.035468, Z value = 7.0, p = 0.00). Local spatial analysis showed statistically significant spatial aggregation of patients in IS6110-RFLP/spoligotype clusters identifying "hotspots" and "coldspots". GI* statistic showed that the hotspot for spatial clustering was located in Camerino Z. Mendoza municipality; 14.6% (50/342) of patients in genotype clusters were located in a hotspot; of these, 60% (30/50) lived with DM. Using logistic regression the statistically significant variables associated with hotspots were: DM [adjusted Odds Ratio (aOR) 7.04, 95% Confidence interval (CI) 3.03-16.38] and attending the health center in Camerino Z. Mendoza (aOR18.04, 95% CI 7.35-44.28). The combination of molecular and epidemiological information with geospatial data allowed us to identify the concurrence of molecular clustering and spatial aggregation of patients with DM and TB. This information may be highly useful for TB control programs.
Blanco-Guillot, Francles; Ferreyra-Reyes, Leticia; Delgado-Sánchez, Guadalupe; Ferreira-Guerrero, Elizabeth; Montero-Campos, Rogelio; Bobadilla-del-Valle, Miriam; Martínez-Gamboa, Rosa Areli; Torres-González, Pedro; Téllez-Vazquez, Norma; Canizales-Quintero, Sergio; Yanes-Lane, Mercedes; Mongua-Rodríguez, Norma; Ponce-de-León, Alfredo; Sifuentes-Osornio, José
2018-01-01
Background Genotyping and georeferencing in tuberculosis (TB) have been used to characterize the distribution of the disease and occurrence of transmission within specific groups and communities. Objective The objective of this study was to test the hypothesis that diabetes mellitus (DM) and pulmonary TB may occur in spatial and molecular aggregations. Material and methods Retrospective cohort study of patients with pulmonary TB. The study area included 12 municipalities in the Sanitary Jurisdiction of Orizaba, Veracruz, México. Patients with acid-fast bacilli in sputum smears and/or Mycobacterium tuberculosis in sputum cultures were recruited from 1995 to 2010. Clinical (standardized questionnaire, physical examination, chest X-ray, blood glucose test and HIV test), microbiological, epidemiological, and molecular evaluations were carried out. Patients were considered “genotype-clustered” if two or more isolates from different patients were identified within 12 months of each other and had six or more IS6110 bands in an identical pattern, or < 6 bands with identical IS6110 RFLP patterns and spoligotype with the same spacer oligonucleotides. Residential and health care centers addresses were georeferenced. We used a Jeep hand GPS. The coordinates were transferred from the GPS files to ArcGIS using ArcMap 9.3. We evaluated global spatial aggregation of patients in IS6110-RFLP/ spoligotype clusters using global Moran´s I. Since global distribution was not random, we evaluated “hotspots” using Getis-Ord Gi* statistic. Using bivariate and multivariate analysis we analyzed sociodemographic, behavioral, clinic and bacteriological conditions associated with “hotspots”. We used STATA® v13.1 for all statistical analysis. Results From 1995 to 2010, 1,370 patients >20 years were diagnosed with pulmonary TB; 33% had DM. The proportion of isolates that were genotyped was 80.7% (n = 1105), of which 31% (n = 342) were grouped in 91 genotype clusters with 2 to 23 patients each; 65.9% of total clusters were small (2 members) involving 35.08% of patients. Twenty three (22.7) percent of cases were classified as recent transmission. Moran`s I indicated that distribution of patients in IS6110-RFLP/spoligotype clusters was not random (Moran`s I = 0.035468, Z value = 7.0, p = 0.00). Local spatial analysis showed statistically significant spatial aggregation of patients in IS6110-RFLP/spoligotype clusters identifying “hotspots” and “coldspots”. GI* statistic showed that the hotspot for spatial clustering was located in Camerino Z. Mendoza municipality; 14.6% (50/342) of patients in genotype clusters were located in a hotspot; of these, 60% (30/50) lived with DM. Using logistic regression the statistically significant variables associated with hotspots were: DM [adjusted Odds Ratio (aOR) 7.04, 95% Confidence interval (CI) 3.03–16.38] and attending the health center in Camerino Z. Mendoza (aOR18.04, 95% CI 7.35–44.28). Conclusions The combination of molecular and epidemiological information with geospatial data allowed us to identify the concurrence of molecular clustering and spatial aggregation of patients with DM and TB. This information may be highly useful for TB control programs. PMID:29534104
Kox, L F; Noordhoek, G T; Kunakorn, M; Mulder, S; Sterrenburg, M; Kolk, A H
1996-01-01
A microwell hybridization assay was developed for the detection of the PCR products from both Mycobacterium tuberculosis complex bacteria and the recombinant Mycobacterium smegmatis strain 1008 that is used as an internal control to monitor inhibition in the PCR based on the M. tuberculosis complex-specific insertion sequence IS6110. The test is based on specific detection with digoxigenin-labeled oligonucleotide probes of biotinylated PCR products which are captured in a microtiter plate coated with streptavidin. The captured PCR products are hybridized separately with two probes, one specific for the PCR product from IS6110 from M. tuberculosis complex and the other specific for the PCR fragment from the modified IS6110 fragment from the recombinant M. smegmatis 1008. The microwell hybridization assay discriminates perfectly between the two types of amplicon. The amount of PCR product that can be detected by this assay is 10 times less than that which can be detected by agarose gel electrophoresis. The test can be performed in 2 h. It is much faster and less laborious than Southern blot hybridization. Furthermore, the interpretation of results is objective. The assay was used with 172 clinical samples in a routine microbiology laboratory, and the results were in complete agreement with those of agarose gel electrophoresis and Southern blot hybridization. PMID:8862568
Echinococcus canadensis transmission in the North.
Oksanen, Antti; Lavikainen, Antti
2015-10-30
The Echinococcus granulosus complex (EG) is the causative agent of cystic echinococcosis (CE). Northern cervid Echinococcus was previously suggested to be the ancestor of the entire EG. During the last century, it was regarded to have three (or four) different, but often overlapping, transmission cycles in the circumpolar North: the original wolf-wild cervid (reindeer or elk)-cycle; the semi-synanthropic cycle involving sled and hunting dogs and wild cervids; and the synanthropic cycle involving herding dogs and semi-domesticated reindeer. Human infections mainly derived from the latter two cycles. In Fennoscandia, the synanthropic cycle has been eliminated during the last 50 years due to changes in reindeer husbandry methods; machinery making herding dogs largely redundant. Typical to human CE in the North has been the relatively benign nature of the disease compared with CE caused by E. granulosus sensu stricto. The metacestodes in humans and in the natural cervid hosts predominantly appear in the lungs. The causative agents have been identified as EG mitochondrial genotypes G8 and G10, now together with G6 (camel), G7 (pig) and G9 genotypes constituting the Echinococcus canadensis species. Based on recent findings in reindeer in Yakutia, G6 might also be recognised among cervid genotypes. The geographical distribution of both G8 and G10 is circumpolar, with G10 currently apparently more prevalent both in the Palearctic and Nearctic. Because of the disappearance of the working dog, E. canadensis in Fennoscandia is again highly dependent on the wolf, as it was before domestication of the dog. Pet and sled dogs, if their number further increases, may to a minor part participate in the life cycle. Human CE in the North was mostly diagnosed by mass chest tuberculosis radiography campaigns, which have been discontinued. Copyright © 2015 Elsevier B.V. All rights reserved.
González-Pérez, Mónica; Mariño-Ramírez, Leonardo; Parra-López, Carlos Alberto; Murcia, Martha Isabel; Marquina, Brenda; Mata-Espinoza, Dulce; Rodriguez-Míguez, Yadira; Baay-Guzman, Guillermina J.; Huerta-Yepez, Sara
2013-01-01
The genus Mycobacterium comprises more than 150 species, including important pathogens for humans which cause major public health problems. The vast majority of efforts to understand the genus have been addressed in studies with Mycobacterium tuberculosis. The biological differentiation between M. tuberculosis and nontuberculous mycobacteria (NTM) is important because there are distinctions in the sources of infection, treatments, and the course of disease. Likewise, the importance of studying NTM is not only due to its clinical significance but also due to the mechanisms by which some species are pathogenic while others are not. Mycobacterium avium complex (MAC) is the most important group of NTM opportunistic pathogens, since it is the second largest medical complex in the genus after the M. tuberculosis complex. Here, we evaluated the virulence and immune response of M. avium subsp. avium and Mycobacterium colombiense, using experimental models of progressive pulmonary tuberculosis and subcutaneous infection in BALB/c mice. Mice infected intratracheally with a high dose of MAC strains showed high expression of tumor necrosis factor alpha (TNF-α) and inducible nitric oxide synthase with rapid bacillus elimination and numerous granulomas, but without lung consolidation during late infection in coexistence with high expression of anti-inflammatory cytokines. In contrast, subcutaneous infection showed high production of the proinflammatory cytokines TNF-α and gamma interferon with relatively low production of anti-inflammatory cytokines such as interleukin-10 (IL-10) or IL-4, which efficiently eliminate the bacilli but maintain extensive inflammation and fibrosis. Thus, MAC infection evokes different immune and inflammatory responses depending on the MAC species and affected tissue. PMID:23959717
Nasr Esfahani, Bahram; Rezaei Yazdi, Hadi; Moghim, Sharareh; Ghasemian Safaei, Hajieh; Zarkesh Esfahani, Hamid
2012-11-01
Rapid and accurate identification of mycobacteria isolates from primary culture is important due to timely and appropriate antibiotic therapy. Conventional methods for identification of Mycobacterium species based on biochemical tests needs several weeks and may remain inconclusive. In this study, a novel multiplex real-time PCR was developed for rapid identification of Mycobacterium genus, Mycobacterium tuberculosis complex (MTC) and the most common non-tuberculosis mycobacteria species including M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and the M. gordonae in three reaction tubes but under same PCR condition. Genetic targets for primer designing included the 16S rDNA gene, the dnaJ gene, the gyrB gene and internal transcribed spacer (ITS). Multiplex real-time PCR was setup with reference Mycobacterium strains and was subsequently tested with 66 clinical isolates. Results of multiplex real-time PCR were analyzed with melting curves and melting temperature (T (m)) of Mycobacterium genus, MTC, and each of non-tuberculosis Mycobacterium species were determined. Multiplex real-time PCR results were compared with amplification and sequencing of 16S-23S rDNA ITS for identification of Mycobacterium species. Sensitivity and specificity of designed primers were each 100 % for MTC, M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and M. gordonae. Sensitivity and specificity of designed primer for genus Mycobacterium was 96 and 100 %, respectively. According to the obtained results, we conclude that this multiplex real-time PCR with melting curve analysis and these novel primers can be used for rapid and accurate identification of genus Mycobacterium, MTC, and the most common non-tuberculosis Mycobacterium species.
Complex multifractal nature in Mycobacterium tuberculosis genome
Mandal, Saurav; Roychowdhury, Tanmoy; Chirom, Keilash; Bhattacharya, Alok; Brojen Singh, R. K.
2017-01-01
The mutifractal and long range correlation (C(r)) properties of strings, such as nucleotide sequence can be a useful parameter for identification of underlying patterns and variations. In this study C(r) and multifractal singularity function f(α) have been used to study variations in the genomes of a pathogenic bacteria Mycobacterium tuberculosis. Genomic sequences of M. tuberculosis isolates displayed significant variations in C(r) and f(α) reflecting inherent differences in sequences among isolates. M. tuberculosis isolates can be categorised into different subgroups based on sensitivity to drugs, these are DS (drug sensitive isolates), MDR (multi-drug resistant isolates) and XDR (extremely drug resistant isolates). C(r) follows significantly different scaling rules in different subgroups of isolates, but all the isolates follow one parameter scaling law. The richness in complexity of each subgroup can be quantified by the measures of multifractal parameters displaying a pattern in which XDR isolates have highest value and lowest for drug sensitive isolates. Therefore C(r) and multifractal functions can be useful parameters for analysis of genomic sequences. PMID:28440326
Kandhakumari, Gandhi; Stephen, Selvaraj
2017-01-01
At present, three rapid kits are available globally for the confirmation of Mycobacterium tuberculosis complex (MTBC) in cultures by MPT64 antigen (MPT64 Ag) detection. These include Capilia TB, SD Bioline, and BD MGIT TBc Identification (TBcID). The third kit is yet to be validated in India. We have tested this kit and compared with SD Bioline using conventional tests as gold standard. Seventy-one MTBC (70 M. tuberculosis and one Mycobacterium bovis) and four nontuberculous mycobacteria (NTM) were isolated from 649 clinical specimens in MGIT 960 and/or Lowenstein-Jensen slants (LJ). MPT64 Ag was detected by both TBcID and SD Bioline kits in all the 71 clinical isolates and the reference strain M. tuberculosis H37Rv. All NTM species tested were negative by the two different kits. Thus, TBcID kit showed 100% concordance in terms of sensitivity and specificity. Rapid kits confirm MTBC cultures within 15 min in contrast to several weeks' time required by conventional techniques.
Complex multifractal nature in Mycobacterium tuberculosis genome
NASA Astrophysics Data System (ADS)
Mandal, Saurav; Roychowdhury, Tanmoy; Chirom, Keilash; Bhattacharya, Alok; Brojen Singh, R. K.
2017-04-01
The mutifractal and long range correlation (C(r)) properties of strings, such as nucleotide sequence can be a useful parameter for identification of underlying patterns and variations. In this study C(r) and multifractal singularity function f(α) have been used to study variations in the genomes of a pathogenic bacteria Mycobacterium tuberculosis. Genomic sequences of M. tuberculosis isolates displayed significant variations in C(r) and f(α) reflecting inherent differences in sequences among isolates. M. tuberculosis isolates can be categorised into different subgroups based on sensitivity to drugs, these are DS (drug sensitive isolates), MDR (multi-drug resistant isolates) and XDR (extremely drug resistant isolates). C(r) follows significantly different scaling rules in different subgroups of isolates, but all the isolates follow one parameter scaling law. The richness in complexity of each subgroup can be quantified by the measures of multifractal parameters displaying a pattern in which XDR isolates have highest value and lowest for drug sensitive isolates. Therefore C(r) and multifractal functions can be useful parameters for analysis of genomic sequences.
Origin, Spread and Demography of the Mycobacterium tuberculosis Complex
Wirth, Thierry; Hildebrand, Falk; Allix-Béguec, Caroline; Wölbeling, Florian; Kubica, Tanja; Kremer, Kristin; van Soolingen, Dick; Rüsch-Gerdes, Sabine; Locht, Camille; Brisse, Sylvain; Meyer, Axel
2008-01-01
The evolutionary timing and spread of the Mycobacterium tuberculosis complex (MTBC), one of the most successful groups of bacterial pathogens, remains largely unknown. Here, using mycobacterial tandem repeat sequences as genetic markers, we show that the MTBC consists of two independent clades, one composed exclusively of M. tuberculosis lineages from humans and the other composed of both animal and human isolates. The latter also likely derived from a human pathogenic lineage, supporting the hypothesis of an original human host. Using Bayesian statistics and experimental data on the variability of the mycobacterial markers in infected patients, we estimated the age of the MTBC at 40,000 years, coinciding with the expansion of “modern” human populations out of Africa. Furthermore, coalescence analysis revealed a strong and recent demographic expansion in almost all M. tuberculosis lineages, which coincides with the human population explosion over the last two centuries. These findings thus unveil the dynamic dimension of the association between human host and pathogen populations. PMID:18802459
Miyoshi-Akiyama, Tohru; Satou, Kazuhito; Kato, Masako; Shiroma, Akino; Matsumura, Kazunori; Tamotsu, Hinako; Iwai, Hiroki; Teruya, Kuniko; Funatogawa, Keiji; Hirano, Takashi; Kirikae, Teruo
2015-01-01
We report the completely annotated genome sequence of Mycobacterium tuberculosis (Zopf) Lehmann and Neumann (ATCC35812) (Kurono), which is a used for virulence and/or immunization studies. The complete genome sequence of M. tuberculosis Kurono was determined with a length of 4,415,078 bp and a G+C content of 65.60%. The chromosome was shown to contain a total of 4,340 protein-coding genes, 53 tRNA genes, one transfer messenger RNA for all amino acids, and 1 rrn operon. Lineage analysis based on large sequence polymorphisms indicated that M. tuberculosis Kurono belongs to the Euro-American lineage (lineage 4). Phylogenetic analysis using whole genome sequences of M. tuberculosis Kurono in addition to 22 M. tuberculosis complex strains indicated that H37Rv is the closest relative of Kurono based on the results of phylogenetic analysis. These findings provide a basis for research using M. tuberculosis Kurono, especially in animal models. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tyrrell, Frances; Stafford, Cortney; Yakrus, Mitchell; Youngblood, Monica; Hill, Andrew; Johnston, Stephanie
We investigated data from US public health laboratories funded through the Centers for Disease Control and Prevention's Tuberculosis Elimination and Laboratory Cooperative Agreement to document trends and challenges in meeting national objectives in tuberculosis (TB) laboratory diagnoses. We examined data on workload and turnaround time from public health laboratories' progress reports during 2009-2013. We reviewed methodologies, laboratory roles, and progress toward rapid detection of Mycobacterium tuberculosis complex through nucleic acid amplification (NAA) testing. We compared selected data with TB surveillance reports to estimate public health laboratories' contribution to national diagnostic services. During the study period, culture and drug susceptibility tests decreased, but NAA testing increased. Public health laboratories achieved turnaround time benchmarks for drug susceptibility tests at lower levels than for acid-fast bacilli smear and identification from culture. NAA positivity in laboratories among surveillance-reported culture-positive TB cases increased from 26.6% (2355 of 8876) in 2009 to 40.0% (2948 of 7358) in 2013. Public health laboratories provided an estimated 50.9% (4285 of 8413 in 2010) to 57.2% (4210 of 7358 in 2013) of culture testing and 88.3% (6822 of 7727 in 2011) to 94.4% (6845 of 7250 in 2012) of drug susceptibility tests for all US TB cases. Public health laboratories contribute substantially to TB diagnoses in the United States. Although testing volumes mostly decreased, the increase in NAA testing indicates continued progress in rapid M tuberculosis complex detection.
Björnsdottir, Halla; Winther, Malene; Christenson, Karin; Oprea, Tudor; Karlsson, Anna; Forsman, Huamei; Dahlgren, Claes; Bylund, Johan
2014-01-01
Upon infection with Mycobacterium tuberculosis, neutrophils are massively recruited to the lungs, but the role of these cells in combating the infection is poorly understood. Through a type VII secretion system, M. tuberculosis releases a heterodimeric protein complex, containing a 6-kDa early secreted antigenic target (ESAT-6) and a 10-kDa culture filtrate protein (CFP-10), that is essential for virulence. Whereas the ESAT-6 component possesses multiple virulence-related activities, no direct biological activity of CFP-10 has been shown, and CFP-10 has been described as a chaperone protein for ESAT-6. We here show that the ESAT-6:CFP-10 complex induces a transient release of Ca2+ from intracellular stores in human neutrophils. Surprisingly, CFP-10 rather than ESAT-6 was responsible for triggering the Ca2+ response, in a pertussis toxin-sensitive manner, suggesting the involvement of a G-protein-coupled receptor. In line with this, the response was accompanied by neutrophil chemotaxis and activation of the superoxide-producing NADPH-oxidase. Neutrophils were unique among leukocytes in responding to CFP-10, as monocytes and lymphocytes failed to produce a Ca2+ signal upon stimulation with the M. tuberculosis protein. Hence, CFP-10 may contribute specifically to neutrophil recruitment and activation during M. tuberculosis infection, representing a novel biological role for CFP-10 in the ESAT-6:CFP-10 complex, beyond the previously described chaperone function. PMID:25332123
Qi, Chao; Wallis, Carole; Pahalawatta, Vihanga; Frank, Andrea; Ramdin, Neeshan; Viana, Raquel; Abravaya, Klara; Leckie, Gregor; Tang, Ning
2015-09-01
The Abbott RealTime MTB assay is a nucleic acid amplification test (NAAT) for the detection of Mycobacterium tuberculosis complex DNA. The sample inactivation procedure used in the assay, consisting of one part sample treated with 3 parts inactivation reagent for 60 min, effectively reduced viscosity and inactivated M. tuberculosis in clinical specimens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Social and cultural factors in the successful control of tuberculosis.
Rubel, A J; Garro, L C
1992-01-01
The burden of tuberculosis on the public health is staggering. Worldwide, annual incidence of new cases is estimated to be about 8 million. Almost 3 million deaths occur yearly. Early case identification and adherence to treatment regimens are the remaining barriers to successful control. In many nations, however, fewer than half those with active disease receive a diagnosis, and fewer than half those beginning treatment complete it. The twin problems of delay in seeking treatment and abandonment of a prescribed regimen derive from complex factors. People's confusion as to the implications of the tuberculosis symptoms, costs of transportation to clinic services, the social stigma that attaches to tuberculosis, the high cost of medication, organizational problems in providing adequate followup services, and patients' perception of clinic facilities as inhospitable all contribute to the complexity. Sociocultural factors are emphasized in this report because hitherto they have not been adequately explored. Salient among those sociocultural factors is the health culture of the patients. That is, the understanding and information people have from family, friends, and neighbors as to the nature of a health problem, its cause, and its implications. A knowledge of the health culture of their patients has become a critical tool if tuberculosis control programs are to be successful. Several anthropological procedures are recommended to help uncover the health culture of people served by tuberculosis clinics. PMID:1454974
Complex sputum microbial composition in patients with pulmonary tuberculosis
2012-01-01
Background An increasing number of studies have implicated the microbiome in certain diseases, especially chronic diseases. In this study, the bacterial communities in the sputum of pulmonary tuberculosis patients were explored. Total DNA was extracted from sputum samples from 31 pulmonary tuberculosis patients and respiratory secretions of 24 healthy participants. The 16S rRNA V3 hyper-variable regions were amplified using bar-coded primers and pyro-sequenced using Roche 454 FLX. Results The results showed that the microbiota in the sputum of pulmonary tuberculosis patients were more diverse than those of healthy participants (p<0.05). The sequences were classified into 24 phyla, all of which were found in pulmonary tuberculosis patients and 17 of which were found in healthy participants. Furthermore, many foreign bacteria, such as Stenotrophomonas, Cupriavidus, Pseudomonas, Thermus, Sphingomonas, Methylobacterium, Diaphorobacter, Comamonas, and Mobilicoccus, were unique to pulmonary tuberculosis patients. Conclusions This study concluded that the microbial composition of the respiratory tract of pulmonary tuberculosis patients is more complicated than that of healthy participants, and many foreign bacteria were found in the sputum of pulmonary tuberculosis patients. The roles of these foreign bacteria in the onset or development of pulmonary tuberculosis shoud be considered by clinicians. PMID:23176186
Transmission of Mycobacterium tuberculosis between Farmers and Cattle in Central Ethiopia
Ameni, Gobena; Tadesse, Konjit; Hailu, Elena; Deresse, Yohannes; Medhin, Girmay; Aseffa, Abraham; Hewinson, Glyn; Vordermeier, Martin; Berg, Stefan
2013-01-01
Background Transmission of Mycobacterium tuberculosis (M. tuberculosis) complex could be possible between farmers and their cattle in Ethiopia. Methodology/Principal Findings A study was conducted in mixed type multi-purposes cattle raising region of Ethiopia on 287 households (146 households with case of pulmonary tuberculosis (TB) and 141 free of TB) and 287 herds consisting of 2,033 cattle belonging to these households to evaluate transmission of TB between cattle and farmers. Interview, bacteriological examinations and molecular typing were used for human subjects while comparative intradermal tuberculin (CIDT) test, post mortem and bacteriological examinations, and molecular typing were used for animal studies. Herd prevalence of CIDT reactors was 9.4% and was higher (p<0.01) in herds owned by households with TB than in herds owned by TB free households. Animal prevalence was 1.8% and also higher (p<0.01) in cattle owned by households with TB case than in those owned by TB free households. All mycobacteria (141) isolated from farmers were M. tuberculosis, while only five of the 16 isolates from cattle were members of the M. tuberculosis complex (MTC) while the remaining 11 were members of non-tuberculosis mycobacteria (NTM). Further speciation of the five MTC isolates showed that three of the isolates were M. bovis (strain SB1176), while the remaining two were M. tuberculosis strains (SIT149 and SIT53). Pathology scoring method described by “Vordermeier et al. (2002)” was applied and the average severity of pathology in two cattle infected with M. bovis, in 11 infected with NTM and two infected with M. tuberculosis were 5.5, 2.1 and 0.5, respectively. Conclusions/Significance The results showed that transmission of TB from farmers to cattle by the airborne route sensitizes the cows but rarely leads to TB. Similarly, low transmission of M. bovis between farmers and their cattle was found, suggesting requirement of ingestion of contaminated milk from cows with tuberculous mastitis. PMID:24130804
Transmission of Mycobacterium tuberculosis between farmers and cattle in central Ethiopia.
Ameni, Gobena; Tadesse, Konjit; Hailu, Elena; Deresse, Yohannes; Medhin, Girmay; Aseffa, Abraham; Hewinson, Glyn; Vordermeier, Martin; Berg, Stefan
2013-01-01
Transmission of Mycobacterium tuberculosis (M. tuberculosis) complex could be possible between farmers and their cattle in Ethiopia. A study was conducted in mixed type multi-purposes cattle raising region of Ethiopia on 287 households (146 households with case of pulmonary tuberculosis (TB) and 141 free of TB) and 287 herds consisting of 2,033 cattle belonging to these households to evaluate transmission of TB between cattle and farmers. Interview, bacteriological examinations and molecular typing were used for human subjects while comparative intradermal tuberculin (CIDT) test, post mortem and bacteriological examinations, and molecular typing were used for animal studies. Herd prevalence of CIDT reactors was 9.4% and was higher (p<0.01) in herds owned by households with TB than in herds owned by TB free households. Animal prevalence was 1.8% and also higher (p<0.01) in cattle owned by households with TB case than in those owned by TB free households. All mycobacteria (141) isolated from farmers were M. tuberculosis, while only five of the 16 isolates from cattle were members of the M. tuberculosis complex (MTC) while the remaining 11 were members of non-tuberculosis mycobacteria (NTM). Further speciation of the five MTC isolates showed that three of the isolates were M. bovis (strain SB1176), while the remaining two were M. tuberculosis strains (SIT149 and SIT53). Pathology scoring method described by "Vordermeier et al. (2002)" was applied and the average severity of pathology in two cattle infected with M. bovis, in 11 infected with NTM and two infected with M. tuberculosis were 5.5, 2.1 and 0.5, respectively. The results showed that transmission of TB from farmers to cattle by the airborne route sensitizes the cows but rarely leads to TB. Similarly, low transmission of M. bovis between farmers and their cattle was found, suggesting requirement of ingestion of contaminated milk from cows with tuberculous mastitis.
Bezos, J; Casal, C; Díez-Delgado, I; Romero, B; Liandris, E; Álvarez, J; Sevilla, I A; Juan, L de; Domínguez, L; Gortázar, C
2015-10-15
Tuberculosis (TB) in goats (Capra hircus) is due to infection with members of the Mycobacterium tuberculosis complex (MTC), mainly Mycobacterium bovis and Mycobacterium caprae. We report a comparative experimental infection of goats with M. bovis, M. caprae and M. tuberculosis strains. We hypothesized that goats experimentally infected with different members of the MTC would display different clinical pictures. Three groups of goats were challenged with either M. bovis SB0134 (group 1, n=5), M. caprae SB0157 (group 2, n=5) and M. tuberculosis SIT58 (group 3, n=4). The highest mean total lesion score was observed in M. bovis challenged goats (mean 15.2, range 9-19), followed by those challenged with M. caprae (10.8, 2-23). The lowest score was recorded in goats challenged with M. tuberculosis (3, 1-6). Culture results coincided with the lesion scores in yielding more positive pools (7/15) in M. bovis challenged goats. By contrast, only three pools were positive from goats challenged M. tuberculosis (3/12) and with M. caprae (3/15), respectively. Differences in the performance of the intradermal and gamma-interferon (IFN-γ) tests depending of the group were observed since all goats from group 1 were diagnosed using intradermal test and these goats reacted earlier to the IFN-γ assay in comparison to the other groups. This study confirmed that goats experimentally infected with different members of the MTC display different clinical pictures and this fact may have implications for MTC maintenance and bacterial shedding. Copyright © 2015 Elsevier B.V. All rights reserved.
Flores-López, Carlos A; Zenteno-Cuevas, Roberto; Laniado-Laborín, Rafael; Reynaud, Yann; García-Ortiz, Rosa Alejandra; González-Y-Merchand, Jorge A; Rivera, Sandra; Vázquez-Chacón, Carlos A; Vaughan, Gilberto; Martínez-Guarneros, José Armando; Victoria-Cota, Nelva Lorena; Cruz-Rivera, Mayra; Rastogi, Nalin; Muñiz-Salazar, Raquel
2017-11-01
The State of Baja California (BC) exhibits the highest incidence and prevalence rates of tuberculosis (TB), and multidrug-resistant TB (MDR-TB) in Mexico. However information about the circulation of M. tuberculosis lineages in BC and Mexico as a whole is limited. Here, we describe the genetic relationship and genetic diversity among M. tuberculosis clinical isolates (n=140) collected in BC between October 2009 and April 2011 with other regions of Mexico, the United States, and Latin America. All specimens were genotyped based on 24 mycobacterial interspersed repetitive units (MIRU)-variable number of tandem repeats (VNTR) loci. Population structure and minimum spanning tree (MST) analyses were used to assess the genetic diversity and distribution of BC isolates in comparison to USA and South America strains. Among the nine lineages observed, LAM, Haarlem and S were the most frequent identified in BC. Population structure analysis clustered most BC isolates (41%) into three distinctive groups that included strains from San Diego and South America, whereas other BC strains (22%) clustered with other Mexican strains. A subset of isolates (12%) seemed to be autochthonous of BC, while 25% were cosmopolitan and grouped into multiple clusters. It is highly likely that the TB genetic structure observed in BC is due to human migration. Additional studies are required to determine the mechanism involved in the phylogeographic distribution of M. tuberculosis in Mexico. Implementation of domestic molecular TB surveillance programs is required to better understand the molecular epidemiology of TB not only in the region but at the national level. Copyright © 2016 Elsevier B.V. All rights reserved.
De Grandis, Rone Aparecido; Resende, Flávia Aparecida; da Silva, Monize Martins; Pavan, Fernando Rogério; Batista, Alzir Azevedo; Varanda, Eliana Aparecida
2016-03-01
Tuberculosis is a top infectious disease killer worldwide, caused by the bacteria Mycobacterium tuberculosis. Increasing incidences of multiple drug-resistance (MDR) strains are emerging as one of the major public health threats. However, the drugs in use are still incapable of controlling the appalling upsurge of MDR. In recent years a marked number of research groups have devoted their attention toward the development of specific and cost-effective antimicrobial agents against targeted MDR-Tuberculosis. In previous studies, ruthenium(II) complexes (SCAR) have shown a promising activity against MDR-Tuberculosis although few studies have indeed considered ruthenium toxicity. Therefore, within the preclinical requirements, we have sought to determine the cyto-genotoxicity of three SCAR complexes in this present study. The treatment with the SCARs induced a concentration-dependent decrease in cell viability in CHO-K1 and HepG2 cells. Based on the clonogenic survival, SCAR 5 was found to be more cytotoxic while SCAR 6 exhibited selectivity action on tumor cells. Although SCAR 4 and 5 did not indicate any mutagenic activity as evidenced by the Ames and Cytokinesis block micronucleus cytome assays, the complex SCAR 6 was found to engender a frameshift mutation detected by Salmonella typhimurium in the presence of S9. Similarly, we observed a chromosomal damage in HepG2 cells with significant increases of micronuclei and nucleoplasmic bridges. These data indicate that SCAR 4 and 5 complexes did not show genotoxicity in our models while SCAR 6 was considered mutagenic. This study presented a comprehensive genotoxic evaluation of SCAR complexes were shown to be genotoxic in vitro. All in all, further studies are required to fully elucidate how the properties can affect human health. Copyright © 2016 Elsevier B.V. All rights reserved.
Understanding Latent Tuberculosis: A Moving Target
Lin, Philana Ling; Flynn, JoAnne L.
2012-01-01
Tuberculosis (TB) remains a threat to the health of people worldwide. Infection with Mycobacterium tuberculosis can result in active TB or, more commonly, latent infection. Latently infected persons, of which there are estimated to be ~2 billion in the world, represent an enormous reservoir of potential reactivation TB, which can spread to other people. The immunology of TB is complex and multifaceted. Identifying the immune mechanisms that lead to control of initial infection and prevent reactivation of latent infection is crucial to combating this disease. PMID:20562268
Hristea, A; Otelea, D; Paraschiv, S; Macri, A; Baicus, C; Moldovan, O; Tinischi, M; Arama, V; Streinu-Cercel, A
2010-01-01
The objective of our study was to evaluate the use of a real-time polymerase chain reaction (PCR)-based technique for the prediction of phenotypic resistance of Mycobacterium tuberculosis. We tested 67 M tuberculosis strains (26 drug resistant and 41 drug susceptible) using a method recommended for the LightCycler platform. The susceptibility testing was performed by the absolute concentration method. For rifampin resistance, two regions of the rpoB gene were targeted, while for identification of isoniazid resistance, we searched for mutations in katG and inhA genes. The sensitivity and specificity of this method for rapid detection of mutations for isoniazid resistance were 96% (95% CI: 88% to 100%) and 95% (95% CI: 89% to 100%), respectively. For detection of rifampin resistance, the sensitivity and specificity were 92% (95% CI: 81% to 100%) and 74% (95% CI: 61% to 87%), respectively. The main isoniazid resistance mechanism identified in our isolates is related to changes in the katG gene that encodes catalase. We found that for rifampin resistance the concordance between the predicted and observed phenotype was less than satisfactory. Using this method, the best accuracy for genotyping compared with phenotypic resistance testing was obtained for detecting isoniazid resistance mutations. Although real-time PCR assay may be a valuable diagnostic tool, it is not yet completely satisfactory for detection of drug resistance mutations in M tuberculosis.
Wu, Jiangdong; Lu, Lijun; Zhang, Le; Ding, Yulei; Wu, Fang; Zuo, Weize; Zhang, Wanjiang
2015-01-01
Objective. Our study investigated the association between single nucleotide polymorphisms (SNPs) in P2X7 gene and serum immunoglobulin G (IgG) responses to mycobacterium tuberculosis (MTB) in TB patients. Methods. A total of 103 TB patients were enrolled as case group and 87 healthy individuals at same geographical region as control group. The SNP detection of 1513A>C and -762T>C was performed using PCR-RFLP, and the levels of serum IgG responses to MTB in all subjects were determined. Results. AC and CC of 1513A>C and TC and CC of -762T>C had higher frequencies in case group than in control group. TB patients carrying TC and CC of -762T>C had higher positive rate of IgG responses to MTB than those carrying TT. Additionally, patients carrying TC and CC of -762T>C had more MTB in sputum than those carrying TT. Conclusion. P2X7 SNPs, 1513A>C and -762T>C, may be associated with the susceptibility to tuberculosis, and -762T>C SNP may contribute to the development of MTB. The mutant genotype of -762T>C (TC and CC) may lower human capability of phagocytosis to MTB, leading to an increased morbidity of TB. PMID:26798189
Plinke, Claudia; Walter, Kerstin; Aly, Sahar; Ehlers, Stefan; Niemann, Stefan
2011-06-01
Ethambutol (EMB) is a major component of the first-line therapy of tuberculosis. Mutations in codon 306 of embB (embB306) were suggested as a major resistance mechanism in clinical isolates. To directly analyze the impact of individual embB306 mutations on EMB resistance, we used allelic exchange experiments to generate embB306 mutants of M. tuberculosis H37Rv. The level of EMB resistance conferred by particular mutations was measured in vitro and in vivo after EMB therapy by daily gavage in a mouse model of aerogenic tuberculosis. The wild-type embB306 ATG codon was replaced by embB306 ATC, ATA, or GTG, respectively. All of the obtained embB306 mutants exhibited a 2- to 4-fold increase in EMB MIC compared to the wild-type H37Rv. In vivo, the one selected embB306 GTG mutant required a higher dose of ethambutol to restrict its growth in the lung compared to wild-type H37Rv. These experiments demonstrate that embB306 point mutations enhance the EMB MIC in vitro to a moderate, but significant extent, and reduce the efficacy of EMB treatment in the animal model. We propose that conventional EMB susceptibility testing, in combination with embB306 genotyping, may guide dose adjustment to avoid clinical treatment failure in these low-level resistant strains.
Liu, Kaihua; Zhang, Bin; Teng, Zhaochun; Wang, Youtao; Dong, Guodong; Xu, Cong; Qin, Bo; Song, Chunlian; Chai, Jun; Li, Yang; Shi, Xianwei; Shu, Xianghua; Zhang, Yifang
2017-03-01
We investigated the associations between SLC11A1 polymorphisms and susceptibility to tuberculosis (TB) in Chinese Holstein cattle, using a case-control study of 136 animals that had positive reactions to TB tests and showed symptoms and 96 animals that had negative reactions to tests and showed no symptoms. Polymerase chain reaction (PCR) sequencing and the restriction fragment length polymorphism (RFLP) technique were used to detect and determine SLC11A1 polymorphisms. Association analysis identified significant correlations between SLC11A1 polymorphisms and susceptibility/resistance to TB, and two genetic markers for SLC11A1 were established using PCR-RFLP. Sequence alignment of SLC11A1 revealed seven single-nucleotide polymorphisms (SNPs). This is the first report of MaeII PCR-RFLP markers for the SLC11A1-SNP3 site and PstI PCR-RFLP markers for the SLC11A1-SNP5 and SLC11A1-SNP6 sites in Chinese Holstein cattle. Logistic regression analysis indicated that SLC11A1-SNP1, SLC11A1-SNP3, and SLC11A1-SNP5 were significantly associated with susceptibility/resistance to TB. Two genotypes of SLC11A1-SNP3 were susceptible to TB, whereas one genotype of SLC11A1-SNP1 and two genotypes of SLC11A1-SNP5 were resistant. Haplotype analysis showed that nine haplotypes were potentially resistant to TB. After Bonferroni correction, three of the haplotypes remained significantly associated with TB resistance. SLC11A1 is a useful candidate gene related to TB in Chinese Holstein cattle. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hill, Philip C.; Wejse, Christian; Bisseye, Cyrille; Olesen, Rikke; Edwards, Todd L.; Gilbert, John R.; Myers, Jamie L.; Stryjewski, Martin E.; Abbate, Eduardo; Estevan, Rosa; Hamilton, Carol D.; Tacconelli, Alessandra; Novelli, Giuseppe; Brunetti, Ercole; Aaby, Peter; Sodemann, Morten; Østergaard, Lars; Adegbola, Richard; Williams, Scott M.; Scott, William K.; Sirugo, Giorgio
2011-01-01
We examined whether polymorphisms in interleukin-12B (IL12B) associate with susceptibility to pulmonary tuberculosis (PTB) in two West African populations (from The Gambia and Guinea-Bissau) and in two independent populations from North and South America. Nine polymorphisms (seven SNPs, one insertion/deletion, one microsatellite) were analyzed in 321 PTB cases and 346 controls from Guinea-Bissau and 280 PTB cases and 286 controls from The Gambia. For replication we studied 281 case and 179 control African-American samples and 221 cases and 144 controls of European ancestry from the US and Argentina. First-stage single locus analyses revealed signals of association at IL12B 3′ UTR SNP rs3212227 (unadjusted allelic p = 0.04; additive genotypic p = 0.05, OR = 0.78, 95% CI [0.61–0.99]) in Guinea-Bissau and rs11574790 (unadjusted allelic p = 0.05; additive genotypic p = 0.05, OR = 0.76, 95% CI [0.58–1.00]) in The Gambia. Association of rs3212227 was then replicated in African-Americans (rs3212227 allelic p = 0.002; additive genotypic p = 0.05, OR = 0.78, 95% CI [0.61–1.00]); most importantly, in the African-American cohort, multiple significant signals of association (seven of the nine polymorphisms tested) were detected throughout the gene. These data suggest that genetic variation in IL12B, a highly relevant candidate gene, is a risk factor for PTB in populations of African ancestry, although further studies will be required to confirm this association and identify the precise mechanism underlying it. PMID:21339808
Hauer, Amandine; De Cruz, Krystel; Cochard, Thierry; Godreuil, Sylvain; Karoui, Claudine; Henault, Sylvie; Bulach, Tabatha; Bañuls, Anne-Laure; Biet, Franck; Boschiroli, María Laura
2015-01-01
To study the dynamics of bovine tuberculosis (bTB) in France, 4,654 M. bovis strains isolated mainly from livestock and wildlife since 1978 were characterized by spoligotyping and MLVA based on MIRU-VNTR. In our study spoligotyping allowed the discrimination of 176 types although 3 spoligotypes are predominant and account for more than half of the total strain population: SB0120 (26%), SB0134 (11%) and SB0121 (6%). In addition, 11% of the isolates, principally from Southern France, showing close spoligotypes and MIRU-VNTR types have been gathered in a family designated as the “F4-family”. MLVA typing allowed extensive discrimination, particularly for strains with predominant spoligotypes, with a total of 498 genotypes, several of which were highly regionalized. The similarity of the strains’ genetic relationships based on spoligotyping and MIRU-VNTR markers supports the co-existence of different clonal populations within the French M. bovis population. A genetic evolution of the strains was observed both geographically and in time. Indeed, as a result of the reduction of bTB due to the national control campaigns, a large reduction of the strains’ genetic variability took place in the last ten years. However, in the regions were bTB is highly prevalent at present, cases in both livestock and in wildlife are due to the spread of unique local genotype profiles. Our results show that the highly discriminating genotyping tools used in this study for molecular studies of bTB are useful for addressing pending questions, which would lead to a better insight into the epidemiology of the disease, and for finding proper solutions for its sustainable control in France. PMID:25658691
[Clinical application of testing methods on acid-fast bacteria].
Ichiyama, Satoshi; Suzuki, Katsuhiro
2005-02-01
Clinical bacteriology pertaining to acid-fast bacteria has made marked advances over the past decade, initiated by the development of a DNA probe kit for identification of acid-fast bacteria. Wide-spread use of nucleic acid amplification for rapid detection of tubercle bacillus contributed more greatly than any other factor to such advances in this field. At present, 90% of all kits used for nucleic acid amplification in the world are consumed in Japan. Unfortunately, not a few clinicians in Japan have a false idea that the smear method and nucleic acid amplification are necessary but culture is not. In any event nucleic acid amplification has exerted significant impacts on the routine works at bacteriology laboratories. Among others, collecting bacteria by pretreatment with NALC-NaOH has simplified the introduction of the collective mode smear method and liquid media. Furthermore, as clinicians have become increasingly more experienced with various methods of molecular biology, it now seems possible to apply these techniques for detection of genes encoding drug resistance and for utilization of molecular epidemiology in routine laboratory works. Meanwhile, attempts to diagnose acid-fast bacteriosis by checking blood for antibody have also been made, primarily in Japan. At present, two kits for detecting antibodies to glycolipids (LAM, TDM, etc.) are covered by national health insurance in Japan. We have an impression that in Japan clinicians do not have adequate knowledge and skill to make full use of these new testing methods clinically. We, as the chairmen of this symposium, hope that this symposium will help clinicians increase their skill related to new testing methods, eventually leading to stimulation of advances in clinical practices related to acid-fast bacteria in Japan. 1. Smear microscopy by concentration method and broth culture system: Kazunari TSUYUGUCHI (Clinical Research Center, National Hospital Organization Kinki-chuo Chest Medical Center) Smear microscopy and culture still remain the cornerstone to diagnose tuberculosis. However, the classical methods in Japan using direct microscopy and Ogawa solid media were not sufficient for clinical use. In recent years substantial advance has been made in these fields. Concentration of clinical samples by centrifugation improves the sensitivity of smear microscopy with excellent reproducibility. The Mycobacteria Growth Indicator Tube (MGIT) system using liquid media yields high sensitivity and rapidity. Using these methods, more and more tuberculosis cases would be correctly diagnosed and treated adequately based on drug susceptibility testing. 2. New technologies for anti-tuberculosis drug susceptibility testing: Satoshi MITARAI (Bacteriology Division, Reference Centre for Mycobacterium, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association) Several new technologies have been developed to obtain anti-tuberculosis drug susceptibility testing (AST) results rapidly, utilising liquid culture and molecular technologies. Mycobacterium Growth Indicator Tube (MGIT), as a popular liquid culturing and AST system, was evaluated for its accuracy and usefulness. As for isoniazid, MGIT showed 12.6% of discordant result comparing with standard method. These MGIT resistant and Ogawa susceptible strains had relatively high MICs ranging 0.13 to 2.0 microg/ml. The molecular detection of resistant gene mutation is also a useful method to estimate drug resistance rapidly. The rpoB mutation detection is reliable with high sensitivity and specificity. 3. Nucleic acid amplification and novel diagnostic methods: Shunji TAKAKURA (Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine) Sensitivities of nucleic acid amplification tests (NAATs) for the diagnosis of tuberculosis meet clinical requirement that patients with high-risk of transmission should be identified within a day. Comparison of the performance of various NAATs is difficult because of the difference in sample processing and in samples tested among methods and reports. Considering the limitations of NAATs (low sensitivity compared with culture, inability to differentiate dead bacilli from the living), further advances would be expected when novel technologies could confer additional information, such as drug susceptibility, quantity, viability, and genotype. 4. Serodiagnosis of Mycobacterium avium complex lung disease: Seigo KITADA (Department of Internal Medicine, National Hospital Organization Toneyama National Hospital) Mycobacterium avium complex (MAC) organisms are ubiquitous in environment and a contamination in respiratory tracts is sometimes observed, and that complex the diagnosis. We developed a serodiagnostic method for MAC disease using an enzyme immunoassay with the MAC-specific glycopeptidolipid (GPL) core as antigen. A significant increase in GPL core antibodies was detected in sera of patients with MAC pulmonary diseases compared to patients who were colonized with MAC, patients with M. kansasii disease and tuberculosis and healthy subjects. The serodiagnosis is useful for diagnosis of MAC lung disease. 5. Molecular epidemiologic tools for tuberculosis: IS6110 RFLP, Spoligotyping, and VNTR: Tomoshige MATSUMOTO, Hiromi ANO, Tetsuya TAKASHIMA, Izuo TSUYUGUCHI (Osaka Prefectural Medical Center for Respiratory and Allergic Diseases) We have performed molecular typing on about 1,300 culture positive clinical isolates that made up the majority of tuberculosis strains in part of southeast Osaka since 2001 until now. By spoligotyping, about 75% of entire strains belonged to the Beijing strain. Particular spoligotyping descriptions, which were not described in SpolDBIII, were found in the strains with lower than 6 copies of IS6110 RFLP. We described them as Osaka type. We could also show that direct typing from Tb PCR positive sputum of patients with tuberculosis was possible by VNTR and that VNTR with 16 loci was useful in tuberculosis typing in Osaka.
International standards for tuberculosis care.
Hopewell, Philip C; Pai, Madhukar; Maher, Dermot; Uplekar, Mukund; Raviglione, Mario C
2006-11-01
Part of the reason for failing to bring about a more rapid reduction in tuberculosis incidence worldwide is the lack of effective involvement of all practitioners-public and private-in the provision of high quality tuberculosis care. While health-care providers who are part of national tuberculosis programmes have been trained and are expected to have adopted proper diagnosis, treatment, and public-health practices, the same is not likely to be true for non-programme providers. Studies of the performance of the private sector conducted in several different parts of the world suggest that poor quality care is common. The basic principles of care for people with, or suspected of having, tuberculosis are the same worldwide: a diagnosis should be established promptly; standardised treatment regimens should be used with appropriate treatment support and supervision; response to treatment should be monitored; and essential public-health responsibilities must be carried out. Prompt and accurate diagnosis, and effective treatment are essential for good patient care and tuberculosis control. All providers who undertake evaluation and treatment of patients with tuberculosis must recognise that not only are they delivering care to an individual, but they are also assuming an important public-health function. The International Standards for Tuberculosis Care (ISTC) describe a widely endorsed level of care that all practitioners should seek to achieve in managing individuals who have, or are suspected of having, tuberculosis. The document is intended to engage all care providers in delivering high quality care for patients of all ages, including those with smear-positive, smear-negative, and extra-pulmonary tuberculosis, tuberculosis caused by drug-resistant Mycobacterium tuberculosis complex, and tuberculosis combined with HIV infection.
[Tuberculosis and mycobacteriosis important opportunistic disease in AIDS patients].
Zalewska-Schönthaler, N; Schönthaler-Humiecka, J; Podlasin, R; Cholewińska, G; Rzeszkowicz, T; Mikuła, T; Horban, A
2001-01-01
The aim of the search was investigation of tuberculosis in AIDS patients. Each year 8-9 mln people fall ill of tuberculosis and one third of them die. To the infection of tuberculosis and fast development into active state are especially exposed people with AIDS. 696 people were examined on tuberculosis most of which were AIDS patients hospitalized and cured in Hospital of Infection Diseases and Prison Hospital. 159 patients were women and 537 were men. The average age was between 25 and 45 (70%). The investigated population was characterized according to age, social and living conditions, using drugs and former contact with tuberculosis. All patients suspected of tuberculosis had chest X-rayed, sputum, BAL and pleural liquor were taken to bacteriological examination when extrapulmonary tuberculosis was suspected. The material was taken adequately to the disease process: CSF, urine, lymph nodes, peritoneal fluids, blood, stool, swabs and other. Bacteriological investigations have been carried out by fast cultivating method since 1998 and rapid genetic method since 1999. Apart from modern, fast diagnostic methods, routine bacteriological procedures were applied in tuberculosis diagnosis. More than 30% of the examined population were from bad social-living conditions, 78% had risk factors, 65% were drug users. The analysis of the tuberculosis illness from 1997 to July 2001 shows growing tendency. Nowadays it is 20% cases proved by bacteriological diagnosis. The structure of falling ill with tuberculosis has changed. Considerable increase of extrapulmonary tuberculosis was observed, 20 patients died due to tuberculosis and 8 patients due to mycobacteriosis. Resistance of M.tub.complex occurred within the range of 10% cases.
Trenholm, Susan; Ferlie, Ewan
2013-09-01
We employ complexity theory to analyse the English National Health Service (NHS)'s organisational response to resurgent tuberculosis across London. Tennison (2002) suggests that complexity theory could fruitfully explore a healthcare system's response to this complex and emergent phenomenon: we explore this claim here. We also bring in established New Public Management principles to enhance our empirical analysis, which is based on data collected between late 2009 and mid-2011. We find that the operation of complexity theory based features, especially self-organisation, are significantly impacted by the macro context of a New Public Management-based regime which values control, measurement and risk management more than innovation, flexibility and lateral system building. We finally explore limitations and suggest perspectives for further research. Copyright © 2012 Elsevier Ltd. All rights reserved.
Crystal Structure of Mycobacterium tuberculosis H37Rv AldR (Rv2779c), a Regulator of the ald Gene
Dey, Abhishek; Shree, Sonal; Pandey, Sarvesh Kumar; Tripathi, Rama Pati; Ramachandran, Ravishankar
2016-01-01
Here we report the crystal structure of M. tuberculosis AldR (Rv2779c) showing that the N-terminal DNA-binding domains are swapped, forming a dimer, and four dimers are assembled into an octamer through crystal symmetry. The C-terminal domain is involved in oligomeric interactions that stabilize the oligomer, and it contains the effector-binding sites. The latter sites are 30–60% larger compared with homologs like MtbFFRP (Rv3291c) and can consequently accommodate larger molecules. MtbAldR binds to the region upstream to the ald gene that is highly up-regulated in nutrient-starved tuberculosis models and codes for l-alanine dehydrogenase (MtbAld; Rv2780). Further, the MtbAldR-DNA complex is inhibited upon binding of Ala, Tyr, Trp and Asp to the protein. Studies involving a ligand-binding site G131T mutant show that the mutant forms a DNA complex that cannot be inhibited by adding the amino acids. Comparative studies suggest that binding of the amino acids changes the relative spatial disposition of the DNA-binding domains and thereby disrupt the protein-DNA complex. Finally, we identified small molecules, including a tetrahydroquinoline carbonitrile derivative (S010-0261), that inhibit the MtbAldR-DNA complex. The latter molecules represent the very first inhibitors of a feast/famine regulatory protein from any source and set the stage for exploring MtbAldR as a potential anti-tuberculosis target. PMID:27006398
Carvalho, Ricardo César Tavares; Furlanetto, Leone Vinícius; Maruyama, Fernanda Harumy; Araújo, Cristina Pires de; Barros, Sílvia Letícia Bomfim; Ramos, Carlos Alberto do Nascimento; Dutra, Valéria; Araújo, Flábio Ribeiro de; Paschoalin, Vânia Margaret Flosi; Nakazato, Luciano; Figueiredo, Eduardo Eustáquio de Souza
2015-08-01
Bovine tuberculosis (BTB) is a zoonotic disease caused by Mycobacterium bovis, a member of the Mycobacterium tuberculosis complex (MTC). The quick and specific detection of this species is of extreme importance, since BTB may cause economic impacts, in addition to presenting imminent risks to human health. In the present study a nested real-time PCR test (nested q-PCR) was used in post-mortem evaluations to assess cattle carcasses with BTB-suspected lesions. A total of 41,193 cattle slaughtered in slaughterhouses located in the state of Mato Grosso, were examined. Of the examined animals, 198 (0.48%) showed BTB-suspected lesions. M. bovis was isolated in 1.5% (3/198) of the samples. Multiplex-PCR detected MTC in 7% (14/198) of the samples. The nested q-PCR test detected MTC in 28% (56/198) of the BTB-suspected lesions, demonstrating higher efficiency when compared to the multiplex-PCR and conventional microbiology. Nested q-PCR can therefore be used as a complementary test in the national program for control and eradication of bovine tuberculosis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Detection and discrimination of Mycobacterium tuberculosis complex.
Issa, Rahizan; Mohd Hassan, Nurul Akma; Abdul, Hatijah; Hashim, Siti Hasmah; Seradja, Valentinus H; Abdul Sani, Athirah
2012-01-01
A real-time quantitative polymerase chain reaction (qPCR) was developed for detection and discrimination of Mycobacterium tuberculosis (H37Rv and H37Ra) and M. bovis bacillus Calmette-Guérin (BCG) of the Mycobacterium tuberculosis complex (MTBC) from mycobacterial other than tuberculosis (MOTT). It was based on the melting curve (Tm) analysis of the gyrB gene using SYBR(®) Green I detection dye and the LightCycler 1.5 system. The optimal conditions for the assay were 0.25 μmol/L of primers with 3.1 mmol/L of MgCl(2) and 45 cycles of amplification. For M. tuberculosis (H37Rv and H37Ra) and M. bovis BCG of the MTBC, we detected the crossing points (Cp) at cycles of 16.96 ± 0.07, 18.02 ± 0.14, and 18.62 ± 0.09, respectively, while the Tm values were 90.19 ± 0.06 °C, 90.27 ± 0.09 °C, and 89.81 ± 0.04 °C, respectively. The assay was sensitive and rapid with a detection limit of 10 pg of the DNA template within 35 min. In this study, the Tm analysis of the qPCR assay was applied for the detection and discrimination of MTBC from MOTT. Copyright © 2012 Elsevier Inc. All rights reserved.
Ji, Mijung; Cho, Byungki; Cho, Young Shik; Park, Song-Yong; Cho, Sang-Nae
2014-01-01
Purpose Tuberculosis (TB) is a major infectious disease and is responsible for two million deaths annually. For the identification and quantitation of Mycobacterium tuberculosis (M. tuberculosis), a causative agent of TB, a sandwich enzyme-linked immunosorbent assay (ELISA) against the MPT64 protein of M. tuberculosis, an antigen marker of the M. tuberculosis complex, was developed. Materials and Methods The MPT64 protein was expressed, and anti-MPT64 monoclonal antibodies were prepared. A sandwich ELISA was established using recombinant MPT64 protein and anti-MPT64 monoclonal antibodies. The sandwich MPT64 ELISA was evaluated using reference and clinical mycobacterial strains. Results The sandwich MPT64 ELISA detected MPT64 protein from 2.1 ng/mL to 250 ng/mL (equivalent to 1.7×104 CFU/mL and 2.0×106 CFU/mL). All 389 clinical M. tuberculosis isolates tested positive in the sandwich MPT64 ELISA (sensitivity, 100%), and the assay showed no cross reactivity to any tested nontuberculous mycobacterial strain (specificity, 100%). Conclusion The sandwich MPT64 ELISA is a highly sensitive and quantitative test for MPT64 protein, which can identify M. tuberculosis. PMID:24719143
Wang, Zhang; Arat, Seda; Magid-Slav, Michal; Brown, James R
2018-01-10
With the global emergence of multi-drug resistant strains of Mycobacterium tuberculosis, new strategies to treat tuberculosis are urgently needed such as therapeutics targeting potential human host factors. Here we performed a statistical meta-analysis of human gene expression in response to both latent and active pulmonary tuberculosis infections from nine published datasets. We found 1655 genes that were significantly differentially expressed during active tuberculosis infection. In contrast, no gene was significant for latent tuberculosis. Pathway enrichment analysis identified 90 significant canonical human pathways, including several pathways more commonly related to non-infectious diseases such as the LRRK2 pathway in Parkinson's disease, and PD-1/PD-L1 signaling pathway important for new immuno-oncology therapies. The analysis of human genome-wide association studies datasets revealed tuberculosis-associated genetic variants proximal to several genes in major histocompatibility complex for antigen presentation. We propose several new targets and drug-repurposing opportunities including intravenous immunoglobulin, ion-channel blockers and cancer immuno-therapeutics for development as combination therapeutics with anti-mycobacterial agents. Our meta-analysis provides novel insights into host genes and pathways important for tuberculosis and brings forth potential drug repurposing opportunities for host-directed therapies.
Ji, Mijung; Cho, Byungki; Cho, Young Shik; Park, Song-Yong; Cho, Sang-Nae; Jeon, Bo-Young; Yoon, Byoung-Su
2014-05-01
Tuberculosis (TB) is a major infectious disease and is responsible for two million deaths annually. For the identification and quantitation of Mycobacterium tuberculosis (M. tuberculosis), a causative agent of TB, a sandwich enzyme-linked immunosorbent assay (ELISA) against the MPT64 protein of M. tuberculosis, an antigen marker of the M. tuberculosis complex, was developed. The MPT64 protein was expressed, and anti-MPT64 monoclonal antibodies were prepared. A sandwich ELISA was established using recombinant MPT64 protein and anti-MPT64 monoclonal antibodies. The sandwich MPT64 ELISA was evaluated using reference and clinical mycobacterial strains. The sandwich MPT64 ELISA detected MPT64 protein from 2.1 ng/mL to 250 ng/mL (equivalent to 1.7×10⁴ CFU/mL and 2.0×10⁶ CFU/mL). All 389 clinical M. tuberculosis isolates tested positive in the sandwich MPT64 ELISA (sensitivity, 100%), and the assay showed no cross reactivity to any tested nontuberculous mycobacterial strain (specificity, 100%). The sandwich MPT64 ELISA is a highly sensitive and quantitative test for MPT64 protein, which can identify M. tuberculosis.
The human immune response to tuberculosis and its treatment: a view from the blood
Cliff, Jacqueline M; Kaufmann, Stefan H E; McShane, Helen; van Helden, Paul; O'Garra, Anne
2015-01-01
The immune response upon infection with the pathogen Mycobacterium tuberculosis is poorly understood, hampering the discovery of new treatments and the improvements in diagnosis. In the last years, a blood transcriptional signature in tuberculosis has provided knowledge on the immune response occurring during active tuberculosis disease. This signature was absent in the majority of asymptomatic individuals who are latently infected with M. tuberculosis (referred to as latent). Using modular and pathway analyses of the complex data has shown, now in multiple studies, that the signature of active tuberculosis is dominated by overexpression of interferon-inducible genes (consisting of both type I and type II interferon signaling), myeloid genes, and inflammatory genes. There is also downregulation of genes encoding B and T-cell function. The blood signature of tuberculosis correlates with the extent of radiographic disease and is diminished upon effective treatment suggesting the possibility of new improved strategies to support diagnostic assays and methods for drug treatment monitoring. The signature suggested a previously under-appreciated role for type I interferons in development of active tuberculosis disease, and numerous mechanisms have now been uncovered to explain how type I interferon impedes the protective response to M. tuberculosis infection. PMID:25703554
Tegegne, Yalewayker; Wondmagegn, Tadelo; Worku, Ligabaw; Jejaw Zeleke, Ayalew
2018-01-01
Intestinal parasitic infections are among the major public health problems in developing countries. Hence, it is significant to explore coinfection with intestinal parasites and pulmonary tuberculosis because coinfection increases the complexity of control and prevention of pulmonary tuberculosis and parasitic diseases. To assess the prevalence of intestinal parasites among pulmonary tuberculosis suspected patients. Institutional based cross-sectional study was conducted at University of Gondar Hospital from March to May, 2017. Stool samples were taken from each participant and examined by direct microscopy and concentration technique. Descriptive statistics was performed and chi-square test was used to show the association between variables. P values of <0.05 were considered statistically significant. Intestinal parasites were detected in 50 (19.6%) among a total of 256 pulmonary tuberculosis suspected patients who were included in the study, whereas the prevalence of pulmonary tuberculosis was 16.8% (43/256). Pulmonary tuberculosis and intestinal parasite coinfection was detected in 5 (2.0%) of the participants. The most prevalent intestinal parasites infection in this study was Ascaris lumbricoides, 15 (5.85%), followed by Entamoeba histolytica/dispar, 14 (5.46%), and Hookworm, 13 (5.1%). The prevalence of intestinal parasites and their coinfection rate with pulmonary tuberculosis among pulmonary tuberculosis suspected patients were considerable.
Koeck, J L; Bernatas, J J; Gerome, P; Fabre, M; Houmed, A; Herve, V; Teyssou, R
2002-01-01
Tuberculosis is a major cause of death in the Republic of Djibouti. Tuberculous lymphadenitis represents about 25% of the clinical forms of tuberculosis in this country. Between January 1999 and April 1999, 196 lymph node specimens were consecutively collected from 153 patients living in Djibouti. Testing of susceptibility to the major anti-tuberculosis drugs was performed by the proportion method. Growth of Mycobacterium tuberculosis complex strains was obtained from specimens of 85 patients including 9 with prior treatment. Strains were identified as Mycobacterium tuberculosis in 78 cases, Mycobacterium canetti in 3, Mycobacterium africanum in 3, and Mycobacterium bovis in 1. Prevalence of HIV infection was 15%. Assessment of primary resistance demonstrated that the overall resistance rate, i.e., resistance to 1 or more drugs, was 18 (21.2%). Results showed resistance to isoniazid (H) in 6 cases (7.1%), rifampicin (R) in 3 (3.5%), ethambutol (E) in 1 (1.2%), streptomycin (S) in 13 (15.3%) and pyrazinamide (Z) in 1 (1.2%). Multidrug resistance (MDR) was found in 2 cases (2.4%). Assessment of acquired resistance demonstrated resistance to H in 4 cases (44%), R in 2 (22%), S in 2 (22%), E in 0, Z in 0 and MDR in 1 (11%). These findings were not significantly different from data obtained from sputum samples analysed between 1997 and 2000 or from those described in a study conducted in 1985.
Advances in Mycobacterium tuberculosis therapeutics discovery utlizing structural biology
Chim, Nicholas; Owens, Cedric P.; Contreras, Heidi; Goulding, Celia W.
2013-01-01
In 2012, tuberculosis (TB) remains a global health threat and is exacerbated both by the emergence of drug resistant Mycobacterium tuberculosis strains and its synergy with HIV infection. The waning effectiveness of current treatment regimens necessitates the development of new or repurposed anti-TB therapeutics for improved combination therapies against the disease. Exploiting atomic resolution structural information of proteins in complex with their substrates and/or inhibitors can facilitate structure-based rational drug design. Since our last review in 2009, there has been a wealth of new M. tuberculosis protein structural information. Once again, we have compiled the most promising structures with regards to potential anti-TB drug development and present them in this updated review. PMID:23167715
Cardona, P J; Julián, E; Vallès, X; Gordillo, S; Muñoz, M; Luquin, M; Ausina, V
2002-06-01
Evolution of antibodies against glycolipids from the Mycobacterium tuberculosis cell wall has been studied for the first time in experimental murine models of tuberculosis induced by aerosol, in which infection, reinfection, reactivation, prophylaxis and treatment with antibiotics have been assayed. Results show a significant humoral response against these antigens, where diacyltrehaloses (DAT) and sulpholipid I (SL-I) elicited higher antibody levels than protein antigens like antigen 85 protein complex (Ag85), culture filtrate proteins (CFP) and purified protein derivative (PPD). Only immunoglobulin M (IgM) antibodies have been detected against DAT and SL-I. Their evolution has a positive correlation with bacillary concentration in tissues.
Endocrine and Metabolic Aspects of Tuberculosis
Vinnard, Christopher; Blumberg, Emily A.
2017-01-01
Endocrine and metabolic derangements are infrequent in patients with tuberculosis, but they are important when they occur. The basis for these abnormalities is complex. While Mycobacterium tuberculosis has been described to infect virtually every endocrine gland, the incidence of gland involvement is low, especially in the era of effective antituberculosis therapy. Furthermore, endocrine and metabolic abnormalities do not always reflect direct infection of the gland but may result from physiological response or as a consequence of therapy. Metabolic disease may also predispose patients to the development of active tuberculosis, particularly in the case of diabetes mellitus. While hormonal therapy may be necessary in some instances, frequently these endocrine complications do not require specific interventions other than antituberculous therapy itself. With the exception of diabetes mellitus, which will be covered elsewhere, this chapter reviews the endocrinologic and metabolic issues related to tuberculosis. PMID:28233510
Modern laboratory diagnosis of tuberculosis.
Drobniewski, F A; Caws, M; Gibson, A; Young, D
2003-03-01
One-third of the global population is believed to be infected with bacteria of the Mycobacterium tuberculosis complex, the causative agent of tuberculosis. More than 8 million new cases of tuberculosis occur annually leading to 2 million deaths. Mortality is particularly high in those coinfected with HIV and where the bacteria are multiple-drug-resistant strains--ie, strains resistant to at least isoniazid and rifampicin. Early diagnosis of tuberculosis and drug resistance improves survival and by identifying infectious cases promotes contact tracing, implementation of institutional cross-infection procedures, and other public-health actions. This review addresses significant advances made in the diagnosis of infection, clinical disease, and drug resistance over the past decade. It proposes operational criteria for a modern diagnostic service in the UK (as a model of a low-incidence country) and explores some of the economic issues surrounding the use of these techniques.
Leal-Bohórquez, Andrés F; Castro-Osorio, Claudia M; Wintaco-Martínez, Luz M; Villalobos, Rafael; Puerto-Castro, Gloria M
2016-01-01
To perform classic and molecular epidemiological surveillance of human tuberculosis caused by Mycobacterium bovis in bovine supply chains at farms with PPD positive bovines in the departments of Antioquia, Boyacá and Cundinamarca during a one-year period. Livestock farms with PPD positive bovines or buffalos were visited in the study departments according to information obtained in the "Programa Nacional de Tuberculosis bovina" (National program on bovine Tuberculosis) released by ICA (Colombian Agriculture and Livestock Institute). Data on socio-demographic information and tuberculosis risk factors associated to the occupation were collected through a survey applied to all workers at the visited farms. Sputum samples were obtained after informed consent. The sputa underwent microbiological and molecular testing to identify members of the M. tuberculosis complex. Thirty-three livestock farms were visited and information of 164 workers from the bovine supply chain was collected. Staying in a PPD positive farm for more than a year, ignorance about the disease and the presence of possible vectors, like dogs and cats, were identified as possible risk factors for developing tuberculosis. No cases of tuberculosis caused by M. bovis or M. tuberculosis in workers of the visited farms were found. No cases of the disease caused by this zoonotic agent were documented in the departments of Antioquia, Boyacá and Cundinamarca.
Sato, Mariana R; Oshiro Junior, João A; Machado, Rachel TA; de Souza, Paula C; Campos, Débora L; Pavan, Fernando R; da Silva, Patricia B; Chorilli, Marlus
2017-01-01
Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis. Cessation of treatment before the recommended conclusion may lead to the emergence of multidrug-resistant strains. The aim of this study was to develop nanostructured lipid carriers (NLCs) for use in the treatment of M. tuberculosis. The NLCs comprised the following lipid phase: 2.07% polyoxyethylene 40 stearate, 2.05% caprylic/capric triglyceride, and 0.88% polyoxyl 40 hydrogenated castor oil; the following aqueous phase: 3.50% poloxamer 407 (F1–F6), and 0.50% cetyltrimethylammonium bromide (F7–F12); and incorporated the copper(II) complexes [CuCl2(INH)2]·H2O (1), [Cu(NCS)2(INH)2]·5H2O (2), and [Cu(NCO)2(INH)2]·4H2O (3) to form compounds F11.1, F11.2, and F11.3, respectively. The mean diameter of F11, F11.1, F11.2, and F11.3 ranged from 111.27±21.86 to 134.25±22.72 nm, 90.27±12.97 to 116.46±9.17 nm, 112.4±10.22 to 149.3±15.82 nm, and 78.65±6.00 to 122.00±8.70 nm, respectively. The polydispersity index values for the NLCs ranged from 0.13±0.01 to 0.30±0.09. The NLCs showed significant changes in zeta potential, except for F11.2, with F11, F11.1, F11.2, and F11.3 ranging from 18.87±4.04 to 23.25±1.13 mV, 17.03±1.77 to 21.42±1.87 mV, 20.51±1.88 to 22.60±3.44 mV, and 17.80±1.96 to 25.25±7.78 mV, respectively. Atomic force microscopy confirmed the formation of nanoscale spherical particle dispersions by the NLCs. Differential scanning calorimetry determined the melting points of the constituents of the NLCs. The in vitro activity of copper(II) complex-loaded NLCs against M. tuberculosis H37Rv showed an improvement in the anti-TB activity of 55.4, 27.1, and 41.1 times the activity for complexes 1, 2, and 3, respectively. An in vivo acute toxicity study of complex-loaded NLCs demonstrated their reduced toxicity. The results suggest that NLCs may be a powerful tool to optimize the activity of copper(II) complexes against M. tuberculosis. PMID:28356717