DOE Office of Scientific and Technical Information (OSTI.GOV)
Drellack, S.L.; Prothro, L.B.; Townsend, M.J.
2011-02-01
The geologic setting and history, along with observations through 50 years of detailed geologic field work, show that large-displacement (i.e., greater than 30 meters of displacement) syn- to post-volcanic faults are rare in the Rainier Mesa area. Faults observed in tunnels and drill holes are mostly tight, with small displacements (most less than 1.5 meters) and small associated damage zones. Faults are much more abundant in the zeolitized tuffs than in the overlying vitric tuffs, and there is little evidence that faults extend downward from the tuff section through the argillic paleocolluvium into pre-Tertiary rocks. The differences in geomechanical characteristicsmore » of the various tuff lithologies at Rainier Mesa suggest that most faults on Rainer Mesa are limited to the zeolitic units sandwiched between the overlying vitric bedded tuffs and the underlying pre-Tertiary units (lower carbonate aquifer–3, lower clastic confining unit–1, and Mesozoic granite confining unit).« less
Geohydrologic data and test results from Well J-13, Nevada Test Site, Nye County, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thordarson, W.
Well J-13 was drilled to a depth of 1063.1 meters by using air-hydraulic-rotary drilling equipment. The well penetrated 135.6 meters of alluvium of Quaternary and Tertiary age and 927.5 meters of tuff of Tertiary age. The Topopah Spring Member of the Paintbrush Tuff, the principal aquifer, was penetrated from depths of 207.3 to 449.6 meters; a pumping test indicated its transmissivity is 120 meters squared per day, and its hydraulic conductivity is 1.0 meters per day. Below the Topopah Spring Member, tuff units are confining beds; transmissivities range from 0.10 to 4.5 meters squared per day, and hydraulic conductivities rangemore » from 0.0026 to 0.15 meter per day. Confining beds penetrated below a depth of 719.3 meters had the smallest transmissivities (0.10 to 0.63 meter squared per day) and hydraulic conductivities (0.0026 to 0.0056 meter per day). A static water level of about 282.2 meters was measured for the various water-bearing tuff units above a depth of 645.6 meters. Below a depth of 772.7 meters, the static water level was slightly deeper, 283.3 to 283.6 meters. Ground water sampled from well J-13 is a sodium bicarbonate water containing small concentrations of calcium, magnesium, silica, and sulfate, which is a typical analysis of water from tuff. Apparent age of the ground water, derived from carbon-14 age dating, is 9900 years. 15 references, 24 figures, 13 tables.« less
Fractured Rock Permeability as a Function of Temperature and Confining Pressure
NASA Astrophysics Data System (ADS)
Alam, A. K. M. Badrul; Fujii, Yoshiaki; Fukuda, Daisuke; Kodama, Jun-ichi; Kaneko, Katsuhiko
2015-10-01
Triaxial compression tests were carried out on Shikotsu welded tuff, Kimachi sandstone, and Inada granite under confining pressures of 1-15 MPa at 295 and 353 K. The permeability of the tuff declined monotonically with axial compression. The post-compression permeability became smaller than that before axial compression. The permeability of Kimachi sandstone and Inada granite declined at first, then began to increase before the peak load, and showed values that were almost constant in the residual strength state. The post-compression permeability of Kimachi sandstone was higher than that before axial compression under low confining pressures, but lower under higher confining pressures. On the other hand, the permeability of Inada granite was higher than that before axial compression regardless of the confining pressure values. For the all rock types, the post-compression permeability at 353 K was lower than at 295 K and the influence of the confining pressure was less at 353 K than at 295 K. The above temperature effects were observed apparently for Inada granite, only the latter effect was apparent for Shikotsu welded tuff, and they were not so obvious for Kimachi sandstone. The mechanisms causing the variation in rock permeability and sealability of underground openings were discussed.
Geldon, A.L.
1993-01-01
Boreholes UE-25c #1, UE-25c #2, and UE-25c #3 (collectively called the C-holes) each were drilled to a depth of 914.4 meters at Yucca Mountain, on the Nevada Test Site, in 1983 and 1984 for the purpose of conducting aquifer and tracer tests. Each of the boreholes penetrated the Paintbrush Tuff and the tuffs and lavas of Calico Hills and bottomed in the Crater Flat Tuff. The geologic units penetrated consist of devitrified to vitrophyric, nonwelded to densely welded, ash-flow tuff, tuff breccia, ash-fall tuff, and bedded tuff. Below the water table, which is at an average depth of 401.6 meters below land surface, the rocks are argillic and zeolitic. The geologic units at the C-hole complex strike N. 2p W. and dip 15p to 21p NE. They are cut by several faults, including the Paintbrush Canyon Fault, a prominent normal fault oriented S. 9p W., 52.2p NW. The rocks at the C-hole complex are fractured extensively, with most fractures oriented approximately perpendicular to the direction of regional least horizontal principal stress. In the Crater Flat Tuff and the tuffs and lavas of Calico Hills, fractures strike predominantly between S. 20p E. and S. 20p W. and secondarily between S. 20p E. and S. 60p E. In the Topopah Spring Member of the Paintbrush Tuff, however, southeasterly striking fractures predominate. Most fractures are steeply dipping, although shallowly dipping fractures occur in nonwelded and reworked tuff intervals of the Crater Flat Tuff. Mineral-filled fractures are common in the tuff breccia zone of the Tram Member of the Crater Flat Tuff, and, also, in the welded tuff zone of the Bullfrog Member of the Crater Flat Tuff. The fracture density of geologic units in the C-holes was estimated to range from 1.3 to 7.6 fractures per cubic meter. Most of these estimates appear to be the correct order of magnitude when compared to transect measurements and core data from other boreholes 1.3 orders of magnitude too low. Geophysical data and laboratory analyses were used to determine matrix hydrologic properties of the tuffs and lavas of Calico Hills and the Crater Flat Tuff in the C-holes. The porosity ranged from 12 to 43 percent and, on the average, was larger in nonwelded to partially welded, ash-flow tuff, ashfall tuff, and reworked tuff than in moderately to densely welded ash-flow tuff. The pore-scale horizontal permeability of nine samples ranged from 5.7x10'3 to 2.9 millidarcies, and the pore-scale vertical permeability of these samples ranged from 3.7x10'* to 1.5 millidarcies. Ratios of pore-scale horizontal to vertical permeability generally ranged from 0.7 to 2. Although the number of samples was small, values of pore-scale permeability determined were consistent with samples from other boreholes at Yucca Mountain. The specific storage of nonwelded to partially welded ash-flow tuff, ash-fall tuff, and reworked tuff was estimated from porosity and elasticity to' be 2xlO'6 per meter, twice the specific storage of moderately to densely welded ash-flow tuff and tuff breccia. The storativity of geologic units, based on their average thickness (corrected for bedding dip) and specific storage, was estimated to range from 1xlO's to 2xlO'4. Ground-water flow in the Tertiary rocks of the Yucca Mountain area is not confined by strata but appears to result from the random intersection of water-bearing fractures and faults. Even at the C-hole complex, an area of only 1,027 square meters, water-producing zones during pumping tests vary from borehole to borehole. In borehole UE-25c #1, water is produced mainly from the lower, nonwelded to welded zone of the Bullfrog Member of the Crater Flat Tuff and secondarily from the tuff-breccia zone of the Tram Member of the Crater Flat Tuff. In borehole UE-25c #3, water is produced in nearly equal proportions from these two intervals and the central, moderately to densely welded zone of the Bullfrog Member. In borehole UE-25c #2, almost all production comes from the moderately to dense
Mower, Timothy E.; Higgins, Jerry D.; Yang, In C.; Peters, Charles A.
1994-01-01
Study of the hydrologic system at Yucca Mountain, Nevada, requires the extraction of pore-water samples from welded and nonwelded, unsaturated tuffs. Two compression methods (triaxial compression and one-dimensional compression) were examined to develop a repeatable extraction technique and to investigate the effects of the extraction method on the original pore-fluid composition. A commercially available triaxial cell was modified to collect pore water expelled from tuff cores. The triaxial cell applied a maximum axial stress of 193 MPa and a maximum confining stress of 68 MPa. Results obtained from triaxial compression testing indicated that pore-water samples could be obtained from nonwelded tuff cores that had initial moisture contents as small as 13 percent (by weight of dry soil). Injection of nitrogen gas while the test core was held at the maximum axial stress caused expulsion of additional pore water and reduced the required initial moisture content from 13 to 11 percent. Experimental calculations, together with experience gained from testing moderately welded tuff cores, indicated that the triaxial cell used in this study could not apply adequate axial or confining stress to expel pore water from cores of densely welded tuffs. This concern led to the design, fabrication, and testing of a one-dimensional compression cell. The one-dimensional compression cell used in this study was constructed from hardened 4340-alloy and nickel-alloy steels and could apply a maximum axial stress of 552 MPa. The major components of the device include a corpus ring and sample sleeve to confine the sample, a piston and base platen to apply axial load, and drainage plates to transmit expelled water from the test core out of the cell. One-dimensional compression extracted pore water from nonwelded tuff cores that had initial moisture contents as small as 7.6 percent; pore water was expelled from densely welded tuff cores that had initial moisture contents as small as 7.7 percent. Injection of nitrogen gas at the maximum axial stress did not produce additional pore water from nonwelded tuff cores, but was critical to recovery of pore water from densely welded tuff cores. Gas injection reduced the required initial moisture content in welded tuff cores from 7.7 to 6.5 percent. Based on the mechanical ability of a pore-water extraction method to remove water from welded and nonwelded tuff cores, one-dimensional compression is a more effective extraction method than triaxial compression. However, because the effects that one-dimensional compression has on pore-water chemistry are not completely understood, additional testing will be needed to verify that this method is suitable for pore-water extraction from Yucca Mountain tuffs.
Carr, W.J.; Byers, F.M.; Orkild, Paul P.
1984-01-01
The Crater Flat Tuff is herein revised to include a newly recognized lowest unit, the Tram Member, exposed at scattered localities in the southwest Nevada Test Site region, and in several drill holes in the Yucca Mountain area. The overlying Bullfrog and Prow Pass Members are well exposed at the type locality of the formation near the southeast edge of Crater Flat, just north of U.S. Highway 95. In previous work, the Tram Member was thought to be the Bullfrog Member, and therefore was shown as Bullfrog or as undifferentiated Crater Flat Tuff on published maps. The revised Crater Flat Tuff is stratigraphically below the Topopah Spring Member of the Paintbrush Tuff and above the Grouse Canyon Member of the Belted Range Tuff, and is approximately 13.6 m.y. old. Drill holes on Yucca Mountain and near Fortymile Wash penetrate all three members of the Crater Flat as well as an underlying quartz-poor unit, which is herein defined as the Lithic Ridge Tuff from exposures on Lithic Ridge near the head of Topopah Wash. In outcrops between Calico Hills and Yucca Flat, the Lithic Ridge Tuff overlies a Bullfrog-like unit of reverse magnetic polarity that probably correlates with a widespread unit around and under Yucca Flat, referred to previously as Crater Flat Tuff. This unit is here informally designated as the tuff of Yucca Flat. Although older, it may be genetically related to the Crater Flat Tuff. Although the rocks are poorly exposed, geophysical and geologic evidence to date suggests that (1) the source of the Crater Flat Tuff is a caldera complex in the Crater Flat area between Yucca Mountain and Bare Mountain, and (2) there are at least two cauldrons within this complex--one probably associated with eruption of the Tram, the other with the Bullfrog and Prow Pass Members. The complex is named the Crater Flat-Prospector Pass caldera complex. The northern part of the Yucca Mountain area is suggested as the general location of the source of pre-Crater Flat tuffs, but a caldera related to the Lithic Ridge Tuff has not been specifically identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lappin, A.R.; VanBuskirk, R.G.; Enniss, D.O.
1982-03-01
Thermal-conductivity and bulk-property measurements were made on welded and nonwelded silicic tuffs from the upper portion of Hole USW-G1, located near the southwestern margin of the Nevada Test Site. Bulk-property measurements were made by standard techniques. Thermal conductivities were measured at temperatures as high as 280{sup 0}C, confining pressures to 10 MPa, and pore pressures to 1.5 MPa. Extrapolation of measured saturated conductivities to zero porosity suggests that matrix conductivity of both zeolitized and devitrified tuffs is independent of stratigraphic position, depth, and probably location. This fact allows development of a thermal-conductivity stratigraphy for the upper portion of Hole G1.more » Estimates of saturated conductivities of zeolitized nonwelded tuffs and devitrified tuffs below the water table appear most reliable. Estimated conductivities of saturated densely welded devitrified tuffs above the water table are less reliable, due to both internal complexity and limited data presently available. Estimation of conductivity of dewatered tuffs requires use of different air thermal conductivities in devitrified and zeolitized samples. Estimated effects of in-situ fracturing generally appear negligible.« less
NASA Astrophysics Data System (ADS)
Schneider, Jean-Luc; Fourquin, Claude; Paicheler, Jean-Claude
1992-02-01
Pyroclastic deposits interpreted as subaqueous ash-flow tuff have been recognized within Archean to Recent marine and lacustrine sequences. Several authors proposed a high-temperature emplacement for some of these tuffs. However, the subaqueous welding of pyroclastic deposits remains controversial. The Visean marine volcaniclastic formations of southern Vosges (France) contain several layers of rhyolitic and rhyodacitic ash-flow tuff. These deposits include, from proximal to distal settings, breccia, lapilli and fine-ash tuff. The breccia and lapilli tuff are partly welded, as indicated by the presence of fiamme, fluidal and axiolitic structures. The lapilli tuff form idealized sections with a lower, coarse and welded unit and an upper, bedded and unwelded fine-ash tuff. Sedimentary structures suggest that the fine-ash tuff units were deposited by turbidity currents. Welded breccias, interbedded in a thick submarine volcanic complex, indicate the close proximity of the volcanic source. The lapilli and fine-ash tuff are interbedded in a thick marine sequence composed of alternating sandstones and shales. Presence of a marine stenohaline fauna and sedimentary structures attest to a marine depositional environment below storm-wave base. In northern Anatolia, thick massive sequences of rhyodacitic crystal tuff are interbedded with the Upper Cretaceous marine turbidites of the Mudurnu basin. Some of these tuffs are welded. As in southern Vosges, partial welding is attested by the presence of fiamme and fluidal structures. The latter are frequent in the fresh vitric matrix. These tuff units contain a high proportion of vitroclasis, and were emplaced by ash flows. Welded tuff units are associated with non-welded crystal tuff, and contain abundant bioclasts which indicate mixing with water during flowage. At the base, basaltic breccia beds are associated with micritic beds containing a marine fauna. The welded and non-welded tuff sequences are interbedded in an alternation of limestones and marls. These limestones are rich in pelagic microfossils. The evidence above strongly suggest that in both examples, tuff beds are partly welded and were emplaced at high temperature by subaqueous ash flows in a permanent marine environment. The sources of the pyroclastic material are unknown in both cases. We propose that the ash flows were produced during submarine fissure eruptions. Such eruptions could produce non-turbulent flows which were insulated by a steam carapace before deposition and welding. The welded ash-flow tuff deposits of southern Vosges and northern Anatolia give strong evidence for existence of subaqueous welding.
Budding, Karin E.
1982-01-01
The Joe Lott Tuff Member of the Mount Belknap Volcanics is the largest rhyolitic ash-flow tuff sheet in the Marysvale volcanic field. It was erupted 19 m.y. ago, shortly after the changeover from intermediate-composition calc-alkalic volcanism to bimodal basalt-rhyolite volcanism. Eruption of the tuff resulted in the formation of the Mount Belknap Caldera whose pyroclastic intracaldera stratigraphy parallels that in the outflow facies. The Joe Loft Tuff Member is a composite ash-flow sheet that changes laterally from a simple cooling unit near the source to four distinct cooling units toward the distal end. The lowest of these units is the largest and most widespread; it is 64 m thick and contains a basal vitrophyre. Eruption of the lower unit led to the initial collapse of the caldera. The lower unit is followed upward by a 43 m middle unit, a 26 m pink-colored unit which is separated by a prominent air- fall layer, and a 31 m upper unit. The Joe Loft Tuff Member is an alkali rhyolite with 75.85-77.31 wt. % silica and 8.06-9.32 wt. % K2O+Na2O; the agpaitic index (Na2O+ K2O/Al2O3) is .77-.98. The tuff contains about I% phenocrysts of quartz, sanidine, oligoclase, augite, apatite, zircon, sphene, biotite, and oxidized Fe-Ti oxides. The basal vitrophyre contains accessory allanite, chevkinite, and magnesiohastingsite. The main cooling units are chemically and mineralogically zoned indicating that the magma chamber restratified prior to each major eruption. Within each of the two thickest cooling units, the mineralogy changes systematically upwards; the Or content and relative volume of sanidine decreases and An content of plagioclase increases. The basal vitrophyre of the lower unit has a bulk composition that lies in the thermal trough near the minima of Or-Ab-Q at 1 kb PH2O. Microprobe analyses of feldspar and chemical modeling on experimental systems indicate that pre-eruption temperatures were near 750?C and that the temperature increased during the eruption of the cooling units. The chemical gradients in the apatite and whole-rock data in the Joe Loft Tuff Member and the consistent mineral assemblages throughout the ash-flow cannot be explained by crystal settling. The fractionation of the Joe Lott Tuff Member appears to closer fit the model of convection-driven thermogravitational diffusion.
Spengler, Richard W.; Peterman, Zell E.; ,
1991-01-01
Variations in concentrations of trace elements Rb, Sr, and Zr within the sequence of high-silica tuff and dacitic lava beneath Yucca Mountain reflect both primary composition and secondary alteration. Rb and K concentrations have parallel trends. Rb concentrations are significantly lower within intervals containing zeolitic nonwelded to partially welded and bedded tuffs and are higher in thick moderately to densely welded zones. Sr concentrations increase with depth from about 30 ppm in the Topopah Spring Member of the Paintbrush Tuff to almost 300 ppm in the older tuffs. Zr concentrations are about 100 ppm in the Topopah Spring Member and also increase with depth to about 150 ppm in the Lithic Ridge Tuff and upper part of the older tuffs. Conspicuous local high concentrations of Sr in the lower part of the Tram Member, in the dacite lava, and in unit c of the older tuffs in USW G-1, and in the densely welded zone of the Bullfrog Member in USW GU-3/G-3 closely correlate with high concentrations of less-mobile Zr and may reflect either primary composition or elemental redistribution resulting largely from smectitic alteration. Initial 87Sr/86Sr values from composite samples increase upward in units above the Bullfrog Member of the Crater Flat Tuff. The progressive tenfold increase in Sr with depth coupled with the similarity of initial 87Sr/86Sr values within the Bullfrog Member and older units to those of Paleozoic marine carbonates are consistent with a massive influx of Sr from water derived from a Paleozoic carbonate aquifer.
Maldonado, Florian; Koether, S.L.
1983-01-01
A continuously cored drill hole designated as USW G-2, located at Yucca Mountain in southwestern Nevada, penetrated 1830.6 m of Tertiary volcanic strata composed of abundant silicic ash-flow tuffs, minor lava and flow breccias, and subordinate volcaniclastic rocks. The volcanic strata penetrated are comprised of the following in descending order: Paintbrush Tuff (Tiva Canyon Member, Yucca Mountain Member, bedded tuff, Pah Canyon Member, and Topopah Spring Member), tuffaceous beds of Calico Hills, Crater Flat Tuff (Prow Pass Member, Bullfrog Member, and Tram unit), lava and flow breccia (rhyodacitic), tuff of Lithic Ridge, bedded and ash-flow tuff, lava and flow breccia (rhyolitic, quartz latitic, and dacitic), bedded tuff, conglomerate and ash-flow tuff, and older tuffs of USW G-2. Comparison of unit thicknesses at USW G-2 to unit thicknesses at previously drilled holes at Yucca Mountain indicate the following: (1) thickening of the Paintbrush Tuff members and tuffaceous beds of Calico Hills toward the northern part of Yucca Mountain; (2) thickening of the Prow Pass Member but thinning of the Bullfrog Member and Tram unit; (3) thinning of the tuff of Lithic Ridge; (4) presence of approximately 280 m of lava and flow breccia not previously penetrated by any drill hole; and (5) presence of an ash-flow tuff unit at the bottom of the drill hole not previously intersected, apparently the oldest unit penetrated at Yucca Mountain to date. Petrographic features of some of the units include: (1) decrease in quartz and K-feldspar and increases in biotite and plagioclase with depth in the tuffaceous beds of Calico Hills; (2) an increase in quartz phenocrysts from the top to the bottom members of the Crater Flat Tuff; (3) a low quartz content in the tuff of Lithic Ridge, suggesting tapping of the magma chamber at quartz-poor levels; (4) a change in zeolitic alteration from heulandite to clinoptilolite to mordenite with increasing depth; (5) lavas characterized by a rhyolitic top and dacitic base, suggesting reverse compositional zoning; and (6) presence of hydrothermal mineralization in the lavas that could be related to an intrusive under Yucca Mountain or to volcanism associated with the Timber Mountain-Claim Canyon caldera complex. A fracture analysis of the core resulted n tabulation of 7,848 fractures, predominately open and high angle. The fractures were filled or coated with material in various combinations and include the following in decreasing abundance: CaCo3, iron oxides and hydroxides, SiO2, manganese oxides and hydroxides, clays and zeolites. An increase in the intensity of fracturing can be correlated with the following: (1) densely welded zones, (2) lithophysal zones, (3) vitrophyre, (4) silicified zones, (5) fault zones, and (6) cooling joints. Numerous fault zones were penetrated by the drill hole, predominately in the lithophysal zone of the Topopah Spring Member and below the tuffaceous beds of Calico Hills. The faults are predominately high angle with both a vertical and lateral component. Three major faults were penetrated, two of which intersect the ground surface, with displacements of at least 20 m and possibly as much as 52 m. The faults and some fractures are probably related to the regional doming of the area associated with the volcanism-tectonism of the Timber Mountain-Claim Canyon caldera complex, and to Basin and Range tectonism.
Early miocene bimodal volcanism, Northern Wilson Creek Range, Lincoln County, Nevada
Willis, J.B.; Willis, G.C.
1996-01-01
Early Miocene volcanism in the northern Wilson Creek Range, Lincoln County, Nevada, produced an interfingered sequence of high-silica rhyolite (greater than 74% SiO2) ash-flow tuffs, lava flows and dikes, and mafic lava flows. Three new potassium-argon ages range from 23.9 ?? 1.0 Ma to 22.6 ?? 1.2 Ma. The rocks are similar in composition, stratigraphic character, and age to the Blawn Formation, which is found in ranges to the east and southeast in Utah, and, therefore, are herein established as a western extension of the Blawn Formation. Miocene volcanism in the northern Wilson Creek Range began with the eruption of two geochemically similar, weakly evolved ash-flow tuff cooling units. The lower unit consists of crystal-poor, loosely welded, lapilli ash-flow tuffs, herein called the tuff member of Atlanta Summit. The upper unit consists of homogeneous, crystal-rich, moderately to densely welded ash-flow tuffs, herein called the tuff member of Rosencrans Peak. This unit is as much as 300 m thick and has a minimum eruptive volume of 6.5 km3, which is unusually voluminous for tuffs in the Blawn Formation. Thick, conspicuously flow-layered rhyolite lava flows were erupted penecontemporaneously with the tuffs. The rhyolite lava flows have a range of incompatible trace element concentrations, and some of them show an unusual mixing of aphyric and porphyritic magma. Small volumes of alkaline, vesicular, mafic flows containing 50 weight percent SiO2 and 2.3 weight percent K2O were extruded near the end of the rhyolite volcanic activity. The Blawn Formation records a shift in eruptive style and magmatic composition in the northern Wilson Creek Range. The Blawn was preceded by voluminous Oligocene eruptions of dominantly calc-alkaline orogenic magmas. The Blawn and younger volcanic rocks in the area are low-volume, bimodal suites of high-silica rhyolite tuffs and lava flows and mafic lava flows.
Gravity and magnetic data in the vicinity of Virgin Valley, southern Nevada
Morin, Robert L.
2006-01-01
This report contains 10 interpretive cross sections and an integrated text describing the geology of parts of the Colorado, White River, and Death Valley regional ground-water flow systems, Nevada, Utah, and Arizona. The primary purpose of the report is to provide geologic framework data for input into a numerical ground-water model. Therefore, the stratigraphic and structural summaries are written in a hydrogeologic context. The oldest rocks (basement) are Early Proterozoic metamorphic and intrusive crystalline rocks that are considered confining units because of their low permeability. Late Proterozoic to Lower Cambrian clastic units overlie the crystalline rocks and are also considered confining units within the regional flow systems. Above the clastic units are Middle Cambrian to Lower Permian carbonate rocks that are the primary aquifers in the flow systems. The Middle Cambrian to Lower Permian carbonate rocks are overlain by a sequence of mainly clastic rocks of late Paleozoic to Mesozoic age that are mostly considered confining units, but they may be permeable where faulted. Tertiary volcanic and plutonic rocks are exposed in the northern and southern parts of the study area. In the Clover and Delamar Mountains, these rocks are highly deformed by north- and northwest-striking normal and strike-slip faults that are probably important conduits in transmitting ground water from the basins in the northern Colorado and White River flow systems to basins in the southern part of the flow systems. The youngest rocks in the region are Tertiary to Quaternary basin-fill deposits. These rocks consist of middle to late Tertiary sediments consisting of limestone, conglomerate, sandstone, tuff, and gypsum, and younger Quaternary surficial units consisting of alluvium, colluvium, playa deposits, and eolian deposits. Basin-fill deposits are both aquifers and aquitards.
NASA Astrophysics Data System (ADS)
Cousens, B.; Klausen, K. B.; Henry, C.
2016-12-01
The 25.0 Ma Underdown Caldera of the Shoshone Mountains near Austin, Nevada, is part of the Ignimbrite Flare-up suite of calderas in north-central Nevada. Our goal is to characterize the geochemistry and geochronology of the tuffs, determine magma sources, and contrast Underdown with nearby contemporaneous caldera suites. The caldera is contained within a single, mildly west-tilted fault block (Bonham, 1970). The basement rocks are altered intermediate volcanic rocks, rarely intruded by rhyolite veins. The lowermost caldera unit, exposed only on the east side of the fault block, is the sparsely qtz-feld-phyric Underdown Tuff, a high-silica rhyolite (Bonham, 1970) that is columnar-jointed, densely welded, commonly includes aphyric pumice, but locally includes porphyritic pumice. Stretched pumice, flow folds, and foliations that reach nearly vertical demonstrate significant rheomorphism. A densely-welded porphyritic tuff is also present along the southeast side of the exposed caldera, and may be either blocks of an older tuff or a porphyritic phase of the Underdown Tuff. Correlative outflow, the tuff of Clipper Gap, emplaced east of the caldera, is petrographically similar with the same two pumice types. Overlying the Underdown Tuff is the Bonita Canyon Formation, which is moderately welded, commonly lithic- and pumice-rich with minor biotite, quartz and feldspar crystals, and contains reworked lenses; megabreccia of intermediate volcanic rocks and abundantly porphyritic tuff are common. This formation may be an upper part of the Underdown Tuff. On the west side of the Shoshone Mountains, the Bonita Canyon units are overlain by a more porphyritic, variably pumiceous, commonly vitrophyric, and densely welded tuff. At 24.7 Ma, this tuff is petrographically similar to and may be a younger part of the 25.2 Ma tuff of Arc Dome exposed to the east in the Toiyabe Range. Ongoing dating and geochemical analyses will constrain the timing and relationships between the tuffs.
Moderate-temperature zeolitic alteration in a cooling pyroclastic deposit
Levy, S.S.; O'Neil, J.R.
1989-01-01
The locally zeolitized Topopah Spring Member of the Paintbrush Tuff (13 Myr.), Yucca Mountain, Nevada, U.S.A., is part of a thick sequence of zeolitized pyroclastic units. Most of the zeolitized units are nonwelded tuffs that were altered during low-temperature diagenesis, but the distribution and textural setting of zeolite (heulandite-clinoptilolite) and smectite in the densely welded Topopah Spring tuff suggest that these hydrous minerals formed while the tuff was still cooling after pyroclastic emplacement and welding. The hydrous minerals are concentrated within a transition zone between devitrified tuff in the central part of the unit and underlying vitrophyre. Movement of liquid and convected heat along fractures from the devitrified tuff to the ritrophyre caused local devitrification and hydrous mineral crystallization. Oxygen isotope geothermometry of cogenetic quartz confirms the nondiagenetic moderate temperature origin of the hydrous minerals at temperatures of ??? 40-100??C, assuming a meteoric water source. The Topopah Spring tuff is under consideration for emplacement of a high-level nuclear waste repository. The natural rock alteration of the cooling pyroclastic deposit may be a good natural analog for repository-induced hydrothermal alteration. As a result of repository thermal loading, temperatures in the Topopah Spring vitrophyre may rise sufficiently to duplicate the inferred temperatures of natural zeolitic alteration. Heated water moving downward from the repository into the vitrophyre may contribute to new zeolitic alteration. ?? 1989.
Gromme, S.; Deino, A.M.; Best, M.G.; Hudson, M.R.
1997-01-01
Outflow sheets of the Hiko tuff and the Racer Canyon tuff, which together extend over approximately 16000 km2 around the Caliente caldera complex in southeastern Nevada, have long been considered to be products of simultaneous or near-simultaneous eruptions from inset calderas in the west and east ends, respectively, of the caldera complex. New high-precision 40Ar/39Ar geochronology and paleomagnetic data demonstrate that emplacement of the uppermost part of the Racer Canyon tuff at 18.33??0.03 Ma was nearly synchronous with emplacement of the single outflow cooling unit of the much larger overlying Hiko tuff at 18.32??0.04 Ma. Based on comparison with the geomagnetic polarity time scale derived from the sea-floor spreading record, we conclude that emplacement of the first of several outflow cooling units of the Racer Canyon tuff commenced approximately 0.5 m.y. earlier. Only one paleomagnetic polarity is found in the Hiko tuff, but at least two paleomagnetic reversals have been found in the Racer Canyon tuff. The two formations overlap in only one place, at and near Panaca Summit northeast of the center of the Caliente caldera complex; here the Hiko tuff is stratigraphically above the Racer Canyon tuff. This study demonstrates the power of combining 40Ar/39Ar and paleomagnetic data in conjunction with phenocryst compositional modes to resolve problematic stratigraphic correlations in complex ash-flow sequences where use of one method alone might not eliminate ambiguities.
Structure, stratigraphy, and eruption dynamics of a young tuff ring: Hanauma Bay, O'ahu, Hawai'i
NASA Astrophysics Data System (ADS)
Rottas, K. M.; Houghton, B. F.
2012-09-01
The Hanauma Bay-Koko Head complex is one of several young volcanic landforms along the Koko fissure, in southeastern O'ahu. The Hanauma Bay region of the complex comprises two nested tuff rings, inner and outer Hanauma Bay, and multiple smaller vents. The internal structure of the inner tuff ring, well exposed due to subsequent breaching by the ocean and wave erosion, indicates that it formed during a minimum of five distinct phases of deposition that produced five mappable units. Significant inward collapses generated major unconformities that separate the units exposed in the inner wall. The planes of failure are cut by narrow steep-walled, locally overhung channels and gullies, suggesting that the collapse events were each followed by short time breaks during which the deposits were eroded by rainfall runoff. Within each pyroclastic unit, there are many local slump scars and unconformities, suggesting that minor instability of the inner wall was a near-constant feature. From bedding sags and surge bed forms, it is apparent that the vent shifted at least twice during tuff ring growth. Ballistic blocks in the youngest unit indicate that the eruption overlapped in time with a separate eruption to the north, most likely to be that of the Kahauloa tuff ring 880 m away.
1994-09-01
north-south. Width of the cap rock is approximately 1.5 miles, length about 3 miles and area about 4.4 square miles. According to Thordarson (1965...The volcanic tuffs making up the mesa are of moderately recent (Miocene) to very recent (Pliocene) origin. Thordarson (1965) identifies 11 layered tuff...various degrees of welded or partially welded tuff can be formed during cooling. The tuff units identified by Thordarson (1965) making up Rainier
Shawe, Daniel R.; Snee, Lawrence W.; Byers, Frank M.; du Bray, Edward A.
2014-01-01
Extensive volcanic and intrusive igneous activity, partly localized along regional structural zones, characterized the southern Toquima Range, Nevada, in the late Eocene, Oligocene, and Miocene. The general chronology of igneous activity has been defined previously. This major episode of Tertiary magmatism began with emplacement of a variety of intrusive rocks, followed by formation of nine major calderas and associated with voluminous extrusive and additional intrusive activity. Emplacement of volcanic eruptive and collapse megabreccias accompanied formation of some calderas. Penecontemporaneous volcanism in central Nevada resulted in deposition of distally derived outflow facies ash-flow tuff units that are interleaved in the Toquima Range with proximally derived ash-flow tuffs. Eruption of the Northumberland Tuff in the north part of the southern Toquima Range and collapse of the Northumberland caldera occurred about 32.3 million years ago. The poorly defined Corcoran Canyon caldera farther to the southeast formed following eruption of the tuff of Corcoran Canyon about 27.2 million years ago. The Big Ten Peak caldera in the south part of the southern Toquima Range Tertiary volcanic complex formed about 27 million years ago during eruption of the tuff of Big Ten Peak and associated air-fall tuffs. The inferred Ryecroft Canyon caldera formed in the south end of the Monitor Valley adjacent to the southern Toquima Range and just north of the Big Ten Peak caldera in response to eruption of the tuff of Ryecroft Canyon about 27 million years ago, and the Moores Creek caldera just south of the Northumberland caldera developed at about the same time. Eruption of the tuff of Mount Jefferson about 26.8 million years ago was accompanied by collapse of the Mount Jefferson caldera in the central part of the southern Toquima Range. An inferred caldera, mostly buried beneath alluvium of Big Smoky Valley southwest of the Mount Jefferson caldera, formed about 26.5 million years ago with eruption of the tuff of Round Mountain. The Manhattan caldera south of the Mount Jefferson caldera and northwest of the Big Ten Peak caldera formed in association with eruption of a series of tuffs, principally the Round Rock Formation, mostly ash-flow tuff, about 24.4 million years ago. Extensive 40Ar/39Ar dating of about 60 samples that represent many of the Tertiary extrusive and intrusive rocks in the southern Toquima Range provides precise ages that refine the chronology of previously dated units. New geochronologic data indicate that the petrogenetically related Corcoran Canyon, Ryecroft Canyon, and Mount Jefferson calderas formed during a period of about 560,000 years. Electron microprobe analyses of phenocrysts from 20 samples of six dated units underscore inferred petrogenetic relations among some of these units. In particular, compositions of augite, hornblende, and biotite in tuffs erupted from the Corcoran Canyon, Ryecroft Canyon, and Mount Jefferson calderas are similar, which suggests that magmas represented by these tuffs have similar petrogenetic histories. The unique occurrence of hypersthene in Isom-type tuff confirms its derivation from a source beyond the southern Toquima Range.
Experimental study on the Neapolitan Yellow Tuff: Salt weathering and consolidation
NASA Astrophysics Data System (ADS)
La Russa, Mauro Francesco; Ruffolo, Silvestro Antonio; Alvarez de Buergo, Monica; Ricca, Michela; Belfiore, Cristina Maria; Pezzino, Antonino; Mirocle Crisci, Gino
2016-04-01
Salt crystallization is one of the major weathering agents in porous building materials due to the crystallization pressure exerted by salt crystals growing in confined pores. The consolidation of such degraded stone materials is a crucial issue in the field of Cultural Heritage restoration. This contribution deals with laboratory experimentation carried out on the Neapolitan Tuff, a pyroclastic rock largely used in the Campanian architecture. Several specimens, collected from a historical quarry nearby the city of Naples, were treated with two different consolidating products: a suspension of nanosilica in water (Syton X30®) and ethyl silicate (Estel 1000®) dispersed in organic solvent (TEOS). Then, in order to assess the effectiveness of consolidation treatments, both treated and untreated samples underwent accelerated degradation through salt crystallization tests. A multi-analytical approach, including mercury intrusion porosimetry, peeling tests and point load test, was employed to evaluate the correlation between the salt crystallization and the micro-structural features of the examined tuff specimens. In addition, the calculation of the crystallization pressures was also performed in order to make a correlation between the porous structure of the tuff and its susceptivity to salt crystallization. Obtained results show that both the tested products increase the resistance of tuff to salt crystallization, although inducing an increase of crystallization pressure. Ethyl silicate, however, shows a better behaviour in terms of superficial cohesion, even after several degradation cycles.
Brown, Francis H; McDougall, Ian; Fleagle, John G
2012-10-01
Hominin specimens Omo I and Omo II from Member I of the Kibish Formation, Ethiopia are attributed to early Homo sapiens, and an age near 196 ka has been suggested for them. The KHS Tuff, within Member II of the Kibish Formation has not been directly dated at the site, but it is believed to have been deposited at or near the time of formation of sapropel S6 in the Mediterranean Sea. Electron microprobe analyses suggest that the KHS Tuff correlates with the WAVT (Waidedo Vitric Tuff) at Herto, Gona, and Konso (sample TA-55), and with Unit D at Kulkuletti in the Ethiopian Rift Valley. Konso sample TA-55 is older than 154 ka, and Unit D at Kulkuletti is dated at 183 ka. These correlations and ages provide strong support for the age originally suggested for the hominin remains Omo I and Omo II, and for correlation of times of deposition in the Kibish region with formation of sapropels in the Mediterranean Sea. The Aliyo Tuff in Member III of the Kibish Formation is dated at 104 ka, and correlates with Gademotta Unit 15 in the Ethiopian Rift Valley. Copyright © 2012 Elsevier Ltd. All rights reserved.
Geochronology of the mammal-bearing late Cenozoic on the northern Altiplano, Bolivia
NASA Astrophysics Data System (ADS)
Marshall, L. G.; Swisher, C. C.; Lavenu, A.; Hoffstetter, R.; Curtis, G. H.
1992-01-01
Samples of seven tuff or ignimbrite units associated with known land mammal faunas of late Miocene and Pliocene age were collected from 17 localities on the northern Altiplano of western Bolivia. Mineral separates dated by the classic 40K- 40Ar technique (35 dates) and by single crystal laser fusion (SCLF) 40Ar/ 39Ar analysis (84 dates) indicate the following preferred ages based on SCLF 40Ar/ 39Ar dates on sanidine for six of these units: Ulloma Tuff, 10.35±0.06 Ma; Callapa Tuff, 9.03±0.07 Ma; Toba 76, 5.348±0.003 Ma; Ayo Ayo Tuff, 2.896±0.006 Ma; Perez Ignimbrite, 2.815±0.005 Ma; and Chijini Tuff, 2.650±0.012 Ma. Land mammal faunas of early Huayquerian age are bracketed below by the Callapa Tuff (9.0 Ma) and above the base of the Cerke Formation (7.6 Ma); faunas of Montehermosan age are bracketed below by the Toba 76 and Cota Cota Tuffs ( ca. 5.4 Ma), and above by the Ayo Ayo and Chijini Tuffs ( ca. 2.8 Ma) of the Umala and La Paz Formations, respectively; and faunas of Ensenadan and Lujanian age occur in rocks younger than 1.6 Ma. Hiatuses identified by the absence of late Huayquerian and Chapadmalalan-Uquian faunas correlate with unconformities which are interpreted as deformation phases: the first with Q3 (8.0-5.5 Ma) and the second with Q4 (2.8-1.6 Ma) of the Quechua Orogeny.
High-temperature, large-volume, lavalike ash-flow tuffs without calderas in southwestern Idaho
Ekren, E.B.; McIntyre, David H.; Bennett, Earl H.
1984-01-01
Rhyolitic rocks were erupted from vents in and adjacent to the Owyhee Mountains and Owyhee Plateau of southwestern Idaho from 16 m.y. ago to about 10 m.y. ago. They were deposited on a highly irregular surface developed on a variety of basement rocks that include granitic rocks of Cretaceous age, quartz latite and rhyodacite tuffs and lava flows of Eocene age, andesitic and basaltic lava flows of Oligocene age, and latitic and basaltic lava flows of early Miocene age. The rhyolitic rocks are principally welded tuffs that, regardless of their source, have one feature in common-namely internal characteristics indicating en-masse, viscous lavalike flowage. The flowage features commonly include considerable thicknesses of flow breccia at the bases of various cooling units. On the basis of the tabular nature of the rhyolitic deposits, their broad areal extents, and the local preservation of pyroclastic textures at the bases, tops, and distal ends of some of the deposits, we have concluded that the rocks were emplaced as ash flows at extremely high temperatures and that they coalesced to liquids before final emplacement and cooling. Temperatures of l090?C and higher are indicated by iron-titanium oxide compositions. Rhyolites that are about 16 m.y. old are preserved mostly in the downdropped eastern and western flanks of the Silver City Range and they are inferred to have been erupted from the Silver City Range. They rarely contain more than about 2 percent phenocrysts that consist of quartz and subequal amounts of plagioclase and alkali feldspar; commonly, they contain biotite, and they are the only rhyolitic rocks in the area to do so. The several rhyolitic units that are 14 m.y. to about 10 m.y. old contain only pyroxene-principally ferriferous and intermediate pigeonites-as mafic constituents. The rhyolites of the Silver City Range comprise many cooling units, none of which can be traced for great distances. Rocks erupted from the Owyhee Plateau include two sequences that were traced over areas having diameters of about 100 km. These two sheets are the herein-named Swisher Mountain Tuff, which is about 13.8 m.y. old, and the Little Jacks Tuff, which is about 10 m.y. old. The Swisher Mountain Tuff was erupted from the Juniper Mountain volcanic center, a gentle dome that is not bounded by arcuate faults indicative of cauldron subsidence. The tuff is 200 m thick over a considerable area in and adjacent to its source. It apparently thins gradually toward its distal edges, and it is inferred to be uniformly distributed around its source at Juniper Mountain. The unit contains vitrophyres at various intervals from base to top, and, although the vitrophyres are, in general, flow layered and commonly flow brecciated, they occasionally contain well-defined pumice clasts. The vitrophyres indicate compound cooling, and, near the distal edges of the sheet, some of them probably represent complete cooling breaks. The Little Jacks Tuff onlaps the Swisher Mountain Tuff in expo sures east of Juniper Mountain, and it is inferred to have been erupted from a source on the part of the Owyhee Plateau that lies just east of the area studied. This inferred source area, like that at Juniper Mountain, is also expressed today as a gentle dome without structural features indicative of cauldron subsidence. The Little Jacks Tuff, in most exposures in the deep canyons of the Plateau, consists of at least four cooling units, and, in places in the eastern part of the studied area near the source area, it possibly comprises as many as six. Although there is no obvious evidence of erosion between the various cooling units, magnetic polarity measurements indicate that there were at least two magnetic reversals during the eruption interval of the Little Jacks Tuff. Like the Swisher Mountain Tuff, the Little Jacks has flattened pumice clasts in a few outcrops-principally at the bases of the various cooling units. The two tuff sequences are calc-a
Geohydrologic data from test hole USW UZ-7, Yucca Mountain area, Nye County, Nevada
Kume, Jack; Hammermeister, D.P.
1990-01-01
This report contains a description of the methods used in drilling and coring of the test-hole USW UZ-7, a description of the methods used in collecting, handling, and testing of test-hole samples; Lithologic information from the test hole; and water-content, water-potential, bulk-density, grain-density, porosity, and tritium data for the test hole. Test-hole USW UZ-7 was drilled and cored to a total depth of 62.94 m. The drilling was done using air as a drilling fluid to minimize disturbance to the water content of cores, drill-bit cuttings, and borehole wall-rock. Beginning at the land surface, the unsaturated-zone rock that was penetrated consisted of alluvium; welded and partially to nonwelded ash-flow tuff; bedded and reworked ash-fall tuff; nonwelded ash-flow tuff; and welded ash-flow tuff. Values of gravimetric water content and water potential of alluvium were intermediate between the extreme values in welded and nonwelded units of tuff. Gravimetric water content was largest in bedded and nonwelded ash-fall tuffs and was smallest in welded ash-flow tuff. Values of water potential were more negative in densely welded ash-flow tuffs and were less negative in bedded and nonwelded ash-fall tuffs. Bulk density was largest in densely welded ash-flow tuffs and smallest in nonwelded and bedded ash-fall tuffs. Grain density was uniform but was slightly larger in nonwelded and bedded ash-fall tuffs than in welded ash-flow tuffs. Porosity trends were opposite to bulk-density trends. Tritium content in alluvium was smallest near the alluvium-bedrock contact, markedly increased in the middle of the deposit, and decreased in the near-surface zone of the deposit. (Author 's abstract)
The geology and chronology of the Acheulean deposits in the Mieso area (East-Central Ethiopia).
Benito-Calvo, Alfonso; Barfod, Dan N; McHenry, Lindsay J; de la Torre, Ignacio
2014-11-01
This paper presents the Quaternary sequence of the Mieso area of Central-East Ethiopia, located in the piedmont between the SE Ethiopian Escarpment and the Main Ethiopian Rift-Afar Rift transition sector.In this region, a piedmont alluvial plain is terraced at þ25 m above the two main fluvial courses, the Mieso and Yabdo Rivers. The piedmont sedimentary sequence is divided into three stratigraphic units separated by unconformities. Mieso Units I and II contain late Acheulean assemblages and a weakly consolidated alluvial sequence, consisting mainly of fine sediments with buried soils and, to a lesser degree, conglomerates. Palaeo-wetland areas were common in the alluvial plain, represented by patches of tufas, stromatolites and clays. At present, the piedmont alluvial surface is preserved mainly on a dark brown soil formed at the top of Unit II. Unit III corresponds to a fluvial deposit overlying Unit II, and is defined by sands, silty clays and gravels, including several Later Stone Age (LSA) occurrences. Three fine-grained tephra levels are interbedded in Unit I (tuffs TBI and TA) and II (tuff CB), and are usually spatially-constrained and reworked. Argon/argon (40Ar/39Ar) dating from tuff TA, an ash deposit preserved in a palustrine environment, yielded an age of 0.212 ± 0.016 Ma (millions of years ago). This date places thetop of Unit I in the late Middle Pleistocene, with Acheulean sites below and above tuff TA. Regional correlations tentatively place the base of Unit I around the Early-Middle Pleistocene boundary, Unit II inthe late Middle Pleistocene and within the Late Pleistocene, and the LSA occurrences of Unit III in the LatePleistoceneeHolocene.
NASA Astrophysics Data System (ADS)
Peng, Peng; Feng, Lianjun; Sun, Fengbo; Yang, Shuyan; Su, Xiangdong; Zhang, Zhiyue; Wang, Chong
2017-05-01
There are several sedimentary units in North China that are proposed to be associated with the Paleoproterozoic Great Oxidation Event (GOE) and/or subsequent events; however, few of them have been precisely dated. In this study, deposition age of the greenschist facies Gaofan and Hutuo Groups is determined. Zircon grains liberated from a tuff layer (metamorphosed to sericite-quartz schist) in the upper part of the Mohe Formation (the second of the three formations of the Gaofan Group) yield a weighted average 207Pb/206Pb age of 2186 ± 8 Ma (n = 7, MSWD = 1.3), representing time of deposition. This age and the detrital zircon U-Pb ages of the basal feldspar quartzite (meta-siltstone), as well as the initial deposition age of the unconformably overlying Hutuo Group, confine the deposition age of the Gaofan Group to 2350-2150 Ma. This result negates the Gaofan Group as one subgroup of the 2560-2510 Ma Wutai greenstone belt. Zircons from the Banlaoyao mafic sill (meta-diabase) that intruded the Dongye Subgroup of the Hutuo Group yield an upper intercept U-Pb age of 2057 ± 25 Ma (n = 14, MSWD = 1.3), representing time of crystallization. Considering the age of the basalt in the first formation of the Doucun Subgroup and the tuff in the first formation of the Dongye Subgroup, the deposition age of the Doucun and Dongye Subgroups of the Hutuo Group is confined to 2150-2090 Ma and 2090-2060 Ma, respectively. These age brackets, as well as the available carbon and nitrogen isotope data indicate that the Zhangxianbu Formation of the Gaofan Group possibly recorded the GOE; whereas the Mohe-Yaokouqian Formations of the Gaofan Group and the Doucun-Dongye Subgroups of the Hutuo Group recorded the subsequent Lomagundi-Jatuli Event (LJE). However, the Lomagundi-Jatuli carbon excursions are hardly distinguishable from the Gaofan Group and the Doucun Subgroup (Hutuo Group) as both units consist of little inorganic carbon but terrestrial clastic turbidites.
Carr, W.J.
1982-01-01
New evidence for a possible resurgent dome in the caldera related to eruption of the Bullfrog Member of the Crater Flat Tuff has been provided by recent drilling of a 762-meter (2,501-foot) hole in central Crater Flat. Although no new volcanic units were penetrated by the drill hole (USW-VH-1), the positive aeromagnetic anomaly in the vicinity of the drill hole appears to result in part from the unusually thick, densely welded tuff of the Bullfrog. Major units penetrated include alluvium, basalt of Crater Flat, Tiva Canyon and Topopah Spring Members of the Paintbrush Tuff, and Prow Pass and Bullfrog Members of the Crater Flat Tuff. In addition, the drill hole provided the first subsurface hydrologic information for the area. The water table in the hole is at about 180 meters (600 feet), and the temperature gradient appears slightly higher than normal for the region.
Wilson, Colin J. N.; Stelten, Mark; Lowenstern, Jacob B.
2018-01-01
The youngest major caldera-forming event at Yellowstone was the ~ 630-ka eruption of the Lava Creek Tuff. The tuff as mapped consists of two major ignimbrite packages (members A and B), linked to widespread coeval fall deposits and formation of the Yellowstone Caldera. Subsequent activity included emplacement of numerous rhyolite flows and domes, and development of two structurally resurgent domes (Mallard Lake and Sour Creek) that accommodate strain due to continual uplift/subsidence cycles. Uplifted lithologies previously mapped on and adjacent to Sour Creek dome were thought to include the ~ 2.08-Ma Huckleberry Ridge Tuff, cropping out beneath Lava Creek Tuff members A and B. Mapped outcrops of this Huckleberry Ridge Tuff material were sampled as welded ignimbrite (sample YR345) on Sour Creek dome, and at nearby Bog Creek as welded ignimbrite (YR311) underlain by an indurated lithic lag breccia containing blocks of another welded ignimbrite (YR324). Zircon near-rim U–Pb analyses from these samples yield weighted mean ages of 661 ± 13 ka (YR345: 95% confidence), 655 ± 11 ka (YR311), and 664 ± 15 ka (YR324) (combined weighted mean of 658.8 ± 6.6 ka). We also studied two samples of ignimbrite previously mapped as Huckleberry Ridge Tuff on the northeastern perimeter of the Yellowstone Caldera, ~ 12 km ENE of Sour Creek dome. Sanidines from these samples yield 40Ar/39Ar age estimates of 634.5 ± 6.8 ka (8YC-358) and 630.9 ± 4.1 ka (8YC-359). These age data show that all these units represent previously unrecognized parts of the Lava Creek Tuff and do not have any relationship to the Huckleberry Ridge Tuff. Our observations and data imply that the Lava Creek eruption was more complex than is currently assumed, incorporating two tuff units additional to those currently mapped, and which themselves are separated by a time break sufficient for cooling and some reworking. The presence of a lag breccia suggests that a source vent lay nearby (< ~ 3 km) for some of the tuffs and that the Yellowstone Caldera boundary in this area could be reconsidered.
NASA Astrophysics Data System (ADS)
Wilson, Colin J. N.; Stelten, Mark E.; Lowenstern, Jacob B.
2018-06-01
The youngest major caldera-forming event at Yellowstone was the 630-ka eruption of the Lava Creek Tuff. The tuff as mapped consists of two major ignimbrite packages (members A and B), linked to widespread coeval fall deposits and formation of the Yellowstone Caldera. Subsequent activity included emplacement of numerous rhyolite flows and domes, and development of two structurally resurgent domes (Mallard Lake and Sour Creek) that accommodate strain due to continual uplift/subsidence cycles. Uplifted lithologies previously mapped on and adjacent to Sour Creek dome were thought to include the 2.08-Ma Huckleberry Ridge Tuff, cropping out beneath Lava Creek Tuff members A and B. Mapped outcrops of this Huckleberry Ridge Tuff material were sampled as welded ignimbrite (sample YR345) on Sour Creek dome, and at nearby Bog Creek as welded ignimbrite (YR311) underlain by an indurated lithic lag breccia containing blocks of another welded ignimbrite (YR324). Zircon near-rim U-Pb analyses from these samples yield weighted mean ages of 661 ± 13 ka (YR345: 95% confidence), 655 ± 11 ka (YR311), and 664 ± 15 ka (YR324) (combined weighted mean of 658.8 ± 6.6 ka). We also studied two samples of ignimbrite previously mapped as Huckleberry Ridge Tuff on the northeastern perimeter of the Yellowstone Caldera, 12 km ENE of Sour Creek dome. Sanidines from these samples yield 40Ar/39Ar age estimates of 634.5 ± 6.8 ka (8YC-358) and 630.9 ± 4.1 ka (8YC-359). These age data show that all these units represent previously unrecognized parts of the Lava Creek Tuff and do not have any relationship to the Huckleberry Ridge Tuff. Our observations and data imply that the Lava Creek eruption was more complex than is currently assumed, incorporating two tuff units additional to those currently mapped, and which themselves are separated by a time break sufficient for cooling and some reworking. The presence of a lag breccia suggests that a source vent lay nearby (< 3 km) for some of the tuffs and that the Yellowstone Caldera boundary in this area could be reconsidered.
NASA Astrophysics Data System (ADS)
Go, S. Y.; Kim, G. B.; Jeong, J. O.; Sohn, Y. K.
2017-03-01
The Songaksan tuff ring, Jeju Island, Korea, which erupted ca. 3.7 ka BP in a coastal setting, provides an unusual opportunity to study the processes of phreatomagmatic eruption and the formation of a diatreme because of the exceptionally well-preserved ejecta beds and well-known subsurface geology. The tuff sequence can be divided into four units (A to D), which have distinctly different accidental componentry (quartz-rich vs. quartz-poor), grain surface features (abraded and ash-coated vs. unabraded and uncoated), and chemical compositions of juvenile particles. The basal tephra bed of unit A, which probably erupted after the removal of the relatively hard shallow-level (<120 m deep) substrate by initial cratering, comprises only unabraded and uncoated grains and contains abundant relatively deep-derived (>120 m deep) accidental grains, suggesting that the early erupted tephra had not yet experienced recycling and pre-eruption mixing in the diatreme. On the other hand, the overlying tephra beds of units A, B, and D contain an abundance of abraded and ash-coated juvenile/accidental grains, suggesting that the tephra comprised significant proportions of "recycled" or "premixed" materials from previous eruptions or subsurface explosions, which participated in the explosion-driven mixing in the diatreme before eventual ejection from the diatreme. Unit C is unusual in that it comprises extremely rare accidental grains and ash-coated juvenile/accidental grains. We interpret that the supply of solid materials, either accidental or juvenile, to the diatreme was greatly reduced because of temporary stabilization of the diatreme and the reduction in magma flux to the diatreme. The diatreme is therefore envisaged to have been filled with a water-saturated slurry, in which particle abrasion and adhesion were inhibited. We also infer that the diatreme fill was temporarily removed by a powerful explosion before eruption of unit C on the basis of the near absence of the tephra grains from earlier eruptions throughout the tephra beds of unit C. The ratio of tachylite to sideromelane grains generally increases up-section of the tuff sequence with two abrupt drops across the tuff unit boundaries. These variations are coincident with the changes in the chemical composition of juvenile particles, suggesting an overall decrease in magma flux punctuated by brief increases in magma flux associated with the arrival of new magma batches. The textural and compositional variations of the Songaksan tuff ring suggest that there can be significant variability in diatreme processes even during a purely phreatomagmatic eruption of a tuff ring, including removal and renewal of the diatreme fill, and that there is still much room for further investigation of the diatreme processes from the ejecta beds in order to make the current diatreme model more robust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connolly, J.R.; Mansker, W.L.; Hicks, R.
1983-04-01
G-Tunnel at Nevada Test Site (NTS) is the site of thermal and thermomechanical experiments examining the feasibility of emplacing heat-producing nuclear wastes in silicic tuffs. This report describes the general stratigraphy, mineralogy, and bulk chemistry of welded portions of the Grouse Canyon Member of the Belted Range Tuff, the unit in which most of these experiments will be performed. The geologic characteristics of the Grouse Canyon Member are compared with those of the Topopah Spring Member of the Paintbrush Tuff, presently the preferred horizon for an actual waste repository at Yucca Mountain, near the southwest boundary of Nevada Test Site.more » This comparison suggests that test results obtained in welded tuff from G-Tunnel are applicable, with limitations, to evaluation of the Topopah Spring Member at Yucca Mountain.« less
NASA Astrophysics Data System (ADS)
Watts, K. E.; Colgan, J. P.; John, D. A.; Henry, C. D.
2012-12-01
Eruption of the >1,100 km3 Caetano Tuff and formation of the Caetano caldera occurred during the mid-Tertiary ignimbrite flare-up in the Great Basin. Post-collapse extension and faulting created a series of tilted fault blocks that expose >4 km thick intracaldera tuff, two generations of resurgent granitic plutons, silicic ring-fracture intrusions, a tuff dike that fed the early eruption, and pre- and post-caldera andesites. We integrate new petrologic data for extrusive and intrusive Caetano units with geologic mapping and geochronology to provide an exceptional view into the inner workings of a large caldera center. The Caetano Tuff is a phenocryst-rich (~30-50%) ignimbrite with a mineralogy of plagioclase + sanidine + quartz + biotite + orthopyroxene + Fe-Ti oxides ± hornblende + accessory zircon and allanite. Plagioclase crystals in the Caetano Tuff and cogenetic intrusive units span a wide compositional range (>30 mol% An) and have diverse petrographic textures ranging from euhedral phenocrysts to anhedral, sieved crystals with melt-rich cores. Plagioclase compositions measured by electron microprobe for whole rock thin sections are consistent with compositional zoning of the intracaldera tuff shown by XRF whole rock analyses, oligoclase (~10-30 mol% An) and andesine (~30-50 mol% An) in the most evolved (75-77% SiO2) and least evolved (72-74% SiO2) tuff units, respectively. However, orthopyroxene compositions are apparently decoupled from the host tuff composition, with the highest Mg#s (~60-70%) occurring in the most evolved tuff samples. In the Caetano Tuff, equilibrium pairs of Fe-Ti oxides yield an average eruption temperature of 745°C, which is consistent with the average Ti-in-zircon temperature of 750±70°C (1 stdev, n=90 spots) obtained from Ti concentrations measured by SHRIMP for single zircons. Application of Al-in-hornblende geobarometry indicates an average equilibration pressure of 4.5±0.1 kbar, corresponding to mid-crustal magma storage depths of ~14-15 km. In light of our new petrologic data, we highlight the following key points: (1) Diverse crystal cargoes, disequilibrium textures, and wide compositional oscillations in single phenocrysts and among discrete mineral populations indicate prolonged and complex episodes of magma assembly and growth. Based on zircon U-Pb SHRIMP ages that range from ~34-37 Ma, assembly and growth may have spanned ~2-3 Ma, or a 34 Ma Caetano magma chamber may have assimilated older igneous rocks in and around the caldera. (2) Mineral chemistry, U-Pb and Ar-Ar geochronology, O isotope geochemistry, and whole rock major and trace element geochemistry indicate a genetic connection between the Caetano Tuff and resurgent granitic plutons, supporting the role of linked volcanic-plutonic components in caldera settings. (3) Generation and eruption of crystal-rich "monotonous" rhyolite calls into question the prevailing paradigms of crystal-poor rhyolites derived from crystal mushes, or crystal-rich "monotonous intermediates" derived from homogeneous dacitic magma reservoirs. The Caetano Tuff may be a representative end member of caldera-forming eruptions that is important for understanding large-volume rhyolite genesis in the shallow-middle crust.
NASA Astrophysics Data System (ADS)
Whiteside, J. H.; Percival, L.; Kinney, S.; Olsen, P. E.; Mather, T. A.; Philpotts, A.
2017-12-01
Documentation of the precise timing of volcanic eruptions in sedimentary records is key for linking volcanic activity to both historical and geological episodes of environmental change. Deposition of tuffs in sediments, and sedimentary enrichment of trace metals linked to igneous processes, are both commonly used for such correlations. In particular, sedimentary mercury (Hg) enrichments have been used as a marker for volcanic activity from Large Igneous Provinces (LIPs) to support their link to episodes of major climate change and mass extinction in the geological record. However, linking such enrichments to a specific eruption or eruption products is often challenging or impossible. In this study, the mercury records from two exactly contemporaneous latest Triassic-earliest Jurassic rift lakes are presented. Both sedimentary records feature igneous units proposed to be related to the later (Early Jurassic) stages of volcanism of the Central Atlantic Magmatic Province (CAMP). These CAMP units include a small tuff unit identified by thin-section petrology and identified at 10 localities over a distance of over 200 km, and a major CAMP basalt flow overlying this tuff (and dated at 200.916±0.064 Ma) which is also known across multiple sedimentary basins in both North America and Morocco and is thought to have been emplaced about 120 kyr after the tuff. A potential stratigraphic correlation between Hg enrichments and the igneous units is considered, and compared to the established records of mercury enrichments from the latest Triassic that are thought to be coeval with the earlier stages of CAMP volcanism. Investigating the Hg records of sedimentary successions containing tuffs and basalt units is an important step for demonstrating whether the mercury emissions from specific individual volcanic eruptions in the deep past can be identified in the geological record, and are thus important tools for interpreting the causes of associated past geological events, such as mass extinctions.
Creasey, Saville Cyrus
1951-01-01
The Humboldt region is in central Yavapai County, Arizona. The intersection of the 112? 15' meridian and the 34? 30' N parallel is in the approximate geographical center of the region, and the Iron King mine is about 2000 feet west-northwest of the intersection. Pre-Cambrian rocks form the bedrock in the Humboldt region. Late Cenozoic unconsolidated river wash and valley fill, including some interbedded basalt, locally mantle the pre-Cambrian rocks, especially in the north-central part of the region (Lonesome Valley). The pre-Cambrian rocks consist of five newly defined metavolcanic formations derived from flows and tuff s, and of six intrusive units ranging in composition from granite to gabbro or perhaps more mafic types. Relic bedding-and pillow structures are locally prominent in the metavolcanics; geopetal structures are uncommon, but where present, generally indicate that the top is toward the west, though the evidence is too meager to be conclusive. Low-grade dynamothermal metamorphism altered the metavolcanics and to a lesser extent the intrusive rocks, forming textures, structures, and mineral assemblages characteristic of low temperature and moderate stress. The Texas Gulch formation, which is the easternmost metavolcanic formation, consists of five lithologic units. Arranged in the general order of their appearance from east to west they are meta-andesite breccia, purple slate, metarhyolite tuff, meta-andesite, and green slate. The boundary between the Texas Gulch formation and the Iron King meta-andesite is apparently gradational. The Iron King meta-andesite consists of three meta-andesite tuff units, two meta-andesite flow units and one metarhyolite tuff and conglomerate unit. The assemblage chlorite-albite-epitode with or without quartz is dominant in the meta-andesites. Mafic intrusive rocks, which may be approximately contemporaneous with metamorphism, may explain the presence of actinolitic hornblende in the central part of the formation. Toward the west the Iron King meta-andesite appears to grade into the Spud Mountain metabreccia through a zone containing beds characteristic of either one formation or the other. The Spud Mountain metabreccia consists of interbedded metabreccia and metatuff beds. The metatuffs are largely andesitic in composition, but a few thin beds of metarhyolite tuff occur. The fragments in the metabreccia beds consist chiefly or porphyritic meta-andesites and the matrix is meta-andesite tuff. Pre-Cambrian faults now marked by dikes separate the Chaparral Gulch metavolcanics, which lie west of the Spud Mountain metabreccia, from underlying and overlying formations. The Chaparral Gulch metavolcanics contain metarhyolite tuff, metarhyolite flow, and meta-andesite tuff that locally was contaminated by rhyolitic detritus. The Indian Hills metavolcanics, which are northeast of the Chaparral Gulch metavolcanics, consist of two broad units, one composed of metarhyolites and the other of meta-andesites. Metamorphosed tuffs and flows are believed to be represented in both units and flow breccia in the meta-andesites. Granite and alaskite; granodiorite and quartz diorite; diorite, mafic quartz diorite, gabbro and diabase; metarhyolite (?); and quartz porphyry comprise the pre-Cambrian intrusive units mapped. They include both deep-seated and hypabyssal types. Dynamothermal metamorphism has foliated the smaller bodies and the margins of the larger masses and partly converted them into mineral assemblages stable under low-grade metamorphic conditions. Planar structures (chiefly foliation) are omnipresent and linear structures are common in the pre-Cambrian meta-volcanic rocks. North-trending planar structures dominate in the Indian Hills metavolcanics, and in the Spud Mountain metabreccia, whereas northeast-trending planar structures are dominant in the Texas Gulch formation, Iron King meta-andesite, and Chaparral Gulch metavolcanics. To a lesser extent northeast-trending st
Lipman, P.W.; Dungan, M.A.; Brown, L.L.; Deino, A.
1996-01-01
Reinterpretation of a voluminous regional ash-flow sheet (Masonic Park Tuff) as two separate tuff sheets of similar phenocryst-rich dacite erupted from separate source calderas has important implications for evolution of the multicyclic Platoro caldera complex and for caldera-forming processes generally. Masonic Park Tuff in central parts of the San Juan field, including the type area, was erupted from a concealed source at 28.6 Ma, but widespread tuff previously mapped as Masonic Park Tuff in the southeastern San Juan Mountains is the product of the youngest large-volume eruption of the Platoro caldera complex at 28.4 Ma. This large unit, newly named the "Chiquito Peak Tuff," is the last-erupted tuff of the Treasure Mountain Group, which consists of at least 20 separate ash-flow sheets of dacite to low-silica rhyolite erupted from the Platoro complex during a 1 m.y. interval (29.5-28.4 Ma). Two Treasure Mountain tuff sheets have volumes in excess of 1000 km3 each, and five more have volumes of 50-150 km3. The total volume of ash-flow tuff exceeds 2500 km3, and caldera-related lavas of dominantly andesitic composition make up 250-500 km3 more. A much greater volume of intermediate-composition magma must have solidified in subcaldera magma chambers. Most preserved features of the Platoro complex - including postcollapse asymmetrical trap-door resurgent uplift of the ponded intracaldera tuff and concurrent infilling by andesitic lava flows - postdate eruption of the Chiquito Peak Tuff. The numerous large-volume pre-Chiquito Peak ash-flow tuffs document multiple eruptions accompanied by recurrent subsidence; early-formed caldera walls nearly coincide with margins of the later Chiquito Peak collapse. Repeated syneruptive collapse at the Platoro complex requires cumulative subsidence of at least 10 km. The rapid regeneration of silicic magmas requires the sustained presence of an andesitic subcaldera magma reservoir, or its rapid replenishment, during the 1 m.y. life span of the Platoro complex. Either case implies large-scale stoping and assimilative recycling of the Tertiary section, including intracaldera tuffs.
Early postcaldera rhyolite and structural resurgence at Long Valley Caldera, California
NASA Astrophysics Data System (ADS)
Hildreth, Wes; Fierstein, Judy; Calvert, Andrew
2017-04-01
After the 767-ka caldera-forming eruption of 650 km3 of rhyolite magma as the Bishop Tuff, 90-100 km3 of similar rhyolite erupted in the west-central part of Long Valley caldera in as many as 40 batches spread over the 110,000-year interval from 750 ka to 640 ka. Centrally, this Early Rhyolite (ER) is as thick as 622 m, but it spread radially to cover much of the caldera floor, where half its area is now concealed by post-ER sediments and lavas. At least 75% of the ER is aphyric rhyolite tuff. Drillholes encountered 22 (altered) ER lava flows intercalated in the pyroclastic pile, and another 11 units of (largely fresh) ER lava are exposed on the caldera's resurgent dome and at Lookout Mountain. Exposed units have been distinguished, mapped, studied petrographically and chemically, and radioisotopically dated; each is described in detail. Their phenocryst contents range from 0 to 2.5 wt%. All the phyric units have plagioclase, orthopyroxene, and ilmenite; most have biotite and rare tiny magnetite, and a few contain rare zircon. The compositional range of fresh obsidians is narrow-74.3-75.0% SiO2, 1.21-1.37% FeO*, and 5.12-5.26% K2O, but wider variations in Ti, Ba, Sr, and Zr permit distinction of individual units and eruptive groups. The limited chemical and petrographic variability shown by so many ER batches released episodically for 110,000 years suggests a thermally buffered and well-stirred reservoir. The ER central area, where ER eruptions had taken place, was uplifted 400 m to form a structural dome 10 km in diameter. Most of the inflation is attributable to 10 sills of ER that intrude the Bishop Tuff beneath the uplift, but other processes potentially contributing to resurgence are also considered. As shown by erratics of Mesozoic rocks ice-rafted from the Sierra Nevada and dropped on ER lavas, much of the ER had erupted early enough and at low enough elevation to be inundated by the intracaldera lake and was only later lifted by the resurgence that also raised clusters of the erratics hundreds of meters higher than any shoreline. Most of the uplift was over by 570 ka, but dome-crossing faults that exhibit normal throw of 10-30 m cut lavas as young as 175-125 ka. For most elements, chemical ranges of the ER lie within those of the zoned Bishop Tuff, which had erupted earlier from the same place. Only Ba, Zr, Hf, and Eu/Eu* extend to ranges outside those of the Bishop Tuff, nominally to less evolved compositions. Initial 87Sr/86Sr values of ER are likewise within the range of the Bishop Tuff, but ER ratios of 143Nd/144Nd and 206Pb/204Pb extend beyond those of the Bishop Tuff to values slightly more influenced by upper-crustal contributions. FeTi-oxide geothermometry yields 752°-844 °C for ER, compared to 700°-820 °C for the Bishop Tuff. ER fO2 values are 0.5-1.0 log units more reduced than those of the T-fO2 array of the Bishop Tuff. The postcaldera reduction may reflect reaction with graphite from the black lithics of Paleozoic graphitic metapelite so abundant in the Bishop Tuff. Much of the pumice emplaced during the later half of the Bishop Tuff eruption has 10-25 wt% phenocrysts, dominantly quartz and sanidine, but the 100 km3 of ER has only 0-2.5 wt% and completely lacks quartz and sanidine. Postcaldera processes, including mixing, volatile ascent, and crystal resorption, as well as potential contaminants and magmatic inputs, are all considered.
Hofstra, Albert H.; Todorov, T.I.; Mercer, C.N.; Adams, D.T.; Marsh, E.E.
2013-01-01
To evaluate whether anatectic and/or highly fractionated lithophile element-enriched rhyolite tuffs deposited in arid lacustrine basins lose enough lithium during eruption, lithification, and weathering to generate significant Li brine resources, pre-eruptive melt compositions, preserved in inclusions, and the magnitude of post-eruptive Li depletions, evident in host rhyolites, were documented at six sites in the western United States. Each rhyolite is a member of the bimodal basalt-rhyolite assemblage associated with extensional tectonics that produced the Basin and Range province and Rio Grande rift, an evolving pattern of closed drainage basins, and geothermal energy or mineral resources. Results from the 0.8 Ma Bishop tuff (geothermal) in California, 1.3 to 1.6 Ma Cerro Toledo and Upper Bandelier tephra (geothermal) and 27.9 Ma Taylor Creek rhyolite (Sn) in New Mexico, 21.7 Ma Spor Mountain tuff (Be, U, F) and 24.6 Ma Pine Grove tuff (Mo) in Utah, and 27.6 Ma Hideaway Park tuff (Mo) in Colorado support the following conclusions. Melt inclusions in quartz phenocrysts from rhyolite tuffs associated with hydrothermal deposits of Sn, Mo, and Be are extremely enriched in Li (1,000s of ppm); those from Spor Mountain have the highest Li abundance yet recorded (max 5,200 ppm, median 3,750 ppm). Forty-five to 98% of the Li present in pre-eruptive magma was lost to the environment from these rhyolite tuffs. The amount of Li lost from the small volumes (1–10 km3) of Li-enriched rhyolite deposited in closed basins is sufficient to produce world-class Li brine resources. After each eruption, meteoric water leaches Li from tuff, which drains into playas, where it is concentrated by evaporation. The localized occurrence of Li-enriched rhyolites may explain why brines in arid lacustrine basins seldom have economic concentrations of Li. Considering that hydrothermal deposits of Sn, Mo, Be, U, and F may indicate potential for Li brines in nearby basins, we surmise that the world’s largest Li brine resource in the Salar de Uyuni (10 Mt) received Li from nearby rhyolite tuffs in the Bolivian tin belt.
On the physics of unstable infiltration, seepage, and gravity drainage in partially saturated tuffs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faybishenko, B.; Bodvarsson, G.S.; Salve, R.
2002-04-01
To improve understanding of the physics of dynamic instabilities in unsaturated flow processes within the Paintbrush nonwelded unit (PTn) and the middle nonlithophysal portion of the Tonopah Spring welded tuff unit (TSw) of Yucca Mountain, we analyzed data from a series of infiltration tests carried out at two sites (Alcove 4 and Alcove 6) in the Exploratory Studies Facility, using analytical and empirical functions. The analysis of infiltration rates measured at both sites showed three temporal scales of infiltration rate: (1) a macro-scale trend of overall decreasing flow, (2) a meso-scale trend of fast and slow motion exhibiting three-stage variationsmore » of the flow rate (decreasing, increasing, and [again] decreasing flow rate, as observed in soils in the presence of entrapped air), and (3) micro-scale (high frequency) fluctuations. Infiltration tests in the nonwelded unit at Alcove 4 indicate that this unit may effectively dampen episodic fast infiltration events; however, well-known Kostyakov, Horton, and Philip equations do not satisfactorily describe the observed trends of the infiltration rate. Instead, a Weibull distribution model can most accurately describe experimentally determined time trends of the infiltration rate. Infiltration tests in highly permeable, fractured, welded tuff at Alcove 6 indicate that the infiltration rate exhibits pulsation, which may have been caused by multiple threshold effects and water-air redistribution between fractures and matrix. The empirical relationships between the extrinsic seepage from fractures, matrix imbibition, and gravity drainage versus the infiltration rate, as well as scaling and self-similarity for the leading edge of the water front are the hallmark of the nonlinear dynamic processes in water flow under episodic infiltration through fractured tuff. Based on the analysis of experimental data, we propose a conceptual model of a dynamic fracture flow and fracture-matrix interaction in fractured tuff, incorporating the time dependent processes of water redistribution in the fracture-matrix system.« less
Garcia, C. Amanda; Fenelon, Joseph M.; Halford, Keith J.; Reiner, Steven R.; Laczniak, Randell J.
2011-01-01
A maximum water-level drawdown of nearly 0.4 foot in well UE-20bh 1, which is more than 1 mile from the pumping well, was detected across a major fault. Drawdown estimates in the observation well nearest to (ER-20-6 #3, less than 1 mile) and within the same structural block as the pumping well were less than detection (<0.1 foot). Minimal drawdown within the same structural block indicates that lava units are likely separated by bedded tuff confining units. Hydraulic property estimates indicate that wells U-20 WW, UE-20bh 1, and ER-20-6 #3 produce water from moderately permeable fractured lava, as hydraulic conductivity and specific storage estimates average 4.8 feet per day and 2.1×10–6 per foot, respectively, and transmissivity estimates range from 1,200 to 3,600 feet squared per day. Sensitivity analyses indicate that the major fault is hydraulically similar to the permeable host rock and connects flow between structural blocks.
du Bray, Edward A.; Pallister, John S.; Snee, Lawrence W.
2004-01-01
Middle Tertiary volcanic rocks of the central Chiricahua Mountains in southeast Arizona are the westernmost constituents of the Eocene-Oligocene Boot Heel volcanic field of southwestern New Mexico and southeastern Arizona. About two dozen volumetric ally and stratigraphically significant volcanic units are present in this area. These include large-volume, regionally distributed ash-flow tuffs and smaller volume, locally distributed lava flows. The most voluminous of these units is the Rhyolite Canyon Tuff, which erupted 26.9 million years ago from the Turkey Creek caldera in the central Chiricahua Mountains. The Rhyolite Canyon Tuff consists of 500-1,000 cubic kilometers of rhyolite that was erupted from a normally zoned reservoir. The tuff represents sequential eruptions, which became systematically less geochemically evolved with time, from progressively deeper levels of the source reservoir. Like the Rhyolite Canyon Tuff, other ashflow tuffs preserved in the central Chiricahua Mountains have equivalents in nearby, though isolated mountain ranges. However, correlation of these other tuffs, from range to range, has been hindered by stratigraphic discontinuity, structural complexity, and various lithologic similarities and ambiguities. New geochemical and geochronologic data presented here enable correlation of these units between their occurrences in the central Chiricahua Mountains and the remainder of the Boot Heel volcanic field. Volcanic rocks in the central Chiricahua Mountains are composed dominantly of weakly peraluminous, high-silica rhyolite welded tuff and rhyolite lavas of the high-potassium and shoshonitic series. Trace-element, and to a lesser extent, major-oxide abundances are distinct for most of the units studied. Geochemical and geochronologic data depict a time and spatial transgression from subduction to within-plate and extensional tectonic settings. Compositions of the lavas tend to be relatively homogeneous within particular units. In contrast, compositions of the ash-flow tuffs, including the Rhyolite Canyon Tuff, vary significantly owing to eruption from compositionally zoned reservoirs. Reservoir zonation is consistent with fractional crystallization of observed phenocryst phases and resulting residual liquid compositional evolution. Rhyolite lavas preserved in the moat of the Turkey Creek caldera depict compositional zonation that is the reverse of that expected of magma extraction from progressively deeper parts of a normally zoned reservoir. Presuming that the source reservoir was sequentially tapped from its top downward, development of reverse zonation in the rhyolite lava sequence may indicate that later erupted, more evolved magma contains systematically less wallrock contamination derived from the geochemically primitive margins of its incompletely mixed reservoir. New 40Ar/39Ar geochronology data indicate that the principal middle Tertiary volcanic rocks in the central Chiricahua Mountains were erupted between about 34.2 and 26.2 Ma, and that the 5.2 m.y. period between 33.3 and 28.1 Ma was amagmatic. The initial phase of eruptive activity in the central Chiricahua Mountains, between 34.2 and 33.3 Ma, was associated with a regional tectonic regime dominated by subduction along the west edge of North America. We infer that the magmatic hiatus, nearly simultaneous with a hiatus of similar duration in parts of the Boot Heel volcanic field east of the central Chiricahua Mountains, is related to a period of more rapid convergence and therefore shallower subduction that may have displaced subduction-related magmatic activity to a position east of the present-day Boot Heel volcanic field. The hiatus also coincides with a major plate tectonic reorganization along the west edge of North America that resulted in cessation of subduction and initiation of transform faulting along the San Andreas fault. The final period of magmatism in the central Chiricahua Mountains, between 28.1 and 23.2 Ma, ap
3D Model of the McGinness Hills Geothermal Area
Faulds, James E.
2013-12-31
The McGinness Hills geothermal system lies in a ~8.5 km wide, north-northeast trending accommodation zone defined by east-dipping normal faults bounding the Toiyabe Range to the west and west-dipping normal faults bounding the Simpson Park Mountains to the east. Within this broad accommodation zone lies a fault step-over defined by north-northeast striking, west-dipping normal faults which step to the left at roughly the latitude of the McGinness Hills geothermal system. The McGinness Hills 3D model consists of 9 geologic units and 41 faults. The basal geologic units are metasediments of the Ordovician Valmy and Vininni Formations (undifferentiated in the model) which are intruded by Jurassic granitic rocks. Unconformably overlying is a ~100s m-thick section of Tertiary andesitic lava flows and four Oligocene-to-Miocene ash-flow tuffs: The Rattlesnake Canyon Tuff, tuff of Sutcliffe, the Cambell Creek Tuff and the Nine Hill tuff. Overlying are sequences of pre-to-syn-extensional Quaternary alluvium and post-extensional Quaternary alluvium. 10-15º eastward dip of the Tertiary stratigraphy is controlled by the predominant west-dipping fault set. Geothermal production comes from two west dipping normal faults in the northern limb of the step over. Injection is into west dipping faults in the southern limb of the step over. Production and injection sites are in hydrologic communication, but at a deep level, as the northwest striking fault that links the southern and northern limbs of the step-over has no permeability.
Rodriguez, Brian D.; Sweetkind, Don; Burton, Bethany L.
2010-01-01
The U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing groundwater contamination resulting from historical underground nuclear testing through the Environmental Management program and, in particular, the Underground Test Area (UGTA) project. From 1951 to 1992, 828 underground nuclear tests were conducted at the Nevada Test Site (NTS) northwest of Las Vegas (DOE UGTA, 2003). Most of these tests were conducted hundreds of feet above the groundwater table; however, more than 200 of the tests were near, or within, the water table. This underground testing was limited to specific areas of the NTS including Pahute Mesa, Rainier Mesa/Shoshone Mountain, Frenchman Flat, and Yucca Flat. Volcanic composite units make up much of the area within the Pahute Mesa Corrective Action Unit (CAU) at the NTS, Nevada. The extent of many of these volcanic composite units extends throughout and south of the primary areas of past underground testing at Pahute and Rainier Mesas. As situated, these units likely influence the rate and direction of groundwater flow and radionuclide transport. Currently, these units are poorly resolved in terms of their hydrologic properties introducing large uncertainties into current CAU-scale flow and transport models. In 2007, the U.S. Geological Survey (USGS), in cooperation with DOE and NNSA-NSO acquired three-dimensional (3-D) tensor magnetotelluric data at the NTS in Area 20 of Pahute Mesa CAU. A total of 20 magnetotelluric recording stations were established at about 600-m spacing on a 3-D array and were tied to ER20-6 well and other nearby well control (fig. 1). The purpose of this survey was to determine if closely spaced 3-D resistivity measurements can be used to characterize the distribution of shallow (600- to 1,500-m-depth range) devitrified rhyolite lava-flow aquifers (LFA) and zeolitic tuff confining units (TCU) in areas of limited drill hole control on Pahute Mesa within the Calico Hills zeolitic volcanic composite unit (VCU), an important hydrostratigraphic unit in Area 20. The resistivity response was evaluated and compared with existing well data and hydrogeologic unit tops from the current Pahute Mesa framework model. In 2008, the USGS processed and inverted the magnetotelluric data into a 3-D resistivity model. We interpreted nine depth slices and four west-east profile cross sections of the 3-D resistivity inversion model. This report documents the geologic interpretation of the 3-D resistivity model. Expectations are that spatial variations in the electrical properties of the Calico Hills zeolitic VCU can be detected and mapped with 3-D resistivity, and that these changes correlate to differences in rock permeability. With regard to LFA and TCU, electrical resistivity and permeability are typically related. Tuff confining units will typically have low electrical resistivity and low permeability, whereas LFA will have higher electrical resistivity and zones of higher fracture-related permeability. If expectations are shown to be correct, the method can be utilized by the UGTA scientists to refine the hydrostratigraphic unit (HSU) framework in an effort to more accurately predict radionuclide transport away from test areas on Pahute and Rainier Mesas.
Absolute Paleointensity Study of Miocene Tiva Canyon Tuff, Yucca Mountain, Nevada
NASA Astrophysics Data System (ADS)
Patiman, A.; Bowles, J.
2014-12-01
Unoriented samples from the ~12.7 Ma Tiva Canyon (TC) tuff from Yucca Mountain, Nevada are studied in terms of magnetic properties and geomagnetic paleointensity. The magnetic mineralogy and magnetic properties of the TC tuff have previously been well documented, and the remanence-carrier in ~15-m thick zones at the top and bottom of the unit is dominantly is single domain (SD) to superparamagnetic (SP) magnetite, which may be considered ideal for absolute paleointensity studies. Among one of the several episodic volcanic eruptions of the Southwestern Nevada Volcanic Field (SWNVF), the welded TC tuff belongs to the Paintbrush Group. Here we present magnetic properties from two previously unreported sections of the TC tuff, as well as Thellier-type absolute paleointensity estimates. Samples were collected from the lower ~7 m at the base of the flow. Magnetic properties studied include hysteresis, bulk magnetic susceptibility, frequency-dependent susceptibility, and anhysteretic remanent magnetization acquisition. Magnetic property results are consistent with earlier work, showing that the main magnetic mineral is magnetite. SP samples are dominant from the lower ~1 m to ~3.6 m basal unit while the middle unit of ~3.7 m to 7.0 m mainly consists of SD samples. The paleointensity results are closely tied to the stratigraphic height and magnetic properties linked to domain state. The SD samples have consistent absolute paleointensity values 32.40±0.22 uT, VADM 5.74*1022 A.m2 and behaved ideally during paleointensity experiments. The SP samples have consistently higher paleointensity and less ideal behavior, but would likely pass many traditional quality-control tests. Since the magnetite has been interpreted to form by precipitation out of the glass post-emplacement, but at temperatures higher than the Curie temperature, we tentatively interpret the SD remanence to be a primary thermal remanent magnetization and the paleointensity result to be a valid estimate of geomagnetic paleointensity for the Miocene. Post-emplacement vapor-phase alteration might be expected to alter magnetic mineralogy and magnetization, and has been reported in the upper portions of the TC tuff, but not in the lower sections discussed here.
Geohydrology of Monitoring Wells Drilled in Oasis Valley near Beatty, Nye County, Nevada, 1997
Robledo, Armando R.; Ryder, Philip L.; Fenelon, Joseph M.; Paillet, Frederick L.
1999-01-01
Twelve monitoring wells were installed in 1997 at seven sites in and near Oasis Valley, Nevada. The wells, ranging in depth from 65 to 642 feet, were installed to measure water levels and to collect water-quality samples. Well-construction data and geologic and geophysical logs are presented in this report. Seven geologic units were identified and described from samples collected during the drilling: (1) Ammonia Tanks Tuff; (2) Tuff of Cutoff Road; (3) tuffs, not formally named but informally referred to in this report as the 'tuff of Oasis Valley'; (4) lavas informally named the 'rhyolitic lavas of Colson Pond'; (5) Tertiary colluvial and alluvial gravelly deposits; (6) Tertiary and Quaternary colluvium; and (7) Quaternary alluvium. Water levels in the wells were measured in October 1997 and February 1998 and ranged from about 18 to 350 feet below land surface. Transmissive zones in one of the boreholes penetrating volcanic rock were identified using flowmeter data. Zones with the highest transmissivity are at depths of about 205 feet in the 'rhyolitic lavas of Colson Pond' and 340 feet within the 'tuff of Oasis Valley.'
Spengler, Richard W.; Muller, D.C.; Livermore, R.B.
1979-01-01
A subsurface geologic study in connection with the Nevada Nuclear Waste Storage Investigations has furnished detailed stratigraphic and structural information about tuffs underlying northeastern Yucca Mountain on the Nevada Test Site. Drill hole UE25a-1 penetrated thick sequences of nonwelded to densely welded ash-flow and bedded tuffs of Tertiary age. Stratigraphic units that were identified from the drill-hole data include the Tiva Canyon and Topopah Spring Members of the Paintbrush Tuff, tuffaceous beds of Calico Hills, and the Prow Pass and Bullfrog Members of the Crater Flat Tuff. Structural analysis of the core indicated densely welded zones to be highly fractured. Many fractures show near-vertical inclinations and are commonly coated with secondary silica, manganese and iron oxides, and calcite. Five fault zones were recognized, most of which occurred in the Topopah Spring Member. Shear fractures commonly show oblique-slip movement and some suggest a sizable component of lateral compression. Graphic logs are included that show the correlation of lithology, structural properties, and geophysical logs. Many rock units have characteristic log responses but highly fractured zones, occurring principally in the Tiva Canyon and Topopah Spring Members, restricted log coverage to the lower half of the drill hole.
Hydrology of the unsaturated zone, Yucca Mountain, Nevada
Lecain, Gary D.; Stuckless, John S.
2012-01-01
The unsaturated zone at Yucca Mountain was investigated as a possible site for the nation's first high-level nuclear waste repository. Scientific investigations included infiltration studies, matrix properties testing, borehole testing and monitoring, underground excavation and testing, and the development of conceptual and numerical models of the hydrologic processes at Yucca Mountain. Infiltration estimates by empirical and geochemical methods range from 0.2 to 1.4 mm/yr and 0.2–6.0 mm/yr, respectively. Infiltration estimates from numerical models range from 4.5 mm/yr to 17.6 mm/yr. Rock matrix properties vary vertically and laterally as the result of depositional processes and subsequent postdepositional alteration. Laboratory tests indicate that the average matrix porosity and hydraulic conductivity values for the main level of the proposed repository (Topopah Spring Tuff middle nonlithophysal zone) are 0.08 and 4.7 × 10−12 m/s, respectively. In situ fracture hydraulic conductivity values are 3–6 orders of magnitude greater. The permeability of fault zones is approximately an order of magnitude greater than that of the surrounding rock unit. Water samples from the fault zones have tritium concentrations that indicate some component of postnuclear testing. Gas and water vapor movement through the unsaturated zone is driven by changes in barometric pressure, temperature-induced density differences, and wind effects. The subsurface pressure response to surface barometric changes is controlled by the distribution and interconnectedness of fractures, the presence of faults and their ability to conduct gas and vapor, and the moisture content and matrix permeability of the rock units. In situ water potential values are generally less than −0.2 MPa (−2 bar), and the water potential gradients in the Topopah Spring Tuff units are very small. Perched-water zones at Yucca Mountain are associated with the basal vitrophyre of the Topopah Spring Tuff or the Calico Hills bedded tuff. Thermal gradients in the unsaturated zone vary with location, and range from ~2.0 °C to 6.0 °C per 100 m; the variability appears to be associated with topography. Large-scale heater testing identified a heat-pipe signature at ~97 °C, and identified thermally induced and excavation-induced changes in the stress field. Elevated gas-phase CO2 concentrations and a decrease in the pH of water from the condensation zone also were identified. Conceptual and numerical flow and transport models of Yucca Mountain indicate that infiltration is highly variable, both spatially and temporally. Flow in the unsaturated zone is predominately through fractures in the welded units of the Tiva Canyon and Topopah Spring Tuffs and predominately through the matrix in the Paintbrush Tuff nonwelded units and Calico Hills Formation. Isolated, transient, fast-flow paths, such as faults, do exist but probably carry only a small portion of the total liquid-water flux at Yucca Mountain. The Paintbrush Tuff nonwelded units act as a storage buffer for transient infiltration pulses. Faults may act as flow boundaries and/or fast pathways. Below the proposed repository horizon, low-permeability lithostratigraphic units of the Topopah Spring Tuff and/or the Calico Hills Formation may divert flow laterally to faults that act as conduits to the water table. Advective transport pathways are consistent with flow pathways. Matrix diffusion is the major mechanism for mass transfer between fractures and the matrix and may contribute to retardation of radionuclide transport when fracture flow is dominant. Sorption may retard the movement of radionuclides in the unsaturated zone; however, sorption on mobile colloids may enhance radionuclide transport. Dispersion is not expected to be a major transport mechanism in the unsaturated zone at Yucca Mountain. Natural analogue studies support the concepts that percolating water may be diverted around underground openings and that the percentage of infiltration that becomes seepage decreases as infiltration decreases.
Geology of the Yucca Mountain region
Stuckless, J.S.; O'Leary, Dennis W.
2006-01-01
Yucca Mountain has been proposed as the site for the nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began ca. 10 Ma and continued as recently as ca. 80 ka with the eruption of cones and flows at Lathrop Wells, ???10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain. ?? 2007 Geological Society of America. All rights reserved.
LePain, D.L.; Stanley, Richard G.; Helmold, K.P.
2016-01-01
The Talkeetna Formation is a prominent lithostratigraphic unit in south-central Alaska. In the Iniskin–Tuxedni area, Detterman and Hartsock (1966) divided the formation into three mappable units including, from oldest to youngest, the Marsh Creek Breccia, the Portage Creek Agglomerate, and the Horn Mountain Tuff Members. The Horn Mountain Tuff Member was thought to include rocks deposited in a nonmarine setting based on the presence of “tree stumps in an upright position” (Detterman and Hartsock, 1966, p. 19) near the top of the type section at Horn Mountain. Bull (2015) recognized possible nonmarine volcaniclastic rocks in the member during the 2014 field season in a saddle on the north side of Horn Mountain (figs. 2-1 and 2-2). The authors visited this location in 2015 and measured a short stratigraphic section to document facies, interpret depositional setting, and constrain age. This report summarizes our field observations and presents preliminary interpretations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, E.I.; Morikawa, S.A.; Martin, M.W.
1993-04-01
The Tuff of Bridge Spring (TBS) (15.19[+-]0.02 Ma; Gans, 1991) is a compositionally variable dacite to rhyolite ash-flow tuff that crops out over 1800 sq. km in the northern Colorado River extensional corridor. The TBS varies in composition from 59.5 to 74 wt. % SiO[sub 2] and typically contains phenocrysts of sanidine, plagioclase, biotite, clinopyroxene, [+-] sphene, [+-] apatite, [+-] zircon, and [+-] hornblende. The TBS is thickest and displays its greatest compositional range in the center of its area of exposure. The McCullough Range section contains at least three chemically distinct flow units that vary in composition from dacitemore » to rhyolite. The basal and uppermost units are normally zoned and the middle unit is reversely zoned. The complex chemical zonation and zoning reversals in the TBS indicate that it erupted from a magma chamber that was periodically injected by both mafic and felsic magmas. Sections at the edge of the exposure area are thin, contain only one or two chemically definable flow units and have a limited compositional range. To the west at Sheep Mountain, TBS is 2.9 m thick and ranges from 70.2--71.7 wt % SiO[sub 2]. To the east in the White Hills, TBS is 14 m thick and ranges from 59.5--65.3 wt % SiO[sub 2]. This chemical and field data indicate that although the TBS is regionally extensive, individual flow units are not. Isotopic data and chemistry suggest that all sections of the TBS are cogenetic. Comparisons of chemical, geochronological and isotopic data between the TBS and nearby coeval plutons indicate that the Aztec Wash (Eldorado Mts., Nevada) and Mt. Perkins (Black Mountain, Arizona) plutons are possible source for the TBS. Both plutons exhibit ample evidence of magma mixing and commingling, processes that may produce compositional zonation such as that observed in the TBS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, F.R.; Widmann, B.L.; Dickerson, R.P.
1994-12-31
The Tiva Canyon Tuff of the Paintbrush Group of Miocene age caps much of Yucca Mountain, Nevada and is a compositionally zoned, compound cooling, pyroclastic flow that ranges from a dominantly high-silica rhyolitic base to a quartz-latitic caprock. Petrographic and geochemical studies have focused on rigorously defining the internal stratigraphy of this unit to support the detailed mapping of the Ghost Dance fault and other structures in the central fault block of Yucca Mountain. This study shows that devitrification textures and vapor phase mineralogy, in addition to other physical attributes such as pumice variability (flattening) and crystal content, can bemore » used as distinguishing criteria to better define lithologic zones within the Tiva Canyon Tuff. In addition, the study also shows that the petrographic textures and chemistry of the groundmass vary systematically within recognizable lithologic zones and may be used to characterize and vertically divide litho-stratigraphic zones within the Tiva Canyon Tuff.« less
Colgan, Joseph P.; Henry, Christopher D.; John, David A.
2014-01-01
The northern Shoshone and Toiyabe Ranges in north-central Nevada expose numerous areas of mineralized Paleozoic rock, including major Carlin-type gold deposits at Pipeline and Cortez. Paleozoic rocks in these areas were previously interpreted to have undergone negligible postmineralization extension and tilting, but here we present new data that suggest major post-Eocene extension along west-dipping normal faults. Tertiary rocks in the northern Shoshone Range crop out in two W-NW–trending belts that locally overlie and intrude highly deformed Lower Paleozoic rocks of the Roberts Mountains allochthon. Tertiary exposures in the more extensive, northern belt were interpreted as subvertical breccia pipes (intrusions), but new field data indicate that these “pipes” consist of a 35.8 Ma densely welded dacitic ash flow tuff (informally named the tuff of Mount Lewis) interbedded with sandstones and coarse volcaniclastic deposits. Both tuff and sedimentary rocks strike N-S and dip 30° to 70° E; the steeply dipping compaction foliation in the tuffs was interpreted as subvertical flow foliation in breccia pipes. The southern belt along Mill Creek, previously mapped as undivided welded tuff, includes the tuff of Cove mine (34.4 Ma) and unit B of the Bates Mountain Tuff (30.6 Ma). These tuffs dip 30° to 50° east, suggesting that their west-dipping contacts with underlying Paleozoic rocks (previously mapped as depositional) are normal faults. Tertiary rocks in both belts were deposited on Paleozoic basement and none appear to be breccia pipes. We infer that their present east tilt is due to extension on west-dipping normal faults. Some of these faults may be the northern strands of middle Miocene (ca. 16 Ma) faults that cut and tilted the 34.0 Ma Caetano caldera ~40° east in the central Shoshone Range (
Quinlivan, W.D.; Byers, F.M.
1977-01-01
Silica variation diagrams presented here are based on 162 chemical analyses of tuffs, lavas, and intrusives, representative of volcanic centers of the Timber Mountain-Oasis Valley caldera complex and cogenetic rocks of the Silent Canyon ca1dera. Most of the volcanic units sampled are shown on the U.S. Geological Survey geologic map of the Timber Mountain caldera area (I-891) and are described in U.S. Geological Survey Professional Paper 919. Early effusives of the complex, although slightly altered, are probably chemically, and petrographically, more like the calc-alkalic Fraction Tuff (Miocene) of the northern Nellis Air Force Base Bombing and Gunnery Range to the north, whereas effusives of later Miocene age, such as the Paintbrush and Timber Mountain Tuffs, are alkali-calcic.
Chemical evolution of a pleistocene rhyolitic center: Sierra La Primavera, Jalisco, México
NASA Astrophysics Data System (ADS)
Mahood, Gail A.
1981-06-01
The late Pleistocene caldera complex of the Sierra La Primavera, Jalisco, México, contains well-exposed lava flows and domes, ash-flow tuff, air-fall pumice, and caldera-lake sediments. All eruptive units are high-silica rhyolites, but systematic chemical differences correlate with age and eruptive mode. The caldera-producing unit, the 45-km3 Tala Tuff, is zoned from a mildly peralkaline first-erupted portion enriched in Na, Rb, Cs, Cl, F, Zn, Y, Zr, Hf, Ta, Nb, Sb, HREE, Pb, Th, and U to a metaluminous last-erupted part enriched in K, LREE, Sc, and Ti; Al, Ca, Mg, Mn, Fe, and Eu are constant within analytical errors. The earliest post-caldera lava, the south-central dome, is nearly identical to the last-erupted portion of the Tala Tuff, whereas the slightly younger north-central dome is chemically transitional from the south-central dome to later, moremafic, ring domes. This sequence of ash-flow tuff and domes represents the tapping of progressively deeper levels of a zoned magma chamber 95,000 ± 5,000 years ago. Since that time, the lavas that erupted 75,000, 60,000, and 30,000 years ago have become decreasingly peralkaline and progressively enriched only in Si, Rb, Cs, and possibly U. They represent successive eruption of the uppermost magma in the post-95,000-year magma chamber. Eruptive units of La Primavera are either aphyric or contain up to 15% phenocrysts of sodic sanidine ≧quartz >ferrohedenbergite >fayalite>ilmenite±titanomagnetite. Whereas major-element compositions of sanidine, clinopyroxene, and fayalite phenocrysts changed only slightly between eruptive groups, concentrations of many trace elements changed by factors of 5 to 10, resulting in crystal/glass partition coefficients that differ by factors of up to 20 between successively erupted units. The extreme variations in partitioning behavior are attributed to small changes in bulk composition of the melt because major-element compositions of the phenocrysts and temperature, pressure, and oxygen fugacity of the magma all remained essentially constant. Crystal settling and incremental partial melting by themselves appear incapable of producing either the chemical gradients within the Tala Tuff magma chamber or the trends with time in the post-caldera lavas. Transport of trace metals as volatile complexes within the thermal and gravitational gradient in volatilerich but water-undersaturated magma is considered the dominant process responsible for compositional zonation in the Tala Tuff. The evolution of the post-caldera lavas with time is thought to involve the diffusive emigration of trace elements from a relatively dry magma as a decreasing proportion of network modifiers and/or a decreasing concentration of complexing ligands progressively reduced trace-metal-site availability in the silicate melt.
Paleomagnetism and Lithostratigraphy of the Miocene Tuff of Huntoon Creek Type Section
NASA Astrophysics Data System (ADS)
Johnson, S.; Pluhar, C. J.; Lindeman, J. R.
2014-12-01
Here we define the Tuff of Huntoon Creek (THC), previously identified and mapped in Mono Basin, CA by Gilbert et al. (1968) as "latite ignimbrite" (K-Ar date of 11.1-11.9 Ma). Formally defining this formation and its paleomagnetic characteristics, can help reveal the spatial and temporal relationships of the Walker Lane and Mina Deflection structural features, including distribution of vertical axis rotation. THC is composed of four tuffs with an intercalated volcaniclastic sandstone giving a total stratigraphic thickness of ~300 m. We define THC in a gorge of Huntoon Creek, where the stratigraphic section is capped by Pliocene basalt. The lowest and most extensive stratigraphic unit, the Huntoon Valley member of THC, is ~243 m thick and can be distinguished from other units by the presence of sanidine and biotite phenocrysts and normal polarity. A 7-meter-thick volcaniclastic sandstone overlies the Huntoon Valley member, straddling a magnetic polarity reversal within the section. The 3 overlying members of THC are reversed-polarity, biotite-bearing, sanidine-free tuffs of variable degrees of welding. Their paleomagnetic directions are each statistically distinguishable from the others, indicating that the deposition of each tuff is separated by a significant amount of time and can be used as a geologically instantaneous measure of Earth's magnetic field for purposes of averaging out secular variation. The capping Pliocene olivine basalt was emplaced over an erosional unconformity of significant relief, as evidenced by the complete absence at some locations of the uppermost biotite-bearing THC member. The tilt corrected mean paleomagnetic direction for the 4 members of THC indicate a clockwise rotation magnitude of 77.5°±40.3°. The absolute rotation results of this locality are statistically indistinguishable from the relative rotation results of this locality compared to Cowtrack Mountain (Lindeman et al. 2013). The corroboration of these data suggests that this region of the Mina Deflection has undergone large magnitude clockwise rotation since the emplacement of THC. However, the capping basalt exhibits a magnetic declination of due north, suggesting that this unit experienced little rotation and that rotational deformation in this region had mostly ended by the time of its emplacement at ~3.5 Ma.
NASA Astrophysics Data System (ADS)
Szymanski, D. W.; Patino, L. C.; Vogel, T. A.; Alvarado, G. E.
2002-12-01
Explaining the occurrence of high-silica arc magmatism in the absence of continental crust remains a fundamental problem in igneous petrology. Recent work in the southern portion of the Central American volcanic arc has expanded the database for the abundant high-silica ash-flow tuffs erupted on top of thick oceanic basement in Costa Rica and southern Nicaragua. Regional differences in geochemistry are observed in data from central and northern Costa Rica. In addition, local heterogeneities among units are demonstrated in plots of both major and trace elements. High-silica ash-flow tuffs in central Costa Rica include the Tiribi Tuff (~0.33 Ma) and Alto Palomo formation (~0.56 Ma). In northern Costa Rica, numerous large silicic ash-flow sheets are found in the Guanacaste province, ranging from late Miocene (<10 Ma) to Pleistocene (~0.6 Ma) in age. A frequency histogram of normalized silica content for all analyses to date from these units (n=222) produces a left-skewed curve with a mode occurring at approximately 70 wt.% SiO2. Samples from the northern region (n=107) demonstrate a tighter distribution of silica content (60.1-78.7 wt.% SiO2 with a median of 72.2 wt.% SiO2) compared to samples from the central region (n=115, 55.4-74.2 wt.% SiO2 with a median of 67.1 wt.% SiO2). The least evolved samples come from the Tiribi Formation in the Valle Central and are chemically distinct from rocks in the Guanacaste region. In both chemistry and geographical position, the Alto Palomo formation appears to represent a transition between tuffs in the Valle Central and those in Guanacaste. Incompatible trace element ratios for these units are nearly identical to regional trends observed in basaltic to andesitic lavas of the modern Costa Rican arc (e.g. Ba/Nb). The Papagayo sequence is an example of chemical variation within one vertical section. The sequence is a ~21 m section of well-exposed tuff that represents an essentially continuous sampling of an evolving magma body. Major-element analyses from a systematic vertical sampling of the section support a model of crystal fractionation, eruption, and mafic replenishment of the magma chamber. Samples range from 60.1 to 70.2 wt.% SiO2, with the most mafic sample occurring at the top of sequence as a visibly mafic-silicic mingled pumice. The Rio Liberia (~1.47 Ma) and Salitral (~1.3 Ma) formations in the Guanacaste region form a series of tuffs, related by the same inferred vent. Despite overlapping silica content, the units have distinct mineral compositions. The Salitral formation includes plagioclase- and amphibole-rich units that appear very similar in the field, while the Rio Liberia contains biotite. Chemically, the units are distinct, forming several separate trends in trace element plots. These heterogeneities most likely reflect differences in both source and/or processes of magma evolution.
A Remotely Sensed and Paleomagnetic Perspective on the Bonelli Tuff of NW AZ and SE CA
NASA Astrophysics Data System (ADS)
Gomez, C. D.
2015-12-01
The southern Black and Cerbat Mountains of NW AZ and the Sacramento Mountains of SE CA preserve ignimbrites associated with multiple episodes of volcanic activity that span at least a million years. Unraveling the stratrigraphy of these deposits, as well as their eruptive centers, is critical for constraining the volcanic history of this ignimbrite, the 18.8 Ma Peach Spring Tuff, is the recently identified 17.7 Ma Tuff of Bonelli House (TB) (Ferguson & Cook 2015) and may also occur in the southern Black and Sacramento Mountains. To help determine the extent and possible source of the TB, we have performed a combined remote sensing and paleomagnetic study of this unit, including possible correlatives. Paleomagnetic work involved Remanence and anisotropic magnetic susceptibility methods. Drill samples were collected and processed at Scripps Institute of Oceanography & Pomona College. An AC current was run to obtain the Paleomag current, as opposed to the traditional of heating up the cores at specific intervals. Sacramento Mountains samples produced an average direction of 200.9 / -26.4, which contrasts the Peach Spring Tuff paleodirection of 036.4/33 (Wells & Hillhouse, 1989). An AMS direction was determined using a MFK1 Kappabridge instrument and consistently showed similar flow direction to that of the PST. In compiling our data on a map, we took into account the Whipple Detachment Fault, ~40 km westward (Lister & Davis, 1989). We were able to identify a spectral signature and remnant paleomagnetic direction for the TB and identify potential additional outcrops in the southern Black mountains. AMS showed us that the ignimbrites originated from a source in the Silver Creek Caldera, which may indicate the PST at TB were produced from a similar source. The remnant paleomagnetic direction allows us to closely correlate these tuff units as occurring within a similar timeframe. The contrasting paleodirection of the TB and the PST allows us to confidently say that the Peach Spring and Bonelli Tuffs occurred at different times when the Earth's magnetic field directions were different.
NASA Astrophysics Data System (ADS)
Moody, A.; Fairley, J. P., Jr.
2014-12-01
In light of recent advancements in reservoir enhancement and injection tests at active geothermal fields, there is interest in investigating the geothermal potential of widespread subsurface welded tuffs related to caldera collapse on the Snake River Plain (SRP). Before considering stimulation strategies, simulating heat extraction from the reservoir under in-situ fracture geometries will give a first-order estimation of extractable heat. With only limited deep boreholes drilled on the SRP, few analyses of the bulk hydrologic properties of the tuffs exist. Acknowledging the importance of the spatial heterogeneity of fractures to the permeability and injectivity of reservoirs hosted in impermeable volcanic units, we present fracture distributions from ICDP hole 5036-2A drilled as a part of Project HOTSPOT. The core documents more than 1200 m of largely homogeneous densely welded tuff hosting an isothermal warm-water reservoir at ~60˚ C. Multiple realizations of a hypothetical reservoir are created using sequential indicator algorithms that honor the observed vertical fracture frequency statistics. Results help form criteria for producing geothermal energy from the SRP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurtz, Jeffrey; Rehfeldt, Ken
Well ER-2-2 was drilled for the U.S. Department of Energy, Nevada National Security Administration Nevada Field Office in support of the Underground Test Area (UGTA) Activity. The well was drilled from January 17 to February 8, 2016, as part of the Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nevada. The primary purpose of the well was to collect hydrogeologic data to evaluate uncertainty in the flow and transport conceptual model and its contamination boundary forecasts, and to detect radionuclides in groundwater from the CALABASH (U2av) underground test. Well ER-2-2 was notmore » completed as planned due to borehole stability problems. As completed, the well includes a piezometer (p1) to 582 meters (m) (1,909 feet [ft]) below ground surface (bgs) installed in the Timber Mountain lower vitric-tuff aquifer (TMLVTA) and a 12.25-inch (in.) diameter open borehole to 836 m (2,743 ft) bgs in the Lower tuff confining unit (LTCU). A 13.375-in. diameter carbon-steel casing is installed from the surface to a depth of 607 m (1,990 ft) bgs. Data collected during borehole construction include composite drill cutting samples collected every 3.0 m (10 ft), geophysical logs to a depth of 672.4 m (2,206 ft) bgs, water-quality measurements (including tritium), water-level measurements, and slug test data. The well penetrated 384.05 m (1,260 ft) of Quaternary alluvium, 541.93 m (1,778 ft) of Tertiary Volcanics (Tv) rocks, and 127.71 m (419 ft) of Paleozoic carbonates. The stratigraphy and lithology were generally as expected. However, several of the stratigraphic units were significantly thicker then predicted—principally, the Tunnel formation (Tn), which had been predicted to be 30 m (100 ft) thick; the actual thickness of this unit was 268.22 m (880 ft). Fluid depths were measured in the borehole during drilling as follows: (1) in the piezometer (p1) at 552.15 m (1,811.53 ft) bgs and (2) in the main casing (m1) at 551.69 m (1,810.01 ft) bgs. As expected, field measurements for tritium were above the Safe Drinking Water Act limit (20,000 picocuries per liter). All Fluid Management Plan requirements were met.« less
Physical and Thermal Structure of the Bishop Tuff, California
NASA Astrophysics Data System (ADS)
Wilson, C. J.; Hildreth, W.
2001-12-01
The 0.76 Ma Bishop Tuff, California, includes an ignimbrite constructed from a series of overlapping packages of material erupted sequentially and simultaneously from multiple sources around the ring fracture of Long Valley caldera (Wilson, C.J.N., Hildreth, W., 1997, Journal of Geology 105, 407-439). Exceptionally good continuous exposures of the ignimbrite in the walls of Owens Gorge to the east of Long Valley provide a cross-section through the east-side packages (Ig1E and Ig2E). We have measured 10 sections up the gorge walls to draw up a cross section of the ignimbrite down Owens Gorge, using lithic abundances and lithologies to define the physical eruptive packages and their subdivisions, and measurements of tuff bulk density (as an easily measured proxy for welding intensity) to define the thermal eruptive packages. The physically emplaced bodies of ignimbrite represent an overlapping, shingling suite of material such that successively later ignimbrite occurs most prominently farther away from source. Two major and two lesser zones of maximum density (welding) are present, the lower two (in Ig1Ea and lower Ig1Eb) in upper Owens Gorge, and the two most prominent (upper Ig1Eb and Ig2Eb) in middle and lower parts of the gorge. Welding fluctuations are controlled by bulk temperatures of individual batches of hotter and cooler material, but the intensity of the welding also depends on deposit thickness (i.e. load stress). Physically defined contacts between ignimbrite packages show that time breaks inferred to be of hours may not result in formation of any visible parting or flow unit boundary. Furthermore, positions of density (welding) minima between zones of higher density tuff do not coincide with horizons of stratigraphic significance. These observations lead to two conclusions. (1) The absence of clear partings or flow unit boundaries in an ignimbrite sequence is not diagnostic either of the material representing a single flow unit, or of the material being continuously progressively aggraded. (2) Use of the density (welding) minimum to locate the boundaries of cooling units and in measuring and modelling the emplacement and thermal history of compound cooling units may lead to errors.
Paleoflow of the Tuff of San Felipe on Isla Angel de la Guarda
NASA Astrophysics Data System (ADS)
Skinner, S. M.; Stock, J. M.; Martin Barajas, A.
2013-05-01
The Tuff of San Felipe is a widespread 12.5 Ma ignimbrite in northwestern Mexico that has a proven potential in reconstructing the rifting history of the Gulf of California. Previous studies have used the Tuff of San Felipe to correlate Isla Tiburon to the Sierra San Felipe on the Baja California Peninsula, and to correlate central Isla Angel de la Guarda to Baja California in the region of Cataviña. However, because only scattered outcrops are preserved in this latter region, paleoflow directions are an important additional constraint for reconstructing its past position relative to Isla Angel de la Guarda. We have confirmed the presence of the Tuff of San Felipe on Isla Angel de la Guarda and collected rocks from 44 sites for paleomagnetic and AMS analysis. Our work on the Tuff of San Felipe has revealed discrepancies in the magnetic fabric, and resulting flow direction, on the scale of hundreds of meters. The lack of a uniform flow direction from a single mesa impairs our ability to correlate offset channelized flows over large distances. To investigate the robustness of the AMS fabric we have performed a spatially dense sampling of the unit. Rigorous rock magnetic experiments will be used to investigate any correlation between changes in the magnetic mineralogy of the samples and any irregularities or constancies in the measured fabrics and flow directions. With this study we aim to characterize the variability of the AMS ellipsoid in natural volcanic samples and the scale at which AMS can be used as a meaningful indicator of paleoflow in the Tuff of San Felipe.
Leo, G.W.
1985-01-01
These volcanic rocks consist of a lower, mainly mafic unit of hornblende-plagioclase amphibolite and an upper, mainly felsic metamorphosed quartz keratophyre tuff. They are intruded by sills, dykes and plugs of trondhjemite; which is highly silicic (SiO2, 73-81%), low in Al2O3 (11.3-13.5%) and generally contains <1% K2O. Both trondhjemite and volcanics are calc-alkaline. The major- and minor-element geochemistry of the trondhjemites is closely similar to that of the quartz keratophyre tuff. These rocks were probably produced by partial melting of basaltic source rocks, rather than by fractional crystallization, in view of the virtually bimodal nature of the Ammonoosuc assemblage. The generation of the felsic rocks occurred at deeper levels along a subduction zone dipping eastward.-L.C.H.
Sarna-Wojcicki, A. M.; Pringle, M.S.; Wijbrans, J.
2000-01-01
Precise dating of sanidine from proximal ash flow Bishop Tuff and air fall Bishop pumice and ash, California, can be used to derive an absolute age of the Matuyama Reversed-Brunhes Normal (M-B) paleomagnetic transition, identified stratigraphically close beneath the Bishop Tuff and ash at many sites in the western United States. An average age of 758.9 ?? 1.8 ka, standard error of the mean (SEM), was obtained for individual sanidine crystals or groups of several crystals, determined from ???70 individual analyses of sanidine separates from 11 sample groups obtained at five localities. The basal air fall pumice (757.7 ?? 1.8 ka) and overlying ash flow tuff (762.2 ?? 4.7 ka) from near the source yield essentially the same dates within errors of analysis, suggesting that the two units were emplaced close in time. A date on distal Bishop air fall ash bed at Friant, California, ???100 km to the west of the source area, is younger, 750.1 ?? 4.3 ka, but not significantly different within analytical error (??1 standard deviation). Previous dates of the Bishop Tuff, obtained by others using conventional K-Ar and the fission track method on zircons, ranged from ???650 ka to ???1.0 Ma. The most recent, generally accepted date by the K-Ar method on sanidine was 738 ?? 3 ka. We infer, as others before, that many K-Ar dates on sanidine feldspar are too young owing to incomplete degassing of radiogenic Ar during fusion in the K-Ar technique and that many older K-Ar dates are too old owing to detrital or xenocrystic contamination in the larger samples that are necessary for the technique. The new dates are similar to recent 40Ar/39Ar ages of the Bishop Tuff determined on individual samples by others but are derived from a larger proximal sample population and from multiple analysis of each sample. The results provide a definitive and precise age calibration of this widespread chronostratigraphic marker in the western United States and northeastern Pacific Ocean. We calculated the age of the M-B transition at five sites, assuming constant sedimentation rates, the age of the Bishop ash bed and one or more well-dated chronostratigraphic horizons above and below the Bishop Tuff ash bed and M-B transition, and stratigraphic separations between these datum levels. The age of the M-B transition is 774.2 ?? 2.8 ka, based on the average of eight such calculations, close to other recent determinations, and similar to that determined from the astronomically tuned polarity timescale. Our approach provides an alternative and surprisingly precise method for determining the age of the M-B and other chronostratigraphic levels. The above dates, calculated using U.S. Geological Survey values of 27.92 Ma for the Taylor Creek (TC) sanidine can be recalculated to other widely used values for these monitors. For example, using recently published values of 28.34 Ma (TC) and 523.1 Ma (McLure Mountain hornblende, MMhb-1), the resulting ages are ???774 ka for the Bishop Tuff and ash bed and ???789 ka for the M-B transition. Copyright 2000 by the American Geophysical Union.
Larsen, Daniel; Nelson, Philip H.
2000-01-01
Core descriptions and geophysical logs from two boreholes (CCM-1 and CCM-2) in the Oligocene Snowshoe Mountain Tuff and Creede Formation, south-central Colorado, are used to interpret sedimentary and volcanic facies associations and their physical properties. The seven facies association include a mixed sequence of intracaldera ash-flow tuffs and breccias, alluvial and lake margin deposits, and tuffaceous lake beds. These deposits represent volcanic units related to caldera collapse and emplacement of the Snowshoe Mountain Tuff, and sediments and pyroclastic material deposited in the newly formed caldera basin, Early sedimentation is interpreted to have been rapid, and to have occurred in volcaniclastic fan environments at CCM-1 and in a variery of volcaniclastic fan, braided stream shallow lacustrine, and mudflat environments at CCM-2. After an initial period of lake-level rise, suspension settling, turbidite, and debris-flow sedimentation occurred in lacustrine slope and basin environments below wave base. Carbonate sedimentation was initially sporadic, but more continuous in the latter part of the recorded lake history (after the H fallout tuff). Sublacustrine-fan deposition occurred at CCM-1 after a pronounced lake-level fall and subsequent rise that preceded the H tuff. Variations in density, neutron, gamma-ray, sonic, and electrical properties of deposits penetrated oin the two holes reflect variations in lithology, porosity, and alteration. Trends in the geophysical properties of the lacustrine strata are linked to downhole changes in authigenic mineralology and a decrease in porosity interpreted to have resulted primarily from diagenesis. Lithological and geophysical characteristics provide a basis for correlation of the cores; however, mineralogical methods of correlation are hampered by the degree of diagenesis and alteration.
Paleoflow of the Tuff of San Felipe on Isla Angel de la Guarda
NASA Astrophysics Data System (ADS)
Skinner, S. M.; Stock, J. M.; Martin, A.
2013-12-01
The Tuff of San Felipe is a widespread 12.5 Ma ignimbrite in northwestern Mexico that has a proven potential in reconstructing the rifting history of the Gulf of California. Previous studies have used the Tuff of San Felipe to correlate Isla Tiburon to the Sierra San Felipe on the Baja California Peninsula, and to correlate central Isla Angel de la Guarda to Baja California in the region of Cataviña. However, because only scattered outcrops are preserved in this latter region, paleoflow directions are an important additional constraint for reconstructing its past position relative to Isla Angel de la Guarda. We have confirmed the presence of the Tuff of San Felipe on Isla Angel de la Guarda and collected rocks from 44 sites for paleomagnetic and AMS analysis. Our work on the Tuff of San Felipe has revealed discrepancies in the magnetic fabric, and resulting flow direction. The azimuth of flow directions observed at 27 sites over 1.5 square kilometers ranges from 8° to 355° with a mean direction of 195° and an α95 of 27°. The lack of a uniform flow direction from a single mesa impairs our ability to correlate offset channelized flows over large distances. To investigate the robustness of the AMS fabric we have performed a spatially dense sampling of the unit. Rigorous rock magnetic experiments will be used to investigate any correlation between changes in the magnetic mineralogy of the samples and any irregularities or constancies in the measured fabrics and flow directions. With this study we aim to characterize the variability of the AMS ellipsoid in natural volcanic samples and the scale at which AMS can be used as a meaningful indicator of paleoflow in the Tuff of San Felipe.
Albert, Rosa Maria; Bamford, Marion K
2012-08-01
As part of ongoing research at Olduvai Gorge, Tanzania, to determine the detailed paleoenvironmental setting during Bed I and Bed II times and occupation of the basin by early hominins, we present the results of phytolith analyses of Tuff IF which is the uppermost unit of Bed I. Phytoliths were identified in most of the levels and localities on the eastern paleolake margin, but there are not always sufficient numbers of identifiable morphologies to infer the specific type of vegetation due to dissolution. Some surge surfaces and reworked tuff surfaces were vegetated between successive ash falls, as indicated by root-markings and the presence of a variety of phytolith morphotypes. Dicotyledonous wood/bark types were dominant except at the FLK N site just above Tuff IF when monocots are dominant and for the palm-dominated sample from the reworked channel cutting down into Tuff IF at FLK N. The area between the two fault scarps bounding the HWK Compartment, approximately 1 km wide, was vegetated at various time intervals between some of the surges and during the reworking of the Tuff. By lowermost Bed II times the eastern margin was fully vegetated again. Climate and tectonic activity probably controlled the fluctuating lake levels but locally the paleorelief and drainage were probably the controlling factors for the vegetation changes. These data support a scenario of small groups of hominins making brief visits to the paleolake during uppermost Bed I times, followed by a more desirable vegetative environment during lowermost Bed II times. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Aiello, Gemma; Marsella, Ennio; Fiore, Vincenzo Di
2012-06-01
A detailed reconstruction of the stratigraphic and tectonic setting of the Gulf of Pozzuoli (Naples Bay) is provided on the basis of newly acquired single channel seismic profiles coupled with already recorded marine magnetics gathering the volcanic nature of some seismic units. Inferences for the tectonic and magmatic setting of the Phlegrean Fields volcanic complex, a volcanic district surrounding the western part of the Gulf of Naples, where volcanism has been active since at least 50 ka, are also discussed. The Gulf of Pozzuoli represents the submerged border of the Phlegrean caldera, resulting from the volcano-tectonic collapse induced from the pyroclastic flow deposits of the Campanian Ignimbrite (35 ka). Several morpho-depositional units have been identified, i.e., the inner continental shelf, the central basin, the submerged volcanic banks and the outer continental shelf. The stratigraphic relationships between the Quaternary volcanic units related to the offshore caldera border and the overlying deposits of the Late Quaternary depositional sequence in the Gulf of Pozzuoli have been highlighted. Fourteen main seismic units, both volcanic and sedimentary, tectonically controlled due to contemporaneous folding and normal faulting have been revealed by geological interpretation. Volcanic dykes, characterized by acoustically transparent sub-vertical bodies, locally bounded by normal faults, testify to the magma uprising in correspondence with extensional structures. A large field of tuff cones interlayered with marine deposits off the island of Nisida, on the western rim of the gulf, is related to the emplacement of the Neapolitan Yellow Tuff deposits. A thick volcanic unit, exposed over a large area off the Capo Miseno volcanic edifice is connected with the Bacoli-Isola Pennata-Capo Miseno yellow tuffs, cropping out in the northern Phlegrean Fields.
NASA Astrophysics Data System (ADS)
Marshall, B. D.; Moscati, R. J.
2005-12-01
Yucca Mountain, a ridge of shallowly dipping, Miocene-age volcanic rocks in southwest Nevada, is the proposed site for a nuclear waste repository to be constructed in the 500- to 700-m-thick unsaturated zone (UZ). At the proposed repository, the 300-m-thick Topopah Spring Tuff welded unit (TSw) is overlain by approximately 30 m of nonwelded tuffs (PTn); the Tiva Canyon Tuff welded unit (TCw) overlies the PTn with a range in thickness from 0 to approximately 130 m at the site. The amount of water percolation through the UZ is low and difficult to measure directly, but local seepage into mined tunnels has been observed in the TCw. Past water seepage in the welded tuffs is recorded by widespread, thin (0.3 cm) coatings of calcite and silica on fracture surfaces and within cavities. Abundances of calcite and silica in the coatings were determined by X-ray microfluorescence mapping and subsequent multispectral image analysis of over 200 samples. The images were classified into constituent phases including opal-chalcedony-quartz (secondary silica) and calcite. In the TCw samples, the median calcite/silica ratio is 8; in the TSw samples within 35 m below the PTn, median calcite/silica falls to 2, perhaps reflecting an increase in soluble silica from the presence of glass in the nonwelded tuffs. In the deeper parts of the TSw, median calcite/silica reaches 100 and many samples contain no detectable secondary silica phase. Evaporation and changing pCO2 control precipitation of calcite from water percolating downward in the UZ, but precipitation of opal requires only evaporation. Calcite/silica ratios, therefore, can constrain the relative importance of evaporation in the UZ. Although calcite/silica values scatter widely within the TSw, reflecting the spatial variability of gas and water flow, average calcite/silica ratios increase with stratigraphic depth, indicating less evaporation at the deeper levels of the UZ. Coupled with the much smaller calcite/silica ratios observed in coatings from the TCw, these data indicate that evaporation decreases with depth in the UZ. Evaporation at the repository horizon and in the overlying units is an important process that reduces the amount of seepage at the repository horizon.
Quartz phenocrysts preserve volcanic stresses at Long Valley and Yellowstone calderas
NASA Astrophysics Data System (ADS)
Befus, K. S.; Leonhardi, T. C.; Manga, M.; Tamura, N.; Stan, C. V.
2016-12-01
Magmatic processes and eruptions are the consequence of stresses active in volcanic environments. Few techniques are presently available to quantify those stresses because they operate in subsurface and/or hazardous environments, and thus new techniques are needed to advance our understanding of key processes. Here, we provide a dataset of volcanic stresses that were imparted to quartz crystals that traveled through, and were hosted within, pyroclastic and effusive eruptions from Long Valley and Yellowstone calderas. We measured crystal lattice deformation with submicron spatial resolution using the synchrotron X-ray microdiffraction beamline (12.3.2) at the Advanced Light Source, Lawrence Berkeley National Laboratory. Quartz from all units produces diffraction patterns with residual strains locked in the crystal lattice. We used Hooke's Law and the stiffness constants of quartz to calculate the stresses that caused the preserved residual strains. At Long Valley caldera, quartz preserves stresses of 187±80 MPa within pumice clasts in the F1 fall unit of the Bishop Tuff, and preserves stresses of 120±45 MPa from the Bishop Tuff welded ignimbrite. At Yellowstone caldera quartz preserves stresses of 115±30 and 140±60 MPa within pumices from the basal fall units of the Mesa Falls Tuff and the Tuff of Bluff Point, respectively. Quartz from near-vent and flow-front samples from Summit Lake lava flow preserves stresses up to 130 MPa, and show no variation with distance travelled. We believe that subsurface processes cause the measured residual stresses, but it remains unclear if they are relicts of fragmentation or from the magma chamber. The residual stresses from both Long Valley and Yellowstone samples roughly correlate to lithostatic pressures estimated for the respective pre-eruption magma storage depths. It is possible that residual stress in quartz provides a new geobarometer for crystallization pressure. Moving forward, we will continue to perform analyses and experiments on natural and synthetic crystals to better determine the source of residual stresses.
The Pioneer Ultramafic Complex of the Barberton Greenstone Belt, South Africa
NASA Astrophysics Data System (ADS)
Cooper, M. R.; Byerly, G. R.; Lowe, D. R.; Thompson, M. E.
2005-12-01
The 3.55-3.22 Ga Barberton Greenstone Belt is an approximately 100km x 30km northeast trending, isoclinally folded, volcanic and sedimentary succession surrounded by intrusive granitic rocks. It is perhaps Earth's best preserved mid-Archean supracrustal sequence and also among the most magnesian, making it an ideal location for studying compositionally distinct rocks of the Archean, such as komatiites. The Pioneer Ultramafic Complex has been interpreted as a komatiitic intrusion but we argue that it is a sequence of layered komatiitic flows and interbedded tuffs correlative with other komatiitic extrusive units of the 3.29 Ga Weltevreden Formation, the uppermost formation of the Onverwacht Group. The Pioneer Ultramafic Complex contains at least 900m of section in the study area, including at least 5 flow sets, with individual flows up to 100 m thick, sections of tuff up to 100m thick and additional thinner tuff units. The base of the sequence is in fault contact with the Sawmill Ultramafic Complex, which is similar to and perhaps correlative with the Pioneer. The top of the sequence is bounded by the Moodies Fault and slightly younger sedimentary rocks of the Fig Tree and Moodies Groups. Typical flows of the Pioneer have highly serpentinized olivine-rich cumulate bases, fresh olivine bearing peridotitic lithologies in central portions, and increasing pyroxene content, pyroxene size, and elongation of grains toward the flow tops. Three of the five flows are capped with random and/or oriented spinifex layers. The tuffs within this and other layered ultramafic complexes of the Barberton Greenstone Belt are mostly fine grained, slaty serpentinites that were previously interpreted as bedding horizontal zones of shearing. However, rare preservation of angular and vesicular lapilli, and more commonly cross-stratification in finer grained layers, provide strong evidence that these layers represent tuffs. High chromium and other trace element contents suggest they are komatiitic tuffs likely co-magmatic with the interbedded komatiitic lava flows. Compositions of fresh olivines range between 91 to 93 percent forsterite, indicating a komatiitic melt composition. In addition to olivine phenocrysts, fresh chromite, orthopyroxene, pigeonite, and augite are all present as smaller intercumulus crystals or microphenocrysts. The pyroxenes have Mg numbers up to 89 and Al/Ti ratios approximately 10-15. The latter are consistent with the Al/Ti ratios of 20-30 found within the komatiites and tuffs analyzed thus far. These ratios indicate the flows belong to the aluminium undepleted group of komatiites. The rock and mineral chemistry of these flows allow us to determine melt compositions and explore correlations and relationships with other komatiitic flows and layered ultramafic complexes of the Barberton Greenstone Belt. Field studies of these flows help characterize an Archean igneous complex believed to represent shallow marine deposition of komatiitic tuffs and coeval emplacement of thick vertically differentiated komatiitic flows.
Rioux, Matthew; Farmer, Lang; Bowring, Samuel; Wooton, Kathleen M.; Amato, Jeffrey M.; Coleman, Drew S.; Verplanck, Philip L.
2016-01-01
The Organ Mountains caldera and batholith expose the volcanic and epizonal plutonic record of an Eocene caldera complex. The caldera and batholith are well exposed, and extensive previous mapping and geochemical analyses have suggested a clear link between the volcanic and plutonic sections, making this an ideal location to study magmatic processes associated with caldera volcanism. Here we present high-precision thermal ionization mass spectrometry U–Pb zircon dates from throughout the caldera and batholith, and use these dates to test and improve existing petrogenetic models. The new dates indicate that Eocene volcanic and plutonic rocks in the Organ Mountains formed from ~44 to 34 Ma. The three largest caldera-related tuff units yielded weighted mean 206Pb/238U dates of 36.441 ± 0.020 Ma (Cueva Tuff), 36.259 ± 0.016 Ma (Achenback Park tuff), and 36.215 ± 0.016 Ma (Squaw Mountain tuff). An alkali feldspar granite, which is chemically similar to the erupted tuffs, yielded a synchronous weighted mean 206Pb/238U date of 36.259 ± 0.021 Ma. Weighted mean 206Pb/238U dates from the larger volume syenitic phase of the underlying Organ Needle pluton range from 36.130 ± 0.031 to 36.071 ± 0.012 Ma, and the youngest sample is 144 ± 20 to 188 ± 20 ka younger than the Squaw Mountain and Achenback Park tuffs, respectively. Younger plutonism in the batholith continued through at least 34.051 ± 0.029 Ma. We propose that the Achenback Park tuff, Squaw Mountain tuff, alkali feldspar granite and Organ Needle pluton formed from a single, long-lived magma chamber/mush zone. Early silicic magmas generated by partial melting of the lower crust rose to form an epizonal magma chamber. Underplating of the resulting mush zone led to partial melting and generation of a high-silica alkali feldspar granite cap, which erupted to form the tuffs. The deeper parts of the chamber underwent continued recharge and crystallization for 144 ± 20 ka after the final eruption. Calculated magmatic fluxes for the Organ Needle pluton range from 0.0006 to 0.0030 km3/year, in agreement with estimates from other well-studied plutons. The petrogenetic evolution proposed here may be common to many small-volume silicic volcanic systems.
NASA Astrophysics Data System (ADS)
Sohn, Y. K.; Son, M.; Jeong, J. O.; Jeon, Y. M.
2009-10-01
The Cretaceous Kusandong Tuff, Korea, is a thin (1-5 m thick) but laterally extensive (~ 200 km) silicic ignimbrite emplaced in a fluviolacustrine basin adjacent to a continental volcanic arc. The tuff has been used as an excellent key bed because of its great lateral continuity and unique lithology, characterized by the virtual absence of juvenile clasts and an abundance of quartz and feldspar crystals (up to 55-73 vol.%). The tuff is mostly massive and ungraded and locally shows crude internal layering, basal inverse grading and near-top normal grading of crystals, either erosional or non-erosional lower surfaces, and flat-lying to imbricated grain fabrics. Fragile intraformational clasts of mudstone and tuff are also included. These features provide only ambiguous information on the properties of the responsible pyroclastic density currents: i.e. whether they were dense and laminar or dilute and turbulent. The overall lateral continuity and sheet-like geometry of the tuff suggests, however, that the transport system of the currents was highly expanded, dilute, and turbulent. A plug-flow or slab-flow model cannot explain the origin of crude internal layering, imbricated grain fabrics, and the high crystal content, which is most likely the result of vigorous sorting processes within a dilute and turbulent current. Features indicative of deposition from a dense and laminar transporting medium are locally present, suggesting that a dense and laminar depositional system could develop locally at the base of the dilute and turbulent transport system. The virtual absence of juvenile clasts in the tuff is interpreted to be due to rapid ascent, sudden decompression, and full fragmentation of silicic magma into fine glass shards and crystals. Scarcity of basement-derived accidental components together with the absence of pumiceous fallout deposits beneath the tuff is interpreted to be due to shallow-level fragmentation of magma followed by immediate generation of pyroclastic density currents from shallow-level blasts at the onset of eruption. The eruption occurred through multiple vent sites in a short period of time, producing a seemingly single but actually composite ignimbrite unit. Such an eruption was probably possible because of a regional tectonic event within the basin or in its vicinity. It is proposed that a composite ignimbrite with the characteristics of the Kusandong Tuff can be an exemplary product of syntectonic volcanism that can provide an insight into the interpretation of structural and stratigraphic evolution of a sedimentary basin.
Ash-flow tuffs of the Galiuro Volcanics in the northern Galiuro Mountains, Pinal County, Arizona
Krieger, Medora Louise Hooper
1979-01-01
The upper Oligocene and lower Miocene Galiuro Volcanics in the northern part of the Galiuro Mountains contains two distinctive major ash-flow tuff sheets, the Holy Joe and Aravaipa Members. These major ash-flows illustrate many features of ash-flow geology not generally exposed so completely. The Holy Joe Member, composed of a series of densely welded flows of quartz latite composition that make up a simple cooling unit. is a rare example of a cooling unit that has a vitrophyre at the top as well as at the base. The upper vitrophyre does not represent a cooling break. The Aravaipa Member. a rhyolite, is completely exposed in Aravaipa and other canyons and on Table Mountain. Remarkable exposures along Whitewash Canyon exhibit the complete change from a typical stacked-up interior zonation of an ash flow to a non welded distal margin. Vertical and horizontal changes in welding, crystallization, specific gravity, and lithology are exposed. The ash flow can be divided into six lithologic zones. The Holy Joe and Aravaipa Members of the Galiuro Volcanics are so well exposed and so clearly show characteristic features of ash-flow tuffs that they could be a valuable teaching aid and a source of theses for geology students.
Completion Report for Well ER-EC-5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bechtel Nevada
2004-10-01
Well ER-EC-5 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the summer of 1999 as part of the U.S. Department of Energy's hydrogeologic investigation program in the Western Pahute Mesa - Oasis Valley region just west of the Nevada Test Site. A 44.5-centimeter surface hole was drilled and cased off to a depth of 342.6 meters below ground surface. The borehole diameter was then decreased to 31.1 centimeters for drilling to amore » total depth of 762.0 meters. One completion string with three isolated slotted intervals was installed in the well. A preliminary composite, static water level was measured at the depth of 309.9 meters, 40 days after installation of the completion string. Detailed lithologic descriptions with stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters, and 18 sidewall samples taken at various depths below 349.6 meters, supplemented by geophysical log data and results from detailed chemical and mineralogical analyses of rock samples. The well penetrated Tertiary-age tuffs of the Thirsty Canyon Group, caldera moat-filling sedimentary deposits, lava of the Beatty Wash Formation, and landslide breccia and tuffs of the Timber Mountain Group. The well reached total depth in welded ashflow tuff of the Ammonia Tanks Tuff after penetrating 440.1 meters of this unit, which is also the main water-producing unit in the well. The geologic interpretation of data from this well constrains the western margin of the Ammonia Tanks caldera to the west of the well location.« less
NASA Astrophysics Data System (ADS)
Lozano, J. E.; Espejel-Garcia, V. V.; Villalobos-Aragon, A.
2013-05-01
Peralkaline igneous rocks are characterized by a lower total aluminum content in comparison to the total alkalis content (Na + K), and are important to determine the tectonic environment in which they formed. The majority of the volcanic activity in Chihuahua State, northern Mexico, is mostly related to the formation of the Sierra Madre Occidental (SMO), product of the subduction of the Farallon plate. Volcanic activity of Paleogene age (late Oligocene) to the SW of Chihuahua city, specifically in the towns of Laborcita de San Javier and Cusihuiriachic, includes 27.5 M.a. peralkaline tuffs, capping the older rhyolites and andesites of the SMO. This sequence becomes thicker and more prominent towards the west. A volcanic section of more than 1,000 m thick is exposed in the Laborcita area, which ranges in age from 27 to 35 Ma. The oldest (bottom) unit is a calc-alkaline felsic ash-flow tuff and rhyolitic lavas interbedded with flows of mafic to intermediate composition. Overlying this unit, there is a basaltic andesite with an age of 30 to 33 Ma. Right at the top of this sequence, there is the widespread peralkaline ash-flow tuff (27.5 M.a.), focus of this study. Geochemical analyses performed to rhyolitic tuffs by Mauger and Dayvault (1983), have a peralkalinity index ranging from 0.94 to 1.20, while analyses prepared for this project only reach an index of 0.60. The appearance of peralkaline rocks in the Chihuahua State indicates the change of tectonic regime from compression (Farallon plate subduction) to distension (Basin and Range and/or Rio Grande Rift), about 27 M.a. ago.
Geohydrology of volcanic tuff penetrated by test well UE-25b#1, Yucca Mountain, Nye County, Nevada
Lahoud, R.G.; Lobmeyer, D.H.; Whitfield, M.S.
1984-01-01
Test well UE-25bNo1, located on the east side of Yucca Mountain in the southwestern part of the Nevada Test Site, was drilled to a total depth of 1,220 meters and hydraulically tested as part of a program to evaluate the suitability of Yucca Mountain as a nuclear-waste repository. The well penetrated almost 46 meters of alluvium and 1,174 meters of Tertiary volcanic tuffs. The composite hydraulic head for aquifers penetrated by the well was 728.9 meters above sea level (471.4 meters below land surface) with a slight decrease in loss of hydraulic head with depth. Average hydraulic conductivities for stratigraphic units determined from pumping tests, borehole-flow surveys, and packer-injection tests ranged from less than 0.001 meter per day for the Tram Member of the Crater Flat Tuff to 1.1 meters per day for the Bullfrog Member of the Crater Flat Tuff. The small values represented matrix permeability of unfractured rock; the large values probably resulted from fracture permeability. Chemical analyses indicated that the water is a soft sodium bicarbonate type, slightly alkaline, with large concentrations of dissolved silica and sulfate. Uncorrected carbon-14 age dates of the water were 14,100 and 13,400 years. (USGS)
Brown, F.H.; Sarna-Wojcicki, A. M.; Meyer, C.E.; Haileab, B.
1992-01-01
Electron-microprobe analyses of glass shards from volcanic ash in Pliocene and Pleistocene deep-sea sediments in the Gulf of Aden and the Somali Basin demonstrate that most of the tephra layers correlate with tephra layers known on land in the Turkana Basin of northern Kenya and southern Ethiopia. Previous correlations are reviewed, and new correlations proposed. Together these data provide correlations between the deep-sea cores, and to the land-based sections at eight levels ranging in age from about 4 to 0.7 Ma. Specifically, we correlate the Moiti Tuff (???4.1 Ma) with a tephra layer at 188.6 m depth in DSDP hole 231 and with a tephra layer at 150 m depth in DSDP hole 241, the Wargolo Tuff with a tephra layer at 179.7 m in DSDP Hole 231 and with a tephra layer at 155.3 m depth in DSDP Hole 232, the Lomogol Tuff (defined here) with a tephra layer at 165 m in DSDP Hole 232A, the Lokochot Tuff with a tephra layer at 140.1 m depth in DSDP Hole 232, the Tulu Bor Tuff with a tephra layer at 160.8 m depth in DSDP Hole 231, the Kokiselei Tuff with a tephra layer at 120 m depth in DSDP Hole 231 and with a tephra layer at 90.3 m depth in DSDP Hole 232, the Silbo Tuff (0.74 Ma) with a tephra layer at 35.5 m depth in DSDP Hole 231 and possibly with a tephra layer at 10.9 m depth in DSDP Hole 241. We also present analyses of other tephra from the deep sea cores for which correlative units on land are not yet known. The correlated tephra layers provide eight chronostratigraphic horizons that make it possible to temporally correlate paleoecological and paleoclimatic data between the terrestrial and deep-sea sites. Such correlations may make it possible to interpret faunal evolution in the Lake Turkana basin and other sites in East Africa within a broader regional or global paleoclimatic context. ?? 1992.
Volcanism at 1.45 Ma within the Yellowstone Volcanic Field, United States
NASA Astrophysics Data System (ADS)
Rivera, Tiffany A.; Furlong, Ryan; Vincent, Jaime; Gardiner, Stephanie; Jicha, Brian R.; Schmitz, Mark D.; Lippert, Peter C.
2018-05-01
Rhyolitic volcanism in the Yellowstone Volcanic Field has spanned over two million years and consisted of both explosive caldera-forming eruptions and smaller effusive flows and domes. Effusive eruptions have been documented preceding and following caldera-forming eruptions, however the temporal and petrogenetic relationships of these magmas to the caldera-forming eruptions are relatively unknown. Here we present new 40Ar/39Ar dates for four small-volume eruptions located on the western rim of the second-cycle caldera, the source of the 1.300 ± 0.001 Ma Mesa Falls Tuff. We supplement our new eruption ages with whole rock major and trace element chemistry, Pb isotopic ratios of feldspar, and paleomagnetic and rock magnetic analyses. Eruption ages for the effusive Green Canyon Flow (1.299 ± 0.002 Ma) and Moonshine Mountain Dome (1.302 ± 0.003 Ma) are in close temporal proximity to the eruption age of the Mesa Falls Tuff. In contrast, our results indicate a period of volcanism at ca 1.45 Ma within the Yellowstone Volcanic Field, including the eruption of the Bishop Mountain Flow (1.458 ± 0.002 Ma) and Tuff of Lyle Spring (1.450 ± 0.003 Ma). These high-silica rhyolites are chemically and isotopically distinct from the Mesa Falls Tuff and related 1.3 Ma effusive eruptions. The 40Ar/39Ar data from the Tuff of Lyle Spring demonstrate significant antecrystic inheritance, prevalent within the upper welded ash-flow tuff matrix, and minimal within individual pumice. Antecrysts are up to 20 kyr older than the eruption, with subpopulations of grains occurring every few thousand years. We interpret these results as an indicator for the timing of magmatic pulses into a growing magmatic system that would ultimately erupt the Tuff of Lyle Spring, and which we more broadly interpret as the tempo of crustal accumulation associated with bimodal magmatism. We propose a system whereby chemically, isotopically, and temporally distinct, isolated small-volume magma batches are periodically generated and erupted in a low magmatic flux state, which is punctuated by larger volume caldera-forming eruptions.
Specific surface area of a crushed welded tuff before and after aqueous dissolution
Reddy, M.M.; Claassen, H.C.
1994-01-01
Specific surface areas were measured for several reference minerals (anorthoclase, labradorite and augite), welded tuff and stream sediments from Snowshoe Mountain, near Creede, Colorado. Crushed and sieved tuff had an unexpectedly small variation in specific surface area over a range of size fractions. Replicate surface area measurements of the largest and smallest tuff particle size fractions examined (1-0.3 mm and <0.212 mm) were 2.3 ?? 0.2 m2/g for each size fraction. Reference minerals prepared in the same way as the tuff had smaller specific surface areas than that of the tuff of the same size fraction. Higher than expected tuff specific surface areas appear to be due to porous matrix. Tuff, reacted in solutions with pH values from 2 to 6, had little change in specific surface area in comparison with unreacted tuff. Tuff, reacted with solutions having high acid concentrations (0.1 M hydrochloric acid or sulfuric-hydrofluoric acid), exhibited a marked increase in specific surface area compared to unreacted tuff. ?? 1994.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broxton, D.E.; Warren, R.G.; Hagan, R.C.
1986-10-01
The chemistry of diagenetically altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nevada is described. These tuffs contain substantial amounts of zeolites that are highly sorptive of certain radionuclides. Because of their widespread distribution, the zeolitic tuffs could provide important barriers to radionuclide migration. Physical properties of these tuffs and of their constituent zeolites are influenced by their chemical compositions. This study defines the amount of chemical variability within diagenetically altered tuffs and within diagenetic minerals at Yucca Mountain. Zeolitic tuffs at Yucca Mountain formed by diagenetic alteration of rhyolitic vitric tuffs. Despite their similar starting compositions, thesemore » tuffs developed compositions that vary both vertically and laterally. Widespread chemical variations were the result of open-system chemical diagenesis in which chemical components of the tuffs were mobilized and redistributed by groundwaters. Alkalies, alkaline earths, and silica were the most mobile elements during diagenesis. The zeolitic tuffs can be divided into three compositional groups: (1) calcium- and magnesium-rich tuffs associated with relatively thin zones of alteration in the unsaturated zone; (2) tuffs in thick zones of alteration at and below the water table that grade laterally from sodic compositions on the western side of Yucca Mountain to calcic compositions on the eastern side; and (3) potassic tuffs at the north end of Yucca Mountain. Physical properties of tuffs and their consistuent zeolites at Yucca Mountain may be affected by variations in compositions. Properties important for assessment of repository performance include behavior and ion exchange.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grubensky, M.J.; Bagby, W.C.
1990-11-10
Two widespread lower Miocene rhyolite ash flow tuffs in the Kofa and Castle Dome Mountains of southwestern Arizona are products of caldera-forming eruptions. These closely erupted tuffs, the tuff of Yaqui Tanks and the tuff of Ten Ewe Mountain, are approximately 22 Ma in age and their eruptions culminate a 1- to 2-m.y.-long burst of calc-alkaline volcanic activity centered on the northern Castle Dome Mountains. Exotic blocks of Proterozoic and Mesozoic crystalline rocks up to 20 m across are present in exposures of the tuff of Yaqui Tanks exposed in the central Castle Dome Mountains and the southern Kofa Mountains.more » A single, thick cooling unit of the tuff of Ten Ewe Mountain that includes thick lenses of mesobreccia marks the location of the younger caldera that extends from Palm Canyon in the western Kofa Mountains eastward more than 7 km along strike to the central part of the range. Large residual Bouguer gravity anomalies, one beneath each inferred caldera, are interpreted as batholithic rocks or low-density caldera fill. Caldera-related volcanism in the Kofa region occurred during a transition in extensional tectonic regimes: From a regime of east-west trending uplifts and basins to a regime manifest primarily by northwest striking normal faults. A narrow corridor of folding and strike-slip faulting formed during volcanism in the southern Kofa Mountains. Upper Oligocene or lower Miocene coarse sedimentary rocks along the southern flank of the Chocolate Mountains anticlinorium in the southern Castle Dome Mountains mark the periphery of a basin similar to other early and middle Tertiary basins exposed in southern California. The volcanic section of the Kofa region was dissected by high-angle normal faults related to northeast-southwest oriented crustal extension typical of the southern Basin and Range province.« less
Volcanic Stratigraphy of the Quaternary Rhyolite Plateau in Yellowstone National Park
Christiansen, Robert L.; Blank, H. Richard
1972-01-01
The volcanic sequence of the Quaternary Yellowstone plateau consists of rhyolites and basalts representing three volcanic cycles. The major events of each cycle were eruption of a voluminous ash-flow sheet and formation of a large collapse caldera. Lesser events of each cycle were eruption of precaldera and postcaldera rhyolitic lava flows and marginal basaltic lavas. The three major ash-flow sheets are named and designated in this report as formations within the Yellowstone Group. The lavas are assigned to newly named formations organized around the three ash-flow sheets of the Yellowstone Group to represent the volcanic cycles. Rocks of the first volcanic cycle comprise the precaldera Junction Butte Basalt and rhyolite of Broad Creek; the Huckleberry Ridge Tuff of the Yellowstone Group; and the postcaldera Lewis Canyon Rhyolite and basalt of The Narrows. Rocks of the second volcanic cycle do not crop out within Yellowstone National Park, and only the major unit, the Mesa Falls Tuff of the Yellowstone Group, is named here. The third volcanic cycle is represented by the precaldera Mount Jackson Rhyolite and Undine Falls Basalt; the Lava Creek Tuff of the Yellowstone Group; and the postcaldera Plateau Rhyolite and five post-Lava Creek basaltic sequences. Collapse to form the compound and resurgent Yellowstone caldera was related to eruption of the Lava Creek Tuff. The Plateau Rhyolite is divided into six members - the Mallard Lake, Upper Basin, Obsidian Creek, Central Plateau, Shoshone Lake Tuff, and Roaring Mountain Members; all but the Mallard Lake postdate resurgent doming of the caldera. The basalts are divided into the Swan Lake Flat Basalt, Falls River Basalt, basalt of Mariposa Lake, Madison River Basalt, and Osprey Basalt. Sediments are intercalated in the volcanic section below the Huckleberry Ridge and Mesa Falls Tuffs and within the Junction Butte Basalt, sediments and basalts of The Narrows, Undine Falls Basalt, Plateau Rhyolite, and Osprey Basalt.
Nash, Barbara P.; Perkins, Michael E.
2012-01-01
Sedimentary sequences in the Columbia Plateau region of the Pacific Northwest ranging in age from 16–4 Ma contain fallout tuffs whose origins lie in volcanic centers of the Yellowstone hotspot in northwestern Nevada, eastern Oregon and the Snake River Plain in Idaho. Silicic volcanism began in the region contemporaneously with early eruptions of the Columbia River Basalt Group (CRBG), and the abundance of widespread fallout tuffs provides the opportunity to establish a tephrostratigrahic framework for the region. Sedimentary basins with volcaniclastic deposits also contain diverse assemblages of fauna and flora that were preserved during the Mid-Miocene Climatic Optimum, including Sucker Creek, Mascall, Latah, Virgin Valley and Trout Creek. Correlation of ashfall units establish that the lower Bully Creek Formation in eastern Oregon is contemporaneous with the Virgin Valley Formation, the Sucker Creek Formation, Oregon and Idaho, Trout Creek Formation, Oregon, and the Latah Formation in the Clearwater Embayment in Washington and Idaho. In addition, it can be established that the Trout Creek flora are younger than the Mascall and Latah flora. A tentative correlation of a fallout tuff from the Clarkia fossil beds, Idaho, with a pumice bed in the Bully Creek Formation places the remarkably well preserved Clarkia flora assemblage between the Mascall and Trout Creek flora. Large-volume supereruptions that originated between 11.8 and 10.1 Ma from the Bruneau-Jarbidge and Twin Falls volcanic centers of the Yellowstone hotspot in the central Snake River Plain deposited voluminous fallout tuffs in the Ellensberg Formation which forms sedimentary interbeds in the CRBG. These occurrences extend the known distribution of these fallout tuffs 500 km to the northwest of their source in the Snake River Plain. Heretofore, the distal products of these large eruptions had only been recognized to the east of their sources in the High Plains of Nebraska and Kansas. PMID:23071494
Nash, Barbara P; Perkins, Michael E
2012-01-01
Sedimentary sequences in the Columbia Plateau region of the Pacific Northwest ranging in age from 16-4 Ma contain fallout tuffs whose origins lie in volcanic centers of the Yellowstone hotspot in northwestern Nevada, eastern Oregon and the Snake River Plain in Idaho. Silicic volcanism began in the region contemporaneously with early eruptions of the Columbia River Basalt Group (CRBG), and the abundance of widespread fallout tuffs provides the opportunity to establish a tephrostratigrahic framework for the region. Sedimentary basins with volcaniclastic deposits also contain diverse assemblages of fauna and flora that were preserved during the Mid-Miocene Climatic Optimum, including Sucker Creek, Mascall, Latah, Virgin Valley and Trout Creek. Correlation of ashfall units establish that the lower Bully Creek Formation in eastern Oregon is contemporaneous with the Virgin Valley Formation, the Sucker Creek Formation, Oregon and Idaho, Trout Creek Formation, Oregon, and the Latah Formation in the Clearwater Embayment in Washington and Idaho. In addition, it can be established that the Trout Creek flora are younger than the Mascall and Latah flora. A tentative correlation of a fallout tuff from the Clarkia fossil beds, Idaho, with a pumice bed in the Bully Creek Formation places the remarkably well preserved Clarkia flora assemblage between the Mascall and Trout Creek flora. Large-volume supereruptions that originated between 11.8 and 10.1 Ma from the Bruneau-Jarbidge and Twin Falls volcanic centers of the Yellowstone hotspot in the central Snake River Plain deposited voluminous fallout tuffs in the Ellensberg Formation which forms sedimentary interbeds in the CRBG. These occurrences extend the known distribution of these fallout tuffs 500 km to the northwest of their source in the Snake River Plain. Heretofore, the distal products of these large eruptions had only been recognized to the east of their sources in the High Plains of Nebraska and Kansas.
NASA Astrophysics Data System (ADS)
Lindeman, J. R.; Pluhar, C. J.; Farner, M. J.
2013-12-01
The relative motions of the Pacific and North American plates about the Sierra Nevada-North American Euler pole is accommodated by dextral slip along the San Andreas Fault System (~75%) and the Walker Lane-Eastern California Shear Zone system of faults, east of the Sierra Nevada microplate (~25%). The Bodie Hills and Mono Basin regions lie within the Walker Lane and partially accommodate deformation by vertical axis rotation of up to 60o rotation since ~9.4 Ma. This region experienced recurrent eruptive events from mid to late Miocene, including John et al.'s (2012) ~12.05 Ma Tuff of Jack Springs (TJS) and Gilbert's (1968) 11.1 - 11.9 Ma 'latite ignimbrite' east of Mono Lake. Both tuffs can be identified by phenocrysts of sanidine and biotite in hand specimens, with TJS composed of a light-grey matrix and the latite ignimbrite composed of a grey-black matrix. Our paleomagnetic results show these units to both be normal polarity, with the latite ignimbrite exhibiting a shallow inclination. TJS's normal polarity is consistent with emplacement during subchron C5 An. 1n (12.014 - 12.116 Ma). The X-ray fluorescence analyses of fiamme from TJS in Bodie Hills and the latite ignimbrite located east of Mono Lake reveal them both to be rhyolites with the latite ignimbrite sharing elevated K composition seen in the slightly younger Stanislaus Group (9.0 - 10.2 Ma). We establish a paleomagnetic reference direction of D = 352.8o I = 42.7o α95 = 7.7o n = 5 sites (42 samples) for TJS in the Bodie Hills in a region hypothesized by Carlson (2012) to have experienced low rotation. Our reference for Gilbert's latite ignimbrite (at Cowtrack Mountain) is D = 352.9o I = 32.1o α95 = 4.7o. This reference locality is found on basement highland likely to have experienced less deformation then the nearby Mono Basin since ignimbrite emplacement. Paleomagnetic results from this latite ignimbrite suggests ~98.2o × 5.5o of clockwise vertical axis rotation of parts of eastern Mono Basin since unit emplacement. A welded 11.7 Ma (K-Ar; Drake, 1979) rhyolitic tuff near Trafton Mountain appears similar in composition to TJS. Drake's tuff exhibits a reversed polarity, consistent with reversed polarity subchron C5r.3r (11.614 - 12.014 Ma) and distinguishes this tuff from TJS and Gilbert's latite ignimbrite.
Reynolds, Richard L.; Rosenbaum, Joseph G.; Sweetkind, Donald S.; Lanphere, Marvin A.; Robert, Andrew P.; Verosub, Kenneth L.
2000-01-01
Sedimentary and volcaniclastic rocks of the Oligocene Creede Formation fill the moat of the Creede caldera, which formed at about 26.9 Ma during the eruption of the Snowshoe Mountain Tuff. Paleomagnetic and rock magnetic studies of two cores (418 and 703 m long) that penetrated the lower half of the Creede Formation, in addition to paleomagnetic and isotopic dating studies of stratigraphically bracketing volcanic units, provide information on the age and the time span of sedimentation of the caldera fill. Normal polarity magnetization are found in Snowshoe Mountain Tuff beneath the moat sediments; in detrital-magnetite-bearing graded tuffs near the bottom of the moat fill; in an ash-fall deposit about 200 m stratigraphically about the top of core 2; and in postcaldera lava flows of the Fisher Dacite that overlie the Creede Formation. Normal polarity also characterizes detrital-magnetite-bearing tuff and sandstone unites within the caldera moat rocks that did not undergo severe sulfidic alteration. The combination of initially low magnitude of remanent magnetization and the destructive effects of subsequent diagenetic sulfidization on detrital iron oxides results in a poor paleomagnetic record for the fine-grained sedimentary rocks of the Creede Formation. these fine-grained rocks have either normal or revered polarity magnetizations that are carried by magnetite and/or maghemite. Many more apparent reversals are found that can be accommodated by any geomagnetic polarity time scale over the interval spanned by the ages of the bracketing extrusive rocks. Moreover, opposite polarity magnetization are found in specimens separated by only a few centimeters, without intervening hiatuses, and by specimens in several tuff beds, each of which represents a single depositional event. These polarity changes cannot, therefore, be attributed to detrital remanent magnetization. Many polarity changes are apparently related to chemical remanent magnetizations carried by postdepositional magnetite and maghemite that formed in rocks in which most or all detrital megnetic iron oxide was destroyed. Incipient oxidation of early diagenetic pyrite may have normal polarity Snowshoe Mountain Tuff (26.89 ± 0.0 Ma, 1 δ) and on the normal polarity postcaldera Fisher lava flows (as young as 26.23 ± 0.05 Ma, 1 δ) indicate that deposition of the Creede Formation spanned about 340-660 k.y. The intermittently defined normal polarity magnetization for the caldera-fill sequence, compared with different versions of the geomagnetic polarity time scale, is consistent with the shorter time span.
Bachmann, Olivier; Dungan, M.A.; Lipman, P.W.
2000-01-01
The Pagosa Peak Dacite is an unusual pyroclastic deposit that immediately predated eruption of the enormous Fish Canyon Tuff (~5000 km3) from the La Garita caldera at 28 Ma. The Pagosa Peak Dacite is thick (to 1 km), voluminous (>200 km3), and has a high aspect ratio (1:50) similar to those of silicic lava flows. It contains a high proportion (40-60%) of juvenile clasts (to 3-4 m) emplaced as viscous magma that was less vesiculated than typical pumice. Accidental lithic fragments are absent above the basal 5-10% of the unit. Thick densely welded proximal deposits flowed rheomorphically due to gravitational spreading, despite the very high viscosity of the crystal-rich magma, resulting in a macroscopic appearance similar to flow-layered silicic lava. Although it is a separate depositional unit, the Pagosa Peak Dacite is indistinguishable from the overlying Fish Canyon Tuff in bulk-rock chemistry, phenocryst compositions, and 40Ar/39Ar age. The unusual characteristics of this deposit are interpreted as consequences of eruption by low-column pyroclastic fountaining and lateral transport as dense, poorly inflated pyroclastic flows. The inferred eruptive style may be in part related to synchronous disruption of the southern margin of the Fish Canyon magma chamber by block faulting. The Pagosa Peak eruptive sources are apparently buried in the southern La Garita caldera, where northerly extensions of observed syneruptive faults served as fissure vents. Cumulative vent cross-sections were large, leading to relatively low emission velocities for a given discharge rate. Many successive pyroclastic flows accumulated sufficiently rapidly to weld densely as a cooling unit up to 1000 m thick and to retain heat adequately to permit rheomorphic flow. Explosive potential of the magma may have been reduced by degassing during ascent through fissure conduits, leading to fracture-dominated magma fragmentation at low vesicularity. Subsequent collapse of the 75 x 35 km2 La Garita caldera and eruption of the Fish Canyon Tuff were probably triggered by destabilization of the chamber roof as magma was withdrawn during the Pagosa Peak eruption. (C) 2000 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Farrand, W. H.; Wright, S. P.; Glotch, T. D.; Schröder, C.; Sklute, E. C.; Dyar, M. D.
2018-07-01
Hydro- and glaciovolcanism are processes that have taken place on both Earth and Mars. The amount of materials produced by these processes that are present in the martian surface layer is unknown, but may be substantial. We have used Mars rover analogue analysis techniques to examine altered tuff samples collected from multiple hydrovolcanic features, tuff rings and tuff cones, in the American west and from glaciovolcanic hyaloclastite ridges in Washington state and in Iceland. Analysis methods include VNIR-SWIR reflectance, MWIR thermal emissivity, thin section petrography, XRD, XRF, and Mössbauer spectroscopy. We distinguish three main types of tuff that differ prominently in petrography and VNIR-SWIR reflectance: minimally altered sideromelane tuff, gray to brown colored smectite-bearing tuff, and highly palagonitized tuff. Differences are also observed between the tuffs associated with hydrovolcanic tuff rings and tuff cones and those forming glaciovolcanic hyaloclastite ridges. For the locations sampled, hydrovolcanic palagonite tuffs are more smectite and zeolite rich while the palagonitized hyaloclastites from the sampled glaciovolcanic sites are largely devoid of zeolites and relatively lacking in smectites as well. The gray to brown colored tuffs are only observed in the hydrovolcanic deposits and appear to represent a distinct alteration pathway, with formation of smectites without associated palagonite formation. This is attributed to lower temperatures and possibly longer time scale alteration. Altered hydro- or glaciovolcanic materials might be recognized on the surface of Mars with rover-based instrumentation based on the results of this study.
Completion Report for Well ER-2-2 Corrective Action Unit 97: Yucca Flat/Climax Mine, Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurtz, Jeffrey
Well ER-2-2 was drilled for the U.S. Department of Energy, Nevada National Security Administration Nevada Field Office in support of the Underground Test Area (UGTA) Activity. The well was drilled from January 17 to February 8, 2016, as part of the Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nevada. The primary purpose of the well was to collect hydrogeologic data to evaluate uncertainty in the flow and transport conceptual model and its contamination boundary forecasts, and to detect radionuclides in groundwater from the CALABASH (U2av) underground test. Well ER-2-2 was notmore » completed as planned due to borehole stability problems. As completed, the well includes a piezometer (p1) to 582 meters (m) (1,909 feet [ft]) below ground surface (bgs) installed in the Timber Mountain lower vitric-tuff aquifer (TMLVTA) and a 12.25-inch (in.) diameter open borehole to 836 m (2,743 ft) bgs in the Lower tuff confining unit (LTCU). A 13.375-in. diameter carbon-steel casing is installed from the surface to a depth of 607 m (1,990 ft) bgs. Data collected during borehole construction include composite drill cutting samples collected every 3.0 m (10 ft), geophysical logs to a depth of 672.4 m (2,206 ft) bgs, water-quality measurements (including tritium), water-level measurements, and slug test data. The well penetrated 384.05 m (1,260 ft) of Quaternary alluvium, 541.93 m (1,778 ft) of Tertiary Volcanics (Tv) rocks, and 127.71 m (419 ft) of Paleozoic carbonates. The stratigraphy and lithology were generally as expected. However, several of the stratigraphic units were significantly thicker then predicted—principally, the Tunnel formation (Tn), which had been predicted to be 30 m (100 ft) thick; the actual thickness of this unit was 268.22 m (880 ft). Fluid depths were measured in the borehole during drilling as follows: (1) in the piezometer (p1) at 552.15 m (1,811.53 ft) bgs and (2) in the main casing (m1) at 551.69 m (1,810.01 ft) bgs. As expected, field measurements for tritium were above the Safe Drinking Water Act limit (20,000 picocuries per liter) for a portion of the Tertiary volcanic section near the water table. Tritium concentrations were at or near the field detection limit in the Lower carbonate aquifer (LCA) while drilling. During drilling, a sample was collected while circulating in the LCA. The sample was submitted for off-site laboratory analysis. The sample results indicated low but measurable tritium concentrations. All Fluid Management Plan requirements were met during drilling activities.« less
NASA Astrophysics Data System (ADS)
Streck, M. J.
2012-12-01
Mush models have been popular in explaining crystal-poor rhyolites of a variety of settings. The classical mush model requires an abundance of very crystal-rich (>50%), intermediate (dacitic) magmas that upon compaction expel their interstitial liquids that erupt to give rise to rhyolitic lava flows and ignimbrites. In volcanic systems, a critical part in evaluating a mush model rests on providing evidence for the existence of suitable crystal-rich intermediate magmas that are consistent with the petrology of the erupted rhyolites. In my evaluation, I focus on providing constraints of whether or not suitable crystal mushes are likely to have existed and were instrumental in the production of a select series of voluminous (>100 km3) rhyolitic ignimbrites. Furthermore, the volcanic framework of each selected ignimbrite is used for assessing questions of "eruptibility" of magma types. The three main evaluated units representing 'hot-dry-reduced' rhyolites of bimodal settings are the 16-15.4 Ma Dinner Creek Tuff, the 9.7 Ma Devine Canyon Tuff, and 7.1 Ma Rattlesnake Tuff. All three tuffs erupted in eastern Oregon within a basalt-rhyolite suite. The key feature that makes them particularly valuable for this discussion is that each of the tuffs erupted a co-magmatic component that tracks the intermediate to mafic underpinnings to the rhyolitic magma. This allows a direct assessment of what intermediate magmas residing in close spatial proximity to the rhyolites looked like. On the other hand, other characteristics such as degree of chemical zoning, element trends, single or multiple cooling units, etc., vary considerably among the three tuffs thus covering a wide spectrum of rhyolites from bimodal settings. As representative of 'cool-wet-oxidized' rhyolites, I test applicability of the mush model on the tuffs and associated lavas of the Oligocene San Luis caldera system. This system represents strongly confocal and voluminous eruptions that are closely spaced in time at the end of the activity period of the Central Caldera Cluster of the Oligocene San Juan volcanic field, Colorado. Compositional intermediate underpinnings of each of the 'hot-dry-reduced' rhyolites fail geochemical requirements to represent suitable intermediate magmas. In addition, these underpinnings are crystal-poor and this is inconsistent with the required high crystallinity of magma mushes. Remelting scenarios to reduce crystallinities in intermediate magmas are excluded - again on geochemical grounds. Other complications with a model of voluminous crystal mushes beneath such rhyolites are the production of strong trace-element chemical gradation within single magma batches as well as multi-cyclic eruptions of crystal-poor rhyolites from the same system. For the system of 'cold-wet-oxidized' rhyolites, one of the challenges for a mush model is that interstitial melts of crystal-rich intermediate magmas compositionally deviate from erupted rhyolites when abundant amphibole (±sphene) is present, yet both phases are commonly expected phenocrystic phases at crystallinities when extraction of rhyolite from mush can take place.
NASA Astrophysics Data System (ADS)
Finn, David R.; Coe, Robert S.; Brown, Ethan; Branney, Michael; Reichow, Marc; Knott, Thomas; Storey, Michael; Bonnichsen, Bill
2016-09-01
In this paper, we present paleomagnetic, geochemical, mineralogical, and geochronologic evidence for correlation of the mid-Miocene Cougar Point Tuff (CPT) in southwest Snake River Plain (SRP) of Idaho. The new stratigraphy presented here significantly reduces the frequency and increases the scale of known SRP ignimbrite eruptions. The CPT section exposed at the Black Rock Escarpment along the Bruneau River has been correlated eastward to the Brown's Bench escarpment (six common eruption units) and Cassia Mountains (three common eruption units) regions of southern Idaho. The CPT records an unusual pattern of geomagnetic field directions that provides the basis for robust stratigraphic correlations. Paleomagnetic characterization of eruption units based on geomagnetic field variation has a resolution on the order of a few centuries, providing a strong test of whether two deposits could have been emplaced from the same eruption or from temporally separate events. To obtain reliable paleomagnetic directions, the anisotropy of anhysteretic remanence was measured to correct for magnetic anisotropy, and an efficient new method was used to remove gyroremanence acquired during alternating field demagnetization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Konynenburg, R.A.; Kundig, K.J.A.; Lyman, W.S.
1990-06-01
This report combines six work units performed in FY`85--86 by the Copper Development Association and the International Copper Research Association under contract with the University of California. The work includes literature surveys and state-of-the-art summaries on several considerations influencing the feasibility of the use of copper-base materials for fabricating high-level nuclear waste packages for the proposed repository in tuff rock at Yucca Mountain, Nevada. The general conclusion from this work was that copper-base materials are viable candidates for inclusion in the materials selection process for this application. 55 refs., 48 figs., 22 tabs.
Mineral resource of the month: natural and synthetic zeolites
Virta, Robert L.
2008-01-01
Volcanic rocks containing natural zeolites — hydrated aluminosilicate minerals that contain alkaline and alkaline-earth metals — have been mined worldwide for more than 1,000 years for use as cements and building stone. For centuries, people thought natural zeolites occurred only in small amounts inside cavities of volcanic rock. But in the 1950s and early 1960s, large zeolite deposits were discovered in volcanic tuffs in the western United States and in marine tuffs in Italy and Japan. And since then, similar deposits have been found around the world, from Hungary to Cuba to New Zealand. The discovery of these larger deposits made commercial mining of natural zeolite possible.
Identification of mineral composition and weathering product of tuff using reflectance spectroscopy
NASA Astrophysics Data System (ADS)
Hyun, C.; Park, H.
2009-12-01
Tuff is intricately composed of various types of rock blocks and ash matrixes during volcanic formation processes. Qualitative identification and quantitative assessment of mineral composition of tuff usually have been done using manual inspection with naked-eyes and various chemical analyses. Those conventional methods are destructive to objects, time consuming and sometimes carry out biased results from subjective decision making. To overcome limits from conventional methods, assessment technique using reflectance spectroscopy was applied to tuff specimens. Reflectance spectroscopy measures electromagnetic reflectance on rock surface and can extract diagnostic absorption features originated from chemical composition and crystal structure of constituents in the reflectance curve so mineral species can be discriminated qualitatively. The intrinsic absorption feature from particular mineral can be converted to absorption depth representing relative coverage of the mineral in the measurement area by removing delineated convex hull from raw reflectance curve. The spectral measurements were performed with field spectrometer FieldSpec®3 of ASD Inc. and the wavelength range of measurement was form 350nm to 2500nm. Three types of tuff blocks, ash tuff, green lapilli tuff and red lapilli tuff, were sampled from Hwasun County in Korea and the types of tuffs. The differences between green tuff and red tuff are from the color of their matrixes. Ash tuff consists of feldspars and quartz and small amount of chalcedony, calcite, dolomite, epidote and basalt fragments. Green lapilli tuff consists of feldspar, quartz and muscovite and small amount of calcite, chalcedony, sericite, chlorite, quartzite and basalt fragments. Red lapilli tuff consists of feldspar, quartz and muscovite and small amount of calcite, chalcedony, limonite, zircon, chlorite, quartzite and basalt fragments. The tuff rocks were coarsely crushed and blocks and matrixes were separated to measure standard spectral reflectance of each constituent. Unmixing of mineral composition and their weathering products of blocks and matrixes in tuff were conducted and the ratio of mineral composition was calculated for each specimen. This study was supported by National Research Institute of Cultural Heritage (project title: Development on Evaluation Technology for Weathering Degree of Stone Cultural Properties, project no.: 09B011Y-00150-2009).
NASA Astrophysics Data System (ADS)
Milidragovic, D.; Zagorevski, A.; Weis, D.; Joyce, N.; Chapman, J. B.
2018-05-01
Primitive, near-primary arc magmas occur as a volumetrically minor ≤100 m thick unit in the Canadian Cordillera of northwestern British Columbia, Canada. These primitive magmas formed an olivine-phyric, picritic tuff near the base of the Middle-Late Triassic Stuhini Group of the Stikine Terrane (Stikinia). A new 40Ar/39Ar age on hornblende from a cross-cutting basaltic dyke constrains the tuff to be older than 221 ± 2 Ma. An 87Sr/86Sr isochron of texturally-unmodified tuff samples yields 212 ± 25 Ma age, which is interpreted to represent syn-depositional equilibration with sea-water. Parental trace element magma composition of the picritic tuff is strongly depleted in most incompatible trace elements relative to MORB and implies a highly depleted ambient arc mantle. High-precision trace element and Hf-Nd-Pb isotopic analyses indicate an origin by mixing of a melt of depleted ambient asthenosphere with ≤2% of subducted sediment melt. Metasomatic addition of non-conservative incompatible elements through melting of subducted Panthalassa Ocean floor sediments accounts for the arc signature of the Stuhini Group picritic tuff, enrichment of light rare earth elements (LREE) relative to heavy rare earth elements (HREE) and high field strength elements (HFSE), and anomalous enrichment in Pb. The inferred Panthalassan sediments are similar in composition to the Neogene-Quaternary sediments of the modern northern Cascadia Basin. The initial Hf isotopic composition of the picritic tuff closely approximates that of the ambient Middle-Late Triassic asthenosphere beneath Stikinia and is notably less radiogenic than the age-corrected Hf isotopic composition of the Depleted (MORB) Mantle reservoir (DM or DMM). This suggests that the ambient asthenospheric mantle end-member experienced melt depletion (F ≤ 0.05) a short time before picrite petrogenesis. The mantle end-member in the source of the Stuhini Group picritic tuff is isotopically similar to the mantle source of enriched mid-ocean ridge basalts (E-MORB) erupted today at the southern end of the Explorer Ridge in northeastern Pacific Ocean. The isotopic similarity between the Middle-Late Triassic ambient mantle under Stikinia, and mantle presently tapped at the southern Explorer Ridge suggests that enriched domains in the northeastern Pacific mantle are long-lived (≥222 million years).
Evans, Bernard W; Hildreth, Edward; Bachmann, Olivier; Scaillet, Bruno
2016-01-01
Despite claims to the contrary, the compositions of magnetite and ilmenite in the Bishop Tuff correctly record the changing conditions of T and fO2 in the magma reservoir. In relatively reduced (∆NNO < 1) siliceous magmas (e.g., Bishop Tuff, Taupo units), Ti behaves compatibly (DTi ≈ 2-3.5), leading to a decrease in TiO2 activity in the melt with cooling and fractionation. In contrast, FeTi-oxides are poorer in TiO2 in more oxidized magmas (∆NNO > 1, e.g., Fish Canyon Tuff, Pinatubo), and the d(aTiO2)/dT slope can be negative. Biotite, FeTi-oxides, liquid, and possibly plagioclase largely maintained equilibrium in the Bishop Tuff magma (unlike the pyroxenes, and cores of quartz, sanidine, and zircon) prior ro and during a mixing event triggered by a deeper recharge, which, based on elemental diffusion profiles in minerals, took place at least several decades before eruption. Equilibrating phases and pumice compositions show evolving chemical variations that correlate well with mutually consistent temperatures based on the FeTi-oxides, sanidine-plagioclase, and ∆18O quartz-magnetite pairs. Early Bishop Tuff (EBT) temperatures are lower (700 to ~780°C) than temperatures (780 to >820°C) registered in Late Bishop Tuff (LBT), the latter defined here not strictly stratigraphically, but by the presence of orthopyroxene and reverse-zoned rims on quartz and sanidine. The claimed similarity in compositions, Zr-saturation temperatures and thermodynamically calculated temperatures (730-740°C) between EBT and less evolved LBT reflect the use of glass inclusions in quartz cores in LBT that were inherited from the low temperature rhyolitic part of the reservoir characteristic of the EBT. LBT temperatures as high as 820°C, the preservation of orthopyroxene, and the presence of reverse-zoned minerals (quartz, sanidine, zircons) are consistent with magma recharge at the base of the zoned reservoir, heating the cooler rhyolitic melt, partly remelting cumulate mush, and introducing enough CO2 (0.4-1.4 wt%, mostly contained in the exsolved fluid phase) to significantly lower H2O-activity in the system.
Reddy, M.M.; Claassen, H.C.; Rutherford, D.W.; Chiou, C.T.
1994-01-01
Porosity of welded tuff from Snowshoe Mountain, Colorado, was characterized by mercury intrusion porosimetry (MIP), nitrogen sorption porosimetry, ethylene glycol monoethyl ether (EGME) gas phase sorption and epifluorescence optical microscopy. Crushed tuff of two particle-size fractions (1-0.3 mm and less than 0.212 mm), sawed sections of whole rock and crushed tuff that had been reacted with 0.1 N hydrochloric acid were examined. Average MIP pore diameter values were in the range of 0.01-0.02??m. Intrusion volume was greatest for tuff reacted with 0.1 N hydrochloric acid and least for sawed tuff. Cut rock had the smallest porosity (4.72%) and crushed tuff reacted in hydrochloric acid had the largest porosity (6.56%). Mean pore diameters from nitrogen sorption measurements were 0.0075-0.0187 ??m. Nitrogen adsorption pore volumes (from 0.005 to 0.013 cm3/g) and porosity values (from 1.34 to 3.21%) were less than the corresponding values obtained by MIP. More than half of the total tuff pore volume was associated with pore diameters < 0.05??m. Vapor sorption of EGME demonstrated that tuff pores contain a clay-like material. Epifluorescence microscopy indicated that connected porosity is heterogeneously distributed within the tuff matix; mineral grains had little porosity. Tuff porosity may have important consequences for contaminant disposal in this host rock. ?? 1994.
Determination of hydraulic properties in the vicinity of a landfill near Antioch, Illinois
Kay, Robert T.; Earle, John D.
1990-01-01
A hydrogeologic investigation was conducted in and around a landfill near Antioch, Illinois, in December 1987. The investigation consisted, in part, of an aquifer test that was designed to determine the hydraulic connection between the hydrogeologic units in the area. The hydrogeologic units consist of a shallow, unconfined, sand and gravel aquifer of variable thickness that overlies an intermediate confining unit of variable thickness composed predominantly of till. Underlying the till is a deep, confined, sand and gravel aquifer that serves as the water supply for the village of Antioch. The aquifer test was conducted in the confined aquifer. Aquifer-test data were analyzed using the Hantush and Jacob method for a leaky confined aquifer with no storage in the confining unit. Calculated transmissivity of the confined aquifer ranged from 1.96x10^4 to 2.52x10^4 foot squared per day and storativity ranged from 2.10x10^-4 to 8.71x10^-4. Leakage through the confining unit ranged from 1.29x10^-4 to 7.84x10^-4 foot per day per foot, and hydraulic conductivity of the confining unit ranged from 3.22x10^-3 to 1.96x10^-2 foot per day. The Hantush method for analysis of a leaky confined aquifer with storage in the confining unit also was used to estimate aquifer and confining-unit properties. Transmissivity and storativity values calculated using the Hantush method are in good agreement with the values calculated from the Hantush and Jacob method. Properties of the confining unit were estimated using the ratio method of Neuman and Witherspoon. The estimated diffusivity of the confining unit ranged from 50.36 to 68.13 feet squared per day, A value for the vertical hydraulic conductivity of the confining unit calculated from data obtained using both the Hantush and the Neuman and Witherspoon methods was within the range of values calculated by the Hantush and Jacob method. The aquifer-test data clearly showed that the confining unit is hydraulically connected to the confined aquifer. The aquifer-test data also indicated that the unconfined aquifer becomes hydraulically connected to the deep sand and gravel aquifer within 24 hours after the start of pumping in the confined aquifer.
Pretest thermal analysis of the Tuff Water Migration/In-Situ Heater Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulmer, B.M.
This report describes the pretest thermal analysis for the Tuff Water Migration/In-Situ Heater Experiment to be conducted in welded tuff in G-tunnel, Nevada Test Site. The parametric thermal modeling considers variable boiling temperature, tuff thermal conductivity, tuff emissivity, and heater operating power. For nominal tuff properties, some near field boiling is predicted for realistic operating power. However, the extent of boiling will be strongly determined by the ambient (100% water saturated) rock thermal conductivity. In addition, the thermal response of the heater and of the tuff within the dry-out zone (i.e., bounded by boiling isotherm) is dependent on the temperaturemore » variation of rock conductivity as well as the extent of induced boiling.« less
Gathogo, Patrick N; Brown, Francis H
2006-11-01
Recent geologic study shows that all hominins and nearly all other published mammalian fossils from Paleontological Collection Area 123, Koobi Fora, Kenya, derive from levels between the KBS Tuff (1.87+/-0.02 Ma) and the Lower Ileret Tuff (1.53+/-0.01 Ma). More specifically, the fossils derive from 53 m of section below the Lower Ileret Tuff, an interval in which beds vary markedly laterally, especially those units containing molluscs and algal stromatolites. The upper Burgi Member (approximately 2.00-1.87 Ma) crops out only in the southwestern part of Area 123. Adjacent Area 110 contains larger exposures of the member, and there the KBS Tuff is preserved as an airfall ash in lacustrine deposits and also as a fluvially redeposited ash. We observed no mammalian fossils in situ in this member in Area 123, but surface specimens have been documented in some monographic treatments. Fossil hominins from Area 123 were attributed to strata above the KBS Tuff in the 1970s, but later they were assigned to strata below the KBS Tuff (now called the upper Burgi Member). This study definitively places the Area 123 hominins in the KBS Member. Most of these hominins are between 1.60 and 1.65 myr in age, but the youngest may date to only 1.53 Ma, and the oldest, to 1.75 Ma. All are 0.15-0.30 myr younger than previously estimated. The new age estimates, in conjunction with published taxonomic attributions of fossils, suggest that at least two species of Homo coexisted in the region along with A. boisei until at least 1.65 Ma. Comparison of crania KNM-ER 1813 and KNM-ER 1470, which were believed to be of comparable age, is at the focus of the debate over whether Homo habilis sensu lato is in fact composed of two species: Homo habilis and Homo rudolfensis. These two crania are separated in time by approximately 0.25 myr, and therefore, arguments for their conspecificity no longer need to confront the issue of unusually high contemporaneous variation within a single species.
Geochemistry of rock units at the potential repository level, Yucca Mountain, Nevada
Peterman, Z.E.; Cloke, P.L.
2002-01-01
The compositional variability of the phenocryst-poor member of the 12.8 Ma Topopah Spring Tuff at the potential repository level was assessed by duplicate analysis of 20 core samples from the cross drift at Yucca Mountain, Nevada. Previous analyses of outcrop and core samples of the Topopah Spring Tuff showed that the phenocryst-poor rhyolite, which includes both lithophysal and nonlithophysal zones, is relatively uniform in composition. Analyses of rock samples from the cross drift, the first from the actual potential repository block, also indicate the chemical homogeneity of this unit excluding localized deposits of vapor-phase minerals and low-temperature calcite and opal in fractures, cavities, and faults. The possible influence of vapor-phase minerals and calcite and opal coatings on rock composition at a scale sufficiently large to incorporate these heterogeneously distributed deposits was evaluated and is considered to be relatively minor. Therefore, the composition of the phenocryst-poor member of the Topopah Spring Tuff is considered to be adequately represented by the analyses of samples from the cross drift. The mean composition as represented by the 10 most abundant oxides in wt. % or g/100 g is: SiO2, 76.29; Al2O3, 12.55; FeO, 0.14; Fe2O3, 0.97; MgO, 0.13; CaO, 0.50; Na2O, 3.52; K2O, 4.83; TiO2, 0.11; and MnO, 0.07. ?? 2002 Published by Elsevier Science Ltd.
Geohydrologic and drill-hole data for test well USW H-4, Yucca Mountain, Nye County, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitfield, M.S. Jr.; Thordarson, W.; Eshom, E.P.
This report presents data on drilling operations, lithology, geophysical well logs, sidewall-core samples, water-level monitoring, pumping tests, injection tests, radioactive-tracer borehole flow survey, and water chemistry for test well USW H-4. The well is one of a series of test wells drilled in the southwestern part of the Nevada Test Site, Nye County, Nevada, in cooperation with the US Department of Energy. These test wells are part of the Nevada Nuclear Waste Storage Investigations to identify sites for storage of high-level radioactive wastes. Test well USW H-4 was drilled in ash-flow tuff to a total depth of 1219 meters. Depthmore » to water below land surface was 519 meters, or at an altitude of 730 meters above sea level. After test pumping at a rate of 17.4 liters per second for approximately 9 days, the drawdown was 4.85 meters. A radioactive borehole-flow survey indicated that the Bullfrog Member of the Crater Flat Tuff (Tertiary age) was the most productive geologic unit, producing 36.5 percent of the water in the well. The second most productive geologic unit was the Tram Member of the Crater Flat Tuff, which produced 32 percent of the water. The water in test well USW H-4 is predominantly a soft, sodium bicarbonate type of water typical of water produced in tuffaceous rocks in southern Nevada. 7 references, 26 figures, 9 tables.« less
Slanic Tuff and associated Miocene evaporite deposits, Eastern Carpathians, Romania
NASA Astrophysics Data System (ADS)
Bojar, Ana-Voica; Halas, Stanislaw; Barbu, Victor; Bojar, Hans-Peter; Wojtowicz, Artur; Duliu, Octavian
2017-04-01
Miocene tuffs of calcalkaline composition are widespread in the Carpathians, Pannonian and Eastern Alpine realm. Their occurrences are described in outcrops as well as in the subsurface. The presence of such tuffs may offer important criteria for stratigraphic correlations and help to establish the absolute age of deposits and associated climatic and environmental changes. The Green Stone Hill (Muntele Piatra Verde) is situated to the north of Slanic-Prahova salt mine, in the bend region of the Eastern Carpathians, Romania. From bottom to top the section is composed of: marls with Globigerina followed by the so called Slanic tuff, gypsum and salt breccia and, on the top, radiolarian bearing shales. The stratigraphic age of the section is Middle to Upper Badenian (nannoplankton zones NN5 to NN6). XRD investigations of the green Slanic tuff show that the main mineralogical component is clinoptilolite (zeolite) followed by quartz and plagioclase. For this type of tuff there is no crystalline phase, which may be used for radiometric dating. In the middle part of the green tuff interval, we found discrete layers of a much coarser white tuff, with mineralogy consisting of quartz, plagioclase, biotite and clinoptilolite. The white tuff forming distinct layers within the green tuff, has an andesitic composition. 40Ar/39Ar dating of biotite concentrates from the white tuff gives an age of 13.6±0.2Ma, the dated layer being situated below the gypsum and salt breccia. We consider that the age is well constraining the time when the green tuffs were formed at the border of the basin. From this level upwards discrete gypsum layers occurs within the green tuffs, the age may be considered as indicating the base of the evaporitic sequence. To the south-east, from this level upwards evaporites, mainly salt formed. The age suggests that evaporitic deposits formed after the Mid Badenian climatic optimum, evaporitic formation being related to restricted circulation due the drop of sea-level and tectonism.
NASA Astrophysics Data System (ADS)
Okubo, C. H.
2014-12-01
In order to establish a foundation for studies of faulting in Martian rocks and soils in volcanic terrain, the distribution of brittle strain around faults within the North Menan Butte Tuff in the eastern Snake River Plain, Idaho and the Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah, has been recently described. These studies employed a combination of macroscopic and microscopic observations, including measurements of in situ permeability as a proxy for non-localized brittle deformation of the host rock. In areas where the tuff retained its primary granular nature at the time of deformation, initial plastic yielding in both tuffs occurred along deformation bands. Both compactional and dilational types of deformation bands were observed, and faulting occurred along clusters of deformation bands. Where secondary alteration processes imparted a massive texture to the tuff, brittle deformation was accommodated along fractures. Host-rock permeability exhibits little variation from non-deformed values in the North Menan Butte Tuff, whereas host rock permeability is reduced by roughly an order of magnitude through compaction alone (no alteration) in the Joe Lott Tuff. To create a bridge between these observations in tuff and the more substantial body of work centered on deformation band formation and faulting in quartz-rich sandstones, the same techniques employed in the North Menan Butte Tuff and the Joe Lott Tuff have also been applied to a kilometer-scale fault in the Jurassic Navajo Sandstone in the Waterpocket Fold, Utah. These observations demonstrate that the manifestation of strain and evolution of faulting in the Mars-analog tuffs are comparable to that in quartz-rich sandstones. Therefore, current understanding of brittle deformation in quartz-rich sandstones can be used to inform investigations into fault growth within porous tuffs on Mars. A discussion of these observations, practical limitations, and directions for future work are presented here.
Lanphere, M.A.; Champion, D.E.; Christiansen, R.L.; Izett, G.A.; Obradovich, J.D.
2002-01-01
40Ar/39Ar ages were determined on the three major ash-flow tuffs of the Yellowstone Plateau volcanic field in the region of Yellowstone National Park in order to improve the precision of previously determined ages. Total-fusion and incremental-heating ages of sanidine yielded the following mean ages: Huckleberry Ridge Tuff-2.059 ?? 0.004 Ma; Mesa Falls Tuff-1.285 ?? 0.004 Ma; and Lava Creek Tuff-0.639 ?? 0.002 Ma. The Huckleberry Ridge Tuff has a transitional magnetic direction and has previously been related to the Reunion Normal-Polarity Subchron. Dating of the Reunion event has been reviewed and its ages have been normalized to a common value for mineral standards. The age of the Huckleberry Ridge Tuff is significantly younger than lava flows of the Reunion event on Re??union Island, supporting other evidence for a normal-polarity event younger than the Reunion event.
The oligocene Lund Tuff, Great Basin, USA: A very large volume monotonous intermediate
Maughan, L.L.; Christiansen, E.H.; Best, M.G.; Gromme, C.S.; Deino, A.L.; Tingey, D.G.
2002-01-01
Unusual monotonous intermediate ignimbrites consist of phenocryst-rich dacite that occurs as very large volume (> 1000 km3) deposits that lack systematic compositional zonation, comagmatic rhyolite precursors, and underlying plinian beds. They are distinct from countless, usually smaller volume, zoned rhyolite-dacite-andesite deposits that are conventionally believed to have erupted from magma chambers in which thermal and compositional gradients were established because of sidewall crystallization and associated convective fractionation. Despite their great volume, or because of it, monotonous intermediates have received little attention. Documentation of the stratigraphy, composition, and geologic setting of the Lund Tuff - one of four monotonous intermediate tuffs in the middle-Tertiary Great Basin ignimbrite province - provides insight into its unusual origin and, by implication, the origin of other similar monotonous intermediates. The Lund Tuff is a single cooling unit with normal magnetic polarity whose volume likely exceeded 3000 km3. It was emplaced 29.02 ?? 0.04 Ma in and around the coeval White Rock caldera which has an unextended north-south diameter of about 50 km. The tuff is monotonous in that its phenocryst assemblage is virtually uniform throughout the deposit: plagioclase > quartz ??? hornblende > biotite > Fe-Ti oxides ??? sanidine > titanite, zircon, and apatite. However, ratios of phenocrysts vary by as much as an order of magnitude in a manner consistent with progressive crystallization in the pre-eruption chamber. A significant range in whole-rock chemical composition (e.g., 63-71 wt% SiO2) is poorly correlated with phenocryst abundance. These compositional attributes cannot have been caused wholly by winnowing of glass from phenocrysts during eruption, as has been suggested for the monotonous intermediate Fish Canyon Tuff. Pumice fragments are also crystal-rich, and chemically and mineralogically indistinguishable from bulk tuff. We postulate that convective mixing in a sill-like magma chamber precluded development of a zoned chamber with a rhyolitic top or of a zoned pyroclastic deposit. Chemical variations in the Lund Tuff are consistent with equilibrium crystallization of a parental dacitic magma followed by eruptive mixing of compositionally diverse crystals and high-silica rhyolite vitroclasts during evacuation and emplacement. This model contrasts with the more systematic withdrawal from a bottle-shaped chamber in which sidewall crystallization creates a marked vertical compositional gradient and a substantial volume of capping-evolved rhyolite magma. Eruption at exceptionally high discharge rates precluded development of an underlying plinian deposit. The generation of the monotonous intermediate Lund magma and others like it in the middle Tertiary of the western USA reflects an unusually high flux of mantle-derived mafic magma into unusually thick and warm crust above a subducting slab of oceanic lithosphere. ?? 2002 Elsevier Science B.V. All rights reserved.
Leake, S.A.; Leahy, P.P.; Navoy, A.S.
1994-01-01
Transient leakage into or out of a compressible fine-grained confining unit results from ground- water storage changes within the unit. The computer program described in this report provides a new method of simulating transient leakage using the U.S. Geological Survey modular finite- difference ground-water flow model (MODFLOW). The new program is referred to as the Transient- Leakage Package. The Transient-Leakage Package solves integrodifferential equations that describe flow across the upper and lower boundaries of confining units. For each confining unit, vertical hydraulic conductivity, thickness, and specific storage are specified in input arrays. These properties can vary from cell to cell and the confining unit need not be present at all locations in the grid; however, the confining units must be bounded above and below by model layers in which head is calculated or specified. The package was used in an example problem to simulate drawdown around a pumping well in a system with two aquifers separated by a confining unit. For drawdown values in excess of 1 centimeter, the solution using the new package closely matched an exact analytical solution. The problem also was simulated without the new package by using a separate model layer to represent the confining unit. That simulation was refined by using two model layers to represent the confining unit. The simulation using the Transient-Leakage Package was faster and more accurate than either of the simulations using model layers to represent the confining unit.
NASA Technical Reports Server (NTRS)
Kruener, Alfred; Byerly, Gary R.; Lowe, Donald R.
1991-01-01
Precise Pb-207/Pb-206 single zircon evaporating ages are reported for low-grade felsic metavolcanic rocks within the Onverwacht and Fig Tree Groups of the Barberton Greenstone Belt (BGB), South Africa, as well as for granitoid plutons bordering the belt. Dacitic tuffs of the Hooggenoeg Formation in the upper part of the Onverwacht Group are shown to yield ages between 3445 + or - 3 and 3416 + or - 5 Ma and to contain older crustal components represented by a 3504 + or - 4 Ma old zircon xenocryst. Fig Tree dacitic tuffs and agglomerates have euhedral zircons between 3259 + or - 3 Ma in age which are interpreted to reflect the time of crystallization. The comagmatic relationships between greenstone felsic volcanic units and the surrounding plutonic suites are keynoted. The data adduced show that the Onverwacht and Fig Tree felsic units have distinctly different ages and thus do not constitute a single, tectonically repeated unit as proposed by others. It is argued that conventional multigrain zircon dating may not accurately identify the time of felsic volcanic activity in ancient greenstones, and that the BGB in the Kaapval craton of southern Africa and greenstones in the Pilbara Block of Western Australia may have been part of a larger crustal unit in early Archaean times.
An investigation of volcanic depressions. Part 3: Maars, tuff-rings, tuff-cones, and diatremes
NASA Technical Reports Server (NTRS)
Lorenz, V.; Mcbirney, A. R.; Williams, H.
1970-01-01
A classification of maars, tuff-rings, tuff-cones, and diatremes is given along with a summary of their lithologic and structural characteristics at the surface and at depth, and their probable manner of formation. Particular emphasis is placed on the roles of fluidization and groundwater.
Effects of model layer simplification using composite hydraulic properties
Sepúlveda, Nicasio; Kuniansky, Eve L.
2010-01-01
The effects of simplifying hydraulic property layering within an unconfined aquifer and the underlying confining unit were assessed. The hydraulic properties of lithologic units within the unconfined aquifer and confining unit were computed by analyzing the aquifer-test data using radial, axisymmetric two-dimensional (2D) flow. Time-varying recharge to the unconfined aquifer and pumping from the confined Upper Floridan aquifer (USA) were simulated using 3D flow. Conceptual flow models were developed by gradually reducing the number of lithologic units in the unconfined aquifer and confining unit by calculating composite hydraulic properties for the simplified lithologic units. Composite hydraulic properties were calculated using either thickness-weighted averages or inverse modeling using regression-based parameter estimation. No significant residuals were simulated when all lithologic units comprising the unconfined aquifer were simulated as one layer. The largest residuals occurred when the unconfined aquifer and confining unit were aggregated into a single layer (quasi-3D), with residuals over 100% for the leakage rates to the confined aquifer and the heads in the confining unit. Residuals increased with contrasts in vertical hydraulic conductivity between the unconfined aquifer and confining unit. Residuals increased when the constant-head boundary at the bottom of the Upper Floridan aquifer was replaced with a no-flow boundary.
Mohseni, Ehsan; Tang, Waiching; Cui, Hongzhi
2017-01-01
In this paper, the properties of concrete containing zeolite and tuff as partial replacements of cement and sand were studied. The compressive strength, water absorption, chloride ion diffusion and resistance to acid environments of concretes made with zeolite at proportions of 10% and 15% of binder and tuff at ratios of 5%, 10% and 15% of fine aggregate were investigated. The results showed that the compressive strength of samples with zeolite and tuff increased considerably. In general, the concrete strength increased with increasing tuff content, and the strength was further improved when cement was replaced by zeolite. According to the water absorption results, specimens with zeolite showed the lowest water absorption values. With the incorporation of tuff and zeolite, the chloride resistance of specimens was enhanced significantly. In terms of the water absorption and chloride diffusion results, the most favorable replacement of cement and sand was 10% zeolite and 15% tuff, respectively. However, the resistance to acid attack reduced due to the absorbing characteristic and calcareous nature of the tuff. PMID:28772737
Sarna-Wojcicki, Andrei M.; Deino, Alan L.; Fleck, Robert J.; McLaughlin, Robert J.; Wagner, David; Wan, Elmira; Wahl, David B.; Hillhouse, John W.; Perkins, Michael
2011-01-01
The Lawlor Tuff is a widespread dacitic tephra layer produced by Plinian eruptions and ash flows derived from the Sonoma Volcanics, a volcanic area north of San Francisco Bay in the central Coast Ranges of California, USA. The younger, chemically similar Huichica tuff, the tuff of Napa, and the tuff of Monticello Road sequentially overlie the Lawlor Tuff, and were erupted from the same volcanic field. We obtain new laser-fusion and incremental-heating 40Ar/39Ar isochron and plateau ages of 4.834 ± 0.011, 4.76 ± 0.03, ≤4.70 ± 0.03, and 4.50 ± 0.02 Ma (1 sigma), respectively, for these layers. The ages are concordant with their stratigraphic positions and are significantly older than those determined previously by the K-Ar method on the same tuffs in previous studies.Based on offsets of the ash-flow phase of the Lawlor Tuff by strands of the eastern San Andreas fault system within the northeastern San Francisco Bay area, total offset east of the Rodgers Creek–Healdsburg fault is estimated to be in the range of 36 to 56 km, with corresponding displacement rates between 8.4 and 11.6 mm/yr over the past ∼4.83 Ma.We identify these tuffs by their chemical, petrographic, and magnetic characteristics over a large area in California and western Nevada, and at a number of new localities. They are thus unique chronostratigraphic markers that allow correlation of marine and terrestrial sedimentary and volcanic strata of early Pliocene age for their region of fallout. The tuff of Monticello Road is identified only near its eruptive source.
Unraveling the volcanic and post-volcanic history at Upsal Hogback, Fallon, Nevada, USA
NASA Astrophysics Data System (ADS)
Anderson, E.; Cousens, B.
2013-12-01
Upsal Hogback is a < 25 ka phreatomagmatic volcanic center situated near Fallon, Nevada. The volcano neighbors two other young volcanic complexes: the Holocene Soda Lakes maars and Rattlesnake Hill, a ~ 1 Ma volcanic neck (Shevenell et al., 2005). These volcanoes lie on the transition between the Sierra Nevada and the Basin and Range province, as well as on the edge of the Walker Lane. Upsal Hogback includes two to four vents, fewer than mapped by Morrison (1964), and can be divided into north (one vent) and south (three potential vents) complexes. The vents all produced phreatomagmatic eruptions resulting in tuff rings composed primarily of coarse, indurated lapilli tuffs with abundant volcanic bombs. Ash tuffs are infrequent, as are structures such as crossbedding. The bombs and lapilli include olivine and plagioclase phenocrysts. The basalts are alkaline and have intraplate-type normalized incompatible element patterns. Both complexes are enriched in LREE compared to HREE, though the north complex overall has lower concentrations of the REE. The flat HREE pattern is indicative of spinel peridotite mantle source. Epsilon Nd values for the north complex are +2.50+/-0.02 and for the south complex are +2.83+/-0.02. The magmas appear to have an enriched asthenospheric mantle source. Bomb samples show that eruptions from the two complexes are geochemically distinguishable both in major and trace elements, suggesting that the two complexes tapped different magma types during eruptions that likely occurred at slightly different times. The proximity of Upsal Hogback to Fallon makes constraining its age important to characterize the hazard to the city. It lies above the Wono ash bed, dated at 25,000 years (Fultz et al., 1983), and tufa deposited over the edifice is dated at 11,100 +/- 100 and 8,600 +/- 200 years (Benson et al., 1992; Broecker and Kaufman, 1965). 40Ar/39Ar total gas age by Shevenell et al. (2005) dated the volcano at 0.60 +/- 0.09 Ma, but with no plateau or isochron, and is thus unreliable. The ash bed and tufa ages show that the eruptions would have occurred during the late history of glacial Lake Lahontan. The evidence for primarily subaerial or shallow subaqueous eruptions, including abundant bomb sags and armored lapilli, demonstrate that most of the volcanism occurred during a low stand in lake level history. Some upper tuff units have been heavily altered to palagonite, which establishes that there was substantial water present during some of the later eruptions. The upper edifice has been significantly modified by slumping of the lapilli tuffs during or after of the eruptions, as indicated by the wildly varying strikes and dips found in adjacent lapilli tuff blocks. Lake Lahontan has substantially altered the morphology of the volcano through wave action and shoreline erosion, as well as tufa deposition, since the eruption and emplacement of the tuffs. The edifice has gone through significant changes during its post-eruptive history that mask many of its original features; it was possible that it was a tuff cone that has been modified into a tuff ring.
A summary of the geology and petrology of the Sierra La Primavera, Jalisco, Mexico
NASA Astrophysics Data System (ADS)
Mahood, Gail A.
1981-11-01
The Sierra La Primavera, near Guadalajara, Mexico, is a Late Pleistocene rhyolitic center consisting of lava flows and domes, ash flow tuff, air fall pumice, and caldera lake sediments. All eruptive units are high-silica rhyolites, but systematic compositional differences correlate with age and eruptive mode. The earliest lavas erupted approximately 145,000 years ago and were followed approximately 95,000 years ago by the eruption of about 20 km3 of magma as ash flows that form the Tala Tuff. The Tala Tuff is zoned from a mildly peralkaline first-erupted portion enriched in Na, Rb, Cs, Cl, F, Zn, Y, Zr, Nb, Sb, HREE, Hf, Ta, Pb, Th, and U to a metaluminous last-erupted part enriched in K, LREE, Sc, and Ti; Al, Ca, Mg, Mn, Fe, and Eu are constant within analytical errors. Collapse of the roof zone of the magma chamber led to the formation of a shallow 11-km-diameter caldera in which lake sediments began to collect. The earliest postcaldera lava, the south-central dome, is nearly identical to the last-erupted portion of the Tala Tuff, whereas the slightly younger north-central dome is chemically transitional from the south-central dome to later, more mafic, ring domes. This sequence of ash flow tuff and domes represents the tapping of progressively deeper levels of a zoned magma chamber 95,000 ± 5,000 years ago. Sedimentation continued and a period of volcanic quiescence was marked by the deposition of some 30 m of fine-grained ashy sediments. Approximately 75,000 years ago a new group of ring domes erupted at the southern margin of the lake. These domes are lapped by only 10-20 m of sediments as uplift resulting from renewed insurgence of magma brought an end to the lake. This uplift culminated in the eruption, beginning approximately 60,000 years ago, of aphyric lavas along a southern arc. The youngest of these lavas erupted approximately 30,000 years ago. The lavas that erupted 75,000, 60,000, and 30,000 years ago became decreasingly peralkaline and progressively enriched only in Si, Rb, Cs, and possibly U with time. They represent successive eruption of the uppermost magma in the postcaldera magma chamber. Eruptive units of La Primavera are either aphyric or contain up to 15% phenocrysts of sodic sanidine ≥ quartz ≫ ferrohedenbergite > fayalite > ilmenite ± titanomagnetite. Major element compositions of sanidine, clinopyroxene, and fayalite phenocrysts vary only slightly between eruptive groups, but the concentrations of many trace elements change by factors of 5-10. This is reflected in phenocryst/glass partition coefficients that differ by factors of up to 20 between successively erupted units. Because the major element compositions of the phenocrysts and the pressure, temperature, and ƒO2 of the magmas were essentially constant, the large variations in partitioning behavior are thought to result from small changes in bulk composition of the melt. Crystal settling and incremental partial melting are by themselves incapable of producing either the chemical gradients within the Tala Tuff magma chamber or the trends with time in the post-95,000-year lavas. Rather, diffusional processes in the silicate liquid are thought to have been the dominant differentiation mechanisms. The zonation in the Tala Tuff is attributed to transport of trace metals as volatile complexes within a thermal and gravitational gradient in a volatile-rich but water-undersaturated magma. The evolution of the postcaldera lavas with time is thought to involve the diffusive emigration of trace elements from a relatively dry magma as a decreasing proportion of network modifiers and/or a decreasing concentration of complexing ligands progressively reduced octahedral site availability in the silicate melt.
Hagstrum, J.T.; Gans, P.B.
1989-01-01
The Oligocene Kalamazoo Tuff (???35 Ma) was sampled for paleomagnetic analysis across a 100-km-wide zone of highly extended crust in east central Nevada to estimate between-site vertical axis rotations and thus the relative importance of strike-slip faulting to the mechanism of extension. The tilt-corrected data, with sources of error reduced or eliminated, exhibit a 28?? ?? 12?? clockwise rotation of the Schell Creek Range relative to the Kern Mountains region. This rotation implies differential extension accommodated by strike-slip faulting or N-S shortening. The paleomagnetic results also suggest that large changes in strike of layered units near faults with presumed strike-slip movement need not be the result of oroclinal bending, but could result from superimposed sets of orthogonal normal faults. -from Authors
Thickness of the Mississippi River Valley confining unit, eastern Arkansas
Gonthier, Gerard; Mahon, Gary L.
1993-01-01
Concern arose in the late 1980s over the vulnerability of the Mississippi Valley alluvial aquifer to contamination from potential surface sources related to pesticide or fertilizer use, industrial activity, landfills, or livestock operations. In 1990 a study was begun to locate areas in Arkansas where the groundwater flow system is susceptible to contamination by surface contaminants. As a part of that effort, the thickness of the clay confining unit overlying the alluvial aquifer in eastern Arkansas was mapped. The study area included all or parts of 27 counties in eastern Arkansas that are underlain by the alluvial aquifer and its overlying confining unit. A database of well attributes was compiled based on data from driller's logs and from published data and stored in computer files. A confining-unit thickness map was created from the driller's-log database using geographic information systems technology. A computer program was then used to contour the data. Where the confining unit is present, it ranges in thickness from 0 feet in many locations in the study area to 140 feet in northeastern Greene County and can vary substantially over short distances. Although general trends in the thickness of the confining unit are apparent, the thickness has great spatial variability. An apparent relation exists between thickness of the confining unit and spatial variability in thickness. In areas where the thickness of the confining unit is 40 feet or less, such as in Clay, eastern Craighead, northwestern Mississippi, and Woodruff Counties, thickness of the unit tends robe more uniform than in areas where the thickness of the unit generally exceeds 40 feet, such as in Arkansas, Lonoke, and Prairie Counties. At some sites the confining unit is very thick compared to its thickness in the immediate surrounding area. Locations of abandoned Mississippi River meander channels generally coincide with location of locally thick confining unit. Deposition of the confining unit onto the coarser alluvial aquifer deposits has reduced the relief of the land surface. Hence, the altitude of the top of the alluvial aquifer varies more than the altitude of the land surface and is indicative of a depositional setting.
Perched Ground Water in Zeolitized-Bedded Tuff, Rainier Mesa and Vicinity, Nevada Test Site, Nevada
Thordarson, William
1965-01-01
Rainier Mesa--site of the first series of underground nuclear detonations--is the highest of a group of ridges and mesas within the Nevada Test Site. The mesa is about 9.5 square miles in area and reaches a maximum altitude of 7,679 feet. The mesa is underlain by welded tuff, friable-bedded tuff, and zeolitized-bedded tuff of the Piapi Canyon Group and the Indian Trail Formation of Tertiary age. The tuff--2,000 to 9,000 feet thick--rests unconformably upon thrust-faulted miogeosynclinal rocks of Paleozoic age. Zeolitic-bedded tuff at the base of the tuff sequence controls the recharge rate of ground water to the underlying and more permeable Paleozoic aquifers. The zeolitic tuff--600 to 800 feet thick--is a fractured aquitard with high interstitial porosity, but with very low interstitial permeability and fracture transmissibility. The interstitial porosity ranges from 29 to 38 percent, the interstitial permeability is generally less than 0.009 gpd/ft3, and the fracture transmissibility ranges from 10 to 100 gpd/ft for 900 feet of saturated rock. The tuff is generally fully saturated interstitially hundreds of feet above the regional water table, yet no appreciable volume of water moves through the interstices because of the very low permeability. The only freely moving water observed in miles of underground workings occurred in fractures, usually fault zones.
Peck, Dallas L.
1964-01-01
This report briefly describes the geology of an area of about 750 square miles in Jefferson, Wasco, Crook, and Wheeler Counties, Oregon. About 16,000 feet of strata that range in age from pre-Tertiary to Quaternary are exposed. These include the following units: pre-Tertiary slate, graywacke, conglomerate, and meta-andesite; Clarno Formation of Eocene age - lava flows, volcanic breccia, tuff, and tuffaceous mudstone, chiefly of andesitic composition; John Day Formation of late Oligocene and early Miocene age - pyroclastic rocks, flows, and domes, chiefly of rhyolitic composition; Columbia River Basalt of middle Miocene age - thick, columnar jointed flows of very fine grained dense dark-gray basalt; Dalles Formation of Pliocene age - bedded tuffaceous sandstone, siltstone, and conglomerate; basalt of Pliocene or Pleistocene age - lava flows of porous-textured olivine basalt; and Quaternary loess, landslide debris, and alluvium. Unconformities separate pre-Tertiary rocks and Clarno Formation, Clarno and John Day Formations, John Day Formation and Columbia River Basalt, and Columbia River Basalt and Dalles Formation. The John Day Formation, the only unit studied in detail, consists of about 4,000 feet of tuff, lapilli tuff, strongly to weakly welded rhyolite ash flows, and less abundant trachyandesite flows and rhyolite flows and domes. The formation was divided into nine mappable members in part of the area, primarily on the basis of distinctive ledge-forming welded ash-flow sheets. Most of the sheets are composed of stony rhyolite containing abundant lithophysae and sparse phenocrysts. One sheet contains 10 to 20 percent phenocrysts, mostly cryptoperthitic soda sanidine, but including less abundant quartz, myrmekitic intergrowths of quartz and sanidine, and oligoclase. The rhyolitic ash flows and lava flows were extruded from nearby vents, in contrast to some of the interbedded air-fall tuff and lapilli tuff of dacitic and andesitic composition that may have been derived from vents in an ancestral Cascade Range. The John Day is dated on the basis of a late Oligocene flora near the base of the formation and early Miocene faunas near the top of the formation. The middle Miocene and older rocks in the Antelope-Ashwood area are broadly folded and broken along northeast-trending faults. Over much of the area the rocks dip gently eastward from the crest of a major fold and are broken along a series of steeply dipping antithetic strike faults. Pliocene and Quaternary strata appear to be undeformed. At the Priday agate deposit, chalcedony-filled spherulites (thunder-eggs) occur in the lower part of a weakly welded rhyolitic ash flow. The so-called thunder-eggs are small spheroidal bodies, about 3 inches in average diameter; each consists of a chalcedonic core surrounded by a shell of welded tuff that is altered to radially oriented fibers of cristobalite and alkalic feldspar.
Lipman, P.W.; McIntosh, W.C.
2008-01-01
The northeastern San Juan Mountains, the least studied portion of this well-known segment of the Southern Rocky Mountains Volcanic Field are the site of several newly identified and reinterpreted ignimbrite calderas. These calderas document some unique eruptive features not described before from large volcanic systems elsewhere, as based on recent mapping, petrologic data, and a large array of newly determined high-precision, laser-fusion 40Ar/39Ar ages (140 samples). Tightly grouped sanidine ages document exceptionally brief durations of 50-100 k.y. or less for individual Oligocene caldera cycles; biotite ages are more variable and commonly as much as several hundred k.y. older than sanidine from the same volcanic unit. A previously unknown ignimbrite caldera at North Pass, along the Continental Divide in the Cochetopa Hills, was the source of the newly distinguished 32.25-Ma Saguache Creek Tuff (???400-500 km3). This regionally, distinctive crystal-poor alkalic rhyolite helps fill an apparent gap in the southwestward migration from older explosive activity, from calderas along the N-S Sawatch locus in central Colorado (youngest, Bonanza Tuff at 33.2 Ma), to the culmination of Tertiary volcanism in the San Juan region, where large-volume ignimbrite eruptions started at ca. 29.5 Ma and peaked with the enormous Fish Canyon Tuff (5000 km3) at 28.0 Ma. The entire North Pass cycle, including caldera-forming Saguache Creek Tuff, thick caldera-filling lavas, and a smaller volume late tuff sheet, is tightly bracketed at 32.25-32.17 Ma. No large ignimbrites were erupted in the interval 32-29 Ma, but a previously unmapped cluster of dacite-rhyolite lava flows and small tuffs, areally associated with a newly recognized intermediate-composition intrusion 5 ?? 10 km across (largest subvolcanic intrusion in San Juan region) centered 15 km north of the North Pass caldera, marks a near-caldera-size silicic system active at 29.8 Ma. In contrast to the completely filled North Pass caldera that has little surviving topographic expression, no voluminous tuffs vented directly from the adjacent Cochetopa Park caldera, which is morphologically beautifully preserved. Instead, Cochetopa Park subsided passively as the >500 km3 Nelson Mountain Tuff vented at 26.9 Ma from an "underfit" caldera (youngest of the San Luis complex) 30 km to the SW. Three separate regional ignimbrites were erupted sequentially from San Luis calderas within an interval of less than 50-100 k.y., a more rapid recurrence rate for large explosive eruptions than previously documented elsewhere. In eruptive processes, volcanic compositions, areal extent, duration of activity, and magmatic production rates and volumes, the Southern Rocky Mountains Volcanic Field represents present-day erosional remnants of a composite volcanic field, comparable to younger ignimbrite terranes of the Central Andes. ?? 2008 Geological Society of America.
NASA Astrophysics Data System (ADS)
Okubo, C. H.
2013-12-01
The Menan Volcanic Complex consists of phreatomagmatic tuff cones that were emplaced as part of the regional volcanic activity in the Snake River Plain during the late Pleistocene. These tuff cones, the ';Menan Buttes', resulted from the eruption of basaltic magma through water-saturated alluvium and older basalts along the Snake River. The tuffs are composed primarily of basaltic glass with occasional plagioclase and olivine phenocrysts. The tuff is hydrothermally altered to a massive palagonitic tuff at depth but is otherwise poorly welded. Mass movements along the flanks of the cones were contemporaneous with tuff deposition. These slope failures are manifest as cm- to meter-scale pure folds, faults and fault-related folds, as well as larger slumps that are tens to a few hundred meters wide. Previous investigations classified the structural discontinuities at North Menan Butte based on orientation and sense of displacement, and all were recognized as opening-mode or shear fractures (Russell and Brisbin, 1990). This earlier work also used a generalized model of static (i.e., aseismic) gravity-driven shear failure within cohesionless soils to infer a possible origin for these fractures through slope failure. Recent work at North Menan Butte has provided novel insight into the styles of brittle deformation present, the effect of this deformation on the circulation of subsurface fluids within the tuff cone, as well as the mechanisms of the observed slope failures. Field observations reveal that the brittle deformation, previously classified as fractures, is manifest as deformation bands within the non-altered, poorly welded portions of the tuff. Both dilational and compactional bands, with shear, are observed. Slumps are bounded by normal faults, which are found to have developed within clusters of deformation bands. Deformation bands along the down-slope ends of these failure surfaces are predominantly compactional in nature. These bands have a ~3800 millidarcy permeability, a decrease from the ~9400 millidarcy permeability typical of the non-deformed, poorly-welded tuff. As such, these bands would have acted to slow to the circulation of local fluids through the tuff cone, possibly reducing the slopes' stability further. Future work will employ slope stability models to investigate the tendency for slumping of these tuffs shortly after their emplacement, accounting for water-saturated conditions and the effects of eruption-related seismicity. These results will improve current understanding of the mechanics of fault growth within basaltic tuff and enable more rigorous assessments of the hazards posed by slope instability on active phreatomagmatic tuff cones.
Sarna-Wojcicki, Andrei M.; Reheis, Marith C.; Pringle, Malcolm S.; Fleck, Robert J.; Burbank, Doug; Meyer, Charles E.; Slate, Janet L.; Wan, Elmira; Budahn, James R.; Troxel, Bennie; Walker, James P.
2005-01-01
Numerical ages have been determined for a stratigraphic sequence of silicic tephra layers exposed at the Cowan Pumice Mine in Blind Spring Valley, near Benton Hot Springs, east-central California, as well as at Chalk Cliffs, north of Bishop, Calif. The tephra layers at these sites were deposited after eruptions from nearby sources, most of them from near Glass Mountain, and some from unknown sources. The ages were determined primarily by the laser-fusion 40Ar/39Ar method, mostly on sanidine feldspar; two were determined by conventional K-Ar analysis on obsidian clasts. These tephra layers, all underlying the Bishop ash bed and listed in order of concordant age and stratigraphic position, are: Tephra Unit Method Material Age Bishop Tuff (air-fall pumice) Ar/Ar sanidine 0.759?0.002 Ma* Upper tuffs of Glass Mountain Ar/Ar sanidine 0.87?0.02 Ma Upper tuffs of Glass Mountain Ar/Ar sanidine 1.13?0.19 Ma Lower tuffs of Glass Mountain K-Ar obsidian 1.86?0.09 Ma (avg of 2 dates) Ar/Ar sanidine 1.92?0.02 Ma (avg of 2 dates) Tuffs of Blind Spring Valley Ar/Ar sanidine 2.135?0.02 to sanidine 2.219?0.006 Ma (10 dates) Tuffs of Benton Hot Springs Ar/Ar plagioclase 2.81?0.02 Ma *Date published previously The above tephra layers were also petrographically examined and the volcanic glass shards of the layers were chemically analyzed using the electron microprobe and, for some samples, instrumental neutron activation analysis and X-ray fluorescence. The same types of chemical and petrographic analyses were conducted on stratigraphic sequences of tephra layers of suspected upper Pliocene and Pleistocene age in several past and present depositional basins within the region outside of Blind Spring Valley. Chemical characterization, combined with additional dates and with magnetostratigraphy of thick sections at two of the distal sites, allow correlation of the tephra layers at the Cowan Pumice Mine with layers present at the distal sites and provide age constraints for other intercalated tephra layers and sediments for which age data were previously lacking. The identification at several sections of the widespread Huckleberry Ridge ash bed, derived from the Yellowstone eruptive source area in Wyoming, as well as a new 40Ar/39Ar age on this ash bed from a proximal locality, provide additional age constraints to several of the distal sections. The dated or temporally bracketed distal units, in order of concordant age and stratigraphic position, are: Tephra Unit Method Material Age Tephra layers of Glass Mountain (undiff.) P-mag.*; correlation N/A 1.78 , 1.96, 1.96, 2.22, 2.57, <2.89 Ma Tephra layers of Benton Hot Springs Ar/Ar; correlation plagioclase 2.89?0.03 Ma *Magnetostratigraphic polarity determination At the Cowan Pumice Mine, only a partial section of the eruptive record is preserved, but the best materials for laser-fusion 40Ar/39Ar and other isotopic dating methods were obtained. In the more distal Willow Wash and Confidence Hills sections, both persistent depositional basins for most of late Pliocene time, more complete sections of upper Pliocene tephra layers were preserved. In the region of Glass Mountain, the tephra layers that make up each of the mapped and dated pyroclastic units are multiple and complex, but a progressive simplification of the stratigraphy away from the source area was observed for more distal sites in southern and southwestern California and in Utah. This progressive
NASA Astrophysics Data System (ADS)
Benson, Thomas R.; Mahood, Gail A.
2016-01-01
The Lake Owyhee Volcanic Field (LOVF) of eastern Oregon consists of rhyolitic caldera centers and lava fields contemporaneous with and spatially related to Mid-Miocene Columbia River flood basalt volcanism. Previous studies delineated two calderas in the southeastern part of LOVF near Owyhee Reservoir, the result of eruptions of two ignimbrites, the Tuff of Leslie Gulch and the Tuff of Spring Creek. Our new interpretation is that these two map units are differentially altered parts of a single ignimbrite produced in a major phreatomagmatic eruption at 15.8 Ma. Areas previously mapped as Tuff of Spring Creek are locations where the ignimbrite contains abundant clinoptilolite ± mordenite, which made it susceptible to erosion. The resistant intracaldera Tuff of Leslie Gulch has an alteration assemblage of albite ± quartz, indicative of low-temperature hydrothermal alteration. Our new mapping of caldera lake sediments and pre- and post-caldera rhyolitic lavas and intrusions that are chemically similar to intracaldera Tuff of Leslie Gulch point to a single 20 × 25 km caldera, which we name the Rooster Comb Caldera. Erosion of the resurgently uplifted southern half of the caldera created dramatic exposures of intracaldera Tuff of Leslie Gulch cut by post-caldera rhyolite dikes and intrusions that are the deeper-level equivalents of lava domes and flows that erupted into the caldera lake preserved in exposures to the northeast. The Rooster Comb Caldera has features in common with more southerly Mid-Miocene calderas of the McDermitt Volcanic Field and High Rock Caldera Complex, including formation in a basinal setting shortly after flood basalt eruptions ceased in the region, and forming on eruption of peralkaline ignimbrite. The volcanism at Rooster Comb Caldera postdates the main activity at McDermitt and High Rock, but, like it, begins 300 ky after flood basalt volcanism begins in the area, and while flood basalts don't erupt through the silicic focus, are contemporaneous with the latest stages of eruptions nearby. High Rock and McDermitt rhyolites are associated with propagation of Steens Basalt dikes to the south, and LOVF rhyolites with later propagation of Grande Ronde Basalt dikes to the north and north-northwest.
1977-12-21
sections of the CSP ( Thordarson and others, 1967; Figure 8). Interbedded materials consist of agglomerates, air-fall and ash-flow tuffs which are welded to...of Economic Geology, 1977, Land resource map of Texas: Bur. Econ. Geol., Univ. Texas, Austin, Texas. (in press). Thordarson , W., Young, R.A., and
Geology and ore deposits of the McDermitt Caldera, Nevada-Oregon
Rytuba, James J.
1976-01-01
The McDermitt caldera is a Miocene collapse structure along the Nevada-Oregon border. The oval-shaped caldera is bounded by arcuate normal faults on the north and south and by rhyolite ring domes on the west. Precollapse ash-flow tuffs exposed within the south caldera rim consist of three cooling units and are peralkaline in composition. Refractive indexes of nonhydrated glasses from basal vitrophyres of the. units range from 1.493 to 1.503 and are typical of comendites. Post-collapse intracaldera rocks consist of tuffaceous lake sediments, rhyolite flows and domes, and ash-flow tuffs. Within the caldera are the mercury mines of Bretz, Cordero, McDermitt, Opalite, and Ruja and the Moonlight uranium mine. The mercury mines are adjacent to ring fracture faults, and the uranium mine and other uranium occurrences are located within rhyolite ring domes. Fluid inclusions in quartz indicate a deposition temperature of 340?C for the uranium deposit and 200?C for the mercury deposits. The mercury deposits formed at shallow depth by replacement of lakebed sediments and volcanic rocks.
Hydrogeology of rocks penetrated by test well JF-3, Jackass Flats, Nye County, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plume, R.W.; La Camera, R.J.
1996-12-31
The U.S. Department of Energy and U.S. Geological Survey are monitoring water levels in southern Nevada and adjacent parts of California in response to concern about the potential effects of pumping ground water to support the Yucca Mountain Site-Characterization Program. Well JF-3 was drilled in the western part of Jackass Flats for monitoring water levels, for determining the likelihood of a hydraulic connection between well JF-3 and production wells J-12 and J-13, and for measuring the hydraulic properties of the Topopah Spring Tuff. The borehole for JF-3 penetrated about 480 feet of alluvium and 818 feet of underlying volcanic rock.more » The well was finished at a depth of 1,138 feet below land surface near the base of the Topopah Spring Tuff, which is the principal volcanic-rock aquifer in the area. The Topopah Spring Tuff at well JF-3 extends from depths of 580 feet to 1,140 feet and consists of about 10 feet of partly to moderately welded ash-flow tuff; 10 feet of vitrophyre; 440 feet of devitrified, moderately to densely welded ash-flow tuff; 80 feet of densely welded ash-flow tuff; 10 feet of vitric, nonwelded to partly welded ash-flow tuff; and 10 feet of ashfall tuff. Fractures and lithophysae are most common in the devitrified tuff, especially between depths of 600 feet and 1,040 feet. Much of the water produced in well JF-3 probably comes from the sequence of these devitrified tuffs that is below the water table. The transmissivity of the aquifer is an estimated 140,000-160,000 feet squared per day and hydraulic conductivity is 330-370 feet per day. These values exceed estimates made at well J-13 by two orders of magnitude. Such large differences may be accounted for by differences in the development of fractures and lithophysae in the Topopah Spring Tuff at the two wells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mower, T.E.; Higgins, J.D.; Yang, I.C.
1989-12-31
To support the study of hydrologic system in the unsaturated zone at Yucca Mountain, Nevada, two extraction methods were examined to obtain representative, uncontaminated pore-water samples from unsaturated tuff. Results indicate that triaxial compression, which uses a standard cell, can remove pore water from nonwelded tuff that has an initial moisture content greater than 11% by weight; uniaxial compression, which uses a specifically fabricated cell, can extract pore water from nonwelded tuff that has an initial moisture content greater than 8% and from welded tuff that has an initial moisture content greater than 6.5%. For the ambient moisture conditions ofmore » Yucca Mountain tuffs, uniaxial compression is the most efficient method of pore-water extraction. 12 refs., 7 figs., 2 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Triay, I.R.; Cotter, C.R.; Huddleston, M.H.
1996-09-01
We studied the sorption of neptunium onto tuffs characteristic of the proposed nuclear waste repository at Yucca Mountain, Nevada. The neptunium was in the Np(V) oxidation state under oxidizing conditions in groundwaters from two wells located close to the repository site (J-13 and UE-25 p No.1). We used devitrified, vitric, zeolitic (with emphasis on clinoptilolite-rich samples), and calcite-rich tuffs characteristic of the geology of the site. Neptunium sorbed well onto calcite and calcite-rich tuffs, indicating that a significant amount of neptunium retardation can be expected under fractured-flow scenarios because of calcite coating of the fractures. Neptunium sorption onto clinoptilolite-rich zeoliticmore » tuffs in J-13 well water (pH from 7 to 8.5) was moderate, increased with decreasing pH, and correlated to surface area and amount of clinoptilolite. Neptunium sorbed poorly onto zeolitic tuffs from UE-25 p No.1 groundwater (pH from 7 to 9) and onto devitrified and vitric tuffs from J-13 and UE-25 p No.1 waters (pH from 7 to 9). Iron oxides appeared to be passivated in tuffs, not seeming to contribute to the observed neptunium sorption, even though neptunium sorption onto synthetic iron oxide is significant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
C.J.Lewis; A.Lavine; S.L.Reneau
2002-12-01
We present data that elucidate the stratigraphy, geomorphology, and structure in the western part of Los Alamos National Laboratory between Technical Areas 3 and 16 (TA-3 and TA-16). Data include those gathered by geologic mapping of surficial, post-Bandelier Tuff strata, conventional and high-precision geologic mapping and geochemical analysis of cooling units within the Bandelier Tuff, logging of boreholes and a gas pipeline trench, and structural analysis using profiles, cross sections, structure contour maps, and stereographic projections. This work contributes to an improved understanding of the paleoseismic and geomorphic history of the area, which will aid in future seismic hazard evaluationsmore » and other investigations. The study area lies at the base of the main, 120-m (400-ft) high escarpment formed by the Pajarito fault, an active fault of the Rio Grande rift that bounds Los Alamos National Laboratory on the west. Subsidiary fracturing, faulting, and folding associated with the Pajarito fault zone extends at least 1,500 m (5,000 ft) to the east of the main Pajarito fault escarpment. Stratigraphic units in the study area include upper units of the Tshirege Member of the early Pleistocene Bandelier Tuff, early Pleistocene alluvial fan deposits that predate incision of canyons on this part of the Pajarito Plateau, and younger Pleistocene and Holocene alluvium and colluvium that postdate drainage incision. We discriminate four sets of structures in the area between TA-3 and TA-16: (a) north-striking faults and folds that mark the main zone of deformation, including a graben in the central part of the study area; (b) north-northwest-striking fractures and rare faults that bound the eastern side of the principal zone of deformation and may be the surface expression of deep-seated faulting; (c) rare northeast-striking structures near the northern limit of the area associated with the southern end of the Rendija Canyon fault; and (d) several small east-west-striking faults. We consider all structures to be Quaternary in that they postdate the Tshirege Member (1.22 million years old) of the Bandelier Tuff. Older mesa-top alluvial deposits (Qoal), which may have a large age range but are probably in part about 1.13 million years old, are clearly faulted or deformed by many structures. At two localities, younger alluvial units (Qfo and Qfi) appear to be truncated by faults, but field relations are obscure, and we cannot confirm the presence of fault contacts. The youngest known faulting in the study area occurred in Holocene time on a down-to-the-west fault, recently trenched at the site of a new LANL Emergency Operations Center (Reneau et al. 2002).« less
1979-06-01
kilometers. Hydraulic fracturing data in crystalline rock and indicates that the stress state-varies depending on the tectonic environment (Figure 17). The...S. CAROLINA 0 -A GRANITE. WISCONSIN SO 10 * GRANITE. CALIFORNIA 0 NTS TUFF. NEVADA A 10 t0 50 40 Figure 17. Hydraulic fracturing data in Crystalline
Investigations on Local Seismic Phases and Modeling of Seismic Signals
1993-10-31
basement is 1 km. The water table, wt , is from Doty and Thordarson (1983). It separates the dry, DT, and the wet, WT, tuff levels. Above these volcanic...regional variations of t*(f) in the United States. Geophys. J. R. astr. Soc. 82 , 125-140 Doty, G. C. and W. Thordarson , 1983. Water table in rocks of
Deformation of the Wineglass Welded Tuff and the timing of caldera collapse at Crater Lake, Oregon
Kamata, H.; Suzuki-Kamata, K.; Bacon, C.R.
1993-01-01
Four types of deformation occur in the Wineglass Welded Tuff on the northeast caldera rim of Crater Lake: (a) vertical tension fractures; (b) ooze-outs of fiamme: (c) squeeze-outs of fiamme; and (d) horizontal pull-apart structures. The three types of plastic deformation (b-d) developed in the lower part of the Wineglass Welded Tuff where degree of welding and density are maximum. Deformation originated from concentric normal faulting and landsliding as the caldera collapsed. The degree of deformation of the Wineglass Welded Tuff increases toward the northeast part of the caldera, where plastic deformation occurred more easily because of a higher emplacement temperature probably due to proximity to the vent. The probable glass transition temperature of the Wineglass Welded Tuff suggests that its emplacement temperature was ???750??C where the tuff is densely welded. Calculation of the conductive cooling history of the Wineglass Welded Tuff and the preclimactic Cleetwood (lava) flow under assumptions of a initially isothermal sheet and uniform properties suggests that (a) caldera collapse occurred a maximum of 9 days after emplacement of the Wineglass Welded Tuff, and that (b) the period between effusion of the Cleetwood (lava) flow and onset of the climactic eruption was <100 years. If cooling is controlled more by precipitation during quiescent periods than by conduction, these intervals must be shorter than the calculated times. ?? 1993.
Morgan, VI G.B.; London, D.; Luedke, R.G.
1998-01-01
Late Miocene peraluminous volcanic rocks of the Morococala field, Bolivia, define a layered stratigraphy of basal andalusite-, biotite-(?? Muscovite)-bearing rhyolite tuffs (AR), overlain by cordierite-, biotite-bearing rhyolite tuffs (CR), and capped by biotite-beanng quartz latite tuffs, lavas, and late domal flows (QL). Mineral and whole-rock compositions become more evolved from top to bottom, with differentiation reflected by decreasing Ca, Ba, Mg, Fe, and rare earth elements (REE) versus increasing F, Na/K, and aluminosity from QL to AR. Mineral, whole-rock, and glass inclusion compositions are consistent with derivation of all three rock types from a single stratified magma reservoir, but age and spatial relations between the three units make this unlikely. Genesis of the QL involved biotite-dehydration melting of an aluminous source at T > 750??C and P ??? 4-6 kbar. If not co-magmatic with QL, the other units were generated primarily by muscovite-dehydration melting at T = 730-750??C and P ??? 3??5-4??5 kbar for CR, and T ??? 750??C for AR with pre-emptive residence at low pressure (1??5-3??0 kbar). Low hematite contents (XHem ??? 0??06) of ilmenite grains in AR, CR, and early grains (as inclusions in plagioclase and sanidine cores) in QL indicate reduced conditions imposed by a graphite-bearing source. Compositional variability among texturally later oxides (ilmenite with XHem = 0??06-0??50, primary magnetite), however, apparently records progressive increases in pre-eruptive f(O2) in QL. Plagioclase-melt equilibria and electron microprobe analysis difference for quartz-hosted glass inclusions suggest pre-emptive melt H2O contents ??? 5-7 wt % for the AR, ???4-6 wt % for the CR, and ???3-5 wt % for the QL.
NASA Astrophysics Data System (ADS)
Gubert, Mauricio Lemos; Philipp, Ruy Paulo; Stipp Basei, Miguel Angelo
2016-10-01
Usbnd Pb LA-ICPMS geochronological analyses were carried out on zircon grains from metavolcanic rocks of the Bossoroca Complex and for one ash tuff of the Acampamento Velho Formation of the Camaquã Basin, in order to understand the evolution of the Neoproterozoic São Gabriel magmatic arc. A total of 42 analyses of igneous zircon grains were performed in three samples. The results yielded Usbnd Pb ages of 767.2 ± 2.9 Ma for the metavolcanic agglomerate (BOS-02); 765 ± 10 Ma for the metacrystal tuff (BOS-03) and 565.8 ± 4.8 Ma for the ash tuff (BOS-04). The Orogenic Cycle in Brazil is characterized by a set of orogenic belts consisting of petrotectonic associations juxtaposed by two collisional events that occurred at the end of the Neoproterozoic. In southern Brazil this orogeny formed the Dom Feliciano Belt, a unit composed of associations of rocks developed during two major orogenic events called São Gabriel (900-680 Ma) and Dom Feliciano (650-540 Ma). The main São Gabriel associations are tectonically juxtaposed as elongated strips according to the N20-30°E direction, bounded by ductile shear zones. The Bossoroca Complex comprises predominantly metavolcano-sedimentary rocks, characterized by medium-K calc-alkaline association generated in a cordillera-type magmatic arc. The volcanism occurred in sub-aerial environment, developing deposits generated by flow, resurgence and fall, sporadically interrupted by subaqueous epiclastic deposits, suggesting an arc related basin. The São Gabriel Terrane contains the petrotectonic units that represent the closure of the Charrua Ocean associated to the subduction period of the Brasiliano Orogenic Cycle in the Sul-rio-grandense Shield.
NASA Astrophysics Data System (ADS)
Pritchard, Chad J.; Larson, Peter B.
2012-08-01
An array of samples from the eastern Upper Basin Member of the Plateau Rhyolite (EUBM) in the Yellowstone Plateau, Wyoming, were collected and analyzed to evaluate styles of deposition, geochemical variation, and plausible sources for low δ18O rhyolites. Similar depositional styles and geochemistry suggest that the Tuff of Sulphur Creek and Tuff of Uncle Tom's Trail were both deposited from pyroclastic density currents and are most likely part of the same unit. The middle unit of the EUBM, the Canyon flow, may be composed of multiple flows based on a wide range of Pb isotopic ratios (e.g., 206Pb/204Pb ranges from 17.54 to 17.86). The youngest EUBM, the Dunraven Road flow, appears to be a ring fracture dome and contains isotopic ratios and sparse phenocrysts that are similar to extra-caldera rhyolites of the younger Roaring Mountain Member. Petrologic textures, more radiogenic 87Sr/86Sr in plagioclase phenocrysts (0.7134-0.7185) than groundmass and whole-rock ratios (0.7099-0.7161), and δ18O depletions on the order of 5‰ found in the Tuff of Sulphur Creek and Canyon flow indicate at least a two-stage petrogenesis involving an initial source rock formed by assimilation and fractional crystallization processes, which cooled and was hydrothermally altered. The source rock was then lowered to melting depth by caldera collapse and remelted and erupted. The presence of a low δ18O extra-caldera rhyolite indicates that country rock may have been hydrothermally altered at depth and then assimilated to form the Dunraven Road flow.
McHenry, Lindsay J; Stanistreet, Ian G
2018-04-12
Tuffaceous marker beds, derived from volcanic products from the Ngorongoro Volcanic Highlands, help define a stratigraphic framework for the world-renowned fossil and stone tool record exposed at Olduvai Gorge, Tanzania. However, previous efforts to constrain this tuff record, especially for Olduvai Bed II, have been limited because of erosion, contamination, reworking, and the alteration of volcanic glass under saline-alkaline conditions. This paper applies previously defined geochemical and mineralogical "fingerprints" for several major Bed II marker tuffs, based on glass (where available) and phenocrysts more resistant to alteration (feldspar, hornblende, augite, and titanomagnetite), to tuffs from stratigraphic sections in the Olduvai Junction Area, including previously and recently excavated Acheulean and Oldowan sites (HWK EE (Locality (Loc) 42), EF-HR (Loc 12a), FLK (Loc 45), and MNK (Loc 88)). The Middle Bed II Bird Print Tuff (BPT) is found to be more compositionally variable than previously reported but is still valuable as a stratigraphic marker over short distances. The confirmation of blocks of Tuff IID in conglomerate helps constrain Upper Bed II stratigraphy at sites where in-situ tuffs are absent. This paper also compiles the results of published geochronological research, providing stratigraphic context and updating previously reported dates using a consistent 40 Ar/ 39 Ar reference standard age. The results of this work support the following paleoanthropologically relevant conclusions: 1) the early Acheulean site EF-HR (Loc 12a) is situated above the level of Hay's Tuff IIC, and thus sits in Upper rather than Middle Bed II, (2) the HWK EE (Loc 42) Oldowan site is constrained between Tuff IIA and Tuff IIB, just above the boundary between Lower and Middle Bed II, and 3) the Acheulean site at FLK W most likely lies within the Middle Augitic Sandstone, above Tuff IIB, similar to the placements by Leakey and Hay for the earliest Acheulean at Olduvai. Copyright © 2018 Elsevier Ltd. All rights reserved.
Methods for pore water extraction from unsaturated zone tuff, Yucca Mountain, Nevada
Scofield, K.M.
2006-01-01
Assessing the performance of the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, requires an understanding of the chemistry of the water that moves through the host rock. The uniaxial compression method used to extract pore water from samples of tuffaceous borehole core was successful only for nonwelded tuff. An ultracentrifugation method was adopted to extract pore water from samples of the densely welded tuff of the proposed repository horizon. Tests were performed using both methods to determine the efficiency of pore water extraction and the potential effects on pore water chemistry. Test results indicate that uniaxial compression is most efficient for extracting pore water from nonwelded tuff, while ultracentrifugation is more successful in extracting pore water from densely welded tuff. Pore water splits collected from a single nonwelded tuff core during uniaxial compression tests have shown changes in pore water chemistry with increasing pressure for calcium, chloride, sulfate, and nitrate. Pore water samples collected from the intermediate pressure ranges should prevent the influence of re-dissolved, evaporative salts and the addition of ion-deficient water from clays and zeolites. Chemistry of pore water splits from welded and nonwelded tuffs using ultracentrifugation indicates that there is no substantial fractionation of solutes.
Farmer, G.L.; Broxton, D.E.; Warren, R.G.; Pickthorn, W.
1991-01-01
Nd, Sr and O isotopic data were obtained from silicic ash-flow tuffs and lavas at the Tertiary age (16-9 Ma) Timber (Mountain/Oasis Valley volcanic center (TMOV) in southern Nevada, to assess models for the origin and evolution of the large-volume silicic magma bodies generated in this region. The large-volume (>900 km3), chemically-zoned, Topopah Spring (TS) and Tiva Canyon (TC) members of the Paintbrush Tuff, and the Rainier Mesa (RM) and Ammonia Tanks (AT) members of the younger Timber Mountain Tuff all have internal Nd and Sr isotopic zonations. In each tuff, high-silica rhyolites have lower initial e{open}Nd values (???1 e{open}Nd unit), higher87Sr/86Sr, and lower Nd and Sr contents, than cocrupted trachytes. The TS, TC, and RM members have similar e{open}Nd values for high-silica rhyolites (-11.7 to -11.2) and trachytes (-10.5 to -10.7), but the younger AT member has a higher e{open}Nd for both compositional types (-10.3 and -9.4). Oxygen isotope data confirm that the TC and AT members were derived from low e{open}Nd magmas. The internal Sr and Nd isotopic variations in each tuff are interpreted to be the result of the incorporation of 20-40% (by mass) wall-rock into magmas that were injected into the upper crust. The low e{open}Nd magmas most likely formed via the incorporation of low ??18O, hydrothermally-altered, wall-rock. Small-volume rhyolite lavas and ash-flow tuffs have similar isotopic characteristics to the large-volume ash-flow tuffs, but lavas erupted from extracaldera vents may have interacted with higher ??18O crustal rocks peripheral to the main magma chamber(s). Andesitic lavas from the 13-14 Ma Wahmonie/Salyer volcanic center southeast of the TMOV have low e{open}Nd (-13.2 to -13.8) and are considered on the basis of textural evidence to be mixtures of basaltic composition magmas and large proportions (70-80%) of anatectic crustal melts. A similar process may have occurred early in the magmatic history of the TMOV. The large-volume rhyolites may represent a mature stage of magmatism after repeated injection of basaltic magmas, crustal melting, and volcanism cleared sufficient space in the upper crust for large magma bodies to accumulate and differentiate. The TMOV rhyolites and 0-10 Ma old basalts that erupted in southern Nevada all have similar Nd and Sr isotopic compositions, which suggests that silicic and mafic magmatism at the TMOV were genetically related. The distinctive isotopic compositions of the AT member may reflect temporal changes in the isotopic compositions of basaltic magmas entering the upper crust, possibly as a result of increasing "basification" of a lower crustal magma source by repeated injection of mantle-derived mafic magmas. ?? 1991 Springer-Verlag.
Graphite in the Bishop Tuff and its effect on postcaldera oxygen fugacity
Hildreth, Edward; Ryan-Davis, Juliet; Harlow, Benjamin
2017-01-01
Several cubic kilometers of Paleozoic graphite-bearing argillitic country rocks are present as lithic fragments in Bishop Tuff ignimbrite and fallout. The lithics were entrained by the 650 km3 of rhyolite magma that vented during the 5- to 6-day-long, caldera-forming eruption at Long Valley, California. The caldera is floored by a 350 km2 roof plate that collapsed during the eruption and consists in large part of the Paleozoic strata that provided the abundant hornfelsed metapelitic lithic clasts in the tuff. Graphite has been identified by Raman spectroscopy, electron-dispersive spectroscopy, and X-ray diffraction as an irregularly dispersed component in the small fraction of Bishop Tuff pumice that is dark-colored. Carbon concentration has been determined in pumice, lithics, and wall rocks. Values of δ13C range from –21‰ to –29‰ Vienna Peedee Belemnite (VPDB) for pumice, lithics, and argillitic wall rocks, reflecting the biogenic origin of the reduced carbon in oxygen-limited black Paleozoic marine mudrocks. Carbonate contents, measured separately, are negligible in fresh pumice and lithics. Microprobe analyses of titanomagnetite-ilmenite pairs show that oxygen-fugacity values of numerous batches of postcaldera Early Rhyolite (750–640 ka; ~100 km3) are up to one log unit more reduced than those of the temperature–oxygen fugacity (T-fO2) array of the Bishop Tuff (767 ka), despite similar major-element compositions and Fe-Ti–oxide temperature ranges. All of the many batches of Early Rhyolite, which erupted episodically over an interval of ~125,000 years, yield the reduced fO2 values, indicating that reaction with graphite lowered magmatic fO2 after the caldera-forming eruption but before the first eruption of Early Rhyolite. It is inferred that reaction of postcaldera rhyolite magma with the reduced carbon in a great mass of subsided roof rocks lowered its fO2. It is suggested that comparable effects could have attended caldera collapse of other magma chambers hosted in continental sedimentary rocks.
Bell, C.F.
1996-01-01
In October 1993, the U.S. Geological Survey began a study to characterize the hydrogeology of the shallow aquifer system at the Explosive Experimental Area, Naval Surface Warfare Center, Dahlgren Site, Dahlgren, Virginia, which is located on the Potomac River in the Coastal Plain Physiographic Province. The study provides a description of the hydrogeologic units, directions of ground-water flow, and back-ground water quality in the study area to a depth of about 100 feet. Lithologic, geophysical, and hydrologic data were collected from 28 wells drilled for this study, from 3 existing wells, and from outcrops. The shallow aquifer system at the Explosive Experimental Area consists of two fining-upward sequences of Pleistocene fluvial-estuarine deposits that overlie Paleocene-Eocene marine deposits of the Nanjemoy-Marlboro confining unit. The surficial hydrogeologic unit is the Columbia aquifer. Horizontal linear flow of water in this aquifer generally responds to the surface topography, discharging to tidal creeks, marshes, and the Potomac River, and rates of flow in this aquifer range from 0.003 to 0.70 foot per day. The Columbia aquifer unconformably overlies the upper confining unit 12-an organic-rich clay that is 0 to 55 feet thick. The upper confining unit conformably overlies the upper confined aquifer, a 0- to 35-feet thick unit that consists of interbedded fine-grained to medium-grained sands and clay. The upper confined aquifer probably receives most of its recharge from the adjacent and underlying Nanjemoy-Marlboro confining unit. Water in the upper confined aquifer generally flows eastward, northward, and northeastward at about 0.03 foot per day toward the Potomac River and Machodoc Creek. The Nanjemoy-Marlboro confining unit consists of glauconitic, fossiliferous silty fine-grained sands of the Nanjemoy Formation. Where the upper confined system is absent, the Nanjemoy-Marlboro confining unit is directly overlain by the Columbia aquifer. In some parts of the Explosive Experimental Area, horizontal hydraulic conductivities of the Nanjemoy-Marlboro confining unit and the Columbia aquifer are similar (from 10-4 to 10-2 foot per day), and these units effectively combine to form a thick (greater than 50 feet) aquifer. The background water quality of the shallow aquifer system is characteristic of ground waters in the Virginia Coastal Plain Physiographic Province. Water in the Columbia aquifer is a mixed ionic type, has a median pH of 5.9, and a median total dissolved solids of 106 milligrams per liter. Water in the upper confined aquifer and Nanjemoy-Marlboro confining unit is a sodium- calcium-bicarbonate type, and generally has higher pH, dissolved solids, and alkalinity than water in the Columbia aquifer. Water in the upper confined aquifer and some parts of the Columbia aquifer is anoxic, and it has high concentrations of dissolved iron, manganese, and sulfide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Triay, I.R.; Cotter, C.R.; Kraus, S.M.
1996-08-01
We studied the retardation of actinides (neptunium, uranium, and plutonium) by sorption as a function of radionuclide concentration in water from Well J-13 and of tuffs from Yucca Mountain. Three major tuff types were examined: devitrified, vitric, and zeolitic. To identify the sorbing minerals in the tuffs, we conducted batch sorption experiments with pure mineral separates. These experiments were performed with water from Well J-13 (a sodium bicarbonate groundwater) under oxidizing conditions in the pH range from 7 to 8.5. The results indicate that all actinides studied sorb strongly to synthetic hematite and also that Np(V) and U(VI) do notmore » sorb appreciably to devitrified or vitric tuffs, albite, or quartz. The sorption of neptunium onto clinoptilolite-rich tuffs and pure clinoptilolite can be fitted with a sorption distribution coefficient in the concentration range from 1 X 10{sup -7} to 3 X 10{sup -5} M. The sorption of uranium onto clinoptilolite-rich tuffs and pure clinoptilolite is not linear in the concentration range from 8 X 10{sup -8} to 1 X 10{sup -4} M, and it can be fitted with nonlinear isotherm models (such as the Langmuir or the Freundlich Isotherms). The sorption of neptunium and uranium onto clinoptilolite in J-13 well water increases with decreasing pH in the range from 7 to 8.5. The sorption of plutonium (initially in the Pu(V) oxidation state) onto tuffs and pure mineral separates in J-13 well water at pH 7 is significant. Plutonium sorption decreases as a function of tuff type in the order: zeolitic > vitric > devitrified; and as a function of mineralogy in the order: hematite > clinoptilolite > albite > quartz.« less
Fission-track dating of pumice from the KBS Tuff, East Rudolf, Kenya
Hurford, A.J.; Gleadow, A.J.W.; Naeser, C.W.
1976-01-01
Fission-track dating of zircon separated from two pumice samples from the KBS Tuff in the Koobi Fora Formation, in Area 131, East Rudolf, Kenya, gives an age of 2.44??0.08 Myr for the eruption of the pumice. This result is compatible with the previously published K-Ar and 40Ar/ 39Ar age spectrum estimate of 2.61??0.26 Myr for the KBS Tuff in Area 105, but differs from the more recently published K-Ar date of 1.82??0.04 Myr for the KBS Tuff in Area 131. This study does not support the suggestion that pumice cobbles of different ages occur in the KBS Tuff. ?? 1976 Nature Publishing Group.
Falls, W.F.; Baum, J.S.; Prowell, D.C.
1997-01-01
Six geologic units are recognized in the Cretaceous and the Paleocene sediments of eastern Burke and Screven Counties in Georgia on the basis of lithologic, geophysical, and paleontologic data collected from three continuously cored testholes in Georgia and one testhole in South Carolina. The six geologic units are separated by regional unconformities and are designated from oldest to youngest as the Cape Fear Formation, the Middendorf Formation, the Black Creek Group (undivided), and the Steel Creek Formation in the Upper Cretaceous section, and the Ellenton and the Snapp Formations in the Paleocene section. The geologic units provide a spatial and temporal framework for the identification and correlation of a basal confining unit beneath the Midville aquifer system and five aquifers and five confining units in the Dublin and the Midville aquifer systems. The Dublin aquifer system is divided hydrostratigraphically into the Millers Pond, the upper Dublin, and the lower Dublin aquifers. The Midville aquifer system is divided hydrostratigraphically into the upper and the lower Midville aquifers. The fine-grained sediments of the Millers Pond, the lower Dublin, and the lower Midville confining units are nonmarine deposits and are present in the upper part of the Snapp Formation, the Black Creek Group (undivided), and the Middendorf Formation, respectively. Hydrologic data for specific sets of monitoring wells at the Savannah River Site in South Carolina and the Millers Pond site in Georgia confirm that these three units are leaky confining units and locally impede vertical ground-water flow between adjacent aquifers. The fine-grained sediments of the upper Dublin and the upper Midville confining units are marine-deltaic deposits of the Ellenton Formation and the Black Creek Group (undivided), respectively. Hydrologic data confirm that the upper Dublin confining unit regionally impedes vertical ground-water flow on both sides of the Savannah River. The upper Midville confining unit impedes vertical ground-water flow in the middle and downdip parts of the study area and is a leaky confining unit in the updip part of the study area. Recognition of the upper Dublin confining unit as a regional confining unit between the Millers Pond and the upper Dublin aquifers also confirms that the Millers Pond aquifer is a separate hydrologic unit from the rest of the Dublin aquifer system. This multi-aquifer framework increases the vertical hydrostratigraphic resolution of hydraulic properties and gradients in the Dublin and Midville aquifer systems for the investigation of ground-water flow beneath the Savannah River in the vicinity of the U.S. Department of Energy Savannah River Site.
NASA Astrophysics Data System (ADS)
Denyszyn, S. W.; Mundil, R.; Metcalfe, I.; He, B.
2010-12-01
In eastern Australia, the interconnected Bowen and Sydney Basins are filled with terrestrial sediments of late Paleozoic to early Mesozoic age. These sedimentary units record significant evolutionary events of eastern Gondwana during the time interval between two major mass extinctions (end Middle Permian and Permian-Triassic), and also provide lithological evidence for the Carboniferous-Permian Late Paleozoic Ice Age of southern Pangea, considered to be divisible into up to seven discrete glaciation events in Australia [e.g., 1]. These glaciations are currently assigned ages that indicate that the last of the glaciations predate the end Middle Permian mass extinction at ca. 260 Ma. However, the estimates for the time and durations are largely based on biostratigraphy and lithostratigraphy that, in the absence of robust and precise radioisotopic ages, are unacceptably fragile for providing an accurate high-resolution framework. Interbedded with the sediments are numerous tuff layers that contain zircon, many of which are associated with extensive coal measures in the Sydney and Bowen Basins. Published SHRIMP U-Pb zircon ages [2, 3] have been shown to be less precise and inaccurate when compared to ages applying the CA-TIMS method to the same horizons. Also within the late Middle Permian, the eruption of the Emeishan flood basalts in SW China has been proposed to have caused the end Middle Permian mass extinction [e.g., 4], though a causal link between these events demands a rigorous test that can only be provided by high-resolution geochronology. We present new U-Pb (CA-TIMS) zircon ages on tuff layers from the Sydney and Bowen Basins, with the purpose of generating a timescale for the Upper Permian of Australia to allow correlation with different parts of the world. Initial results, with permil precision, date a tuff layer within the uppermost Bandanna Fm. to ca. 252 Ma, a tuff within the Moranbah Coal Measures to ca. 256 Ma, and a tuff within the Ingelara Fm. to ca. 257 Ma, the latter two units lying stratigraphically below the latest identified glacial deposits. U-Pb (CA-TIMS) results on zircons from the Emeishan flood basalts and related volcanic products confirm the end-Guadalupian age (ca. 260 Ma) of the magmatism, and based on present data, place the Emeishan volcanic event (and its possibly associated mass extinction) within the occurrence of the Late Paleozoic Ice Age. This study’s primary goal is the establishment of a chronostratigraphic framework that would allow the integration of calibrated records from both terrestrial and marine units from different parts of the world in order to constrain the timing and rates of extinctions and recoveries in different locations and physical environments. [1] Fielding et al. (2008), J. Geol Soc. Lon., v. 165, pp. 129-140 [2] Michaelsen et al. (2001), Aus. J. Earth Sci., v. 48, pp. 183-192 [3] Roberts et al. (1996), Aus. J. Earth Sci., v. 43, pp. 401-421 [4] He et al. (2007), EPSL, v. 255, pp. 306-323
Degraded dryland rehabilitation: boosting seedling survival using zeolitic tuff
NASA Astrophysics Data System (ADS)
Alhamad, Mohammad Noor; Alrbabah, Mohammad; Athamneh, Hana
2016-04-01
More than 90% of Jordan is broadly defined as rangelands. Most rangelands are located within the arid zone of the country. Extensive grazing occurs across much of the natural pastures resulting in serious environmental degradation of natural resources in these rangelands. Several programs were carried out for rangeland conservation and rehabilitation in the country. However, these programs face a major challenge of the low survival rate of transplanted shrub seedlings. Seeking innovative approaches to assure healthy establishment of seedling is a big challenge to achieve successful rehabilitation programs. Drought is considered one of the major problems in rehabilitation. Promoting survival and growth, using zeolitic tuff added to planting holes is suggested to be a possible solution. The experiment was conducted on a factorial arrangement within RCBD design. Two shrub species (Atriplex halimus, Atriplex nummularia) were transplanted into holes prepared with three levels of tuff treatments (mulching, mixing and control) under rainfed condition. The result showed insignificant effect of tuff on seedling survival percentage, when mixing tuff with plantation soil or adding tuff as mulch. Also, the two species showed similar survival percentages over two measured dates. However, mixing tuff with soil during hole preparation significantly enhanced seedling heights. Furthers, The Australian atriplex (Atriplex nummularia) species significantly grow higher than Atriplex halimus. The study results suggested that mixing zeoltic tuff with soil during transplantation of seedling is promising in improving the success of rangeland rehabilitation in dry areas in Jordan.
Thornber, Carl R.
1990-01-01
This map shows detailed geology of the Quaternary and Tertiary volcanic deposits that comprise Harrat Hutaymah and an updated and generalized compilation of the underlying Proterozoic and Paleozoic basement rocks. Quaternary alluvial cover and details of basement geology (that is, faults, dikes, and other features) are not shown. Volcanic unit descriptions and contact relations are based upon field investigation by the author and on compilation and revision of mapping Kellogg (1984; northern half of area) and Pallister (1984; southern half of area). A single K-Ar date of 1.80 ± 0.05 Ma for an alkali olivine basalt flow transected by the Al Hutaymah tuff ring (Pallister, 1984) provides the basis for an estimated late Tertiary to Quaternary age range for all harrat volcanic units other than unit Qtr (tuff reworked during Quaternary age time). Contact relations and unit descriptions for the basement rocks were compiled from Pallister (1984), Kellogg (1984 and 1985), DuBray (1984), Johnson and Williams (1984), Vaslet and others (1987), Cole and Hedge (1986), and Richter and others (1984). All rock unit names in this report are informal and capitalization follows Saudi Arabian stratigraphic nomenclature (Fitch, 1980). Geographic information was compiled from Pallister (1984), Kellogg (1984), and Fuller (in Johnson and Williams, 1984) and from field investigation by the author in 1986. The pie diagrams on the map show the distribution and petrology of ultramafic xenoliths of Harrat Hutaymah. The pie diagrams are explained by a detailed classification of ultramafic xenoliths that is introduced in this report.
Gong, Nina; Hong, Hanlie; Huff, Warren D; Fang, Qian; Bae, Christopher J; Wang, Chaowen; Yin, Ke; Chen, Shuling
2018-05-16
Permian-Triassic (P-Tr) altered volcanic ashes (tuffs) are widely distributed within the P-Tr boundary successions in South China. Volcanic altered ashes from terrestrial section-Chahe (CH) and marine section-Shangsi (SS) are selected to further understand the influence of sedimentary environments and volcanic sources on diagenetic alterarion on volcanic tuffs. The zircon 206 Pb/ 238 U ages of the corresponding beds between two sections are almost synchronous. Sedimentary environment of the altered tuffs was characterized by a low pH and did not experience a hydrothermal process. The dominant clay minerals of all the tuff beds are illite-smectite (I-S) minerals, with minor chlorite and kaolinite. I-S minerals of CH (R3) are more ordered than SS (R1), suggesting that CH also shows a higher diagenetic grade and more intensive chemical weathering. Besides, the nature of the volcanism of the tuff beds studied is derived from different magma sources. The clay mineral compositions of tuffs have little relation with the types of source volcanism and the depositional environments. Instead, the degree of the mixed-layer clay minerals and the REE distribution are mainly dependent upon the sedimentary environments. Thus, the mixed-layer clay minerals ratio and their geochemical index can be used as the paleoenvironmental indicator.
NASA Astrophysics Data System (ADS)
Vatin-Perignon, N.; Poupeau, G.; Oliver, R. A.; La Venu, A.; Labrin, F.; Keller, F.; Bellot-Gurlet, L.
1996-03-01
Trace-element and REE data of glass and pumices of acidic tuffs and related fall deposits erupted in southern Peru and northern Bolivia between 20 and 0.36 Ma display typical characteristics of subduction related continental arc magmatism of the CVZ with strong LILE/HFSE enrichment and non enrichment of HREE and Y. Geochemical variations of these tuffs are linked to subduction processes and controlled by changes in tectonic regimes which occured with each Quechua tectonic pulse and affected the astenospheric wedge and both the dowgoing and the overriding lithospheres. During Neogene — Pleistocene times, tuffs erupted in northern Bolivia are typically enriched in Zr, Hf, Th, Ba, LREEs and other incompatible elements and incompatible /Yb ratios are much higher relative to those erupted from southern Peru, at a given SiO 2 content (65-67 wt. for dacites, 72-73 wt.% for rhyolites). {Zr}/{Hf} ratios increase eastward from 27 to 30 and {Ce}/{Yb N} ratios from 11 to 19 reflecting the variation of degree of wedge contribution. Fractionation of the LREE over the HREE and fractionation of incompatible elements may be due to their heterogeneous distribution in the magma source. More highly fractionated REE patterns of Bolivian tuffs than Peruvian tuffs are attributed to variable amounts of contamination of magmas by lower crust. After the Quechua compressional event at 7 Ma, {Sr}/{Y} ratios of tuffs of the same age, erupted at 150-250 km or 250-400 km from the Peru-Chile trench, increase from southern Peru to northern Bolivia. These differences may be attributed to the subduction of a swarm oceanic lithosphere under the Bolivian Alti-plano, leading to partial melting of the sudbucted lithosphere. New FT dating of obsidian fragments of the sillar of Arequipa at 2.42 ± 0.11 Ma. This tuff dates the last Quechua compressional upper Pliocene phase ( 2.5 Ma) and confirms that the sillar is not contemporaneous with the Toba 76 tuff or the Perez ignimbrite of northern Bolivia. Geochemical characteristics of tuffs erupted before and after this last compressional phase remained the same and provide evidence that the upper Miocene ( 7 Ma) compressional deformations played the most important role on the variability of the geochemical characteristics of the southern Peruvian and northern Bolivian tuffs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, James T.; Sobolik, Steven R.; Lee, Moo Y.
The study described in this report involves heated and unheated pressurized slot testing to determine thermo-mechanical properties of the Tptpll (Tertiary, Paintbrush, Topopah Spring Tuff Formation, crystal poor, lower lithophysal) and Tptpul (upper lithophysal) lithostratigraphic units at Yucca Mountain, Nevada. A large volume fraction of the proposed repository at Yucca Mountain may reside in the Tptpll lithostratigraphic unit. This unit is characterized by voids, or lithophysae, which range in size from centimeters to meters, making a field program an effective method of measuring bulk thermal-mechanical rock properties (thermal expansion, rock mass modulus, compressive strength, time-dependent deformation) over a range ofmore » temperature and rock conditions. The field tests outlined in this report provide data for the determination of thermo-mechanical properties of this unit. Rock-mass response data collected during this field test will reduce the uncertainty in key thermal-mechanical modeling parameters (rock-mass modulus, strength and thermal expansion) for the Tptpll lithostratigraphic unit, and provide a basis for understanding thermal-mechanical behavior of this unit. The measurements will be used to evaluate numerical models of the thermal-mechanical response of the repository. These numerical models are then used to predict pre- and post-closure repository response. ACKNOWLEDGEMENTS The authors would like to thank David Bronowski, Ronnie Taylor, Ray E. Finley, Cliff Howard, Michael Schuhen (all SNL) and Fred Homuth (LANL) for their work in the planning and implementation of the tests described in this report. This is a reprint of SAND2004-2703, which was originally printed in July 2004. At that time, it was printed for a restricted audience. It has now been approved for unlimited release.« less
In Situ Measurement of Permeability in the Vicinity of Faulted Nonwelded Bishop Tuff, Bishop, CA
NASA Astrophysics Data System (ADS)
Dinwiddie, C. L.; Fedors, R. W.; Ferrill, D. A.; Bradbury, K. K.
2002-12-01
The nonwelded Bishop Tuff includes matrix-supported massive ignimbrites and clast-supported bedded deposits. Fluid flow through such faulted nonwelded tuff is likely to be influenced by a combination of host rock properties and the presence of deformation features, such as open fractures, mineralized fractures, and fault zones that exhibit comminuted fault rock and clays. Lithologic contacts between fine- and coarse-grained sub-units of nonwelded tuff may induce formation of capillary and/or permeability barriers within the unsaturated zone, potentially leading to down-dip lateral diversion of otherwise vertically flowing fluid. However, discontinuities (e.g., fractures and faults) may lead to preferential sub-vertical fast flow paths in the event of episodic infiltration rates, thus disrupting the potential for both (1) large-scale capillary and/or permeability barriers to form and for (2) redirection of water flow over great lateral distances. This study focuses on an innovative technique for measuring changes in matrix permeability near faults in situ--changes that may lead to enhancement of vertical fluid flow and disruption of lateral fluid flow. A small-drillhole minipermeameter probe provides a means to eliminate extraction of fragile nonwelded tuffs as a necessity for permeability measurement. Advantages of this approach include (1) a reduction of weathering-effects on measured permeability, and (2) provision of a superior sealing mechanism around the gas injection zone. In order to evaluate the effect of faults and fault zone deformation on nonwelded tuff matrix permeability, as well as to address the potential for disruption of lithologic barrier-induced lateral diversion of flow, data were collected from two fault systems and from unfaulted host rock. Two hundred and sixty-seven gas-permeability measurements were made at 89 locations; i.e. permeability measurements were made in triplicate at each location with three flow rates. Data were collected at the first fault and perpendicularly away from it within the hanging wall to a distance of 6 m [20 ft] along one transect, and perpendicular to the fault from the foot wall to the hanging wall for a distance of 6 m [20 ft] along a second transect. Additionally, eight water-permeameter tests were conducted in order to augment the gas-permeability data. Gas-permeability measurements were collected along two transects at the main fault of the second fault system and perpendicularly away from it within the foot wall to a distance of 10.5 m [34 ft], crossing several secondary faults in the process. Data were also collected within the fault gouge of the main fault, and were found to vary therein by an order of magnitude. This Bishop Tuff study supports the U.S. Nuclear Regulatory Commission (NRC) review of hydrologic property studies at Yucca Mountain, Nevada, which are conducted by the U.S. Department of Energy. This abstract is an independent product of the CNWRA and does not necessarily reflect the views or regulatory position of the NRC.
Wells, Ray E.; Hillhouse, John W.
1989-01-01
We have determined remanent magnetization directions of the lower Miocene Peach Springs Tuff at 41 localities in western Arizona and southeastern California. An unusual northeast and shallow magnetization direction confirms the proposed geologic correlation of isolated outcrops of the tuff from the Colorado Plateau to Barstow, California, a distance of 350 km. The Peach Springs Tuff was apparently emplaced as a single cooling unit about 18 or 19 Ma and is now exposed in 4 tectonic provinces west of the Plateau, including the Transition Zone, Basin and Range, Colorado River extensional corridor, and central Mojave Desert strike-slip zone. As such, the tuff is an ideal stratigraphic and structural marker for paleomagnetic assessment of regional variations in tectonic rotations about vertical axes. From 4 sites on the stable Colorado Plateau, we have determined a reference direction of remanent magnetization (I = 36.4°, D = 33.0°, α95 = 3.4°) that we interpret as a representation of the ambient magnetic field at the time of eruption. A steeper direction of magnetization (I = 54.8°, D = 22.5°, α95 = 2.3°) was observed at Kingman where the tuff is more than 100 m thick, and similar directions were determined at 7 other thick exposures of the Peach Springs Tuff. The steeper component is presumably a later-stage magnetization acquired after prolonged cooling of the ignimbrite. When compared to the Plateau reference direction, tilt-corrected directions from 3 of 6 sites in the central Mojave strike-slip zone show localized rotations up to 13° in the vicinity of strike-slip faults. The other three sites show no significant rotations with respect to the Colorado Plateau. Both clockwise and counterclockwise rotations were measured, and no systematic regional pattern is evident. Our results do not support kinematic models which require consistent rotation of large regions to accommodate the cumulative displacement of major post-middle Miocene strike-slip faults in the central Mojave Desert. Most of our sites in the Transition Zone and Basin and Range province have had no significant rotation, although small counterclockwise rotation in the McCullough and New York Mountains may be related to sinistral shear along en echelon faults southwest of the Lake Mead shear zone. The larger rotations occur in the Colorado River extensional corridor, where 8 of 14 sites show rotations ranging from 37° clockwise to 51° counterclockwise. These rotations occur in allochthonous tilt blocks which have been transported northeastward above the Chemehuevi-Whipple Mountains detachment fault. Upper-plate blocks within 1 km of the exposed detachment unexpectedly show no significant rotation. From this relation, we infer that rotations are accommodated along numerous low-angle faults at higher structural levels above the detachment surface.
Sarna-Wojcicki, Andrei M.; Bowman, Harry W.; Russell, Paul C.
1979-01-01
Glasses separated from several dacitic and rhyolitic late Cenozoic tuffs of northern and central California were analyzed by neutron activation for more than 43 elemental abundances. Eighteen elements--scandiurn, manganese, iron, zinc, rubidium, cesium, barium, lanthanum, cerium, samarium, europium, terbiurn, dysprosiurn, ytterbiurn, hafniurn, tantalurn, thorium and uranium--were selected as most suitable for purposes of chemical correlation on the basis of their natural variability in silicic tuffs and the precision obtainable in analysis. Stratigraphic relations between tuffs and replicate chemical analyses on individual tuffs make it possib1e to calibrate a quantitative parameter, the similarity coefficient, which indicates the degree of correlation for the tuffs studied. The highest similarity coefficient (0.99) was obtained for analyses of two tuffs (potassium-argon dated at about' 6.0 m.y.) exposed in the Merced(?) and Petaluma Formations of Sonoma County, which represent different paleoenvironments, shallow-water marine and fresh water or brackish marine, respectively. Corre1ation of these formations on the basis of criteria other than tephrochronoloqy would be difficult. Results of neutron activation analysis in general confirm earlier correlations made on the basis of analysis by X-ray fluorescence but also make it possible to resolve small compositional differences between chemically simi1ar tuffs in stratigraphic proximity. The Lawlor Tuff (potassium-argon dated at about 4.0 m.y.) is identified at two new localities: in a core sample obtained from a bore hole east of Suisun Bay, and from the Kettleman Hills of western San Joaquin Valley. This identification permits correlation of the uppermost part of the marine Etchegoin Formation in the San Joaquin Valley with the continental Livermore Gravels of Clark, the Tassajara Formation, and the upper part of the Sonoma Volcanics in the cel1tral Coast Ranges of California. A younger tuff near the top of the marine San Joaquin Formation in the Kettleman Hills has been identified at both new 1oca1ities .
NASA Astrophysics Data System (ADS)
Ross, Gerald M.
1986-03-01
The Early Proterozoic (1663 Ma) Narakay Volcanic Complex, exposed in Great Bear Lake (Northwest Territories, Canada), is a bimodal suite of basalt and rhyolite erupted in a continental setting and consisting largely of pyroclastic rocks interlayered with shallow marine sedimentary rocks of the Hornby Bay Group. Mafic pyroclastic rocks consist of lapilli tuff, tuff, tuff breccia and agglomerate that represent the remnants of small subaerial tuff cones (0.5 to 2 km in diameter) that in most cases have subsided into the volcanic conduit. Stratification styles, sedimentary structures and grain morphologies in pyroclastic rocks reflect variations in the water:magma ratio during eruptions and have been used to help elucidate eruptive mechanisms and reconstruct volcanic edifices. Basaltic pyroclasts are commonly bounded by fracture surfaces and are morphologically similar to modern pyroclasts produced by thermal quench fragmentation or steam-blast disruption of magma. Most fragments have low vesicularity and scoria is only locally abundant which indicates that eruptive energy was supplied mostly by water—melt interaction rather than exsolution of magmatic gases. Cored bombs and lapilli, fusiform bombs, and pyroclasts similar in texture to those of Strombolian cinder and agglutinate spatter, are uncommon but are stratigraphically widespread and imply the occurrence of Strombolian eruptions, presumably when water access to the vent was impeded. Massive bedding is typical of the tuffs and, in addition to the poorly sorted ash-rich nature of the tuffs, implies deposition from water- and/or steam-rich hydrovolcanic eruption clouds and cypressoid jets by airfall and dense pyroclastic flows. Uncommon well-stratified and sorted ash and lapilli tuff record airfall and pyroclastic flow(?) deposition from eruption clouds rich in magmatic gases. Base surge deposits are uncommon and occur only in the subaerial portion of a sequence of tuffs inferred to record the progradation of a cone-margin surge platform into standing water. Few of the tuff cone deposits display a systematic vertical sequence of stratification styles, structures and grain morphologies. This indicates that either the eruptive style varied irregularly between hydrovolcanic and Strombolian and/or that pyroclasts of different origin were mixed during eruptions.
Miller, David M.; Leslie, Shannon R.; Hillhouse, John W.; Wooden, Joseph L.; Vazquez, Jorge A.; Reynolds, R.E.
2010-01-01
Early to middle Miocene lacustrine strata of the Barstow Formation are well dated in just a few places, limiting our ability to infer basin evolution and regional tectonics. At the type section in the Mud Hills, previous studies have shown that the lacustrine interval of the Barstow Formation is between ~16.3 Ma and ~13.4 Ma. Elsewhere, lake beds of the Barstow Formation have yielded vertebrate fossils showing the Hemingfordian/Barstovian transition at ~16 Ma but are otherwise poorly dated. In an attempt to clarify the age and depositional environments of the lake deposits, we are mapping the Barstow Formation and dating zircons from interbedded tuffs, as well as testing ash-flow tuffs for the distinctive remanent magnetization direction of the widespread Peach Spring Tuff. Thus far, our new U-Pb zircon ages indicate that the Barstow lake beds contain tuff beds as old as 19.1 Ma and as young as 15.3 Ma. At Harvard Hill, Barstow lake beds contain a thick tuff dated at 18.7 Ma. On the basis of zircon ages, mineralogy, zircon chemistry, and paleomagnetic results, we consider the thick tuff to be a lacustrine facies of the Peach Spring Tuff. We have identified the Peach Spring Tuff by similar methods at eight localities over a broad area, providing a timeline for several fluvial and lacustrine sections. The new dates indicate that long-lived lacustrine systems originated before 19 Ma and persisted to at least 15 Ma. The onset of lacustrine conditions predates the Peach Spring Tuff in most Barstow Formation sections and may be older than 19.5 Ma in some places. The new data indicate that the central Mojave Desert contained narrow to broad lake basins during and after extension, and that Barstow lacustrine deposits did not exclusively postdate extensional tectonics. At present, it is unclear whether several separate, small lake basins coexisted during the early to middle Miocene, or if instead several small early Miocene basins gradually coalesced over about 6 million years to form one or two large middle Miocene lake basins.
Miller, D.M.; Leslie, S.R.; Hillhouse, J.W.; Wooden, J.L.; Vazquez, J.A.; Reynolds, R.E.
2010-01-01
Early to middle Miocene lacustrine strata of the Barstow Formation are well dated in just a few places, limiting our ability to infer basin evolution and regional tectonics. At the type section in the Mud Hills, previous studies have shown that the lacustrine interval of the Barstow Formation is between ~16.3 Ma and ~13.4 Ma. Elsewhere, lake beds of the Barstow Formation have yielded vertebrate fossils showing the Hemingfordian/Bartovian transition at ~16 Ma but are otherwise poorly dated. In an attempt to clarify the age and depositional environments of the lake deposits, we are mapping the Barstow Formation and dating zircons from interbedded tuffs, as well as testing ash-flow tuffs for the distinctive remanent magnetization direction of the widespread Peach Spring Tuff. Thus far, our new U-Pb zircon ages inficate that the Barstow lake beds contain tuff beds as old as 19.1 Ma and as young as 15.3 Ma. At Harvard Hill, Barstow lake beds contain a thick tuff dated at 18.7 Ma. On the basis of zircon ages, mineralogy, zircon chemistry, and paleomagnetic results, we consider the thick tuff to be a lacustrine facies of the Peach Spring Tuff. We have identified the Peach Spring Tuff by similar methods at eight localities over a broad area, providing a timeline for several fluvial and lacustrine sections. The new dates indicate that long-lived lacustrine systems originated before 19 Ma and persisted to at least 15 Ma. The onset of lacustrine conditions predates the Peach Spring Tuff in most Barstow Formation sections and may be older than 19.5 Ma in some places. The new data indicate that the central Mojave Desert contained narrow to broad lake basins during and after extension, and that Barstow lacustrine deposits did not exclusively postdate extensional tectonics. At present, it is unclear whether several separate, small lake basins coexisted during the early to middle Miocene, or if instead several small early Miocene basins gradually coalesced over about 6 millions years to form one or two large middle Miocene lake basins.
NASA Astrophysics Data System (ADS)
Gualda, G. A. R.; Ghiorso, M. S.; Hurst, A. A.; Allen, M. C.; Bradshaw, R. W.
2017-12-01
For more than 40 years, the Bishop Tuff has been the archetypical example of a singular, zoned magma body that fed a supereruption. Early-erupted material is pyroxene-free and crystal poor (<20 wt. %), presumably erupted from the upper parts of the magma body; late-erupted material is orthopyroxene and clinopyroxene-bearing, commonly more crystal rich (up to 30 wt. % crystals), and presumably tapped magma from the lower portions of the magma body. Fe-Ti oxide compositions suggest higher crystallization temperatures for late-erupted magmas (as high as 820 °C) than for early-erupted magmas (as low as 700 °C). Pressures and temperatures derived from major element compositions of glass inclusions led Gualda & Ghiorso (2013, CMP) to suggest an alternative model of lateral juxtaposition of two main magma bodies - each one feeding early-erupted and late-erupted units. Chamberlain et al. (2015, JPet) and Evans et al. (2016, AmMin) recently disputed this interpretation. We present a large dataset of matrix glass compositions for 161 pumice clasts that span the stratigraphy of the deposit. We calculate crystallization pressures based on major-element glass compositions using rhyolite-MELTS geobarometry, and crystallization temperatures based on Zr in glass using zircon saturation geothermometry. We apply the same methods to 1538 major-element and 615 trace-element analyses from Chamberlain et al. The results overwhelmingly demonstrate that there is no difference in crystallization temperature or pressure between early and late-erupted magmas. Crystallization pressures and temperatures are unimodal, with modes of 150 MPa and 730 °C (calibration of Watson & Harrison). Our results strongly support lateral juxtaposition of two main magma bodies. Smaller units recognized by Chamberlain et al. crystallized at the same pressures as the main bodies - this suggests the coexistence of larger and smaller magma bodies at the time of the Bishop Tuff supereruption. We compare our findings for the Bishop Tuff with results for very large and supereruptions elsewhere in the world. We argue that supereruptions typically mobilize a complex patchwork of magma bodies that reside within specific levels of the crust. They reveal moments of high-melt productivity in the crust, unlike what we observe in the Earth today.
NASA Astrophysics Data System (ADS)
Dunbar, N. W.; Brown, F. H.; Levin, N. E.; McIntosh, W. C.; Rogers, M.; Semaw, S.; Simpson, S. W.; Stinchcomb, G. E.
2016-12-01
The Gona region, on the western flank of the southern Afar Rift, in Ethiopia, contains a rich and complex tephra record that provides insight into structural evolution of the region and chronological controls on the local record of human evolution. Despite lack of source volcanoes in the Gona region, thick (up to 80 cm), fine-grained (20-500 µm), fresh, pure, glassy distal tephra layers, which are discontinuous and appear to have undergone significant secondary thickening shortly after deposition, are present in sediments deposited in the last two million years. Altered tephra are present in older sediments. New data are consistent with those reported by Quade et al. (2008), showing that tephra from Gona are typically rhyolitic, consistent with derivation from large, but distant volcanic eruptions. Significant geochemical variation is observed between different tephra layers, particularly with respect to FeO (ranging between 2 and 7.5 wt.% in different rhyolitic tephra), Ca, Mn, and Cl. Elements Na and K are variable, consistent with alkali mobility during glass hydration. Although some tephra layers contain feldspar and are thus datable using the 40Ar/39Ar, others are not directly datable, so must be geochemically linked to dated source eruptions. A unit of particular focus is the widespread marker tuff known locally as the Boolihinan tuff, which is associated with significant hominin fossils and artifacts. This locally aphyric unit, which consists of highly expanded rhyolitic glass, exhibits some geochemical variability, particularly with respect to SiO2 (74-78 wt.%), but yields a robust compositions with respect to Fe, Ca, Mn, and Cl. The Boolihinan tuff was previously tentatively correlated to a 1.6 Ma tephra found in DSDP core DEM-4-1. However, we suggest here a more robust correlation to two samples of an unwelded ignimbrite with 40Ar/39Ar ages of 1.281±0.061 and 1.253±0.041 (27-01 and 27-05 of Morgan et al., 2012) from the Melka Kunture area, which is over 300 km from the Gona field area. The Boolihinan tuff is interpreted to be the ashfall equivalent of the unwelded ignimbrite. This correlation provides a chronological marker which in turn provides improved age constraints to the fossils and artifacts at Gona that are found in association with this tephra.
The Strengthening Effect of Ice on Two Extraterrestrial Analogs: A Cautionary Tale
NASA Astrophysics Data System (ADS)
Atkinson, J.; Durham, W. B.; Seager, S.
2016-12-01
Sample retrieval from extraterrestrial bodies and in situ resource utilization (ISRU) activities have been identified as some of the most important scientific endeavors of the coming decade. With the failure of Rosetta's Philae lander to penetrate the surface of comet 67P and obtain a sample due to the high compressive strength of the surface, it is becoming obvious that knowledge of the mechanical properties of materials that might be encountered in such environments and under such conditions is critical to future mission success. Two comet/asteroid analogs (Indiana limestone and Bishop tuff), selected based on their contrasting mechanical properties and porosities, were tested under constant displacement to failure (in most cases) at low temperatures (295 K to 77 K) and low confining pressures (1 to 5 MPa). The compressive strength of both materials was determined under varied conditions of saturation, from oven-dried ( 0% water content) to fully saturated, and both brittle and ductile behavior was observed. The saturated limestone increased in strength from 30 MPa (at 295 K) to >200 MPa (at 77 K), while the Bishop tuff increased in strength from 13 MPa at 295 K to 165 MPa at 150 K. The results of this study will be useful to future sample retrieval missions or ISRU maneuvers. The large increase in compressive strength of these saturated materials at cryogenic temperatures means that future missions will need to prepare technology that has the energetic and mechanical capability to penetrate very hard substrates as they are likely to encounter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flexser, S.; Wollenberg, H.A.
1992-06-01
Samples of devitrified welded tuff near and away from the site of a heater test in Rainier Mesa were examined with regard to whole-rock radioelement abundances, microscopic distribution of U, and oxygen isotope ratios. Wholerock U averages between 4 and 5 ppM, and U is concentrated at higher levels secondary opaque minerals as well as in accessory grains. U in primary and secondary sites is most commonly associated with Mn phases, which average {approximately}30 ppM U in more uraniferous occurrences. This average is consistent and apparently unaffected by proximity to the heater. The Mn phases differ compositionally from Mn mineralsmore » in other NTS tuffs, usually containing abundant Fe, Ti, and sometimes Ce, and are often poorly crystalline. Oxygen isotope ratios show some depletion in {delta}{sup 18}O in tuff samples very close to the heater; this depletion is consistent with isotopic exchange between the tuff and interstitial water, but it may also reflect original heterogeneity in isotopic ratios of the tuff unrelated to the heater test. Seismic properties of several tuff samples were measured. Significant differences correlating with distance from the heater occur in P- and S-wave amplitudes; these may be due to loss of bound water. Seismic velocities are nearly constant and indicate a lack of significant microcracking. The absence of clearer signs of heater-induced U mobilization or isotopic variations may be due to the short duration of the heater test, and to insufficient definition of pre-heater-test heterogeneities in the tuff.« less
Geoengineering properties of potential repository units at Yucca Mountain, southern Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tillerson, J.R.; Nimick, F.B.
1984-12-01
The Nevada Nuclear Waste Storage Investigations (NNWSI) Project is currently evaluating volcanic tuffs at the Yucca Mountain site, located on and adjacent to the Nevada Test Site, for possible use as a host rock for a radioactive waste repository. The behavior of tuff as an engineering material must be understood to design, license, construct, and operate a repository. Geoengineering evaluations and measurements are being made to develop confidence in both the analysis techniques for thermal, mechanical, and hydrothermal effects and the supporting data base of rock properties. The analysis techniques and the data base are currently used for repository design,more » waste package design, and performance assessment analyses. This report documents the data base of geoengineering properties used in the analyses that aided the selection of the waste emplacement horizon and in analyses synopsized in the Environmental Assessment Report prepared for the Yucca Mountain site. The strategy used for the development of the data base relies primarily on data obtained in laboratory tests that are then confirmed in field tests. Average thermal and mechanical properties (and their anticipated variations) are presented. Based upon these data, analyses completed to date, and previous excavation experience in tuff, it is anticipated that existing mining technology can be used to develop stable underground openings and that repository operations can be carried out safely.« less
Re-collection of Fish Canyon Tuff for fission-track standardization
Naeser, C.W.; Cebula, G.T.
1984-01-01
The PURPOSE of this note is to announce the availability of apatite and zircon from a third collection of the Oligocene Fish Canyon Tuff (FC-3). Apatite and zircon separated from the Fish Canyon Tuff have prove to be a useful standard for fission-track dating, both for interlaboratory comparisons and for checking procedures within a laboratory. In May 1981, about 540 kg of Fish Canyon Tuff were collected for mineral separation. Approximately 7. 5 g of apatite, 6. 5 g of zircon, and 89 g of sphene were recovered from this collection. This new material is now ready for distribution.
Rejuvenation Stage Volcanics at Laeo Kilauea, Kauai, Hawaii
NASA Astrophysics Data System (ADS)
Thordarson, T.; Garcia, M.; Wanless, D.; Tagami, T.; Sano, H.
2005-12-01
The Plio-Pleistocene Koloa volcanic series represents the rejuvenated volcanism on Kauai, one of the oldest main Hawaiian Islands. The Koloa series is made up of highly alkalic basalt and associated sedimentary rocks that rest unconformably on the shield-building Waimea Canyon volcanic series. Koloa vents are dispersed across the eastern two-thirds of the island and typically consist of scoria or lava cones that fed broad lava flow fields blanketing the marginal lowlands on the south, east and north side of the island. The northernmost subaerial Koloa vents are found at Laeo Kilauea on the north shore of the island. At Laeo Kilauea the volcanic succession is unusual in that it contains the only phreatomagmatic vent structures of the Koloa series. Here an ~2-km-long costal cliff face reveals a bedded phreatomagmatic tephra sequence that is >90-m-thick and represents the remnant of an a much large tuff cone (>2-km in diameter). The tuff cone sequence is characterized by decimeter to meters thick layers, where cross-bedded ash beds alternate with massive and poorly sorted lapilli tuff beds. The cross-bedded deposits were produced by dry and wet surges, whereas the poorly sorted beds represent fall deposits produced by sustained eruption column (i.e. continuous up-rush) or tephra jets (i.e. rooster-tail explosions). The juvenile clast population of the tephra consists of olivine-phyric foidite, but it also contains abundant wall-rock lithics, including fragments of reef-limestone. The base of the tuff cone outcrops at Mokolea point on the east side of the outcrop, where phreatomagmatic tephra rests directly on an older Koloa pahoehoe flow, a olivine- and mellelite-phyric foidite lava. The tephra sequence is cut by an ~1-m-thick olivine-bearing basanite dike, which acted as a feeder for the fountain-fed spatter and lava (up to 100-m-thick) that cap the phreatomagmatic tephra sequence. These units are separated by a 2-3 m thick soil horizon formed by weathering of the tuff. These three formations have been dated by Ar-Ar giving 2.65 +/- 0.35 Ma for the age of the basal foidite lava, 1.68 +/- 0.11 Ma for the tuff cone and 0.69 +/- 0.03 Ma for the overlying fountain-fed basanite lava. Important conclusions that can be drawn from the results of this study include: (1) The characteristics of the phreatomagmatic tephra indicate that at times the tuff cone crater was filled with water implying that the eruption site was submarine and most likely located in shallow coastal waters. The presence of reef-limestone fragments in the tephra supports this notion. On the other hand, the underlying and overlying lava flows, which do extend an unknown distance beyond the current shoreline, were clearly deposited on dry land. This implies that Kauai experienced significant changes in sea level in early to mid Pleistocene times. (2) The eruptions that produced the tuff cone and the overlying fountain-fed basanite lava are one million years apart, yet the dikes that fed these eruptions appear to have followed a similar path to the surface. This indicates that the magma is utilizing preexisting structural weaknesses to reach the surface.
Hydrogeology of the Canal Creek area, Aberdeen Proving Ground, Maryland
Oliveros, J.P.; Vroblesky, D.A.
1989-01-01
Geologic and borehole geophysical logs made at 77 sites show that the hydrogeologic framework of the study area consists of a sequence of unconsolidated sediments typical of the Coastal Plain of Maryland. Three aquifers and two confining units were delineated within the study area. From the surface down, they are: (1) the surficial aquifer; (2) the upper confining unit; (3) the Canal Creek aquifer; (4) the lower confining unit; and (5) the lower confined aquifer. The aquifer materials range from fine sand to coarse sand and gravel. Clay lenses were commonly found interfingered with the sand, isolating parts of the aquifers. All the units are continuous throughout the study area except for the upper confining unit, which crops out within the study area but is absent in updip outcrops. The unit also is absent within a Pleistocene paleochannel, where it has been eroded. The surficial and Canal Creek aquifers are hydraulically connected where the upper confining unit is absent, and a substantial amount of groundwater may flow between the two aquifers. Currently, no pumping stresses are known to affect the aquifers within the study area. Under current conditions, downward vertical hydraulic gradients prevail at topographic highs, and upward gradients typically prevail near surface-water bodies. Regionally, the direction of groundwater flow in the confined aquifers is to the east and southeast. Significant water level fluctuations correspond with seasonal variations in rainfall, and minor daily fluctuations reflect tidal cycles. (USGS)
NASA Astrophysics Data System (ADS)
Thompson, M. E.; Lowe, D. R.; Byerly, G. R.
2007-12-01
The 3.5-3.2 Ga Barberton greenstone belt is a heavily deformed, 10-15 km thick succession of volcanic and sedimentary rocks representing one of the best preserved Paleoarchean supracrustal sequences known. It consists of the basal volcanic-dominated Onverwacht Group and the overlying sedimentary-dominated Fig Tree and Moodies Groups. Major volcanic rocks in the BGB include komatiites, tholeiitic basalts, and dacites. Although flow rocks and fragmental deposits have been identified representing all extrusive magma types, the abundance of komatiitic volcaniclastic units is remarkable considering the mechanical difficulties in explosively erupting low viscosity ultramafic lava. In the Onverwacht Group, most komatiitic tuffs contain 85-95 wt% SiO2, due to early silicification, and very low concentrations of most other elements, making original compositions somewhat uncertain. However, in the northernmost part of the BGB, north of the Inyoka Fault, the ~ 3.3 Ga Weltevreden Formation is composed largely of komatiitic flow rocks, tuffs, layered ultramafic complexes, and subordinate black and banded cherts. Previous studies have established the extrusive nature of the komatiites, but there are also many thick interlayered slaty units, previously interpreted as sheared flow rocks, which show cross-bedding, soft-sediment deformation, and other features indicating an alternate derivation. These units range from 2 to 80 m thick and may represent 10% or more of the overall stratigraphy of the Weltevreden Formation. They are characterized by low-temperature serpentinization that has commonly preserved original elemental abundances, enabling a more precise determination of primary komatiitic liquid composition. These rocks are magnesium rich, with MgO ranging from 23 to 36 wt%, and high Ni (~1500 ppm) and Cr (~2600 ppm) contents typical of komatiites. Several possible mechanisms could have produced these rocks, including (1) erosion and transport of pre-existing komatiitic flow rock, (2) volcanic base surges, (3) current reworking of fall-deposited pyroclastic material, and (4) remobilization of hyaloclastitic debris. The abundance of fine-grained sediments and of flat- and cross-laminated beds, the paucity of cr-spinels, and komatiitic immobile element ratios suggest that most of these high-Mg beds formed by minor reworking of komatiitic pyroclastic ash in a subaqueous environment.
Geological monitoring of Surtsey, Iceland, 1967-1998
Jakobsson, Sveinn P.; Gudmundsson, Gudmundur; Moore, James G.
2000-01-01
Aspects of the geological monitoring of the volcanic island of Surtsey 1967-1998, are described. A hydrothermal system was developed within the tephra craters in late 1966 to early 1967. Temperatures in a drill hole, situated at the eastern border of the hydrothermal area, indicate that the hydrothermal system at that site has been cooling at an average rate of ≤ 1°C per year since 1980. The tephra was altered rapidly within the hydrothermal area, producing the first visible palagonite tuff in 1969. A substantial part of the tephra pile above sea level was probably converted to tuff by 1972. The visible area of tuff has gradually increased since then, primarily due to erosion of tephra at the surface. By 1998 52% of the exposed tephra area had been converted to palagonite tuff. By volume, however, some 80-85% of the tephra pile above sea level has been converted to tuff in 1998. The area of Surtsey has shrunk from its original 2.65 km2 (1967) to 1.47 km2 (1998) due to marine abrasion. The geological formations on Surtsey have, however, responded quite variably to erosion. The tephra pile was easily eroded, but marine abrasion. The central core of palagonite tuff is estimated to be ≤0.39 km2. Statistical estimation of models of the decreases of Surtsey indicate that it will last for a long time. The numerical experiments indicate that it will take over 100 years until only the palagonite tuff core is left. It is postulated that the final remnany of Surtsey before complete destruction will be a palagonite tuff crag, comparable to those of the other islands in the Vestmannaeyjar archipelago.
du Bray, E.A.; Pallister, J.S.
1999-01-01
Unusual geologic and geochemical relations are preserved along the contact between intracaldera tuff and a resurgent intrusion within the 26.9 Ma Turkey Creek caldera of southeast Arizona. Thick intracaldera tuff is weakly argillically altered throughout, except in zones within several hundred meters of its contact with the resurgent intrusion, where the groundmass of the tuff has been variably converted to granophyre and unaltered sanidine phenocrysts are present. Dikes of similarly granophyric material originate at the tuff-resurgent intrusion contact and intrude overlying intracaldera megabreccia and tuff. Field relations indicate that the resurgent intrusion is a laccolith and that it caused local partial melting of adjacent intracaldera tuff. Geochemical and petrographic relations indicate that small volumes of partially melted intracaldera tuff assimilated and mixed with dacite of the resurgent intrusion along their contact, resulting in rocks that have petrographic and compositional characteristics transitional between those of tuff and dacite. Some of this variably contaminated, second-generation magma coalesced, was mobilized, and was intruded into overlying intracaldera rocks. Interpretation of the resurgent intrusion in the Turkey Creek and other calderas as intracaldera laccoliths suggests that intrusions of this type may be a common, but often unrecognized, feature of calderas. Development of granophyric and anatectic features such as those described here may be equally common in other calderas. The observations and previously undocumented processes described here can be applied to identification and interpretation of similarly enigmatic relations and rocks in other caldera systems. Integration of large-scale field mapping with detailed petrographic and chemical data has resulted in an understanding of otherwise intractable but petrologically important caldera-related features.
Structure, stratigraphy, and eruption chronology of the Hanauma Bay Tuff Ring, Oahu, Hawaii
NASA Astrophysics Data System (ADS)
Rottas, K. M.; Houghton, B. F.
2010-12-01
The Hanauma Bay-Koko Head Complex is one of several volcanic landforms along the Koko fissure, in southeastern Oahu, that formed during rejuvenated volcanism. The Hanauma Bay region of the complex is comprised of two nested tuff rings. The internal structure of the inner tuff ring is well exposed due to subsequent breaching and wave erosion and is described in detail here for the first time. The inner tuff ring is currently believed to have formed during a single eruption episode. However, field observations, detailed photography, structural mapping in both the vertical and horizontal planes, extensive measurements of bedding attitudes, and stratigraphic analysis suggest that there were a minimum of five distinct intervals of deposition, which also blanketed the deposits of the outer tuff ring with ejecta. These intervals of sedimentation were separated by significant collapses, generating major unconformities that cross the inner wall of the inner ring. The planes of failure are marked by smaller steep-walled channels and gullies, eroded by rainfall-induced runoff and suggesting the failures were each followed by short time breaks with erosion. Within each pyroclastic sequence there are also smaller slump scars and local unconformities. The inner tuff ring was predominately formed by pyroclastic surges, although the beds of Phase 3 are primarily fall deposits. From ballistic trajectories and bedding features, it is apparent that the eruption locus shifted a minimum of two times during tuff ring growth. Ballistic blocks in the final Phase 5 indicate that the Hanauma Bay eruption was contemporaneous with a separate eruption to the north, most likely that of the Kahauloa tuff ring 880 meters away.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connolly, J.R.
Petrologic, bulk chemical, and mineralogic data are presented for 49 samples of tuffaceous rocks from core holes USW G-1 and UE-25a{number_sign}1 at Yucca Mountain, Nevada. Included, in descending stratigraphic order, are 11 samples from the Topopah Spring Member of the Paintbrush Tuff, 12 samples from the Tuffaceous Beds of Calico Hills, 3 samples from the Prow Pass Member of the Crater Flat Tuff, 20 samples from the Bullfrog Member of the Crater Flat Tuff and 3 samples from the Tram Member of the Crater Flat Tuff. The suite of samples contains a wide variety of petrologic types, including zeolitized, glassy,more » and devitrified tuffs. Data vary considerably between groups of samples, and include thin section descriptions (some with modal analyses for which uncertainties are estimated), electron microprobe analyses of mineral phases and matrix, mineral identifications by X-ray diffraction, and major element analyses with uncertainty estimates.« less
The Virginia Coastal Plain Hydrogeologic Framework
McFarland, Randolph E.; Scott, Bruce T.
2006-01-01
A refined descriptive hydrogeologic framework of the Coastal Plain of eastern Virginia provides a new perspective on the regional ground-water system by incorporating recent understanding gained by discovery of the Chesapeake Bay impact crater and determination of other geological relations. The seaward-thickening wedge of extensive, eastward-dipping strata of largely unconsolidated sediments is classified into a series of 19 hydrogeologic units, based on interpretations of geophysical logs and allied descriptions and analyses from a regional network of 403 boreholes. Potomac aquifer sediments of Early Cretaceous age form the primary ground-water supply resource. The Potomac aquifer is designated as a single aquifer because the fine-grained interbeds, which are spatially highly variable and inherently discontinuous, are not sufficiently dense across a continuous expanse to act as regional barriers to ground-water flow. Part of the Potomac aquifer in the outer part of the Chesapeake Bay impact crater consists of megablock beds, which are relatively undeformed internally but are bounded by widely separated faults. The Potomac aquifer is entirely truncated across the inner part of the crater. The Potomac confining zone approximates a transition from the Potomac aquifer to overlying hydrogeologic units. New or revised designations of sediments of Late Cretaceous age that are present only south of the James River include the upper Cenomanian confining unit, the Virginia Beach aquifer and confining zone, and the Peedee aquifer and confining zone. The Virginia Beach aquifer is a locally important ground-water supply resource. Sediments of late Paleocene to early Eocene age that compose the Aquia aquifer and overlying Nanjemoy-Marlboro confining unit are truncated along the margin of the Chesapeake Bay impact crater. Sediments of late Eocene age compose three newly designated confining units within the crater, which are from bottom to top, the impact-generated Exmore clast and Exmore matrix confining units, and the Chickahominy confining unit. Piney Point aquifer sediments of early Eocene to middle Miocene age overlie most of the Chesapeake Bay impact crater and beyond, but are a locally significant ground-water supply resource only outside of the crater across the middle reaches of the Northern Neck, Middle, and York-James Peninsulas. Sediments of middle Miocene to late Miocene age that compose the Calvert confining unit and overlying Saint Marys confining unit effectively separate the underlying Piney Point aquifer and deeper aquifers from overlying shallow aquifers. Saint Marys aquifer sediments of late Miocene age separate the Calvert and Saint Marys confining units across two limited areas only. Sediments of the Yorktown-Eastover aquifer of late Miocene to late Pliocene age form the second most heavily used ground-water supply resource. The Yorktown confining zone approximates a transition to the overlying late Pliocene to Holocene sediments of the surficial aquifer, which extends across the entire land surface in the Virginia Coastal Plain and is a moderately used supply. The Yorktown-Eastover aquifer and the eastern part of the surficial aquifer are closely associated across complex and extensive hydraulic connections and jointly compose a shallow, generally semiconfined ground-water system that is hydraulically separated from the deeper system. Vertical faults extend from the basement upward through most of the hydrogeologic units but may be more widespread and ubiquitous than recognized herein, because areas of sparse boreholes do not provide adequate spatial control. Hydraulic conductivity probably is decreased locally by disruption of depositional intergranular structure by fault movement in the generally incompetent sediments. Localized fluid flow in open fractures may be unique in the Chickahominy confining unit. Some hydrogeologic units are partly to wholly truncated where displacements are large rela
Szabo, Zoltan; Keller, Elizabeth A.; Defawe, Rose M.
2006-01-01
Pore water was extracted from clay-silt core samples collected from a borehole at Ocean View, west of Sea Isle City, in northeastern Cape May County, New Jersey. The borehole intersects the lower Miocene Kirkwood Formation, which includes a thick sand and gravel unit between two clay-silt units. The sand and gravel unit forms a major confined aquifer in the region, known as the Atlantic City 800-foot sand, the major source of potable water along the Atlantic Coast of southern New Jersey. The pore water from the core is of interest because the borehole intersects the aquifer in an area where the ground water is sodium-rich and sulfidic. Locally in the aquifer in central and southern Cape May County, sodium concentrations are near the New Jersey secondary drinking-water standard of 50 mg/L (milligrams per liter), and typically are greater than 30 mg/L, but chloride and sulfate do not approach their respective secondary drinking-water standards except in southernmost Cape May County. Pore waters from the confining units are suspected to be a source of sodium, sulfur, and chloride to the aquifer. Constituent concentrations in filtered pore-water samples were determined using the inductively coupled plasma-mass spectrometry analytical technique to facilitate the determination of low-level concentrations of many trace constituents. Calcium-sodium-sulfate-bicarbonate, calcium-chloride-sulfate, calcium-sulfate, and sodium-sulfate-chloride-bicarbonate type waters characterize samples from the deepest part of the confining unit directly overlying the aquifer (termed the 'lower' confining unit). A sodium-chloride-sulfate type water is dominant in the composite confining unit below the aquifer. Sodium, chloride, and sulfate became increasingly dominant with depth. Pore water from the deepest sample recovered (1,390 ft (feet) below land surface) was brackish, with concentrations of sodium, chloride, and sulfate of 5,930, 8,400, and 5,070 mg/L, respectively. Pore-water samples from 900 ft or less below land surface, although mineralized, were fresh, not brackish. Sodium concentrations ranged from 51.3 to 513 mg/L, with the maximum concentration found at 882 ft below land surface in the composite confining unit below the aquifer. Chloride concentrations ranged from 46.4 to 757 mg/L, with the maximum concentration found at 596 ft below land surface in the 'lower' confining unit, and were higher than those in pore water from the same units at Atlantic City, N.J. Concentrations of chloride in the composite confining unit below the aquifer were consistently greater than 250 mg/L, indicating that the confining unit can be a source of chloride at depth. Of the major anions, sulfate was the constituent whose concentration varied most, ranging from 42 to 799 mg/L. The maximum concentration was found at 406 ft below land surface, in the upper part of the confining unit overlying the aquifer and the Rio Grande water-bearing zone (termed the 'upper' confining unit). Sulfide was not detected in any pore-water sample despite the presence of abundant quantities of sulfate and sulfide in the aquifer. The absence of sulfide in the pore waters is consistent with the hypothesis that sulfate is reduced in the aquifer. The presence of arsenic, at concentrations ranging from 0.0062 to 0.0374 mg/L, is consistent with the absence of sulfide and the possible presence of iron in the pore water.
NASA Astrophysics Data System (ADS)
Curry, A. C.; Caricchi, L.; Lipman, P. W.
2017-12-01
A primary goal of volcanology is to understand the frequency and magnitude of large, explosive volcanic eruptions to mitigate their impact on society. Recent studies show that the average magma flux and the time between magma injections into a given magmatic-volcanic system fundamentally control the frequency and magnitude of volcanic eruptions, yet these parameters are unknown for many volcanic regions on Earth. We focus on major and trace element chemistry of individual phases and whole-rock samples, initial zircon ID-TIMS analyses, and zircon SIMS oxygen isotope analyses of four caldera-forming ignimbrites from the San Juan caldera cluster in the Southern Rocky Mountain volcanic field, Colorado, to determine the physical and chemical processes leading to large eruptions. We collected outflow samples along stratigraphy of the three caldera-forming ignimbrites of the San Luis caldera complex: the Rat Creek Tuff ( 150 km3), Cebolla Creek Tuff ( 250 km3), and Nelson Mountain Tuff (>500 km3); and we collected samples of both outflow and intracaldera facies of the Snowshoe Mountain Tuff (>500 km3), which formed the Creede caldera. Single-crystal sanidine 40Ar/39Ar ages show that these large eruptions occurred in rapid succession between 26.91 ± 0.02 Ma (Rat Creek Tuff) and 26.87 ± 0.02 Ma (Snowshoe Mountain Tuff), providing an opportunity to investigate the temporal evolution of magmatic systems feeding large, explosive volcanic eruptions. Major and trace element analyses show that the first and last eruption of the San Luis caldera complex (Rat Creek Tuff and Nelson Mountain Tuff) are rhyolitic to dacitic ignimbrites, whereas the Cebolla Creek Tuff and Snowshoe Mountain Tuff are crystal-rich, dacitic ignimbrites. Trace elements show enrichment in light rare-earth elements (LREEs) over heavy rare-earth elements (HREEs), and whereas the trace element patterns are similar for each caldera cycle, trace element values for each ignimbrite show variability in HREE concentrations. This variability indicates that these large eruptions sampled a magmatic system with some degree of internal heterogeneity. These results have implications for the chemical and physical processes, such as magmatic flux and injection periodicity, leading to the formation of large magmatic systems prior to large, explosive eruptions.
Watts, Kathryn E.; John, David A.; Colgan, Joseph P.; Henry, Christopher D.; Bindeman, Ilya N.; Schmitt, Axel K.
2016-01-01
Late Cenozoic faulting and large-magnitude extension in the Great Basin of the western USA has created locally deep windows into the upper crust, permitting direct study of volcanic and plutonic rocks within individual calderas. The Caetano caldera in north–central Nevada, formed during the mid-Tertiary ignimbrite flare-up, offers one of the best exposed and most complete records of caldera magmatism. Integrating whole-rock geochemistry, mineral chemistry, isotope geochemistry and geochronology with field studies and geologic mapping, we define the petrologic evolution of the magmatic system that sourced the >1100 km3Caetano Tuff. The intra-caldera Caetano Tuff is up to ∼5 km thick, composed of crystal-rich (30–45 vol. %), high-silica rhyolite, overlain by a smaller volume of comparably crystal-rich, low-silica rhyolite. It defies classification as either a monotonous intermediate or crystal-poor zoned rhyolite, as commonly ascribed to ignimbrite eruptions. Crystallization modeling based on the observed mineralogy and major and trace element geochemistry demonstrates that the compositional zonation can be explained by liquid–cumulate evolution in the Caetano Tuff magma chamber, with the more evolved lower Caetano Tuff consisting of extracted liquids that continued to crystallize and mix in the upper part of the chamber following segregation from a cumulate-rich, and more heterogeneous, source mush. The latter is represented in the caldera stratigraphy by the less evolved upper Caetano Tuff. Whole-rock major, trace and rare earth element geochemistry, modal mineralogy and mineral chemistry, O, Sr, Nd and Pb isotope geochemistry, sanidine Ar–Ar geochronology, and zircon U–Pb geochronology and trace element geochemistry provide robust evidence that the voluminous caldera intrusions (Carico Lake pluton and Redrock Canyon porphyry) are genetically equivalent to the least evolved Caetano Tuff and formed from magma that remained in the lower chamber after ignimbrite eruption and caldera collapse. Thus, the Caetano Tuff contradicts models for the mutually exclusive origins of voluminous volcanic and plutonic magmas in the upper crust. Crystal-scale O isotope data indicate that the Caetano Tuff is one of the most 18O-enriched rhyolites in the Great Basin (δ18Omagma = 10·2 ± 0·2‰), supporting anatexis of local metasedimentary basement crust. Metapelite xenoliths in the Carico Lake pluton and ubiquitous xenocrystic zircons in the Caetano Tuff provide constraints for the anatexis process; these data point to shallow (<15 km) dehydration melting of a protolith similar to the Proterozoic McCoy Creek Group siliciclastic sediments in eastern Nevada, projected beneath Caetano in fault-stacked shelf sediments that were thickened during Mesozoic crustal shortening. Mean zircon U–Pb ages for different stratigraphic levels of the intra-caldera Caetano Tuff are 34·2–34·5 Ma, 0·2–0·5 Myr older than the caldera sanidine 40Ar/39Ar age of 34·00 ± 0·03 Ma, documenting protracted duration of assembly and homogenization of isotopically diverse upper crustal melts, followed by crystallization and zonation to generate the Caetano Tuff magma chamber. Sanidine rims in the least evolved Caetano Tuff and in the Carico Lake pluton and Redrock Canyon porphyry have sharply zoned Ba domains that point to crystal growth during magmatic recharge events. The recharge magma is inferred to have been compositionally similar to the Caetano Tuff magma, with increased Ba resulting from remelting of Ba-rich sanidine cumulates. Mush reactivation to generate the Caetano Tuff eruption was sufficiently rapid to preserve compositional gradients in the intracaldera ignimbrite, calling into question models that predict homogeneity as a prerequisite for remobilizing crystal-rich ignimbrite magmas.
Geoengineering characterization of welded tuffs from laboratory and field investigations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerman, R.M.; Nimick, F.B.; Board, M.P.
1984-12-31
Welded tuff beneath Yucca Mountain adjacent to the Nevada Test Site (NTS) is being considered for development as a high-level radioactive waste repository by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Because access into Yucca Mountain has been limited to borehole explorations, early geoengineering materials characterizations have been derived from laboratory tests on cores from Yucca Mountain and from laboratory and field tests on welded tuffs located in G-Tunnel on the NTS. G-Tunnel contains welded tuffs that have similar properties and stress states to those at Yucca Mountain and has been the location for in situ rock mechanics testing.more » The purpose of this paper is to summarize the geoengineering material property data obtained to date and to compare appropriate laboratory and field data from G-Tunnel to findings from Yucca Mountain. Geomechanical and thermal data are provided and are augmented by limited geological and hydrological data. A comparison of results of laboratory measurements on tuffs from Yucca Mountain and G-Tunnel indicates good agreement between the bulk densities, saturations, moduli of elasticity, Poisson`s ratios, and P-wave velocities. The G-Tunnel tuff has slightly lower thermal conductivity, tensile strength, compressive strength and slightly higher matrix permeability than does the welded tuff near the proposed repository horizon at Yucca Mountain. From a laboratory-to-field scaling perspective, the modulus of deformation shows the most sensitivity to field conditions because of the presence of the joints found in the field. 14 references, 1 table.« less
Geoengineering characterization of welded tuffs from laboratory and field investigations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerman, R.M.; Nimick, F.B.; Board, M.P.
1984-12-31
Welded tuff beneath Yucca Mountain adjacent to the Nevada Test Site (NTS) is being considered for development as a high-level radioactive waste repository by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Because access into Yucca Mountain has been limited to borehole explorations, early geoengineering materials characterizations have been derived from laboratory tests on cores from Yucca Mountain and from laboratory and field tests on welded tuffs located in G-Tunnel on the NTS. G-Tunnel contains welded tuffs that have similar properties and stress states to those at Yucca Mountain and has been the location for in situ rock mechanics testing.more » The purpose of this paper is to summarize the geoengineering material property data obtained to date and to compare appropriate laboratory and field data from G-Tunnel to findings from Yucca Mountain. Geomechanical and thermal data are provided and are augmented by limited geological and hydrological data. A comparison of results of laboratory measurements on tuffs from Yucca Mountain and G-Tunnel indicates good agreement between the bulk densities, saturations, moduli of elasticity, Poisson`s ratios, and P-wave velocities. The G-Tunnel tuff has slightly lower thermal conductivity, tensile strength, compressive strength and slightly higher matrix permeability than does the welded tuff near the proposed repository horizon at Yucca Mountain. From a laboratory-to-field scaling perspective, the modulus of deformation shows the most sensitivity to field conditions because of the presence of joints found in the field. 14 refs., 1 tab.« less
Johnson, C.M.; Lipman, P.W.
1988-01-01
Volcanic rocks of the Latir volcanic field evolved in an open system by crystal fractionation, magma mixing, and crustal assimilation. Early high-SiO2 rhyolites (28.5 Ma) fractionated from intermediate compositionmagmas that did not reach the surface. Most precaldera lavas have intermediate-compositions, from olivine basaltic-andesite (53% SiO2) to quartz latite (67% SiO2). The precaldera intermediate-composition lavas have anomalously high Ni and MgO contents and reversely zoned hornblende and augite phenocrysts, indicating mixing between primitive basalts and fractionated magmas. Isotopic data indicate that all of the intermediate-composition rocks studied contain large crustal components, although xenocrysts are found only in one unit. Inception of alkaline magmatism (alkalic dacite to high-SiO2 peralkaline rhyolite) correlates with, initiation of regional extension approximately 26 Ma ago. The Questa caldera formed 26.5 Ma ago upon eruption of the >500 km3 high-SiO2 peralkaline Amalia Tuff. Phenocryst compositions preserved in the cogenetic peralkaline granite suggest that the Amalia Tuff magma initially formed from a trace element-enriched, high-alkali metaluminous magma; isotopic data suggest that the parental magmas contain a large crustal component. Degassing of water- and halogen-rich alkali basalts may have provided sufficient volatile transport of alkalis and other elements into the overlying silicic magma chamber to drive the Amalia Tuff magma to peralkaline compositions. Trace element variations within the Amalia Tuff itself may be explained solely by 75% crystal fractionation of the observed phenocrysts. Crystal settling, however, is inconsistent with mineralogical variations in the tuff, and crystallization is thought to have occurred at a level below that tapped by the eruption. Spatially associated Miocene (15-11 Ma) lavas did not assimilate large amounts of crust or mix with primitive basaltic magmas. Both mixing and crustal assimilation processes appear to require development of relatively large magma chambers in the crust that are sustained by large basalt fluxes from the mantle. The lack of extensive crustal contamination and mixing in the Miocene lavas may be related to a decreased basalt flux or initiation of blockfaulting that prevented pooling of basaltic magma in the crust. ?? 1988 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Park, Y.; MacLennan, S. A.; Swanson-Hysell, N.; Maloof, A. C.; Schoene, B.; Alene, M.; Tremblay, M. M.; Anttila, E.; Haileab, B.
2016-12-01
The Snowball Earth hypothesis proposes that the onset of global glaciation was a rapid event, particularly at low-latitudes, due to a runaway ice-albedo instability in the climate system. Currently, the Neoproterozoic Sturtian Snowball Earth Glaciation is constrained to have been ongoing at low-latitudes in present day NW Canada at 716.47 ± 0.24 Ma based on a U-Pb date from a tuff within glacial diamictite (Macdonald et al., 2010). A date from a rhyolite underlying this diamicitite of 717.43 ± 0.14 Ma has been inferred to precede the glaciation, although this age is not a strict maximum for the initiation of the snowball Earth since evidence of glaciation may have been obscured in volcanic units. The Tonian-Cryogenian Tambien Group of northern Ethiopia is a mixed carbonate-siliciclastic sequence deposited in an arc proximal basin that conformably culminates in diamictite associated with the Sturtian Glaciation. This study exploits the presence of tuffs suitable for high precision U-Pb zircon geochronology interbedded with recently discovered exposures of the transition into the snowball Earth. Dates from tuffs stratigraphically <100 m below massive diamictite enable a test of synchronicity for the initiation of the Sturtian Glaciation when compared with data from NW Canada and S China. Furthermore, tuffs in the proximity of the chemostratigraphically defined Islay negative δ13C anomaly give the opportunity to develop new U-Pb dates to test the prediction from Re-Os dating of black shales in NW Canada that the Islay significantly predates the Sturtian ice age, decoupling the sharpest negative downturns in inorganic δ13C values from glacial initiation. These data also augment and temporally constrain the pre-glacial 87Sr/86Sr curve, informing ongoing modeling efforts of global weathering and seawater chemistry as they relate to hypotheses of the role of large igneous province emplacement and paleogeography in the initiation of Snowball Earth glaciation.
Lipman, P.W.; Bogatikov, O.A.; Tsvetkov, A.A.; Gazis, C.; Gurbanov, A.G.; Hon, K.; Koronovsky, N.V.; Kovalenko, V.I.; Marchev, P.
1993-01-01
Diverse latest Pliocene volcanic and plutonic rocks in the north-central Caucasus Mountains of southern Russia are newly interpreted as components of a large caldera system that erupted a compositionally zoned rhyolite-dacite ash-flow sheet at 2.83 ?? 0.02 Ma (sanidine and biotite 40Ar/39Ar). Despite its location within a cratonic collision zone, the Chegem system is structurally and petrologically similar to typical calderas of continental-margin volcanic arcs. Erosional remnants of the outflow Chegem Tuff sheet extend at least 50 km north from the source caldera in the upper Chegem River. These outflow remnants were previously interpreted by others as erupted from several local vents, but petrologic similarities indicate a common origin and correlation with thick intracaldera Chegem Tuff. The 11 ?? 15 km caldera and associated intrusions are superbly exposed over a vertical range of 2,300 m in deep canyons above treeline (elev. to 3,800 m). Densely welded intracaldera Chegem Tuff, previously described by others as a rhyolite lava plateau, forms a single cooling unit, is > 2 km thick, and contains large slide blocks from the caldera walls. Caldera subsidence was accommodated along several concentric ring fractures. No prevolcanic floor is exposed within the central core of the caldera. The caldera-filling tuff is overlain by andesitic lavas and cut by a 2.84 ?? 0.03-Ma porphyritic granodiorite intrusion that has a cooling age analytically indistinguishable from that of the tuffs. The Eldjurta Granite, a pluton exposed low in the next large canyon (Baksan River) 10 km to the northwest of the caldera, yields variable K-feldspar and biotite ages (2.8 to 1.0 Ma) through a 5-km vertical range in surface and drill-hole samples. These variable dates appear to record a prolonged complex cooling history within upper parts of another caldera-related pluton. Major W-Mo ore deposits at the Tirniauz mine are hosted in skarns and hornfels along the roof of the Eldjurta Granite, and associated aplitic phases have textural features of Climax-type molybdenite porphyries in the western USA. Similar 40Ar/39Ar ages, mineral chemistry, and bulk-rock compositions indicate that the Chegem Tuff, intracaldera intrusion, and Eldjurta Granite are all parts of a large magmatic system that broadly resembles the middle Tertiary Questa caldera system and associated Mo deposits in northern New Mexico, USA. Because of their young age and superb three-dimensional exposures, rocks of the Chegem-Tirniauz region offer exceptional opportunities for detailed study of caldera structures, compositional gradients in volcanic rocks relative to cogenetic granites, and the thermal and fluid-flow history of a large young upper-crustal magmatic system. ?? 1993.
NASA Astrophysics Data System (ADS)
Davarpanah, A.; Khalatbari-Jafari, M.; Babaie, H. A.; Krogstad, E. J.; Mobasher, K.; La Tour, T. E.; Deocampo, D. M.
2008-12-01
Geochemical composition and texture of the Middle and Late Eocene volcanic, volcaniclastic, and volcanic- sedimentary rocks in the Bijgerd-Kuh-e Kharchin area, northwest of Saveh, provide significant geochemical and geological clues for the tectonic and magmatic evolution of the Uromieh-Dokhtar volcanic-plutonic zone of Iran. The Middle Eocene volcanic rocks have an intermediate composition and include green tuff and tuffaceous sandstone with intercalated sandstone, sandy tuff, and shale. The shale has lenses of nummulite- bearing limestone with a Middle Eocene detrital age. The time between the Middle and Late Eocene volcanic activities in this area is marked by the presence of andesite and rhyolitic tuff. The Late Eocene succession is distinguished by the presence of four alternating levels (horizons) of intermediate lava and ignimbrite which we designate as Eig. The ignimbrites of the Eig sequence have a rhyolitic composition and include ignimbrite- breccia, ignimbrite-tuff, and ignimbrite-lava pairs. The volume of the felsic volcanic rocks in this sequence far exceeds that of the intermediate rocks, which makes it unlikely that they evolved through the magmatic differentiation of a basaltic magma. The presence of the nummulite-bearing limestone lenses, and sandstone and conglomerate interbeds between the ignimbrites, suggests a shallow marine environment for the pyroclastic deposition and probably the eruptions. The tuff and siltstone of the Est unit that sits above the first ignimbrite may represent deep water, Late Eocene deposit. Oligo-Miocene limestone of the Qom Formation unconformably overlies the uppermost Late Eocene ignimbrite. Washings from red marls give microfossils with Late Eocene age for the Eig sequence, which is synchronous with other paleontological evidence that puts the peak volcanic activity as Late Eocene in the Bijgerd-Kuh-e Kharchin area. Field and petrographic evidence for magma mixing/mingling is given by the presence of mafic- intermediate enclaves in the ignimbrite, hybrid breccias with felsic and mafic clasts, felsic pseudo-flames filled with intermediate lava, heterogeneity in the ignimbrite texture, and sieve texture and oscillatory zoning of plagioclase and opacitization of olivine in the intermediate lava. Geochemical analyses of the major and trace elements (including the REE) and rock texture and assemblages indicate the bimodal magmatic characteristics of the mafic-intermediate lavas and ignimbrites. The tuff and the breccia show a hybrid elemental distribution between those of rhyolite and basalt. The ignimbrites show more enriched compositions than those of the mafic and intermediate rocks on the chondrite-normalized trace element distribution diagram. The higher enrichment of the LREE in the ignimbrites may be due to a crustal contribution. The primitive mantle-normalized elemental distributions show a distinct depletion of Nb and Ti, which suggests a subduction-related volcanism during Eocene.
Gazis, C.; Taylor, H.P.; Hon, K.; Tsvetkov, A.
1996-01-01
Within the 2.8 Ma Chegem ash-flow caldera (11 ?? 15 km), a single cooling unit of rhyolitic to dacitic welded tuff more than 2 km thick is exposed in deep valleys incised during recent rapid uplift of the Caucasus Mountains. The intracaldera tuff is mineralogically fresh and unaltered, and is overlain by andesite lavas and cut by a resurgent granodiorite intrusion. Major- and trace-element compositions for a 1405-m stratigraphic section of intracaldera tuff display trends of upwardly increasing Na2O, CaO, Al2O3, total Fe, MgO, TiO2, Sr and Zr and decreasing SiO2, K2O and Rb. This mafic-upward zoning (from 76.1 to 69.9% SiO2) reflects an inverted view of the upper part of the source magma chamber. Oxygen isotope studies of 35 samples from this 1405-m section define a striking profile with "normal" igneous ??18O values (+7.0 to +8.5) in the lower 600 m of tuff, much lower ??18O values (-4.0 to +4.3) in a 700-m zone above that and a shift to high ??18O values (+4.4 to -10.9) in the upper 100 m of caldera-fill exposure. Data from two other partial stratigraphic sections indicate that these oxygen isotope systematics are probably a caldera-wide phenomenon. Quartz and feldspar phenocrysts everywhere have "normal" igneous ??18O values of about +8.5 and +7.5, respectively, whereas groundmass and glass ??18O values range from -7.7 to +12.3. Consequently, the ??18O values of coexisting feldspar, groundmass and glass form a steep array in a plot of ??feldspar vs. ??groundmass/glass. Such pronounced disequilibrium between coexisting feldspar and groundmass or glass has never before been observed on this scale. It requires a hydrothermal event involving large amounts of low-18O H2O at sufficiently high temperatures and short enough time (tens of years or less) that glass exchanges thoroughly but feldspar does not. The most likely process responsible for the O depletions at Chegem is a very high temperature (500-600??C), short-lived, vigorous meteoric-hydrothermal event that was focused within the upper 750 m of intracaldera tuff. Mass balance calculations indicate fluid fluxes of = 6 ?? 10-6 mol cm-2 s-1. We believe that the closest historical analogue to this Chegem hydrothermal event is the situation observed in the Valley of Ten Thousand Smokes (Alaska, USA), where hundreds of steam fumaroles with measured temperatures as high as 645??C persisted for 10 to 15 years in the much smaller welded ash-flow tuff sheet (??? 200 m thick) produced by the 1912 Katmai eruption.
Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickerson, R.P.; Drake, R.M. II
This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits ofmore » pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited.« less
Dethier, David P.
2003-01-01
The Puye quadrangle covers an area on the eastern flank of the Jemez Mountains, north of Los Alamos and west of Espanola, New Mexico. Most of the quadrangle consists of a dissected plateau that was formed on the resistant caprock of the Bandelier Tuff, which was erupted from the Valles caldera approximately 1 to 2 million years ago. Within the canyons of the east-flowing streams that eroded this volcanic tableland, Miocene and Pliocene fluvial deposits of the Puye Formation and Santa Fe Group are exposed beneath the Bandelier Tuff. These older units preserve sand and gravel that were deposited by streams and debris flows flowing from source areas located mostly north and northeast of the Puye quadrangle. The landscape of the southeastern part of the quadrangle is dominated by the valley of the modern Rio Grande, and by remnants of piedmont-slope and river-terrace deposits that formed during various stages of incision of the Rio Grande drainage on the landscape. Landslide deposits are common along the steep canyon walls where broad tracts of the massive caprock units have slumped toward the canyons on zones of weakness in underlying strata, particularly on silt/clay-rich lacustrine beds within the Puye Formation.
NASA Astrophysics Data System (ADS)
Agustín-Flores, Javier; Németh, Károly; Cronin, Shane J.; Lindsay, Jan M.; Kereszturi, Gábor; Brand, Brittany D.; Smith, Ian E. M.
2014-04-01
Maungataketake is a monogenetic basaltic volcano formed at ~ 85-89 ka in the southern part of the Auckland Volcanic Field (AVF), New Zealand. It comprises a basal 1100-m diameter tuff ring, with a central scoria/spatter cone and lava flows. The tuff ring was formed under hydrogeological and geographic conditions very similar to the present. The tuff records numerous density stratified, wet base surges that radiated outward up to 1 km, decelerating rapidly and becoming less turbulent with distance. The pyroclastic units dominantly comprise fine-grained expelled grains from various sedimentary deposits beneath the volcano mixed with a minor component of juvenile pyroclasts (~ 35 vol.%). Subtle lateral changes relate to deceleration with distance and vertical transformations are minor, pointing to stable explosion depths and conditions, with gradual transitions between units and no evidence for eruptive pauses. This volcano formed within and on ~ 60 m-thick Plio/Pleistocene, poorly consolidated, highly permeable shelly sands and silts (Kaawa Formation) capped by near-impermeable, water-saturated muds (Tauranga Group). These sediments rest on moderately consolidated Miocene-aged permeable turbiditic sandstones and siltstones (Waitemata Group). Magma-water fuelled thermohydraulic explosions remained in the shallow sedimentary layers, excavating fine-grained sediments without brittle fragmentation required. On the whole, the resulting cool, wet pyroclastic density currents were of low energy. The unconsolidated shallow sediments deformed to accommodate rapidly rising magma, leading to development of complex sill-like bodies and a range of magma-water contact conditions at any time. The weak saturated sediments were also readily liquefied to provide an enduring supply of water and fine sediment to the explosion loci. Changes in magma flux and/or subsequent stabilisation of the conduit area by a lava ring-barrier led to ensuing Strombolian and fire-fountaining eruption phases. Future eruptions in littoral environments around Auckland are likely to be of this type, producing base surges that rapidly decrease in energy over short runout distances (~ 1 km).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winograd, I.J.; Thordarson, W.
Intensely fractured Precambrian and Paleozoic carbonate and clastic rocks and block-faulted Cenozoic volcanic and sedimentary strata in the Nevada Test Site are divided into 10 hydrogeologic units. Three of these--the lower clastic aquitard, the lower carbonate aquifer, and the tuff aquitard--control the regional movement of ground water. The coefficients of fracture transmissiblity of these rocks are, respectively, less than 1,000, 1,000 to 900,000, and less than 200 gallons per day per foot; interstitial permeability is negligible. Solution caverns are locally present in the carbonate aquifer, but regional movement of water is controlled by variations in fracture transmissibility and by structuralmore » juxtaposition of the aquifer and the lower clastic aquitard. Water circulates freely to depths of at least 1,500 feet beneath the top of the aquifer and up to 4,200 feet below land surface. Synthesis of hydrogeologic, hydrochemical, and isotopic data suggests that an area of at least 4,500 square miles (including 10 intermontane valleys) is hydraulically integrated into one ground-water basin, the Ash Meadows basin, by interbasin movement of ground water through the widespread carbonate aquifer. Discharge from this basin--a minimum of about 17,000 acre-feet annually--occurs along a fault-controlled spring line at Ash Meadows in east-central Amargosa Desert. Intrabasin movement of water between Cenozoic aquifers and the lower carbonate aquifer is controlled by the tuff aquitard, the basal Cenozoic hydrogeologic unit. Such movement significantly influences the chemistry of water in the carbonate aquifer. Ground-water velocity through the tuff aquitard in Yucca Flat is less than 1 foot per year. Velocity through the lower carbonate aquifer ranges from an estimated 0.02 to 200 feet per day, depending upon geographic position within the flow system.Within the Nevada Test Site, ground water moves southward and southwestward toward Ash Meadows.« less
The behavior of biogenic silica-rich rocks and volcanic tuffs as pozzolanic additives in cement
NASA Astrophysics Data System (ADS)
Fragoulis, Dimitris; Stamatakis, Michael; Anastasatou, Marianthi
2015-04-01
Cements currently produced, include a variety of pozzolanic materials, aiming for lower clinker addition and utilization of vast deposits of certain raw materials and/or mining wastes and byproducts. The major naturally occurring pozzolanic materials include glassy tuffs, zeolitic tuffs, diatomites and volcanic lavas rich in glassy phase, such as perlites. Therefore, based on the available raw materials in different locations, the cement composition might vary according to the accessibility of efficient pozzolanic materials. In the present investigation, the behavior of pozzolanic cements produced with representative samples of the aforementioned materials was studied, following the characterization of the implemented pozzolanas with respect to their chemical and mineralogical characteristics. Laboratory cements were produced by co-grinding 75% clinker, 5% gypsum and 20% pozzolana, for the same period of time (45 min). Regarding pozzolanic materials, four different types of pozzolanas were utilized namely, diatomite, perlite, zeolite tuff and glassy tuff. More specifically, two diatomite samples originated from Australia and Greece, with high and low reactive silica content respectively, two perlite samples originated from Turkey and from Milos Island, Greece, with different reactive silica contents, a zeolite tuff sample originated from Turkey and a glassy tuff sample originated from Milos Island, Greece. The above pozzolana samples, which were ground in the laboratory ball mill for cement production performed differently during grinding and that was reflected upon the specific surface area (cm2/gr) values. The perlites and the glassy tuff were the hardest to grind, whereas, the zeolite tuff and the Australian diatomite were the easiest ones. However, the exceedingly high specific surface area of the Australian diatomite renders cement difficult to transport and tricky to use for concrete manufacturing, due to the high water demand of the cement mixture. Regarding late compressive strength, the worst performing cement was the one with the lowest reactive silica content with biogenic opal-A as the only reactive pozzolana constituent. Cements produced with perlites, raw materials consisting mainly of a glassy phase, were characterized by higher strength and a rather ordinary specific surface area. Cements produced with Turkish zeolite tuff and Milos glassy tuff exhibited higher late compressive strength than those mentioned above. The highest strength was achieved by the implementation of Australian diatomite for cement production. Its 28 day strength exceeded that of the control mixture consisting of 95% clinker and 5% gypsum. That could be attributed to both, high specific surface of cement and reactive SiO2 of diatomite. Therefore, a preliminary assessment regarding late strength of pozzolanic cements could be obtained by the consideration of two main parameters, namely: specific surface area of cement and reactive silica content of pozzolana.
Correlation of ash-flow tuffs.
Hildreth, W.; Mahood, G.
1985-01-01
Discrimination and correlation of ash-flow sheets is important in structurally complex, long-lived volcanic fields where such sheets provide the best keys to the regional stratigraphic framework. Three-dimensional complexities resulting from pulsatory eruptions, sectorial emplacement, mechanical sorting during outflow, thermal and compositional zoning of magmas, the physical zoning of cooling units, and structural and erosional disruption can make such correlation and discrimination difficult. When lithologic, magnetic, petrographic, chemical, and isotopic criteria for correlating ash-flow sheets are critically evaluated, many problems and pitfalls can be identified. Distinctive phenocrysts, pumice clasts, and lithic fragments are among the more reliable criteria, as are high-precision K-Ar ages and thermal remanent magnetization (TRM) directions in unaltered welded tuff. Chemical correlation methods should rely principally upon welded or nonwelded pumice blocks, not upon the ash-flow matrix, which is subject to fractionation, mixing, and contamination during emplacement. Compositional zoning of most large sheets requires that many samples be analyzed before phenocryst, glass or whole-rock chemical trends can be used confidently as correlation criteria.-Authors
NASA Astrophysics Data System (ADS)
Höfig, D. F.; Höfig, T. W.; Licht, O. A. B.; Haser, S.; Valore, L.
2017-12-01
Mafic volcaniclastic deposits (MVDs) have been widely reported in Large Igneous Provinces around the world, except for the Paraná Province (review by Ross et al., 2005: J Volcanol Geotherm Res, 145, pp. 281-314). Recent geochemical classification for this unit highlights, however, the occurrence of such deposits, connected to basic lava flows, mostly those High Ti - High P ones (Licht.: J Volcanol Geotherm Res, in press). In southern Brazil, MVDs intercalated with lava flows have been reported at 680 sites, showing conspicuous poorly sorted polymictic breccia at the base, grading to tuff breccias and red silicified tuffs at the top. Newly sampled rocks of Paraná mafic volcanoclastic deposits unravel important information about the composition utilizing Scanning Electron Microscopy-based Mineral Liberation Analysis. Overall, they show similar mineralogy presenting obsidian (25-40%), different phases of iron oxide (5-20%), quartz (10-25%), plagioclase (5-25%), celadonite (5-25%), and chlorite (5-10%). The breccias reveal a greater content of celadonite due to the presence of altered hypohyaline and hypocrystalline basaltic shards, whereas the tuffs are more enriched in glass. Different generations of plagioclase are attributed to various basalt shards and clasts as well vitroclasts found in the matrix. It is proposed that the MVDs were generated by explosive events due the interaction between the ascending mafic magma and deep aquifer systems and its siliciclastic matrix represents the country rock, i.e., the underneath Paleozoic sedimentary sequence of Paraná Basin.
Zielinski, R.A.; Lindsey, D.A.; Rosholt, J.N.
1980-01-01
The distribution and mobility of uranium in a diagenetically altered, 8 Ma old tuff in the Keg Mountain area, Utah, are modelled in this study. The modelling represents an improvement over similar earlier studies in that it: (1) considers a large number of samples (76) collected with good geologic control and exhibiting a wide range of alteration; (2) includes radiometric data for Th, K and RaeU (radium equivalent uranium) as well as U; (3) considers mineralogic and trace-element data for the same samples; and (4) analyzes the mineral and chemical covariation by multivariate statistical methods. The variation of U in the tuff is controlled mainly by its primary abundance in glass and by the relative abundance of non-uraniferous detritus and uraniferous accessory minerals. Alteration of glass to zeolite, even though extensive, caused no large or systematic change in the bulk concentration of U in the tuff. Some redistribution of U during diagenesis is indicated by association of U with minor alteration products such as opal and hydrous Fe-Mn oxide minerals. Isotopic studies indicate that the zeolitized tuff has been open to migration of U decay products during the last 0.8 Ma. The tuff of Keg Mountain has not lost a statistically detectable fraction of its original U, even though it has a high (??? 9 ppm) trace U content and has been extensively altered to zeolite. Similar studies in a variety of geological environments are required in order to identify the particular combination of conditions most favorable for liberation and migration of U from tuffs. ?? 1980.
Halford, Keith J.; Laczniak, Randell J.; Galloway, Devin L.
2005-01-01
A sequence of buried, bedded, air-fall tuffs has been used extensively as a host medium for underground nuclear tests detonated in the central part of Yucca Flat at the Nevada Test Site. Water levels within these bedded tuffs have been elevated hundreds of meters in areas where underground nuclear tests were detonated below the water table. Changes in the ground-water levels within these tuffs and changes in the rate and distribution of land-surface subsidence above these tuffs indicate that pore-fluid pressures have been slowly depressurizing since the cessation of nuclear testing in 1992. Declines in ground-water levels concurrent with regional land subsidence are explained by poroelastic deformation accompanying ground-water flow as fluids pressurized by underground nuclear detonations drain from the host tuffs into the overlying water table and underlying regional carbonate aquifer. A hydraulic conductivity of about 3 x 10-6 m/d and a specific storage of 9 x 10-6 m-1 are estimated using ground-water flow models. Cross-sectional and three-dimensional ground-water flow models were calibrated to measured water levels and to land-subsidence rates measured using Interferometric Synthetic Aperture Radar. Model results are consistent and indicate that about 2 million m3 of ground water flowed from the tuffs to the carbonate rock as a result of pressurization caused by underground nuclear testing. The annual rate of inflow into the carbonate rock averaged about 0.008 m/yr between 1962 and 2005, and declined from 0.005 m/yr in 2005 to 0.0005 m/yr by 2300.
Feldspar dissolution rates in the Topopah Spring Tuff, Yucca Mountain, Nevada
Bryan, C.R.; Helean, K.B.; Marshall, B.D.; Brady, P.V.
2009-01-01
Two different field-based methods are used here to calculate feldspar dissolution rates in the Topopah Spring Tuff, the host rock for the proposed nuclear waste repository at Yucca Mountain, Nevada. The center of the tuff is a high silica rhyolite, consisting largely of alkali feldspar (???60 wt%) and quartz polymorphs (???35 wt%) that formed by devitrification of rhyolitic glass as the tuff cooled. First, the abundance of secondary aluminosilicates is used to estimate the cumulative amount of feldspar dissolution over the history of the tuff, and an ambient dissolution rate is calculated by using the estimated thermal history. Second, the feldspar dissolution rate is calculated by using measured Sr isotope compositions for the pore water and rock. Pore waters display systematic changes in Sr isotopic composition with depth that are caused by feldspar dissolution. The range in dissolution rates determined from secondary mineral abundances varies from 10-16 to 10-17 mol s-1 kg tuff-1 with the largest uncertainty being the effect of the early thermal history of the tuff. Dissolution rates based on pore water Sr isotopic data were calculated by treating percolation flux parametrically, and vary from 10-15 to 10-16 mol s-1 kg tuff-1 for percolation fluxes of 15 mm a-1 and 1 mm a-1, respectively. Reconciling the rates from the two methods requires that percolation fluxes at the sampled locations be a few mm a-1 or less. The calculated feldspar dissolution rates are low relative to other measured field-based feldspar dissolution rates, possibly due to the age (12.8 Ma) of the unsaturated system at Yucca Mountain; because oxidizing and organic-poor conditions limit biological activity; and/or because elevated silica concentrations in the pore waters (???50 mg L-1) may inhibit feldspar dissolution. ?? 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Astakhova, Anna; Khardikov, Aleksandr
2013-04-01
Sedimentation conditions of upper Permian volcano-clastic rocks of Ayan-Yurakhsky anticlinorium are the reason of discussions between researchers. It is important to correctly solve this problem. Investigation allows us to conclude that upper Permian sediments was formed due to high rate deltaic sedimentation on shelf and continental slope of epicontinental sea basin. More than 45 outcrops of upper Permian sediments were described within Ayan-Yurakhsky anticlinorium. Termochemical and X-ray phase, lithological facies, stadial, paleogeographic and others were applied. Investigation allows to classify following types: tuffs, tuffites of andesites, andesi-dacites, sandstone tuffs, siltstone tuffs and claystone tuffs. Two facies were deliniated in the research area: 1) delta channel facies 2) epicontinental sea shelf edge and continental slope. Delta channel facies are located on the south-west part of Aian-Yrahskiy anticlinorium. It is composed of silty packsand and psammitic tuff-siltstone alternation and gravel-psammitic andesi-dacitic tuffute and tuff-breccia bands. Sediments have cross-bedding, through cross-bedding, curvilinear lamination structures. Facies occurred during high rate deltaic sedimentation on the shelf of epicontinental sea. Epicontinental sea shelf edge and continental slope facies are located on the south-west part. Sediments are represented by large thickness tuff-siltstone with tuff-sandstone, tuff-madstone, tuff, tuffite bands and lenses. Large number of submarine landslides sediments provide evidence that there was high angle sea floore environment. 30-50 m diametr eruption centers were described by authors during geological traverses. They are located in Kulu river basin. Their locations are limited by deep-seated pre-ore fault which extended along Ayan-Yurakhsky anticlinorium. U-Pb SHRIMP method showed that the average age of circons, taken from eruption centers, is Permian (256,3±3,7 ma). This fact confirms our emphasis that eruption centers were the centre of underwater effusive explosions which had been occurred in late Permian time. Gold ore deposits mainly localized in the south of Ayan-Yurakhsky anticlinorium and associated with upper Permian deltaic facies sediments. Taking into account lithological facies feature and volcanoclastic origin of sediments it is reasonable to suggest expelled-catagenesis model of gold mineralization. Gold was entered in sedimentary basin with piroclastic material. During catagenesis stage gold migrated from complex of shelf edge and continental slope to fan delta front complex in conjunction with expelled water. The emplacement of ore gold deposits related with upper Permian sediments can be successfully predicted, using this model and associated techniques.
Westerman, Drew A.; Gillip, Jonathan A.; Richards, Joseph M.; Hays, Phillip D.; Clark, Brian R.
2016-09-29
A hydrogeologic framework was constructed to represent the altitudes and thicknesses of hydrogeologic units within the Ozark Plateaus aquifer system as part of a regional groundwater-flow model supported by the U.S. Geological Survey Water Availability and Use Science Program. The Ozark Plateaus aquifer system study area is nearly 70,000 square miles and includes parts of Arkansas, Kansas, Missouri, and Oklahoma. Nine hydrogeologic units were selected for delineation within the aquifer system and include the Western Interior Plains confining system, the Springfield Plateau aquifer, the Ozark confining unit, the Ozark aquifer, which was divided into the upper, middle, and lower Ozark aquifers to better capture the spatial variation in the hydrologic properties, the St. Francois confining unit, the St. Francois aquifer, and the basement confining unit. Geophysical and well-cutting logs, along with lithologic descriptions by well drillers, were compiled and interpreted to create hydrologic altitudes for each unit. The final compiled dataset included more than 23,000 individual altitude points (excluding synthetic points) representing the nine hydrogeologic units within the Ozark Plateaus aquifer system.
Percolation flux and Transport velocity in the unsaturated zone, Yucca Mountain, Nevada
Yang, I.C.
2002-01-01
The percolation flux for borehole USW UZ-14 was calculated from 14C residence times of pore water and water content of cores measured in the laboratory. Transport velocity is calculated from the depth interval between two points divided by the difference in 14C residence times. Two methods were used to calculate the flux and velocity. The first method uses the 14C data and cumulative water content data directly in the incremental intervals in the Paintbrush nonwelded unit and the Topopah Spring welded unit. The second method uses the regression relation for 14C data and cumulative water content data for the entire Paintbrush nonwelded unit and the Topopah Spring Tuff/Topopah Spring welded unit. Using the first method, for the Paintbrush nonwelded unit in boreholeUSW UZ-14 percolation flux ranges from 2.3 to 41.0 mm/a. Transport velocity ranges from 1.2 to 40.6 cm/a. For the Topopah Spring welded unit percolation flux ranges from 0.9 to 5.8 mm/a in the 8 incremental intervals calculated. Transport velocity ranges from 1.4 to 7.3 cm/a in the 8 incremental intervals. Using the second method, average percolation flux in the Paintbrush nonwelded unit for 6 boreholes ranges from 0.9 to 4.0 mm/a at the 95% confidence level. Average transport velocity ranges from 0.6 to 2.6 cm/a. For the Topopah Spring welded unit and Topopah Spring Tuff, average percolation flux in 5 boreholes ranges from 1.3 to 3.2 mm/a. Average transport velocity ranges from 1.6 to 4.0 cm/a. Both the average percolation flux and average transport velocity in the PTn are smaller than in the TS/TSw. However, the average minimum and average maximum values for the percolation flux in the TS/TSw are within the PTn average range. Therefore, differences in the percolation flux in the two units are not significant. On the other hand, average, average minimum, and average maximum transport velocities in the TS/TSw unit are all larger than the PTn values, implying a larger transport velocity for the TS/TSw although there is a small overlap.
NASA Technical Reports Server (NTRS)
Mills, Ryan D.; Simon, Justin I.; Depaolo, Donald J.; Bachmann, Olivier
2013-01-01
Over time high K/Ca continental crust produces a unique Ca isotopic reservoir, with measurable 40Ca excesses compared to Earth's mantle (?Ca=0). Thus, values of ?Cai > 1 indicate a significant crustal contribution to a magma. Values of ?Cai (<1) indistinguishable from mantle Ca indicate that the Ca in those magmas is either directly from the mantle, or is from partial melting of newly formed crust. So, whereas 40Ca excesses clearly define crustal contributions, mantle-like 40Ca/44Ca ratios are not as definitive. Here we present Ca isotopic measurements of intermediate to felsic igneous rocks from the western United States, and two crustal xenoliths found within the Fish Canyon Tuff (FCT). The two crustal xenoliths found within the 28.2 Ma FCT of the southern Rocky Mountain volcanic field (SRMVF) yield ?Ca values of 4 and 7.5, respectively. The 40Ca excesses of these possible source rocks are due to long-term in situ 40K decay and suggest that they are Precambrian in age. However, the FCT (?Cai 0.3) is within uncertainty of the mantle 40Ca/44Ca. Together, these data indicate that little Precambrian crust was involved in the petrogenesis of the FCT. Nd isotopic analyses of the FCT imply that it was generated from 10- 75% of an enriched component, and the Ca isotopic data appear to restrict that component to newly formed lower crust, or enriched mantle. However, the Ca isotopic data do permit assimilation of some crust with low Ca/Nd; decreasing the 143Nd/144Nd without adding much excess 40Ca to the FCT. Several other large tuffs from the SRMVF and from Yellowstone have ?Cai indistinguishable from the mantle. However, a few large tuffs from the SRMVF show significant 40Ca excesses. These tuffs (Wall Mountain, Blue Mesa, and Grizzly Peak) are likely sourced from near, or within the Colorado Mineral Belt. New isotopic measurements of Mesozoic and Tertiary granites from across the northern Great Basin show a range of ?Cai from 0 to 3. In these samples ?Cai is generally correlated with ?Sri and is broadly negatively correlated with ?Ndi. However, for granites with similar ?Ndi at a given general location ?Cai can vary significantly (1 to 2 epsilon units). In rocks where low ?Ndi could also be due to melting from enriched reservoirs in the mantle lithosphere, the combination of high ?Cai with low ?Ndi clearly identifies crustal melts.
Hydrothermal convection and mordenite precipitation in the cooling Bishop Tuff, California, USA
NASA Astrophysics Data System (ADS)
Randolph-Flagg, N. G.; Breen, S. J.; Hernandez, A.; Self, S.; Manga, M.
2014-12-01
We present field observations of erosional columns in the Bishop Tuff and then use laboratory results and numerical models to argue that these columns are evidence of relict convection in a cooling ignimbrite. Many square kilometers of the Bishop Tuff have evenly-spaced, vertical to semi-vertical erosional columns, a result of hydrothermal alteration. These altered regions are more competent than the surrounding tuff, are 0.1-0.7 m in diameter, are separated by ~ 1 m, and in some cases are more than 8 m in height. JE Bailey (U. of Hawaii, dissertation, 2005) suggested that similar columns in the Bandelier Tuff were formed when slumping allowed water to pool at the surface of the still-cooling ignimbrite. As water percolated downward it boiled generating evenly spaced convection cells similar to heat pipes. We quantify this conceptual model and apply it the Bishop Tuff to understand the physics within ignimbrite-borne hydrothermal systems. We use thin sections to measure changing porosity and use scanning electron microscope (SEM) and x-ray diffraction (XRD) analyses to show that pore spaces in the columns are cemented by the mineral mordenite, a low temperature zeolite that precipitates between 120-200 oC (Bish et al., 1982), also found in the Bandelier Tuff example. We then use scaling to show 1) that water percolating into the cooling Bishop Tuff would convect and 2) that the geometry and spacing of the columns is predicted by the ignimbrite temperature and permeability. We use the computer program HYDROTHERM (Hayba and Ingebritsen, 1994; Kipp et al., 2008) to model 2-phase convection in the Bishop Tuff. By systematically changing permeability, initial temperature, and topography we can identify the pattern of flows that develop when the ignimbrite is cooled by water from above. Hydrothermally altered columns in ignimbrite are the natural product of coupled heat, mass, and chemical transport and have similarities to other geothermal systems, economic ore deposits, and mid-ocean ridge hydrothermal systems. The columns allow direct observation to constrain complex models of multiphase convection, reactive transport, and permeability. Our results also have paleoclimate implications, implying a large and stable source of water in the SE/SSE Long Valley area immediately after the ~760,000 ka caldera-forming eruption.
NASA Astrophysics Data System (ADS)
Peate, Ingrid Ukstins; Baker, Joel A.; Al-Kadasi, Mohamed; Al-Subbary, Abdulkarim; Knight, Kim B.; Riisager, Peter; Thirlwall, Matthew F.; Peate, David W.; Renne, Paul R.; Menzies, Martin A.
2005-12-01
A new stratigraphy for bimodal Oligocene flood volcanism that forms the volcanic plateau of northern Yemen is presented based on detailed field observations, petrography and geochemical correlations. The >1 km thick volcanic pile is divided into three phases of volcanism: a main basaltic stage (31 to 29.7 Ma), a main silicic stage (29.7 to 29.5 Ma), and a stage of upper bimodal volcanism (29.5 to 27.7 Ma). Eight large-volume silicic pyroclastic eruptive units are traceable throughout northern Yemen, and some units can be correlated with silicic eruptive units in the Ethiopian Traps and to tephra layers in the Indian Ocean. The silicic units comprise pyroclastic density current and fall deposits and a caldera-collapse breccia, and they display textures that unequivocally identify them as primary pyroclastic deposits: basal vitrophyres, eutaxitic fabrics, glass shards, vitroclastic ash matrices and accretionary lapilli. Individual pyroclastic eruptions have preserved on-land volumes of up to ˜850 km3. The largest units have associated co-ignimbrite plume ash fall deposits with dispersal areas >1×107 km2 and estimated maximum total volumes of up to 5,000 km3, which provide accurate and precisely dated marker horizons that can be used to link litho-, bio- and magnetostratigraphy studies. There is a marked change in eruption style of silicic units with time, from initial large-volume explosive pyroclastic eruptions producing ignimbrites and near-globally distributed tuffs, to smaller volume (<50 km3) mixed effusive-explosive eruptions emplacing silicic lavas intercalated with tuffs and ignimbrites. Although eruption volumes decrease by an order of magnitude from the first stage to the last, eruption intervals within each phase remain broadly similar. These changes may reflect the initiation of continental rifting and the transition from pre-break-up thick, stable crust supporting large-volume magma chambers, to syn-rift actively thinning crust hosting small-volume magma chambers.
Okubo, Chris H.
2014-01-01
The manifestation of brittle deformation within inactive slumps along the North Menan Butte, a basaltic tuff cone in the Eastern Snake River Plain, is investigated through field and laboratory studies. Microstructural observations indicate that brittle strain is localized along deformation bands, a class of structural discontinuity that is predominant within moderate to high-porosity, clastic sedimentary rocks. Various subtypes of deformation bands are recognized in the study area based on the sense of strain they accommodate. These include dilation bands (no shear displacement), dilational shear bands, compactional shear bands and simple shear bands (no volume change). Measurements of the host rock permeability between the deformation bands indicate that the amount of brittle strain distributed throughout this part of the rock is negligible, and thus deformation bands are the primary means by which brittle strain is manifest within this tuff. Structural discontinuities that are similar in appearance to deformation bands are observed in other basaltic tuffs. Therefore deformation bands may represent a common structural feature of basaltic tuffs that have been widely misclassified as fractures. Slumping and collapse along the flanks of active volcanoes strongly influence their eruptive behavior and structural evolution. Therefore characterizing the process of deformation band and fault growth within basaltic tuff is key to achieving a more complete understanding of the evolution of basaltic volcanoes and their associated hazards.
Hetcher-Aguila, Kari K.; Miller, Todd S.
2005-01-01
The confined aquifer is widely used by people living and working in the Chenango River valley. The confined aquifer consists of ice-contact sand and gravel, typically overlies bedrock, and underlies a confining unit consisting of lacustrine fine sand, silt, and clay. The confining unit is typically more than 100 feet thick in the central parts of the valley between Greene Landing Field and along the northern edge of the Chenango Valley State Park. The thickness of the confined aquifer is more than 40 feet near the Greene Landing Field.
Young, Richard Arden
1972-01-01
The Nuclear Rocket Development Station, in Jackass Flats, occupies about 123 square miles in the southwestern part of the U.S. Atomic Energy Commission's Nevada Test Site. Jackass Flats, an intermontane valley bordered by highlands on all sides except for a drainage outlet in the southwestern corner, has an average annual rainfall of 4 inches. Jackass Flats is underlain by alluvium, colluvium, and volcanic rocks of Cenozoic age and, at greater depth, by sedimentary rocks of Paleozoic age. The alluvium and the colluvium lie above the saturated zone throughout nearly all of Jackass Flats. The Paleozoic sedimentary rocks contain limestone and dolomite units that are excellent water producers elsewhere ; however, these units are too deep in Jackass Flats to be economic sources of water. The only important water-producing unit known in the vicinity of the Nuclear Rocket Development Station is a welded-tuff aquifer, the Topopah Spring Member of the Paintbrush Tuff, which receives no significant recharge. This member contains about 500 feet of highly fractured rock underlying an area 11 miles long and 3 miles wide in western Jackass Flats. Permeability of the aquifer is derived mostly from joints and fractures; however, some permeability may be derived from gas bubbles in the upper part of the unit. Transmissivity, obtained from pumping tests, ranges from 68,000 to 488,000 gallons per day per foot. Volume of the saturated part of the aquifer is about 3.5 cubic miles, and the average specific yield probably ranges from 1 to 5 percent. The volume of ground water in storage is probably within the range of 37-187 billion gallons. This large amount of water should be sufficient to supply the needs of the Nuclear Rocket Development Station for many years. Water at the Nuclear Rocket Development Station is used for public supply, construction, test-cell coolant, exhaust cooling, and thermal shielding during nuclear reactor and engine testing, and washdown. Present (1967) average consumption of water is 520,000 gallons per day--all supplied by one well. This supply well and a standby well have a production capability of 1.6 million gallons per day--adequate for present needs. Water in the welded-tuff aquifer is of the sodium bicarbonate type. Dissolved-solids content of the water in Jackass Flats is in the general range 230 milligrams per liter in the western part to 890 milligrams per liter in the eastern part.
Timing and development of the Heise volcanic field, Snake River Plain, Idaho, western USA
Morgan, L.A.; McIntosh, W.C.
2005-01-01
The Snake River Plain (SRP) developed over the last 16 Ma as a bimodal volcanic province in response to the southwest movement of the North American plate over a fixed melting anomaly. Volcanism along the SRP is dominated by eruptions of explosive high-silica rhyolites and represents some of the largest eruptions known. Basaltic eruptions represent the final stages of volcanism, forming a thin cap above voluminous rhyolitic deposits. Volcanism progressed, generally from west to east, along the plain episodically in successive volcanic fields comprised of nested caldera complexes with major caldera-forming eruptions within a particular field separated by ca. 0.5-1 Ma, similar to, and in continuation with, the present-day Yellowstone Plateau volcanic field. Passage of the North American plate over the melting anomaly at a particular point in time and space was accompanied by uplift, regional tectonism, massive explosive eruptions, and caldera subsidence, and followed by basaltic volcanism and general subsidence. The Heise volcan ic field in the eastern SRP, Idaho, represents an adjacent and slightly older field immediately to the southwest of the Yellowstone Plateau volcanic field. Five large-volume (>0.5 km3) rhyolitic ignimbrites constitute a time-stratigraphic framework of late Miocene to early Pliocene volcanism for the study region. Field relations and high-precision 40Ar/39Ar age determinations establish that four of these regional ignimbrites were erupted from the Heise volcanic field and form the framework of the Heise Group. These are the Blacktail Creek Tuff (6.62 ?? 0.03 Ma), Walcott Tuff (6.27 ?? 0.04 Ma), Conant Creek Tuff (5.51 ?? 0.13 Ma), and Kilgore Tuff (4.45 ?? 0.05 Ma; all errors reported at ?? 2??). The fifth widespread ignimbrite in the regions is the Arbon Valley Tuff Member of the Starlight Formation (10.21 ?? 0.03 Ma), which erupted from a caldera source outside of the Heise volcanic field. These results establish the Conant Creek Tuff as a distinct and widespread ignimbrite in the Heise volcanic field, eliminating former confusion resulting from previous discordant K/Ar and fission-track dates. New 40Ar/39Ar determinations, when combined wi th geochemical, lithologic geophysical, and field data, define the volcanic and tectonic history of the Heise volcanic field and surrounding areas. Volcanic units erupted from the Heise volcanic field also provide temporal control for tectonic events associated with late Cenozoic extension in the Snake Range and with uplift of the Teton Range, Wyoming. In the Snake Range, movement of large (???0.10 km3) slide blocks of Mississippian limestone exposed 50 km to the east of the Heise field occurred between 6.3 and 5.5 Ma and may have been catastrophically triggered by the caldera eruption of the 5.51 ?? 0.13-Ma Conant Creek Tuff. This slide block movement of ???300 vertical meters indicates that the Snake Range had significant relief by at least 5.5 Ma. In Jackson Hole, the distribution of outflow facies of the 4.45 ?? 0.05-Ma Kilgore caldera in the Heise volcanic field on the eastern SRP indicates that the northern Teton Range was not a significant topographic feature at this time. ?? 2005 Geological Society of America.
Dacitic ash-flow sheet near Superior and Globe, Arizona
Peterson, Donald W.
1961-01-01
Remnants of a dacitic ash-flow sheet near Globe, Miama, and Superia, Arizona cover about 100 square miles; before erosion the area covered by the sheet was at least 400 square miles and perhaps as much as 1,500 square miles. Its maximum thickness is about 2,000 feet, its average thickness is about 500 feet, and its original volume was at least 40 cubic miles. It was erupted on an eroded surface with considerable relief. The main part of the deposit was thought by early workers to be a lava flow. Even after the distinctive character of welded tuffs and related rocks was discovered, the nature and origin of this deposit remained dubious because textures did not correspond to those in other welded tuff bodies. Yet a lava flow as silicic as this dacite would be viscous instead of spreading out as an extensive sheet. The purpose of this investigation has been to study the deposit, resolve the inconsistencies, and deduce its origin and history. Five stratigraphic zones are distinguished according to differences in the groundmass. From bottom to top the zones are basal tuff, vitrophyre, brown zone, gray zone, and white zone. The three upper zones are distinguished by colors on fresh surfaces, for each weathers to a similar shade of light reddish brown. Nonwelded basal tuff grades upward into the vitrophyre, which is a highly welded tuff. The brown and gray zones consist of highly welded tuff with a lithoidal groundmass. Degree of welding decreases progressively upward through the gray and the white zones, and the upper white zone is nonwelded. Textures are clearly outlined in the lower part of the brown zone, but upward they become more diffuse because of increasing devitrification. In the white zone, original textures are essentially obliterated, and the groundmass consists of spherulites and microcrystalline intergrowths. The chief groundmass minerals are cristobalite and sanidine, with lesser quartz and plagioclase. Phenocrysts comprise about 40 percent of the rock, and their relative proportions are fairly uniform. Almost three-fourths of the phenocrysts are plagioclase, one-tenth quartz, one-tenth biotite, and the remainder sanidine, magnetite, and hornblende, with accessory sphene, zircon, and appetite. Pumice fragments are nearly equidimensional near the top of the sheet, and downward they become progressively more flattened until they finally disappear. The zones and the pumice fragment flattening ration (ratio of length to height) provide means for recognizing several faults within the sheet. Twelve new chemical analyses are nearly uniform in composition. If named according to chemical composition, the rock would be a quartz latite, but when named according to phenocrysts, it is a dacite. From the field occurrence and the interpretation of relict textures, it is concluded that the deposit is an ash-flow sheet containing large amounts of welded tuff, and that it was emplaced by a type of nuee ardente instead of a lava flow or air-fall shower. The nature of zoning and trend of flattening ratios indicate a series of eruptions in rapid enough succession for the sheet to form a single cooling unit. Except in the lower part of the sheet, original textures were obscured by devitrification and crystallization during cooling. Nearly uniform mineralogy and chemistry suggest a single magnetic source. A nearly circular area, about 3? miles in diameter, of altered dacite and earlier volcanic rocks, bounded by intricately faulted and brecciated older rocks, may be the site of a caldera that represents the source of the eruptions.
Aucott, Walter R.
1996-01-01
Transmissivity values used in the flow simulation range from less than 1,000 feet squared per day near the updip limit of most aquifers to about 30,000 feet squared per day in the Middendorf aquifer in the Savannah River Plant area. Vertical hydraulic conductivity values used in simulation of confining units range from about 6x10-7 feet per day for the confining unit between the Middendorf and Black Creek aquifers in coastal areas to 3x10-2 feet per day for most of the confining units near their updip limits. Storage coefficients used in transient simulations were 0.15 where unconfined conditions exist and 0.0005 where confined conditions exist.
NASA Astrophysics Data System (ADS)
Chang, S.; Renne, P. R.; Mundil, R.
2007-12-01
A detailed magnetic polarity time scale for the Permo-Triassic Boundary interval, critical for correlating events in marine and terrestrial paleoenvironments, is not yet well-established. Recently, late Permian magnetostratigraphic studies have been reported for non-marine sections in Europe and South Africa (Szurlies et al., 2003; Nawrocki, 2004; Ward et al., 2005). However, these sections are devoid of index fossil suitable for correlation with marine successions and also lack age constraints from radioisotopic dating methods. In other words, it is dubious to correlate these magnetostratigraphic data with the GSSP Permo-Triassic boundary and mass extinction. The Dewey Lake red beds formation of West Texas, believed to be the youngest Permian formation in North America, has yielded high-quality paleomagnetic data (Molina-Garza et al., 1989; Steiner, 2001) and contains several silicic tuffs potentially enabling high-resolution calibration of the magnetic polarity time scale in this critical age range. The tuffs have yet to be placed into a regional stratigraphic or magnetostratigraphic framework, and it is unclear exactly how many distinct eruptive units are represented by the 7 distinct samples collected to date from widely separated (>160 km) localities. 40Ar/39Ar (sanidine and biotite) and U/Pb (zircon) studies reveal that all 7 sampled tuffs were probably erupted within several hundred ka of the Permo-Triassic boundary as dated at the Meishan GSSP section (Renne et al., 1995; Mundil et al., 2004) but results thus far are inadequate to convincingly resolve age differences between the various samples. U/Pb dating of some samples is severely challenged by Pb-loss from the zircons despite application of the Mattinson (2005) annealing/chemical abrasion technique. 40Ar/39Ar data have been obtained from as many as four different irradiations in order to reduce neutron fluence related error. We observe the familiar ~1% bias between U/Pb and 40Ar/39Ar ages. Biotite microprobe data, zircon U/Th TIMS data, and the absence of sanidine from some samples serve to help correlate or distinguish some samples despite irresolvable age differences; existing data suggest that 4 distinct tuffs are present in the Dewey Lake Formation. Resolving their ages convincingly will require further work, but it is clear from our results combined with previous magnetostratigraphic data that magnetic polarity reversals were relatively frequent in the latest Permian. Thus the uniqueness of correlations elsewhere with the Permo-Triassic boundary based on magnetostratigraphy alone are not well-founded.
NASA Astrophysics Data System (ADS)
Choi, Y.; Lee, I.; Choi, B.; KIM, Y.; Moon, I.
2017-12-01
The Central Seruyan Pb-Zn deposit is located in Seruyan, Central Kalimantan Province in Indonesia. This deposit has been developed since last year and is still being investigated. The Pb-Zn deposit consists of two formations, Pinoh and Kuayan formation. The former is a metamorphic unit hosting schist, phyllite and gneiss, and the latter is a pyroclastic and volcanic unit includes intermediate volcanic rocks such as dacite, tuff and breccia. Most host rocks of the deposit is composed of the silicified porphyritic dacite and silicified phyllite and covered by silicified tuff. The joints and fractures within the wall rock has E-W trends. The Seruyan Pb-Zn deposit is considered as hydrothermal breccia type.In this study, we observe ore minerals and host rocks to understand the genesis of the Pb-Zn deposit with geochemical data. Pyrite, chalcopyrite, sphalerite and galena are major ore minerals and covellite and bornite are also observed as minor sulfide minerals. These ore minerals, except pyrite, usually occur within quartz or calcite veins indicating the influence of hydrothermal fluid. In the host rocks, dacite, has the altered minerals like sericite, chlorite, epidote and some clay minerals of hydrothermal origin. All minerals occur as massive form. Only some pyrites have an euhedral form. Small amount of Au, Ag and Mo are detected in major ore minerals in the EPMA (electron probe X-ray microanalyzer) analyses.
NASA Astrophysics Data System (ADS)
Eyuboglu, Yener
2015-01-01
The Meso-Cenozoic geodynamic evolution of the Eastern Pontides Orogenic Belt, which is one of the key areas of the Alpine-Himalayan system, is still controversial due to lack of systematic geological, geophysical, geochemical and chronological data. The prevailing interpretation is that this belt represents the southern margin of Eurasia during the Mesozoic and its geodynamic evolution is related to northward subduction of oceanic lithosphere. This paper reports the first detailed geological, geochemical and chronological data from felsic tuffs interbedded with late Cretaceous turbidites in the Southern Zone of the Eastern Pontides Orogenic Belt. Individual tuff layers are thin, mostly < 2 m in thickness, implying that these are dominantly air-fall tuffs. Petrographic data indicate that the felsic tuffs, which exhibit various degrees of alteration, can be classified as crystal-rich and crystal-poor tuffs. The crystal-poor tuffs consist mainly of 45-65% devitrified glass shards and 10-20% broken quartz crystals, whereas the crystal-rich tuffs consist of > 50% crystals. The zircon U-Pb data show three statistically distinct ages at 84, 81 and 77 Ma, with uncertainties of about 1 Ma, suggesting that tuff-forming late Cretaceous magmatism started about 84 Ma ago and was episodically active over a minimum of 7 Ma. The age data also indicate that the average accumulation rate of the turbiditic sequence that hosts the felsic tuffs remained constant between 36 and 40 cm/10 ky. Their enrichment in LIL and LRE elements relative to HFS and HRE elements, and also strongly negative Nb, Ta and Ti anomalies, are consistent with those of magmas generated by subduction-related processes. The tuffs have relatively low initial ratios of 143Nd/144Nd (0.512296-0.512484; εNd: - 2.1 and - 7.2) and 87Sr/86Sr (0.704896-0.706159). Their initial Pb isotopic compositions range from 18.604 to 18.646 for 206Pb/204Pb, from 15.644 to 15.654 for 207Pb/206Pb and from 38.712 to 38.763 for 208Pb/204Pb. The distribution of Sr-Nd isotopic compositions in the late Cretaceous igneous rocks from different locations of the Eastern Pontides Orogenic Belt is consistent with two-component mixing between depleted mantle and crust. However, the Pb isotopic data are not compatible with two-component mixing and require at least a third component. Considering all of the new data and also previous data such as southward migration and increasing potassium content of the late Cretaceous arc volcanism, the northward migration of Cenozoic igneous activity, northward drift of the belt since the late Cretaceous and the existence of south-dipping reverse fault systems in the whole region, the Meso-Cenozoic geodynamic evolution of the Eastern Pontides Orogenic Belt can be best explained by southward subduction of Tethys oceanic lithosphere, rather than northward subduction.
NASA Astrophysics Data System (ADS)
Sheth, Hetu C.; Pande, Kanchan
2014-04-01
Post-K-Pg Boundary Deccan magmatism is well known from the Mumbai area in the Panvel flexure zone. Represented by the Salsette Subgroup, it shows characters atypical of much of the Deccan Traps, including rhyolite lavas and tuffs, mafic tuffs and breccias, spilitic pillow basalts, and "intertrappean" sedimentary or volcanosedimentary deposits, with mafic intrusions as well as trachyte intrusions containing basaltic enclaves. The intertrappean deposits have been interpreted as formed in shallow marine or lagoonal environments in small fault-bounded basins due to syn-volcanic subsidence. We report a previously unknown sedimentary deposit underlying the Dongri rhyolite flow from the upper part of the Salsette Subgroup, with a westerly tectonic dip due to the Panvel flexure. We have obtained concordant 40Ar/39Ar ages of 62.6 ± 0.6 Ma (2σ) and 62.9 ± 0.2 Ma (2σ) for samples taken from two separate outcrops of this rhyolite. The results are significant in showing that (i) Danian inter-volcanic sedimentary deposits formed throughout Mumbai, (ii) the rock units are consistent with the stratigraphy postulated earlier for Mumbai, (iii) shale fragments known in some Dongri tuffs were likely derived from the sedimentary deposit under the Dongri rhyolite, (iv) the total duration of extrusive and intrusive Deccan magmatism was at least 8-9 million years, and (v) Panvel flexure formed, or continued to form, after 63 Ma, possibly even 62 Ma, and could not have formed by 65-64 Ma as concluded in a recent study.
Comparison of neptunium sorption results using batch and column techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Triay, I.R.; Furlano, A.C.; Weaver, S.C.
1996-08-01
We used crushed-rock columns to study the sorption retardation of neptunium by zeolitic, devitrified, and vitric tuffs typical of those at the site of the potential high-level nuclear waste repository at Yucca Mountain, Nevada. We used two sodium bicarbonate waters (groundwater from Well J-13 at the site and water prepared to simulate groundwater from Well UE-25p No. 1) under oxidizing conditions. It was found that values of the sorption distribution coefficient, Kd, obtained from these column experiments under flowing conditions, regardless of the water or the water velocity used, agreed well with those obtained earlier from batch sorption experiments undermore » static conditions. The batch sorption distribution coefficient can be used to predict the arrival time for neptunium eluted through the columns. On the other hand, the elution curves showed dispersivity, which implies that neptunium sorption in these tuffs may be nonlinear, irreversible, or noninstantaneous. As a result, use of a batch sorption distribution coefficient to calculate neptunium transport through Yucca Mountain tuffs would yield conservative values for neptunium release from the site. We also noted that neptunium (present as the anionic neptunyl carbonate complex) never eluted prior to tritiated water, which implies that charge exclusion does not appear to exclude neptunium from the tuff pores. The column experiments corroborated the trends observed in batch sorption experiments: neptunium sorption onto devitrified and vitric tuffs is minimal and sorption onto zeolitic tuffs decreases as the amount of sodium and bicarbonate/carbonate in the water increases.« less
Christopher D. Henry,; John, David A.
2013-01-01
The western Nevada volcanic field is the western third of a belt of calderas through Nevada and western Utah. Twenty-three calderas and their caldera-forming tuffs are reasonably well identified in the western Nevada volcanic field, and the presence of at least another 14 areally extensive, apparently voluminous ash-flow tuffs whose sources are unknown suggests a similar number of undiscovered calderas. Eruption and caldera collapse occurred between at least 34.4 and 23.3 Ma and clustered into five ∼0.5–2.7-Ma-long episodes separated by quiescent periods of ∼1.4 Ma. One eruption and caldera collapse occurred at 19.5 Ma. Intermediate to silicic lavas or shallow intrusions commonly preceded caldera-forming eruptions by 1–6 Ma in any specific area. Caldera-related as well as other magmatism migrated from northeast Nevada to the southwest through time, probably resulting from rollback of the formerly shallow-dipping Farallon slab. Calderas are restricted to the area northeast of what was to become the Walker Lane, although intermediate and effusive magmatism continued to migrate to the southwest across the future Walker Lane.Most ash-flow tuffs in the western Nevada volcanic field are rhyolites, with approximately equal numbers of sparsely porphyritic (≤15% phenocrysts) and abundantly porphyritic (∼20–50% phenocrysts) tuffs. Both sparsely and abundantly porphyritic rhyolites commonly show compositional or petrographic evidence of zoning to trachydacites or dacites. At least four tuffs have volumes greater than 1000 km3, with one possibly as much as ∼3000 km3. However, the volumes of most tuffs are difficult to estimate, because many tuffs primarily filled their source calderas and/or flowed and were deposited in paleovalleys, and thus are irregularly distributed.Channelization and westward flow of most tuffs in paleovalleys allowed them to travel great distances, many as much as ∼250 km (original distance) to what is now the western foothills of the Sierra Nevada, which was not a barrier to westward flow of ash flows at that time. At least three tuffs flowed eastward across a north-south paleodivide through central Nevada. That tuffs could flow significant distances apparently uphill raises questions about the absolute elevation of the region and the elevation, relief, and location of the paleodivide.Calderas are equant to slightly elongate, at least 12 km in diameter, and as much as 35 km in longest dimension. Exceptional exposure of two caldera complexes that resulted from extensional faulting and tilting show that calderas subsided as much as 5 km as large piston-like blocks; caldera walls were vertical to steeply inward dipping to depths ≥4–5 km, and topographic walls formed by slumping of wall rock into the caldera were only slightly outboard (≤1 km) of structural margins.Most calderas show abundant post-collapse magmatism expressed as resurgent intrusions, ring-fracture intrusions, or intracaldera lavas that are closely related temporally (∼0–0.5 Ma younger) to caldera formation. Granitoid intrusions, which were emplaced at paleodepths ranging from <1 to ∼7 km, are compositionally similar to both intracaldera ash-flow tuffs and post-caldera lavas. Therefore in the western Nevada volcanic field, erupted caldera-forming tuffs commonly were the upper parts of large magma chambers that retained considerable volumes of magma after tuff eruption.Several calderas in the western Nevada volcanic field hosted large hydrothermal systems and underwent extensive hydrothermal alteration. Different types of hydrothermal systems (neutral-pH alkali-chloride and acid or low-pH magmatic-hydrothermal) may reflect proximity to (depth of) large resurgent intrusions. With the exception of the giant Round Mountain epithermal gold deposit, few known caldera-related hydrothermal systems are strongly mineralized. Major middle Cenozoic precious and base metal mineral deposits in and along the margins of the western Nevada volcanic field are mostly related to intrusive rocks that preceded caldera-forming eruptions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broxton, D.E.; Chipera, S.J.; Byers, F.M. Jr.
1993-10-01
Outcrops of nonwelded tuff at six locations in the vicinity of Yucca Mountain, Nevada, were examined to determine their suitability for hosting a surface-based test facility for the Yucca Mountain Project. Investigators will use this facility to test equipment and procedures for the Exploratory Studies Facility and to conduct site characterization field experiments. The outcrops investigated contain rocks that include or are similar to the tuffaceous beds of Calico Hills, an important geologic and hydrologic barrier between the potential repository and the water table. The tuffaceous beds of Calico Hills at the site of the potential repository consist of bothmore » vitric and zeolitic tuffs, thus three of the outcrops examined are vitric tuffs and three are zeolitic tuffs. New data were collected to determine the lithology, chemistry, mineralogy, and modal petrography of the outcrops. Some preliminary data on hydrologic properties are also presented. Evaluation of suitability of the six sites is based on a comparison of their geologic characteristics to those found in the tuffaceous beds of Calico Hills within the exploration block.« less
NASA Astrophysics Data System (ADS)
Kock, I.; Pechnig, R.; Buysch, A.; Clauser, C.
2003-04-01
During ODP Leg 197 an extensive logging program was run on Site 1203, Detroit Seamount. This seamount is part of the Emperor seamount chain, a continuation of the Hawaiian volcanic chain. Standard ODP/LDEO logging tool strings were used to measure porosity, density, resistivity, p- and s-wave velocities and gamma ray activity. The FMS-tool yielded detailed high resolution resistivity images of the borehole wall. By interpretation and statistical analysis of the logging parameters a petrophysical classification of the drilled rock content could be derived. The pillow lava recovered in the cores exhibits low porosity, low resistivity and high density. This indicates no or very little vesicles in the non-fractured rock unit. Compared to the pillow basalts, subaerial basalts show increasing porosity, gamma ray and potassium content and decreasing density, resistivity and velocity. A basalt with no or little vesicles and a basalt with average or many vesicles can clearly be distinguished. The volcaniclastics show lower resistivity, lower sonic velocities, higher porosities and lower densities than the basalts. Three different rock types can be distinguished within the volcaniclastics: Tuffs, resedimented tephra and breccia. The tuff shows medium porosity and density, low gamma ray and potassium content. The log responses from the resedimented tephra suggest that the tephra is more easily altered than the tuff. The log responses from the breccia lie between the tuff and tephra log responses, but the breccia can clearly be identified in the FMS borehole images. A similar rock content was found in the Hawaiian Scientific Drilling Project borehole. Gamma ray activity, electrical resistivity and sonic velocity were measured down to 2700 mbsl.. Compared to the 72-76 Ma old Detroit seamount basalts, the HSDP subaerial and submarine lava flows show a significant lower gamma ray activity, while sonic velocity and electrical resistivity are comparable. Deviations between the gamma ray activity might be due to the different primary compositions of the melt or to long lasting low temperature alteration. Investigations on this topic are in progress.
The hydrogeologic framework for the southeastern Coastal Plain aquifer system of the United States
Renken, R.A.
1984-01-01
Tertiary and Cretaceous age sand aquifers of the southeastern United States Coastal Plain constitute a distinct multistate hydrogeologic regime informally defined as the southeastern sand aquifer. Seven regional hydrogeologic units are defined; four regional aquifer units and three regional confining beds. Sand aquifers of this system consist of quartzose, feldspathic, and coarse to fine sand and sandstone and minor limestone; confining beds are composed of clay, shale, chalk, and marl. Three hydrogeologic units of Cretaceous to Holocene age overlie the sand system: the surficial aquifer, upper confining unit, and Floridan aquifer system. These three units are not part of the southeastern sand aquifer, but are an integral element of the total hydrogeologic system, and some act as a source of recharge to, or discharge from the underlying clastic sediments. Low-permeability strata of Paleozoic to early Mesozoic age form the base off the total system. (USGS)
Lewis-Russ, A.; Ranville, J.; Kashuba, A.T.
1991-01-01
A method is described that differentiates between solutions containing silica-dominated colloids and solutions that are essentially free of colloids. Suspensions of tuff particles were treated to remove colloids by centrifugation, filtration or both. Agreement of silica concentrations determined by inductively coupled plasma atomic emission spectrometry and by a spectrophotometric method was taken as an indication of colloid-free solutions. For two tuffs, centrifugation was effective for removing colloids. For the third, highly altered tuff, filtration was more effective for removing colloids.
Page, William R.; Scheirer, Daniel S.; Langenheim, V.E.; Berger, Mary A.
2006-01-01
This report presents revisions to parts of seven of the ten cross sections originally published in U.S. Geological Survey Open-File Report 2006-1040. The revisions were necessary to correct errors in some of the original cross sections, and to show new parts of several sections that were extended and (or) appended to the original section profiles. Revisions were made to cross sections C-C', D-D', E-E', F-F', G-G', I-I', and J-J', and the parts of the sections revised or extended are highlighted below the sections on plate 1 by red brackets and the word "revised," or "extended." Sections not listed above, as well as the interpretive text and figures, are generally unchanged from the original report. Cross section C-C' includes revisions in the east Mormon Mountains in the east part of the section; D-D' includes revisions in the Mormon Mesa area in the east part of the section; E-E' includes revisions in the Muddy Mountains in the east part of the section; F-F' includes revisions from the Muddy Mountains to the south Virgin Mountains in the east part of the section; and J-J' includes some revisions from the east Mormon Mountains to the Virgin Mountains. The east end of G-G' was extended about 16 km from the Black Mountains to the southern Virgin Mountains, and the northern end of I-I' was extended about 45 km from the Muddy Mountains to the Mormon Mountains, and revisions were made in the Muddy Mountains part of the original section. This report contains 10 interpretive cross sections and an integrated text describing the geology of parts of the Colorado, White River, and Death Valley regional groundwater flow systems in Nevada, Utah, and Arizona. The primary purpose of the report is to provide geologic framework data for input into a numerical groundwater model. Therefore, the stratigraphic and structural summaries are written in a hydrogeologic context. The oldest rocks (basement) are Early Proterozoic metamorphic and intrusive crystalline rocks that are considered confining units because of their low permeability. Late Proterozoic to Lower Cambrian clastic units overlie the crystalline rocks and are also considered confining units within the regional flow systems. Above the clastic units are Middle Cambrian to Lower Permian carbonate rocks that are the primary aquifers in the flow systems. The Middle Cambrian to Lower Permian carbonate rocks are overlain by a sequence of mainly clastic rocks of late Paleozoic to Mesozoic age that are mostly considered confining units, but they may be permeable where faulted. Tertiary volcanic and plutonic rocks are exposed in the northern and southern parts of the study area. In the Clover and Delamar Mountains, these rocks are highly deformed by north- and northwest-striking normal and strike-slip faults that are probably important conduits in transmitting groundwater from the basins in the northern Colorado and White River flow systems to basins in the southern part of the flow systems. The youngest rocks in the region are Tertiary to Quaternary basin-fill deposits. These rocks consist of middle to late Tertiary sediments consisting of limestone, conglomerate, sandstone, tuff, and gypsum, and younger Quaternary surficial units consisting of alluvium, colluvium, playa deposits, and eolian deposits. Basin-fill deposits are both aquifers and aquitards. The rocks in the study area were complexly deformed by episodes of Mesozoic compression and Cenozoic extensional tectonism. Some Cretaceous thrust faults and folds of the Sevier orogenic belt form duplex zones and define areas of maximum thickness for the Paleozoic carbonate rocks. Cenozoic faults are important because they are the primary structures that control groundwater flow in the regional flow systems.
Are there Tuffs from Toba Supereruptions in Singapore?
NASA Astrophysics Data System (ADS)
Bergal-Kuvikas, O.; Bouvet de Maisonneuve, C.; Vazquez, J. A.
2016-12-01
Singapore is a dense transportation hub and the most highly populated area of SE Asia. In order to assess volcanic hazards for Singapore, we compiled a database of Quaternary eruptions from neighboring volcanoes and we investigated samples from 20 boreholes collected across 11 reservoirs and several natural outcrops in the NW parts of the city. We identified a deposit of white to slightly yellow clay with a visible thickness of 6-8 meters in the western part of Singapore. This deposit of very fine ash is silicic (SiO2 72-75 wt.%) and calk-alkaline (K2O 3.7-4.5 wt.%). The ash layer is clearly weathered as the LOI is around 5 wt.% and SEM images show the presence of clay minerals almost exclusively. Geochemical mapping shows that quartz crystals are characterized by textures similar to volcanic deposits. N-MORB normalized spiderdiagrams of whole-rocks show minimums in Nb and Ti, enrichments in LREE, and depletions of HREE. This suggests a subduction origin. One possible source for this voluminous weathered ash layer is the Toba caldera, which produced several super eruptions in the Quaternary (the Young Toba Tuff at 0.074 Ma, Middle Toba Tuff at 0.5 Ma, Old Toba Tuff at 0.84 Ma, and Haranggoal Dacite Tuff at 1.2 Ma). Recognizing distal Toba tuffs is problematic because most deposits are underwater. Most of the analyzed samples have geochemical compositions that are statistically similar to the Toba tuffs and characterized by high contents of HREE elements (e.g. Y, Er, Yb) and some REE (e.g. Eu, Ba, La, Th). Preliminary dating shows the presence of Triassic zircons, possibly due to geologic contamination. Additional dating is needed to ascertain the source and age of this ash. Our new geochemical data of likely distal Toba deposits will be an important component for tephrochronological and paleoenvironmental studies in addition to being of importance for hazards assessments in Singapore.
Carbonatite tuffs in the Laetolil Beds of Tanzania and the Kaiserstuhl in Germany
Hay, R.L.; O'Neil, J.R.
1983-01-01
Carbonatite lava and tephra are now well known. The only modern eruptive carbonatites, from Oldoinyo Lengai, Tanzania, are of alkali carbonatite, whereas all of the pre-modern examples are of calcite or dolomite. Chemical and stable isotope analyses were made of separate phases of Pliocene carbonatite tuffs of the Laetolil Beds in Tanzania and of Miocene carbonatite tuffs of the Kaiserstuhl in Germany in order to understand the reasons for this major difference. The Laetolil Beds contain numerous carbonatite and melilitite-carbonatite tuffs. It is proposed that the carbonatite ash was originally of alkali carbonate composition and that the alkali component was dissolved, leaving a residuum of calcium carbonate. The least recrystallized melilitite-carbonatite tuff contains early-deposited calcite cement and calcite pseudomorphs after nyerereite (?) that have contents of strontium and barium and ??18O and ??13C values suggestive of incomplete chemical and isotopic exchange during alteration and replacement of alkali carbonatite ash. Carbonatite tuffs of the Kaiserstuhl contain globules composed of calcite phenocrysts and microphenocrysts in a groundmass of calcite with a small amount of clay, apatite, and magnetite. The SrO contents of phenocrysts, microphenocrysts, and groundmass calcite average 0.90, 1.42, and 0.59 percent, respectively. The average ??18O and ??13C values of globules (+14.3 and -9.0, respectively) fall between those of coarse-grained intrusive Kaiserstuhl carbonatite (avg. +6.6, -5.8) and those of low-temperature calcite cement in the carbonatite tuffs (+21.8, -14.9). The phenocrysts and microphenocrysts are primary magmatic calcite, but several features indicate that the groundmass has been recrystallized and altered in contact with meteoric water, resulting in weathering of silicate to clay, leaching of strontium, and isotopic exchange. The weight of evidence favors an original high content of alkali carbonatite in the groundmass, with recrystallization following leaching of the alkalies. ?? 1983 Springer-Verlag.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mower, T.E.; Higgins, J.D.; Yang, In C.
1994-07-01
The hydrologic system in the unsaturated tuff at Yucca Mountain, Nevada, is being evaluated for the US Department of Energy by the Yucca Mountain Project Branch of the US Geological Survey as a potential site for a high-level radioactive-waste repository. Part of this investigation includes a hydrochemical study that is being made to assess characteristics of the hydrologic system such as: traveltime, direction of flow, recharge and source relations, and types and magnitudes of chemical reactions in the unsaturated tuff. In addition, this hydrochemical information will be used in the study of the dispersive and corrosive effects of unsaturated-zone watermore » on the radioactive-waste storage canisters. This report describes the design and validation of laboratory experimental procedures for extracting representative samples of uncontaminated pore water from welded and nonwelded, unsaturated tuffs from the Nevada Test Site.« less
NASA Astrophysics Data System (ADS)
Khellou, A.; Kriker, A.; Hafssi, A.; Belbarka, K.; Baali, K.
2016-07-01
The gypsum-calcareous materials, also known as the crusting tuff, are used in the pavement layers of low -traffic road and considered as the materials of first choice in the Saharan region of Algeria. The objective of this paper is to study the mechanical characteristics of tuff of Ouargla town that is situated in the Southeast of Algeria, by adding different percentage of ash resulted from the combustion of by-products of date palms, such as 4%, 8% and l2%, to the tuff. The results obtained have shown a remarkable improvement both in compressive strength at different ages and in the bearing index in the two cases immediate and after immersion in water. These characteristics of the mixture (tuff+ash) reach their maximum values at the 8% of ash addition.
NASA Astrophysics Data System (ADS)
Valencia, Victor A.; Righter, Kevin; Rosas-Elguera, Jose; López-Martínez, Margarita; Grove, Marty
2013-09-01
The Jalisco Block is thought to be part of the Guerrero terrane, but the nature and age of the underlying crystalline basement are largely unknown. We have collected a suite of schists, granitoids, and weakly metamorphosed marine sediments from various parts of the Jalisco Block including Atenguillo and Ameca, Mascota and San Sebastián, Cuale, Puerto Vallarta, Punta Mita, Yelapa, and Tomatlán. The schists range in age from 135 to 161 Ma, with many exhibiting Proterozoic and Phanerozoic zircon ages. The granitoids range in age from 65 to 90 Ma, and are calc-alkaline compositionally—similar to granitoids from the Puerto Vallarta and Los Cabos batholiths. The Jalisco granitoids also experienced similar uplift rates to granitoids from the regions to the north and south of the Jalisco Block. The marine sediments yield a maximum depositional age of 131 Ma, and also contain a significant zircon population with ages extending back to the Archean. Granitoids from this study define two age groups, even after the effects of thermal resetting and different closure temperatures are considered. The 66.8-Ma silicic ash flow tuff near Union de Tula significantly expands the extent of this Cretaceous-Paleocene age ash flow tuff unit within the Jalisco Block, and we propose calling the unit "Carmichael silicic ash flow tuff volcanic succession" in honor of Ian Carmichael. The ages of the basement schists in the Jalisco Block fully overlap with the ages of terranes of continental Mexico, and other parts of the Guerrero terrane in the south, confirming the autochthonous origin of the Jalisco Block rather than exotic arc or allochthonous origin. Geologic data, in combination with geochronologic and oxygen isotopic data, suggest the evolution of SW Mexico with an early 200-1,200-Ma passive margin, followed by steep subduction in a continental arc setting at 160-165 Ma, then shallower subduction by 135 Ma, and finally, emplacement of granitoids at 65-90 Ma.
Moscati, Richard J.; Johnson, Craig A.
2014-01-01
Twenty vapour-phase garnets were studied in two samples of the Topopah Spring Tuff of the Paintbrush Group from Yucca Mountain, in southern Nevada. The Miocene-age Topopah Spring Tuff is a 350 m thick, devitrified, moderately to densely welded ash-flow tuff that is zoned compositionally from high-silica rhyolite to latite. During cooling of the tuff, escaping vapour produced lithophysae (former gas cavities) lined with an assemblage of tridymite (commonly inverted to cristobalite or quartz), sanidine and locally, hematite and/or garnet. Vapour-phase topaz and economic deposits associated commonly with topaz-bearing rhyolites (characteristically enriched in F) were not found in the Topopah Spring Tuff at Yucca Mountain. Based on their occurrence only in lithophysae, the garnets are not primary igneous phenocrysts, but rather crystals that grew from a F-poor magma-derived vapour trapped during and after emplacement of the tuff. The garnets are euhedral, vitreous, reddish brown, trapezohedral, as large as 2 mm in diameter and fractured. The garnets also contain inclusions of tridymite. Electron microprobe analyses of the garnets reveal that they are almandine-spessartine (48.0 and 47.9 mol.%, respectively), have an average composition of (Fe1.46Mn1.45Mg0.03Ca0.10)(Al1.93Ti0.02)Si3.01O12 and are comparatively homogeneous in Fe and Mn concentrations from core to rim. Composited garnets from each sample site have δ18O values of 7.2 and 7.4‰. The associated quartz (after tridymite) has δ18O values of 17.4 and 17.6‰, values indicative of reaction with later, low-temperature water. Unaltered tridymite from higher in the stratigraphic section has a δ18O of 11.1‰ which, when coupled with the garnet δ18O values in a quartz-garnet fractionation equation, indicates isotopic equilibration (vapour-phase crystallization) at temperatures of ~600°C. This high-temperature mineralization, formed during cooling of the tuffs, is distinct from the later and commonly recognized low-temperature stage (generally 50–70°C) of calcite, quartz and opal secondary mineralization, formed from downward-percolating meteoric water, that locally coats fracture footwalls and lithophysal floors.
Dai, S.; Wang, X.; Chen, W.; Li, D.; Chou, C.-L.; Zhou, Y.; Zhu, Chen; Li, H.; Zhu, Xudong; Xing, Y.; Zhang, W.; Zou, J.
2010-01-01
The No. 12 Coal (Late Permian) in the Songzao Coalfield, Chongqing, southwestern China, is characteristically high in pyrite and some trace elements. It is uniquely deposited directly above mafic tuff beds. Samples of coal and tuffs have been studied for their mineralogy and geochemistry using inductively coupled plasma-mass spectrometry, X-ray fluorescence, plasma low-temperature ashing plus powder X-ray diffraction, and scanning electron microscopy equipped with energy-dispersive X-ray analysis.The results show that the minerals of the No. 12 Coal are mainly composed of pyrite, clay minerals (kaolinite, chamosite, and illite), ankerite, calcite, and trace amounts of quartz and boehmite. Kaolinite and boehmite were mainly derived from sediment source region of mafic tuffs. Chamosite was formed by the reaction of kaolinite with Fe-Mg-rich fluids during early diagenesis. The high pyrite (Sp,d=8.83%) in the coal was related to marine transgression over peat deposits and abundant Fe derived from the underlying mafic tuff bed. Ankerite and calcite were precipitated from epigenetic fluids.Chemical compositions of incompatible elements indicate that the tuffs were derived from enriched mantle and the source magmas had an alkali-basalt character. Compared to other coals from the Songzao Coalfield and common Chinese coals, the No. 12 Coal has a lower SiO2/Al2O3 (1.13) but a higher Al2O3/Na2O (80.1) value and is significantly enriched in trace elements including Sc (13.5??g/g), V (121??g/g), Cr (33.6??g/g), Co (27.2??g/g), Ni (83.5??g/g), Cu (48.5??g/g), Ga (17.3??g/g), Y (68.3??g/g), Zr (444??g/g), Nb (23.8??g/g), and REE (392??g/g on average). Above mineralogical compositions, as well as similar ratios of selected elements (e.g., SiO2/Al2O3 and Al2O3/Na2O) and similar distribution patterns of incompatible elements (e.g., the mantle-normalized diagram for incompatible elements and chondrite-normalized diagram for rare earth elements) of coal and tuff, indicated that enriched trace elements above were largely derived from mafic tuffs, in addition to a minor amount from the Kandian Oldland. ?? 2010 Elsevier B.V.
Lindsey, David A.
1982-01-01
The Thomas Range and northern Drum Mountains have a history of volcanism, faulting, and mineralization that began about 42 m.y. (million years) ago. Volcanic activity and mineralization in the area can be divided into three stages according to the time-related occurrence of rock types, trace-element associations, and chemical composition of mineral deposits. Compositions of volcanic rocks changed abruptly from rhyodacite-quartz latite (42-39 m.y. ago) to rhyolite (38-32 m.y. ago) to alkali rhyolite (21 and 6-7 m.y. ago); these stages correspond to periods of chalcophile and siderophile metal mineralization, no mineralization(?), and lithophile metal mineralization, respectively. Angular unconformities record episodes of cauldron collapse and block faulting between the stages of volcanic activity and mineralization. The youngest angular unconformity formed between 21 and 7 m.y. ago during basin-and-range faulting. Early rhyodacite-quartz latite volcanism from composite volcanoes and fissures produced flows, breccias, and ash-flow tuff of the Drum Mountains Rhyodacite and Mt. Laird Tuff. Eruption of the Mt. Laird Tuff about 39 m.y. ago from an area north of Joy townsite was accompanied by collapse of the Thomas caldera. Part of the roof of the magma chamber did not collapse, or the magma was resurgent, as is indicated by porphyry dikes and plugs in the Drum Mountains. Chalcophile and siderophile metal mineralization, resulting in deposits of copper, gold, and manganese, accompanied early volcanism. Te middle stage of volcanic activity was characterized by explosive eruption of rhyolitic ash-flow tuffs and collapse of the Dugway Valley cauldron. Eruption of the Joy Tuff 38 m.y. ago was accompanied by subsidence of this cauldron and was followed by collapse and sliding of Paleozoic rocks from the west wall of the cauldron. Landslides in The Dell were covered by the Dell Tuff, erupted 32 m.y. ago from an unknown source to the east. An ash flow of the Needles Range(?) Formation was erupted 30-31 m.y. ago from an unknown source. Mineralization probably did not occur during the rhyolitic stage of volcanism. The last stage of volcanism was contemporaneous with basin-and-range faulting and was characterized by explosive eruption of ash and pumice, forming stratified tuff, and by quiet eruption of alkali rhyolite as viscous flows and domes. The first episode of alkali rhyolite volcanism deposited the beryllium tuff and porphyritic rhyolite members of the Spor Mountain Formation 21 m.y. ago. After a period of block faulting, the stratified tuff and alkali rhyolite of the Topaz Mountain Rhyolite were erupted 6-7 m.y. ago along faults and fault intersections. Erosion of Spor Mountain, as well as explosive eruptions through dolomite, provided abundant dolomite detritus to the beryllium tuff member. The alkali rhyolite of both formations is fluorine rich, as is evident from abundant topaz, and contains anomalous amounts of lithophile metals. Alkali rhyolite volcanism was accompanied by lithophile metal mineralization which deposited fluorite, beryllium, and uranium. The structure of the area is dominated by the Thomas caldera and the younger Dugway Valley cauldron, which is nested within the Thomas caldera; the Thomas caldera is surrounded by a rim of Paleozoic rocks at Spor Mountain and Paleozoic to Precambrian rocks in the Drum Mountains. The Joy fault and Dell fault system mark the ring-fracture zone of the Thomas caldera. These structural features began to form about 39 m.y. ago during eruption of the Mt. Laird Tuff and caldera subsidence. The Dugway Valley cauldron sank along a series of steplike normal faults southeast of Topaz Mountain in response to collapse of the magma chamber of the Joy Tuff. Caldera structure was modified by block faulting between 21 and 7 m.y. ago, the time of widespread extensional faulting in the Basin and Range Province. Vents erupted alkali rhyolite 6-7 m.y. ago along basin-and-range faults.
Explosive shaped charge penetration into tuff rock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigil, M.G.
1988-10-01
Analysis and data for the use of Explosive Shaped Charges (ESC) to generate holes in tuff rock formation is presented. The ESCs evaluated include Conical Shaped Charges (CSC) and Explosive Formed Projectiles (EFP). The CSCs vary in size from 0.158 to 9.1 inches inside cone diameter. The EFPs were 5.0 inches in diameter. Data for projectile impact angles of 30 and 90 degrees are presented. Analytically predicted depth of penetration data generally compared favorably with experimental data. Predicted depth of penetration versus ESC standoff data and hole profile dimensions in tuff are also presented. 24 refs., 45 figs., 6 tabs.
Deino, Alan L
2012-08-01
(40)Ar/(39)Ar dating of tuffs and lavas of the late Pleistocene volcanic and sedimentary sequence of Olduvai Gorge, north-central Tanzania, provides the basis for a revision of Bed I chronostratigraphy. Bed I extends from immediately above the Naabi Ignimbrite at 2.038 ± 0.005 Ma to Tuff IF at 1.803 ± 0.002 Ma. Tuff IB, a prominent widespread marker tuff in the basin and a key to understanding hominin evolutionary chronologies and paleoclimate histories, has an age of 1.848 ± 0.003 Ma. The largest lake expansion event in the closed Olduvai lake basin during Bed I times encompassed the episode of eruption and emplacement of this tuff. This lake event is nearly coincident with the maximum precessional insolation peak of the entire Bed I/Lower Bed II interval, calculated from an astronomical model of the boreal summer orbital insolation time-series. The succeeding precessional peak also apparently coincides with the next youngest expansion of paleo-Lake Olduvai. The extreme wet/dry climate shifts seen in the upper part of Bed I occur during an Earth-orbital eccentricity maximum, similar to episodic lake expansions documented elsewhere in the East African Rift during the Neogene. Copyright © 2012 Elsevier Ltd. All rights reserved.
Umari, Amjad; Fahy, Michael F.; Earle, John D.; Tucci, Patrick
2008-01-01
To evaluate the potential for transport of radionuclides in ground water from the proposed high-level nuclear-waste repository at Yucca Mountain, Nevada, conservative (nonsorbing) tracer tests were conducted among three boreholes, known as the C-hole Complex, and values for transport (or flow) porosity, storage (or matrix) porosity, longitudinal dispersivity, and the extent of matrix diffusion were obtained. The C-holes are completed in a sequence of Miocene tuffaceous rock, consisting of nonwelded to densely welded ash-flow tuff with intervals of ash-fall tuff and volcaniclastic rocks, covered by Quaternary alluvium. The lower part of the tuffaceous-rock sequence includes the Prow Pass, Bullfrog, and Tram Tuffs of the Crater Flat Group. The rocks are pervaded by tectonic and cooling fractures. Paleozoic limestone and dolomite underlie the tuffaceous rocks. Four radially convergent and one partially recirculating conservative (nonsorbing) tracer tests were conducted at the C-hole Complex from 1996 to 1998 to establish values for flow porosity, storage porosity, longitudinal dispersivity, and extent of matrix diffusion in the Bullfrog and Tram Tuffs and the Prow Pass Tuff. Tracer tests included (1) injection of iodide into the combined Bullfrog-Tram interval; (2) injection of 2,6 difluorobenzoic acid into the Lower Bullfrog interval; (3) injection of 3-carbamoyl-2-pyridone into the Lower Bullfrog interval; and (4) injection of iodide and 2,4,5 trifluorobenzoic acid, followed by 2,3,4,5 tetrafluorobenzoic acid, into the Prow Pass Tuff. All tracer tests were analyzed by the Moench single- and dual-porosity analytical solutions to the advection-dispersion equation or by superposition of these solutions. Nonlinear regression techniques were used to corroborate tracer solution results, to obtain optimal parameter values from the solutions, and to quantify parameter uncertainty resulting from analyzing two of the three radially convergent conservative tracer tests conducted in the Bullfrog and Tram intervals. Longitudinal dispersivity values in the Bullfrog and Tram Tuffs ranged from 1.83 to 2.6 meters, flow-porosity values from 0.072 to 0.099, and matrix-porosity values from 0.088 to 0.19. The flow-porosity values indicate that the pathways between boreholes UE-25 c#2 and UE-25 c#3 in the Bullfrog and Tram intervals are not connected well. Tracer testing in the Prow Pass interval indicates different transport characteristics than those obtained in the Bullfrog and Tram intervals. In the Prow Pass Tuff, longitudinal dispersivity was 0.27 meter, flow porosity was 4.5 ? 10?4, and matrix porosity was 0.01. This indicates that the flow network in the Prow Pass is dominated by interconnected fractures, whereas in the Bullfrog and Tram, the flow network is dominated by discontinuous fractures with connecting segments of matrix.
Chlorine-36 data at Yucca Mountain: Statistical tests of conceptual models for unsaturated-zone flow
Campbell, K.; Wolfsberg, A.; Fabryka-Martin, J.; Sweetkind, D.
2003-01-01
An extensive set of chlorine-36 (36Cl) data has been collected in the Exploratory Studies Facility (ESF), an 8-km-long tunnel at Yucca Mountain, Nevada, for the purpose of developing and testing conceptual models of flow and transport in the unsaturated zone (UZ) at this site. At several locations, the measured values of 36Cl/Cl ratios for salts leached from rock samples are high enough to provide strong evidence that at least a small component of bomb-pulse 36Cl, fallout from atmospheric testing of nuclear devices in the 1950s and 1960s, was measured, implying that some fraction of the water traveled from the ground surface through 200-300 m of unsaturated rock to the level of the ESF during the last 50 years. These data are analyzed here using a formal statistical approach based on log-linear models to evaluate alternative conceptual models for the distribution of such fast flow paths. The most significant determinant of the presence of bomb-pulse 36Cl in a sample from the welded Topopah Spring unit (TSw) is the structural setting from which the sample was collected. Our analysis generally supports the conceptual model that a fault that cuts through the nonwelded Paintbrush tuff unit (PTn) that overlies the TSw is required in order for bomb-pulse 36Cl to be transmitted to the sample depth in less than 50 years. Away from PTn-cutting faults, the ages of water samples at the ESF appear to be a strong function of the thickness of the nonwelded tuff between the ground surface and the ESF, due to slow matrix flow in that unit. ?? 2002 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vezzoli, Luigina; Corazzato, Claudia
2016-05-01
In the upper part of the Stromboli volcano, in the Le Croci and Bastimento areas, two dyke-like bodies of volcanic breccia up to two-metre thick crosscut and intrude the products of Vancori and Neostromboli volcanoes. We describe the lithofacies association of these unusual volcaniclastic dykes, interpret the setting of dyke-forming fractures and the emplacement mechanism of internal deposits, and discuss their probable relationships with the explosive eruption and major lateral collapse events that occurred at the end of the Neostromboli period. The dyke volcaniclastic deposits contain juvenile magmatic fragments (pyroclasts) suggesting a primary volcanic origin. Their petrographic characteristics are coincident with the Neostromboli products. The architecture of the infilling deposits comprises symmetrically-nested volcaniclastic units, separated by sub-vertical boundaries, which are parallel to the dyke margins. The volcanic units are composed of distinctive lithofacies. The more external facies is composed of fine and coarse ash showing sub-vertical laminations, parallel to the contact wall. The central facies comprises stratified, lithic-rich breccia and lapilli-tuff, whose stratification is sub-horizontal and convolute, discordant to the dyke margins. Only at Le Croci dyke, the final unit shows a massive tuff-breccia facies. The volcaniclastic dykes experienced a polyphasic geological evolution comprising three stages. The first phase consisted in fracturing, explosive intrusion related to magma rising and upward injection of magmatic fluids and pyroclasts. The second phase recorded the dilation of fractures and their role as pyroclastic conduits in an explosive eruption possibly coeval with the lateral collapse of the Neostromboli lava cone. Finally, in the third phase, the immediately post-eruption mass-flow remobilization of pyroclastic deposits took place on the volcano slopes.
Clague, D.A.; Frey, F.A.
1982-01-01
These volcanic rocks are the products of small-volume, late-stage vents along rifts cutting the older massive Koolan tholeiitic shield on Oahu. Most of the lavas and tuffs have the geochemical features expected of near-primary magmas derived from a peridotite source with olivine Fo87-89, e.g. 100 Mg/(Mg + Fe2+) > 65, Ni > 250 p.p.m. and the presence of ultramafic mantle xenoliths at 18 of the 37 vents. Thus the geochemistry of the alkali olivine basalt, basanite, nephelinite and nepheline melilitite lavas and tuffs of these Honolulu volcanic rocks has been used to deduce the composition of their mantle source and the conditions under which they were generated by partial melting in the mantle. New major- and trace-element analyses for 31 samples are tabulated and indicate derivation by partial melting of a garnet (<10%) lherzolite source which was isotopically homogeneous and compositionally uniform for most major and trace elements, though apparently heterogeneous in TiO2, Zr, Hf, Nb and Ta (due perhaps to the low inferred degrees of melting which failed to exhaust the source in minor residual phases). In comparison with estimates of a primordial mantle composition and the mantle source of MORB, the garnet peridotite source of these Honolulu volcanics was increasingly enriched in the sequence heavy REE, Y, Tb, Ti, Sm, Zr and Hf, for which a multi-stage history is required. This composition differs from the source of the previously erupted tholeiitic shield, nor is it represented in the upper-mantle xenoliths in the lavas and tuff of the unit.-R.A.H.
Bralower, T.J.; Ludwig, K. R.; Obradovich, J.D.
1990-01-01
The Grindstone Creek Section, Glenn County, Northern California is a sequence of hemipelagic mudstone, siltstone and sandstone interbedded with concretionary limestone and a few thin tuffs and bentonites. Two tuffs have been collected from a narrow interval of this sequence and subjected to mineralogical and isotopic analyses. UPb isotopic analyses of zircon fractions from these volcanic horizons indicate an age of 137.1 + 1.6/-0.6 Ma. A detailed investigation has been conducted on the calcareous nannofossil stratigraphy of this section based on numerous samples with moderately preserved assemblages. The nannoflora is largely of Tethyan affinity, and allows direct correlation with the Berriasian stratotype section, with sections with published magnetostratigraphies and with a DSDP site drilled between known magnetic anomalies. The dated tuffs lie in the lower part of the upper Berriasian Cretarhabdus angustiforatus Zone (Assipetra infracretacea Subzone) and within the narrow range of Rhagodiscus nebulosus. At three different sections, this subzone can be correlated with M-sequence Polarity Zones M16 and M16n. An independent magnetostratigraphic correlation is provided at DSDP Site 387, drilled between anomalies M15 and M16, where basal sediments contain R. nebulosus. Buchia collected within a meter of the lower tuff lie within the B. uncitoides Zone which is Berriasian in age. The upper tuff level, which occurs 65 m above the lower tuff, is situated within the overlying B. pacifica Zone. This zone had previously been correlated with the early Valanginian, but is clearly also partly of Berriasian age based on nannofossil stratigraphy. Our results allow an estimate of the age of the Berriasian-Valanginian and Jurassic-Cretaceous boundaries of 135.1 Ma and 141.1 Ma, respectively, and these fall within the range of, but differ significantiy from, several published time-scales. ?? 1990.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elston, W.E.
1981-07-01
Results are reported of geologic mapping of geothermal anomalies in the Gila Hot Springs KGRA/Mimbres Hot Springs area, Grant County. They suggest that both hot-spring occurrences are structurally controlled by the intersection of a major Basin and Range fault and the disturbed margin of an ash-flow tuff cauldron. Hydrothermal alteration in both areas is related to mid-Tertiary volcanism, not to modern hot springs. At Gila Hot Springs, the geothermal aquifer is a zone at the contact between the unwelded top of a major ash-flow tuff sheet (Bloodgood Canyon Rhyolite Tuff) and a succession of interlayered vesicular basaltic andesite flows andmore » thin sandstone beds (Bearwallow Mountain Formation). Scattered groups of natural hot springs occur at intersections of this zone and the faults bordering the northeastern side of the Gila Hot Springs graben. Hydrothermal alteration of Bloodgood Canyon Rhyolite Tuff near major faults seems to have increased its permeability. At Mimbres Hot Springs, a single group of hot springs is controlled by the intersection of the Mimbres Hot Springs fault and a fractured welded ash-flow tuff that fills the Emory cauldron (Kneeling Nun Tuff). Gila Hot Springs and Mimbres Hot Springs do not seem to be connected by throughgoing faults. At both localities, hot spring water is used locally for space heating and domestic hot water; at Gila Hot Springs, water of 65.6/sup 0/C (150/sup 0/F) is used to generate electricity by means of a 10 kw freon Rankine Cycle engine. This is the first such application in New Mexico.« less
Geochronology and Regional Correlation of Continental Permo-Triassic Sediments in West Texas
NASA Astrophysics Data System (ADS)
Mitchell, W.; Renne, P. R.; Mundil, R.; Chang, S.; Geissman, J. W.; Tabor, N. J.; Mack, G.
2011-12-01
Although many aspects of marine sections spanning the Permian-Triassic boundary (PTB) have been studied in great detail across a broad paleogeographic area, less is known about the timing, pace, and extent of environmental changes and extinctions across this boundary in continental environments, particularly along the Panthalassa margin. Extensive outcrops in the Ochoan Series of west Texas provide an opportunity to investigate the terrestrial record spanning the PTB. The presence of several silicic tuffs in these sections allows for precise radioisotopic dating using both U-Pb and 40Ar/39Ar techniques. Dated strata then serve as a calibration basis for paleomagnetic and lithostratigraphic studies and facilitate stratigraphic correlation across the few to hundreds of kilometers separating study sites. Depending on the possible correlations, as many as seven tuffs have been identified in this region, the ages of which are within about a million years of the chronometrically-defined PTB at the Meishan section in China at ca. 252 Ma. Data obtained thus far indicate that the PTB occurs within the Quartermaster/Dewey Lake Formation. With the aims of determining the number and ages of distinct tuffs found and facilitating a well-correlated regional stratigraphy among the studied sections, we present preliminary radioisotopic age determinations of, and correlations among, these tuffs using the zircon U-Pb system, 40Ar/39Ar dating where possible, as well as mineral chemistry. Our results include the first dated tuff in the Ochoan Series that lies within the Alibates Formation which underlies the Dewey Lake Fm. Other samples in progress from the various tuffs in the region, in combination with results from magneto- and chemostratigraphy, will significantly expand the areal coverage of these strata and lead towards a greatly improved chronostratigraphic framework.
NASA Astrophysics Data System (ADS)
Cheilletz, Alain; Clark, Alan H.; Farrar, Edward; Pauca, Guido Arroyo; Pichavant, Michel; Sandeman, Hamish A.
1992-04-01
A total of 1400 m of ignimbritic ash-flow tuffs distributed in five cross-sections and extending from the pre-Neogene base to the uppermost flows were studied in the Miocene Macusani ignimbrite basin (southeast Peru). Volcano-stratigraphic interpolation and precise 40Ar/ 39Ar dating of sanidine, biotite, and rhyolitic glass from the ash-flow tuffs give rise to a southwest-northeast correlation chart subdivided into six volcanic cycles or fundamental cooling units i.e., (1) 10.0 ± 0.5; (2) 7.8-8.0 ± 0.1; (3) 7.5 ± 0.1; (4) 7.3 ± 0.1; (5) 6.8-7.0 ± O.1; and (6) 6.7 ± O.1 Ma. These delimit two brief e 10 ± 1 and 7 ± 1 Ma, which are sensibly synchronous with the Quechua 2 and Quechua 3 compressional events characterizing the tectonic regime in the Central Andes. This close relationship between tectonic pulses and felsic magmatic activity adds a supplementary constraint to models of the Miocene tectono-magmatic evolution of the Cordillera Oriental. The stratigraphic relationships of the uranium mineralization of the Macusani field are defined for the first time: the stratiform-stratabound occurrences are restricted to three main cooling units dated at 7.8, 7.5 and 6.9-6.8 Ma which constitute a maximum age for uranium deposition.
Ground-water flow in the shallow aquifer system at the Naval Weapons Station Yorktown, Virginia
Smith, Barry S.
2001-01-01
The Environmental Directorate of the Naval Weapons Station Yorktown, Virginia, is concerned about possible contamination of ground water at the Station. Ground water at the Station flows through a shallow system of layered aquifers and leaky confining units. The units of the shallow aquifer system are the Columbia aquifer, the Cornwallis Cave confining unit, the Cornwallis Cave aquifer, the Yorktown confining unit, and the Yorktown-Eastover aquifer. The Eastover-Calvert confining unit separates the shallow aquifer system from deeper confined aquifers beneath the Station. A three-dimensional, finite-difference, ground-water flow model was used to simulate steady-state ground-water flow of the shallow aquifer system in and around the Station. The model simulated ground-water flow from the peninsular drainage divide that runs across the Lackey Plain near the southern end of the Station north to King Creek and the York River and south to Skiffes Creek and the James River. The model was calibrated by minimizing the root mean square error between 4 7 measured and corresponding simulated water levels. The calibrated model was used to determine the ground-water budget and general directions of ground-water flow. A particle-tracking routine was used with the calibrated model to estimate groundwater flow paths, flow rates, and traveltimes from selected sites at the Station. Simulated ground-water flow velocities of the Station-area model were small beneath the interstream areas of the Lackey Plain and Croaker Flat, but increased outward toward the streams and rivers where the hydraulic gradients are larger. If contaminants from the land surface entered the water table at or near the interstream areas of the Station, where hydraulic gradients are smaller, they would migrate more slowly than if they entered closer to the streams or the shores of the rivers where gradients commonly are larger. The ground-water flow simulations indicate that some ground water leaks downward from the water table to the Yorktown confining unit and, where the confining unit is absent, to the Yorktown-Eastover aquifer. The velocities of advective-driven contaminants would decrease considerably when entering the Yorktown confining unit because the hydraulic conductivity of the confining unit is small compared to that of the aquifers. Any contaminants that moved with advective ground-water flow near the groundwater divide of the Lackey Plain would move relatively slowly because the hydraulic gradients are small there. The direction in which the contaminants would move, however, would be determined by precisely where the contaminants entered the water table. The model was not designed to accurately simulate ground-water flow paths through local karst features. Beneath Croaker Flat, ground water flows downward through the Columbia aquifer and the Yorktown confining unit into the Yorktown-Eastover aquifer. Analyses of the movement of simulated particles from two adjacent sites at Croaker Flat indicated that ground-water flow paths were similar at first but diverged and discharged to different tributaries of Indian Field Creek or to the York River. These simulations indicate that complex and possibly divergent flow paths and traveltimes are possible at the Station. Although the Station-area model is not detailed enough to simulate ground-water flow at the scales commonly used to track and remediate contaminants at specific sites, general concepts about possible contaminant migration at the Station can be inferred from the simulations.
Conceptual hydrogeologic framework of the shallow aquifer system at Virginia Beach, Virginia
Smith, Barry S.; Harlow, George E.
2002-01-01
The hydrogeologic framework of the shallow aquifer system at Virginia Beach was revised to provide a better understanding of the distribution of fresh ground water, its potential use, and its susceptibility to contamination. The revised conceptual framework is based primarily on analyses of continuous cores and downhole geophysical logs collected at 7 sites to depths of approximately 200 ft.The shallow aquifer system at Virginia Beach is composed of the Columbia aquifer, the Yorktown confining unit, and the Yorktown-East-over aquifer. The shallow aquifer system is separated from deeper units by the continuous St. Marys confining unit.The Columbia aquifer is defined as the predominantly sandy surficial deposits above the Yorktown confining unit. The Yorktown confining unit is composed of a series of very fine sandy to silty clay units of various colors at or near the top of the Yorktown Formation. The Yorktown confining unit varies in thickness and in composition, but on a regional scale is a leaky confining unit. The Yorktown-Eastover aquifer is defined as the predominantly sandy deposits of the Yorktown Formation and the upper part of the Eastover Formation above the confining clays of the St. Marys Formation. The limited areal extent of highly permeable deposits containing freshwater in the Yorktown-Eastover aquifer precludes the installation of highly productive freshwater wells over most of the city. Some deposits of biofragmental sand or shell hashes in the Yorktown-Eastover aquifer can support high-capacity wells.A water sample was collected from each of 10 wells installed at 5 of the 7 core sites to determine the basic chemistry of the aquifer system. One shallow well and one deep well was installed at each site. Concentrations of chloride were higher in the water from the deeper well at each site. Concentrations of dissolved iron in all of the water samples were higher than the U.S. Environmental Protection Agency Secondary Drinking Water Regulations. Concentrations of manganese and chloride were higher than the Secondary Drinking Water Regulations in samples from some wells.In the humid climate of Virginia Beach, the periodic recharge of freshwater through the sand units of the shallow aquifer system occurs often enough to create a dynamic equilibrium whereby freshwater flows continually down and away from the center of the ridges to mix with and sweep brackish water and saltwater back toward the tidal rivers, bays, salt marshes, and the Atlantic Ocean.The aquifers and confining units of the shallow aquifer system at Virginia Beach are heterogeneous, discontinuous, and without exact marker beds, which makes correlations in the study area difficult. Investigations using well cuttings, spot cores, or split-spoon samples with geophysical logs are not as definitive as continuous cores for determining or correlating hydrogeologic units. Future investigations of the shallow aquifer system would benefit by collecting continuous cores.
Ponce, David A.; Hanna, William F.
1982-01-01
A gravity and magnetic study of the Syncline Ridge area was conducted as part of an investigation of argillite rocks of the Eleana Formation under consideration as a medium for the possible storage of high-level radioactive waste. Bouguer gravity anomaly data, viewed in light of densities obtained by gamma-gamma logs and previous work of D. L. Healey (1968), delineate two regions of steep negative gradient where Cenozoic rocks and sediments are inferred to abruptly thicken: (1) the western third of the study area where Tertiary volcanic rocks are extensively exposed and (2) the northeast corner of the area where Quaternary alluvium is exposed and where volcanic rocks are inferred to occur at depth. In the remainder of the area, a region extending contiguously from Mine Mountain northwestward through Syncline Ridge to the Eleana Range, the gravity data indicate that the Eleana Formation, where not exposed, is buried at depths of less than about 200 m, except in a limited area of exposed older Paleozoic rocks on Mine Mountain. Quaternary alluvium and Tertiary volcanic rocks are inferred to occur in this region as veneers or shallow dishes of deposit on Tippipah Limestone or Eleana Formation. Low-level aeromagnetic anomaly data, covering the western two-thirds of the study area, delineate relatively magnetic tuff units within the Tertiary volcanic rocks and provide a very attractive means for distinguishing units of normal polarization from units of reversed polarization. If used in conjunction with results of previous magnetization studies of G. D. Bath (1968), the low-level survey may prove to be an effective tool for mapping specific tuff members in the volcanic terrane. The important question of the feasibility of discriminating high-quartz argillite from low-quartz argillite of the Eleana Formation using surface gravity data remains unresolved. If the more highly competent, denser, high-quartz phase should occur as stratigraphic units many tens of meters thick, closely spaced gravity data may reliably detect these units. If the high-quartz phase occurs only as relatively thin units, interbedded with low-quartz phase, borehole gravity surveying can be used much more effectively than equivalent surface gravity surveying.
Publications - GMC 145 | Alaska Division of Geological & Geophysical
DGGS GMC 145 Publication Details Title: Analytical results of x-ray diffraction studies on tuff beds , Analytical results of x-ray diffraction studies on tuff beds from core of the following 5 NPRA wells: U.S
Landon, Matthew K.; Clark, Brian R.; McMahon, Peter B.; McGuire, Virginia L.; Turco, Michael J.
2008-01-01
In 2001, the U.S. Geological Survey, as part of the National Water Quality Assessment (NAWQA) Program, initiated a topical study of Transport of Anthropogenic and Natural Contaminants (TANC) to PSW (public-supply wells). Local-scale and regional-scale TANC study areas were delineated within selected NAWQA study units for intensive study of processes effecting transport of contaminants to PSWs. This report describes results from a local-scale TANC study area at York, Nebraska, within the High Plains aquifer, including the hydrogeology and geochemistry of a 108-square-kilometer study area that contains the zone of contribution to a PSW selected for study (study PSW), and describes factors controlling the transport of selected anthropogenic and natural contaminants to PSWs. Within the local-scale TANC study area, the High Plains aquifer is approximately 75 m (meter) thick, and includes an unconfined aquifer, an upper confining unit, an upper confined aquifer, and a lower confining unit with lower confined sand lenses (units below the upper confining unit are referred to as confined aquifers) in unconsolidated alluvial and glacial deposits overlain by loess and underlain by Cretaceous shale. From northwest to southeast, land use in the local-scale TANC study area changes from predominantly irrigated agricultural land to residential and commercial land in the small community of York (population approximately 8,100). For the purposes of comparing water chemistry, wells were classified by degree of aquifer confinement (unconfined and confined), depth in the unconfined aquifer (shallow and deep), land use (urban and agricultural), and extent of mixing in wells in the confined aquifer with water from the unconfined aquifer (mixed and unmixed). Oxygen (delta 18O) and hydrogen (delta D) stable isotopic values indicated a clear isotopic contrast between shallow wells in the unconfined aquifer (hereinafter, unconfined shallow wells) and most monitoring wells in the confined aquifers (hereinafter, confined unmixed wells). Delta 18O and delta D values for a minority of wells in the confined aquifers were intermediate between those for the unconfined shallow wells and those for the confined unmixed wells. These intermediate values were consistent with mixing of water from unconfined and confined aquifers (hereinafter, confined mixed wells). Oxidation-reduction conditions were primarily oxic in the unconfined aquifer and variably reducing in the confined aquifers. Trace amounts of volatile organic compounds (VOC), particularly tetrachloroethylene (PCE) and trichloroethylene (TCE), were widely detected in unconfined shallow urban wells and indicated the presence of young urban recharge waters in most confined mixed wells. The presence of degradation products of agricultural pesticides (acetochlor and alachlor) in some confined mixed wells suggests that some fraction of the water in these wells also was the result of recharge in agricultural areas. In the unconfined aquifer, age-tracer data (chlorofluorocarbon and sulfur hexafluoride data, and tritium to helium-3 ratios) fit a piston-flow model, with apparent recharge ages ranging from 7 to 48 years and generally increasing with depth. Age-tracer data for the confined aquifers were consistent with mixing of 'old' water, not containing modern tracers recharged in the last 60 years, and exponentially-mixed 'young' water with modern tracers. Confined unmixed wells contained less than (=) 97% of old water. Confined mixed wells contained >30% young water and mean ages ranged from 12 to 14 years. Median concentrations of nitrate (as nitrogen, hereinafter, nitrate-N) were 17.3 and 16.0 mg/L (milligram per liter) in unconfined shallow urban and agricultural wells, respectively, indicating a range of likely nitrate sources. Septic systems are most numerous near the edge of the urban area and appear to be
Removal of ammonium from aqueous solutions with volcanic tuff.
Marañón, E; Ulmanu, M; Fernández, Y; Anger, I; Castrillón, L
2006-10-11
This paper presents kinetic and equilibrium data concerning ammonium ion uptake from aqueous solutions using Romanian volcanic tuff. The influence of contact time, pH, ammonium concentration, presence of other cations and anion species is discussed. Equilibrium isotherms adequately fit the Langmuir and Freundlich models. The results showed a contact time of 3h to be sufficient to reach equilibrium and pH of 7 to be the optimum value. Adsorption capacities of 19 mg NH(4)(+)/g were obtained in multicomponent solutions (containing NH(4)(+), Zn(2+), Cd(2+), Ca(2+), Na(2+)). The presence of Zn and Cd at low concentrations did not decrease the ammonium adsorption capacity. Comparison of Romanian volcanic tuff with synthetic zeolites used for ammonium removal (5A, 13X and ZSM-5) was carried out. The removal efficiciency of ammonium by volcanic tuff were similar to those of zeolites 5A and 13X at low initial ammonium concentration, and much higher than those of zeolite ZSM-5.
Geohydrology of test well USW H-3, Yucca Mountain, Nye County, Nevada
Thordarson, William; Rush, F.E.; Waddell, S.J.
1985-01-01
Test well USW H-3 is one of several wells drilled in the southwestern part of the Nevada Test Site for hydraulic testing, hydrologic monitoring, and geophysical logging. The work was performed in cooperation with the U.S. Department of Energy. The rocks penetrated by the well to a total depth of 1,219 meters were volcanic tuffs of Tertiary age. The most transmissive zone in this well is in the upper part of the Tram Member of the Crater Flat Tuff that was penetrated at a depth from 809 to 841 meters; transmissivity is about 7 x 10 -1 meter squared per day. The remainder of the rocks penetrated between the depths of 841 to 1,219 meters have a transmissivity of about 4 x 10 -1 meter squared per day and are predominatly in the Tram Member of the Crater Flat Tuff and the Lithic Ridge Tuff in the depths from 841 to 1,219 meters. (USGS)
Whelan, Josheph F.
2004-01-01
The Drift Degradation Analysis (DDA) (BSC, 2003) for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, describes model simulations of the effects of pre- and post-closure seismicity and waste-induced heating on emplacement drifts. Based on probabilistic seismic hazard analyses of the intensity and frequency of future seismic events in the region (CRWMS M&O, 1998), the DDA concludes that future seismicity will lead to substantial damage to emplacement drifts, particularly those in the lithophysal tuffs, where some simulations predict complete collapse of the drift walls. Secondary mineral studies conducted by the U.S. Geological Survey since 1995 indicate that secondary calcite and silica have been deposited in some fractures and lithophysal cavities in the unsaturated zone (UZ) at Yucca Mountain during at least the past 10 million years (m.y.), and probably since the tuffs cooled to less than 100?C. Tuff fragments, likely generated by past seismic activity, have commonly been incorporated into the secondary mineral depositional sequences. Preliminary observations indicate that seismic activity has generated few, if any, tuff fragments during the last 2 to 4 m.y., which may be inconsistent with the predictions of drift-wall collapse described in the DDA. Whether or not seismicity-induced tuff fragmentation occurring at centimeter to decimeter scales in the fracture and cavity openings relates directly to failure of tuff walls in the 5.5-m-diameter waste emplacement drifts, the deposits do provide a potential record of the spatial and temporal distribution of tuff fragments in the UZ. In addition, the preservation of weakly attached coatings and (or) delicate, upright blades of calcite in the secondary mineral deposits provides an upper limit for ground motion during the late stage of deposition that might be used as input to future DDA simulations. Finally, bleaching and alteration at a few of the secondary mineral sites indicate that they were subjected to heated gases at approximately the temperatures expected from waste emplacement. These deposits provide at least limited textural and mineralogic analogs for waste-induced, high-humidity thermal alteration of emplacement drift wall rocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
GREENE,G.A.; GUPPY,J.G.
1998-09-01
This is the final report on the INSP project entitled, ``Post-Accident Confinement High-Level Radiation Monitoring System'' conducted by BNL under the authorization of Project Work Plan WBS 1.2.2.6 (Attachment 1). This project was initiated in February 1993 to assist the Russians in reducing risks associated with the continued operation of older Soviet-designed nuclear power plants, specifically the Kola VVER-440/230 Unit 2, through improved accident detection capability, specifically by the installation of a dual train high-level radiation detection system in the confinement of Unit 2 of the Kola NPP. The major technical objective of this project was to provide, install andmore » make operational the necessary hardware inside the confinement of the Kola NPP Unit 2 to provide early and reliable warning of the release of radionuclides from the reactor into the confinement air space as an indication of the occurrence of a severe accident at the plant. In addition, it was intended to provide hands-on experience and training to the Russian plant workers in the installation, operation, calibration and maintenance of the equipment in order that they may use the equipment without continued US assistance as an effective measure to improve reactor safety at the plant.« less
Hydrogeologic framework of the North Fork and surrounding areas, Long Island, New York
Schubert, Christopher E.; Bova, Richard G.; Misut, Paul E.
2004-01-01
Ground water on the North Fork of Long Island is the sole source of drinking water, but the supply is vulnerable to saltwater intrusion and upconing in response to heavy pumping. Information on the area's hydrogeologic framework is needed to analyze the effects of pumping and drought on ground-water levels and the position of the freshwater-saltwater interface. This will enable water-resource managers and water-supply purveyors to evaluate a wide range of water-supply scenarios to safely meet water-use demands. The extent and thickness of hydrogeologic units and position of the freshwater-saltwater interface were interpreted from previous work and from exploratory drilling during this study.The fresh ground-water reservoir on the North Fork consists of four principal freshwater flow systems (referred to as Long Island mainland, Cutchogue, Greenport, and Orient) within a sequence of unconsolidated Pleistocene and Late Cretaceous deposits. A thick glacial-lake-clay unit appears to truncate underlying deposits in three buried valleys beneath the northern shore of the North Fork. Similar glacial-lake deposits beneath eastern and east-central Long Island Sound previously were inferred to be younger than the surficial glacial deposits exposed along the northern shore of Long Island. Close similarities in thickness and upper-surface altitude between the glacial-lake-clay unit on the North Fork and the glacial-lake deposits in Long Island Sound indicate, however, that the two are correlated at least along the North Fork shore.The Matawan Group and Magothy Formation, undifferentiated, is the uppermost Cretaceous unit on the North Fork and constitutes the Magothy aquifer. The upper surface of this unit contains a series of prominent erosional features that can be traced beneath Long Island Sound and the North Fork. Northwest-trending buried ridges extend several miles offshore from areas southeast of Rocky Point and Horton Point. A promontory in the irregular, north-facing cuesta slope extends offshore from an area southwest of Mattituck Creek and James Creek. Buried valleys that trend generally southeastward beneath Long Island Sound extend onshore northeast of Hashamomuck Pond and east of Goldsmith Inlet.An undifferentiated Pleistocene confining layer, the lower confining unit, consists of apparently contiguous units of glacial-lake, marine, and nonmarine clay. This unit is more than 200 feet thick in buried valleys filled with glacial-lake clay along the northern shore, but elsewhere on the North Fork, it is generally less than 50 feet thick and presumably represents an erosional remnant of marine clay. Its upper surface is generally 75 feet or more below sea level where it overlies buried valleys, and is generally 100 feet or less below sea level in areas where marine clay has been identified.A younger unit of glacial-lake deposits, the upper confining unit, is a local confining layer and underlies a sequence of late Pleistocene moraine and outwash deposits. This unit is thickest (more than 45 feet thick) beneath two lowland areas--near Mattituck Creek and James Creek, and near Hashamomuck Pond--but pinches out close to the northern and southern shores and is locally absent in inland areas of the North Fork. Its upper-surface altitude generally rises to near sea level toward the southern shore.Freshwater in the Orient flow system is limited to the upper glacial aquifer above the top of the lower confining unit. The upper confining unit substantially impedes the downward flow of freshwater in inland parts of the Greenport flow system. Deep freshwater within the lower confining unit in the east-central part of the Cutchogue flow system probably is residual from an interval of lower sea level. The upper confining unit is absent or only a few feet thick in the west-central part of the Cutchogue flow system and does not substantially impede the downward flow of freshwater, but the lower confining unit probably impedes the downward flow of freshwater within a southeast-trending buried valley in this area.
A field method for making a quantitative estimate of altered tuff in sandstone
Cadigan, R.A.
1954-01-01
The use of benzidine to identify altered tuff in sandstone is practical for field or field laboratory studies associated with stratigraphic correlations, mineral deposit investigations, or paleogeographic interpretations. The method is based on the ability of saturated benzidine (C12H12N2) solution to produce a blue stain on montmorillonite-bearing tuff grains. The method is substantiated by the results of microscopic, X-ray spectrometer, and spectrographic tests which lead to the conclusion that: (1) the benzidine stain test differentiates grains of different composition, (2) the white or gray grains which are stained a uniform blue color are fragments of altered tuff, and (3) white or gray grains which stain in a few small spots are probably silicified tuff. The amount of sand grains taken from a hand specimen or an outcrop which will be held by a penny is spread out on a nonabsorbent white surface and soaked with benzidine for 5 minutes. The approximate number blue grains and the average grain size are used in a chart to determine a reference number which measures relative order of abundance. The chart, based on a volume relationship, corrects for the variation in the number of grains in the sample as the grain size varies. Practical use of the method depends on a knowledge of several precautionary measures as well as an understanding of the limitations of benzidine staining tests.
Rousseau, Joseph P.; Kwicklis, Edward M.; Gillies, Daniel C.; Rousseau, Joseph P.; Kwicklis, Edward M.; Gillies, Daniel C.
1999-01-01
Yucca Mountain, in southern Nevada, is being investigated by the U.S. Department of Energy as a potential site for a repository for high-level radioactive waste. This report documents the results of surface-based geologic, pneumatic, hydrologic, and geochemical studies conducted during 1992 to 1996 by the U.S. Geological Survey in the vicinity of the North Ramp of the Exploratory Studies Facility (ESF) that are pertinent to understanding multiphase fluid flow within the deep unsaturated zone. Detailed stratigraphic and structural characteristics of the study area provided the hydrogeologic framework for these investigations. Multiple lines of evidence indicate that gas flow and liquid flow within the welded tuffs of the unsaturated zone occur primarily through fractures. Fracture densities are highest in the Tiva Canyon welded (TCw) and Topopah Spring welded (TSw) hydrogeologic units. Although fracture density is much lower in the intervening nonwelded and bedded tuffs of the Paintbrush nonwelded hydrogeologic unit (PTn), pneumatic and aqueous-phase isotopic evidence indicates that substantial secondary permeability is present locally in the PTn, especially in the vicinity of faults. Borehole air-injection tests indicate that bulk air-permeability ranges from 3.5x10-14 to 5.4x10-11 square meters for the welded tuffs and from 1.2x10-13 to 3.0x10-12 square meters for the non welded and bedded tuffs of the PTn. Analyses of in-situ pneumatic-pressure data from monitored boreholes produced estimates of bulk permeability that were comparable to those determined from the air-injection tests. In many cases, both sets of estimates are two to three orders of magnitude larger than estimates based on laboratory analyses of unfractured core samples. The in-situ pneumatic-pressure records also indicate that the unsaturated-zone pneumatic system consists of four subsystems that coincide with the four major hydrogeologic units of the unsaturated zone at Yucca Mountain. In descending order, these hydrogeologic units are the Tiva Canyon welded (TCw), Paintbrush nonwelded (PTn), Topopah Spring welded (TSw ), and Calico Hills nonwelded (CHn). Deep percolation takes place as episodic pulses of inflow that propagate rapidly to depth and apparently bypass most of the rock matrix. Field-scale and core-scale water potentials throughout much of the PTn and TSw are very high, generally greater than -0.3 megapascals, and are nearly depth invariant. Thus, the imbibition capacity of the densely welded tuffs, at least near fractures, is very small because of low matrix permeabilities and low water-potential gradients across the fracture-matrix interface. The combination of high fracture permeability, high water potentials, high matrix saturations, and low matrix permeabilities results in a percolation environment that favors deep fracture flow. The episodic pulses of inflow are evidenced in the sporadic but nevertheless commonplace occurrence of water with concentrations of radioactive isotopes indicative of origins postdating the atmospheric testing of nuclear weapons. High concentrations of tritium have been detected at many horizons within the PTn and in the top of the TSw. Much lower concentrations of tritium, indicating the mixing of a bomb-pulse component with older water, have been detected in the deeper sections of the TSw and in the CHn. Evidence for fracture flow also is apparent in the widespread occurrence of perched water with chemical and isotopic signatures that indicate a fracture-flow origin for at least some of this water. In the North Ramp area, perched water has been detected at the base of the Topopah Spring Tuff or in the top of the underlying non welded to partially welded tuffs of the Calico Hills Formation in every dry-drilled borehole of sufficient depth to penetrate the Topopah Spring Tuff-Calico Hills Formation contact. The concentrations of the major ions of the perched water are similar to that of TSw pore water at borehole UZ-14, CHn pore water, and saturated-zone water at boreholes NRG-7 a and SD-9. The absolute chloride concentration of the perched water, however, is much lower than the chloride concentration of pore water from either the PTn or the TSw. The chemical and isotopic compositions of perched water indicate that this water was derived primarily from fracture flow, with little or no contribution from water in the matrix of the overlying rock. Carbon-14 ages of perched water range from 3,000 to 7,000 years. Strontium-87 isotope ratios indicate dissolution of surficial pedogenic calcite and calcite fracture fillings, which supports a fracture-flow origin for perched water. Moreover, carbon-13 and deuterium isotope values indicate rapid infiltration into fractures with little or no prior evaporation. Evidence for deep fracture flow into the Calico Hills Formation at UZ-14 is indicated by carbon-14 values that are from 65 and 95 percent modem carbon, equivalent to apparent ages of about 3,500 to 500 years. Some of these ages are younger than age estimates for perched water in the overlying Topopah Spring Tuff and are much younger than any that could be derived from a matrix-flow model. Evidence is lacking for extensive lateral flow within the PTn or for interception and diversion of this flow downward along structural pathways (faults), two key features of the original conceptual model for unsaturated flow at Yucca Mountain. Where data are available to infer lateral flow in the PTn, it is not certain that fracture flow could not have produced the same results. Pneumatic data, derived primarily from analysis of the interference effects from excavation of the North Ramp tunnel, indicate that faults within the Topopah Spring Tuff are open over substantial distances and are very permeable. Tunnel-boring-induced pneumatic disturbances have been propagated along these faults over distances that exceed 500 meters. These disturbances also have been detected in the pneumatic-pressure record of the overlying PTn in the vicinity of these faults. In spite of the apparent high permeability of faults, the existing data have neither confirmed nor refuted the hypothetical role of these faults in intercepting lateral flow from within or from above the PTn and diverting this flow downward into the deeper subsurface. On the basis of measured temperature gradients within the TSw, deep percolation appears to be greatest beneath active channels of major drainages, diminishing toward the margins and hillslopes bordering these channels. Numerical simulations indicate that this downward percolation is accompanied by lateral spreading as the percolation front moves downward through the PTn and across the contact between the PTn and underlying TSw. Temperature data from a well-documented site in Pagany Wash indicate the presence of a significant heat-flow deficit between the PTn and underlying TSw that most likely is due to nonconductive heat-flow processes with substantial capacity to extract heat. Percolation fluxes on the order of 10 to 20 millimeters per year beneath the Pagany Wash channel and on the order of 5 millimeters per year or less beneath the hillslopes bordering this drainage accounted for the apparent heat-flow deficit. Analyses of borehole temperature gradients in Drill Hole Wash indicate similar percolation fluxes and flux distributions within that drainage. An analysis of residence times estimated from uncorrected carbon-14 activities of perched-water samples and estimates for the volume of the structurally controlled reservoir, however, showed that the perched-water reservoir intersected by borehole UZ-14 under Drill Hole Wash could be sustained by percolation fluxes through the TSw of as little as 0.001 to 0.29 millimeter per year. The significance and implications of these findings with respect to waste isolation are discussed in the appendix of this report.
Deino, Alan L; Hill, Andrew
2002-01-01
A fossil hominid temporal bone (KNM-BC 1) from surface exposures at Baringo Paleontological Research Project site BPRP#2 in the Chemeron Formation outcropping in a tributary drainage of the Kapthurin River west of Lake Baringo, Kenya has been attributed to Homo sp. indet. K-feldspar phenocrysts from lapilli tuffs bracketing the inferred fossiliferous horizon yield single-crystal(40)Ar/(39)Ar ages of 2.456+/-0.006 and 2.393+/-0.013 Ma. These age determinations are supported by stratigraphically consistent ages on higher tuff horizons and from nearby sections. In addition, new(40)Ar/(39)Ar ages on tuffaceous units near the base and top of the formation along the Kapthurin River yield 3.19+/-0.03 and 1.60+/-0.05 Ma respectively. The base of the formation along the Kapthurin River is thus approximately 0.5 Ma younger than the uppermost Chemeron Formation strata exposed at Tabarin, 23 km to the north-northwest. The upper half of the formation along the Kapthurin River was deposited at an average rate of approximately 11 cm/ka, compared to 21-23 cm/ka at Tabarin. Copyright 2002 Academic Press.
Weeks, E.P.; Wilson, W.E.
1984-01-01
Analyses were made on 19 core samples of unsaturated tuff from test well USW H-1. Moisture-characteristic curves relating saturation and moisture tension were developed from results of mercury-injection tests. Ambient moisture tension estimated from these curves generally was 1 to 2 bars. Values of relative permeability ranging from about 0.002 to 0.1 were determined by fitting an analytical expression to eight of the moisture-characteristic curves, and then integrating to solve for relative permeability. These values of relative permeability were applied to values of saturated hydraulic conductivity of core from a nearby test well to obtain effective hydraulic conductivities of about 8 x 10 to the minus twelfth power to 7 x 10 to the minus tenth power centimeter per second. If a unit hydraulic-head gradient is assumed, these values convert to a vertial matrix flux of 0.003 to 0.2 millimeter per year. The validity of this assumption was not verified due to the sparseness of data and uncertainties in their reliability. Consequently, the results of this study are preliminary and need to be used principally as a guide for future studies. (USGS)
K-Ar age of the late Pleistocene eruption of Toba, north Sumatra
Ninkovich, D.; Shackleton, N.J.; Abdel-Monem, A. A.; Obradovich, J.D.; Izett, G.
1978-01-01
The late Pleistocene eruption of Toba is the largest magnitude explosive eruption documented from the Quaternary. K-Ar dating of the uppermost unit of the Toba Tuff gives an age of [~amp]sim; 75,000 yr. A chemically and petrographically equivalent ash layer in deep-sea cores helps calibrate the Stage 4-5 boundary of the standard oxygen isotope stratigraphy. A similar ash in Malaya that overlies finds of Tampan Palaeolithic tools indicates that they are older than 75,000 yr. ?? 1978 Nature Publishing Group.
Water table in rocks of Cenozoic and Paleozoic age, 1980, Yucca Flat, Nevada Test Site, Nevada
Doty, G.C.; Thordarson, William
1983-01-01
The water table at Yucca Flat, Nevada Test Site, Nevada, occurs in rocks of Paleozoic age and in tuffs and alluvium of Cenozoic age and ranges in altitude from about 2,425 feet to about 3,500 feet. The configuration of the water table is depicted by contours with intervals of 25 to 500 feet. Control for the map consists of water-level information from 61 drill holes, whose locations and age of geologic units penetrated are shown by symbols on the map. (USGS)
NASA Astrophysics Data System (ADS)
Marshall, B. D.; Futa, K.; Scofield, K. M.
2002-12-01
The proposed radioactive waste repository at Yucca Mountain, Nevada would be constructed in the high-silica rhyolite member of the Topopah Spring Tuff, an ash-flow tuff within the ~500-m-thick unsaturated zone. Dry-drilled rock cores from this unit have been packaged to preserve their water content. Two methods have been used to extract the strontium contained in the pore water for isotopic measurements. In the first method, samples of dried core were crushed, and the 0.25 to 2.4 mm size fractions were leached with ultra-pure water for about 1 hour to dissolve the salts left behind by the evaporated pore water. Concentrations of strontium in the pore water were calculated from determinations of porosity and saturation on adjacent core and the measured strontium concentration in the leachate. In the second method, pore water was extracted from sealed core using an ultracentrifuge, minimizing evaporation of water from the core at all steps in the process. The centrifugation of 150 to 200 g of welded tuff at 15,000 rpm for 6 hours typically results in the recovery of as much as 3 ml of pore water for analysis. Strontium isotope compositions were determined by thermal ionization mass spectrometry; 87Sr /86Sr ratios have a reproducibility of 0.00005. The ranges of 87Sr/86Sr ratios determined by the two methods are identical: 0.71215 to 0.71267 in the leachates (n = 35) and 0.71214 to 0.71266 in the extracted pore waters (n = 21). However, the calculated strontium concentrations in the leachates average 300 μg/L, whereas those in the extracted pore water average 1440 μg/L, indicating that a substantial portion of the pore-water salts remain in the crushed rock after leaching. The strontium data determined on extracted pore water shows that the leaching of pore-water salts results in accurate 87Sr/86Sr, but that a substantial correction to the strontium concentration is required due to the inefficiency of the leaching procedure and the small pore sizes in the welded tuffs. The strontium isotope data obtained on leachates can be used to constrain models of water-rock interaction and estimates of travel times in the unsaturated zone.
Public Health and Solitary Confinement in the United States.
Cloud, David H; Drucker, Ernest; Browne, Angela; Parsons, Jim
2015-01-01
The history of solitary confinement in the United States stretches from the silent prisons of 200 years ago to today's supermax prisons, mechanized panopticons that isolate tens of thousands, sometimes for decades. We examined the living conditions and characteristics of the populations in solitary confinement. As part of the growing movement for reform, public health agencies have an ethical obligation to help address the excessive use of solitary confinement in jails and prisons in accordance with established public health functions (e.g., violence prevention, health equity, surveillance, and minimizing of occupational and psychological hazards for correctional staff). Public health professionals should lead efforts to replace reliance on this overly punitive correctional policy with models based on rehabilitation and restorative justice.
Public Health and Solitary Confinement in the United States
Drucker, Ernest; Browne, Angela; Parsons, Jim
2015-01-01
The history of solitary confinement in the United States stretches from the silent prisons of 200 years ago to today’s supermax prisons, mechanized panopticons that isolate tens of thousands, sometimes for decades. We examined the living conditions and characteristics of the populations in solitary confinement. As part of the growing movement for reform, public health agencies have an ethical obligation to help address the excessive use of solitary confinement in jails and prisons in accordance with established public health functions (e.g., violence prevention, health equity, surveillance, and minimizing of occupational and psychological hazards for correctional staff). Public health professionals should lead efforts to replace reliance on this overly punitive correctional policy with models based on rehabilitation and restorative justice. PMID:25393185
NASA Astrophysics Data System (ADS)
Tal, A.; Weinstein, Y.; Yechieli, Y.; Borisover, M.
2017-08-01
This study focuses on the impact of surface reservoirs (fish ponds) on a multi aquifer coastal system, and the relation between the aquifer and the sea. The study was conducted in an Israeli Mediterranean coastal aquifer, which includes a sandy phreatic unit and two confined calcareous sandstone units. The geological description is based on 52 wells, from which 33 samples were collected for stable isotope analysis and 25 samples for organic and inorganic parameters. Hydraulic head and chemical measurements suggest that there is an hydraulic connection between the fish ponds above the aquifer and the phreatic unit, whereas the connection with the confined units is very limited. The phreatic unit is characterized by a low concentration of oxygen and high concentrations of ammonium and phosphate, while the confined units are characterized by higher oxygen and much lower ammonium and phosphate concentrations. Organic matter fluorescence was found to be a tool to distinguish the contribution of the pond waters, whereby a pond water signature (characterized by proteinaceous (tryptophan-like) and typical humic-matter fluorescence) was found in the phreatic aquifer. The phreatic unit is also isotopically enriched, similar to pond waters, with δ18O of -1‰ and δD of -4.6‰, indicating enhanced evaporation of the pond water before infiltration, whereas there is a depleted isotopic composition in the confined units (δ18O = -4.3‰, δD = -20.4‰), which are also OM-poor. The Phreeqc model was used for quantitative calculation of the effect of pond losses on the different units. The Dissolved Inorganic Nitrogen (DIN) in the upper unit increases downstream from the ponds toward the sea, probably due to organic matter degradation, suggesting contribution of DIN from shallow groundwater flow to the sea. 87Sr/86Sr and Mg/Ca in the brackish and saline groundwater of the lower confined units increase toward seawater value, suggesting that the salinization process in the region is connected to seawater intrusion and not to old brine from the underlying Cretaceous aquitard.
NASA Astrophysics Data System (ADS)
Selby, D.
2011-12-01
Geochronology is fundamental to understand the age, rates and durations of Earth processes. This concerned Arthur Holmes who, for much of his career, attempted to define a geological time scale. This is a topic still important to Earth Scientists today, specifically the chronostratigraphy of sedimentary rocks. Here I explore the Re-Os geochronology of marine and lacustrine sedimentary rocks and its application to yield absolute time constraints for stratigraphy. The past decade has seen the pioneering research of Re-Os organic-rich sedimentary rock geochronology blossom into a tool that can now to be used to accurately and precisely determine depositional ages of organic-rich rock units that have experienced up to low grade greenschist metamorphism. This direct dating of sedimentary rocks is critical where volcanic horizons are absent. As a result, this tool has been applied to timescale calibration, basin correlation, formation duration and the timing of key Earth events (e.g., Neoproterozoic glaciations). The application of Re-Os chronometer to the Devonian-Mississippian boundary contained within the Exshaw Formation, Canada, determined an age of 361.3 ± 2.4 Ma. This age is in accord with U-Pb dates of interbedded tuff horizons and also U-Pb zircon date for the type Devonian-Mississippian Hasselbachtal section, Germany. The agreement of the biostratigraphic and U-Pb constraints of the Exshaw Formation with the Re-Os date illustrated the potential of the Re-Os chronometer to yield age determinations for sedimentary packages, especially in the absence of interbedd tuff horizons and biozones. A Re-Os date for the proposed type section of the Oxfordian-Kimmeridgian boundary, Staffin Bay, Isle of Skye, U.K., gave an age of 154.1 ± 2.2 Ma. This Re-Os age presents a 45 % (1.8 Ma) improvement in precision for the basal Kimmeridgian. It also demonstrated that the duration of the Kimmeridgian is nominally 3.3 Ma and thus is 1.6 Ma shorter than previously indicated. In addition to these examples, several studies have presented precise dates for Phanerozoic marine organic-rich units that are in excellent agreement with biostratigraphic determinations. A recent Re-Os study of the Woodford Shale (that was deposited throughout the Frasnian and Famennian) has provided important time markers as well as suggesting that the sedimentation rate of the Formation was relatively constant for ~20 Ma. To date only marine organic-rich sedimentary rocks have been utilized for Re-Os geochronology. However, lacustrine sedimentary rocks provide an invaluable archive of continental geological processes responding to tectonic, climatic and magmatic influences. Correlating these rocks to global geological phenomena requires accurate geochronological frameworks. The organic-rich lacustrine sedimentary units of the Eocene Green River Formation are enriched is Re and Os comparable to that of marine units. The Re-Os dates for the Green River Formation from the Uinta basin are 48.5 ± 0.6 Ma and 49.2 ± 1.0 Ma. These dates are in excellent agreement with Ar/Ar and U/Pb dates of interbedded tuffs in the GRF, therefore demonstrating that lacustrine units can be used for Re-Os geochronology in addition to marine organic-rich units.
Energy Dissipation in Calico Hills Tuff due to Pore Collapse
NASA Astrophysics Data System (ADS)
Lockner, D. A.; Morrow, C. A.
2008-12-01
Laboratory tests indicate that the weakest portions of the Calico Hills tuff formation are at or near yield stress under in situ conditions and that the energy expended during incremental loading can be more than 90 percent irrecoverable. The Calico Hills tuff underlies the Yucca Mountain waste repository site at a depth of 400 to 500 m within the unsaturated zone. The formation is highly variable in the degree of both vitrification and zeolitization. Since 1980, a number of boreholes penetrated this formation to provide site characterization for the YM repository. In the past, standard strength measurements were conducted on core samples from the drillholes. However, a significant sampling bias occurred in that tests were preferentially conducted on highly vitrified, higher-strength samples. In fact, the most recent holes were drilled with a dry coring technique that would pulverize the weakest layers, leaving none of this material for testing. We have re-examined Calico Hills samples preserved at the YM Core Facility and selected the least vitrified examples (some cores exceeded 50 percent porosity) for mechanical testing. Three basic tests were performed: (i) hydrostatic crushing tests (to 350 MPa), (ii) standard triaxial deformation tests at constant effective confining pressure (to 70 MPa), and (iii) plane strain tests with initial conditions similar to in situ stresses. In all cases, constant pore pressure of 10 MPa was maintained using argon gas as a pore fluid and pore volume loss was monitored during deformation. The strongest samples typically failed along discrete fractures in agreement with standard Mohr-Coulomb failure. The weaker, high porosity samples, however, would fail by pure pore collapse or by a combined shear-induced compaction mechanism similar to failure mechanisms described for porous sandstones and carbonates. In the plane-strain experiments, energy dissipation due to pore collapse was determined for eventual input into dynamic wave calculations. These calculations will simulate ground accelerations at the YM repository due to propagation of high-amplitude compressional waves generated by scenario earthquakes. As an example, in one typical test on a sample with 43 percent starting porosity, an axial stress increase of 25 MPa resulted from 6 percent shortening and energy dissipation (due to grain crushing and pore collapse) of approximately 1.5x106 J/m3. Under proper conditions, this dissipation mechanism could represent a significant absorption of radiated seismic energy and the possible shielding of the repository from extreme ground shaking.
Cerro Xalapaxco: An Unusual Tuff Cone with Multiple Explosion Craters, in Central Mexico (Puebla)
NASA Technical Reports Server (NTRS)
Abrams, M. J.; Siebe, C.
1994-01-01
The Xalapaxco tuff cone is located on the northeast flank of La Malinche stratovolcano in central Mexico. An unusually large number (10) of explosion craters, concentrated on the central and on the uphill side of the cone, expose alternating beds of stratified surge deposits and massive fall deposits.
Green-tuff landslide areas are beneficial for rice nutrition in Japan.
Tazaki, Kazue
2006-12-01
Japanese Islands are covered with weathered volcanic rocks and soils. Terraced rice field are located in green-tuff areas which are very fertile but where landslides occur associated to strong earthquakes. The Xray diffraction and X-ray fluorescence analyses of the soils in landslide area identified predominant smectite and Mg, Al, Si, K, Ti, Mn and Fe are main components. The rice leaf showed that S, Cl, K and Ca play important roles for nutrients in the area. Drainpipe systems have set up in the green- tuff areas to reduce the risks of landslides. Reddish brown microbial mats inhabited bacteria and diatom in the drainpipe outlets. The microbial mats are rich in Fe and PO4(3-). The iron bacteria in the ground water have a high metabolic rate suggesting that the weathering materials were produced by not only physical and chemical influence but also by microorganism. Many microorganisms attach to mineral surfaces and show their high impact in the water mineral chemistry in the landslide area. Bacteria in the green-tuff over landslide area play important roles for sustainable agriculture including rice nutrition.
NASA Technical Reports Server (NTRS)
Izett, G. A.
1988-01-01
At 20 sites in the Raton Basin of Colorado and New Mexico, and at several other sites in Wyoming, Montana, and Canada, a pair of claystone units, an Ir abundance anomaly, and a concentration of shock-metamorphosed minerals mark the palynological K-T boundary. The K-T boundary claystone, which is composed of kaolinite and small amounts of illite/smectite mixed-layer clay, is similar in most respects to kaolinite tonstein layers in coal beds. At some, but not all, K-T boundary localities, the boundary claystone contains solid kaolinite and hollow and solid goyazite spherules, 0.05 to 1.2 mm in diameter. The upper unit, the K-T boundary impact layer, consists chiefly of kaolinite and various amounts of illite/smectite mixed-layer clay. The impact layer and boundary claystone are similar chemically, except that the former has slightly more Fe, K, Ba, Cr, Cu, Li, V, and Zn than the latter. The facts that the boundary claystone and impact layer contain anomalous amounts of Ir, comprise a stratigraphic couplet at Western North American sites, and form thin, discrete layers, similar to air-fall units (volcanic or impact), suggest that the claystone units are of impact origin. Significantly, the impact layer contains as much as 2 percent clastic mineral grains, about 30 percent of which contain multiple sets of shock lamellae. Only one such concentration of shocked minerals has been found near the K-T boundary. The type of K-T boundary shock-metamorphosed materials (quartzite and metaquartzite) in the impact layer and the lack of shock lamellae in quartz and feldspar of pumice lapilli and granitic xenoliths in air-fall pumice units of silicic tuffs, such as the Bishop Tuff, eliminate the possibility that the shock-metamorphosed minerals in the K-T impact layer are of volcanic origin. The global size distribution and abundance of shock-metamorphosed mineral grains suggest that the K-T impact occurred in North America.
NASA Astrophysics Data System (ADS)
Rooyakkers, S. M.; Stix, J.; Berlo, K.; Tuffen, H.
2017-12-01
Large, explosive basaltic or basalt-dominated eruptions linked with caldera collapse are uncommon and poorly understood, and collapse of basaltic calderas is more commonly driven by subsurface magma drainage and/or lava effusion. To better understand these rare events, we present field observations and interpretations of the Halarauður sequence, a complex series of pyroclastic deposits previously linked with formation of the Krafla caldera [1]. Basal units are locally dispersed and vary in both composition and mode of emplacement, reflecting tapping of discrete magma batches at widely-spaced vents. Very localised (t1/2 < tens of m) basaltic scoria and ash deposits at sites both adjacent to the ring fault and several km from the caldera are interpreted as proximal fallout from weak strombolian activity. Elsewhere, rhyolitic pumice and ash units with variable degrees of basaltic admixing, dm-scale spatter bombs and/or lithic concentrations are interpreted as small-volume PDC deposits. Abrupt intensification of the eruption is marked by an upward transition into two volumetrically dominant, regionally dispersed units. A remarkably heterogeneous, basaltic to hybrid intermediate spatter-rich welded tuff overlies the early-phase deposits, with a maximum thickness of 15 m. Welding intensity varies at the dm-scale both vertically and laterally, and is influenced by the local abundance of lithics. Lithic-rich horizons reflect periods of conduit instability, likely coincident with caldera collapse. This unit has previously been interpreted as a welded airfall [1], but features more consistent with lateral emplacement, including lithic concentration zones, dense welding > 7 km from probable vent sites, and rapid local thickness changes influenced by paleotopography suggest emplacement as a spatter-rich PDC. The unit grades up into a basaltic lava-like tuff with similar dispersal, interpreted as a lava-like ignimbrite deposited during the climactic phase. The Halarauður eruption is unusual for a basalt-dominated event in its complexity, explosivity, and the generation of welded ignimbrites. This event represents an endmember style of basaltic volcanism, and a worst-case scenario for eruptions at Icelandic calderas. [1] Calderone GM, Grunvold K, Oskarsson N (1990). J Volcanol Geotherm Res 44:303-314
Potential effects of regional pumpage on groundwater age distribution
Zinn, Brendan A.; Konikow, Leonard F.
2007-01-01
Groundwater ages estimated from environmental tracers can help calibrate groundwater flow models. Groundwater age represents a mixture of traveltimes, with the distribution of ages determined by the detailed structure of the flow field, which can be prone to significant transient variability. Effects of pumping on age distribution were assessed using direct age simulation in a hypothetical layered aquifer system. A steady state predevelopment age distribution was computed first. A well field was then introduced, and pumpage caused leakage into the confined aquifer of older water from an overlying confining unit. Large changes in simulated groundwater ages occurred in both the aquifer and the confining unit at high pumping rates, and the effects propagated a substantial distance downgradient from the wells. The range and variance of ages contributing to the well increased substantially during pumping. The results suggest that the groundwater age distribution in developed aquifers may be affected by transient leakage from low‐permeability material, such as confining units, under certain hydrogeologic conditions.
Okubo, Chris H.
2012-01-01
Volcanic ash is thought to comprise a large fraction of the Martian equatorial layered deposits and much new insight into the process of faulting and related fluid flow in these deposits can be gained through the study of analogous terrestrial tuffs. This study identifies a set of fault-related processes that are pertinent to understanding the evolution of fault systems in fine-grained, poorly indurated volcanic ash by investigating exposures of faults in the Miocene-aged Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah. The porosity and granularity of the host rock are found to control the style of localized strain that occurs prior to and contemporaneous with faulting. Deformation bands occur in tuff that was porous and granular at the time of deformation, while fractures formed where the tuff lost its porous and granular nature due to silicic alteration. Non-localized deformation of the host rock is also prominent and occurs through compaction of void space, including crushing of pumice clasts. Significant off-fault damage of the host rock, resembling fault pulverization, is recognized adjacent to one analog fault and may reflect the strain rate dependence of the resulting fault zone architecture. These findings provide important new guidelines for future structural analyses and numerical modeling of faulting and subsurface fluid flow through volcanic ash deposits on Mars.
NASA Astrophysics Data System (ADS)
Heap, Michael J.; Farquharson, Jamie I.; Kushnir, Alexandra R. L.; Lavallée, Yan; Baud, Patrick; Gilg, H. Albert; Reuschlé, Thierry
2018-06-01
Neapolitan Yellow Tuff (NYT) has been used in construction in Naples (Italy) since the Greeks founded the city—then called Neapolis—in the sixth century BCE. We investigate here whether this popular building stone is weaker when saturated with water, an issue important for assessments of weathering damage and monument preservation. To this end, we performed 28 uniaxial compressive strength measurements on dry and water-saturated samples cored from a block of the lithified Upper Member of the NYT. Our experiments show that the strength of the zeolite-rich NYT is systematically reduced when saturated with water (the ratio of wet to dry strength is 0.63). Complementary experiments show that two other common Neapolitan building stones—Piperno Tuff and the grey Campanian Ignimbrite (both facies of the Campanian Ignimbrite deposit devoid of zeolites)—do not weaken when wet. From these data, and previously published data for tuffs around the globe, we conclude that the water-weakening in NYT is a consequence of the presence of abundant zeolites (the block tested herein contains 46 wt.% of zeolites). These data may help explain weathering damage in NYT building stones (due to rainfall, rising damp, and proximity to the sea or water table) and the observed link between rainfall and landslides, rock falls, and sinkhole formation in Naples, and the weathering of other buildings built from zeolite-rich tuffs worldwide.
NASA Astrophysics Data System (ADS)
Sosa-Ceballos, G.
2015-12-01
La Primavera caldera, Jalisco Mexico, is a Pleistocenic volcanic structure formed by dome complexes and multiple pyroclastic flows and fall deposits. It is located at the intersection of the Chapala, Colima, and Tepic grabens in western Mexico. The first volcanic activity associated to La Primavera started ~0.1 Ma with the emission of pre-caldera lavas. The caldera collapse occurred 95 ka and is associated to the eruption of ~20 km3of pumice flows known as the Tala tuff (Mahood 1980). The border of the caldera was replaced by a series of domes dated in 75-30 ky, which partially filled the inner depression of the caldera with pyroclastic flows and falls. For more than a decade the Federal Commission of Electricity in Mexico (CFE) has prospected and evaluated the geothermal potential of the Cerritos Colorados project at La Primavera caldera. In order to better understand the plumbing system that tapped the Tala tuff and to investigate its relation with the potential geothermal field at La Primavera we performed a series of hydrothermal experiments and studied melt inclusions hosted in quartz phenocrysts by Fourier Infra red stectroscopy (FTIR). Although some post caldera products at La Primavera contain fayalite and quartz (suggesting QFM conditions) the Tala tuff does not contain fayalite and we ran experiments under NNO conditions. The absence of titanomagnetite does not allowed us to calculate pre-eruptive temperature. However, the stability of quartz and plagioclase, which are natural phases, suggest that temperature should be less than 750 °C at a pressure of 200 MPa. The analyses of H2O and CO2 dissolved in melt inclusions yielded concentrations of 2-5 wt.% and 50-100 ppm respectively. This data confirm that the pre-eruptive pressure of the Tala tuff is ~200 MPa and in addition to major elements compositions suggest that the Tala tuff is either, compositionally zoned or mixed with other magma just prior to eruption.
NASA Astrophysics Data System (ADS)
Mueller, Wulf; Chown, E. H.; Potvin, Robin
1994-05-01
Volcaniclastic deposits of the 2.3-km-thick Archean Lac des Vents volcanic complex are an integral part of major submarine volcanic construction. The volcanic edifice, which formed on a subaqueous basalt plain, is comparable to modern seamounts resting on the ocean floor. The initial 770 m of the mafic-felsic edifice, subject of this study, is composed of massive, brecciated and pillowed basalts, massive to brecciated felsic lava flows and abundant felsic fragmental rocks of hydroclastic origin. Four distinct volcaniclastic lithofacies constitute the latter: (1) the pumice lapilli-tuff lithofacies; (2) the lapilli-tuff breccia lithofacies characterized by two sublithofacies; (3) the turbidite tuff and tuff-breccia lithofacies; and (4) the volcanic sandstone and breccia lithofacies. These four volcaniclastic lithofacies are considered to be the result of explosive and non-explosive hydrovolcanic fragmentation processes operating at depths below storm wave base (> 200 m). Primary deposition or limited remobilization of unconsolidated hydroclastic debris is shown by the preservation of delicate clasts and volcanic textures, and heat retention structures. The principal transport agents are high-concentration sediment gravity flows occurring under laminar and turbulent flow conditions. High- and low-density turbiditic tuffs and fine-grained tuff fallout deposits, are related to either the dissipating stages of volcanic eruptions or slumping of syneruptive volcanic debris on the flanks of a subaqueous volcanic edifice. Ubiquitous interstratification of volcaniclastic turbidites, shale, and pillowed basalt flows with the felsic lava flows and fragmental debris favours subaqueous deposition. These features combined with the absence of wave-induced sedimentary structures, imply deposition in water depths in excess of 200 m. Viscous feldspar-phyric massive and brecciated felsic flows, and associated volcaniclastics cross cut by felsic dykes, suggest vent proximity. The abundance of breccia-size hydroclastic debris is consistent with this interpretation. Collectively, these criteria argue for subaqueous fragmentation and deposition of volcaniclastics of inferred hydroclastic origin close to the central vent area at depths below storm wave base.
Eruption and deposition of the Fisher Tuff (Alaska)--Evidence for the evolution of pyroclastic flows
Burgisser, Alain; Gardner, J.E.; Stelling, P.
2007-01-01
Recognition that the Fisher Tuff (Unimak Island, Alaska) was deposited on the leeside of an ∼500–700‐m‐high mountain range (Tugamak Range) more than 10 km away from its source played a major role in defining pyroclastic flows as momentum‐driven currents. We reexamined the Fisher Tuff to evaluate whether deposition from expanded turbulent clouds can better explain its depositional features. We studied the tuff at 89 sites and sieved bulk samples from 27 of those sites. We find that the tuff consists of a complex sequence of deposits that record the evolution of the eruption from a buoyant plume (22 km) that deposited ∼0.2 km3 of dacite magma as a pyroclastic fall layer to erupting ∼10–100 km3 of andesitic magma as Scoria‐rich pyroclastic falls and flows that were mainly deposited to the north and northwest of the caldera, including those in valleys within the Tugamak Range. The distribution of the flow deposits and their welding, internal stratification, and the occurrence of lithic breccia all suggest that the pyroclastic flows were fed from a fountaining column that vented from an inclined conduit, the first time such a conduit has been recognized during a large‐volume caldera eruption. Pyroclastic flow deposits before and after the mountain range and thin veneer deposits high in the range are best explained by a flow that was stratified into a dense undercurrent and an overriding dilute turbulent cloud, from which deposition before the range was mainly from the undercurrent. When the flow ran into the mountain range, however, the undercurrent was blocked, but the turbulent cloud continued on. As the flow continued north, it restratified, forming another undercurrent. The Fisher Tuff thus records the passing of a flow that was significantly higher (800–1100 m thick) than the mountain range and thus did not require excessive momentum.
Magnetic properties and emplacement of the Bishop tuff, California
Palmer, H.C.; MacDonald, W.D.; Gromme, C.S.; Ellwood, B.B.
1996-01-01
Anisotropy of magnetic susceptibility (AMS) and characteristic remanence were measured for 45 sites in the 0.76 Ma Bishop tuff, eastern California. Thirty-three sites were sampled in three stratigraphic sections, two in Owens gorge south of Long Valley caldera, and the third in the Adobe lobe north of Long Valley. The remaining 12 sites are widely distributed, but of limited stratigraphic extent. Weakly indurated, highly porous to dense, welded ash-flow tuffs were sampled. Saturation magnetization vs temperature experiments indicate two principal iron oxide phases: low Ti magnetites with 525-570 ??C Curie temperatures, and maghemite with 610??-640??C Curie temperatures. AF demagnetization spectra of isothermal remanent magnetizations are indicative of magnetite/maghemite predominantly in the multidomain to pseudo-single domain size ranges. Remeasurement of AMS after application of saturating direct fields indicates that randomly oriented single-domain grains are also present. The degree of anisotropy is only a few percent, typical of tuffs. The AMS ellipsoids are oblate with Kmin axes normal to subhorizontal foliation and Kmax axes regionally aligned with published source vents. For 12 of 16 locality means, Kmax axes plunge sourceward, confirming previous observations regarding flow sense. Topographic control on flow emplacement is indicated by the distribution of tuff deposits and by flow directions inferred from Kmax axes. Deposition east of the Benton range occurred by flow around the south end of the range and through two gaps (Benton notch and Chidago gap). Flow down Mammoth pass of the Sierra Nevada is also evident. At least some of the Adobe lobe in the northeast flowed around the west end of Glass mountain. Eastward flow directions in the upper Owens gorge and southeast directions in the lower Owens gorge are parallel to the present canyon, suggesting that the present drainage has been established along the pre-Bishop paleodrainage. Characteristic remanence directions from 45 sites (267 samples) yield an overall mean of D = 348??, I = 53?? for the Bishop tuff. A correlation is found in two of the three profiles between density and remanence inclination. A mean remanence direction based on 13 localities together with data from uncompacted xenoliths and data from the ash-fall tuff at Lake Tecopa is: D = 353??, I = 54??, k = 172, ??95 = 2.9??, N = 15.
NASA Astrophysics Data System (ADS)
Mills, James G.; Saltoun, Benjamin W.; Vogel, Thomas A.
1997-09-01
The common occurrence of compositionally and mineralogically zoned ash flow sheets, such as those of the Timber Mountain Group, provides evidence that the source magma bodies were chemically and thermally zoned. The Rainier Mesa and Ammonia Tanks tuffs of the Timber Mountain Group are both large volume (1200 and 900 km 3, respectively) chemically zoned (57-78 wt.% SiO 2) ash flow sheets. Evidence of distinct magma batches in the Timber Mountain system are based on: (1) major- and trace-element variations of whole pumice fragments; (2) major-element variations in phenocrysts; (3) major-element variations in glass matrix; and (4) emplacement temperatures calculated from Fe-Ti oxides and feldspars. There are three distinct groups of pumice fragments in the Rainier Mesa Tuff: a low-silica group and two high-silica groups (a low-Th and a high-Th group). These groups cannot be related by crystal fractionation. The low-silica portion of the Rainier Mesa Tuff is distinct from the low-silica portion of the overlying Ammonia Tanks Tuff, even though the age difference is less than 200,000 years. Three distinct groups occur in the Ammonia Tanks Tuff: a low-silica, intermediate-silica and a high-silica group. Part of the high-silica group may be due to mixing of the two high-silica Rainier Mesa groups. The intermediate-silica group may be due to mixing of the low- and high-silica Ammonia Tanks groups. Three distinct emplacement temperatures occur in the Rainier Mesa Tuff (869, 804, 723 °C) that correspond to the low-silica, high-Th and low-Th magma batches, respectively. These temperature differences could not have been maintained for any length of time in the magma chamber (cf. Turner, J.S., Campbell, I.H., 1986. Convection and mixing in magma chambers. Earth-Sci. Rev. 23, 255-352; Martin, D., Griffiths, R.W., Campbell, I.H., 1987. Compositional and thermal convection in magma chambers. Contrib. Mineral. Petrol. 96, 465-475) and therefore eruption must have occurred soon after emplacement of the magma batches into the chamber. Emplacement temperatures of the pumice fragments from the Ammonia Tanks Tuff show a continuous gradient of temperatures with composition. This continuous temperature gradient is consistent with the model of storage of magma batches in the Ammonia Tanks group that have undergone both thermal and chemical diffusion.
Magnetic properties and emplacement of the Bishop tuff, California
NASA Astrophysics Data System (ADS)
Palmer, H. C.; MacDonald, W. D.; Gromme, C. S.; Ellwood, B. B.
1996-09-01
Anisotropy of magnetic susceptibility (AMS) and characteristic remanence were measured for 45 sites in the 0.76 Ma Bishop tuff, eastern California. Thirty-three sites were sampled in three stratigraphic sections, two in Owens gorge south of Long Valley caldera, and the third in the Adobe lobe north of Long Valley. The remaining 12 sites are widely distributed, but of limited stratigraphic extent. Weakly indurated, highly porous to dense, welded ash-flow tuffs were sampled. Saturation magnetization vs temperature experiments indicate two principal iron oxide phases: low Ti magnetites with 525 570 °C Curie temperatures, and maghemite with 610° 640 °C Curie temperatures. AF demagnetization spectra of isothermal remanent magnetizations are indicative of magnetite/maghemite predominantly in the multidomain to pseudo-single domain size ranges. Remeasurement of AMS after application of saturating direct fields indicates that randomly oriented single-domain grains are also present. The degree of anisotropy is only a few percent, typical of tuffs. The AMS ellipsoids are oblate with Kmin axes normal to subhorizontal foliation and Kmax axes regionally aligned with published source vents. For 12 of 16 locality means, Kmax axes plunge sourceward, confirming previous observations regarding flow sense. Topographic control on flow emplacement is indicated by the distribution of tuff deposits and by flow directions inferred from Kmax axes. Deposition east of the Benton range occurred by flow around the south end of the range and through two gaps (Benton notch and Chidago gap). Flow down Mammoth pass of the Sierra Nevada is also evident. At least some of the Adobe lobe in the northeast flowed around the west end of Glass mountain. Eastward flow directions in the upper Owens gorge and southeast directions in the lower Owens gorge are parallel to the present canyon, suggesting that the present drainage has been established along the pre-Bishop paleodrainage. Characteristic remanence directions from 45 sites (267 samples) yield an overall mean of D=348°, I=53° for the Bishop tuff. A correlation is found in two of the three profiles between density and remanence inclination. A mean remanence direction based on 13 localities together with data from uncompacted xenoliths and data from the ash-fall tuff at Lake Tecopa is: D=353°, I=54°, k=172, α95=2.9°, N=15.
Leslie, Shannon R.; Miller, David M.; Wooden, Joseph L.; Vazquez, Jorge A.
2010-01-01
New detailed geologic mapping and geochronology of the Barstow Formation at Harvard Hill, 30 km east of Barstow, CA, help to constrain Miocene paleogeography and tectonics of the central Mojave Desert. A northern strand of the Quaternary ENE-striking, sinistral Manix fault divides the Barstow Formation at Harvard Hill into two distinct lithologic assemblages. Strata north of the fault consist of: a green rhyolitic tuff, informally named the Shamrock tuff; lacustrine sandstone; partially silicified thin-bedded to massive limestone; and alluvial sandstone to pebble conglomerate. Strata south of the fault consist of: lacustrine siltstone and sandstone; a rhyolitic tuff dated at 19.1 Ma (U-Pb); rock-avalanche breccia deposits; partially silicified well-bedded to massive limestone; and alluvial sandstone and conglomerate. Our U-Pb zircon dating of the Shamrock tuff by SHRIMP-RG yields a peak probability age of 18.7 ± 0.1 Ma. Distinctive outcrop characteristics, mineralogy, remanent magnetization, and zircon geochemistry (Th/U) suggest that the Shamrock tuff represents a lacustrine facies of the regionally extensive Peach Spring Tuff (PST). Here we compare zircon age and geochemical analyses from the Shamrock tuff with those of the PST at Stoddard Wash and provide new insight into the age of zircon crystallization in the PST rhyolite. Results of our field studies show that Miocene strata at Harvard Hill mostly accumulated in a lacustrine environment, although depositional environments varied from a relatively deep lake to a very shallow lake or even onshore setting. Rock-avalanche breccias and alluvial deposits near the base of the exposed section indicate proximity to a steep basin margin and detrital studies suggest a southern source for coarse-grained deposits; therefore, we may infer a southern basin-margin setting at Harvard Hill during the early Miocene. Our geochronology demonstrates that deposition of the Barstow Formation at Harvard Hill extended from before ~19.1 Ma until well after ~18.7 Ma, similar to timing of Barstow Formation lake deposition in the Calico Mountains but at least 3 million years older than comparable lacustrine facies in the Mud Hills type section. These observations are consistent with either of two paleogeographic models: westward transgression of lacustrine environments within a single large basin, or sequential development of geographically distinct eastern and western sub-basins.
Inter-aquifer Dynamics in and Near a Confining Unit Window in Shelby County, Tennessee, USA
NASA Astrophysics Data System (ADS)
Gentry, R. W.; McKay, L. D.; Larsen, D.; Carmichael, J. K.; Solomon, D. K.; Thonnard, N.; Anderson, J. L.
2003-12-01
An interdisplinary research team is investigating the interaction between the surficial alluvial aquifer and the deeper confined Memphis aquifer in the Memphis area, Shelby County, Tennessee. Previous research has identified a window in the clay-rich, upper Claiborne confining unit that separates the two aquifers near a closed municipal landfill in east-central Shelby County, an area undergoing rapid urbanization. For this investigation, a combination of environmental tracers (tritium/helium-3), major and trace ion geochemistry, hydraulic response testing, measurement of hydraulic gradients, and groundwater flow modeling is being used to quantify recharge of young water from the alluvial aquifer through the window to the Memphis aquifer. The research will provide results to better understand how windows were formed and how they influence recharge and water quality in otherwise confined parts of the Memphis aquifer downdip of its outcrop/subcrop area. Examination of continuous core samples and geophysical logs from wells installed for the study using Rotasonic drilling methods confirmed the existence of a sand-dominated window that may be as much as 1 km in diameter in the upper Claiborne confining unit. The upper Claiborne confining unit is 15 to 20 m thick in most of the study area and is overlain by a 10 to 12 m thick alluvial aquifer. The window is interpreted to have formed as a result of depositional and incisional processes in an Eocene-age deltaic system. Hydraulic gradients of several feet exist vertically between the alluvial and Memphis aquifers within the window, indicating downward flow. Groundwater age-dates from tritium/helium-3 analyses indicate that groundwater in the window at the depth of the base of the surrounding confining unit (approximately 30 m) has an apparent age of 19.8 years, which confirms the occurrence of downward flow. Young groundwater age dates (less than 32 years) also were obtained from wells in the Memphis aquifer at confined sites downgradient of the window, suggesting that a plume of young water is spreading outwards from the window and mixing with the older Memphis aquifer water. Preliminary inverse modeling of the site using a genetic algorithm coupled with a central finite difference flow model indicates a probable steady-state downward flux of about 12,000 m3/d through the window. Collection and analysis of additional groundwater samples are planned to examine geochemical conditions in the confining unit and in the Memphis aquifer upgradient of the window. These analyses will aid in developing a final conceptual model and in subsequent numerical modeling of mixing of the young recharge water with the older Memphis aquifer water.
NASA Astrophysics Data System (ADS)
Brand, B. D.; Clarke, A.
2006-12-01
The Table Rock Complex (TRC; Pliocene-Pleistocene), first documented and described by (Heiken, 1971, J. Geophy Res, 76, 5615-5626) is a large and well exposed phreatomagmatic complex in the Fort Rock- Christmas Lake Valley Basin, south-central Oregon. It is ~7 by 5 km and contains two large phreatomagmatic edifices; a large southern tuff cone with a capping lava lake (TRC1), and a large broad tuff ring in the northeast (TRC2). At least five additional, smaller tuff rings were identified along the flanks of the complex, yielding a complicated network of tuff ring-tuff cone deposits. Based on the low accidental component and evidence for a lake during this time, the cause of the explosive eruptions is interpreted to be due to interaction of magma with shallow standing water. The TRC1 consists of fining-up sequences, large erosive channel scour and fill deposits, massive tuff breccias, and abundant soft sediment deformation, which suggests deposition within a standing body of water. Subaerial TRC1 deposits are found south of the edifice, but are not exposed in the north. A significant repose period occurred between the TRC1 and TRC2 eruptions, evidenced by a wave-cut terrace and 25-50 cm of diatomitic lake sediments. TRC2 produced multiple, extremely erosive pyroclastic surges, which cut and scour the TRC1 deposits. Surge deposits consist of 50-200 m wavelength cross-beds, in some areas form large U-shaped features (10-100 m deep), and can be seen plastering up and around large obstacles from previous vents. The surge-deposits blanket all other sequences and create a hummocky topography around the edifice. This suggests that TRC2 was the last eruption in the sequence. The weight of the TRC2 sediments caused the water-saturated TRC1 sediments to plastically deform into large ball and pillow features and overturned slump blocks on the order of 20-50 m thick. The smaller flank tuff-ring eruptions likely occurred sometime between the TRC1 and TRC2 events. The inner-craters of these vents are well exposed and show features such as near-vertical plastered beds, large-scale convolute bedding, and in some places deformed and folded slump blocks up to 20-120 m thick. The features observed in both TRC deposits and in the smaller flank tuff rings (e.g., large-scale soft sediment deformation, plastered-vertical bedding, accretionary/armored lapilli) are consistent with a high water-magma ratio. The highly erosive surge beds of TRC2 represent the most energetic pulse of the eruptions.
Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada
Day, Warren C.; Dickerson, Robert P.; Potter, Christopher J.; Sweetkind, Donald S.; San Juan, Carma A.; Drake, Ronald M.; Fridrich, Christopher J.
1998-01-01
Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections of the southwestern Great Basin.Excluding Quaternary surficial deposits, the map area is underlain by Miocene volcanic rocks, principally ash-flow tuffs with lesser amounts of lava flows. These volcanic units include the Crater Flat Group, the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group, as well as minor basaltic dikes. The tuffs and lava flows are predominantly rhyolite with lesser amounts of latite and range in age from 13.4 to 11.6 Ma. The 10-Ma basaltic dikes intruded along a few fault traces in the north-central part of the study area. Fault types in the area can be classified as block bounding, relay structures, strike slip, and intrablock. The block-bounding faults separate the 1- to 4-km-wide, east-dipping structural blocks and exhibit hundreds of meters of displacement. The relay structures are northwest-striking normal fault zones that kinematically link the block-bounding faults. The strike-slip faults are steep, northwest-striking dextral faults located in the northern part of Yucca Mountain. The intrablock faults are modest faults of limited offset (tens of meters) and trace length (less than 7 km) that accommodated intrablock deformation.The concept of structural domains provides a useful tool in delineating and describing variations in structural style. Domains are defined across the study area on the basis of the relative amount of internal faulting, style of deformation, and stratal dips. In general, there is a systematic north to south increase in extensional deformation as recorded in the amount of offset along the block-bounding faults as well as an increase in the intrablock faulting.The rocks in the map area had a protracted history of Tertiary extension. Rocks of the Paintbrush Group cover much of the area and obscure evidence for older tectonism. An earlier history of Tertiary extension can be inferred, however, because the Timber Mountain-Oasis Valley caldera complex lies within and cuts an older north-trending rift (the Kawich-Greenwater rift}. Evidence for deformation during eruption of the Paintbrush Group is locally present as growth structures. Post-Paintbrush Group, pre-Timber Mountain Group extension occurred along the block-bounding faults. The basal contact of the 11.6-Ma Rainier Mesa Tuff of the Timber Mountain Group provides a key time horizon throughout the area. Other workers have shown that west of the study area in northern Crater Flat the basal angular unconformity is as much as 20° between the Rainier Mesa and underlying Paintbrush Group rocks. In the westernmost part of the study area the unconformity is smaller (less than 10°), whereas in the central and eastern parts of the map area the contact is essentially conformable. In the central part of the map the Rainier Mesa Tuff laps over fault splays within the Solitario Canyon fault zone. However, displacement did occur on the block-bounding faults after deposition of the Rainier Mesa Tuff inasmuch as it is locally caught up in the hanging-wall deformation of the block-bounding faults. Therefore, the regional Tertiary to Recent extension was protracted, occurring prior to and after the eruption of the tuffs exposed at Yucca Mountain.
Stanistreet, Ian G; McHenry, Lindsay J; Stollhofen, Harald; de la Torre, Ignacio
2018-04-20
Archaeological excavations at EF-HR and HWK EE allow reassessment of Bed II stratigraphy within the Junction Area and eastern Olduvai Gorge. Application of Sequence Stratigraphic methods provides a time-stratigraphic framework enabling correlation of sedimentary units across facies boundaries, applicable even in those areas where conventional timelines, such as tephrostratigraphic markers, are absent, eroded, or reworked. Sequence Stratigraphically, Bed II subdivides into five major Sequences 1 to 5, all floored by major disconformities that incise deeply into the underlying succession, proving that simple "layer cake" stratigraphy is inappropriate. Previous establishment of the Lemuta Member has invalidated the use of Tuff IIA as the boundary between Lower and Middle Bed II, now redefined at the disconformity between Sequences 2 and 3, a lithostratigraphic contact underlying the succession containing the Lower, Middle, and Upper Augitic Sandstones. HWK EE site records Oldowan technology in the Lower Augitic Sandstone at the base of Sequence 3, within Middle Bed II. We suggest placement of recently reported Acheulean levels at FLK W within the Middle Augitic Sandstone, thus emphasizing that handaxes are yet to be found in earlier stratigraphic units of the Olduvai sequence. This would place a boundary between the Oldowan and Acheulean technologies at Olduvai in the Tuff IIB zone or earliest Middle Augitic Sandstone. A major disconformity between Sequences 3 and 4 at and near EF-HR cuts through the level of Tuff IIC, placing the main Acheulean EF-HR assemblage at the base of Sequence 4, within Upper rather than Middle Bed II. Sequence stratigraphic methods also yield a more highly resolved Bed II stratigraphic framework. Backwall and sidewall surveying of archaeological trenches at EF-HR and HWK EE permits definition of "Lake-parasequences" nested within the major Sequences that record downcutting of disconformities associated with lake regression, then sedimentation associated with lake transgression, capped finally by another erosional disconformity or hiatal paraconformity caused by the next lake withdrawal. On a relative time-scale rather than a vertical metre scale, the resulting Wheeler diagram framework provides a basis for recognizing time-equivalent depositional episodes and the position of time gaps at various scales. Relative timing of archaeological assemblage levels can then be differentiated at a millennial scale within this framework. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ichang'l, D. W.; MacLean, W. H.
The Migori segment is an 80 by 20 km portion of the Nyanza greenstone belt which forms the northern part of the Archean Tanzanian Craton in western Kenya, northern Tanzania and southeastern Uganda. It consists of two volcanic centres, each with central, proximal and distal volcanic facies, comprising the Migori Group, the Macalder and Lolgorien Subgroups, and eleven volcano-sedimentary formations. The centres are separated by a basin of tuffs and greywacke turbidites. The volcanics are bimodal mafic basalt and dolerite ( Zr/Y = 3.8 - 6.5, La N/Yb N = 1.0 - 2.4) , and felsic calc-alkaline dacite-rhyolite ( Zr/Y = 10 - 21, La N/Yb N = 19 - 42 ) and high-K dacite ( Zr/Y = 9 - 16, La N/Yb N = 21 - 22 ). Felsic units form approximately three-fourths of the volcanic stratigraphy. Basalts, calc-alkaline dacites and rhyolites were deposited in a submarine environment, but the voluminous high-K dacites were erupted subaerially. The turbidites contain units of iron-formations. Granitic intrusions are chemically continuous with the high-K dacites. The felsic volcanics are anologous to those found at modern volcanic arc subduction settings involving continental crust. The Macalder ZnCuAuAg volcanogenic massive sulphide deposits is in central facies basalts-greywacke-rhyolite. Gold mineralisation occurs in proximal facies tuffs and iron formation, and in oblique and semi-conformable quartz veins. Greenstones in the Nyanza belt are dominated by calc-alkaline felsic volcanics in constrast to the komatiite-tholeiitic basalt volcanism in the Kaapvaal Craton of South Africa, and a mixture of the two types in the Zimbabwe Craton.
Kleeschulte, Michael J.; Seeger, Cheryl M.
2003-01-01
The confining ability of the St. Francois confining unit (Derby-Doerun Dolomite and Davis Formation) was evaluated in ten townships (T. 31?35 N. and R. 01?02 W.) along the Viburnum Trend of southeastern Missouri. Vertical hydraulic conductivity data were compared to similar data collected during two previous studies 20 miles south of the Viburnum Trend, in two lead-zinc exploration areas that may be a southern extension of the Viburnum Trend. The surficial Ozark aquifer is the primary source of water for domestic and public-water supplies and major springs in southern Missouri. The St. Francois confining unit lies beneath the Ozark aquifer and impedes the movement of water between the Ozark aquifer and the underlying St. Francois aquifer (composed of the Bonneterre Formation and Lamotte Sandstone). The Bonneterre Formation is the primary host formation for lead-zinc ore deposits of the Viburnum Trend and potential host formation in the exploration areas. For most of the more than 40 years the mines have been in operation along the Viburnum Trend, about 27 million gallons per day were being pumped from the St. Francois aquifer for mine dewatering. Previous studies conducted along the Viburnum Trend have concluded that no large cones of depression have developed in the potentiometric surface of the Ozark aquifer as a result of mining activity. Because of similar geology, stratigraphy, and depositional environment between the Viburnum Trend and the exploration areas, the Viburnum Trend may be used as a pertinent, full-scale model to study and assess how mining may affect the exploration areas. Along the Viburnum Trend, the St. Francois confining unit is a complex series of dolostones, limestones, and shales that generally is 230 to 280 feet thick with a net shale thickness ranging from less than 25 to greater than 100 feet with the thickness increasing toward the west. Vertical hydraulic conductivity values determined from laboratory permeability tests were used to represent the St. Francois confining unit along the Viburnum Trend. The Derby-Doerun Dolomite and Davis Formation are statistically similar, but the Davis Formation would be the more hydraulically restrictive medium. The shale and carbonate values were statistically different. The median vertical hydraulic conductivity value for the shale samples was 62 times less than the carbonate samples. Consequently, the net shale thickness of the confining unit along the Viburnum Trend significantly affects the effective vertical hydraulic conductivity. As the percent of shale increases in a given horizon, the vertical hydraulic conductivity decreases. The range of effective vertical hydraulic conductivity for the confining unit in the Viburnum Trend was estimated to be a minimum of 2 x 10-13 ft/s (foot per second) and a maximum of 3 x 10-12 ft/s. These vertical hydraulic conductivity values are considered small and verify conclusions of previous studies that the confining unit effectively impedes the flow of ground water between the Ozark aquifer and the St. Francois aquifer along the Viburnum Trend. Previously-collected vertical hydraulic conductivity data for the two exploration areas from two earlier studies were combined with the data collected along the Viburnum Trend. The nonparametric Kruskal-Wallis statistical test shows the vertical hydraulic conductivity of the St. Francois confining unit along the Viburnum Trend, and west and east exploration areas are statistically different. The vertical hydraulic conductivity values generally are the largest in the Viburnum Trend and are smallest in the west exploration area. The statistical differences in these values do not appear to be attributed strictly to either the Derby-Doerun Dolomite or Davis Formation, but instead they are caused by the differences in the carbonate vertical hydraulic conductivity values at the three locations. The calculated effective vertical hydraulic conductivity range for the St. Franc
Mora, Maximilian; Mahnert, Alexander; Koskinen, Kaisa; Pausan, Manuela R.; Oberauner-Wappis, Lisa; Krause, Robert; Perras, Alexandra K.; Gorkiewicz, Gregor; Berg, Gabriele; Moissl-Eichinger, Christine
2016-01-01
Indoor environments, where people spend most of their time, are characterized by a specific microbial community, the indoor microbiome. Most indoor environments are connected to the natural environment by high ventilation, but some habitats are more confined: intensive care units, operating rooms, cleanrooms and the international space station (ISS) are extraordinary living and working areas for humans, with a limited exchange with the environment. The purposes for confinement are different: a patient has to be protected from infections (intensive care unit, operating room), product quality has to be assured (cleanrooms), or confinement is necessary due to extreme, health-threatening outer conditions, as on the ISS. The ISS represents the most secluded man-made habitat, constantly inhabited by humans since November 2000 – and, inevitably, also by microorganisms. All of these man-made confined habitats need to be microbiologically monitored and controlled, by e.g., microbial cleaning and disinfection. However, these measures apply constant selective pressures, which support microbes with resistance capacities against antibiotics or chemical and physical stresses and thus facilitate the rise of survival specialists and multi-resistant strains. In this article, we summarize the available data on the microbiome of aforementioned confined habitats. By comparing the different operating, maintenance and monitoring procedures as well as microbial communities therein, we emphasize the importance to properly understand the effects of confinement on the microbial diversity, the possible risks represented by some of these microorganisms and by the evolution of (antibiotic) resistances in such environments – and the need to reassess the current hygiene standards. PMID:27790191
Mora, Maximilian; Mahnert, Alexander; Koskinen, Kaisa; Pausan, Manuela R; Oberauner-Wappis, Lisa; Krause, Robert; Perras, Alexandra K; Gorkiewicz, Gregor; Berg, Gabriele; Moissl-Eichinger, Christine
2016-01-01
Indoor environments, where people spend most of their time, are characterized by a specific microbial community, the indoor microbiome. Most indoor environments are connected to the natural environment by high ventilation, but some habitats are more confined: intensive care units, operating rooms, cleanrooms and the international space station (ISS) are extraordinary living and working areas for humans, with a limited exchange with the environment. The purposes for confinement are different: a patient has to be protected from infections (intensive care unit, operating room), product quality has to be assured (cleanrooms), or confinement is necessary due to extreme, health-threatening outer conditions, as on the ISS. The ISS represents the most secluded man-made habitat, constantly inhabited by humans since November 2000 - and, inevitably, also by microorganisms. All of these man-made confined habitats need to be microbiologically monitored and controlled, by e.g., microbial cleaning and disinfection. However, these measures apply constant selective pressures, which support microbes with resistance capacities against antibiotics or chemical and physical stresses and thus facilitate the rise of survival specialists and multi-resistant strains. In this article, we summarize the available data on the microbiome of aforementioned confined habitats. By comparing the different operating, maintenance and monitoring procedures as well as microbial communities therein, we emphasize the importance to properly understand the effects of confinement on the microbial diversity, the possible risks represented by some of these microorganisms and by the evolution of (antibiotic) resistances in such environments - and the need to reassess the current hygiene standards.
Miller, James A.
1986-01-01
The Floridan aquifer system of the Southeastern United States is comprised of a thick sequence of carbonate rocks that are mostly of Paleocene to early Miocene age and that are hydraulically connected in varying degrees. The aquifer system consists of a single vertically continuous permeable unit updip and of two major permeable zones (the Upper and Lower Floridan aquifers) separated by one of seven middle confining units downdip. Neither the boundaries of the aquifer system or of its component high- and low-permeability zones necessarily conform to either formation boundaries or time-stratigraphic breaks. The rocks that make up the Floridan aquifer system, its upper and lower confining units, and a surficial aquifer have been separated into several chronostratigraphic units. The external and internal geometry of these stratigraphic units is presented on a series of structure contour and isopach maps and by a series of geohydrologic cross sections and a fence diagram. Paleocene through middle Eocene units consist of an updip clastic facies and a downdip carbonate bank facies, that extends progressively farther north and east in progressively younger units. Upper Eocene and Oligocene strata are predominantly carbonate rocks throughout the study area. Miocene and younger strata are mostly clastic rocks. Subsurface data show that some modifications in current stratigraphic nomenclature are necessary. First, the middle Eocene Lake City Limestone cannot be distinguished lithologically or faunally from the overlying middle Eocene Avon Park 'Limestone.' Accordingly, it is proposed that the term Lake City be abandoned and the term Avon Park Formation be applied to the entire middle Eocene carbonate section of peninsular Florida and southeastern Georgia. A reference well section in Levy County, Fla., is proposed for the expanded Avon Park Formation. The Avon Park is called a 'formation' more properly than a 'limestone' because the unit contains rock types other than limestone. Second, like the Avon Park, the lower Eocene Oldsmar and Paleocene Cedar Keys 'Limestones' of peninsular Florida practically everywhere contain rock types other than limestone. It is therefore proposed that these units be referred to more accurately as Oldsmar Formation and Cedar Keys Formation. The uppermost hydrologic unit in the study area is a surficial aquifer that can be divided into (1) a fluvial sand-and-gravel aquifer in southwestern Alabama and westernmost panhandle Florida, (2) limestone and sandy limestone of the Biscayne aquifer in southeastern peninsular Florida, and (3) a thin blanket of terrace and fluvial sands elsewhere. The surficial aquifer is underlain by a thick sequence of fine clastic rocks and low-permeability carbonate rocks, most of which are part of the middle Miocene Hawthorn Formation and all of which form the upper confining unit of the Floridan aquifer system. In places, the upper confining unit has been removed by erosion or is breached by sinkholes. Water in the Floridan aquifer system thus occurs under unconfined, semiconfined, or fully confined conditions, depending upon the presence, thickness, and integrity of the upper confining unit. Within the Floridan aquifer system, seven low permeability zones of subregional extent split the aquifer system in most places into an Upper and Lower Floridan aquifer. The Upper Floridan aquifer, which consists of all or parts of rocks of Oligocene age, late Eocene age, and the upper half of rocks of middle Eocene age, is highly permeable. The middle confining units that underlie the Upper Floridan are mostly of middle Eocene age but may be as young as Oligocene or as old as early Eocene. Where no middle confining unit exists, the entire aquifer system is comprised of permeable rocks and for hydrologic discussions is treated as the Upper Floridan aquifer. The Lower Floridan aquifer contains a cavernous high-permeability horizon in the lower part of the early Eocene of south
Mid-tertiary ash flow tuff cauldrons, southwestern New Mexico
NASA Technical Reports Server (NTRS)
Elston, W. E.
1984-01-01
Characteristics of 28 known or suspected mid-Tertiary ash-flow tuff cauldrons in New Mexico are described. The largest region is 40 km in diameter, and erosional and block faulting processes have exposed levels as far down as the plutonic roots. The study supports a five-stage process: precursor, caldera collapse, early post-collapse, volcanism, major ring-fracture volcanism, and hydrothermal activity. The stages can repeat or the process can stop at any stage. Post-collapse lavas fell into two categories: cauldron lavas, derived from shallow defluidized residues of caldera-forming ash flow tuff eruption, and framework lavas, evolved from a siliceous pluton below the cauldron complex. The youngest caldera was shallow and formed from asymmetric subsidence and collapse of the caldera walls.
NASA Astrophysics Data System (ADS)
Lin, W.; Yang, X.; Tadai, O.; Zeng, X.; Yeh, E. C.; Yu, C.; Hatakeda, K.; Xu, H.; Xu, Z.
2016-12-01
As a result of the earthquake rupture propagation, stress on the earthquake fault and in the hanging wall and in the footwall coseismically drops. Based on the thermo-elasticity theory, the temperature of rocks may change associated with coseismic stress change at the same time as their elastic deformation. This coseismic temperature change is one of the physics of earthquake rupture propagation, however has not been noted and expressly addressed before. To understand this temperature issue, we conducted laboratory experiments to quantitatively investigate temperatures response of rocks to rapid stress change of various typical rocks. Consequently, we developed a hydrostatic compression experimental equipment for rock samples with a high resolution temperature measuring system. This enable us to rapidly load and/or unload the confining pressure. As experimental rock samples, we collected 15 representative rocks from various scientific drilling projects and outcrops of earthquake faults, and quarries in the world. The rock types include sandstone, siltstone, limestone, granite, basalt, tuff etc. Based on the classical thermo-elastic theory, a conventional relationship between the temperature change (dT) of rock samples and the confining pressure change (dP) in the hydrostatic compression system under adiabatic condition can be expressed as a linear function. Therefore, we can measure the adiabatic pressure derivative of temperature (dT/dP) directly by monitoring changes of rock sample temperature and confining pressure during the rapidly loading and unloading processes. As preliminary results of the experiments, the data of 15 rock samples showed that i) the adiabatic pressure derivative of temperature (dT/dP) of most rocks are about 1.5 6.2 mK/MPa; ii) the dT/dP of sedimentary rocks is larger than igneous and metamorphic rocks; iii) a good linear correlation between dT/dP and the rock's bulk modulus was recognized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geotechnical Sciences Group Bechtel Nevada
2006-01-01
A new three-dimensional hydrostratigraphic framework model for the Yucca Flat-Climax Mine Corrective Action Unit was completed in 2005. The model area includes Yucca Flat and Climax Mine, former nuclear testing areas at the Nevada Test Site, and proximal areas. The model area is approximately 1,250 square kilometers in size and is geologically complex. Yucca Flat is a topographically closed basin typical of many valleys in the Basin and Range province. Faulted and tilted blocks of Tertiary-age volcanic rocks and underlying Proterozoic and Paleozoic sedimentary rocks form low ranges around the structural basin. During the Cretaceous Period a granitic intrusive wasmore » emplaced at the north end of Yucca Flat. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the basin. These were integrated using EarthVision? software to develop the 3-dimensional hydrostratigraphic framework model. Fifty-six stratigraphic units in the model area were grouped into 25 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the alluvial section into 3 hydrostratigraphic units including 2 aquifers and 1 confining unit. The volcanic units in the model area are organized into 13 hydrostratigraphic units that include 8 aquifers and 5 confining units. The underlying pre-Tertiary rocks are divided into 7 hydrostratigraphic units, including 3 aquifers and 4 confining units. Other units include 1 Tertiary-age sedimentary confining unit and 1 Mesozoic-age granitic confining unit. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units (''layers'' in the model) along with the major structural features (i.e., faults). The model incorporates 178 high-angle normal faults of Tertiary age and 2 low-angle thrust faults of Mesozoic age. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to formulate alternative interpretations for some of the major features in the model. Five of these alternatives were developed so they could be modeled in the same fashion as the base model. This work was done for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Underground Test Area subproject of the Environmental Restoration Project.« less
High-resolution hydro- and geo-stratigraphy at Atlantic Coastal Plain drillhole CR-622 (Strat 8)
Wrege, B.M.; Isely, J.J.
2009-01-01
We interpret borehole geophysical logs in conjunction with lithology developed from continuous core to produce high-resolution hydro- and geo-stratigraphic profiles for the drillhole CR-622 (Strat 8) in the Atlantic Coastal Plain of North Carolina. The resulting hydrologic and stratigraphic columns show a generalized relation between hydrologic and geologic units. Fresh-water aquifers encountered are the surficial, Yorktown, Pungo River and Castle Hayne. Geologic units present are of the middle and upper Tertiary and Quaternary periods, these are the Castle Hayne (Eocene), Pungo River (Miocene), Yorktown (Pliocene), James City and Flanner Beach (Pleistocene), and the topsoil (Holocene). The River Bend Formation (Oligocene) is missing as a distinct unit between the Pungo River Formation and the Castle Hayne Formation. The confining unit underlying the Yorktown Aquifer corresponds to the Yorktown Geologic Unit. The remaining hydrologic units and geologic units are hydrologically transitional and non-coincident. The lower Pungo River Formation serves as the confining unit for the Castle Hayne Aquifer, rather than the River Bend Aquifer, and separates the Pungo River Aquifer from the upper Castle Hayne Aquifer. All geologic formations were bound by unconformities. All aquifers were confined by the anticipated hydrologic units. We conclude that CR-622 (Strat 8) represents a normal sequence in the Atlantic Coastal Plain.
Hydrogeology and soil gas at J-Field, Aberdeen Proving Ground, Maryland
Hughes, W.B.
1993-01-01
Disposal of chemical warfare agents, munitions, and industrial chemicals in J-Field, Aberdeen Proving Ground, Maryland, has contaminated soil, groundwater and surface water. Seven exploratory borings and 38 observation wells were drilled to define the hydrogeologic framework at J-Field and to determine the type, extent, and movement of contaminants. The geologic units beneath J-Field consist of Coastal Plain sediments of the Cretaceous Patapsco Formation and Pleistocene Talbot Formation. The Patapsco Formation contains several laterally discontinuous aquifers and confining units. The Pleistocene deposits were divided into 3 hydrogeologic units--a surficial aquifer, a confining unit, and a confined aquifer. Water in the surficial aquifer flows laterally from topographically high areas to discharge areas in marshes and streams, and vertically to the underlying confined aquifer. In offshore areas, water flows from the deeper confined aquifers upward toward discharge areas in the Gunpowder River and Chesapeake Bay. Analyses of soil-gas samples showed high relative-flux values of chlorinated solvents, phthalates, and hydrocarbons at the toxic-materials disposal area, white-phosphorus disposal area, and riot-control-agent disposal area. The highest flux values were located downgradient of the toxic materials and white phosphorus disposal areas, indicating that groundwater contaminants are moving from source areas beneath the disposal pits toward discharge points in the marshes and estuaries. Elevated relative-flux values were measured upgradient and downgradient of the riot-control agent disposal area, and possibly result from soil and (or) groundwater contamination.
NASA Astrophysics Data System (ADS)
Liu, S.; Pan, B.
2015-12-01
The logging evaluation of tuffaceous sandstone reservoirs is always a difficult problem. Experiments show that the tuff and shale have different logging responses. Since the tuff content exerts an influence on the computation of shale content and the parameters of the reservoir, and the accuracy of saturation evaluation is reduced. Therefore, the effect of tuff on the calculation of saturation cannot be ignored. This study takes the tuffaceous sandstone reservoirs in the X depression of Hailar-Tamtsag basin as an example to analyze. And the electric conduction model of tuffaceous sandstone reservoirs is established. The method which combines bacterial foraging algorithm and particle swarm optimization algorithm is used to calculate the content of reservoir components in well logging for the first time, and the calculated content of tuff and shale corresponds to the results analysis of thin sections. The experiment on cation exchange capacity (CEC) proves that tuff has conductivity, and the conversion relationship between CEC and resistivity proposed by Toshinobu Iton has been improved. According to the rock electric experiment under simulated reservoir conditions, the rock-electro parameters (a, b, m and n) are determined. The improved relationship between CEC and resistivity and the rock-electro parameters are used in the calculation of saturation. Formula (1) shows the saturation equation of the tuffaceous reservoirs:According to the comparative analysis between irreducible water saturation and the calculated saturation, we find that the saturation equation used CEC data and rock-electro parameters has a better application effect at oil layer than Archie's formulas.
Campisano, Christopher J.; Kirk, E. Christopher; Townsend, K. E. Beth; Deino, Alan L.
2014-01-01
The Whistler Squat Quarry (TMM 41372) of the lower Devil’s Graveyard Formation in Trans-Pecos Texas is a middle Eocene fossil locality attributed to Uintan biochronological zone Ui1b. Specimens from the Whistler Squat Quarry were collected immediately above a volcanic tuff with prior K/Ar ages ranging from ∼47–50 Ma and below a tuff previously dated to ∼44 Ma. New 40Ar/39Ar analyses of both of the original tuff samples provide statistically indistinguishable ages of 44.88±0.04 Ma for the lower tuff and 45.04±0.10 Ma for the upper tuff. These dates are compatible with magnetically reversed sediments at the site attributable to C20r (43.505–45.942 Ma) and a stratigraphic position above a basalt dated to 46.80 Ma. Our reanalysis of mammalian specimens from the Whistler Squat Quarry and a stratigraphically equivalent locality significantly revises their faunal lists, confirms the early Uintan designation for the sites, and highlights several biogeographic and biochronological differences when compared to stratotypes in the Bridger and Uinta Formations. Previous suggestions of regional endemism in the early Uintan are supported by the recognition of six endemic taxa (26% of mammalian taxa) from the Whistler Squat Quarry alone, including three new taxa. The revised faunal list for the Whistler Squat Quarry also extends the biostratigraphic ranges of nine non-endemic mammalian taxa to Ui1b. PMID:24988115
Evaluation of a 6-wire thermocouple psychrometer for determination of in-situ water potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loskot, C.L.; Rousseau, J.P.; Kurzmack, M.A.
1994-12-31
The US Geological Survey has been conducting investigations at Yucca Mountain, Nevada, to provide information about the hydrologic and geologic suitability of this site for storing high-level nuclear wastes in an underground mined repository. Test drilling and instrumentation are a principal method of investigation. The main objectives of the deep unsaturated-zone testhole program are: (1) to determine the flux of water moving through the unsaturated welded and nonwelded tuff units, (2) to determine the vertical and lateral distribution of moisture content, water potential, and other important geohydrologic characteristics in the rock units penetrated, and (3) to monitor stability and changesmore » in in-situ fluid potentials with time. Thermocouple psychrometers will be used to monitor in-situ water potentials.« less
Falls, W. Fred; Ransom, Camille; Landmeyer, James E.; Reuber, Eric J.; Edwards, Lucy E.
2005-01-01
To assess the hydrogeology, water quality, and the potential for saltwater intrusion in the offshore Upper Floridan aquifer, a scientific investigation was conducted near Tybee Island, Georgia, and Hilton Head Island, South Carolina. Four temporary wells were drilled at 7, 8, 10, and 15 miles to the northeast of Tybee Island, and one temporary well was drilled in Calibogue Sound west of Hilton Head Island. The Upper Floridan aquifer at the offshore and Calibogue sites includes the unconsolidated calcareous quartz sand, calcareous quartz sandstone, and sandy limestone of the Oligocene Lazaretto Creek and Tiger Leap Formations, and the limestone of the late Eocene Ocala Limestone and middle Avon Park Formation. At the 7-, 10-, and 15-mile sites, the upper confining unit between the Upper Floridan and surficial aquifers correlates to the Miocene Marks Head Formation. Paleochannel incisions have completely removed the upper confining unit at the Calibogue site and all but a 0.8-foot-thick interval of the confining unit at the 8-mile site, raising concern about the potential for saltwater intrusion through the paleochannel-fill sediments at these two sites. The paleochannel incisions at the Calibogue and 8-mile sites are filled with fine- and coarse-grained sediments, respectively. The hydrogeologic setting and the vertical hydraulic gradients at the 7- and 10-mile sites favored the absence of saltwater intrusion during predevelopment. After decades of onshore water use in Georgia and South Carolina, the 0-foot contour in the regional cone of depression of the Upper Floridan aquifer is estimated to have been at the general location of the 7- and 10-mile sites by the mid-1950s and at or past the 15-mile site by the 1980s. The upward vertical hydraulic gradient reversed, but the presence of more than 17 feet of upper confining unit impeded the downward movement of saltwater from the surficial aquifer to the Upper Floridan aquifer at the 7- and 10-mile sites. At the 10-mile site, the chloride concentration in the Upper Floridan borehole-water sample and the pore-water samples from the Oligocene and Eocene strata support the conclusion of no noticeable modern saltwater intrusion in the Upper Floridan aquifer. The chloride concentration of 370 milligrams per liter in the borehole-water sample at the 7-mile site from the Upper Floridan aquifer at 78 to 135 feet below North American Vertical Datum of 1988 is considerably higher than the chloride concentration of 25 milligrams per liter measured at the 10-mile site. The higher concentration probably is the result of downward leakage of saltwater through the confining unit at the 7-mile site or could reflect downward leakage of saltwater through an even thinner layer of the upper confining unit beneath the paleochannel to the northeast and lateral movement (encroachment) from the paleochannel to the 7-mile site. Carbon-14 concentrations at both sites, however, are low and indicate that most of the water is relict fresh ground water. The hydrogeology at the 15-mile site includes 17 feet of the upper confining unit. The chloride concentration in the Upper Floridan aquifer is 6,800 milligrams per liter. The setting for the Upper Floridan aquifer beneath the 15-mile site is interpreted as a transitional mixing zone between relict freshwater and relict saltwater. At the Calibogue site, 35 feet of fine-grained paleochannel-fill sediments overlies the Oligocene strata of the Upper Floridan aquifer. The vertical hydraulic conductivity of the paleochannel fill at this site is similar to the upper confining unit and effectively replaces the missing upper confining unit. Chloride concentrations and low carbon-14 and tritium concentrations in borehole water from the Upper Floridan aquifer, and low chloride concentrations in pore water from the upper confining unit indicate relict freshwater confined in the Upper Floridan aquifer at the Calibogue site. The coarse-grained paleochannel-f
Publications - GMC 146 | Alaska Division of Geological & Geophysical
concentrates from the following 2 NPRA core tuff samples: U.S. Navy Umiat Test #1 (510.5 feet); Umiat Test #11 geochronology studies on biotite concentrates from the following 2 NPRA core tuff samples: U.S. Navy Umiat Test #1 (510.5 feet); Umiat Test #11 (488 feet): Alaska Division of Geological & Geophysical Surveys
High-resolution 40Ar 39Ar chronology of Oligocene volcanic rocks, San Juan Mountains, Colorado
Lanphere, M.A.
1988-01-01
The central San Juan caldera complex consists of seven calderas from which eight major ash-flow tuffs were erupted during a period of intense volcanic activity that lasted for approximately 2 m.y. about 26-28 Ma. The analytical precision of conventional K-Ar dating in this time interval is not sufficient to unambiguously resolve this complex history. However, 40Ar 39Ar incremental-heating experiments provide data for a high-resolution chronology that is consistent with stratigraphie relations. Weighted-mean age-spectrum plateau ages of biotite and sanidine are the most precise with standard deviations ranging from 0.08 to 0.21 m.y. The pooled estimate of standard deviation for the plateau ages of 12 minerals is about 0.5 percent or about 125,000 to 135,000 years. Age measurements on coexisting minerals from one tuff and on two samples of each of two other tuffs indicate that a precision in the age of a tuff of better than 100,000 years can be achieved at 27 Ma. New data indicate that the San Luis caldera is the youngest caldera in the central complex, not the Creede caldera as previously thought. ?? 1988.
Dynamic tunable notch filters for the Antarctic Impulsive Transient Antenna (ANITA)
NASA Astrophysics Data System (ADS)
Allison, P.; Banerjee, O.; Beatty, J. J.; Connolly, A.; Deaconu, C.; Gordon, J.; Gorham, P. W.; Kovacevich, M.; Miki, C.; Oberla, E.; Roberts, J.; Rotter, B.; Stafford, S.; Tatem, K.; Batten, L.; Belov, K.; Besson, D. Z.; Binns, W. R.; Bugaev, V.; Cao, P.; Chen, C.; Chen, P.; Chen, Y.; Clem, J. M.; Cremonesi, L.; Dailey, B.; Dowkontt, P. F.; Hsu, S.; Huang, J.; Hupe, R.; Israel, M. H.; Kowalski, J.; Lam, J.; Learned, J. G.; Liewer, K. M.; Liu, T. C.; Ludwig, A. B.; Matsuno, S.; Mulrey, K.; Nam, J.; Nichol, R. J.; Novikov, A.; Prohira, S.; Rauch, B. F.; Ripa, J.; Romero-Wolf, A.; Russell, J.; Saltzberg, D.; Seckel, D.; Shiao, J.; Stockham, J.; Stockham, M.; Strutt, B.; Varner, G. S.; Vieregg, A. G.; Wang, S.; Wissel, S. A.; Wu, F.; Young, R.
2018-06-01
The Antarctic Impulsive Transient Antenna (ANITA) is a NASA long-duration balloon experiment with the primary goal of detecting ultra-high-energy (> 1018eV) neutrinos via the Askaryan Effect. The fourth ANITA mission, ANITA-IV, recently flew from Dec 2 to Dec 29, 2016. For the first time, the Tunable Universal Filter Frontend (TUFF) boards were deployed for mitigation of narrow-band, anthropogenic noise with tunable, switchable notch filters. The TUFF boards also performed second-stage amplification by approximately 45 dB to boost the ∼ μV-level radio frequency (RF) signals to ∼ mV-level for digitization, and supplied power via bias tees to the first-stage, antenna-mounted amplifiers. The other major change in signal processing in ANITA-IV is the resurrection of the 90 ° hybrids deployed previously in ANITA-I, in the trigger system, although in this paper we focus on the TUFF boards. During the ANITA-IV mission, the TUFF boards were successfully operated throughout the flight. They contributed to a factor of 2.8 higher total instrument livetime on average in ANITA-IV compared to ANITA-III due to reduction of narrow-band, anthropogenic noise before a trigger decision is made.
Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks
Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.
2015-01-01
Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable. PMID:26676058
Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks.
Jordan, Amy B; Stauffer, Philip H; Knight, Earl E; Rougier, Esteban; Anderson, Dale N
2015-12-17
Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.
Eruptive history of Earth's largest Quaternary caldera (Toba, Indonesia) clarified
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesner, C.A.; Rose, W.I.; Drake, R.
1991-03-01
Single-grain laser-fusion {sup 40}Ar/{sup 39}Ar analyses of individual sanidine phenocrysts from the two youngest Toba (Indonesia) tuffs yield mean ages of 73{plus minus}4 and 501{plus minus}5 ka. In addition, glass shards from Toba ash deposited in Malaysia were dated at 68{plus minus}7 ka by the isothermal plateau fission-track technique. These new determinations, in conjunction with previous ages for the two oldest tuffs at Toba, establish the chronology of four eruptive events from the Toba caldera complex over the past 1.2 m.y. Ash-flow tuffs were erupted from the complex every 0.34 to 0.43 m.y., culminating with the enormous (2500-3000 km{sup 3})more » Youngest Toba tuff eruption, caldera formation, and subsequent resurgence of Samosir Island. Timing of this last eruption at Toba is coincident with the early Wisconsin glacial advance. The high-precision {sup 40}Ar/{sup 39}Ar age eruption of such magnitude may provide an important marker horizon useful as a baseline for research and modeling of the worldwide climatic impact of exceptionally large explosive eruptions.« less
NASA Astrophysics Data System (ADS)
Agustín-Flores, Javier; Németh, Károly; Cronin, Shane J.; Lindsay, Jan M.; Kereszturi, Gábor
2015-02-01
The Auckland Volcanic Field (AVF) comprises at least 52 monogenetic eruption centres dispersed over ˜360 km2. Eruptions have occurred sporadically since 250 ka, predominantly when glacio-eustatic sea levels were lower than today. Now that around 35 % of the field is covered by shallow water (up to 30 m depth), any eruption occurring in the present or near future within this area may display Surtseyan dynamics. The North Head tuff cone evidences eruptive dynamics caused by magma interaction with seawater. The first stages of the eruption comprise a phreatomagmatic phase that built a 48-m-high tuff cone. North Head tuff deposits contain few lithic fragments (<10 vol%) and are characterized by deposits from collapsing tephra jets and fall from relatively wet tephra columns. The conditions needed for this eruption existed between 128 and 116 ka, when the sea level in the Auckland area was at least 10-12 m above the pre-eruptive surface. The hazards associated with this type of eruption pose a risk to the densely populated coastal residential zones and the activities of one of the busiest harbours in New Zealand.
The hydrothermal system of Long Valley Caldera, California
Sorey, M.L.; Lewis, Robert Edward; Olmsted, F.H.
1978-01-01
Long Valley caldera, an elliptical depression covering 450 km 2 on the eastern front of the Sierra Nevada in east-central California, contains a hot-water convection system with numerous hot springs and measured and estimated aquifer temperatures at depths of 180?C to 280?C. In this study we have synthesized the results of previous geologic, geophysical, geochemical, and hydrologic investigations of the Long Valley area to develop a generalized conceptual and mathematical model which describes the gross features of heat and fluid flow in the hydrothermal system. Cenozoic volcanism in the Long Valley region began about 3.2 m.y. (million years) ago and has continued intermittently until the present time. The major event that resulted in the formation of the Long Valley caldera took place about 0.7 m.y. ago with the eruption of 600 km 3 or more of Bishop Tuff of Pleistocene age, a rhyolitic ash flow, and subsequent collapse of the roof of the magma chamber along one or more steeply inclined ring fractures. Subsequent intracaldera volcanism and uplift of the west-central part of the caldera floor formed a subcircular resurgent dome about 10 km in diameter surrounded by a moat containing rhyolitic, rhyodacitic, and basaltic rocks ranging in age from 0.5 to 0.05 m.y. On the basis of gravity and seismic studies, we estimate an aver- age thickness of fill of 2.4 km above the precaldera granitic and metamorphic basement rocks. A continuous layer of densely welded Bishop Tuff overlies the basement rocks, with an average thickness of 1.4 km; the fill above the welded Bishop Tuff consists of intercalated volcanic flows and tuffs and fluvial and lacustrine deposits. Assuming the average grain density of the fill is between 2.45 and 2.65 g/cm 3 , we calculate the average bulk porosity of the total fill as from 0.11 to 0.21. Comparison of published values of porosity of the welded Bishop Tuff exposed southeast of the caldera with calculated values indicates average bulk porosity for the welded tuff (including fracture porosity) from 0.05 to 0.10. Because of its continuity and depth and the likelihood of significant fracture permeability in the more competent rocks such as the welded tuff, our model of the hydrothermal system assumes that the Bishop Tuff provides the principal hot-water reservoir. However, because very little direct information exists from drill holes below 300 m, this assumption must be considered tentative. Long Valley caldera is drained by the Owens River and several tributaries which flow into Lake Crowley in the southeast end of the caldera. Streamflow and springflow measurements for water years 1964-74 indicate a total inflow to Lake Crowley of about 10,900 L/s. In contrast, the total discharge of hot water from the hydrothermal reservoir is about 300 L/s. For modeling purposes, the ground-water system is considered as comprising a shallow subsystem in the fill above the densely welded Bishop Tuff containing relatively cold ground water, and a deep subsystem or hydrothermal reservoir in the welded tuff containing relatively hot ground water. Hydrologic, isotopic, and thermal data indicate that recharge to the hydrothermal reservoir occurs in the upper Owens River drainage basin along the western periphery of the caldera. Temperature profiles in a 2.11- km-deep test well drilled by private industry in the southeastern part of the caldera suggest that an additional flux of relatively cool ground water recharges the deep subsystem around the northeast rim. Flow in the shallow ground-water subsystem is neglected in the model except in recharge areas and along Hot Creek gorge, where approximately 80 percent of the hot-water discharge from the hydrothermal reservoir moves upward along faults toward springs in the gorge. Heat-flow data from the Long Valley region indicate that the resurgent dome overlies a residual magma chamber more circular in plan than the original magma chamber that supplied the Bishop Tuff
NASA Astrophysics Data System (ADS)
Cathey, Henrietta E.; Nash, Barbara P.
2009-11-01
The Bruneau-Jarbidge eruptive center of the central Snake River Plain in southern Idaho, USA produced multiple rhyolite lava flows with volumes of <10 km 3 to 200 km 3 each from ~11.2 to 8.1 Ma, most of which follow its climactic phase of large-volume explosive volcanism, represented by the Cougar Point Tuff, from 12.7 to 10.5 Ma. These lavas represent the waning stages of silicic volcanism at a major eruptive center of the Yellowstone hotspot track. Here we provide pyroxene compositions and thermometry results from several lavas that demonstrate that the demise of the silicic volcanic system was characterized by sustained, high pre-eruptive magma temperatures (mostly ≥950 °C) prior to the onset of exclusively basaltic volcanism at the eruptive center. Pyroxenes display a variety of textures in single samples, including solitary euhedral crystals as well as glomerocrysts, crystal clots and annealed microgranular inclusions of pyroxene ± magnetite ± plagioclase. Pigeonite and augite crystals are unzoned, and there are no detectable differences in major and minor element compositions according to textural variety — mineral compositions in the microgranular inclusions and crystal clots are identical to those of phenocrysts in the host lavas. In contrast to members of the preceding Cougar Point Tuff that host polymodal glass and mineral populations, pyroxene compositions in each of the lavas are characterized by single rather than multiple discrete compositional modes. Collectively, the lavas reproduce and extend the range of Fe-Mg pyroxene compositional modes observed in the Cougar Point Tuff to more Mg-rich varieties. The compositionally homogeneous populations of pyroxene in each of the lavas, as well as the lack of core-to-rim zonation in individual crystals suggest that individual eruptions each were fed by compositionally homogeneous magma reservoirs, and similarities with the Cougar Point Tuff suggest consanguinity of such reservoirs to those that supplied the polymodal Cougar Point Tuff. Pyroxene thermometry results obtained using QUILF equilibria yield pre-eruptive magma temperatures of 905 to 980 °C, and individual modes consistently record higher Ca content and higher temperatures than pyroxenes with equivalent Fe-Mg ratios in the preceding Cougar Point Tuff. As is the case with the Cougar Point Tuff, evidence for up-temperature zonation within single crystals that would be consistent with recycling of sub- or near-solidus material from antecedent magma reservoirs by rapid reheating is extremely rare. Also, the absence of intra-crystal zonation, particularly at crystal rims, is not easily reconciled with cannibalization of caldera fill that subsided into pre-eruptive reservoirs. The textural, compositional and thermometric results rather are consistent with minor re-equilibration to higher temperatures of the unerupted crystalline residue from the explosive phase of volcanism, or perhaps with newly generated magmas from source materials very similar to those for the Cougar Point Tuff. Collectively, the data suggest that most of the pyroxene compositional diversity that is represented by the tuffs and lavas was produced early in the history of the eruptive center and that compositions across this range were preserved or duplicated through much of its lifetime. Mineral compositions and thermometry of the multiple lavas suggest that unerupted magmas residual to the explosive phase of volcanism may have been stored at sustained, high temperatures subsequent to the explosive phase of volcanism. If so, such persistent high temperatures and large eruptive magma volumes likewise require an abundant and persistent supply of basalt magmas to the lower and/or mid-crust, consistent with the tectonic setting of a continental hotspot.
Wright, Heather M.; Cashman, Katharine V.
2014-01-01
Pyroclastic flows produced by large volcanic eruptions commonly densify after emplacement. Processes of gas escape, compaction, and welding in pyroclastic-flow deposits are controlled by the physical and thermal properties of constituent material. Through measurements of matrix porosity, permeability, and electrical conductivity, we provide a framework for understanding the evolution of pore structure during these processes. Using data from the Shevlin Park Tuff in central Oregon, United States, and from the literature, we find that over a porosity range of 0%–70%, matrix permeability varies by almost 10 orders of magnitude (from 10–20 to 10–11 m2), with over three orders of magnitude variation at any given porosity. Part of the variation at a given porosity is due to permeability anisotropy, where oriented core samples indicate higher permeabilities parallel to foliation (horizontally) than perpendicular to foliation (vertically). This suggests that pore space is flattened during compaction, creating anisotropic crack-like networks, a geometry that is supported by electrical conductivity measurements. We find that the power law equation: k1 = 1.3 × 10–21 × ϕ5.2 provides the best approximation of dominant horizontal gas loss, where k1 = permeability, and ϕ = porosity. Application of Kozeny-Carman fluid-flow approximations suggests that permeability in the Shevlin Park Tuff is controlled by crack- or disk-like pore apertures with minimum widths of 0.3 and 7.5 μm. We find that matrix permeability limits compaction over short times, but deformation is then controlled by competition among cooling, compaction, water resorption, and permeable gas escape. These competing processes control the potential for development of overpressure (and secondary explosions) and the degree of welding in the deposit, processes that are applicable to viscous densification of volcanic deposits in general. Further, the general relationships among porosity, permeability, and pore geometry are relevant for flow of any fluid through an ignimbritic host.
SHARAD Penetrates Only the Youngest Geological Units on Mars
NASA Astrophysics Data System (ADS)
Stillman, D.; Grimm, R. E.
2009-12-01
The SHAllow RADar (SHARAD) instrument on the Mars Reconnaissance Orbiter was intended to receive echoes from up to 1 km deep in the rocky martian subsurface. Such deep penetration only occurs in the icy polar caps and in certain ice-rich units. In fact, over the majority of the rocky units of Mars, only surface echoes are detected. Therefore, rocky units are more attenuating than expected. To gain insight into the cause of this attenuation, we correlated SHARAD subsurface reflectors with a geologic map of the northern plains of Mars [Tanaka et al., 2005]. Our survey was restricted to this area due to general smoother topography and hence less potential influence of surface scattering (clutter). All released SHARAD data (approximately 1,500 radargrams) overlying the geologic map were individually interpreted. Geologic units were categorized by their map description into ice-rich, pristine volcanic, and water-altered units. The last category comprises units interpreted to be fluvial, lacustrine, or periglacial in origin, as well as volcanic and other units that were subsequently altered by water or ice. Radar reflections in each unit were further categorized as abundant, occasional, or none. We found that abundant reflections are only detected in geologic units that are Amazonian in age, and ice-rich or pristine volcanic. No reflections are seen in water altered units. Occasional reflections are detected in Hesperian-aged pristine volcanic units. We propose two endmember hypotheses for this attenuation behavior, scattering and absorption, but they could act jointly. The young pristine volcanic units that SHARAD penetrates consist of thick (about 50 m) flood basalts or tuff. These units are expected to have cooling joints in them, but little if any other heterogeneity; therefore their scattering loss should be small. With increasing age and thermoelastic stress due to global cooling and contraction, these previously homogeneous volcanics could become increasingly fractured, thus more efficient at scattering. Under this hypothesis, all of the water-altered units have significant subwavelength heterogeneity due to their primary mode of origin or secondary alteration. Alternatively, absorption due to the dielectric relaxation of adsorbed water could influence the attenuation. Alteration minerals such as phyllosilicates and palagonite drastically increase the surface area and can hold up to three monolayers of adsorbed water at martian temperatures. Our lab measurements indicate that about 6% phyllosilicates or 15% palagonite by volume can completely attenuate the reflected signal of an interface at a depth of 30 m; which is the shallowest depth SHARAD can detect due to sidelobe effects. These minerals would not be confined to Noachian units as currently suggested by orbital spectroscopy. A smaller proportion of hydrated minerals could be accommodated if the shallow geotherm is steep, or if alteration minerals are below the detection threshold due to their degree of hydration or grain size. In either case, subsurface radar attenuation on Mars is less than that of the Earth, but more than that of the Moon. Tanaka, K.L., J.A. Skinner, and T.M. Hare (2005) Geologic map of the northern plains of Mars, USGS Sci. Invest. Map, 2888.
Ellis, William L.; Swolfs, Henri S.
1983-01-01
Observations made during drilling and subsequent testing of the USW G-1 drill hole, Yucca Mountain, Nevada, provide qualitative insights into the in- situ geomechanical characteristics of the layered tuff units penetrated by the hole. Substantial drilling-fluid losses, and the occurrence of drilling-induced fracturing, are understandable in terms of the low, minimum horizontal stress magnitudes interpreted from six hydraulic-fracturing stress measurements conducted between hole depths of 640 and 1,300 meters. Although not confirmed directly by the hydraulic-fracturing data, other observations suggest that the minimum stress magnitudes in the more densely welded and brittle tuff layers may be even smaller than in the less welded and more ductile rocks. Stress-induced borehole ellipticity observed along most of the length of USW G-1 indicates that the horizontal stress components are not equal, and that the concentration of these stresses around the hole is sufficient to locally exceed the yield strength of the rock. The low, minimum horizontal stress magnitudes, perhaps variable with lithology, and the indications from borehole ellipticity of a high in-situ stress/strength ratio, indicate the need for further studies to characterize the structural and geomechanical properties of the rocks at depth in Yucca Mountain.
Doherty, Angela L.; Bodnar, Robert J.; De Vivo, Benedetto; Bohrson, Wendy A.; Belkin, Harvey E.; Messina, Antonia; Tracy, Robert J.
2012-01-01
The Aeolian Islands are an arcuate chain of submarine seamounts and volcanic islands, lying just north of Sicily in southern Italy. The second largest of the islands, Salina, exhibits a wide range of compositional variation in its erupted products, from basaltic lavas to rhyolitic pumice. The Monte dei Porri eruptions occurred between 60 ka and 30 ka, following a period of approximately 60,000 years of repose. The bulk rock composition of the Monte dei Porri products range from basaltic-andesite scoria to andesitic pumice in the Grey Porri Tuff (GPT), with the Monte dei Porri lavas having basaltic-andesite compositions. The typical mineral assemblage of the GPT is calcic plagioclase, clinopyroxene (augite), olivine (Fo72−84) and orthopyroxene (enstatite) ± amphibole and Ti-Fe oxides. The lava units show a similar mineral assemblage, but contain lower Fo olivines (Fo57−78). The lava units also contain numerous glomerocrysts, including an unusual variety that contains quartz, K-feldspar and mica. Melt inclusions (MI) are ubiquitous in all mineral phases from all units of the Monte dei Porri eruptions; however, only data from olivine-hosted MI in the GPT are reported here. Compositions of MI in the GPT are typically basaltic (average SiO2 of 49.8 wt %) in the pumices and basaltic-andesite (average SiO2 of 55.6 wt %) in the scoriae and show a bimodal distribution in most compositional discrimination plots. The compositions of most of the MI in the scoriae overlap with bulk rock compositions of the lavas. Petrological and geochemical evidence suggest that mixing of one or more magmas and/or crustal assimilation played a role in the evolution of the Monte dei Porri magmatic system, especially the GPT. Analyses of the more evolved mineral phases are required to better constrain the evolution of the magma.
Lindgren, Richard J.
2001-01-01
The water withdrawn by pumped wells or discharged to Bear Creek is derived predominantly from areal recharge near the edge of the Decorah-Platteville-Glenwood confining unit (0.47 ft3/s), rather than from water that has leaked downward through the Decorah unit (0.03 ft3/s). Model simulated discharge through springs and seeps in the lower part of the upper carbonate aquifer (0.21 ft3/s) represents a potential source of water to the St. Peter-Prairie du Chien-Jordan aquifer.
Robinson, James L.; Carmichael, John K.; Halford, Keith J.; Ladd, David E.
1997-01-01
Naval Support Activity (NSA) Memphis is a Department of the Navy facility located at the City of Millington, Tennessee, about 5 miles north of Memphis. Contaminants have been detected in surface-water, sediment, and ground-water samples collected at the facility. As part of the Installation Restoration Program, the Navy is considering remedial-action options to prevent or lessen the effect of ground-water contamination at the facility and to control the movement and discharge of contaminants. A numerical model of the ground-water-flow system in the area of NSA Memphis was constructed and calibrated so that quantifiable estimates could be made of ground-water-flow rates, direction, and time-of-travel. The sediments beneath NSA Memphis, to a depth of about 200 feet, form a shallow aquifer system. From youngest to oldest, the stratigraphic units that form the shallow aquifer system are alluvium, loess, fluvial deposits, and the Cockfield and Cook Mountain Formations. The shallow aquifer system is organized into five hydrogeologic units: (1) a confining unit composed of the relatively low permeability sediments of the upper alluvium and the loess; (2) the A1 aquifer comprising sand and gravel of the lower alluvium and the fluvial deposits, and sand lenses in the upper part of the preserved section of the Cockfield Formation; (3) a confining unit composed of clay and silt within the upper part of the Cockfield Formation; (4) the Cockfield aquifer comprising sand lenses within the lower part of the preserved section of the Cockfield Formation; and (5) a confining unit formed by low permeability sediments of the Cook Mountain Formation that composes the upper confining unit for the Memphis aquifer. Thicknesses of individual units vary considerably across the facility. Structural and depositional features that affect the occurrence of ground water in the shallow aquifer system include faulting, an erosional scarp, and 'windows' in the confining units. Underlying the shallow aquifer system is the Memphis aquifer, the primary source of water for NSA Memphis and the City of Memphis, Tennessee. Analyses of sediment cores, aquifer and well specific-capacity tests, and numerical modeling were used to estimate the hydraulic characteristics of units of the shallow aquifer system. The vertical hydraulic conductivity of core samples of the alluvium-loess confining unit ranged from about 8.5 x 10-5 to 1.6 x 10-2 feet per day, and the total porosity of the samples ranged from about 35 to 48 percent. The results of the aquifer test were used to estimate a horizontal hydraulic conductivity of about 5 feet per day for the alluvial-fluvial deposits aquifer. The total porosity of core samples of the alluvial-fluvial deposits aquifer ranged from about 22 to 39 percent. The vertical hydraulic conductivity of core samples of the Cockfield confining unit ranged from about 4.5 x 10-5 to 2.5 x 10-3 feet per day, and the total porosity ranged from about 41 to 55 percent. Well specific-capacity tests indicate that the horizontal hydraulic conductivity of sand units that compose the Cockfield aquifer range from about 0.5 to 3 feet per day. The vertical hydraulic conductivity of core samples of the Cook Mountain confining unit ranged from about 5.0 x 10-6 to 9.9 x 10-4 feet per day. Total porosity of core samples of the Cook Mountain confining unit ranged from about 30 to 42 percent. Ground-water flow and time-of-travel in the shallow aquifer system were simulated using the MODFLOW finite-difference model and the -particle-tracking program MODPATH. A three-layer, steady-state model of the shallow aquifer system was constructed and calibrated to the potentiometric surface of the A1 aquifer. Results of numerical modeling support the proposed conceptual hydrogeologic model of the shallow aquifer system. Ground-water time-of-travel in the A1 aquifer was simulated using an assumed effective porosity of 25 percent. Typical ground-water-flow velocities were on the or
HIGH EXPLOSIVE CRATER STUDIES: TUFF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphey, B.F.
1961-04-01
Spherical charges of TNT, each weighing 256 pounds, were exploded at various depths in tuff to determine apparent crater dimensions in a soft rock. No craters were obtained for depths of burst equal to or greater than 13.3 feet. It was deduced that rock fragments were sufficiently large that charges of greater magnitude should be employed for crater experiments intended as models of nuclear explosions. (auth)
The effect of dilatancy on the unloading behavior of Mt. Helen tuff
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attia, A.V.; Rubin, M.B.
1993-11-01
In order to understand the role of rock dilatancy in modeling the response of partially saturated rock formations to underground nuclear explosions, we have developed a thermodynamically consistent model for a porous material, partially saturated with fluid. This model gives good predictions of the unloading behavior of dry, partially saturated, and fully saturated Mt. Helen tuff, as measured by Heard.
NASA Astrophysics Data System (ADS)
Chang, S.; Knight, K. B.; Renne, P. R.
2005-12-01
Magnetostratigraphy is potentially a powerful tool for deciphering the high resolution chronostratigraphy of events across the Permo-Triassic boundary, but few well-dated polarity reversals exist to serve as calibration. Red beds of the Dewey Lake Formation (DLF) of West Texas span three reversed polarity intervals (Steiner, 2001) in a section of the DLF at Caprock Canyons State Park, where two tuffs occur. Sanidine separated from these tuffs was analyzed by 40Ar/39Ar methods. Single crystal laser fusion 40Ar/39Ar analyses of 40 grains from the upper tuff yield a weighted mean age of 249.9 ± 2.4 Ma (2σ errors here and throughout). The clustering of single crystal data provides some assurance against xenocrystic contamination. Two age spectra from multigrain sanidine separates from the lower tuff yielded integrated ages of 248.9 ± 2.8 Ma and 249.7 ± 2.8 Ma and consistent plateau ages of 249.2 ± 2.4 Ma and 249.6 ± 2.4 Ma. Two age spectra from multigrain upper tuff sanidines lack strict plateaus but with overall flat age spectra, with integrated ages of 249.7 ± 2.8 Ma and 250.3 ± 2.8 Ma and plateau-like segments (>70% of 39Ar released) with ages of 249.9 ± 2.6 Ma and 249.9 ± 2.6 Ma, respectively. These results, compared with 40Ar/39Ar data (using the same FCs = 28.02 Ma standard calibration) from the GSSP section at Meishan, China, suggest that the Permo-Triassic boundary (249.8 Ma; recalculated from Renne et al., 1995) definitely occurs within the lower Dewey Lake Formation. The two tuffs, which bracket a normal to reverse geomagnetic polarity transition polarity (Steiner, 2001), have indistinguishable ages. The age of this Permo-Triassic polarity transition is thus best represented by the weighed average of their ages, ca. 249.7 Ma (based on accepted calibrations of the 40Ar/39Ar system). Further such constraints will facilitate high-resolution comparison of terrestrial and marine records across this critical time interval.
Effect of reducing groundwater on the retardation of redox-sensitive radionuclides
Hu, QH; Zavarin, M; Rose, TP
2008-01-01
Laboratory batch sorption experiments were used to investigate variations in the retardation behavior of redox-sensitive radionuclides. Water-rock compositions were designed to simulate subsurface conditions at the Nevada Test Site (NTS), where a suite of radionuclides were deposited as a result of underground nuclear testing. Experimental redox conditions were controlled by varying the oxygen content inside an enclosed glove box and by adding reductants into the testing solutions. Under atmospheric (oxidizing) conditions, radionuclide distribution coefficients varied with the mineralogic composition of the sorbent and the water chemistry. Under reducing conditions, distribution coefficients showed marked increases for 99Tc (from 1.22 at oxidizing to 378 mL/g at mildly reducing conditions) and 237Np (an increase from 4.6 to 930 mL/g) in devitrified tuff, but much smaller variations in alluvium, carbonate rock, and zeolitic tuff. This effect was particularly important for 99Tc, which tends to be mobile under oxidizing conditions. A review of the literature suggests that iodine sorption should decrease under reducing conditions when I- is the predominant species; this was not consistently observed in batch tests. Overall, sorption of U to alluvium, devitrified tuff, and zeolitic tuff under atmospheric conditions was less than in the glove-box tests. However, the mildly reducing conditions achieved here were not likely to result in substantial U(VI) reduction to U(IV). Sorption of Pu was not affected by the decreasing Eh conditions achieved in this study, as the predominant sorbed Pu species in all conditions was expected to be the low-solubility and strongly sorbing Pu(OH)4. Depending on the aquifer lithology, the occurrence of reducing conditions along a groundwater flowpath could potentially contribute to the retardation of redox-sensitive radionuclides 99Tc and 237Np, which are commonly identified as long-term dose contributors in the risk assessment in various radionuclide environmental contamination scenarios. The implications for increased sorption of 99Tc and 237Np to devitrified tuff under reducing conditions are significant as the fractured devitrified tuff serves as important water flow path at the NTS and the horizon for a proposed repository to store high-level nuclear waste at Yucca Mountain. PMID:19077277
The Yucca Mountain Project prototype air-coring test, U12g tunnel, Nevada test site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, J.M.; Newsom, J.C.
1994-12-01
The Prototype Air-Coring Test was conducted at the Nevada Test Site (NTS) G-Tunnel facility to evaluate standard coring techniques, modified slightly for air circulation, for use in testing at a prospective nuclear waste repository at Yucca Mountain, Nevada. Air-coring technology allows sampling of subsurface lithology with minimal perturbation to ambient characteristic such as that required for exploratory holes near aquifers, environmental applications, and site characterization work. Two horizontal holes were cored, one 50 ft long and the other 150 ft long, in densely welded fractured tuff to simulate the difficult drilling conditions anticipated at Yucca Mountain. Drilling data from sevenmore » holes on three other prototype tests in nonwelded tuff were also collected for comparison. The test was used to establish preliminary standards of performance for drilling and dust collection equipment and to assess procedural efficiencies. The Longyear-38 drill achieved 97% recovery for HQ-size core (-2.5 in.), and the Atlas Copco dust collector (DCT-90) captured 1500 lb of fugitive dust in a mine environment with only minor modifications. Average hole production rates were 6-8 ft per 6-h shift in welded tuff and almost 20 ft per shift on deeper holes in nonwelded tuff. Lexan liners were successfully used to encapsulate core samples during the coring process and protect core properties effectively. The Prototype Air-Coring Test demonstrated that horizontal air coring in fractured welded tuff (to at least 150 ft) can be safely accomplished by proper selection, integration, and minor modification of standard drilling equipment, using appropriate procedures and engineering controls. The test also indicated that rig logistics, equipment, and methods need improvement before attempting a large-scale dry drilling program at Yucca Mountain.« less
Low-(18)O Silicic Magmas: Why Are They So Rare?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balsley, S.D.; Gregory, R.T.
1998-10-15
LOW-180 silicic magmas are reported from only a small number of localities (e.g., Yellowstone and Iceland), yet petrologic evidence points to upper crustal assimilation coupled with fractional crystallization (AFC) during magma genesis for nearly all silicic magmas. The rarity of 10W-l `O magmas in intracontinental caldera settings is remarkable given the evidence of intense 10W-l*O meteoric hydrothermal alteration in the subvolcanic remnants of larger caldera systems. In the Platoro caldera complex, regional ignimbrites (150-1000 km3) have plagioclase 6180 values of 6.8 + 0.1%., whereas the Middle Tuff, a small-volume (est. 50-100 km3) post-caldera collapse pyroclastic sequence, has plagioclase 8]80 valuesmore » between 5.5 and 6.8%o. On average, the plagioclase phenocrysts from the Middle Tuff are depleted by only 0.3%0 relative to those in the regional tuffs. At Yellowstone, small-volume post-caldera collapse intracaldera rhyolites are up to 5.5%o depleted relative to the regional ignimbrites. Two important differences between the Middle Tuff and the Yellowstone 10W-180 rhyolites elucidate the problem. Middle Tuff magmas reached water saturation and erupted explosively, whereas most of the 10W-l 80 Yellowstone rhyolites erupted effusively as domes or flows, and are nearly devoid of hydrous phenocrysts. Comparing the two eruptive types indicates that assimilation of 10W-180 material, combined with fractional crystallization, drives silicic melts to water oversaturation. Water saturated magmas either erupt explosively or quench as subsurface porphyrins bejiire the magmatic 180 can be dramatically lowered. Partial melting of low- 180 subvolcanic rocks by near-anhydrous magmas at Yellowstone produced small- volume, 10W-180 magmas directly, thereby circumventing the water saturation barrier encountered through normal AFC processes.« less
NASA Astrophysics Data System (ADS)
López-Gamundí, Oscar
2006-12-01
Increasing evidence of Permian volcanic activity along the South American portion of the Gondwana proto-Pacific margin has directed attention to its potential presence in the stratigraphic record of adjacent basins. In recent years, tuffaceous horizons have been identified in late Early Permian-through Middle Permian (280-260 Ma) sections of the Paraná Basin (Brazil, Paraguay, and Uruguay). Farther south and closer to the magmatic tract developed along the continental margin, in the San Rafael and Sauce Grande basins of Argentina, tuffs are present in the Early to Middle Permian section. This tuff-rich interval can be correlated with the appearance of widespread tuffs in the Karoo Basin. Although magmatic activity along the proto-Pacific plate margin was continuous during the Late Paleozoic, Choiyoi silicic volcanism along the Andean Cordillera and its equivalent in Patagonia peaked between the late Early Permian and Middle Permian, when extensive rhyolitic ignimbrites and consanguineous airborne tuffaceous material erupted in the northern Patagonian region. The San Rafael orogenic phase (SROP) interrupted sedimentation along the southwestern segment of the Gondwana margin (i.e., Frontal Cordillera, San Rafael Basin), induced cratonward thrusting (i.e., Ventana and Cape foldbelts), and triggered accelerated subsidence in the adjacent basins (Sauce Grande and Karoo) located inboard of the deformation front. This accelerated subsidence favored the preservation of tuffaceous horizons in the syntectonic successions. The age constraints and similarities in composition between the volcanics along the continental margin and the tuffaceous horizons in the San Rafael, Sauce Grande, Paraná, and Karoo basins strongly suggest a genetic linkage between the two episodes. Radiometric ages from tuffs in the San Rafael, Paraná, and Karoo basins indicate an intensely tuffaceous interval between 280 and 260 Ma.
Leo, G.W.; Hedge, C.E.; Marvin, R.F.
1980-01-01
Quaternary volcanoes in the Padang area on the west coast of Sumatra have produced two-pyroxene, calc-alkaline andesite and volumetrically subordinate rhyolitic and andesitic ash-flow tuffs. A sequence of andesite (pre-caldera), rhyolitic tuff and andesitic tuff, in decreasing order of age, is related to Maninjau caldera. Andesite compositions range from 55.0 to 61.2% SiO2 and from 1.13 to 2.05% K2O. Six K-Ar whole-rock age determinations on andesites show a range of 0.27 ?? 0.12 to 0.83 ?? 0.42 m.y.; a single determination on the rhyolitic ashflow tuff gave 0.28 ?? 0.12 m.y. Eight 57Sr/26Sr ratios on andesites and rhyolite tuff west of the Semangko fault zone are in the range 0.7056 - 0.7066. These ratios are higher than those elsewhere in the Sunda arc but are comparable to the Taupo volcanic zone of New Zealand and calc-alkaline volcanics of continental margins. An 87Sr/86Sr ratio of 0.7048 on G. Sirabungan east of the Semangko fault is similar to an earlier determination on nearby G. Marapi (0.7047), and agrees with 87Sr/86Sr ratios in the rest of the Sunda arc. The reason for this distribution of 87Sr/86Sr ratios is unknown. The high 87Sr/86Sr ratios are tentatively regarded to reflect a crustal source for the andesites, while moderately fractionated REE patterns with pronounced negative Eu anomalies suggest a residue enriched in plagioclase with hornblende and/or pyroxenes. Generation of associated andesite and rhyolite could have been caused by hydrous fractional melting of andesite or volcanogenic sediments under adiabatic decompression. ?? 1980.
Olguín, María Teresa; Deng, Shuguang
2016-01-25
The sorption behavior of the Ba(2+)-like (226)Ra(2+) in the presence of H2AsO4(-)/HAsO4(2-) and F(-) from aqueous media using Ce-Fe-modified zeolite-rich tuff was investigated in this work. The Na-modified zeolite-rich tuff was also considered for comparison purposes. The zeolite-rich tuff collected from Wyoming (US) was in contact with NaCl and CeCl3-FeCl3 solutions to obtain the Na- and Ce-Fe-modified zeolite-rich tuffs (ZUSNa and ZUSCeFe). These zeolites were characterized by scanning electron microscopy and X-ray diffraction. The BET-specific surface and the points of zero charge were determined as well as the content of Na, Ce and Fe by neutron activation analysis. The textural characteristics and the point of zero charge were changed by the presence of Ce and Fe species in the zeolitic network. A linear model described the Ba(2+)-like (226)Ra(2+) sorption isotherms and the distribution coefficients (Kd) varied with respect to the metallic species present in the zeolitic material. The As(V) oxianionic chemical species and F(-) affected this parameter when the Ba(2+)-like (226)Ra(2+)-As(V)-F(-) solutions were in contact with ZUSCeFe. The H2AsO4(-)/HAsO4(2-) and F(-) were adsorbed by ZUSCeFe in the same amount, independent of the concentration of Ba(2+)-like (226)Ra(2+) in the initial solution. Copyright © 2015 Elsevier B.V. All rights reserved.
Pleistocene hydrovolcanism in the Tule Lake Basin, N. E. California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavine, A.
1993-04-01
The Prisoners Rock and The Peninsula tuff cones and the North Crater tuff ring, located in the Tule Lake Basin of northeastern California formed along a north-trending fissure approximately 270 ka when basaltic magma interacted with abundant groundwater or shallow lake water, resulting in phreatomagmatic eruptions. Diatomite inclusions in the tuff ring and correlations with the corresponding depth and diatoms in a drill core taken in the center of the basin, 2.5 km to the west of the cones, indicate shallow, marshy or shallow, alkaline-open conditions at Tule Lake around 270 ka. Deposits at Prisoners Rock and The Peninsula indicatemore » subaerial emplacement, which allowed the deposits to lithify with little erosion by the lake. Subsequent wave erosion caused undercutting and breaking off of large blocks along mainly north-trending fractures forming vertical cliff faces on the east and west sides of the cones. The cones are elongated north-south with a greater thickness of deposits on the north and northeast, probably due to prevailing southwesterly winds at the time of eruptions. Deposits of the tuff cones at Prisoners Rock and The Peninsula resulted from deep explosions caused by water-magma ratios of around 3:1. The deposits are mainly inversely graded planar surge beds, ranging in thickness from 5 to 30 cm, and grading from very fine ash to 2 cm-diameter accretionary lapilli. Emplacement by highly steam-saturated, poorly inflated pyroclastic surges is indicated by the abundance of accretionary lapilli, vesiculated tuffs, soft-sediment deformation structures, steep bedding angles (20 to 40 degrees) lack of structures beneath country rock inclusions, massive bedding, and cementation of the deposits by alteration of basaltic glass to calcite, zeolites, clays, and chlorite.« less
NASA Astrophysics Data System (ADS)
Smellie, J. L.; Rocchi, S.; Johnson, J. S.; Di Vincenzo, G.; Schaefer, J. M.
2018-01-01
The remains of a small volcanic centre are preserved on a thin bedrock ridge at Harrow Peaks, northern Victoria Land, Antarctica. The outcrop is interpreted as a monogenetic tuff cone relict formed by a hydrovolcanic (phreatomagmatic) eruption of mafic magma at 642 ± 20 ka (by 40Ar-39Ar), corresponding to the peak of the Marine Isotope Stage 16 (MIS16) glacial. Although extensively dissected and strewn with glacial erratics, the outcrop shows no evidence for erosion by ice. From interpretation of the lithofacies and eruptive mechanisms, the weight of the evidence suggests that eruptions took place under a cold-based (frozen-bed) ice sheet. This is the first time that a tuff cone erupted under cold ice has been described. The most distinctive feature of the lithofacies is the dominance of massive lapilli tuff rich in fine ash matrix and abraded lapilli. The lack of stratification is probably due to repeated eruption through a conduit blasted through the ice covering the vent. The ice thickness is uncertain but it might have been as little as 100 m and the preserved tephra accumulated mainly as a crater (or ice conduit) infill. The remainder of the tuff cone edifice was probably deposited supraglacially and underwent destruction by ice advection and, particularly, collapse during a younger interglacial. Dating using 10Be cosmogenic exposure of granitoid basement erratics indicates that the erratics are unrelated to the eruptive period. The 10Be ages suggest that the volcanic outcrop was most recently exposed by ice decay at c. 20.8 ± 0.8 ka (MIS2) and the associated ice was thicker than at 642 ka and probably polythermal rather than cold-based, which is normally assumed for the period.
Miller, David; Rosario, Jose E.; Leslie, Shannon R.; Vazquez, Jorge A.
2013-01-01
The type section of the Barstow Formation in the Mud Hills, north of Barstow, is a reference section for early to middle Miocene paleontology, magnetostratigraphy, and dated volcanic episodes. Thanks to this robust chronologic framework, much of the interpretation of the paleogeography of the region from about 18 Ma to 13 Ma is based on study of the rocks in the Mud Hills. Eastward from the type section, the Barstow Formation typically is altered and structurally complex, and therefore it is hard to fit into the patterns inferred for sedimentation at the type section. We have studied ten tuff beds in five locations, extracting zircons that are partly eruptive components of the volcanic ash and partly detrital. Ion microprobe dating of the zircons associated with the ashes allows us to improve stratigraphic correlations. Dated tuffs range from 19.3 Ma to ~14.8 Ma. In several of the sections, we dated tuffs in the range 16.2-16.5 Ma, about the same age as the ~16.3 Ma Rak Tuff in the type section. The beginning of lacustrine limestone, shale, and siltstone deposition varies significantly, from ~16.3 Ma in the type section to ~18.5 Ma in hills to the east and the Calico Mountains, and greater than 19.3 Ma at Harvard Hill. At ~16.3 Ma, the sedimentary rocks ranged (west to east) from silty sandstone and limestone, to mudstone with gypsum, to massive mudstone, and then to sandstone. If the sections have not been greatly shuffled by subsequent faulting, the picture that emerges is one of a broad basin whose center near the Yermo Hills was occupied by a lake that was much longer lived and deeper than to the east and west.
NASA Astrophysics Data System (ADS)
Höhn, Stefan; Koglin, Nikola; Klopf, Lisa; Schüssler, Ulrich; Tragelehn, Harald; Frimmel, Hartwig E.; Zeh, Armin; Brätz, Helene
2018-01-01
Stratigraphically well-defined volcanic rocks in Palaeozoic volcano-sedimentary units of the Frankenwald area (Saxothuringian Zone, Variscan Orogen) were sampled for geochemical characterisation and U-Pb zircon dating. The oldest rock suite comprises quartz keratophyre, brecciated keratophyre, quartz keratophyre tuff and basalt, formed in Upper Cambrian to Tremadocian time (c. 497-478 Ma). Basaltic volcanism continued until the Silurian. Quartz keratophyre shows post-collisional calc-alkaline signature, the Ordovician-Silurian basalt has alkaline signature typical of continental rift environments. The combined datasets provide evidence of Cambro-Ordovician bimodal volcanism and successive rifting until the Silurian. This evolution very likely resulted from break-up of the northern Gondwana margin, as recorded in many terranes throughout Europe. The position at the northern Gondwana margin is supported by detrital zircon grains in some tuffs, with typical Gondwana-derived age spectra mostly recording ages of 550-750 Ma and minor age populations of 950-1100 and 1700-2700 Ma. The absence of N-MORB basalt in the Frankenwald area points to a retarded break-off of the Saxothuringian terrane along a continental rift system from Uppermost Cambrian to Middle Silurian time. Geochemical data for a second suite of Upper Devonian basalt provide evidence of emplacement in a hot spot-related ocean-island setting south of the Rheic Ocean. Our results also require partial revision of the lithostratigraphy of the Frankenwald area. The basal volcanic unit of the Randschiefer Formation yielded a Tremadocian age and, therefore, should be attributed to the Vogtendorf Formation. Keratophyre of the Vogtendorf Formation, previously assigned to the Tremadoc, is most likely of Upper Devonian age.
The volcanic-plutonic connection unveiled
NASA Astrophysics Data System (ADS)
Hartung, E.; Caricchi, L.; Floess, D.; Wallis, S.; Harayama, S.
2017-12-01
Are upper crustal plutons solidified magma bodies or residues from extracted and erupted liquids? This remains one of the key questions to address to understand the construction and eruption of upper crustal magmatic systems. We have investigated the Takidani Pluton and contemporaneous volcanic deposits (Nyukawa PFD, Chayano Tuff and Ebisutoge PD) distributed around this crustal intrusion to understand whether they were sourced from this pluton. The Takidani Pluton is a good candidate because it contains petrographic and geochemical evidences for residual melt extraction, and pressure quenching associated with eruptive activity (Hartung et al., 2017). We analysed major and trace element concentrations of 18 plagioclase phenocrysts (core to rim) from the Takidani Pluton and Nyukawa-Chayano-Ebisutoge eruptions. Major elements were first analysed using an electron microprobe and trace elements were subsequently determined by laser ablation inductively coupled mass spectrometry in the same spot. Plagioclase chemistry shows that the Chayano and Ebisutoge rhyolitic deposits are not petrogenetically related to either the Takidani Pluton or the Nyukawa PFD. However, plagioclase of the Nyukawa PDF and the Takidani Pluton show indistinguishable REE patterns suggesting a common source domain for plagioclase from the two units. Ebisutoge plagioclase grains commonly contain xenocrystic cores that have major and trace element compositions comparable to the plagioclase grains observed in the Takidani Pluton and Nyukawa PFD. Our data show that the Nyukawa and Takidani plagioclase are geochemically indistinguishable, suggesting that the Takidani pluton was the magma reservoir that fed this large eruptive unit (400 km3, Oikawa, 2003). The Ebisutoge magma was not extracted directly from the pluton, but interacted with Takidani-Nyukawa when it was still molten. We have no evidence to suggest that the Takidani Pluton was the source of either the Chayano Tuff or the Ebisutoge PD.
Multiscalar approach to archaeological site formation at GaJj17, East Turkana, Kenya
NASA Astrophysics Data System (ADS)
Murray, B. M.; Ranhorn, K. L.; Colarossi, D.; Mavuso, S. S.; Dogandžić, T.; Ziegler, M. J.; Warren, S. L.; Braun, D. R.; Harris, J. W. K.
2017-12-01
Kenya's East Turkana region hosts a rich PlioPleistocene record of fossils, archaeological artifacts, and sedimentary features whose chronostratigraphic histories are often obscured by landscape changes from erosional events and tectonic activity. The Middle Stone Age (MSA) record of the Koobi Fora Formation (KF Fm.) has particularly been subjected to this complex depositional history, making it a sparse unit and, consequently, widely understudied. Stratigraphically located in between the maximum capping unconformity of the KF Fm.'s Chari tuff ( 1.39 Ma) and that of the Galana Boi Fm. ( 10 ka), the unit provides a unique window into understanding the Late Pleistocene of the region. The MSA surface scatters at archaeological site GaJj17 prompted further study into the site's age and depositional chronology. The GaJj17 ridge is locally distinguished by its cap of Late Pleistocene sands overlying strata containing tuffs likely of the Upper Burgi (2.0-1.87 Ma) or KBS (1.87-1.56 Ma) members. To investigate whether GaJj17's preservation is due to tectonic deformation, a broader scale examination of the structural geology was conducted through surveys and aerial imagery. Regions of deformation were identified and mapped to establish the geological history of the locality. Resultant observations and elevation data offer insight into regional faults at the root of prolonged structural alterations which have facilitated the unique preservation of MSA materials. Through a multiscalar approach it is possible to understand both the formation of GaJj17 and the underlying processes behind preservation and destruction in the changing landscape of the Turkana basin, enabling future identification of archaeological sites through proxies of elevation, regional stratigraphy, and fault mapping. This research was supported by IRES grants 1358178 and 1358200 from the U.S. National Science Foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, J.A.; Case, J.B.; Givens, C.A.
1994-04-01
This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place sealsmore » are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pucci, A.A. Jr.
Hydrogeologic maps are typical products of ground-water investigations. The features on these maps can be used by planning commissions to optimize land use. Planners could use confining-unit outcrop maps for siting landfills and hazardous material handling facilities. This paper examines ground-water chemistry from 53 wells, field measurements, hydrogeologic conditions from a quasi-3-D flow model for predevelopment (before 1900), and 1984 flow conditions, and evaluates relationships between them. Several recent reports have examined water quality in the area. The wells for this paper were screened in the Potomac-Raritan-Magothy aquifer system (PRMA) in the northern Coastal Plain of New Jersey in amore » 184 square mile area which is undergoing rapid growth. Hydrogeologic conditions considered include aquifer sampled, well location relative to flow-path distance from the outcrop, confining-unit thickness, and confining-unit vertical hydraulic conductivity (Kv). Visual, graphical and principal component analyses were used to evaluate the relationships.« less
Studies of the mobility of uranium and thorium in Nevada Test Site tuff
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wollenberg, H.A.; Flexser, S.; Smith, A.R.
1991-06-01
Hydro-geochemical processes must be understood if the movement of radionuclides away from a breached radioactive waste canister is to be modeled and predicted. In this respect, occurrences of uranium and thorium in hydrothermal systems are under investigation in tuff and in rhyolitic tuff that was heated to simulate the effects of introduction of radioactive waste. In these studies, high-resolution gamma spectrometry and fission-track radiography are coupled with observations of alteration mineralogy and thermal history to deduce the evidence of, or potential for movement of, U and Th in response to the thermal environment. Observations to date suggest that U wasmore » mobile in the vicinity of the heater but that localized reducing environments provided by Fe-Ti-Mn-oxide minerals concentrated U and thus attenuated its migration.« less
NASA Astrophysics Data System (ADS)
Oguchi, Chiaki T.; Kodama, Shogo; Mohammad, Rajib; Tharanga Udagedara, Dashan
2016-04-01
Artificial cave walls in Yoshimi Hyakuana Historic Site have been suffering from salt weathering since 1945 when the caves were made. To consider the processes of weathering and subsequent crystallization of secondary minerals, water-rock experiment using tuff from this area was performed. Rocks, surface altered materials, groundwater and rainwater were collected, and chemical and mineralogical characteristics of those samples were investigated. The XRD and SEM-EDS analyses were carried out for the solid samples and ICP-OES analysis was performed for the solution generated from the experiment, groundwater and rainwater. Gypsum is detected in original tuff, and on grey and whiter coloured altered materials. General chemical changes were observed on this rock. However, it is found that purple and black altered materials were mainly made due to microbiological processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M'Gonigle, J.W.; Dalrymple, G.B.
1993-10-01
[sup 40]Ar/[sup 39]Ar ages on single sanidine crystals from rhyolitic tuffs and ash flow tuffs within the uppermost and lowermost parts of the volcanic sequence of the Horse Prairie and Medicine Lodge topographic basins, southwestern Montana, show that these volcanic rocks were emplaced between about 48.8[+-]0.2 Ma and 45.9[+-]0.2 Ma, and are correlative with the Eocene Challis Volcanic Group of central Idaho. Sanidine ages on tuffs at the base of the Tertiary lacustrine, paludal, and fluvial sedimentary sequence, which unconformably overlies the volcanic sequence, suggest that sedimentation within an ancestral sedimentary basin that predated the development of the modern Horsemore » Prairie and Medicine Lodge basins began in the middle Eocene. 22 refs., 3 figs., 2 tabs.« less
Cox, Dennis P.; Miller, Robert J.; Woodbourne, Keith L.
2006-01-01
The Mesa Formation extends from Cananea, Mexico, southeast to the Sonora River and is the main host rock of Laramide porphyry copper deposits in the Cananea District and at the Alacran porphyry prospect to the east. The Mesa consists of two members-a lower andesite and an upper dacite. The lowest part of the dacite member is a crystal tuff about 100 m thick. This tuff is the outfall of a caldera centered near the village of Ojo de Agua, dated by 40Ar/39Ar at 65.8 Ma ?0.4. The Ojo de Agua Caldera is about 9 km in diameter and is filled by a light gray biotite dacite tuff with abundant flattened pumice fragments. The volume of the caldera is estimated to be 24 km3.
Groundwater conditions and studies in the Augusta–Richmond County area, Georgia, 2008–2009
Gonthier, Gerard; Lawrence, Stephen J.; Peck, Michael F.; Holloway, O. Gary
2011-01-01
Groundwater studies and monitoring efforts conducted during 2008–2009, as part of the U.S. Geological Survey (USGS) Cooperative Water Program with the City of Augusta in Richmond County, Georgia, provided data for the effective management of local water resources. During 2008–2009 the USGS completed: (1) installation of three monitoring wells and the collection of lithologic and geophysical logging data to determine the extent of hydrogeologic units, (2) collection of continuous groundwater-level data from wells near Well Fields 2 and 3, (3) collection of synoptic groundwater-level measurements and construction of potentiometric-surface maps in Richmond County to establish flow gradients and groundwater-flow directions in the Dublin and Midville aquifer systems, (4) completion of a 24-hour aquifer test to determine hydraulic characteristics of the lower Dublin aquifer, and upper and lower Midville aquifers in Well Field 2, and (5) collection of groundwater samples from selected wells in Well Field 2 for laboratory analysis of volatile organic compounds and groundwater tracers to assess groundwater quality and estimate the time of groundwater recharge. Potentiometric-surface maps of the Dublin and Midville aquifer systems for 2008–2009 indicate that the general groundwater flow direction within Richmond County is eastward toward the Savannah River, with the exception of the area around Well Field 2, where pumping interrupts the eastward flow of water toward the Savannah River and causes flow lines to bend toward the center of pumping. Results from a 24-hour aquifer test conducted in 2009 within the upper and lower Midville aquifers at Well Field 2 indicated a transmissivity and storativity for the upper and lower Midville aquifers, combined, of 4,000 feet-squared per day and 2x10-4, respectively. The upper and lower Midville aquifers and the middle lower Midville confining unit, which is 85-feet thick in this area, yielded horizontal hydraulic conductivity and specific storage values of about 45 feet per day and 2x10-6 ft-1, respectively. Results from the 24-hour aquifer test also indicate a low horizontal hydraulic conductivity for the lower Dublin aquifer of less than 1 foot per day. Of the 35 volatile organic compounds (VOCs) analyzed in 23 groundwater samples during 2008–2009, only six were detected above laboratory reporting limits in samples from eight wells. No concentration in groundwater samples collected during 2008–2009 exceeded drinking water standards. Trichloroethene had the maximum VOC concentration (1.9 micrograms per liter) collected from a water sample during 2008–2009. Water-quality sampling of several wells near Well Field 2 indicate that, while in operation, the northernmost production well might have diverted groundwater, containing low levels of trichloroethene from at least two other production wells. Analysis of sulfur hexafluoride data indicate the average year of recharge ranges between 1981 and 1984 for water samples from five wells open to the upper and lower Midville aquifers, and 1991 for a water sample from one shallow well open to the lower Dublin aquifer. All of these ages suggest a short flow path and nearby source of contamination. The actual source of low levels of VOCs at Well Field 2 remains unknown. Three newly installed monitoring wells indicate that hydrogeologic units beneath Well Fields 2 and 3 are composed of sand and clay layers. Hydrogeologic units, encountered at Well Field 2, in order of increasing depth are the lower Dublin confining unit, lower Dublin aquifer, upper Midville confining unit, upper Midville aquifer, lower Midville confining unit, and lower Midville aquifer. West of Well Field 3, hydrogeologic units, in order of increasing depth are the Upper Three Runs aquifer, Gordon confining unit, Gordon aquifer, lower Dublin confining unit, lower Dublin aquifer, upper Midville confining unit, upper Midville aquifer, lower Midville confining unit, and lower Midville aquifer.
Volcanic rocks of the McDermitt Caldera, Nevada-Oregon
Greene, Robert C.
1976-01-01
The McDermitt caldera, a major Miocene eruptive center is locatedin the northernmost Great Basin directly west of McDermitt, Nev. The alkali rhyolite of Jordan Meadow was erupted from the caldera and covered an area of about 60,000 sq km; the volume of rhyolite is about 960 cubic km. Paleozoic and Mesozoic sedimentary rocks and Mesozoic granodiorite form the pre-Tertiary Basement in this area.. Overlying these is a series of volcanic rocks, probably all of Miocene age. The lowest is a dacite welded tuff, a reddish-brown rock featuring abundant phenocrysts of plagioclase, hornblende, and biotite; next is a heterogeneous unit consisting of mocks ranging from basalt to dacite. Overlying these is the basalt and andesite of Orevada View, over 700 m thick and consisting of a basal unit of cinder agglutinate overlain by basalt and andesite, much of which contains conspicuous large plagioclase phenocrysts. Near Disaster Peak and Orevada View, the basalt and andesite are overlain by additional units of silicic volcanic rocks. The lower alkali rhyolite welded tuff contains abundant phenocrysts of alkali feldspar and has a vitric phase with obvious pumice and shard texture. The rhyolite of Little Peak consists of a wide variety of banded flows or welded ruffs and breccias, mostly containing abundant alkali feldspar phenocrysts. It extends south from Disaster Peak and apparently underlies the alkali rhyolite of Jordan Meadow. The quartz latite of Sage Creek lies north of Disaster Peak and consists mostly of finely mottled quartz latite with sparse minute plagioclase phenocrysts. Volcanic rock units in the east part of the area near the Cordero mine include trachyandesite, quartz labile of McConnell Canyon, and rhyolite of McCormick Ranch. The trachyandesite is dark gray and contains less than 1 percent microphenocrysts plagioclase. It is the lowest unit exposed and may correlate with part of the basalt and andesite of Orevada View. The quartz latite of McConnell Canyon is olive gray and contains about 8 percent plagioclase phenocrysts. It has an upper phase of black vitrophyre which directly underlies The alkali rhyolite of Jordan Meadow. The rhyolite of McCormick Ranch is present farther north and consists of pinkish rhyolite with small amounts of phenocrysts of alkali feldspar, quartz, and plagioclase. The alkali rhyolite of Jordan Meadow consists of interlayered aphyric, sparsely porphyritic, and abundantly porphyritic alkali rhyolites whose colors are predominantly light gray, greenish gray, and brown, respectively. Phenocrysts are alkali feldspar (to 15 percent) locally with quartz. Sections inside the caldera are as much as 360 m thick and consist of intimately interlayered gray, green, and brown alkali rhyolites commonly flow folded. Outside the caldera sections are equally thick in the south and southwest, but thinner to the north; in these places units of similar lithology are persistent for many kilometers, and flow folding is rare. A basal green porphyritic unit north of the caldera contains definite shard texture, but elsewhere this feature is rare. Nevertheless, the great lateral extent and relative thinness of the alkali rhyolite of Jordan Meadow suggests that it is welded ash-flow tuff. Overlying the alkali rhyolite of Jordan Meadow within the McDermitt caldera are four units of lavas. The rhyolite of Hoppin Peaks contains light-brownish-gray rhyolite and black vitophyre, all with sparse phenocrysts of alkali feldspar, quartz, and plagioclase. The rhyolite of McDermitt Creek is greenish or brownish gray and contains abundant phenocrysts of plagioclase. It .is in part structureless and in part flow banded. Alkali rhyolite of Washburn Creek is light gray and contains 0-5 percent phenocrysts alkali feldspar. Quartz labile of Black Mountain forms four isolated remnants of volcanoes in the south part of the caldera. It is brown where well crystallized and black where vitric and contains 5-15 percent pla
Radionuclide gas transport through nuclear explosion-generated fracture networks
Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; ...
2015-12-17
Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gasmore » breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.« less
Vlessidis, A G; Triantafillidis, C S; Evmiridis, N P
2001-04-01
Clinoptilolite tuffs from areas in Thrace region of Greece are compared with synthetic zeolites NaY and NH4Y for the uptake of N4-ethyl-N4-(2-methansulphonamidoethyl)-2-methyl-1,4-phenylenediamin (sesquisulphate, monohydrate) with the trade name CD-3 for the purpose to be used for clean-up and recycling photo-finishing and photo-developing washwaters. The cation-exchange capacity is found to be 6.15-11.1 mg/g for zeoliferous tuffs at equilibrium concentration of 50 ppm CD-3 in aqueous solution compared to 65.0 mg/g of NaY and 48.2 mg/g for NH4Y synthetic zeolites corresponding to the removal of CD-3 from 120 to 2001 of 50 ppm aqueous solution per kg of natural zeoliferous tuff; this capacity is only 6-10 times lower than type-Y synthetic zeolite. Initial rates of uptake are 20.8 mg/l/min for natural and 38.5 mg/l/min for synthetic zeolites. Regeneration levels of 55, 23, 35, and 33% are obtained for MCH, SF, NaY, and NH4Y, respectively. The rapid and almost complete uptake of CD-3 from its aqueous solutions at low CD-3 concentrations by the natural zeolites is promising for such an application.
Radionuclide gas transport through nuclear explosion-generated fracture networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.
Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gasmore » breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.« less
Sonication Enables Effective Iron Leaching from Green Tuff at Low Temperature
NASA Astrophysics Data System (ADS)
Nakamura, Takashi; Okawa, Hirokazu; Kawamura, Youhei; Sugawara, Katsuyasu
2011-07-01
Ultrasound irradiation (28 and 200 kHz) was applied to iron leaching from green tuff into a low temperature solution (20 °C) using oxalic acid. Ultrasound irradiation increased the amount of iron leached from the green tuff and was greater than that leached by stirring. It is thought that the jet flow caused by the collapse of cavities during ultrasound irradiation prevents and strips the deposits of iron oxalate from the green tuff particles. The extraction of iron at 28 kHz displayed better performance than that at 200 kHz for three reasons. The first is that the jet flow generated by cavitation bubble collapse at 28 kHz is thought to be stronger than that at 200 kHz. The second is that the crushing action of ultrasound irradiation at 28 kHz is greater than that at 200 kHz. The third is that 200 kHz irradiation generates OH radicals, which prevents the generation of FeH(C2O4)+ and oxidizes FeH(C2O4)+ to Fe(C2O4), creating a cover layer on the surface of the stone. Thus, to leach iron from the ore, it is effective to use ultrasound irradiation at 28 kHz, which prevents the creation of radicals and breaks down the grain size.
Krüner, A; Byerly, G R; Lowe, D R
1991-04-01
We report precise 207Pb/206Pb single zircon evaporation ages for low-grade felsic metavolcanic rocks within the Onverwacht and Fig Tree Groups of the Barberton Greenstone Belt (BGB), South Africa, and from granitoid plutons bordering the belt. Dacitic tuffs of the Hooggenoeg Formation in the upper part of the Onverwacht Group yield ages between 3445 +/- 3 and 3416 +/- 5 Ma and contain older crustal components represented by a 3504 +/- 4 Ma old zircon xenocryst. Fig Tree dacitic tuffs and agglomerates have euhedral zircons between 3259 +/- 5 and 3225 +/- 3 Ma in age which we interpret to reflect the time of crystallization. A surprisingly complex xenocryst population in one sample documents ages from 3323 +/- 4 to 3522 +/- 4 Ma. We suspect that these xenocrysts were inherited, during the passage of the felsic melts to the surface, from various sources such as greenstones and granitoid rocks now exposed in the form of tonalite-trondhjemite plutons along the southern and western margins of the BGB, and units predating any of the exposed greenstone or intrusive rocks. Several of the granitoids along the southern margin of the belt have zircon populations with ages between 3490 and 3440 Ma. coeval with or slightly older than Onverwacht felsic volcanism, while the Kaap Valley pluton along the northwestern margin of the belt is coeval with Fig Tree dacitic volcanism. These results emphasize the comagmatic relationships between greenstone felsic volcanic units and the surrounding plutonic suites. Some of the volcanic plutonic units contain zircon xenocrysts older than any exposed rocks. These indicate the existence of still older units, possibly stratigraphically lower and older portions of the greenstone sequence itself, older granitoid intrusive rocks, or bodies of older, unrelated crustal material. Our data show that the Onverwacht and Fig Tree felsic units have distinctly different ages and therefore do not represent a single, tectonically repeated unit as proposed by others. Unlike the late Archaean Abitibi greenstone belt in Canada, which formed over about 30 Ma. exposed rocks in the BGB formed over a period of at least 220 Ma. The complex zircon populations encountered in this study imply that conventional multigrain zircon dating may not accurately identify the time of felsic volcanic activity in ancient greenstones. A surprising similarity in rock types, tectonic evolution, and ages of the BGB in the Kaapvaal craton of southern Africa and greenstones in the Pilbara Block of Western Australia suggests that these two terrains may have been part of a larger crustal unit in early Archaean times.
Fossil and active fumaroles in the 1912 eruptive deposits, Valley of ten thousand smokes, Alaska
Keith, T.E.C.
1991-01-01
Fumaroles in the ash-flow sheet emplaced during the 1912 eruption of Novarupta were intensely active throughout the Valley of Ten Thousand Smokes (VTTS) when first studied in 1917. Fumarole temperatures recorded in 1919 were as hot as 645??C. Influx of surface waters into the hot ash-flow sheet provided the fluid flow to sustain the fumaroles but also enhanced cooling so that by the mid-1930's vigorous activity survived only in the vent region. Configuration and distribution of high-temperature fissure fumaroles tens of meters long, that are prevalent in the middle and upper VTTS, were controlled largely by sintering and degree of welding, which in turn controlled fracturing and permeability of the ash-flow tuff. One fracture type developed parallel to the enclosing valley walls during compaction of the ash-flow sheet. Another type extends across the VTTS nearly perpendicular to the flow direction. A third type of randomly oriented fractures developed as cooling contraction cracks during vapor-phase devitrification. In distal parts of the ash-flow sheet where the tuff is nonwelded, prominent fumaroles have irregular funnel-shaped morphologies. Fumarole distribution in the nonwelded part of the ash-flow sheet is concentrated above pre-emplacement river channels. The hottest, longest-lived fumaroles occurred in the upper VTTS near the 1912 vent where the ash-flow sheet is thicker, more indurated, and on average more mafic (richer in dacite and andesite) in contrast to the thinner, nonwelded rhyolitic tuff in the distal part of the sheet. Fumarolic activity was less intense in the distal part of the tuff because of lower emplacement temperatures, more diffuse fumarole conduits in the nonwelded tuff, and the thinness of the ash-flow sheet. Chemical leaching of ash-flow tuff by hot rising fluids took place adjacent to fumarolic conduits in deep parts of the fumaroles. Deposition of incrustation minerals, the components of which were carried upward by fumarolic gases, took place in the upper part of the ejecta, mostly in the fallout layers. The permeability difference between the ash-flow tuff and the overlying coarse dacite fallout was a critical factor in promoting the abrupt gradients in temperature, pressure, and fO2 that resulted in deposition of minerals from the fumarolic gases. The permeability difference between nonwelded ash-flow tuff and overlying fine-grained fall layers in the lower VTTS is less pronounced. The total mass of fumarolically deposited minerals appears large at first glance owing to the conspicuous coloration by Fe minerals; the mass is appreciably less than is apparent, however, because most incrustations are composed largely of ejecta coated or cemented by fine-grained fumarolic minerals. A large mass of unstable incrustation minerals, mainly chlorides and sulfates, reported during the 1917-1919 studies have since been removed by dissolution and weathering. In the vent region, argillic alteration that followed high-temperature degassing is localized along arcuate subsidence fractures in fallback ejecta. At widely scattered residual orifices, fumarolic gases presently are near-neutral steam, and temperatures are as hot as 90??C. ?? 1991.
Ground-water flow in the New Jersey Coastal Plain
Martin, Mary
1998-01-01
Ground-water flow in 10 aquifers and 9 intervening confining units of the New Jersey Coastal Plain was simulated as part of the Regional Aquifer System Analysis. Data on aquifer and confining unit characteristics and on pumpage and water levels from 1918 through 1980 were incorporated into a multilayer finite-difference model. The report describes the conceptual hydrogeologic model of the unstressed flow systems, the methods and approach used in simulating flow, and the results of the simulations.
Confined space emergency response: assessing employer and fire department practices.
Wilson, Michael P; Madison, Heather N; Healy, Stephen B
2012-01-01
An emergency response plan for industrial permit-required confined space entry is essential for employee safety and is legally required. Maintaining a trained confined space rescue team, however, is costly and technically challenging. Some employers turn to public fire departments to meet their emergency response requirements. The confined space emergency response practices of employers and fire departments have not been previously assessed. We present (1) federal data on the U.S. occurrence between 1992 and 2005 of confined space fatal incidents involving toxic and/or oxygen-deficient atmospheres; (2) survey data from 21 large companies on permit-required confined space emergency response practices; (3) data on fire department arrival times; and (4) estimates by 10 senior fire officers of fire department rescue times for confined space incidents. Between 1992 and 2005, 431 confined space incidents that met the case definition claimed 530 lives, or about 0.63% of the 84,446 all-cause U.S. occupational fatal injuries that occurred during this period. Eighty-seven (20%) incidents resulted in multiple fatalities. Twelve (57%) of 21 surveyed companies reported that they relied on the fire department for permit-required confined space emergency response. Median fire department arrival times were about 5 min for engines and 7 min for technical rescue units. Fire department confined space rescue time estimates ranged from 48 to 123 min and increased to 70 and 173 min when hazardous materials were present. The study illustrates that (1) confined space incidents represent a small but continuing source of fatal occupational injuries in the United States; (2) a sizeable portion of employers may be relying on public fire departments for permit-required confined space emergency response; and (3) in the event of a life-threatening emergency, fire departments usually are not able to effect a confined space rescue in a timely manner. We propose that the appropriate role for the fire department is to support a properly trained and equipped on-site rescue team and to provide advanced life support intervention following extrication and during ambulance transportation.
Phillips, Jeffrey D.; Burton, Bethany L.; Curry-Elrod, Erika; Drellack, Sigmund
2014-01-01
Question 2—Does basin and range normal faulting observed in the hills north of Frenchman Flat continue southward under alluvium and possibly disrupt the Topopah Spring Tuff of the Paintbrush Group (the Topopah Spring welded tuff aquifer or TSA) east of the Pin Stripe underground nuclear test, which was conducted in Emplacement hole U11b?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woldegabriel, Giday; Ambrose, Stanley H; Barboni, Doris
2009-01-01
Sediments containing Ardipithecus ramidus were deposited 4.4 million years ago on an alluvial floodplain in Ethiopia's western Afar rift. The Lower Aramis Member hominid-bearing unit, now exposed across a >9-kilometer structural arc, is sandwiched between two volcanic tuffs that have nearly identical {sup 40}Ar/{sup 39}Ar ages. Geological data presented here, along with floral, invertebrate, and vertebrate paleontological and taphonomic evidence associated with the hominids, suggest that they occupied a wooded biotope over the western three-fourths of the paleotransect. Phytoliths and oxygen and carbon stable isotopes of pedogenic carbonates provide evidence of humid cool woodlands with a grassy substrate.
Drill-back studies examine fractured, heated rock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wollenberg, H.A.; Flexser, S.; Myer, L.R.
1990-01-01
To investigate the effects of heating on the mineralogical, geochemical, and mechanical properties of rock by high-level radioactive waste, cores are being examined from holes penetrating locations where electric heaters simulated the presence of a waste canister, and from holes penetration natural hydrothermal systems. Results to date indicate the localized mobility and deposition of uranium in an open fracture in heated granitic rock, the mobility of U in a breccia zone in an active hydrothermal system in tuff, and the presence of U in relatively high concentration in fracture-lining material in tuff. Mechanical -- property studies indicate that differences inmore » compressional- and shear-wave parameters between heated and less heated rock can be attributed to differences in the density of microcracks. Emphasis has shifted from initial studies of granitic rock at Stripa, Sweden to current investigations of welded tuff at the Nevada Test Site. 7 refs., 8 figs.« less
Oligocene lacustrine tuff facies, Abu Treifeya, Cairo-Suez Road, Egypt
NASA Astrophysics Data System (ADS)
Abdel-Motelib, Ali; Kabesh, Mona; El Manawi, Abdel Hamid; Said, Amir
2015-02-01
Field investigations in the Abu Treifeya area, Cairo-Suez District, revealed the presence of Oligocene lacustrine volcaniclastic deposits of lacustrine sequences associated with an Oligocene rift regime. The present study represents a new record of lacustrine zeolite deposits associated with saponite clay minerals contained within reworked clastic vitric tuffs. The different lithofacies associations of these clastic sequences are identified and described: volcaniclastic sedimentary facies represent episodic volcaniclastic reworking, redistribution and redeposition in a lacustrine environment and these deposits are subdivided into proximal and medial facies. Zeolite and smectite minerals are mainly found as authigenic crystals formed in vugs or crusts due to the reaction of volcanic glasses with saline-alkaline water or as alteration products of feldspars. The presence of abundant smectite (saponite) may be attributed to a warm climate, with alternating humid and dry conditions characterised by the existence of kaolinite. Reddish iron-rich paleosols record periods of non-deposition intercalated with the volcaniclastic tuff sequence.
NASA Astrophysics Data System (ADS)
Kotova, D. L.; Vasilyeva, S. Yu.; Krysanova, T. A.
2014-08-01
Patterns in the adsorption of α-tocopherol on acid-activated clinoptilolite tuff at 283, 295, 305, and 333 K are established and explained. It is found that the selectivity of the sorbent toward the vitamin rises as the temperature of the process falls. The adsorption of α-tocopherol from dilute solutions is described in terms of the Langmuir adsorption theory. It is shown that the fixing of vitamin E monolayers in the structural matrix of clinoptilolite tuff is due to the formation of hydrogen bonds between isolated silanol groups of the adsorbent and oxygen atoms of the chromane ring and the phenol residue of α-tocopherol. The thermodynamic functions of monolayer adsorption of the vitamin are estimated. It is concluded that the formation of polymolecular layers in the form of associates is due to hydrophobic interactions between side substituents of α-tocopherol.
Gascoyne, M.; Miller, N.H.; Neymark, L.A.
2002-01-01
Samples of tuff from boreholes drilled into fault zones in the Exploratory Studies Facility (ESF) and relatively unfractured rock of the Cross Drift tunnels, at Yucca Mountain, Nevada, have been analysed by U-series methods. This work is part of a project to verify the finding of fast flow-paths through the tuff to ESF level, indicated by the presence of 'bomb' 36Cl in pore fluids. Secular radioactive equilibrium in the U decay series, (i.e. when the radioactivity ratios 234U/238U, 230Th/234U and 226Ra/230Th all equal 1.00) might be expected if the tuff samples have not experienced radionuclide loss due to rock-water interaction occurring within the last million years. However, most fractured and unfractured samples were found to have a small deficiency of 234U (weighted mean 234U/238U=0.95??0.01) and a small excess of 230Th (weighted mean 230Th/234U 1.10??0.02). The 226Ra/230Th ratios are close to secular equilibrium (weighted mean = 0.94??0.07). These data indicate that 234U has been removed from the rock samples in the last ???350 ka, probably by pore fluids. Within the precision of the measurement, it would appear that 226Ra has not been mobilized and removed from the tuff, although there may be some localised 226Ra redistribution as suggested by a few ratio values that are significantly different from 1.0. Because both fractured and unfractured tuffs show approximately the same deficiency of 234U, this indicates that pore fluids are moving equally through fractured and unfractured rock, More importantly, fractured rock appears not to be a dominant pathway for groundwater flow (otherwise the ratio would be more strongly affected and the Th and Ra isotopic ratios would likely also show disequilibrium). Application of a simple mass-balance model suggests that surface infiltration rate is over an order of magnitude greater than the rate indicated by other infiltration models and that residence time of pore fluids at ESF level is about 400 a. Processes of U sorption, precipitation and re-solution are believed to be occurring and would account for these anomalous results but have not been included in the model. Despite the difficulties, the U-series data suggest that fractured rock, specifically the Sundance and Drill Hole Wash faults, are not preferred flow paths for groundwater flowing through the Topopah Spring tuff and, by implication, rapid-flow, within 50 a, from the surface to the level of the ESF is improbable. ?? 2002 Elsevier Science Ltd. All rights reserved.
Volcano-ice interactions on Mars
NASA Technical Reports Server (NTRS)
Allen, C. C.
1979-01-01
Central volcanic eruptions beneath terrestrial glaciers have built steep-sided, flat-topped mountains composed of pillow lava, glassy tuff, capping flows, and cones of basalt. Subglacial fissure eruptions produced ridges of similar composition. In some places the products from a number of subglacial vents have combined to form widespread deposits. The morphologies of these subglacial volcanoes are distinctive enough to allow their recognition at the resolutions characteristic of Viking orbiter imagery. Analogs to terrestrial subglacial volcanoes have been identified on the northern plains and near the south polar cap of Mars. The polar feature provides probable evidence of volcanic eruptions beneath polar ice. A mixed unit of rock and ice is postulated to have overlain portions of the northern plains, with eruptions into this ground ice having produced mountains and ridges analogous to those in Iceland. Subsequent breakdown of this unit due to ice melting revealed the volcanic features. Estimated heights of these landforms indicate that the ice-rich unit once ranged from approximately 100 to 1200 m thick.
A unique approach to estimating lateral anisotropy in complex geohydrologic environments
Halford, K.J.; Campbell, B.
2004-01-01
Aquifers in fractured rock or karstic settings are likely to have anisotropic transmissivity distributions. Aquifer tests that are performed in these settings also we frequently affected by leakage from adjacent confining units. Finite-difference models such as MODFLOW are convenient tools for estimating the hydraulic characteristics of the stressed aquifer and adjacent confining units but are poor tools for the estimation of lateral anisotropy. This limitation of finite-difference methods can be overcome by application of the spin method, a technique whereby the positions of the observation wells are rotated about the production well to estimate anisotropy and orientation. Formal parameter estimation is necessary to analyze aquifer tests because of the number of parameters that we estimated. As a test, transmissivity, anisotropy, and orientation were successfully estimated for a simple hypothetical problem with known properties. The technique also was applied to estimate hydraulic properties of the Santee Limestone/Black Mingo (SL/BM) aquifer and a leaky confining unit beneath Charleston, South Carolina. A 9-day aquifer test with an average discharge of 644 1/min was analyzed numerically. Drawdowns in the SL/BM aquifer and confining unit were simulated with a 12-layer MODFLOW model that was discretized into 81 rows of 81 columns. Simulated drawdowns at seven observation wells that ranged from 23 to 2700 m from the production well were matched to measured drawdowns. Transmissivity estimated along the minor axis ranged from 10 to 15 m2/day and along the major axis ranged from 80 to 100 m2/day. The major axis of transmissivity was oriented along compass heading 116?? (degrees clockwise from north), which agrees with geologic interpretations. Vertical hydraulic conductivity and specific storage estimates for the overlying confining unit were 4 ?? 10-5m/day and 2 ?? 10-4 1/m, respectively. ?? 2004 International Association of Hydraulic Engineering and Research.
NASA Astrophysics Data System (ADS)
Grunder, Anita L.; Laporte, Didier; Druitt, Tim H.
2005-04-01
The abrupt changes in character of variably welded pyroclastic deposits have invited decades of investigation and classification. We conducted two series of experiments using ash from the nonwelded base of the rhyolitic Rattlesnake Tuff of Oregon, USA, to examine conditions of welding. One series of experiments was conducted at atmospheric pressure (1 At) in a muffle furnace with variable run times and temperature and another series was conducted at 5 MPa and 600 °C in a cold seal apparatus with variable run times and water contents. We compared the results to a suite of incipiently to densely welded, natural samples of the Rattlesnake Tuff. Experiments at 1 At required a temperature above 900 °C to produce welding, which is in excess of the estimated pre-eruptive magmatic temperature of the tuff. The experiments also yielded globular clast textures unlike the natural tuff. During the cold-seal experiments, the gold sample capsules collapsed in response to sample densification. Textures and densities that closely mimic the natural suite were produced at 5 MPa, 600 °C and 0.4 wt.% H 2O, over run durations of hours to 2 days. Clast deformation and development of foliation in 2-week runs were greater than in natural samples. Both more and less water reduced the degree of welding at otherwise constant run conditions. For 5 MPa experiments, changes in the degree of foliation of shards and of axial ratios of bubble shards and non-bubble (mainly platy) shards, are consistent with early densification related to compaction and partial rotation of shards into a foliation. Subsequent densification was associated with viscous deformation as indicated by more sintered contacts and deformation of shards. Sintering (local fusion of shard-shard contacts) was increasingly important with longer run times, higher temperatures, and greater pressures. During runs with high water concentrations, sintering was rare and adhesion between clasts was dominated by precipitation of sublimates in pore spaces. A few tenths wt.% H 2O in the rhyolite glass promote the development of welding by sharp reduction of glass viscosity. Large amounts of water inhibit welding by creating surface sublimates that interfere with sintering and may exert fluid pressure counter to lithostatic load if sintering and vapor-phase sublimates seal permeability in the tuff.
40Ar/(39)Ar dating of the Kapthurin Formation, Baringo, Kenya.
Deino, Alan L; McBrearty, Sally
2002-01-01
The(40)Ar/(39)Ar radiometric dating technique has been applied to tuffs and lavas of the Kapthurin Formation in the Tugen Hills, Kenya Rift Valley. Two variants of the(40)Ar/(39)Ar technique, single-crystal total fusion (SCTF) and laser incremental heating (LIH) have been employed to date five marker horizons within the formation: near the base, the Kasurein Basalt at 0.61+/-0.04 Ma; the Pumice Tuff at 0.543+/-0.004 Ma; the Upper Kasurein Basalt at 0.552+/-0.015 Ma; the Grey Tuff at 0.509+/-0.009 Ma; and within the upper part of the formation, the Bedded Tuff at 0.284+/-0.012 Ma. The new, precise radiometric age determination for the Pumice Tuff also provides an age for the widespread Lake Baringo Trachyte, since the Pumice Tuff is the early pyroclastic phase of this voluminous trachyte eruption. These results establish the age of fossil hominids KNM-BK 63-67 and KNM-BK 8518 at approximately 0.510-0.512 Ma, a significant finding given that few Middle Pleistocene hominids are radiometrically dated. The Kapthurin hominids are thus the near contemporaries of those from Bodo, Ethiopia and Tanzania. A flake and core industry from lacustrine sediments in the lower part of the formation is constrained by new dates of 0.55-0.52 Ma, a period during which the Acheulian industry, characterized by handaxes, is known throughout East Africa. Points, typical of the Middle Stone Age (MSA), are found in Kapthurin Formation sediments now shown to date to between 0.509+/-0.009 Ma and 0.284+/-0.012 Ma. This date exceeds previous estimates for the age of the MSA elsewhere in East Africa by 49 ka, and establishes the age of Acheulian to MSA transition for the region. Evidence of the use of the Levallois technique for the manufacture of both small flakes and biface preforms, the systematic production of blades, and the use and processing of red ochre also occurs in this interval. The presence of blades and red ochre at this depth is important as blades signify a high degree of technical competence and red ochre suggests symbolic behavior. Copyright 2002 Academic Press.
NASA Astrophysics Data System (ADS)
Geissman, J. W.; Holm, D.; Harlan, S. S.
2006-12-01
In the Teton River Valley, east of Rexburg, Idaho, the ca. 2.06 Ma Huckleberry Ridge Tuff is about 130 m thick, exceedingly well-exposed, and displays large-scale (100-150 m+ amplitude) rheomorphic folds, with eutaxitic fabrics that are parallel to inferred primary internal zonation (e.g. boundary between basal vitrophyre and overlying devitrified part of the pyroclastic deposit) as well as the basal contact with older deposits defining the fold geometries. One 150 m amplitude fold , is well-exposed on the north side of the valley about 2.5 km east of Teton Dam, has a NW trending fold axis and has a southwest limb that is overturned by about 45o. Samples were collected from 16 sites in this fold, on both limbs and the hinge area, to test the hypothesis that folding took place above maximum TRM blocking temperatures (about 580C). Progressive AF and thermal demagnetization both yield characteristic magnetizations of southwest to south-southwest declination and shallow inclination removed over a range of peak fields (typically between 20 and 80 mT) and laboratory unblocking temperatures (typically between 350 and 580C). The preliminary determination of an in situ mean based on the 16 sites is about D = 215°, I = -5°, a95= 5°, N = 16 site means). The direction of this ChRM is statistically indistinguishable from that reported by previous studies of the tuff (e.g. Reynolds, 1977, JGR; Byrd et al., 1994, JGR). The trend of the fold axis is orthogonal to this declination; the paleomagnetic fold test applied to these data is negative, with k values continuously decreasing upon unfolding, thus indicating that the entire structure in the tuff formed after the well-developed compaction fabric was acquired, at a temperature above maximum blocking temperatures of the ChRM. Post-compaction, high temperature deformation is consistent with field evidence indicating plastic secondary deformation of much of the tuff prior to devitrification. Rapid strain rates probably contributed to the formation of brittle features in the uppermost parts of the tuff (joints and fissures). AMS fabrics, at the site level, are typically very well-defined, with AMS foliations roughly parallel to compaction fabric, with K1 (maximum principal susceptibility) axes typically directed in a southwest-northeast orientation.
NASA Astrophysics Data System (ADS)
Török, Ákos; Barsi, Árpád; Görög, Péter; Lovas, Tamás; Bögöly, Gyula; Czinder, Balázs; Vásárhelyi, Balázs; Molnár, Bence; József Somogyi, Árpád
2017-04-01
Nearly vertical rhyolite tuff cliff faces are located in NE-Hungary representing rock fall hazard in the touristic region of Sirok. Larger blocks of the cliff have fallen in recent years menacing tourists and human lives. The rhyolite tuff, that forms the Castle Hill was formed during Miocene volcanism and comprises of brecciated lapilli tuffs and tuffs with intercalating ignimbritic horizons. The paper focuses on the 3D mapping of cliff faces and modeling of rock fall hazard. The topography and 3D model of the cliff was obtained by using GNSS supported terrestrial laser scanner and UAV. With imaging techniques of UAV a Triangulated Irregular Network (TIN) model was developed that contained triangles with 5-10 cm side lengths. GNSS supported terrestrial laser scanning allowed the observation with a resolution 1-5 cm of point spacing. The point clouds were further processed and with the combination of laser scanner and UAV data a 3D model of the studied cliff faces were obtained. Geological parameters for rock fall analyses included both field observations and laboratory tests. The lithotypes were identified on the field and were sampled for rock mechanical laboratory analyses. Joint- and fault system was mapped and visualized by using Rocscience Dip. EN test methods were used to obtain the density properties of various lithotypes of rhyolite tuff. Other standardized EN tests included ultrasonic pulse velocity, water absorption, indirect tensile strength (Brasilian), uniaxial compressive strength and modulus of elasticity of air dry and of water saturated samples. GSI values were denoted based on filed observations and rock mass properties. The stability analyses of cliff faces were made by using 2D FEM software (Phase 2). Cross sections were evaluated and global factor of safety was also calculated. The modeled displacements were in the order of few centimeters; however several locations were pinpointed where wedge failure and planar slip surfaces were identified as major cliff stability hazards. These were associated with the major joint systems dissecting cliff faces. This research have proved that the combined methods of field surveying, imaging techniques, data processing and FEM modelling with rock mechanical laboratory analyses allowed the identification of major rock fall hazards even at areas which are difficult to access.
1981-06-30
Range both consist of Paleozoic limestone and dolomite overlain by Tertiary ash-flow tuffs and undiffer- entiated volcanic rocks. The central portion...andesite, detrital material, volcanic tuff, pumice). FAULT - A plane or zone of fracture along which there has been * I displacement. FAULT BLOCK...D2850-70). To conduct the test, a cylindrical specimen of soil is surrounded by a fluid in a pressure chamber and subjected to an isotropic pressure . An
Hillhouse, J.W.; Ndombi, J.W.M.; Cox, A.; Brock, A.
1977-01-01
The magnetostratigraphy of the hominid-bearing sediments exposed east of Lake Turkana has been strengthened by new palaeomagnetic results. Ages obtained from several tuffs by the 40Ar/39Ar method suggest an approxmate match between the observed magnetozones and the geomagnetic polarity time scale; however, the palaeomagnetic results are also compatible with a younger chronology suggested by conventional K-Ar dating of the KBS Tuff. ?? 1977 Nature Publishing Group.
NASA Astrophysics Data System (ADS)
Mueller, Wulf U.
Ancient, shallow-water, pyroclastic deposits are identified in the Paleoproterozoic Ketilidian Mobile belt, southeast Greenland at Kangerluluk and in the Neoproterozoic Gariep belt of Namibia in the Schakalsberg Mountains. The 1-30 m-thick tuff and lapilli tuff deposits are interpreted as eruption-fed density current deposits emanating from tephra jets that collapsed under subaqueous conditions due to water ingress. The presence of 1-10 mm diameter armoured lapilli, with a central vesicular lapillus or shard, suggests the existence of high velocity, gas, water vapour, and particle-rich tephra jets. A transition from a gas-steam supported tephra jet to a cold water-laden density current without an intermediate stage of storage and remobilization is inferred. Interpretation of a 5-15 m-thick lapilli tuff breccia further supports explosive subaqueous mechanisms. Pyroclasts in the lapilli tuff breccia are interpreted as bombs emplaced ballistically. Multiple bomb sags produced by the impact of rounded juvenile crystal-rich pyroclasts required a water-exclusion zone formed either by a continuous magma uprush or multiple jet activity occurring concurrently, rather than as isolated tephra jets. Intercalated density current deposits indicate uprush events of limited duration and their recurrence with rapid collapse after each pulse. A new subaqueous Surtseyan-type eruption model is proposed based on observations from these two Precambrian study areas.
Hydrology of Yucca Mountain, Nevada
Flint, A.L.; Flint, L.E.; Kwicklis, E.M.; Bodvarsson, G.S.; Fabryka-Martin, J. M.
2001-01-01
Yucca Mountain, located in southern Nevada in the Mojave Desert, is being considered as a geologic repository for high-level radioactive waste. Although the site is arid, previous studies indicate net infiltration rates of 5-10 mm yr-1 under current climate conditions. Unsaturated flow of water through the mountain generally is vertical and rapid through the fractures of the welded tuffs and slow through the matrix of the nonwelded tuffs. The vitric-zeolitic boundary of the nonwelded tuffs below the potential repository, where it exists, causes perching and substantial lateral flow that eventually flows through faults near the eastern edge of the potential repository and recharges the underlying groundwater system. Fast pathways are located where water flows relatively quickly through the unsaturated zone to the water table. For the bulk of the water a large part of the travel time from land surface to the potential repository horizon (~300 m below land surface) is through the interlayered, low fracture density, nonwelded tuff where flow is predominately through the matrix. The unsaturated zone at Yucca Mountain is being modeled using a three-dimensional, dual-continuum numerical model to predict the results of measurements and observations in new boreholes and excavations. The interaction between experimentalists and modelers is providing confidence in the conceptual model and the numerical model and is providing researchers with the ability to plan further testing and to evaluate the usefulness or necessity of further data collection.
NASA Astrophysics Data System (ADS)
Naeser, C. W.; Crochet, J.-Y.; Jaillard, E.; Laubacher, G.; Mourier, T.; Sigé, B.
The results of five zircon fission-track ages of volcanic tuffs intercalated within the continental deposits of the Bagua syncline (northern Peru) are reported. These 2500-meter-thick deposits overlie mid-Campanian to lower Maastrichtian fine-grained red beds (Fundo El Triunfo Formation). The disconformable fluvial conglomerates of the Rentema Formation are associated with a 54 Ma tuff (upper Paleocene-lower Eocene?) and would reflect the Inca-1 tectonic phase. The Sambimera Formation (Eocene to mid-Miocene) is a coarsening-upward sequence (from lacustrine to fluvial) that contains three volcanic tuffs of 31, 29, and 12 Ma, respectively. A probable stratigraphic gap, upper Eocene-lower Oligocene, would be related to the late Eocene Inca-2 phase. Neither deformation nor sedimentary discontinuity has been recognized so far. However, the lacustrine to fluvial transition could relate to the late Oligocene Aymara tectonic phase. The unconformable fanglomerates and fluvial deposits of the San Antonio Formation contain in their upper part a 9 Ma tuff (mid-to upper Miocene), and thier base records a major tectonic event (Quechua-2 phase?). The unconformable fanglomerates of the Tambopara Formation date the folding of the Bagua syncline, which could be ascribed to the latest Miocene Quechua-3 tectonics. These formations are correlative with comparable deposits in the sub-Andean basins, suggesting that these eastern areas underwent strong tectonic subsidence of the foreland basin type since mid-Miocene times.
Naeser, C.W.; Crochet, J.-Y.; Jaillard, E.; Laubacher, G.; Mourier, T.; Sige, B.
1991-01-01
The results of five zircon fission-track ages of volcanic tuffs intercalated within the continental deposits of the Bagua syncline (northern Peru) are reported. These 2500-meter-thick deposits overlie mid-Campanian to lower Maastrichtian fine-grained red beds (Fundo El Triunfo Formation). The disconformable fluvial conglomerates of the Rentema Formation are associated with a 54 Ma tuff (upper Paleocene-lower Eocene?) and would reflect the Inca-1 tectonic phase. The Sambimera Formation (Eocene to mid-Miocene) is a coarsening-upward sequence (from lacustrine to fluvial) that contains three volcanic tuffs of 31, 29, and 12 Ma, respectively. A probable stratigraphic gap, upper Eocene-lower Oligocene, would be related to the late Eocene Inca-2 phase. Neither deformation nor sedimentary discontinuity has been recognized so far. However, the lacustrine to fluvial transition could relate to the late Oligocene Aymara tectonic phase. The unconformable fanglomerates and fluvial deposits of the San Antonio Formation contain in their upper part a 9 Ma tuff (mid-to upper Miocene), and thier base records a major tectonic event (Quechua-2 phase?). The unconformable fanglomerates of the Tambopara Formation date the folding of the Bagua syncline, which could be ascribed to the latest Miocene Quechua-3 tectonics. These formations are correlative with comparable deposits in the sub-Andean basins, suggesting that these eastern areas underwent strong tectonic subsidence of the foreland basin type since mid-Miocene times. ?? 1991.
Wicks, C.M.; Herman, J.S.
1994-01-01
In west-central Florida, sections of the Upper Floridan aquifer system range in character from confined to leaky to unconfined. The confining unit is the Hawthorn Formation, a clay-rich sequence. The presence or absence of the Hawthorn Formation affects the geochemical evolution of the ground water in the Upper Floridan aquifer system. Mass-balance and mass-transfer models suggest that, in unconfined areas, the geochemical reactions are dolomite dissolution, ion exchange (Mg for Na, K), sulfate reduction, calcite dissolution, and CO2 exchange. In the areas in which the Hawthorn Formation is leaky, the evolution of the ground water is accounted for by ion exchange, sulfate reduction, calcite dissolution, and CO2 exchange. In the confined areas, no ion exchange and only limited sulfate reduction occur, and the chemical character of the ground water is consistent with dolomite and gypsum dissolution, calcite precipitation, and CO2 ingassing. The Hawthorn Formation acts both as a physical barrier to the transport of CO2 and organic matter and as a source of ion-exchange sites, but the carbonate-mineral reactions are largely unaffected by the extent of confinement of the Upper Floridan aquifer. ?? 1994.
Late Paleozoic transpression in Buenos Aires and northeast Patagonia ranges, Argentina
NASA Astrophysics Data System (ADS)
Rossello, E. A.; Massabie, A. C.; López-Gamundí, O. R.; Cobbold, P. R.; Gapais, D.
1997-12-01
Paleozoic sediments are present in three regions in eastern central Argentina: (1) the Sierras Australes of Buenos Aires, (2) Sierras Septentrionales of Buenos Aires and (3) Northeast Patagonia. All of these deposits share a common deformational imprint imparted by late Paleozoic Gondwanan deformation. Exposures of these rocks are scattered, variably deformed, and isolated by younger sediments deposited in basins related to the Mesozoic through Tertiary opening of the South Atlantic such as the offshore Colorado Basin. The Sierras Australes of Buenos Aires outcrops are the best preserved. They are mostly located along the Sierras Australes foldbelt, with minor outliers distributed in the adjacent Claromec-basin. The Tunas Formation (early-early late? Permian) is the uppermost unit of the Pillahuincó Group (late Carboniferous-Permian) and is crucial to the understanding of the tectono-sedimentary evolution of the region during the late Paleozoic. The underlying units of the Pillahuincó Group (Sauce Grande, Piedra Azul and Bonete Formations) exhibit a depositional and compositional history characterized by glaciomarine sedimentation and postglacial transgression. They are also characterized by rather uniform quartz-rich compositions indicative of a cratonic provenance from the La Plata craton to the NE. In contrast, the sandstone-rich Tunas Formation has low quartz contents, and abundant volcanic and metasedimentary fragments; paleocurrents are consistently from the SW. Glassrich tuffs are interbedded with sandstone in the upper half of the Tunas Formation. The age of the deformation in the Sierras Australes is Permian and early-middle Triassic. This is based on metamorphic events indicated by formation of illite at 282 ± 3 Ma, 273 ± 8 Ma, 265 ± 3 Ma, and 260 ± 3 Ma ( {K}/{Ar} illite) in the Silurian Curamalal Group. Evidence of syntectonic magmatism is provided by a radiometric date of 245 ± 12 Ma ( {K}/{Ar} hornblende) for the López Lecube Granite, immediately west of the Sierras Australes. In the Sierras Septentrionales of Buenos Aires, Precambrian through early Paleozoic deposits of La Tinta, Sierras Bayas, Las Aguilas and Balcarce Formations rest on Precambrian crystalline basement of the La Plata craton. These exposed rocks are affected by subordinate, right lateral wrench faulting; some thrusting indicates tectonic transport toward the NE. In northeast Patagonia (Sierra Grande region) synkinematic deformation of early Permian (261 ± 5 Ma, {Rb}/{Sr} whole rock) age has been identified in Silurian metasediments of the Sierra Grande Formation. Bands of deformation in Sierra Grande quartzites indicate right lateral wrenching in a N-S direction. Contraction in a NE-SW direction is evidenced by folding. Three stages of tectonic evolution can be discerned for the above regions: (1) Early Paleozoic platform sedimentation, punctuated by episodes of accelerated subsidence during the Silurian and early Devonian, as shown by transgressive episodes, (2) late Paleozoic sedimentation and deformation, and (3) Meso-Cenozoic extensional inversion due to the South Atlantic opening. The late Paleozoic sedimentation and deformation (stage 2) includes late Carboniferous-earliest Permian glacial deposits of the Sierras Australes and Colorado offshore basin, deposited during an initial phase of extension, and cratonward foreland subsidence triggered sedimentation of the synorogenic deposits of the Permian Tunas Formation. Tuffs are intercalated in the upper half of this unit. These tuffs are associated with the silicic volcanism along the Andes and Patagonia (Choiyoi magmatic province) that peaked between the late early Permian and late Permian. Likewise, the first widespread appearance of tuffs in the Karoo basin is in the Whitehill Formation, of late early Permian (260 Ma) age. The deformation described in this paper can be considered as part of a large scale intracontinental deformation in SW Gondwanaland inboard of an Andean-type compressive margin. This deformation is characterized by transpression (right lateral wrenching) combined with overthrusting to the NE and N-S horizontal contraction.
High-Energy Cosmic Ray Self-Confinement Close to Extra-Galactic Sources.
Blasi, Pasquale; Amato, Elena; D'Angelo, Marta
2015-09-18
The ultrahigh-energy cosmic rays observed on the Earth are most likely accelerated in extra-Galactic sources. For the typical luminosities invoked for such sources, the electric current associated to the flux of cosmic rays that leave them is large. The associated plasma instabilities create magnetic fluctuations that can efficiently scatter particles. We argue that this phenomenon forces cosmic rays to be self-confined in the source proximity for energies E
28 CFR 541.49 - Review of control unit placement.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Once every 30 days, the control unit team, comprised of the control unit manager and other members... required to attend the team meeting in order to be eligible for the previous month's stay in the control unit to be credited towards the projected duration of confinement in that unit. The unit team shall...
NASA Astrophysics Data System (ADS)
Glagoleva, A. A.; Vasilevskaya, V. V.; Yoshikawa, K.; Khokhlov, A. R.
2013-12-01
In general, bio-macromolecules are composed of hydrophilic and hydrophobic moieties and are confined within small cavities, such as cell membranes and intracellular organelles. Here, we studied the self-organization of macromolecules having groups with different affinities to solvents under spherical nano-scale confinement by means of computer modeling. It is shown that depending on the interaction parameters of monomer units composed of side- and main-chain monomer groups along a single linear macromolecule and on cavity size, such amphiphilic polymers undergo the conformational transitions between hollow nanospheres, rod-like and folded cylindrical structures, and a necklace conformation with and without a particular ordering of beads. The diagram of the conformations in the variables the incompatibility parameter of monomer units and the cavity radius is constructed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connolly, J.R.; Keil, K.; Mansker, W.L.
1984-10-01
This report summarizes the detailed geologic characterization of samples of bed-contact zones and surrounding nonwelded bedded tuffs, both within Tunnel Bed 5, that are exposed in the G-Tunnel complex beneath Rainier Mesa on the Nevada Test Site (NTS). Original planning studies treated the bed-contact zones in Tunnel Bed 5 as simple planar surfaces of relatively high permeability. Detailed characterization, however, indicates that these zones have a finite thickness, are depositional in origin, vary considerably over short vertical and horizontal distances, and are internally complex. Fluid flow in a sequence of nonwelded zeolitized ash-flow or bedded tuffs and thin intervening reworkedmore » zones appears to be a porous-medium phenomenon, regardless of the presence of layering. There are no consistent differences in either bulk composition or detailed mineralogy between bedded tuffs and bed-contact zones in Tunnel Bed 5. Although the original bulk composition of Tunnel Bed 5 was probably peralkaline, extensive zeolitization has resulted in a present peraluminous bulk composition of both bedded tuffs and bed-contact zones. The major zeolite present, clinoptilolite, is intermediate (Ca:K:Na = 26:35:39) and effectively uniform in composition. This composition is similar to that of clinoptilolite from the tuffaceous beds of Calico Hills above the static water level in hole USW G-1, but somewhat different from that reported for zeolites from below the static water level in USW G-2. Tunnel Bed 5 also contains abundant hydrous manganese oxides. The similarity in composition of the clinoptilolites from Tunnel Bed 5 and those above the static water level at Yucca Mountain indicates that many of the results of nuclide-migration experiments in Tunnel Bed 5 would be transferrable to zeolitized nonwelded tuffs above the static water level at Yucca Mountain.« less
Geohydrology and simulated ground-water flow in an irrigated area of northwestern Indiana
Arihood, L.D.; Basch, M.E.
1994-01-01
Water for irrigation in parts of Newton and Jasper Counties and adjacent areas of northwestern Indiana is pumped mostly from the carbonate- bedrock aquifer that underlies glacial drift. To help in managing the ground-water resources of the area, a three-dimensional ground-water model was developed and tested with hydrologic data collected during 1986 and 1988. Two major aquifers and a confining unit were identified. The surficial unconfined outwash aquifer consists of sand and some gravel. Saturated thickness averages about 30 feet. Estimated values of horizontal hydraulic conductivity and storage coefficient are 350 feet per day and 0.07, respectively. The generally continuous confining unit beneath the outwash aquifer is composed predominantly of till and lacustrine silt and clay and is 0 to 125 feet thick. The carbonate-bedrock aquifer is composed of Silurian and Devonian dolomitic limestone; dolomite and has a median transmissivity of 2,000 feet squared per day. A nine-layer digital model was developed to simulate flow in the ground-water system. The mean absolute errors for simulated water levels in the bedrock aquifer ranged from 5 to 7 feet for two recent periods of irrigation. The component of the flow system that most affects water-level drawdowns in the bedrock aquifer is the confining unit which controls the rate of leakage to the bedrock aquifer. The model is most accurate in areas for which data for confining-unit thickness and bedrock water levels are available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spane, F.A. Jr.; Vermeul, V.R.
Pacific Northwest Laboratory, as part of the Hanford Site Ground-Water Surveillance Project, examines the potential for offsite migration of contamination within the upper basalt confined aquifer system. For the past 40 years, hydrologic testing of the upper basalt confined aquifer has been conducted by a number of Hanford Site programs. Hydraulic property estimates are important for evaluating aquifer flow characteristics (i.e., ground-water flow patterns, flow velocity, transport travel time). Presented are the first comprehensive Hanford Site-wide summary of hydraulic properties for the upper basalt confined aquifer system (i.e., the upper Saddle Mountains Basalt). Available hydrologic test data were reevaluated usingmore » recently developed diagnostic test analysis methods. A comparison of calculated transmissivity estimates indicates that, for most test results, a general correspondence within a factor of two between reanalysis and previously reported test values was obtained. For a majority of the tests, previously reported values are greater than reanalysis estimates. This overestimation is attributed to a number of factors, including, in many cases, a misapplication of nonleaky confined aquifer analysis methods in previous analysis reports to tests that exhibit leaky confined aquifer response behavior. Results of the test analyses indicate a similar range for transmissivity values for the various hydro-geologic units making up the upper basalt confined aquifer. Approximately 90% of the calculated transmissivity values for upper basalt confined aquifer hydrogeologic units occur within the range of 10{sup 0} to 10{sup 2} m{sup 2}/d, with 65% of the calculated estimate values occurring between 10{sup 1} to 10{sup 2} m{sup 2}d. These summary findings are consistent with the general range of values previously reported for basalt interflow contact zones and sedimentary interbeds within the Saddle Mountains Basalt.« less
Bibliography of literature pertaining to Long Valley Caldera and associated volcanic fields
Ewert, John W.; Harpel, Christopher J.; Brooks, Suzanna K.; Marcaida, Mae
2011-01-01
On May 25-27, 1980, Long Valley caldera was rocked by four M=6 earthquakes that heralded the onset of a wave of seismic activity within the caldera which has continued through the present. Unrest has taken the form of seismic swarms, uplift of the resurgent dome, and areas of vegetation killed by increased CO2 emissions, all interpreted as resulting from magma injection into different levels beneath the caldera, as well as beneath Mammoth Mountain along the southwest rim of the caldera. Continuing economic development in the Mammoth Lakes area has swelled the local population, increasing the risk to people and property if an eruption were to occur. The U.S. Geological Survey (USGS) has been monitoring geophysical activity in the Long Valley area since the mid-1970s and continues to track the unrest in real time with a sophisticated network of geophysical sensors. Hazards information obtained by this monitoring is provided to local, State, and Federal officials and to the public through the Long Valley Observatory. The Long Valley area also was scientifically important before the onset of current unrest. Lying at the eastern foot of the Sierra Nevada, the deposits from this active volcanic system have provided fertile ground for research into Neogene tectonics, Quaternary geology and geomorphology, regional stratigraphy, and volcanology. In the early 1970s, intensive studies of the area began through the USGS Geothermal Investigations Program, owing to the presence of a large young silicic volcanic system. The paroxysmal eruption of Long Valley caldera about 760,000 years ago produced the Bishop Tuff and associated Bishop ash. The Bishop Tuff is a well-preserved ignimbrite deposit that has continued to provide new and developing insights into the dynamics of ignimbrite-forming eruptions. Another extremely important aspect of the Bishop Tuff is that it is the oldest known normally magnetized unit of the Brunhes Chron. Thus, the age of the Bishop Tuff is used to define the beginning of the Brunhes Chron and helps constrain the Brunhes-Matuyama boundary. The Bishop ash, which was dispersed as far east as Nebraska, Kansas, and Texas, provides an important tephrostratigraphic marker throughout the Western United States. The obsidian domes of both the Mono and Inyo Craters, which were produced by rhyolitic eruptions in the past 40,000 years, have been well studied, including extensive scientific drilling through the domes. Exploratory drilling to 3-km depth on the resurgent dome and subsequent instrumentation of the Long Valley Exploratory Well (LVEW) have led to a number of important new insights. Scientific drilling also has been done within the Casa Diablo geothermal field, which, aside from drilling, has been commercially developed and is currently feeding 40 MW of power into the Southern California Edison grid. Studies in all the above-mentioned volcanic fields have contributed to the extensive scientific literature published on the Long Valley region. Although most of this scientific literature has been published since 1970, a significant amount of historical literature extends backward to the late 1800s. The purpose of this bibliography is to compile references pertaining to the Long Valley region from all time periods and all Earth science fields into a single listing, thus providing an easily accessible guide to the published literature for current and future researchers.
1984-03-01
containing flow banding, light-gray felsite, felsic- porphyries , crystal tuffs, and rare mafic porphyries and crystal tuffs (Conley and Bain 1965:12Z). The...goods are also present in the form of glass beads, gunflints, iron axes, copper hawk bells and white clay trade pipes. HISTORICAL BACKGROUND The...points manufactured on two rock types occur most frequently: andesitic felsite in the lower valley and grey latite porphyry in the upper valley. The
Evidence of Rapid Localized Groundwater Transport in Volcanic Tuffs Beneath Yucca Mountain, Nevada
NASA Astrophysics Data System (ADS)
Freifeld, B.; Walker, J.; Doughty, C.; Kryder, L.; Gilmore, K.; Finsterle, S.; Sampson, J.
2006-12-01
At Yucca Mountain, Nevada, the proposed location for a national high-level nuclear waste repository radionuclides, if released from breached waste storage canisters, could make their way down through the unsaturated zone (where the repository would be located) into the underlying groundwater and eventually back to the biosphere (i.e., where they could adversely affect human health). The compliance boundary, 18 km south of the proposed repository, is defined as the location where a human being using groundwater would be maximally exposed to radionuclides outside of an exclusion zone set around the repository. It is thus important to predict how these radionuclides would be transported by the groundwater flow, and to predict both the concentration of and the rate at which any leaked radionuclides would arrive at the compliance boundary. We recently conducted a study of groundwater flux in the saturated zone through the Crater Flat Group, in a wellbore 15 km south of the proposed repository. The Crater Flat Group, a sequence of ash-flow tuff formations, is laterally extensive beneath the footprint of the proposed repository. Because of its intense fracturing and high permeabilities, the Bullfrog tuff is the primary unit within the Crater Flat Group through which radionuclides would be transported, as indicated by groundwater models. In a new wellbore, NC-EWDP- 24PB, we conducted flowing electrical conductivity logging (FEC), an open-wellbore logging technique, to identify flowing fractures prior to wellbore completion. While the FEC logs have identified transmissive zones, quantitative interpretation of the FEC results was difficult because differences in hydraulic heads in different flowing intervals created significant intraborehole fluid flow. The well was subsequently backfilled and completed with a distributed thermal perturbation sensor (DTPS), which introduces a thermal pulse to the wellbore and uses the thermal transient to estimate groundwater flux. Corroborating FEC observations, the DTPS has identified two flowing intervals within the Bullfrog tuff that are each approximately 20 m thick and exhibit an average specific discharge of 50 m/yr. Assuming a fracture porosity of 1%, groundwater velocities are estimated to be on the order of 5 to 10 km/yr. While these results are for one borehole, heterogeneity in the flow system may play a significant role in determining regional groundwater flow. Additional data, including geochemical and isotopic, will be needed to provide a more complete picture of the origin of the groundwater in these fast flow paths, and aid in the determination of the lateral extent of the identified flowing intervals. This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and Nye County Cooperative Agreement CA DE-FC28-02RW12163.
Foley, Nora K.; Hofstra, Albert H.; Lindsey, David A.; Seal, Robert R.; Jaskula, Brian W.; Piatak, Nadine M.
2012-01-01
Current global and domestic mineral resources of beryllium (Be) for industrial uses are dominated by ores produced from deposits of the volcanogenic Be type. Beryllium deposits of this type can form where hydrothermal fluids interact with fluorine and lithophile-element (uranium, thorium, rubidium, lithium, beryllium, cesium, tantalum, rare earth elements, and tin) enriched volcanic rocks that contain a highly reactive lithic component, such as carbonate clasts. Volcanic and hypabyssal high-silica biotite-bearing topaz rhyolite constitutes the most well-recognized igneous suite associated with such Be deposits. The exemplar setting is an extensional tectonic environment, such as that characterized by the Basin and Range Province, where younger topaz-bearing igneous rock sequences overlie older dolomite, quartzite, shale, and limestone sequences. Mined deposits and related mineralized rocks at Spor Mountain, Utah, make up a unique economic deposit of volcanogenic Be having extensive production and proven and probable reserves. Proven reserves in Utah, as reported by the U.S. Geological Survey National Mineral Information Center, total about 15,900 tons of Be that are present in the mineral bertrandite (Be4Si2O7(OH)2). At the type locality for volcanogenic Be, Spor Mountain, the tuffaceous breccias and stratified tuffs that host the Be ore formed as a result of explosive volcanism that brought carbonate and other lithic fragments to the surface through vent structures that cut the underlying dolomitic Paleozoic sedimentary rock sequences. The tuffaceous sediments and lithic clasts are thought to make up phreatomagmatic base surge deposits. Hydrothermal fluids leached Be from volcanic glass in the tuff and redeposited the Be as bertrandite upon reaction of the hydrothermal fluid with carbonate clasts in lithic-rich sections of tuff. The localization of the deposits in tuff above fluorite-mineralized faults in carbonate rocks, together with isotopic evidence for the involvement of magmatic water in an otherwise meteoric water-dominated hydrothermal system, indicate that magmatic volatiles contributed to mineralization. At the type locality, hydrothermal alteration of dolomite clasts formed layered nodules of calcite, opal, fluorite, and bertrandite, the latter occurring finely intergrown with fluorite. Alteration assemblages and elemental enrichments in the tuff and surrounding volcanic rocks include regional diagenetic clays and potassium feldspar and distinctive hydrothermal halos of anomalous fluorine, lithium, molybdenum, niobium, tin, and tantalum, and intense potassium feldspathization with sericite and lithium-smectite in the immediate vicinity of Be ore. Formation of volcanogenic Be deposits is due to the coincidence of multiple factors that include an appropriate Be-bearing source rock, a subjacent pluton that supplied volatiles and heat to drive convection of meteoric groundwater, a depositional site characterized by the intersection of normal faults with permeable tuff below a less permeable cap rock, a fluorine-rich ore fluid that facilitated Be transport (for example, BeF42- complex), and the existence of a chemical trap that caused fluorite and bertrandite to precipitate at the former site of carbonate lithic clasts in the tuff.
28 CFR 541.41 - Institutional referral.
Code of Federal Regulations, 2010 CFR
2010-07-01
... INMATE DISCIPLINE AND SPECIAL HOUSING UNITS Control Unit Programs § 541.41 Institutional referral. (a) The Warden shall submit a recommendation for referral of an inmate for placement in a control unit to... following factors in a recommendation for control unit placement. (1) Any incident during confinement in...
Experimental investigation of time dependent behavior of welded Topopah Spring Tuff
NASA Astrophysics Data System (ADS)
Ma, Lumin
Four types of laboratory tests have been performed. Specimens were attained from four lithophysal zones of the welded Topopah Spring Tuff unit at Yucca Mountain, Nevada: upper lithophysal, middle nonlithophysal, lower lithophysal and lower nonlithophysal zones. Two types of tests are conducted to study time-dependent behavior: constant strain rate and creep tests. Sixty-five specimens from the middle nonlithophysal zone were tested at six strain rates: 10-2, 10-4, 10-5, 10-6, 10-7, and 10-8 s-1. Test durations range from 2 seconds to 7 days. Fourteen specimens from middle nonlithophysal, lower lithophysal and lower nonlithophysal zones are creep tested by incremental stepwise loading. All the tests are conducted under uniaxial compression at room temperature and humidity. Specimens exhibit extremely brittle fracture and fail by axial splitting, and show very little dilatancy if any. It is assumed that microfracturing dominates the inelastic deformation and failure of the tuff. Nonlinear regression is applied to the results of the constant strain rate tests to estimate the relations between peak strength, peak axial strain, secant modulus and strain rate. All three these parameters decrease with a decrease of strain rate and follow power functions: sigmapeak = 271.37 3˙0.0212 0.0212, epsilonpeak = 0.006 3˙0.0083 , ES = 41985.4 3˙0.015 . Secant modulus is introduced mainly as a tool to analyze strain rate dependent axial strain. Two threshold stresses define creep behavior. Below about 50% of peak strength, a specimen does not creep. Above about 94% of peak strength, a specimen creeps at an accelerating rate. Between the two threshold stresses, a power law relates strain rate and stress. One hundred fifty-eight Brazilian (Indirect tensile splitting) tests have been performed at six different constant strain rates. Nineteen lithophysal specimens were tested in uniaxial compression to study their fracture pattern. These specimens have a far less brittle failure mode. They slowly crumble, collapse, and maintain considerable relative strength beyond the peak. Due to the presence of multiple relatively large lithophysal cavities, they are far weaker and softer than the nonlithophysal specimens.
Kingsbury, James A.; Barlow, Jeannie R.; Jurgens, Bryant; McMahon, Peter B.; Carmichael, John K.
2017-01-01
Wells along two regional flow paths were sampled to characterize changes in water quality and the vulnerability to contamination of the Memphis aquifer across a range of hydrologic and land-use conditions in the southeastern United States. The flow paths begin in the aquifer outcrop area and end at public supply wells in the confined parts of the aquifer at Memphis, Tennessee. Age-date tracer (e.g. SF6, 3H, 14C) data indicate that a component of young water is present in the aquifer at most locations along both flow paths, which is consistent with previous studies at Memphis that documented leakage of shallow water into the Memphis aquifer locally where the overlying confining unit is thin or absent. Mixtures of young and old water were most prevalent where long-term pumping for public supply has lowered groundwater levels and induced downward movement of young water. The occurrence of nitrate, chloride and synthetic organic compounds was correlated to the fraction of young water along the flow paths. Oxic conditions persisted for 10 km or more down dip of the confining unit, and the presence of young water in confined parts of the aquifer suggest that contaminants such as nitrate-N have the potential for transport. Long-term monitoring data for one of the flow-path wells screened in the confined part of the aquifer suggest that the vulnerability of the aquifer as indicated by the fraction of young water is increasing over time.
NASA Astrophysics Data System (ADS)
Kingsbury, James A.; Barlow, Jeannie R. B.; Jurgens, Bryant C.; McMahon, Peter B.; Carmichael, John K.
2017-09-01
Wells along two regional flow paths were sampled to characterize changes in water quality and the vulnerability to contamination of the Memphis aquifer across a range of hydrologic and land-use conditions in the southeastern United States. The flow paths begin in the aquifer outcrop area and end at public supply wells in the confined parts of the aquifer at Memphis, Tennessee. Age-date tracer (e.g. SF6, 3H, 14C) data indicate that a component of young water is present in the aquifer at most locations along both flow paths, which is consistent with previous studies at Memphis that documented leakage of shallow water into the Memphis aquifer locally where the overlying confining unit is thin or absent. Mixtures of young and old water were most prevalent where long-term pumping for public supply has lowered groundwater levels and induced downward movement of young water. The occurrence of nitrate, chloride and synthetic organic compounds was correlated to the fraction of young water along the flow paths. Oxic conditions persisted for 10 km or more down dip of the confining unit, and the presence of young water in confined parts of the aquifer suggest that contaminants such as nitrate-N have the potential for transport. Long-term monitoring data for one of the flow-path wells screened in the confined part of the aquifer suggest that the vulnerability of the aquifer as indicated by the fraction of young water is increasing over time.
Ultra-high-Q three-dimensional photonic crystal nano-resonators.
Tang, Lingling; Yoshie, Tomoyuki
2007-12-10
Two nano-resonator modes are designed in a woodpile three-dimensional photonic crystal by the modulation of unit cell size along a low-loss optical waveguide. One is a dipole mode with 2.88 cubic half-wavelengths mode volume. The other is a quadrupole mode with 8.3 cubic half-wavelengths mode volume. Light is three-dimensionally confined by a complete photonic band gap so that, in the analyzed range, the quality factor exponentially increases as the increase in the number of unit cells used for confinement of light.
In-Situ Tuff Water Migration/Heater Experiment: posttest thermal analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eaton, R.R.; Johnstone, J.K.; Nunziato, J.W.
This report describes posttest laboratory experiments and thermal computations for the In-Situ Tuff Water Migration/Heater Experiment that was conducted in Grouse Canyon Welded Tuff in G-Tunnel, Nevada Test Site. Posttest laboratory experiments were designed to determine the accuracy of the temperatures measured by the rockwall thermocouples during the in-situ test. The posttest laboratory experiments showed that the measured in-situ rockwall temperatures were 10 to 20{sup 0}C higher than the true rockwall temperatures. The posttest computational results, obtained with the thermal conduction code COYOTE, were compared with the experimentally obtained data and with calculated pretest results. Daily heater output power fluctuationsmore » (+-4%) caused by input power line variations and the sensitivity of temperature to heater output power required care in selecting the average heater output power values used in the code. The posttest calculated results compare reasonably well with the experimental data. 10 references, 14 figures, 5 tables.« less
Wynn, J.C.; Luce, R.W.
1984-01-01
The Haile mine is the largest gold producer in the eastern USA. It is postulated to be a strata-bound gold deposit formed by a fumarolic or hot-spring system in felsic tuffs of Cambrian(?) age. Two mineralized zones occur, each composed of a sericitic part overlain by a siliceous part. Au is concentrated in especially silicified horizons and in pyrite horizons in the siliceous part of each mineralized zone. The tuffs are metamorphosed to greenschist facies and intruded by diabase and other mafic dykes. Weathering is deep and the mineralized tuffs are partly covered by coastal-plain sediments. It is suggested that certain geophysical methods may be useful in mapping and exploring Haile-type deposits in the Carolina slate belt. Very low frequency electromagnetic resistivity surveys help define alteration and silicified zones. A magnetic survey found sharp highs that correlate with unexposed mafic and ultramafic dykes. Induced polarization proved useful in giving a two-dimensional view of the structure.-G.J.N.
Undergraduate Field Courses in Volcanology at the University of California, Davis
NASA Astrophysics Data System (ADS)
Schiffman, P.
2002-05-01
At U.C. Davis, undergraduate Geology majors have two opportunities to participate in extended field courses in volcanology: (1) all majors spend one week in a volcanology module during their six-week, "capstone" Summer Field Geology (GEL 110) course, and (2) all majors may enroll in a two-week, Introductory Volcanology course (GEL 138) offered each summer at Kilauea Volcano. The former course is required of all majors in order to fulfill their B.S. degree requirements, whereas the latter fulfills upper division elective units for either the B.A. or B.S. degree in Geology. The volcanology module in GEL 110 is based at U.C.'s White Mountain Research Station in Bishop, California and includes four separate exercises: (1) mapping patterns of consolidation of tephra at the Black Point tuff cone in order to understand the processes of palagonitization, (2) contouring graphic mean and sorting for tephra collected from the Red Cones cinder cone to understand Strombolian processes, (3) measuring a stratigraphic section of the Bishop Tuff in the lower Owens River Gorge to differentiate cooling units in ignimbrites, and (4) mapping the relationships amongst pumice units and obsidian at the Glass Mountain flow to understand evolution of silicic flows. Most exercises require laboratory measurements for grain size or density (Mayfield and Schiffman, 1998). GEL 138, based at the Kilauea Military Camp, includes a daily schedule of morning lectures and afternoon field excursions and exercises. Exercises include: (1) measuring a stratigraphic section of the Keanakako'i Ash Member to interpret pre-1790 periods of hydrovolcanism, (2) measuring and contouring ground temperatures in the Steaming Bluffs thermal area (3) conducting granulometric measurements of tephra from the Nanawale sand hills to understand the genesis of littoral cones, (4) mapping of soil pH around the perimeter of Kilauea Caldera to illuminate climatic effects (i.e.,vog and wind patterns) on the summit region, and (5) mapping lava flows from the SW rift zone of Mauna Loa at South Point. Reference: Mayfield, J. and Schiffman, P., (1998) Measuring the density of porous volcanic rocks in the field using a Saran coating. Journal of Geological Education 46, 460-464.
NASA Astrophysics Data System (ADS)
Veglio, E.; Ugalde, H. A.; Lenauer, I.; Milkereit, B.
2017-12-01
Magnetic anomalies near areas of known base metal sulphide mineralization were seen in regional airborne data from the Bay of Chaleur in northern New Brunswick, Canada. A ground magnetic investigation was performed over this area to better characterize the source of these regional anomalies and to investigate their relation to the sulphide mineralization. The mineralization is hosted in Late Silurian to Early Devonian volcano-sedimentary stratigraphy and has been identified in several boreholes. This volcano-sedimentary stratigraphy was deposited in a half-graben shallow marine setting, where hydrothermal fluids transported sulphide mineralization through a fault network. The ground magnetic surveys show that two anomalous regions characterized by a total magnetic field of 54,100 nT and 55,500 nT, whereas the shallow alteration associated with mineralized zones are approximately 53,450 nT. These are significant magnetic anomalies are close to 700 nT and 2,000 nT greater than the surrounding area. In order to compare the ground data to the existing airborne, the ground magnetic data was upward continued to a height of 100 meters. The few occurrences of bedrock outcrops on the property confirm the occurrence of rhyolites and tuffs, as well as the presence of sulphide mineralization. However, much of the study area is densely vegetated and covered by glacial sediments of up to 25 meters thickness. Thus, to better interpret the geology and occurrence of the sulphide mineralization, several boreholes were examined on the basis of magnetic susceptibility and further correlated with the borehole logs and observations of lithologies in core. It was found that an individual mafic unit has several orders of magnitude higher magnetic susceptibility than the alteration zones and felsic tuffs where mineralization occurs. This indicates that the magnetic anomaly identified both in the regional magnetic survey and the ground survey is likely caused by the occurrence of this mafic unit. Petrographic analysis of this unit indicates it is a diabase dyke. Further characterization of the host rocks of the sulphide mineralization and the alteration will be accomplished by incorporating historic petrophysical studies of density and conductivity to complement the existing magnetic susceptibility measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, M.D.; Waddell, S.J.; Vick, G.S.
1986-12-31
Yucca Mountain in southern Nye County, Nevada, has been proposed as a potential site for the underground disposal of high-level nuclear waste. An exploratory drill hole designated UE25p No. 1 was drilled 3 km east of the proposed repository site to investigate the geology and hydrology of the rocks that underlie the Tertiary volcanic and sedimentary rock sequence forming Yucca Mountain. Silurian dolomite assigned to the Roberts Mountain and Lone Mountain Formations was intersected below the Tertiary section between a depth of approximately 1244 m (4080 ft) and the bottom of the drill hole at 1807 m (5923 ft). Thesemore » formations are part of an important regional carbonate aquifer in the deep ground-water system. Tertiary units deeper than 1139 m (3733 ft) in drill hole UE25p No. 1 are stratigraphically older than any units previously penetrated by drill holes at Yucca Mountain. These units are, in ascending order, the tuff of Yucca Flat, an unnamed calcified ash-flow tuff, and a sequence of clastic deposits. The upper part of the Tertiary sequence in drill hole UE25p No. 1 is similar to that found in other drill holes at Yucca Mountain. The Tertiary sequence is in fault contact with the Silurian rocks. This fault between Tertiary and Paleozoic rocks may correlate with the Fran Ridge fault, a steeply westward-dipping fault exposed approximately 0.5 km east of the drill hole. Another fault intersects UE25p No. 1 at 873 m (2863 ft), but its surface trace is concealed beneath the valley west of the Fran Ridge fault. The Paintbrush Canyon fault, the trace of which passes less than 100 m (330 ft) east of the drilling site, intersects drill hole UE25p No. 1 at a depth of approximately 78 m (255 ft). The drill hole apparently intersected the west flank of a structural high of pre-Tertiary rocks, near the eastern edge of the Crater Flat structural depression.« less
Nomenclature of regional hydrogeologic units of the Southeastern Coastal Plain aquifer system
Miller, J.A.; Renken, R.A.
1988-01-01
Clastic sediments of the Southeastern Coastal Plain aquifer system can be divided into four regional aquifers separated by three regional confining units. The four regional aquifers have been named for major rivers that cut across their outcrop areas and expose the aquifer materials. From youngest to oldest, the aquifers are called the Chickasawhay River, Pearl River, Chattahoochee River, and Black Warrior River aquifers, and the regional confining units separating them are given the same name as the aquifer they overlie. Most of the regional hydrogeologic units are subdivided within each of the four States that comprise the study area. Correlation of regional units is good with hydrogeologic units delineated by a similar regional study to the west and southwest. Because of complexity created by a major geologic structure to the northeast of the study area and dramatic facies change from clastic to carbonate strata to the southeast, correlation of regional hydrogeologic units is poor in these directions. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Odling, N. E.; Serrano, R. P.; Hussein, M.; Guadagnini, A.; Riva, M.
2013-12-01
In confined and semi-confined aquifers, borehole water levels respond to fluctuations in barometric pressure and this response can be used to estimate the properties of aquifer confining layers. We use this response as indicator of groundwater vulnerability for the semi-confined Chalk aquifer in East Yorkshire, UK. Time series data of borehole water levels are corrected for Earth tides and recharge, and barometric response functions (BRFs) estimated using cross-spectral deconvolution-averaging techniques. The resulting BRFs are fitted using a theoretical model of the BRF gain and phase for a semi-confined aquifer (Rojstaczer, 1988) to obtain confining layer properties. For all of the boreholes, non-zero hydraulic diffusivities for the confining layer were found indicating that the aquifer is semi-confined. A ';characteristic time scale' based on the hydraulic and pneumatic diffusivities of the confining layer is introduced as a measure of the degree of aquifer confinement and therefore groundwater vulnerability. The analytical model assumes that the confining layer and aquifer are homogeneous. However, in nature, confining layers are heterogeneous and groundwater vulnerability dominated by the presence of high diffusivity, high flow pathways through the confining layer to the aquifer. A transient numerical model (MODFLOW) was constructed to test the impact of such heterogeneities on the BRF. In the model, an observed barometric pressure time series is used as a boundary condition applied to the upper surface of the top unit of the model (representing the confining layer) and BRFs determined from the time series of model heads in the bottom unit (representing the aquifer). The results from a numerical model with a homogeneous confining layer were found to accurately reproduce the BRFs from a modified version of the analytical model. The introduction of a localized, high diffusive block in the confining layer was found to modify the BRF, reducing the gain amplitude while having limited impact on the phase. It was found that the BRF reflects the presence of a fully penetrating, high diffusivity heterogeneity up to several hundred meters distant from the observation borehole, and shows little sensitivity to the heterogeneity's horizontal dimension. Heterogeneities that are 50% partially penetrating do not significantly impact on the BRF and 90% penetrating heterogeneities can only be detected when large and close to the observation borehole. These results show that BRF gain may be particularly useful in detecting the presence of fully penetrating heterogeneities of high diffusivity within confining layers that potentially enhance groundwater vulnerability. This research has been funded in part through the EU ITN ';IMVUL' (PITN-GA-2008-212298). Reference: Rojstaczer, S. (1988) Determination of fluid-flow properties from the response of water levels in wells to atmospheric loading, Water Resources Research, 24(11), 1927-1938.
Sweetkind, D.S.; Du Bray, E.A.
2008-01-01
The U.S. Geological Survey (USGS), the Desert Research Institute (DRI), and a designee from the State of Utah are currently conducting a water-resources study of aquifers in White Pine County, Nevada, and adjacent areas in Nevada and Utah, in response to concerns about water availability and limited geohydrologic information relevant to ground-water flow in the region. Production of ground water in this region could impact water accumulations in three general types of aquifer materials: consolidated Paleozoic carbonate bedrock, and basin-filling Cenozoic volcanic rocks and unconsolidated Quaternary sediments. At present, the full impact of extracting ground water from any or all of these potential valley-graben reservoirs is not fully understood. A thorough understanding of intermontane basin stratigraphy, mostly concealed by the youngest unconsolidated deposits that blanket the surface in these valleys, is critical to an understanding of the regional hydrology in this area. This report presents a literature-based compilation of geologic data, especially thicknesses and lithologic characteristics, for Tertiary volcanic rocks that are presumably present in the subsurface of the intermontane valleys, which are prominent features of this area. Two methods are used to estimate volcanic-rock thickness beneath valleys: (1) published geologic maps and accompanying descriptions of map units were used to compile the aggregate thicknesses of Tertiary stratigraphic units present in each mountain range within the study areas, and then interpolated to infer volcanic-rock thickness in the intervening valley, and (2) published isopach maps for individual out-flow ash-flow tuff were converted to digital spatial data and thickness was added together to produce a regional thickness map that aggregates thickness of the individual units. The two methods yield generally similar results and are similar to volcanic-rock thickness observed in a limited number of oil and gas exploration drill holes in the region, although local geologic complexity and the inherent assumptions in both methods allow only general comparison. These methods serve the needs of regional ground-water studies that require a three-dimensional depiction of the extent and thickness of subsurface geologic units. The compilation of geologic data from published maps and reports provides a general understanding of the distribution and thickness of tuffs that are presumably present in the subsurface of the intermontane valleys and are critical to understanding the ground-water hydrology of this area.
Hydrogeological properties of bank storage area in Changwon city, Korea
NASA Astrophysics Data System (ADS)
Hamm, S.-Y.; Kim, H.-S.; Cheong, J.-Y.; Ryu, S. M.; Kim, M. J.
2003-04-01
Bank filtrated water has been used in developed countries such as United States, France, Germany, Austria, Nederland and so on. In Korea, most of the drinking water is provided from the surface water. However, drinking water acquisition is becoming difficult due to the degradation of surface water quality. In special, the quality of drinking water source is much lower in downstream area than in upstream area. Thus, the use of bank filtrated water is getting attracted by central and local governments in Korea. The bank filtrated water was surveyed in the areas of Yeongsan river, Nakdong river, Geum river and Han river. Up to present, however, the downstream areas of Nakdong river are most suitable places to apply the bank filtration system. This study investigates hydrogeological characteristics of bank-storage area located in Daesan- Myeon, Changwon city, adjacent the downstream of Nakdong river. Changwon city is the capital city of Gyeongsangnam-Do province. Changwon city uses water derived from Nakdong river as municipal water. However, the quantity and quality of the river water are gradually decreased. Thus, Changwon city developed two sites of bank filtration system in Daesan-myeon and Buk-myeon. Pumping rate is 2,000m3/day at present and will be increased to 60,000m3/day in Daesan-myeon site at the end of the first stage of the project. For the study, we conducted pumping tests four times on seven pumping wells (PW1, PW2, PW3, PW4, PW5, PW6, and PW7) and twelve drill holes (BH-2, OW2-OW12) in the area of 370 m x 100 m. Pumping wells PW1 and PW2 were drilled in 1999 by Samjung Engineering Co. and pumping wells PW3, PW4, PW5, PW6 and PW7 were drilled in 2000 by Donga Construction Co. and Daeduk Gongyeong Co. The pumping wells are located at 45-110 meters from Nakdong riverside. The geology of the study area is composed of volcanic rocks (Palryeongsan tuff and Jusasan andesitic rock) and alluvium. Palryeongsan tuff consists of mostly green tuff with partly tuffaceous sandstone, shale, mudstone and sandstone. Thick alluvium is overlain on Palryeongsan tuff (Samjung Engineering Co., 1999; Donga Construction Co. and Daeduk Gongyeong Co., 2000; Kim and Lee, 1964). The alluvium is composed of sand, sandy gravel and weathered zone from the surface (Table 1, Fig. 3). The aquifer is sandy gravel layer (Samjung Engineering Co., 1999). The gravel layer is thicker near the wells of PW1, PW2, PW3, and PW4 (13.5-17.5m), whereas is thinner near the wells of PW5, PW6, and PW7 (6.3-10.5m). The pumping data obtained were analyzed to determine hydraulic parameters (transmissivity and storativity) using various models of pumping test analysis. The appropriate models for the study area were found from several models. The selected model for observation well is Theis model using corrected drawdown and the selected model for pumped well is Papadopulos-Cooper model using corrected drawdown. As a result, alluvial aquifer in the study area behaviors as confined aquifer rather than phreatic aquifer. Thus, infiltration amount from the river to the aquifer in the study area is lower than that from river to phreatic aquifer for the same water level change. And also storativity of the aquifer is represented by elastic storativity rather than specific yield. Transmissivity obtained by the models ranges from 4.54x10-4 to 1.79x10-1 m2/s with arithmetic mean 2.92x10-2 m2/s. Storativity ranges from 2.59x10-4-5.54x10-1 with arithmetic mean 6.36x10-2. Frequency distribution of hydraulic parameters was determined from statistical analyses. The distribution of transmissivity values does not follow normal distribution showing skewness 2.36 and kurtosis 5.085. Aquifer heterogeneity was found by hydraulic parameters and subsurface geology data in the study area. Furthermore, hydraulic parameters obtained at a well that serves as both pumping well and observation well were compared, and the correlation equation was determined to evaluate hydraulic parameters considering aquifer loss. Transmissivity values obtained by the two cases do not show distinct correlation. However, storativity values obtained by the two cases show distinct negative correlation. ACKNOWLEDGEMENT The authors wish to acknowledge the financial support of the Sustainable Water Resources Research Center under the program of the 21st Century Frontier R&D Program by the Korean government (project no: 3-4-1).
Aquifer-nomenclature guidelines
Laney, R.L.; Davidson, C.B.
1986-01-01
Guidelines and recommendations for naming aquifers are presented to assist authors of geohydrological reports in the United States Geological Survey, Water Resources Division. The hierarchy of terms that is used for water- yielding rocks from largest to smallest is aquifer system, aquifer, and zone. If aquifers are named, the names should be derived from lithologic terms, rock-stratigraphic units, or geographic names. The following items are not recommended as sources of aquifer names: time-stratigraphic names, relative position, alphanumeric designations, depositional environment, depth of occurrence, acronyms, and hydrologic conditions. Confining units should not be named unless doing so clearly promotes understanding of a particular aquifer system. Sources of names for confining units are similar to those for aquifer names, i.e. lithologic terms, rock-stratigraphic units or geographic names. Examples of comparison charts and tables that are used to define the geohydrologic framework are included. Aquifers are defined in 11 hypothetical examples that characterize geohydrologic settings throughout the country. (Author 's abstract)
Gonthier, Gerard
2012-01-01
Two test wells were completed in Pooler, Georgia, in 2011 to investigate the potential of using the Lower Floridan aquifer as a source of water for municipal use. One well was completed in the Lower Floridan aquifer at a depth of 1,120 feet (ft) below land surface; the other well was completed in the Upper Floridan aquifer at a depth of 486 ft below land surface. At the Pooler test site, the U.S. Geological Survey performed flowmeter surveys, packer-isolated slug tests within the Lower Floridan confining unit, slug tests of the entire Floridan aquifer system, and aquifer tests of the Upper and Lower Floridan aquifers. Drill cuttings, geophysical logs, and borehole flowmeter surveys indicate that the Upper Floridan aquifer extends 333 –515 ft below land surface, the Lower Floridan confining unit extends 515–702 ft below land surface, and the Lower Floridan aquifer extends 702–1,040 ft below land surface. Flowmeter surveys indicate that the Upper Floridan aquifer contains two water-bearing zones at depth intervals of 339 –350 and 375–515 ft; the Lower Floridan confining unit contains one zone at a depth interval of 550–620 ft; and the Lower Floridan aquifer contains five zones at depth intervals of 702–745, 745–925, 925–984, 984–1,015, and 1,015–1,040 ft. Flowmeter testing of the test borehole open to the entire Floridan aquifer system indicated that the Upper Floridan aquifer contributed 92.4 percent of the total flow rate of 708 gallons per minute; the Lower Floridan confining unit contributed 3.0 percent; and the Lower Floridan aquifer contributed 4.6 percent. Horizontal hydraulic conductivity of the Lower Floridan confining unit derived from slug tests within three packer-isolated intervals ranged from 0.5 to 10 feet per day (ft/d). Aquifer-test analyses yielded values of transmissivity for the Upper Floridan aquifer, Lower Floridan confining unit, and the Lower Floridan aquifer of 46,000, 700, and 4,000 feet squared per day (ft2/d), respectively. Horizontal hydraulic conductivity of 4 ft/d for the Lower Floridan confining unit, derived from aquifer-test analyses, is near the midrange for values derived from packer-isolated slug tests. The transmissivity of the entire Floridan aquifer system derived from aquifer-test analyses totals about 51,000 ft2/d, similar to the value of 58,000 ft2/d derived from open slug tests on the entire Floridan aquifer system. Water-level data for each aquifer test were filtered for external influences such as barometric pressure, earth-tide effects, and long-term trends to enable detection of small (less than 1 foot) water-level responses to aquifer-test pumping. During the 72-hour aquifer test of pumping the Lower Floridan aquifer, a drawdown response of 51.7 ft was observed in the Lower Floridan pumped well and a drawdown response of 0.9 foot was observed in the Upper Floridan observation well located 85 ft from the pumped well.
NASA Astrophysics Data System (ADS)
Waters, L.; Lange, R. A.
2014-12-01
Shortly after the climactic eruption of ~600 km3 of Bishop Tuff zoned rhyolitic magma, ~100 km3 of crystal-poor Early Rhyolite erupted inside Long Valley Caldera between ~750-650 ka as domes, glassy lavas, and tuffs (Hildreth, 2004). Despite similarities in bulk composition (e.g., 73-75 wt% SiO2; ~100 ppm Sr), there are marked differences between the Late (≥ 790°C) Bishop Tuff and postcaldera Early Rhyolites. Although crystal-poor (<5%), the Early Rhyolites are often saturated with 7-8 mineral phases (plag + opx + ilm + tmte + biotite + apatite + zircon ± pyrrhotite), but without the quartz, sanidine, and cpx additionally found in the more crystal-rich (12-24%) Late Bishop Tuff. Pre-eruptive temperatures, on the basis of two Fe-Ti oxides, range from 720-860°C, and ΔNNO values range from-0.4 to -0.9 (consistent with abundant ilmenite). Thus the Early Rhyolites record fO2 values that are nearly two orders of magnitude lower than those in the Late Bishop Tuff (ΔNNO = +1; Hildreth and Wilson, 2007). Application of the plagioclase-liquid hygrometer to Early Rhyolites gives pre-eruptive water contents ≤ 4.4 wt% H2O. The phenocrysts in Early Rhyolite obsidians often display euhedral and/or diffusion-limited growth textures, suggesting degassing-induced crystallization during rapid ascent. Isotopic data from the literature (e.g., Simon et al., 2014 and references therein) show that Long Valley rhyolites were derived from both crustal and mantle sources. We hypothesize that the drop in fO2 between the Late Bishop Tuff and Early Rhyolites may reflect a transition in their respective mantle source, from subduction-modified lithosphere to asthenosphere. Such a time-progressive transition in the mantle source of erupted basalts is seen throughout the Great Basin, occurring earliest in its central region and more recently toward its western margin (e.g. Cousens et al., 2012). Although the geochemistry of Quaternary basalts erupted around Long Valley indicate a subduction-modified lithosphere source (Cousens, 1996), the Early Rhyolites may be recording the crustal emplacement of basalts from the asthenosphere before any have yet erupted. If so, the Early Rhyolites may be derived from a greater proportion of crustal sources than calculated from isotopic data on the assumption of a lithospheric mantle source.
NASA Astrophysics Data System (ADS)
Waelkens, C. M.; Gonzalez, C.; Martineau, D.; Goff, F. E.; Stix, J.
2017-12-01
Large silicic caldera-forming eruptions are some of the most destructive events on our planet, which makes silicic calderas important systems to study. Volatiles play an important role in determining the nature and behaviour of magmas, and can trigger eruptions when changes in volatile content and exsolution of fluid phases lead to overpressure in the magma chamber. A separate fluid phase will be exsolved if the magma is fluid saturated; whether the magma is fluid saturated depends on its H2O and CO2 content. We measured H2O and CO2 in melt inclusions of the Valles Caldera supervolcano system in New Mexico. This system had super-eruptions at 1.64 Ma and 1.25 Ma, depositing respectively the Lower (Otowi Member) and the Upper (Tshirege Member) Bandelier Tuff. Previous studies have reported H2O values for the Bandelier Tuff and the Cerro Toledo Formation - erupted between the two Bandelier super-eruptions from the same magma reservoir. We expanded this dataset and added CO2 analyses, which gives a more complete image of the volatile saturation state of the magma. Both H2O and CO2 were measured by transmission FTIR on doubly-polished melt inclusions hosted in quartz and feldspar crystals. While we found only limited variation within H2O contents, CO2 values were found to vary strongly. Our preliminary results indicate H2O values of 4 to 6 wt % throughout both the Lower and Upper Bandelier Tuff, consistent with previous studies. In contrast, we found CO2 values vary strongly, from below 50 ppm (maximum measured 60 ppm, minimum 7 ppm, median 33 ppm) in the base of the Lower Bandelier Tuff to 100 - 200 ppm CO2 (maximum measured 234 ppm, minimum 44, median 118 ppm) in the top of the basal Plinian fall deposit (Guaje Pumice). By the end of the Cerro Toledo Rhyolite and beginning of the Upper Bandelier, CO2 values in the magma were low again, around 50 ppm (maximum measured 91 ppm, minimum 23 ppm, median 42 ppm). No substantial difference is observed in H2O and CO2 values between the end of the Cerro Toledo Formation and beginning of the Upper Bandelier Tuff. We hypothesise that these variations in CO2 are related to the input of hotter, CO2-richer magma into the Bandelier magma chamber.
NASA Astrophysics Data System (ADS)
Moorhouse, B. L.; White, J. D. L.; Scott, J. M.
2015-06-01
Volcanic fields typically include many small, monogenetic, volcanoes formed by single eruptions fed by short-lived magma plumbing systems that solidify after eruption. The Cape Wanbrow coastline of the northeast Otago region in the South Island of New Zealand exposes an Eocene-Oligocene intraplate basaltic field that erupted in Surtseyan style onto a submerged continental shelf, and the stratigraphy of Cape Wanbrow suggests that eruptions produced multiple volcanoes whose edifices overlapped within a small area, but separated by millions of years. The small Cape Wanbrow highland is shown to include the remains of 6 volcanoes that are distinguished by discordant to locally concordant inter-volcano contacts marked by biogenic accumulations or other slow-formed features. The 6 volcanoes contain several lithofacies associations: (a) the dominantly pyroclastic E1 comprising well-bedded tuff and lapilli-tuff, emplaced by traction-dominated unsteady, turbulent high-density currents; (b) E2, massive to diffusely laminated block-rich tuff deposited by grain-dominant cohesionless debris flows; (c) E3, broadly cross-stratified tuff with local lenses of low- to high-angle cross-stratification which was deposited by either subaerial pyroclastic currents or subaqueously by unstable antidune- and chute-and-pool-forming supercritical flows; (d) E4, very-fine- to medium-grained tuff deposited by turbidity currents; (e) E5, bedded bioclast-rich tuff with increasing glaucony content upward, emplaced by debris flows; (f) E6, pillow lava and inter-pillow bioclastic sediment; and (g) E7, hyaloclastite breccia. These lithofacies associations aid interpretation of the eruptive evolution of each separate volcano, which in turn grew and degraded during build-up of the overall volcanic pile. Sedimentary processes played a prominent role in the evolution of the volcanic pile with both syn- and post-eruptive re-mobilization of debris from the growing pile of primary pyroclastic deposits of multiple volcanoes separated by time. An increase in bioclastic detritus upsequence suggests that the stack of deposits from overlapping volcanoes built up into shallow enough waters for colonization to occur. This material was periodically shed from the top of the edifice to form bioclast-rich debris flow deposits of volcanoes 4, 5 and 6. Since the eruption of Surtsey (1963-1965) many studies have been made of the resulting island, but the pre-emergent base remains submarine, unincised and little studied. Eruption-fed density currents that formed deposits of the volcanoes of Cape Wanbrow are inferred to be typical products of submarine processes such as those that built Surtsey to the sea surface.
Use of aluminum sulfate (alum) to decrease ammonia emissions from beef cattle bedded manure packs
USDA-ARS?s Scientific Manuscript database
Confined cattle facilities are an increasingly common housing system in the Northern Great Plains of the United States. Ammonia volatilization from the surface of the floor and bedding in these confined facilities depends on several variables including pH, temperature, and moisture content. When pH ...
Enhanced Preliminary Assessment Report: Old Bridge Army Housing Units, Old Bridge, New Jersey
1989-11-01
overlain by the Old Bridge (or Magothy ) aquifer. The basement rock in Middlesex County consists of basalt, sandstone, and shale of Triassic age. The...Woodbury Clay and Merchantville formations form a confining layer above the Magothy aquifer; the thickness of this confining layer is less than 100 feet
Snyder, G.L.
1995-01-01
Large vertical hydraulic-head gradients are present between the unconfined Evangeline aquifer and confined Fleming aquifers at Naval Air Station Chase Field and Naval Auxiliary Landing Field Goliad. These gradients, together with the results of the aquifer test at Naval Air Station Chase Field and assumed characteristics of the confining units, indicate that downward flow of ground water probably occurs from the water-table aquifer to the underlying aquifers. The rate of downward flow between the two confined Fleming aquifers (from A-sand to B-sand) can be approximated using an estimate of vertical hydraulic conductivity of the intervening confining unit obtained from assumed storage characteristics and data from the aquifer test. Under the relatively high vertical hydraulic-head gradient induced by the aquifer test, ground-water movement from the A-sand aquifer to the B-sand aquifer could require about 490 years; and about 730 years under the natural gradient. Future increases in ground-water withdrawals from the B-sand aquifer might increase downward flow in the aquifer system of the study area.
Estimating hydraulic properties using a moving-model approach and multiple aquifer tests
Halford, K.J.; Yobbi, D.
2006-01-01
A new method was developed for characterizing geohydrologic columns that extended >600 m deep at sites with as many as six discrete aquifers. This method was applied at 12 sites within the Southwest Florida Water Management District. Sites typically were equipped with multiple production wells, one for each aquifer and one or more observation wells per aquifer. The average hydraulic properties of the aquifers and confining units within radii of 30 to >300 m were characterized at each site. Aquifers were pumped individually and water levels were monitored in stressed and adjacent aquifers during each pumping event. Drawdowns at a site were interpreted using a radial numerical model that extended from land surface to the base of the geohydrologic column and simulated all pumping events. Conceptually, the radial model moves between stress periods and recenters on the production well during each test. Hydraulic conductivity was assumed homogeneous and isotropic within each aquifer and confining unit. Hydraulic property estimates for all of the aquifers and confining units were consistent and reasonable because results from multiple aquifers and pumping events were analyzed simultaneously. Copyright ?? 2005 National Ground Water Association.
Estimating hydraulic properties using a moving-model approach and multiple aquifer tests.
Halford, Keith J; Yobbi, Dann
2006-01-01
A new method was developed for characterizing geohydrologic columns that extended >600 m deep at sites with as many as six discrete aquifers. This method was applied at 12 sites within the Southwest Florida Water Management District. Sites typically were equipped with multiple production wells, one for each aquifer and one or more observation wells per aquifer. The average hydraulic properties of the aquifers and confining units within radii of 30 to >300 m were characterized at each site. Aquifers were pumped individually and water levels were monitored in stressed and adjacent aquifers during each pumping event. Drawdowns at a site were interpreted using a radial numerical model that extended from land surface to the base of the geohydrologic column and simulated all pumping events. Conceptually, the radial model moves between stress periods and recenters on the production well during each test. Hydraulic conductivity was assumed homogeneous and isotropic within each aquifer and confining unit. Hydraulic property estimates for all of the aquifers and confining units were consistent and reasonable because results from multiple aquifers and pumping events were analyzed simultaneously.
Experimental Analyses of Yellow Tuff Spandrels of Post-medieval Buildings in the Naples Area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calderoni, B.; Cordasco, E. A.; Lenza, P.
2008-07-08
Experimental analyses have been carried out on tuff masonry specimens in order to investigate the structural behaviour of historical buildings in the Naples area (Southern Italy). Spandrels of post-medieval buildings (late XVI to early XX century) have been analysed, with emphasis on morphological characteristics according to chronological indicators. Results of the experimentation on scaled models (1:10) are discussed and the better behaviour of historical masonry typologies on respect to the modern one is highlighted. Comparison with theoretical formulations of ultimate shear resistance are provided too.
Li, An; Guo, Shuai; Wazir, Nasrullah; Chai, Ke; Liang, Liang; Zhang, Min; Hao, Yan; Nan, Pengfei; Liu, Ruibin
2017-10-30
The inevitable problems in laser induced breakdown spectroscopy are matrix effect and statistical fluctuation of the spectral signal, which can be partly avoided by utilizing a proper confined unit. The dependences of spectral signal enhancement on relative permittivity were studied by varying materials to confine the plasma, which include polytetrafluoroethylene(PTFE), nylon/dacron, silicagel, and nitrile-butadiene rubber (NBR) with the relative permittivity 2.2, ~3.3, 3.6, 8~13, 15~22. We found that higher relative permittivity rings induce stronger enhancement ability, which restricts the energy dissipation of plasma better and due to the reflected electromagnetic wave from the wall of different materials, the electromagnetic field of plasma can be well confined and makes the distribution of plasma more orderly. The spectral intensities of the characteristic lines Si I 243.5 nm and Si I 263.1 nm increased approximately 2 times with relative permittivity values from 2.2 to ~20. The size dependent enhancement of PTFE was further checked and the maximum gain was realized by using a confinement ring with a diameter size of 5 mm and a height of 3 mm (D5mmH3mm), and the rings with D2mmH1mm and D3mmH2mm also show higher enhancement factor. In view of peak shift, peak lost and accidental peaks in the obtained spectra were properly treated in data progressing; the spectral fluctuation decreased drastically for various materials with different relative permittivities as confined units, which means the core of plasma is stabilized, attributing to the confinement effect. Furthermore, the quantitative analysis in coal shows wonderful results-the prediction fitting coefficient R 2 reaches 0.98 for ash and 0.99 for both volatile and carbon.
Magmatic oxygen fugacity estimated using zircon-melt partitioning of cerium
NASA Astrophysics Data System (ADS)
Smythe, Duane J.; Brenan, James M.
2016-11-01
Using a newly-calibrated relation for cerium redox equilibria in silicate melts (Smythe and Brenan, 2015), and an internally-consistent model for zircon-melt partitioning of Ce, we provide a method to estimate the prevailing redox conditions during crystallization of zircon-saturated magmas. With this approach, oxygen fugacities were calculated for samples from the Bishop tuff (USA), Toba tuff (Indonesia) and the Nain plutonic suite (Canada), which typically agree with independent estimates within one log unit or better. With the success of reproducing the fO2 of well-constrained igneous systems, we have applied our Ce-in-zircon oxygen barometer to estimating the redox state of Earth's earliest magmas. Using the composition of the Jack Hills Hadean zircons, combined with estimates of their parental magma composition, we determined the fO2 during zircon crystallization to be between FMQ -1.0 to +2.5 (where FMQ is the fayalite-magnetite-quartz buffer). Of the parental magmas considered, Archean tonalite-trondhjemite-granodiorite (TTG) compositions yield zircon-melt partitioning most similar to well-constrained modern suites (e.g., Sano et al., 2002). Although broadly consistent with previous redox estimates from the Jack Hills zircons, our results provide a more precise determination of fO2, narrowing the range for Hadean parental magmas by more than 8 orders of magnitude. Results suggest that relatively oxidized magmatic source regions, similar in oxidation state to that of 3.5 Ga komatiite suites, existed by ∼4.4 Ga.
Numerical modeling of perched water under Yucca Mountain, Nevada
Hinds, J.J.; Ge, S.; Fridrich, C.J.
1999-01-01
The presence of perched water near the potential high-level nuclear waste repository area at Yucca Mountain, Nevada, has important implications for waste isolation. Perched water occurs because of sharp contrasts in rock properties, in particular between the strongly fractured repository host rock (the Topopah Spring welded tuff) and the immediately underlying vitrophyric (glassy) subunit, in which fractures are sealed by clays that were formed by alteration of the volcanic glass. The vitrophyre acts as a vertical barrier to unsaturated flow throughout much of the potential repository area. Geochemical analyses (Yang et al. 1996) indicate that perched water is relatively young, perhaps younger than 10,000 years. Given the low permeability of the rock matrix, fractures and perhaps fault zones must play a crucial role in unsaturated flow. The geologic setting of the major perched water bodies under Yucca Mountain suggests that faults commonly form barriers to lateral flow at the level of the repository horizon, but may also form important pathways for vertical infiltration from the repository horizon down to the water table. Using the numerical code UNSAT2, two factors believed to influence the perched water system at Yucca Mountain, climate and fault-zone permeability, are explored. The two-dimensional model predicts that the volume of water held within the perched water system may greatly increase under wetter climatic conditions, and that perched water bodies may drain to the water table along fault zones. Modeling results also show fault flow to be significantly attenuated in the Paintbrush Tuff non-welded hydrogeologic unit.
NASA Astrophysics Data System (ADS)
Pedrazzi, D.; Marti, J.; Geyer, A.
2012-04-01
The El Golfo tuff cone is an example of phreatomagmatic edifice, developed in the western coast of Lanzarote (Canary Islands). El Golfo, together with other edifices of the same age, is aligned along a fracture oriented NEE-SWW coinciding with the main lineation of the historic volcanism in this part of the island. In this contribution we present a detailed stratigraphic study of the succession of deposits and we interpret them in terms of depositional processes and eruptive dynamics. The eruptive sequence is exclusively represented by a succession of pyroclastic deposits, and we infer it according to variations in flow regime and the magma-water interaction. Several pyroclastic units were identified according to facies variations based on sedimentary discontinuities, grain size, components, variations in primary laminations and bedforms following the facies model proposed by Chough and Sohn (1990). The growth of the El Golfo tuff cone involved several stages based on variations in depositional processes. The edifice was constructed very rapidly around the vent controlling the amount of water that got access to the eruption conduit. Although the invariable phreatomagmatic character of most of the pyroclastic sequence, it is possible to deduce variations in the explosive energy, with a general increment upwards, according to the increase in the degree of fragmentation of pyroclasts, The absence of hyaloclastites, the nature of the palagonite alteration and the observed sedimentary structures, demonstrate the subaereal character of most of the deposits
Geologic map of the Caetano caldera, Lander and Eureka counties, Nevada
Colgan, Joseph P.; Henry, Christopher D.; John, David A.
2011-01-01
The Eocene (34 Ma) Caetano caldera in north-central Nevada offers an exceptional opportunity to study the physical and petrogenetic evolution of a large (20 km by 10–18 km pre-extensional dimensions) silicic magma chamber, from precursor magmatism to caldera collapse and intrusion of resurgent plutons. Caldera-related rocks shown on this map include two units of crystal-rich intracaldera tuff totaling over 4 km thickness, caldera collapse breccias, tuff dikes that fed the eruption, hydrothermally altered post-eruption rocks, and two generations of resurgent granitic intrusions (John et al., 2008). The map also depicts middle Miocene (about 16–12 Ma) normal faults and synextensional basins that accommodated >100 percent extension and tilted the caldera into a series of ~40° east-dipping blocks, producing exceptional 3-D exposures of the caldera interior (Colgan et al., 2008). This 1:75,000-scale map is a compilation of published maps and extensive new mapping by the authors (fig. 1), and supersedes a preliminary 1:100,000-scale map published by Colgan et al. (2008) and John et al. (2008). New mapping focused on the margins of the Caetano caldera, the distribution and lithology of rocks within the caldera, and on the Miocene normal faults and sedimentary basins that record Neogene extensional faulting. The definition of geologic units and their distribution within the caldera is based entirely on new mapping, except in the northern Toiyabe Range, where mapping by Gilluly and Gates (1965) was modified with new field observations. The distribution of pre-Cenozoic rocks outside the caldera was largely compiled from existing sources with minor modifications, with the exception of the northeastern caldera margin (west of the Cortez Hills Mine), which was remapped in the course of this work and published as a stand-alone 1:6000-scale map (Moore and Henry, 2010).
Large Volume 18O-depleted Rhyolitic Volcanism: the Bruneau-Jarbidge Volcanic Field, Idaho
NASA Astrophysics Data System (ADS)
Boroughs, S.; Wolff, J.; Bonnichsen, B.; Godchaux, M. M.; Larson, P. B.
2003-12-01
The Bruneau-Jarbidge (BJ) volcanic field is located in southern Idaho at the intersection of the western and eastern arms of the Snake River Plain. The BJ region is an oval structural basin of about 6000 km2, and is likely a system of nested caldera and collapse structures similar to, though larger than, the Yellowstone Volcanic Plateau. BJ rocks are high-temperature rhyolite tuffs, high-temperature rhyolite lavas, and volumetrically minor basalts. Exposed volumes of individual rhyolite units range up to greater than 500 km3. We have analyzed feldspar and, where present, quartz from 30 rhyolite units emplaced throughout the history of the BJ center. All, including the Cougar Point Tuff, are 18O depleted (δ 18OFSP = -1.3 to 3.7‰ ), while petrographically, temporally, and chemically similar lavas erupted along the nearby Owyhee Front have "normal" rhyolite magmatic δ 18O values of 7 - 9‰ . There is no evidence for significant modification of δ 18O values by post-eruptive alteration. No correlation exists between δ 18O and age, magmatic temperature, major element composition or trace element abundances among depleted BJ rhyolites. The BJ and WSRP rhyolites possess the geochemical characteristics (depressed Al, Ca, Eu, and Sr contents, high Ga/Al and K/Na) expected of liquids derived from shallow melting of calc-alkaline granitoids with residual plagioclase and orthopyroxene (Patino-Douce, Geology v.25 p.743-746, 1997). The classic Yellowstone low δ 18O rhyolites are post-caldera collapse lavas, but at BJ, both lavas and caldera-forming ignimbrites are strongly 18O-depleted. The total volume of low δ 18O rhyolite may be as high as 10,000 km3, requiring massive involvement of meteoric-hydrothermally altered crust in rhyolite petrogenesis. Regional hydrothermal modification of the crust under the thermal influence of the Yellowstone hotspot apparently preceded voluminous rhyolite generation at Bruneau-Jarbidge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurtz, Jeff
2016-08-01
Well ER-20-12 was drilled for the U.S. Department of Energy, Nevada National Security Administration Nevada Field Office in support of the Underground Test Area Activity. The well was drilled from October 2015 to January 2016 as an addition to the Central and Western Pahute Mesa corrective action units 101 and 102 the Phase II drilling program. Well ER-20-12 was identified based on recommendations of the Pahute Mesa Guidance Team as a result of anomalous tritium detections in groundwater samples collected from Well PM-3 in 2011 and 2013. The primary purpose of the well was to provide information on the hydrogeologymore » in the area downgradient of select underground tests on Western Pahute Mesa and define hydraulic properties in the saturated Tertiary volcanic rocks. The main 46.99-centimeter (cm) (18.5-inch [in.]) borehole was drilled to a depth of 765.14 meters (m) (2,510.3 ft) and the hole opened to 66.04 cm (26 in.); followed by the 50.80-cm (20-in.) surface casing, which was installed and sealed with cement; and a piezometer (p4) was set in the Timber Mountain welded-tuff aquifer (TMWTA) between the casing and the open borehole. The borehole was continued with a 46.99-cm (18.5-in.) drill bit to a depth of 1,326.53 m (4,352.16 ft), and an intermediate 24.44-cm (9.625-in.) casing was installed and sealed to 1,188.72 m (3,900.00 ft) A piezometer (p3) was installed across the Calico Hills zeolitic composite unit (CHZCM) (lava-flow aquifer [LFA]) in the annulus of the open borehole. Two additional piezometers were installed and completed between the intermediate casing and the borehole wall, one (p2) in the CHZCM and one (p1) in the Belted Range aquifer (BRA). The piezometers are set to monitor groundwater properties in the completed intervals. The borehole was continued with a 21.59-cm (8.5-in.) drill bit to a total depth of 1,384.80 m (4,543.33 ft), and the main completion 13.97-cm (5.5-in.) casing was installed in the open borehole across the Pre-Belted Range composite unit (PBRCM). Data collected during hole construction include composite drill cutting samples collected every 3.0 m (10 ft), geophysical logs, hydrophysical logs, percussion core samples, water-quality measurements (including tritium), and water-level measurements. The well penetrated 1,384.4 m (4,543.33 ft) of Tertiary volcanic rocks. The stratigraphy and lithology were generally as expected with one noted exception. A thick lava-flow and related ash-flow tuffs were identified as Calico Hills Formation (Th), and no Crater Flat units were noted. Additionally, many of the Thirsty Canyon and Timber Mountain units were thicker than expected. Fluid levels measured in the borehole during drilling are the following: (1) on November 2, 2015, Navarro measured the fluid level in the borehole at a depth of 492.33 m (1,615.25 ft) below ground surface (bgs); (2) Schlumberger and COLOG recorded fluid levels during geophysical logging on November 4 and 5, 2015, at a depth of 492.86 m (1,617 ft) and 492.25 m (1,615 ft) bgs, respectively; and (3) on December 4, 2015, COLOG and Navarro measured fluid level in the 20-in. casing with an open borehole to 1,326.54 m (4,352.16 ft) bgs at 575.77 m (1,889.00 ft) and 574.03 m (1,883.3 ft) bgs, respectively. These and subsequent water-level measurements indicate a potential head difference of greater than 76.2 m (250 ft) for groundwater in aquifers above and below the Upper Paintbrush confining unit (UPCU). As expected, tritium was occasionally measured above the Safe Drinking Water Act limit (20,000 picocuries per liter [pCi/L]). Lab analysis on four bailed samples and taken from the undeveloped well indicate that the tritium activities average approximately 36,545 pCi/L. All Fluid Management Plan (FMP) requirements for Well ER-20-12 were met. Analysis of monitoring samples and FMP confirmatory samples indicate that fluids generated during drilling at ER-20-12 met the FMP criteria for discharge to the lined sump and designated infiltration area. All sanitary and hydrocarbon waste generated was properly handled and disposed of.« less
Colgan, Joseph P.; Henry, Christopher D.
2017-02-24
The magmatic, tectonic, and topographic evolution of what is now the northern Great Basin remains controversial, notably the temporal and spatial relation between magmatism and extensional faulting. This controversy is exemplified in the northern Toiyabe Range of central Nevada, where previous geologic mapping suggested the presence of a caldera that sourced the late Eocene (34.0 mega-annum [Ma]) tuff of Hall Creek. This region was also inferred to be the locus of large-magnitude middle Tertiary extension (more than 100 percent strain) localized along the Bernd Canyon detachment fault, and to be the approximate location of a middle Tertiary paleodivide that separated east and west-draining paleovalleys. Geologic mapping, 40Ar/39Ar dating, and geochemical analyses document the geologic history and extent of the Hall Creek caldera, define the regional paleotopography at the time it formed, and clarify the timing and kinematics of post-caldera extensional faulting. During and after late Eocene volcanism, the northern Toiyabe Range was characterized by an east-west trending ridge in the area of present-day Mount Callaghan, probably localized along a Mesozoic anticline. Andesite lava flows erupted around 35–34 Ma ponded hundreds of meters thick in the erosional low areas surrounding this structural high, particularly in the Simpson Park Mountains. The Hall Creek caldera formed ca. 34.0 Ma during eruption of the approximately 400 cubic kilometers (km3) tuff of Hall Creek, a moderately crystal-rich rhyolite (71–77 percent SiO2) ash-flow tuff. Caldera collapse was piston-like with an intact floor block, and the caldera filled with thick (approximately 2,600 meters) intracaldera tuff and interbedded breccia lenses shed from the caldera walls. The most extensive exposed megabreccia deposits are concentrated on or close to the caldera floor in the southwestern part of the caldera. Both silicic and intermediate post-caldera lavas were locally erupted within 400 thousand years of the main eruption, and for the next approximately 10 million years sedimentary rocks and distal tuffs sourced from calderas farther west ponded in the caldera basin surrounding low areas nearby. Patterns of tuff deposition indicate that the area was characterized by east-west trending paleovalleys and ridges in the late Eocene and Oligocene, which permitted tuffs to disperse east-west but limited their north-south extent. Although a low-angle fault contact of limited extent separates Cambrian and Ordovician strata in the southwestern part of the study area, there is no evidence that this fault cuts overlying Tertiary rocks. Total extensional strain across the caldera is on the order of 15 percent, and there is no evidence for progressive tilting of 34–25 Ma rocks that would indicate protracted Eocene–Oligocene extension. The caldera appears to have been tilted as an intact block after 25 Ma, probably during the middle Miocene extensional faulting well documented to the north and south of the study area.
Simulation of dispersion in layered coastal aquifer systems
Reilly, T.E.
1990-01-01
A density-dependent solute-transport formulation is used to examine ground-water flow in layered coastal aquifers. The numerical experiments indicate that although the transition zone may be thought of as an impermeable 'sharp' interface with freshwater flow parallel to the transition zone in homogeneous aquifers, this is not the case for layered systems. Freshwater can discharge through the transition zone in the confining units. Further, for the best simulation of layered coastal aquifer systems, either a flow-direction-dependent dispersion formulation is required, or the dispersivities must change spatially to reflect the tight thin confining unit. ?? 1990.
Jones, Sonya A.; Paillet, Frederick L.
1997-01-01
The results of borehole geophysical log analysis indicate that two of the production wells could have vertically connected intervals where cement bonding in the well annulus is poor. The other production wells have overall good bonding. Temperature logs do not indicate flow behind casing except in the screened interval of one well. Geophysical logs show the Eagle Ford Shale ranges from 147 to 185 feet thick at the site. The Eagle Ford Shale has low permeability and a high plasticity index. These physical characteristics make the Eagle Ford Shale an excellent confining unit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordienko, V.A.; Dubinov, A.E.; Zhuravlev, S.S.
A new type of magnetic confinement system--a Galathea with a myxine in the shape of a convex polyhedron--is proposed. The system was modeled experimentally by passing an RF current through the myxine. On the one hand, the myxine acts as an inductor whose electric field ionizes the gas and, on the other, it acts as an RF magnetic confinement system. A steady-state plasma produced and confined in this system is almost spherical in shape. The electron density and specific (per unit volume) glow intensity of the plasma produced are found to be higher than those in conventional helical inductors.
Buono, Anthony; Spechler, R.M.; Barr, G.L.; Wolansky, R.M.
1979-01-01
This map presents the thickness of the confining bed overlying the Floridan aquifer in the Southwest Florida Water Management District and adjacent areas. The bed separates the surficial aquifer from the underlying Floridan aquifer. Lithologic logs and information from quarries were used in conjunction with an unpublished map to compile this map at 1:250,000 scale. Units included in the confining bed are: clay, sandy clay and marl, undifferentiated with respect to age, the Hawthorn Formation, and the unconsolidated sections of the Tampa Limestone. (Kosco-USGS)
Reese, Ronald S.
2014-01-01
The successful implementation of aquifer storage and recovery (ASR) as a water-management tool requires detailed information on the hydrologic and hydraulic properties of the potential water storage zones. This report presents stratigraphic and hydrogeologic sections of the upper part of the Floridan aquifer system and the overlying confining unit or aquifer system in the Lake Okeechobee area, and contour maps of the upper contacts of the Ocala Limestone and the Arcadia Formation, which are represented in the sections. The sections and maps illustrate hydrogeologic factors such as confinement of potential storage zones, the distribution of permeability within the zones, and geologic features that may control the efficiency of injection, storage, and recovery of water, and thus may influence decisions on ASR activities in areas of interest to the Comprehensive Everglades Restoration Plan.
77 FR 8875 - Proposed Data Collections Submitted for Public Comment and Recommendations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-15
.... Changes to the data collection related to the confinement of dogs upon arrival to the United States are also requested. The CDC form 75.37, ``Notice of Importers of Dogs'' will now be identified as CDC form 75.37 ``NOTICE TO OWNERS AND IMPORTERS OF DOGS: Requirement for Dog Confinement.'' The form has been...
O'Brien, D; Shalloo, L; Patton, J; Buckley, F; Grainger, C; Wallace, M
2012-09-01
Life cycle assessment (LCA) and the Intergovernmental Panel on Climate Change (IPCC) guideline methodology, which are the principal greenhouse gas (GHG) quantification methods, were evaluated in this study using a dairy farm GHG model. The model was applied to estimate GHG emissions from two contrasting dairy systems: a seasonal calving pasture-based dairy farm and a total confinement dairy system. Data used to quantify emissions from these systems originated from a research study carried out over a 1-year period in Ireland. The genetic merit of cows modelled was similar for both systems. Total mixed ration was fed in the Confinement system, whereas grazed grass was mainly fed in the grass-based system. GHG emissions from these systems were quantified per unit of product and area. The results of both methods showed that the dairy system that emitted the lowest GHG emissions per unit area did not necessarily emit the lowest GHG emissions possible for a given level of product. Consequently, a recommendation from this study is that GHG emissions be evaluated per unit of product given the growing affluent human population and increasing demand for dairy products. The IPCC and LCA methods ranked dairy systems' GHG emissions differently. For instance, the IPCC method quantified that the Confinement system reduced GHG emissions per unit of product by 8% compared with the grass-based system, but the LCA approach calculated that the Confinement system increased emissions by 16% when off-farm emissions associated with primary dairy production were included. Thus, GHG emissions should be quantified using approaches that quantify the total GHG emissions associated with the production system, so as to determine whether the dairy system was causing emissions displacement. The IPCC and LCA methods were also used in this study to simulate, through a dairy farm GHG model, what effect management changes within both production systems have on GHG emissions. The findings suggest that single changes have a small mitigating effect on GHG emissions (<5%), except for strategies used to control emissions from manure storage in the Confinement system (14% to 24%). However, when several management strategies were combined, GHG emissions per unit of product could be reduced significantly (15% to 30%). The LCA method was identified as the preferred approach to assess the effect of management changes on GHG emissions, but the analysis indicated that further standardisation of the approach is needed given the sensitivity of the approach to allocation decisions regarding milk and meat.
Pope, Daryll A.; Gordon, Alison D.
1999-01-01
The confined aquifers of the New Jersey Coastal Plain are sands that range in thickness from 50 to 600 feet and are separated by confining units. The confining units are composed of silts and clays that range in thickness from 500 to 1,000 feet. The aquifers are recharged by precipitation on their outcrop areas. This water then flows laterally downdip and vertically to the deeper confined aquifers. The confined aquifers ultimately discharge to the Raritan and Delaware Bays and to the Atlantic Ocean. In 1988, ground-water withdrawals from confined and unconfined New Jersey Coastal Plain aquifers were approximately 345 million gallons per day, more than 75 percent of which was pumped from the confined aquifers. These withdrawals have created large cones of depression in several Coastal Plain aquifers near populated areas, particularly in Camden and Monmouth Counties. The continued decline of water levels in confined aquifers can cause saltwater intrusion, reduce stream discharge near the outcrop areas, and threaten the quality of the ground-water supply. SHARP, a quasi-three-dimensional finite-difference computer model that can simulate freshwater and saltwater flow, was used to simulate the ground-water flow system in the New Jersey Coastal Plain, including the location and movement of the freshwater-saltwater interface in nine aquifers and eight intervening confining units. The freshwater-saltwater interface is defined as the hypothetical line seaward of which the chloride concentration is equal to or greater than 10,000 milligrams per liter. Model simulations were used to estimate the location and movement of the freshwater-saltwater interface resulting from (1) eustatic sea-level changes over the past 84,000 years, (2) ground-water withdrawals from 1896 through 1988, (3) and future ground-water withdrawals from 1988 to 2040 from Coastal Plain aquifers. Simultion results showed that the location and movement of the freshwater-saltwater interface are more dependent on the historical sea level than on the stresses imposed on the flow system by ground-water withdrawals from the Coastal Plain aquifers from 1896 to 1988. Results of a predictive simulation in which pumpage from existing wells was increased by 30 percent indicate that additional withdrawals from each of the eight confined aquifers in the Coastal Plain would broaden and deepen the existing cones of depression and result in significant drawdowns from the 1988 potentiometric surfaces. Drawdowns of 30 feet were simulated at the center of the cone of depression in the Upper, Middle, and Lower Potomac-Raritan-Magothy aquifers in Camden and Ocean Counties. Simulated drawdowns exceeded 80 feet at the center of the cone of depression in the Wenonah-Mount Laurel and Englishtown aquifers in Monmouth County. Drawdowns of 30 feet were simulated in the lower Kirkwood-Cohansey and confined Kirkwood aquifers in Cape May County. Simulation results showed that the increase in ground-water withdrawals would result in only minimal movement of the freshwater-saltwater interface by 2040, despite large drawdowns.
NASA Astrophysics Data System (ADS)
Ko, Kyoungtae; Kim, Sung Won; Lee, Hong-Jin; Hwang, In Gul; Kim, Bok Chul; Kee, Won-Seo; Kim, Young-Seog; Gihm, Yong Sik
2017-08-01
The Cretaceous Beolgeumri Formation is composed of laminated mudstones intercalated with sandstones, chert, and a bed of lapilli tuff that were deposited in a lacustrine environment at the terminal part of a regional strike-slip fault systems on the southwestern Korean Peninsula. The Beolgeumri Formation contains various types of soft sediment deformation (SSD) structures that are characterized by a wide extent (< 4 km), lateral continuity (< 200 m), and vertical repetition. The SSD structures can be classified into six categories based on their morphological features and deformation styles: 1) fold structures, 2) load structures, 3) water-escape structures, 4) rip-down structures, 5) boudin structures, and 6) synsedimentary fault structures. Field examination of SSD structures together with an analysis of the sedimentological records of the Beolgeumri Formation indicate that the SSD structures formed largely by liquefaction and/or fluidization triggered by ground shaking during earthquakes. To constrain the timing of the development of SSD structures in the Beolgeumri Formation, we conducted sensitive high-resolution ion microprobe (SHRIMP) U-Pb zircon age dating of block sized lithic clasts bearing volcaniclastic deposits that conformably underlie (the Mangryeongbong Tuff) and overlie (the Ttandallae Tuff) the Beolgeumri Formation. The Mangryeongbong and Ttandallae Tuffs have ages of 86.63 ± 0.83 Ma and 87.24 ± 0.36 Ma, respectively, indicating that the Beolgeumri Formation was deposited during a short interval between major volcanic eruptions. The large lithic clasts of volcaniclastic deposits suggest that the Beolgeumri Formation was deposited adjacent to an active volcanic edifice(s). Syndepositional magmatic activities are suggested by the occurrence of a lapilli tuff bed in the Beolgeumri Formation and an igneous intrusion (intermediate sill) that is crosscut by a sand dike, as well as the similar age results of the underlying and overlying volcaniclastic deposits. Thus, we infer that the earthquakes that caused the development of SSD structures in the study area were closely related to syndepositional magmatic activities, as is the case for modern tectonic earthquakes around active volcanoes.
NASA Astrophysics Data System (ADS)
Cousens, B. L.; Henry, C. D.; Pauly, B. D.
2007-12-01
The Lake Tahoe region of the northern Sierra Nevada consists of Mesozoic plutonic rocks blanketed by Mio- Pliocene arc volcanic rocks and locally overlain by < 2.5 Ma post-arc lavas. Several volcanic features along the Lake Tahoe shoreline indicate that magmas commonly erupted into shallow regions of the lake during the last 2.5 Ma, including the Eagle Rock vent (Kortemeier and Schweickert 2007), Tahoe City pillow lavas and palagonite layers, and the Lake Forest tuff ring (Sylvester et al., 2007). Here we report on the age and composition of the rocks at Lake Forest, aiming to identify the source of the volcanic rocks compared to arc and post-arc lavas in the area. The low-relief Lake Forest tuff ring, located on the lakeshore west of Dollar Point, consists of radially outward-dipping layers composed primarily of loosely-cemented angular, microvesicular lava fragments with minor basaltic bombs and a scoria pile at the east end of the exposed ring. Most fragments are poorly phyric, and two samples are andesites similar to post-arc lavas sampled at higher elevations. The bombs are vesicular, poorly olivine/plagioclase-phyric basaltic andesites with chilled margins and glassy matrices. Scoria in the scoria pile, which we tentatively interpret as a slump, are similar texturally to the bombs but are more silica-rich. Chemically, the fragments, bombs and scoria are more primitive (higher Mg number) than local post-arc and arc lavas, and have trace element ratios and normalized incompatible element patterns similar to, but not identical to, local post-arc lava flows. Thus the Lake Forest tuff ring was the product of a shoreline eruptive event and did not form from lavas flowing downslope into the water. The fragments, bombs and scoria each have different radiogenic isotopic compositions and incompatible element ratios, indicating that primary magma compositions varied during the eruption(s) that produced the tuff ring. Our ongoing geochronological analyses will help constrain the timing of magmatism and the formation of Lake Tahoe.
NASA Astrophysics Data System (ADS)
Dobson, P. F.; Kneafsey, T. J.
2001-12-01
As part of an ongoing effort to evaluate THC effects on flow in fractured media, we performed a laboratory experiment and numerical simulations to investigate mineral dissolution and precipitation. To replicate mineral dissolution by condensate in fractured tuff, deionized water equilibrated with carbon dioxide was flowed for 1,500 hours through crushed Yucca Mountain tuff at 94° C. The reacted water was collected and sampled for major dissolved species, total alkalinity, electrical conductivity, and pH. The resulting steady-state fluid composition had a total dissolved solids content of about 140 mg/L; silica was the dominant dissolved constituent. A portion of the steady-state reacted water was flowed at 10.8 mL/hr into a 31.7-cm tall, 16.2-cm wide vertically oriented planar fracture with a hydraulic aperture of 31 microns in a block of welded Topopah Spring tuff that was maintained at 80° C at the top and 130° C at the bottom. The fracture began to seal within five days. A 1-D plug-flow model using the TOUGHREACT code developed at Berkeley Lab was used to simulate mineral dissolution, and a 2-D model was developed to simulate the flow of mineralized water through a planar fracture, where boiling conditions led to mineral precipitation. Predicted concentrations of the major dissolved constituents for the tuff dissolution were within a factor of 2 of the measured average steady-state compositions. The fracture-plugging simulations result in the precipitation of amorphous silica at the base of the boiling front, leading to a hundred-fold decrease in fracture permeability in less than 6 days, consistent with the laboratory experiment. These results help validate the use of the TOUGHREACT code for THC modeling of the Yucca Mountain system. The experiment and simulations indicate that boiling and concomitant precipitation of amorphous silica could cause significant reductions in fracture porosity and permeability on a local scale. The TOUGHREACT code will be used to evaluate larger-scale silica sealing observed in a portion of the Yellowstone geothermal system, a natural analog for the precipitation-experiment processes.
Spechler, R.M.
1995-01-01
The lower St. Johns River, a 101-mile long segment of the St. Johns River, begins at the confluence of the Ocklawaha River and ends where the river discharges into the Atlantic Ocean at Mayport. The St. Johns River is affected by tides as far upstream as Lake George, 106 miles from the mouth. Saltwater from the ocean advances inland during each incoming tide and recedes during each outgoing tide. The chemical quality of the lower St. Johns River is highly variable primarily because of the inflow of saltwater from the ocean, and in some areas, from the discharge of mineralized ground water. Three hydrogeologic units are present in the study area: the surficial aquifer system, the intermediate confining unit, and the Floridan aquifer system. The surficial aquifer system overlies the intermediate confining unit and consists of deposits containing sand, clay, shell, and some limestone and dolomite. The intermediate confining unit underlies all of the study area and retards the vertical movement of water between the surficial aquifer system and the Floridan aquifer system. The intermediate confining unit consists of beds of relatively low permeability sediments that vary in thickness and areal extent and can be breached by sinkholes, fractures, and other openings. The Floridan aquifer system primarily consists of limestone and dolomite. The quality of water in the Upper Floridan aquifer varies throughout the study area. Dissolved solids in water range from about 100 to more than 5,000 milligrams per liter. Chloride and sulfate concentrations in water from the Upper Floridan aquifer range from about 4 to 3,700 milligrams per liter and from 1 to 1,300 milligrams per liter, respectively. The rate of leakage through the intermediate confining unit is controlled by the leakance coefficient of the intermediate confining unit and by the head difference between the Upper Floridan aquifer and the surficial aquifer system. The total ground-water discharge from the Upper Floridan aquifer to the St. Johns River within the lower St. Johns River drainage basin, based on the potentiometric surface of the Upper Floridan aquifer in September 1990, was estimated to be 86 cubic feet per second. Total estimated ground-water discharge to the lower St. Johns River in September 1991, when heads in the Upper Floridan aquifer averaged about 4 feet higher than in 1990, was 133 cubic feet per second. The load of dissolved-solids that discharged from the Upper Floridan aquifer into the lower St. Johns River on the basis of September 1990 heads is estimated to be 47,000 tons per year. Estimated chloride and sulfate loads are 18,000 and 9,500 tons per year, respectively. Dissolved-solids, chloride, and sulfate loads discharging into the lower St. Johns River are estimated to be 81,000, 39,000, and 15,000 tons per year, respectively, on the basis of September 1991 heads.
NASA Astrophysics Data System (ADS)
Van Hoose, A. E.; Wolff, J.; Conrey, R.
2013-12-01
Advances in portable X-Ray fluorescence (pXRF) analytical technology have made it possible for high-quality, quantitative data to be collected in a fraction of the time required by standard, non-portable analytical techniques. Not only do these advances reduce analysis time, but data may also be collected in the field in conjunction with sampling. Rhyolitic pumice, being primarily glass, is an excellent material to be analyzed with this technology. High-quality, quantitative data for elements that are tracers of magmatic differentiation (e.g. Rb, Sr, Y, Nb) can be collected for whole, individual pumices and subsamples of larger pumices in 4 minutes. We have developed a calibration for powdered rhyolite pumice from the Otowi Member of the Bandelier Tuff analyzed with the Bruker Tracer IV pXRF using Bruker software and influence coefficients for pumice, which measures the following 19 oxides and elements: SiO2, TiO2, Al2O3, FeO*, MnO, CaO, K2O, P2O5, Zn, Ga, Rb, Sr, Y, Zr, Nb, Ba, Ce, Pb, and Th. With this calibration for the pXRF and thousands of individual powdered pumice samples, we have generated an unparalleled data set for any single eruptive unit with known trace element zonation. The Bandelier Tuff of the Valles-Toledo Caldera Complex, Jemez Mountains, New Mexico, is divided into three main eruptive events. For this study, we have chosen the 1.61 Ma, 450 km3 Otowi Member as it is primarily unwelded and pumice samples are easily accessible. The eruption began with a plinian phase from a single source located near center of the current caldera and deposited the Guaje Pumice Bed. The initial Unit A of the Guaje is geochemically monotonous, but Units B through E, co-deposited with ignimbrite show very strong chemical zonation in trace elements, progressing upwards through the deposits from highly differentiated compositions (Rb ~350 ppm, Nb ~200 ppm) to less differentiated (Rb ~100 ppm, Nb ~50 ppm). Co-erupted ignimbrites emplaced during column collapse show similar trace element zonation. The eruption culminated in caldera collapse after transitioning from a single central vent to ring fracture vents. Ignimbrites deposited at this time have lithic breccias and chaotic geochemical profiles. The geochemical discrepancy between early and late deposits warrants detailed, high-resolution sampling and analysis in order to fully understand the dynamics behind zonation processes. Samples were collected from locations that circumvent the caldera and prepared and analyzed in the field and the laboratory with the pXRF. Approximately 2,000 pumice samples will complete this unprecedented data set, allowing detailed reconstruction of trace element zonation around all sides of the Valles Caldera. These data are then used to constrain models of magma chamber processes that produce trace element zonation and how it is preserved in the deposits after a catastrophic, caldera-forming eruption.
White, A.F.; Chuma, N.J.; Goff, F.
1992-01-01
Partial equilibrium conditions occur between fluids and secondary minerals in the Valles hydrothermal system, contained principally in the Tertiary rhyolitic Bandelier Tuff. The mass transfer processes are governed by reactive phase compositions, surface areas, water-rock ratios, reaction rates, and fluid residence times. Experimental dissolution of the vitric phase of the tuff was congruent with respect to Cl in the solid and produced reaction rates which obeyed a general Arrhenius release rate between 250 and 300??C. The 18O differences between reacted and unreacted rock and fluids, and mass balances calculations involving Cl in the glass phase, produced comparable water-rock ratios of unity, confirming the importance of irreversible reaction of the vitric tuff. A fluid residence time of approximately 2 ?? 103 years, determined from fluid reservoir volume and discharge rates, is less than 0.2% of the total age of the hydrothermal system and denotes a geochemically and isotopically open system. Mass transfer calculations generally replicated observed reservoir pH, Pco2, and PO2 conditions, cation concentrations, and the secondary mineral assemblage between 250 and 300??C. The only extraneous component required to maintain observed calcite saturation and high Pco2 pressures was carbon presumably derived from underlying Paleozoic limestones. Phase rule constraints indicate that Cl was the only incompatible aqueous component not controlled by mineral equilibrium. Concentrations of Cl in the reservoir directly reflect mass transport rates as evidenced by correlations between anomalously high Cl concentrations in the fluids and tuff in the Valles caldera relative to other hydrothermal systems in rhyolitic rocks. ?? 1992.
The Nopal 1 Uranium Deposit: an Overview
NASA Astrophysics Data System (ADS)
Calas, G.; Allard, T.; Galoisy, L.
2007-05-01
The Nopal 1 natural analogue is located in the Pena Blanca uranium district, about 50 kms north of Chihuahua City, Mexico. The deposit is hosted in tertiary ignimbritic ash-flow tuffs, dated at 44 Ma (Nopal and Colorados formations), and overlying the Pozos conglomerate formation and a sequence of Cretaceous carbonate rocks. The deposit is exposed at the ground surface and consists of a near vertical zone extending over about 100 m with a diameter of 40 m. An interesting characteristic is that the primary mineralization has been exposed above the water table, as a result of the uplift of the Sierra Pena Blanca, and subsequently oxidized with a remobilization of hexavalent uranium. The primary mineralization has been explained by various genetic models. It is associated to an extensive hydrothermal alteration of the volcanic tuffs, locally associated to pyrite and preserved by an intense silicification. Several kaolinite parageneses occur in fissure fillings and feldspar pseudomorphs, within the mineralized breccia pipe and the barren surrounding rhyolitic tuffs. Smectites are mainly developed in the underlying weakly welded tuffs. Several radiation-induced defect centers have been found in these kaolinites providing a unique picture of the dynamics of uranium mobilization (see Allard et al., this session). Another evidence of this mobilization is given by the spectroscopy of uranium-bearing opals, which show characteristic fluorescence spectra of uranyl groups sorbed at the surface of silica. By comparison with the other uranium deposits of the Sierra Pena Blanca and the nearby Sierra de Gomez, the Nopal 1 deposit is original, as it is one of the few deposits hving retained a reduced uranium mineralization.
OSL dating of a Pleistocene maar: Birket Ram, the Golan heights
Shaanan, U.; Porat, N.; Navon, O.; Weinberger, R.; Calvert, A.; Weinstein, Y.
2011-01-01
Direct dating of maars and their phreatomagmatic deposits is difficult due to the dominance of lithic (host rock) fragments and glassy particles of the juvenile magma. In this paper we demonstrate that optically stimulated luminescence (OSL) dating can be successfully used for age determination of phreatomagmatic deposits. We studied the tuff deposit of Birket Ram, a basanitic maar located at the northern edge of the Golan heights on the western Arabian plate. The maar is underlain by a thick section of Pleistocene basalts, and currently hosts a small lake. It is filled by approximately 90m of lacustrine sediments with radiocarbon ages extrapolated to 108ka at the base. OSL was applied to quartz grains extracted from tuffs and paleosols in order to set the time frame of the phreatomagmatism at the site. A maximum age constraint of 179??13ka was determined for a paleosol that underlies the maar ejecta. Quartz grains from two layers in the tuff section yielded a direct age of 129??6ka for the phreatomagmatic eruption. A younger age of 104??7ka, which was determined for a tuff layer underlying a basaltic flow, was attributed to thermal resetting during the lava emplacement. This was confirmed by an 40Ar/39Ar age of 101??3ka determined on the overlying basalt. The internal consistency of the OSL ages and the agreement with the 40Ar/39Ar age determination as well as with previous estimates demonstrates the potential of OSL for maar dating. ?? 2010 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Park, J.; Hyun, C.; Cho, H.; Park, H.
2010-12-01
Physical weathering caused by freeze-thaw action in cold regions was simulated with artificial weathering simulator in laboratory. Physical weathering of rock in cold regions usually depends on the temperature, rock type and moisture content. Then these three variables were considered in this study. The laboratory freeze-thaw tests were conducted on the three types of rocks, e.g. diorite, basalt and tuff, which are the major rock types around Sejong Station, King George Island, Antarctica. Nine core samples composed of three samples from each rock type were prepared in NX core, and 50 cycles of freeze-thaw test was carried out under dried and saturated water conditions. In this study, the physical weathering of rocks was investigated after each 10 cycles by measuring P-wave velocity, bulk density, effective porosity, Schmidt hardness and uniaxial compression strength(UCS). The experimental result of the diorite and the tuff specimens showed that P-wave velocity, bulk density, effective porosity, Schmidt hardness and UCS were gradually decreased as weathering progresses, but the result of the basalt specimens did not show typical trends due to the characteristics of irregular pore distribution and various pore sizes. Scanning electron microscopy(SEM) photographs of diorite, basalt and tuff specimens weathered in dried and saturated conditions were also acquired to investigate the role of water during physical weathering processes. The number and size of microcracks were increased as weathering progresses. This work was supported by the National Research Foundation of Korea(NRF) Grant(NRF-2010-0027753).
Actinide Sorption in Rainier Mesa Tunnel Waters from the Nevada Test Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, P; Zavarin, M; Leif, R
2007-12-17
The sorption behavior of americium (Am), plutonium (Pu), neptunium (Np), and uranium (U) in perched Rainier Mesa tunnel water was investigated. Both volcanic zeolitized tuff samples and groundwater samples were collected from Rainier Mesa, Nevada Test Site, NV for a series of batch sorption experiments. Sorption in groundwater with and without the presence of dissolved organic matter (DOM) was investigated. Am(III) and Pu(IV) are more soluble in groundwater that has high concentrations of DOM. The sorption K{sub d} for Am(III) and Pu(IV) on volcanic zeolitized tuff was up to two orders of magnitude lower in samples with high DOM (15more » to 19 mg C/L) compared to samples with DOM removed (< 0.4 mg C/L) or samples with naturally low DOM (0.2 mg C/L). In contrast, Np(V) and U(VI) sorption to zeolitized tuff was much less affected by the presence of DOM. The Np(V) and U(VI) sorption Kds were low under all conditions. Importantly, the DOM was not found to significantly sorb to the zeolitized tuff during these experiment. The concentration of DOM in groundwater affects the transport behavior of actinides in the subsurface. The mobility of Am(III) and Pu(IV) is significantly higher in groundwater with elevated levels of DOM resulting in potentially enhanced transport. To accurately model the transport behavior of actinides in groundwater at Rainier Mesa, the low actinide Kd values measured in groundwater with high DOM concentrations must be incorporated in predictive transport models.« less
White, Art F.; Claassen, H.C.; Benson, Larry V.
1980-01-01
Geochemistry of ground water associated with the Tertiary tuffs within Rainier Mesa, southern Nevada, was investigated to determine the relative importance of glass dissolution in controlling water chemistry. Water samples were obtained both from interstitial pores in core sections and from free-flowing fractures. Cation com- positions showed that calcium and magnesium decreased as a function of depth in the mesa, as sodium increased. The maximum effect occurs within alteration zones containing clinoptilolite and montmorillonite, suggesting these minerals effectively remove bivalent cations from the system. Comparisons are made between compositions of ground waters found within Rainier Mesa that apparently have not reacted with secondary minerals and compositions of waters produced by experimental dissolution of vitric and crystalline tufts which comprise the principal aquifers in the area. The two tuff phases have the same bulk chemistry but produce aqueous solutions of different chemistry. Rapid parabolic dissolution of sodium and silica from, and the retention of, potassium within the vitric phase verify previous predictions concerning water compositions associated with vitric volcanic rocks. Parabolic dissolution of the crystalline phase results in solutions high in calcium and magnesium and low in silica. Extrapolation of the parabolic dissolution mechanism for the vitric tuff to long times successfully reproduces, at com- parable pH, cation ratios existing in Rainier Mesa ground water. Comparison of mass- transfer rates of the vitric and crystalline tuffs indicates that the apparent higher glass-surface to aqueous-volume ratio associated with the vitric rocks may account for dominance of the glass reaction.
Geohydrology of Test Well USW H-3, Yucca Mountain, Nye County, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thordarson, W.; Rush, F.E.; Waddell, S.J.
Test well USW H-3 is one of several test wells drilled in the southwestern part of the Nevada Test Site in cooperation with the US Department of Energy for investigations related to the isolation of high-level radioactive wastes. All rocks penetrated by the well to a total depth of 1219 meters are volcanic tuff of Tertiary age. The composite hydraulic head in the zone 751 to 1219 meters was 733 meters above sea level, and at a depth below land surface of 751 meters. Below a depth of 1190 meters, the hydraulic head was 754 meters above sea level ormore » higher, suggesting an upward component of groundwater flow at the site. The most transmissive part of the saturated zone is in the upper part of the Tram Member of the Crater Flat Tuff in the depth interval from 809 to 841 meters, with an apparent transmissivity of about 7 x 10{sup -1} meter squared per day. The remainder of the penetrated rocks in the saturated zone, 841 to 1219 meters, has an apparent transmissivity of about 4 x 10{sup -1} meter squared per day. The most transmissive part of the lower depth interval is in the bedded tuff and Lithic Ridge Tuff, in the depth interval from 1108 to 1120 meters. The apparent hydraulic conductivity of the rocks in the lower depth interval from 841 to 1219 meters commonly ranges from about 10{sup -1} to 10{sup -4} meter per day. 32 references, 20 figures, 4 tables.« less
How to Recharge a Confined Aquifer: An Exploration of Geologic Controls on Groundwater Storage.
NASA Astrophysics Data System (ADS)
Maples, S.; Fogg, G. E.; Maxwell, R. M.; Liu, Y.
2017-12-01
Decreased snowpack storage and groundwater overdraft in California has increased interest in managed aquifer recharge (MAR) of excess winter runoff to the Central Valley aquifer system, which has unused storage capacity that far exceeds the state's surface reservoirs. Recharge to the productive, confined aquifer system remains a challenge due to the presence of nearly-ubiquitous, multiple silt and clay confining units that limit recharge pathways. However, previous studies have identified interconnected networks of sand and gravel deposits that bypass the confining units and accommodate rapid, high-volume recharge to the confined aquifer system in select locations. We use the variably-saturated, fully-integrated groundwater/surface-water flow code, ParFlow, in combination with a high-resolution, transition probability Markov-chain geostatistical model of the subsurface geologic heterogeneity of the east side of the Sacramento Valley, CA, to characterize recharge potential across a landscape that includes these geologic features. Multiple 180-day MAR simulations show that recharge potential is highly dependent on subsurface geologic structure, with a several order-of-magnitude range of recharge rates and volumes across the landscape. Where there are recharge pathways to the productive confined-aquifer system, pressure propagation in the confined system is widespread and rapid, with multi-kilometer lateral pressure propagation. Although widespread pressure propagation occurs in the confined system, only a small fraction of recharge volume is accommodated there. Instead, the majority of recharge occurs by filling unsaturated pore spaces. Where they outcrop at land surface, high-K recharge pathways fill rapidly, accommodating the majority of recharge during early time. However, these features become saturated quickly, and somewhat counterintuitively, the low-K silt and clay facies accommodate the majority of recharge volume during most of the simulation. These findings (1) highlight the large variability of MAR potential across the landscape, wherein the recharge capacity in select areas far exceeds recharge potential over most of the landscape, and (2) elucidate important physical processes that control MAR potential in alluvial aquifer systems.
NASA Astrophysics Data System (ADS)
López-Gamundí, Oscar; Fildani, Andrea; Weislogel, Amy; Rossello, Eduardo
2013-08-01
New SHRIMP radiogenic isotope dating on zircons in tuffs (280.8 ± 1.9 Ma) confirms the Early Permian (Artinskian) age of the uppermost section of the Tunas Formation. Tuff-rich levels in the Tunas Formation are exposed in the Ventana foldbelt of central Argentina; they are part of a deltaic to fluvial section corresponding to the late overfilled stage of the Late Paleozoic Sauce Grande foreland basin. Recent SHRIMP dating of zircons from the basal Choiyoi volcanics exposed in western Argentina yielded an age of 281.4 ± 2.5 Ma (Rocha-Campos et al., 2011). The new data for the Tunas tuffs suggest that the volcanism present in the Sauce Grande basin can be considered as the distal equivalent of the earliest episodes of the Choiyoi volcanism of western Argentina. From the palaeoclimatic viewpoint the new Tunas SHRIMP age confirms that by early Artinskian glacial conditions ceased in the Sauce Grande basin and, probably, in adajacent basins in western Gondwana.
Oxidation of basaltic tephras: Influence on reflectance in the 1 micron region
NASA Technical Reports Server (NTRS)
Farrand, William H.; Singer, Robert B.
1991-01-01
As part of a ongoing study into the products of hydrovolcanism, tuffs were examined from the Cerro Colorado and Pavant Butte tuff cones. The former resides in the northeastern corner of the Pinacate Volcanic Field in Sonara, Mexico and the latter is in the Black Rock Desert of southern Utah. Numerous samples were collected and many of these had their Vis/IR reflectance measured. It seems likely that in the palagonite tuffs there is a combination of nanocrystalline ferric oxide phases contributing to the UV absorption edge, but not to the 1 micron band, plus more crystalline ferric oxides which do contribute to that band as well as ferrous iron within unaltered sideromelane which is skewing the band center to longer wavelengths. This work has implications for the study of Mars. The present work indicates that when ferrous and ferric iron phases are both present, their combined spectral contribution is a single band in the vicinity of 1 micron. The center, depth, and width of that feature has potential to be used to gauge the relative proportions of ferrous and ferric iron phases.
Wireline-rotary air coring of the Bandelier Tuff, Los Alamos, New Mexico
Teasdale, W.E.; Pemberton, R.R.
1984-01-01
This paper describes experiments using wireline-rotary air-coring techniques conducted in the Bandelier Tuff using a modified standard wireline core-barrel system. The modified equipment was used to collect uncontaminated cores of unconsolidated ash and indurated tuff at Los Alamos, New Mexico. Core recovery obtained from the 210-foot deep test hole was about 92 percent. A standard HQ-size, triple-tube wireline core barrel (designed for the passage of liquid drilling fluids) was modified for air coring as follows: (1) Air passages were milled in the latch body part of the head assembly; (2) the inside dimension of the outer core barrel tube was machined and honed to provide greater clearance between the inner and outer barrels; (3) oversized reaming devices were added to the outer core barrel and the coring bit to allow more clearance for air and cuttings return; (4) the eight discharge ports in the coring bit were enlarged. To control airborne-dust pollution, a dust-and-cuttings discharge subassembly, designed and built by project personnel, was used. (USGS)
Biogas cleaning and upgrading with natural zeolites from tuffs.
Paolini, Valerio; Petracchini, Francesco; Guerriero, Ettore; Bencini, Alessandro; Drigo, Serena
2016-01-01
CO2 adsorption on synthetic zeolites has become a consolidated approach for biogas upgrading to biomethane. As an alternative to synthetic zeolites, tuff waste from building industry was investigated in this study: indeed, this material is available at a low price and contains a high fraction of natural zeolites. A selective adsorption of CO2 and H2S towards CH4 was confirmed, allowing to obtain a high-purity biomethane (CO2 <2 g m(-3), i.e. 0.1%; H2S <1.5 mg m(-3)), suitable for injection in national grids or as vehicle fuel. The loading capacity was found to be 45 g kg(-1) and 40 mg kg(-1), for CO2 and H2S, respectively. Synthetic gas mixtures and real biogas samples were used, and no significant effects due to biogas impurities (e.g. humidity, dust, moisture, etc.) were observed. Thermal and vacuum regenerations were also optimized and confirmed to be possible, without significant variations in efficiency. Hence, natural zeolites from tuffs may successfully be used in a pressure/vacuum swing adsorption process.
Kuniansky, Eve L.; Jones, Sonya A.; Brock, Robert D.; Williams, M.D.
1996-01-01
Ground water in the surficial terrace alluvial aquifer is contaminated at Air Force Plant 4, Fort Worth, Texas, and at the adjacent Naval Air Station. Some of the contaminated water has leaked from the terrace alluvial aquifer to an uppermost interval of the Paluxy Formation (the Paluxy "upper sand") beneath the east parking lot, east of the assembly building, and to the upper and middle zones of the Paluxy aquifer near Bomber Road, west of the assembly building. Citizens are concerned that contaminants from the plant, principally trichloroethylene and chromium might enter nearby municipal and domestic wells that pump water from the middle and lower zones of the Paluxy aquifer. Geologic formations that crop out in the study area, from oldest to youngest, are the Paluxy Formation (aquifer), Walnut Formation (confining unit), and Goodland Limestone (confining unit). Beneath the Paluxy Formation is the Glen Rose Formation (confining unit) and Twin Mountains Formation (aquifer). The terrace alluvial deposits overlie these Cretaceous rocks. The terrace alluvial aquifer, which is not used for municipal water supply, is separated from the Paluxy aquifer by the Goodland-Walnut confining unit. The confining unit restricts the flow of ground water between these aquifers in most places; however, downward leakage to the Paluxy aquifer might occur through the "window," where the confining unit is thin or absent. The Paluxy aquifer is divided into upper, middle, and lower zones. The Paluxy "upper sand" underlying the "window" is an apparently isolated, mostly unsaturated, sandy lens within the uppermost part of the upper zone. The Paluxy aquifer is recharged by leakage from Lake Worth and by precipitation on the outcrop area. Discharge from the aquifer primarily occurs as pumpage from municipal and domestic wells. The Paluxy aquifer is separated from the underlying Twin Mountains aquifer by the Glen Rose confining unit. Water-level maps indicate that (1) ground water in the terrace alluvial aquifer appears to flow outward, away from Air Force Plant 4; (2) a ground-water mound, possibly caused by downward leakage from the terrace alluvial aquifer, is present in the Paluxy "upper sand" beneath the "window;" and (3) lateral ground-water flow in regionally extensive parts of the Paluxy aquifer is from west to east-southeast. Trichloroethylene concentrations at Air Force Plant 4 have ranged from about 10,000 to about 100,000 micrograms per liter in the terrace alluvial aquifer, from 8,000 to 11,000 micrograms per liter in the Paluxy "upper sand," and from 2 to 50 micrograms per liter in the upper and middle zones of the Paluxy aquifer. Chromium concentrations at Air Force Plant 4 have ranged from 0 to 629 micrograms per liter in the terrace alluvial aquifer. The seven municipal wells mostly west and south of Air Force Plant 4 are not along a flowpath for leakage of contaminants from the plant because ground-water flow in the Paluxy aquifer is toward the east-southeast. Furthermore, trichloroethylene was not detected in any of these wells in 1993 when all were sampled for water quality. The results of water-quality sampling at 10 domestic wells northwest of the Air Force Plant 4 during April 1993 and April 1995 indicated that neither trichloroethylene nor chromium had migrated off-site to these wells.
MEASUREMENTS OF THE CONFINEMENT LEAKTIGHTNESS AT THE KOLA NUCLEAR POWER STATION (UNIT 2) IN RUSSIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
GREENE,G.A.; GUPPY,J.G.
1998-08-01
This is the final report on the INSP project entitled, ``Kola Confinement Leaktightness'' conducted by BNL under the authorization of Project Work Plan WBS 1.2.2.1. This project was initiated in February 1993 to assist the Russians to reduce risks associated with the continued operation of older Soviet-designed nuclear power plants, specifically the Kola VVER-440/230 Units 1 and 2, through upgrades in the confinement performance to reduce the uncontrolled leakage rate. The major technical objective of this-project was to improve the leaktightness of the Kola NPP VVER confinement boundaries, through the application of a variety of sealants to penetrations, doors andmore » hatches, seams and surfaces, to the extent that current technology permitted. A related objective was the transfer, through training of Russian staff, of the materials application procedures to the staff of the Kola NPP. This project was part of an overall approach to minimizing uncontrolled releases from the Kola NPP VVER440/230s in the event of a serious accident, and to thereby significantly mitigate the consequences of such an accident. The US provided materials, application technology, and applications equipment for application of sealant materials, surface coatings, potting materials and gaskets, to improve the confinement leaktightness of the Kola VVER-440/23Os. The US provided for training of Russian personnel in the applications technology.« less
Banks, W.S.; Smith, B.S.; Donnelly, C.A.
1996-01-01
The U.S. Army disposed chemical agents, laboratory materials, and unexploded ordnance at O-Field in the Edgewood area of Aberdeen Proving Ground, Maryland, from before World War II until at least the 1950's. Soil, ground water, surface water,and wetland sediments in the O-Field area were contaminated from the disposal activity. A ground-water-flow model of the O-Field area was constructed by the U.S. Geological Survey (USGS) in 1989 to simulate flow in the central and southern part of the Gunpowder Neck. The USGS began an additional study of the contamination in the O-Field area in cooperation with the U.S. Army in 1990 to (1) further define the hydrogeologic framework of the O-Field area, (2) characterize the hydraulic properties of the aquifers and confining units, and (3) define ground-water flow paths at O-Field based on the current data and simulations of ground-water flow. A water-table aquifer, an upper confining unit, and an upper confined aquifer comprise the shallow ground-water aquifer system of the O-Field area. A lower confining unit, through which ground-water movement is negligible, is considered a lower boundary to the shallow aquifer system. These units are all part of the Pleistocene Talbot Formation. The model developed in the previous study was redesigned using the data collected during this study and emphasized New O-Field. The current steady-state model was calibrated to water levels of June 1993. The rate of ground-water flow calculated by the model was approximately 0.48 feet per day (ft/d) and the rate determined from chlorofluorocarbon dates was approximately 0.39 ft/d.
Long, Andrew J.; Putnam, Larry D.
2002-01-01
The conceptual model of the Madison and Minnelusa aquifers in the Rapid City area synthesizes the physical geography, hydraulic properties, and ground-water flow components of these important aquifers. The Madison hydrogeologic unit includes the karstic Madison aquifer, which is defined as the upper, more permeable 100 to 200 ft of the Madison Limestone, and the Madison confining unit, which consists of the lower, less permeable part of the Madison Limestone and the Englewood Formation. Overlying the Madison hydrogeologic unit is the Minnelusa hydrogeologic unit, which includes the Minnelusa aquifer in the upper, more permeable 200 to 300 ft and the Minnelusa confining unit in the lower, less permeable part. The Madison and Minnelusa hydrogeologic units outcrop in the study area on the eastern flank of the Black Hills where recharge occurs from streamflow losses and areal recharge. The conceptual model describes streamflow recharge, areal recharge, ground-water flow, storage in aquifers and confining units, unsaturated areas, leakage between aquifers, discharge from artesian springs, and regional outflow. Effective transmissivities estimated for the Madison aquifer range from 500 to 20,000 ft2/d and for the Minnelusa aquifer from 500 to 10,000 ft2/d. Localized anisotropic transmissivity in the Madison aquifer has tensor ratios as high as 45:1. Vertical hydraulic conductivities for the Minnelusa confining unit determined from aquifer tests range from 1.3x10-3 to 3.0x10-1 ft/d. The confined storage coefficient of the Madison and Minnelusa hydrogeologic units was estimated as 3x10-4 ft/d. Specific yield was estimated as 0.09 for the Madison and Minnelusa aquifers and 0.03 for the Madison and Minnelusa confining units. Potentiometric surfaces for the Madison and Minnelusa aquifers have a general easterly gradient of about 70 ft/mi with local variations. Temporal change in hydraulic head in the Madison and Minnelusa aquifers ranged from about 5 to 95 ft in water years 1988-97. The unconfined areas were estimated at about 53 and 36 mi2 for the Madison and Minnelusa hydrogeologic units, respectively, in contrast to an aquifer analysis area of 629 mi2. Dye-tracer tests, stable isotopes, and hydrogeologic features were analyzed conjunctively to estimate generalized ground-water flowpaths in the Madison aquifer and their influences on the Minnelusa aquifer. The western Rapid City area between Boxelder Creek and Spring Creek was characterized as having undergone extensive tectonic activity, greater brecciation in the Minnelusa Formation, large transmissivities, generally upward hydraulic gradients from the Madison aquifer to the Minnelusa aquifer, many karst springs, and converging flowpaths. Water-budget analysis included: (1) a dry-period budget for declining water levels; October 1, 1987, to March 31, 1993; (2) a wet-period budget for rising water levels, April 1, 1993, to September 30, 1997; and (3) a full 10-year period budget for water years 1988-97. By simultaneously balancing these water budgets, initial estimates of recharge, discharge, change in storage, and hydraulic properties were refined. Inflow rates for the 10-year budget included streamflow recharge of about 45 ft3/s or 61 percent of the total budget and areal recharge of 22 ft3/s or 30 percent. Streamflow recharge to the Madison hydrogeologic unit was about 86 percent of the total streamflow recharge. Outflow for the 10-year budget included springflow of 31 ft3/s or 42 percent of the total budget, water use of about 10 ft3/s or 14 percent, and regional outflow of 22 ft3/s or 30 percent. Ground-water storage increased 9 ft3/s during the 10-year period, and net ground-water movement from the Madison to Minnelusa hydrogeologic unit was about 8 ft3/s.
NASA Astrophysics Data System (ADS)
Mundra, Manish K.
2005-03-01
It is well known that the glass transition temperatures, Tgs, of supported polystyrene (PS) films decrease dramatically with decreasing film thickness below 60-80 nm. However, a detailed understanding of the cause of this effect is lacking. We have investigated the impact of several parameters, including polymer molecular weight (MW), repeat unit structure, and the length scale of cooperatively rearranging regions in bulk. There is no significant effect of PS MW on the Tg-confinement effect over a range of 5,000 to 3,000,000 g/mol. In contrast, the strength of the Tg reduction and the onset of the confinement effect increase dramatically upon changing the polymer from PS to poly(4-tert-butylstyrene) (PTBS), with PTBS exhibiting a Tg reduction relative to bulk at a thickness of 300-400 nm. PTBS also shows a Tg reduction relative to bulk of 47 K in a 21-nm-thick film, more than twice that observed in a PS film of identical thickness. Characterization of the length scale of cooperatively rearranging regions has been done by differential scanning calorimetry but reveals at best a limited correlation with the confinement effect.
NASA Astrophysics Data System (ADS)
Sirotiak, Maroš; Lipovský, Marek; Bartošová, Alica
2015-06-01
In the research described in this paper, studied was sorption capacity of natural and ferric modification of zeolite tuff containing mineral clinoptilolite from the Nižný Hrabovec deposit to remove potentially toxic metals (ionic forms of chromium, nickel, copper and aluminium) from their water solutions. We reported that the Fe (III) zeolite has an enhanced ability to sorption of Cu (II), and a slight improvement occurs in the case of Cr (VI) and Ni (II). On the other hand, the deterioration was observed in the case of Al (III) adsorption.
Hall, C M; Walter, R C; Westgate, J A; York, D
Cindery Tuff is a subalkaline, rhyolitic air-fall deposit that was probably produced by a mixed-magma eruption. It is a distinctive, datable, regional isochronous marker bed within the Pliocene sediments of the Middle Awash district, and is stratigraphically situated between two new fossil hominid discoveries. Based on 40Ar/39Ar analyses of plagioclase, rhyolitic glass and basaltic glass, as well as fission-track analyses of zircons, we estimate its age to be 3.8-4.0 Myr. This implies that associated hominid skull fragments are at least 3.9 Myr old.
Physical properties of Campi Flegrei tuff from variable depths
NASA Astrophysics Data System (ADS)
Vinciguerra, Sergio; Del Gaudio, Pierdomenico; Iarocci, Alessandro; Mollo, Silvio; Scarlato, Piergiorgio; Freda, Carmela
2010-05-01
A number of measurements on physical properties of volcanic tuff from different volcanic Italian districts (Campi Flegrei, Colli Albani, Lago di Vico) has been performed in the recent years. Petrophysical investigations carried out at increasing/decreasing effective pressure (Vinciguerra et al., 2005; 2008) revealed how, within the same lithology, the different degree of lithification and presence of clasts can affect significantly physical property values. Microstructural analyses revealed that the pressurization and depressurization cycles generate inelastic crack damage/pore collapse and permanent reduction of voids space. When cores from boreholes were investigated, significant variations of physical properties have been found even within the same tuff lithologies (Vinciguerra et al., 2008), which significantly influence the modelling of the overall physics and mechanics, as well as the input parameters for ground deformation and seismicity modelling. In this study we analysed the physical properties of Campi Flegrei tuff (12ka) cores from depths down to 100m, which is the most abundant and widely distributed lithology in the caldera (Rosi and Sbrana, 1987). CF tuff is a strongly heterogeneous pyroclastic flow material, which include cavities, pumice and crystals of sanidine, pyroxene and biotite (Vanorio et al., 2002; Vinciguerra et al., 2005). Total porosity was measured, after drying samples at 80°C for 24 hours, throughout a helium pycnometer (AccuPyc II 1340, Micromeritics Company) with ±0.01% accuracy. Initial total porosity of 52% was found for cores coming from 30m of depth. Total porosity decreases to 46% , when cores from 100m depth are considered. Bench measurements of P-wave and S-wave velocities carried out in dry conditions are of 1.8 and 1.2 km/s respectively for the 30m depth cores and increase up to 2.1 km/s and 1.35 km/s at depth of 100m. Taken together, the measurements of porosity and seismic velocities of P and S wave velocities revealed a significant compaction occurring even at such shallow depths. This observation suggests that pore collapse is a pervasive mechanism affecting such weak lithologies and can be activated even from very modest increase of effective pressure (1-10MPa). In order to proof this we aim to carry out simultaneous seismic velocity and permeability under increasing effective pressure, which simulate the lithostatic increasing load. The results obtained from laboratory measurements and their comparison with field determinations, such as sonic logs, provide crucial information for the interpretation of the inner volcanic district structure, and in turn suggest if/how mechanical and thermal stress can significantly change the rheology and permeability tuffs, opening new perspectives for the interpretation of the caldera dynamics.
Geldon, Arthur L.
2003-01-01
The geology of the Paleozoic rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis Program to provide support for hydrogeological interpretations. The study area is segmented by numerous uplifts and basins caused by folding and faulting that have recurred repeatedly from Precambrian to Cenozoic time. Paleozoic rocks in the study area are 0-18,000 feet thick. They are underlain by Precambrian igneous, metamorphic, and sedimentary rocks and are overlain in most of the area by Triassic formations composed mostly of shale. The overlying Mesozoic and Tertiary rocks are 0-27,000 feet thick. All Paleozoic systems except the Silurian are represented in the region. The Paleozoic rocks are divisible into 11 hydrogeologic units. The basal hydrogeologic unit consisting of Paleozoic rocks, the Flathead aquifer, predominantly is composed of Lower to Upper Cambrian sandstone and quartzite. The aquifer is 0-800 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Gros Ventre confining unit consists of Middle to Upper Cambrian shale with subordinate carbonate rocks and sandstone. The confining unit is 0-1,100 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Bighom aquifer consists of Middle Cambrian to Upper Ordovician limestone and dolomite with subordinate shale and sandstone. The aquifer is 0-3,000 feet thick and is overlain unconformably by Devonian and Mississipplan rocks. The Elbert-Parting confining unit consists of Lower Devonian to Lower Mississippian limestone, dolomite, sandstone, quartzite, shale, and anhydrite. It is 0-700 feet thick and is overlain conformably to unconformably by Upper Devonian and Mississippian rocks. The Madison aquifer consists of two zones of distinctly different lithology. The lower (Redwall-Leadville) zone is 0-2,500 feet thick and is composed almost entirely of Upper Devonian to Upper Mississippian limestone, dolomite, and chert. The overlying (Darwin-Humbug) zone is 0-800 feet thick and consists of Upper Mississippian limestone, dolomite, sandstone, shale, gypsum, and solution breccia. The Madison aquifer is overlain conformably by Upper Mississippian and Pennsylvanian rocks. The Madison aquifer in most areas is overlain by Upper Mississippian to Middle Pennsylvanian rocks of the Four Comers confining unit. The lower part of this confining unit, the Belden-Molas subunit, consists of as much as 4,300 feet of shale with subordinate carbonate rocks, sandstone, and minor gypsum. The upper part of the confining unit, the Paradox-Eagle Valley subunit, in most places consists of as much as 9,700 feet of interbedded limestone, dolomite, shale, sandstone, gypsum, anhydrite, and halite. Locally, the evaporitic rocks are deformed into diapirs as much as 15,000 feet thick. The Four Corners confining unit is overlain gradationally to disconformably by Pennsylvanian rocks. The uppermost Paleozoic rocks comprise the Canyonlands aquifer, which is composed of three zones with distinctly different lithologies. The basal (Cutler-Maroon) zone consists of as much as 16,500 feet of Lower Pennsylvanian to Lower Permian sandstone, conglomerate, shale, limestone, dolomite, and gypsum. The middle (Weber-De Chelly) zone consists of as much as 4,000 feet of Middle Pennsylvanian to Lower Permian quartz sandstone with minor carbonate rocks and shale. The upper (Park City-State Bridge) zone consists of as much as 800 feet of Lower to Upper Permian limestone, dolomite, shale, sandstone, phosphorite, chert, and gypsum. The Canyonlands aquifer is overlain disconformably to unconformably by formations of Triassic and Jurassic age.
Brahana, J.V.; Mesko, T.O.
1988-01-01
On a regional scale, the groundwater system of the northern Mississippi embayment is composed of a series of nonindurated clastic sediments that overlie a thick sequence of Paleozoic carbonate, sandstones, and shales. The units that comprise the geohydrologic framework of this study are the alluvium-lower Wilcox Aquifer the Midway confining unit, the Upper Cretaceous aquifer, the Cretaceous-Paleozoic confining unit, and the Ozark-St. Francois aquifer. The Upper Cretaceous aquifer of Late Cretaceous age is the primary focus of this investigation; the study is part of the Gulf Coast Regional Aquifer-System Analysis. A four layer finite-difference groundwater flow model enabled testing of alternative boundary concepts and provide a refined definition of the hydrologic budget of the deep aquifers. The alluvium-lower Wilcox aquifer, the Upper Cretaceous aquifer, and the Ozark-St. Francois aquifer form layers 2 through 4, respectively. Layer 1 is an inactive layer of constant heads representing shallow water levels, which are a major control on recharge to and discharge from the regional system. A matrix of leakance values simulates each confining unit, allowing vertical interchange of water between different aquifers. The model was calibrated to 1980 conditions by using the assumption that 1980 was near steady-state conditions; it was calibrated to simulate observed heads were found to be most sensitive to pumping, and least sensitive to the leakance. By using all available water quality and water level data, alternative boundary conditions were tested by comparing model simulated heads to observed heads. The results of the early modeling effort also contribute to a better understanding of the regional hydrologic budget, indicating that: upward leakage from the Ozark-St. Francois aquifer to the Upper Cretaceous aquifer is about 43 cu ft/sec; upward recharge of about 68 cu ft/sec occurs to the lower Wilcox-alluvium aquifer from the Upper Cretaceous aquifer; and the Midway is an effective regional confining unit. (Author 's abstract)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Peter M.; Schultz-Fellenz, Emily S.; Kelley, Richard E.
This technical paper presents the most recent and updated catalog of earthquakes measured by the Los Alamos Seismic Network at and around Los Alamos National Laboratory (LANL), with specific focus on the site of the proposed transuranic waste facility (TWF) at Technical Area 63 (TA-63). Any questions about the data presented herein, or about the Los Alamos Seismic Network, should be directed to the authors of this technical paper. LANL and the Los Alamos townsite sit atop the Pajarito Plateau, which is bounded on its western edge by the Pajarito fault system, a 35-mile-long system locally comprised of the down-to-the-eastmore » Pajarito fault (the master fault) and subsidiary down-to-the-west Rendija Canyon, Guaje Mountain, and Sawyer Canyon faults (Figure 1). This fault system forms the local active western margin of the Rio Grande rift near Los Alamos, and is potentially seismogenic (e.g., Gardner et al., 2001; Reneau et al., 2002; Lewis et al., 2009). The proposed TWF area at TA-63 is situated on an unnamed mesa in the north-central part of LANL between Twomile Canyon to the south, Ten Site Canyon to the north, and the headwaters of Canada del Buey to the east (Figure 2). The local bedrock is the Quaternary Bandelier Tuff, formed in two eruptive pulses from nearby Valles caldera, the eastern edge of which is located approximately 6.5 miles west-northwest of the technical area. The older member (Otowi Member) of the Bandelier Tuff has been dated at 1.61 Ma (Izett and Obradovich 1994). The younger member (Tshirege Member) of the Bandelier Tuff has been dated at 1.256 Ma (age from Phillips et al. 2007) and is widely exposed as the mesa-forming unit around Los Alamos. Several discrete cooling units comprise the Tshirege Member. Commonly accepted stratigraphic nomenclature for the Tshirege Member is described in detail by Broxton and Reneau (1995), Gardner et al. (2001), and Lewis et al. (2009). The Tshirege Member cooling unit exposed at the surface at TA-63 is Qbt3. Understanding the subtle differences between Tshirege Member cooling units and the nature of the contacts between cooling units is critical to identifying the presence or absence of faults associated with the Pajarito fault system on the Pajarito Plateau. The Los Alamos Seismic Network (LASN) continuously monitors local earthquake activity in the Los Alamos area in support of LANL's Seismic Hazards program. Seismic monitoring of LANL facilities is a requirement of DOE Order 420.1B (Facility Safety). LASN currently consists of nine permanent seismic instrument field stations that telemeter real-time sensitive ground motion data to a central recording facility. Four of these stations are located on LANL property, with three of those within 2.5 miles of TA-63. The other five stations are in remote locations in the Jemez Mountains, Valles Caldera, St Peters Dome, and the Caja del Rio plateau across the Rio Grande from the Los Alamos area. Local earthquakes are defined as those with locations within roughly 100 miles of Los Alamos. Plate 1 shows the current LASN station locations and all local earthquakes recorded from 1973 through 2011. During this time period, LASN has detected and recorded over 850 local earthquakes in north-central New Mexico. Over 650 of these were located within about 50 miles of Los Alamos, and roughly 60 were within 10 miles. The apparent higher density of earthquakes close to Los Alamos, relative to the rest of north-central New Mexico, is due largely to the fact that LASN is a sensitive local seismic network, recording many very small nearby events (magnitude less than 1.0) that are undetectable at greater distances.« less
Deep seated carbonates and their vulnerability - are they isolated or hydrodynamically interacted?
NASA Astrophysics Data System (ADS)
Mádl-Szőnyi, Judit; Czauner, Brigitta; Iván, Veronika; Tóth, Ádám; Simon, Szilvia; Erőss, Anita; Havril, Tímea; Bodor, Petra
2017-04-01
The vulnerability of carbonate systems is basically determined by their confinement (Mádl-Szőnyi and Füle 1998). Confined carbonate units are traditionally considered to be aquifer systems hydrodynamically independent of their siliciclastic cover and unconfined parts. This is due to the widely accepted view, that confining layers are generally impermeable relative to the underlying carbonate aquifers. The nature of how deep confined carbonate units are linked to unconfined gravity-driven regional groundwater flow (GDRGF) is poorly understood. The very first study of Mádl-Szőnyi and Tóth (2015) examined the flow systems for unconfined and for marginal areas of confined carbonate settings and adapted the Tóthian-flow pattern for unconfined and adjoining confined cases. The modified GDRGF pattern with considering further driving forces (such as buoyancy) was used as a working hypothesis for the numerical understanding of evolution of hydrodynamics of marginal areas of unconfined and confined carbonate aquifer systems by Havril et al. (2016). In the recent study the main aim is the application of the GDRGF concepts to confined deep carbonates. Here the focal point is the handling of the karstified carbonate rock matrix and its siliciclastic cover as a whole. If we simplify the problem we can focus on to reveal the hydrodinamically interacted or insulated nature of confined carbonate systems. Beside hydrodynamic character of an area the salinity pattern can also reflect the potential connections. The interpretation of salinity in the context of GDRGF hydrodynamics therefore can assist in the determination of replenishment of formation waters with meteoric infiltration and can help to understand the flow pattern of the system. These hydrodynamic interactions also determine the vulnerability of carbonate systems not only in conventional sense but in relation to geothermal and hydrocarbon production. The study area is located in the Hungarian Paleogene Basin of the Pannonian Basin (Báldi and Báldi-Beke 1985), in which the Pre-Cenozoic aquifers are mostly covered by Paleogene and Neogene formations. The study displays the flow pattern for the region; reveals the interrelationships between siliciclastic confining layers and carbonate aquifer system and shows the salinity character of fluids. The regional fluid pattern reveals the efficient interaction of unconfined and confined carbonates, the boundaries of the communication; in addition to demonstrate the protection role of confining layers which are important to understand the vulnerability. However, the interaction between confining layers and underlying aquifers were also recognized. It reflects the geological and tectonic pattern of the area. These research are significant for the understanding of vulnerability not only for surface human activity but also for geothermal and hydrocarbon intervention. The research was supported by the Hungarian OTKA Research Fund (NK 101356).
Volcano-tectonic evolution of the Castle Mountains: 22 to 14 MA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capps, R.C.
1993-04-01
The alkali-calcic Castle Mountains Volcanic rocks (CMV) are host to major gold mineralization. They are located about 100 km south of Las Vegas, Nevada and are on the boundary between the Basin and Range Province and Colorado River extensional corridor (35[degree]18 minutes 45 seconds N, 115[degree]05 minutes 10 seconds W). New data show the following chronology. 22 Ma. A regional rhyolite ash-flow tuff, the Castle Mountain Tuff member, was deposited on a Proterozoic-Paleozoic basement of low relief. <22 Ma - > 17 Ma. Normal faulting (N30--60[degree]W, 60--65[degree]NE) formed half-grabens. Latite and basalt flows, minor ash-flow tuffs, lahars and sediments (Jacksmore » Well member - JW) were deposited unconformably. JW magmas are enriched in light REE compared to the younger CMV. <17 Ma to 15.5 Ma. Oxidizing upper portions (796 C) of a shallowly emplaced silicic melt erupted to form the high-silica rhyolite dome complexes and intrusives (Linder Peak member - LP) of the NNE-striking Castle Mountains. NW-striking transverse structures caused discontinuities in strike direction of the subvolcanic intrusive and domes and helped form a synvolcanic depression. During a hiatus in volcanism, early Hart Peak member (HP) sediments were deposited marginal to the Castle Mountains. Major gold mineralization and widespread hydrothermal alteration occurred at about 15.5 Ma. 16 Ma to 14 Ma. Early HP volcaniclastic sediments, rhyolite pyroclastic-surge tuff, and basaltic flows, were deposited during late hydrothermal alteration and then fractured and displaced by NNE-striking normal faults, especially in the eastern and northeastern CMV. < 14 Ma. Tectonically significant flat-lying boulder conglomerate and unconformably overlying, largely andesitic flows fill depressions in the Castle Mountains and the Piute Range to the east.« less
NASA Astrophysics Data System (ADS)
Rocholl, Alexander; Schaltegger, Urs; Gilg, H. Albert; Wijbrans, Jan; Böhme, Madelaine
2018-03-01
The Middle Miocene Upper Freshwater Molasse sediments represent the last cycle of clastic sedimentation during the evolution of the North Alpine Foreland Basin. They are characterized by small-scale lateral and temporal facies changes that make intra-basin stratigraphic correlations at regional scale difficult. This study provides new U-Pb zircon ages as well as revised 40Ar/39Ar data of volcanic ash horizons in the Upper Freshwater Molasse sediments from southern Germany and Switzerland. In a first and preliminary attempt, we propose their possible correlation to other European tephra deposits. The U-Pb zircon data of one Swiss (Bischofszell) and seven southern German (Zahling, Hachelstuhl, Laimering, Unterneul, Krumbad, Ponholz) tuff horizons indicate eruption ages between roughly 13.0 and 15.5 Ma. The stratigraphic position of the Unterneul and Laimering tuffs, bracketing the ejecta of the Ries impact (Brockhorizon), suggests that the Ries impact occurred between 14.93 and 15.00 Ma, thus assigning the event to the reversed chron C5Bn1r (15.032-14.870 Ma) which is in accordance with paleomagnetic evidence. We combine our data with published ages of tuff horizons from Italy, Switzerland, Bavaria, Styria, Hungary, and Romania to derive a preliminary tephrochronological scheme for the Middle Miocene in Central Europe in the age window from 13.2 to 15.5 Ma. The scheme is based on the current state of knowledge that the Carpathian-Pannonian volcanic field was the only area in the region producing explosive calc-alkaline felsic volcanism. This preliminary scheme will require verification by more high-quality ages complemented by isotopic, geochemical and paleomagnetic data.
Insinga, Donatella; Calvert, Andrew T.; Lanphere, Marvin A.; Morra, Vincenzo; Perrotta, Annamaria; Sacchi, Marco; Scarpati, Claudio; Saburomaru, James; Fedele, Lorenzo
2006-01-01
This study on terrestrial and marine successions increases the understanding of the Late-Holocene volcanological and stratigraphical evolution of the south-western part of Campi Flegrei caldera.Stratigraphic data derived from field studies of two major tuff vents located along the coastal zone, namely Porto Miseno and Capo Miseno, clearly indicate that the Porto Miseno tuff ring slightly predates the Capo Miseno tuff cone. 40Ar/39Ar step-heating experiments, carried out on fresh sanidine separates from pumice samples, yielded a plateau age of 5090±140 yr BP for Capo Miseno and 6490±510 yr BP for Porto Miseno vent, thus confirming field observations.The volcanoclastic input derived from this recent and intense eruptive activity played a major role in the inner-shelf stratigraphic evolution of the Porto Miseno Bay deposits that have been drilled up to 40 m depth off the crater rim. The cored succession is characterised by transgressive marine deposits (mostly volcanic sand) with two intercalated peat layers (t1 and t2), dated at 3560±40 yr BP and 7815±55 yr BP (14C), respectively, interbedded with a 1–5 m thick pumice layer (tephra C). Peat layers have been chronostratigraphically correlated with two widespread paleosols onland while petrochemical analyses allowed us to correlate tephra C with the Capo Miseno tuff cone deposits.The results presented in this study imply a Late-Holocene volcanic activity that is also well preserved in the marine record in this sector of the caldera where a new chronostratigraphic reconstruction of the eruptive events is required in order to better evaluate the hazard assessment of the area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Q; Zavarin, M; Rose, T P
Laboratory batch sorption experiments were used to investigate variations in the retardation behavior of redox-sensitive radionuclides. Water-rock compositions used during these experiments were designed to simulate subsurface conditions at the Nevada Test Site (NTS), where a suite of radionuclides were deposited as a result of underground nuclear testing. Experimental redox conditions were controlled by varying the oxygen content inside an enclosed glove box and by adding reductants into the testing solutions. Under atmospheric (oxidizing) conditions, the radionuclide distribution coefficients varied with the mineralogical composition of the sorbent and the water chemistry. Under reducing conditions, distribution coefficients showed marked increases formore » {sup 99}Tc and {sup 237}Np in devitrified tuff, but much smaller variations in alluvium, carbonate rock, and zeolitic tuff. This effect was particularly important for {sup 99}Tc, which tends to be mobile under oxidizing conditions. Unlike other redox-sensitive radionuclides, iodine sorption may decrease under reducing conditions when I{sup -} is the predominant species. Overall, sorption of U to alluvium, devitrified tuff, and zeolitic tuff under atmospheric conditions was less than in the glove-box tests. However, the mildly reducing conditions achieved here were not likely to result in substantial U(VI) reduction to U(IV). Sorption of Pu was not affected by the decreasing redox conditions achieved in this study, as the predominant sorbed Pu species in all conditions was expected to be the low-solubility and strongly sorbing Pu(OH){sub 4}. Depending on the aquifer lithology, the occurrence of reducing conditions along a groundwater flowpath could potentially contribute to the retardation of redox-sensitive radionuclides {sup 99}Tc and {sup 237}Np, which are commonly identified as long-term dose contributors in the risk assessment in various nuclear facilities.« less
Possible Tuff Cones In Isidis Planitia, Mars
NASA Astrophysics Data System (ADS)
Seabrook, A. M.; Rothery, D. A.; Bridges, J. C.; Wright, I. P.
The Beagle 2 lander of the ESA Mars Express mission will touch down on the martian surface in December 2003 to conduct a primarily exobiological mission. The landing site will be within Isidis Planitia, an 1100 km diameter impact basin. Isidis contains many sub-kilometre-sized cones. These can be found singly, in clusters, and in straight or arcuate chains extending many kilometres. In some areas of the basin these cones can occupy over 10% of the surface, with the most densely populated areas being in the older western half of the basin. There are few cones around the basin rim. There is also variation in the erosional state of the cones both across the basin, and within smaller areas, implying a range in time of formation for the cones. We currently favour a tuff cone origin as an explanation for these features. Tuff cones on Earth are rooted volcanic features formed at vents by the interaction between magma or magmatic heat and surface or near-surface water. Lava flows likely to be associated with at least some of the cones if they had a cinder cone (rooted eruptions at vents in a dry environment) origin are absent. This suggests the involvement of suffi- cient volatiles both to explosively fragment the erupting magma, and to cool the ejecta enough to prevent the formation of clastogenic flows. If our tuff cone interpretation is correct, this has implications for the presence, abundance and long-term persistence of sub-surface volatiles (water or carbon dioxide) on Mars. An understanding of the mechanism of formation of the Isidis cones will assist the characterisation of the basin in preparation for the landing of Beagle 2, by providing information about the history of volatiles and volcanism in the basin, and the processes that resulted in the surface we see today.
NASA Astrophysics Data System (ADS)
Blegen, Nick; Brown, Francis H.; Jicha, Brian R.; Binetti, Katie M.; Faith, J. Tyler; Ferraro, Joseph V.; Gathogo, Patrick N.; Richardson, Jonathan L.; Tryon, Christian A.
2016-11-01
The East African Rift preserves the world's richest Middle and Late Pleistocene (∼780-12 ka) geological, archaeological and paleontological archives relevant to the emergence of Homo sapiens. This region also provides unparalleled chronological control for many important sites through tephrochronology, the dating and correlation of volcanic ashes as widespread isochronous markers in the geological record. There are many well-characterized Pliocene-Early Pleistocene tephras that are widespread across East Africa. A comparable framework is lacking for the Middle and Late Pleistocene; a period characterized by spatially and temporally complex patterns of climate change, as well as the emergence of modern Homo sapiens and the dispersal of this species across and out of Africa. Unraveling relationships among these spatial and temporally complex phenomena requires a precise chronology. To this end we report the Menengai Tuff, a widespread volcanic ash produced by the large-scale caldera-forming eruption in Kenya and 40Ar/39Ar dated to 35.62 ± 0.26 ka. Geochemical characterization of 565 glass shards from 36 samples by wavelength-dispersive electron probe microanalysis show the Menengai Tuff was deposited over >115,000 km2 and is found in the Baringo, Chalbi, Elmenteita, Nakuru, Olorgesailie, Turkana, and Victoria basins, all of which preserve rich Late Pleistocene paleoenvironmental and archaeological archives. Correlation and dating of the Menengai Tuff demonstrate that it is the most widespread tephra and largest eruption currently known from the Late Pleistocene of East Africa. As such, it is a valuable marker in establishing a Late Pleistocene chronology for paleoclimatic, archeological, and paleontological records relevant to the study of human evolution.
Williams, Lester J.; Gill, Harold E.
2010-01-01
The hydrogeologic framework for the Floridan aquifer system has been revised for eight northern coastal counties in Georgia and five coastal counties in South Carolina by incorporating new borehole geophysical and flowmeter log data collected during previous investigations. Selected well logs were compiled and analyzed to determine the vertical and horizontal continuity of permeable zones that make up the Upper and Lower Floridan aquifers and to define more precisely the thickness of confining beds that separate these aquifers. The updated framework generally conforms to the original framework established by the U.S. Geological Survey in the 1980s except for adjustments made to the internal boundaries of the Upper and Lower Floridan aquifers and the individual permeable zones that compose these aquifers. The revised boundaries of the Floridan aquifer system were mapped by taking into account results from local studies and regional correlations of geologic and hydrogeologic units. Because the revised framework does not match the previous regional framework along all edges, additional work will be needed to expand the framework into adjacent areas. The Floridan aquifer system in the northern coastal region of Georgia and parts of South Carolina can be divided into the Upper and Lower Floridan aquifers, which are separated by a middle confining unit of relatively lower permeability. The Upper Floridan aquifer includes permeable and hydraulically connected carbonate rocks of Oligocene and upper Eocene age that represent the most transmissive part of the aquifer system. The middle confining unit consists of low permeability carbonate rocks that lie within the lower part of the upper Eocene in Beaufort and Jasper Counties, South Carolina, and within the upper to middle parts of the middle Eocene elsewhere. Locally, the middle confining unit contains thin zones that have moderate to high permeability and can produce water to wells that tap them. The Lower Floridan aquifer includes all permeable strata that lie below the middle confining unit and above the base of the aquifer system. Beneath Hilton Head Island, South Carolina, the middle Floridan aquifer is now included as part of the Lower Floridan aquifer. The base of the Floridan aquifer system generally is located at the top of lower Eocene rocks in Georgia and the top of Paleocene rocks in South Carolina. The Upper and Lower Floridan aquifers are interconnected to varying degrees depending on the thickness and permeability of the middle confining unit that separates these aquifers. In most places, hydraulic head differences between the two aquifers range from a few inches to a few feet or more. Monitoring at several vertically clustered well-point sites where wells were set at different depths in the aquifer revealed variations in the degree of hydraulic separation with depth. In general, the head separation between the Upper and Lower Floridan aquifers increases with depth, which indicates that the deeper zones are more hydraulically separated than the shallower parts of the Lower Floridan aquifer.
NASA Astrophysics Data System (ADS)
Turnbull, M.; Porritt, L. A.; Edwards, B. R.; Russell, K.
2014-12-01
Kima'Kho Mountain is a 1.8 Ma (40Ar/39Ar of 1.82 +/- 40 ka) Pleistocene an alkali-olivine basaltic tuya situated in northern British Columbia. The volcanic edifice rises 460 m from its base and comprises a central vent, dominated by lapilli-tuff and minor pillow lava and dykes; and a surrounding plateau underlain by a sequence of dipping beds of basaltic tuff-breccia and capped by a series of flat-lying, subaerial lava flows. We present a 1:10,000 geological map for Kima'Kho Mountain building on the preliminary work of Ryane et al. (2010). We use the volcanic stratigraphy to explore the implications of three unique features. (1) The central cone comprises massive to crudely-bedded lapilli tuffs containing abundant armoured lapilli - cores of highly-vesicular pyroclasts coated with blocky to cuspate vitric ash. These units suggest an explosive origin from within an ice-enclosed lake, and deposited by wet, dilute pyroclastic surge events. (2) The entire stratigraphic sequence hosts at least two "passage zones" (cf. Jones, 1969); the presence and geometry of these passage zones constrain ice thicknersses at the time of eruption and inform on the englacial lake dynamics. (3) Lastly, our field-based stratigraphic relationships are at odds with the classic tuya model (i.e. an effusive onset to the eruption, forming pillow basalts, followed by explosive activity). Our field mapping suggests an alternative model of tuya architecture, involving a highly-energetic, sustained explosive onset creating a tephra cone that become emergent followed by effusive eruption to create lavas and a subaqueous lava-fed delta. Jones, J. G. Intraglacial volcanoes of the Laugarvatn region, south-west Iceland-I. Geological Society of London Quarterly Journal 124, 197-211 (1969). Ryane, C., Edwards, B. R. & Russell, J. K. The volcanic stratigraphy of Kima'Kho Mountain: A Pleistocene tuya, northwestern British Columbia. Geological Survey of Canada, Current Research 2011-104, 12p, doi:10.4095/289196 (2011). Figure 1. (Upper Figure) Geological cross-section showing projected distribution of volcanic lithofacies used to define 3 passage zones (PZ#). (Lower Figure) Dynamic evolution and interplay between the rates of volcano growth vs. rise of englacial lake and relationship to passage zones (PZ) mapped at Kima'Kho.
NASA Astrophysics Data System (ADS)
Aihara, Y.; Kiyokawa, S.; Ito, T.; Ikehara, M.; Yamaguchi, K. E.; Horie, K.; Sakamoto, R.; Miki, T.
2013-12-01
Stratigraphic transition of black chert to iron-rich sedimentary rocks above volcanic sequences with hydrothermal systems is common and characteristic feature of Archean greenstone belts. The 3.2 Ga Dixon Island Formation, exposed along the northern coast of Dixon Island located in the coastal Pilbara terrane, Western Australia, is one of such units and the focus of our study. We introduce field occurrence and lithology of the Dixon Island Formation that preserves features of paleohydrohermal environment in the Mesoarchean ocean. The Dixon Island Formation is composed of the following three members (in ascending order): Komatiite-Rhyolite Tuff, Black Chert, and Varicolored Chert members (Kiyokawa and Taira, 1998). Here we focus on the Komatiite-Rholite Tuff member. It preserves two cycles of highly altered komatiite lavas and well-stratified rhyolite tuff. Komatiite lavas include dendritic crystals of chrome spinel and ghosts of spinifex, euhedral and sheet-like olivines and pyroxenes. These rocks are now composed of granular microcrystalline quartz with chromian muscovite, chrome spinel and chrorite that formed by intense silicification. Its upper part contains hydrothermal veining and alteration (i.e., many vein swarms composed of veins of quartz and organic carbon-rich black chert). Most black chert veins intrude vertically into overlying layers, and contain barite, pyrite, monazite and clay minerals which were least affected by silicificatio. Based on the cross-cutting relationship seen in the outcrops, we recognized two generations of black chert veins (type 1 and type 2 veins; Kiyokawa et al., 2006). Type 1 veins are mainly composed of carbonaceous peloids in a microcrystalline quartz matrix. Euhedral and xenocrystic tourmaline are found only in Type1 veins. Type 2 veins are organic carbon-poor and contain fragments of black chert and siliceous volcanic breccia (Kiyokawa et al., 2006). Intense silicification of komatiitic volcaniclastics and lava, enriched in Si and K and depleted in Mg, occurred earlier than the formation of black chert veins and probably during sedimentation of the overlying Black Chert member. Petrographycally, tourmaline in Type1 veins formed by hydrothermal processes and can be used to infer physicochemical conditions of the hydrothermal activity. Fragmentation of black chert and volcanic rocks within Type 2 veins was probably due to high pressure caused by hydrothermal activity.
Relativistic Confinement Resonances
NASA Astrophysics Data System (ADS)
Keating, David; Manson, Steven; Deshmukh, Pranawa
2017-04-01
Photoionization of confined atoms in a C60 fullerene have been under intense investigation in the recent years, in particular the confinement induced resonances, termed confinement resonances. The effects of the C60 potential are modeled by a static spherical well, with (in atomic units) inner radius r0 = 5.8, width Δ = 1.9, and depth U0 = -0.302, which is reasonable in the energy region well above the C60 plasmons. At very high Z, relativistic interactions become important contributors to even the qualitative nature of atomic properties; this is true for confined atomic properties as well. To explore the extent of these interactions, a theoretical study of several heavy atoms has been performed using the relativistic random phase approximation (RRPA) methodology. In order to determine which features in the photoionization cross section are due to relativity, calculations using the (nonrelativistic) random phase approximation with exchange method (RPAE) are performed for comparison. The existence of the second subshell of the spin-orbit-split doublets can induce new confinement resonances in the total cross section, which is the sum of the spin-orbit-split doublets, due to the shift in the doublet's threshold. Several examples for confined high-Z atoms are presented. Work supported by DOE and NSF.
Smith, Barry S.
2003-01-01
Population and tourism continues to grow in Virginia Beach, Virginia, but the supply of freshwater is limited. A pipeline from Lake Gaston supplies water for northern Virginia Beach, but ground water is widely used to water lawns in the north, and most southern areas of the city rely solely on ground water. Water from depths greater than 60 meters generally is too saline to drink. Concentrations of chloride, iron, and manganese exceed drinking-water standards in some areas. The U.S. Geological Survey, in cooperation with the city of Virginia Beach, Department of Public Utilities, investigated the shallow aquifer system of the southern watersheds to determine the distribution of fresh ground water, its potential uses, and its susceptibility to contamination. Aquifers and confining units of the southern watersheds were delineated and chloride concentrations in the aquifers and confining units were contoured. A ground-water-flow and solute-transport model of the shallow aquifer system reached steady state with regard to measured chloride concentrations after 31,550 years of freshwater recharge. Model simulations indicate that if freshwater is found in permeable sediments of the Yorktown-Eastover aquifer, such a well field could supply freshwater, possibly for decades, but eventually the water would become more saline. The rate of saline-water intrusion toward the well field would depend on the rate of pumping, aquifer properties, and on the proximity of the well field to saline water sources. The steady-state, ground-water-flow model also was used to simulate drawdowns around two hypothetical well fields and drawdowns around two hypothetical open-pit mines. The chloride concentrations simulated in the model did not approximate the measured concentrations for some wells, indicating sites where local hydrogeologic units or unit properties do not conform to the simple hydrogeology of the model. The Columbia aquifer, the Yorktown confining unit, and the Yorktown-Eastover aquifer compose the hydrogeologic units of the shallow aquifer system of Virginia Beach. The Columbia and Yorktown-Eastover aquifers are poorly confined throughout most of the southern watersheds of Virginia Beach. The freshwater-to-saline-water distribution probably is in a dynamic equilibrium throughout most of the shallow aquifer system. Freshwater flows continually down and away from the center of the higher altitudes to mix with saline water from the tidal rivers, bays, salt marshes, and the Atlantic Ocean. Fresh ground water from the Columbia aquifer also leaks down through the Yorktown confining unit into the upper half of the Yorktown-Eastover aquifer and flows within the Yorktown-Eastover above saline water in the lower half of the aquifer. Ground-water recharge is minimal in much of the southern watersheds because the land surface generally is low and flat.
Unique and massive Chernobyl cranes for deconstruction activities in the new safe confinement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parameswaran, N. A. Vijay; Chornyy, Igor; Owen, Rob
2013-07-01
On 26 April 1986, the worst nuclear power plant accident in history occurred at the Chernobyl plant in Ukraine (then part of the Soviet Union). The destruction of Unit 4 sent highly radioactive fallout over Belarus, Russia, Ukraine, and Europe. The object shelter-a containment sarcophagus-was built in November 1986 to limit exposure to radiation. However, it has only a planned 25-year lifespan and would probably not survive even a moderate seismic event in a region that has more than its share of such events. It was time to take action. One of the largest tasks that are in progress ismore » the design and construction of the New Safe Confinement (NSC). The NSC is an engineered enclosure for the entire object shelter that includes a suite of process equipment. The process equipment will be used for the dismantling of the destroyed Chernobyl Nuclear Power Plant Unit. One of the major mechanical handling systems to be installed in the new safe confinement is the Main Cranes System. The planned decontamination and decommissioning or dismantling activities will require the handling of heavily shielded waste disposal casks containing nuclear fuel as well as lifting and transporting extremely large structural elements. These activities, to be performed within the new safe confinement, will require large and sophisticated cranes. The article will focus on the current progress of the new safe confinement and of the main cranes system for the decommissioning or dismantling activities. (authors)« less
The bishop tuff: New insights from eruptive stratigraphy
Wilson, C.J.N.; Hildreth, W.
1997-01-01
The 0.76 Ma Bishop Tuff, from Long Valley caldera in eastern California, consists of a widespread fall deposit and voluminous partly welded ignimbrite. The fall deposit (F), exposed over an easterly sector below and adjacent to the ignimbrite, is divided into nine units (F1-F9), with no significant time breaks, except possibly between F8 and F9. Maximum clast sizes are compared with other deposits where accumulation rates are known or inferred to estimate an accumulation time for F1-F8 as ca. 90 hrs. The ignimbrite (Ig) is divided into chronologically and/or geographically distinct packages of material. Earlier packages (Ig1) were emplaced mostly eastward, are wholly intraplinian (coeval with fall units F2-F8), lack phenocrystic pyroxenes, and contain few or no Glass Mountain-derived rhyolite lithic fragments. Later packages (Ig2) were erupted mostly to the north and east, are at least partly intraplinian (interbedded with fall unit F9 to the east), contain pyroxenes, and have lithic fractions rich in Glass Mountain-derived rhyolite or other lithologies exposed on the northern caldera rim. Recognition of the intraplinian nature of Ig1 east of the caldera and use of the fall deposit chronometry yields accumulation estimates of ca. 25 hrs for an earlier, less-welded subpackage and ca. 36 hrs for a later, mostly welded subpackage. Average accumulation rates range up to ???1 mm/s of densewelded massive ignimbrite, equivalent to ???2.5 mm/s of non-welded material. Comparisons of internal stratification in Ig1 and northern Ig2 lobes suggest the thickest northern ignimbrite accumulated in ???35 hrs. Identifiable vent positions migrated from an initial site previously proposed in the south-central part of the caldera (F1-8, Ig1) in complex fashion; one vent set (for eastern Ig2) migrated east and north toward Glass Mountain, while another set (for northern Ig2) opened from west to east across the northern caldera margin. Vent locations for Ig1 and Ig2 southwest of the caldera have not been identified. The new stratigraphic framework shows that much of the Bishop ignimbrite is intraplinian in nature, and that fall deposits and ignimbrite units previously inferred to be sequential are largely or wholly coeval. Fundamental reassessment is therefore required of all existing models for the eruption dynamics and the nature and causes of pre-eruptive zonations in trace elements, volatiles, and isotopes in the parental magma chamber.
NASA Astrophysics Data System (ADS)
Raos, Alison M.; McPhie, Jocelyn
The Efaté Pumice Formation (EPF) is the record of a major explosive eruption that occurred in the Vanuatu arc, southwestern Pacific, at about 1 Ma. The EPF is the oldest stratigraphic unit of the Efaté Island Group and consists of a succession of non-welded, trachydacitic pumice breccia and shard-rich sand and silt beds with a minimum thickness of ˜500 m and a minimum bulk volume of approximately 85 km3. The lower part (Efaté Pumice Breccias) of the EPF comprises very thick beds composed almost exclusively of glassy, trachydacitic, pumice fragments with ragged terminations. In contrast, the upper part (Rentabau Tuffs) consists of up to 70 m of well-bedded and well-sorted shard-rich sand and silt. The clast population of this upper part comprises >95% glassy or formerly glassy shards, but fossil foraminifera are a ubiquitous and important non-volcanic component. Some glass shards have blocky, equant shapes and arcuate fracture surfaces, features typically associated with the influence of external water during fragmentation, but most are cuspate and platy bubble-wall shards. Pyroclast morphologies indicate that the Efaté Pumice Breccias were largely generated by magmatic-volatile-driven ("dry"), explosive fragmentation processes, and lithofacies characteristics indicate deposition in below-storm-wave-base environments, from eruption-sourced, water-supported density currents of waterlogged pumice. The Rentabau Tuffs are interpreted to represent a change to hydromagmatic activity in response to waning discharge that allowed ingress of water (presumably seawater) to the vent(s).
Sweetkind, Donald S.; Fridrich, Christopher J.; Taylor, Emily
2001-01-01
Existing hydrologic models of the Death Valley region typically have defined the Cenozoic basins as those areas that are covered by recent surficial deposits, and have treated the basin-fill deposits that are concealed under alluvium as a single unit with uniform hydrologic properties throughout the region, and with depth. Although this latter generalization was known to be flawed, it evidently was made because available geologic syntheses did not provide the basis for a more detailed characterization. As an initial attempt to address this problem, this report presents a compilation and synthesis of existing and new surface and subsurface data on the lithologic variations between and within the Cenozoic basin fills of this region. The most permeable lithologies in the Cenozoic basin fills are freshwater limestones, unaltered densely welded tuffs, and little-consolidated coarse alluvium. The least permeable lithologies are playa claystones, altered nonwelded tuffs, and tuffaceous and clay-matrix sediments of several types. In all but the youngest of the basin fills, permeability probably decreases strongly with depth owing to a typically increasing abundance of volcanic ash or clay in the matrices of the clastic sediments with increasing age (and therefore with increasing depth in general), and to increasing consolidation and alteration (both hydrothermal and diagenetic) with increasing depth and age. This report concludes with a categorization of the Cenozoic basins of the Death Valley region according to the predominant lithologies in the different basin fills and presents qualitative constraints on the hydrologic properties of these major lithologic categories.
NASA Astrophysics Data System (ADS)
Isobe, H.; Torii, M.
2016-12-01
2016 Kumamoto Earthquake triggered numerous landslides in Aso caldera area, Japan and incurred heavy casualties. Landslides occurred not only on steep slopes at the caldera cliffs or the barranco but also on relatively gradual slopes at the side of the central cones in the Aso caldera. The Aso volcano is a volcanic complex with huge caldera formed by catastrophic eruption at approximately 90ka and central cones formed by subsequent activities to recent years. The central cones are volcanic peaks contain various rocks including basaltic, andesitic and rhoyolitic lavas and pyroclastic materials. In this study, we analyzed the samples collected from the bottom surface of landslides occurred at the gradual hillside on the western flank of the Aso central cones. The subsurface geology of the site is Takanoobane rhyolite lava, 51ka, covered by dark silty or pelitic tuffs and black soil strata including Kusasenri pumice layer, 31ka. The bottom plane of the landslides can be seen as flat surfaces at boundaries between units in the Kusasenri pumice or bottom of the Kusasenri pumice on the pelitic tuff with charcoaled plants. The Kusasenri pumice layer is a coarse grained and highly permeable but poorly continuous. X-ray diffraction analysis revealed that the main component of the samples is halloysite (10Å). Halloysite (10Å) is alteration product of fine grained volcanic ash, and swellable clay with interlayer water molecules which bring sticky and deformable characteristics. The landslides caused by 2016 Kumamoto Earthquake occurred without precipitation within a week. Strong earthquake may fluidize swellable clay layers in gradual slopes and triggered heavy landslides.
Geldon, Arthur L.
2003-01-01
The hydrologic properties and ground-water flow systems of Paleozoic sedimentary rocks in the Upper Colorado River Basin were investigated under the Regional Aquifer-System Analysis (RASA) program of the U.S. Geological Survey in anticipation of the development of water supplies from bedrock aquifers to fulfill the region's growing water demands. The study area, in parts of Arizona, Colorado, New Mexico, Utah, and Wyoming, covers about 100,000 square miles. It includes parts of four physiographic provinces--the Middle Rocky Mountains, Wyoming Basin, Southern Rocky Mountains, and Colorado Plateaus. A variety of landforms, including mountains, plateaus, mesas, cuestas, plains, badlands, and canyons, are present. Altitudes range from 3,100 to 14,500 feet. Precipitation is distributed orographically and ranges from less than 6 inches per year at lower altitudes to more than 60 inches per year in some mountainous areas. Most of the infrequent precipitation at altitudes of less than 6,000 feet is consumed by evapotranspiration. The Colorado and Green Rivers are the principal streams: the 1964-82 average discharge of the Colorado River where it leaves the Upper Colorado River Basin is 12,170 cubic feet per second (a decrease of 5,680 cubic feet per second since construction of Glen Canyon Dam in 1963). On the basis of their predominant lithologic and hydrologic properties, the Paleozoic rocks are classified into four aquifers and three confining units. The Flathead aquifer, Gros Ventre confining unit, Bighorn aquifer, Elbert-Parting confining unit, and Madison aquifer (Redwall-Leadville and Darwin-Humbug zones) make up the Four Corners aquifer system. A thick sequence, composed mostly of Mississippian and Pennsylvanian shale, anhydrite, halite, and carbonate rocks--the Four Corners confining unit (Belden-Molas and Paradox-Eagle Valley subunits)--overlies the Four Corners aquifer system in most areas and inhibits vertical ground-water flow between the Four Corners aquifer system and the overlying Canyonlands aquifer. Composed of the uppermost Paleozoic rocks, the Canyonlands aquifer consists, in ascending order, of the Cutler-Maroon, Weber-De Chelly, and Park City-State Bridge zones. The Paleozoic rocks are underlain by a basal confining unit consisting of Precambrian sedimentary, igneous, and metamorphic rocks and overlain throughout most of the Upper Colorado River Basin by the Chinle-Moenkopi confining unit, which consists of Triassic formations composed mostly of shale. The largest values of porosity, permeability, hydraulic conductivity, transmissivity, and artesian yield are exhibited by the Redwall-Leadville zone of the Madison aquifer and the Weber-De Chelly zone of the Canyonlands aquifer. The former consists almost entirely of Devonian and Mississippian carbonate rocks: the latter consists mostly of Pennsylvanian and Permian quartz sandstone. Unit-averaged porosity in hydrogeologic units composed of Paleozoic rocks ranges from less than 1 to 28 percent. Permeability ranges from less than 0.0001 to 3,460 millidarcies. Unit-averaged hydraulic conductivity ranges from 0.000005 to 200 feet per day. The composite transmissivity of Paleozoic rocks ranges from 0.0005 to 47,000 feet squared per day. Artesian yields to wells and springs (excluding atypical springflows) from these hydrogeologic units range from less than 1 to 10,000 gallons per minute. The permeability and watersupply capabilities of all hydrogeologic units progressively decrease from uplifted areas to structural basins. Recharge to the Paleozoic rocks is provided by direct infiltration of precipitation, leakage from streams, and ground-water inflows from structurally continuous areas west and north of the Upper Colorado River Basin. The total recharge available flom ground-water systems in the basin from direct precipitation and stream leakage is estimated to be 6,600,000 acre-feet per year. However, little of this recharge directly enters the Paleozoic rocks
Rowan, L.C.
1998-01-01
The advanced spaceborne thermal emission and reflection (ASTER) radiometer was designed to record reflected energy in nine channels with 15 or 30 m resolution, including stereoscopic images, and emitted energy in five channels with 90 m resolution from the NASA Earth Observing System AM1 platform. A simulated ASTER data set was produced for the Iron Hill, Colorado, study area by resampling calibrated, registered airborne visible/infrared imaging spectrometer (AVIRIS) data, and thermal infrared multispectral scanner (TIMS) data to the appropriate spatial and spectral parameters. A digital elevation model was obtained to simulate ASTER-derived topographic data. The main lithologic units in the area are granitic rocks and felsite into which a carbonatite stock and associated alkalic igneous rocks were intruded; these rocks are locally covered by Jurassic sandstone, Tertiary rhyolitic tuff, and colluvial deposits. Several methods were evaluated for mapping the main lithologic units, including the unsupervised classification and spectral curve-matching techniques. In the five thermal-infrared (TIR) channels, comparison of the results of linear spectral unmixing and unsupervised classification with published geologic maps showed that the main lithologic units were mapped, but large areas with moderate to dense tree cover were not mapped in the TIR data. Compared to TIMS data, simulated ASTER data permitted slightly less discrimination in the mafic alkalic rock series, and carbonatite was not mapped in the TIMS nor in the simulated ASTER TIR data. In the nine visible and near-infrared channels, unsupervised classification did not yield useful results, but both the spectral linear unmixing and the matched filter techniques produced useful results, including mapping calcitic and dolomitic carbonatite exposures, travertine in hot spring deposits, kaolinite in argillized sandstone and tuff, and muscovite in sericitized granite and felsite, as well as commonly occurring illite/muscovite. However, the distinction made in AVIRIS data between calcite and dolomite was not consistently feasible in the simulated ASTER data. Comparison of the lithologic information produced by spectral analysis of the simulated ASTER data to a photogeologic interpretation of a simulated ASTER color image illustrates the high potential of spectral analysis of ASTER data to geologic interpretation. This paper is not subject to U.S. copyright. Published in 1998 by the American Geophysical Union.
Stone, Paul; Stevens, Calvin H.; Belasky, Paul; Montañez, Isabel P.; Martin, Lauren G.; Wardlaw, Bruce R.; Sandberg, Charles A.; Wan, Elmira; Olson, Holly A.; Priest, Susan S.
2014-01-01
This geologic map and pamphlet focus on the stratigraphy, depositional history, and paleogeographic significance of upper Paleozoic rocks exposed in the Marble Canyon area in Death Valley National Park, California. Bedrock exposed in this area is composed of Mississippian to lower Permian (Cisuralian) marine sedimentary rocks and the Jurassic Hunter Mountain Quartz Monzonite. These units are overlain by Tertiary and Quaternary nonmarine sedimentary deposits that include a previously unrecognized tuff to which we tentatively assign an age of late middle Miocene (~12 Ma) based on tephrochronologic analysis, in addition to the previously recognized Pliocene tuff of Mesquite Spring. Mississippian and Pennsylvanian rocks in the Marble Canyon area represent deposition on the western continental shelf of North America. Mississippian limestone units in the area (Tin Mountain, Stone Canyon, and Santa Rosa Hills Limestones) accumulated on the outer part of a broad carbonate platform that extended southwest across Nevada into east-central California. Carbonate sedimentation was interrupted by a major eustatic sea-level fall that has been interpreted to record the onset of late Paleozoic glaciation in southern Gondwana. Following a brief period of Late Mississippian clastic sedimentation (Indian Springs Formation), a rise in eustatic sea level led to establishment of a new carbonate platform that covered most of the area previously occupied by the Mississippian platform. The Pennsylvanian Bird Spring Formation at Marble Canyon makes up the outer platform component of ten third-order (1 to 5 m.y. duration) stratigraphic sequences recently defined for the regional platform succession. The regional paleogeography was fundamentally changed by major tectonic activity along the continental margin beginning in middle early Permian time. As a result, the Pennsylvanian carbonate shelf at Marble Canyon subsided and was disconformably overlain by lower Permian units (Osborne Canyon and Darwin Canyon Formations) representing part of a deep-water turbidite basin filled primarily by fine-grained siliciclastic sediment derived from cratonal sources to the east. Deformation and sedimentation along the western part of this basin continued into late Permian time. The culminating phase was part of a regionally extensive late Permian thrust system that included the Marble Canyon thrust fault just west of the present map area.
NASA Astrophysics Data System (ADS)
Jensen, B. J. L.; Dufrane, A.; Mark, D.; Zaim, Y.; Rizal, Y.; Aswan, A.; Hascaryo, A.; Ciochon, R.; Gunnell, G.; Larick, R.; Zonnveld, J. P.
2017-12-01
As the Asian proboscidian Stegodon dispersed across Island Southeast Asia during the Pleistocene, multiple forms developed. On Timor, a southerly island east of Wallace's Line, the Ainaro gravels have yielded a highly dwarfed S. timorensis and a larger S. `trigonocephalus.' During a half-century of exploration, the age of the fossil bearing gravels remains in question, with only one age determination of >130 ka derived from six 230Th- 238U dates on a tusk fragment found in the Raebia area (Louys et al. 2016). Here we present radiometric ages for two tephra deposits bracketing Ainaro gravels at Raebia, a S. timorensis fossil locality 8 km northeast of Atambua city. The Raebia ravine exposes 2-10 meters of coarse-grained gravels incised into silt and clay deposits, bracketed by two indurated and largely devitrified tephras. Some intact glass was present to geochemically characterize each unit, which are both high-silica rhyolites. Biotite and zircons for 40Ar/39Ar and laser ablation U-Pb dating were extracted from the upper unit (Raebia Tuff 1; RT1), and zircons from the lower unit (Raebia Tuff 2; RT2). RT1 had zircons with two distinct age populations, but the youngest yield a 230Th deficiency corrected 206Pb/238U age of 665 ± 19 ka, (2s, n = 23, MSWD = 0.81), consistent with the 40Ar/39Ar age 614.9 ± 16.4 ka (2s, full external precision). Preliminary zircon dates on RT2 are more problematic, providing a large range that suggests inheritance by xenoliths and/or locally-sourced detrital zircons. However, a single zircon yielded 230Th deficiency corrected 206Pb/238U age of 708 ± 66 ka (2s, n=17, MSWD = 0.41), which is stratigraphically consistent. These are the first reliable age constraints on a higher elevation Ainaro gravel terrace and fossils they contain. The only other direct ages on the gravels are 230Th- 238U dates on lower terraces interbedded with coral, ranging from 130 ka to Holocene in age (Roosmawati and Harris 2009). These two newly described and dated tephra are likely regionally distributed and may represent important stratigraphic horizons for this portion of Southern Wallacea. They also provide useful data for calculating uplift rates for the region from the middle Pleistocene.
NASA Astrophysics Data System (ADS)
Parashar, R.; Reeves, D. M.
2010-12-01
Rainier Mesa, a tuffaceous plateau on the Nevada National Security Site, has been the location of numerous subsurface nuclear tests conducted in a series of tunnel complexes located approximately 450 m below the top of the mesa and 500 m above the regional groundwater flow system. The tunnels were constructed near the middle of an 800 m Tertiary sequence of faulted, low-permeability welded and non-welded bedded, vitric, and zeolitized tuff units. Water levels from wells in the vicinity of the T-tunnel complex indicate the presence of a perched saturation zone located approximately 100 m above the T-tunnel complex. This upper zone of saturation extends downward through most of the Tertiary sequence. The groundwater table is located at an elevation of 1300 m within a thrust sheet of Paleozoic carbonates, corresponding to the lower carbonate aquifer hydrostratigraphic unit (LCA3). The LCA3 is considered to be hydraulically connected to the Death Valley regional flow system. The objective of this project is to simulate complex downward patterns of fluid flow and radionuclide transport from the T-tunnel complex through the matrix and fault networks of the Tertiary tuff units to the water table. We developed an improved fracture characterization and mapping methodology consisting of displacement-length scaling relationships, simulation of realistic fault networks based on site-specific data, and the development of novel fracture network upscaling techniques that preserves fracture network flow and transport properties on coarse continuum grid. Development of upscaling method for fracture continua is based on the concepts of discrete fracture network modeling approach which performs better at honoring network connectivity and anisotropy of sparse networks in comparison to other established methods such as a tensor approach. Extensive flow simulations in the dual-continuum framework demonstrate that the characteristics of fault networks strongly influences the saturation profile and formation of perched zones, although they may not conduct a large amount of flow when compared to the matrix continua. The simulated results are found to be very sensitive to distribution of fracture aperture, density of the network, and spatial pattern of fracture clustering. The faults provide rapid pathways for radionuclide transport and the conceptual modeling of diffusional mass transfer between matrix and fracture continua plays a vital role in prediction of the overall behavior of the breakthrough curve.
Influence of Air Humidity and Water Particles on Dust Control Using Ultrasonic Atomization
NASA Astrophysics Data System (ADS)
Okawa, Hirokazu; Nishi, Kentaro; Shindo, Dai; Kawamura, Youhei
2012-07-01
The influence of air humidity and water particles on dust control was examined using ultrasonic atomization at 2.4 MHz, an acrylic box (61 L), and four types of ore dust samples: green tuff (4 µm), green tuff (6 µm), kaolin, and silica. It was clearly demonstrated that ultrasonic atomization was effective in raising humidity rapidly. However, at high relative air humidity, the water particles remained stable in the box without changing to water vapor. Ultrasonic atomization was applied to suppress dust dispersion and 40-95% dust reduction was achieved at 83% relative air humidity. Dust dispersion was more effective with ultrasonic atomization than without.
Multiple episodes of zeolite deposition in fractured silicic tuff
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlos, B.A.; Chipera, S.J.; Snow, M.G.
Fractures in silicic tuffs above the water table at Yucca Mountain, Nevada, USA contain two morphologies of heulandite with different compositions. Tabular heulandite is zoned, with Sr-rich cores and Mg-rich rims. Later prismatic heulandite is nearly the same composition as the more magnesian rims. Heulandite and stellerite may occur between layers of calcite, and calcite occurs locally between generations of heulandite. Thermodynamic modeling, using estimated thermodynamic data and observed chemical compositions for heulandite and stellerite, shows that stellerite is the favored zeolite unless Ca concentrations are reduced or Mg and/or Sr concentrations are significantly elevated above current Yucca Mountain waters.
Stochastic modeling of a lava-flow aquifer system
Cronkite-Ratcliff, Collin; Phelps, Geoffrey A.
2014-01-01
This report describes preliminary three-dimensional geostatistical modeling of a lava-flow aquifer system using a multiple-point geostatistical model. The purpose of this study is to provide a proof-of-concept for this modeling approach. An example of the method is demonstrated using a subset of borehole geologic data and aquifer test data from a portion of the Calico Hills Formation, a lava-flow aquifer system that partially underlies Pahute Mesa, Nevada. Groundwater movement in this aquifer system is assumed to be controlled by the spatial distribution of two geologic units—rhyolite lava flows and zeolitized tuffs. The configuration of subsurface lava flows and tuffs is largely unknown because of limited data. The spatial configuration of the lava flows and tuffs is modeled by using a multiple-point geostatistical simulation algorithm that generates a large number of alternative realizations, each honoring the available geologic data and drawn from a geologic conceptual model of the lava-flow aquifer system as represented by a training image. In order to demonstrate how results from the geostatistical model could be analyzed in terms of available hydrologic data, a numerical simulation of part of an aquifer test was applied to the realizations of the geostatistical model.
NASA Astrophysics Data System (ADS)
Mancini, S.; Caliendo, E.; Guida, M.; Bisceglia, B.
2017-10-01
The main purpose of the work described in this paper has been to establish the protocol for a new non-disruptive technique of intervention, based on microwave treatment, for cleaning operations on monumental historical buildings, to eliminate biodeteriogens infesting stones. Non-destructive methods in the cleaning operations, should not only preserve the physical integrity, the chemical-mineralogical and structural identity of materials, but, when the exhalation of pollutant agents (like for example Radon gas) from building materials is considered, also, make the indoor air quality (IAQ) levels healthy. Therefore, one of the main steps of the protocol proposed in this paper is concerned with the assessment of the Radon exhalation rate in order to verify that microwave treatments do not increase the Radon naturally exhalated by building materials. In this paper, the preliminary results of the Radon measurements performed on two different type of tuff samples (grey tuff and yellow tuff), typical of the Italian traditional construction heritage, with the E-PERM passive technique at the Environmental Radioactivity Laboratory (Amb.Ra.), University of Salerno, Italy, ISO 9001:2008 certified, are summarized.
U-Pb Geochronology of Hydrous Silica (Siebengebirge, Germany)
NASA Astrophysics Data System (ADS)
Tomaschek, Frank; Nemchin, Alexander; Geisler, Thorsten; Heuser, Alexander; Merle, Renaud
2015-04-01
Low-temperature, hydrous weathering eventually leads to characteristic products such as silica indurations. Elevated U concentrations and the ability of silica to maintain a closed system permits silica to be dated by the U-Pb method, which, in turn, will potentially allow constraining the timing of near-surface processes. To test the feasibility of silica U-Pb geochronology, we sampled opal and chalcedony from the Siebengebirge, Germany. This study area is situated at the terminus of the Cenozoic Lower Rhine Basin on the Rhenish Massif. The investigated samples include silicified gravels from the Mittelbachtal locality, renowned for the embedded wood opal. Structural characterization of the silica phases (Raman spectroscopy) was combined with in situ isotopic analyses, using ion microprobe and LA-ICPMS techniques. In the Siebengebirge area fluviatile sediments of Upper Oligocene age were covered by an extended trachyte tuff at around 25 Ma. Silica is known to indurate some domains within the tuff and, in particular, certain horizons within the subjacent fluviatile sediments ('Tertiärquarzite'). Cementation of the gravels occurred during at least three successive growth stages: early paracrystalline silica (opal-CT), fibrous chalcedony, and late microcrystalline quartz. It has traditionally been assumed that this silica induration reflects intense weathering, more or less synchronous with the deposition of the volcanic ashes. Results from U-Pb geochronology returned a range of discrete 206Pb-238U ages, recording a protracted silicification history. For instance, we obtained 22 ± 1 Ma for opal-CT cement from a silicified tuff, 16.6 ± 0.5 Ma for silicified wood and opal-CT cement in the fluviatile gravels, as well as 11 ± 1 Ma for texturally late chalcedony. While silicification of the sampled tuff might be contemporaneous with late-stage basalts, opaline silicification of the subjacent sediments and their wood in the Mittelbachtal clearly postdates active Siebengebirge volcanism, and the clastic sedimentation by about 8 Myr. To account for the age discrepancies, opal-CT formation might be a local and episodic phenomenon, reflecting progressive denudation of the trachyte tuff cover. Alternatively, the dominant silicification event of the Mittelbachtal silcretes could be of regional significance (Middle Miocene Climatic Optimum). Our relatively fast approach by LA-ICPMS analysis will be used to further expand the database.
Paleointensity in ignimbrites and other volcaniclastic flows
NASA Astrophysics Data System (ADS)
Bowles, J. A.; Gee, J. S.; Jackson, M. J.
2011-12-01
Ash flow tuffs (ignimbrites) are common worldwide, frequently contain fine-grained magnetite hosted in the glassy matrix, and often have high-quality 40Ar/39Ar ages. This makes them attractive candidates for paleointensity studies, potentially allowing for a substantial increase in the number of well-dated paleointensity estimates. However, the timing and nature of remanence acquisition in ignimbrites are not sufficiently understood to allow confident interpretation of paleointensity data from ash flows. The remanence acquisition may be a complex function of mineralogy and thermal history. Emplacement conditions and post-emplacement processes vary considerably between and within tuffs and may potentially affect the ability to recover ancient field intensity information. To better understand the relevant magnetic recording assemblage(s) and remanence acquisition processes we have collected samples from two well-documented historical ignimbrites, the 1980 ash flows at Mt. St. Helens (MSH), Washington, and the 1912 flows from Mt. Katmai in the Valley of Ten Thousand Smokes (VTTS), Alaska. Data from these relatively small, poorly- to non-welded historical flows are compared to the more extensive and more densely welded 0.76 Ma Bishop Tuff. This sample set enables us to better understand the geologic processes that destroy or preserve paleointensity information so that samples from ancient tuffs may be selected with care. Thellier-type paleointensity experiments carried out on pumice blocks sampled from the MSH flows resulted in a paleointensity of 55.8 μT +/- 0.8 (1 standard error). This compares favorably with the actual value of 56.0 μT. Excluded specimens of poor technical quality were dominantly from sites that were either emplaced at low temperature (<350°C) or were subject to post-emplacement hydrothermal alteration. The VTTS experienced much more wide-spread low-temperature hydrothermal activity than did MSH. Pumice-bearing ash matrix samples from this locality are characterized by at least two magnetic phases, one of which appears to carry a chemical remanent magnetization. Paleointensities derived from the second phase give results that vary widely but which may be correlated with degree of hydrothermal alteration or hydration. Preliminary data from the Bishop Tuff suggests that vapor-phase alteration at high (>600°C) temperatures does not corrupt the paleointensity signal, and additional data will be presented which explores this more fully.
NASA Astrophysics Data System (ADS)
Sohn, Y.
2011-12-01
Recent studies show that the architecture of hydromagmatic volcanoes is far more complex than formerly expected. A number of external factors, such as paleohydrology and tectonics, in addition to magmatic processes are thought to play a role in controlling the overall characteristics and architecture of these volcanoes. One of the main consequences of these controls is the migration of the active vent during eruption. Case studies of hydromagmatic volcanoes in Korea show that those volcanoes that have undergone vent migration are characterized by superposition or juxtaposition of multiple rim deposits of partial tuff rings and/or tuff cones that have contrasting lithofacies characteristics, bed attitudes, and paleoflow directions. Various causes of vent migration are inferred from these volcanoes. Large-scale collapse of fragile substrate is interpreted to have caused vent migration in the Early Pleistocene volcanoes of Jeju Island, which were built upon still unconsolidated continental shelf sediments. Late Pleistocene to Holocene volcanoes, which were built upon a stack of rigid, shield-forming lava flows, lack features due to large-scale substrate collapse and have generally simple and circular morphologies either of a tuff ring or of a tuff cone. However, ~600 m shift of the eruptive center is inferred from one of these volcanoes (Ilchulbong tuff cone). The vent migration in this volcano is interpreted to have occurred because the eruption was sourced by multiple magma batches with significant eruptive pauses in between. The Yangpori diatreme in a Miocene terrestrial half-graben basin in SE Korea is interpreted to be a subsurface equivalent of a hydromagmatic volcano that has undergone vent migration. The vent migration here is inferred to have had both vertical and lateral components and have been caused by an abrupt tectonic activity near the basin margin. In all these cases, rimbeds or diatreme fills derived from different source vents are bounded by either prominent or subtle, commonly laterally extensive truncation surfaces or stratigraphic discontinuities. Careful documentation of these surfaces and discontinuities thus appears vital to proper interpretation of eruption history, morphologic evolution, and even deep-seated magmatic processes of a hydromagmatic volcano. In this respect, the technique known as 'allostratigraphy' appears useful in mapping, correlation, and interpretation of many hydrovolcanic edifices and sequences.
NASA Astrophysics Data System (ADS)
Stelten, Mark E.; Champion, Duane E.; Kuntz, Mel A.
2018-01-01
We present new sanidine 40Ar/39Ar ages and paleomagnetic data for pre- and post-caldera rhyolites from the second volcanic cycle of the Yellowstone Plateau volcanic field, which culminated in the caldera-forming eruption of the Mesa Falls Tuff at ca. 1.3 Ma. These data allow for a detailed reconstruction of the eruptive history of the second volcanic cycle and provide new insights into the petrogenesis of rhyolite domes and flows erupted during this time period. 40Ar/39Ar age data for the biotite-bearing Bishop Mountain flow demonstrate that it erupted approximately 150 kyr prior to the Mesa Falls Tuff. Integrating 40Ar/39Ar ages and paleomagnetic data for the post-caldera Island Park rhyolite domes suggests that these five crystal-rich rhyolites erupted over a centuries-long time interval at 1.2905 ± 0.0020 Ma (2σ). The biotite-bearing Moonshine Mountain rhyolite dome was originally thought to be the downfaulted vent dome for the pre-caldera Bishop Mountain flow due to their similar petrographic and oxygen isotope characteristics, but new 40Ar/39Ar dating suggest that it erupted near contemporaneously with the Island Park rhyolite domes at 1.2931 ± 0.0018 Ma (2σ) and is a post-caldera eruption. Despite their similar eruption ages, the Island Park rhyolite domes and the Moonshine Mountain dome are chemically and petrographically distinct and are not derived from the same source. Integrating these new data with field relations and existing geochemical data, we present a petrogenetic model for the formation of the post-Mesa Falls Tuff rhyolites. Renewed influx of basaltic and/or silicic recharge magma into the crust at 1.2905 ± 0.0020 Ma led to [1] the formation of the Island Park rhyolite domes from the source region that earlier produced the Mesa Falls Tuff and [2] the formation of Moonshine Mountain dome from the source region that earlier produced the biotite-bearing Bishop Mountain flow. These magmas were stored in the crust for less than a few thousand years before being erupted contemporaneously along a 30 km long, structurally controlled vent zone related to extracaldera Basin and Range faults. These data highlight the rapidity with which magma can be generated and erupted over large distances at Yellowstone.
NASA Astrophysics Data System (ADS)
Swanson, Kirk Edward
The 30 minute Orcopampa quadrangle, southern Peru, was a site of several episodes of Neogene volcanism, hydrothermal activity and precious-metal mineralization. Lavas of pyroxene andesite and associated silicic tuffs of the early Miocene Santa Rosa volcanics are the remnants of stratovolcanoes overlying an irregular erosional surface developed on a transgressive Mesozoic marine succession. Major ash-flow volcanism then resulted in the 20.1 Ma Manto Tuff and the associated Chinchon caldera. Deep dissection, locally >2 km, has exposed the steep caldera margin, slide blocks and related (19.9 Ma) dikes. Flows and domes of hornblende-biotite dacite comprising the Sarpane volcanics were erupted between about 18.5--19.5 Ma over much of the northern part of the quadrangle. Early Miocene rocks were folded during the Quechua I tectonic event, and related ENE-trending normal faults host the 17.8 Ma Ag-Au veins of the Orcopampa district. Eruption of the ca. 11.6 Ma tuffs of Cerro Huayta and Cerro Hospicio resulted in formation of the Huayta caldera, nested within the northern part of the Chinchon caldera. Caldera formation was associated with, and followed by, the eruption of intermediate lavas of Cerro Sahuarque ( ca. 11.4 Ma) and the emplacement of rhyolite domes. The adularia-sericite type Au-Ag veins of Mina Shila were formed along the southern margin of the Huayta caldera several million years after collapse. The 7.3 Ma tuff of Laguna Pariguanas, erupted from vents northeast of the Huayta caldera, appears to be deformed; however, the 6.2 Ma tuff of Umachulco postdates Quechua II/III tectonism. Flows and domes of the ca. 7.2 Ma andesite of Cerro Aseruta were emplaced within the Huayta caldera, and approximately contemporaneous lavas of silicic to intermediate composition were erupted in the northern part of the quadrangle. A large area of largely barren acid-sulfate alteration (Chuchanne) formed within the Huayta caldera shortly after the eruption of the andesite of Cerro Aseruta. Pliocene volcanic activity included the formation of the Cailloma caldera to the east and the Coropuna caldera southwest of the Orcopampa quadrangle. Lava flows, cinder cones and small shield volcanoes of intermediate composition of the Andagua volcanics were formed from late Pliocene to Holocene time.
Ryals, G.N.
1984-01-01
Regional geohydrologic maps show the altitude of the base and the thickness of the aquifers of Tertiary age and related confining layers in the northern Louisiana salt-dome basin. The limit of freshwater in aquifers is also shown. The basin has an area of about 3,000 square miles, and four geologic units of Tertiary age contain regional aquifers. From oldest (deepest) to youngest, the aquifers are in the Wilcox Group, Carrizo Sand, Sparta Sand, and Cockfield Formation. As the Wilcox is hydraulically interconnected with the overlying Carrizo, they are treated as one hydrologic unit, the Wilcox-Carrizo aquifer. The aquifers are separated by confining layers that retard water movement. In the northwestern part of the area, the Wilcox-Carrizo aquifer is separated from the underlying sand facies of the Nacatoch Sand (Cretaceous age) by a confining layer composed of the Midway Group (Tertiary age) and the underlying Arkadelphia Marl and an upper clay and marl facies of the Nacatoch Sand (both of Cretaceous age). In the remainder of the area, the Wilcox-Carrizo aquifer is separated from an underlying Cretaceous aquifer comprised of the Tokio Formation and Brownstown Marl by the Midway Group and several underlying Cretaceous units which in order of increasing age are the Arkadelphia Maril, Nacatoch Sand, Saratoga Chalk, Marlbrook Marl , and Annona Chalk. The Wilcox-Carrizo aquifer is separated from the Sparta aquifer by the overyling Cane River Formation. The Sparta aquifer is separated from the Cockfield aquifer by the overlying Cook Mountain Formation. (USGS)
Regional hydrology of the Green River-Moab area, northwestern Paradox Basin, Utah
Rush, F.E.; Whitfield, M.S.; Hart, I.M.
1984-01-01
The Green River-Moab area encompasses about 7,800 square kilometers or about 25 percent of the Paradox basin. The entire Paradox basin is a part of the Colorado Plateaus that is underlain by a thick sequence of evaporite (salt) beds of Pennsylvanian age. The rock units that underlie the area have been grouped into hydrogeologic units based on their water-transmitting ability. Confining beds consist of evaporite beds of mostly salt, and over- lying and underlying thick sequences of rocks with minimal permeability; above and below these confining beds are aquifers. The upper Mesozoic sand- stone aquifer, probably is the most permeable hydrogeologic unit of the area and is the subject of this investigation. The principal component of ground- water outflow from this aquifer probably is subsurface flow to regional streams (the Green and Colorado Rivers) and is about 100 million cubic meters per year. All other components of outflow are relatively small. The average annual recharge to the aquifer is about 130 million cubic meters, of which about 20 million cubic meters is from local precipitation. For the lower aquifer, all recharge and discharge probably is by subsurface flow and was not estimated.The aquifers are generally isolated from the evaporite beds by the bounding confining beds; as a result, most ground water has little if any contact with the evaporites. Brines are present in the confining beds, but solution of beds o£ salt probably is very slow in most parts of the area. No brine discharges' have been identified.
Structure and Dynamics of Polymers in Cylindrical Nanoconfinement: A Molecular Dynamics Study
NASA Astrophysics Data System (ADS)
Pressly, James; Riggleman, Robert; Winey, Karen
The structure and dynamics of polymers under nanoconfinement is critical for understanding how polymers behave in applications from hydraulic fracking to fabricating integrated circuits. We previously used simulations to explore the effect of the diameter of cylindrical pores (d = 10-40 σ, where σ is the unit length in reduced units) on polymer end-to-end distance (Ree,perp, Ree,par) , entanglement density, melt diffusion coefficient (D), and local relaxation time (τperp, τpar) at fixed polymer chain length (N = 350). These studies found D, Ree,par, and τperp increased with increasing confinement while entanglement density, Ree,perp, and τpar decreased. Experiments also found that D increased but to a lesser extent. Here, we examine the molecular weight dependence of these properties using N = 25, 50, 100, 200, 350, and 500 confined to pores of diameter 14 σ to examine a range of confinements. Our preliminary results show that as N increases D and Ree,par, increase as well, relative to the unconfined state, while entanglement density and Ree,perp decrease, consistent with our previous work. Interestingly, τ is shown to be independent of chain length indicating the impact of confinement imposed by reducing pore diameter is distinct from that imposed by increasing chain length.
NASA Astrophysics Data System (ADS)
Nemeth, Karoly; Geshi, Nobuo
2017-04-01
On near summit flank eruptions on stratovolcanoes it is commonly inferred that external water to have little or no influence on the course of the eruptions. Hence eruptions are typicaly "dry" that form spatter-dominated fissures and scoria cones. This assumption is based on that in elevated regions - especially on steep slopes - the hydrogeological conditions are not favourable to store large volume of ground water that can have effect on the eruptions. However there is some controversial trend of eruption progression from an early dry eruption below the summit that later turn to be phreatomagmatic as the eruption locus migrates toward the summit. The Suoana Ccrater on top of Miyakejima Island's mafic stratovolcano is a fine example to demonstrate such process. Suona Crater is the topmost crater of the 3 km long fissure aligned chain of small-volume volcanoes that formed in the 7th century flank of the summit region of the Miyakejima mafic stratovolcano. The oval shape crater of Suona (400 x 300 m) is surrounded by a tuff ring that developed over lava flows and epiclastic deposits accumulated in an older caldera forming about a tuff ring that is about 25 m in its thickest section with a basal consistent lava spatter dominated unit gradually transforming into a more scoria-dominated middle unit. A caldera-forming eruption in AD 2000 half-sectioned the Suona Crater exposing of its internal diatreme - crater in-fill - tephra rim succession providing a unique opportunity to understand the 3D architecture of the volcano. Toward the top of the preserved and exposed tuff ring section a clear gradual transition can be seen toward more abundance of chilled dark juvenile particles providing a matrix of a coarse ash that commonly hold cauliflower lapilli and bomb. This transition indicates that the eruption progressed from an early dry explosive phase such as lava fountaining to be a more Strombolian style explosive eruption that later on turned to be heavily influenced by external water producing debris jet dominated phreatomagmatic tephra and radially expanding pyroclastic density currents to deposit their load around the growing crater. This 3D architecture can only be explained if we infer that the original lower fissure-fed eruptions gradually allow melt to move toward the summit region where they hit ground water accumulated in an older caldera infill that hosted a succession of lava flows intercalated with lava foot and top breccias as well as abundant pyroclastic and reworked porous deposits capable to harvest water from rain and let them ponded along aquitard horizons in the caldera structure. We infer that such eruption mechanism is probably a common eruption style especially associated with volcanic islands with mafic stratovoclanoes that contain some summit caldera structures and located in humic and/or tropical climate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duchac, K.C.; Hanor, J.S.
Stratiform units of pervasively silicified ultramafic rock occur near the top of the Onverwacht group, Barberton Mountian Land, South Africa. The origin of these units has been variously ascribed to early Archean subaerial weathering, submarine weathering, cataclastic metamorphism, and the alteration of silicic tuffs at the top of mafic to felsic volcanic sequences. The authors have studied a 40 m thick stratigraphic sequence that is exceptionally well-exposed for 1.5 km within the Skokohla River valley. Well-preserved ghosts of spinifex- and cumulate-olivines and pyroxenes establish the komatiitic ancestry of these rocks. The entire sequence has been pervasively altered, however, to chertsmore » dominated by quartz and Cr-rich muscovite and containing lesser and variable amounts of chlorite, dolomite, rutile, and chrome spinel. The present Skokohla rocks can be divided into five distinct correlatable facies of laterally variable thickness which probably represent different flow units. Alteration apparently occurred early, prior to any significant tectonic deformation. The observed pervasive sericitization is inconsistent with an origin by subaerial weathering. It is most likely that the sequence was altered by large volumes of ascending hydrothermal fluids.« less
NASA Astrophysics Data System (ADS)
Marmoni, G. M.; Martino, S.; Heap, M. J.; Reuschlé, T.
2017-10-01
Ischia Island (Italy) is an impressive example of the rare phenomenon of caldera resurgence. The emplacement and replenishment of magmas at shallow depth resulted in a vertical uplift of about 900 m, concentrated in the western portion of Mt. Epomeo (789 m a.s.l.). As a consequence of this uplift, the island has experienced several slope instabilities at different scales since the Holocene, from shallow mass movements to large rock and debris avalanches. These mass wasting events, which mobilised large volumes of greenish alkali-trachytic tuff (the Mt. Epomeo Green Tuff, MEGT), were strictly related to volcano-tectonic activity and the interaction between the volcanic slopes and the hydrothermal system beneath the island. Deep-Seated Gravitational Slope Deformation (DSGSD) at Mt. Nuovo, located adjacent to densely populated coastal villages, is an ongoing process that covers an area of 1.6 km2. The Mt. Nuovo DSGSD involves a rock mass volume of 190 Mm3 and is accommodated by a main shear zone and a series of sub-vertical fault zones associated with high-angle joint sets. To improve our understanding of this gravity-induced process, we performed a physical (porosity and permeability) and mechanical (uniaxial and triaxial deformation experiments) characterisation of two ignimbrite deposits - both from the MEGT - that form a significant component of the NW sector of Mt. Epomeo. The main conclusions drawn from our experiments are twofold. First, the presence of water dramatically reduces the strength of the tuffs, suggesting that the movement of fluids within the hydrothermal system could greatly impact slope stability. Second, the transition from brittle (dilatant) to ductile (compactant) behaviour in the tuffs of the MEGT occurs at a very low effective pressure, analogous to a depth of a couple of hundred metres, and that this transition is likely moved closer to the surface in the presence of water. We hypothesise that compactant (porosity decreasing) behaviour at the base of the layer could therefore facilitate slope instability. Although our results show that transient exposure to 300 °C does not influence the short-term strength of the tuff, we speculate that the high in-situ temperature could increase the efficiency of brittle and compactant creep and therefore increase the rate of slope deformation. Taken together, our experimental data highlight a potentially important role for the hydrothermal system (that reaches a minimum depth of 1 km) in dictating the DSGSD at Mt. Nuovo. An understanding of this deformation process is not only important for the proximal coastal villages, at risk of engulfment by a large debris avalanche, but also for the towns and cities along the coast of the Gulf of Naples that are at risk to a secondary consequence of such an avalanche - a tsunami wave.
Loss of halogens from crystallized and glassy silicic volcanic rocks
Noble, D.C.; Smith, V.C.; Peck, L.C.
1967-01-01
One hundred and sixty-four F and Cl analyses of silicic welded tuffs and lavas and glass separates are presented. Comparison of the F and Cl contents of crystallized rocks with those of nonhydrated glass and hydrated glassy rocks from the same rock units shows that most of the halogens originally present were lost on crystallization. An average of about half of the F and four-fifths of the Cl originally present was lost. Analyses of hydrated natural glasses and of glassy rocks indicate that in some cases significant amounts of halogens may be removed from or added to hydrated glass through prolonged contact with ground water. The data show that the original halogen contents of the groundmass of a silicic volcanic rock can be reliably determined only from nonhydrated glass. ?? 1967.
Hydrologic Resources Management Program and Underground Test Area Project FY 2006 Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culham, H W; Eaton, G F; Genetti, V
2008-04-08
This report describes FY 2006 technical studies conducted by the Chemical Biology and Nuclear Science Division (CBND) at Lawrence Livermore National Laboratory (LLNL) in support of the Hydrologic Resources Management Program (HRMP) and the Underground Test Area Project (UGTA). These programs are administered by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office (NNSA/NSO) through the Defense Programs and Environmental Restoration Divisions, respectively. HRMP-sponsored work is directed toward the responsible management of the natural resources at the Nevada Test Site (NTS), enabling its continued use as a staging area for strategic operations in support of national security.more » UGTA-funded work emphasizes the development of an integrated set of groundwater flow and contaminant transport models to predict the extent of radionuclide migration from underground nuclear testing areas at the NTS. The report is organized on a topical basis and contains four chapters that highlight technical work products produced by CBND. However, it is important to recognize that most of this work involves collaborative partnerships with the other HRMP and UGTA contract organizations. These groups include the Energy and Environment Directorate at LLNL (LLNL-E&E), Los Alamos National Laboratory (LANL), the Desert Research Institute (DRI), the U.S. Geological Survey (USGS), Stoller-Navarro Joint Venture (SNJV), and National Security Technologies (NSTec). Chapter 1 is a summary of FY 2006 sampling efforts at near-field 'hot' wells at the NTS, and presents new chemical and isotopic data for groundwater samples from four near-field wells. These include PM-2 and U-20n PS 1DDh (CHESHIRE), UE-7ns (BOURBON), and U-19v PS No.1ds (ALMENDRO). Chapter 2 is a summary of the results of chemical and isotopic measurements of groundwater samples from three UGTA environmental monitoring wells. These wells are: ER-12-4 and U12S located in Area 12 on Rainier Mesa and USGS HGH No.2 WW2 located in Yucca Flat. In addition, three springs were sampled White Rock Spring and Captain Jack Spring in Area 12 on Rainier Mesa and Topopah Spring in Area 29. Chapter 3 is a compilation of existing noble gas data that has been reviewed and edited to remove inconsistencies in presentation of total vs. single isotope noble gas values reported in the previous HRMP and UGTA progress reports. Chapter 4 is a summary of the results of batch sorption and desorption experiments performed to determine the distribution coefficients (Kd) of Pu(IV), Np(V), U(VI), Cs and Sr to zeolitized tuff (tuff confining unit, TCU) and carbonate (lower carbonate aquifer, LCA) rocks in synthetic NTS groundwater Chapter 5 is a summary of the results of a series of flow-cell experiments performed to examine Np(V) and Pu(V) sorption to and desorption from goethite. Np and Pu desorption occur at a faster rate and to a greater extent than previously reported. In addition, oxidation changes occurred with the Pu whereby the surface-sorbed Pu(IV) was reoxidized to aqueous Pu(V) during desorption.« less
NASA Astrophysics Data System (ADS)
Hughes, J. D.; Vacher, H. L.; Sanford, Ward E.
2009-06-01
Three-dimensional density-dependent flow and transport modeling of the Floridan aquifer system, USA shows that current chloride concentrations are not in equilibrium with current sea level and, second, that the geometric configuration of the aquifer has a significant effect on system responses. The modeling shows that hydraulic head equilibrates first, followed by temperatures, and then by chloride concentrations. The model was constructed using a modified version of SUTRA capable of simulating multi-species heat and solute transport, and was compared to pre-development conditions using hydraulic heads, chloride concentrations, and temperatures from 315 observation wells. Three hypothetical, sinusoidal sea-level changes occurring over 100,000 years were used to evaluate how the simulated aquifer responds to sea-level changes. Model results show that hydraulic head responses lag behind sea-level changes only where the Miocene Hawthorn confining unit is thick and represents a significant restriction to flow. Temperatures equilibrate quickly except where the Hawthorn confining unit is thick and the duration of the sea-level event is long (exceeding 30,000 years). Response times for chloride concentrations to equilibrate are shortest near the coastline and where the aquifer is unconfined; in contrast, chloride concentrations do not change significantly over the 100,000-year simulation period where the Hawthorn confining unit is thick.
Kahle, Sue C.; Olsen, Theresa D.; Fasser, Elisabeth T.
2013-01-01
A study of the hydrogeologic framework of the Little Spokane River Basin was conducted to identify and describe the principal hydrogeologic units in the study area, their hydraulic characteristics, and general directions of groundwater movement. The Little Spokane River Basin includes an area of 679 square miles in northeastern Washington State covering parts of Spokane, Stevens, and Pend Oreille Counties. The groundwater system consists of unconsolidated sedimentary deposits and isolated, remnant basalt layers overlying crystalline bedrock. In 1976, a water resources program for the Little Spokane River was adopted into rule by the State of Washington, setting instream flows for the river and closing its tributaries to further uses. Spokane County representatives are concerned about the effects that additional groundwater development within the basin might have on the Little Spokane River and on existing groundwater resources. Information provided by this study will be used in future investigations to evaluate the effects of potential increases in groundwater withdrawals on groundwater and surface-water resources in the basin. The hydrogeologic framework consists of eight hydrogeologic units: the Upper aquifer, Upper confining unit, Lower aquifers, Lower confining unit, Wanapum basalt unit, Latah unit, Grande Ronde basalt unit, and Bedrock. The Upper aquifer is composed mostly of sand and gravel and varies in thickness from 4 to 360 ft, with an average thickness of 70 ft. The aquifer is generally finer grained in areas farther from main outwash channels. The estimated horizontal hydraulic conductivity ranges from 4.4 to 410,000 feet per day (ft/d), with a median hydraulic conductivity of 900 ft/d. The Upper confining unit is a low-permeability unit consisting mostly of silt and clay, and varies in thickness from 5 to 400 ft, with an average thickness of 100 ft. The estimated horizontal hydraulic conductivity ranges from 0.5 to 5,600 ft/d, with a median hydraulic conductivity of 8.2 ft/d. The Lower aquifers unit consists of localized confined aquifers or lenses consisting mostly of sand that occur at depth in various places in the basin; thickness of the unit ranges from 8 to 150 ft, with an average thickness of 50 ft. The Lower confining unit is a low-permeability unit consisting mostly of silt and clay; thickness of the unit ranges from 35 to 310 ft, with an average thickness of 130 ft. The Wanapum basalt unit includes the Wanapum Basalt of the Columbia River Basalt Group, thin sedimentary interbeds, and, in some places, overlying loess. The unit occurs as isolated remnants on the basalt bluffs in the study area and ranges in thickness from 7 to 140 ft, with an average thickness of 60 ft. The Latah unit is a mostly low-permeability unit consisting of silt, clay, and sand that underlies and is interbedded with the basalt units. The Latah unit ranges in thickness from 10 to 700 ft, with an average thickness of 250 ft. The estimated horizontal hydraulic conductivity ranges from 0.19 to 15 ft/d, with a median hydraulic conductivity of 0.56 ft/d. The Grande Ronde unit includes the Grande Ronde Basalt of the Columbia River Basalt Group and sedimentary interbeds. Unit thickness ranges from 30 to 260 ft, with an average thickness of 140 ft. The estimated horizontal hydraulic conductivity ranges from 0.03 to 13 ft/d, with a median hydraulic conductivity of 2.9 ft/d. The Bedrock unit is the only available source of groundwater where overlying sediments are absent or insufficiently saturated. The estimated horizontal hydraulic conductivity ranges from 0.01 to 5,000 ft/d, with a median hydraulic conductivity of 1.4 ft/d. The altitude of the buried bedrock surface ranges from about 2,200 ft to about 1,200 ft. Groundwater movement in the Little Spokane River Basin mimics the surface-water drainage pattern of the basin, moving from the topographically high tributary-basin areas toward the topographically lower valley floors. Water-level altitudes range from more than 2,700 ft to about 1,500 ft near the basin’s outlet.
26 CFR 1.472-1 - Last-in, first-out inventories.
Code of Federal Regulations, 2011 CFR
2011-04-01
... may elect to have such method apply to the raw materials only (including those included in goods in... adjustments are confined to costs of the raw material in the inventory and the cost of the raw material in... that the opening inventory had 10 units of raw material, 10 units of goods in process, and 10 units of...
"Doing School": A New Unit of Analysis for Schools Serving Marginalized Students
ERIC Educational Resources Information Center
Atkinson, Helen
2009-01-01
This study asserts a new unit of analysis for school reform that goes beyond the mental representations of individuals, beyond the isolated lesson, and beyond the confines of a school building. I argue that the special case of expanding time and space as a method of engagement for marginalized students requires that the unit of analysis change to…
26 CFR 1.472-1 - Last-in, first-out inventories.
Code of Federal Regulations, 2014 CFR
2014-04-01
... may elect to have such method apply to the raw materials only (including those included in goods in... adjustments are confined to costs of the raw material in the inventory and the cost of the raw material in... that the opening inventory had 10 units of raw material, 10 units of goods in process, and 10 units of...
26 CFR 1.472-1 - Last-in, first-out inventories.
Code of Federal Regulations, 2013 CFR
2013-04-01
... may elect to have such method apply to the raw materials only (including those included in goods in... adjustments are confined to costs of the raw material in the inventory and the cost of the raw material in... that the opening inventory had 10 units of raw material, 10 units of goods in process, and 10 units of...
26 CFR 1.472-1 - Last-in, first-out inventories.
Code of Federal Regulations, 2012 CFR
2012-04-01
... may elect to have such method apply to the raw materials only (including those included in goods in... adjustments are confined to costs of the raw material in the inventory and the cost of the raw material in... that the opening inventory had 10 units of raw material, 10 units of goods in process, and 10 units of...
28 CFR 505.4 - Calculation of assessment by unit staff.
Code of Federal Regulations, 2013 CFR
2013-07-01
... to or less than the poverty level, as established by the United States Department of Health and Human... above the poverty level, Unit Team staff are to impose a fee equal to the inmate's assets above the poverty level up to the average cost to the Bureau of Prisons of confining an inmate for one year. (c) If...
28 CFR 505.4 - Calculation of assessment by unit staff.
Code of Federal Regulations, 2010 CFR
2010-07-01
... to or less than the poverty level, as established by the United States Department of Health and Human... above the poverty level, Unit Team staff are to impose a fee equal to the inmate's assets above the poverty level up to the average cost to the Bureau of Prisons of confining an inmate for one year. (c) If...
NASA Astrophysics Data System (ADS)
Villares, Fabián; Eguez, Arturo; Yanez, Ernesto
2014-05-01
Formely, the subandean zone in the southeastern Ecuador involved large volcanic and magmatic rocks included in the Misahualli Formation and Zamora batholith, both as expression of the Jurassic cal-alcaline volcanic arc. The aim of the project carried out by the INIGEMM (Instituto Nacional de Investigación Geológico Minero Metalúrgico) was discriminate the volcanic products including a continuous set going from basalts to ryolithes and volcanoclastic rocks. Geochemical characterization was done using representative 16 whole - rock chemical analysis. The oldest rocks of the investigated area called Pachicutza Unit, include greenish to black, massive basalts and basaltic andesites, locally showing pillows structures. The texture is aphanitic to microporphyritic with slight crystal growth of plagioclase and pyroxenes. The Unit include also local pyroclastic breccias and tuffs showing variable skarnification related to the intrusion of the jurassic Zamora Batholith. Two samples of basalts show tholeiitic affinity, corresponding to an N- MORB, probably representing an early stage in opening of a regional Triassic rift reported since Colombia to Peru in the Andes. These geochemical characteristics are similar to the amphibolites of Monte Olivo Unit in the Real Cordillera. The Jurassic large volcanic assembly of the Misahualli Formation was also differenciated. Basal volcanics include green, subporphyritic andesites and volcanic breccias possibly generated at an early stage of the volcanic arc, caused by a change of extensive to compressive regime. Continental volcano sedimentary and sedimentary rock were discriminate as Nueva Esperanza and Suarez Units, respectively. The volcanosedimentary sequence include massive to laminate tuffs and tuffites of intermediate composition. The sediments of the Suarez Unit include dominant conglomerats and sandstones of fluvial domain. The regional volcanic sequence is completed by the Las Peñas Unit that includes aphanitic to porphyritic andesites and coarse volcanic breccias. Three geochemical analysis of the lavas show andesitic composition, have medium to high-K calc-alkaline and represent the products of a subduction zone. All intrusions in the area were mapped as Zamora Batholith. Nevetheless, the field observations confirm a large Jurassic batholith but also other significant minor intrusion that intrudes the cretaceous sedimentary formations of the area. Thus, magmatic rocks in the area are named as Zamora batholithic complex. Petrography of the Zamora Batholith ranges from tonalite to monzo-granite with the same qualitative mineralogy. Rocks are composed by different proportions of plagioclase, amphibole, K-feldspar, quartz, biotite, opaques and epidote, as accessory minerals has zircon, sphene and apatite. Zamora Granitoids ranged from dioritic to granitic compositions ( 60.09 - . 73.6 wt % SiO2). The Zamora Granitoids have medium to high-K calc-alkaline and represent the products of a subduction zone. Products are generated within a magmatic arc in normal conditions of maturity. The Zamora Granitoids are I - type intrusions.
NASA Astrophysics Data System (ADS)
Heubeck, Christoph; Lowe, Donald R.; Byerly, Gary R.
2010-05-01
Archaean tectonophysical models distinguish between thick, rigid and thin, mobile crust; from these the major mechanisms and rates for continental growth are derived. Archaean sedimentary rocks, preserved in metamorphosed and highly deformed greenstone belts, can contribute to constrain these models by estimating subsidence rates, derived from the combination of facies changes and precise age dates. Largely siliciclastic strata of the Moodies Group form the topmost unit of the Barberton Supergroup of the Barberton Greenstone Belt (BGB), South Africa, represent one of the world's oldest unmetamorphosed quartz-rich sedimentary sequences, and reach ca. 3500m thick (Lowe and Byerly, 2007). Large parts of the Moodies Group were deposited in apparent sedimentary continuity in alluvial, fluvial, shoreline and shallow-marine environments (e.g., Eriksson, 1979; Heubeck and Lowe, 1994). Distinctive sources and variations in facies indicate that Moodies deposition occurred at times in several basins. In several now tectonically separated regions, a regional basaltic lava (unit MdL of Anhaeusser, 1968) separates a lower unit (ca. 2000m thick and possibly representing an extensional setting) from an upper unit (ca. 1500m thick and characterized by progressive unconformities, rapidly changing facies, thicknesses, and sandstone petrographic composition). Single zircons separated from a felsic air-fall tuff of the middle Moodies Group and immediately overlying the basaltic lava in the Saddleback Syncline were dated on the Stanford-USGS SHRIMP RG. Out of 24 dated grains, two near-concordant groups have mean ages of 3230,6+-6,1Ma (2σ; n=9) and 3519+-7 Ma (2σ; n=9), respectively. We interpret the former age as representing the depositional age of the tuff, the latter as representing inherited zircons from underlying Onverwacht-age basement. The interpreted depositional age of the Moodies tuff is indistinguishable from numerous similar ages from felsic and dacitic volcanics at the top of the underlying Fig Tree Group (Schoongezicht Fm.; Byerly et al., 1996), implying that ca. 2000m of Moodies sandstones and subordinate siltstones and conglomerates were deposited in not more than a few (0-6) Ma. Their comparatively low degree of facies variation and lithological change implies a balance between rates of sediment supply and of subsidence, creating thick stacked units. Ferruginous shales and thin BIFs of the upper Moodies Group suggest that background 'Fig-Tree-style' sedimentation continued during Moodies time but was mostly overwhelmed by the apparently brief but massive influx of medium- to coarse-grained quartzose sediment. Because two progressive unconformities, marking Moodies basin uplift and onset of renewed overall BGB shortening, occur only 50 m above this dated unit, they are likely of a similar age and imply that dominant NW-SE-directed shortening in the BGB began shortly after 3230+-6 Ma. The combination of these new data with published information thus suggest that the Moodies Basin formed after 3225+-6 Ma (i.e., at the earliest at 3231) but was already largely filled and began to be deformed by 3231+-6 (i.e., at the latest by 3225). Moodies deposition thus happened geologically nearly instantaneously following the end of Fig Tree volcanism, took very little time and deposited large volumes of sediments on a rapidly subsiding basement just prior to large-scale BGB deformation. REFERENCES Byerly, G.R., Kroner, A., Lowe, D.R., Todt W., Walsh, M.M., 1996, Prolonged magmatism and time constraints for sediment deposition in the early Archean Barberton greenstone belt: Evidence from the Upper Onverwacht and Fig Tree groups: Precambrian Research, 78, p. 125-138. Eriksson, K.A., 1979, Marginal marine depositional processes from the Archaean Moodies Group, Barberton Mountain Land, South Africa: Evidence and significance: Precambrian Res., 8, p. 153-182. Heubeck, C. and Lowe, D.R., 1994, Depositional and tectonic setting of the Archaean Moodies Group, Barberton Greenstone Belt, South Africa: Precambrian Res., 68, p. 257-290. Lowe, D.R., and Byerly, G.R., 2007, An overview of the geology of the Barberton Greenstone Belt and vicinity: Implications for early crustal development; in: M.J. von Kranendonk, R.H. Smithies and V.C. Bennett, eds., Earth's Oldest Rocks. - Elsevier (Developments in Precambrian Geology), vol. 15, p. 481-526.
Westjohn, David B.; Weaver, Thomas L.
1996-01-01
Late Mississippian and Pennsylvanian sedimentary rocks form part of a regional system of aquifers and confining units in the central Lower Peninsula of Michigan. The upper part of the Pennsylvanian rock sequence constitutes the Saginaw aquifer, which consists primarily of sandstone. This sandstone aquifer overlies the Saginaw confining unit, which consists primarily of shale. The Saginaw confining unit separates the Saginaw aquifer from the Parma-Bayport aquifer, which consists primarily of permeable sandstones and carbonates; these permeable units are interpreted to be hydraulically connected and stratigraphically continuous at the scale of the regional aquifer system. The Saginaw aquifer ranges in thickness from 100 to 370 feet along a 30- to 45-milewide south-trending corridor through the approximate center of the aquifer system. The Saginaw aquifer typically contains freshwater along this corridor of thick sandstone. Most municipalities that use water from the Saginaw aquifer are located along this corridor. On either side of this corridor, the Saginaw aquifer generally is less than 100-feet thick, and typically contains saline water. Altitude of the surface of the Saginaw aquifer ranges from 800 to 900 feet in the northern part of the aquifer system, and from 500 to 600 feet in the southern part. Altitude of the top of the Saginaw aquifer is lower in the western and eastern parts of the aquifer system (typically 400 to 500 feet). The Saginaw confining unit is thickest in the northwestern part of the aquifer system (100 to 240 feet thick); however, thickness decreases to 50 feet in the southeast. Thickness of the Parma-Bayport aquifer generally ranges from 100 to 150 feet. The surface configuration of this aquifer is similar in shape to the Saginaw aquifer; altitudes are highest in the southern and northern parts of the aquifer system (900 and 500 feet, respectively). Lowest altitude (approximately -100 feet) of the Parma-Bayport aquifer is in the east-central part of the basin. The Parma-Bayport aquifer contains freshwater in subcrop areas where it is in direct-hydraulic connection to permeable glacial deposits; however, this aquifer contains saline water or brine down dip from subcrop areas.
Deep resistivity structure of Yucca Flat, Nevada Test Site, Nevada
Asch, Theodore H.; Rodriguez, Brian D.; Sampson, Jay A.; Wallin, Erin L.; Williams, Jackie M.
2006-01-01
The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office are addressing groundwater contamination resulting from historical underground nuclear testing through the Environmental Management program and, in particular, the Underground Test Area project. One issue of concern is the nature of the somewhat poorly constrained pre Tertiary geology and its effects on ground-water flow in the area adjacent to a nuclear test. Ground water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey, supported by the DOE and NNSA-NSO, collected and processed data from 51 magnetotelluric (MT) and audio-magnetotelluric (AMT) stations at the Nevada Test Site in and near Yucca Flat to assist in characterizing the pre-Tertiary geology in that area. The primary purpose was to refine the character, thickness, and lateral extent of pre Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (late Devonian - Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale) in the Yucca Flat area. The MT and AMT data have been released in separate USGS Open File Reports. The Nevada Test Site magnetotelluric data interpretation presented in this report includes the results of detailed two-dimensional (2 D) resistivity modeling for each profile (including alternative interpretations) and gross inferences on the three dimensional (3 D) character of the geology beneath each station. The character, thickness, and lateral extent of the Chainman Shale and Eleana Formation that comprise the Upper Clastic Confining Unit are generally well determined in the upper 5 km. Inferences can be made regarding the presence of the Lower Clastic Confining Unit at depths below 5 km. Large fault structures such as the CP Thrust fault, the Carpetbag fault, and the Yucca fault that cross Yucca Flat are also discernable as are other smaller faults. The subsurface electrical resistivity distribution and inferred geologic structures determined by this investigation should help constrain the hydrostratigraphic framework model that is under development.
Computational Nanotribology of Nanometer Confined Liquid Films
2012-02-29
Nanotribology of Nanometer Confined Liquid Films 5b. GRANT NUMBER FA9550-08-1-0214 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT...NUMBER Yongsheng Leng & Peter T. Cummings 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES...NAME( S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM( S ) Joycelyn Harrison AFOSR/RSA 875 North Randolph Street 11. SPONSOR/MONITOR’S REPORT
Effects of model layer simplification using composite hydraulic properties
Kuniansky, Eve L.; Sepúlveda, Nicasio; Elango, Lakshmanan
2011-01-01
Groundwater provides much of the fresh drinking water to more than 1.5 billion people in the world (Clarke et al., 1996) and in the United States more that 50 percent of citizens rely on groundwater for drinking water (Solley et al., 1998). As aquifer systems are developed for water supply, the hydrologic system is changed. Water pumped from the aquifer system initially can come from some combination of inducing more recharge, water permanently removed from storage, and decreased groundwater discharge. Once a new equilibrium is achieved, all of the pumpage must come from induced recharge and decreased discharge (Alley et al., 1999). Further development of groundwater resources may result in reductions of surface water runoff and base flows. Competing demands for groundwater resources require good management. Adequate data to characterize the aquifers and confining units of the system, like hydrologic boundaries, groundwater levels, streamflow, and groundwater pumping and climatic data for recharge estimation are to be collected in order to quantify the effects of groundwater withdrawals on wetlands, streams, and lakes. Once collected, three-dimensional (3D) groundwater flow models can be developed and calibrated and used as a tool for groundwater management. The main hydraulic parameters that comprise a regional or subregional model of an aquifer system are the hydraulic conductivity and storage properties of the aquifers and confining units (hydrogeologic units) that confine the system. Many 3D groundwater flow models used to help assess groundwater/surface-water interactions require calculating ?effective? or composite hydraulic properties of multilayered lithologic units within a hydrogeologic unit. The calculation of composite hydraulic properties stems from the need to characterize groundwater flow using coarse model layering in order to reduce simulation times while still representing the flow through the system accurately. The accuracy of flow models with simplified layering and hydraulic properties will depend on the effectiveness of the methods used to determine composite hydraulic properties from a number of lithologic units.
NASA Astrophysics Data System (ADS)
Dausman, A.; Langevin, C.; Sukop, M.; Walsh, V.
2006-12-01
The South District Wastewater Treatment Plant (SDWWTP), located in southeastern Miami-Dade County about 1 mi west of the Biscayne Bay coastline, is the largest capacity deep-well injection plant in the United States. Currently, about 100 Mgal/d of partially treated, essentially fresh (less than 1000 mg/L total dissolved solids) effluent is injected through 17 wells (each approximately 2500 ft below land surface) into the highly transmissive, lower-temperature, saline Boulder Zone composed of highly fractured dolomite. A thin confining unit called the Delray Dolomite, which is 8-16 ft thick, overlies the intended injection zone at the site. Although the Delray Dolomite has a vertical hydraulic conductivity estimated between 0.001 and 0.00001 ft/d, well casings for 10 of the 17 wells do not extend beneath the unit. A 700-ft-thick middle confining unit, with estimated vertical hydraulic conductivities between 0.1 and 28 ft/d, overlies the Delray Dolomite and separates it from the Upper Floridan aquifer. Protected by the Safe Drinking Water Act (SDWA), the Upper Floridan aquifer contains water that is less than 10,000 mg/L total dissolved solids. In southern Florida, this aquifer is used for reverse osmosis, blending with other waters, and as a reservoir for aquifer storage and recovery. At the SDWWTP, ammonia concentrations that exceed background conditions have been observed in monitoring wells open in and above the middle confining unit, indicating upward vertical migration of effluent, possibly toward the Upper Floridan aquifer. The U.S. Geological Survey currently is developing a variable-density groundwater flow and solute transport model for the Floridan aquifer system in Miami-Dade County. This model includes the injection of treated wastewater at the SDWWTP. The developed numerical model uses SEAWAT, a code that calculates variable- density flow as a function of salinity, to capture the buoyancy effects at the site and along the coast. Simulation efforts have been designed to determine likely mechanisms for vertical fluid migration as well as predict future movement of the effluent. Two alternative mechanisms for upward fluid migration are being tested with the model: (1) site-wide, diffuse upward movement through the Delray Dolomite and middle confining unit with all 17 injection wells; and (2) localized upward movement from the shallow casing depths at 10 of the 17 wells. The parameter estimation program, PEST, has estimated two different hydraulic conductivity configurations for the Delray Dolomite, middle confining unit, and other layers under these two possible conditions. The different parameter sets have yielded two satisfactory model calibrations. Results of these calibrations indicate that vertical effluent migration potentially is occurring either from (1) the 10 wells open above the Delray Dolomite, with virtually no effluent migration through the Delray Dolomite; or (2) all 17 wells open above and below the Delray Dolomite, with effluent migration through the Delray Dolomite.
Flexible drive allows blind machining and welding in hard-to-reach areas
NASA Technical Reports Server (NTRS)
Harvey, D. E.; Rohrberg, R. G.
1966-01-01
Flexible power and control unit performs welding and machining operations in confined areas. A machine/weld head is connected to the unit by a flexible transmission shaft, and a locking- indexing collar is incorporated onto the head to allow it to be placed and held in position.
NASA Astrophysics Data System (ADS)
Johnson, E. R.
2015-12-01
Island arc volcanoes can become submarine during cataclysmal caldera collapse. The passage of a volcanic vent from atmospheric to under water environment involves complex modifications of the eruption style and subsequent transport of the pyroclasts. Here, we use FTIR measurements of the volatile contents of glass and melt inclusions in the juvenile pumice clasts in the Sumisu basin and its surroundings (Izu-Bonin arc) to investigate changes in eruption depths, magma storage and degassing over time. This study is based on legacy cores from ODP 126, where numerous unconsolidated (<65 ka), extremely thick (few m to >250 m), massive to normally graded pumice lapilli-tuffs were recovered over four cores (788C, 790A, 790B and 791A). Glass and clast geochemistry indicate the submarine Sumisu caldera as the source of several of these pumice lapilli-tuffs. Glass chips and melt inclusions from these samples were analyzed using FTIR for H2O and CO2 contents. Glass chips record variable H2O contents; most chips contain 0.6-1.6 wt% H2O, corresponding to eruption depths of 320-2100 mbsl. Variations in glass H2O and pressure estimates suggest that edifice collapse occurred prior-to or during eruption of the oldest of these samples, and that the edifice may have subsequently grown over time. Sanidine-hosted melt inclusions from two units record variably degassed but H2O-rich melts (1.1-5.6 wt% H2O). The lowest H2O contents overlap with glass chips, consistent with degassing and crystallization of melts until eruption, and the highest H2O contents suggest that large amounts of degassing accompanied likely explosive eruptions. Most inclusions, from both units, contain 2-4 wt% H2O, which further indicates that the magmas crystallized at pressures of ~50-100 MPa, or depths ~400-2800 m below the seafloor. Further glass and melt inclusion analyses, including major element compositions, will elucidate changes in magma storage, degassing and evolution over time.
Early Depositional History of the Eocene Izu-Bonin Mariana Arc, Western Pacific Ocean
NASA Astrophysics Data System (ADS)
Waldman, R.; Marsaglia, K. M.; Tepley, F. J., III
2015-12-01
Expedition 351 of the International Ocean Discovery Program cored an Eocene section at Site U1438 in the Philippine Sea that provides insight into the early history of the Izu-Bonin arc. Subduction here is hypothesized to have initiated spontaneously, leaving a characteristic depositional sequence of post-subduction-initiation localized extension and volcanism. We conducted detailed macroscopic and microscopic study of the cores of the lowermost 100m of volcaniclastic and sedimentary rocks (Unit IV) directly overlying subduction initiation igneous basement, to identify depositional facies and trends. We subdivided Unit IV into three subunits based on lithologic characteristics. Transitions between the subunits are relatively abrupt, occurring within the length of a single core. The lowermost subunit (IVA) consists of 4 meters of laminated pelagic claystone with thin beds of graded volcaniclastic siltstone, and fine-grained tuff laminae composed of plagioclase feldspar and green-brown amphibole. The middle subunit (IVB) comprises 51 meters of texturally variable, thick-bedded, coarse-grained gravity flow deposits. These are composed of volcaniclastic sandstone and conglomerate containing glassy and tachylitic volcanic grains as well as sedimentary lithic fragments, along with traces of shallow-water carbonate bioclasts. Subunit IVB sediments are poorer in feldspar than IVA and contain only trace amphibole. They show variable grain rounding and an upsection increase in vitric components. Tachylite grains range from sub-angular to well rounded throughout, and other volcanic grain types show upward increases in angularity and vesicularity. The abrupt transition from pelagic sediments in subunit IVA to shallow-water-sourced gravity flows in subunit IVB suggests a rapid emergence of shallow-water to subaerial volcanic center early in the arc's development. The upper part of subunit IVB also contains igneous intrusions, providing possible evidence for more proximal volcanism at the site. Subunit IVC consists of 46 meters of fine-grained turbidites composed of tuffaceous siltstone, along with radiolarian mudstone and vitric tuff layers. Ongoing studies of the volcanic components will provide additional insight into the source(s) of volcanics throughout the arc's early development.
NASA Astrophysics Data System (ADS)
Lee, K.; Buscheck, T. A.; Glascoe, L. G.; Gansemer, J.; Sun, Y.
2002-12-01
In support of the characterization of Yucca Mountain as a potential site for as a geologic repository for high-level nuclear waste, the US Department of Energy conducted the Large Block Test (LBT) at nearby Fran Ridge. The LBT was conducted in an excavated 3x 3x 4.5m block of partially saturated, fractured nonlithophysal Topopah Spring tuff, which is one of the host-rock units for the potential repository at Yucca Mountain. The LBT was one of a series of field-scale thermohydrologic tests conducted in the repository host-rock units. The LBT was heated by line heaters installed in five boreholes lying in a horizontal plane 2.75 m below the upper surface of the block. The field-scale thermal tests were designed to help investigators better understand the coupled thermohydrologic-mechanical-chemical processes that would occur in the host rock in response to the radioactive heat of decay from emplaced waste packages. The tests also provide data for the calibration and validation of numerical models used to analyze the thermohydrologic response of the near-field host rock and Engineered Barrier System (EBS). Using the NUFT code and the dual-permeability approach to representing fracture-matrix interaction, we simulated the thermohydrologic response of the block to a heating and cooling cycle. The primary goals of the analysis were to study the heat-flow mechanisms and water redistribution patterns in the boiling and sub-boiling zones, and to compare model results with measured temperature and liquid saturation data, and thereby evaluate two rock property data sets available for modeling thermohydrologic behavior in the rock. Model results were also used for model calibration and validation. We obtained a good to excellent match between model and observed temperatures, and found that the distinct dryout and condensation zones modeled above and below the heater level agreed fairly well with the liquid-saturation measurements. We identified the best-fit data set by using a statistical analysis to compare model and field temperatures, and found that heat flow in the block was dominated by conduction.
Geologic Map of the Clark Peak Quadrangle, Jackson and Larimer Counties, Colorado
Kellogg, Karl S.; Ruleman, Chester A.; Shroba, Ralph R.; Braddock, William A.
2008-01-01
The Clark Peak quadrangle encompasses the southern end of the Medicine Bow Mountains and the northernmost end of the Mummy Range. The Continental Divide traverses the map area and Highway 14 cross the Divide at Cameron Pass, in the southeastern corner of the map. Approximately the eastern half of the map, and a few areas to the west, are underlain by Early Proterozoic plutonic and metamorphic rocks. Most of these basement rocks are part of the ~1,715 Ma Rawah batholith, composed mostly of pinkish, massive to moderately foliated monzogranite and granodiorite intruded by numerous, large pegmatite- aplite bodies. The metamorphic rocks, many of which form large inclusions in the granitic rocks of the Rawah batholith, include biotite-hornblende gneiss, hornblende gneiss, amphibolite, and biotite schist. The crystalline basement rocks are thrust westward along the Medicine Bow thrust over a sequence of sedimentary rocks as old as the Upper Permian Satanka Shale. The Satanka Shale, Middle and Lower Triassic Chugwater group, and a thin sandstone tentatively correlated with the Lower Jurassic and Upper Triassic Jelm Formation are combined as one map unit. This undivided unit is overlain sequentially upward by the Upper Jurassic Sundance Formation, Upper Jurassic Morrison Formation, Lower Cretaceous Dakota Group, Upper and Lower Cretaceous Benton Group, Upper Cretaceous Niobrara Formation, and the Eocene and Paleocene Coalmont Formation. The Late Cretaceous to early Eocene Medicine Bow thrust is folded in places, and several back thrusts produced a complicated thrust pattern in the south part of the map. Early Oligocene magmatism produced rhyolite tuff, dacite and basalt flows, and intermediate dikes and small stocks. A 40Ar/39Ar date on sanidine from one rhyolite tuff is ~28.5 Ma; a similar whole-rock date on a trachybasalt is ~29.6 Ma. A very coarse, unsorted probably pre-Quaternary ridge-top diamicton crops out in the southern part of the quadrangle. Numerous glacial deposits (mostly of Pinedale age), rock glaciers, block-slope deposits, landslide deposits, talus deposits, fan deposits, colluvium, and alluvium comprise the surficial deposits of the map area.
Hydrogeologic Framework of Onslow County, North Carolina, 2008
Fine, Jason M.
2008-01-01
The unconsolidated sediments that underlie the Onslow County area are composed of interlayered permeable and impermeable beds, which overlie the crystalline basement rocks. The aquifers, composed mostly of sand and limestone, are separated by confining units composed mostly of clay and silt. The aquifers from top to bottom are the surficial, Castle Hayne, Beaufort, Peedee, Black Creek, and Upper and Lower Cape Fear aquifers. For this study, the Castle Hayne aquifer is informally divided into the upper and lower Castle Hayne aquifers. The eight aquifers and seven confining units of the Tertiary and Cretaceous strata beneath Onslow County are presented in seven hydrogeologic sections. The hydrogeologic framework was refined from existing interpretations by using geophysical logs, driller's logs, and other available data from 123 wells and boreholes.
Rotational and constitutional dynamics of caged supramolecules
Kühne, Dirk; Klappenberger, Florian; Krenner, Wolfgang; Klyatskaya, Svetlana; Ruben, Mario; Barth, Johannes V.
2010-01-01
The confinement of molecular species in nanoscale environments leads to intriguing dynamic phenomena. Notably, the organization and rotational motions of individual molecules were controlled by carefully designed, fully supramolecular host architectures. Here we use an open 2D coordination network on a smooth metal surface to steer the self-assembly of discrete trimeric guest units, identified as noncovalently bound dynamers. Each caged chiral supramolecule performs concerted, chirality-preserving rotary motions within the template honeycomb pore, which are visualized and quantitatively analyzed using temperature-controlled scanning tunneling microscopy. Furthermore, with higher thermal energies, a constitutional system dynamics appears, which is revealed by monitoring repetitive switching events of the confined supramolecules’ chirality signature, reflecting decay and reassembly of the caged units. PMID:21098303
Ullmann-like reactions for the synthesis of complex two-dimensional materials
NASA Astrophysics Data System (ADS)
Quardokus, Rebecca C.; Tewary, V. K.; DelRio, Frank W.
2016-11-01
Engineering two-dimensional materials through surface-confined synthetic techniques is a promising avenue for designing new materials with tailored properties. Developing and understanding reaction mechanisms for surface-confined synthesis of two-dimensional materials requires atomic-level characterization and chemical analysis. Beggan et al (2015 Nanotechnology 26 365602) used scanning tunneling microscopy and x-ray photoelectron spectroscopy to elucidate the formation mechanism of surface-confined Ullmann-like coupling of thiophene substituted porphyrins on Ag(111). Upon surface deposition, bromine is dissociated and the porphyrins couple with surface adatoms to create linear strands and hexagonally packed molecules. Annealing the sample results in covalently-bonded networks of thienylporphyrin derivatives. A deeper understanding of surface-confined Ullmann-like coupling has the potential to lead to precision-engineered nano-structures through synthetic techniques. Contribution of the National Institute of Standards and Technology, not subject to copyright in the United States of America.
NASA Technical Reports Server (NTRS)
Farrand, William H.
2004-01-01
Increases in the signal-to-noise ratio (SNR) in AVIRIS has enabled the mapping and characterization of low albedo materials. Low albedo materials of interest include certain soils, man-made materials (asphalt, certain building materials, tires, etc.), and basaltic lava flows and ashes. Early in its history, the response of the AVIRIS sensor was not sensitive enough so that these low albedo materials could be reliably mapped. However, as indicated by Green and Pavri (2002) the noise equivalent delta radiance (NEdL) of AVIRIS in the 2001 flight season was below 0.010 in all but the shortest wavelength channels. This is approximately a ten-fold improvement from the 1989 flight season when NEdL was closer to 0.1 (Green et al., 1990). In the current investigation, AVIRIS data from the 2002 flight season collected over the Pavant Butte tuff cone, Tabernacle Hill tuff ring, and an associated lava flow in the Black Rock Desert of west central Utah were examined to determine how well these generally low albedo volcanic lavas and tephras could be discriminated from background materials. The Pavant Butte tuff cone was examined by the author in an earlier study with a 1989 AVIRIS dataset (Farrand and Singer,
Pyroclastic rocks: another manifestation of ultramafic volcanism on Gorgona Island, Colombia
NASA Astrophysics Data System (ADS)
Echeverría, Lina M.; Aitken, Bruce G.
1986-04-01
Tertiary ultramafic volcanism on Gorgona Island, Colombia, is manifested not only by komatiite flows, but also by a more voluminous sequence of tuff breccias, which is cut by comagmatic picrite dikes. The ultramafic pyroclastic rocks are chaotic to stratified mixtures of angular to subrounded glassy picritic blocks and a fine grained volcaniclastic matrix that consists primarily of plastically-deformed, glassy globules. The entire deposit is interpreted to have formed by an explosive submarine eruption of phenocryst-laden picritic magma. MgO contents of tuff breccias and picrite dikes range from 21 to 27 wt%. Relative to nearby komatiite flows, these rocks are MgO-rich, and FeO-, TiO2- and Ni-poor. HREE concentrations are very low (
Sawyer, D.A.; Sargent, K.A.
1989-01-01
The Silent Canyon volcanic center consists of a buried Miocene peralkaline caldera complex and outlying peralkaline lava domes. Two widespread ash flow sheets, the Tub Spring and overlying Grouse Canyon members of the Miocene Belted Range Tuff, were erupted from the caldera complex and have volumes of 60-100 km3 and 200 km3, respectively. Eruption of the ash flows was preceded by widespread extrusion of precaldera comendite domes and was followed by extrusion of postcollapse peralkaline lavas and tuffs within and outside the caldera complex. Lava flows and tuffs were also deposited between the two major ash flow sheets. Rocks of the Silent Canyon center vary significantly in silica content and peralkalinity. Weakly peralkaline silicic comendites (PI 1.0-1.1) are the most abundant precaldera lavas. Postcollapse lavas range from trachyte to silicic comendite; some have anomalous light rare earth element (LREE) enrichments. Silent Canyon rocks follow a common petrologic evolution from trachyte to low-silica comendite; above 73% SiO2, compositions of the moderately peralkaline comendites diverge from those of the weakly peralkaline silicic comendites. The development of divergent peralkaline magmas, toward both pantelleritic and weakly peralkaline compositions, is unusual in a single volcanic center. -from Authors
Knott, J.R.; Sarna-Wojcicki, A. M.; Montanez, I.P.; Wan, E.
2007-01-01
Volcanic glass samples from the same volcanic center (intra-source) often have a similar major-element composition. Thus, it can be difficult to distinguish between individual tephra layers, particularly when using similarity coefficients calculated from electron microprobe major-element measurements. Minor/trace element concentrations in glass can be determined by solution inductively coupled plasma mass spectrometry (S-ICP-MS), but have not been shown as suitable for use in large tephrochronologic databases. Here, we present minor/trace-element concentrations measured by S-ICP-MS and compare these data by similarity coefficients, the method commonly used in large databases. Trial samples from the Bishop Tuff, the upper and lower tuffs of Glass Mountain and the tuffs of Mesquite Spring suites from eastern California, USA, which have an indistinguishable major-element composition, were analyzed using S-ICP-MS. The resulting minor/trace element similarity coefficients clearly separated the suites of tephra layers and, in most cases, individual tephra layers within each suite. Comparisons with previous instrumental neutron activation analysis (INAA) elemental measurements were marginally successful. This is important step toward quantitative correlation in large tephrochronologic databases to achieve definitive identification of volcanic glass samples and for high-resolution age determinations. ?? 2007 Elsevier Ltd and INQUA.
Hydrogeology and groundwater quality of Highlands County, Florida
Spechler, Rick M.
2010-01-01
Groundwater is the main source of water supply in Highlands County, Florida. As the demand for water in the county increases, additional information about local groundwater resources is needed to manage and develop the water supply effectively. To address the need for additional data, a study was conducted to evaluate the hydrogeology and groundwater quality of Highlands County. Total groundwater use in Highlands County has increased steadily since 1965. Total groundwater withdrawals increased from about 37 million gallons per day in 1965 to about 107 million gallons per day in 2005. Much of this increase in water use is related to agricultural activities, especially citrus cultivation, which increased more than 300 percent from 1965 to 2005. Highlands County is underlain by three principal hydrogeologic units. The uppermost water-bearing unit is the surficial aquifer, which is underlain by the intermediate aquifer system/intermediate confining unit. The lowermost hydrogeologic unit is the Floridan aquifer system, which consists of the Upper Floridan aquifer, as many as three middle confining units, and the Lower Floridan aquifer. The surficial aquifer consists primarily of fine-to-medium grained quartz sand with varying amounts of clay and silt. The aquifer system is unconfined and underlies the entire county. The thickness of the surficial aquifer is highly variable, ranging from less than 50 to more than 300 feet. Groundwater in the surficial aquifer is recharged primarily by precipitation, but also by septic tanks, irrigation from wells, seepage from lakes and streams, and the lateral groundwater inflow from adjacent areas. The intermediate aquifer system/intermediate confining unit acts as a confining layer (except where breached by sinkholes) that restricts the vertical movement of water between the surficial aquifer and the underlying Upper Floridan aquifer. The sediments have varying degrees of permeability and consist of permeable limestone, dolostone, or sand, or relatively impermeable layers of clay, clayey sand, or clayey carbonates. The thickness of the intermediate aquifer system/ intermediate confining unit ranges from about 200 feet in northwestern Highlands County to more than 600 feet in the southwestern part. Although the intermediate aquifer system is present in the county, it is unclear where the aquifer system grades into a confining unit in the eastern part of the county. Up to two water-bearing units are present in the intermediate aquifer system within the county. The lateral continuity and water-bearing potential of the various aquifers within the intermediate aquifer system are highly variable. The Floridan aquifer system is composed of a thick sequence of limestone and dolostone of Upper Paleocene to Oligocene age. The top of the aquifer system ranges from less than 200 feet below NGVD 29 in extreme northwestern Highlands County to more than 600 feet below NGVD 29 in the southwestern part. The principal source of groundwater supply in the county is the Upper Floridan aquifer. As of 2005, about 89 percent of the groundwater withdrawn from the county was obtained from this aquifer, mostly for agricultural irrigation and public supply. Over most of Highlands County, the Upper Floridan aquifer generally contains freshwater, and the Lower Floridan aquifer contains more mineralized water. The potentiometric surface of the Upper Floridan aquifer is constantly fluctuating, mainly in response to seasonal variations in rainfall and groundwater withdrawals. The potentiometric surface of the Upper Floridan aquifer in May 2007, which represents the hydrologic conditions near the end of the dry season when water levels generally are near their lowest, ranged from about 79 feet above NGVD 29 in northwestern Highlands County to about 40 feet above NGVD 29 in the southeastern part of the county. The potentiometric surface of the Upper Floridan aquifer in September 2007 was about 3 to 10 feet high
NASA Astrophysics Data System (ADS)
Curry, Adam; Caricchi, Luca; Lipman, Peter
2017-04-01
Large, explosive volcanic eruptions can have both immediate and long-term negative effects on human societies. Statistical analyses of volcanic eruptions show that the frequency of the largest eruptions on Earth (> ˜450 km3) differs from that observed for smaller eruptions, suggesting different physical processes leading to eruption. This project will characterize the petrography, whole-rock geochemistry, mineral chemistry, and zircon geochronology of four caldera-forming ignimbrites from the San Juan caldera cluster, Colorado, to determine the physical processes leading to eruption. We collected outflow samples along stratigraphy of the three caldera-forming ignimbrites of the San Luis caldera complex: the Nelson Mountain Tuff (>500 km3), Cebolla Creek Tuff (˜250 km3), and Rat Creek Tuff (˜150 km3); and we collected samples of both outflow and intracaldera facies of the Snowshoe Mountain Tuff (>500 km3), which formed the Creede caldera. Single-crystal sanidine 40Ar/39Ar ages show that these eruptions occurred in rapid succession between 26.91 ± 0.02 Ma (Rat Creek) and 26.87 ± 0.02 Ma (Snowshoe Mountain), providing a unique opportunity to investigate the physical processes leading to a rapid sequence of large, explosive volcanic eruptions. Recent studies show that the average flux of magma is an important parameter in determining the frequency and magnitude of volcanic eruptions. High-precision isotope-dilution thermal ionization mass spectrometry (ID-TIMS) zircon geochronology will be performed to determine magma fluxes, and cross-correlation of chemical profiles in minerals will be performed to determine the periodicity of magma recharge that preceded these eruptions. Our project intends to combine these findings with similar data from other volcanic regions around the world to identify physical processes controlling the regional and global frequency-magnitude relationships of volcanic eruptions.
NASA Astrophysics Data System (ADS)
Liu, D.
2009-12-01
In China, Xizang Gangdise tectonic belt is a large nonferrous metal and noble metal mineralized zone and in which, it is found that the mineralization correlates with Tethyan Ocean subduction, continent-continent collision and magmatism due to inter-continent extension orogeny. Qulong porphyry copper (molybdenum) deposit is the largest recently found in the Gangdise metallogenic belt and is one of the most large porphyry copper deposit in Asia. In the area of Qulong porphyry copper deposit, the adjacent strata is Yeba Formation and which can be parted into three members. The first member is built up of dacite, rhyolite, andesite, lapilli tuff, volcanic breccia and volcanic agglomerate. The second member widely occur in the area with major rocks of medium-acidic lava, debris-crystallinoclastic volcanic tuff intercalated with tuffaceous sand, tuffaceous slate and limestone. The third member is built up of andesite, liparite, crystallinoclastic tuff intercalated with sillicalite, sericite slate, tuffaceous sandstone and dirty limestone. The volcanic tuff in the second member gives a LA-ICP-MS U-Pb zircon age of 156.2±2.3 Ma, which may represent the age of the Yeba Formation. That is to say, in the study area, the Yeba Formation comes to being in age of Middle and Later Jurassic. The characteristic which comes from the research on geochronology and rockassociations suggests that the Yeba Formation volcanic rocks are built up by a long time ejection and the ejection of the Yeba Formation volcanic rocks comes from west to east in the Gangdise zone. The volcanic rocks in the Yeba Formation can be considered as the products originated from northward subduction and consumption of the Tethyan Ocean. At the same time, it is proposed that the Yeba Formation volcanic rocks have potential significances in evaluating the early Jurassic biotic crisis, climate change, regression or intrusion event and the later mineralizaion.
NASA Astrophysics Data System (ADS)
Sliwinski, J. T.; Bachmann, O.; Dungan, M. A.; Huber, C.; Deering, C. D.; Lipman, P. W.; Martin, L. H. J.; Liebske, C.
2017-05-01
Determining the mechanisms involved in generating large-volume eruptions (>100 km3) of silicic magma with crystallinities approaching rheological lock-up ( 50 vol% crystals) remains a challenge for volcanologists. The Cenozoic Southern Rocky Mountain volcanic field, in Colorado and northernmost New Mexico, USA, produced ten such crystal-rich ignimbrites within 3 m.y. This work focuses on the 28.7 Ma Masonic Park Tuff, a dacitic ( 62-65 wt% SiO2) ignimbrite with an estimated erupted volume of 500 km3 and an average of 45 vol% crystals. Near-absence of quartz, titanite, and sanidine, pronounced An-rich spikes near the rims of plagioclase, and reverse zoning in clinopyroxene record the reheating (from 750 to >800 °C) of an upper crustal mush in response to hotter recharge from below. Zircon U-Pb ages suggest prolonged magmatic residence, while Yb/Dy vs temperature trends indicate co-crystallization with titanite which was later resorbed. High Sr, Ba, and Ti concentrations in plagioclase microlites and phenocryst rims require in-situ feldspar melting and concurrent, but limited, mass addition provided by the recharge, likely in the form of a melt-gas mixture. The larger Fish Canyon Tuff, which erupted from the same location 0.7 m.y. later, also underwent pre-eruptive reheating and partial melting of quartz, titanite, and feldspars in a long-lived upper crustal mush following the underplating of hotter magma. The Fish Canyon Tuff, however, records cooler pre-eruptive temperatures ( 710-760 °C) and a mineral assemblage indicative of higher magmatic water contents (abundant resorbed sanidine and quartz, euhedral amphibole and titanite, and absence of pyroxene). These similar pre-eruptive mush-reactivation histories, despite differing mineral assemblages and pre-eruptive temperatures, indicate that thermal rejuvenation is a key step in the eruption of crystal-rich silicic volcanics over a wide range of conditions.
NASA Astrophysics Data System (ADS)
Valentine, Greg A.; van Wyk de Vries, Benjamin
2014-03-01
A Miocene age volcanic-hypabyssal structure comprising volcaniclastic deposits and mafic intrusions is exposed with vertical relief of ˜110 m on the side of Gergovie Plateau (Auvergne, France). Three main volcaniclastic facies are: (1) Fluidal tuff breccia composed of juvenile basalt and sediment clasts with dominantly fluidal shapes, with several combinations of basalt and sediment within individual clasts. (2) Thickly bedded lapilli tuff composed of varying proportions of fine-grained sediment derived from Oligocene-Miocene lacustrine marls and mudstones and basaltic lapilli, blocks, and bombs. (3) Planar-bedded tuff forming thin beds of fine to coarse ash-size sedimentary material and basalt clasts. Intrusive bodies in the thickly bedded lapilli tuff range from irregularly shaped and anastomosing dikes and sills of meters to tens of meters in length, to a main feeder dike that is up to ˜20 m wide, and that flares into a spoon-shaped sill at ˜100 m in diameter and 10-20 m thick in the eastern part of the structure. Volcaniclastic deposits and structural features suggest that ascending magma entrained soft, saturated sediment host material into the feeder dike and erupted fluidal magma and wet sediment via weak, Strombolian-like explosions. Host sediment and erupted material subsided to replace the extracted sediments, producing the growth subsidence structure that is similar to upper diatreme facies in typical maar diatremes but lacks evidence for explosive disruption of diatreme fill. Irregularly shaped small intrusions extended from the main feeder dike into the diatreme, and many were disaggregated due to shifting and subsidence of diatreme fill and recycled via eruption. The Mardoux structure is an "unconventional" maar diatreme in that it was produced mainly by weak explosive activity rather than by violent phreatomagmatic explosions and is an example of complex coupling between soft sediment and ascending magma.
NASA Astrophysics Data System (ADS)
Lopez-Gamundi, O. R.; Conaghan, P. J.; Rossello, E. A.; Cobbold, P. R.
1995-04-01
The Tunas Formation, extensively exposed in the Sierras Australes foldbelt of eastern central Argentina, completes the sedimentation of the Gondwanan (Late Carboniferous-Permian) sequence, locally known as the Pillahuincó Group. The underlying units of the Group show an integrated depositional history which can be explained in terms of glaciomarine sedimentation (Sauce Grande Formation) and postglacial transgression (Piedra Azul and Bonete Formations). This succession also has a rather uniform quartz-rich, sand-sized composition indicative of a cratonic provenance from the Tandilia Massif to the northeast. Early to Late Permian deformation folded and thrusted the southwestern basin margin (Sierras Australes) and triggered the deposition of a 1,500 m — thick, synorogenic prograding wedge, the Tunas Formation, in the adjacent foreland basin (Sauce Grande or Claromecó Basin). Sandstone detrital modes for the Tunas deposits show moderate to low contents of quartz and abundant lithics, mostly of volcanic and metasedimentary origin. Paleocurrents are consistently from the SW. Tuffs interbedded with sandstones in the upper half of Tunas Formation (Early — early Late? Permian) are interpreted as being derived from volcanic glass-rich tuffs settled in a body of water. Extensive rhyolitic ignimbrites and consanguineous airborne tuffaceous material erupted in the northern Patagonian region during that period. The age constraints and similarities in composition between these volcanics and the tuffaceous horizons present in the Sauce Grande, Parana and Karoo Basins suggest a genetic linkage between these two episodes. The intimate relationship between volcanic activity inboard of the paleo-Pacific margin, deformation in the adjacent orogenic belt and subsidence and sedimentation in the contiguous foreland basin constitutes a common motif in the Sauce Grande and Karoo Basins of southwestern Gondwana.