Science.gov

Sample records for tumble rates rendezvousing

  1. Optical Survey of the Tumble Rates of Retired GEO Satellites

    NASA Astrophysics Data System (ADS)

    Binz, C.; Davis, M.; Kelm, B.; Moore, C.

    2014-09-01

    The Naval Research Lab (NRL) and the Defense Advanced Research Projects Agency (DARPA) have made significant progress toward robotic rendezvous and docking between spacecraft, however the long-term attitude motion evolution of uncontrolled resident space objects has never been well-characterized. This effort set out to identify the motion exhibited in retired satellites at or near geosynchronous orbit (GEO). Through analysis of the periodic structure of observed reflected light curves, estimated tumble rates were determined for several retired satellites, typically in a super-GEO disposal orbit. The NRL's 1-meter telescope at Midway Research Center was used to track and observe the objects while the sun-satellite-observer geometry was most favorable; typically over a one- to two-hour period, repeated multiple times over the course of weeks. By processing each image with calibration exposures, the relative apparent magnitude of the brightness of the object over time was determined. Several tools, including software developed internally, were used for frequency analysis of the brightness curves. Results show that observed satellites generally exhibit a tumble rate well below the notional bounding case of one degree per second. When harmonics are found to exist in the data, modeling and simulation of the optical characteristics of the satellite can help to resolve ambiguities. This process was validated on spacecraft for which an attitude history is known, and agreement was found.

  2. Optical Survey of the Tumble Rates of Retired GEO Satellites

    DTIC Science & Technology

    2014-09-01

    different features, such as solar arrays . Modeling and simulation of the full rotational state of an example spacecraft could also be leveraged to provide...geosynchronous orbit (GEO). Through analysis of the periodic structure of observed reflected light curves, estimated tumble rates were determined for several...retired satellites, typically in a super-GEO disposal orbit . The NRL’s 1-meter telescope at Mid- way Research Center was used to track and observe the

  3. Study of effects of uncertainties of comet and asteroid encounter and contact guidance requirements. Part 2: Tumbling problem studies. [development of navigation and guidance techniques for space rendezvous

    NASA Technical Reports Server (NTRS)

    Cochran, J. E., Jr.

    1974-01-01

    The problem of determining the rotational motion of a tumbling celestial body of the asteroid type using spacecraft-acquired data is addressed. The rotational motion of the body is modeled by free-Eulerian motion of a triaxial, rigid body and its translational motion with respect, to a nonrotating, observing spacecraft, which is not thrusting, is assumed to be uniform during the time observations are made. The mathematical details which form the basis for a digital simulation of the motion and observations are presented. Two algorithms for determining the motion from observations for the special case of uniform rotational motion are given.

  4. Simple expressions of the nuclear relaxation rate enhancement due to quadrupole nuclei in slowly tumbling molecules

    SciTech Connect

    Fries, Pascal H.; Belorizky, Elie

    2015-07-28

    For slowly tumbling entities or quasi-rigid lattices, we derive very simple analytical expressions of the quadrupole relaxation enhancement (QRE) of the longitudinal relaxation rate R{sub 1} of nuclear spins I due to their intramolecular magnetic dipolar coupling with quadrupole nuclei of arbitrary spins S ≥ 1. These expressions are obtained by using the adiabatic approximation for evaluating the time evolution operator of the quantum states of the quadrupole nuclei S. They are valid when the gyromagnetic ratio of the spin S is much smaller than that of the spin I. The theory predicts quadrupole resonant peaks in the dispersion curve of R{sub 1} vs magnetic field. The number, positions, relative intensities, Lorentzian shapes, and widths of these peaks are explained in terms of the following properties: the magnitude of the quadrupole Hamiltonian and the asymmetry parameter of the electric field gradient (EFG) acting on the spin S, the S-I inter-spin orientation with respect to the EFG principal axes, the rotational correlation time of the entity carrying the S–I pair, and/or the proper relaxation time of the spin S. The theory is first applied to protein amide protons undergoing dipolar coupling with fast-relaxing quadrupole {sup 14}N nuclei and mediating the QRE to the observed bulk water protons. The theoretical QRE agrees well with its experimental counterpart for various systems such as bovine pancreatic trypsin inhibitor and cartilages. The anomalous behaviour of the relaxation rate of protons in synthetic aluminium silicate imogolite nano-tubes due to the QRE of {sup 27}Al (S = 5/2) nuclei is also explained.

  5. Rendezvous facilities

    SciTech Connect

    Gehani, N.H.; Roome, W.D.

    1988-11-01

    The concurrent programming facilities in both Concurrent C and the Ada language are based on the rendezvous concept. Although these facilities are similar, there are substantial differences. Facilities in Concurrent C were designed keeping in perspective the concurrent programming facilities in the Ada language and their limitations. Concurrent C facilities have also been modified as a result of experience with its initial implementations. In this paper, the authors compare the concurrent programming facilities in Concurrent C and Ada, and show that it is easier to write a variety of concurrent programs in Concurrent C than in Ada.

  6. Tumbling of Small Axisymmetric Particles in Random and Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Gustavsson, K.; Einarsson, J.; Mehlig, B.

    2014-01-01

    We analyze the tumbling of small nonspherical, axisymmetric particles in random and turbulent flows. We compute the orientational dynamics in terms of a perturbation expansion in the Kubo number, and obtain the tumbling rate in terms of Lagrangian correlation functions. These capture preferential sampling of the fluid gradients, which in turn can give rise to differences in the tumbling rates of disks and rods. We show that this is a weak effect in Gaussian random flows. But in turbulent flows persistent regions of high vorticity cause disks to tumble much faster than rods, as observed in direct numerical simulations [S. Parsa, E. Calzavarini, F. Toschi, and G. A. Voth, Phys. Rev. Lett. 109, 134501 (2012), 10.1103/PhysRevLett.109.134501]. For larger particles (at finite Stokes numbers), rotational and translational inertia affects the tumbling rate and the angle at which particles collide, due to the formation of rotational caustics.

  7. Rough and Tumble Play 101

    ERIC Educational Resources Information Center

    Carlson, Frances

    2009-01-01

    Many people fear that play-fighting or rough and tumble play is the same as real fighting. There is also a fear that this rough play will become real fighting if allowed to continue. Most of all, parents and teachers fear that during the course of rough and tumble play a child may be hurt. To provide for and allow children to play rough without…

  8. Effective run-and-tumble dynamics of bacteria baths

    NASA Astrophysics Data System (ADS)

    Paoluzzi, M.; Di Leonardo, R.; Angelani, L.

    2013-10-01

    E. coli bacteria swim in straight runs interrupted by sudden reorientation events called tumbles. The resulting random walks give rise to density fluctuations that can be derived analytically in the limit of non-interacting particles or equivalently of very low concentrations. However, in situations of practical interest, the concentration of bacteria is always large enough to make interactions an important factor. Using molecular dynamics simulations, we study the dynamic structure factor of a model bacterial bath for increasing values of densities. We show that it is possible to reproduce the dynamics of density fluctuations in the system using a free run-and-tumble model with effective fitting parameters. We discuss the dependence of these parameters, e.g., the tumbling rate, tumbling time and self-propulsion velocity, on the density of the bath.

  9. Rendezvous Docking Simulator

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Rendezvous Docking Simulator. The simulation demonstrated linear and gimbal motions of the capsule and a Gemini-Agena docking. [Entire movie available on DVD from CASI as Doc ID 20070030983. Contact help@sti.nasa.gov

  10. Gemini Rendezvous Docking Simulator

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Gemini Rendezvous Docking Simulator suspended from the roof of the Langley Research Center's aircraft hanger. Francis B. Smith wrote: 'The rendezvous and docking operation of the Gemini spacecraft with the Agena and of the Apollo Command Module with the Lunar Excursion Module have been the subject of simulator studies for several years. [This figure] illustrates the Gemini-Agena rendezvous docking simulator at Langley. The Gemini spacecraft was supported in a gimbal system by an overhead crane and gantry arrangement which provided 6 degrees of freedom - roll, pitch, yaw, and translation in any direction - all controllable by the astronaut in the spacecraft. Here again the controls fed into a computer which in turn provided an input to the servos driving the spacecraft so that it responded to control motions in a manner which accurately simulated the Gemini spacecraft.'

  11. Rendezvous with a comet

    NASA Astrophysics Data System (ADS)

    Taylor, Matt

    2014-10-01

    After making a successful rendezvous with Comet 67P/Churyumov-Gerasimenko earlier this year, Europe's Rosetta craft is now riding alongside this celestial body and next month is set to land a probe on its surface. Matt Taylor describes the excitement of this unique project and the scientific insights that it hopes to achieve.

  12. Rendezvous with Zarya

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Backdropped against a blanket of heavy cloud cover, the Russian-built FGB, also called Zarya, nears the Space Shuttle Endeavour and the U.S.-built Node 1, also called Unity (foreground). Inside Endeavour's cabin, the STS-88 crew readies the Remote Manipulator System (RMS) for Zarya capture as they await the carefully choreographed dance of the rendezvous.

  13. Rendezvous Docking Simulator

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Multiple exposure of Rendezvous Docking Simulator. The Gemini spacecraft was supported in a gimbal system by an overhead crane and gantry arrangement which provided 6 degrees of freedom - roll, pitch, yaw, and translation in any direction - all controllable by the astronaut in the spacecraft. The controls fed into a computer which in turn provided an input to the servos driving the spacecraft so that it responded to control motions in a manner which accurately simulated the Gemini spacecraft.

  14. The tumbling spin state of (99942) Apophis

    NASA Astrophysics Data System (ADS)

    Pravec, P.; Scheirich, P.; Ďurech, J.; Pollock, J.; Kušnirák, P.; Hornoch, K.; Galád, A.; Vokrouhlický, D.; Harris, A. W.; Jehin, E.; Manfroid, J.; Opitom, C.; Gillon, M.; Colas, F.; Oey, J.; Vraštil, J.; Reichart, D.; Ivarsen, K.; Haislip, J.; LaCluyze, A.

    2014-05-01

    Our photometric observations of Asteroid (99942) Apophis from December 2012 to April 2013 revealed it to be in a state of non-principal axis rotation (tumbling). We constructed its spin and shape model and found that it is in a moderately excited Short Axis Mode (SAM) state with a ratio of the rotational kinetic energy to the basic spin state energy E/E0=1.024±0.013. (All quoted uncertainties correspond to 3σ.) The greatest and intermediate principal moments of inertia are nearly the same with I2/I3=0.965-0.015+0.009, but the smallest principal moment of inertia is substantially lower with I1/I3=0.61-0.08+0.11; the asteroid’s dynamically equivalent ellipsoid is close to a prolate ellipsoid. The precession and rotation periods are Pϕ=27.38±0.07 h and Pψ=263±6 h, respectively; the strongest observed lightcurve amplitude for the SAM case is in the 2nd harmonic of P1=P=30.56±0.01 h. The rotation is retrograde with the angular momentum vector’s ecliptic longitude and latitude of 250° and -75° (the uncertainty area is approximately an ellipse with the major and minor semiaxes of 27° and 14°, respectively). An implication of the retrograde rotation is a somewhat increased probability of the Apophis’ impact in 2068, but it is still very small with the risk level on the Palermo Scale remaining well below zero. Apophis is a member of the population of slowly tumbling asteroids. Applying the theory of asteroid nutational damping by Breiter et al. (Breiter, S., Rożek, A., Vokrouhlický, D. [2012]. Mon. Not. R. Astron. Soc. 427, 755-769), we found that slowly tumbling asteroids predominate in the spin rate-size range where their estimated damping times are greater than about 0.2 Gyr. The appearance that the PA/NPA rotators transition line seems to follow a line of constant damping time may be because there are two or more asteroid spin evolution mechanisms in play, or the factor of μQ (the elastic modulus times the quality factor) is not constant but it may

  15. Analog Simulation of a Pilot-Controlled Rendezvous

    NASA Technical Reports Server (NTRS)

    Brissenden, Roy F.; Burton, Bert B.; Foudriat, Edwin C.; Whitten, James B.

    1961-01-01

    The rendezvous of a pilot-controlled space ferry vehicle with an orbiting space station was simulated in six degrees of freedom. A fixed-base simulator and an analog computer were used. The ferry vehicle was assumed to have a single main thrusting rocket and to be provided with attitude control. Control of the thrust was provided by a rocket throttle quadrant which could provide either proportional or on-off control. The attitude of the vehicle was controlled during the rendezvous with a two-axis, pencil-type side-arm controller and rudder pedals. For the most part rendezvous maneuvers were made with the target satellite in a circular orbit. In addition, an elliptical station orbit was investigated. Tolerable initial conditions, as well as adequate data presentations, were determined. Results of the investigation indicate that a human pilot can rendezvous successfully with the vehicle and instrumentation considered over a wide band of initial conditions. Coplanar conditions are not necessary. Retro-rocket fuel used is not greatly increased by imposing perturbing influences such as rocket-misalignment torques on the rendezvous vehicle. When excessive attitude-control torques are required to maintain the necessary trim attitudes under misalignment influences, the reaction fuel used for this control increases. The time required for a specific rendezvous varies somewhat between pilots. If control of the time for completing the rendezvous is desired, requirements for retrorocket fuel are affected, and an energy-management schedule is required. Continuous variation of the thrust is not necessary. The pilot positions the throttle to obtain a desired level of thrust, and applies bursts of thrust as required. All data were presented on dialed instruments. The quantities required are range and range rate and line-of-sight rates between the vehicle and the station, vehicle attitudes and angular rates, and the angles subtended by the line of sight. For the equipment assumed

  16. STS-135: Rendezvous Pitch Maneuver

    NASA Video Gallery

    On July 10, 2011, space shuttle Atlantis performed the nine-minute Rendezvous Pitch Maneuver, or “backflip.” With Commander Chris Ferguson at the helm, Atlantis rotated 360 degrees backward to ...

  17. STS-133: Rendezvous Pitch Maneuver

    NASA Video Gallery

    At 1:15 p.m. EST Saturday, space shuttle Discovery began the nine-minute Rendezvous Pitch Maneuver, or "backflip." With Commander Steve Lindsey at the helm, Discovery rotated 360 degrees backward t...

  18. Near Earth asteroid rendezvous

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Spacecraft Design Course is the capstone design class for the M.S. in astronautics at the Naval Postgraduate School. The Fall 92 class designed a spacecraft for the Near Earth Asteroid Rendezvous Mission (NEAR). The NEAR mission uses a robotic spacecraft to conduct up-close reconnaissance of a near-earth asteroid. Such a mission will provide information on Solar System formation and possible space resources. The spacecraft is intended to complete a NEAR mission as a relatively low-budget program while striving to gather as much information about the target asteroid as possible. A complete mission analysis and detailed spacecraft design were completed. Mission analysis includes orbit comparison and selection, payload and telemetry requirements, spacecraft configuration, and launch vehicle selection. Spacecraft design includes all major subsystems: structure, electrical power, attitude control, propulsion, payload integration, and thermal control. The resulting spacecraft demonstrates the possibility to meet the NEAR mission requirements using existing technology, 'off-the-shelf' components, and a relatively low-cost launch vehicle.

  19. A closer look at tumbling toast

    NASA Astrophysics Data System (ADS)

    Bacon, M. E.; Heald, George; James, Matt

    2001-01-01

    The study of the mechanics of tumbling toast provides an informative and entertaining project for undergraduates. The relatively recent introduction of software packages to facilitate the analysis of video recordings, and the numerical solution of complex differential equations, makes such a study an attractive candidate for inclusion in an experimental physics course at the undergraduate level. In the study reported here it is found that the experimentally determined free fall angular velocity of a board, tumbling off the edge of a table, can only be predicted at all accurately if slipping is taken into account. The size and shape of the board used in the calculations and in the experiments were roughly the same as that of a piece of toast. In addition, it is found that the board, tumbling from a standard table of height 76 cm, will land butter-side down (neglecting any bounce) for two ranges of overhang (δ0). δ0 is defined as the initial distance from the table edge to a vertical line drawn through the center of mass when the board is horizontal. For our board (length 10.2 cm) the approximate ranges of overhang are 0-0.8 and 2.7-5.1 cm. The importance of the 0-0.8 cm (only 2% of all possible overhangs for which tumbling is possible) favoring a butter-side down landing should not be underestimated when pondering the widely held belief that toast, tumbling from a table, usually falls butter-side down.

  20. History of Space Shuttle Rendezvous

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2011-01-01

    This technical history is intended to provide a technical audience with an introduction to the rendezvous and proximity operations history of the Space Shuttle Program. It details the programmatic constraints and technical challenges encountered during shuttle development in the 1970s and over thirty years of shuttle missions. An overview of rendezvous and proximity operations on many shuttle missions is provided, as well as how some shuttle rendezvous and proximity operations systems and flight techniques evolved to meet new programmatic objectives. This revised edition provides additional information on Mercury, Gemini, Apollo, Skylab, and Apollo/Soyuz. Some chapters on the Space Shuttle have been updated and expanded. Four special focus chapters have been added to provide more detailed information on shuttle rendezvous. A chapter on the STS-39 mission of April/May 1991 describes the most complex deploy/retrieve mission flown by the shuttle. Another chapter focuses on the Hubble Space Telescope servicing missions. A third chapter gives the reader a detailed look at the February 2010 STS-130 mission to the International Space Station. The fourth chapter answers the question why rendezvous was not completely automated on the Gemini, Apollo, and Space Shuttle vehicles.

  1. Rendezvousing at Familiar and Unfamiliar Places

    NASA Astrophysics Data System (ADS)

    Colbert, Martin

    2004-09-01

    This paper reports a diary study of rendezvousing as performed by university students. The study compares students' performance when meeting at familiar and unfamiliar rendezvous points. It reports various findings that help to set goals for the development of personal navigation and related services at appropriate levels. For example, when meeting at novel rendezvous points, students: (i) fail to meet as initially agreed more frequently; (ii) report more stress and lost opportunity as a result of rendezvousing problems; (iii) change plan during the rendezvous more often; (iv) communicate more about the rendezvous, particularly using text messaging; (v) attribute rendezvousing problems to lack of geographic and travel information more often, and to additional, spontaneous tasks such as ‘popping to the bank’ less often. Meetings at novel rendezvous points are also more likely to include acquaintances and strangers.

  2. 40. THIS TUMBLING MILL IN THE GREY IRON FOUNDRY IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. THIS TUMBLING MILL IN THE GREY IRON FOUNDRY IS USED TO TUMBLE CASTINGS OVER EACH OTHER TO BREAK OFF RUNNERS AND SPRUES. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  3. Nutation damping in viscoelastic tumbling rotators

    NASA Astrophysics Data System (ADS)

    Frouard, Julien; Efroimsky, Michael

    2015-11-01

    Presently, 138 asteroids show signs of being in non-principal spin states (Warner et al. 2009, updated September 2015). Such spin is often called `tumble' or `wobble'. The instantaneous rotation axis of a wobbling body performs nutation about the direction of the (conserved) angular-momentum vector. Incited by collisions and YORP, wobble is mitigated by internal dissipation due to the nutation-caused alternating stresses inside the asteroid.The knowledge of the timescale related to the damping of the nutation angle is complementary to the knowledge of the timescales associated with collisions and YORP. Previous evaluations of the nutation relaxation rate were based on an inherently inconsistent approach that may be called "Q-model". First, the elastic energy in a periodically deforming rotator was calculated in assumption of the deformation being elastic. Therefrom, the energy dissipation rate was determined by introducing an ad hoc quality factor Q. This ignored the fact that friction (and the ensuing existence of Q) is due to deviation from elasticity.We use the viscoelastic Maxwell model which naturally implies dissipation (as any other viscoelastic model would). In this approach, we compute the power and damping time for an oblate ellipsoid and a prism. Now, the viscosity assumes the role of the product μQ in the empirical Q-model, with μ being the rigidity. Contrarily to the Q-model, our model naturally gives a null dissipation for a shape tending to a sphere. We also explore when the constant part of the stress can be ignored in the derivation of the damping time. The neglect of prestressing turns out to be legitimate for the mean viscosity exceeding a certain threshold value.

  4. Tumble-mix anaerobic digestion of dry beef manure

    SciTech Connect

    Kottwitz, D.; Schulte, D.D.

    1982-12-01

    Anaerobic digestion of beef manure at an influent total solids concentration of 26% was demonstrated using an innovative tumble-mix fermenter. At an organic loading rate of 4.7 kg VS m-/sup 3/ d-/sup 1/ and a 23% VS influent concentration, a 54% volatile solids reduction was achieved. The average biogas production was 1.37 m/sup 3/ m-/sup 3/ d-/sup 1/ with a gas quality of 54% CH/sub 4/.

  5. Optical Measurements of Tumbling Rocket Bodies

    NASA Technical Reports Server (NTRS)

    Read, J.; Cowardin, H.; Liou, J.-C.

    2012-01-01

    A component of interest in the active debris removal (ADR) effort in low Earth orbit is spent rocket upper stages. Proximity operations for such missions require an understanding of the tumbling characteristics of these targets. This research was conducted to assist in laying the ground work for realistic ADR mission planning. To better understand the tumbling characteristics of these spent upper stages, the NASA Orbital Debris Program Office has acquired over 400 recorded lightcurves using telescopes located in Colorado and New Mexico. This effort focuses on a population of over 250 Russian SL-8 and SL-16 spent upper stages. The oldest of these have been in orbit for 45 years, and some have exhibited unplanned orbit changes up to 22 years after launch. This paper describes the techniques of how this optical data was acquired and summarizes the optical signatures for this population of targets, including categorization, tumbling period, and investigations into specific targets in which the optical signature changed dramatically over different time periods. Results from period analysis performed on these lightcurves are summarized.

  6. Autonomous spacecraft rendezvous and docking

    NASA Technical Reports Server (NTRS)

    Tietz, J. C.; Almand, B. J.

    1985-01-01

    A storyboard display is presented which summarizes work done recently in design and simulation of autonomous video rendezvous and docking systems for spacecraft. This display includes: photographs of the simulation hardware, plots of chase vehicle trajectories from simulations, pictures of the docking aid including image processing interpretations, and drawings of the control system strategy. Viewgraph-style sheets on the display bulletin board summarize the simulation objectives, benefits, special considerations, approach, and results.

  7. Autonomous spacecraft rendezvous and docking

    NASA Astrophysics Data System (ADS)

    Tietz, J. C.; Almand, B. J.

    A storyboard display is presented which summarizes work done recently in design and simulation of autonomous video rendezvous and docking systems for spacecraft. This display includes: photographs of the simulation hardware, plots of chase vehicle trajectories from simulations, pictures of the docking aid including image processing interpretations, and drawings of the control system strategy. Viewgraph-style sheets on the display bulletin board summarize the simulation objectives, benefits, special considerations, approach, and results.

  8. STS-134 Re-Rendezvous Design History

    NASA Technical Reports Server (NTRS)

    Stuit, Timothy D.

    2011-01-01

    In preparation to provide the capability for the Orion spacecraft to rendezvous with the International Space Station (ISS), a new suite of relative navigation sensors are in development and will be tested on one of the final Space Shuttle missions to ISS. The National Aeronautics and Space Administration (NASA) commissioned a flight test of prototypes of the instruments on STS-134, in order to test their performance in the space environment during the nominal rendezvous and docking, as well as a re-rendezvous dedicated to testing the prototype sensors following the undocking of the Space Shuttle Orbiter at the end of the mission. Unlike the initial rendezvous and docking, the re-rendezvous profile would replicate the newly designed Orion coelliptic approach trajectory, something never before attempted with the Shuttle Orbiter. Therefore, there were a number of new parameters that needed to be conceived of, designed, and tested for this re-rendezvous to make the flight test successful. And all of this work had to be integrated with the normal operations of the ISS and Shuttle and had to conform to the constraints of the mission and vehicles. The result of this work is a separation and re-rendezvous trajectory design that will prove not only the design of the relative navigation sensors for the Orion vehicle, but also will serve as a proof of concept for the Orion rendezvous trajectory itself. This document presents the analysis and decision making process involved in attaining the final STS-134 re-rendezvous design.

  9. Unsteady aerodynamics of fluttering and tumbling plates

    NASA Astrophysics Data System (ADS)

    Andersen, A.; Pesavento, U.; Wang, Z. Jane

    2005-10-01

    We investigate the aerodynamics of freely falling plates in a quasi-two-dimensional flow at Reynolds number of 10(3) , which is typical for a leaf or business card falling in air. We quantify the trajectories experimentally using high-speed digital video at sufficient resolution to determine the instantaneous plate accelerations and thus to deduce the instantaneous fluid forces. We compare the measurements with direct numerical solutions of the two-dimensional Navier Stokes equation. Using inviscid theory as a guide, we decompose the fluid forces into contributions due to acceleration, translation, and rotation of the plate. For both fluttering and tumbling we find that the fluid circulation is dominated by a rotational term proportional to the angular velocity of the plate, as opposed to the translational velocity for a glider with fixed angle of attack. We find that the torque on a freely falling plate is small, i.e. the torque is one to two orders of magnitude smaller than the torque on a glider with fixed angle of attack. Based on these results we revise the existing ODE models of freely falling plates. We get access to different kinds of dynamics by exploring the phase diagram spanned by the Reynolds number, the dimensionless moment of inertia, and the thickness-to-width ratio. In agreement with previous experiments, we find fluttering, tumbling, and apparently chaotic motion. We further investigate the dependence on initial conditions and find brief transients followed by periodic fluttering described by simple harmonics and tumbling with a pronounced period-two structure. Near the cusp-like turning points, the plates elevate, a feature which would be absent if the lift depended on the translational velocity alone.

  10. Optimised collision avoidance for an ultra-close rendezvous with a failed satellite based on the Gauss pseudospectral method

    NASA Astrophysics Data System (ADS)

    Chu, Xiaoyu; Zhang, Jingrui; Lu, Shan; Zhang, Yao; Sun, Yue

    2016-11-01

    This paper presents a trajectory planning algorithm to optimise the collision avoidance of a chasing spacecraft operating in an ultra-close proximity to a failed satellite. The complex configuration and the tumbling motion of the failed satellite are considered. The two-spacecraft rendezvous dynamics are formulated based on the target body frame, and the collision avoidance constraints are detailed, particularly concerning the uncertainties. An optimisation solution of the approaching problem is generated using the Gauss pseudospectral method. A closed-loop control is used to track the optimised trajectory. Numerical results are provided to demonstrate the effectiveness of the proposed algorithms.

  11. Orbital maneuvers and space rendezvous

    NASA Astrophysics Data System (ADS)

    Butikov, Eugene I.

    2015-12-01

    Several possibilities of launching a space vehicle from the orbital station are considered and compared. Orbital maneuvers discussed in the paper can be useful in designing a trajectory for a specific space mission. The relative motion of orbiting bodies is investigated on examples of spacecraft rendezvous with the space station that stays in a circular orbit around the Earth. An elementary approach is illustrated by an accompanying simulation computer program and supported by a mathematical treatment based on fundamental laws of physics and conservation laws. Material is appropriate for engineers and other personnel involved in space exploration, undergraduate and graduate students studying classical physics and orbital mechanics.

  12. Short rendezvous missions for advanced Russian human spacecraft

    NASA Astrophysics Data System (ADS)

    Murtazin, Rafail F.; Budylov, Sergey G.

    2010-10-01

    The two-day stay of crew in a limited inhabited volume of the Soyuz-TMA spacecraft till docking to ISS is one of the most stressful parts of space flight. In this paper a number of possible ways to reduce the duration of the free flight phase are considered. The duration is defined by phasing strategy that is necessary for reduction of the phase angle between the chaser and target spacecraft. Some short phasing strategies could be developed. The use of such strategies creates more comfortable flight conditions for crew thanks to short duration and additionally it allows saving spacecraft's life support resources. The transition from the methods of direct spacecraft rendezvous using one orbit phasing (first flights of " Vostok" and " Soyuz" vehicles) to the currently used methods of two-day rendezvous mission can be observed in the history of Soviet manned space program. For an advanced Russian human rated spacecraft the short phasing strategy is recommended, which can be considered as a combination between the direct and two-day rendezvous missions. The following state of the art technologies are assumed available: onboard accurate navigation; onboard computations of phasing maneuvers; launch vehicle with high accuracy injection orbit, etc. Some operational requirements and constraints for the strategies are briefly discussed. In order to provide acceptable phase angles for possible launch dates the experience of the ISS altitude profile control can be used. As examples of the short phasing strategies, the following rendezvous missions are considered: direct ascent, short mission with the phasing during 3-7 orbits depending on the launch date (nominal or backup). For each option statistical modeling of the rendezvous mission is fulfilled, as well as an admissible phase angle range, accuracy of target state vector and addition fuel consumption coming out of emergency is defined. In this paper an estimation of pros and cons of all options is conducted.

  13. Boom Rendezvous Alternative Docking Approach

    NASA Technical Reports Server (NTRS)

    Bonometti, Joseph A.

    2006-01-01

    Space rendezvous and docking has always been attempted with primarily one philosophic methodology. The slow matching of one vehicle's orbit by a second vehicle and then a final closing sequence that ends in matching the orbits with perfect precision and with near zero relative velocities. The task is time consuming, propellant intensive, risk inherent (plume impingement, collisions, fuel depletion, etc.) and requires substantial hardware mass. The historical background and rationale as to why this approach is used is discussed in terms of the path-not-taken and in light of an alternate methodology. Rendezvous and docking by boom extension is suggested to have inherent advantages that today s technology can readily exploit. Extension from the primary spacecraft, beyond its inherent large inertia, allows low inertia connections to be made rapidly and safely. Plume contamination issues are eliminated as well as the extra propellant mass and risk required for the final thruster (docking) operations. Space vehicle connection hardware can be significantly lightened. Also, docking sensors and controls require less fidelity; allowing them to be more robust and less sensitive. It is the potential safety advantage and mission risk reduction that makes this approach attractive, besides the prospect of nominal time and mass savings.

  14. 75 FR 44794 - Rendezvous International v.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ... From the Federal Register Online via the Government Publishing Office FEDERAL MARITIME COMMISSION Rendezvous International v. Chief Cargo Services, Inc., Kaiser Apparel, Inc., Edco Logistics, Inc., Oriental.... Karen V. Gregory, Secretary. BILLING CODE P...

  15. Contactless prompt tumbling rebound of drops from a sublimating slope

    NASA Astrophysics Data System (ADS)

    Antonini, Carlo; Jung, Stefan; Wetzel, Andreas; Heer, Emmanuel; Schoch, Philippe; Moqaddam, Ali Mazloomi; Chikatamarla, Shyam S.; Karlin, Ilya; Marengo, Marco; Poulikakos, Dimos

    2016-05-01

    We have uncovered a drop rebound regime, characteristic of highly viscous liquids impacting tilted sublimating surfaces. Here the drops, rather than showing a slide, spread, recoil, and rebound behavior, exhibit a prompt tumbling rebound. As a result, glycerol surprisingly rebounds faster than three orders of magnitude less viscous water. When a viscous drop impacts a sublimating surface, part of its initial linear momentum is converted into angular momentum: Lattice Boltzmann simulations confirmed that tumbling owes its appearance to the rapid transition of the internal angular velocity prior to rebound to a constant value, as in a tumbling solid body.

  16. Hubble Space Telescope Servicing Mission 3A Rendezvous Operations

    NASA Technical Reports Server (NTRS)

    Lee, S.; Anandakrishnan, S.; Connor, C.; Moy, E.; Smith, D.; Myslinski, M.; Markley, L.; Vernacchio, A.

    2001-01-01

    The Hubble Space Telescope (HST) hardware complement includes six gas bearing, pulse rebalanced rate integrating gyros, any three of which are sufficient to conduct the science mission. After the loss of three gyros between April 1997 and April 1999 due to a known corrosion mechanism, NASA decided to split the third HST servicing mission into SM3A, accelerated to October 1999, and SM3B, scheduled for November 2001. SM3A was developed as a quick turnaround 'Launch on Need' mission to replace all six gyros. Loss of a fourth gyro in November 1999 caused HST to enter Zero Gyro Sunpoint (ZGSP) safemode, which uses sun sensors and magnetometers for attitude determination and momentum bias to maintain attitude stability during orbit night. Several instances of large attitude excursions during orbit night were observed, but ZGSP performance was adequate to provide power-positive sun pointing and to support low gain antenna communications. Body rates in ZGSP were estimated to exceed the nominal 0.1 deg/sec rendezvous limit, so rendezvous operations were restructured to utilize coarse, limited life, Retrieval Mode Gyros (RMGs) under Hardware Sunpoint (HWSP) safemode. Contingency procedures were developed to conduct the rendezvous in ZGSP in the event of RMGA or HWSP computer failure. Space Shuttle Mission STS-103 launched on December 19, 1999 after a series of weather and Shuttle-related delays. After successful rendezvous and grapple under HWSP/RMGA, the crew changed out all six gyros. Following deploy and systems checkout, HST returned to full science operations.

  17. Tumbling and quasi-tumbling motions of E.coli over a solid surface under shear flows

    NASA Astrophysics Data System (ADS)

    Molaei, Mehdi; Sheng, Jian

    2015-11-01

    Flow shear is known to alter bacterial motility by inducing Jeffery Orbit, rheotaxis, and trapping cells in the high shear region. Over a solid surface flow shear Interferes with hydrodynamic interaction of cells with solid surface. Our previous study shows that in the quiescent condition the tumbles of wild E.coli are suppressed and tumbling reorientation of cells is restricted to the surface parallel direction. In the current study, we exposed bacteria to the well controlled shear flows inside a microchannel and applying Digital Holography Microscopy to track them over time. The results show that flow shear promotes tumbling of E.coli and preserve reorientation of the cells during tumbles. Our hydrodynamic model indicates that in the low shear levels the tumble enhancement is due to shear induced flagella unbundling, while in the high shear flow regime, Jeffery Orbit causes rapid cell re-orientation which causes quasi-tumbles with similar angular displacement one would expect during a tumbling. NIH, GoMRI.

  18. Credit PSR. This interior view shows the vacuum tumble dryer. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. This interior view shows the vacuum tumble dryer. The tumble dryer is lined with a water jacket to maintain temperature during the drying of ammonium perchlorate ("AP"); water enters and exits the dryer jacket through the pipe fittings along the horizontal center line of the dryer. The wall at the right is constructed to blow out in the event of an explosion - Jet Propulsion Laboratory Edwards Facility, Oxidizer Dryer Building, Edwards Air Force Base, Boron, Kern County, CA

  19. The Rendezvous Monitoring Display Capabilities of the Rendezvous and Proximity Operations Program

    NASA Technical Reports Server (NTRS)

    Brazzel, Jack; Spehar, Pete; Clark, Fred; Foster, Chris; Eldridge, Erin

    2013-01-01

    The Rendezvous and Proximity Operations Program (RPOP) is a laptop computer- based relative navigation tool and piloting aid that was developed during the Space Shuttle program. RPOP displays a graphical representation of the relative motion between the target and chaser vehicles in a rendezvous, proximity operations and capture scenario. After being used in over 60 Shuttle rendezvous missions, some of the RPOP display concepts have become recognized as a minimum standard for cockpit displays for monitoring the rendezvous task. To support International Space Station (ISS) based crews in monitoring incoming visiting vehicles, RPOP has been modified to allow crews to compare the Cygnus visiting vehicle s onboard navigated state to processed range measurements from an ISS-based, crew-operated Hand Held Lidar sensor. This paper will discuss the display concepts of RPOP that have proven useful in performing and monitoring rendezvous and proximity operations.

  20. Near-Earth Asteroid Rendezvous: mission overview

    NASA Astrophysics Data System (ADS)

    Cheng, A. F.; Santo, A. G.; Heeres, K. J.; Landshof, J. A.; Farquhar, R. W.; Gold, R. E.; Lee, S. C.

    1997-10-01

    The Near-Earth Asteroid Rendezvous (NEAR) mission, the first launch of NASA's Discovery Program, will be the first mission to orbit an asteroid. NEAR will make the first comprehensive scientific measurements of an asteroid's surface composition, geology, physical properties, and internal structure. NEAR launched successfully on February 17, 1996, aboard a Delta II-7925. It will orbit the 20-km-diameter near-Earth asteroid 433 Eros for about 1 year, at a minimum orbit radius of about 35 km from the center of the asteroid. The NEAR is a solar-powered, three-axis stabilized spacecraft with a launch mass including propellant of 805 kg. NEAR uses X band telemetry to the NASA Deep Space Network, with the data rates at Eros up to 8.8 kbits/s using a 34-m High Efficiency (HEF) dish, and up to 26.5 kbits/s using a 70-m dish. A solid-state recorder is accommodated with a memory capacity of 1.8 Gbytes. Attitude control is to 1.7 mrad, line-of-sight pointing stability is within 50 μrad over 1 s, and post processing attitude knowledge is within 50 μrad. NEAR accommodates 56 kg of instruments and provides them with 84 W. The instruments are a multispectral imager (MSI), a near-infrared spectrograph (NIS), an X ray/gamma ray spectrometer (XRS/GRS), a magnetometer (MAG), and a laser rangefinder (NLR), while a radio science (RS) investigation uses the coherent X band transponder. NEAR will make a flyby of the C-type asteroid 253 Mathilde in June 1997 and will rendezvous with 433 Eros in February 1999. It will execute an initial slow flyby of Eros, with a flyby speed of 5 m/s and a closest approach distance of 500 km. Subsequently, its orbit will be lowered to 35 km. The NEAR Mission Operations Center and the Science Data Center are at the Johns Hopkins Applied Physics Laboratory. The Science Data Center will maintain the entire NEAR data set on-line, and data from all instruments can be accessed by every member of the NEAR Science Team. Data, including images, are released over

  1. Tumbling in Turbulence: How much does particle shape effect particle motion?

    NASA Astrophysics Data System (ADS)

    Variano, E. A.; Andersson, H. I.; Zhao, L.; Byron, M.

    2014-12-01

    Natural particles suspended in surface water are often non-spherical. We explore the ways in which particle shape effects particle motion, focusing specifically on how particle rotation is divided into spinning and tumbling components. This, in turn, will effect particle collision, clustering, and settling rates. We focus on idealized axisymmetric particles shaped as rods, discs, and spheroids. They are chosen so as to explain the physics of aspherical-particle motion that will be relevant for natural particles such as plankton, sediment, or aggregates (e.g. oil-mineral aggregates, clay flocs, or bio-sediment aggregates held together by TEP). Our work begins with laboratory measurements of particle motion in a turbulence tank built to mimic the flow found in rivers, estuaries, and the ocean surface mixed layer. We then proceed to direct numerical simulation of particle-flow interactions in sheared turbulence similar to that which is found in the surface water of creeks and rivers. We find that shape has only a very weak effect on particle angular velocity, which is a quantity calculated with respect the global reference frame (i.e. east/north/up). If we analyze rotation in a particle's local frame (i.e. the particle's principle axes of rotation), then particle shape has a strong effect on rotation. In the local frame, rotation is described by two components: tumbling and spinning. We find that rod-shaped particles spin more than they tumble, and we find that disc-shaped particles tumble more than they spin. Such behavior is indicative of how particles respond the the directional influence of vortex tubes in turbulence, and such response has implications for particle motion other than rotation. Understanding particle alignment is relevant for predicting particle-particle collision rates, particle-wall collision rates, and the shear-driven breakup of aggregates. We discuss these briefly in the context of what can be concluded from the rotation data discussed above.

  2. A plan for spacecraft automated rendezvous

    NASA Technical Reports Server (NTRS)

    Deaton, A. W.; Lomas, J. J.; Mullins, L. D.

    1992-01-01

    An automated rendezvous approach has been developed that utilizes advances in technology to reduce real-time/near real-time flight operations support personnel to an acceptable level that is near the minimum without jeopardizing the success of the mission. The on-board flight targeting uses a rule-based system to select the pursuit vehicle phasing orbits and uses precise navigation updates from the pursuit/target spacecraft made possible by the global positioning system receivers/processors on both spacecraft to adjust the phasing orbits and achieve rendezvous. The ascent-to-orbit targeting for the pursuit vehicle has been successfully decoupled from the on-orbit orbit transfer phasing targeting. Typical launch window data have been developed for the heavy lift launch vehicle and cargo transfer vehicle for a Space Station Freedom rendezvous mission.

  3. Multiple exposure of Rendezvous Docking Simulator

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Multiple exposure of Rendezvous Docking Simulator. Francis B. Smith, described the simmulator as follows: 'The rendezvous and docking operation of the Gemini spacecraft with the Agena and of the Apollo Command Module with the Lunar Excursion Module have been the subject of simulator studies for several years. [This figure] illustrates the Gemini-Agena rendezvous docking simulator at Langley. The Gemini spacecraft was supported in a gimbal system by an overhead crane and gantry arrangement which provided 6 degrees of freedom - roll, pitch, yaw, and translation in any direction - all controllable by the astronaut in the spacecraft. Here again the controls fed into a computer which in turn provided an input to the servos driving the spacecraft so that it responded to control motions in a manner which accurately simulated the Gemini spacecraft.'

  4. Rendezvous radar for the orbital maneuvering vehicle

    NASA Technical Reports Server (NTRS)

    Locke, John W.; Olds, Keith A.; Quaid, Thomas

    1991-01-01

    The Rendezvous Radar Set (RRS) was designed at Motorola's Strategic Electronics Division in Chandler, Arizona, to be a key subsystem aboard NASA's Orbital Maneuvering Vehicle (OMV). The unmanned OMV, which was under development at TRW's Federal Systems Division in Redondo Beach, California, was designed to supplement the Shuttle's satellite delivery, retrieval, and maneuvering activities. The RRS was to be used to locate and then provide the OMV with vectoring information to the target satellite (or Shuttle or Space Station) to aid the OMV in making a minimum fuel consumption approach and rendezvous. The OMV development program was halted by NASA in 1990 just as parts were being ordered for the RRS engineering model. The paper presented describes the RRS design and then discusses new technologies, either under development or planned for development at Motorola, that can be applied to radar or alternative sensor solutions for the Automated Rendezvous and Capture problem.

  5. Development of an autonomous video rendezvous and docking system, phase 3

    NASA Technical Reports Server (NTRS)

    Tietz, J. C.

    1984-01-01

    Field-of-view limitations proved troublesome. Higher resolution was required. Side thrusters were too weak. The strategy logic was improved and the Kalman filter was augmented to estimate target attitude and tumble rate. Two separate filters were used. The new filter estimates target attitude and angular momentum. The Newton-Raphson iteration improves image interpretation.

  6. Impact of the Intracoronary Rendezvous technique on coronary angioplasty for chronic total occlusion.

    PubMed

    Nihei, Taro; Yamamoto, Yoshito; Kudo, Shun; Hanawa, Kenichiro; Hasebe, Yuhi; Takagi, Yusuke; Minatoya, Yutaka; Sugi, Masafumi; Shimokawa, Hiroaki

    2016-08-30

    The Rendezvous technique, which requires bidirectional wiring, is one of the useful methods for improving the success rate of recanalization for chronic total occlusion (CTO) in the field of peripheral intervention. Recently, advanced new devices for percutaneous coronary intervention have enabled us to perform the Rendezvous technique for peripheral as well as for coronary CTO lesions. We used the Intracoronary Rendezvous technique to perform angioplasty for coronary CTO. "Intracoronary Rendezvous" means that Rendezvous was achieved within the CTO lesion. From March 2009 to November 2015, 189 patients underwent CTO angioplasty at our institute, and we treated 10 patients with the Intracoronary Rendezvous technique. This technique involves crossing the Gaia series guidewire to the contralateral Corsair microcatheter located inside the plaque of CTO lesions. The majority of the CTO sites examined were in the proximal RCA (60 %). Lesion length of the occlusion was relatively long (64.4 ± 12.2 mm). Using the biplane imaging system, we were able to control the Gaia guidewires in a specific direction. Furthermore, if the antegrade and retrograde wires can be advanced into contiguous space inside the CTO lesion, we intentionally entered either wire into the contralateral Corsair microcatheter, followed by successful CTO crossing. CTO recanalization was completed for all patients without controlled antegrade retrograde subintimal tracking (CART) or reverse CART. No major complications occurred during hospitalization. These results indicate that the Rendezvous technique, assisted by new devices and a biplane imaging system, represents one of the primary options to achieve successful coronary CTO recanalization. (249/250 words).

  7. On-Board Rendezvous Targeting for Orion

    NASA Technical Reports Server (NTRS)

    Weeks, Michael W.; DSouza, Christopher N.

    2010-01-01

    The Orion On-board GNC system is among the most complex ever developed for a space mission. It is designed to operate autonomously (independent of the ground). The rendezvous system in particular was designed to operate on the far side of the moon, and in the case of loss-of-communications with the ground. The vehicle GNC system is designed to retarget the rendezvous maneuvers, given a mission plan. As such, all the maneuvers which will be performed by Orion, have been designed and are being incorporated into the flight code.

  8. Study of a comet rendezvous mission. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Appendices to the comet Encke rendezvous mission consider relative positions of comet, earth and sun; viewing condition for Encke; detection of Taurid meteor streams; ephemeris of comet Encke; microwave and optical techniques in rendezvous mission; approach instruments; electrostatic equilibrium of ion engine spacecraft; comet flyby data for rendezvous spacecraft assembly; observations of P/Encke extracted from a compilation; and summary of technical innovations.

  9. Ion propulsion and Comet Halley rendezvous

    NASA Technical Reports Server (NTRS)

    Atkins, K. L.

    1979-01-01

    Cometary rendezvous missions using ion propulsion is considered. The characteristics of the ion engine are discussed including the fuel efficiency and acceleration, and the design of the ion engine is described. The operation of the ion drive engine and an overview of its applications are presented.

  10. Multiple NEO Rendezvous Using Solar Sail Propulsion

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alexander, Leslie; Fabisinski, Leo; Heaton, Andy; Miernik, Janie; Stough, Rob; Wright, Roosevelt; Young, Roy

    2012-01-01

    The NASA Marshall Space Flight Center (MSFC) Advanced Concepts Office performed an assessment of the feasibility of using a near-term solar sail propulsion system to enable a single spacecraft to perform serial rendezvous operations at multiple Near Earth Objects (NEOs) within six years of launch on a small-to-moderate launch vehicle. The study baselined the use of the sail technology demonstrated in the mid-2000 s by the NASA In-Space Propulsion Technology Project and is scheduled to be demonstrated in space by 2014 as part of the NASA Technology Demonstration Mission Program. The study ground rules required that the solar sail be the only new technology on the flight; all other spacecraft systems and instruments must have had previous space test and qualification. The resulting mission concept uses an 80-m X 80-m 3-axis stabilized solar sail launched by an Athena-II rocket in 2017 to rendezvous with 1999 AO10, Apophis and 2001 QJ142. In each rendezvous, the spacecraft will perform proximity operations for approximately 30 days. The spacecraft science payload is simple and lightweight; it will consist of only the multispectral imager flown on the Near Earth Asteroid Rendezvous (NEAR) mission to 433 Eros and 253 Mathilde. Most non-sail spacecraft systems are based on the Messenger mission spacecraft. This paper will describe the objectives of the proposed mission, the solar sail technology to be employed, the spacecraft system and subsystems, as well as the overall mission profile.

  11. Optical Signature Analysis of Tumbling Rocket Bodies via Laboratory Measurements

    NASA Technical Reports Server (NTRS)

    Cowardin, H.; Lederer, S.; Liou, J.-C.

    2012-01-01

    The NASA Orbital Debris Program Office has acquired telescopic lightcurve data on massive intact objects, specifically spent rocket bodies, in order to ascertain tumble rates in support of the Active Debris Removal (ADR) task to help remediate the LEO environment. Rotation rates are needed to plan and develop proximity operations for potential future ADR operations. To better characterize and model optical data acquired from ground-based telescopes, the Optical Measurements Center (OMC) at NASA/JSC emulates illumination conditions in space using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The OMC employs a 75-watt Xenon arc lamp as a solar simulator, an SBIG CCD camera with standard Johnson/Bessel filters, and a robotic arm to simulate an object's position and rotation. The light source is mounted on a rotary arm, allowing access any phase angle between 0 -- 360 degrees. The OMC does not attempt to replicate the rotation rates, but focuses on how an object is rotating as seen from multiple phase angles. The two targets studied are scaled (1:48), SL-8 Cosmos 3M second stages. The first target is painted in the standard government "gray" scheme and the second target is primary white, as used for commercial missions. This paper summarizes results of the two scaled rocket bodies, each rotated about two primary axes: (a) a spin-stabilized rotation and (b) an end-over-end rotation. The two rotation states are being investigated as a basis for possible spin states of rocket bodies, beginning with simple spin states about the two primary axes. The data will be used to create a database of potential spin states for future works to convolve with more complex spin states. The optical signatures will be presented for specific phase angles for each rocket body and shown in conjunction with acquired optical data from multiple telescope sources.

  12. Designing the STS-134 Re-Rendezvous: A Preparation for Future Crewed Rendezvous Missions

    NASA Technical Reports Server (NTRS)

    Stuit, Timothy D.

    2011-01-01

    In preparation to provide the capability for the Orion spacecraft, also known as the Multi-Purpose Crew Vehicle (MPCV), to rendezvous with the International Space Station (ISS) and future spacecraft, a new suite of relative navigation sensors are in development and were tested on one of the final Space Shuttle missions to ISS. The National Aeronautics and Space Administration (NASA) commissioned a flight test of prototypes of the Orion relative navigation sensors on STS-134, in order to test their performance in the space environment during the nominal rendezvous and docking, as well as a re-rendezvous dedicated to testing the prototype sensors following the undocking of the Space Shuttle orbiter at the end of the mission. Unlike the rendezvous and docking at the beginning of the mission, the re-rendezvous profile replicates the newly designed Orion coelliptic approach trajectory, something never before attempted with the shuttle orbiter. Therefore, there were a number of new parameters that needed to be conceived of, designed, and tested for this rerendezvous to make the flight test successful. Additionally, all of this work had to be integrated with the normal operations of the ISS and shuttle and had to conform to the constraints of the mission and vehicles. The result of this work is a separation and rerendezvous trajectory design that would not only prove the design of the relative navigation sensors for the Orion vehicle, but also would serve as a proof of concept for the Orion rendezvous trajectory itself. This document presents the analysis and decision making process involved in attaining the final STS-134 re-rendezvous design.

  13. Running and tumbling with E. coli in polymeric solutions

    NASA Astrophysics Data System (ADS)

    Patteson, A. E.; Gopinath, A.; Goulian, M.; Arratia, P. E.

    2015-10-01

    Run-and-tumble motility is widely used by swimming microorganisms including numerous prokaryotic and eukaryotic organisms. Here, we experimentally investigate the run-and-tumble dynamics of the bacterium E. coli in polymeric solutions. We find that even small amounts of polymer in solution can drastically change E. coli dynamics: cells tumble less and their velocity increases, leading to an enhancement in cell translational diffusion and a sharp decline in rotational diffusion. We show that suppression of tumbling is due to fluid viscosity while the enhancement in swimming speed is mainly due to fluid elasticity. Visualization of single fluorescently labeled DNA polymers reveals that the flow generated by individual E. coli is sufficiently strong to stretch polymer molecules and induce elastic stresses in the fluid, which in turn can act on the cell in such a way to enhance its transport. Our results show that the transport and spread of chemotactic cells can be independently modified and controlled by the fluid material properties.

  14. Running and tumbling with E. coli in polymeric solutions

    PubMed Central

    Patteson, A. E.; Gopinath, A.; Goulian, M.; Arratia, P. E.

    2015-01-01

    Run-and-tumble motility is widely used by swimming microorganisms including numerous prokaryotic and eukaryotic organisms. Here, we experimentally investigate the run-and-tumble dynamics of the bacterium E. coli in polymeric solutions. We find that even small amounts of polymer in solution can drastically change E. coli dynamics: cells tumble less and their velocity increases, leading to an enhancement in cell translational diffusion and a sharp decline in rotational diffusion. We show that suppression of tumbling is due to fluid viscosity while the enhancement in swimming speed is mainly due to fluid elasticity. Visualization of single fluorescently labeled DNA polymers reveals that the flow generated by individual E. coli is sufficiently strong to stretch polymer molecules and induce elastic stresses in the fluid, which in turn can act on the cell in such a way to enhance its transport. Our results show that the transport and spread of chemotactic cells can be independently modified and controlled by the fluid material properties. PMID:26507950

  15. The comet rendezvous asteroid flyby mission

    NASA Astrophysics Data System (ADS)

    Neugebauer, M.

    1987-09-01

    The Comet Rendezvous Asteroid Flyby Mission (CRAF) is described. After gravity assists from Venus and Earth, the spacecraft will fly by the asteroid 46 Hestia en route to a rendezvous with P/Tempel 2 in Nov. 1996, when the comet is near aphelion. The scientific experiments for the CRAF mission are: an imaging system; a visual and infrared mapping spectrometer; an infrared radiometer; a penetrator carrying a gamma-ray spectrometer, a scanning differential calorimeter and evolved gas analyzer, accelerometers, and temperature probes; a neutral gas and thermal ion mass spectrometer; a secondary ion mass spectrometer for analyzing dust, gas, and thermal ions; a scanning electron microscope and particle analyzer; an X-ray fluorescence and gas chromatographic analyzer for collected dust and ice samples; a dust counter and velocity analyzer; a retarding potential ion mass spectrometer; a supra-thermal ion mass spectrometer and electron analyzer; a magnetometer; and a coordinated radio, electron, and plasma wave analyzer.

  16. Tracking techniques for space shuttle rendezvous

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The space shuttle rendezvous radar has a requirement to track cooperative and non-cooperative targets. For this reason the Lunar Module (LM) Rendezvous Radar was modified to incorporate the capability of tracking a non-cooperative target. The modifications are discussed. All modifications except those relating to frequency diversity were completed, and system tests were performed to confirm proper performance in the non-cooperative mode. Frequency diversity was added to the radar and to the special test equipment, and then system tests were performed. This last set of tests included re-running the tests of the non-cooperative mode without frequency diversity, followed by tests with frequency diversity and tests of operation in the original cooperative mode.

  17. Laser space rendezvous and docking tradeoff

    NASA Technical Reports Server (NTRS)

    Adelman, S.; Levinson, S.; Raber, P.; Weindling, F.

    1974-01-01

    A spaceborne laser radar (LADAR) was configured to meet the requirements for rendezvous and docking with a cooperative object in synchronous orbit. The LADAR, configurated using existing pulsed CO2 laser technology and a 1980 system technology baseline, is well suited for the envisioned space tug missions. The performance of a family of candidate LADARS was analyzed. Tradeoff studies as a function of size, weight, and power consumption were carried out for maximum ranges of 50, 100, 200, and 300 nautical miles. The investigation supports the original contention that a rendezvous and docking LADAR can be constructed to offer a cost effective and reliable solution to the envisioned space missions. In fact, the CO2 ladar system offers distinct advantages over other candidate systems.

  18. Autonomous Rendezvous and Docking Conference, volume 3

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This document consists of the presentation submitted at the Autonomous Rendezvous and Docking (ARD) Conference. The document contains three volumes: ARD hardware technology; ARD software technology; and ARD operations. The purpose of this conference is to identify the technologies required for an on orbit demonstration of ARD, assess the maturity of these technologies, and provide the necessary insight for a quality assessment of programmatic management, technical, schedule, and cost risks.

  19. Autonomous Rendezvous and Docking Conference, volume 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This document consists of the presentation submitted at the Autonomous Rendezvous and Docking (ARD) Conference. It contains three volumes: ARD hardware technology; ARD software technology; and ARD operations. The purpose of this conference is to identify the technologies required for an on orbit demonstration of the ARD, assess the maturity of these technologies, and provide the necessary insight for a quality assessment of the programmatic management, technical, schedule, and cost risks.

  20. RENDEZVOUS ACCURACY OF THE OMEGA NAVIGATION SYSTEM.

    DTIC Science & Technology

    yards, with the time of day or environment having no apparent effect on the rendezvous errors. The Haiku -Summit pair showed a greater variation in...input amplitude was marginal. During this experiment the majority of the AGC readings were above this value for receptions from Haiku . The additional...electrical noise in the helicopter and an inadequate antenna combined with the already weak Haiku signal aided in making the Haiku -Summit readings marginal. (Author)

  1. Lunar Ascent and Rendezvous Trajectory Design

    NASA Technical Reports Server (NTRS)

    Sostaric, Ronald R.; Merriam, Robert S.

    2008-01-01

    The Lunar Lander Ascent Module (LLAM) will leave the lunar surface and actively rendezvous in lunar orbit with the Crew Exploration Vehicle (CEV). For initial LLAM vehicle sizing efforts, a nominal trajectory, along with required delta-V and a few key sensitivities, is very useful. A nominal lunar ascent and rendezvous trajectory is shown, along with rationale and discussion of the trajectory shaping. Also included are ascent delta-V sensitivities to changes in target orbit and design thrust-to-weight of the vehicle. A sample launch window for a particular launch site has been completed and is included. The launch window shows that budgeting enough delta-V for two missed launch opportunities may be reasonable. A comparison between yaw steering and on-orbit plane change maneuvers is included. The comparison shows that for large plane changes, which are potentially necessary for an anytime return from mid-latitude locations, an on-orbit maneuver is much more efficient than ascent yaw steering. For a planned return, small amounts of yaw steering may be necessary during ascent and must be accounted for in the ascent delta-V budget. The delta-V cost of ascent yaw steering is shown, along with sensitivity to launch site latitude. Some discussion of off-nominal scenarios is also included. In particular, in the case of a failed Powered Descent Initiation burn, the requirements for subsequent rendezvous with the Orion vehicle are outlined.

  2. Multiple exposure of Rendezvous Docking Simulator

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Multiple exposure of Rendezvous Docking Simulator. Francis B. Smith, described the simulator as follows: 'The rendezvous and docking operation of the Gemini spacecraft with the Agena and of the Apollo Command Module with the Lunar Excursion Module have been the subject of simulator studies for several years. [This figure] illustrates the Gemini-Agena rendezvous docking simulator at Langley. The Gemini spacecraft was supported in a gimbal system by an overhead crane and gantry arrangement which provided 6 degrees of freedom - roll, pitch, yaw, and translation in any direction - all controllable by the astronaut in the spacecraft. Here again the controls fed into a computer which in turn provided an input to the servos driving the spacecraft so that it responded to control motions in a manner which accurately simulated the Gemini spacecraft.' Published in Barton C. Hacker and James M. Grimwood, On the Shoulders of Titans: A History of Project Gemini, NASA SP-4203; Francis B. Smith, 'Simulators for Manned Space Research,' Paper presented at the 1966 IEEE International convention, March 21-25, 1966.

  3. Hyperbolic Rendezvous at Mars: Risk Assessments and Mitigation Strategies

    NASA Technical Reports Server (NTRS)

    Jedrey, Ricky; Landau, Damon; Whitley, Ryan

    2015-01-01

    Given the current interest in the use of flyby trajectories for human Mars exploration, a key requirement is the capability to execute hyperbolic rendezvous. Hyperbolic rendezvous is used to transport crew from a Mars centered orbit, to a transiting Earth bound habitat that does a flyby. Representative cases are taken from future potential missions of this type, and a thorough sensitivity analysis of the hyperbolic rendezvous phase is performed. This includes early engine cutoff, missed burn times, and burn misalignment. A finite burn engine model is applied that assumes the hyperbolic rendezvous phase is done with at least two burns.

  4. Rendezvous radar requirements analysis for mission 3B

    NASA Technical Reports Server (NTRS)

    Hutchison, W. L.; Jones, A. K.

    1975-01-01

    Data are presented verifying the compatibility of currently proposed rendezvous radar measurement accuracies with Mission 3B rendezvous requirements. In addition, data presented indicate a potential for increasing the acceptable time lag between termination of thrusting and availability of accurate measurement data. Additional investigation is recommended to define any acceptable time lag above the current proposed value. Finally, Mission 3B rendezvous performance is shown to be sensitive to variations in the relative downrange position dispersions at insertion. It is therefore recommended that insertion relative state dispersions used in studies of 3B rendezvous be reviewed when results of 3B ascent dispersion studies are available.

  5. Orion Handling Qualities During ISS Rendezvous and Docking

    NASA Technical Reports Server (NTRS)

    Hart, Jeremy J.; Stephens, J. P.; Spehar, P.; Bilimoria, K.; Foster, C.; Gonzalex, R.; Sullivan, K.; Jackson, B.; Brazzel, J.; Hart, J.

    2011-01-01

    The Orion spacecraft was designed to rendezvous with multiple vehicles in low earth orbit (LEO) and beyond. To perform the required rendezvous and docking task, Orion must provide enough control authority to perform coarse translational maneuvers while maintaining precision to perform the delicate docking corrections. While Orion has autonomous docking capabilities, it is expected that final approach and docking operations with the International Space Station (ISS) will initially be performed in a manual mode. A series of evaluations was conducted by NASA and Lockheed Martin at the Johnson Space Center to determine the handling qualities (HQ) of the Orion spacecraft during different docking and rendezvous conditions using the Cooper-Harper scale. This paper will address the specifics of the handling qualities methodology, vehicle configuration, scenarios flown, data collection tools, and subject ratings and comments. The initial Orion HQ assessment examined Orion docking to the ISS. This scenario demonstrates the Translational Hand Controller (THC) handling qualities of Orion. During this initial assessment, two different scenarios were evaluated. The first was a nominal docking approach to a stable ISS, with Orion initializing with relative position dispersions and a closing rate of approximately 0.1 ft/sec. The second docking scenario was identical to the first, except the attitude motion of the ISS was modeled to simulate a stress case ( 1 degree deadband per axis and 0.01 deg/sec rate deadband per axis). For both scenarios, subjects started each run on final approach at a docking port-to-port range of 20 ft. Subjects used the THC in pulse mode with cues from the docking camera image, window views, and range and range rate data displayed on the Orion display units. As in the actual design, the attitude of the Orion vehicle was held by the automated flight control system at 0.5 degree deadband per axis. Several error sources were modeled including Reaction

  6. KU-Band rendezvous radar performance computer simulation model

    NASA Technical Reports Server (NTRS)

    Griffin, J. W.

    1980-01-01

    The preparation of a real time computer simulation model of the KU band rendezvous radar to be integrated into the shuttle mission simulator (SMS), the shuttle engineering simulator (SES), and the shuttle avionics integration laboratory (SAIL) simulator is described. To meet crew training requirements a radar tracking performance model, and a target modeling method were developed. The parent simulation/radar simulation interface requirements, and the method selected to model target scattering properties, including an application of this method to the SPAS spacecraft are described. The radar search and acquisition mode performance model and the radar track mode signal processor model are examined and analyzed. The angle, angle rate, range, and range rate tracking loops are also discussed.

  7. Autonomous Rendezvous and Docking Conference, volume 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Autonomous Rendezvous and Docking (ARD) will be a requirement for future space programs. Clear examples include satellite servicing, repair, recovery, and reboost in the near term, and the longer range lunar and planetary exploration programs. ARD will permit more aggressive unmanned space activities, while providing a valuable operational capability for manned missions. The purpose of the conference is to identify the technologies required for an on-orbit demonstration of ARD, assess the maturity of those technologies, and provide the necessary insight for a quality assessment of programmatic management, technical, schedule, and cost risks.

  8. Development of Ku-band rendezvous radar tracking and acquisition simulation programs

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The fidelity of the Space Shuttle Radar tracking simulation model was improved. The data from the Shuttle Orbiter Radar Test and Evaluation (SORTE) program experiments performed at the White Sands Missile Range (WSMR) were reviewed and analyzed. The selected flight rendezvous radar data was evaluated. Problems with the Inertial Line-of-Sight (ILOS) angle rate tracker were evaluated using the improved fidelity angle rate tracker simulation model.

  9. Radar Performance Improvement. Angle Tracking Modification to Fire Control Radar System for Space Shuttle Rendezvous

    NASA Technical Reports Server (NTRS)

    Little, G. R.

    1976-01-01

    The AN/APQ-153 fire control radar modified to provide angle tracking was evaluated for improved performance. The frequency agile modifications are discussed along with the range-rate improvement modifications, and the radar to computer interface. A parametric design and comparison of noncoherent and coherent radar systems are presented. It is shown that the shuttle rendezvous range and range-rate requirements can be made by a Ku-Band noncoherent pulse radar.

  10. Rendezvous radar for the orbital maneuvering vehicle

    NASA Technical Reports Server (NTRS)

    Locke, John W.; Olds, Keith; Parks, Howard

    1991-01-01

    This paper describes the development of the Rendezvous Radar Set (RRS) for the Orbital Maneuvering Vehicle (OMV) for the National Aeronautics and Space Administration (NASA). The RRS was to be used to locate, and then provide vectoring information to, target satellites (or Shuttle or Space Station) to aid the OMV in making a minimum-fuel-consumption approach and rendezvous. The RRS design is that of an X-Band, all solid-state, monopulse tracking, frequency hopping, pulse-Doppler radar system. The development of the radar was terminated when the OMV prime contract to TRW was terminated by NASA. At the time of the termination, the development was in the circuit design stage. The system design was virtually completed, the PDR had been held. The RRS design was based on Motorola's experiences, both in the design and production of radar systems for the US Army and in the design and production of hi-rel communications systems for NASA space programs. Experience in these fields was combined with the latest digital signal processor and micro-processor technology to design a light-weight, low-power, spaceborne radar. The antenna and antenna positioner (gimbals) technology developed for the RRS is now being used in the satellite-to-satellite communication link design for Motorola's Iridium telecommunications system.

  11. Concept definition study for recovery of tumbling satellites. Volume 1: Executive summary, study results

    NASA Technical Reports Server (NTRS)

    Cable, D. A.; Derocher, W. L., Jr.; Cathcart, J. A.; Keeley, M. G.; Madayev, L.; Nguyen, T. K.; Preese, J. R.

    1986-01-01

    The first assessment is made of the design requirements and conceptual definition of a front end kit to be transported on the currently defined Orbital Maneuvering Vehicle (OMV) and the Space Transportation System Shuttle Orbiter, to conduct remote, teleoperated recovery of disabled and noncontrollable, tumbling satellites. Previous studies did not quantify the dynamic characteristics of a tumbling satellite, nor did they appear to address the full spectrum of Tumbling Satellite Recovery systems requirements. Both of these aspects are investigated with useful results.

  12. Impulsive control for angular momentum management of tumbling spacecraft

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Shoji; Yamada, Katsuhiko

    2007-05-01

    We discuss an angular momentum control of a tumbling spacecraft. The proposed control method is to apply an impulse by a space robot arm, to measure and control the relative position and attitude between the target spacecraft, and then to apply another impulse until the rotational motion of the target spacecraft is well damped. A discrete controller is designed using the simplified equations of rotational motion through appropriate coordinate transformation. The stationary response under contact model uncertainty is investigated and stability condition is analytically derived. Numerical simulations are given to validate the proposed approach.

  13. Rendezvous missions with minimoons from L1

    NASA Astrophysics Data System (ADS)

    Chyba, M.; Haberkorn, T.; Patterson, G.

    2014-07-01

    We propose to present asteroid capture missions with the so-called minimoons. Minimoons are small asteroids that are temporarily captured objects on orbits in the Earth-Moon system. It has been suggested that, despite their small capture probability, at any time there are one or two meter diameter minimoons, and progressively greater numbers at smaller diameters. The minimoons orbits differ significantly from elliptical orbits which renders a rendezvous mission more challenging, however they offer many advantages for such missions that overcome this fact. First, they are already on geocentric orbits which results in short duration missions with low Delta-v, this translates in cost efficiency and low-risk targets. Second, beside their close proximity to Earth, an advantage is their small size since it provides us with the luxury to retrieve the entire asteroid and not only a sample of material. Accessing the interior structure of a near-Earth satellite in its morphological context is crucial to an in-depth analysis of the structure of the asteroid. Historically, 2006 RH120 is the only minimoon that has been detected but work is ongoing to determine which modifications to current observation facilities is necessary to provide detection algorithm capabilities. In the event that detection is successful, an efficient algorithm to produce a space mission to rendezvous with the detected minimoon is highly desirable to take advantage of this opportunity. This is the main focus of our work. For the design of the mission we propose the following. The spacecraft is first placed in hibernation on a Lissajoux orbit around the liberation point L1 of the Earth-Moon system. We focus on eight-shaped Lissajoux orbits to take advantage of the stability properties of their invariant manifolds for our transfers since the cost to minimize is the spacecraft fuel consumption. Once a minimoon has been detected we must choose a point on its orbit to rendezvous (in position and velocities

  14. Ion Drive multi-asteroid rendezvous trajectories

    NASA Technical Reports Server (NTRS)

    Bender, D. F.

    1977-01-01

    The general characteristics of multiasteroid rendezvous missions are examined, taking into account a use of an improved solar electric propulsion system, called Ion Drive. The improvements are related to the development of light-weight solar cells, extensions to high thruster power levels with high exhaust velocity, and the attachment of solar concentrators to increase the power available beyond 1.5 AU. Flight times on the order of 500-800 days are generally required. It is assumed that a stay time of about 60 days at each asteroid is adequate. Attention is given to launch and spacecraft parameters, the search technique, and multiasteroid tours involving Ceres and Vesta. It is found that at least four asteroids in the main belt, generally selected from those with known characteristics, may be reached on a single mission with a 100-kg separable probe landed on each one.

  15. Autonomous rendezvous and capture development infrastructure

    NASA Technical Reports Server (NTRS)

    Bryan, Thomas C.

    1991-01-01

    In the development of the technology for autonomous rendezvous and docking, key infrastructure capabilities must be used for effective and economical development. This need involves facility capabilities, both equipment and personnel, to devise, develop, qualify, and integrate ARD elements and subsystems into flight programs. One effective way of reducing technical risks in developing ARD technology is the use of the Low Earth Orbit test facility. Using a reusable free-flying testbed carried in the Shuttle, as a technology demonstration test flight, can be structured to include a variety of sensors, control schemes, and operational approaches. This testbed and flight demonstration concept will be used to illustrate how technologies and facilities at MSFC can be used to develop and prove an ARD system.

  16. Autonomous rendezvous and capture development infrastructure

    NASA Technical Reports Server (NTRS)

    Bryan, Thomas C.; Roe, Fred; Coker, Cindy; Nelson, Pam; Johnson, B.

    1991-01-01

    In the development of the technology for autonomous rendezvous and docking, key infrastructure capabilities must be used for effective and economical development. This involves facility capabilities, both equipment and personnel, to devise, develop, qualify, and integrate ARD elements and subsystems into flight programs. One effective way of reducing technical risks in developing ARD technology is the use of the ultimate test facility, using a Shuttle-based reusable free-flying testbed to perform a Technology Demonstration Test Flight which can be structured to include a variety of additional sensors, control schemes, and operational approaches. This conceptual testbed and flight demonstration will be used to illustrate how technologies and facilities at MSFC can be used to develop and prove an ARD system.

  17. Pathfinder autonomous rendezvous and docking project

    NASA Technical Reports Server (NTRS)

    Lamkin, Stephen (Editor); Mccandless, Wayne (Editor)

    1990-01-01

    Capabilities are being developed and demonstrated to support manned and unmanned vehicle operations in lunar and planetary orbits. In this initial phase, primary emphasis is placed on definition of the system requirements for candidate Pathfinder mission applications and correlation of these system-level requirements with specific requirements. The FY-89 activities detailed are best characterized as foundation building. The majority of the efforts were dedicated to assessing the current state of the art, identifying desired elaborations and expansions to this level of development and charting a course that will realize the desired objectives in the future. Efforts are detailed across all work packages in developing those requirements and tools needed to test, refine, and validate basic autonomous rendezvous and docking elements.

  18. Electric sail option for cometary rendezvous

    NASA Astrophysics Data System (ADS)

    Quarta, Alessandro A.; Mengali, Giovanni; Janhunen, Pekka

    2016-10-01

    The recent successes of the European Rosetta mission have shown the possibility of a close observation with one of the most evasive celestial bodies in the Solar System, the comets, and the practical feasibility of a comet rendezvous to obtain detailed information and in situ measurements. This paper discusses a preliminary study of the transfer trajectory toward the comet 67P/Churyumov-Gerasimenko (the same target used by Rosetta) for a spacecraft whose primary propulsion system is an electric solar wind sail. The use of a propellantless propulsion system with a continuous thrust is theoretically able to simplify the transfer trajectory by avoiding the need of intermediate flyby maneuvers. The problem is addressed in a parametric way, by looking for the possible optimal launch windows as a function of the propulsion system performance. The study is completed by a mass breakdown analysis of the spacecraft, for some mission scenarios of practical interest, based on the actual payload mass of the spacecraft Rosetta.

  19. Automated Rendezvous and Capture in Space: A Technology Assessment

    NASA Technical Reports Server (NTRS)

    Polites, Michael E.

    1998-01-01

    This paper presents the results of a study to assess the technology of automated rendezvous and capture (AR&C) in space. The outline of the paper is as follows: First, the history of manual and automated rendezvous and capture and rendezvous and dock is presented. Next, the need for AR&C in space is reviewed. In light of these, AR&C systems are proposed that meet NASA's future needs, but can be developed in a reasonable amount of time with a reasonable amount of money. Technology plans for developing these systems are presented; cost and schedule are included.

  20. 76 FR 37663 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for Tumbling Creek...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Tumbling Creek cavesnail is a critically imperiled aquatic snail, endemic to a single cave stream and... impacting the snail in other ways (Tom and Cathy Aley, 2001, pers. comm.; U.S. Fish and Wildlife Service... species). Because the Tumbling Creek cavesnail is an obligate stream snail, nonaquatic habitats within...

  1. Navigation for Rendezvous and Orbit Missions to Small Solar-System Bodies

    NASA Technical Reports Server (NTRS)

    Helfrich, C. E.; Scheeres, D. J.; Williams, B. G.; Bollman, W. E.; Davis, R. P.; Synnott, S. P.; Yeomans, D. K.

    1994-01-01

    All previous spacecraft encounters with small solar-system bodies, such as asteroids and comets, have been flybys (e.g. Galileo's flybys of the asteroids Gaspra and Ida). Several future projects plan to build on the flyby experience and progress to the next level with rendezvous and orbit missions to small bodies. This presents several new issues and challenges for navigation which have never been considered before. This paper addresses these challenges by characterizing the different phases of a small body rendezvous and by describing the navigation requirements and goals of each phase. Prior to the encounter with the small body, improvements to its ephemeris and initial estimates of its physical parameters, e.g. size, shape, mass, rotation rate, rotation pole, and possibly outgassing, are made as accurately as ground-based measurements allow. This characterization can take place over years...

  2. Application of tumbling melt granulation (TMG) method to prepare controlled-release fine granules.

    PubMed

    Maejima, T; Kubo, M; Osawa, T; Nakajima, K; Kobayashi, M

    1998-03-01

    The tumbling melt granulation (TMG) method was applied to prepare controlled-release fine granules of diltiazem hydrochloride (DH). The entire process, from the preparation of the cores by the adherence of DH to the sucrose crystal to the subsequent coating of the controlled-release layer, was performed without using any solvent. A mixture of meltable material, talc, and ethylcellulose was used for the controlled-release layer and controlled-release fine granules approximately 400 microns in diameter were obtained with excellent producibility. The dissolution rate of DH from these fine granules was similar to that of a once-a-day dosage form obtained in the market; further, the dependency of the dissolution profile on pH of the media was less. Thus, it was concluded that this TMG method was very useful for preparing not only controlled-release beads of granule size (usually 500 to 1400 microns) but also fine granules.

  3. Robust optimization of nonlinear impulsive rendezvous with uncertainty

    NASA Astrophysics Data System (ADS)

    Luo, YaZhong; Yang, Zhen; Li, HengNian

    2014-04-01

    The optimal rendezvous trajectory designs in many current research efforts do not incorporate the practical uncertainties into the closed loop of the design. A robust optimization design method for a nonlinear rendezvous trajectory with uncertainty is proposed in this paper. One performance index related to the variances of the terminal state error is termed the robustness performance index, and a two-objective optimization model (including the minimum characteristic velocity and the minimum robustness performance index) is formulated on the basis of the Lambert algorithm. A multi-objective, non-dominated sorting genetic algorithm is employed to obtain the Pareto optimal solution set. It is shown that the proposed approach can be used to quickly obtain several inherent principles of the rendezvous trajectory by taking practical errors into account. Furthermore, this approach can identify the most preferable design space in which a specific solution for the actual application of the rendezvous control should be chosen.

  4. Mission summary: Halley flyby/Tempel-2 rendezvous

    NASA Technical Reports Server (NTRS)

    Atkins, K.

    1979-01-01

    A unique dual-comet flight opportunity exists in mid-1985 which includes flyby of the large and active comet Halley en route to rendezvous with second comet, Tempel-2. This mission will utilize ion propulsion at a modest performance level, based on proven technology. The Project is planned for FY81 start. Launch occurs in July 1985 via the Shuttle/IUS twin stage. Following IUS injection, the ion propulsion stage provides continuous thrust virtually throughout the 3-year flight until the Tempel-2 rendezvous in 1988. En route, a probe is deployed for encounter with Halley about 4 months after launch at a point 73 days before its perihelion. Rendezvous with Tempel-2 occurs about 60 days before the comet's perihelion during the summer of 1988 and continues for about 1 year. Earth will be in favorable relative positions for observing both the flyby and the rendezvous.

  5. Shuttle on-orbit rendezvous targeting: Circular orbits

    NASA Technical Reports Server (NTRS)

    Bentley, E. L.

    1972-01-01

    The strategy and logic used in a space shuttle on-orbit rendezvous targeting program are described. The program generates ascent targeting conditions for boost to insertion into an intermediate parking orbit, and generates on-orbit targeting and timeline bases for each maneuver to effect rendezvous with a space station. Time of launch is determined so as to eliminate any plane change, and all work was performed for a near-circular space station orbit.

  6. Low Earth Orbit Rendezvous Strategy for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Cates, Grant R.; Cirillo, William M.; Stromgren, Chel

    2006-01-01

    On January 14, 2004 President George W. Bush announced a new Vision for Space Exploration calling for NASA to return humans to the moon. In 2005 NASA decided to use a Low Earth Orbit (LEO) rendezvous strategy for the lunar missions. A Discrete Event Simulation (DES) based model of this strategy was constructed. Results of the model were then used for subsequent analysis to explore the ramifications of the LEO rendezvous strategy.

  7. Automatic rendezvous and docking systems functional and performance requirements

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A generalized mission design scheme which utilizes a standard mission profile for all OMV rendezvous operations, recognizes typical operational constraints, and minimizes propellant penalties due to nodal regression effects was developed. This scheme has been used to demonstrate a unified guidance and navigation maneuver processor (the UMP), which supports all mission phases through station-keeping. The initial demonstration version of the Orbital Rendezvous Mission Planner (ORMP) was provided for evaluation purposes, and program operation was discussed.

  8. Automated rendezvous and capture system development and simulation for NASA

    NASA Astrophysics Data System (ADS)

    Roe, Fred D.; Howard, Richard T.; Murphy, Leslie

    2004-09-01

    The United States does not have an Automated Rendezvous and Capture/Docking (AR&C) capability and is reliant on manned control for rendezvous and docking of orbiting spacecraft. This reliance on the labor intensive manned interface for control of rendezvous and docking vehicles has a significant impact on the cost of the operation of the International Space Station (ISS) and precludes the use of any U.S. expendable launch capabilities for Space Station resupply. The Marshall Space Flight Center (MSFC) has conducted pioneering research in the development of an automated rendezvous and capture (or docking) (AR&C) system for U.S. space vehicles. This AR&C system was tested extensively using hardware-in-the-loop simulations in the Flight Robotics Laboratory, and a rendezvous sensor, the Video Guidance Sensor was developed and successfully flown on the Space Shuttle on flights STS-87 and STS-95, proving the concept of a video- based sensor. Further developments in sensor technology and vehicle and target configuration have lead to continued improvements and changes in AR&C system development and simulation. A new Advanced Video Guidance Sensor (AVGS) with target will be utilized as the primary navigation sensor on the Demonstration of Autonomous Rendezvous Technologies (DART) flight experiment in 2004. Realtime closed-loop simulations will be performed to validate the improved AR&C systems prior to flight.

  9. Production of mineral aggregates in quartz tumbling experiments

    NASA Astrophysics Data System (ADS)

    Nørnberg, Per; Finster, Kai; Pall Gunnlaugsson, Haraldur; Knak Jensen, Svend; Merrison, Jonathan Peter

    2013-04-01

    Introduction Tumbling experiments with quartz sand with the purpose of tracing the effect of broken bonds in mineral surfaces resulted in an unexpected production of aggregates. These aggregates are a few microns in diameter, spherical and resembling tiny white "snowballs." Particle comminution by aeolian and other natural weathering processes are known in soil science and is often seen as an increase of fine particles towards the top of soil profiles (Nørnberg, P. 1987, 1988, 2002, J.S. Wright 2007). When mineral grains collide in aeolian processes they break up along weakness zones in the crystal lattice. This mechanism causes broken bonds between atoms in the crystal lattice and results in reactive groups in the mineral surface. This mechanism provides the background for experiments to investigate the oxidation processes of magnetite on the planet Mars. The primary magnetic iron oxide phase on Mars is to day known to be magnetite and the colour of the dust on Mars is most likely due to hematite. To investigate if the oxidation process could take place without going over dissolution and precipitation in water, experiments with tumbling of quartz grains in sealed glass containers along with magnetite were started. The idea was that activated bonds at the surface of quartz could oxidize magnetite and convert it to hematite over time. This proved to be the case (Merrison, J.P. et al. 2010). However, in these experiments we observed the formation of the white aggregates which has been the subject of the study that we present here. Results of tumbling experiments Commercially available quarts (Merck) was sieved to obtain the fraction between 125 and 1000 µm. This fraction was tumbled in glass containers for months and resulted in production of a significant amount of fine grained material (Merrison, J.P et al. 2010). A part of this fine fraction consists of the "snowball"-like aggregates which is a fragile element with relatively high specific surface. The physical

  10. Imaging Flash Lidar for Safe Landing on Solar System Bodies and Spacecraft Rendezvous and Docking

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Roback, Vincent E.; Bulyshev, Alexander E.; Brewster, Paul F.; Carrion, William A; Pierrottet, Diego F.; Hines, Glenn D.; Petway, Larry B.; Barnes, Bruce W.; Noe, Anna M.

    2015-01-01

    NASA has been pursuing flash lidar technology for autonomous, safe landing on solar system bodies and for automated rendezvous and docking. During the final stages of the landing from about 1 kilometer to 500 meters above the ground, the flash lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes. The onboard flight computer can then use the 3-D map of terrain to guide the vehicle to a safe location. As an automated rendezvous and docking sensor, the flash lidar can provide relative range, velocity, and bearing from an approaching spacecraft to another spacecraft or a space station. NASA Langley Research Center has developed and demonstrated a flash lidar sensor system capable of generating 16,000 pixels range images with 7 centimeters precision, at 20 Hertz frame rate, from a maximum slant range of 1800 m from the target area. This paper describes the lidar instrument and presents the results of recent flight tests onboard a rocket-propelled free-flyer vehicle (Morpheus) built by NASA Johnson Space Center. The flights were conducted at a simulated lunar terrain site, consisting of realistic hazard features and designated landing areas, built at NASA Kennedy Space Center specifically for this demonstration test. This paper also provides an overview of the plan for continued advancement of the flash lidar technology aimed at enhancing its performance to meet both landing and automated rendezvous and docking applications.

  11. Robot Acting on Moving Bodies (RAMBO): Interaction with tumbling objects

    NASA Technical Reports Server (NTRS)

    Davis, Larry S.; Dementhon, Daniel; Bestul, Thor; Ziavras, Sotirios; Srinivasan, H. V.; Siddalingaiah, Madhu; Harwood, David

    1989-01-01

    Interaction with tumbling objects will become more common as human activities in space expand. Attempting to interact with a large complex object translating and rotating in space, a human operator using only his visual and mental capacities may not be able to estimate the object motion, plan actions or control those actions. A robot system (RAMBO) equipped with a camera, which, given a sequence of simple tasks, can perform these tasks on a tumbling object, is being developed. RAMBO is given a complete geometric model of the object. A low level vision module extracts and groups characteristic features in images of the object. The positions of the object are determined in a sequence of images, and a motion estimate of the object is obtained. This motion estimate is used to plan trajectories of the robot tool to relative locations rearby the object sufficient for achieving the tasks. More specifically, low level vision uses parallel algorithms for image enhancement by symmetric nearest neighbor filtering, edge detection by local gradient operators, and corner extraction by sector filtering. The object pose estimation is a Hough transform method accumulating position hypotheses obtained by matching triples of image features (corners) to triples of model features. To maximize computing speed, the estimate of the position in space of a triple of features is obtained by decomposing its perspective view into a product of rotations and a scaled orthographic projection. This allows use of 2-D lookup tables at each stage of the decomposition. The position hypotheses for each possible match of model feature triples and image feature triples are calculated in parallel. Trajectory planning combines heuristic and dynamic programming techniques. Then trajectories are created using dynamic interpolations between initial and goal trajectories. All the parallel algorithms run on a Connection Machine CM-2 with 16K processors.

  12. Advanced Multipurpose Rendezvous Tracking System Study

    NASA Technical Reports Server (NTRS)

    Laurie, R. J.; Sterzer, F.

    1982-01-01

    Rendezvous and docking (R&D) sensors needed to support Earth orbital operations of vehicles were investigated to determine the form they should take. An R&D sensor must enable an interceptor vehicle to determine both the relative position and the relative attitude of a target vehicle. Relative position determination is fairly straightforward and places few constraints on the sensor. Relative attitude determination, however, is more difficult. The attitude is calculated based on relative position measurements of several reflectors placed in a known arrangement on the target vehicle. The constraints imposed on the sensor by the attitude determination method are severe. Narrow beamwidth, wide field of view (fov), high range accuracy, and fast random scan capability are all required to determine attitude by this method. A consideration of these constraints as well as others imposed by expected operating conditions and the available technology led to the conclusion that the sensor should be a cw optical radar employing a semiconductor laser transmitter and an image dissector receiver.

  13. Determination of tailless aircraft tumbling and stability characteristics through computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Saephan, Syta

    Tailless aircraft configurations such as flying wings are susceptible to tumbling. Tumbling involves an autorotative pitching motion primarily about an axis parallel to the aircraft's lateral axis combined with planar translation. Tumbling is the suspected cause of a tailless aircraft (Northrop YB-49) crash in the late 1940s and is a potential problem for future flying wing and blended wing body aircraft. It may be difficult if not impossible for a tailless aircraft to escape the tumbling motion once it begins. It is therefore important for aircraft designers to know the causes of tumbling in order to prevent its onset. Tumbling has been demonstrated in qualitative free-flight wind tunnel experiments, but few have attempted to quantify the motion using computational fluid dynamics. The purpose of this research is to use computational fluid dynamics to study the tumbling characteristics of a tailless aircraft and then determine dynamic stability information from the simulations. Specifically, the effects of initial conditions, degrees-of-freedom, Reynolds number, and aircraft static margin will be investigated. Lumped pitch damping derivatives will be determined from the simulations.

  14. Run-and-tumble dynamics of self-propelled particles in confinement

    NASA Astrophysics Data System (ADS)

    Elgeti, Jens; Gompper, Gerhard

    2015-03-01

    Run-and-tumble dynamics is a wide-spread mechanism of swimming bacteria. The accumulation of run-and-tumble microswimmers near impermeable surfaces is studied theoretically and numerically in the low-density limit in two and three spatial dimensions. Both uni-modal and exponential distributions of the run lengths are considered. Constant run lengths lead to peaks and depletions regions in the density distribution of particles near the surface, in contrast to exponentially distributed run lengths. Finally, we present a universal accumulation law for large channel widths, which applies not only to run-and-tumble swimmers, but also to many other kinds of self-propelled particles.

  15. The ion drive program - Comet rendezvous issues for SEPS developers

    NASA Technical Reports Server (NTRS)

    Atkins, K. L.

    1979-01-01

    Preliminary steps have been taken in a joint high-priority project between NASA and the European Space Agency, whereby a Solar Electric Propulsion System (SEPS), using ion drive of a 25-30 kilowatt power level, will be utilized for the first time, as part of the Space Transportation System, in powering a probe to be deployed toward Halley's comet in 1985 and a separate spacecraft which will rendezvous with the Temple 2 comet in 1988 and study it for one year. Unlike ballistically-launched vehicles, an unprecedented long-term interaction between the SEPS, the primary source of power and attitude control, and the spacecraft, responsible for data handling (at a rate of 10-120 kilobits per second), and command and telecommunications to earth (requiring capabilities at both X- and S-band frequencies, for dual-frequency navigational tracking), is required, as mission phases alternate between powered flight and science data-taking. Different design sensitivities are presented graphically.

  16. Rendezvous missions to temporarily captured near Earth asteroids

    NASA Astrophysics Data System (ADS)

    Brelsford, S.; Chyba, M.; Haberkorn, T.; Patterson, G.

    2016-04-01

    Missions to rendezvous with or capture an asteroid present significant interest both from a geophysical and safety point of view. They are key to the understanding of our solar system and are stepping stones for interplanetary human flight. In this paper, we focus on a rendezvous mission with 2006 RH120, an asteroid classified as a Temporarily Captured Orbiter (TCO). TCOs form a new population of near Earth objects presenting many advantages toward that goal. Prior to the mission, we consider the spacecraft hibernating on a Halo orbit around the Earth-Moon's L2 libration point. The objective is to design a transfer for the spacecraft from the parking orbit to rendezvous with 2006 RH120 while minimizing the fuel consumption. Our transfers use indirect methods, based on the Pontryagin Maximum Principle, combined with continuation techniques and a direct method to address the sensitivity of the initialization. We demonstrate that a rendezvous mission with 2006 RH120 can be accomplished with low delta-v. This exploratory work can be seen as a first step to identify good candidates for a rendezvous on a given TCO trajectory.

  17. Navigation capability for an ion drive rendezvous with Halley's Comet

    NASA Technical Reports Server (NTRS)

    Thornton, C. L.; Jacobson, R. A.

    1977-01-01

    An analysis has been conducted in connection with plans for a study of Halley's Comet during its 1986 apparition. The use of low-thrust vehicles, utilizing an ion drive system, is being considered for a comet rendezvous mission. A preliminary trajectory for the Halley rendezvous mission calls for launch on June 20, 1982, followed by rendezvous on December 21, 1985. The navigation analysis described focuses on the terminal approach to Halley, the 60-day period preceding rendezvous. Navigation analysis assumptions are examined, taking into account navigation error sources, radio tracking, onboard optical data, earth-based comet observations, and orbit determination and guidance strategies. The preliminary mission design considers a rendezvous at approximately 56,000 km from the comet nucleus (6,000 km outside the dust envelope). Navigation performance is measured in terms of comet-relative position and velocity errors at encounter. Variations to the baseline navigation study provide illustrations concerning the close link between delivery accuracy and stochastic thrust errors.

  18. Rendezvous and Proximity Operations of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2005-01-01

    Space Shuttle rendezvous missions present unique challenges that were not fully recognized when the Shuttle was designed. Rendezvous targets could be passive (i.e., no lights or transponders), and not designed to facilitate Shuttle rendezvous, proximity operations, and retrieval. Shuttle reaction control system jet plume impingement on target spacecraft presented induced dynamics, structural loading, and contamination concerns. These issues, along with limited reaction control system propellant in the Shuttle nose, drove a change from the legacy Gemini/Apollo coelliptic profile to a stable orbit profile, and the development of new proximity operations techniques. Multiple scientific and on-orbit servicing missions, and crew exchange, assembly and replenishment flights to Mir and to the International Space Station drove further profile and piloting technique changes. These changes included new proximity operations, relative navigation sensors, and new computer generated piloting cues. However, the Shuttle's baseline rendezvous navigation system has not required modification to place the Shuttle at the proximity operations initiation point for all rendezvous missions flown.

  19. Apollo-Lunar Orbital Rendezvous Technique

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Apollo-Lunar Orbital Rendezvous Technique. The film shows artists rendition of the spacecrafts, boosters, and flight of the Apollo lunar missions. The Apollo spacecraft will consist of three modules: the manned Command Module; the Service Module, which contains propulsion systems; and the Lunar Excursion Module (LEM) to carry astronauts to the moon and back to the Command and Service Modules. The spacecraft will be launched via a three-stage Saturn booster. The first stage will provide 7.5 million pounds of thrust from five F-1 engines for liftoff and initial powered flight. The second stage will develop 1 million pounds of thrust from five J-2 engines to boost the spacecraft almost into Earth orbit. Immediately after ignition of the second stage, the Launch Escape System will be jettisoned. A single J-2 engine in the S4B stage will provide 200,000 pounds of thrust to place the spacecraft in an earth parking orbit. It also will be used to propel the spacecraft into a translunar trajectory, then it will separate from the Apollo Modules. Onboard propulsion systems will be used to insert the spacecraft into lunar orbit. Two astronauts will enter the LEM, which will separate from the command and service modules. The LEM will go into elliptical orbit and prepare for landing. The LEM will lift off of the Moon's surface to return to the Command and Service Modules, and most likely be left in lunar orbit. After leaving the Moon's orbit, and shortly before entering Earth's orbit, the Service Module will be ejected. The Command Module will be oriented for reentry into the Earth's atmosphere. A drogue parachute will deploy at approximately 50,000 feet, followed by the main parachute system for touchdown. [Entire movie available on DVD from CASI as Doc ID 20070030988. Contact help@sti.nasa.gov

  20. 76 FR 2076 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for Tumbling Creek...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-12

    ... Creek cavesnail is a small, white, blind, aquatic snail, restricted to a single cave stream in Tumbling Creek Cave in Taney County, southwestern Missouri. Significant declines in the snail's population...

  1. Rocket rendezvous at preassigned destinations with optimum exit trajectories

    NASA Astrophysics Data System (ADS)

    Srivastava, T. N.; Nangia, A. K.

    1982-10-01

    A numerical model for the optimum trajectory for a commuter rocket to follow in order to rendezvous with a destination rocket vehicle is presented. The interceptor is launched from a launch orbit, then receives a specific velocity impulse at some point along the course to achieve the meeting. An optimum exit path from the launch orbit is characterized by minimum fuel expenditure, as is the intermediate-point velocity injection. Calculations are made of the flight durations and the launch angle, and elements of an optimum transfer trajectory for a rendezvous are defined. Sample calculations are presented for a rendezvous between a circular and an elliptical orbit, and for a meeting somewhere between earth and Mars.

  2. Rendezvous missions: From ISS to lunar space station

    NASA Astrophysics Data System (ADS)

    Murtazin, Rafail

    2014-08-01

    There was a lot of experience gained in the rendezvous of different vehicles in the LEO during the years of human space exploration. In the framework of the Apollo program when the astronauts landed on the surface of the Moon, the docking of the Lunar Module launched from the Moon's surface to the Apollo Command Module was successfully implemented in the near-Moon orbit. Presently many space agencies are considering a return to the Moon. It is necessary to solve the new task of docking the vehicle launched from the Earth to the long-term near-Moon orbital station taking into account specific constraints. Based on the ISS experience the author proposes a number of ballistic rendezvous strategies that provide for docking to the near-Moon orbital station with minimum propellant consumption. The trade-off analysis of the given rendezvous strategies is presented.

  3. Unsteady aerodynamic forces and torques on falling parallelograms in coupled tumbling-helical motions

    NASA Astrophysics Data System (ADS)

    Varshney, Kapil; Chang, Song; Wang, Z. Jane

    2013-05-01

    Falling parallelograms exhibit coupled motion of autogyration and tumbling, similar to the motion of falling tulip seeds, unlike maple seeds which autogyrate but do not tumble, or rectangular cards which tumble but do not gyrate. This coupled tumbling and autogyrating motion are robust, when card parameters, such as aspect ratio, internal angle, and mass density, are varied. We measure the three-dimensional (3D) falling kinematics of the parallelograms and quantify their descending speed, azimuthal rotation, tumbling rotation, and cone angle in each falling. The cone angle is insensitive to the variation of the card parameters, and the card tumbling axis does not overlap with but is close to the diagonal axis. In addition to this connection to the dynamics of falling seeds, these trajectories provide an ideal set of data to analyze 3D aerodynamic force and torque at an intermediate range of Reynolds numbers, and the results will be useful for constructing 3D aerodynamic force and torque models. Tracking these free falling trajectories gives us a nonintrusive method for deducing instantaneous aerodynamic forces. We determine the 3D aerodynamic forces and torques based on Newton-Euler equations. The dynamical analysis reveals that, although the angle of attack changes dramatically during tumbling, the aerodynamic forces have a weak dependence on the angle of attack. The aerodynamic lift is dominated by the coupling of translational and rotational velocities. The aerodynamic torque has an unexpectedly large component perpendicular to the card. The analysis of the Euler equation suggests that this large torque is related to the deviation of the tumbling axis from the principle axis of the card.

  4. Dynamics and control of escape and rescue from a tumbling spacecraft

    NASA Technical Reports Server (NTRS)

    Kaplan, M. H.

    1972-01-01

    The results of 18 months of investigations are reported. A movable mass control system to convert the tumbling motion of a spacecraft into simple spin was studied along with the optimization techniques for generating displacement profiles for a tumbling asymmetrical body. Equations of motion are discussed for two asymmetrical vehicles with flexible beams and one spacecraft with flexible solar arrays. The characteristics which allow reasonable safety and reliability in bailout are also discussed.

  5. Laser space rendezvous and docking system study continuation

    NASA Technical Reports Server (NTRS)

    Adelman, S.; Heynau, H.; Levinson, S.; Weindling, F.

    1977-01-01

    Investigations were made of a configuration for a spaceborne laser radar (ladar) to meet the requirements for rendezvous and docking with a cooperative object in synchronous orbit. An analysis was completed of laser phase locking techniques, while experimental verification was made of pulse repetition frequency and resonant scanning control loops. Data measurements on a satellite mock-up were also made. The investigation supports the original contention that a rendezvous and docking ladar can be configured to offer a cost effective and reliable solution to envisioned space missions.

  6. Robust H∞ Control for Spacecraft Rendezvous with a Noncooperative Target

    PubMed Central

    Wu, Shu-Nan; Zhou, Wen-Ya; Tan, Shu-Jun; Wu, Guo-Qiang

    2013-01-01

    The robust H∞ control for spacecraft rendezvous with a noncooperative target is addressed in this paper. The relative motion of chaser and noncooperative target is firstly modeled as the uncertain system, which contains uncertain orbit parameter and mass. Then the H∞ performance and finite time performance are proposed, and a robust H∞ controller is developed to drive the chaser to rendezvous with the non-cooperative target in the presence of control input saturation, measurement error, and thrust error. The linear matrix inequality technology is used to derive the sufficient condition of the proposed controller. An illustrative example is finally provided to demonstrate the effectiveness of the controller. PMID:24027446

  7. Feedback between motion and sensation provides nonlinear boost in run-and-tumble navigation

    PubMed Central

    Zucker, Steven W.

    2017-01-01

    Many organisms navigate gradients by alternating straight motions (runs) with random reorientations (tumbles), transiently suppressing tumbles whenever attractant signal increases. This induces a functional coupling between movement and sensation, since tumbling probability is controlled by the internal state of the organism which, in turn, depends on previous signal levels. Although a negative feedback tends to maintain this internal state close to adapted levels, positive feedback can arise when motion up the gradient reduces tumbling probability, further boosting drift up the gradient. Importantly, such positive feedback can drive large fluctuations in the internal state, complicating analytical approaches. Previous studies focused on what happens when the negative feedback dominates the dynamics. By contrast, we show here that there is a large portion of physiologically-relevant parameter space where the positive feedback can dominate, even when gradients are relatively shallow. We demonstrate how large transients emerge because of non-normal dynamics (non-orthogonal eigenvectors near a stable fixed point) inherent in the positive feedback, and further identify a fundamental nonlinearity that strongly amplifies their effect. Most importantly, this amplification is asymmetric, elongating runs in favorable directions and abbreviating others. The result is a “ratchet-like” gradient climbing behavior with drift speeds that can approach half the maximum run speed of the organism. Our results thus show that the classical drawback of run-and-tumble navigation—wasteful runs in the wrong direction—can be mitigated by exploiting the non-normal dynamics implicit in the run-and-tumble strategy. PMID:28264023

  8. Affect of Shape Abnormality in Foot and Toenail on Tumbling of Aged

    NASA Astrophysics Data System (ADS)

    Yamashita, Kazuhiko; Nomoto, Yohei; Umezawa, Jun; Miyagawa, Haruki; Kawasumi, Masashi; Koyama, Hironori; Saito, Masao

    There is the increasing concern of the society to prevent the tumbling of the aged. The study of the static, as well as dynamic aspects, such as the muscular strength of the lower-limb and the postural stability, should be developed, especially from the viewpoint of the aged. This paper focuses on the external observation of the foot and toenail, as being correlated to the physical functions of the lower-limb against tumbling. The lower-limb functions are evaluated in terms of the 10 m walking time, the toe-gap force and single-foot standing period. The correlation to the personal tumbling experiences is also examined. It is seen that the groups, which exhibit external abnormalities in the foot and the toenail, generally decline in the muscular strength and postural stability. They also have more frequent tumbling experiences and express in their concern of the danger of tumbling. It seems that those shapes abnormalities can indicate, to some extent, the tumbling danger of the aged.

  9. Modifying the properties of finely ground limestone by tumbling granulation

    NASA Astrophysics Data System (ADS)

    Macho, Oliver; Eckert, Maroš; Tomášová, Barbora; Peciar, Peter; Ščasný, Martin; Fekete, Roman; Peciar, Marián

    2016-06-01

    Calcium carbonate in the form of finely ground limestone is a material that has found its application in a wide range of industries, in the chemical, rubber, agricultural, and paper industries, is used for desulfurization of boilers and other. In civil engineering, ground limestone is used for the production of building materials, plaster and mortar mixtures, as a filler in concrete mixtures, in road construction, and as an essential component of mastic asphalt. This paper deals with examining the modification of the properties of finely ground limestone by the tumbling agglomeration method. It has been shown that the components of concrete with a round grain have a positive effect on the pumping of concrete in comparison with an elongated grain or the rough surface of crushed stone. The experiments will be carried out on a granulation plate using a variety of granulation liquid. The agglomerates and their properties were compared with untreated finely ground limestone, with a focus on detecting changes in compressibility, density and particle size. The output of this paper is a description and graphical representation of the changes in the properties of ground limestone before and after the agglomeration process.

  10. Rotational tumbling of Escherichia coli aggregates under shear

    NASA Astrophysics Data System (ADS)

    Portela, R.; Patrício, P.; Almeida, P. L.; Sobral, R. G.; Franco, J. M.; Leal, C. R.

    2016-12-01

    Growing living cultures of Escherichia coli bacteria are investigated using real-time in situ rheology and rheoimaging measurements. In the early stages of growth (lag phase) and when subjected to a constant stationary shear, the viscosity slowly increases with the cell's population. As the bacteria reach the exponential phase of growth, the viscosity increases rapidly, with sudden and temporary abrupt decreases and recoveries. At a certain stage, corresponding grossly to the late phase of growth, when the population stabilizes, the viscosity also keeps its maximum constant value, with drops and recoveries, for a long period of time. This complex rheological behavior, which is observed to be shear strain dependent, is a consequence of two coupled effects: the cell density continuous increase and its changing interacting properties. Particular attention is given to the late phase of growth of E. coli populations under shear. Rheoimaging measurements reveal, near the static plate, a rotational motion of E. coli aggregates, collectively tumbling and flowing in the shear direction. This behavior is interpreted in the light of a simple theoretical approach based on simple rigid body mechanics.

  11. Robustness of the periodic and chaotic orientational behavior of tumbling nematic liquid crystals.

    PubMed

    Heidenreich, Sebastian; Ilg, Patrick; Hess, Siegfried

    2006-06-01

    The dynamical behavior of molecular alignment strongly affects physical properties of nematic liquid crystals. A theoretical description can be made by a nonlinear relaxation equation of the order parameter and leads to the prediction that rather complex even chaotic orientational behavior occur. Here the influence of fluctuating shear rates on the orientational dynamics especially on chaotic solutions is discussed. With the help of phase portraits and time evolution diagrams, we investigated the influence of different fluctuation strengths on the flow aligned, isotropic, and periodic solutions. To explore the effect of fluctuations on the chaotic behavior, we calculated the largest Lyapunov exponent for different fluctuation strengths. We found in all cases that small fluctuations of the shear rate do not affect the basic features of the dynamics of tumbling nematics. Furthermore, we present an amended potential modeling the isotropic to nematic transition and discuss the equivalence and difference to the commonly used Landau-de Gennes potential. In contrast to the Landau-de Gennes potential, our potential has the advantage to restrict the order parameter to physically admissible values. In the case of extensional flow, we show that the amended potential leads for increasing extensional rate to a better agreement with experimental results.

  12. Quantitative characterization of agglomerate abrasion in a tumbling blender by using the Stokes number approach.

    PubMed

    Willemsz, Tofan A; Nguyen, Tien Thanh; Hooijmaijers, Ricardo; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2013-03-01

    Removal of microcrystalline cellulose agglomerates in a dry-mixing system (lactose, 100 M) predominantly occurs via abrasion. The agglomerate abrasion rate potential is estimated by the Stokes abrasion (StAbr) number of the system. The StAbr number equals the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. Basically, the StAbr number concept describes the blending condition of the dry-mixing system. The concept has been applied to investigate the relevance of process parameters on agglomerate abrasion in tumbling blenders. Here, process parameters such as blender rotational speed and relative fill volumes were investigated. In this study, the StAbr approach revealed a transition point between abrasion rate behaviors. Below this transition point, a blending condition exists where agglomerate abrasion is dominated by the kinetic energy density of the powder blend. Above this transition point, a blending condition exists where agglomerates show (undesirable) slow abrasion rates. In this situation, the blending condition is mainly determined by the high fill volume of the filler.

  13. Autonomous Mars ascent and orbit rendezvous for earth return missions

    NASA Technical Reports Server (NTRS)

    Edwards, H. C.; Balmanno, W. F.; Cruz, Manuel I.; Ilgen, Marc R.

    1991-01-01

    The details of tha assessment of autonomous Mars ascent and orbit rendezvous for earth return missions are presented. Analyses addressing navigation system assessments, trajectory planning, targeting approaches, flight control guidance strategies, and performance sensitivities are included. Tradeoffs in the analysis and design process are discussed.

  14. Test Results for the Automated Rendezvous and Capture System

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Dabney, Richard; Lomas, James

    1999-01-01

    The Automated Rendezvous and Capture (AR&C) system was designed and tested at NASA's Marshall Space Flight Center (MSFC) to demonstrate technologies and mission strategies for automated rendezvous and docking of spacecraft in Earth orbit, The system incorporates some of the latest innovations in Global Positioning, System space navigation, laser sensor technologies and automated mission sequencing algorithms. The system's initial design and integration was completed in 1998 and has undergone testing at MSFC. This paper describes the major components of the AR&C system and presents results from the official system tests performed in MSFC's Flight Robotics Laboratory with digital simulations and hardware in the loop tests. The results show that the AR&C system can safely and reliably perform automated rendezvous and docking missions in the absence of system failures with 100 percent success. When system failures are included, the system uses its automated collision avoidance maneuver logic to recover in a safe manner. The primary objective of the AR&C project is to prove that by designing a safe and robust automated system, mission operations cost can be reduced by decreasing the personnel required for mission design, preflight planning and training required for crewed rendezvous and docking missions.

  15. Autonomous spacecraft executive and its application to rendezvous and docking

    NASA Technical Reports Server (NTRS)

    Komura, Fuminobu; Furuya, Masatoshi; Sasaki, Toshiro; Anderson, Robert L.; Tsugawa, Roy K.

    1994-01-01

    Autonomy is needed for future spacecraft to solve the problems of human operator overload and transmission delay. This paper describes the autonomous spacecraft executive for rendezvous and docking. It is an onboard expert system and has decision making capability for mission planning of nominal and contingency cases. The executive has been developed and verified using a hardware motion based simulator.

  16. Determinants of Contrast Sensitivity for the Tumbling E and Landolt C

    PubMed Central

    Alexander, Kenneth R.; McAnany, J. Jason

    2009-01-01

    Purpose To compare the object spatial frequencies that underlie contrast sensitivity for the tumbling E and Landolt C across a range of optotype sizes and under conditions biased toward the magnocellular (MC) and parvocellular (PC) pathways. Methods Contrast thresholds of two visually normal observers were measured using tumbling E optotypes that were either low-pass filtered or high-pass filtered with a two-dimensional Gaussian filter. Optotypes were presented using steady-pedestal and pulsed-pedestal paradigms to target the MC and PC pathways, respectively. Object frequencies essential for orientation judgments of the tumbling E were derived from plots of log contrast threshold vs. log filter cutoff frequency, and results were compared to those obtained previously for the Landolt C under identical testing conditions. Results The object frequency used to judge the orientation of the tumbling E increased systematically with increasing target angular subtense, and the effect of target size differed depending on whether performance was mediated by the inferred MC or PC pathway. The overall pattern of results was similar for the tumbling E and Landolt C, but there was generally less dependence of object frequency on target angular subtense for the tumbling E. Conclusions The tumbling E and Landolt C are not equivalent in terms of the object frequencies that mediate orientation judgments. However, both optotypes show scale-dependent changes in object frequency, particularly under test conditions that favor the PC pathway. The scale dependence of these broadband optotypes can pose a challenge in interpreting test results using these targets. A potential solution is to use spatially filtered optotypes with limited, known object frequency content. PMID:19996815

  17. Active Brownian particles and run-and-tumble particles separate inside a maze

    NASA Astrophysics Data System (ADS)

    Khatami, Maryam; Wolff, Katrin; Pohl, Oliver; Ejtehadi, Mohammad Reza; Stark, Holger

    2016-11-01

    A diverse range of natural and artificial self-propelled particles are known and are used nowadays. Among them, active Brownian particles (ABPs) and run-and-tumble particles (RTPs) are two important classes. We numerically study non-interacting ABPs and RTPs strongly confined to different maze geometries in two dimensions. We demonstrate that by means of geometrical confinement alone, ABPs are separable from RTPs. By investigating Matryoshka-like mazes with nested shells, we show that a circular maze has the best filtration efficiency. Results on the mean first-passage time reveal that ABPs escape faster from the center of the maze, while RTPs reach the center from the rim more easily. According to our simulations and a rate theory, which we developed, ABPs in steady state accumulate in the outermost region of the Matryoshka-like mazes, while RTPs occupy all locations within the maze with nearly equal probability. These results suggest a novel technique for separating different types of self-propelled particles by designing appropriate confining geometries without using chemical or biological agents.

  18. Active Brownian particles and run-and-tumble particles separate inside a maze

    PubMed Central

    Khatami, Maryam; Wolff, Katrin; Pohl, Oliver; Ejtehadi, Mohammad Reza; Stark, Holger

    2016-01-01

    A diverse range of natural and artificial self-propelled particles are known and are used nowadays. Among them, active Brownian particles (ABPs) and run-and-tumble particles (RTPs) are two important classes. We numerically study non-interacting ABPs and RTPs strongly confined to different maze geometries in two dimensions. We demonstrate that by means of geometrical confinement alone, ABPs are separable from RTPs. By investigating Matryoshka-like mazes with nested shells, we show that a circular maze has the best filtration efficiency. Results on the mean first-passage time reveal that ABPs escape faster from the center of the maze, while RTPs reach the center from the rim more easily. According to our simulations and a rate theory, which we developed, ABPs in steady state accumulate in the outermost region of the Matryoshka-like mazes, while RTPs occupy all locations within the maze with nearly equal probability. These results suggest a novel technique for separating different types of self-propelled particles by designing appropriate confining geometries without using chemical or biological agents. PMID:27876867

  19. Coarsening and clustering in run-and-tumble dynamics with short-range exclusion

    NASA Astrophysics Data System (ADS)

    Sepúlveda, Néstor; Soto, Rodrigo

    2016-08-01

    The emergence of clustering and coarsening in crowded ensembles of self-propelled agents is studied using a lattice model in one dimension. The persistent exclusion process, where particles move at directions that change randomly at a low tumble rate α , is extended allowing sites to be occupied by more than one particle, with a maximum nmax per site. Three phases are distinguished. For nmax=1 a gas of clusters form, with sizes distributed exponentially and no coarsening takes place. For nmax≥3 and small values of α , coarsening takes place and few large clusters appear, with a large fraction of the total number of particles in them. In the same range of nmax but for larger values of α , a gas phase where a negligible fraction of particles takes part of clusters. Finally, nmax=2 corresponds to a crossover phase. The character of the transitions between phases is studied extending the model to allow nmax to take real values and jumps to an occupied site are probabilistic. The transition from the gas of clusters to the coarsening phase is continuous and the mass of the large clusters grows continuously when varying the maximum occupancy, and the crossover found corresponds to values close to the transition. The second transition, from the coarsening to the gaseous phase, can be either continuous or discontinuous depending on the parameters, with a critical point separating both cases.

  20. Coarsening and clustering in run-and-tumble dynamics with short-range exclusion.

    PubMed

    Sepúlveda, Néstor; Soto, Rodrigo

    2016-08-01

    The emergence of clustering and coarsening in crowded ensembles of self-propelled agents is studied using a lattice model in one dimension. The persistent exclusion process, where particles move at directions that change randomly at a low tumble rate α, is extended allowing sites to be occupied by more than one particle, with a maximum n_{max} per site. Three phases are distinguished. For n_{max}=1 a gas of clusters form, with sizes distributed exponentially and no coarsening takes place. For n_{max}≥3 and small values of α, coarsening takes place and few large clusters appear, with a large fraction of the total number of particles in them. In the same range of n_{max} but for larger values of α, a gas phase where a negligible fraction of particles takes part of clusters. Finally, n_{max}=2 corresponds to a crossover phase. The character of the transitions between phases is studied extending the model to allow n_{max} to take real values and jumps to an occupied site are probabilistic. The transition from the gas of clusters to the coarsening phase is continuous and the mass of the large clusters grows continuously when varying the maximum occupancy, and the crossover found corresponds to values close to the transition. The second transition, from the coarsening to the gaseous phase, can be either continuous or discontinuous depending on the parameters, with a critical point separating both cases.

  1. Enchanted rendezvous: John C. Houbolt and the genesis of the lunar-orbit rendezvous concept

    NASA Technical Reports Server (NTRS)

    Hansen, James R.

    1995-01-01

    This is the fourth publication of the 'Monographs in Aerospace History' series, prepared by the NASA History Office. These publications are intended to be tightly focused in terms of subject, relatively short in length, and reproduced to allow timely and broad dissemination to researchers in aerospace history. This publication details the arguments of John C. Houbolt, an engineer at the Langley Research Center in Hampton, Virginia, in his 1961-1962 campaign to support the lunar-orbit rendezvous (LOR). The LOR was eventually selected during Project Apollo as the method of flying to the Moon, landing on the surface, and returning to Earth. The LOR opted to send the entire lunar spacecraft up in one launch, enter into the lunar orbit, and dispatch a small lander to the lunar surface. It was the simplest of the various methods, both in terms of development and operational costs, but it was risky. There was no room for error or the crew could not get home; and the more difficult maneuvers had to be done when the spacecraft was committed to a circumlunar flight. Houbolt was one of the most vocal people supporting the LOR.

  2. Abrasion in pyroclastic density currents: Insights from tumbling experiments

    NASA Astrophysics Data System (ADS)

    Kueppers, Ulrich; Putz, Constanze; Spieler, Oliver; Dingwell, Donald B.

    2012-01-01

    During granular mass movements of any kind, particles may interact with one another. The degree of interaction is a function of several variables including; grain-size distribution, particle concentration, density stratification and degree of fluidisation. The impact of particle interaction is additionally influenced by the relative speed, impact angle and clast temperature. Thus, both source conditions and transport-related processes are expected to influence the flow dynamics of pyroclastic density currents and their subsequent deposition. Here, we use tumbling experiments to shed light on the susceptibility of porous clasts to abrasion. We investigated the abrasion of unaltered volcanic rocks (5.7-80 vol.% porosity) from Unzen (Japan), Bezymianny (Russia) and Santorini (Greece) volcanoes as well as one synthetic analogue material, an insulating material with the trade name Foamglas® (95 vol.% porosity). Each experiment started with angular fragments generated in a jaw crusher from larger clasts. Two experimental series were performed; on samples with narrow and broader grain-size distributions, respectively. The dry samples were subject to rotational movement at constant speed and ambient temperature in a gum rotational tumbler for durations of 15, 30, 45, 60 and 120 min. The amount of volcanic ash (particles <2 mm) generated was evaluated as a function of experimental duration and sample porosity. We term “abrasion” as the ash fraction generated during the experiments. The observed increase of “abrasion” with increasing sample porosity and experimental duration is initially non-linear but becomes linear for experiments of 30 min duration or longer. For any given sample, abrasion appears to be more effective for coarser samples and larger initial mass. The observed range of ash generated in our experiments is between 1 and 35 wt.%. We find that this amount generally increases with increasing initial clast size or increasing breadth of the initial grain

  3. Space Debris Attitude Simulation - IOTA (In-Orbit Tumbling Analysis)

    NASA Astrophysics Data System (ADS)

    Kanzler, R.; Schildknecht, T.; Lips, T.; Fritsche, B.; Silha, J.; Krag, H.

    Today, there is little knowledge on the attitude state of decommissioned intact objects in Earth orbit. Observational means have advanced in the past years, but are still limited with respect to an accurate estimate of motion vector orientations and magnitude. Especially for the preparation of Active Debris Removal (ADR) missions as planned by ESA's Clean Space initiative or contingency scenarios for ESA spacecraft like ENVISAT, such knowledge is needed. The In-Orbit Tumbling Analysis tool (IOTA) is a prototype software, currently in development within the framework of ESA's “Debris Attitude Motion Measurements and Modelling” project (ESA Contract No. 40000112447), which is led by the Astronomical Institute of the University of Bern (AIUB). The project goal is to achieve a good understanding of the attitude evolution and the considerable internal and external effects which occur. To characterize the attitude state of selected targets in LEO and GTO, multiple observation methods are combined. Optical observations are carried out by AIUB, Satellite Laser Ranging (SLR) is performed by the Space Research Institute of the Austrian Academy of Sciences (IWF) and radar measurements and signal level determination are provided by the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR). Developed by Hyperschall Technologie Göttingen GmbH (HTG), IOTA will be a highly modular software tool to perform short- (days), medium- (months) and long-term (years) propagation of the orbit and attitude motion (six degrees-of-freedom) of spacecraft in Earth orbit. The simulation takes into account all relevant acting forces and torques, including aerodynamic drag, solar radiation pressure, gravitational influences of Earth, Sun and Moon, eddy current damping, impulse and momentum transfer from space debris or micro meteoroid impact, as well as the optional definition of particular spacecraft specific influences like tank sloshing, reaction wheel behaviour

  4. Succeed escape: Flow shear promotes tumbling of Escherichia colinear a solid surface

    NASA Astrophysics Data System (ADS)

    Molaei, Mehdi; Sheng, Jian

    2016-10-01

    Understanding how bacteria move close to a surface under various stimuli is crucial for a broad range of microbial processes including biofilm formation, bacterial transport and migration. While prior studies focus on interactions between single stimulus and bacterial suspension, we emphasize on compounding effects of flow shear and solid surfaces on bacterial motility, especially reorientation and tumble. We have applied microfluidics and digital holographic microscopy to capture a large number (>105) of 3D Escherichia coli trajectories near a surface under various flow shear. We find that near-surface flow shear promotes cell reorientation and mitigates the tumble suppression and re-orientation confinement found in a quiescent flow, and consequently enhances surface normal bacterial dispersion. Conditional sampling suggests that two complimentary hydrodynamic mechanisms, Jeffrey Orbit and shear-induced flagella unbundling, are responsible for the enhancement in bacterial tumble motility. These findings imply that flow shear may mitigate cell trapping and prevent biofilm initiation.

  5. Succeed escape: Flow shear promotes tumbling of Escherichia colinear a solid surface

    PubMed Central

    Molaei, Mehdi; Sheng, Jian

    2016-01-01

    Understanding how bacteria move close to a surface under various stimuli is crucial for a broad range of microbial processes including biofilm formation, bacterial transport and migration. While prior studies focus on interactions between single stimulus and bacterial suspension, we emphasize on compounding effects of flow shear and solid surfaces on bacterial motility, especially reorientation and tumble. We have applied microfluidics and digital holographic microscopy to capture a large number (>105) of 3D Escherichia coli trajectories near a surface under various flow shear. We find that near-surface flow shear promotes cell reorientation and mitigates the tumble suppression and re-orientation confinement found in a quiescent flow, and consequently enhances surface normal bacterial dispersion. Conditional sampling suggests that two complimentary hydrodynamic mechanisms, Jeffrey Orbit and shear-induced flagella unbundling, are responsible for the enhancement in bacterial tumble motility. These findings imply that flow shear may mitigate cell trapping and prevent biofilm initiation. PMID:27752062

  6. Design and development of PROBA-3 rendezvous experiment

    NASA Astrophysics Data System (ADS)

    Bastante, Juan C.; Vasconcelos, José; Hagenfeldt, Miguel; Peñín, Luis F.; Dinis, João; Rebordão, José

    2014-09-01

    PROBA-3 is a technology demonstration mission with the objective of, among others, raising the Formation Flying (FF) technology up to Technology Readiness Level (TRL) 8 or 9. The context of this mission has strong synergies with the knowledge areas considered in Rendezvous (RV), namely the fields of GNC, metrology, actuator systems, etc. This common ground between FF and RV allowed for a dedicated Rendezvous Experiment (RVX) to be performed in the scope of PROBA-3. The RVX is based only on camera measurements, and designed for highly elliptical orbits with strong constraints on relative position and attitude. This paper presents the design and development of the RVX experiment, with the goal to demonstrate the feasibility of vision-based RV and to increase the associated TRL.

  7. Rendezvous and Proximity Operations of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2005-01-01

    Space Shuttle rendezous missions presented unique challenges that were not fully recognized when the Shuttle was designed. Rendezvous targets could be passive (i.e., no lights or transponders), and not designed to facilitate Shuttle rendezvous, proximity operations and retrieval. Shuttle reaction control system jet plume impingement on target spacecraft presented induced dynamics, structural loading and contamination concerns. These issues, along with limited forward reaction control system propellant, drove a change from the Gemimi/Apollo coelliptic profile heritage to a stable orbit profile, and the development of new proximity operations techniques. Multiple scientific and on-orbit servicing missions and crew exchange, assembly and replinishment flights to Mir and to the International Space Station drove further profile and piloting technique changes, including new relative navigation sensors and new computer generated piloting cues.

  8. Inadequacy of single-impulse transfers for path constrained rendezvous

    NASA Technical Reports Server (NTRS)

    Stern, S. A.; Soileau, K. M.

    1987-01-01

    The use of single-impulse techniques to maneuver from point to point about a large space structure (LSS) with an arbitrary geometrical configuration and spin is examined. Particular consideration is given to transfers with both endpoints on the forbidden zone surface. Clohessy-Wiltshire equations of relative motion are employed to solve path constrained rendezvous problems. External and internal transfers between arbitrary points are analyzed in terms of tangential departure and arrival conditions. It is observed that single-impulse techniques are inadequate for transferring about the exterior of any LSS; however, single-impulse transfers are applicable for transfers in the interior of LSSs. It is concluded that single-impulse transducers are not applicable for path constrained rendezvous guidance.

  9. Genetic algorithm based fuzzy control of spacecraft autonomous rendezvous

    NASA Technical Reports Server (NTRS)

    Karr, C. L.; Freeman, L. M.; Meredith, D. L.

    1990-01-01

    The U.S. Bureau of Mines is currently investigating ways to combine the control capabilities of fuzzy logic with the learning capabilities of genetic algorithms. Fuzzy logic allows for the uncertainty inherent in most control problems to be incorporated into conventional expert systems. Although fuzzy logic based expert systems have been used successfully for controlling a number of physical systems, the selection of acceptable fuzzy membership functions has generally been a subjective decision. High performance fuzzy membership functions for a fuzzy logic controller that manipulates a mathematical model simulating the autonomous rendezvous of spacecraft are learned using a genetic algorithm, a search technique based on the mechanics of natural genetics. The membership functions learned by the genetic algorithm provide for a more efficient fuzzy logic controller than membership functions selected by the authors for the rendezvous problem. Thus, genetic algorithms are potentially an effective and structured approach for learning fuzzy membership functions.

  10. The Mariner Mark II Comet Rendezvous/Asteroid Flyby Mission

    NASA Technical Reports Server (NTRS)

    Stetson, D. S.; Lundy, S. A.; Yen, C. L.

    1984-01-01

    The Comet Rendezvous/Asteroid Flyby will be the first mission in the Mariner Mark II program. The July 1990 launch will result in a fast flyby of the asteroid Tanete in May 1991 and a rendezvous with comet Kopff in February 1994, 879 days before comet perihelion. The spacecraft will return detailed data on the comet nucleus and its environment for nearly 1000 days. Several important comet characteristics will not be precisely known until the spacecraft performs its first measurements, which means that operations strategies must be adaptable to a range of conditions. In addition, the operation of a spacecraft in a dusty environment near a low-mass body imposes unique constraints on trajectory and orbit design.

  11. Theory of Tumbling Bodies Entering Planetary Atmospheres with Application to Probe Vehicles and the Australian Tektites

    NASA Technical Reports Server (NTRS)

    Tobak, Murray; Peterson, Victor L.

    1964-01-01

    The tumbling motion of aerodynamically stable bodies entering planetary atmospheres is analyzed considering that the tumbling, its arrest, and the subsequent oscillatory motion are governed by the equation for the fifth Painleve' transcendent. Results based on the asymptotic behavior of the transcendent are applied to study (1) the oscillatory behavior of planetary probe vehicles in relation to aerodynamic heating and loads and (2) the dynamic behavior of the Australian tektites on entering the Earth's atmosphere, under the hypothesis that their origin was the Moon.

  12. Emergent Run-and-Tumble Behavior in a Simple Model of Chlamydomonas with Intrinsic Noise

    NASA Astrophysics Data System (ADS)

    Bennett, Rachel R.; Golestanian, Ramin

    2013-04-01

    Recent experiments on the green alga Chlamydomonas that swims using synchronized beating of a pair of flagella have revealed that it exhibits a run-and-tumble behavior similar to that of bacteria such as E. coli. Using a simple purely hydrodynamic model that incorporates a stroke cycle and an intrinsic Gaussian white noise, we show that a stochastic run-and-tumble behavior could emerge due to the nonlinearity of the combined synchronization-rotation-translation dynamics. Our study suggests that nonlinear mechanics could be a significant contributing factor to how the trajectories of the microorganism are selected.

  13. Investigations of Tumbling Characteristics of a 1/20-Scale Model of the Northrop N-9M Airplane

    NASA Technical Reports Server (NTRS)

    MacDougall, George F., Jr.

    1947-01-01

    The tumbling characteristics of a 1/20-scale model of the Northrop N-9M airplane have been determined in the Langley 20-foot free-spinning tunnel for various configurations and loading conditions of the model. The investigation included tests to determine whether recovery from a tumble could be effected by the use of parachutes. An estimation of the forces due to acceleration acting on the pilot during a tumble was made. The tests were performed at an equivalent test altitude of 15,000 feet. The results of the model tests indicate that if the airplane is stalled with its nose up and near the vertical, or if an appreciable amount of pitching rotation is imparted to the airplane as through the action of a strong gust, the airplane will either tumble or oscillate in pitch through a range of angles of the order of +/-120 deg. The normal flying controls will probably be ineffective in preventing or in terminating the tumbling motion. The results of the model tests indicate that deflection of the landing flaps full down immediately upon the initiation of pitching rotation will tend to prevent the development of a state of tumbling equilibrium. The simultaneous opening of two-7-foot diameter parachutes having drag coefficients of 0.7, one parachute attached to the rear portion of each wing tip with a towline between 10 and 30 feet long, will provide recovery from a tumble. The accelerations acting on the pilot during a tumble will be dangerous.

  14. Navigation capability for an ion drive rendezvous with Halley's Comet

    NASA Technical Reports Server (NTRS)

    Thornton, C. L.; Jacobson, R. A.

    1978-01-01

    Navigation accuracies are presented for a 1985 rendezvous with Halley's Comet using an ion propulsion system. Individual error sources are examined to determine their relative contributions to final delivery errors. The sensitivity of delivery accuracy to stochastic thrust variations is demonstrated by considering a baseline thrust error model and a more benign alternative model. Also studied are the effects of increased comet ephemeris uncertainties and of operational time delays between the orbit determination process and the guidance implementation.

  15. Low-energy multiple rendezvous of main belt asteroids

    NASA Technical Reports Server (NTRS)

    Penzo, Paul A.; Bender, David F.

    1992-01-01

    An approach to multiple asteroid rendezvous missions to the main belt region is proposed. In this approach key information which consists of a launch date and delta V can be generated for all possible pairs of asteroids satisfying specific constraints. This information is made available on a computer file for 1000 numbered asteroids with reasonable assumptions, limitations, and approximations to limit the computer requirements and the size of the data file.

  16. Trajectory Control of Rendezvous with Maneuver Target Spacecraft

    NASA Technical Reports Server (NTRS)

    Zhou, Zhinqiang

    2012-01-01

    In this paper, a nonlinear trajectory control algorithm of rendezvous with maneuvering target spacecraft is presented. The disturbance forces on the chaser and target spacecraft and the thrust forces on the chaser spacecraft are considered in the analysis. The control algorithm developed in this paper uses the relative distance and relative velocity between the target and chaser spacecraft as the inputs. A general formula of reference relative trajectory of the chaser spacecraft to the target spacecraft is developed and applied to four different proximity maneuvers, which are in-track circling, cross-track circling, in-track spiral rendezvous and cross-track spiral rendezvous. The closed-loop differential equations of the proximity relative motion with the control algorithm are derived. It is proven in the paper that the tracking errors between the commanded relative trajectory and the actual relative trajectory are bounded within a constant region determined by the control gains. The prediction of the tracking errors is obtained. Design examples are provided to show the implementation of the control algorithm. The simulation results show that the actual relative trajectory tracks the commanded relative trajectory tightly. The predicted tracking errors match those calculated in the simulation results. The control algorithm developed in this paper can also be applied to interception of maneuver target spacecraft and relative trajectory control of spacecraft formation flying.

  17. Quality characteristics of a dry-cured lamb leg as affected by tumbling after dry-salting and processing time.

    PubMed

    Villalobos-Delgado, Luz H; Caro, Irma; Blanco, Carolina; Morán, Lara; Prieto, Nuria; Bodas, Raul; Giráldez, Francisco J; Mateo, Javier

    2014-05-01

    The aim of this study was to evaluate selected quality characteristics of a dry-cured lamb leg with different tumbling treatments after salting. The characteristics were measured at different processing times. Three batches of dry-cured lamb legs (nine legs per batch) were prepared with no-, short- and long-tumbling treatments, and microbial counts, NaCl, aw, proximate composition, pH, free fatty acids, water soluble nitrogen, volatile compounds, texture and colour were evaluated at days 1, 22 and 71 of processing. Furthermore, a descriptive sensory analysis (flavour and texture) was performed in the final product (day 71). Time-related changes were observed for most of the characteristics studied. The effect of tumbling was only observed for the sensory attribute pastiness that was higher in tumbled legs. Methyl-branched butanal was only detected in tumbled legs.

  18. Mission options for rendezvous with the most accessible Near-Earth Asteroid - 1989 ML

    NASA Astrophysics Data System (ADS)

    McAdams, Jim V.

    1992-08-01

    The recent discovery of the Amor-class 1989 ML, the most accessible known asteroid for minimum-energy rendezvous missions, has expedited the search for frequent, low-cost Near-Earth Asteroid rendezvous and round-trip missions. This paper identifies trajectory characteristics and assesses mass performance for low Delta V ballistic rendezvous opportunities to 1989 ML during the period 1996-2010. This asteroid also offers occasional unique extended mission opportunities, such as the lowest known Delta V requirement for any asteroid sample return mission as well as pre-rendezvous asteroid flyby and post-rendezvous comet flyby opportunities requiring less than 5.25 km/sec total Delta V. This paper also briefly comments concerning mission opportunities for asteroid 1991 JW, which recently replaced other known asteroids as the most accessible Near-Earth Asteroid for fast rendezvous and round-trip missions.

  19. Mission options for rendezvous with the most accessible Near-Earth Asteroid - 1989 ML

    NASA Technical Reports Server (NTRS)

    Mcadams, Jim V.

    1992-01-01

    The recent discovery of the Amor-class 1989 ML, the most accessible known asteroid for minimum-energy rendezvous missions, has expedited the search for frequent, low-cost Near-Earth Asteroid rendezvous and round-trip missions. This paper identifies trajectory characteristics and assesses mass performance for low Delta V ballistic rendezvous opportunities to 1989 ML during the period 1996-2010. This asteroid also offers occasional unique extended mission opportunities, such as the lowest known Delta V requirement for any asteroid sample return mission as well as pre-rendezvous asteroid flyby and post-rendezvous comet flyby opportunities requiring less than 5.25 km/sec total Delta V. This paper also briefly comments concerning mission opportunities for asteroid 1991 JW, which recently replaced other known asteroids as the most accessible Near-Earth Asteroid for fast rendezvous and round-trip missions.

  20. Apollo experience report: Evolution of the rendezvous-maneuver plan for the lunar-landing missions

    NASA Technical Reports Server (NTRS)

    Alexander, J. D.; Becker, R. W.

    1973-01-01

    The evolution of the nominal rendezvous-maneuver plan for the lunar landing missions is presented along with a summary of the significant development for the lunar module abort and rescue plan. A general discussion of the rendezvous dispersion analysis that was conducted in support of both the nominal and contingency rendezvous planning is included. Emphasis is placed on the technical developments from the early 1960's through the Apollo 15 mission (July to August 1971), but pertinent organizational factors also are discussed briefly. Recommendations for rendezvous planning for future programs relative to Apollo experience also are included.

  1. Practitioner Expertise: Creating Quality within the Daily Tumble of Events in Youth Settings

    ERIC Educational Resources Information Center

    Larson, Reed W.; Rickman, Aimee N.; Gibbons, Colleen M.; Walker, Kathrin C.

    2009-01-01

    Practitioners in youth settings experience life on the ground as a tumble of events, shaped by a confluence of youth needs, institutional expectations, and other inputs. The quality of the setting is determined in part by practitioners' expertise in shaping and responding to these events. The situations that arise in practice, and how staff…

  2. Preschool Teachers' Perceptions of Rough and Tumble Play vs. Aggression in Preschool-Aged Boys

    ERIC Educational Resources Information Center

    DiCarlo, Cynthia F.; Baumgartner, Jennifer; Ota, Carrie; Jenkins, Charlene

    2015-01-01

    Rough and tumble play has been found to be positive for physical, social and cognitive development; it is often erroneously misinterpreted as aggression and generally stopped by preschool teachers. The current study sought to examine the relationship between teacher training and education and judgements about aggression in children. Ninety-four…

  3. Simulation of collective behaviour in micro-scale swimmers: Effects of tumbling and rotary diffusion

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Deepak; Subramanian, Ganesh

    2013-11-01

    Recent experiments have shown that suspensions of swimming micro-organisms are characterized by complex dynamics involving enhanced swimming speeds, large-scale correlated motions and enhanced tracer diffusion. Understanding this dynamics is of fundamental interest and also has relevance to biological systems. In this work we develop a particle-based computational model to study a suspension of hydrodynamically interacting rod-like swimmers with the relation between the swimming velocity and intrinsic stress being enforced from slender body theory. Such an a priori specification reduces the computational cost since one now has a ``kinematic'' simulation with a fixed interaction law between swimmers; this does not restrict our study of the dynamics since the destabilizing mechanism has been attributed to the intrinsic (rather than the induced) stress field. Importantly, the model will include intrinsic de-correlation mechanisms found in bacteria such as rotary diffusion and tumbling whose effects have so far not been studied via simulations. Using this model we predict a box-size independent stability threshold based on the suspension concentration, tumble-time (duration between subsequent tumble events) and rotary diffusivity. Comparisons are made with the linear stability theory predictions by Subramanian & Koch (JFM 2009). We demonstrate that the effect of tumbling and rotary diffusion is to stabilize the suspension.

  4. Rough and Tumble Play Quality: Theoretical Foundations for a New Measure of Father-Child Interaction

    ERIC Educational Resources Information Center

    Fletcher, Richard; StGeorge, Jennifer; Freeman, Emily

    2013-01-01

    Energetic, competitive, body-contact play (rough and tumble play (RTP)) is commonly observed among young children and is reported as an important feature of father-child relationships. Animal studies have demonstrated positive developmental effects of peer-peer play-wrestling, influencing cognitive and social outcomes. The purpose of this paper is…

  5. Is Father-Child Rough-and-Tumble Play Associated with Attachment or Activation Relationships?

    ERIC Educational Resources Information Center

    Paquette, Daniel; Dumont, Caroline

    2013-01-01

    The activation relationship theory, primarily focused on parental stimulation of risk-taking along with parental control during exploration, predicts that boys will be activated more than girls by their fathers. This theory may explain why fathers engage in rough-and-tumble play (RTP) with children more frequently than mothers, especially with…

  6. Hydrodynamic effects on the tumbling of flagellated bacteria near a solid surface

    NASA Astrophysics Data System (ADS)

    Molaei, Mehdi; Sheng, Jian

    2011-11-01

    Peritrichously flagellated bacteria use semi-rigid helical flagella to form a bundle during a run to swim forward and to trigger the unbundling during a tumble to change their swimming direction. It is accepted that the hydrodynamic interactions play a significant role in these processes. Recently, using digital holographic microscopy and microfluidics, we discovered that the tumbling events are substantially suppressed near a solid wall. In this paper, we present a two flagellum rigid model to elucidate the hydrodynamic wall interaction mechanism behind the phenomenon. Further implications on cell attachment and detachment during the biofilm formation will be discussed. We apply Slender Body Theory (SBT) to quantify the flow flagellum interaction. The no-slip boundary imposed by the wall is modeled using the image system of the SBT model for the stoke-flow singularity. We show that in the bulk, a repulsive force among flagella initiates the unbundling and consequently tumbling; however, in presence of the wall, the force is strongly mitigated that stabilize the bundle and suppress the tumbling. NIH and NSF.

  7. Hydrodynamic model of bacterial tumbling near a non-slip surface

    NASA Astrophysics Data System (ADS)

    Sheng, Jian; Molaei, Mehdi

    2013-11-01

    To swim forward, wild type Escherichia coli bacteria rotate their helical flagella CCW to form a bundle; to tumble, one or more flagella rotate CW to initiate flagella unbundling and polymorphic transformation that leads to a significant change in cell orientation in comparison to original swimming direction. These random change of direction increases bacterial dispersion and also is long speculated to be a mechanism for perichtricous bacteria to escape from a surface. Our recent experimental results show that the tumbling frequency is substantially suppressed near a solid surface by 50%, and the bacterium tends to start a new run in the direction parallel to the surface. This suppression occurs at two cell length (including flagella) away from the surface whereby steric hindrance plays less significant role. Here we propose an analytical model based on hydrodynamic interaction between flagella and the solid surface. We utilize Slender Body Theory combined with the image system of the singularities for the Stoke-flow to quantify the flow around the bacterial flagella in the presence of a no-slip surface. The model includes two non-identical rigid helical flagella representing a bundle and single flagellum. We have showed that in the bulk, a repulsive force among flagella initiates the unbundling and consequently tumbling; however, in presence of a solid surface, the force is strongly mitigated that stabilize the bundle and suppress the tumbling. NIH, NSF, GoMRI.

  8. Factors determining the reliable description of global tumbling parameters in solution NMR.

    PubMed

    Pawley, Norma H; Gans, Jason D; Nicholson, Linda K

    2002-11-01

    An accurate description of global tumbling of a protein is essential for correct analysis and interpretation of internal dynamics and thermodynamics. The accurate fitting of global tumbling parameters is affected by the number of experimental relaxation data points available for analysis, the distribution of data points over the domain of the function describing the tumbling, the measurement error associated with the data, the error associated with use of an approximate functional form, and errors in the protein structure. We present an analysis of the influence of these factors on the error in global tumbling parameters and the corresponding error in the calculated T(1)/T(2) values. We find that reduction of experimental and approximation error can compensate for a less-than-ideal quantity or distribution of data points, and that accurate parameters can be obtained for proteins with highly anisotropic distributions of bond vectors, as illustrated using the helical bundle protein G-CSF. This indicates that proteins with anisotropic distributions, such as the helical bundle class of proteins, should not summarily be excluded when selecting proteins for dynamic and thermodynamic analyses of (15)N backbone relaxation measurements.

  9. Lightcurve Analysis of NEA (331471) 1984 QY1: A Tumbling Asteroid

    NASA Astrophysics Data System (ADS)

    Warner, Brian D.; Benishek, Vladimir

    2016-10-01

    Analysis of CCD photometric observations of the near- Earth asteroid (331471) 1984 QY1 show that it is likely in non-principal axis rotation (NPAR), or tumbling. A single period analysis found a dominant period of 45.5 ± 0.5 h, but the true periods of rotation and precession could not be determined.

  10. Fiber laser-based scanning lidar for space rendezvous and docking.

    PubMed

    Luo, Yuan; He, Yan; Gao, Min; Zhou, Cuiyun; Zang, Huaguo; Lei, Linjun; Xie, Kedi; Yang, Yan; Shi, Wei; Hou, Xia; Chen, Weibiao

    2015-03-20

    Lidar systems have played an important role in space rendezvous and docking (RVD). A new type of scanning lidar is developed using a high-repetition-rate pulsed fiber laser and a position detector. It will be a candidate for autonomous space RVD between two spacecrafts. The lidar can search and track cooperative targets in a large region without artificial guidance. The lidar's operational range spans from 18 m to 20 km, and the relative angle between two aircrafts can be measured with high accuracy. A novel fiber laser with tunable pulse energy and repetition rate is developed to meet the wide dynamic detection range of the lidar. This paper presents the lidar system's composition, performance, and experimental results in detail.

  11. Effect of Different Tumbling Marination Methods and Time on the Water Status and Protein Properties of Prepared Pork Chops

    PubMed Central

    Gao, Tian; Li, Jiaolong; Zhang, Lin; Jiang, Yun; Yin, Maowen; Liu, Yang; Gao, Feng; Zhou, Guanghong

    2015-01-01

    The combined effect of tumbling marination methods (vacuum continuous tumbling marination, CT; vacuum intermittent tumbling marination, IT) and effective tumbling time (4, 6, 8, and 10 h) on the water status and protein properties of prepared pork chops was investigated. Results showed that regardless of tumbling time, CT method significantly decreased the muscle fiber diameter (MD) and significantly increased the total moisture content, product yield, salt soluble proteins (SSP) solubility, immobilized water component (p<0.05) compared with IT method. With the effective tumbling time increased from 4 h to 10 h, the fat content and the MD were significantly decreased (p<0.05), whereas the SSP solubility of prepared pork chops increased firstly and then decreased. Besides, an interactive effect between CT method and effective tumbling time was also observed for the chemical composition and proportion of immobilized water (p<0.05). These results demonstrated that CT method of 8 h was the most beneficial for improving the muscle structure and water distribution status, increasing the water-binding capacity and accelerating the marinade efficiency of pork chops; and thus, it should be chosen as the most optimal treatment method for the processing production of prepared pork chops. PMID:26104408

  12. Reference equations of motion for automatic rendezvous and capture

    NASA Technical Reports Server (NTRS)

    Henderson, David M.

    1992-01-01

    The analysis presented in this paper defines the reference coordinate frames, equations of motion, and control parameters necessary to model the relative motion and attitude of spacecraft in close proximity with another space system during the Automatic Rendezvous and Capture phase of an on-orbit operation. The relative docking port target position vector and the attitude control matrix are defined based upon an arbitrary spacecraft design. These translation and rotation control parameters could be used to drive the error signal input to the vehicle flight control system. Measurements for these control parameters would become the bases for an autopilot or feedback control system (FCS) design for a specific spacecraft.

  13. Virtual reality applications to automated rendezvous and capture

    NASA Technical Reports Server (NTRS)

    Hale, Joseph; Oneil, Daniel

    1991-01-01

    Virtual Reality (VR) is a rapidly developing Human/Computer Interface (HCI) technology. The evolution of high-speed graphics processors and development of specialized anthropomorphic user interface devices, that more fully involve the human senses, have enabled VR technology. Recently, the maturity of this technology has reached a level where it can be used as a tool in a variety of applications. This paper provides an overview of: VR technology, VR activities at Marshall Space Flight Center (MSFC), applications of VR to Automated Rendezvous and Capture (AR&C), and identifies areas of VR technology that requires further development.

  14. Analysis of the relative attitude estimation and control problem for satellite inspection and orbital rendezvous

    NASA Astrophysics Data System (ADS)

    Geller, D.

    2007-06-01

    A key component of satellite inspection and orbital rendezvous missions is relative attitude estimation and control. This paper analyzes a specific angles-only relative attitude estimation concept where it is assumed that a chaser spacecraft is capable of processing onboard imagery of a resident space object (RSO) and identifying the pixel locations of preselected RSO features. The pixel measurements along with chaser gyro and star camera data are processed by an extended Kalman filter to provide continuous estimates of the relative position and attitude. A novel linear covariance program is used to evaluate the effects of feature-tracking camera errors, gyro errors, star camera errors, measurement rates, and translation and rotational disturbances on relative navigation performance. Linear covariance techniques are further employed to evaluate the closed-loop performance of a relative attitude and position control system.

  15. Low-thrust mission risk analysis, with application to a 1980 rendezvous with the comet Encke

    NASA Technical Reports Server (NTRS)

    Yen, C. L.; Smith, D. B.

    1973-01-01

    A computerized failure process simulation procedure is used to evaluate the risk in a solar electric space mission. The procedure uses currently available thrust-subsystem reliability data and performs approximate simulations of the thrust sybsystem burn operation, the system failure processes, and the retargeting operations. The method is applied to assess the risks in carrying out a 1980 rendezvous mission to the comet Encke. Analysis of the results and evaluation of the effects of various risk factors on the mission show that system component failure rates are the limiting factors in attaining a high mission relability. It is also shown that a well-designed trajectory and system operation mode can be used effectively to partially compensate for unreliable thruster performance.

  16. Navigation system design for a Halley Flyby/Tempel 2 Rendezvous mission using ion drive

    NASA Technical Reports Server (NTRS)

    Wood, L. J.; Hast, S. L.

    1979-01-01

    A dual comet (Hall Flyby/Tempel 2 Rendezvous) mission, making use of the solar electric propulsion system, is under consideration for a 1985 launch. This paper describes the preliminary navigation system design for this mission. Orbit determination and guidance strategies for each mission phase are discussed. Navigation accuracy analyses and parametric senstivity studies for the Tempel 2 rendezvous approach phase are presented.

  17. Tumbling asteroid rotation with the YORP torque and inelastic energy dissipation

    NASA Astrophysics Data System (ADS)

    Breiter, S.; Murawiecka, M.

    2015-05-01

    The Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect and rotational energy dissipation due to inelastic deformations are two key mechanisms affecting rotation of tumbling asteroids in long term. Each of the effects used to be discussed separately. We present the first results concerning a simulation of their joint action. Asteroids (3103) Eger and (99942) Apophis, as well as their scaled variants, are used as test bodies. Plugging in the dissipation destroys limit cycles of the pure YORP, but creates a new asymptotic state of stationary tumbling with a fixed rotation period. The present model does not contradict finding Eger in the principal axis rotation. For Apophis, the model suggests that its current rotation state should be relatively young. In general, the fraction of initial conditions leading to the principal axis rotation is too small, compared to the actual data. The model requires a stronger energy dissipation and weaker YORP components in the nutation angle and obliquity.

  18. Stabilization and parameter identification of tumbling space debris with bounded torque in postcapture

    NASA Astrophysics Data System (ADS)

    Zhang, Teng; Yue, Xiaokui; Ning, Xin; Yuan, Jianping

    2016-06-01

    This paper presents a new control scheme for the problem of a space robot after capturing an unknown tumbling target, such as space debris. Robotic capturing the target may destabilize the base of spacecraft and control torque is bounded which would affect the performance of attitude control system. To stabilize the base with bounded torque in postcapture scenario, a new control scheme which utilizes the control torque to balance angular momentum and motion of the manipulator to compensate limitation of the torque, is proposed. Considering uncertainties of the target, parameter identification technique for tumbling target with linear momentum is utilized to correct parameters of the controller. To verify validity and feasibility of the proposed concept, a planar space robot capturing small, medium and large target with or without linear momentum is studied. The results show that the whole system is stabilized finally and all the inertial parameters of the target converge to their real values.

  19. Determination of Eros Physical Parameters for Near Earth Asteroid Rendezvous Orbit Phase Navigation

    NASA Technical Reports Server (NTRS)

    Miller, J. K.; Antreasian, P. J.; Georgini, J.; Owen, W. M.; Williams, B. G.; Yeomans, D. K.

    1995-01-01

    Navigation of the orbit phase of the Near Earth steroid Rendezvous (NEAR) mission will re,quire determination of certain physical parameters describing the size, shape, gravity field, attitude and inertial properties of Eros. Prior to launch, little was known about Eros except for its orbit which could be determined with high precision from ground based telescope observations. Radar bounce and light curve data provided a rough estimate of Eros shape and a fairly good estimate of the pole, prime meridian and spin rate. However, the determination of the NEAR spacecraft orbit requires a high precision model of Eros's physical parameters and the ground based data provides only marginal a priori information. Eros is the principal source of perturbations of the spacecraft's trajectory and the principal source of data for determining the orbit. The initial orbit determination strategy is therefore concerned with developing a precise model of Eros. The original plan for Eros orbital operations was to execute a series of rendezvous burns beginning on December 20,1998 and insert into a close Eros orbit in January 1999. As a result of an unplanned termination of the rendezvous burn on December 20, 1998, the NEAR spacecraft continued on its high velocity approach trajectory and passed within 3900 km of Eros on December 23, 1998. The planned rendezvous burn was delayed until January 3, 1999 which resulted in the spacecraft being placed on a trajectory that slowly returns to Eros with a subsequent delay of close Eros orbital operations until February 2001. The flyby of Eros provided a brief glimpse and allowed for a crude estimate of the pole, prime meridian and mass of Eros. More importantly for navigation, orbit determination software was executed in the landmark tracking mode to determine the spacecraft orbit and a preliminary shape and landmark data base has been obtained. The flyby also provided an opportunity to test orbit determination operational procedures that will be

  20. Combined radiologic and endoscopic treatment (using the “rendezvous technique”) of a biliary fistula following left hepatectomy

    PubMed Central

    Gracient, Aurélien; Rebibo, Lionel; Delcenserie, Richard; Yzet, Thierry; Regimbeau, Jean-Marc

    2016-01-01

    Despite the ongoing decrease in the frequency of complications after hepatectomy, biliary fistulas still occur and are associated with high morbidity and mortality rates. Here, we report on an unusual technique for managing biliary fistula following left hepatectomy in a patient in whom the right posterior segmental duct joined the left hepatic duct. The biliary fistula was treated with a combined radiologic and endoscopic procedure based on the “rendezvous technique”. The clinical outcome was good, and reoperation was not required. PMID:27570431

  1. The Hydrodynamics of a Run-and-Tumble Bacterium Propelled by Polymorphic Helical Flagella

    PubMed Central

    Watari, Nobuhiko; Larson, Ronald G.

    2010-01-01

    Abstract To study the swimming of a peritrichous bacterium such as Escherichia coli, which is able to change its swimming direction actively, we simulate the “run-and-tumble” motion by using a bead-spring model to account for: 1), the hydrodynamic and the mechanical interactions among the cell body and multiple flagella; 2), the reversal of the rotation of a flagellum in a tumble; and 3), the associated polymorphic transformations of the flagellum. Because a flexible hook connects the cell body and each flagellum, the flagella can take independent orientations with respect to the cell body. This simulation reproduces the experimentally observed behaviors of E. coli, namely, a three-dimensional random-walk trajectory in run-and-tumble motion and steady clockwise swimming near a wall. We show that the polymorphic transformation of a flagellum in a tumble facilitates the reorientation of the cell, and that the time-averaged flow-field near a cell in a run has double-layered helical streamlines, with a time-dependent flow magnitude large enough to affect the transport of surrounding chemoattractants. PMID:20074512

  2. Gossip-based solutions for discrete rendezvous in populations of communicating agents.

    PubMed

    Hollander, Christopher D; Wu, Annie S

    2014-01-01

    The objective of the rendezvous problem is to construct a method that enables a population of agents to agree on a spatial (and possibly temporal) meeting location. We introduce the buffered gossip algorithm as a general solution to the rendezvous problem in a discrete domain with direct communication between decentralized agents. We compare the performance of the buffered gossip algorithm against the well known uniform gossip algorithm. We believe that a buffered solution is preferable to an unbuffered solution, such as the uniform gossip algorithm, because the use of a buffer allows an agent to use multiple information sources when determining its desired rendezvous point, and that access to multiple information sources may improve agent decision making by reinforcing or contradicting an initial choice. To show that the buffered gossip algorithm is an actual solution for the rendezvous problem, we construct a theoretical proof of convergence and derive the conditions under which the buffered gossip algorithm is guaranteed to produce a consensus on rendezvous location. We use these results to verify that the uniform gossip algorithm also solves the rendezvous problem. We then use a multi-agent simulation to conduct a series of simulation experiments to compare the performance between the buffered and uniform gossip algorithms. Our results suggest that the buffered gossip algorithm can solve the rendezvous problem faster than the uniform gossip algorithm; however, the relative performance between these two solutions depends on the specific constraints of the problem and the parameters of the buffered gossip algorithm.

  3. Tumbling experiments to test fragmentation and abrasion of rocks from the Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Herman, F.; Fluekiger, L.; Cox, S. C.; Beyssac, O.

    2011-12-01

    Detrital cobbles and pebbles were collected from rivers draining the Southern Alps in the South Island of New Zealand. Our objective was to obtain a time-series of abrasion and fragmentation processes, in order to replicate fluvial processes and understand the relative erosion resistance of bedrock lithologies. Lithologies included variably metamorphosed greywacke-sandstone, semischist and schist, reflecting the range of rocks in the hangingwall of the Alpine Fault exhumed by differential uplift, and granite and gneiss in the footwall. Rocks were cut into 3cm cubes, weighed individually and washed in millipore water, then photographed. Experimental sample sets, matching the proportions of rock lithologies observed in the riverbeds, were placed in rectangular 20 litre containers together with 2 litres of fresh rainwater. Containers were rotated in a concrete mixer at 26 revolutions per minute for 2, 4, 12 and 49 hours, with a duplicate geochemical blank sample left for 50 hrs without tumbing. Each set of tumbled material was then extracted, photographed, classified, sorted into size fractions, weighed and saved for further analysis. Samples of sand, silt, rock-contaminated water and suspended sediment were also collected for filtering of suspended sediment, petrography and chemical analysis. Tumbling produced dramatic differences in the behaviour of different rocks, particularly in the relative strength of sandstone, semischist and schist lithologies. Cubes of schist fragmented into tabular pieces and rounded quickly, within two hours, compared with semischist and sandstone which retained cuboid forms and suffered only minor rounding of edges after 49 hours tumbling. Fine-grained material produced as a by-product was dominated by a silt/clay fraction that increased in quantity with tumbling time. Relatively little sand-sized sediment was generated, and its quantity decreased with tumbling time as it was also transformed into finer material. The experiment highlights

  4. Short profile for the human spacecraft Soyuz-TMA rendezvous mission to the ISS☆

    NASA Astrophysics Data System (ADS)

    Murtazin, Rafail; Petrov, Nikolay

    2012-08-01

    Reduction of flight duration after insertion till docking to the ISS is considered. In the beginning of the human flight era both the USSR and the USA used short mission profiles due to limited life support resources. A rendezvous during these missions was usually achieved in 1-5 revolutions. The short-term rendezvous were made possible by the coordinated launch profiles of both rendezvousing spacecraft, which provided specific relative position of the spacecraft or phase angle conditions. After the beginning of regular flights to the orbital stations these requirements became difficult to fulfill. That is why it was decided to transfer to 1- or 2-day rendezvous profile. The long stay of a crew in a limited habitation volume of the Soyuz-TMA spacecraft before docking to the ISS is one of the most strained parts of the flight and naturally cosmonauts wish to dock to the ISS as soon as possible. As a result of previous studies the short four-burn rendezvous mission profile with docking in a few orbits was developed. It is shown that the current capabilities of the Soyuz-FG launch vehicle and the Soyuz-TMA spacecraft are sufficient to provide for that. The first test of the short rendezvous mission during Progress cargo vehicle flight to the ISS is planned for 2012. Possible contingencies pertinent to this profile are described. In particular, in the majority of the emergency cases there is a possibility of an urgent transfer to the present 2-day rendezvous profile. Thus, the short mission will be very flexible and will not influence the ISS mission plan. Fuel consumption for the nominal and emergency cases is defined by statistical simulation of the rendezvous mission. The qualitative analysis of the short-term and current 2-day rendezvous missions is performed.

  5. New developments in astrodynamics algorithms for autonomous rendezvous

    NASA Technical Reports Server (NTRS)

    Klumpp, Allan R.

    1991-01-01

    A the core of any autonomous rendezvous guidance system must be two algorithms for solving Lambert's and Kepler's problems, the two fundamental problems in classical astrodynamics. Lambert's problem is to determine the trajectory connecting specified initial and terminal position vectors in a specified transfer time. The solution is the initial and terminal velocity vectors. Kepler's problem is to determine the trajectory that stems from a given initial state (position and velocity). The solution is the state of an earlier or later specified time. To be suitable for flight software, astrodynamics algorithms must be totally reliable, compact, and fast. Although solving Lambert's and Kepler's problems has challenged some of the world's finest minds for over two centuries, only in the last year have algorithms appeared that satisfy all three requirements just stated. This paper presents an evaluation of the most highly regarded Lambert and Kepler algorithms.

  6. Near Earth Asteroid Rendezvous (NEAR) Spacecraft/Delta II launch

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Near Earth Asteroid Rendezvous (NEAR) spacecraft undergoing preflight preparation in the Spacecraft Assembly Encapsulation Facility-2 (SAEF-2) at Kennedy Space Center (KSC). NEAR will perform two critical mission events - Mathilde flyby and the Deep-Space maneuver. NEAR will fly-by Mathilde, a 38-mile (61-km) diameter C-type asteroid, making use of its imaging system to obtain useful optical navigation images. The primary science instrument will be the camera, but measurements of magnetic fields and mass also will be made. The Deep-Space Maneuver (DSM) will be executed about a week after the Mathilde fly-by. The DSM represents the first of two major burns during the NEAR mission of the 100-pound bi-propellant (Hydrazine/nitrogen tetroxide) thruster. This maneuver is necessary to lower the perihelion distance of NEAR's trajectory. The DSM will be conducted in two segments to minimize the possibility of an overburn situation.

  7. Rendezvous Integration Complexities of NASA Human Flight Vehicles

    NASA Technical Reports Server (NTRS)

    Brazzel, Jack P.; Goodman, John L.

    2009-01-01

    Propellant-optimal trajectories, relative sensors and navigation, and docking/capture mechanisms are rendezvous disciplines that receive much attention in the technical literature. However, other areas must be considered. These include absolute navigation, maneuver targeting, attitude control, power generation, software development and verification, redundancy management, thermal control, avionics integration, robotics, communications, lighting, human factors, crew timeline, procedure development, orbital debris risk mitigation, structures, plume impingement, logistics, and in some cases extravehicular activity. While current and future spaceflight programs will introduce new technologies and operations concepts, the complexity of integrating multiple systems on multiple spacecraft will remain. The systems integration task may become more difficult as increasingly complex software is used to meet current and future automation, autonomy, and robotic operation requirements.

  8. Transparent Ada rendezvous in a fault tolerant distributed system

    NASA Technical Reports Server (NTRS)

    Racine, Roger

    1986-01-01

    There are many problems associated with distributing an Ada program over a loosely coupled communication network. Some of these problems involve the various aspects of the distributed rendezvous. The problems addressed involve supporting the delay statement in a selective call and supporting the else clause in a selective call. Most of these difficulties are compounded by the need for an efficient communication system. The difficulties are compounded even more by considering the possibility of hardware faults occurring while the program is running. With a hardware fault tolerant computer system, it is possible to design a distribution scheme and communication software which is efficient and allows Ada semantics to be preserved. An Ada design for the communications software of one such system will be presented, including a description of the services provided in the seven layers of an International Standards Organization (ISO) Open System Interconnect (OSI) model communications system. The system capabilities (hardware and software) that allow this communication system will also be described.

  9. Orion Rendezvous, Proximity Operations, and Docking Design and Analysis

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher; Hanak, F. Chad; Spehar, Pete; Clark, Fred D.; Jackson, Mark

    2007-01-01

    The Orion vehicle will be required to perform rendezvous, proximity operations, and docking with the International Space Station (ISS) and the Earth Departure Stage (EDS)/Lunar Landing Vehicle (LLV) stack in Low Earth Orbit (LEO) as well as with the Lunar Landing Vehicle in Low Lunar Orbit (LLO). The RPOD system, which consists of sensors, actuators, and software is being designed to be flexible and robust enough to perform RPOD with different vehicles in different environments. This paper will describe the design and the analysis which has been performed to date to allow the vehicle to perform its mission. Since the RPOD design touches on many areas such as sensors selection and placement, trajectory design, navigation performance, and effector performance, it is inherently a systems design problem. This paper will address each of these issues in order to demonstrate how the Orion RPOD has been designed to accommodate and meet all the requirements levied on the system.

  10. Rendezvous, proximity operations and capture quality function deployment report

    NASA Astrophysics Data System (ADS)

    Lamkin, Stephen L.

    1991-12-01

    Rendezvous, Proximity Operations, and Capture (RPOC) is a missions operations area which is extremely important to present and future space initiatives and must be well planned and coordinated. To support this, a study team was formed to identify a specific plan of action using the Quality Function Deployment (QFD) process. This team was composed of members from a wide spectrum of engineering and operations organizations which are involved in the RPOC technology area. The key to this study's success is an understanding of the needs of potential programmatic customers and the technology base available for system implementation. To this end, the study team conducted interviews with a variety of near term and future programmatic customers and technology development sponsors. The QFD activity led to a thorough understanding of the needs of these customers in the RPOC area, as well as the relative importance of these needs.

  11. Mission opportunity maps for rendezvous with earth-crossing asteroids

    NASA Technical Reports Server (NTRS)

    Yen, Chen-Wan L.

    1989-01-01

    Rendezvous missions to earth-crossing asteroids are of interest to NASA, for scientific purposes as well as for technological applications and ecological implications. To provide a comprehensive data base for planners of such missions, a mission opportunity map (MOM) has been created for eight relatively easy-to-access asteroids. A MOM presents such mission data as launch dates, flight times, and launch and postlaunch delta V requirements for all useful mission opportunities. The merits of a MOM are: (1) searches for all useful mission oportunities are completed in the process of generating a MOM, and (2) a MOM provides a clear view of good and bad opportunities, the extent of performance variations, and the repeatability of the missions.

  12. Mission opportunity maps for rendezvous with earth-crossing asteroids

    NASA Technical Reports Server (NTRS)

    Yen, C.-W. L.

    1984-01-01

    Rendezvous missions for earth-crossing asteroids are of interest to NASA, for scientific purposes as well as for technological applications and ecological implications. To provide a comprehensive data base for planners of such missions, a mission opportunity map (MOM) has been created for eight relatively easy-to-access asteroids. A MOM presents such mission data as launch dates, flight times, and launch and postlaunch delta-V requirements for all useful mission opportunities. The merits of a MOM are: (1) searches for all useful mission opportunities are completed in the process of generating a MOM, and (2) a clear view of good and bad opportunities, the extent of performance variations, and the repeatability of the missions.

  13. A Comparison Between Orion Automated and Space Shuttle Rendezvous Techniques

    NASA Technical Reports Server (NTRS)

    Ruiz, Jose O,; Hart, Jeremy

    2010-01-01

    The Orion spacecraft will replace the space shuttle and will be the first human spacecraft since the Apollo program to leave low earth orbit. This vehicle will serve as the cornerstone of a complete space transportation system with a myriad of mission requirements necessitating rendezvous to multiple vehicles in earth orbit, around the moon and eventually beyond . These goals will require a complex and robust vehicle that is, significantly different from both the space shuttle and the command module of the Apollo program. Historically, orbit operations have been accomplished with heavy reliance on ground support and manual crew reconfiguration and monitoring. One major difference with Orion is that automation will be incorporated as a key element of the man-vehicle system. The automated system will consist of software devoted to transitioning between events based on a master timeline. This effectively adds a layer of high level sequencing that moves control of the vehicle from one phase to the next. This type of automated control is not entirely new to spacecraft since the shuttle uses a version of this during ascent and entry operations. During shuttle orbit operations however many of the software modes and hardware switches must be manually configured through the use of printed procedures and instructions voiced from the ground. The goal of the automation scheme on Orion is to extend high level automation to all flight phases. The move towards automation represents a large shift from current space shuttle operations, and so these new systems will be adopted gradually via various safeguards. These include features such as authority-to-proceed, manual down modes, and functional inhibits. This paper describes the contrast between the manual and ground approach of the space shuttle and the proposed automation of the Orion vehicle. I will introduce typical orbit operations that are common to all rendezvous missions and go on to describe the current Orion automation

  14. NASA Automated Rendezvous and Capture Review. Executive summary

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In support of the Cargo Transfer Vehicle (CTV) Definition Studies in FY-92, the Advanced Program Development division of the Office of Space Flight at NASA Headquarters conducted an evaluation and review of the United States capabilities and state-of-the-art in Automated Rendezvous and Capture (AR&C). This review was held in Williamsburg, Virginia on 19-21 Nov. 1991 and included over 120 attendees from U.S. government organizations, industries, and universities. One hundred abstracts were submitted to the organizing committee for consideration. Forty-two were selected for presentation. The review was structured to include five technical sessions. Forty-two papers addressed topics in the five categories below: (1) hardware systems and components; (2) software systems; (3) integrated systems; (4) operations; and (5) supporting infrastructure.

  15. Rendezvous, proximity operations and capture quality function deployment report

    NASA Technical Reports Server (NTRS)

    Lamkin, Stephen L. (Editor)

    1991-01-01

    Rendezvous, Proximity Operations, and Capture (RPOC) is a missions operations area which is extremely important to present and future space initiatives and must be well planned and coordinated. To support this, a study team was formed to identify a specific plan of action using the Quality Function Deployment (QFD) process. This team was composed of members from a wide spectrum of engineering and operations organizations which are involved in the RPOC technology area. The key to this study's success is an understanding of the needs of potential programmatic customers and the technology base available for system implementation. To this end, the study team conducted interviews with a variety of near term and future programmatic customers and technology development sponsors. The QFD activity led to a thorough understanding of the needs of these customers in the RPOC area, as well as the relative importance of these needs.

  16. STS 63 Flight Day 4 Highlights/MIR-Shuttle Rendezvous

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS 63 Flight, day 4, the MIR-Shuttle rendezvous is highlighted in this video. The six-member team in the Shuttle are introduced and discuss their functions and tests for this day of the flight. There is actual footage of earth from space, of the MIR Space Station, a tour of the Shuttle cockpit, some footage from the MIR of the Space Shuttle, and footage from inside the MIR with the cosmonauts. Mission control communications with the Shuttle, communication between the Shuttle and MIR, and an historic communication between the Shuttle's astronauts and President Bill Clinton are included. President Clinton interviews each of the six-member team and discusses the upcoming space walk by Dr. Bernard Harris, the first black astronaut to walk in space. This video was recorded on February 6, 1995.

  17. STS 63 flight day 4 highlights/MIR-Shuttle rendezvous

    NASA Astrophysics Data System (ADS)

    1995-02-01

    STS 63 Flight, day 4, the MIR-Shuttle rendezvous is highlighted in this video. The six-member team in the Shuttle are introduced and discuss their functions and tests for this day of the flight. There is actual footage of earth from space, of the MIR Space Station, a tour of the Shuttle cockpit, some footage from the MIR of the Space Shuttle, and footage from inside the MIR with the cosmonauts. Mission control communications with the Shuttle, communication between the Shuttle and MIR, and an historic communication between the Shuttle's astronauts and President Bill Clinton are included. President Clinton interviews each of the six-member team and discusses the upcoming space walk by Dr. Bernard Harris, the first black astronaut to walk in space. This video was recorded on February 6, 1995.

  18. Single photon lidar demonstrator for asteroid rendezvous missions

    NASA Astrophysics Data System (ADS)

    Vacek, Michael; Michalek, Vojtech; Peca, Marek; Prochazka, Ivan; Blazej, Josef; Djurovic, Goran

    2015-01-01

    We present compact single photon lidar demonstrator dedicated for asteroid rendezvous missions. The instrument provides crucial data on altitude and terrain profile for altitudes exceeding 5km with a precision of less than 10 cm fulfilling the Rayleigh criterion. Transmitter and receiver optics designs are discussed, control and processing electronics based on a single rad-hard compatible FPGA (Field Programmable Gate Array) is analyzed. The FPGA electronics subsystems are TDC (Time-to-Digit Converter), laser trigger pulse generator and gate generator. Indoor calibration procedures of the whole demonstrator chain are proposed and evaluated. The calibration covers positioning of receiver and transmitter optics related to detector and laser, aligning of transmitter and receiver optical common paths. The retrieving strategy of terrain elevation profile is proposed and via indoor tests validated. Theory for surface slope and scanning is established, simulation and measurement results are compared and discussed.

  19. Some impulsive rendezvous trajectories and their possible optimality.

    NASA Technical Reports Server (NTRS)

    Peltier, J. P.

    1972-01-01

    Two- and three-impulse trajectories are investigated for fixed-time, fixed-angle rendezvous between vacant circular coplanar orbits, for trip angles less than, or equal to 2 pi in magnitude. For two-impulse trajectories, general features of the characteristic velocity function are outlined. Parameters of the intermediate orbit are reviewed. Attention is given to limiting cases. Computation of the adjoint system helps to define the domain of possible optimality foajectories: it is a closed domain in the trip time, trip angle plane. Waiting periods on terminal orbits are considered. The domain of possible optimality is defined using Lawden's primer vrtory. This domain extends to infinity if the radius ratio of terminal orbits is less than 15.6. Three-impulse trajectories are tried in cases where two-impulse trajectories, with or without cost, have been found nonoptimal. Improvements on the characteristic velocity are thus obtained.

  20. Study of a comet rendezvous mission, volume 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The feasibility, scientific objectives, modes of exploration and implementation alternatives of a rendezvous mission to Encke's comet in 1984 are considered. Principal emphasis is placed on developing the scientific rationale for such a mission, based on available knowledge and best estimates of this comet's physical characteristics, including current theories of its origin, evolution and composition. Studied are mission profile alternatives, performance tradeoffs, preferred exploration strategy, and a spacecraft design concept capable of performing this mission. The study showed that the major scientific objectives can be met by a Titan IIID/Centaur-launched 17.5 kw solar electric propulsion spacecraft which carries 60 kg of scientific instruments and is capable of extensive maneuvering within the comet envelope to explore the coma, tail and nucleus.

  1. The comet rendezvous asteroid flyby mission: A status report

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Neugebauer, Marcia

    1991-01-01

    The Comet Rendezvous Asteroid Flyby (CRAF) mission received a new start in fiscal year 1990. CRAF will match orbits with an active short-period comet and follow it around the Sun, making scientific measurements of the nucleus, coma, and tail. The Imaging system will map the nucleus surface at a resolution of 1 meter/line-pair or better, while Visible and Infrared Mapping Spectrometer (VIMS) and Thermal Infrared Radiometer Experiment (TIREX) will produce spectral and thermal maps of the surface. Onboard instruments will collect cometary dust, ice, and gases and perform elemental and molecular analysis. A suite of fields and particles instruments will observe the solar wind interaction with the cometary atmosphere and tail. Radio tracking of the spacecraft will provide an accurate measure of the nucleus mass and higher harmonics in the comet's gravity field. En route to the comet, the spacecraft will make a close flyby of a large asteroid, preferably a primitive type from the outer main belt. Observations at the asteroid include remote sensing mapping of the surface, detection of any solar wind interaction observable at the flyby distance, and measurement of the asteroid mass to better than 10 percent accuracy. Detailed design of the CRAF spacecraft is currently underway at the Jet Propulsion Laboratory (JPL). Recent mass growth has necessitated a switch to Venus-Earth gravity assist type trajectories, similar to that used by the Galileo spacecraft. These trajectories require longer flight times from launch to rendezvous with the target comet. The details of the current baseline mission, spacecraft design, and instrument payload will be reviewed.

  2. Importance of chain tumbling and finite extension on the start-up and relaxation behavior of transient networks

    NASA Astrophysics Data System (ADS)

    Sing, Michelle; Wang, Zhen-Gang; McKinley, Gareth; Olsen, Bradley

    2015-03-01

    Associative polymer networks are ubiquitous in tissue and biomedical engineering. However, the particular molecular attributes that contribute to the macroscopic behavior like shear thinning, self-healing, and yield stress are less well known. Here we incorporate chemical kinetics in the the Smoluchowski Equation capable of modeling the full network chain end-to-end distance distribution while tracking the fraction of looped, bridged, and dangling chains in the gel. In steady shear, we see the development of non-monotonic flow instabilities when the rate of chain association and dissociation are slower than the rate of chain relaxation. These instabilities arise due to a combination of chain finite extensibility and tumbling. During start-up of steady shear, the combination of these two phenomena also results in stress overshoots followed by multiple damped oscillations toward steady-state. The timescale of chain relaxation after the cessation of shear is dominated by the chain kinetics of association and dissociation as a function of the fraction of dangling chains present at any time post-shear. Institute for Soldier Nanotechnologies, Department of Defense National Defense Science and Engineering Fellowship Program.

  3. Sodium chloride concentration affects yield, quality, and sensory acceptability of vacuum-tumbled marinated broiler breast fillets.

    PubMed

    Lopez, K; Schilling, M W; Armstrong, T W; Smith, B S; Corzo, A

    2012-05-01

    The objective of this experiment was to determine the effect of sodium chloride concentration on yield, instrumental quality, and sensory acceptability of broiler breast meat that was vacuum tumbled with a 15% solution (over green weight) for 30 min. Different concentrations (0, 0.25, 0.50, 0.75, 1.00, 1.25, and 1.50%) of NaCl (salt) and 0.35% sodium tripolyphosphate were included in the marinade solution. After marinating, breast fillets were evaluated for marination yields, pH, surface color, cooking loss, tenderness, expressible moisture, proximate composition, purge loss, sodium content, and sensory acceptability. As salt concentration increased, CIE L* decreased linearly, with a concentration of 0.75% having lower (P < 0.05) CIE L* values when compared with the control, 0, and 0.25% NaCl treatments. In addition, there was a linear and quadratic decrease (P < 0.05) in shear force as salt concentration increased, with no further decrease (P < 0.05) when greater than 0.75% NaCl was used. Cooking yield increased (P < 0.05) as the salt concentration increased to 1.0%. All marinated treatments were preferred (P < 0.05) over the control treatment, and all treatments marinated with at least 0.50% sodium chloride had an average rating of like moderately. Cluster analysis indicated that consumer groups varied in their preference of broiler breast meat treatments and that samples that were marinated with between 0.5 to 1.0% NaCl were acceptable to the majority of consumers. Marination with 0.75% NaCl was sufficient to maximize yields and decrease lightness (L*) in vacuum-tumbled, marinated broiler breast that is sold raw, but 1.0% NaCl could be used in a precooked product because it minimizes cook loss. In addition, use of 0.50% NaCl had minimal effects on yields, color, and sensory acceptability when compared with products that were marinated with greater concentrations of NaCl.

  4. Longitudinal Trim and Tumble Characteristics of a 0.057-Scale Model of the Chance Vought XF7U-1 Airplane, TED NO. NACA DE311

    NASA Technical Reports Server (NTRS)

    Bryant, Robert L.

    1948-01-01

    Based on results of longitudinal trim and tumble tests of a 0.057-scale model of the Chance Vought XF7U-1 airplane, the following conclusions regarding the trim and tumble characteristics of the airplane have been drawn: 1. The airplane will not trim at any unusual or uncontrolled angles of attack. 2. The airplane will not tumble with the center of gravity located forward of 24 percent of the mean aerodynamic chord. When the center of gravity is located at 24 percent of the mean aerodynamic chord and slats are extended and elevators are deflected full up, the airplane may tumble if given an external positive pitching moment. 3. The tumbling motion obtained will be readily terminated by deflecting the elevators full down so as to oppose the rotation. 4. The accelerations encountered during an established tumble may be dangerous to the pilot and, therefore, action should be taken to terminate a tumble immediately upon its inception. 5. Simultaneous opening of two wing-tip parachutes having diameters of 4 feet or larger and having drag coefficients of approximately 0.7 will effectively terminate the tumble. 6. Model results indicate that the pilot will not be struck by the airplane if it becomes necessary to leave the airplane during a tumble. The pilot may require aid from an ejection-seat arrangement.

  5. Solar electric propulsion for terminal flight to rendezvous with comets and asteroids. [using guidance algorithm

    NASA Technical Reports Server (NTRS)

    Bennett, A.

    1973-01-01

    A guidance algorithm that provides precise rendezvous in the deterministic case while requiring only relative state information is developed. A navigation scheme employing only onboard relative measurements is built around a Kalman filter set in measurement coordinates. The overall guidance and navigation procedure is evaluated in the face of measurement errors by a detailed numerical simulation. Results indicate that onboard guidance and navigation for the terminal phase of rendezvous is possible with reasonable limits on measurement errors.

  6. Collective transport for active matter run-and-tumble disk systems on a traveling-wave substrate

    NASA Astrophysics Data System (ADS)

    Sándor, Cs.; Libál, A.; Reichhardt, C.; Reichhardt, C. J. Olson

    2017-01-01

    We examine numerically the transport of an assembly of active run-and-tumble disks interacting with a traveling-wave substrate. We show that as a function of substrate strength, wave speed, disk activity, and disk density, a variety of dynamical phases arise that are correlated with the structure and net flux of disks. We find that there is a sharp transition into a state in which the disks are only partially coupled to the substrate and form a phase-separated cluster state. This transition is associated with a drop in the net disk flux, and it can occur as a function of the substrate speed, maximum substrate force, disk run time, and disk density. Since variation of the disk activity parameters produces different disk drift rates for a fixed traveling-wave speed on the substrate, the system we consider could be used as an efficient method for active matter species separation. Within the cluster phase, we find that in some regimes the motion of the cluster center of mass is in the opposite direction to that of the traveling wave, while when the maximum substrate force is increased, the cluster drifts in the direction of the traveling wave. This suggests that swarming or clustering motion can serve as a method by which an active system can collectively move against an external drift.

  7. Collective transport for active matter run-and-tumble disk systems on a traveling-wave substrate.

    PubMed

    Sándor, Cs; Libál, A; Reichhardt, C; Reichhardt, C J Olson

    2017-01-01

    We examine numerically the transport of an assembly of active run-and-tumble disks interacting with a traveling-wave substrate. We show that as a function of substrate strength, wave speed, disk activity, and disk density, a variety of dynamical phases arise that are correlated with the structure and net flux of disks. We find that there is a sharp transition into a state in which the disks are only partially coupled to the substrate and form a phase-separated cluster state. This transition is associated with a drop in the net disk flux, and it can occur as a function of the substrate speed, maximum substrate force, disk run time, and disk density. Since variation of the disk activity parameters produces different disk drift rates for a fixed traveling-wave speed on the substrate, the system we consider could be used as an efficient method for active matter species separation. Within the cluster phase, we find that in some regimes the motion of the cluster center of mass is in the opposite direction to that of the traveling wave, while when the maximum substrate force is increased, the cluster drifts in the direction of the traveling wave. This suggests that swarming or clustering motion can serve as a method by which an active system can collectively move against an external drift.

  8. Rough-and-tumble play and the regulation of aggression: an observational study of father-child play dyads.

    PubMed

    Flanders, Joseph L; Leo, Vanessa; Paquette, Daniel; Pihl, Robert O; Séguin, Jean R

    2009-01-01

    Rough-and-tumble play (RTP) is a common form of play between fathers and children. It has been suggested that RTP can contribute to the development of selfregulation. This study addressed the hypothesis that the frequency of father-child RTP is related to the frequency of physically aggressive behavior in early childhood. This relationship was expected to be moderated by the dominance relationship between father and son during play. Eighty-five children between the ages of 2 and 6 years were videotaped during a free-play session with their fathers in their homes and questionnaire data was collected about father-child RTP frequency during the past year. The play dyads were rated for the degree to which the father dominated play interactions. A significant statistical interaction revealed that RTP frequency was associated with higher levels of physical aggression in children whose fathers were less dominant. These results indicate that RTP is indeed related to physical aggression, though this relationship is moderated by the degree to which the father is a dominant playmate.

  9. Rough-and-Tumble Play and the Regulation of Aggression: An Observational Study of Father–Child Play Dyads

    PubMed Central

    Flanders, Joseph L.; Leo, Vanessa; Paquette, Daniel; Pihl, Robert O.; Séguin, Jean R.

    2012-01-01

    Rough-and-tumble play (RTP) is a common form of play between fathers and children. It has been suggested that RTP can contribute to the development of selfregulation. This study addressed the hypothesis that the frequency of father–child RTP is related to the frequency of physically aggressive behavior in early childhood. This relationship was expected to be moderated by the dominance relationship between father and son during play. Eighty-five children between the ages of 2 and 6 years were videotaped during a free-play session with their fathers in their homes and questionnaire data was collected about father–child RTP frequency during the past year. The play dyads were rated for the degree to which the father dominated play interactions. A significant statistical interaction revealed that RTP frequency was associated with higher levels of physical aggression in children whose fathers were less dominant. These results indicate that RTP is indeed related to physical aggression, though this relationship is moderated by the degree to which the father is a dominant playmate. PMID:19431190

  10. Fault tolerant cooperative control for UAV rendezvous problem subject to actuator faults

    NASA Astrophysics Data System (ADS)

    Jiang, T.; Meskin, N.; Sobhani-Tehrani, E.; Khorasani, K.; Rabbath, C. A.

    2007-04-01

    This paper investigates the problem of fault tolerant cooperative control for UAV rendezvous problem in which multiple UAVs are required to arrive at their designated target despite presence of a fault in the thruster of any UAV. An integrated hierarchical scheme is proposed and developed that consists of a cooperative rendezvous planning algorithm at the team level and a nonlinear fault detection and isolation (FDI) subsystem at individual UAV's actuator/sensor level. Furthermore, a rendezvous re-planning strategy is developed that interfaces the rendezvous planning algorithm with the low-level FDI. A nonlinear geometric approach is used for the FDI subsystem that can detect and isolate faults in various UAV actuators including thrusters and control surfaces. The developed scheme is implemented for a rendezvous scenario with three Aerosonde UAVs, a single target, and presence of a priori known threats. Simulation results reveal the effectiveness of our proposed scheme in fulfilling the rendezvous mission objective that is specified as a successful intercept of Aerosondes at their designated target, despite the presence of severe loss of effectiveness in Aerosondes engine thrusters.

  11. NEP for a Kuiper Belt Object Rendezvous Mission

    SciTech Connect

    HOUTS,MICHAEL G.; LENARD,ROGER X.; LIPINSKI,RONALD J.; PATTON,BRUCE; POSTON,DAVID I.; WRIGHT,STEVEN A.

    1999-11-03

    Kuiper Belt Objects (KBOs) are a recently-discovered set of solar system bodies which lie at about the orbit of Pluto (40 AU) out to about 100 astronomical units (AU). There are estimated to be about 100,000 KBOS with a diameter greater than 100 km. KBOS are postulated to be composed of the pristine material which formed our solar system and may even have organic materials in them. A detailed study of KBO size, orbit distribution, structure, and surface composition could shed light on the origins of the solar system and perhaps even on the origin of life in our solar system. A rendezvous mission including a lander would be needed to perform chemical analysis of the surface and sub-surface composition of KBOS. These requirements set the size of the science probe at around a ton. Mission analyses show that a fission-powered system with an electric thruster could rendezvous at 40 AU in about 13.0 years with a total {Delta}V of 46 krnk. It would deliver a 1000-kg science payload while providing ample onboard power for relaying data back to earth. The launch mass of the entire system (power, thrusters, propellant, navigation, communication, structure, science payload, etc.) would be 7984 kg if it were placed into an earth-escape trajectory (C=O). Alternatively, the system could be placed into a 700-km earth orbit with more propellant,yielding a total mass in LEO of 8618 kg, and then spiral out of earth orbit to arrive at the KBO in 14.3 years. To achieve this performance, a fission power system with 100 kW of electrical power and a total mass (reactor, shield, conversion, and radiator) of about 2350 kg. Three possible configurations are proposed: (1) a UZrH-fueled, NaK-cooled reactor with a steam Rankine conversion system, (2) a UN-fueled gas-cooled reactor with a recuperated Brayton conversion system, and (3) a UN-fueled heatpipe-cooled reactor with a recuperated Brayton conversion system. (Boiling and condensation in the Rankine system is a technical risk at present

  12. Autonomous Mission Manager for Rendezvous, Inspection and Mating

    NASA Technical Reports Server (NTRS)

    Zimpfer, Douglas J.

    2003-01-01

    To meet cost and safety objectives, space missions that involve proximity operations between two vehicles require a high level of autonomy to successfully complete their missions. The need for autonomy is primarily driven by the need to conduct complex operations outside of communication windows, and the communication time delays inherent in space missions. Autonomy also supports the goals of both NASA and the DOD to make space operations more routine, and lower operational costs by reducing the requirement for ground personnel. NASA and the DoD have several programs underway that require a much higher level of autonomy for space vehicles. NASA's Space Launch Initiative (SLI) program has ambitious goals of reducing costs by a factor or 10 and improving safety by a factor of 100. DARPA has recently begun its Orbital Express to demonstrate key technologies to make satellite servicing routine. The Air Force's XSS-ll program is developing a protoflight demonstration of an autonomous satellite inspector. A common element in space operations for many NASA and DOD missions is the ability to rendezvous, inspect anclJor dock with another spacecraft. For DARPA, this is required to service or refuel military satellites. For the Air Force, this is required to inspect un-cooperative resident space objects. For NASA, this is needed to meet the primary SLI design reference mission of International Space Station re-supply. A common aspect for each of these programs is an Autonomous Mission Manager that provides highly autonomous planning, execution and monitoring of the rendezvous, inspection and docking operations. This paper provides an overview of the Autonomous Mission Manager (AMM) design being incorporated into many of these technology programs. This AMM provides a highly scalable level of autonomous operations, ranging from automatic execution of ground-derived plans to highly autonomous onboard planning to meet ground developed mission goals. The AMM provides the

  13. Ku-Band rendezvous radar performance computer simulation model

    NASA Technical Reports Server (NTRS)

    Magnusson, H. G.; Goff, M. F.

    1984-01-01

    All work performed on the Ku-band rendezvous radar performance computer simulation model program since the release of the preliminary final report is summarized. Developments on the program fall into three distinct categories: (1) modifications to the existing Ku-band radar tracking performance computer model; (2) the addition of a highly accurate, nonrealtime search and acquisition performance computer model to the total software package developed on this program; and (3) development of radar cross section (RCS) computation models for three additional satellites. All changes in the tracking model involved improvements in the automatic gain control (AGC) and the radar signal strength (RSS) computer models. Although the search and acquisition computer models were developed under the auspices of the Hughes Aircraft Company Ku-Band Integrated Radar and Communications Subsystem program office, they have been supplied to NASA as part of the Ku-band radar performance comuter model package. Their purpose is to predict Ku-band acquisition performance for specific satellite targets on specific missions. The RCS models were developed for three satellites: the Long Duration Exposure Facility (LDEF) spacecraft, the Solar Maximum Mission (SMM) spacecraft, and the Space Telescopes.

  14. Pollinators' mating rendezvous and the evolution of floral advertisement.

    PubMed

    Fishman, Michael A; Hadany, Lilach

    2013-01-07

    Successful cross-fertilization in plant species that rely on animal pollinators depends not just on the number of pollinator visits, but also on these visits' duration. Furthermore, in non-deceptive pollination, a visit's duration depends on the magnitude of the reward provided to the pollinator. Accordingly, plants that rely on biotic pollination have to partition their investment in cross-fertilization assurance between attracting pollinator visits - advertisement, and rewarding visitors to assure that the visit is of productive duration. Here we analyze these processes by a combination of optimality methods and game theoretical modeling. Our results indicate that the optimality in such allocation of resources depends on the types of reward offered to the pollinators. More precisely, we show that plants that offer both food reward and mating rendezvous to pollinators will evolve to allocate a higher proportion of their cross-fertilization assurance budget to advertisement than plants that offer only food reward. That is, our results indicate that pollinators' mating habits may play a role in floral evolution.

  15. Multi-sensor Testing for Automated Rendezvous and Docking

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Carrington, Connie K.

    2008-01-01

    During the past two years, many sensors have been tested in an open-loop fashion in the Marshall Space Flight Center (MSFC) Flight Robotics Laboratory (FRL) to both determine their suitability for use in Automated Rendezvous and Docking (AR&D) systems and to ensure the test facility is prepared for future multi-sensor testing. The primary focus of this work was in support of the CEV AR&D system, because the AR&D sensor technology area was identified as one of the top risks in the program. In 2006, four different sensors were tested individually or in a pair in the MSFC FRL. In 2007, four sensors, two each of two different types, were tested simultaneously. In each set of tests, the target was moved through a series of pre-planned trajectories while the sensor tracked it. In addition, a laser tracker "truth" sensor also measured the target motion. The tests demonstrated the functionality of testing four sensors simultaneously as well as the capabilities (both good and bad) of all of the different sensors tested. This paper outlines the test setup and conditions, briefly describes the facility, summarizes the earlier results of the individual sensor tests, and describes in some detail the results of the four-sensor testing. Post-test analysis includes data fusion by minimum variance estimation and sequential Kalman filtering. This Sensor Technology Project work was funded by NASA's Exploration Technology Development Program.

  16. Hubble Servicing Challenges Drive Innovation of Shuttle Rendezvous Techniques

    NASA Technical Reports Server (NTRS)

    Goodman, John L.; Walker, Stephen R.

    2009-01-01

    Hubble Space Telescope (HST) servicing, performed by Space Shuttle crews, has contributed to what is arguably one of the most successful astronomy missions ever flown. Both nominal and contingency proximity operations techniques were developed to enable successful servicing, while lowering the risk of damage to HST systems, and improve crew safety. Influencing the development of these techniques were the challenges presented by plume impingement and HST performance anomalies. The design of both the HST and the Space Shuttle was completed before the potential of HST contamination and structural damage by shuttle RCS jet plume impingement was fully understood. Relative navigation during proximity operations has been challenging, as HST was not equipped with relative navigation aids. Since HST reached orbit in 1990, proximity operations design for servicing missions has evolved as insight into plume contamination and dynamic pressure has improved and new relative navigation tools have become available. Servicing missions have provided NASA with opportunities to gain insight into servicing mission design and development of nominal and contingency procedures. The HST servicing experiences and lessons learned are applicable to other programs that perform on-orbit servicing and rendezvous, both human and robotic.

  17. Antimicrobial susceptibility and internalization of Salmonella Typhimurium in vacuum-tumbled marinated beef products.

    PubMed

    Pokharel, S; Brooks, J C; Martin, J N; Brashears, M M

    2016-12-01

    As the incidence of multidrug resistance (MDR) Salmonella enterica serotype Typhimurium is increasing, data regarding the antimicrobial interventions and pathogen internalization in marinated meat products are important. This study evaluated the antimicrobial intervention and internalization of Salm. Typhimurium in marinated beef sirloin steaks. Beef bottom sirloin flaps (IMPS #185A; USDA Select) inoculated (10(8)  log10  CFU ml(-1) ) with Salm. Typhimurium were sprayed (lactic acid (4%) and buffered vinegar (2%)) prior to vacuum-tumbled marination (0·35% sodium chloride and 0·45% sodium tripolyphosphate) for 30 min. Pathogen presence after antimicrobial spray, vacuum-tumbled marination, and translocation was determined by direct plating on Xylose Lysine Deoxycholate (XLD) agar with tryptic soy agar (TSA) overlay. The data imply varied internalization and antimicrobial susceptibility pattern of Salm. Typhimurium in marinated meat. Lactic acid (4%) spray (P < 0·0001) and buffered vinegar (2%; P < 0·0001) reduced surface populations of Salm. Typhimurium on inoculated beef sirloin flaps prior to vacuum marination. However, lactic acid treated sirloin flaps had greater reductions (~2 log10  CFU cm(-2) ) than buffered vinegar when compared with control prior to vacuum marination. However, the translocation of Salm. Typhimurium following vacuum marination was not influenced (P < 0·333) by the application of a surface organic acid spray prior to marination.

  18. Optimal run-and-tumble-based transportation of a Janus particle with active steering.

    PubMed

    Mano, Tomoyuki; Delfau, Jean-Baptiste; Iwasawa, Junichiro; Sano, Masaki

    2017-03-14

    Although making artificial micrometric swimmers has been made possible by using various propulsion mechanisms, guiding their motion in the presence of thermal fluctuations still remains a great challenge. Such a task is essential in biological systems, which present a number of intriguing solutions that are robust against noisy environmental conditions as well as variability in individual genetic makeup. Using synthetic Janus particles driven by an electric field, we present a feedback-based particle-guiding method quite analogous to the "run-and-tumbling" behavior of Escherichia coli but with a deterministic steering in the tumbling phase: the particle is set to the run state when its orientation vector aligns with the target, whereas the transition to the "steering" state is triggered when it exceeds a tolerance angle [Formula: see text] The active and deterministic reorientation of the particle is achieved by a characteristic rotational motion that can be switched on and off by modulating the ac frequency of the electric field, which is reported in this work. Relying on numerical simulations and analytical results, we show that this feedback algorithm can be optimized by tuning the tolerance angle [Formula: see text] The optimal resetting angle depends on signal to noise ratio in the steering state, and it is shown in the experiment. The proposed method is simple and robust for targeting, despite variability in self-propelling speeds and angular velocities of individual particles.

  19. Combining natural experiments in source lithology with laboratory tumbling to quantify sediment resistance to comminution and its role in downstream fining

    NASA Astrophysics Data System (ADS)

    Beyeler, J. D.; Sklar, L. S.; Riebe, C. S.

    2012-12-01

    Mountain rivers convey sediment from alpine headwaters through valleys to basins, providing both erosive tools for fluvial incision and protective alluvial cover depending on sediment supply. It is widely observed that particles reduce in size during fluvial transport, directly influencing bed sediment grain size distributions and thus channel morphology, habitat quality, and the sedimentary record of climatic and tectonic effects on landscapes. However it is difficult to quantify the contribution of comminution to downstream fining of bed material due to the confounding effects of sediment resupply from hillslopes and sorting by size selective transport. Here we take advantage of natural experiments where lithologic contacts create discrete upstream source areas of particular rock types, such that downstream of the contact we can exclude hillslope resupply and isolate the evolution of grain size distributions due to particle breakdown. Where the upstream source area supplies two or more rock types of differing durability, we can use the relationship between lab measurements of size reduction and tensile strength to distinguish in the field between sorting and particle comminution. We are applying this approach in the Sierra Nevada of California, where plutonic and metamorphic bedrock vary in durability and outcrop in favorable configurations for this natural experiment. For all rock types in this study, we measure rock tensile strength in the laboratory with Brazilian tensile splitting tests and quantify comminution as exponential mass loss coefficients from barrel tumbling experiments. In the field we measure size reduction of bed material through pebble counts by rock type, which are combined with downstream travel distances for a field estimate of sediment fining rates. We then compare field results with laboratory strength measurements and tumbling abrasion coefficients to estimate field size reduction due solely to comminution. Our field and lab results will

  20. Design and Implementation of the Automated Rendezvous Targeting Algorithms for Orion

    NASA Technical Reports Server (NTRS)

    DSouza, Christopher; Weeks, Michael

    2010-01-01

    The Orion vehicle will be designed to perform several rendezvous missions: rendezvous with the ISS in Low Earth Orbit (LEO), rendezvous with the EDS/Altair in LEO, a contingency rendezvous with the ascent stage of the Altair in Low Lunar Orbit (LLO) and a contingency rendezvous in LLO with the ascent and descent stage in the case of an aborted lunar landing. Therefore, it is not difficult to realize that each of these scenarios imposes different operational, timing, and performance constraints on the GNC system. To this end, a suite of on-board guidance and targeting algorithms have been designed to meet the requirement to perform the rendezvous independent of communications with the ground. This capability is particularly relevant for the lunar missions, some of which may occur on the far side of the moon. This paper will describe these algorithms which are designed to be structured and arranged in such a way so as to be flexible and able to safely perform a wide variety of rendezvous trajectories. The goal of the algorithms is not to merely fly one specific type of canned rendezvous profile. Conversely, it was designed from the start to be general enough such that any type of trajectory profile can be flown.(i.e. a coelliptic profile, a stable orbit rendezvous profile, and a expedited LLO rendezvous profile, etc) all using the same rendezvous suite of algorithms. Each of these profiles makes use of maneuver types which have been designed with dual goals of robustness and performance. They are designed to converge quickly under dispersed conditions and they are designed to perform many of the functions performed on the ground today. The targeting algorithms consist of a phasing maneuver (NC), an altitude adjust maneuver (NH), and plane change maneuver (NPC), a coelliptic maneuver (NSR), a Lambert targeted maneuver, and several multiple-burn targeted maneuvers which combine one of more of these algorithms. The derivation and implementation of each of these

  1. Cross Cutting Relative Navigation Technologies for Improved Landing Accuracy and Vehicle-to-Vehicle Rendezvous and Docking

    NASA Astrophysics Data System (ADS)

    Miller, K. L.; Masciarelli, J.; Rohrschneider, R. R.

    2012-06-01

    This presentation addresses recent development and test progress, as well as future technology advancement plans for precision landing and Autonomous Rendezvous, Proximity Operations and Docking (ARPOD).

  2. Prediction of flow-aligning and tumbling in a bent-core nematic liquid crystal using measurements of orienation order parameters

    NASA Astrophysics Data System (ADS)

    Park, Min Sang; Park, Beom-Jin; Park, Jung Ok; Srinivasarao, Mohan

    2010-03-01

    The flow behavior of bent-core nematic liquid crystal (A131), which has been known to exhibit a biaxial nematic phase, is predicted by measurements of 2^nd and 4^th rank orientation order parameters. Using experimentally determined uniaxial, and , and biaxial orientation order parameters, , and from polarized micro-Raman spectroscopy, we compute the tumbling parameter, λ. The relationships between the order parameters and tumbling parameter derived by 2 different groups are used and the results are computed: a molecular theory by Archer and Larson (1995), that by Kroger and Seller (1995) for uniaxial system, and Leslie's theory for 2-director continuum. Temperature evolution of tumbling parameter shows the transition from a flow alignment regime to a tumbling instability. The results of the temperature evolution of tumbling parameter of bent-core nematic LC are compared to those of pure nematic LC (5CB) and LC mixture (E7).

  3. Space shuttle Ku-band integrated rendezvous radar/communications system study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The results are presented of work performed on the Space Shuttle Ku-Band Integrated Rendezvous Radar/Communications System Study. The recommendations and conclusions are included as well as the details explaining the results. The requirements upon which the study was based are presented along with the predicted performance of the recommended system configuration. In addition, shuttle orbiter vehicle constraints (e.g., size, weight, power, stowage space) are discussed. The tradeoffs considered and the operation of the recommended configuration are described for an optimized, integrated Ku-band radar/communications system. Basic system tradeoffs, communication design, radar design, antenna tradeoffs, antenna gimbal and drive design, antenna servo design, and deployed assembly packaging design are discussed. The communications and radar performance analyses necessary to support the system design effort are presented. Detailed derivations of the communications thermal noise error, the radar range, range rate, and angle tracking errors, and the communications transmitter distortion parameter effect on crosstalk between the unbalanced quadriphase signals are included.

  4. Handling Neighbor Discovery and Rendezvous Consistency with Weighted Quorum-Based Approach.

    PubMed

    Own, Chung-Ming; Meng, Zhaopeng; Liu, Kehan

    2015-09-03

    Neighbor discovery and the power of sensors play an important role in the formation of Wireless Sensor Networks (WSNs) and mobile networks. Many asynchronous protocols based on wake-up time scheduling have been proposed to enable neighbor discovery among neighboring nodes for the energy saving, especially in the difficulty of clock synchronization. However, existing researches are divided two parts with the neighbor-discovery methods, one is the quorum-based protocols and the other is co-primality based protocols. Their distinction is on the arrangements of time slots, the former uses the quorums in the matrix, the latter adopts the numerical analysis. In our study, we propose the weighted heuristic quorum system (WQS), which is based on the quorum algorithm to eliminate redundant paths of active slots. We demonstrate the specification of our system: fewer active slots are required, the referring rate is balanced, and remaining power is considered particularly when a device maintains rendezvous with discovered neighbors. The evaluation results showed that our proposed method can effectively reschedule the active slots and save the computing time of the network system.

  5. Physical Activity Play and Preschool Children's Peer Acceptance: Distinctions between Rough-and-Tumble and Exercise Play

    ERIC Educational Resources Information Center

    Lindsey, Eric W.

    2014-01-01

    Research Findings: Two forms of exercise play (toy mediated and non-mediated) and 2 forms of rough-and-tumble (R&T) play (chase and fighting) were examined in relation to preschoolers' peer competence. A total of 148 preschoolers (78 boys, 89 Euro-Americans) were observed during free play at their university-sponsored child care center. The…

  6. Monsters, Magic and Mr Psycho: A Biocultural Approach to Rough and Tumble Play in the Early Years of Primary School

    ERIC Educational Resources Information Center

    Jarvis, Pam

    2007-01-01

    This paper focuses upon the developmental role of rough and tumble (R&T) play with particular attention to the narratives that children use to underpin such activities. A review of the literature suggests that current early years research and practice pays scant attention to children's outdoor free play activities. A piece of original research is…

  7. Translocation and Fate of Shiga toxin-producting Escherichia coli in subprimals following blade tenderization and vacuum tumbling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne pathogens, such as Shiga toxin-producing Escherichia coli (STEC), a natural inhabitant on raw meat, may be transferred from the surface of the meat into the deeper layers of tissue following enhancement by blade tenderization and vacuum tumbling. Therefore, the consumption of enhanced beef...

  8. Canadian Female and Male Early Childhood Educators' Perceptions of Child Aggression and Rough-and-Tumble Play

    ERIC Educational Resources Information Center

    Bosacki, Sandra; Woods, Heather; Coplan, Robert

    2015-01-01

    This study investigated female and male early childhood educators' (ECEs) perceptions of young children's aggression and rough-and-tumble play in the Canadian early childhood classroom. Participants were drawn from a larger sample of ECEs who completed an online questionnaire regarding their perceptions of young children's behaviours in the…

  9. Preschool Teachers' Perceptions of Children's Rough-and-Tumble Play (R&T) in Indoor and Outdoor Environments

    ERIC Educational Resources Information Center

    Storli, Rune; Sandseter, Ellen Beate Hansen

    2015-01-01

    This paper explores teacher-reported prevalence of rough-and-tumble play (R&T) in preschool and investigates how their restriction to such play varies in different play environments (indoor and outdoor). An electronic questionnaire exploring preschool teachers' beliefs and practices regarding children's dramatic play themes was conducted by…

  10. Recent developments in electropolishing and tumbling R&D at Fermilab

    SciTech Connect

    Cooper, C.; Brandt, J.; Cooley, L.; Ge, M.; Harms, E.; Khabiboulline, T.; Ozelis, J.; Boffo, C.; /Babcock Noell, Wuerzburg

    2009-10-01

    Fermi National Accelerator Lab (Fermilab) is continuing to improve its infrastructure for research and development on the processing of superconducting radio frequency cavities. A single cell 3.9 GHz electropolishing tool built at Fermilab and operated at an industrial partner was recently commissioned. The EP tool was used to produce a single cell 3.9 GHz cavity that reached an accelerating gradient of 30 MV/m with a quality factor of 5 x 10{sup 9}. A single cell 1.3 GHz cavity was also electropolished at the same industrial vendor using the vendor's vertical full-immersion technique. On their first and only attempt the vendor produced a single cell 1.3 GHz cavity that reached 30 MV/m with a quality factor of 1 x 10{sup 10}. These results will be detailed along with preliminary tumbling results.

  11. Chlamydomonas swims with two "gears" in a eukaryotic version of run-and-tumble locomotion.

    PubMed

    Polin, Marco; Tuval, Idan; Drescher, Knut; Gollub, J P; Goldstein, Raymond E

    2009-07-24

    The coordination of eukaryotic flagella is essential for many of the most basic processes of life (motility, sensing, and development), yet its emergence and regulation and its connection to locomotion are poorly understood. Previous studies show that the unicellular alga Chlamydomonas, widely regarded as an ideal system in which to study flagellar biology, swims forward by the synchronous action of its two flagella. Using high-speed imaging over long intervals, we found a richer behavior: A cell swimming in the dark stochastically switches between synchronous and asynchronous flagellar beating. Three-dimensional tracking shows that these regimes lead, respectively, to nearly straight swimming and to abrupt large reorientations, which yield a eukaryotic version of the "run-and-tumble" motion of peritrichously flagellated bacteria.

  12. An Assessment of the Technology of Automated Rendezvous and Capture in Space

    NASA Technical Reports Server (NTRS)

    Polites, M. E.

    1998-01-01

    This paper presents the results of a study to assess the technology of automated rendezvous and capture (AR&C) in space. The outline of the paper is as follows. First, the history of manual and automated rendezvous and capture and rendezvous and dock is presented. Next, the need for AR&C in space is established. Then, today's technology and ongoing technology efforts related to AR&C in space are reviewed. In light of these, AR&C systems are proposed that meet NASA's future needs, but can be developed in a reasonable amount of time with a reasonable amount of money. Technology plans for developing these systems are presented; cost and schedule are included.

  13. Time-fixed rendezvous by impulse factoring with an intermediate timing constraint. [for transfer orbits

    NASA Technical Reports Server (NTRS)

    Green, R. N.; Kibler, J. F.; Young, G. R.

    1974-01-01

    A method is presented for factoring a two-impulse orbital transfer into a three- or four-impulse transfer which solves the rendezvous problem and satisfies an intermediate timing constraint. Both the time of rendezvous and the intermediate time of a alinement are formulated as any element of a finite sequence of times. These times are integer multiples of a constant plus an additive constant. The rendezvous condition is an equality constraint, whereas the intermediate alinement is an inequality constraint. The two timing constraints are satisfied by factoring the impulses into collinear parts that vectorially sum to the original impulse and by varying the resultant period differences and the number of revolutions in each orbit. Five different types of solutions arise by considering factoring either or both of the two impulses into two or three parts with a limit for four total impulses. The impulse-factoring technique may be applied to any two-impulse transfer which has distinct orbital periods.

  14. Report of the Comet Science Working Group. [flyby of Comet halley and rendezvous with Comet tempel 2

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Scientific objectives and mission strategies for a flyby of Halley's comet and rendezvous with Tempel-2 are discussed. Instrumentation to be carried by both the rendezvous spacecraft and the coma probe payload are listed. Known characteristics of both comets are summarized.

  15. Methodology for Developing a Probabilistic Risk Assessment Model of Spacecraft Rendezvous and Dockings

    NASA Technical Reports Server (NTRS)

    Farnham, Steven J., II; Garza, Joel, Jr.; Castillo, Theresa M.; Lutomski, Michael

    2011-01-01

    In 2007 NASA was preparing to send two new visiting vehicles carrying logistics and propellant to the International Space Station (ISS). These new vehicles were the European Space Agency s (ESA) Automated Transfer Vehicle (ATV), the Jules Verne, and the Japanese Aerospace and Explorations Agency s (JAXA) H-II Transfer Vehicle (HTV). The ISS Program wanted to quantify the increased risk to the ISS from these visiting vehicles. At the time, only the Shuttle, the Soyuz, and the Progress vehicles rendezvoused and docked to the ISS. The increased risk to the ISS was from an increase in vehicle traffic, thereby, increasing the potential catastrophic collision during the rendezvous and the docking or berthing of the spacecraft to the ISS. A universal method of evaluating the risk of rendezvous and docking or berthing was created by the ISS s Risk Team to accommodate the increasing number of rendezvous and docking or berthing operations due to the increasing number of different spacecraft, as well as the future arrival of commercial spacecraft. Before the first docking attempt of ESA's ATV and JAXA's HTV to the ISS, a probabilistic risk model was developed to quantitatively calculate the risk of collision of each spacecraft with the ISS. The 5 rendezvous and docking risk models (Soyuz, Progress, Shuttle, ATV, and HTV) have been used to build and refine the modeling methodology for rendezvous and docking of spacecrafts. This risk modeling methodology will be NASA s basis for evaluating the addition of future ISS visiting spacecrafts hazards, including SpaceX s Dragon, Orbital Science s Cygnus, and NASA s own Orion spacecraft. This paper will describe the methodology used for developing a visiting vehicle risk model.

  16. NASA Advisory Council Task Force on the Shuttle-Mir Rendezvous and Docking Missions

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The NASA Advisory Council Task Force on the Shuttle-Mir rendezvous and docking convened on May 24 and 25, 1994. Based on the meetings, the Task Force made the following recommendations: at a minimum, the mission commander and payload commander for all subsequent Shuttle-Mir missions should be named at least 18 months in advance of the scheduled launch date; in order to derive early operational experience in advance of the first Mir docking mission, the primary objective of STS-63 should be Mir rendezvous and proximity operations; and if at all possible, the launch date for STS-63 should be moved forward.

  17. A Comparison of Trajectory Optimization Methods for the Impulsive Minimum Fuel Rendezvous Problem

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Mailhe, Laurie M.; Guzman, Jose J.

    2002-01-01

    In this paper we present a comparison of optimization approaches to the minimum fuel rendezvous problem. Both indirect and direct methods are compared for a variety of test cases. The indirect approach is based on primer vector theory. The direct approaches are implemented numerically and include Sequential Quadratic Programming (SQP), Quasi-Newton, Simplex, Genetic Algorithms, and Simulated Annealing. Each method is applied to a variety of test cases including, circular to circular coplanar orbits, LEO to GEO, and orbit phasing in highly elliptic orbits. We also compare different constrained optimization routines on complex orbit rendezvous problems with complicated, highly nonlinear constraints.

  18. Result of Rendezvous Docking Experiment of ETS.35zw .5zw .25mmVII

    NASA Astrophysics Data System (ADS)

    Kawano, Isao; Mokuno, Masaaki; Suzuki, Takashi; Koyama, Hiroshi; Kunugi, Makoto

    ETS VII is a test satellite to perform in-orbit demonstration of autonomous rendezvous docking (RVD) technology, which will be necessary for advanced space activities in the early 21st century. ETS VII performed three RVD experiment flights, and verified all technical items. ETS VII demonstrated first autonomous RVD between unmanned vehicles, and remote piloted rendezvous flight position accuracy at docking was about 1cm, and acceleration was less than 1.5mG (low impact docking). In the second RVD experiment flight, ETS VII detected attitude anomaly and executed disable abort for safety insurance. We present the results and evaluation of three RVD experiment flights in this paper.

  19. Scheme of rendezvous mission to lunar orbital station by spacecraft launched from Earth

    NASA Astrophysics Data System (ADS)

    Murtazin, R. F.

    2016-05-01

    In recent years, great experience has been accumulated in manned flight astronautics for rendezvous in near-Earth orbit. During flights of Apollo spacecraft with crews that landed on the surface of the Moon, the problem of docking a landing module launched from the Moon's surface with the Apollo spacecraft's command module in a circumlunar orbit was successfully solved. A return to the Moon declared by leading space agencies requires a scheme for rendezvous of a spacecraft launched from an earth-based cosmodromee with a lunar orbital station. This paper considers some ballistic schemes making it possible to solve this problem with minimum fuel expenditures.

  20. Rendezvous terminal phase automatic braking sequencing and targeting. [for space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Kachmar, P. M.

    1973-01-01

    The purpose of the rendezvous terminal phase braking program is to provide the means of automatically bringing the primary orbiter within desired station keeping boundaries relative to the target satellite. A detailed discussion is presented on the braking program and its navigation, targeting, and guidance functions.

  1. Star tracker axis-to-sunlit earth horizon angle constraint evaluations for rendezvous operations

    NASA Technical Reports Server (NTRS)

    Hutchison, W. L.

    1975-01-01

    The results are presented of a study initiated to evaluate the star tracker axis-to-sunlit earth horizon angle constraint with respect to limitations imposed on the passive target rendezvous capability. The data presented include considerations for dispersions and sensor pointing capabilities and generalizations with respect to the uncertainties associated with the angle constraint available in practice.

  2. Rendezvous Protocols and Dynamic Frequency Hopping Interference Design for Anti-Jamming Satellite Communication

    DTIC Science & Technology

    2013-11-25

    3 3.1 Quorum -based FH Designs and Rendezvous Protocols for Re-establishing Communications...4.0 RESULTS AND DISCUSSION ............................................................................................10 4.1 Quorum -based FH Designs...Rotation 2-Closure Property of Grid Quorum Systems. ............................................................ 4 2 Example of Nested Grid- Quorum -Based

  3. Methodology for Prototyping Increased Levels of Automation for Spacecraft Rendezvous Functions

    NASA Technical Reports Server (NTRS)

    Hart, Jeremy J.; Valasek, John

    2007-01-01

    The Crew Exploration Vehicle necessitates higher levels of automation than previous NASA vehicles, due to program requirements for automation, including Automated Rendezvous and Docking. Studies of spacecraft development often point to the locus of decision-making authority between humans and computers (i.e. automation) as a prime driver for cost, safety, and mission success. Therefore, a critical component in the Crew Exploration Vehicle development is the determination of the correct level of automation. To identify the appropriate levels of automation and autonomy to design into a human space flight vehicle, NASA has created the Function-specific Level of Autonomy and Automation Tool. This paper develops a methodology for prototyping increased levels of automation for spacecraft rendezvous functions. This methodology is used to evaluate the accuracy of the Function-specific Level of Autonomy and Automation Tool specified levels of automation, via prototyping. Spacecraft rendezvous planning tasks are selected and then prototyped in Matlab using Fuzzy Logic techniques and existing Space Shuttle rendezvous trajectory algorithms.

  4. Rendezvous and Docking Strategy for Crewed Segment of the Asteroid Redirect Mission

    NASA Technical Reports Server (NTRS)

    Hinkel, Heather D.; Cryan, Scott P.; D'Souza, Christopher; Dannemiller, David P.; Brazzel, Jack P.; Condon, Gerald L.; Othon, William L.; Williams, Jacob

    2014-01-01

    This paper will describe the overall rendezvous, proximity operations and docking (RPOD) strategy in support of the Asteroid Redirect Crewed Mission (ARCM), as part of the Asteroid Redirect Mission (ARM). The focus of the paper is on the crewed mission phase of ARM, starting with the establishment of Orion in the Distant Retrograde Orbit (DRO) and ending with docking to the Asteroid Redirect Vechicle (ARV). The paper will detail the sequence of maneuvers required to execute the rendezvous and proximity operations mission phases along with the on-board navigation strategies, including the final approach phase. The trajectories to be considered will include target vehicles in a DRO. The paper will also discuss the sensor requirements for rendezvous and docking and the various trade studies associated with the final sensor selection. Building on the sensor requirements and trade studies, the paper will include a candidate sensor concept of operations, which will drive the selection of the sensor suite; concurrently, it will be driven by higher level requirements on the system, such as crew timeline constraints and vehicle consummables. This paper will address how many of the seemingly competing requirements will have to be addressed to create a complete system and system design. The objective is to determine a sensor suite and trajectories that enable Orion to successfully rendezvous and dock with a target vehicle in trans lunar space. Finally, the paper will report on the status of a NASA action to look for synergy within RPOD, across the crewed and robotic asteroid missions.

  5. Sensory fusion for planetary surface robotic navigation, rendezvous, and manipulation operations

    NASA Technical Reports Server (NTRS)

    Huntsberger, T.; Cheng, Y.; Baumgartner, E. T.; Robinson, M.; Schenker, P. S.

    2003-01-01

    This paper reports some of the ongoing work at JPL in the areas of autonomous sensory fusion of both raw and derived inputs for better localization during long traverses, precision rendezvous operations with both labeled and unlabeled targets, and precision manipulation of targets.

  6. Optimal starting conditions for the rendezvous maneuver: Analytical and computational approach

    NASA Astrophysics Data System (ADS)

    Ciarcia, Marco

    The three-dimensional rendezvous between two spacecraft is considered: a target spacecraft on a circular orbit around the Earth and a chaser spacecraft initially on some elliptical orbit yet to be determined. The chaser spacecraft has variable mass, limited thrust, and its trajectory is governed by three controls, one determining the thrust magnitude and two determining the thrust direction. We seek the time history of the controls in such a way that the propellant mass required to execute the rendezvous maneuver is minimized. Two cases are considered: (i) time-to-rendezvous free and (ii) time-to-rendezvous given, respectively equivalent to (i) free angular travel and (ii) fixed angular travel for the target spacecraft. The above problem has been studied by several authors under the assumption that the initial separation coordinates and the initial separation velocities are given, hence known initial conditions for the chaser spacecraft. In this paper, it is assumed that both the initial separation coordinates and initial separation velocities are free except for the requirement that the initial chaser-to-target distance is given so as to prevent the occurrence of trivial solutions. Two approaches are employed: optimal control formulation (Part A) and mathematical programming formulation (Part B). In Part A, analyses are performed with the multiple-subarc sequential gradient-restoration algorithm for optimal control problems. They show that the fuel-optimal trajectory is zero-bang, namely it is characterized by two subarcs: a long coasting zero-thrust subarc followed by a short powered max-thrust braking subarc. While the thrust direction of the powered subarc is continuously variable for the optimal trajectory, its replacement with a constant (yet optimized) thrust direction produces a very efficient guidance trajectory. Indeed, for all values of the initial distance, the fuel required by the guidance trajectory is within less than one percent of the fuel required

  7. Androgen and the development of human sex-typical behavior: rough-and-tumble play and sex of preferred playmates in children with congenital adrenal hyperplasia (CAH).

    PubMed

    Hines, M; Kaufman, F R

    1994-08-01

    We hypothesized that girls with congenital adrenal hyperplasia (CAH), who experience higher than normal levels of androgens prenatally, would show masculinization of behaviors that show sex differences. Therefore, we examined rough-and-tumble play and sex of preferred playmates in 3-8-year-old children with CAH and in unaffected 3-8-year-old male and female relatives. The hypothesized sex differences in rough-and-tumble play were seen, with unaffected boys showing more rough-and-tumble play than unaffected girls. However, CAH girls were similar to unaffected girls. Additionally, CAH boys showed reduced rough-and-tumble play. In contrast, sex of preferred playmates showed the hypothesized pattern of results. There were sex differences, with unaffected boys preferring boys and unaffected girls preferring girls. In addition, the preferences of girls with CAH were masculinized compared to those of unaffected girls. Results are discussed in terms of possible influences of social, hormonal, and illness factors.

  8. When are active Brownian particles and run-and-tumble particles equivalent? Consequences for motility-induced phase separation

    NASA Astrophysics Data System (ADS)

    Cates, M. E.; Tailleur, J.

    2013-01-01

    Active Brownian particles (ABPs, such as self-phoretic colloids) swim at fixed speed v along a body-axis u that rotates by slow angular diffusion. Run-and-tumble particles (RTPs, such as motile bacteria) swim with constant u until a random tumble event suddenly decorrelates the orientation. We show that when the motility parameters depend on density ρ but not on u, the coarse-grained fluctuating hydrodynamics of interacting ABPs and RTPs can be mapped onto each other and are thus strictly equivalent. In both cases, a steeply enough decreasing v(ρ) causes phase separation in dimensions d = 2,3, even when no attractive forces act between the particles. This points to a generic role for motility-induced phase separation in active matter. However, we show that the ABP/RTP equivalence does not automatically extend to the more general case of u-dependent motilities.

  9. Coupling fast water exchange to slow molecular tumbling in Gd3+ chelates: why faster is not always better

    PubMed Central

    Avedano, Stefano; Botta, Mauro; Haigh, Julian S.; Longo, Dario; Woods, Mark

    2013-01-01

    The influence of dynamics on solution state structure is a widely overlooked consideration in chemistry. Variations in Gd3+ chelate hydration with changing coordination geometry and dissociative water exchange kinetics substantially impact the effectiveness (or relaxivity) of mono-hydrated Gd3+ chelates as T1-shortening contrast agents for MRI. Theory shows that relaxivity is highly dependent upon the Gd3+-water proton distance (rGdH) and yet this distance is almost never considered as a variable in assessing the relaxivity of a Gd3+ chelate as a potential contrast agent. The consequence of this omission can be seen when considering the relaxivity of isomeric Gd3+ chelates that exhibit different dissociative water exchange kinetics. The results described herein show that the relaxivity of a chelate with ‘optimal’ dissociative water exchange kinetics is actually lower than that of an isomeric chelate with ‘sub-optimal’ dissociative water exchange. When the rate of molecular tumbling of these chelates is slowed, an approach that has long been understood to increase relaxivity, the observed difference in relaxivity is increased with the more rapidly exchanging (‘optimal’) chelate exhibiting lower relaxivity than the ‘sub-optimally’ exchanging isomer. The difference between the chelates arises from a non-field dependent parameter: either the hydration number (q) or rGdH. For solution state Gd3+ chelates, changes in the values of q and rGdH are indistinguishable. These parametric expressions simply describe the hydration state of the chelate – i.e. the number and position of closely associating water molecules. The hydration state (q/rGdH6) of a chelate is intrinsically linked to its dissociative water exchange rate kex and the interrelation of these parameters must be considered when examining the relaxivity of Gd3+ chelates. The data presented herein indicates that the changes in the hydration parameter (q/rGdH6) associated with changing dissociative

  10. Effect of freezing, hot tumble drying and washing with eucalyptus oil on house dust mites in soft toys.

    PubMed

    Chang, Chin-Fu; Wu, Francis Fu-Sheng; Chen, Chi-Ying; Crane, Julian; Siebers, Rob

    2011-09-01

    Soft toys are a major source of house dust mites (HDM) and HDM allergens, and sleeping with soft toys is a significant risk factor for HDM sensitization. We studied three techniques to eliminate HDM from soft toys, namely freezing, hot tumble drying and washing with eucalyptus oil. Thirty-six toys (12 in each treatment group) were enumerated for live HDM by the heat escape method before and after freezing overnight, hot tumble drying for 1 h and washing in 0.2% to 0.4% eucalyptus oil. Freezing, hot tumble drying and washing with eucalyptus oil resulted in significant reductions in live HDM, an average reduction of 95.1%, 89.1% and 95.1%, respectively. Additionally, washing with eucalyptus oil resulted in a significant reduction in HDM allergens as well from a geometric mean of 9.12 μg/g to 0.37 μg/g (p = 0.033). These three HDM elimination techniques give parents of infants effective and acceptable methods of limiting HDM exposure.

  11. Encapsulated guest-host dynamics: guest rotational barriers and tumbling as a probe of host interior cavity space.

    PubMed

    Mugridge, Jeffrey S; Szigethy, Géza; Bergman, Robert G; Raymond, Kenneth N

    2010-11-17

    The supramolecular host assembly [Ga(4)L(6)](12-) (1; L = 1,5-bis[2,3-dihydroxybenzamido]naphthalene) encapsulates cationic guest molecules within its hydrophobic cavity and catalyzes a variety of chemical transformations within its confined interior space. Despite the well-defined structure, the host ligand framework and interior cavity are very flexible and 1 can accommodate a wide range of guest shapes and sizes. These observations raise questions about the steric effects of confinement within 1 and how encapsulation fundamentally changes the motions of guest molecules. Here we examine the motional dynamics (guest bond rotation and tumbling) of encapsulated guest molecules to probe the steric consequences of encapsulation within host 1. Encapsulation is found to increase the Ph-CH(2) bond rotational barrier for ortho-substituted benzyl phosphonium guest molecules by 3 to 6 kcal/mol, and the barrier is found to depend on both guest size and shape. The tumbling dynamics of guests encapsulated in 1 were also investigated, and here it was found that longer, more prolate-shaped guest molecules tumble more slowly in the host cavity than larger but more spherical guest molecules. The prolate guests reduce the host symmetry from T to C(1) in solution at low temperatures, and the distortion of the host framework that is in part responsible for this symmetry reduction is observed directly in the solid state. Analysis of guest motional dynamics is a powerful method for interrogating host structure and fundamental host-guest interactions.

  12. In-cylinder tumble flows and performance of a motorcycle engine with circular and elliptic intake ports

    NASA Astrophysics Data System (ADS)

    Huang, R. F.; Lin, K. H.; Yeh, C.-N.; Lan, J.

    2009-01-01

    The temporal and spatial evolution processes of the flows in the cylinder of a four-valve, four-stroke, single cylinder, reciprocating motorcycle engine installed with the elliptic and circular intake ports were experimentally studied by using the particle image velocimetry (PIV). The engine was modified to fit the requirements of PIV measurement. The velocity fields measured by the PIV were analyzed and quantitatively presented as the tumble ratio and turbulence intensity. In the symmetry plane, both the circular and elliptic intake ports could initiate a vortex around the central region during the intake stroke. During the compression stroke, the central vortex created in the cylinder of the engine with the circular intake port disappeared, while that in the engine cylinder with the elliptic intake port further developed into the tumble motion. In the offset plane, weak vortical structures were initiated by the bluff-body effect of the intake valves during the intake stroke. The vortical structures induced by the elliptic intake port were more coherent than those generated by the circular intake port; besides, this feature extends to the compression stroke. The cycle-averaged tumble ratio and the turbulence intensity of the engine with the elliptic intake port were dramatically larger than those of the engine with the circular intake port. The measured engine performance was improved a lot by installing the elliptic intake port. The correlation between the flow features and the enhancement of the engine performance were argued and discussed.

  13. Glancing, reversing, tumbling, and sliding: sedimentation near walls in viscous fluids

    NASA Astrophysics Data System (ADS)

    Mitchell, William; Spagnolie, Saverio

    2014-11-01

    The sedimentation of ellipsoidal particles near a wall in a viscous fluid has been studied from a numerical perspective by a number of authors, but analytical solutions have been given only in special cases, such as for spherical particles. As an application of the method of images, the dynamics of ellipsoids of arbitrary aspect ratio in a wall-bounded Stokes flow may be reduced to a system of ordinary differential equations. In many cases the system leads to analytical descriptions of the particle motion which agree very well with full numerical simulations. As an application, we investigate the conditions under which the ``glancing'' and ``reversing'' trajectories first observed by Russel et al. prevail, and we identify two new possibilities: a periodic ``tumbling'' trajectory for nearly spherical bodies and a ``sliding'' trajectory which occurs when the wall is inclined at a small angle from the vertical. The sliding trajectory is an attracting fixed point for the dynamics, and thus may have applications in sorting processes for heterogeneous dilute suspensions.

  14. Rough-and-tumble play as a window on animal communication.

    PubMed

    Palagi, Elisabetta; Burghardt, Gordon M; Smuts, Barbara; Cordoni, Giada; Dall'Olio, Stefania; Fouts, Hillary N; Řeháková-Petrů, Milada; Siviy, Stephen M; Pellis, Sergio M

    2016-05-01

    Rough-and-tumble play (RT) is a widespread phenomenon in mammals. Since it involves competition, whereby one animal attempts to gain advantage over another, RT runs the risk of escalation to serious fighting. Competition is typically curtailed by some degree of cooperation and different signals help negotiate potential mishaps during RT. This review provides a framework for such signals, showing that they range along two dimensions: one from signals borrowed from other functional contexts to those that are unique to play, and the other from purely emotional expressions to highly cognitive (intentional) constructions. Some animal taxa have exaggerated the emotional and cognitive interplay aspects of play signals, yielding admixtures of communication that have led to complex forms of RT. This complexity has been further exaggerated in some lineages by the development of specific novel gestures that can be used to negotiate playful mood and entice reluctant partners. Play-derived gestures may provide new mechanisms by which more sophisticated communication forms can evolve. Therefore, RT and playful communication provide a window into the study of social cognition, emotional regulation and the evolution of communication systems.

  15. Tools and Techniques for a Systematic Approach to Safe Rendezvous and Proximity Operations

    NASA Astrophysics Data System (ADS)

    Taylor, Rob; Rishikof, Brian

    2010-09-01

    Among the most demanding operations facing manned spaceflight is the ability to successfully and safely complete Rendezvous Proximity Operations & Capture(RPOC) operations with a target vehicle. While perhaps made to look routine from a safety perspective for some vehicles and developers regularly docking to the International Space Station(namely the Space Shuttle, and Russian Progress and Soyuz vehicles), international partners and commercial vehicle developers are finding it among the most difficult engineering challenges. Whether docking with the International Space Station in low earth orbit, or rendezvousing with a returning spacecraft in low lunar orbit, successfully and systematically accounting for all the combinations of risks and failures which lead to failed rendezvous or collisions can be daunting. Systems such as propulsion, avionics, software, and command and data handling(C&DH) must all work as a single integrated system; and the guidance, navigation, and control(GN&C) systems arguably forms the heart of that unit. In response to this challenge, Odyssey Space Research(Odyssey) utilizes their core GN&C engineering competencies, systems engineering capabilities and associated simulation tools to address the safety of RPOC. These simulations provide for high-level mission scenario analysis, systems design, mission planning, monitoring, and implementation, covering all flight phases of rendezvous from orbit insertion, phasing and transfer orbits, far-range rendezvous operations, proximity operations, and capture. Combined with a systems engineering approach, it allows our team to analyze functional system capabilities, propose design modifications and then perform the safety engineering aspect of evaluating that vehicle’s safety compliance. The simulation, modeling and analysis tools(such as domain specific RPOC models, and visualization and virtual reality) allow for detailed design and development and/or help provide the independent assessment

  16. Guidance and Navigation for Rendezvous and Proximity Operations with a Non-Cooperative Spacecraft at Geosynchronous Orbit

    NASA Technical Reports Server (NTRS)

    Barbee, Brent William; Carpenter, J. Russell; Heatwole, Scott; Markley, F. Landis; Moreau, Michael; Naasz, Bo J.; VanEepoel, John

    2010-01-01

    The feasibility and benefits of various spacecraft servicing concepts are currently being assessed, and all require that the servicer spacecraft perform rendezvous, proximity, and capture operations with the target spacecraft to be serviced. Many high-value spacecraft, which would be logical targets for servicing from an economic point of view, are located in geosynchronous orbit, a regime in which autonomous rendezvous and capture operations are not commonplace. Furthermore, existing GEO spacecraft were not designed to be serviced. Most do not have cooperative relative navigation sensors or docking features, and some servicing applications, such as de-orbiting of a non-functional spacecraft, entail rendezvous and capture with a spacecraft that may be non-functional or un-controlled. Several of these challenges have been explored via the design of a notional mission in which a nonfunctional satellite in geosynchronous orbit is captured by a servicer spacecraft and boosted into super-synchronous orbit for safe disposal. A strategy for autonomous rendezvous, proximity operations, and capture is developed, and the Orbit Determination Toolbox (ODTBX) is used to perform a relative navigation simulation to assess the feasibility of performing the rendezvous using a combination of angles-only and range measurements. Additionally, a method for designing efficient orbital rendezvous sequences for multiple target spacecraft is utilized to examine the capabilities of a servicer spacecraft to service multiple targets during the course of a single mission.

  17. A mission design for the Halley comet rendezvous using Ion Drive

    NASA Technical Reports Server (NTRS)

    Boain, R. J.

    1977-01-01

    The Ion Drive propulsion system, a derivative of the old Solar Electric Propulsion (SEP) technology is considered adequate to perform all mission objectives of a proposed Halley's comet rendezvous (scheduled for launch in 1982) except one: control of thermal energy from the concentrating solar arrays. This problem can be solved, however, by adding a separable tail probe to the baseline system. The system consists of an Ion Propulsion Module (IPM) and a Mission Module (MM). Scientific objectives include a determination of the structure of the comet nucleus, an evaluation of nucleus evolution, an assay of the comet's atmosphere and ionosphere, and a study of the interaction between the comet and the interplanetary medium. Attention is given to the navigation parameters necessary for heliocentric transfer and post-rendezvous circumnavigation of the comet.

  18. Navigation accuracy analyses for two comet rendezvous missions using ion drive

    NASA Technical Reports Server (NTRS)

    Wood, L. J.; Krinik, A. C.

    1980-01-01

    Two cometary missions, making use of the solar electric propulsion system, have recently been considered for launches in the mid to late 1980's. This paper presents navigation accuracy analysis results for the rendezvous portions of these missions, the target bodies being Comet Tempel 2 and Comet Tuttle-Giacobini-Kresak. Orbit determination and guidance accuracies are presented for the baseline navigation strategies, along with the results of a number of sensitivity studies involving parameters such as data frequencies, data accuracies, ion drive thrust vector errors, comet emphemeris uncertainties, time lags associated with data processing and command sequence generation, and certain guidance law parameters. The accuracies obtained are, in some respects, significantly better than the results of previous solar electric propulsion comet rendezvous studies.

  19. Systematic low-thrust trajectory optimization for a multi-rendezvous mission using adjoint scaling

    NASA Astrophysics Data System (ADS)

    Jiang, Fanghua; Tang, Gao

    2016-04-01

    A deep-space exploration mission with low-thrust propulsion to rendezvous with multiple asteroids is investigated. Indirect methods, based on the optimal control theory, are implemented to optimize the fuel consumption. The application of indirect methods for optimizing low-thrust trajectories between two asteroids is briefly given. An effective method is proposed to provide initial guesses for transfers between close near-circular near-coplanar orbits. The conditions for optimality of a multi-asteroid rendezvous mission are determined. The intuitive method of splitting the trajectories into several legs that are solved sequentially is applied first. Then the results are patched together by a scaling method to provide a tentative guess for optimizing the whole trajectory. Numerical examples of optimizing three probe exploration sequences that contain a dozen asteroids each demonstrate the validity and efficiency of these methods.

  20. Low-Cost Innovation in Spaceflight: The Near Earth Asteroid Rendezvous (NEAR) Shoemaker Mission

    NASA Technical Reports Server (NTRS)

    McCurdy, Howard E.

    2005-01-01

    On a spring day in 1996, at their research center in the Maryland countryside, representatives from the Johns Hopkins University Applied Physics Laboratory (APL) presented Administrator Daniel S. Goldin of the National Aeronautics and Space Administration (NASA) with a check for $3.6 million. 1 Two and a half years earlier, APL officials had agreed to develop a spacecraft capable of conducting an asteroid rendezvous and to do so for slightly more than $122 million. This was a remarkably low sum for a spacecraft due to conduct a planetaryclass mission. By contrast, the Mars Observer spacecraft launched in 1992 for an orbital rendezvous with the red planet had cost $479 million to develop, while the upcoming Cassini mission to Saturn required a spacecraft whose total cost was approaching $1.4 billion. In an Agency accustomed to cost overruns on major missions, the promise to build a planetary-class spacecraft for about $100 million seemed excessively optimistic.

  1. Evaluation of GPS position and attitude determination for automated rendezvous and docking missions

    NASA Astrophysics Data System (ADS)

    Diprinzio, Marc D.; Tolson, Robert H.

    1994-07-01

    The use of the Global Positioning System for position and attitude determination is evaluated for an automated rendezvous and docking mission. The typical mission scenario involves the chaser docking with the target for resupply or repair purposes, and is divided into three sections. During the homing phase, the chaser utilizes coarse acquisition pseudorange data to approach the target; guidance laws for this stage are investigated. In the second phase, differential carrier phase positioning is utilized. The chaser must maintain a quasiconstant distance from the target, in order to resolve the initial integer ambiguities. Once the ambiguities are determined, the terminal phase is entered, and the rendezvous is completed with continuous carrier phase tracking. Attitude knowledge is maintained in all phases through the use of the carrier phase observable. A Kalman filter is utilized to estimate all states from the noisy measurement data. The effects of selective availability and cycle slips are also investigated.

  2. The asteroid rendezvous spacecraft. An adaptation study of TIROS/DMSP technology

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The feasibility of using the TIROS/DMSP Earth orbiting meteorological satellite in application to a near Earth asteroid rendezvous mission. System and subsystems analysis was carried out to develop a configuration of the spacecraft suitable for this mission. Mission analysis studies were also done and maneuver/rendezvous scenarios developed for baseline missions to both Anteros and Eros. The fact that the Asteroid mission is the most complex of the Pioneer class missions currently under consideration notwithstanding, the basic conclusion very strongly supports the suitability of the basic TIROS bus for this mission in all systems and subsystems areas, including science accommodation. Further, the modifications which are required due to the unique mission are very low risk and can be accomplished readily. The key issue is that in virtually every key subsystem, the demands of the Asteroid mission are a subset of the basic meteorological satellite mission. This allows a relatively simple reconfiguration to be accomplished without a major system redesign.

  3. Image-guided ureteral reconstruction using rendezvous technique for complex ureteric transection after gunshot injuries

    PubMed Central

    Arabi, Mohammad; Mat’hami, Abdulaziz; Said, Mohammad T.; Bulbul, Muhammad; Haddad, Maurice; Al-Kutoubi, Aghiad

    2016-01-01

    Management of complex ureteric transection poses a significant clinical challenge, particularly after gunshot injuries due to marked distortion of anatomy and associated tissue loss. We report two cases of total ureteric transection due to gunshot injury successfully repaired using fluoroscopy-guided rendezvous procedure and double J stent placement. This minimally invasive approach may offer a safe and effective technique to repair complete ureteral transection and obviate the need for complex surgical procedures. PMID:26955601

  4. A Guidance and Navigation System for Two Spacecraft Rendezvous in Translunar Halo Orbit

    DTIC Science & Technology

    1993-05-01

    system plant Q = Rendezvous navigation filter process noise fixed power spectrum Qa — Unmodeled accelerations fixed power spectrum Qb = Measurement...be TV-, (3.4) (3.5) (3.6) The plant disturbances, wd, and the measurement noise, wm, have a fixed power spectrum. In addition, pn and p^ are...fixed power 29 Figure 3.3: Expanded System Model 30 spectrum. The plant disturbance, or process noise, is then scaled by a non- dimensional

  5. A feasibility study of unmanned rendezvous and docking in Mars orbit. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The technical feasibility of achieving automatic rendezvous and docking in Mars orbit as a part of a surface sample return mission was investigated based on using as much existing Viking '75 Orbiter and Lander hardware as possible. Both 1981 and 1983/84 mission opportunities were considered. The principle result of the study was the definition of a three stage 289 kg Mars Ascent Vehicle (MAV) capable of accepting a 1 kg sample, injecting itself into a 2200 km circular orbit, and rendezvousing with an orbiting spacecraft carrying an earth return vehicle. Conclusions are that with state of the art systems plus limited application of new developments in areas where feasibility has already been demonstrated, e.g., solid rocket motor sterilization, it is possible to land a small ascent vehicle capable of automatically ascending and rendezvousing with a modified Viking '75 orbiter spacecraft. The mission can be flown in 1981 or 1983/84, but a dual launch or a larger launch vehicle than the Viking Titan 3 Centaur, or the use of space storable propellants for Mars orbit injection, would be required in the 1983/84 opportunity.

  6. The Data Transfer Kit: A geometric rendezvous-based tool for multiphysics data transfer

    SciTech Connect

    Slattery, S. R.; Wilson, P. P. H.; Pawlowski, R. P.

    2013-07-01

    The Data Transfer Kit (DTK) is a software library designed to provide parallel data transfer services for arbitrary physics components based on the concept of geometric rendezvous. The rendezvous algorithm provides a means to geometrically correlate two geometric domains that may be arbitrarily decomposed in a parallel simulation. By repartitioning both domains such that they have the same geometric domain on each parallel process, efficient and load balanced search operations and data transfer can be performed at a desirable algorithmic time complexity with low communication overhead relative to other types of mapping algorithms. With the increased development efforts in multiphysics simulation and other multiple mesh and geometry problems, generating parallel topology maps for transferring fields and other data between geometric domains is a common operation. The algorithms used to generate parallel topology maps based on the concept of geometric rendezvous as implemented in DTK are described with an example using a conjugate heat transfer calculation and thermal coupling with a neutronics code. In addition, we provide the results of initial scaling studies performed on the Jaguar Cray XK6 system at Oak Ridge National Laboratory for a worse-case-scenario problem in terms of algorithmic complexity that shows good scaling on 0(1 x 104) cores for topology map generation and excellent scaling on 0(1 x 105) cores for the data transfer operation with meshes of O(1 x 109) elements. (authors)

  7. Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Laboratory

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Williamson, Marlin L.; Johnston, Albert S.; Brewster, Linda L.; Mitchell, Jennifer D.; Cryan, Scott P.; Strack, David; Key, Kevin

    2007-01-01

    The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as Automated Rendezvous and Docking, (AR&D).) The crewed versions of the spacecraft may also perform AR&D, possibly with a different level of automation and/or autonomy, and must also provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success of the Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor-proposed relative navigation sensor suite will meet the CEV requirements. The relatively low technology readiness of relative navigation sensors for AR&D has been carried as one of the CEV Projects top risks. The AR&D Sensor Technology Project seeks to reduce this risk by increasing technology maturation of selected relative navigation sensor technologies through testing and simulation, and to allow the CEV Project to assess the relative navigation sensors.

  8. Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Laboratory

    NASA Technical Reports Server (NTRS)

    Mitchell, J.; Johnston, A.; Howard, R.; Williamson, M.; Brewster, L.; Strack, D.; Cryan, S.

    2007-01-01

    The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as Automated Rendezvous and Docking, AR&D). The crewed versions may also perform AR&D, possibly with a different level of automation and/or autonomy, and must also provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success of the Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor-proposed relative navigation sensor suite will meet the CEV requirements. The relatively low technology readiness of relative navigation sensors for AR&D has been carried as one of the CEV Projects top risks. The AR&D Sensor Technology Project seeks to reduce this risk by increasing technology maturation of selected relative navigation sensor technologies through testing and simulation, and to allow the CEV Project to assess the relative navigation sensors.

  9. A Ground Testbed to Advance US Capability in Autonomous Rendezvous and Docking Project

    NASA Technical Reports Server (NTRS)

    D'Souza, Chris

    2014-01-01

    This project will advance the Autonomous Rendezvous and Docking (AR&D) GNC system by testing it on hardware, particularly in a flight processor, with a goal of testing it in IPAS with the Waypoint L2 AR&D scenario. The entire Agency supports development of a Commodity for Autonomous Rendezvous and Docking (CARD) as outlined in the Agency-wide Community of Practice whitepaper entitled: "A Strategy for the U.S. to Develop and Maintain a Mainstream Capability for Automated/Autonomous Rendezvous and Docking in Low Earth Orbit and Beyond". The whitepaper establishes that 1) the US is in a continual state of AR&D point-designs and therefore there is no US "off-the-shelf" AR&D capability in existence today, 2) the US has fallen behind our foreign counterparts particularly in the autonomy of AR&D systems, 3) development of an AR&D commodity is a national need that would benefit NASA, our commercial partners, and DoD, and 4) an initial estimate indicates that the development of a standardized AR&D capability could save the US approximately $60M for each AR&D project and cut each project's AR&D flight system implementation time in half.

  10. Endoscopic Ultrasound Guided Rendezvous Drainage of Biliary Obstruction Using a New Flexible 19-Gauge Fine Needle Aspiration Needle

    PubMed Central

    Tang, Zhouwen; Igbinomwanhia, Efehi; Elhanafi, Sherif

    2016-01-01

    Background and Aim. A successful endoscopic ultrasound guided rendezvous (EUS-RV) biliary drainage is dependent on accurate puncture of the bile duct and precise guide wire manipulation across the ampulla of Vater. We aim to study the feasibility of using a flexible 19-gauge fine aspiration needle in the performance of EUS-RV biliary drainage. Method. This is a retrospective case series of EUS-RV biliary drainage procedures at a single center. Patients who failed ERCP during the same session for benign or malignant biliary obstruction underwent EUS-RV using a flexible, nitinol covered, 19-gauge needle for biliary access and guide wire manipulation. Result. 24 patients underwent EUS-RV biliary drainage via extrahepatic access while 1 attempt was via intrahepatic access. The technical success rate was 80%, including 83.3% of cases via extrahepatic access. There was no significant difference in success rate of inpatient and outpatient procedures, benign or malignant indications, or type of guide wire used. Adverse events included mild pancreatitis (3 patients) and cholangitis (1 patient). Conclusion. A flexible 19-gauge needle for biliary access can be safe and effective when used to perform EUS-RV biliary drainage. Direct comparison between the nitinol needle and conventional metal needles in the performance of EUS guided biliary drainage is needed. PMID:27822005

  11. Poisson equations of rotational motion for a rigid triaxial body with application to a tumbling artificial satellite

    NASA Technical Reports Server (NTRS)

    Liu, J. J. F.; Fitzpatrick, P. M.

    1975-01-01

    A mathematical model is developed for studying the effects of gravity gradient torque on the attitude stability of a tumbling triaxial rigid satellite. Poisson equations are used to investigate the rotation of the satellite (which is in elliptical orbit about an attracting point mass) about its center of mass. An averaging method is employed to obtain an intermediate set of differential equations for the nonresonant, secular behavior of the osculating elements which describe the rotational motions of the satellite, and the averaged equations are then integrated to obtain long-term secular solutions for the osculating elements.

  12. Effect of field size, head motion, and rotational velocity on roll vection and illusory self-tilt in a tumbling room

    NASA Technical Reports Server (NTRS)

    Allison, R. S.; Howard, I. P.; Zacher, J. E.; Oman, C. M. (Principal Investigator)

    1999-01-01

    The effect of field size, velocity, and visual fixation upon the perception of self-body rotation and tilt was examined in a rotating furnished room. Subjects sat in a stationary chair in the furnished room which could be rotated about the body roll axis. For full-field conditions, complete 360 degrees body rotation (tumbling) was the most common sensation (felt by 80% of subjects). Constant tilt or partial tumbling (less than 360 degrees rotation) occurred more frequently with a small field of view (20 deg). The number of subjects who experienced complete tumbling increased with increases in field of view and room velocity (for velocities between 15 and 30 degrees s-1). The speed of perceived self-rotation relative to room rotation also increased with increasing field of view.

  13. The Space Operations Simulation Center (SOSC) and Closed-loop Hardware Testing for Orion Rendezvous System Design

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher; Milenkovich, Zoran; Wilson, Zachary; Huich, David; Bendle, John; Kibler, Angela

    2011-01-01

    The Space Operations Simulation Center (SOSC) at the Lockheed Martin (LM) Waterton Campus in Littleton, Colorado is a dynamic test environment focused on Autonomous Rendezvous and Docking (AR&D) development testing and risk reduction activities. The SOSC supports multiple program pursuits and accommodates testing Guidance, Navigation, and Control (GN&C) algorithms for relative navigation, hardware testing and characterization, as well as software and test process development. The SOSC consists of a high bay (60 meters long by 15.2 meters wide by 15.2 meters tall) with dual six degree-of-freedom (6DOF) motion simulators and a single fixed base 6DOF robot. The large testing area (maximum sensor-to-target effective range of 60 meters) allows for large-scale, flight-like simulations of proximity maneuvers and docking events. The facility also has two apertures for access to external extended-range outdoor target test operations. In addition, the facility contains four Mission Operations Centers (MOCs) with connectivity to dual high bay control rooms and a data/video interface room. The high bay is rated at Class 300,000 (. 0.5 m maximum particles/m3) cleanliness and includes orbital lighting simulation capabilities.

  14. Integrated vision-based GNC for autonomous rendezvous and capture around Mars

    NASA Astrophysics Data System (ADS)

    Strippoli, L.; Novelli, G.; Gil Fernandez, J.; Colmenarejo, P.; Le Peuvedic, C.; Lanza, P.; Ankersen, F.

    2015-06-01

    Integrated GNC (iGNC) is an activity aimed at designing, developing and validating the GNC for autonomously performing the rendezvous and capture phase of the Mars sample return mission as defined during the Mars sample return Orbiter (MSRO) ESA study. The validation cycle includes testing in an end-to-end simulator, in a real-time avionics-representative test bench and, finally, in a dynamic HW in the loop test bench for assessing the feasibility, performances and figure of merits of the baseline approach defined during the MSRO study, for both nominal and contingency scenarios. The on-board software (OBSW) is tailored to work with the sensors, actuators and orbits baseline proposed in MSRO. The whole rendezvous is based on optical navigation, aided by RF-Doppler during the search and first orbit determination of the orbiting sample. The simulated rendezvous phase includes also the non-linear orbit synchronization, based on a dedicated non-linear guidance algorithm robust to Mars ascent vehicle (MAV) injection accuracy or MAV failures resulting in elliptic target orbits. The search phase is very demanding for the image processing (IP) due to the very high visual magnitude of the target wrt. the stellar background, and the attitude GNC requires very high pointing stability accuracies to fulfil IP constraints. A trade-off of innovative, autonomous navigation filters indicates the unscented Kalman filter (UKF) as the approach that provides the best results in terms of robustness, response to non-linearities and performances compatibly with computational load. At short range, an optimized IP based on a convex hull algorithm has been developed in order to guarantee LoS and range measurements from hundreds of metres to capture.

  15. Third Report of the Task Force on the Shuttle-Mir Rendezvous and Docking Missions

    NASA Technical Reports Server (NTRS)

    1994-01-01

    In May 1994, the Task Force on the Shuttle-Mir Rendezvous and Docking Missions was established by the NASA Advisory Council. Its purpose is to review Phase 1 (Shuttle-Mir) planning, training, operations, rendezvous and docking, and management and to provide interim reports containing specific recommendations to the Advisory Council. Phase 1 represents the building block to create the experience and technical expertise for an International Space Station. The Phase 1 program brings together the United States and Russia in a major cooperative and contractual program that takes advantage of both countries' capabilities. The content of the Phase 1 program consists of the following elements as defined by the Phase 1 Program Management Plan, dated October 6, 1994: Shuttle-Mir rendezvous and docking missions; astronaut long duration presence on Mir Requirements for Mir support of Phase 1 when astronauts are not on board; outfitting Spektr and Priroda modules with NASA science, research, and risk mitigation equipment Related ground support requirements of NASA and the Russian Space Agency (RSA) to support Phase 1 Integrated NASA and RSA launch schedules and manifests The first meeting of the Task Force was held at the Johnson Space Center (JSC) on May 24 and 25, 1994 with a preliminary report submitted to the NASA Advisory Council on June 6, 1994. The second meeting of the Task Force was held at JSC on July 12 and 13, 1994 and a detailed report containing a series of specific recommendations was submitted on July 29, 1994. This report reflects the results of the third Task Force meeting which was held at JSC on 11 and 12 October, 1994. The briefings presented at that meeting reviewed NASA's response to the Task Force recommendations made to date and provided background data and current status on several critical areas which the Task Force had not addressed in its previous reports.

  16. SPARTAN: A High-Fidelity Simulation for Automated Rendezvous and Docking Applications

    NASA Technical Reports Server (NTRS)

    Turbe, Michael A.; McDuffie, James H.; DeKock, Brandon K.; Betts, Kevin M.; Carrington, Connie K.

    2007-01-01

    bd Systems (a subsidiary of SAIC) has developed the Simulation Package for Autonomous Rendezvous Test and ANalysis (SPARTAN), a high-fidelity on-orbit simulation featuring multiple six-degree-of-freedom (6DOF) vehicles. SPARTAN has been developed in a modular fashion in Matlab/Simulink to test next-generation automated rendezvous and docking guidance, navigation,and control algorithms for NASA's new Vision for Space Exploration. SPARTAN includes autonomous state-based mission manager algorithms responsible for sequencing the vehicle through various flight phases based on on-board sensor inputs and closed-loop guidance algorithms, including Lambert transfers, Clohessy-Wiltshire maneuvers, and glideslope approaches The guidance commands are implemented using an integrated translation and attitude control system to provide 6DOF control of each vehicle in the simulation. SPARTAN also includes high-fidelity representations of a variety of absolute and relative navigation sensors that maybe used for NASA missions, including radio frequency, lidar, and video-based rendezvous sensors. Proprietary navigation sensor fusion algorithms have been developed that allow the integration of these sensor measurements through an extended Kalman filter framework to create a single optimal estimate of the relative state of the vehicles. SPARTAN provides capability for Monte Carlo dispersion analysis, allowing for rigorous evaluation of the performance of the complete proposed AR&D system, including software, sensors, and mechanisms. SPARTAN also supports hardware-in-the-loop testing through conversion of the algorithms to C code using Real-Time Workshop in order to be hosted in a mission computer engineering development unit running an embedded real-time operating system. SPARTAN also contains both runtime TCP/IP socket interface and post-processing compatibility with bdStudio, a visualization tool developed by bd Systems, allowing for intuitive evaluation of simulation results. A

  17. Ion drive technology readiness for the 1985 Halley Comet rendezvous mission

    NASA Technical Reports Server (NTRS)

    West, J. L.

    1978-01-01

    Results of a study undertaken in FY 77 to assess readiness by 1985 for a Halley's Comet rendezvous mission (HCR) are presented with reference to already identified risks, e.g., a marginal mass margin of 6.7%, driven by uncertainties in ion drive vehicle masses, and an unconfirmed solar array power degradation model of 12%. Technology for two of the six subsystems, thrust and solar array, is also largely undemonstrated. High-, medium-, and low-risk subsystems are evaluated and compared with one another. Among the low-risk subsystems are those relating to structure, data handling, temperature control, and power supply.

  18. Predicting performance in manually controlled rendezvous and docking through spatial abilities

    NASA Astrophysics Data System (ADS)

    Wang, Chunhui; Tian, Yu; Chen, Shanguang; Tian, Zhiqiang; Jiang, Ting; Du, Feng

    2014-01-01

    Manually controlled rendezvous and docking (manual RVD) is a challenging space task for astronauts. This study aims to identify spatial abilities that are critical for accomplishing manual RVD. Based on task analysis, spatial abilities were deduced to be critical for accomplishing manual RVD. 15 Male participants performed manual RVD task simulations and spatial ability tests (the object-manipulation spatial ability and spatial orientation ability). Participants' performance in the test of visualization of viewpoints (which measures the spatial orientation ability) was found to be significantly correlated with their manual RVD performance, indicating that the spatial orientation ability in the sense of perspective taking is particularly important for accomplishing manual RVD.

  19. Orbit Modification of Earth-Crossing Asteroids/Comets Using Rendezvous Spacecraft and Laser Ablation

    NASA Technical Reports Server (NTRS)

    Park, Sang-Young; Mazanek, Daniel D.

    2005-01-01

    This report describes the approach and results of an end-to-end simulation to deflect a long-period comet (LPC) by using a rapid rendezvous spacecraft and laser ablation system. The laser energy required for providing sufficient deflection DELTA V and an analysis of possible intercept/rendezvous spacecraft trajectories are studied in this analysis. These problems minimize a weighted sum of the flight time and required propellant by using an advanced propulsion system. The optimal thrust-vector history and propellant mass to use are found in order to transfer a spacecraft from the Earth to a targeted celestial object. One goal of this analysis is to formulate an optimization problem for intercept/rendezvous spacecraft trajectories. One approach to alter the trajectory of the object in a highly controlled manner is to use pulsed laser ablative propulsion. A sufficiently intense laser pulse ablates the surface of a near-Earth object (NEO) by causing plasma blowoff. The momentum change from a single laser pulse is very small. However, the cumulative effect is very effective because the laser can interact with the object over long periods of time. The laser ablation technique can overcome the mass penalties associated with other nondisruptive approaches because no propellant is required to generate the DELTA V (the material of the celestial object is the propellant source). Additionally, laser ablation is effective against a wide range of surface materials and does not require any landing or physical attachment to the object. For diverting distant asteroids and comets, the power and optical requirements of a laser ablation system on or near the Earth may be too extreme to contemplate in the next few decades. A hybrid solution would be for a spacecraft to carry a laser as a payload to a particular celestial body. The spacecraft would require an advanced propulsion system capable of rapid rendezvous with the object and an extremely powerful electrical generator, which is

  20. Application of neural networks to autonomous rendezvous and docking of space vehicles

    NASA Technical Reports Server (NTRS)

    Dabney, Richard W.

    1992-01-01

    NASA-Marshall has investigated the feasibility of numerous autonomous rendezvous and docking (ARD) candidate techniques. Neural networks have been studied as a viable basis for such systems' implementation, due to their intrinsic representation of such nonlinear functions as those for which analytical solutions are either difficult or nonexistent. Neural networks are also able to recognize and adapt to changes in their dynamic environment, thereby enhancing redundancy and fault tolerance. Outstanding performance has been obtained from ARD azimuth, elevation, and roll networks of this type.

  1. Embedded Relative Navigation Sensor Fusion Algorithms for Autonomous Rendezvous and Docking Missions

    NASA Technical Reports Server (NTRS)

    DeKock, Brandon K.; Betts, Kevin M.; McDuffie, James H.; Dreas, Christine B.

    2008-01-01

    bd Systems (a subsidiary of SAIC) has developed a suite of embedded relative navigation sensor fusion algorithms to enable NASA autonomous rendezvous and docking (AR&D) missions. Translational and rotational Extended Kalman Filters (EKFs) were developed for integrating measurements based on the vehicles' orbital mechanics and high-fidelity sensor error models and provide a solution with increased accuracy and robustness relative to any single relative navigation sensor. The filters were tested tinough stand-alone covariance analysis, closed-loop testing with a high-fidelity multi-body orbital simulation, and hardware-in-the-loop (HWIL) testing in the Marshall Space Flight Center (MSFC) Flight Robotics Laboratory (FRL).

  2. NASA Automated Rendezvous and Capture Review. A compilation of the abstracts

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document presents a compilation of abstracts of papers solicited for presentation at the NASA Automated Rendezvous and Capture Review held in Williamsburg, VA on November 19-21, 1991. Due to limitations on time and other considerations, not all abstracts could be presented during the review. The organizing committee determined however, that all abstracts merited availability to all participants and represented data and information reflecting state-of-the-art of this technology which should be captured in one document for future use and reference. The organizing committee appreciates the interest shown in the review and the response by the authors in submitting these abstracts.

  3. Proximity Operations Nano-Satellite Flight Demonstration (PONSFD) Rendezvous Proximity Operations Design and Trade Studies

    NASA Astrophysics Data System (ADS)

    Griesbach, J.; Westphal, J. J.; Roscoe, C.; Hawes, D. R.; Carrico, J. P.

    2013-09-01

    The Proximity Operations Nano-Satellite Flight Demonstration (PONSFD) program is to demonstrate rendezvous proximity operations (RPO), formation flying, and docking with a pair of 3U CubeSats. The program is sponsored by NASA Ames via the Office of the Chief Technologist (OCT) in support of its Small Spacecraft Technology Program (SSTP). The goal of the mission is to demonstrate complex RPO and docking operations with a pair of low-cost 3U CubeSat satellites using passive navigation sensors. The program encompasses the entire system evolution including system design, acquisition, satellite construction, launch, mission operations, and final disposal. The satellite is scheduled for launch in Fall 2015 with a 1-year mission lifetime. This paper provides a brief mission overview but will then focus on the current design and driving trade study results for the RPO mission specific processor and relevant ground software. The current design involves multiple on-board processors, each specifically tasked with providing mission critical capabilities. These capabilities range from attitude determination and control to image processing. The RPO system processor is responsible for absolute and relative navigation, maneuver planning, attitude commanding, and abort monitoring for mission safety. A low power processor running a Linux operating system has been selected for implementation. Navigation is one of the RPO processor's key tasks. This entails processing data obtained from the on-board GPS unit as well as the on-board imaging sensors. To do this, Kalman filters will be hosted on the processor to ingest and process measurements for maintenance of position and velocity estimates with associated uncertainties. While each satellite carries a GPS unit, it will be used sparsely to conserve power. As such, absolute navigation will mainly consist of propagating past known states, and relative navigation will be considered to be of greater importance. For relative observations

  4. A comparison of solar sail and ion drive trajectories for a Halley's comet rendezvous mission

    NASA Technical Reports Server (NTRS)

    Sauer, C. G., Jr.

    1977-01-01

    According to the propulsion concept of solar sail spacecraft the thrust force is produced by the specular reflection of sunlight from a large, essentially flat, reflecting surface. The magnitude of this force is approximately 9 newtons for a perfectly reflecting sail with an area of 1 square kilometer oriented normal to the sunline at a distance of one astronomical unit from the sun. There exists a restriction in the types of orbit transfer trajectories which can be considered with this propulsion system. In the case of the second propulsion system being considered for the Halley's comet rendezvous mission, thrust is produced by the acceleration of ionized mercury atoms by an electric field. Power to the ion thrusters is supplied by lightweight solar arrays which can provide up to 100 kW of electrical power at a distance of 1 AU from the sun. Because of differing thrust constraints for the two propulsion systems, trajectories for a Halley's comet rendezvous mission are significantly different for the Ion Drive and Solar Sail spacecraft. Details concerning the trajectory characteristics are shown with the aid of a number of graphs.

  5. Space Shuttle Program: Automatic rendezvous, proximity operations, and capture (category 3)

    NASA Technical Reports Server (NTRS)

    Jackson, William L.; Lee, Roscoe; Eick, Richard E.; Hallstrom, J. V.; Hiers, Harry K.; Mcmanamen, John P.; Olszewski, Oscar W.; Prather, Joseph L.; Rue, D. L.; Zimmer, Karl J.

    1991-01-01

    The NASA Johnson Space Center is actively pursuing the development and demonstration of capabilities for automatic rendezvous, proximity operations, and capture (AR&C) using the Space Shuttle as the active vehicle. This activity combines the technologies, expertise, tools, and facilities of the JSC Tracking and Communications Division (EE), Navigation, Control and Aeronautics Division (EG), Automation and Robotics Division (ER), and Structures and Mechanics Division (ES) of the Engineering Directorate and the Flight Design and Dynamics Division (DM) of the Mission Operations Directorate. Potential benefits of AR&C include more efficient and repeatable rendezvous, proximity operations, and capture operations; reduced impacts on the target vehicles (e.g., Orbiter RCS plume loads); reduced flight crew work loads; reduced ground support requirements; and reduced operational constraints. This paper documents the current JSC capabilities/tools/facilities for AR&C and describes a proposed plan for a progression of ground demonstrations and flight tests and demonstrations of AR&C capabilities. This plan involves the maturing of existing technologies in tracking and communications; guidance, navigation and control; mechanisms; manipulators; and systems management and integrating them into several evolutionary demonstration stages.

  6. Optimization of maneuvers and resources for the rendezvous of a servicing vehicle to a space station

    NASA Astrophysics Data System (ADS)

    Magne, Jacques; Canu, Richard; Joulot, Antoine

    Addressing the generation of flight scenarios for the rendezvous of a servicing vehicle to a space station, solutions in terms of sequences of maneuvers shall be found that meet a generally complex set of mission constraints while optimizing the needed resources. For the optimization of maneuvers and resources during rendezvous, this paper describes a methodology based on the parametric optimization of a sequence of genetic non-impulsional thrust maneuvers which are defined by the user from a standard catalog, allowing to cope with both translations and rotations. The method uses a reduced gradient algorithm to find an optimal trajectory that meet every mission constraint. Most attention has been paid to the standard of realism in the modeling of the chaser and target dynamics, and in the formalization of the constraints on the approach trajectories; these last ones are defined as the terminal position, the attitude and kinematic capture conditions for berthing or docking, the maximal duration allocated to the approach, path constraints, the propulsive capacities of the chaser and a `safety' constraint, which in other words means that any failure on the chaser during the approach shall result in collision avoiding trajectories or in a mechanical contract to the station within safe limits. The criterion for scenarios optimization can be minimization of propellant consumption or phase duration, or a weighed combination of both. For illustration purpose, example results are given for the final approach of a servicing vehicle to an Earth-pointed space station.

  7. An integrated autonomous rendezvous and docking system architecture using Centaur modern avionics

    NASA Technical Reports Server (NTRS)

    Nelson, Kurt

    1991-01-01

    The avionics system for the Centaur upper stage is in the process of being modernized with the current state-of-the-art in strapdown inertial guidance equipment. This equipment includes an integrated flight control processor with a ring laser gyro based inertial guidance system. This inertial navigation unit (INU) uses two MIL-STD-1750A processors and communicates over the MIL-STD-1553B data bus. Commands are translated into load activation through a Remote Control Unit (RCU) which incorporates the use of solid state relays. Also, a programmable data acquisition system replaces separate multiplexer and signal conditioning units. This modern avionics suite is currently being enhanced through independent research and development programs to provide autonomous rendezvous and docking capability using advanced cruise missile image processing technology and integrated GPS navigational aids. A system concept was developed to combine these technologies in order to achieve a fully autonomous rendezvous, docking, and autoland capability. The current system architecture and the evolution of this architecture using advanced modular avionics concepts being pursued for the National Launch System are discussed.

  8. Design and development of guidance navigation and control algorithms for spacecraft rendezvous and docking experimentation

    NASA Astrophysics Data System (ADS)

    Guglieri, Giorgio; Maroglio, Franco; Pellegrino, Pasquale; Torre, Liliana

    2014-01-01

    This paper presents the design of the GNC system of a ground test-bed for spacecraft rendezvous and docking experiments. The test-bed is developed within the STEPS project (Systems and Technologies for Space Exploration). The facility consists of a flat floor and two scaled vehicles, one active chaser and one “semi-active” target. Rendezvous and docking maneuvers are performed floating on the plane with pierced plates as lifting systems. The system is designed to work both with inertial and non-inertial reference frame, receiving signals from navigation sensors as: accelerometers, gyroscopes, laser meter, radio finder and video camera, and combining them with a digital filter. A Proportional-Integrative-Derivative control law and Pulse Width Modulators are used to command the cold gas thrusters of the chaser, and to follow an assigned trajectory with its specified velocity profile. The design and development of the guidance, navigation and control system and its architecture-including the software algorithms-are detailed in the paper, presenting a performance analysis based on a simulated environment. A complete description of the integrated subsystems is also presented.

  9. Hardware-in-the-Loop Rendezvous Tests of a Novel Actuators Command Concept

    NASA Astrophysics Data System (ADS)

    Gomes dos Santos, Willer; Marconi Rocco, Evandro; Boge, Toralf; Benninghoff, Heike; Rems, Florian

    2016-12-01

    Integration, test and validation results, in a real-time environment, of a novel concept for spacecraft control are presented in this paper. The proposed method commands simultaneously a group of actuators optimizing a given set of objective functions based on a multiobjective optimization technique. Since close proximity maneuvers play an important role in orbital servicing missions, the entire GNC system has been integrated and tested at a hardware-in-the-loop (HIL) rendezvous and docking simulator known as European Proximity Operations Simulator (EPOS). During the test campaign at EPOS facility, a visual camera has been used to provide the necessary measurements for calculating the relative position with respect to the target satellite during closed-loop simulations. In addition, two different configurations of spacecraft control have been considered in this paper: a thruster reaction control system and a mixed actuators mode which includes thrusters, reaction wheels, and magnetic torqrods. At EPOS, results of HIL closed-loop tests have demonstrated that a safe and stable rendezvous approach can be achieved with the proposed GNC loop.

  10. A Comparison of Trajectory Optimization Methods for the Impulsive Minimum Fuel Rendezvous Problem

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Mailhe, Laurie M.; Guzman, Jose J.

    2003-01-01

    In this paper we present, a comparison of trajectory optimization approaches for the minimum fuel rendezvous problem. Both indirect and direct methods are compared for a variety of test cases. The indirect approach is based on primer vector theory. The direct approaches are implemented numerically and include Sequential Quadratic Programming (SQP). Quasi- Newton and Nelder-Meade Simplex. Several cost function parameterizations are considered for the direct approach. We choose one direct approach that appears to be the most flexible. Both the direct and indirect methods are applied to a variety of test cases which are chosen to demonstrate the performance of each method in different flight regimes. The first test case is a simple circular-to-circular coplanar rendezvous. The second test case is an elliptic-to-elliptic line of apsides rotation. The final test case is an orbit phasing maneuver sequence in a highly elliptic orbit. For each test case we present a comparison of the performance of all methods we consider in this paper.

  11. COMPASS Final Report: Near Earth Asteroids Rendezvous and Sample Earth Returns (NEARER)

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.

    2009-01-01

    In this study, the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team completed a design for a multi-asteroid (Nereus and 1996 FG3) sample return capable spacecraft for the NASA In-Space Propulsion Office. The objective of the study was to support technology development and assess the relative benefits of different electric propulsion systems on asteroid sample return design. The design uses a single, heritage Orion solar array (SA) (approx.6.5 kW at 1 AU) to power a single NASA Evolutionary Xenon Thruster ((NEXT) a spare NEXT is carried) to propel a lander to two near Earth asteroids. After landing and gathering science samples, the Solar Electric Propulsion (SEP) vehicle spirals back to Earth where it drops off the first sample s return capsule and performs an Earth flyby to assist the craft in rendezvousing with a second asteroid, which is then sampled. The second sample is returned in a similar fashion. The vehicle, dubbed Near Earth Asteroids Rendezvous and Sample Earth Returns (NEARER), easily fits in an Atlas 401 launcher and its cost estimates put the mission in the New Frontier s (NF's) class mission.

  12. Space Shuttle Guidance, Navigation, and Rendezvous Knowledge Capture Reports. Revision 1

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2011-01-01

    This document is a catalog and readers guide to lessons learned, experience, and technical history reports, as well as compilation volumes prepared by United Space Alliance personnel for the NASA/Johnson Space Center (JSC) Flight Dynamics Division.1 It is intended to make it easier for future generations of engineers to locate knowledge capture documentation from the Shuttle Program. The first chapter covers observations on documentation quality and research challenges encountered during the Space Shuttle and Orion programs. The second chapter covers the knowledge capture approach used to create many of the reports covered in this document. These chapters are intended to provide future flight programs with insight that could be used to formulate knowledge capture and management strategies. The following chapters contain descriptions of each knowledge capture report. The majority of the reports concern the Space Shuttle. Three are included that were written in support of the Orion Program. Most of the reports were written from the years 2001 to 2011. Lessons learned reports concern primarily the shuttle Global Positioning System (GPS) upgrade and the knowledge capture process. Experience reports on navigation and rendezvous provide examples of how challenges were overcome and how best practices were identified and applied. Some reports are of a more technical history nature covering navigation and rendezvous. They provide an overview of mission activities and the evolution of operations concepts and trajectory design. The lessons learned, experience, and history reports would be considered secondary sources by historians and archivists.

  13. Progress in navigation filter estimate fusion and its application to spacecraft rendezvous

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell

    1994-01-01

    A new derivation of an algorithm which fuses the outputs of two Kalman filters is presented within the context of previous research in this field. Unlike other works, this derivation clearly shows the combination of estimates to be optimal, minimizing the trace of the fused covariance matrix. The algorithm assumes that the filters use identical models, and are stable and operating optimally with respect to their own local measurements. Evidence is presented which indicates that the error ellipsoid derived from the covariance of the optimally fused estimate is contained within the intersections of the error ellipsoids of the two filters being fused. Modifications which reduce the algorithm's data transmission requirements are also presented, including a scalar gain approximation, a cross-covariance update formula which employs only the two contributing filters' autocovariances, and a form of the algorithm which can be used to reinitialize the two Kalman filters. A sufficient condition for using the optimally fused estimates to periodically reinitialize the Kalman filters in this fashion is presented and proved as a theorem. When these results are applied to an optimal spacecraft rendezvous problem, simulated performance results indicate that the use of optimally fused data leads to significantly improved robustness to initial target vehicle state errors. The following applications of estimate fusion methods to spacecraft rendezvous are also described: state vector differencing, and redundancy management.

  14. Study on Performance of Integration Control by Man and Machine in Stage of Final Approaching for Spaceship Rendezvous and Docking

    NASA Astrophysics Data System (ADS)

    Zhou, Qianxiang; Liu, Zhongqi

    With the development of manned space technology, space rendezvous and docking (RVD) technology will play a more and more important role. The astronauts’ participation in a final close period of man-machine combination control is an important way of RVD technology. Spacecraft RVD control involves control problem of a total of 12 degrees of freedom (location) and attitude which it relative to the inertial space the orbit. Therefore, in order to reduce the astronauts’ operation load and reduce the security requirements to the ground station and achieve an optimal performance of the whole man-machine system, it is need to study how to design the number of control parameters of astronaut or aircraft automatic control system. In this study, with the laboratory conditions on the ground, a method was put forward to develop an experimental system in which the performance evaluation of spaceship RVD integration control by man and machine could be completed. After the RVD precision requirements were determined, 26 male volunteers aged 20-40 took part in the performance evaluation experiments. The RVD integration control success rates and total thruster ignition time were chosen as evaluation indices. Results show that if less than three RVD parameters control tasks were finished by subject and the rest of parameters control task completed by automation, the RVD success rate would be larger than eighty-eight percent and the fuel consumption would be optimized. In addition, there were two subjects who finished the whole six RVD parameters control tasks by enough train. In conclusion, if the astronauts' role should be integrated into the RVD control, it was suitable for them to finish the heading, pitch and roll control in order to assure the man-machine system high performance. If astronauts were needed to finish all parameter control, two points should be taken into consideration, one was enough fuel and another was enough long operation time.

  15. A comparison between endoscopic ultrasound-guided rendezvous and percutaneous biliary drainage after failed ERCP for malignant distal biliary obstruction

    PubMed Central

    Bill, Jason G.; Darcy, Michael; Fujii-Lau, Larissa L.; Mullady, Daniel K.; Gaddam, Srinivas; Murad, Faris M.; Early, Dayna S.; Edmundowicz, Steven A.; Kushnir, Vladimir M.

    2016-01-01

    Background and study Aims: Selective biliary cannulation is unsuccessful in 5 % to 10 % of patients undergoing endoscopic retrograde cholangiopancreatography (ERCP) for malignant distal biliary obstruction (MDBO). Percutaneous biliary drainage (PBD) has been the gold standard, but endoscopic ultrasound guided rendezvous (EUSr) have been increasingly used for biliary decompression in this patient population. Our aim was to compare the initial success rate, long-term efficacy, and safety of PBD and EUSr in relieving MDBO after failed ERC Patients and methods: A retrospective study involving 50 consecutive patients who had an initial failed ERCP for MDBO. Twenty-five patients undergoing EUSr between 2008 – 2014 were compared to 25 patients who underwent PBD immediately prior to the introduction of EUSr at our center (2002 – 2008). Comparisons were made between the two groups with regard to technical success, duration of hospital stay and adverse event rates after biliary decompression. Results: The mean age at presentation was 66.5 (± 12.6 years), 28 patients (54.9 %) were female. The etiology of MDBO was pancreaticobiliary malignancy in 44 (88 %) and metastatic disease in 6 (12 %) cases. Biliary drainage was technically successful by EUSr in 19 (76 %) cases and by PBD in 25 (100 %) (P = 0.002). Median length of hospital stay after initial drainage was 1 day in the EUSr group vs 5 days in PBD group (P = 0.02). Repeat biliary intervention was required for 4 patients in the EUSr group and 15 in the PBD group (P = 0.001). Conclusions: Initial technical success with EUSr was significantly lower than with PBD, however when EUSr was successful, patients had a significantly shorter post-procedure hospital stay and required fewer follow-up biliary interventions. Meeting presentations: Annual Digestive Diseases Week 2015 PMID:27652305

  16. Measurement of radial expansion and tumbling motion of a high-speed rotor using an optical sensor system

    NASA Astrophysics Data System (ADS)

    Günther, P.; Dreier, F.; Pfister, T.; Czarske, J.; Haupt, T.; Hufenbach, W.

    2011-01-01

    In order to investigate the load capacity and the strength properties of high-speed rotors, dynamic deformation and vibration measurements are of importance, in particular at lightweight composite devices which cannot be simulated reliably. This is a challenging task in metrology since non-contact inspection techniques are required which offer micron uncertainties and high temporal resolution simultaneously, also under vacuum conditions. In order to meet these requirements, a non-incremental laser Doppler distance sensor system was developed using fiber and diffractive optics. In this paper we present for the first time high-speed deformation measurements of a cylindrical steel rotor using this novel sensor system. The radial rotor expansion of only some microns was determined despite the presence of an unsteady tumbling motion of the rotor, which was measured simultaneously. Future prospects are discussed including the possibility to measure non-metallic devices such as fiber-reinforced composites.

  17. Usefulness of the 'Rendezvous' Technique in Living Related Right Liver Donors with Postoperative Biliary Leakage from Bile Duct Anastomosis

    SciTech Connect

    Miraglia, R.; Traina, M.; Maruzzelli, L.; Caruso, S.; Di Pisa, M.; Gruttadauria, S.; Luca, A.; Gridelli, B.

    2008-09-15

    This is a report on two cases of large bile leak following right hepatectomy performed for living related liver transplantation, originating from the stump of the ligated right bile duct, and treated with the placement of large percutaneous biliary catheters through a combined percutaneous transhepatic and endoscopic approach (rendezvous technique).

  18. Q-Learning and p-persistent CSMA based rendezvous protocol for cognitive radio networks operating with shared spectrum activity

    NASA Astrophysics Data System (ADS)

    Watson, Clifton L.; Biswas, Subir

    2014-06-01

    With an increasing demand for spectrum, dynamic spectrum access (DSA) has been proposed as viable means for providing the flexibility and greater access to spectrum necessary to meet this demand. Within the DSA concept, unlicensed secondary users temporarily "borrow" or access licensed spectrum, while respecting the licensed primary user's rights to that spectrum. As key enablers for DSA, cognitive radios (CRs) are based on software-defined radios which allow them to sense, learn, and adapt to the spectrum environment. These radios can operate independently and rapidly switch channels. Thus, the initial setup and maintenance of cognitive radio networks are dependent upon the ability of CR nodes to find each other, in a process known as rendezvous, and create a link on a common channel for the exchange of data and control information. In this paper, we propose a novel rendezvous protocol, known as QLP, which is based on Q-learning and the p-persistent CSMA protocol. With the QLP protocol, CR nodes learn which channels are best for rendezvous and thus adapt their behavior to visit those channels more frequently. We demonstrate through simulation that the QLP protocol provides a rendevous capability for DSA environments with different dynamics of PU activity, while attempting to achieve the following performance goals: (1) minimize the average time-to-rendezvous, (2) maximize system throughput, (3) minimize primary user interference, and (4) minimize collisions among CR nodes.

  19. The Successful Development of an Automated Rendezvous and Capture (AR&C) System for the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Roe, Fred D.; Howard, Richard T.

    2003-01-01

    During the 1990's, the Marshall Space Flight Center (MSFC) conducted pioneering research in the development of an automated rendezvous and capture/docking (AR&C) system for U.S. space vehicles. Development and demonstration of a rendezvous sensor was identified early in the AR&C Program as the critical enabling technology that allows automated proximity operations and docking. A first generation rendezvous sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on STS-87 and STS-95, proving the concept of a video- based sensor. A ground demonstration of the entire system and software was successfully tested. Advances in both video and signal processing technologies and the lessons learned from the two successful flight experiments provided a baseline for the development, by the MSFC, of a new generation of video based rendezvous sensor. The Advanced Video Guidance Sensor (AGS) has greatly increased performance and additional capability for longer-range operation with a new target designed as a direct replacement for existing ISS hemispherical reflectors.

  20. Multi-Sensor Testing for Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Laboratory

    NASA Technical Reports Server (NTRS)

    Brewster, L.; Johnston, A.; Howard, R.; Mitchell, J.; Cryan, S.

    2007-01-01

    The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as AR&D). The crewed missions may also perform rendezvous and docking operations and may require different levels of automation and/or autonomy, and must provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success of the Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor proposed relative navigation sensor suite will meet the requirements. The relatively low technology readiness level of AR&D relative navigation sensors has been carried as one of the CEV Project's top risks. The AR&D Sensor Technology Project seeks to reduce the risk by the testing and analysis of selected relative navigation sensor technologies through hardware-in-the-loop testing and simulation. These activities will provide the CEV Project information to assess the relative navigation sensors maturity as well as demonstrate test methods and capabilities. The first year of this project focused on a series of"pathfinder" testing tasks to develop the test plans, test facility requirements, trajectories, math model architecture, simulation platform, and processes that will be used to evaluate the Contractor-proposed sensors. Four candidate sensors were used in the first phase of the testing. The second phase of testing used four sensors simultaneously: two Marshall Space Flight Center (MSFC) Advanced Video Guidance Sensors (AVGS), a laser-based video sensor that uses retroreflectors attached to the target vehicle, and two commercial laser range finders. The multi-sensor testing was conducted at MSFC's Flight Robotics Laboratory (FRL

  1. Multi-Sensor Testing for Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Lab

    NASA Technical Reports Server (NTRS)

    Brewster, Linda L.; Howard, Richard T.; Johnston, A. S.; Carrington, Connie; Mitchell, Jennifer D.; Cryan, Scott P.

    2008-01-01

    The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as AR&D). The crewed missions may also perform rendezvous and docking operations and may require different levels of automation and/or autonomy, and must provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success ofthe Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor-proposed relative navigation sensor suite will meet the requirements. The relatively low technology readiness level of AR&D relative navigation sensors has been carried as one of the CEV Project's top risks. The AR&D Sensor Technology Project seeks to reduce the risk by the testing and analysis of selected relative navigation sensor technologies through hardware-in-the-Ioop testing and simulation. These activities will provide the CEV Project information to assess the relative navigation sensors maturity as well as demonstrate test methods and capabilities. The first year of this project focused on a series of "pathfinder" testing tasks to develop the test plans, test facility requirements, trajectories, math model architecture, simulation platform, and processes that will be used to evaluate the Contractor-proposed sensors. Four candidate sensors were used in the first phase of the testing. The second phase of testing used four sensors simultaneously: two Marshall Space Flight Center (MSFC) Advanced Video Guidance Sensors (AVGS), a laser-based video sensor that uses retroreflectors attached to the target vehicle, and two commercial laser range finders. The multi-sensor testing was conducted at MSFC's Flight Robotics Laboratory (FRL

  2. Robust adaptive backstepping neural networks control for spacecraft rendezvous and docking with input saturation.

    PubMed

    Xia, Kewei; Huo, Wei

    2016-05-01

    This paper presents a robust adaptive neural networks control strategy for spacecraft rendezvous and docking with the coupled position and attitude dynamics under input saturation. Backstepping technique is applied to design a relative attitude controller and a relative position controller, respectively. The dynamics uncertainties are approximated by radial basis function neural networks (RBFNNs). A novel switching controller consists of an adaptive neural networks controller dominating in its active region combined with an extra robust controller to avoid invalidation of the RBFNNs destroying stability of the system outside the neural active region. An auxiliary signal is introduced to compensate the input saturation with anti-windup technique, and a command filter is employed to approximate derivative of the virtual control in the backstepping procedure. Globally uniformly ultimately bounded of the relative states is proved via Lyapunov theory. Simulation example demonstrates effectiveness of the proposed control scheme.

  3. Model analysis of remotely controlled rendezvous and docking with display prediction

    NASA Technical Reports Server (NTRS)

    Milgram, P.; Wewerinke, P. H.

    1986-01-01

    Manual control of rendezvous and docking (RVD) of two spacecraft in low earth orbit by a remote human operator is discussed. Experimental evidence has shown that control performance degradation for large transmission delays (between spacecraft and operations control center) can be substantially improved by the introduction of predictor displays. An intial Optimal Control Model (OCM) analysis of RVD translational and rotational perturbation control was performed, with emphasis placed on the predictive capabilities of the combined Kalman estimator/optimal predictor with respect to control performance, for a range of time delays, motor noise levels and tracking axes. OCM predictions are then used as a reference for comparing tracking performance with a simple predictor display, as well as with no display prediction at all. Use is made here of an imperfect internal model formulation, whereby it is assumed that the human operator has no knowledge of the system transmission delay.

  4. Rendezvous strategy impacts on CTV avionics design, system reliability requirements, and available collision avoidance maneuvers

    NASA Technical Reports Server (NTRS)

    Donovan, William J.; Davis, John E.

    1991-01-01

    Rockwell International is conducting an ongoing program to develop avionics architectures that provide high intrinsic value while meeting all mission objectives. Studies are being conducted to determine alternative configurations that have low life-cycle cost and minimum development risk, and that minimize launch delays while providing the reliability level to assure a successful mission. This effort is based on four decades of providing ballistic missile avionics to the United States Air Force and has focused on the requirements of the NASA Cargo Transfer Vehicle (CTV) program in 1991. During the development of architectural concepts it became apparent that rendezvous strategy issues have an impact on the architecture of the avionics system. This is in addition to the expected impact on propulsion and electrical power duration, flight profiles, and trajectory during approach.

  5. Autonomous rendezvous and docking: A commercial approach to on-orbit technology validation

    NASA Technical Reports Server (NTRS)

    Tchoryk, Peter, Jr.; Whitten, Raymond P.

    1991-01-01

    SpARC, in conjunction with its corporate affiliates, is planning an on-orbit validation of autonomous rendezvous and docking (ARD) technology. The emphasis in this program is to utilize existing technology and commercially available components wherever possible. The primary subsystems to be validated by this demonstration include GPS receivers for navigation, a video-based sensor for proximity operations, a fluid connector mechanism to demonstrate fluid resupply capability, and a compliant, single-point docking mechanism. The focus for this initial experiment will be ELV based and will make use of two residual Commercial Experiment Transporter (COMET) service modules. The first COMET spacecraft will be launched in late 1992 and will serve as the target vehicle. After the second COMET spacecraft has been launched in late 1994, the ARD demonstration will take place. The service module from the second COMET will serve as the chase vehicle.

  6. Report of the Task Force on the Shuttle-Mir Rendezvous and Docking Missions

    NASA Technical Reports Server (NTRS)

    1994-01-01

    In October 1992, Russia and the U.S. agreed to conduct a fundamentally new program of human cooperation in space. This original 'Shuttle-Mir' project encompassed combined astronaut-cosmonaut activities on the Shuttle, Soyuz, and Mir spacecraft. At that time, the project was limited to: the STS-60 Shuttle mission, which was completed in February 1994 and carried the first Russian cosmonaut; the planned March 1995 Soyuz 18 launch which will carry a U.S. astronaut to the Mir space station for a three month mission; and the STS-71 Shuttle mission which is scheduled to rendezvous and dock with the Mir space station in June 1995. The Task Force's specific recommendations are given.

  7. Development of an autonomous video rendezvous and docking system, phase 2

    NASA Technical Reports Server (NTRS)

    Tietz, J. C.; Richardson, T. E.

    1983-01-01

    The critical elements of an autonomous video rendezvous and docking system were built and used successfully in a physical laboratory simulation. The laboratory system demonstrated that a small, inexpensive electronic package and a flight computer of modest size can analyze television images to derive guidance information for spacecraft. In the ultimate application, the system would use a docking aid consisting of three flashing lights mounted on a passive target spacecraft. Television imagery of the docking aid would be processed aboard an active chase vehicle to derive relative positions and attitudes of the two spacecraft. The demonstration system used scale models of the target spacecraft with working docking aids. A television camera mounted on a 6 degree of freedom (DOF) simulator provided imagery of the target to simulate observations from the chase vehicle. A hardware video processor extracted statistics from the imagery, from which a computer quickly computed position and attitude. Computer software known as a Kalman filter derived velocity information from position measurements.

  8. Analysis of a Linear System for Variable-Thrust Control in the Terminal Phase of Rendezvous

    NASA Technical Reports Server (NTRS)

    Hord, Richard A.; Durling, Barbara J.

    1961-01-01

    A linear system for applying thrust to a ferry vehicle in the 3 terminal phase of rendezvous with a satellite is analyzed. This system requires that the ferry thrust vector per unit mass be variable and equal to a suitable linear combination of the measured position and velocity vectors of the ferry relative to the satellite. The variations of the ferry position, speed, acceleration, and mass ratio are examined for several combinations of the initial conditions and two basic control parameters analogous to the undamped natural frequency and the fraction of critical damping. Upon making a desirable selection of one control parameter and requiring minimum fuel expenditure for given terminal-phase initial conditions, a simplified analysis in one dimension practically fixes the choice of the remaining control parameter. The system can be implemented by an automatic controller or by a pilot.

  9. Evaluation of Guidance Control Accuracy during Rendezvous Docking Experiment of ETS-VII

    NASA Astrophysics Data System (ADS)

    Kawano, Isao; Mokuno, Masaaki; Suzuki, Takashi; Koyama, Hiroshi; Kunugi, Makoto

    ETS-VII is a test satellite to perform in-orbit demonstration of autonomous rendezvous docking (RVD) technology, which will be necessary for advanced space activities in the early 21st century. ETS-VII performed three RVD experiment flights, and verified all technical items. Three types of guidance and control method were used in three approach phases; C-W guidance law in relative approach phase, reference trajectory guidance law in final approach phase, and relative 6 degree of freedom control in docking phase respectively. We present ETS-VII RVD guidance and control system, and evaluation of its on-orbit performance in this paper. Its performance was better than requirement in each phases.

  10. A Summary of the Rendezvous, Proximity Operations, Docking, and Undocking (RPODU) Lessons Learned from the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) Demonstration System Mission

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Carpenter, James R.

    2011-01-01

    The Guidance, Navigation, and Control (GN&C) Technical Discipline Team (TDT) sponsored Dr. J. Russell Carpenter, a Navigation and Rendezvous Subject Matter Expert (SME) from NASA's Goddard Space Flight Center (GSFC), to provide support to the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) rendezvous and docking flight test that was conducted in 2007. When that DARPA OE mission was completed, Mr. Neil Dennehy, NASA Technical Fellow for GN&C, requested Dr. Carpenter document his findings (lessons learned) and recommendations for future rendezvous missions resulting from his OE support experience. This report captures lessons specifically from anomalies that occurred during one of OE's unmated operations.

  11. Near Earth Asteroid Rendezvous (NEAR) Revised Eros Orbit Phase Trajectory Design

    NASA Technical Reports Server (NTRS)

    Helfrich, J; Miller, J. K.; Antreasian, P. G.; Carranza, E.; Williams, B. G.; Dunham, D. W.; Farquhar, R. W.; McAdams, J. V.

    1999-01-01

    Trajectory design of the orbit phase of the NEAR mission involves a new process that departs significantly from those procedures used in previous missions. In most cases, a precise spacecraft ephemeris is designed well in advance of arrival at the target body. For NEAR, the uncertainty in the dynamic environment around Eros does not allow the luxury of a precise spacecraft trajectory to be defined in advance. The principal cause of this uncertainty is the limited knowledge oi' the gravity field a,-id rotational state of Eros. As a result, the concept for the NEAR trajectory design is to define a number of rules for satisfying spacecraft, mission, and science constraints, and then apply these rules to various assumptions for the model of Eros. Nominal, high, and low Eros mass models are used for testing the trajectory design strategy and to bracket the ranges of parameter variations that are expected upon arrival at the asteroid. The final design is completed after arrival at Eros and determination of the actual gravity field and rotational state. As a result of the unplanned termination of the deep space rendezvous maneuver on December 20, 1998, the NEAR spacecraft passed within 3830 km of Eros on December 23, 1998. This flyby provided a brief glimpse of Eros, and allowed for a more accurate model of the rotational parameters and gravity field uncertainty. Furthermore, after the termination of the deep space rendezvous burn, contact with the spacecraft was lost and the NEAR spacecraft lost attitude control. During the subsequent gyrations of the spacecraft, hydrazine thruster firings were used to regain attitude control. This unplanned thruster activity used Much of the fuel margin allocated for the orbit phase. Consequently, minimizing fuel consumption is now even more important.

  12. Analysis of Tumble and Its Effects on EGR Tolerance for a Gasoline Engine Running at High Loads

    NASA Astrophysics Data System (ADS)

    Easter, Jordan; Puzinauskas, Paulius; Pyles, Timothy

    2012-11-01

    The series hybrid electric vehicle allows for the design of an engine that can run solely at its most efficient point, wide open throttle (WOT). However, at WOT there is an increase in emissions not typically handled in the conventional gasoline engine. Exhaust gas recirculation can be used to reduce emissions if the tolerance of the engine for the exhaust gas is increased. It is hypothesized that tolerance at WOT will increase when there is an increase in in-cylinder turbulence. In this research, aluminum flow guide vanes were inserted in the intake to induce tumble. The flow was examined through the use of PIV techniques and the increase in EGR tolerance was verified with engine testing. PIV images of the flow structure were taken between the intake valves of a modified cylinder designed to mimic bottom dead center. The lift to valve diameters as well as the vane configurations were altered. Engine testing was performed with varying vane configurations, while the EGR percentage was increased until it became difficult to control combustion. It was been found through the engine testing that the flow guide vanes do significantly increase the EGR tolerance as well as combustion stability. Funding received by the NSF REU Grant 1062611.

  13. Evaluation of GPS position and attitude determination for automated rendezvous and docking missions. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Diprinzio, Marc D.; Tolson, Robert H.

    1994-01-01

    The use of the Global Positioning System for position and attitude determination is evaluated for an automated rendezvous and docking mission. The typical mission scenario involves the chaser docking with the target for resupply or repair purposes, and is divided into three sections. During the homing phase, the chaser utilizes coarse acquisition pseudorange data to approach the target; guidance laws for this stage are investigated. In the second phase, differential carrier phase positioning is utilized. The chaser must maintain a quasiconstant distance from the target, in order to resolve the initial integer ambiguities. Once the ambiguities are determined, the terminal phase is entered, and the rendezvous is completed with continuous carrier phase tracking. Attitude knowledge is maintained in all phases through the use of the carrier phase observable. A Kalman filter is utilized to estimate all states from the noisy measurement data. The effects of selective availability and cycle slips are also investigated.

  14. Investigation of the properties of the autonomous optical navigation of a space probe during rendezvous with an asteroid

    NASA Astrophysics Data System (ADS)

    Ivashkin, V. V.

    1990-11-01

    The determination of the planetocentric coordinates of a spacecraft flying by an asteroid and of a probe separated from the spaceraft for rendezvous with the asteroid is considered. It is shown that sighting of the planet on the star background makes possible the accurate evaluation of the spacecraft and probe positions with respect to the asteroid. The results obtained suggest that autonomous optical navigation can be used to guide a probe for landing on a planet.

  15. Inverse simulation system for manual-controlled rendezvous and docking based on artificial neural network

    NASA Astrophysics Data System (ADS)

    Zhou, Wanmeng; Wang, Hua; Tang, Guojin; Guo, Shuai

    2016-09-01

    The time-consuming experimental method for handling qualities assessment cannot meet the increasing fast design requirements for the manned space flight. As a tool for the aircraft handling qualities research, the model-predictive-control structured inverse simulation (MPC-IS) has potential applications in the aerospace field to guide the astronauts' operations and evaluate the handling qualities more effectively. Therefore, this paper establishes MPC-IS for the manual-controlled rendezvous and docking (RVD) and proposes a novel artificial neural network inverse simulation system (ANN-IS) to further decrease the computational cost. The novel system was obtained by replacing the inverse model of MPC-IS with the artificial neural network. The optimal neural network was trained by the genetic Levenberg-Marquardt algorithm, and finally determined by the Levenberg-Marquardt algorithm. In order to validate MPC-IS and ANN-IS, the manual-controlled RVD experiments on the simulator were carried out. The comparisons between simulation results and experimental data demonstrated the validity of two systems and the high computational efficiency of ANN-IS.

  16. Endoscopic dilation of complete oesophageal obstructions with a combined antegrade-retrograde rendezvous technique

    PubMed Central

    Bertolini, Reto; Meyenberger, Christa; Putora, Paul Martin; Albrecht, Franziska; Broglie, Martina Anja; Stoeckli, Sandro J; Sulz, Michael Christian

    2016-01-01

    AIM: To investigate the combined antegrade-retrograde endoscopic rendezvous technique for complete oesophageal obstruction and the swallowing outcome. METHODS: This single-centre case series includes consecutive patients who were unable to swallow due to complete oesophageal obstruction and underwent combined antegrade-retrograde endoscopic dilation (CARD) within the last 10 years. The patients’ demographic characteristics, clinical parameters, endoscopic therapy, adverse events, and outcomes were obtained retrospectively. Technical success was defined as effective restoration of oesophageal patency. Swallowing success was defined as either percutaneous endoscopic gastrostomy (PEG)-tube independency and/or relevant improvement of oral food intake, as assessed by the functional oral intake scale (FOIS) (≥ level 3). RESULTS: The cohort consisted of six patients [five males; mean age 71 years (range, 54-74)]. All but one patient had undergone radiotherapy for head and neck or oesophageal cancer. Technical success was achieved in five out of six patients. After discharge, repeated dilations were performed in all five patients. During follow-up (median 27 mo, range, 2-115), three patients remained PEG-tube dependent. Three of four patients achieved relevant improvement of swallowing (two patients: FOIS 6, one patient: FOIS 7). One patient developed mediastinal emphysema following CARD, without a need for surgery. CONCLUSION: The CARD technique is safe and a viable alternative to high-risk blind antegrade dilation in patients with complete proximal oesophageal obstruction. Although only half of the patients remained PEG-tube independent, the majority improved their ability to swallow. PMID:26900299

  17. Autonomous rendezvous and docking: A commercial approach to on-orbit technology validation

    NASA Technical Reports Server (NTRS)

    Tchoryk, Peter, Jr.; Dobbs, Michael E.; Conrad, David J.; Apley, Dale J.; Whitten, Raymond P.

    1991-01-01

    The Space Automation and Robotics Center (SpARC), a NASA-sponsored Center for the Commercial Development of Space (CCDS), in conjunction with its corporate affiliates, is planning an on-orbit validation of autonomous rendezvous and docking (ARD) technology. The emphasis in this program is to utilize existing technology and commercially available components whenever possible. The primary subsystems that will be validated by this demonstration include GPS receivers for navigation, a video-based sensor for proximity operations, a fluid connector mechanism to demonstrate fluid resupply capability, and a compliant, single-point docking mechanism. The focus for this initial experiment will be expendable launch vehicle (ELV) based and will make use of two residual Commercial Experiment Transporter (COMET) service modules. The first COMET spacecraft will be launched in late 1992 and will serve as the target vehicle. The ARD demonstration will take place in late 1994, after the second COMET spacecraft has been launched. The service module from the second COMET will serve as the chase vehicle.

  18. An overview of autonomous rendezvous and docking system technology development at General Dynamics

    NASA Technical Reports Server (NTRS)

    Kuenzel, Fred

    1991-01-01

    The Centaur avionics suite is undergoing a dramatic modernization for the commercial, DoD Atlas and Titan programs. The system has been upgraded to the current state-of-the-art in ring laser gyro inertial sensors and Mil-Std-1750A processor technology. The Cruise Missile avionic system has similarly been evolving for many years. Integration of GPS into both systems has been underway for over five years with a follow-on cruise missile system currently in flight test. Rendezvous and Docking related studies have been conducted for over five years in support of OMV, CTV, and Advanced Upper Stages, as well as several other internal IR&D's. The avionics system and AR&D simulator demonstrated to the SATWG in November 1990 has been upgraded considerably under two IR&D programs in 1991. The Centaur modern avionics system is being flown in block upgrades which started in July of 1990. The Inertial Navigation Unit will fly in November of 1991. The Cruise Missile avionics systems have been fully tested and operationally validated in combat. The integrated AR&D system for space vehicle applications has been under development and testing since 1990. A Joint NASA / GD ARD&L System Test Program is currently being planned to validate several aspects of system performance in three different NASA test facilities in 1992.

  19. A new terminal guidance sensor system for asteroid intercept or rendezvous missions

    NASA Astrophysics Data System (ADS)

    Lyzhoft, Joshua; Basart, John; Wie, Bong

    2016-02-01

    This paper presents the initial conceptual study results of a new terminal guidance sensor system for asteroid intercept or rendezvous missions, which explores the use of visual, infrared, and radar devices. As was demonstrated by NASA's Deep Impact mission, visual cameras can be effectively utilized for hypervelocity intercept terminal guidance for a 5 kilometer target. Other systems such as Raytheon's EKV (Exoatmospheric Kill Vehicle) employ a different scheme that utilizes infrared target information to intercept ballistic missiles. Another example that uses infrared information is the NEOWISE telescope, which is used for asteroid detection and tracking. This paper describes the signal-to-noise ratio estimation problem for infrared sensors, minimum and maximum range of detection, and computational validation using GPU accelerated simulations. Small targets (50-100 m in diameter) are considered, and scaled polyhedron models of known objects, such as the Rosetta mission's Comet 67P/Churyumov-Gerasimenko, 101,955 Bennu, target of the OSIRIS-REx mission, and asteroid 433 Eros, are utilized. A parallelized ray tracing algorithm to simulate realistic surface-to-surface shadowing of a given celestial body is developed. By using the simulated models and parameters given from the formulation of the different sensors, impact mission scenarios are used to verify the feasibility for intercepting a small target.

  20. Fuzzy logic techniques for rendezvous and docking of two geostationary satellites

    NASA Technical Reports Server (NTRS)

    Ortega, Guillermo

    1995-01-01

    Large assemblings in space require the ability to manage rendezvous and docking operations. In future these techniques will be required for the gradual build up of big telecommunication platforms in the geostationary orbit. The paper discusses the use of fuzzy logic to model and implement a control system for the docking/berthing of two satellites in geostationary orbit. The system mounted in a chaser vehicle determines the actual state of both satellites and generates torques to execute maneuvers to establish the structural latching. The paper describes the proximity operations to collocate the two satellites in the same orbital window, the fuzzy guidance and navigation of the chaser approaching the target and the final Fuzzy berthing. The fuzzy logic system represents a knowledge based controller that realizes the close loop operations autonomously replacing the conventional control algorithms. The goal is to produce smooth control actions in the proximity of the target and during the docking to avoid disturbance torques in the final assembly orbit. The knowledge of the fuzzy controller consists of a data base of rules and the definitions of the fuzzy sets. The knowledge of an experienced spacecraft controller is captured into a set of rules forming the Rules Data Base.

  1. Fourth Report of the Task Force on the Shuttle-Mir Rendezvous and Docking Missions

    NASA Technical Reports Server (NTRS)

    1995-01-01

    On December 6, 1994, the NASA Administrator, Mr. Daniel Goldin, requested that Lt. Gen. Thomas P. Stafford, in his role as the Chairman of the NASA Advisory Council Task Force on the Shuttle-Mir Rendezvous and Docking Missions, lead a team composed of several Task Force members and technical advisors' to Russia with the goal of reviewing preparations and readiness for the upcoming international Space Station Phase 1 missions. In his directions to Gen. Stafford, Mr. Goldin requested that the review team focus its initial efforts on safety of flight issues for the following Phase 1A missions: the Soyuz TM-21 mission which will carry U.S. astronaut Dr. Norman Thagard and cosmonauts Lt. Col. Vladimir Dezhurov and Mr. Gennady Strekalov aboard a Soyuz spacecraft to the Mir Station; the Mir 18 Main Expedition during which Thagard and his fellow cosmonauts, Dezhurov and Strokalov, will spend approximately three months aboard the Mir Station; the STS-71 Space Shuttle mission which will perform the first Shuttle-Mir docking, carry cosmonauts Col. Anatoly SoloViev and Mr. Nikolai Budarin to the Mir Station, and return Thagard, Dezhurov, and Strekalov to Earth.

  2. The influence of spatial ability and experience on performance during spaceship rendezvous and docking

    PubMed Central

    Du, Xiaoping; Zhang, Yijing; Tian, Yu; Huang, Weifen; Wu, Bin; Zhang, Jingyu

    2015-01-01

    Manual rendezvous and docking (manual RVD) is a challenging space task for astronauts. Previous research showed a correlation between spatial ability and manual RVD skills among participants at early stages of training, but paid less attention to experts. Therefore, this study tried to explore the role of spatial ability in manual RVD skills in two groups of trainees, one relatively inexperienced and the other experienced operators. Additionally, mental rotation has been proven essential in RVD and was tested in this study among 27 male participants, 15 novices, and 12 experts. The participants performed manual RVD tasks in a high fidelity simulator. Results showed that experience moderated the relation between mental rotation ability and manual RVD performance. On one hand, novices with high mental rotation ability tended to perform that RVD task more successfully; on the other hand, experts with high mental rotation ability showed not only no performance advantage in the final stage of the RVD task, but had certain disadvantages in their earlier processes. Both theoretical and practical implications were discussed. PMID:26236252

  3. The Ion Propulsion System on NASA's Space Technology 4/Champollion Comet Rendezvous Mission

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Garner, Charles E.; Weiss, Jeffery M.

    1999-01-01

    The ST4/Champollion mission is designed to rendezvous with and land on the comet Tempel 1 and return data from the first-ever sampling of a comet surface. Ion propulsion is an enabling technology for this mission. The ion propulsion system on ST4 consists of three ion engines each essentially identical to the single engine that flew on the DS1 spacecraft. The ST4 propulsion system will operate at a maximum input power of 7.5 kW (3.4 times greater than that demonstrated on DS1), will produce a maximum thrust of 276 mN, and will provide a total (Delta)V of 11.4 km/s. To accomplish this the propulsion system will carry 385 kg of xenon. All three engines will be operated simultaneously for the first 168 days of the mission. The nominal mission requires that each engine be capable of processing 118 kg. If one engine fails after 168 days, the remaining two engines can perform the mission, but must be capable of processing 160 kg of xenon, or twice the original thruster design requirement. Detailed analyses of the thruster wear-out failure modes coupled with experience from long-duration engine tests indicate that the thrusters have a high probability of meeting the 160-kg throughput requirement.

  4. Upgrading the free flying rendezvous and docking simulator and the orbital servicer system

    NASA Technical Reports Server (NTRS)

    Eastman, R. M.

    1980-01-01

    Recommendations are made for upgrading two teleoperator/robotics test and simulation systems based upon a review of latest technology advances in the involved disciplines. A second generation Free Flying Mobility Unit is recommended which adds a sixth degree of freedom and incorporates other improvements which greatly expand the center's capability to perform evaluation tests and demonstrations of advanced systems concepts for rendezvous and docking in support of the Teleoperator Maneuvering System (TMS) Program. The Orbital Servicer System provides the capability for testing and demonstrating concepts for on orbit servicing of compatibly designed satellites/payloads. The TMS is to be the transporting vehicle for the servicer. The manipulator arm of the Orbital service System is presently computer controlled in the trajectory portion of the module transfer operation. The ultimate objective is to fully automte its operation requiring additional capabilities in sensors, artificial intelligence, image analysis, communications, computer programming, pattern recognition, kinematics, and manipulator design. It is recommended that the Electronics and Control Laboratory move to acquire the basic competencies in robotics necessary to achieve full automation.

  5. Optimal, impulsive, time-fixed orbital rendezvous and interception with path constraints

    NASA Astrophysics Data System (ADS)

    Taur, Der-Ren

    Minimum-fuel, impulsive, time-fixed extremal solutions are obtained for the problem of orbital rendezvous and interception with path constraints. The coplanar case and a restricted class of path constraints are analyzed. A theory based on the extended problem of Bolza in the calculus of variations was established to determine optimal impulsive trajectories with state variable inequality constraints. According to this newly developed theory, all the necessary conditions including the optimal corner conditions were obtained for both constrained and unconstrained arcs. The constrained extremal solutions, including the optimal number of impulses, their times and positions were studied under a conjecture proposed for the minimization process on the constrained arc. The fundamental problems such as the existence of boundary arcs or boundary points, absorbing boundaries or non-absorbing boundaries, and the continuity of the Hamiltonian function with a scleronomic constraint in infinite control problems were studied and answered. A bifurcation phenomenon and the non-uniqueness of the extremal solutions having the same cost were found during the research. The extended principles of dynamical reversibility and reflectability of the impulsive solution were developed to obtain the conjugate solutions belonging to the same cost function. In addition, the local-optimal time-fixed solutions obtained can be used to perform time versus fuel trade-offs for missions which have time constraints.

  6. String method for calculation of minimum free-energy paths in Cartesian space in freely-tumbling systems.

    PubMed

    Branduardi, Davide; Faraldo-Gómez, José D

    2013-09-10

    The string method is a molecular-simulation technique that aims to calculate the minimum free-energy path of a chemical reaction or conformational transition, in the space of a pre-defined set of reaction coordinates that is typically highly dimensional. Any descriptor may be used as a reaction coordinate, but arguably the Cartesian coordinates of the atoms involved are the most unprejudiced and intuitive choice. Cartesian coordinates, however, present a non-trivial problem, in that they are not invariant to rigid-body molecular rotations and translations, which ideally ought to be unrestricted in the simulations. To overcome this difficulty, we reformulate the framework of the string method to integrate an on-the-fly structural-alignment algorithm. This approach, referred to as SOMA (String method with Optimal Molecular Alignment), enables the use of Cartesian reaction coordinates in freely tumbling molecular systems. In addition, this scheme permits the dissection of the free-energy change along the most probable path into individual atomic contributions, thus revealing the dominant mechanism of the simulated process. This detailed analysis also provides a physically-meaningful criterion to coarse-grain the representation of the path. To demonstrate the accuracy of the method we analyze the isomerization of the alanine dipeptide in vacuum and the chair-to-inverted-chair transition of β-D mannose in explicit water. Notwithstanding the simplicity of these systems, the SOMA approach reveals novel insights into the atomic mechanism of these isomerizations. In both cases, we find that the dynamics and the energetics of these processes are controlled by interactions involving only a handful of atoms in each molecule. Consistent with this result, we show that a coarse-grained SOMA calculation defined in terms of these subsets of atoms yields nearidentical minimum free-energy paths and committor distributions to those obtained via a highly-dimensional string.

  7. String method for calculation of minimum free-energy paths in Cartesian space in freely-tumbling systems

    PubMed Central

    Branduardi, Davide; Faraldo-Gómez, José D.

    2014-01-01

    The string method is a molecular-simulation technique that aims to calculate the minimum free-energy path of a chemical reaction or conformational transition, in the space of a pre-defined set of reaction coordinates that is typically highly dimensional. Any descriptor may be used as a reaction coordinate, but arguably the Cartesian coordinates of the atoms involved are the most unprejudiced and intuitive choice. Cartesian coordinates, however, present a non-trivial problem, in that they are not invariant to rigid-body molecular rotations and translations, which ideally ought to be unrestricted in the simulations. To overcome this difficulty, we reformulate the framework of the string method to integrate an on-the-fly structural-alignment algorithm. This approach, referred to as SOMA (String method with Optimal Molecular Alignment), enables the use of Cartesian reaction coordinates in freely tumbling molecular systems. In addition, this scheme permits the dissection of the free-energy change along the most probable path into individual atomic contributions, thus revealing the dominant mechanism of the simulated process. This detailed analysis also provides a physically-meaningful criterion to coarse-grain the representation of the path. To demonstrate the accuracy of the method we analyze the isomerization of the alanine dipeptide in vacuum and the chair-to-inverted-chair transition of β-D mannose in explicit water. Notwithstanding the simplicity of these systems, the SOMA approach reveals novel insights into the atomic mechanism of these isomerizations. In both cases, we find that the dynamics and the energetics of these processes are controlled by interactions involving only a handful of atoms in each molecule. Consistent with this result, we show that a coarse-grained SOMA calculation defined in terms of these subsets of atoms yields nearidentical minimum free-energy paths and committor distributions to those obtained via a highly-dimensional string. PMID

  8. A positron emission particle tracking investigation of the flow regimes in tumbling mills

    NASA Astrophysics Data System (ADS)

    Govender, I.; Pathmathas, T.

    2017-01-01

    Using positron emission particle tracking (PEPT) data we recover key granular rheology ingredients (velocity, shear rate, volume concentration, bed depth) for developing, testing and calibrating granular flow models. In this regard, 5 mm glass beads were rotated within a 476 mm diameter mill fitted with angled lifter bars along the inner azimuthal walls and operated in batch mode across a range of drum rotation speeds that span cascading and cataracting Froude regimes. After averaging the PEPT outputs into representative volume elements, subsequent continuum analysis of the flowing layer revealed a rich coexistence of flow regimes: a quasi-static layer dominated by frictional interactions, a dense, liquid-like layer that is stressed by frictional and collisional interactions, and an inertial layer that interacts mainly through collisions. Combining the inertial number with an empirically formulated dilatancy law and the measured granular rheological ingredients then facilitated the recovery of the total depth-dependent pressure of the free surface layer.

  9. A Prediction Method of TV Camera Image for Space Manual-control Rendezvous and Docking

    NASA Astrophysics Data System (ADS)

    Zhen, Huang; Qing, Yang; Wenrui, Wu

    Space manual-control rendezvous and docking (RVD) is a key technology for accomplishing the RVD mission in manned space engineering, especially when automatic control system is out of work. The pilot on chase spacecraft manipulates the hand-stick by the image of target spacecraft captured by TV camera. From the TV image, the relative position and attitude of chase and target spacecrafts can be shown. Therefore, the size, the position, the brightness and the shadow of the target on TV camera are key to guarantee the success of manual-control RVD. A method of predicting the on-orbit TV camera image at different relative positions and light conditions during the process of RVD is discussed. Firstly, the basic principle of capturing the image of cross drone on target spacecraft by TV camera is analyzed theoretically, based which the strategy of manual-control RVD is discussed in detail. Secondly, the relationship between the displayed size or position and the real relative distance of chase and target spacecrafts is presented, the brightness and reflection by the target spacecraft at different light conditions are decribed, the shadow on cross drone caused by the chase or target spacecraft is analyzed. Thirdly, a prediction method of on-orbit TV camera images at certain orbit and light condition is provided, and the characteristics of TV camera image during the RVD is analyzed. Finally, the size, the position, the brightness and the shadow of target spacecraft on TV camera image at typical orbit is simulated. The result, by comparing the simulated images with the real images captured by the TV camera on Shenzhou manned spaceship , shows that the prediction method is reasonable

  10. Laparoendoscopic Rendezvous for Concomitant Cholecystocholedocholithiasis: A Successful Modality Even in the Most Difficult Presentations Including Pregnancy.

    PubMed

    Shirah, Bader Hamza; Mikwar, Zaher Abdulaziz; Ahmad, Akram Neyaz; Dahlan, Yaser Mohammed

    2016-01-01

    Background. Laparoendoscopic rendezvous (LERV) technique is emerging as an attractive treatment option for concomitant cholecystocholedocholithiasis. In this paper, we report our experience in performing the LERV technique in patients with unusual presentations in terms of anatomical difficulty, pregnancy, multiple comorbid diseases, and postlaparotomy. We aim to highlight the effectiveness of the LERV technique in some clinical situations where conventional methods would fail or carry high risks in adequately managing concomitant cholecystocholedocholithiasis. Methods. Four patients diagnosed to have concomitant cholecystocholedocholithiasis with associated difficult presentation or comorbid diseases were treated using the LERV technique. One patient presented with difficult anatomy where ERCP failed at initial attempts. Another patient was pregnant (first trimester). A third patient had complex comorbid diseases (bronchial asthma, hypertension, congestive heart failure, and end-stage renal disease on regular hemodialysis). A fourth patient had previous laparotomy and sigmoidectomy for diverticular disease and had severe hospital phobia. Results. All patients tolerated the LERV technique very well; no intraoperative occurrence was reported. The mean operative time was 86.3 ± 17.2 minutes; mean time of the endoscopic part was 29.4 ± 3.57 minutes. The mean blood loss was 44.3 ± 18.2 mL (range 20-85). Residual stone, postoperative complications, postoperative morbidity, and postoperative mortality were 0 (0%). Postoperative short hospital stay was reported in all patients, average 3 days (range 2-4). Conclusion. LERV procedure is a safe and effective treatment option for the management of concomitant cholecystocholedocholithiasis, even in difficult situations where other methods would fail or carry high risks, or in patients presenting with severe comorbid diseases or pregnancy. This procedure may emerge as an attractive alternative option for high-risk patients

  11. Laparoendoscopic Rendezvous for Concomitant Cholecystocholedocholithiasis: A Successful Modality Even in the Most Difficult Presentations Including Pregnancy

    PubMed Central

    Mikwar, Zaher Abdulaziz; Ahmad, Akram Neyaz

    2016-01-01

    Background. Laparoendoscopic rendezvous (LERV) technique is emerging as an attractive treatment option for concomitant cholecystocholedocholithiasis. In this paper, we report our experience in performing the LERV technique in patients with unusual presentations in terms of anatomical difficulty, pregnancy, multiple comorbid diseases, and postlaparotomy. We aim to highlight the effectiveness of the LERV technique in some clinical situations where conventional methods would fail or carry high risks in adequately managing concomitant cholecystocholedocholithiasis. Methods. Four patients diagnosed to have concomitant cholecystocholedocholithiasis with associated difficult presentation or comorbid diseases were treated using the LERV technique. One patient presented with difficult anatomy where ERCP failed at initial attempts. Another patient was pregnant (first trimester). A third patient had complex comorbid diseases (bronchial asthma, hypertension, congestive heart failure, and end-stage renal disease on regular hemodialysis). A fourth patient had previous laparotomy and sigmoidectomy for diverticular disease and had severe hospital phobia. Results. All patients tolerated the LERV technique very well; no intraoperative occurrence was reported. The mean operative time was 86.3 ± 17.2 minutes; mean time of the endoscopic part was 29.4 ± 3.57 minutes. The mean blood loss was 44.3 ± 18.2 mL (range 20–85). Residual stone, postoperative complications, postoperative morbidity, and postoperative mortality were 0 (0%). Postoperative short hospital stay was reported in all patients, average 3 days (range 2–4). Conclusion. LERV procedure is a safe and effective treatment option for the management of concomitant cholecystocholedocholithiasis, even in difficult situations where other methods would fail or carry high risks, or in patients presenting with severe comorbid diseases or pregnancy. This procedure may emerge as an attractive alternative option for high

  12. A multiple-rendezvous, sample-return mission to two near-Earth asteroids

    NASA Astrophysics Data System (ADS)

    Duffard, R.; Kumar, K.; Pirrotta, S.; Salatti, M.; Kubínyi, M.; Derz, U.; Armytage, R. M. G.; Arloth, S.; Donati, L.; Duricic, A.; Flahaut, J.; Hempel, S.; Pollinger, A.; Poulsen, S.

    2011-07-01

    We propose a dual-rendezvous mission, targeting near-Earth asteroids, including sample-return. The mission, Asteroid Sampling Mission (ASM), consists of two parts: (i) flyby and remote sensing of a Q-type asteroid, and (ii) sampling of a V-type asteroid. The targeted undifferentiated Q-type are found mainly in the near-Earth space, and to this date have not been the target of a space mission. We have chosen, for our sampling target, an asteroid from the basaltic class (V-type), as asteroids in this class exhibit spectral signatures that resemble those of the well-studied Howardite-Eucrite-Diogenite (HED) meteorite suite. With this mission, we expect to answer specific questions about the links between differentiated meteorites and asteroids, as well as gain further insight into the broader issues of early Solar System (SS) evolution and the formation of terrestrial planets. To achieve the mission, we designed a spacecraft with a dry mass of less than 3 tonnes that uses electric propulsion with a solar-electric power supply of 15 kW at 1 Astronomical Unit (AU). The mission includes a series of remote sensing instruments, envisages landing of the whole spacecraft on the sampling target, and employs an innovative sampling mechanism. Launch is foreseen to occur in 2018, as the designed timetable, and the mission would last about 10 years, bringing back a 150 g subsurface sample within a small re-entry capsule. This paper is a work presented at the 2008 Summer School Alpbach,"Sample return from the Moon, asteroids and comets" organized by the Aeronautics and Space Agency of the Austrian Research Promotion Agency. It is co-sponsored by ESA and the national space authorities of its Member and Co-operating States, with the support of the International Space Science Institute and Austrospace.

  13. A new way in intelligent recognition improves control accuracy and efficiency for spacecrafts' rendezvous and docking

    NASA Astrophysics Data System (ADS)

    Wang, JiaQing; Lu, Yaodong; Wang, JiaFa

    2013-08-01

    Spacecrafts rendezvous and docking (RVD) by human or autonomous control is a complicated and difficult problem especially in the final approach stage. Present control methods have their key technology weakness. It is a necessary, important and difficult step for RVD through human's aiming chaser spacecraft at target spacecraft in a coaxial line by a three-dimension bulge cross target. At present, there is no technology to quantify the alignment in image recognition direction. We present a new practical autonomous method to improve the accuracy and efficiency of RVD control by adding image recognition algorithm instead of human aiming and control. Target spacecraft has a bulge cross target which is designed for chaser spacecraft's aiming accurately and have two center points, one is a plate surface center point(PSCP), another is a bulge cross center point(BCCP), while chaser spacecraft has a monitoring ruler cross center point(RCCP) of the video telescope optical system for aiming . If the three center points are coincident at the monitoring image, the two spacecrafts keep aligning which is suitable for closing to docking. Using the trace spacecraft's video telescope optical system to acquire the real-time monitoring image of the target spacecraft's bulge cross target. Appling image processing and intelligent recognition algorithm to get rid of interference source to compute the three center points' coordinate and exact digital offset of two spacecrafts' relative position and attitude real-timely, which is used to control the chaser spacecraft pneumatic driving system to change the spacecraft attitude in six direction: up, down, front, back, left, right, pitch, drift and roll precisely. This way is also practical and economical because it needs not adding any hardware, only adding the real-time image recognition software into spacecrafts' present video system. It is suitable for autonomous control and human control.

  14. Incorporation of GNSS multipath to improve autonomous rendezvous, docking and proximity operations in space

    NASA Astrophysics Data System (ADS)

    Ashman, Benjamin W.

    Automated rendezvous and docking (AR&D;) operations are important for many future space missions, such as the resupply of space stations, repair and refueling of large satellites, and active removal of orbital debris. These operations depend critically on accurate, real-time knowledge of the relative position and velocity between two space vehicles. Unfortunately, Global Navigation Satellite System (GNSS) capabilities remain severely limited in close proximity to large space structures due to significant multipath effects and signal blockage. Although GNSS is used for the initial stages of approach, other instruments such as laser, radar and vision-based systems, are required to augment GNSS during AR&D; over the last few hundred meters. This dissertation evaluates the feasibility of GNSS multipath-based relative space navigation. Methods for separating and interpreting reflected signals are demonstrated using GNSS data collected during Hubble Servicing Mission 4 (HSM4), a model of the mission geometry, electromagnetic (EM) ray tracing, and a custom GNSS software receiver. EM ray tracing is used to show that a number of signals sufficient for ranging are reflected by the Hubble Space Telescope (HST) during HSM4, and the properties of these reflections are used to generate simulated GNSS data. The impact of reflected signals on code correlation shape, code tracking error, and pseudorange measurement is demonstrated using the simulated and experimental data. Relative navigation is demonstrated using simulated reflected signal measurements and the dependence of relative navigation on the reflecting object's scattering properties is illustrated. From the tracking of data from two oppositely polarized antennas, both simulated and experimental, it is determined that multipath measurements are limited by system properties such as antenna polarization quality and front end bandwidth. Design considerations involved in optimizing a receiver to measure reflected signals are

  15. Rendezvous with Toutatis from the Moon: The Chang'e-2 mission

    NASA Astrophysics Data System (ADS)

    Huang, J.; Tang, X.; Meng, L.

    2014-07-01

    Chang'e-2 probe was the second lunar probe of China, with the main objectives to demonstrate some key features of the new lunar soft landing technology, and its applications to future exploration missions. After completing the planned mission successfully, Chang'e-2 flew away from the Moon and entered into the interplanetary space. Later, at a distance of 7 million km from the Earth, Chang'e-2 encountered asteroid (4179) Toutatis with a very close fly-by distance and obtained colorful images with a 3-m resolution. Given some surplus velocity increment as well as the promotion of autonomous flight ability and improvement of control, propulsion, and thermal systems in the initial design, Chang'e-2 had the capabilities necessary for escaping from the Moon. By taking advantage of the unique features of the Lagrangian point, the first close fly-by of asteroid Toutatis was realized despite the tight constraints of propellant allocation, spacecraft-Earth communication, and coordination of execution sequences. Chang'e-2 realized the Toutatis flyby with a km-level distance at closest approach. In the absence of direct measurement method, based on the principle of relative navigation and through the use of the sequence of target images, we calculated the rendezvous parameters such as relative distance and image resolution. With the help of these parameters, some fine and new scientific discoveries about the asteroid were obtained by techniques of optical measurements and image processing. Starting with an innovative design, followed by high-fidelity testing and demonstration, elaborative implementation, and optimal usage of residual propellant, Chang'e-2 has for the first time successfully explored the Moon, L2 point and an asteroid, while achieving the purpose of 'faster, better, cheaper'. What Chang'e-2 has accomplished was far beyond our expectations. *J. Huang is the chief designer (PI) of Chang'e-2 probe, planned Chang'e-2's multi-objective and multitasking exploration

  16. Mission analysis and guidance, navigation, and control design for rendezvous and docking phase of advanced reentry vehicle mission

    NASA Astrophysics Data System (ADS)

    Strippoli, L.; Colmenarejo, P.; Strauch, H.

    2013-12-01

    Advanced Reentry Vehicle (ARV) belongs to the family of vehicles designed to perform rendezvous and docking (RvD) with the International space station (ISS) [1]. Differently from its predecessor ATV (Automated Transfer Vehicle), the ARV will transport a reentry capsule, equipped with a heatshield and able to bring back cargo, experiments, or, as a possible future development, even crew, being this latter scenario very attracting in view of the Space Shuttle retirement. GMV, as subcontractor of EADS-Astrium Germany, is in charge of the RvD and departure mission analysis and GNC (Guidance, Navigation, and Control) design of ARV mission. This paper will present the main outcomes of the study.

  17. Fifth Report of the NASA Advisory Council Task Force on the Shuttle-Mir Rendezvous and Docking Missions

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The NASA Advisory Council Task Force on the Shuttle-Mir rendezvous and docking missions examine a number of specific issues related to the Shuttle-Mir program. Three teams composed of Task Force members and technical advisors were formed to address the follow issues: preliminary results from STS-71 and the status of preparations for STS-74; NASA's presence in Russia; and NASA's automated data processing and telecommunications (ADP/T) infrastructure in Russia. The three review team reports have been included in the fifth report of the Task Force.

  18. TASTER: Trojan ASteroid Tour, Exploration and Rendezvous, a NASA Planetary Science Summer School Mission Design Exercise

    NASA Astrophysics Data System (ADS)

    Diaz-silva, R.; Sayanagi, K. M.; Gil, S.; Diniega, S.; Balcerski, J.; Benneke, B.; Carande, B.; Fraeman, A. A.; Hudson, J. S.; Guzewich, S. D.; Livi, R.; Nahm, A.; Potter, S.; Route, M.; Urban, K. D.; Vasisht, S.; Williams, B.; Budney, C. J.; Lowes, L. L.

    2011-12-01

    A detailed investigation of the Trojan asteroids occupying Jupiter's L4 and L5 Lagrangian points has been identified as a priority for future missions by the 2011 Planetary Science Decadal Survey. Observing these asteroids and getting clear measurements of their physical characteristics and composition may yield answers to fundamental questions relating to the early Solar System. In particular, Trojan asteroids are believed to harbor primordial material dating from the time of its formation. The source region for Trojans is still unknown; the Nice model predicts that some bodies may have originated in the primordial Kuiper belt and were subsequently scattered inward during the migration of Neptune and Uranus and settled in their current location. In alternative models, less radial scattering of small bodies would imply Trojans formed from material at a similar orbital distance to Jupiter. Determination of Trojan composition and structure will help identify their birth location, provide information about the impact history and subsequent evolution. Earth-based observations of size and surface characteristics are sparse; spectral measurements are unable to resolve composition (and show a puzzling lack of volatile signatures), indicating that close-range observation is needed. We present a mission design for a Trojan Tour and Rendezvous mission that is consistent with NASA's New Frontiers candidate recommended by the Decadal Survey, and which is the final result of the 2011 NASA-JPL Planetary Science Summer School Mission Design Exercise. Our proposed mission includes a tour phase that features a 500 km altitude fly-by of 1999 XS143. The spacecraft will then orbit and make detailed observations of 1919FD Agamemnon, a 167 km diameter asteroid located in the leading Lagrangian point (L4), from orbital altitudes of 1000 - 100 km over a 12 month nominal science data capture period. The mission's planned primary observations aim to (1) detect and identify volatile species

  19. NASA's Automated Rendezvous and Docking/Capture Sensor Development and Its Applicability to the GER

    NASA Technical Reports Server (NTRS)

    Hinkel, Heather; Cryan, Scott; DSouza, Christopher; Strube, Matthew

    2014-01-01

    This paper will address how a common Automated Rendezvous and Docking/Capture (AR&D/C) sensor suite can support Global Exploration Roadmap (GER) missions, and discuss how the model of common capability development to support multiple missions can enable system capability level partnerships and further GER objectives. NASA has initiated efforts to develop AR&D/C sensors, that are directly applicable to GER. NASA needs AR&D/C sensors for both the robotic and crewed segments of the Asteroid Redirect Mission (ARM). NASA recently conducted a commonality assessment of the concept of operations for the robotic Asteroid Redirect Vehicle (ARV) and the crewed mission segment using the Orion crew vehicle. The commonality assessment also considered several future exploration and science missions requiring an AR&D/C capability. Missions considered were asteroid sample return, satellite servicing, and planetary entry, descent, and landing. This assessment determined that a common sensor suite consisting of one or more visible wavelength cameras, a three-dimensional LIDAR along with long-wavelength infrared cameras for robustness and situational awareness could be used on each mission to eliminate the cost of multiple sensor developments and qualifications. By choosing sensor parameters at build time instead of at design time and, without having to requalify flight hardware, a specific mission can design overlapping bearing, range, relative attitude, and position measurement availability to suit their mission requirements with minimal nonrecurring engineering costs. The resulting common sensor specification provides the union of all performance requirements for each mission and represents an improvement over the current systems used for AR&D/C today. NASA's AR&D/C sensor development path could benefit the International Exploration Coordination Group (ISECG) and support the GER mission scenario by providing a common sensor suite upon which GER objectives could be achieved while

  20. Guidance Algorithms for Non-Drifting Trajectory Generation and Control in RendezVous Missions into Elliptical Orbits

    NASA Technical Reports Server (NTRS)

    DiSotto, Emanuele; Bastante, Juan Carlos; Drai, Remi

    2007-01-01

    Safety requirement represents one of the most critical aspect when defining the operational profile for a RendezVous mission. This requirement specially affects the design of the guidance algorithms that need to be tailored to guarantee what is normally referred to as Passive Trajectory Protection . The basic idea of passive trajectory protection is to design all the trajectory elements in an approach sequence such that if, at any point of the trajectory, thrust control ceases, the resulting free drift motion will remain collision free during a certain amount of time. This paper deals with the design and performances assessment of specific guidance algorithm addressing this issue. Firstly the problem is addressed for circular orbit using the Traveling Ellipse formulation for the relative motion. Secondly a solution for the RendezVous into a generic elliptical orbit is presented. This is based on a reduced transition matrix obtained through a description of the relative motion based on the first order variation of the orbital elements.

  1. Adaptive relative pose control for autonomous spacecraft rendezvous and proximity operations with thrust misalignment and model uncertainties

    NASA Astrophysics Data System (ADS)

    Sun, Liang; Zheng, Zewei

    2017-04-01

    An adaptive relative pose control strategy is proposed for a pursue spacecraft in proximity operations on a tumbling target. Relative position vector between two spacecraft is required to direct towards the docking port of the target while the attitude of them must be synchronized. With considering the thrust misalignment of pursuer, an integrated controller for relative translational and relative rotational dynamics is developed by using norm-wise adaptive estimations. Parametric uncertainties, unknown coupled dynamics, and bounded external disturbances are compensated online by adaptive update laws. It is proved via Lyapunov stability theory that the tracking errors of relative pose converge to zero asymptotically. Numerical simulations including six degrees-of-freedom rigid body dynamics are performed to demonstrate the effectiveness of the proposed controller.

  2. An Investigation of Multipath Effects on the GPS System During Auto-Rendezvous and Capture

    NASA Technical Reports Server (NTRS)

    Richie, James E.; Forest, Francis W.

    1995-01-01

    The proposed use of a Cargo Transport Vehicle (CTV) to carry hardware to the Space Station Freedom (SSF) during the construction phase of the SSF project requires remote maneuvering of the CTV. The CTV is not a manned vehicle. Obtaining the relative positions of the CTV and SSF for remote auto-rendezvous and capture (AR&C) scenarios will rely heavily on the Global Positioning System (GPS). The GPS system is expected to guide the CTV up to a distance of 100 to 300 meters from the SSF. At some point within this range, an optical docking system will take over the remote guidance for capture. During any remote guidance by GPS it is possible that significant multipath signals may be caused by large objects in the vicinity of the module being remotely guided. This could alter the position obtained by the GPS system from the actual position. Due to the nature of the GPS signals, it has been estimated that if the difference in distance between the Line of Sight (LOS) path and the multipath is greater than 300 meters, the GPS system is capable of discriminating between the direct signal and the reflected (or multipath) signal. However, if the path difference is less than 300 meters, one must be concerned. This report details the work accomplished by the Electromagnetic Simulations Laboratory at Marquette University over the period December 1993 to May 1995. This work is an investigation of the strength and phase of a multipath signal arriving at the CTV relative to the direct or line of sight (LOS) signal. The signal originates at a GPS satellite in half geo-stationary orbit and takes two paths to the CTV: (1) the direct or LOS path from the GPS satellite to the CTV; and (2) a scattered path from the GPS satellite to the SSF module and then to the CTV. The scattering from a cylinder has been computed using the physical optics approximation for the current. No other approximations or assumptions have been made including no assumptions regarding the far field or Fresnel field

  3. Global fuel consumption optimization of an open-time terminal rendezvous and docking with large-eccentricity elliptic-orbit by the method of interval analysis

    NASA Astrophysics Data System (ADS)

    Ma, Hongliang; Xu, Shijie

    2016-11-01

    By defining two open-time impulse points, the optimization of a two-impulse, open-time terminal rendezvous and docking with target spacecraft on large-eccentricity elliptical orbit is proposed in this paper. The purpose of optimization is to minimize the velocity increment for a terminal elliptic-reference-orbit rendezvous and docking. Current methods for solving this type of optimization problem include for example genetic algorithms and gradient based optimization. Unlike these methods, interval methods can guarantee that the globally best solution is found for a given parameterization of the input. The non-linear Tschauner- Hempel(TH) equations of the state transitions for a terminal elliptic target orbit are transformed form time domain to target orbital true anomaly domain. Their homogenous solutions and approximate state transition matrix for the control with a short true anomaly interval can be used to avoid interval integration. The interval branch and bound optimization algorithm is introduced for solving the presented rendezvous and docking optimization problem and optimizing two open-time impulse points and thruster pulse amplitudes, which systematically eliminates parts of the control and open-time input spaces that do not satisfy the path and final time state constraints. Several numerical examples are undertaken to validate the interval optimization algorithm. The results indicate that the sufficiently narrow spaces containing the global optimization solution for the open-time two-impulse terminal rendezvous and docking with target spacecraft on large-eccentricity elliptical orbit can be obtained by the interval algorithm (IA). Combining the gradient-based method, the global optimization solution for the discontinuous nonconvex optimization problem in the specifically remained search space can be found. Interval analysis is shown to be a useful tool and preponderant in the discontinuous nonconvex optimization problem of the terminal rendezvous and

  4. State dependent model predictive control for orbital rendezvous using pulse-width pulse-frequency modulated thrusters

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zhu, Zheng H.; Meguid, S. A.

    2016-07-01

    This paper studies the pulse-width pulse-frequency modulation based trajectory planning for orbital rendezvous and proximity maneuvering near a non-cooperative spacecraft in an elliptical orbit. The problem is formulated by converting the continuous control input, output from the state dependent model predictive control, into a sequence of pulses of constant magnitude by controlling firing frequency and duration of constant-magnitude thrusters. The state dependent model predictive control is derived by minimizing the control error of states and control roughness of control input for a safe, smooth and fuel efficient approaching trajectory. The resulting nonlinear programming problem is converted into a series of quadratic programming problem and solved by numerical iteration using the receding horizon strategy. The numerical results show that the proposed state dependent model predictive control with the pulse-width pulse-frequency modulation is able to effectively generate optimized trajectories using equivalent control pulses for the proximity maneuvering with less energy consumption.

  5. Data Processing for the Near Earth Asteroid Rendezvous (NEAR), X-Ray and Gamma-Ray Spectrometer (XRS) Ground System

    NASA Technical Reports Server (NTRS)

    McClanahan, Timothy P.; Mikheeva, I.; Trombka, J. I.; Floyd, S. R.; Boynton, W. V.; Bailey, H.; Bhangoo, J.; Starr, R.; Clark, P. E.; Evans, L. G.

    1999-01-01

    An X-ray and Gamma-ray spectrometer (XGRS) is onboard the Near Earth Asteroid Rendezvous (NEAR) spacecraft to determine the elemental composition of the surface of the asteroid 433Eros. The Eros asteroid is highly non-spherical in physical shape and the development of data management and analysis methodologies are in several areas a divergence from traditional remotely sensed geographical information systems techniques. Field of view and asteroid surface geometry must be derived virtually and then combined with real measurements of solar, spectral and instrument calibration information to derive meaningful scientific results. Spatial resolution of planned geochemical maps will be improved from the initial conditions of low statistical significance per integration by repeated surface flyovers and regional spectral accumulation. This paper describes the results of a collaborative effort of design and development of the NEAR XGRS instrument ground system undertaken by participants at the Goddard Space Flight Center, University of Arizona, Cornell University, Applied Physics Laboratory, and Max Plank institute.

  6. Data Processing for the Near Earth Asteroid Rendezvous (NEAR), X-ray and Gamma-ray Spectrometer (XGRS) Ground System

    NASA Technical Reports Server (NTRS)

    McClanahan, Timothy P.; Mikheeva, I.; Trombka, J. I.; Floyd, S. R.; Boynton, W. V.; Bailey, H.; Bhangoo, J.; Starr, R.; Clark, P. E.; Evans, L. G.

    1999-01-01

    An X-ray and Gamma-ray spectrometer (XGRS) is onboard the Near Earth Asteroid Rendezvous (NEAR) spacecraft to determine the elemental composition of the surface of the asteroid 433Eros. The Eros asteroid is highly non-spherical in physical shape and the development of data management and analysis methodologies are in several areas a divergence from traditional remotely sensed geographical information systems techniques. Field of view and asteroid surface geometry must be derived virtually and then combined with real measurements of solar, spectral and instrument calibration information to derive meaningful scientific results. Spatial resolution of planned geochemical maps will be improved from the initial conditions of low statistical significance per integration by repeated surface flyovers and regional spectral accumulation. This paper describes the results of a collaborative effort of design and development of the NEAR XGRS instrument ground system undertaken by participants at the Goddard Space Flight Center, University of Arizona, Cornell University, Applied Physics Laboratory, and Max Plank institute.

  7. Ground assisted rendezvous with geosynchronous satellites for the disposal of space debris by means of Earth-oriented tethers

    NASA Astrophysics Data System (ADS)

    Chobotov, Vladimir; Melamed, Nahum; Ailor, William H.; Campbell, W. Spencer

    2009-05-01

    Previous studies have shown that extended length Earth-oriented tethers in the geosynchronous (GEO) region can be used to re-orbit satellites to disposal orbits. One such approach involves the extension of a GEO based tether, collection of a debris object, and retraction of the tether, which transfers the retracted configuration to a higher energy orbit for debris disposal. The re-extension of the tether after debris disposal returns the configuration to the near-GEO altitude. The practical feasibility of such a system depends on the ability to collect GEO debris objects, attach them to a deployed tether system, and retract the tethers for transfer to the disposal orbits. This study addresses the collection and delivery of debris objects to the deployed tether system in GEO. The investigation considers the number, type and the characteristics of the debris objects as well as the collection tug that can be ground controlled to detect, rendezvous and dock with the debris objects for their delivery to the tethers system. A total of more than 400 objects are in drift orbits crossing all longitudes either below or above the geostationary radius. More than 130 objects are also known to librate around the stable points in GEO with periods of libration up to five or more years. A characterization of the position and velocity of the debris objects relative to the collection tug is investigated. Typical rendezvous performance requirements for uncooperative GEO satellites are examined, and the similarities with other approaches such as the ESA's CX-OLEV commercial mission proposal to extend the life of geostationary telecommunication satellites are noted.

  8. Magnetometer-Only Attitude and Rate Estimates for Spinning Spacecraft

    NASA Technical Reports Server (NTRS)

    Challa, M.; Natanson, G.; Ottenstein, N.

    2000-01-01

    A deterministic algorithm and a Kalman filter for gyroless spacecraft are used independently to estimate the three-axis attitude and rates of rapidly spinning spacecraft using only magnetometer data. In-flight data from the Wide-Field Infrared Explorer (WIRE) during its tumble, and the Fast Auroral Snapshot Explorer (FAST) during its nominal mission mode are used to show that the algorithms can successfully estimate the above in spite of the high rates. Results using simulated data are used to illustrate the importance of accurate and frequent data.

  9. Study of effects of uncertainties on comet and asteroid encounter and contact guidance requirements. Part 1: Guidance and navigation studies. [development of navigation and guidance techniques for space rendezvous

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A guidance algorithm that provides precise rendezvous in the deterministic case while requiring only relative state information is developed. A navigation scheme employing only onboard relative measurements is built around a Kalman filter set in measurement coordinates. The overall guidance and navigation procedure is evaluated in the face of measurement errors by a detailed numerical simulation. Results indicate that onboard guidance and navigation for the terminal phase of rendezvous is possible with reasonable limits on measurement errors.

  10. Formation Flying Guidance for Space Debris Observation, Manipulation and Capture

    NASA Astrophysics Data System (ADS)

    Peters, Thomas V.

    This article provides a brief overview of the space debris population, debris attitude dynamics, technologies for debris removal, followed by a more in-depth discussion of robotic arm based capture of debris. Guidance aspects of active debris removal missions are discussed. Mission phases for active debris removal missions are rendezvous, inspection, attitude synchronization and capture and de-tumbling. The need for attitude synchronization is driven by recent observations of Envisat which exhibits a fairly high rotation rate.

  11. Free-Spinning, Longitudinal-Trim, and Tumbling Characteristics of a 1/20-Scale Model of the Consolidated Vultke MX-813 (Prototype of XP-92) Airplane as Determined in the Langley 20-Foot Free-Spinning Tunnel

    NASA Technical Reports Server (NTRS)

    Stone, Ralph W., Jr.; White, Richard P.

    1948-01-01

    An investigation has been conducted in the Langley 20-foot free-spinning tunnel to evaluate the spin, longitudinal-trim, and tumbling characteristics of a 1/20-scale model of the Consolidated Vultee MX-813 airplane. The effects of control position were determined for the model ballasted to represent the airplane in its design gross weight loading. The model, in general, would not spin but demonstrated a tendency to trim at very high stalled angles of attack. Static tests substantiated the dynamic tests as regards the trim characteristics. Movement of the elevator, however, from up to slightly down was effective in pitching the model from stalled to normal trim attitudes. The model would not tumble.

  12. The application of the seam beam VLBI technique for the orbit determination of CE-5 in the rendezvous and docking phase

    NASA Astrophysics Data System (ADS)

    Huang, Yong

    2016-07-01

    CE-5 will be launched in 2017-2018, and it is a lunar sample return mission. It is the first time for China to carry out the rendezvous and docking in the Moon. How to achieve rendezvous and docking successfully in the Moon is very important for CE-5 project. When the ascender is about 70 km farer away from the orbiter, the ground based tracking technique including range, Doppler and VLBI will be used to track the orbiter and the ascender. Later the ascender will approach the orbiter automatically. Here the application of the same beam VLBI for the orbit determination of the orbiter and the ascender in the long range of the rendezvous and docking phase is discussed. The same beam VLBI technique can be used to track the orbiter and the ascender simultaneously when they are in the same beam. Delta delay of the two probes can be derived, and the measurement accuracy is much higher than the traditional VLBI data because of the cancelation of common errors. Theoretically it can result in more accurate relative orbit between the two probes. The simulation results show that the relative position accuracy of the orbiter and ascender can reach about 1 m in CE-5 project with delta delay data of 10 ps.

  13. The Space Operations Simulation Center (SOSC) and Closed-Loop Hardware Testing for Orion Rendezvous System Design

    NASA Technical Reports Server (NTRS)

    Milenkovic, Zoran; DSouza, Christopher; Huish, David; Bendle, John; Kibler, Angela

    2012-01-01

    The exploration goals of Orion / MPCV Project will require a mature Rendezvous, Proximity Operations and Docking (RPOD) capability. Ground testing autonomous docking with a next-generation sensor such as the Vision Navigation Sensor (VNS) is a critical step along the path of ensuring successful execution of autonomous RPOD for Orion. This paper will discuss the testing rationale, the test configuration, the test limitations and the results obtained from tests that have been performed at the Lockheed Martin Space Operations Simulation Center (SOSC) to evaluate and mature the Orion RPOD system. We will show that these tests have greatly increased the confidence in the maturity of the Orion RPOD design, reduced some of the latent risks and in doing so validated the design philosophy of the Orion RPOD system. This paper is organized as follows: first, the objectives of the test are given. Descriptions of the SOSC facility, and the Orion RPOD system and associated components follow. The details of the test configuration of the components in question are presented prior to discussing preliminary results of the tests. The paper concludes with closing comments.

  14. Coordinated Radio, Electron, and Waves Experiment (CREWE) for the NASA Comet Rendezvous and Asteroid Flyby (CRAF) instrument

    NASA Technical Reports Server (NTRS)

    Scudder, Jack D.

    1992-01-01

    The Coordinated Radio, Electron, and Waves Experiment (CREWE) was designed to determine density, bulk velocity and temperature of the electrons for the NASA Comet Rendezvous and Asteroid Flyby Spacecraft, to define the MHD-SW IMF flow configuration; to clarify the role of impact ionization processes, to comment on the importance of anomalous ionization phenomena (via wave particle processes), to quantify the importance of wave turbulence in the cometary interaction, to establish the importance of photoionization via the presence of characteristic lines in a structured energy spectrum, to infer the presence and grain size of significant ambient dust column density, to search for the theoretically suggested 'impenetrable' contact surface, and to quantify the flow of heat (in the likelihood that no surface exists) that will penetrate very deep into the atmosphere supplying a good deal of heat via impact and charge exchange ionization. This final report provides an instrument description, instrument test plans, list of deliverables/schedule, flight and support equipment and software schedule, CREWE accommodation issues, resource requirements, status of major contracts, an explanation of the non-NASA funded efforts, status of EIP and IM plan, descope options, and Brinton questions.

  15. Thermo-physical properties of 162173 (1999 JU3), a potential flyby and rendezvous target for interplanetary missions

    NASA Astrophysics Data System (ADS)

    Müller, T. G.; Ďurech, J.; Hasegawa, S.; Abe, M.; Kawakami, K.; Kasuga, T.; Kinoshita, D.; Kuroda, D.; Urakawa, S.; Okumura, S.; Sarugaku, Y.; Miyasaka, S.; Takagi, Y.; Weissman, P. R.; Choi, Y.-J.; Larson, S.; Yanagisawa, K.; Nagayama, S.

    2011-01-01

    Context. Near-Earth asteroid 162173 (1999 JU3) is a potential flyby and rendezvous target for interplanetary missions because of its easy-to-reach orbit. The physical and thermal properties of the asteroid are relevant for establishing the scientific mission goals and also important in the context of near-Earth object studies in general. Aims: Our goal was to derive key physical parameters such as shape, spin-vector, size, geometric albedo, and surface properties of 162173 (1999 JU3). Methods: With three sets of published thermal observations (ground-based N-band, Akari IRC, Spitzer IRS), we applied a thermophysical model to derive the radiometric properties of the asteroid. The calculations were performed for the full range of possible shape and spin-vector solutions derived from the available sample of visual lightcurve observations. Results: The near-Earth asteroid 162173 (1999 JU3) has an effective diameter of 0.87 ± 0.03 km and a geometric albedo of 0.070 ± 0.006. The χ2-test reveals a strong preference for a retrograde sense of rotation with a spin-axis orientation of λecl = 73°, βecl = -62° and Psid = 7.63 ± 0.01 h. The most likely thermal inertia ranges between 200 and 600 J m-2 s-0.5 K-1, about a factor of 2 lower than the value for 25143 Itokawa. This indicates that the surface lies somewhere between a thick-dust regolith and a rock/boulder/cm-sized, gravel-dominated surface like that of 25143 Itokawa. Our analysis represents the first time that shape and spin-vector information has been derived from a combined data set of visual lightcurves (reflected light) and mid-infrared photometry and spectroscopy (thermal emission).

  16. Technology Development of Automated Rendezvous and Docking/Capture Sensors and Docking Mechanism for the Asteroid Redirect Crewed Mission

    NASA Technical Reports Server (NTRS)

    Hinkel, Heather; Cryan, Scott; Zipay, John; Strube, Matthew

    2015-01-01

    This paper will describe the technology development efforts NASA has underway for Automated Rendezvous and Docking/Capture (AR&D/C) sensors and a docking mechanism and the challenges involved. The paper will additionally address how these technologies will be extended to other missions requiring AR&D/C whether robotic or manned. NASA needs AR&D/C sensors for both the robotic and crewed segments of the Asteroid Redirect Mission (ARM). NASA recently conducted a commonality assessment of the concept of operations for the robotic Asteroid Redirect Vehicle (ARV) and the crewed mission segment using the Orion crew vehicle. The commonality assessment also considered several future exploration and science missions requiring an AR&D/C capability. Missions considered were asteroid sample return, satellite servicing, and planetary entry, descent, and landing. This assessment determined that a common sensor suite consisting of one or more visible wavelength cameras, a threedimensional LIDAR along with long-wavelength infrared cameras for robustness and situational awareness could be used on each mission to eliminate the cost of multiple sensor developments and qualifications. By choosing sensor parameters at build time instead of at design time and, without having to requalify flight hardware, a specific mission can design overlapping bearing, range, relative attitude, and position measurement availability to suit their mission requirements with minimal nonrecurring engineering costs. The resulting common sensor specification provides the union of all performance requirements for each mission and represents an improvement over the current systems used for AR&D/C today. These sensor specifications are tightly coupled to the docking system capabilities and requirements for final docking conditions. The paper will describe NASA's efforts to develop a standard docking system for use across NASA human spaceflight missions to multiple destinations. It will describe the current

  17. Technology Development of Automated Rendezvous and Docking/Capture Sensors and Docking Mechanism for the Asteroid Redirect Crewed Mission

    NASA Technical Reports Server (NTRS)

    Hinkel, Heather; Strube, Matthew; Zipay, John J.; Cryan, Scott

    2015-01-01

    This paper will describe the technology development efforts NASA has underway for Automated Rendezvous and Docking/Capture (AR and D/C) sensors and a docking mechanism and the challenges involved. The paper will additionally address how these technologies will be extended to other missions requiring AR and D/C whether robotic or manned. NASA needs AR&D/C sensors for both the robotic and crewed segments of the Asteroid Redirect Mission (ARM). NASA recently conducted a commonality assessment of the concept of operations for the robotic Asteroid Redirect Vehicle (ARV) and the crewed mission segment using the Orion crew vehicle. The commonality assessment also considered several future exploration and science missions requiring an AR and D/C capability. Missions considered were asteroid sample return, satellite servicing, and planetary entry, descent, and landing. This assessment determined that a common sensor suite consisting of one or more visible wavelength cameras, a threedimensional LIDAR along with long-wavelength infrared cameras for robustness and situational awareness could be used on each mission to eliminate the cost of multiple sensor developments and qualifications. By choosing sensor parameters at build time instead of at design time and, without having to requalify flight hardware, a specific mission can design overlapping bearing, range, relative attitude, and position measurement availability to suit their mission requirements with minimal nonrecurring engineering costs. The resulting common sensor specification provides the union of all performance requirements for each mission and represents an improvement over the current systems used for AR and D/C today. These sensor specifications are tightly coupled to the docking system capabilities and requirements for final docking conditions. The paper will describe NASA's efforts to develop a standard docking system for use across NASA human spaceflight missions to multiple destinations. It will describe

  18. Technology Development of Automated Rendezvous and Docking/Capture Sensors and Docking Mechanism for the Asteroid Redirect Crewed Mission

    NASA Technical Reports Server (NTRS)

    Hinkel, Heather; Strube, Matthew; Zipay, John J.; Cryan, Scott

    2016-01-01

    This paper will describe the technology development efforts NASA has underway for Automated Rendezvous and Docking/Capture (AR&D/C) sensors and a docking mechanism and the challenges involved. The paper will additionally address how these technologies will be extended to other missions requiring AR&D/C whether robotic or manned. NASA needs AR&D/C sensors for both the robotic and crewed segments of the Asteroid Redirect Mission (ARM). NASA recently conducted a commonality assessment of the concept of operations for the robotic Asteroid Redirect Vehicle (ARV) and the crewed mission segment using the Orion spacecraft. The commonality assessment also considered several future exploration and science missions requiring an AR&D/C capability. Missions considered were asteroid sample return, satellite servicing, and planetary entry, descent, and landing. This assessment determined that a common sensor suite consisting of one or more visible wavelength cameras, a three-dimensional LIDAR along with long-wavelength infrared cameras for robustness and situational awareness could be used on each mission to eliminate the cost of multiple sensor developments and qualifications. By choosing sensor parameters at build-time instead of at design-time and, without having to requalify flight hardware, a specific mission can design overlapping bearing, range, relative attitude, and position measurement availability to suit their mission requirements with minimal non-recurring engineering costs. The resulting common sensor specification provides the union of all performance requirements for each mission and represents an improvement over the current systems used for AR&D/C today. These sensor specifications are tightly coupled to the docking system capabilities and requirements for final docking conditions. The paper will describe NASA's efforts to develop a standard docking system for use across NASA human spaceflight missions to multiple destinations. It will describe the current

  19. Spontaneous Rupture of Superficial Femoral Artery Repaired with Endovascular Stent-Grafting with use of Rendez-Vous Technique, Followed by Delayed Infection

    SciTech Connect

    Fanelli, Fabrizio Cannavale, Alessandro; Gazzetti, Marianna; Fantozzi, Cristiano; Taurino, Maurizio; Speziale, Francesco

    2013-02-15

    This is the case of a 72-year-old man with lower limb ischemia due to spontaneous rupture of nonaneurysmal superficial femoral artery that developed into thigh hematoma. After failure of a Fogarty revascularization, an emergency endovascular procedure was performed to restore the arterial continuity. A rendezvous procedure was performed with a double femoral and popliteal approach and two covered stent-grafts were deployed. Patient's clinical conditions immediately improved, but 4 months later the stent-grafts were surgically removed for infection and exteriorization. A femoropopliteal bypass was performed. After 1 year follow-up, the patient is in good clinical condition.

  20. Trojan Tour and Rendezvous (TTR): A New Frontiers Mission to Explore the Origin and Evolution of the Early Solar System

    NASA Astrophysics Data System (ADS)

    Bell, J. F., III; Olkin, C.; Castillo, J. C.

    2015-12-01

    The orbital properties, compositions, and physical properties of the diverse populations of small outer solar system bodies provide a forensic map of how our solar system formed and evolved. Perhaps the most potentially diagnostic, but least explored, of those populations are the Jupiter Trojan asteroids, which orbit at ~5 AU in the L4 and L5 Lagrange points of Jupiter. More than 6200 Jupiter Trojans are presently known, but these are predicted to be only a small fraction of the 500,000 to 1 million Trojans >1 km in size. The Trojans are hypothesized to be either former Kuiper Belt Objects (KBOs) that were scattered into the inner solar system by early giant planet migration and then trapped in the 1:1 Jupiter mean motion resonance, or bodies formed near 5 AU in a much more quiescent early solar system, and then trapped at L4 and L5. The 2011 Planetary Science Decadal Survey identified important questions about the origin and evolution of the solar system that can be addressed by studying of the Trojan asteroids, including: (a) How did the giant planets and their satellite systems accrete, and is there evidence that they migrated to new orbital positions? (b) What is the relationship between large and small KBOs? Is the small population derived by impact disruption of the large one? (c) What kinds of surface evolution, radiation chemistry, and surface-atmosphere interactions occur on distant icy primitive bodies? And (d) What are the sources of asteroid groups (Trojans and Centaurs) that remain to be explored by spacecraft? The Trojan Tour and Rendezvous (TTR) is a New Frontiers-class mission designed to answer these questions, and to test hypotheses for early giant planet migration and solar system evolution. Via close flybys of a large number of these objects,, and orbital characterization of at least one large Trojan, TTR will enable the first-time exploration of this population. Our primary mission goals are to characterize the overall surface geology

  1. Trojan Tour and Rendezvous (TTR): A New Frontiers Mission to Conduct the First Detailed Reconnaissance of the Jupiter Trojan Asteroids

    NASA Astrophysics Data System (ADS)

    Bell, James F.; Olkin, Cathy; Castillo-Rogez, Julie

    2015-11-01

    Among the most potentially diagnostic but least explored populations of small bodies are the Jupiter Trojan asteroids, which orbit at ~5 AU in the L4 and L5 Lagrange points of Jupiter. The Trojans provide a unique perspective on solar system history, because their locations and physical, compositional, and mineralogic properties preserve evidence for important gravitational interactions among the giant planets. The locations and orbital properties of more than 6200 Jupiter Trojans are now known, but that is likely only a small fraction of a population of up to ~1e6 Trojans >1 km in size. The Trojans are hypothesized to be either former KBOs scattered into the inner solar system by early giant planet migration and then trapped in L4 and L5, or bodies formed near 5 AU in a more quiescent early solar system.Important Planetary Decadal Survey questions that can be addressed by studying the Trojans include: (a) How did the giant planets and their satellite systems accrete, and is there evidence that they migrated to new orbital positions? (b) What is the relationship between large and small KBOs? Is the small population derived by impact disruption of the large one? (c) What kinds of surface evolution, radiation chemistry, and surface-atmosphere interactions occur on distant icy primitive bodies? And (d) What are the sources of asteroid groups (Trojans and Centaurs) that remain to be explored by spacecraft?Here we describe the Trojan Tour and Rendezvous (TTR) New Frontiers mission concept, which is designed to answer these Decadal questions and to test hypotheses for early giant planet migration and solar system evolution. Via close flybys of many of these objects, and orbital characterization of at least one large Trojan, TTR will enable the initial up-close exploration of this population. Our primary mission goals are to characterize the overall surface geology, geochemistry and mineralogy of these worlds; to characterize their internal structure and dynamical

  2. DARe: Dark Asteroid Rendezvous

    NASA Technical Reports Server (NTRS)

    Noll, K. S.; McFadden, L. A.; Rhoden, A. R.; Lim, L. F.; Boynton, W. V.; Carter, L. M.; Collins, G.; Englander, J. A.; Goossens, S. A.; Grundy, W. M.; Li, J.-Y.; Mottola, S.; Oberst, J.; Orosei, R.; Parsons, A. M.; Preusker, F.; Reuter, D. C.; Simon, A. A.; Thomas, C. A.; Walsh, K.; Zolensky, M. E.

    2015-01-01

    Small bodies record the chemical, physical, and dynamical processes that gave birth to and shaped the solar system. The great variety of small bodies reflects the diversity of both their genesis and their histories. The DARe mission conducts a critical test of how small body populations reflect a history of planetary migration and planetesimal scattering. This understanding is crucial for planning future NASA missions and placing current and past missions into context.

  3. Noncooperative rendezvous radar system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A fire control radar system was developed, assembled, and modified. The baseline system and modified angle tracking system are described along with the performance characteristics of the baseline and modified systems. Proposed changes to provide additional techniques for radar evaluation are presented along with flight test data.

  4. Millennials: Rendezvous with Destiny?

    DTIC Science & Technology

    2008-03-05

    Millennial political tendencies. Regarding politics , the article states that Civic generations (G.I./ Millennial ) show a tendency to react against Idealist...Globalization, Future Trends CLASSIFICATION: Unclassified The Millennial Generation (born between 1982 and about 2002) is showing characteristics...tenacious execution across multiple disciplines. This paper provides a generational profile of the Millennials and examines where this current

  5. Control of spacecraft with relay-impulse and continuous-action controllers on the basis of an algorithm with a predictive model and its application to spacecraft rendezvous dynamics

    NASA Astrophysics Data System (ADS)

    Zubov, N. E.

    1989-03-01

    The paper examines the problem of spacecraft control with simultaneously functioning relay-impulse and continuous-action controllers using a modified optimal control algorithm with a predictive model reproducing the motion of the vehicle in accelerated time. The proposed theory is applied to the control of spacecraft rendezvous in an orbital coordinate system.

  6. In-Flight Operation of the Dawn Ion Propulsion System: Status at One Year from the Vesta Rendezvous

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Rayman, Marc D.

    2010-01-01

    , 2007 and was successfully concluded as planned on October 31, 2008. During this time period the Dawn IPS was operated mostly at full power for approximately 6500 hours, consumed 71.7 kg of xenon and delivered approximately 1.8 km/s of delta V to the spacecraft. The thrusting to Mars was followed by a coasting period of approximately 3.5 months that included a Mars flyby in February of 2009. The Mars flyby provided a gravity assist (MGA) for a plane change and approximately 1 km/s of heliocentric energy increase and is the only part of the mission following launch in which a needed velocity change is not accomplished by the IPS. During the coast period IPS was operated for a trajectory correction maneuver and for engineering tests but was not operated for primary propulsion. Closest approach to Mars occurred as planned on February 17, 2009 and was followed by another coasting period of just under 4 months in duration. During this last coasting phase IPS was operated only for routine maintenance activities and for system engineering tests. Deterministic thrusting for heliocentric transfer to Vesta resumed on June 8, 2009. Since resumption of cruise to Vesta IPS has been operated at throttled power levels, most of the time at full power, and with a duty cycle of approximately 93%, leading to an arrival at Vesta in July of 2011 and arrival at Ceres in February 2015. This paper provides an overview of Dawn's mission objectives and the results of Dawn IPS mission operations through one year from the spacecraft's rendezvous with Vesta.

  7. Are the Walls of Injustice Tumbling Down?

    ERIC Educational Resources Information Center

    Peterson, Rochelle R.; Davila, Erica R.

    2011-01-01

    The discussion of multicultural education in teacher preparation dates back several decades. "The historical roots of multicultural education lie in the civil rights movements of various historically oppressed groups" (Gorski, 1999, p.1). As communities of color resisted institutional racism, schools became one of the sites of struggle. Thus, the…

  8. Tumbling: From Rally Cars to Toast

    NASA Astrophysics Data System (ADS)

    Belloni, Mario; Christian, Wolfgang

    2012-10-01

    The article by Rod Cross describing the translational and rotational motion of the "Launch of a Vehicle from a Ramp" motivated us to create two computer models showing this type of dynamical behavior.

  9. Tumbling: From Rally Cars to Toast

    ERIC Educational Resources Information Center

    Belloni, Mario; Christian, Wolfgang

    2012-01-01

    The article by Rod Cross describing the translational and rotational motion of the "Launch of a Vehicle from a Ramp" motivated us to create two computer models showing this type of dynamical behavior.

  10. Supplementary Investigation to Determine the Effects of Center-of-Gravity Position on the Spin, Longitudinal-Trim, and Tumbling Characteristics of a 1/20-Scale Model of the Consolidated Vultee 7002 Airplane (Flying Mock-up of XF-92)

    NASA Technical Reports Server (NTRS)

    Klinar, Walter J.; Jones, Ira P., Jr.

    1948-01-01

    A supplementary wind-tunnel investigation has been conducted to determine the effect of rearward positions of the center of gravity on the spin, longitudinal-trim, and tumbling characteristics of the 1/20-scale model of the Consolidated Vultee 7002 airplane equipped with the single vertical tail. A few tests were also made with dual vertical tails added to the model. The model was ballasted to represent, the airplane in its approximate design gross weight for two center-of-gravity positions, 3O and 35 percent of the mean aerodynamic chord. The original tests previously reported were for a center-of-gravity position of 24 percent of the mean aerodynamic chord.

  11. A Proposed Strategy for the U.S. to Develop and Maintain a Mainstream Capability Suite ("Warehouse") for Automated/Autonomous Rendezvous and Docking in Low Earth Orbit and Beyond

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje S.; Stillwater, Ryan A.; Babula, Maria; Moreau, Michael C.; Riedel, J. Ed; Mrozinski, Richard B.; Bradley, Arthur; Bryan, Thomas C.

    2012-01-01

    The ability of space assets to rendezvous and dock/capture/berth is a fundamental enabler for numerous classes of NASA fs missions, and is therefore an essential capability for the future of NASA. Mission classes include: ISS crew rotation, crewed exploration beyond low-Earth-orbit (LEO), on-orbit assembly, ISS cargo supply, crewed satellite servicing, robotic satellite servicing / debris mitigation, robotic sample return, and robotic small body (e.g. near-Earth object, NEO) proximity operations. For a variety of reasons to be described, NASA programs requiring Automated/Autonomous Rendezvous and Docking/Capture/Berthing (AR&D) capabilities are currently spending an order-of-magnitude more than necessary and taking twice as long as necessary to achieve their AR&D capability, "reinventing the wheel" for each program, and have fallen behind all of our foreign counterparts in AR&D technology (especially autonomy) in the process. To ensure future missions' reliability and crew safety (when applicable), to achieve the noted cost and schedule savings by eliminate costs of continually "reinventing the wheel ", the NASA AR&D Community of Practice (CoP) recommends NASA develop an AR&D Warehouse, detailed herein, which does not exist today. The term "warehouse" is used herein to refer to a toolbox or capability suite that has pre-integrated selectable supply-chain hardware and reusable software components that are considered ready-to-fly, low-risk, reliable, versatile, scalable, cost-effective, architecture and destination independent, that can be confidently utilized operationally on human spaceflight and robotic vehicles over a variety of mission classes and design reference missions, especially beyond LEO. The CoP also believes that it is imperative that NASA coordinate and integrate all current and proposed technology development activities into a cohesive cross-Agency strategy to produce and utilize this AR&D warehouse. An initial estimate indicates that if NASA

  12. The First Joint Report of the General Thomas P. Stafford Task Force and the Academician Vladimir F. Utkin Advisory Expert Council on the Shuttle-Mir Rendezvous and Docking Missions

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In October 1992, the National Aeronautics and Space Administration (NASA) and the Russian Space Agency (RSA) formally agreed to conduct a fundamentally new program of human cooperation in space. The 'Shuttle-Mir Program' encompassed combined astronaut-cosmonaut activities on the Shuttle, Soyuz Test Module(TM), and Mir station spacecraft. At that time, NASA and RSA limited the project to: the STS-60 mission carrying the first Russian cosmonaut to fly on the U.S. Space Shuttle; the launch of the first U.S. astronaut on the Soyuz vehicle for a multi-month mission as a member of a Mir crew; and the change-out of the U.S.-Russian Mir crews with a Russian crew during a Shuttle rendezvous and docking mission with the Mir Station. The objectives of the Phase 1 Program are to provide the basis for the resolution of engineering and technical problems related to the implementation of the ISS and future U.S.-Russian cooperation in space. This, combined with test data generated during the course of the Shuttle flights to the Mir station and extended joint activities between U.S. astronauts and Russian cosmonauts aboard Mir, is expected to reduce the technical risks associated with the construction and operation of the ISS. Phase 1 will further enhance the ISS by combining space operations and joint space technology demonstrations. Phase 1 also provides early opportunities for extended U.S. scientific and research activities, prior to utilization of the ISS.

  13. Spin Rate Diversity Amongst Ten-meter Class Near Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Ryan, William; Ryan, Eileen V.

    2016-10-01

    The spin rates of small asteroids can provide insight into their mechanical structure, origin, and subsequent evolution. This is of more than just scientific interest since these are also the objects that will hit the Earth most frequently. Early statistics [Pravec and Harris, 2000] for Near Earth Asteroids (NEAs) with diameters of ~100 meters or less had resulted in the conclusion that many are rotating more rapidly than feasible for a gravitationally bound system of constituent components (i.e, 'rubble piles'). However, more recent studies [Holsapple, 2007; Scheeres et al. 2010] have focused on how non-gravitational cohesion mechanisms do not necessarily rule out a rubble pile structure for fast spin rate bodies. To further study this issue, we will report on the recent spin rate results for the smallest asteroids observed as part of our ongoing NEA target-of-opportunity characterization research [Ryan and Ryan, 2016] conducted using the Magdalena Ridge Observatory's 2.4-meter telescope.Spin rates determined by this program plus results from the current lightcurve database [Warner et al. 2016] indicate that the very smallest NEAs with H>29 rotate with periods of minutes or less. This implies that these objects possess significant strength, hinting that they are likely examples of truly monolithic fragments. However, our observations also show a great diversity in rotation periods for asteroids that are only slightly larger. In particular, the H~28.6 asteroids 2016 CC136 and 2016 CG18 were observed to rotate with periods approaching or exceeding ~2 hours, with the latter showing a tumbling behavior. In a subset of our database that includes 22 asteroids with H~27.5 (~10 meters) or greater, a full range of periods from less than a minute to greater than 2 hours (close to the minimal period of a self-gravitating system), have been identified. Moreover, at least three of these are in a tumbling state with multiple periods clearly identified, implying constraints on

  14. Coding gains and error rates from the Big Viterbi Decoder

    NASA Technical Reports Server (NTRS)

    Onyszchuk, I. M.

    1991-01-01

    A prototype hardware Big Viterbi Decoder (BVD) was completed for an experiment with the Galileo Spacecraft. Searches for new convolutional codes, studies of Viterbi decoder hardware designs and architectures, mathematical formulations, and decompositions of the deBruijn graph into identical and hierarchical subgraphs, and very large scale integration (VLSI) chip design are just a few examples of tasks completed for this project. The BVD bit error rates (BER), measured from hardware and software simulations, are plotted as a function of bit signal to noise ratio E sub b/N sub 0 on the additive white Gaussian noise channel. Using the constraint length 15, rate 1/4, experimental convolutional code for the Galileo mission, the BVD gains 1.5 dB over the NASA standard (7,1/2) Maximum Likelihood Convolution Decoder (MCD) at a BER of 0.005. At this BER, the same gain results when the (255,233) NASA standard Reed-Solomon decoder is used, which yields a word error rate of 2.1 x 10(exp -8) and a BER of 1.4 x 10(exp -9). The (15, 1/6) code to be used by the Cometary Rendezvous Asteroid Flyby (CRAF)/Cassini Missions yields 1.7 dB of coding gain. These gains are measured with respect to symbols input to the BVD and increase with decreasing BER. Also, 8-bit input symbol quantization makes the BVD resistant to demodulated signal-level variations which may cause higher bandwidth than the NASA (7,1/2) code, these gains are offset by about 0.1 dB of expected additional receiver losses. Coding gains of several decibels are possible by compressing all spacecraft data.

  15. Method and associated apparatus for capturing, servicing, and de-orbiting earth satellites using robotics

    NASA Technical Reports Server (NTRS)

    Cepollina, Frank J. (Inventor); Burns, Richard D. (Inventor); Holz, Jill M. (Inventor); Corbo, James E. (Inventor); Jedhrich, Nicholas M. (Inventor)

    2009-01-01

    This invention is a method and supporting apparatus for autonomously capturing, servicing and de-orbiting a free-flying spacecraft, such as a satellite, using robotics. The capture of the spacecraft includes the steps of optically seeking and ranging the satellite using LIDAR, and matching tumble rates, rendezvousing and berthing with the satellite. Servicing of the spacecraft may be done using supervised autonomy, which is allowing a robot to execute a sequence of instructions without intervention from a remote human-occupied location. These instructions may be packaged at the remote station in a script and uplinked to the robot for execution upon remote command giving authority to proceed. Alternately, the instructions may be generated by Artificial Intelligence (AI) logic onboard the robot. In either case, the remote operator maintains the ability to abort an instruction or script at any time as well as the ability to intervene using manual override to teleoperate the robot.

  16. 14 CFR 1214.111 - Rendezvous services.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....111 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle Flights of Payloads for Non-U.S. Government, Reimbursable Customers § 1214... Space Shuttle flight. (2) Exchange of a spacecraft (or part thereof) delivered to orbit on a...

  17. 14 CFR 1214.111 - Rendezvous services.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....111 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle Flights of Payloads for Non-U.S. Government, Reimbursable Customers § 1214... Space Shuttle flight. (2) Exchange of a spacecraft (or part thereof) delivered to orbit on a...

  18. 14 CFR 1214.111 - Rendezvous services.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....111 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle Flights of Payloads for Non-U.S. Government, Reimbursable Customers § 1214... Space Shuttle flight. (2) Exchange of a spacecraft (or part thereof) delivered to orbit on a...

  19. 14 CFR 1214.111 - Rendezvous services.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....111 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle Flights of Payloads for Non-U.S. Government, Reimbursable Customers § 1214... Space Shuttle flight. (2) Exchange of a spacecraft (or part thereof) delivered to orbit on a...

  20. Discovery: Near-Earth Asteroid Rendezvous (NEAR)

    NASA Technical Reports Server (NTRS)

    Veverka, Joseph

    1992-01-01

    The work carried out under this grant consisted of two parallel studies aimed at defining candidate missions for the initiation of the Discovery Program being considered by NASA's Solar System Exploration Division. The main study considered a Discover-class mission to a Near Earth Asteroid (NEA); the companion study considered a small telescope in Earth-orbit dedicated to ultra violet studies of solar system bodies. The results of these studies are summarized in two reports which are attached (Appendix 1 and Appendix 2).

  1. Long range targeting for space based rendezvous

    NASA Technical Reports Server (NTRS)

    Everett, Louis J.; Redfield, R. C.

    1995-01-01

    The work performed under this grant supported the Dexterous Flight Experiment one STS-62 The project required developing hardware and software for automating a TRAC sensor on orbit. The hardware developed by for the flight has been documented through standard NASA channels since it has to pass safety, environmental, and other issues. The software has not been documented previously, therefore, this report provides a software manual for the TRAC code developed for the grant.

  2. Telerobotic rendezvous and docking vision system architecture

    NASA Technical Reports Server (NTRS)

    Gravely, Ben; Myers, Donald; Moody, David

    1992-01-01

    This research program has successfully demonstrated a new target label architecture that allows a microcomputer to determine the position, orientation, and identity of an object. It contains a CAD-like database with specific geometric information about the object for approach, grasping, and docking maneuvers. Successful demonstrations were performed selecting and docking an ORU box with either of two ORU receptacles. Small, but significant differences were seen in the two camera types used in the program, and camera sensitive program elements have been identified. The software has been formatted into a new co-autonomy system which provides various levels of operator interaction and promises to allow effective application of telerobotic systems while code improvements are continuing.

  3. Optimal Trajectory Generation for Multiple Asteroid Rendezvous

    DTIC Science & Technology

    2007-06-01

    distinguishable ways. For this research, the lack of perturbations to the orbits permits the simple use of the equations generated by Johannes Kepler and Isaac...on careful observations. Kepler used the data collected throughout Tycho Brahe’s life to come up with his three laws; 1) the orbits of the planets...these problems, Isaac Newton invented calculus of variations.7 Johannes Bernoulli was also instrumental in the initial surge for optimization as he

  4. Alan Shepard in the Rendezvous Docking Simulator

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut Alan Shepard (right) was one of 14 astronauts, 8 NASA test pilots, and 2 McDonnell test pilots who took part in simulator studies. Shepard flew the simulator on November 14, 1963. A.W. Vogeley wrote: 'Many of the astronauts have flown this simulator in support of the Gemini studies and they, without exception, appreciated the realism of the visual scene. The simulator has also been used in the development of pilot techniques to handle certain jet malfunctions in order that aborts could be avoided. In these situations large attitude changes are sometimes necessary and the false motion cues that were generated due to earth gravity were somewhat objectionable; however, the pilots were readily able to overlook these false motion cues in favor of the visual realism.' Roy F. Brissenden noted that: 'The basic Gemini control studies developed the necessary techniques and demonstrated the ability of human pilots to perform final space docking with the specified Gemini-Agena systems using only visual references. ... Results... showed that trained astronauts can effect the docking with direct acceleration control and even with jet malfunctions as long as good visual conditions exist.... Probably more important than data results was the early confidence that the astronauts themselves gained in their ability to perform the maneuver in the ultimate flight mission.' Shepard commented: 'I had the feeling tonight - a couple of times - that I was actually doing the space mission instead of the simulation. As I said before, I think it is a very good simulation.' Shepard also commented on piloting techniques. Most astronauts arrived at this same preferred technique: Shepard: 'I believe I have developed the preferred technique for these conditions and the technique appeared to me to be best was to come in slightly above the target so that I was able to use the longitudinal marks on the body of the target as a reference, particularly for a lateral translation and, of course, I used the foreshortening effect for a vertical translation, and this appeared to give me the best results. By that I mean the least number of control motions and the lowest fuel usage and the best end techniques, or the best end conditions, I should say.' Engineer: 'When you started to run you didn't start thrusting immediately I don't believe. It looked like you started working on your attitudes, then started closing in.' Shepard: 'That is correct. I did that because I felt that I wanted to get the X-axis translation in the most effective vector and for minimum fuel usage that wouldn't introduce any other lateral or vertical offsets that did not already exist.'

  5. Automated Rendezvous and Docking: 1994-2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes technologies for human exploration and robotic sample return missions. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.

  6. The Modular Clock Algorithm for Blind Rendezvous

    DTIC Science & Technology

    2009-03-26

    Theory . . . . . . . . . . . . . . . . . . . . . . . 20 Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 vi Page...50 Random Strategy vs. Modular Clock Algorithm . . . . . . . . . . . . . . 53 Modified Modular Clock Algorithm...Spectrum has become such a precious commodity that the auction of five blocks of 700 MHz spectrum raised $20 billion dollars from big market players

  7. STORRM To Test Future Rendezvous and Docking

    NASA Video Gallery

    A state-of-the-art relative navigation system will be demonstrated on the STS-134 mission to the International Space Station called the Sensor Test for Orion Relative Navigation Risk Mitigation or ...

  8. LAREDO: LAunching, REndezvous and DOcking Simulation Tool

    DTIC Science & Technology

    2006-08-01

    Molina, Jose Prieto GMV – c/ Isaac Newton , 11 PTM Tres Cantos 28760 Madrid SPAIN Tel: +34 918072100; Fax: +34 918072199 mamc@gmv.es, jjpm@gmv.es...TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) GMV c/ Isaac Newton , 11 PTM Tres Cantos 28760 Madrid SPAIN 8...EXOMARS09 DM,” CDF Study Report, 2002. BIOGRAPHY Miguel Angel Molina is a Senior Aeronautical Engineer currently responsible of the Flight Engineering

  9. Optical correlators for automated rendezvous and capture

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.

    1991-01-01

    The paper begins with a description of optical correlation. In this process, the propagation physics of coherent light is used to process images and extract information. The processed image is operated on as an area, rather than as a collection of points. An essentially instantaneous convolution is performed on that image to provide the sensory data. In this process, an image is sensed and encoded onto a coherent wavefront, and the propagation is arranged to create a bright spot of the image to match a model of the desired object. The brightness of the spot provides an indication of the degree of resemblance of the viewed image to the mode, and the location of the bright spot provides pointing information. The process can be utilized for AR&C to achieve the capability to identify objects among known reference types, estimate the object's location and orientation, and interact with the control system. System characteristics (speed, robustness, accuracy, small form factors) are adequate to meet most requirements. The correlator exploits the fact that Bosons and Fermions pass through each other. Since the image source is input as an electronic data set, conventional imagers can be used. In systems where the image is input directly, the correlating element must be at the sensing location.

  10. Mars Researchers Rendezvous on Remote Arctic Island

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Devon Island is situated in an isolated part of Canada's Nunavut Territory, and is usually considered to be the largest uninhabited island in the world. However, each summer since 1999, researchers from NASA's Haughton-Mars Project and the Mars Society reside at this 'polar desert' location to study the geologic and environmental characteristics of a site which is considered to be an excellent 'Mars analog': a terrestrial location wherein specific conditions approximate environmental features reported on Mars. Base camps established amidst the rocks and rubble surrounding the Haughton impact crater enable researchers to conduct surveys designed to test the habitat, equipment and technology that may be deployed during a human mission to Mars. One of the many objectives of the project scientists is to understand the ice formations around the Haughton area, in the hopes that this might ultimately assist with the recognition of areas where ice can be found at shallow depth on Mars.

    These images of Devon Island from NASA's Multi-angle Imaging SpectroRadiometer (MISR) instrument provide contrasting views of the spectral and angular reflectance 'signatures' of different surfaces within the region. The top panel is a natural color view created with data from the red, green and blue-bands of MISR's nadir (vertical-viewing) camera. The bottom panel is a false-color multiangular composite of the same area, utilizing red band data from MISR's 60-degree backward, nadir, and 60-degree forward-viewing cameras, displayed as red, green and blue, respectively. In this representation, colors highlight textural properties of elements within the scene, with blue tones indicating smooth surfaces (which preferentially forward scatter sunlight) and red hues indicating rougher surfaces (which preferentially backscatter). The angular reflectance 'signature' of low clouds causes them to appear purple, and this visualization provides a unique way of distinguishing clouds from snow and ice.

    The data were captured on June 28, 2001, during the early part of the arctic summer, when sea ice becomes thinner and begins to move depending upon localized currents and winds. In winter the entire region is locked with several meters of nearly motionless sea ice, which acts as a thermodynamic barrier to the loss of heat from the comparatively warm ocean to the colder atmosphere. Summer melting of sea ice can be observed at the two large, dark regions of open water; one is present in the Jones Sound (near the top to the left of center), and another appears in the Wellington Channel (left-hand edge). A large crack caused by tidal heaving has broken the ice cover over the Parry Channel (lower right-hand corner). A substantial ice cap permanently occupies the easternmost third of the island (upper right). Surface features such as dendritic meltwater channels incised into the island's surface are apparent. The Haughton-Mars project site is located slightly to the left and above image center, in an area which appears with relatively little surface ice, near the island's inner 'elbow.'

    The images were acquired during Terra orbit 8132 and cover an area of about 334 kilometers x 229 kilometers. They utilize data from blocks 27 to 31 within World Reference System-2 path 42.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  11. The gas production rate of periodic comet d'Arrest

    NASA Technical Reports Server (NTRS)

    Festou, Michel C.; Feldman, Paul D.; Ahearn, Michael F.

    1992-01-01

    Comet P/d'Arrest is a potential target for a rendezvous mission to a short period comet. Its light curve is rather peculiar, the comet being active only after perihelion passage. One apparition out of two is easy to observe from the ground. The 1995 apparition of the comet will offer a unique opportunity to characterize the outgassing properties of its nucleus.

  12. Correlating field and laboratory rates of particle abrasion, Rio Medio, Sangre de Cristo Mountains, New Mexico

    NASA Astrophysics Data System (ADS)

    Polito, P. J.; Sklar, L. S.

    2006-12-01

    River bed sediments commonly fine downstream due to a combination of particle abrasion, selective transport of finer grains, and fining of the local sediment supply from hillslopes and tributaries. Particle abrasion rates can be directly measured in the laboratory using tumbling barrels and annular flumes, however, scaling experimental particle abrasion rates to the field has proven difficult due to the confounding effects of selective transport and local supply variations. Here we attempt to correlate laboratory and field rates of particle abrasion in a field setting where these confounding effects can be controlled. The Rio Medio, which flows westward from the crest of the Sangre de Cristo Mountains in north central New Mexico, is one of several streams studied by John P. Miller in the early 1960's. Several kilometers downstream of its headwaters, the river crosses the Picuris-Pecos fault. Upstream of the fault the river receives quartzite, sandstone and shale clasts from the Ortega Formation, while downstream sediments are supplied by the Embudo Granite. Because the upstream lithologies are not resupplied downstream of the fault, any observed fining of these clasts should be due only to abrasion and selective transport. We hypothesize that we can account for the effects of selective transport by comparing relative fining rates for the different upstream lithologies from both the field and a laboratory tumbler. By correlating laboratory abrasion rates with rock strength, we can predict the relative fining rates due solely to abrasion expected in the field; differences between the predicted and observed fining rates could then be attributed to selective transport. We used point counts to measure bed surface sediment grain size distributions at 15 locations along a 25 kilometer reach of the Rio Medio, beginning just downstream of the fault and ending upstream of a developed area with disturbed channel conditions. We recorded intermediate particle diameter as well

  13. Injury patterns and rates amongst students at the national institute of circus arts: an observational study.

    PubMed

    Munro, David

    2014-12-01

    Despite the ever-growing global participation in circus arts, very little research has been conducted into injuries associated with this physical discipline. To date, no studies have examined the incidence of injuries in circus training institutions and schools. In this study, data were collected over an academic year from all student injury presentations to the physiotherapy staff at one Australian circus school. A total of 351 injuries resulting in 1,948 treatments occurred in 33 female and 30 male circus students. The most common mechanisms of injury were acrobatics/tumbling (23%), handstands (12%), adagio (11%), and Chinese pole (10%). The most commonly injured body parts were the ankle (25%), lumbar spine (14%), and shoulder (12%). Interestingly, combined spinal injuries (cervical, thoracic, and lumbar) contributed to 35% of all initial injuries. Females sustained 71% of all hip injuries, but only 33% of all forearm injuries. Males accounted for 59% of all ankle injuries. There were no significant gender-based differences in other body areas. Results indicated that there is no gender-based difference in the overall rate of injury. However, females sustained significantly higher rates of hip injuries and males presented with more forearm and ankle injuries, perhaps reflecting the specific form and style of circus training and contortion undertaken. Spinal injuries had the highest overall rate of initial and follow-up presentations, indicating that both preventative and rehabilitative strategies could be addressed. It is suggested that the most common mechanisms of injury reflect both the amount of time spent training specific disciplines and the extreme physical difficulties and demands placed on the body.

  14. Experimental attrition rates of bed-material sediment from geologic provinces of Western Oregon and their application to regional sediment models

    NASA Astrophysics Data System (ADS)

    Mangano, J.; O'Connor, J. E.; Jones, K. L.; Wallick, R.

    2011-12-01

    Many topographic, hydrologic, and land use variables affect the supply and transport of bed-material in rivers, but the underlying geology is a key factor controlling both the volume of introduced material and the attrition of bed-material as it moves downstream. Recent and ongoing USGS river studies in Western Oregon document strong links between geologic province and bed-material transport. Rivers originating in the Mesozoic metamorphic and intrusive igneous rocks of the Klamath terranes of southwestern Oregon have the greatest gravel transport rates (and channel and valley-bottom morphologies reflecting high bed-material fluxes), whereas the generally lesser amounts of gravel in streams that drain Oregon's Coast Range and western Cascade Range owes in large part to Tertiary sedimentary and volcanic units underlying most of these basins. Aspects of these differences are controlled by supply as well as clast attrition. Here we aim to quantify bed-material attrition rates associated with the five main geologic provinces of Western Oregon: the Klamath terranes, Western Cascades, High Cascades, Coast Range sedimentary rocks, and Coast Range volcanic rocks. Bed-material samples were collected throughout the region from streams that drain a single geologic province and tumbled with a lapidary tumbler to determine relative attrition rates. Two kilograms of each sample were sorted into an initial distribution of clast sizes (from 16 to 64mm) and tumbled, with periodic breaks to reweigh and sieve the sample. Results show marked differences in attrition rates, with the sedimentary rocks of the Coast Range having weight loss coefficients between 1.206 and 0.211/km, orders of magnitude greater than all of the other sampled provinces. For comparison, bed material from the Klamath terranes have weight loss coefficients ranging from 0.013 to 0.005/km, and a control sample of quartzite clasts (from the Klamath terranes) has a weight loss coefficient of 0.001/km. These results

  15. Rolling and tumbling: status of the SuperAGILE experiment

    NASA Astrophysics Data System (ADS)

    Del Monte, E.; Costa, E.; di Persio, G.; Donnarumma, I.; Evangelista, Y.; Feroci, M.; Lapshov, I.; Lazzarotto, F.; Mastropietro, M.; Morelli, E.; Pacciani, L.; Rapisarda, M.; Rubini, A.; Soffitta, P.; Tavani, M.; Argan, A.; Trois, A.

    2010-07-01

    The SuperAGILE experiment is the hard X-ray monitor of the AGILE mission. It is a 2 x one-dimensional imager, with 6-arcmin angular resolution in the energy range 18 - 60 keV and a field of view in excess of 1 steradian. SuperAGILE is successfully operating in orbit since Summer 2007, providing long-term monitoring of bright sources and prompt detection and localization of gamma-ray bursts. Starting on October 2009 the AGILE mission lost its reaction wheel and the satellite attitude is no longer stabilized. The current mode of operation of the AGILE satellite is a Spinning Mode, around the Sun-pointing direction, with an angular velocity of about 0.8 degree/s (corresponding to 8 times the SuperAGILE point spread function every second). In these new conditions, SuperAGILE continuously scans a much larger fraction of the sky, with much smaller exposure to each region. In this paper we review some of the results of the first 2.5 years of "standard" operation of SuperAGILE, and show how new implementations in the data analysis software allows to continue the hard X-ray sky monitoring by SuperAGILE also in the new attitude conditions.

  16. Take a Tumble: Weathering and Erosion Using a Rock Tumbler

    ERIC Educational Resources Information Center

    Coffey, Patrick; Mattox, Steve

    2006-01-01

    Weathering--the physical and chemical breakdown of geologic materials--and erosion--the transport of materials by wind, water, or ice--can be subtle, yet powerful forces. For example, shale, a rock made of mud-sized particles, is by far the most common sedimentary rock, a testament to the ability of weathering and erosion to take a rock and reduce…

  17. Rating Movies and Rating the Raters Who Rate Them.

    PubMed

    Zhou, Hua; Lange, Kenneth

    2009-11-01

    The movie distribution company Netflix has generated considerable buzz in the statistics community by offering a million dollar prize for improvements to its movie rating system. Among the statisticians and computer scientists who have disclosed their techniques, the emphasis has been on machine learning approaches. This article has the modest goal of discussing a simple model for movie rating and other forms of democratic rating. Because the model involves a large number of parameters, it is nontrivial to carry out maximum likelihood estimation. Here we derive a straightforward EM algorithm from the perspective of the more general MM algorithm. The algorithm is capable of finding the global maximum on a likelihood landscape littered with inferior modes. We apply two variants of the model to a dataset from the MovieLens archive and compare their results. Our model identifies quirky raters, redefines the raw rankings, and permits imputation of missing ratings. The model is intended to stimulate discussion and development of better theory rather than to win the prize. It has the added benefit of introducing readers to some of the issues connected with analyzing high-dimensional data.

  18. The rating reliability calculator

    PubMed Central

    Solomon, David J

    2004-01-01

    Background Rating scales form an important means of gathering evaluation data. Since important decisions are often based on these evaluations, determining the reliability of rating data can be critical. Most commonly used methods of estimating reliability require a complete set of ratings i.e. every subject being rated must be rated by each judge. Over fifty years ago Ebel described an algorithm for estimating the reliability of ratings based on incomplete data. While his article has been widely cited over the years, software based on the algorithm is not readily available. This paper describes an easy-to-use Web-based utility for estimating the reliability of ratings based on incomplete data using Ebel's algorithm. Methods The program is available public use on our server and the source code is freely available under GNU General Public License. The utility is written in PHP, a common open source imbedded scripting language. The rating data can be entered in a convenient format on the user's personal computer that the program will upload to the server for calculating the reliability and other statistics describing the ratings. Results When the program is run it displays the reliability, number of subject rated, harmonic mean number of judges rating each subject, the mean and standard deviation of the averaged ratings per subject. The program also displays the mean, standard deviation and number of ratings for each subject rated. Additionally the program will estimate the reliability of an average of a number of ratings for each subject via the Spearman-Brown prophecy formula. Conclusion This simple web-based program provides a convenient means of estimating the reliability of rating data without the need to conduct special studies in order to provide complete rating data. I would welcome other researchers revising and enhancing the program. PMID:15117416

  19. Glomerular filtration rate

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/007305.htm Glomerular filtration rate To use the sharing features on this page, please enable JavaScript. Glomerular filtration rate (GFR) is a test used to check ...

  20. Handbook of noise ratings

    NASA Technical Reports Server (NTRS)

    Pearsons, K. S.; Bennett, R. L.

    1974-01-01

    The handbook was compiled to provide information in a concise form, describing the multitude of noise rating schemes. It is hoped that by describing the noise rating methods in a single volume the user will have better access to the definitions, application and calculation procedures of the current noise rating methods.

  1. Observed Barium Emission Rates

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.; Wescott, E. M.; Hallinan, T. J.

    1993-01-01

    The barium releases from the CRRES satellite have provided an opportunity for verifying theoretically calculated barium ion and neutral emission rates. Spectra of the five Caribbean releases in the summer of 1991 were taken with a spectrograph on board a U.S. Air Force jet aircraft. Because the line of sight release densities are not known, only relative rates could be obtained. The observed relative rates agree well with the theoretically calculated rates and, together with other observations, confirm the earlier detailed theoretical emission rates. The calculated emission rates can thus with good accuracy be used with photometric observations. It has been postulated that charge exchange between neutral barium and oxygen ions represents a significant source for ionization. If so. it should be associated with emissions at 4957.15 A and 5013.00 A, but these emissions were not detected.

  2. Beware Capital Charge Rates

    SciTech Connect

    Stauffer, Hoff

    2006-04-15

    The capital charge rate has a material effect in cost comparisons. Care should be taken to calculate it correctly and use it properly. The most common mistake is to use a nominal, rather than real, capital charge rate. To make matters worse, the common short-cut formula does not work well. (author)

  3. Metabolic rate measurement system

    NASA Technical Reports Server (NTRS)

    Koester, K.; Crosier, W.

    1980-01-01

    The Metabolic Rate Measurement System (MRMS) is an uncomplicated and accurate apparatus for measuring oxygen consumption and carbon dioxide production of a test subject. From this one can determine the subject's metabolic rate for a variety of conditions, such as resting or light exercise. MRMS utilizes an LSI/11-03 microcomputer to monitor and control the experimental apparatus.

  4. Scaling metabolic rate fluctuations

    PubMed Central

    Labra, Fabio A.; Marquet, Pablo A.; Bozinovic, Francisco

    2007-01-01

    Complex ecological and economic systems show fluctuations in macroscopic quantities such as exchange rates, size of companies or populations that follow non-Gaussian tent-shaped probability distributions of growth rates with power-law decay, which suggests that fluctuations in complex systems may be governed by universal mechanisms, independent of particular details and idiosyncrasies. We propose here that metabolic rate within individual organisms may be considered as an example of an emergent property of a complex system and test the hypothesis that the probability distribution of fluctuations in the metabolic rate of individuals has a “universal” form regardless of body size or taxonomic affiliation. We examined data from 71 individuals belonging to 25 vertebrate species (birds, mammals, and lizards). We report three main results. First, for all these individuals and species, the distribution of metabolic rate fluctuations follows a tent-shaped distribution with power-law decay. Second, the standard deviation of metabolic rate fluctuations decays as a power-law function of both average metabolic rate and body mass, with exponents −0.352 and −1/4 respectively. Finally, we find that the distributions of metabolic rate fluctuations for different organisms can all be rescaled to a single parent distribution, supporting the existence of general principles underlying the structure and functioning of individual organisms. PMID:17578913

  5. Applications of Reaction Rate

    ERIC Educational Resources Information Center

    Cunningham, Kevin

    2007-01-01

    This article presents an assignment in which students are to research and report on a chemical reaction whose increased or decreased rate is of practical importance. Specifically, students are asked to represent the reaction they have chosen with an acceptable chemical equation, identify a factor that influences its rate and explain how and why it…

  6. National ART Success Rates

    MedlinePlus

    ... 2: ART Cycles using fresh nondonor eggs or embryos What are the steps for an ART cycle ... 37MB] Section 3: ART Cycles using frozen nondonor embryos Did implantation rates differ by a woman’s age? [ ...

  7. The ratings game

    NASA Astrophysics Data System (ADS)

    Braben, Donald W.

    2009-04-01

    How sad to read a supposedly serious debate among distinguished physicists (February p19) about which combinations of the latest Research Assessment Exercise (RAE) ratings represent a university physics department's true strengths.

  8. Rating the Risks.

    ERIC Educational Resources Information Center

    Slovic, Paul; And Others

    1979-01-01

    Explains how people arrive at personal hazard assessments. Explores why people overestimate some hazards and underestimate others. Examines risk ratings for activities and technologies such as nuclear power, motor vehicles, pesticides, and vaccinations. (MA)

  9. Fertility Clinic Success Rates

    MedlinePlus

    ... Birth Defects ART and Autism 2013 Assisted Reproductive Technology Fertility Clinic Success Rates Report Recommend on Facebook ... RSS ABOUT About CDC Jobs Funding LEGAL Policies Privacy FOIA No Fear Act OIG 1600 Clifton Road ...

  10. Video Slope Rate Detector.

    DTIC Science & Technology

    The patent describes an apparatus for measuring the rate of change of voltage and the polarity of a pulse having a two input terminal differential amplifier with a delay line connected to one of the input terminals.

  11. Rating Your Cash Manager?

    ERIC Educational Resources Information Center

    Nielsen, George A.; Johannisson, Eric E.

    1989-01-01

    The primary objective of a public cash management policy should include safety, liquidity, yield, and legality. Contains a cash management policy/procedure checklist, a test for cash managers, and a formula for calculating the rate of return. (MLF)

  12. Burning Rate Emulator

    NASA Video Gallery

    The Burning Rate Emulator is a gas fuel investigation attempting to emulate the burning of solids to improve our understanding of materials''flammability over a wide range of conditions. The approa...

  13. Heart Rate Monitor

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In the mid 70's, NASA saw a need for a long term electrocardiographic electrode suitable for use on astronauts. Heart Rate Inc.'s insulated capacitive electrode is constructed of thin dielectric film applied to stainless steel surface, originally developed under a grant by Texas Technical University. HRI, Inc. was awarded NASA license and continued development of heart rate monitor for use on exercise machines for physical fitness and medical markets.

  14. Rates of Gravel Dispersion

    NASA Astrophysics Data System (ADS)

    Haschenburger, J. K.

    2010-12-01

    Sediment transfers in gravel-bed rivers involve the three-dimensional dispersion of mixed size sediment. From a kinematics standpoint, few studies are available to inform on the streamwise and vertical rates of sediment dispersion in natural channels. This research uses a gravel tracing program to quantify dispersion rates over 19 flood seasons. Empirical observations come from Carnation Creek, a small gravel-bed river with large woody debris located on the west coast of Vancouver Island, Canada. Frequent floods and the relatively limited armor layer facilitate streambed activity and relatively high bedload transport rates, typically under partial sediment transport conditions. Over 2500 magnetically tagged stones, ranging in size from 16 to 180 mm, were deployed on the bed surface between 1989 and 1992 in four generations. To quantify gravel dispersion over distances up to 2.6 km, observations are taken from 11 recoveries. Over 280 floods capable of moving bedload occurred during this period, with five exceeding the estimated bankfull discharge. Streamwise dispersion is quantified by virtual velocity, while dispersion into the streambed is quantified by a vertical burial rate. The temporal trend in streamwise dispersion rates is described by a power function. Initial virtual velocities decline rapidly from around 1.4 m/hr to approach an asymptote value of about 0.2 m/hr. The rapid change corresponds to a significant increase in the proportion of buried tracers due to vertical mixing. Initial burial rates reflect the magnitude of the first flood after tracer deployment and range from 0.07 to 0.46 cm/hr depending on tracer generation. Burial rates converge to about 0.06 cm/hr after the fourth flood season and then gradually decline to about 0.01 cm/hr. Thus, the rate of streamwise dispersion exceeds that of vertical dispersion by three orders of magnitude when the movement of sediment routinely activated by floods is considered.

  15. Heart Rate Monitors

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Under a NASA grant, Dr. Robert M. Davis and Dr. William M. Portnoy came up with a new type of electrocardiographic electrode that would enable long term use on astronauts. Their invention was an insulated capacitive electrode constructed of a thin dielectric film. NASA subsequently licensed the electrode technology to Richard Charnitski, inventor of the VersaClimber, who founded Heart Rate, Inc., to further develop and manufacture personal heart monitors and to produce exercise machines using the technology for the physical fitness, medical and home markets. Same technology is on both the Home and Institutional Model VersaClimbers. On the Home Model an infrared heart beat transmitter is worn under exercise clothing. Transmitted heart rate is used to control the work intensity on the VersaClimber using the heart rate as the speedometer of the exercise. This offers advantages to a full range of users from the cardiac rehab patient to the high level physical conditioning of elite athletes. The company manufactures and markets five models of the 1*2*3 HEART RATE monitors that are used wherever people exercise to accurately monitor their heart rate. Company is developing a talking heart rate monitor that works with portable headset radios. A version of the heart beat transmitter will be available to the manufacturers of other aerobic exercise machines.

  16. Hydration rate of obsidian.

    PubMed

    Friedman, I; Long, W

    1976-01-30

    The hydration rates of 12 obsidian samples of different chemical compositions were measured at temperatures from 95 degrees to 245 degrees C. An expression relating hydration rate to temperature was derived for each sample. The SiO(2) content and refractive index are related to the hydration rate, as are the CaO, MgO, and original water contents. With this information it is possible to calculate the hydration rate of a sample from its silica content, refractive index, or chemical index and a knowledge of the effective temperature at which the hydration occurred. The effective hydration temperature can be either measured or approximated from weather records. Rates have been calculated by both methods, and the results show that weather records can give a good approximation to the true EHT, particularly in tropical and subtropical climates. If one determines the EHT by any of the methods suggested, and also measures or knows the rate of hydration of the particular obsidian used, it should be possible to carry out absolute dating to +/- 10 percent of the true age over periods as short as several years and as long as millions of years.

  17. Inferring the Chemotactic Strategy of P. putida and E. coli Using Modified Kramers-Moyal Coefficients

    PubMed Central

    Hintsche, Marius; Beta, Carsten; Stark, Holger

    2017-01-01

    Many bacteria perform a run-and-tumble random walk to explore their surrounding and to perform chemotaxis. In this article we present a novel method to infer the relevant parameters of bacterial motion from experimental trajectories including the tumbling events. We introduce a stochastic model for the orientation angle, where a shot-noise process initiates tumbles, and analytically calculate conditional moments, reminiscent of Kramers-Moyal coefficients. Matching them with the moments calculated from experimental trajectories of the bacteria E. coli and Pseudomonas putida, we are able to infer their respective tumble rates, the rotational diffusion constants, and the distributions of tumble angles in good agreement with results from conventional tumble recognizers. We also define a novel tumble recognizer, which explicitly quantifies the error in recognizing tumbles. In the presence of a chemical gradient we condition the moments on the bacterial direction of motion and thereby explore the chemotaxis strategy. For both bacteria we recover and quantify the classical chemotactic strategy, where the tumble rate is smallest along the chemical gradient. In addition, for E. coli we detect some cells, which bias their mean tumble angle towards smaller values. Our findings are supported by a scaling analysis of appropriate ratios of conditional moments, which are directly calculated from experimental data. PMID:28114420

  18. Synthesis and Structural Characterization of New High-Valent Inorganic Fluorine Compounds and their Oxidizing Properties. Volume 3

    DTIC Science & Technology

    1992-02-01

    tumbling ) time, are required. Observation of the resonance of a quadrupolar nucleus thus requires that the ligands be symmetrically arranged around the...acetone has a slower isotropic tumbling rate and therefore a wider linewidth according to equation (10). The chemical shift of the central component of...isotropic tumbling rate, 7., which in turn serves to broaden the 1-’-’`Bi spectral lines. The "IF NMR spectrum of the decomposition product of Bi(OTeF.&_- and

  19. Heart rate turbulence.

    PubMed

    Cygankiewicz, Iwona

    2013-01-01

    Heart rate turbulence (HRT) is a baroreflex-mediated biphasic reaction of heart rate in response to premature ventricular beats. Heart rate turbulence is quantified by: turbulence onset (TO) reflecting the initial acceleration of heart rate following premature beat and turbulence slope (TS) describing subsequent deceleration of heart rate. Abnormal HRT identifies patients with autonomic dysfunction or impaired baroreflex sensitivity due to variety of disorders, but also may reflect changes in autonomic nervous system induced by different therapeutic modalities such as drugs, revascularization, or cardiac resynchronization therapy. More importantly, impaired HRT has been shown to identify patients at high risk of all-cause mortality and sudden death, particularly in postinfarction and congestive heart failure patients. It should be emphasized that abnormal HRT has a well-established role in stratification of postinfarction and heart failure patients with relatively preserved left ventricular ejection fraction. The ongoing clinical trials will document whether HRT can be used to guide implantation of cardioverter-defibrillators in this subset of patients, not covered yet by ICD guidelines. This review focuses on the current state-of-the-art knowledge regarding clinical significance of HRT in detection of autonomic dysfunction and regarding the prognostic significance of this parameter in predicting all-cause mortality and sudden death.

  20. Optical rate sensor algorithms

    NASA Technical Reports Server (NTRS)

    Uhde-Lacovara, Jo A.

    1989-01-01

    Optical sensors, in particular Charge Coupled Device (CCD) arrays, will be used on Space Station to track stars in order to provide inertial attitude reference. Algorithms are presented to derive attitude rate from the optical sensors. The first algorithm is a recursive differentiator. A variance reduction factor (VRF) of 0.0228 was achieved with a rise time of 10 samples. A VRF of 0.2522 gives a rise time of 4 samples. The second algorithm is based on the direct manipulation of the pixel intensity outputs of the sensor. In 1-dimensional simulations, the derived rate was with 0.07 percent of the actual rate in the presence of additive Gaussian noise with a signal to noise ratio of 60 dB.

  1. Currency Exchange Rates.

    ERIC Educational Resources Information Center

    Siler, Carl R.

    This curriculum unit of the Muncie (Indiana) Southside High School is to simulate the dynamics of foreign currency exchange rates from the perspectives of: (1) a major U.S. corporation, ABB Power T & D Company, Inc., of Muncie, Indiana, a manufacturer of large power transformers for the domestic and foreign markets; and (2) individual…

  2. Poetry Methods Rating Scale.

    ERIC Educational Resources Information Center

    Gallo, Donald R.

    Designed to assess high school teachers' attitudes about teaching poetry, this questionnaire asked teachers to respond to a 38-item poetry methods rating scale (PMRS) on a seven-point scale (from "strongly agree" to "strongly disagree"). The items for the questionnaire were derived from a study of popular methods texts for…

  3. Target Heart Rates

    MedlinePlus

    ... Terms and Conditions and Privacy Policy Lower Your Sodium in 21 Days! Learn how you can lower your sodium and change your salty ways in 21 Days! Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Target Heart Rates 4 Heart ...

  4. Modelling Rating Scales.

    ERIC Educational Resources Information Center

    Linacre, John M.

    Determination of the intentions of the test developer is fundamental to the choice of the analytical model for a rating scale. For confirmatory analysis, the developer's intentions inform the choice of the general form of the model, representing the manner in which the respondent interacts with the scale; these intentions also inform the choice of…

  5. Paradoxes in Film Ratings

    ERIC Educational Resources Information Center

    Moore, Thomas L.

    2006-01-01

    The author selected a simple random sample of 100 movies from the "Movie and Video Guide" (1996), by Leonard Maltin. The author's intent was to obtain some basic information on the population of roughly 19,000 movies through a small sample. The "Movie and Video Guide" by Leonard Maltin is an annual ratings guide to movies. While not all films ever…

  6. What's in a Rating?

    ERIC Educational Resources Information Center

    Jacob, Brian A.; Walsh, Elias

    2011-01-01

    We examine the relationship between the formal ratings that principals give teachers and a variety of observable teacher characteristics, including proxies for productivity. Prior work has shown that principals can differentiate between more and less effective teachers, especially at the tails of the quality distribution, and that subjective…

  7. Variable Rate Irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Systems are available to producers with the ability to make variable-rate applications of defoliants, fertilizer, lime, pesticides, plant growth regulators, and seed. These systems could potentially offer a producer great cost savings; however, the full potential of these benefits and savings cannot...

  8. Variable rate irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Systems are available to producers to make variable-rate applications of defoliants, fertilizer, lime, pesticides, plant growth regulators, and seed. These systems could potentially offer cost savings to a producer; however, the full potential of the benefits and savings cannot be realized if water ...

  9. Variable rate irrigation (VRI)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variable rate irrigation (VRI) technology is now offered by all major manufacturers of moving irrigation systems, mostly on center pivot irrigation systems. Variable irrigation depths may be controlled by sector only, in which case only the speed of the irrigation lateral is regulated. Or, variable ...

  10. Snowmelt rate dictates streamflow

    NASA Astrophysics Data System (ADS)

    Barnhart, Theodore B.; Molotch, Noah P.; Livneh, Ben; Harpold, Adrian A.; Knowles, John F.; Schneider, Dominik

    2016-08-01

    Declining mountain snowpack and earlier snowmelt across the western United States has implications for downstream communities. We present a possible mechanism linking snowmelt rate and streamflow generation using a gridded implementation of the Budyko framework. We computed an ensemble of Budyko streamflow anomalies (BSAs) using Variable Infiltration Capacity model-simulated evapotranspiration, potential evapotranspiration, and estimated precipitation at 1/16° resolution from 1950 to 2013. BSA was correlated with simulated baseflow efficiency (r2 = 0.64) and simulated snowmelt rate (r2 = 0.42). The strong correlation between snowmelt rate and baseflow efficiency (r2 = 0.73) links these relationships and supports a possible streamflow generation mechanism wherein greater snowmelt rates increase subsurface flow. Rapid snowmelt may thus bring the soil to field capacity, facilitating below-root zone percolation, streamflow, and a positive BSA. Previous works have shown that future increases in regional air temperature may lead to earlier, slower snowmelt and hence decreased streamflow production via the mechanism proposed by this work.

  11. 78 FR 18664 - Interest Rates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... constitution or laws of a given State, the maximum interest rate will be the rate permitted by the constitution... ADMINISTRATION Interest Rates The Small Business Administration publishes an interest rate called the optional ``peg'' rate (13 CFR 120.214) on a quarterly basis. This rate is a weighted average cost of money to...

  12. 77 FR 20476 - Interest Rates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... constitution or laws of a given State, the maximum interest rate will be the rate permitted by the constitution... ADMINISTRATION Interest Rates The Small Business Administration publishes an interest rate called the optional ``peg'' rate (13 CFR 120.214) on a quarterly basis. This rate is a weighted average cost of money to...

  13. 75 FR 81326 - Interest Rates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... constitution or laws of a given State, the maximum interest rate will be the rate permitted by the constitution... ADMINISTRATION Interest Rates The Small Business Administration publishes an interest rate called the optional ``peg'' rate (13 CFR 120.214) on a quarterly basis. This rate is a weighted average cost of money to...

  14. 78 FR 62932 - Interest Rates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... constitution or laws of a given State, the maximum interest rate will be the rate permitted by the constitution... ADMINISTRATION Interest Rates The Small Business Administration publishes an interest rate called the optional ``peg'' rate (13 CFR 120.214) on a quarterly basis. This rate is a weighted average cost of money to...

  15. Sequoia Messaging Rate Benchmark

    SciTech Connect

    Friedley, Andrew

    2008-01-22

    The purpose of this benchmark is to measure the maximal message rate of a single compute node. The first num_cores ranks are expected to reside on the 'core' compute node for which message rate is being tested. After that, the next num_nbors ranks are neighbors for the first core rank, the next set of num_nbors ranks are neighbors for the second core rank, and so on. For example, testing an 8-core node (num_cores = 8) with 4 neighbors (num_nbors = 4) requires 8 + 8 * 4 - 40 ranks. The first 8 of those 40 ranks are expected to be on the 'core' node being benchmarked, while the rest of the ranks are on separate nodes.

  16. Rotational rate sensor

    DOEpatents

    Hunter, Steven L.

    2002-01-01

    A rate sensor for angular/rotational acceleration includes a housing defining a fluid cavity essentially completely filled with an electrolyte fluid. Within the housing, such as a toroid, ions in the fluid are swept during movement from an excitation electrode toward one of two output electrodes to provide a signal for directional rotation. One or more ground electrodes within the housing serve to neutralize ions, thus preventing any effect at the other output electrode.

  17. Composite rating scales.

    PubMed

    Martinez-Martin, Pablo

    2010-02-15

    Rating scales are instruments that are very frequently used by clinicians to perform patient assessments. Typically, rating scales grade the attribute on an ordinal level of measurement, i.e., a rank ordering, meaning that the numbers assigned to the different ranks (item scores) do not represent 'real numbers' or 'physical magnitudes'. Single-item scales have some advantages, such as simplicity and low respondent burden, but they may also suffer from disadvantages, such as ambiguous score meanings and low responsiveness. Multi-item scales, in contrast, seem more adequate for assessment of complex constructs, allowing for detailed evaluation. Total scores representing the value of the construct may be quite precise and thus the responsiveness of the scale may be high. The most common strategy for obtaining the total score is the sum of the item scores, a strategy that constitutes one of the most important problems with these types of scales. A summative score of ordinal figures is not a 'real magnitude' and may have little sense. This paper is a review of the theoretical frameworks of the main theories used to develop rating scales (Classical Test Theory and Item Response Theory). Bearing in mind that no alternative is perfect, additional research in this field and judicious decisions are called for.

  18. Injection rate control cam

    SciTech Connect

    Perr, J.P.; Liang, E.; Yu, R.C.; Ghuman, A.S.

    1990-10-16

    This patent describes a cam for controlling the injection rate of fuel in a fuel injection system of an engine. The fuel injection system including a cyclically operating unit injector having a body, an injector plunger mounted for reciprocating movement in the injector body between an advanced position and a retracted portion to pump into the engine during each cycle a variable quantity of fuel up to a maximum quantity under rated engine conditions, and a drive train for converting rotational movement of the cam into reciprocating movement of the pumping plunger depending on the profile of the cam. The cam profile comprises at least a plunger retraction segment and a plunger advancement segment for controlling the velocity if injector plunger retraction and advancement, respectively, the plunger advancement segment including a pre-injection subsequent shaped to cause an initial quantity of fuel to be injected into the engine during each cycle at rated engine conditions while the pre-injection subsegment is in contact with the drive train, and an injection subsegment following the pre-injection subsegment.

  19. Constituents of response rates

    PubMed Central

    Pear, Joseph J.; Rector, Brian L.

    1979-01-01

    Response rate and the proportion of time pigeons allocated to a key-pecking activity were measured on several basic types of reinforcement schedules. Reinforcement frequency was varied within each type of basic schedule, and the effects on two constituents of response rate were noted. Propensity, the proportion of time the birds spent on a platform in front of the key, showed very consistent effects as reinforcement frequency varied: in general, it decreased when reinforcement frequency markedly decreased and it increased when reinforcement frequency increased. Speed, key pecks per unit of time spent on the platform, showed inconsistent effects when reinforcement frequency varied. Consequently, response rate showed less consistent effects than did propensity. Cumulative response records demonstrated the existence of several different types of transitions or boundary states between the key-pecking activity and other activities. The types of transitions that occurred between activities depended on both the type of reinforcement schedule and the frequency of reinforcement. The propensity data support the position that general laws of behavior can be based on temporal measures of behavior. The speed data suggest that, if a complete assessment of the dynamic properties of behavior is to be achieved, measures of behavior must incorporate the structural variations in the operant unit. PMID:16812155

  20. Clinical rating scales.

    PubMed

    Relja, Maja

    2012-01-01

    In Parkinson's disease (PD), rating scales are used to assess the degree of disease-related disability and to titrate long-term treatment to each phase of the disease. Recognition of non-motor symptoms required modification of existing widely used scales to integrate non-motor elements. In addition, new scales have been developed for the assessment of non-motor symptoms. In this article, assessment of PD patients will be discussed, particularly for non-motor symptoms such as pain and fatigue.

  1. Lindblad rate equations

    SciTech Connect

    Budini, Adrian A.

    2006-11-15

    In this paper we derive an extra class of non-Markovian master equations where the system state is written as a sum of auxiliary matrixes whose evolution involve Lindblad contributions with local coupling between all of them, resembling the structure of a classical rate equation. The system dynamics may develop strong nonlocal effects such as the dependence of the stationary properties with the system initialization. These equations are derived from alternative microscopic interactions, such as complex environments described in a generalized Born-Markov approximation and tripartite system-environment interactions, where extra unobserved degrees of freedom mediates the entanglement between the system and a Markovian reservoir. Conditions that guarantee the completely positive condition of the solution map are found. Quantum stochastic processes that recover the system dynamics in average are formulated. We exemplify our results by analyzing the dynamical action of nontrivial structured dephasing and depolarizing reservoirs over a single qubit.

  2. Vital Signs Rate Meter.

    DTIC Science & Technology

    1987-09-01

    S15 VITAL SIGNS RTE NETER(U) TEXAS R FW4D A UNIV COLLEGE 1/1 STATION IENGINEERING PROGM C S LESSAD ET RL. SEP 8? USRFSN-TR-$?-14 F33615-S3-D-0602...UNCLMSIFIED F/O 6/12 ML IIB 125 11 128 11.2.5_ ka7 U S S SS S S S S S0 02.2 36 * . * * * . - * . - .. . - - . Q -- .* USAFSAM-TR-87-1 4 VITAL SIGNS RATE...UNIT ELEMENT NO. INO.I NO. IACESSION NO. 622027 2729 02 21 11 TITLE ft ml’S111111:1111"ll vital Signs Rae ~t= 12. PERSONAL AUTWOR(S) Lessard, Cierles

  3. Method and associated apparatus for capturing, servicing, and de-orbiting earth satellites using robotics

    NASA Technical Reports Server (NTRS)

    Cepollina, Frank J. (Inventor); Burns, Richard D. (Inventor); Holz, Jill M. (Inventor); Corbo, James E. (Inventor); Jedhrich, Nicholas M. (Inventor)

    2007-01-01

    This invention is a method and supporting apparatus for autonomously capturing, servicing and de-orbiting a free-flying spacecraft, such as a satellite, using robotics. The capture of the spacecraft includes the steps of optically seeking and ranging the satellite using LIDAR; and matching tumble rates, rendezvousing and berthing with the satellite. Servicing of the spacecraft may be done using supervised autonomy, which is allowing a robot to execute a sequence of instructions without intervention from a remote human-occupied location. These instructions may be packaged at the remote station in a script and uplinked to the robot for execution upon remote command giving authority to proceed. Alternately, the instructions may be generated by Artificial Intelligence (AI) logic onboard the robot. In either case, the remote operator maintains the ability to abort an instruction or script at any time, as well as the ability to intervene using manual override to teleoperate the robot.In one embodiment, a vehicle used for carrying out the method of this invention comprises an ejection module, which includes the robot, and a de-orbit module. Once servicing is completed by the robot, the ejection module separates from the de-orbit module, leaving the de-orbit module attached to the satellite for de-orbiting the same at a future time. Upon separation, the ejection module can either de-orbit itself or rendezvous with another satellite for servicing. The ability to de-orbit a spacecraft further allows the opportunity to direct the landing of the spent satellite in a safe location away from population centers, such as the ocean.

  4. Method and associated apparatus for capturing, servicing, and de-orbiting earth satellites using robotics

    NASA Technical Reports Server (NTRS)

    Cepollina, Frank J. (Inventor); Burns, Richard D. (Inventor); Holz, Jill M. (Inventor); Corbo, James E. (Inventor); Jedhrich, Nicholas M. (Inventor)

    2009-01-01

    This invention is a method and supporting apparatus for autonomously capturing, servicing and de-orbiting a free-flying spacecraft, such as a satellite, using robotics. The capture of the spacecraft includes the steps of optically seeking and ranging the satellite using LIDAR; and matching tumble rates, rendezvousing and berthing with the satellite. Servicing of the spacecraft may be done using supervised autonomy, which is allowing a robot to execute a sequence of instructions without intervention from a remote human-occupied location. These instructions may be packaged at the remote station in a script and uplinked to the robot for execution upon remote command giving authority to proceed. Alternately, the instructions may be generated by Artificial Intelligence (AI) logic onboard the robot. In either case, the remote operator maintains the ability to abort an instruction or script at any time, as well as the ability to intervene using manual override to teleoperate the robot.In one embodiment, a vehicle used for carrying out the method of this invention comprises an ejection module, which includes the robot, and a de-orbit module. Once servicing is completed by the robot, the ejection module separates from the de-orbit module, leaving the de-orbit module attached to the satellite for de-orbiting the same at a future time. Upon separation, the ejection module can either de-orbit itself or rendezvous with another satellite for servicing. The ability to de-orbit a spacecraft further allows the opportunity to direct the landing of the spent satellite in a safe location away from population centers, such as the ocean.

  5. Method and associated apparatus for capturing, servicing and de-orbiting earth satellites using robotics

    NASA Technical Reports Server (NTRS)

    Cepollina, Frank J. (Inventor); Burns, Richard D. (Inventor); Holz, Jill M. (Inventor); Corbo, James E. (Inventor); Jedhrich, Nicholas M. (Inventor)

    2008-01-01

    This invention is a method and supporting apparatus for autonomously capturing, servicing and de-orbiting a free-flying spacecraft, such as a satellite, using robotics. The capture of the spacecraft includes the steps of optically seeking and ranging the satellite using LIDAR; and matching tumble rates, rendezvousing and berthing with the satellite. Servicing of the spacecraft may be done using supervised autonomy, which is allowing a robot to execute a sequence of instructions without intervention from a remote human-occupied location. These instructions may be packaged at the remote station in a script and uplinked to the robot for execution upon remote command giving authority to proceed. Alternately, the instructions may be generated by Artificial Intelligence (AI) logic onboard the robot. In either case, the remote operator maintains the ability to abort an instruction or script at any time, as well as the ability to intervene using manual override to teleoperate the robot.In one embodiment, a vehicle used for carrying out the method of this invention comprises an ejection module, which includes the robot, and a de-orbit module. Once servicing is completed by the robot, the ejection module separates from the de-orbit module, leaving the de-orbit module attached to the satellite for de-orbiting the same at a future time. Upon separation, the ejection module can either de-orbit itself or rendezvous with another satellite for servicing. The ability to de-orbit a spacecraft further allows the opportunity to direct the landing of the spent satellite in a safe location away from population centers, such as the ocean.

  6. Method and associated apparatus for capturing, servicing and de-orbiting earth satellites using robotics

    NASA Technical Reports Server (NTRS)

    Cepollina, Frank J. (Inventor); Burns, Richard D. (Inventor); Holz, Jill M. (Inventor); Corbo, James E. (Inventor); Jedhrich, Nicholas M. (Inventor)

    2007-01-01

    This invention is a method and supporting apparatus for autonomously capturing, servicing and de-orbiting a free-flying spacecraft, such as a satellite, using robotics. The capture of the spacecraft includes the steps of optically seeking and ranging the satellite using LIDAR; and matching tumble rates, rendezvousing and berthing with the satellite. Servicing of the spacecraft may be done using supervised autonomy, which is allowing a robot to execute a sequence of instructions without intervention from a remote human-occupied location. These instructions may be packaged at the remote station in a script and uplinked to the robot for execution upon remote command giving authority to proceed. Alternately, the instructions may be generated by Artificial Intelligence (AI) logic onboard the robot. In either case, the remote operator maintains the ability to abort an instruction or script at any time, as well as the ability to intervene using manual override to teleoperate the robot.In one embodiment, a vehicle used for carrying out the method of this invention comprises an ejection module, which includes the robot, and a de-orbit module. Once servicing is completed by the robot, the ejection module separates from the de-orbit module, leaving the de-orbit module attached to the satellite for de-orbiting the same at a future time. Upon separation, the ejection module can either de-orbit itself or rendezvous with another satellite for servicing. The ability to de-orbit a spacecraft further allows the opportunity to direct the landing of the spent satellite in a safe location away from population centers, such as the ocean.

  7. Heart-Rate and Breath-Rate Monitor

    NASA Technical Reports Server (NTRS)

    Cooper, T. G.

    1983-01-01

    Circuit requiring only four integrated circuits (IC's) measures both heart rate and breath rate. Phase-locked loops lock on heart-rate and respiration-rate input signals. Each loop IC contains two phase comparators. Positive-edge-triggered circuit used in making monitors insensitive to dutycycle variations.

  8. 29 CFR 778.112 - Day rates and job rates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Day rates and job rates. 778.112 Section 778.112 Labor... Requirements Principles for Computing Overtime Pay Based on the âregular Rateâ § 778.112 Day rates and job rates. If the employee is paid a flat sum for a day's work or for doing a particular job, without...

  9. 29 CFR 778.112 - Day rates and job rates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Day rates and job rates. 778.112 Section 778.112 Labor... Requirements Principles for Computing Overtime Pay Based on the âregular Rateâ § 778.112 Day rates and job rates. If the employee is paid a flat sum for a day's work or for doing a particular job, without...

  10. 29 CFR 778.112 - Day rates and job rates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Day rates and job rates. 778.112 Section 778.112 Labor... Requirements Principles for Computing Overtime Pay Based on the âregular Rateâ § 778.112 Day rates and job rates. If the employee is paid a flat sum for a day's work or for doing a particular job, without...

  11. 29 CFR 778.112 - Day rates and job rates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Day rates and job rates. 778.112 Section 778.112 Labor... Requirements Principles for Computing Overtime Pay Based on the âregular Rateâ § 778.112 Day rates and job rates. If the employee is paid a flat sum for a day's work or for doing a particular job, without...

  12. 29 CFR 778.112 - Day rates and job rates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Day rates and job rates. 778.112 Section 778.112 Labor... Requirements Principles for Computing Overtime Pay Based on the âregular Rateâ § 778.112 Day rates and job rates. If the employee is paid a flat sum for a day's work or for doing a particular job, without...

  13. Consumers Union rates condoms.

    PubMed

    1980-05-01

    In an effort to provide some insights as to why and how condoms fail, the Consumers Union of the United States tested brandname condoms for leakage, bursting, tensile strength and heat deterioration and surveyed 1900 women and men who used the method for birth control. The highest-ranked latex condoms were Nuform, Trojan Plus, Conceptrol Shield and Horizon Nuda. Least preferred were Sheik No. 22 unlubricated condoms and Trojan unlubricated. Preferences among skin condoms were Fourex Capsuled and Klingtite Naturalamb. Obvious advantages of the condom method of contraception, in addition to its potentially high success rate, include the following: 1) protection against venereal disease; 2) lack of side effects; 3) simplicity of method; and 4) reasonable price. 1/2 of the 1900 respondentes cited interruption of lovemaking, reduced sensitivity and mere awareness of condom presence as reasons why the method impaired sexual pleasure. Almost 1/4 of the respondents disliked the need for prompt withdrawal in order to avoid spillage, and some feared vigorous intercourse would result in the condom slipping off.

  14. Rates of Earth degassing

    NASA Technical Reports Server (NTRS)

    Onions, R. K.

    1994-01-01

    The degassing of the Earth during accretion is constrained by Pu-U-I-Xe systematics. Degassing was much more efficient during the first 100-200 Ma than subsequently, and it was more complete for Xe than for the lighter gases. More than 90 percent of the degassed Xe escaped from the atmosphere during this period. The combination of fractional degassing of melts and rare gas escape from the atmosphere is able to explain the deficit of terrestrial Xe as a simple consequence of this early degassing history. By the time Xe was quantitatively retained in the atmosphere, the abundances of Kr and the lighter gases in the Earth's interior were similar to or higher than the present-day atmospheric abundances. Subsequent transfer of these lighter rare gases into the atmosphere requires a high rate of post-accretion degassing and melt production. Considerations of Pu-U-Xe systematics suggest that relatively rapid post-accretion degassing was continued to ca. 4.1-4.2 Ga. The present-day degassing history of the Earth is investigated through consideration of rare gas isotope abundances. Although the Earth is a highly degassed body, depleted in rare gases by many orders of magnitude relative to their solar abundances, it is at the present-day losing primordial rare gases which were trapped at the time of accretion.

  15. Performance Ratings and Librarians Rights

    ERIC Educational Resources Information Center

    Peele, David

    1970-01-01

    Two aspects of rating personnel performance are explored: (1) the rating form and some guidelines for filling it in and (2) the right of the librarian who is being rated to discuss or appeal a rating he believes to be biased. (NH)

  16. 78 FR 14821 - Fee Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-07

    ... National Indian Gaming Commission Fee Rate AGENCY: National Indian Gaming Commission, Interior. ACTION... Commission has adopted its 2013 preliminary annual fee rates of 0.00% for tier 1 and 0.074% (.00074) for tier... preliminary fee rate on Class II revenues shall be one-half of the annual fee rate, which is 0.037%...

  17. 77 FR 41202 - Fee Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... COMMISSION Fee Rate AGENCY: National Indian Gaming Commission. ACTION: Notice. SUMMARY: Notice is hereby... annual fee rates of 0.00% for tier 1 and 0.074% (.00074) for tier 2 for calendar year 2012. These rates... Commission. If a Tribe has a certificate of self-regulation under 25 CFR part 518, the final fee rate...

  18. 76 FR 7879 - Fee Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... COMMISSION Fee Rate AGENCY: National Indian Gaming Commission. ACTION: Notice. SUMMARY: Notice is hereby... preliminary annual fee rates of 0.00% for tier 1 and 0.074% (.00074) for tier 2 for calendar year 2011. These... fee rate on class II revenues for calendar year 2011 shall be one-half of the annual fee rate,...

  19. 75 FR 5342 - Fee Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ... COMMISSION Fee Rate AGENCY: National Indian Gaming Commission. ACTION: Notice. SUMMARY: Notice is hereby... preliminary annual fee rates of 0.00% for tier 1 and 0.060% (.00060) for tier 2 for calendar year 2010. These... fee rate on class II revenues for calendar year 2010 shall be one-half of the annual fee rate,...

  20. 76 FR 38207 - Fee Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... COMMISSION Fee Rate AGENCY: National Indian Gaming Commission. ACTION: Notice. SUMMARY: Notice is hereby... annual fee rates of 0.00% for tier 1 and 0.074% (.00074) for tier 2 for calendar year 2011. These rates... Commission. If a tribe has a certificate of self-regulation under 25 CFR part 518, the final fee rate...

  1. 77 FR 5267 - Fee Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... COMMISSION Fee Rate AGENCY: National Indian Gaming Commission. ACTION: Notice. SUMMARY: Notice is hereby... preliminary annual fee rates of 0.00% for tier 1 and 0.074% (.00074) for tier 2 for calendar year 2012. These... fee rate on class II revenues for calendar year 2012 shall be one-half of the annual fee rate,...

  2. Sequential Effects in Essay Ratings

    ERIC Educational Resources Information Center

    Attali, Yigal

    2011-01-01

    Contrary to previous research on sequential ratings of student performance, this study found that professional essay raters of a large-scale standardized testing program produced ratings that were drawn toward previous ratings, creating an assimilation effect. Longer intervals between the two adjacent ratings and higher degree of agreement with…

  3. Project CHECO Southeast Asia Report. Pave Mace/Combat Rendezvous

    DTIC Science & Technology

    1972-12-26

    better location. If a positive lock could not be obtained, the beacon was considered to be inoperative. When measuring the bearing from the beacon to...fire safety cri- teria of a measured 120 meters between the nearest friendly forces and the target. I Since the Army was still unwilling to proceed...IFR conditions in support of friendly forces on numerous occasions. There- fore, it was recommended that 7AF issue the necessary CROC to have Pave 3

  4. Consideration of radar target glint from ST during OMV rendezvous

    NASA Technical Reports Server (NTRS)

    Mcdonald, M. W.; Malone, L. B.; Gleason, E. H.

    1985-01-01

    The nature of radar target glint and the factors upon which it depends when using the Hubble Space Telescope as a radar target is discussed. An analysis of the glint problem using a 35 MHz or 94 MHz radar on the orbital maneuvering vehicle is explored. A strategy for overcoming glint is suggested.

  5. Saturn/Titan Rendezvous: A Solar-Sail Aerocapture Mission

    NASA Technical Reports Server (NTRS)

    Matloff, Gregory L.; Taylor, Travis; Powell, Conley

    2004-01-01

    A low-mass Titan orbiter is proposed that uses conservative or optimistic solar sails for all post-Earth-escape propulsion. After accelerating the probe onto a trans-Saturn trajectory, the sail is used parachute style for Saturn capture during a pass through Saturn's outer atmosphere. If the apoapsis of the Saturn-capture orbit is appropriate, the aerocapture maneuver can later be repeated at Titan so that the spacecraft becomes a satellite of Titan. An isodensity-atmosphere model is applied to screen aerocapture trajectories. Huygens/Cassini should greatly reduce uncertainties regarding the upper atmospheres of Saturn and Titan.

  6. 14 CFR § 1214.111 - Rendezvous services.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...§ 1214.111 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle Flights of Payloads for Non-U.S. Government, Reimbursable Customers § 1214... Space Shuttle flight. (2) Exchange of a spacecraft (or part thereof) delivered to orbit on a...

  7. Rendezvous with the World: Missouri Southern State University's Themed Semesters

    ERIC Educational Resources Information Center

    Stebbins, Chad

    2011-01-01

    Although most universities emphasize study abroad as the primary vehicle to internationalize the campus, in reality only a small percentage of students actually participate in this endeavor. The internationally themed semesters at Missouri Southern State University (MSSU) reach virtually every student, and provide a global perspective and cultural…

  8. Apollo 7/S-IVB Rendezvous in space

    NASA Technical Reports Server (NTRS)

    1968-01-01

    The expended Saturn IVB stage as photographed from the Apollo 7 spacecraft during transposition and docking maneuvers at an altitude of 126 nautical miles, at ground elapsed time of three hours, 11 minutes. The round, white disc inside the open panels of the Saturn IVB is a simulated docking target similar to that used on the lunar module for docking during lunar missions. The spacecraft is directly over Odessa-Midland, Texas. The view between the two panels (area of large puffy clouds) extends southwest across Texas into the Mexican State of Chihuahua. The distance between the Apollo 7 spacecraft and the S-(VB is approximately 50 feet.

  9. Apollo 7/S-IVB Rendezvous in space

    NASA Technical Reports Server (NTRS)

    1968-01-01

    The expended Saturn IVB stage as photographed from the Apollo 7 spacecraft during transposition and docking maneuvers at an approximate altitude of 125 nautical miles, at ground elapsed time of three hours and 16 minutes (beginning of third revolution). This view is over the Atlantic Ocean off the coast of Cape Kennedy, Florida. The Florida coastline from Flangler Beach southward to Vero Beach is visible. Much of the Florida peninsula can be seen. Behind the open panels is the Gulf of Mexico. Distance between the Apollo 7 and the S-IVB is approximately 100 feet. The round, white disc inside the open panels of the Saturn IVB is a simulated docking target similar to that used on the lunar module for docking during lunar missions.

  10. Orbital Express AVGS Validation and Calibration for Automated Rendezvous

    NASA Technical Reports Server (NTRS)

    Heaton, Andrew F.; Howard, Richard T.; Pinson, Robin M.

    2008-01-01

    From March to July of 2007, the DARPA Orbital Express mission achieved a number of firsts in autonomous spacecraft operations. The NASA Advanced Video Guidance Sensor (AVGS) was the primary docking sensor during the first two dockings and was used in a blended mode three other automated captures. The AVGS performance exceeded its specification by approximately an order of magnitude. One reason that the AVGS functioned so well during the mission was that the validation and calibration of the sensor prior to the mission advanced the state-of-the-art for proximity sensors. Some factors in this success were improvements in ground test equipment and truth data, the capability for ILOAD corrections for optical and other effects, and the development of a bias correction procedure. Several valuable lessons learned have applications to future proximity sensors.

  11. LADAR vision technology for automated rendezvous and capture

    NASA Technical Reports Server (NTRS)

    Frey, Randy W.

    1991-01-01

    LADAR Vision Technology at Autonomous Technologies Corporation consists of two sensor/processing technology elements: high performance long range multifunction coherent Doppler laser radar (LADAR) technology; and short range integrated CCD camera with direct detection laser ranging sensors. Algorithms and specific signal processing implementations have been simulated for both sensor/processing approaches to position and attitude tracking applicable to AR&C. Experimental data supporting certain sensor measurement accuracies have been generated.

  12. Frozen-anomaly transformation for the elliptic rendezvous problem

    NASA Astrophysics Data System (ADS)

    Roa, Javier; Peláez, Jesús

    2015-01-01

    A new solution to relative motion on elliptical orbits is presented, based on a novel transformation from the reference state vector to the relative state vector. The relative orbit is constructed assuming that the anomaly, and not the time, is the invariant element throughout the transformation. This concept arises naturally from the variational form of anomaly-explicit formulations. In particular, this paper explores the capabilities of a formulation developed by Peláez et al. (Celest Mech Dyn Astron. 97, 131-150, 2007), called Dromo. This formulation exploits the advantages of the ideal reference frames and quaternionic descriptions of the orbital plane. The linear variational form of the equations of motion in Dromo is developed herein, and the resulting transformation matrix is presented. When applied to the reference state vector, this linear transformation provides the relative state vector at any step. The invariance in the anomaly implies a certain time delay in the results. Physical times for leader and follower do not coincide after the transformation. To recover the sense of the solution an additional correction is applied a posteriori to cancel this intrinsic time delay. The performance of the new transformation is compared against previous solutions to the problem through a set of numerical examples. Important error reductions in determining the relative orbit are observed in these tests.

  13. National Utility Rate Database: Preprint

    SciTech Connect

    Ong, S.; McKeel, R.

    2012-08-01

    When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

  14. Textbook Deficiencies: Ambiguities in Chemical Kinetics Rates and Rate Constants

    NASA Astrophysics Data System (ADS)

    Quisenberry, Keith T.; Tellinghuisen, Joel

    2006-03-01

    Balanced chemical reactions often have at least some stoichiometry coefficients that are not unity. To avoid ambiguity in defining the kinetics rate for a reaction, the IUPAC has established the convention, rate = (1/ν i )/(d[A i ]/d t ) relating the reaction rate to the rate of change of concentration of any reactant or product A i and its stoichiometry number ν i (negative for reactants, positive for products). The rate is a product of the rate constant k and some function of the concentrations of reactants and products that must be determined experimentally. While most general chemistry textbooks correctly state this convention, most also proceed to ignore it in subsequent development, particularly in the use of integrated rate laws and the definition of the reaction half-life. We recommend that in future editions, authors make it clear that (i) the reaction rate and rate constant cannot be defined unambiguously without explicitly stating the reaction for which they apply and therefore (ii) the relation between the half-life, which is a physical property of the reaction system, and the rate constant depends upon how the reaction is written. The errors have arisen in part because most texts simply state the integrated rate expressions for first- and second-order reactions without deriving them. It is both appropriate and easy to include such derivations in texts oriented toward students intending careers in science, engineering, and medicine.

  15. 2007 Wholesale Power Rate Schedules : 2007 General Rate Schedule Provisions.

    SciTech Connect

    United States. Bonneville Power Administration.

    2006-11-01

    This schedule is available for the contract purchase of Firm Power to be used within the Pacific Northwest (PNW). Priority Firm (PF) Power may be purchased by public bodies, cooperatives, and Federal agencies for resale to ultimate consumers, for direct consumption, and for Construction, Test and Start-Up, and Station Service. Rates in this schedule are in effect beginning October 1, 2006, and apply to purchases under requirements Firm Power sales contracts for a three-year period. The Slice Product is only available for public bodies and cooperatives who have signed Slice contracts for the FY 2002-2011 period. Utilities participating in the Residential Exchange Program (REP) under Section 5(c) of the Northwest Power Act may purchase Priority Firm Power pursuant to the Residential Exchange Program. Rates under contracts that contain charges that escalate based on BPA's Priority Firm Power rates shall be based on the three-year rates listed in this rate schedule in addition to applicable transmission charges. This rate schedule supersedes the PF-02 rate schedule, which went into effect October 1, 2001. Sales under the PF-07 rate schedule are subject to BPA's 2007 General Rate Schedule Provisions (2007 GRSPs). Products available under this rate schedule are defined in the 2007 GRSPs. For sales under this rate schedule, bills shall be rendered and payments due pursuant to BPA's 2007 GRSPs and billing process.

  16. Survival Rates for Thymus Cancer

    MedlinePlus

    ... Early Detection, Diagnosis, and Staging Survival Rates for Thymus Cancer Survival rates are often used by doctors ... Ask Your Doctor About Thymus Cancer? More In Thymus Cancer About Thymus Cancer Causes, Risk Factors, and ...

  17. Breast Cancer Rates by State

    MedlinePlus

    ... Associated Lung Ovarian Prostate Skin Uterine Cancer Home Breast Cancer Rates by State Language: English Español (Spanish) Recommend ... from breast cancer each year. Rates of Getting Breast Cancer by State The number of people who get ...

  18. Lung Cancer Rates by State

    MedlinePlus

    ... HPV-Associated Ovarian Prostate Skin Uterine Cancer Home Lung Cancer Rates by State Language: English Español (Spanish) ... incidence data are currently available. Rates of Getting Lung Cancer by State The number of people who ...

  19. MEMS Rate Sensors for Space

    NASA Technical Reports Server (NTRS)

    Gambino, Joel P.

    1999-01-01

    Micromachined Electro Mechanical System Rate sensors offer many advantages that make them attractive for space use. They are smaller, consume less power, and cost less than the systems currently available. MEMS Rate Sensors however, have not been optimized for use on spacecraft. This paper describes an approach to developing MEMS Rate Sensors systems for space use.

  20. 75 FR 44807 - Fee Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ... COMMISSION Fee Rate AGENCY: National Indian Gaming Commission. ACTION: Notice. SUMMARY: Notice is hereby... annual fee rates of 0.00% for tier 1 and 0.060% (.00060) for tier 2 for calendar year 2010. These rates... Commission. If a tribe has a certificate of self-regulation under 25 CFR part 518, the preliminary fee...

  1. Rate and Occupancy Survey Results.

    ERIC Educational Resources Information Center

    Mid-Atlantic Association of Coll. and Univ. Housing Officers.

    In its annual effort to determine rate and occupancy trends in the Mid-Atlantic region, MACUHO surveyed by questionnaire the chief housing officers on its mailing list and received 99 usable responses, compared with 65 the previous year. The average double room rate was reported to be $691, compared with $646 in 1975; the average board rate rose…

  2. Heart rate monitoring mobile applications

    PubMed Central

    2016-01-01

    Total number of times a heart beats in a minute is known as the heart rate. Traditionally, heart rate was measured using clunky gadgets but these days it can be measured with a smartphone’s camera. This can help you measure your heart rate anywhere and at anytime, especially during workouts so you can adjust your workout intensity to achieve maximum health benefits. With simple and easy to use mobile app, ‘Unique Heart Rate Monitor’, you can also maintain your heart rate history for personal reflection and sharing with a provider. PMID:28293594

  3. Discharge ratings at gaging stations

    USGS Publications Warehouse

    Kennedy, E.J.

    1984-01-01

    A discharge rating is the relation of the discharge at a gaging station to stage and sometimes also to other variables. This chapter of 'Techniques of Water-Resources Investigations' describes the procedures commonly used to develop simple ratings where discharge is related only to stage and the most frequently encountered types of complex ratings where additional factors such as rate of change in stage, water-surface slope, or index velocity are used. Fundamental techniques of logarithmic plotting and the applications of simple storage routing to rating development are demonstrated. Computer applications, especially for handheld programmable calculators, and data handling are stressed.

  4. Advancing Lidar Sensors Technologies for Next Generation Landing Missions

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Hines, Glenn D.; Roback, Vincent E.; Petway, Larry B.; Barnes, Bruce W.; Brewster, Paul F.; Pierrottet, Diego F.; Bulyshev, Alexander

    2015-01-01

    Missions to solar systems bodies must meet increasingly ambitious objectives requiring highly reliable "precision landing", and "hazard avoidance" capabilities. Robotic missions to the Moon and Mars demand landing at pre-designated sites of high scientific value near hazardous terrain features, such as escarpments, craters, slopes, and rocks. Missions aimed at paving the path for colonization of the Moon and human landing on Mars need to execute onboard hazard detection and precision maneuvering to ensure safe landing near previously deployed assets. Asteroid missions require precision rendezvous, identification of the landing or sampling site location, and navigation to the highly dynamic object that may be tumbling at a fast rate. To meet these needs, NASA Langley Research Center (LaRC) has developed a set of advanced lidar sensors under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. These lidar sensors can provide precision measurement of vehicle relative proximity, velocity, and orientation, and high resolution elevation maps of the surface during the descent to the targeted body. Recent flights onboard Morpheus free-flyer vehicle have demonstrated the viability of ALHAT lidar sensors for future landing missions to solar system bodies.

  5. The Galactic Nova Rate Revisited

    NASA Astrophysics Data System (ADS)

    Shafter, A. W.

    2017-01-01

    Despite its fundamental importance, a reliable estimate of the Galactic nova rate has remained elusive. Here, the overall Galactic nova rate is estimated by extrapolating the observed rate for novae reaching m≤slant 2 to include the entire Galaxy using a two component disk plus bulge model for the distribution of stars in the Milky Way. The present analysis improves on previous work by considering important corrections for incompleteness in the observed rate of bright novae and by employing a Monte Carlo analysis to better estimate the uncertainty in the derived nova rates. Several models are considered to account for differences in the assumed properties of bulge and disk nova populations and in the absolute magnitude distribution. The simplest models, which assume uniform properties between bulge and disk novae, predict Galactic nova rates of ∼50 to in excess of 100 per year, depending on the assumed incompleteness at bright magnitudes. Models where the disk novae are assumed to be more luminous than bulge novae are explored, and predict nova rates up to 30% lower, in the range of ∼35 to ∼75 per year. An average of the most plausible models yields a rate of {50}-23+31 yr‑1, which is arguably the best estimate currently available for the nova rate in the Galaxy. Virtually all models produce rates that represent significant increases over recent estimates, and bring the Galactic nova rate into better agreement with that expected based on comparison with the latest results from extragalactic surveys.

  6. Relaxed Poisson cure rate models.

    PubMed

    Rodrigues, Josemar; Cordeiro, Gauss M; Cancho, Vicente G; Balakrishnan, N

    2016-03-01

    The purpose of this article is to make the standard promotion cure rate model (Yakovlev and Tsodikov, ) more flexible by assuming that the number of lesions or altered cells after a treatment follows a fractional Poisson distribution (Laskin, ). It is proved that the well-known Mittag-Leffler relaxation function (Berberan-Santos, ) is a simple way to obtain a new cure rate model that is a compromise between the promotion and geometric cure rate models allowing for superdispersion. So, the relaxed cure rate model developed here can be considered as a natural and less restrictive extension of the popular Poisson cure rate model at the cost of an additional parameter, but a competitor to negative-binomial cure rate models (Rodrigues et al., ). Some mathematical properties of a proper relaxed Poisson density are explored. A simulation study and an illustration of the proposed cure rate model from the Bayesian point of view are finally presented.

  7. Saturn component failure rate and failure rate modifiers

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Failure mode frequency ratios, environmental adjustment factors, and failure rates for mechanical and electromechanical component families are presented. The failure rates and failure rate modifiers resulted from a series of studies whose purpose was to provide design, tests, reliability, and systems engineers with accurate, up-to-date failure rate information. The results of the studies were achieved through an extensive engineering analysis of the Saturn Program test data and Unsatisfactory Condition Reports (UCR's) and the application of mathematical techniques developed for the studies.

  8. Field measurement of ventilation rates.

    PubMed

    Persily, A K

    2016-02-01

    Ventilation rates have significant impacts on building energy use and indoor contaminant concentrations, making them key parameters in building performance. Ventilation rates have been measured in buildings for many decades, and there are mature measurement approaches available to researchers and others who need to know actual ventilation rates in buildings. Despite the fact that ventilation rates are critical in interpreting indoor concentration measurements, it is disconcerting how few Indoor Air Quality field studies measure ventilation rates or otherwise characterize the ventilation design of the study building(s). This paper summarizes parameters of interest in characterizing building ventilation, available methods for quantifying these parameters, and challenges in applying these methods to different types of buildings and ventilation systems. These parameters include whole-building air change rates, system outdoor air intake rates, and building infiltration rates. Tracer gas methods are reviewed as well as system airflow rate measurements using, for example, duct traverses. Several field studies of ventilation rates conducted over the past 75 years are described to highlight the approaches employed and the findings obtained.

  9. Conducting Market Rate Surveys and Establishing Rate Policies.

    ERIC Educational Resources Information Center

    Karolak, Eric; Collins, Ray; Stoney, Louise

    Market rate surveys and the rate-setting policies and reimbursement rules informed by them are at the core of the market-based approach to child care and are central to the delicate balancing act of ensuring access to subsidized care while at the same time promoting the quality of child care. This report provides an overview of the market-based…

  10. 15 CFR 700.3 - Priority ratings and rated orders.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS DEFENSE PRIORITIES AND ALLOCATIONS SYSTEM Overview § 700.3 Priority ratings and rated orders. (a... for items that the person normally supplies. The existence of previously accepted unrated or lower... contractor to subcontractor to suppliers throughout the procurement chain. (e) Persons may place a...

  11. Mortality rates decline in Malaysia.

    PubMed

    1991-11-01

    Experiencing remarkable decreases in mortality rates over the past 3 decades, Malaysia currently has one of the lowest mortality rates among developing countries, a rate that compares favorably with those of developed countries. Between 1957 and 1989, the crude death rate dropped from 12.4/1000 population to 4.6. Over the same period, Malaysia recorded even greater decreases in the infant mortality rate, from 75.5/1000 births to 15.2. The Maternal mortality rate also declined from 1.48 in 1970 to 0.24 in 1988. The data indicates that mortality rates vary from state to state, and that rural areas have a higher mortality than urban areas. According to a study by the National Population and Family Development Board, the use of maternal and child health services has played an important role in reducing neonatal, perinatal, infant, child, and maternal mortality rates. Nearly all women in Malaysia receive antenatal services. While the country has achieved great gains on mortality rates, programs focusing on specific age and socioeconomic groups could lead to even greater reductions. The Minister for National Unity and Social Development, Dato Napsiah Omar, has called for the development of programs designed to improve the population's quality of life.

  12. Multi-calculation rate simulations

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Akhter, M.

    1977-01-01

    It is common in real time simulations of large aerospace systems to separate the high and low frequency subsystems within the simulation and perform the integrations of the subsystems at different calculation rates. This is done to strike a balance between accuracy of calculation and capacity of the digital computer. Questions arising as to the accuracy of this structure compared to single calculation rates were studied using a linear aircraft model. Also investigated were interactions arising to cause errors worse than those expected. Problems are specifically identified and guidelines are given for selection of sample rates for multiple rate simulations.

  13. Heart Rate and Respiratory Rate Influence on Heart Rate Variability Repeatability: Effects of the Correction for the Prevailing Heart Rate

    PubMed Central

    Gąsior, Jakub S.; Sacha, Jerzy; Jeleń, Piotr J.; Zieliński, Jakub; Przybylski, Jacek

    2016-01-01

    Background: Since heart rate variability (HRV) is associated with average heart rate (HR) and respiratory rate (RespRate), alterations in these parameters may impose changes in HRV. Hence the repeatability of HRV measurements may be affected by differences in HR and RespRate. The study aimed to evaluate HRV repeatability and its association with changes in HR and RespRate. Methods: Forty healthy volunteers underwent two ECG examinations 7 days apart. Standard HRV indices were calculated from 5-min ECG recordings. The ECG-derived respiration signal was estimated to assess RespRate. To investigate HR impact on HRV, HRV parameters were corrected for prevailing HR. Results: Differences in HRV parameters between the measurements were associated with the changes in HR and RespRate. However, in multiple regression analysis only HR alteration proved to be independent determinant of the HRV differences—every change in HR by 1 bpm changed HRV values by 16.5% on average. After overall removal of HR impact on HRV, coefficients of variation of the HRV parameters significantly dropped on average by 26.8% (p < 0.001), i.e., by the same extent HRV reproducibility improved. Additionally, the HRV correction for HR decreased association between RespRate and HRV. Conclusions: In stable conditions, HR but not RespRate is the most powerful factor determining HRV reproducibility and even a minimal change of HR may considerably alter HRV. However, the removal of HR impact may significantly improve HRV repeatability. The association between HRV and RespRate seems to be, at least in part, HR dependent. PMID:27588006

  14. Rating Openness: A Training Manual.

    ERIC Educational Resources Information Center

    Strachan, Angus; And Others

    This training manual explains the process of rating client openness from a short sample of dyadic help-intended interactions. The overview of client openness includes a discussion of the 10-week undergraduate program which teaches students to assess client openness based on behavioral ratings from the Group Assessment of Interpersonal Traits…

  15. Descriptive Analysis of Student Ratings

    ERIC Educational Resources Information Center

    Marasini, Donata; Quatto, Piero

    2011-01-01

    Let X be a statistical variable representing student ratings of University teaching. It is natural to assume for X an ordinal scale consisting of k categories (in ascending order of satisfaction). At first glance, student ratings can be summarized by a location index (such as the mode or the median of X) associated with a convenient measure of…

  16. Rating scales and Rasch measurement.

    PubMed

    Andrich, David

    2011-10-01

    Assessments with ratings in ordered categories have become ubiquitous in health, biological and social sciences. Ratings are used when a measuring instrument of the kind found in the natural sciences is not available to assess some property in terms of degree - for example, greater or smaller, better or worse, or stronger or weaker. The handling of ratings has ranged from the very elementary to the highly sophisticated. In an elementary form, and assumed in classical test theory, the ratings are scored with successive integers and treated as measurements; in a sophisticated form, and used in modern test theory, the ratings are characterized by probabilistic response models with parameters for persons and the rating categories. Within modern test theory, two paradigms, similar in many details but incompatible on crucial points, have emerged. For the purposes of this article, these are termed the statistical modeling and experimental measurement paradigms. Rather than reviewing a compendium of available methods and models for analyzing ratings in detail, the article focuses on the incompatible differences between these two paradigms, with implications for choice of model and inferences. It shows that the differences have implications for different roles for substantive researchers and psychometricians in designing instruments with rating scales. To illustrate these differences, an example is provided.

  17. The Psychological Maltreatment Rating Scales.

    ERIC Educational Resources Information Center

    Brassard, Marla R.; And Others

    1993-01-01

    The Psychological Maltreatment Rating Scales (PMRS) were developed for assessing psychological maltreatment in the mother-child interaction, and were used to rate the videotaped interaction of 49 high-risk mother-child dyads and predict child protective service involvements. The PMRS was found to be a moderately reliable and valid measure.…

  18. Matching and Conditioned Reinforcement Rate

    ERIC Educational Resources Information Center

    Shahan, Timothy A.; Podlesnik, Christopher A.; Jimenez-Gomez, Corina

    2006-01-01

    Attempts to examine the effects of variations in relative conditioned reinforcement rate on choice have been confounded by changes in rates of primary reinforcement or changes in the value of the conditioned reinforcer. To avoid these problems, this experiment used concurrent observing responses to examine sensitivity of choice to relative…

  19. Value of IDEA Ratings Questioned

    ERIC Educational Resources Information Center

    Samuels, Christina A.

    2010-01-01

    Just as it has every June since 2006, the U.S. Department of Education last month delivered a rating to each state and territory based on the performance of its special education programs. The ratings, intended to fulfill the Individuals with Disabilities Education Act's requirement that "measurable" and "rigorous" targets be…

  20. Rating Scale Instruments and Measurement

    ERIC Educational Resources Information Center

    Cavanagh, Robert F.; Romanoski, Joseph T.

    2006-01-01

    The article examines theoretical issues associated with measurement in the human sciences and ensuring data from rating scale instruments are measures. An argument is made that using raw scores from rating scale instruments for subsequent arithmetic operations and applying linear statistics is less preferable than using measures. These theoretical…

  1. Evolution & the Cesarean Section Rate

    ERIC Educational Resources Information Center

    Walsh, Joseph A.

    2008-01-01

    "Nothing in biology makes sense except in the light of evolution." This was the title of an essay by geneticist Theodosius Dobzhansky writing in 1973. Many causes have been given for the increased Cesarean section rate in developed countries, but biologic evolution has not been one of them. The C-section rate will continue to rise, because the…

  2. Quantum rate-distortion coding

    NASA Astrophysics Data System (ADS)

    Barnum, Howard

    2000-10-01

    I introduce rate-distortion theory for the coding of quantum information, and derive a lower bound, involving the coherent information, on the rate at which qubits must be used to store or compress an entangled quantum source with a given maximum level of distortion per source emission.

  3. Predicting the Divorce Rate: Down?

    ERIC Educational Resources Information Center

    Kemper, Theodore D.

    1983-01-01

    Predicted a decline in the divorce rate based on 10 factors including: decline in marriage rate, older age at marriage, mental health improvement, upper limit on employed women, less migration, end of the cultural revolution, exhaustion of latency effect of no-fault divorce, and fear of the consequences of divorce. (JAC)

  4. What Is a Reaction Rate?

    ERIC Educational Resources Information Center

    Schmitz, Guy

    2005-01-01

    The definition of reaction rate is derived and demonstrations are made for the care to be taken while using the term. Reaction rate can be in terms of a reaction property, the extent of reaction and thus it is possible to give a definition applicable in open and closed systems.

  5. The Logic of Collective Rating

    NASA Astrophysics Data System (ADS)

    Nax, Heinrich

    2016-05-01

    The introduction of participatory rating mechanisms on online sales platforms has had substantial impact on firms' sales and profits. In this note, we develop a dynamic model of consumer influences on ratings and of rating influences on consumers, focussing on standard 5-star mechanisms as implemented by many platforms. The key components of our social influence model are the consumer trust in the `wisdom of crowds' during the purchase phase and indirect reciprocity during the rating decision. Our model provides an overarching explanation for well-corroborated empirical regularities. We quantify the performance of the voluntary rating mechanism in terms of realized consumer surplus with the no-mechanism and full-information benchmarks, and identify how it could be improved.

  6. Innovative Rates Program. Final report

    SciTech Connect

    Not Available

    1982-06-21

    Title II of the Energy Conservation and Production Act (ECPA) as amended by the Public Utility Regulatory Policies Act (PURPA) provided financial assistance to state utility regulatory commissions, nonregulated electric utilities, and the Tennessee Valley Authority through the Innovative Rates Program. The financial assistance was to be used to plan or carry out electric utility regulatory rate reform initiatives relating to innovative rate structures that encourage conservation of energy, electric utility efficiency and reduced costs, and equitable rates to consumers. The Federal and local objectives of the project are described. Activities planned and accomplishments are summarized for the following: project management, data collection, utility bill evaluation, billing enclosure/mailing evaluation, media program evaluation, display evaluation, rate study sessions evaluation, speakers bureau evaluation, and individual customer contacts. A timetable/milestone chart and financial information are included. (MHR)

  7. High Rate Digital Demodulator ASIC

    NASA Technical Reports Server (NTRS)

    Ghuman, Parminder; Sheikh, Salman; Koubek, Steve; Hoy, Scott; Gray, Andrew

    1998-01-01

    The architecture of High Rate (600 Mega-bits per second) Digital Demodulator (HRDD) ASIC capable of demodulating BPSK and QPSK modulated data is presented in this paper. The advantages of all-digital processing include increased flexibility and reliability with reduced reproduction costs. Conventional serial digital processing would require high processing rates necessitating a hardware implementation in other than CMOS technology such as Gallium Arsenide (GaAs) which has high cost and power requirements. It is more desirable to use CMOS technology with its lower power requirements and higher gate density. However, digital demodulation of high data rates in CMOS requires parallel algorithms to process the sampled data at a rate lower than the data rate. The parallel processing algorithms described here were developed jointly by NASA's Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL). The resulting all-digital receiver has the capability to demodulate BPSK, QPSK, OQPSK, and DQPSK at data rates in excess of 300 Mega-bits per second (Mbps) per channel. This paper will provide an overview of the parallel architecture and features of the HRDR ASIC. In addition, this paper will provide an over-view of the implementation of the hardware architectures used to create flexibility over conventional high rate analog or hybrid receivers. This flexibility includes a wide range of data rates, modulation schemes, and operating environments. In conclusion it will be shown how this high rate digital demodulator can be used with an off-the-shelf A/D and a flexible analog front end, both of which are numerically computer controlled, to produce a very flexible, low cost high rate digital receiver.

  8. The Average of Rates and the Average Rate.

    ERIC Educational Resources Information Center

    Lindstrom, Peter

    1988-01-01

    Defines arithmetic, harmonic, and weighted harmonic means, and discusses their properties. Describes the application of these properties in problems involving fuel economy estimates and average rates of motion. Gives example problems and solutions. (CW)

  9. The Airline Quality Rating 1999

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Headley, Dean E.

    1999-01-01

    The Airline Quality Rating (AQR) was developed and first announced in early 1991 as an objective method of comparing airline performance on combined multiple criteria. This current report, Airline Quality Rating 1999, reflects an updated approach to calculating monthly Airline Quality Rating scores for 1998. AQR scores for the calendar year 1998 are based on 15 elements that focus on airline performance areas important to air travel consumers. The Airline Quality Rating is a summary of month-by-month quality ratings for the ten major U.S. airlines operating during 1998. Using the Airline Quality Rating system of weighted averages and monthly performance data in the areas of on-time arrivals, involuntary denied boardings, mishandled baggage, and a combination of 12 customer complaint categories, major airlines comparative performance for the calendar year 1998 is reported. This research monograph contains a brief summary of the AQR methodology, detailed data and charts that track comparative quality for major airlines domestic operations for the 12 month period of 1998, and industry average results. Also, comparative Airline Quality Rating data for 1997, using the updated criteria, are included to provide a reference point regarding quality in the industry.

  10. The Airline Quality Rating 2001

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Headley, Dean E.

    2001-01-01

    The Airline Quality Rating (AQR) was developed and first announced in early 1991 as an objective method of comparing airline quality on combined multiple performance criteria. This current report, Airline Quality Rating 2001, reflects monthly Airline Quality Rating scores for 2000. AQR scores for the calendar year 2000 are based on 15 elements that focus on airline performance areas important to air travel consumers. The Airline Quality Rating 2001 is a summary of month-by-month quality ratings for the ten major U.S. airlines operating during 2000. Using the Airline Quality Rating system of weighted averages and monthly performance data in the areas of on-time arrivals, involuntary denied boardings, mishandled baggage, and a combination of 12 customer complaint categories, major airlines comparative performance for the calendar year of 2000 is reported. This research monograph contains a brief summary of the AQR methodology, detailed data and charts that track comparative quality for major airlines domestic operations for the 12 month period of 2000, and industry average results. Also, comparative Airline Quality Rating data for 1999 are included for each airline to provide historical perspective regarding performance quality in the industry.

  11. Heart rates during competitive orienteering.

    PubMed

    Bird, S R; Bailey, R; Lewis, J

    1993-03-01

    This study investigated the heart rate profiles of 16 experienced, competitive orienteers (aged 15-62 years) during three competitive events. Each competitor was assessed over three different types of course which were classified as: fast run (FR), slow run (SR) and highly physical (HP). The results showed that all subjects recorded heart rates that were between 140 and 180 beats min-1 for the majority of each event (irrespective of age or course type). The heart rate data indicated that the activity was largely aerobic but varied in intensity, with phases of strenuous anaerobic work. The type of course was shown significantly (analysis of variance; P < 0.001) to affect the mean heart rate attained by each orienteer (FR = 160, HP = 158, SR = 150 beats min-1), with courses that required more technical skill and hence slower running producing lower mean heart rates; although the general physical demands were similar for all courses. The older orienteers (> 45 years) recorded heart rate profiles that were similar to those of the young orienteers with no correlation being found between age and mean heart rate while exercising.

  12. Heart rates during competitive orienteering.

    PubMed Central

    Bird, S R; Bailey, R; Lewis, J

    1993-01-01

    This study investigated the heart rate profiles of 16 experienced, competitive orienteers (aged 15-62 years) during three competitive events. Each competitor was assessed over three different types of course which were classified as: fast run (FR), slow run (SR) and highly physical (HP). The results showed that all subjects recorded heart rates that were between 140 and 180 beats min-1 for the majority of each event (irrespective of age or course type). The heart rate data indicated that the activity was largely aerobic but varied in intensity, with phases of strenuous anaerobic work. The type of course was shown significantly (analysis of variance; P < 0.001) to affect the mean heart rate attained by each orienteer (FR = 160, HP = 158, SR = 150 beats min-1), with courses that required more technical skill and hence slower running producing lower mean heart rates; although the general physical demands were similar for all courses. The older orienteers (> 45 years) recorded heart rate profiles that were similar to those of the young orienteers with no correlation being found between age and mean heart rate while exercising. PMID:8457815

  13. The Airline Quality Rating 2004

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Headley, Dean E.

    2004-01-01

    The Airline Quality Rating (AQR) was developed and first announced in early 1991 as an objective method of comparing airline quality on combined multiple performance criteria. This current report, the Airline Quality Rating 2004, reflects monthly Airline Quality Rating scores for 2003. AQR scores far the calendar year 2003 are based on 15 elemnts in four major areas that focus on airline performance aspects important to air travel consumers. The Airline Quality Rating 2004 is a summary of month-by-month quality ratings for U.S. airlines that have at least 1% of domestic passenger volume during 2003. Using the Airline Quality Rating system of weighted averages and monthly performance data in the areas of on-time arrivals, involuntary denied boardings, mishandled baggage, and a combination of 12 customer complaint categories, airlines comparative performance for the calendar year of 2003 is reported. This research monograph contains a brief summary of the AQR methodology, detailed data and charts that track comparative quality for domestic airline operations for the 12-month period of 2003, and industry results. Also, comparative Airline Quality Rating data for 2002 are included, where available, to provide historical perspective

  14. The Airline Quality Rating 2002

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Headley, Dean E.

    2002-01-01

    The Airline Quality Rating (AQR) was developed and first announced in early 1991 as an objective method of comparing airline quality on combined multiple performance criteria. This current report, Airline Quality Rating 2002, reflects monthly Airline Quality Rating scores for 2001. AQR scores for the calendar year 2001 are based on 15 elements that focus on airline performance areas important to air travel consumers. The Airline Quality Rating 2002 is a summary of month-by-month quality ratings for the 11 largest U.S. airlines operating during 2001. Using the Airline Quality Rating system of weighted averages and monthly performance data in the areas of on-time arrivals, involuntary denied boardings, mishandled baggage, and a combination of 12 customer complaint categories, airlines comparative performance for the calendar year of 2001 is reported. This research monograph contains a brief summary of the AQR methodology, detailed data and charts that track comparative quality for domestic airline operations for the 12-month period of 2001, and industry average results. Also, comparative Airline Quality Rating data for 2000 are included for each airline to provide historical perspective regarding performance quality in the industry.

  15. The Airline Quality Rating 2003

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Headley, Dean E.

    2003-01-01

    The Airline Quality Rating (AQR) was developed and first announced in early 1991 as an objective method of comparing airline quality on combined multiple performance criteria. This current report, the Airline Quality Rating 2003, reflects monthly Airline Quality Rating scores for 2002. AQR scores for the calendar year 2002 are based on 15 elements that focus on airline performance areas important to air travel consumers. The Airline Quality Rating 2003 is a summary of month-by-month quality ratings for the 10 largest U.S. airlines operating during 2002. Using the Airline Quality Rating system of weighted averages and monthly performance data in the areas of ontime arrivals, involuntary denied boardings, mishandled baggage, and a combination of 12 customer complaint categories, airlines comparative performance for the calendar year of 2002 is reported. This research monograph contains a brief summary of the AQR methodology, detailed data and charts that track comparative quality for domestic airline operations for the 12-month period of 2002, and industry average results. Also, comparative Airline Quality Rating data for 2001 are included for each airline to provide historical perspective regarding performance quality in the industry.

  16. The Airline Quality Rating 2004

    NASA Technical Reports Server (NTRS)

    Fink, Mary M. (Editor); Bowen, Brent D.; Headley, Dean E.

    2004-01-01

    The Airline Quality Rating (AQR) was developed and first announced in early 1991 as an objective method of comparing airline quality on combined multiple performance criteria. This current report, the Airline Quality Rating 2004, reflects monthly Airline Quality Rating scores for 2003. AQR scores for the calendar year 2003 are based on 15 elements in four major areas that focus on airline performance aspects important to air travel consumers. The Airline Quality Rating 2004 is a summary of month-by-month quality ratings for U.S. airlines that have at least 1 % of domestic passenger volume during 2003. Using the Airline Quality Rating system of weighted averages and monthly performance data in the areas of on-time arrivals, involuntary denied boardings, mishandled baggage, and a combination of 12 customer complaint categories, airlines comparative performance for the calendar year of 2003 is reported. This research monograph contains a brief summary of the AQR methodology, detailed data and charts that track comparative quality for domestic airline operations for the 12-month period of 2003, and industry results. Also, comparative Airline Quality Rating data for 2002 are included, where available, to provide historical perspective regarding performance quality in the industry.

  17. 78 FR 62627 - Sam Rayburn Dam Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... pursuant to the following rate schedule: Rate Schedule SRD-13, Wholesale Rates for Hydro Power and Energy... supersedes the existing rate schedule shown below: Rate Schedule SRD-08, Wholesale Rates for Hydro Power and... SOUTHWESTERN POWER ADMINISTRATION RATE SCHEDULE SRD-13 \\1\\ WHOLESALE RATES FOR HYDRO POWER AND ENERGY SOLD...

  18. 77 FR 2521 - Integrated System Power Rates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... Southwestern Power Administration Integrated System Power Rates AGENCY: Southwestern Power Administration, DOE... System pursuant to the Integrated System Rate Schedules which supersede the existing rate schedules... Integrated System pursuant to the following Integrated System Rate Schedules: Rate Schedule P-11,...

  19. Confidence rating for eutrophication assessments.

    PubMed

    Brockmann, Uwe H; Topcu, Dilek H

    2014-05-15

    Confidence of monitoring data is dependent on their variability and representativeness of sampling in space and time. Whereas variability can be assessed as statistical confidence limits, representative sampling is related to equidistant sampling, considering gradients or changing rates at sampling gaps. By the proposed method both aspects are combined, resulting in balanced results for examples of total nitrogen concentrations in the German Bight/North Sea. For assessing sampling representativeness surface areas, vertical profiles and time periods are divided into regular sections for which individually the representativeness is calculated. The sums correspond to the overall representativeness of sampling in the defined area/time period. Effects of not sampled sections are estimated along parallel rows by reducing their confidence, considering their distances to next sampled sections and the interrupted gradients/changing rates. Confidence rating of time sections is based on maximum differences of sampling rates at regular time steps and related means of concentrations.

  20. Documentation for POTW Removal Rates

    EPA Pesticide Factsheets

    Table VI of the RFI presents removal and destruction rates for toxic chemicals sent to POTWs, based on experimental and estimated data compiled by the Risk-Screening Environmental Indicators (RSEI) Program.