Science.gov

Sample records for tumor growth delay

  1. A Time-Delayed Mathematical Model for Tumor Growth with the Effect of a Periodic Therapy.

    PubMed

    Xu, Shihe; Wei, Xiangqing; Zhang, Fangwei

    2016-01-01

    A time-delayed mathematical model for tumor growth with the effect of periodic therapy is studied. The establishment of the model is based on the reaction-diffusion dynamics and mass conservation law and is considered with a time delay in cell proliferation process. Sufficient conditions for the global stability of tumor free equilibrium are given. We also prove that if external concentration of nutrients is large the tumor will not disappear and the conditions under which there exist periodic solutions to the model are also determined. Results are illustrated by computer simulations.

  2. Fluence rate-dependent photobleaching of intratumorally administered Pc 4 does not predict tumor growth delay.

    PubMed

    Baran, Timothy M; Foster, Thomas H

    2012-01-01

    We examined effects of fluence rate on the photobleaching of the photosensitizer Pc 4 during photodynamic therapy (PDT) and the relationship between photobleaching and tumor response to PDT. BALB/c mice with intradermal EMT6 tumors were given 0.03 mg kg(-1) Pc 4 by intratumor injection and irradiated at 667 nm with an irradiance of 50 or 150 mW cm(-2) to a fluence of 100 J cm(-2). While no cures were attained, significant tumor growth delay was demonstrated at both irradiances compared with drug-only controls. There was no significant difference in tumor responses to these two irradiances (P = 0.857). Fluorescence spectroscopy was used to monitor the bleaching of Pc 4 during irradiation, with more rapid bleaching with respect to fluence shown at the higher irradiance. No significant correlation was found between fluorescence photobleaching and tumor regrowth for the data interpreted as a whole. Within each treatment group, weak associations between photobleaching and outcome were observed. In the 50 mW cm(-2) group, enhanced photobleaching was associated with prolonged growth delay (P = 0.188), while at 150 mW cm(-2) this trend was reversed (P = 0.308). Thus, it appears that Pc 4 photobleaching is not a strong predictor of individual tumor response to Pc 4-PDT under these treatment conditions.

  3. Tumor growth delay studies in patients with multiple metastatic nodules: practical difficulties

    SciTech Connect

    Urtasun, R.C.; Band, P.; Ferri, H.

    1980-07-01

    The tumor growth delay assay is a well accepted technique in experimental animal tumor models for the measurement of response to treatment when comparing new treatment modalities. Patients have several measurabe metastatic nodules provide a good opportunity to measure the effects of new treatments as the patient can be used as his own matched control. Regression and regrowth of the treated lesions can be measured and differences can be assessed in terms of growth delay. The present material consists of a group of patients treated with fixed, single doses of radiation and single doses of the radiosensitizer, Metronidazole. The same amount of radiation was delivered to the test and control lesions; the test lesion was treated in combination with the drug. An unexpected high number of invalidations and occasional lack of reproducibility have been encountered with the first six patients. Investigation using this mehod for the first time should be aware of some of its pitfalls.

  4. Secreted protein acidic and rich in cysteine promotes glioma invasion and delays tumor growth in vivo.

    PubMed

    Schultz, Chad; Lemke, Nancy; Ge, Shugang; Golembieski, William A; Rempel, Sandra A

    2002-11-01

    Secreted protein acidic and rich in cysteine (SPARC) is highly expressed in human astrocytomas, grades II-IV. We demonstrated previously that SPARC promotes invasion in vitro using the U87MG-derived clone U87T2 and U87T2-derived SPARC-transfected clones, A2b2, A2bi, and C2a4, in the spheroid confrontation assay. Additional in vitro studies demonstrated that SPARC delays growth, increases attachment, and modulates migration of tumor cells in extracellular matrix-specific and concentration-dependent manners. Therefore, we propose that SPARC functionally contributes to brain tumor invasion and delays tumor growth in vivo, and that the effects of SPARC are related to the level of SPARC secreted into the extracellular matrix. To test these hypotheses, we stereotactically injected these clones into nude rat brains (six animals were injected per clone). Animals were sacrificed on day 7 to assess growth and invasion for all clones at the same time in tumor development. To determine whether SPARC delayed but did not inhibit growth, rats were injected with U87T2 or clone A2b2, and the animals were sacrificed on days 9 (U87T2) and 20 (A2b2), when the animals demonstrated neurological deficit. Brains were removed, fixed, photographed, paraffin embedded, and sectioned. Sections were then serially stained with H&E for morphological assessment of invasion and to measure tumor volume, immunohistochemically stained to visualize SPARC, subjected to in situ hybridization with the human AluII DNA-binding probe to identify human cells, and immunohistochemically stained with MIB-1 to measure proliferation index. The results demonstrate that SPARC promotes invasion in vivo at day 7. Both the low (A2bi) and the high (A2b2) SPARC-secreting clones produced invasive tumors, invading with fingerlike projections and satellite masses into adjacent brain, as well as along the corpus collosum. The intermediate SPARC secreting clone (C2a4) primarily migrated as a bulk tumor along the corpus

  5. Systemic antiangiogenic activity of cationic poly-L-lysine dendrimer delays tumor growth

    PubMed Central

    Al-Jamal, Khuloud T.; Al-Jamal, Wafa’ T.; Akerman, Simon; Podesta, Jennifer E.; Yilmazer, Açelya; Turton, John A.; Bianco, Alberto; Vargesson, Neil; Kanthou, Chryso; Florence, Alexander T.; Tozer, Gillian M.; Kostarelos, Kostas

    2010-01-01

    This study describes the previously unreported intrinsic capacity of poly-L-lysine (PLL) sixth generation (G6) dendrimer molecules to exhibit systemic antiangiogenic activity that could lead to solid tumor growth arrest. The PLL-dendrimer-inhibited tubule formation of SVEC4-10 murine endothelial cells and neovascularization in the chick embryo chick chorioallantoic membrane (CAM) assay. Intravenous administration of the PLL-dendrimer molecules into C57BL/6 mice inhibited vascularisation in Matrigel plugs implanted subcutaneously. Antiangiogenic activity was further evidenced using intravital microscopy of tumors grown within dorsal skinfold window chambers. Reduced vascularization of P22 rat sarcoma implanted in the dorsal window chamber of SCID mice was observed following tail vein administration (i.v.) of the PLL dendrimers. Also, the in vivo toxicological profile of the PLL-dendrimer molecules was shown to be safe at the dose regime studied. The antiangiogenic activity of the PLL dendrimer was further shown to be associated with significant suppression of B16F10 solid tumor volume and delayed tumor growth. Enhanced apoptosis/necrosis within tumors of PLL-dendrimer-treated animals only and reduction in the number of CD31 positive cells were observed in comparison to protamine treatment. This study suggests that PLL-dendrimer molecules can exhibit a systemic antiangiogenic activity that may be used for therapy of solid tumors, and in combination with their capacity to carry other therapeutic or diagnostic agents may potentially offer capabilities for the design of theranostic systems. PMID:20150514

  6. Tumor growth delay by adjuvant alternating electric fields which appears non-thermally mediated.

    PubMed

    Castellví, Quim; Ginestà, Mireia M; Capellà, Gabriel; Ivorra, Antoni

    2015-10-01

    Delivery of the so-called Tumor Treatment Fields (TTFields) has been proposed as a cancer therapy. These are low magnitude alternating electric fields at frequencies from 100 to 300 kHz which are applied continuously in a non-invasive manner. Electric field delivery may produce an increase in temperature which cannot be neglected. We hypothesized that the reported results obtained by applying TTFields in vivo could be due to heat rather than to electrical forces as previously suggested. Here, an in vivo study is presented in which pancreatic tumors subcutaneously implanted in nude mice were treated for a week either with mild hyperthermia (41 °C) or with TTFields (6 V/cm, 150 kHz) and tumor growth was assessed. Although the TTFields applied singly did not produce any significant effect, the combination with chemotherapy did show a delay in tumor growth in comparison to animals treated only with chemotherapy (median relative reduction=47%). We conclude that concomitant chemotherapy and TTFields delivery show a beneficial impact on pancreatic tumor growth. Contrary to our hypothesis, this impact is non-related with the induced temperature increase.

  7. Neuroblastoma-targeted nanocarriers improve drug delivery and penetration, delay tumor growth and abrogate metastatic diffusion.

    PubMed

    Cossu, Irene; Bottoni, Gianluca; Loi, Monica; Emionite, Laura; Bartolini, Alice; Di Paolo, Daniela; Brignole, Chiara; Piaggio, Francesca; Perri, Patrizia; Sacchi, Angelina; Curnis, Flavio; Gagliani, Maria Cristina; Bruno, Silvia; Marini, Cecilia; Gori, Alessandro; Longhi, Renato; Murgia, Daniele; Sementa, Angela Rita; Cilli, Michele; Tacchetti, Carlo; Corti, Angelo; Sambuceti, Gianmario; Marchiò, Serena; Ponzoni, Mirco; Pastorino, Fabio

    2015-11-01

    Selective tumor targeting is expected to enhance drug delivery and to decrease toxicity, resulting in an improved therapeutic index. We have recently identified the HSYWLRS peptide sequence as a specific ligand for aggressive neuroblastoma, a childhood tumor mostly refractory to current therapies. Here we validated the specific binding of HSYWLRS to neuroblastoma cell suspensions obtained either from cell lines, animal models, or Schwannian-stroma poor, stage IV neuroblastoma patients. Binding of the biotinylated peptide and of HSYWLRS-functionalized fluorescent quantum dots or liposomal nanoparticles was dose-dependent and inhibited by an excess of free peptide. In animal models obtained by the orthotopic implant of either MYCN-amplified or MYCN single copy human neuroblastoma cell lines, treatment with HSYWLRS-targeted, doxorubicin-loaded Stealth Liposomes increased tumor vascular permeability and perfusion, enhancing tumor penetration of the drug. This formulation proved to exert a potent antitumor efficacy, as evaluated by bioluminescence imaging and micro-PET, leading to (i) delay of tumor growth paralleled by decreased tumor glucose consumption, and (ii) abrogation of metastatic spreading, accompanied by absence of systemic toxicity and significant increase in the animal life span. Our findings are functional to the design of targeted nanocarriers with potentiated therapeutic efficacy towards the clinical translation.

  8. Silencing of Doublecortin-Like (DCL) Results in Decreased Mitochondrial Activity and Delayed Neuroblastoma Tumor Growth

    PubMed Central

    Verissimo, Carla S.; Elands, Rachel; Cheng, Sou; Saaltink, Dirk-Jan; ter Horst, Judith P.; Alme, Maria N.; Pont, Chantal; van de Water, Bob; Håvik, Bjarte; Fitzsimons, Carlos P.; Vreugdenhil, Erno

    2013-01-01

    Doublecortin-like (DCL) is a microtubule-binding protein crucial for neuroblastoma (NB) cell proliferation. We have investigated whether the anti-proliferative effect of DCL knockdown is linked to reduced mitochondrial activity. We found a delay in tumor development after DCL knockdown in vivo in doxycycline-inducible NB tumor xenografts. To understand the mechanisms underlying this tumor growth retardation we performed a series of in vitro experiments in NB cell lines. DCL colocalizes with mitochondria, interacts with the mitochondrial outer membrane protein OMP25/ SYNJ2BP and DCL knockdown results in decreased expression of genes involved in oxidative phosphorylation. Moreover, DCL knockdown decreases cytochrome c oxidase activity and ATP synthesis. We identified the C-terminal Serine/Proline-rich domain and the second microtubule-binding area as crucial DCL domains for the regulation of cytochrome c oxidase activity and ATP synthesis. Furthermore, DCL knockdown causes a significant reduction in the proliferation rate of NB cells under an energetic challenge induced by low glucose availability. Together with our previous studies, our results corroborate DCL as a key player in NB tumor growth in which DCL controls not only mitotic spindle formation and the stabilization of the microtubule cytoskeleton, but also regulates mitochondrial activity and energy availability, which makes DCL a promising molecular target for NB therapy. PMID:24086625

  9. Growth delay effect of combined interstitial hyperthermia and brachytherapy in a rat solid tumor model.

    PubMed

    Papadopoulos, D; Kimler, B F; Estes, N C; Durham, F J

    1989-01-01

    The rat mammary AC33 solid tumor model was used to investigate the efficacy of interstitial hyperthermia and/or brachytherapy. Subcutaneous flank tumors were heated with an interstitial microwave (915 MHz) antenna to a temperature of 43 +/- 0.5 degrees C for 45 min for two treatments, three days apart, and/or implanted with Ir-192 seeds for three days (-25 Gy tumor dose). Following treatments, tumors were measured 2 to 3 times per week. Hyperthermia alone produced a modest delay in tumor volume regrowth, while brachytherapy was substantially more effective. The combination produced a improvement in tumor regrowth delay compared to brachytherapy alone.

  10. Silencing of Foxp3 delays the growth of murine melanomas and modifies the tumor immunosuppressive environment

    PubMed Central

    Franco-Molina, Moisés A; Miranda-Hernández, Diana F; Mendoza-Gamboa, Edgar; Zapata-Benavides, Pablo; Coronado-Cerda, Erika E; Sierra-Rivera, Crystel A; Saavedra-Alonso, Santiago; Taméz-Guerra, Reyes S; Rodríguez-Padilla, Cristina

    2016-01-01

    Forkhead box p3 (Foxp3) expression was believed to be specific for T-regulatory cells but has recently been described in non-hematopoietic cells from different tissue origins and in tumor cells from both epithelial and non-epithelial tissues. The aim of this study was to elucidate the role of Foxp3 in murine melanoma. The B16F10 cell line Foxp3 silenced with small interference Foxp3 plasmid transfection was established and named B16F10.1. These cells had lower levels of Foxp3 mRNA (quantitative real-time reverse transcription-polymerase chain reaction [0.235-fold]), protein (flow cytometry [0.02%]), CD25+ expression (0.06%), cellular proliferation (trypan blue staining), and interleukin (IL)-2 production (enzyme-linked immunosorbent assay [72.35 pg/mL]) than those in B16F10 wild-type (WT) cells (P<0.05). Subcutaneous inoculation of the B16F10.1 cell line into C57BL/6 mice delayed the time of visible tumor appearance, increased the time of survival, and affected the weight of tumors, and also decreased the production of IL-10, IL-2, and transforming growth factor beta compared with mice inoculated with the B16F10 WT cell line. The B16F10.1 cells derived from tumors and free of T-cells (isolated by Dynabeads and plastic attachment) expressed relatively lower levels of Foxp3 and CD25+ than B16F10 WT cells (P<0.05) in a time-dependent manner. The population of tumor-infiltrating lymphocytes of T CD4+ cells (CD4+, CD4+CD25+, and CD4+CD25+Foxp3+) increased in a time-dependent manner (P<0.05) in tumors derived from B16F10 WT cells and decreased in tumors derived from B16F10.1 cells. Similar data were obtained from spleen cells. These results suggest that, in melanomas, Foxp3 partly induces tumor growth by modifying the immune system at the local and peripheral level, shifting the environment toward an immunosuppressive profile. Therapies incorporating this transcription factor could be strategies for cancer treatment. PMID:26834483

  11. Effects of Lévy noise and immune delay on the extinction behavior in a tumor growth model

    NASA Astrophysics Data System (ADS)

    Hao, Meng-Li; Xu, Wei; Gu, Xu-Dong; Qi, Lu-Yuan

    2014-09-01

    The combined effects of Lévy noise and immune delay on the extinction behavior in a tumor growth model are explored. The extinction probability of tumor with certain density is measured by exit probability. The expression of the exit probability is obtained using the Taylor expansion and the infinitesimal generator theory. Based on numerical calculations, it is found that the immune delay facilitates tumor extinction when the stability index α < 1, but inhibits tumor extinction when the stability index α > 1. Moreover, larger stability index and smaller noise intensity are in favor of the extinction for tumor with low density. While for tumor with high density, the stability index and the noise intensity should be reduced to promote tumor extinction.

  12. STI571 (Gleevec) improves tumor growth delay and survival in irradiated mouse models of glioblastoma

    SciTech Connect

    Geng Ling; Shinohara, Eric T.; Kim, Dong; Tan Jiahuai; Osusky, Kate; Shyr, Yu; Hallahan, Dennis E. . E-mail: Dennis.Hallahan@mcmail.vanderbilt.edu

    2006-01-01

    Purpose: Glioblastoma multiforme (GBM) is a devastating brain neoplasm that is essentially incurable. Although radiation therapy prolongs survival, GBMs progress within areas of irradiation. Recent studies in invertebrates have shown that STI571 (Gleevec; Novartis, East Hanover, NJ) enhances the cytotoxicity of ionizing radiation. In the present study, the effectiveness of STI571 in combination with radiation was studied in mouse models of GBM. Methods and Materials: Murine GL261 and human D54 GBM cell lines formed tumors in brains and hind limbs of C57BL6 and nude mice, respectively. GL261 and D54 cells were treated with 5 {mu}mol/L of STI571 for 1 h and/or irradiated with 3 Gy. Protein was analyzed by Western immunoblots probed with antibodies to caspase 3, cleaved caspase 3, phospho-Akt, Akt, and platelet-derived growth factor receptor (PDGFR) {alpha} and {beta}. Tumor volumes were assessed in mice bearing GL261 or D54 tumors treated with 21 Gy administered in seven fractionated doses. Histologic sections from STI571-treated mice were stained with phospho-Akt and phospho-PDGFR {beta} antibodies. Kaplan-Meier survival curves were used to study the response of mice bearing intracranial implants of GL261. Results: STI571 penetrated the blood-brain barrier, which resulted in a reduction in phospho-PDGFR in GBM. STI571-induced apoptosis in GBM was significantly enhanced by irradiation. STI571 combined with irradiation induced caspase 3 cleavage in GBM cells. Glioblastoma multiforme response to therapy correlated with an increase in tumor growth delay and survival when STI571 was administered in conjunction with daily irradiation. Conclusion: These findings suggest that STI571 has the potential to augment radiotherapy and thereby improve median survival.

  13. Irradiation combined with SU5416: Microvascular changes and growth delay in a human xenograft glioblastoma tumor line

    SciTech Connect

    Schuuring, Janneke; Bussink, Johan . E-mail: J.Bussink@rther.umcn.nl; Bernsen, Hans; Peeters, Wenny; Kogel, Albert J. van der

    2005-02-01

    Purpose: The combination of irradiation and the antiangiogenic compound SU5416 was tested and compared with irradiation alone in a human glioblastoma tumor line xenografted in nude mice. The aim of this study was to monitor microenvironmental changes and growth delay. Methods and materials: A human glioblastoma xenograft tumor line was implanted in nude mice. Irradiations consisted of 10 Gy or 20 Gy with and without SU5416. Several microenvironmental parameters (tumor cell hypoxia, tumor blood perfusion, vascular volume, and microvascular density) were analyzed after imunohistochemical staining. Tumor growth delay was monitored for up to 200 days after treatment. Results: SU5416, when combined with irradiation, has an additive effect over treatment with irradiation alone. Analysis of the tumor microenvironment showed a decreased vascular density during treatment with SU5416. In tumors regrowing after reaching only a partial remission, vascular characteristics normalized shortly after cessation of SU5416. However, in tumors regrowing after reaching a complete remission, permanent microenvironmental changes and an increase of tumor necrosis with a subsequent slower tumor regrowth was found. Conclusions: Permanent vascular changes were seen after combined treatment resulting in complete remission. Antiangiogenic treatment with SU5416 when combined with irradiation has an additive effect over treatment with irradiation or antiangiogenic treatment alone.

  14. Combined use of sodium borocaptate and buthionine sulfoximine in boron neutron capture therapy enhanced tissue boron uptake and delayed tumor growth in a rat subcutaneous tumor model.

    PubMed

    Yoshida, Fumiyo; Yamamoto, Tetsuya; Nakai, Kei; Kumada, Hiroaki; Shibata, Yasushi; Tsuruta, Wataro; Endo, Kiyoshi; Tsurubuchi, Takao; Matsumura, Akira

    2008-05-18

    We have previously reported that buthionine sulfoximine (BSO) enhances sodium borocaptate (BSH) uptake by down regulating glutathione (GSH) synthesis in cultured cells. This study investigated the influence of BSO on tissue BSH uptake in vivo and the efficacy of BSH-BSO-mediated boron neutron capture therapy (BNCT) on tumor growth using a Fisher-344 rat subcutaneous tumor model. With BSO supplementation, boron uptake in subcutaneous tumor, blood, skin, muscle, liver, and kidney was significantly enhanced and maintained for 12h. Tumor growth was significantly delayed by using BSO. With further improvement in experimental conditions, radiation exposure time, together with radiation damage to normal tissues, could be reduced.

  15. Delayed growth

    MedlinePlus

    ... ready-to-feed formula. When to Contact a Medical Professional Contact your health care provider if you are concerned about your child's growth. Medical evaluations are important even if you think developmental ...

  16. AZD1480 delays tumor growth in a melanoma model while enhancing the suppressive activity of myeloid-derived suppressor cells

    PubMed Central

    Maenhout, Sarah K.; Four, Stephanie Du; Corthals, Jurgen; Neyns, Bart; Thielemans, Kris; Aerts, Joeri L.

    2014-01-01

    AZD1480 is a potent, competitive small-molecule inhibitor of JAK1/2 kinase which inhibits STAT3 phosphorylation and tumor growth. Here we investigated the effects of AZD1480 on the function of different immune cell populations in a melanoma model. When MO4 tumor-bearing mice were treated with AZD1480 we observed a strong inhibition of tumor growth as well as a prolonged survival. Moreover, a significant decrease in the percentage of myeloid-derived suppressor cells (MDSCs) was observed after treatment with AZD1480. However, AZD1480 enhanced the suppressive capacity of murine MDSCs while at the same time impairing the proliferative as well as the IFN-γ secretion capacity of murine T cells. The addition of AZD1480 to co-cultures of human MDSCs and T cells does not affect the suppressive activity of MDSCs but it does reduce the IFN-γ secretion and the proliferative capacity of T cells. We showed that although AZD1480 has the ability to delay the tumor growth of MO4 tumor-bearing mice, this drug has detrimental effects on several aspects of the immune system. These data indicate that systemic targeting of the JAK/STAT pathway by JAK1/2 inhibition can have divergent effects on tumor growth and anti-tumor immune responses. PMID:25149535

  17. Reduced circulating insulin-like growth factor I levels delay the onset of chemically and genetically induced mammary tumors.

    PubMed

    Wu, Yiping; Cui, Karen; Miyoshi, Keiko; Hennighausen, Lothar; Green, Jeffrey E; Setser, Jennifer; LeRoith, Derek; Yakar, Shoshana

    2003-08-01

    Insulin-like growth factors (IGFs) play a crucial role in regulating cell proliferation and differentiation. The aim of this study was to examine the potential relationship between serum IGF-I levels and breast cancer risk. To do this, we studied liver-specific IGF-I gene-deleted (LID) mice, in which circulating IGF-I levels are 25% of that in control mice. Mammary tumors were induced in two ways: (a) by exposing mice to the carcinogen 7,12-dimethybenz (a)anthracene; and (b) by crossing LID mice with C3(1)/SV40 large T-antigen transgenic mice. In both models, LID mice exhibited a delayed latency period of mammary tumor development. In the 7,12-dimethybenz (a)anthracene-induced mammary tumor model, the incidence of palpable mammary tumors was significantly lower in LID mice (26% versus 56% in controls), and the onset of the tumors was delayed (74 +/- 1.2 days in LID mice versus 59.5 +/- 1.1 days in controls). Histological analysis showed extensive squamous metaplasia in late-stage mammary tumors of control mice, whereas late-stage tumors from LID mice exhibited extensive hyperplasia, but little metaplasia. In control mice, the onset of C3(1)/SV40-large T-antigen-induced mammary tumors occurred at 21.6 +/- 1.8 weeks of age, whereas in LID mice the average age of onset was 30.2 +/- 1.7 weeks. In addition, 60% of the mice in the control group developed two or more mammary tumors per mouse, whereas in the LID mice only 30% developed more than one mammary tumor per mouse. Our data demonstrate that circulating IGF-I levels play a significant role as a risk factor in the onset and development of mammary tumors in two well-established animal models of breast cancer.

  18. An MMP13-Selective Inhibitor Delays Primary Tumor Growth and the Onset of Tumor-Associated Osteolytic Lesions in Experimental Models of Breast Cancer

    PubMed Central

    Shah, Manisha; Huang, Dexing; Blick, Tony; Connor, Andrea; Reiter, Lawrence A.; Hardink, Joel R.; Lynch, Conor C.; Waltham, Mark; Thompson, Erik W.

    2012-01-01

    We investigated the effects of the matrix metalloproteinase 13 (MMP13)-selective inhibitor, 5-(4-{4-[4-(4-fluorophenyl)-1,3-oxazol-2-yl]phenoxy}phenoxy)-5-(2-methoxyethyl) pyrimidine-2,4,6(1H,3H,5H)-trione (Cmpd-1), on the primary tumor growth and breast cancer-associated bone remodeling using xenograft and syngeneic mouse models. We used human breast cancer MDA-MB-231 cells inoculated into the mammary fat pad and left ventricle of BALB/c Nu/Nu mice, respectively, and spontaneously metastasizing 4T1.2-Luc mouse mammary cells inoculated into mammary fat pad of BALB/c mice. In a prevention setting, treatment with Cmpd-1 markedly delayed the growth of primary tumors in both models, and reduced the onset and severity of osteolytic lesions in the MDA-MB-231 intracardiac model. Intervention treatment with Cmpd-1 on established MDA-MB-231 primary tumors also significantly inhibited subsequent growth. In contrast, no effects of Cmpd-1 were observed on soft organ metastatic burden following intracardiac or mammary fat pad inoculations of MDA-MB-231 and 4T1.2-Luc cells respectively. MMP13 immunostaining of clinical primary breast tumors and experimental mice tumors revealed intra-tumoral and stromal expression in most tumors, and vasculature expression in all. MMP13 was also detected in osteoblasts in clinical samples of breast-to-bone metastases. The data suggest that MMP13-selective inhibitors, which lack musculoskeletal side effects, may have therapeutic potential both in primary breast cancer and cancer-induced bone osteolysis. PMID:22253746

  19. A cytomegalovirus-based vaccine expressing a single tumor-specific CD8+ T-cell epitope delays tumor growth in a murine model of prostate cancer.

    PubMed

    Klyushnenkova, Elena N; Kouiavskaia, Diana V; Parkins, Christopher J; Caposio, Patrizia; Botto, Sara; Alexander, Richard B; Jarvis, Michael A

    2012-06-01

    Cytomegalovirus (CMV) is a highly immunogenic virus that results in a persistent, life-long infection in the host typically with no ill effects. Certain unique features of CMV, including its capacity to actively replicate in the presence of strong host CMV-specific immunity, may give CMV an advantage compared with other virus-based vaccine delivery platforms. In the present study, we tested the utility of mouse CMV (mCMV)-based vaccines expressing human prostate-specific antigen (PSA) for prostate cancer immunotherapy in double-transgenic mice expressing PSA and HLA-DRB1*1501 (DR2bxPSA F1 mice). We assessed the capacity of 2 mCMV-based vectors to induce PSA-specific CD8 T-cell responses and affect the growth of PSA-expressing Transgenic Adenocarcinoma of the Mouse Prostate tumors (TRAMP-PSA). In the absence of tumor challenge, immunization with mCMV vectors expressing either a H2-D(b)-restricted epitope PSA(65-73) (mCMV/PSA(65-73)) or the full-length gene for PSA (mCMV/PSA(FL)) induced comparable levels of CD8 T-cell responses that increased (inflated) with time. Upon challenge with TRAMP-PSA tumor cells, animals immunized with mCMV/PSA(65-73) had delay of tumor growth and increased PSA-specific CD8 T-cell responses, whereas animals immunized with mCMV/PSA(FL) showed progressive tumor growth and no increase in number of splenic PSA(65-73)-specific T cells. The data show that a prototype CMV-based prostate cancer vaccine can induce an effective antitumor immune response in a "humanized" double-transgenic mouse model. The observation that mCMV/PSA(FL) is not effective against TRAMP-PSA is consistent with our previous findings that HLA-DRB1*1501-restricted immune responses to PSA are associated with suppression of effective CD8 T-cell responses to TRAMP-PSA tumors.

  20. Correlation Between Tumor Growth Delay and Expression of Cancer and Host VEGF, VEGFR2, and Osteopontin in Response to Radiotherapy

    SciTech Connect

    Solberg, Timothy D.; Nearman, Jessica; Mullins, John; Li Sicong; Baranowska-Kortylewicz, Janina

    2008-11-01

    Purpose: To determine the late effects of radiotherapy (RT) on vascular endothelial growth factor (VEGF), VEGF receptor-2 (VEGFR2), and osteopontin (OPN) expression in cancer and stromal cells. Methods and Materials: LS174T xenografted athymic mice were used as a tumor model. Radiation was delivered in two equivalent fractionation schemes: 5 x 7 Gy and 1 x 20 Gy, the latter at two dose rates. Results: Tumor growth arrest was similar in all treatment groups, with the exception of a better response of small-size tumors in the 5 x 7-Gy group. The host VEGF and OPN levels were directly proportional to the tumor doubling time and were independent of the fractionation scheme. The host and cancer cell VEGFR2 levels in tumor were also directly related to the tumor response to RT. Conclusion: Upregulated VEGFR2 in cancer cells suggest paracrine signaling in the VEGFR2 pathway of cancer cells as the factor contributing to RT failure. The transient activation of the host VEGF/VEGFR2 pathway in tumor supports the model of angiogenic regeneration and suggests that radiation-induced upregulation of VEGF, VEGFR2, and downstream proteins might contribute to RT failure by escalating the rate of vascular repair. Coexpression of host OPN and VEGF, two factors closely associated with angiogenesis, indicate that OPN can serve as a surrogate marker of tumor recovery after RT. Taken together, these results strongly support the notion that to achieve optimal therapeutic outcomes, the scheduling of RT and antiangiogenic therapies will require patient-specific post-treatment monitoring of the VEGF/VEGFR2 pathway and that tumor-associated OPN can serve as an indicator of tumor regrowth.

  1. Systemic administration of attenuated Salmonella choleraesuis carrying thrombospondin-1 gene leads to tumor-specific transgene expression, delayed tumor growth and prolonged survival in the murine melanoma model.

    PubMed

    Lee, Che-Hsin; Wu, Chao-Liang; Shiau, Ai-Li

    2005-02-01

    Some anaerobic and facultative anaerobic bacteria have been used experimentally as anticancer agents because of their selective growth in the hypoxia regions of solid tumors after systemic administration. We have previously shown the feasibility of using attenuated Salmonella choleraesuis as a gene delivery vector. In this study, we exploited S. choleraesuis carrying thrombospondin-1 (TSP-1) gene for treating primary melanoma and experimental pulmonary metastasis in the syngeneic murine B16F10 melanoma model. Systemic administration of S. choleraesuis allowed targeted gene delivery to tumors. The bacteria accumulated preferentially in tumors over livers and spleens at ratios ranging from 1000:1 to 10,000:1. The level of transgene expression via S. choleraesuis-mediated gene transfer in tumors could reach more than 1800-fold higher than in livers and spleens. Notably, bacterial accumulation was also observed in the lungs with metastatic nodules, but not in healthy lungs. When administered into mice bearing subcutaneous or pulmonary metastatic melanomas, S. choleraesuis carrying TSP-1 gene significantly inhibited tumor growth and enhanced survival of the mice. Immunohistochemical studies in the tumors from these mice displayed decreased intratumoral microvessel density. Taken together, these findings suggest that TSP-1 gene therapy delivered by S. choleraesuis may be effective for the treatment of primary as well as metastatic melanomas.

  2. Biosynthesized Platinum Nanoparticles Inhibit the Proliferation of Human Lung-Cancer Cells in vitro and Delay the Growth of a Human Lung-Tumor Xenograft in vivo

    PubMed Central

    Yogesh, Bendale; Vineeta, Bendale; Rammesh, Natu; Saili, Paul

    2016-01-01

    Objectives: Lung cancer remains a deadly disease with unsatisfactory overall survival. Cisplatin, a standard platinum (Pt)-based chemotherapeutic agent, has the potential to inhibit the growth of lung cancer. Its use, however, is occasionally limited by severe organ toxicity. However, until now, no systematic study has been conducted to verify its efficacy with proper experimental support in vivo. Therefore, we examined whether biosynthesized Pt nanoparticles (NPs) inhibited human lung cancer in vitro and in vivo to validate their use in alternative and complementary medicine. Methods: We evaluated the in vitro and the in vivo anticancer efficiencies of biosynthesized Pt NPs in a subcutaneous xenograft model with A549 cells. Severe combined immune deficient mice (SCID) were divided into four groups: group 1 being the vehicle control group and groups 2, 3 and 4 being the experimental groups. Once the tumor volume had reached 70 ─ 75 mm3, the progression profile of the tumor growth kinetics and the body weights of the mice were measured every week for 6 weeks after oral administration of Pt NPs. Doses of Pt NPs of 500, 1,000 and 2,000 mg/kg of body weight were administered to the experimental groups and a dose of honey was administered to the vehicle control group. The efficacy was quantified by using the delay in tumor growth following the administration of Pt NPs of A549 human-lung-cancer xenografts growing in SCID mice. Results: The in vitro cytotoxicity evaluation indicated that Pt NPs, in a dose-dependent manner, inhibited the growth of A549 cells, and the in vivo evaluation showed that Pt NPs at the mid and high doses effectively inhibited and delayed the growth of lung cancer in SCID mice. Conclusion: These findings confirm the antitumor properties of biosynthesized Pt NPs and suggest that they may be a cost-effective alternative for the treatment of patients with lung cancer. PMID:27386144

  3. Thermosensitive liposomal cisplatin in combination with local hyperthermia results in tumor growth delay and changes in tumor microenvironment in xenograft models of lung carcinoma.

    PubMed

    Dou, Yannan Nancy; Dunne, Michael; Huang, Huang; Mckee, Trevor; Chang, Martin C; Jaffray, David A; Allen, Christine

    2016-11-01

    Treatment efficacy of a heat-activated thermosensitive liposome formulation of cisplatin (CDDP), known as HTLC, was determined in xenograft models of non-small-cell lung carcinoma. The short-term impact of local hyperthermia (HT) on tumor morphology, microvessel density and local inflammatory response was also evaluated. The HTLC formulation in combination with local HT resulted in a significant advantage in therapeutic effect in comparison with free drug and a non-thermosensitive liposome formulation of CDDP (i.e. Lipoplatin(TM)) when administered at their maximum tolerated doses. Local HT-induced widespread cell necrosis and a significant reduction in microvessel density in the necrotic regions of tumors. CD11b-expressing innate leukocytes were demonstrated to infiltrate and reside preferentially at the necrotic rim of tumors, likely as a means to phagocytose-damaged tissue. Colocalization of CD11b with a marker of DNA damage (i.e. γH2AX) revealed a small portion of CD11b-expressing leukocytes that were possibly undergoing apoptosis as a result of HT-induced damage and/or the short lifespan of leukocytes. Overall, HT-induced tissue damage (i.e. at 24-h post-treatment) alone did not result in significant improvements in treatment effect, rather, the enhancement in tumor drug availability was correlated with improved therapeutic outcomes.

  4. Phyllodes tumor showing intraductal growth.

    PubMed

    Makidono, Akari; Tsunoda, Hiroko; Mori, Miki; Yagata, Hiroshi; Onoda, Yui; Kikuchi, Mari; Nozaki, Taiki; Saida, Yukihisa; Nakamura, Seigo; Suzuki, Koyu

    2013-07-01

    Phyllodes tumor of the breast is a rare fibroepithelial lesion and particularly uncommon in adolescent girls. It is thought to arise from the periductal rather than intralobular stroma. Usually, it is seen as a well-defined mass. Phyllodes tumor showing intraductal growth is extremely rare. Here we report a girl who has a phyllodes tumor with intraductal growth.

  5. The TCD[sub 50] and regrowth delay assay in human tumor xenografts: Differences and implications

    SciTech Connect

    Budach, W.; Budach, V.; Stuschke, M.; Dinges, S.; Sack, H. )

    1993-01-15

    The response to irradiation of five human xenograft cell lines - a malignant paraganglioma, a neurogenic sarcoma, a malignant histiocytoma, a primary lymphoma of the brain, and a squamous cell carcinoma - were tested in nude mice. All mice underwent 5 Gy whole body irradiation prior to xenotransplantation to minimize the residual immune response. The subcutaneous tumors were irradiated at a tumor volume of 120 mm[sup 3] under acutely hypoxic conditions with single doses between 8 Gy and 80 Gy depending on the expected radiation sensitivity of the tumor line. Endpoints of the study were the tumor control dose 50% (TCD[sub 50]) and the regrowth delay endpoints growth delay, specific growth delay, and the tumor bed effect corrected specific growth delay. Specific growth delay and corrected specific growth delay at 76% of the TCD[sub 50] was used in order to compare the data to previously published data from spheroids. The lowest TCD[sub 50] was found in the lymphoma with 24.9 Gy, whereas the TCD[sub 50] of the soft tissue sarcomas and the squamous cell carcinoma ranged from 57.8 Gy to 65.6 Gy. The isoeffective dose levels for the induction of 30 days growth delay, a specific growth delay of 3, and a corrected specific growth delay of 3 ranged from 15.5 Gy (ECL1) to 37.1 Gy (FADU), from 7.2 Gy (ENE2) to 45.6 Gy (EPG1) and from 9.2 Gy (ENE2) to 37.6 Gy (EPG1), respectively. The corrected specific growth delay at 76% of the TCD[sub 50] was correlated with the number of tumor rescue units per 100 cells in spheroids, which was available for three tumor lines, and with the tumor doubling time in xenografts (n = 5). The TCD[sub 50] values corresponded better to the clinical experience than the regrowth delay data. There was no correlation between TCD[sub 50] and any of the regrowth delay endpoints. This missing correlation was most likely a result of large differences in the number of tumor rescue units in human xenografts of the same size.

  6. Periodic and chaotic oscillations in a tumor and immune system interaction model with three delays

    SciTech Connect

    Bi, Ping; Ruan, Shigui; Zhang, Xinan

    2014-06-15

    In this paper, a tumor and immune system interaction model consisted of two differential equations with three time delays is considered in which the delays describe the proliferation of tumor cells, the process of effector cells growth stimulated by tumor cells, and the differentiation of immune effector cells, respectively. Conditions for the asymptotic stability of equilibria and existence of Hopf bifurcations are obtained by analyzing the roots of a second degree exponential polynomial characteristic equation with delay dependent coefficients. It is shown that the positive equilibrium is asymptotically stable if all three delays are less than their corresponding critical values and Hopf bifurcations occur if any one of these delays passes through its critical value. Numerical simulations are carried out to illustrate the rich dynamical behavior of the model with different delay values including the existence of regular and irregular long periodic oscillations.

  7. Mathematical Modeling of Tumor Cell Growth and Immune System Interactions

    NASA Astrophysics Data System (ADS)

    Rihan, Fathalla A.; Safan, Muntaser; Abdeen, Mohamed A.; Abdel-Rahman, Duaa H.

    In this paper, we provide a family of ordinary and delay differential equations to describe the dynamics of tumor-growth and immunotherapy interactions. We explore the effects of adoptive cellular immunotherapy on the model and describe under what circumstances the tumor can be eliminated. The possibility of clearing the tumor, with a strategy, is based on two parameters in the model: the rate of influx of the effector cells, and the rate of influx of IL2. The critical tumor-growth rate, below which endemic tumor does not exist, has been found. One can use the model to make predictions about tumor-dormancy.

  8. Mesoscopic model for tumor growth.

    PubMed

    Izquierdo-Kulich, Elena; Nieto-Villar, José Manuel

    2007-10-01

    In this work, we propose a mesoscopic model for tumor growth to improve our understanding of the origin of the heterogeneity of tumor cells. In this sense, this stochastic formalism allows us to not only to reproduce but also explain the experimental results presented by Brú. A significant aspect found by the model is related to the predicted values for beta growth exponent, which capture a basic characteristic of the critical surface growth dynamics. According to the model, the value for growth exponent is between 0,25 and 0,5, which includes the value proposed by Kadar-Parisi-Zhang universality class (0,33) and the value proposed by Brú (0,375) related to the molecular beam epitaxy (MBE) universality class. This result suggests that the tumor dynamics are too complex to be associated to a particular universality class.

  9. Platelets effects on tumor growth.

    PubMed

    Goubran, Hadi A; Stakiw, Julie; Radosevic, Mirjana; Burnouf, Thierry

    2014-06-01

    Unlike other blood cells, platelets are small anucleate structures derived from marrow megakaryocytes. Thought for almost a century to possess solely hemostatic potentials, platelets, however, play a much wider role in tissue regeneration and repair and interact intimately with tumor cells. On one hand, tumor cells induce platelet aggregation (TCIPA), known to act as the trigger of cancer-associated thrombosis. On the other hand, platelets recruited to the tumor microenvironment interact, directly, with tumor cells, favoring their proliferation, and, indirectly, through the release of a wide palette of growth factors, including angiogenic and mitogenic proteins. In addition, the role of platelets is not solely confined to the primary tumor site. Indeed, they escort tumor cells, helping their intravasation, vascular migration, arrest, and extravasation to the tissues to form distant metastasis. As expected, nonspecific or specific inhibition of platelets and their content represents an attractive novel approach in the fight against cancer. This review illustrates the role played by platelets at primary tumor sites and in the various stages of the metastatic process.

  10. Stochastic resonance in a tumor-immune system subject to bounded noises and time delay

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Mei, Dong-Cheng

    2014-12-01

    Immunotherapy is one of the most recent approaches in cancer therapy. A mathematical model of tumor-immune interaction, subject to a periodic immunotherapy treatment (imitated by a periodic signal), correlative and bounded stochastic fluctuations and time delays, is investigated by numerical simulations for its signal power amplification (SPA). Within the tailored parameter regime, the synchronous response of tumor growth to the immunotherapy, stochastic resonance (SR), versus both the noises and delays is obtained. The details are as follows (i) the peak values of SPA versus the noise intensity (A) in the proliferation term of tumor cells decrease as the frequency of periodic signal increases, i.e. an increase of the frequency restrains the SR; (ii) an increase of the amplitude of periodic signal restrains the SR versus A, but boosts up the SR versus the noise intensity B in the immune term; (iii) there is an optimum cross-correlated degree between the two bounded noises, at which the system exhibits the strongest SR versus the delay time τα(the reaction time of tumor cell population to their surrounding environment constraints); (iv) upon increasing the delay time τα, double SR versus the delay time τβ (the time taken by both the tumor antigen identification and tumor-stimulated proliferation of effectors) emerges. These results may be helpful for an immunotherapy treatment for the sufferer.

  11. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression.

    PubMed

    Bunt, Stephanie K; Yang, Linglin; Sinha, Pratima; Clements, Virginia K; Leips, Jeff; Ostrand-Rosenberg, Suzanne

    2007-10-15

    Chronic inflammation is frequently associated with malignant growth and is thought to promote and enhance tumor progression, although the mechanisms which regulate this relationship remain elusive. We reported previously that interleukin (IL)-1beta promoted tumor progression by enhancing the accumulation of myeloid-derived suppressor cells (MDSC), and hypothesized that inflammation leads to cancer through the production of MDSC which inhibit tumor immunity. If inflammation-induced MDSC promote tumor progression by blocking antitumor immunity, then a reduction in inflammation should reduce MDSC levels and delay tumor progression, whereas an increase in inflammation should increase MDSC levels and hasten tumor progression. We have tested this hypothesis using the 4T1 mammary carcinoma and IL-1 receptor (IL-1R)-deficient mice which have a reduced potential for inflammation, and IL-1R antagonist-deficient mice, which have an increased potential for inflammation. Consistent with our hypothesis, IL-1R-deficient mice have a delayed accumulation of MDSC and reduced primary and metastatic tumor progression. Accumulation of MDSC and tumor progression are partially restored by IL-6, indicating that IL-6 is a downstream mediator of the IL-1beta-induced expansion of MDSC. In contrast, excessive inflammation in IL-1R antagonist-deficient mice promotes the accumulation of MDSC and produces MDSC with enhanced suppressive activity. These results show that immune suppression by MDSC and tumor growth are regulated by the inflammatory milieu and support the hypothesis that the induction of suppressor cells which down-regulate tumor immunity is one of the mechanisms linking inflammation and cancer.

  12. Image based modeling of tumor growth.

    PubMed

    Meghdadi, N; Soltani, M; Niroomand-Oscuii, H; Ghalichi, F

    2016-09-01

    Tumors are a main cause of morbidity and mortality worldwide. Despite the efforts of the clinical and research communities, little has been achieved in the past decades in terms of improving the treatment of aggressive tumors. Understanding the underlying mechanism of tumor growth and evaluating the effects of different therapies are valuable steps in predicting the survival time and improving the patients' quality of life. Several studies have been devoted to tumor growth modeling at different levels to improve the clinical outcome by predicting the results of specific treatments. Recent studies have proposed patient-specific models using clinical data usually obtained from clinical images and evaluating the effects of various therapies. The aim of this review is to highlight the imaging role in tumor growth modeling and provide a worthwhile reference for biomedical and mathematical researchers with respect to tumor modeling using the clinical data to develop personalized models of tumor growth and evaluating the effect of different therapies.

  13. Sunscreens for delay of ultraviolet induction of skin tumors

    SciTech Connect

    Wulf, H.C.; Poulsen, T.; Brodthagen, H.; Hou-Jensen, K.

    1982-08-01

    Sunscreens with different sun protection factors (SPFs) have been tested for their capability of delaying or preventing actinic damage and skin cancer development in groups of hairless, pigmented mice exposed to artificial ultraviolet (UV) light of increasing intensity. The dose delivered was less than or equal to 1 minimal erythema dose (MED) in the group of untreated mice, so that the mice to which sunscreens were applied never obtained a sunburn after UV exposure. The quality of UV light was similar to bright midday sun at a latitude of 56 degrees (city of Copenhagen). Tumorigenesis was demonstrated to be delayed corresponding to the SPF claimed by the manufacturer, but almost all of the UV-irradiated mice developed skin tumors. Histologic examination revealed actinic degeneration and tumors of squamous cell type with marked variation in differentiation. Metastases to lymph nodes and lungs were found in only 10%. Toxic reactions, such as eczematous-like skin reactions, dark coloring, and amyloidosis, were observed predominantly in the group treated with the sunscreen of highest SPF value. Long-term investigations seem to be necessary to unveil these problems--in particular, the specific SPF value, in sunscreens, that should be recommended to the public for prevention or delay of actinic damage and/or cancer development.

  14. Biochemomechanical poroelastic theory of avascular tumor growth

    NASA Astrophysics Data System (ADS)

    Xue, Shi-Lei; Li, Bo; Feng, Xi-Qiao; Gao, Huajian

    2016-09-01

    Tumor growth is a complex process involving genetic mutations, biochemical regulations, and mechanical deformations. In this paper, a thermodynamics-based nonlinear poroelastic theory is established to model the coupling among the mechanical, chemical, and biological mechanisms governing avascular tumor growth. A volumetric growth law accounting for mechano-chemo-biological coupled effects is proposed to describe the development of solid tumors. The regulating roles of stresses and nutrient transport in the tumor growth are revealed under different environmental constraints. We show that the mechano-chemo-biological coupling triggers anisotropic and heterogeneous growth, leading to the formation of layered structures in a growing tumor. There exists a steady state in which tumor growth is balanced by resorption. The influence of external confinements on tumor growth is also examined. A phase diagram is constructed to illustrate how the elastic modulus and thickness of the confinements jointly dictate the steady state of tumor volume. Qualitative and quantitative agreements with experimental observations indicate the developed model is capable of capturing the essential features of avascular tumor growth in various environments.

  15. The role of fibroblast growth factors in tumor growth.

    PubMed

    Korc, M; Friesel, R E

    2009-08-01

    Biological processes that drive cell growth are exciting targets for cancer therapy. The fibroblast growth factor (FGF) signaling network plays a ubiquitous role in normal cell growth, survival, differentiation, and angiogenesis, but has also been implicated in tumor development. Elucidation of the roles and relationships within the diverse FGF family and of their links to tumor growth and progression will be critical in designing new drug therapies to target FGF receptor (FGFR) pathways. Recent studies have shown that FGF can act synergistically with vascular endothelial growth factor (VEGF) to amplify tumor angiogenesis, highlighting that targeting of both the FGF and VEGF pathways may be more efficient in suppressing tumor growth and angiogenesis than targeting either factor alone. In addition, through inducing tumor cell survival, FGF has the potential to overcome chemotherapy resistance highlighting that chemotherapy may be more effective when used in combination with FGF inhibitor therapy. Furthermore, FGFRs have variable activity in promoting angiogenesis, with the FGFR-1 subgroup being associated with tumor progression and the FGFR-2 subgroup being associated with either early tumor development or decreased tumor progression. This review highlights the growing knowledge of FGFs in tumor cell growth and survival, including an overview of FGF intracellular signaling pathways, the role of FGFs in angiogenesis, patterns of FGF and FGFR expression in various tumor types, and the role of FGFs in tumor progression.

  16. Tumor-Induced Hyperlipidemia Contributes to Tumor Growth

    PubMed Central

    Huang, Jianfeng; Li, Lena; Lian, Jihong; Schauer, Silvia; Vesely, Paul W.; Kratky, Dagmar; Hoefler, Gerald; Lehner, Richard

    2016-01-01

    Summary The known link between obesity and cancer suggests an important interaction between the host lipid metabolism and tumorigenesis. Here, we used a syngeneic tumor graft model to demonstrate that tumor development influences the host lipid metabolism. BCR-Abl-transformed precursor B cell tumors induced hyperlipidemia by stimulating very low-density lipoprotein (VLDL) production and blunting VLDL and low-density lipoprotein (LDL) turnover. To assess whether tumor progression was dependent on tumor-induced hyperlipidemia, we utilized the VLDL production-deficient mouse model, carboxylesterase3/triacylglycerol hydrolase (Ces3/TGH) knockout mice. In Ces3/Tgh–/– tumor-bearing mice, plasma triglyceride and cholesterol levels were attenuated. Importantly tumor weight was reduced in Ces3/Tgh–/– mice. Mechanistically, reduced tumor growth in Ces3/Tgh–/– mice was attributed to reversal of tumor-induced PCSK9-mediated degradation of hepatic LDLR and decrease of LDL turnover. Our data demonstrate that tumor-induced hyperlipidemia encompasses a feed-forward loop that reprograms hepatic lipoprotein homeostasis in part by providing LDL cholesterol to support tumor growth. PMID:27050512

  17. The Universal Dynamics of Tumor Growth

    PubMed Central

    Brú, Antonio; Albertos, Sonia; Luis Subiza, José; García-Asenjo, José López; Brú, Isabel

    2003-01-01

    Scaling techniques were used to analyze the fractal nature of colonies of 15 cell lines growing in vitro as well as of 16 types of tumor developing in vivo. All cell colonies were found to exhibit exactly the same growth dynamics—which correspond to the molecular beam epitaxy (MBE) universality class. MBE dynamics are characterized by 1), a linear growth rate, 2), the constraint of cell proliferation to the colony/tumor border, and 3), surface diffusion of cells at the growing edge. These characteristics were experimentally verified in the studied colonies. That these should show MBE dynamics is in strong contrast with the currently established concept of tumor growth: the kinetics of this type of proliferation rules out exponential or Gompertzian growth. Rather, a clear linear growth regime is followed. The importance of new cell movements—cell diffusion at the tumor border—lies in the fact that tumor growth must be conceived as a competition for space between the tumor and the host, and not for nutrients or other factors. Strong experimental evidence is presented for 16 types of tumor, the growth of which cell surface diffusion may be the main mechanism responsible in vivo. These results explain most of the clinical and biological features of colonies and tumors, offer new theoretical frameworks, and challenge the wisdom of some current clinical strategies. PMID:14581197

  18. Delayed Contrast Extravasation MRI for Depicting Tumor and Non-Tumoral Tissues in Primary and Metastatic Brain Tumors

    PubMed Central

    Zach, Leor; Guez, David; Last, David; Daniels, Dianne; Grober, Yuval; Nissim, Ouzi; Hoffmann, Chen; Nass, Dvora; Talianski, Alisa; Spiegelmann, Roberto; Cohen, Zvi R.; Mardor, Yael

    2012-01-01

    The current standard of care for newly diagnosed glioblastoma multiforme (GBM) is resection followed by radiotherapy with concomitant and adjuvant temozolomide. Recent studies suggest that nearly half of the patients with early radiological deterioration post treatment do not suffer from tumor recurrence but from pseudoprogression. Similarly, a significant number of patients with brain metastases suffer from radiation necrosis following radiation treatments. Conventional MRI is currently unable to differentiate tumor progression from treatment-induced effects. The ability to clearly differentiate tumor from non-tumoral tissues is crucial for appropriate patient management. Ten patients with primary brain tumors and 10 patients with brain metastases were scanned by delayed contrast extravasation MRI prior to surgery. Enhancement subtraction maps calculated from high resolution MR images acquired up to 75 min after contrast administration were used for obtaining stereotactic biopsies. Histological assessment was then compared with the pre-surgical calculated maps. In addition, the application of our maps for prediction of progression was studied in a small cohort of 13 newly diagnosed GBM patients undergoing standard chemoradiation and followed up to 19.7 months post therapy. The maps showed two primary enhancement populations: the slow population where contrast clearance from the tissue was slower than contrast accumulation and the fast population where clearance was faster than accumulation. Comparison with histology confirmed the fast population to consist of morphologically active tumor and the slow population to consist of non-tumoral tissues. Our maps demonstrated significant correlation with perfusion-weighted MR data acquired simultaneously, although contradicting examples were shown. Preliminary results suggest that early changes in the fast volumes may serve as a predictor for time to progression. These preliminary results suggest that our high resolution

  19. Alpha1-antitrypsin inhibits angiogenesis and tumor growth.

    PubMed

    Huang, Hanhua; Campbell, Steven C; Nelius, Thomas; Bedford, Dhugal F; Veliceasa, Dorina; Bouck, Noel P; Volpert, Olga V

    2004-12-20

    Disturbances of the ratio between angiogenic inducers and inhibitors in tumor microenvironment are the driving force behind angiogenic switch critical for tumor progression. Angiogenic inhibitors may vary depending on organismal age and the tissue of origin. We showed that alpha(1)-antitrypsin (AAT), a serine protease inhibitor (serpin) is an inhibitor of angiogenesis, which induced apoptosis and inhibited chemotaxis of endothelial cells. S- and Z-type mutations that cause abnormal folding and defective serpin activity abrogated AAT antiangiogenic activity. Removal of the C-terminal reactive site loop had no effect on its angiostatic activity. Both native AAT and AAT truncated on C-terminus (AATDelta) inhibited neovascularization in the rat cornea and delayed the growth of subcutaneous tumors in mice. Treatment with native AAT and truncated AATDelta, but not control vehicle reduced tumor microvessel density, while increasing apoptosis within tumor endothelium. Comparative analysis of the human tumors and normal tissues of origin showed correlation between reduced local alpha(1)-antitrypsin expression and more aggressive tumor growth.

  20. Extracellular purines, purinergic receptors and tumor growth

    PubMed Central

    Di Virgilio, F; Adinolfi, E

    2017-01-01

    Virtually, all tumor cells as well as all immune cells express plasma membrane receptors for extracellular nucleosides (adenosine) and nucleotides (ATP, ADP, UTP, UDP and sugar UDP). The tumor microenvironment is characterized by an unusually high concentration of ATP and adenosine. Adenosine is a major determinant of the immunosuppressive tumor milieu. Sequential hydrolysis of extracellular ATP catalyzed by CD39 and CD73 is the main pathway for the generation of adenosine in the tumor interstitium. Extracellular ATP and adenosine mold both host and tumor responses. Depending on the specific receptor activated, extracellular purines mediate immunosuppression or immunostimulation on the host side, and growth stimulation or cytotoxicity on the tumor side. Recent progress in this field is providing the key to decode this complex scenario and to lay the basis to harness the potential benefits for therapy. Preclinical data show that targeting the adenosine-generating pathway (that is, CD73) or adenosinergic receptors (that is, A2A) relieves immunosuppresion and potently inhibits tumor growth. On the other hand, growth of experimental tumors is strongly inhibited by targeting the P2X7 ATP-selective receptor of cancer and immune cells. This review summarizes the recent data on the role played by extracellular purines (purinergic signaling) in host–tumor interaction and highlights novel therapeutic options stemming from recent advances in this field. PMID:27321181

  1. Assessment of antitumor activity for tumor xenograft studies using exponential growth models.

    PubMed

    Wu, Jianrong

    2011-05-01

    In preclinical tumor xenograft experiments, the antitumor activity of the tested agents is often assessed by endpoints such as tumor doubling time, tumor growth delay (TGD), and log10 cell kill (LCK). In tumor xenograft literature, the values of these endpoints are presented without any statistical inference, which ignores the noise in the experimental data. However, using exponential growth models, these endpoints can be quantified by their growth curve parameters, thus allowing parametric inference, such as an interval estimate, to be used to assess the antitumor activity of the treatment.

  2. Autocrine growth factors and solid tumor malignancy.

    PubMed Central

    Walsh, J. H.; Karnes, W. E.; Cuttitta, F.; Walker, A.

    1991-01-01

    The ability of malignant cells to escape the constraint that normally regulate cell growth and differentiation has been a primary focus of attention for investigators of cancer cell biology. An outcome of this attention has been the discovery that the protein products of oncogenes play a role in the activation of growth signal pathways. A second outcome, possibly related to abnormal oncogene expression, has been the discovery that malignant cells frequently show an ability to regulate their own growth by the release of autocrine growth modulatory substances. Most important, the growth of certain malignant cell types has been shown to depend on autocrine growth circuits. A malignant tumor whose continued growth depends on the release of an autocrine growth factor may be vulnerable to treatment with specific receptor antagonists or immunoneutralizing antibodies designed to break the autocrine circuit. Information is rapidly emerging concerning autocrine growth factors in selected human solid tissue malignancy. Images PMID:1926844

  3. Effects of anatomical constraints on tumor growth

    NASA Astrophysics Data System (ADS)

    Capogrosso Sansone, B.; Delsanto, P. P.; Magnano, M.; Scalerandi, M.

    2001-08-01

    Competition for available nutrients and the presence of anatomical barriers are major determinants of tumor growth in vivo. We extend a model recently proposed to simulate the growth of neoplasms in real tissues to include geometrical constraints mimicking pressure effects on the tumor surface induced by the presence of rigid or semirigid structures. Different tissues have different diffusivities for nutrients and cells. Despite the simplicity of the approach, based on a few inherently local mechanisms, the numerical results agree qualitatively with clinical data (computed tomography scans of neoplasms) for the larynx and the oral cavity.

  4. Contour Instabilities in Early Tumor Growth Models

    NASA Astrophysics Data System (ADS)

    Ben Amar, M.; Chatelain, C.; Ciarletta, P.

    2011-04-01

    Recent tumor growth models are often based on the multiphase mixture framework. Using bifurcation theory techniques, we show that such models can give contour instabilities. Restricting to a simplified but realistic version of such models, with an elastic cell-to-cell interaction and a growth rate dependent on diffusing nutrients, we prove that the tumor cell concentration at the border acts as a control parameter inducing a bifurcation with loss of the circular symmetry. We show that the finite wavelength at threshold has the size of the proliferating peritumoral zone. We apply our predictions to melanoma growth since contour instabilities are crucial for early diagnosis. Given the generality of the equations, other relevant applications can be envisaged for solving problems of tissue growth and remodeling.

  5. A tumor growth model with deformable ECM.

    PubMed

    Sciumè, G; Santagiuliana, R; Ferrari, M; Decuzzi, P; Schrefler, B A

    2014-11-26

    Existing tumor growth models based on fluid analogy for the cells do not generally include the extracellular matrix (ECM), or if present, take it as rigid. The three-fluid model originally proposed by the authors and comprising tumor cells (TC), host cells (HC), interstitial fluid (IF) and an ECM, considered up to now only a rigid ECM in the applications. This limitation is here relaxed and the deformability of the ECM is investigated in detail. The ECM is modeled as a porous solid matrix with Green-elastic and elasto-visco-plastic material behavior within a large strain approach. Jauman and Truesdell objective stress measures are adopted together with the deformation rate tensor. Numerical results are first compared with those of a reference experiment of a multicellular tumor spheroid (MTS) growing in vitro, then three different tumor cases are studied: growth of an MTS in a decellularized ECM, growth of a spheroid in the presence of host cells and growth of a melanoma. The influence of the stiffness of the ECM is evidenced and comparison with the case of a rigid ECM is made. The processes in a deformable ECM are more rapid than in a rigid ECM and the obtained growth pattern differs. The reasons for this are due to the changes in porosity induced by the tumor growth. These changes are inhibited in a rigid ECM. This enhanced computational model emphasizes the importance of properly characterizing the biomechanical behavior of the malignant mass in all its components to correctly predict its temporal and spatial pattern evolution.

  6. A tumor growth model with deformable ECM

    PubMed Central

    Sciumè, G; Santagiuliana, R; Ferrari, M; Decuzzi, P; Schrefler, B A

    2015-01-01

    Existing tumor growth models based on fluid analogy for the cells do not generally include the extracellular matrix (ECM), or if present, take it as rigid. The three-fluid model originally proposed by the authors and comprising tumor cells (TC), host cells (HC), interstitial fluid (IF) and an ECM, considered up to now only a rigid ECM in the applications. This limitation is here relaxed and the deformability of the ECM is investigated in detail. The ECM is modeled as a porous solid matrix with Green-elastic and elasto-visco-plastic material behavior within a large strain approach. Jauman and Truesdell objective stress measures are adopted together with the deformation rate tensor. Numerical results are first compared with those of a reference experiment of a multicellular tumor spheroid (MTS) growing in vitro, then three different tumor cases are studied: growth of an MTS in a decellularized ECM, growth of a spheroid in the presence of host cells and growth of a melanoma. The influence of the stiffness of the ECM is evidenced and comparison with the case of a rigid ECM is made. The processes in a deformable ECM are more rapid than in a rigid ECM and the obtained growth pattern differs. The reasons for this are due to the changes in porosity induced by the tumor growth. These changes are inhibited in a rigid ECM. This enhanced computational model emphasizes the importance of properly characterizing the biomechanical behavior of the malignant mass in all its components to correctly predict its temporal and spatial pattern evolution. PMID:25427284

  7. Gompertzian stochastic model with delay effect to cervical cancer growth

    NASA Astrophysics Data System (ADS)

    Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti; Bahar, Arifah

    2015-02-01

    In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits.

  8. Gompertzian stochastic model with delay effect to cervical cancer growth

    SciTech Connect

    Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti; Bahar, Arifah

    2015-02-03

    In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits.

  9. Stochastic Modelling of Gompertzian Tumor Growth

    NASA Astrophysics Data System (ADS)

    O'Rourke, S. F. C.; Behera, A.

    2009-08-01

    We study the effect of correlated noise in the Gompertzian tumor growth model for non-zero correlation time. The steady state probability distributions and average population of tumor cells are analyzed within the Fokker-Planck formalism to investigate the importance of additive and multiplicative noise. We find that the correlation strength and correlation time have opposite effects on the steady state probability distributions. It is observed that the non-bistable Gompertzian model, driven by correlated noise exhibits a stochastic resonance and phase transition. This behaviour of the Gompertz model is unaffected with the change of correlation time and occurs as a result of multiplicative noise.

  10. Radiosensitivity of different human tumor cells lines grown as multicellular spheroids determined from growth curves and survival data

    SciTech Connect

    Schwachoefer, J.H.C.; Crooijmans, R.P.; van Gasteren, J.J.; Hoogenhout, J.; Jerusalem, C.R.; Kal, H.B.; Theeuwes, A.G. )

    1989-11-01

    Five human tumor cell lines were grown as multicellular tumor spheroids (MTS) to determine whether multicellular tumor spheroids derived from different types of tumors would show tumor-type dependent differences in response to single-dose irradiation, and whether these differences paralleled clinical behavior. Multicellular tumor spheroids of two neuroblastoma, one lung adenocarcinoma, one melanoma, and a squamous cell carcinoma of the oral tongue, were studied in terms of growth delay, calculated cell survival, and spheroid control dose50 (SCD50). Growth delay and cell survival analysis for the tumor cell lines showed sensitivities that correlated well with clinical behavior of the tumor types of origin. Similar to other studies on melanoma multicellular tumor spheroids our spheroid control dose50 results for the melanoma cell line deviated from the general pattern of sensitivity. This might be due to the location of surviving cells, which prohibits proliferation of surviving cells and hence growth of melanoma multicellular tumor spheroids. This study demonstrates that radiosensitivity of human tumor cell lines can be evaluated in terms of growth delay, calculated cell survival, and spheroid control dose50 when grown as multicellular tumor spheroids. The sensitivity established from these evaluations parallels clinical behavior, thus offering a unique tool for the in vitro analysis of human tumor radiosensitivity.

  11. Recruitment of myeloid but not endothelial precursor cells facilitates tumor re-growth after local irradiation

    PubMed Central

    Kozin, Sergey V.; Kamoun, Walid S.; Huang, Yuhui; Dawson, Michelle R.; Jain, Rakesh K.; Duda, Dan G.

    2010-01-01

    Tumor neovascularization and growth may be promoted by recruitment of bone marrow-derived cells (BMDCs), which include endothelial precursor cells (EPCs) and “vascular modulatory” myelomonocytic (CD11b+) cells. BMDCs may also drive tumor re-growth after certain chemotherapeutic and vascular disruption treatments. In this study, we evaluated the role of BMDC recruitment in breast and lung carcinoma xenograft models after local irradiation (LI). We depleted the bone marrow by including whole body irradiation (WBI) of 6Gy as part of a total tumor dose of 21Gy, and compared the growth delay with the one achieved after LI of 21Gy. In both models, including WBI induced longer tumor growth delays. Moreover, including WBI increased lung tumor control probability by LI. Exogenous delivery of BMDCs from radiation-naïve donors partially abrogated the WBI effect. Myeloid BMDCs, primarily macrophages, rapidly accumulated in tumors after LI. Intratumoral expression of SDF-1α, a chemokine that promotes tissue retention of BMDCs, was noted 2 days after LI. Conversely, treatment with an inhibitor of SDF-1α receptor CXCR4 (AMD3100) with LI significantly delayed tumor re-growth. However, when administered starting from 5 days post-LI, AMD3100 treatment was ineffective. Lastly, with restorative bone marrow transplantation of Tie2-GFP-labeled BMDC population we observed an increased number of monocytes but not EPCs in tumors that recurred following LI. Our results suggest that an increase in intratumoral SDF-1α triggered by local irradiation recruits myelomonocyte/macrophage which promote tumor re-growth. PMID:20631066

  12. A novel thermal treatment modality for controlling breast tumor growth and progression.

    PubMed

    Xie, Yifan; Liu, Ping; Xu, Lisa X

    2012-01-01

    The new concept of keeping primary tumor under control in situ to suppress distant foci sheds light on the novel treatment of metastatic tumor. Hyperthermia is considered as one of the means for controlling tumor growth. In this study, a novel thermal modality was built to introduce hyperthermia effect on tumor to suppress its growth and progression using 4T1 murine mammary carcinoma, a common animal model of metastatic breast cancer. A mildly raised temperature (i.e.39°C) was imposed on the skin surface of the implanted tumor using a thermal heating pad. Periodic heating (12 hours per day) was carried out for 3 days, 7 days, 14 days, and 21 days, respectively. The tumor growth rate was found significantly decreased in comparison to the control without hyperthermia. Biological evidences associated with tumor angiogenesis and metastasis were examined using histological analyses. Accordingly, the effect of mild hyperthermia on immune cell infiltration into tumors was also investigated. It was demonstrated that a delayed tumor growth and malignancy progression was achieved by mediating tumor cell apoptosis, vascular injury, degrading metastasis potential and as well as inhibiting the immunosuppressive cell myeloid derived suppressor cells (MDSCs) recruitment. Further mechanistic studies will be performed to explore the quantitative relationship between tumor progression and thermal dose in the near future.

  13. Polo-like kinase 1 inhibition kills glioblastoma multiforme brain tumor cells in part through loss of SOX2 and delays tumor progression in mice.

    PubMed

    Lee, Cathy; Fotovati, Abbas; Triscott, Joanna; Chen, James; Venugopal, Chitra; Singhal, Ash; Dunham, Christopher; Kerr, John M; Verreault, Maite; Yip, Stephen; Wakimoto, Hiroaki; Jones, Chris; Jayanthan, Aarthi; Narendran, Aru; Singh, Sheila K; Dunn, Sandra E

    2012-06-01

    Glioblastoma multiforme (GBM) ranks among the deadliest types of cancer and given these new therapies are urgently needed. To identify molecular targets, we queried a microarray profiling 467 human GBMs and discovered that polo-like kinase 1 (PLK1) was highly expressed in these tumors and that it clustered with the proliferative subtype. Patients with PLK1-high tumors were more likely to die from their disease suggesting that current therapies are inactive against such tumors. This prompted us to examine its expression in brain tumor initiating cells (BTICs) given their association with treatment failure. BTICs isolated from patients expressed 110-470 times more PLK1 than normal human astrocytes. Moreover, BTICs rely on PLK1 for survival because the PLK1 inhibitor BI2536 inhibited their growth in tumorsphere cultures. PLK1 inhibition suppressed growth, caused G(2) /M arrest, induced apoptosis, and reduced the expression of SOX2, a marker of neural stem cells, in SF188 cells. Consistent with SOX2 inhibition, the loss of PLK1 activity caused the cells to differentiate based on elevated levels of glial fibrillary acidic protein and changes in cellular morphology. We then knocked glial fibrillary acidic protein (GFAP) down SOX2 with siRNA and showed that it too inhibited cell growth and induced cell death. Likewise, in U251 cells, PLK1 inhibition suppressed cell growth, downregulated SOX2, and induced cell death. Furthermore, BI2536 delayed tumor growth of U251 cells in an orthotopic brain tumor model, demonstrating that the drug is active against GBM. In conclusion, PLK1 level is elevated in GBM and its inhibition restricts the growth of brain cancer cells.

  14. Growth patterns of microscopic brain tumors

    NASA Astrophysics Data System (ADS)

    Sander, Leonard M.; Deisboeck, Thomas S.

    2002-11-01

    Highly malignant brain tumors such as glioblastoma multiforme form complex growth patterns in vitro in which invasive cells organize in tenuous branches. Here, we formulate a chemotaxis model for this sort of growth. A key element controlling the pattern is homotype attraction, i.e., the tendency for invasive cells to follow pathways previously explored. We investigate this in two ways: we show that there is an intrinsic instability in the model, which leads to branch formation. We also give a discrete description for the expansion of the invasive zone, and a continuum model for the nutrient supply. The results indicate that both strong heterotype chemotaxis and strong homotype chemoattraction are required for branch formation within the invasive zone. Our model thus can give a way to assess the importance of the various processes, and a way to explore and analyze transitions between different growth regimes.

  15. Self-Image in Adolescents with Delayed Puberty and Growth Retardation.

    ERIC Educational Resources Information Center

    Apter, Alan; And Others

    1981-01-01

    Adolescents with varying combinations of pubertal delay and growth retardation were given the Offer Self-Image Questionnaire. Delay in sexual maturation by itself had no deleterious effect on self-image but growth retardation did. (Author/GK)

  16. Replicator dynamics with alternate growth functions, delay, and quasiperiodic forcing

    NASA Astrophysics Data System (ADS)

    Wesson, Elizabeth Nicholas

    Evolutionary dynamics combines game theory and nonlinear dynamics to model competition in biological and social situations. The replicator equation is a standard paradigm in evolutionary dynamics. The growth rate of each strategy is its excess fitness: the deviation of its fitness from the average. The gametheoretic aspect of the model lies in the choice of fitness function, which is determined by a payoff matrix. Two well-known replicator systems are the threestrategy Rock-Paper-Scissors game and the two-strategy Hawk-Dove game. In this work, we analyze the dynamics of replicator systems with three different types of modifications. The first generalization of the replicator model is given by considering alternate growth functions. We find that in the Rock-Paper-Scissors game with a logistic growth function, there are several fixed points that do not exist in the standard replicator model. The system exhibits both periodic motion and convergence to attractors. We also analyze replicator systems with delayed interactions between strategies. We consider a symmetric delay model, in which the fitness of each strategy is its expected payoff delayed by a time interval; and an asymmetric model, in which same-strategy terms appearing in the fitness of a given strategy are not delayed. In both cases, limit cycles arise that cannot occur in the usual replicator model. Finally, we examine Rock-Paper-Scissors systems with quasiperiodic forcing of the payoff coefficients. This model may represent systems in which the competition is affected by cyclical processes on different time-scales. We find that the stability of the equilibrium state depends sensitively on the two forcing frequencies; in fact, the region of stability has fractal boundary.

  17. Tumor suppressor ARF regulates tissue microenvironment and tumor growth through modulation of macrophage polarization

    PubMed Central

    Jiménez-García, Lidia; Herranz, Sandra; Higueras, María Angeles

    2016-01-01

    Tumor microenvironment has been described to play a key role in tumor growth, progression, and metastasis. Macrophages are a major cellular constituent of the tumor stroma, and particularly tumor associated macrophages (TAMs or M2-like macrophages) exert important immunosuppressive activity and a pro-tumoral role within the tumor microenvironment. Alternative-reading frame (ARF) gene is widely inactivated in human cancer. We have previously demonstrated that ARF deficiency severely impairs inflammatory response establishing a new role for ARF in the regulation of innate immunity. On the basis of these observations, we hypothesized that ARF may also regulates tumor growth through recruitment and modulation of the macrophage phenotype in the tumor microenvironment. Xenograft assays of B16F10 melanoma cells into ARF-deficient mice resulted in increased tumor growth compared to those implanted in WT control mice. Tumors from ARF-deficient mice exhibited significantly increased number of TAMs as well as microvascular density. Transwell assays showed crosstalk between tumor cells and macrophages. On the one hand, ARF-deficient macrophages modulate migratory ability of the tumor cells. And on the other, tumor cells promote the skewing of ARF−/− macrophages toward a M2-type polarization. In conclusion, these results demonstrate that ARF deficiency facilitates the infiltration of macrophages into the tumor mass and favors their polarization towards a M2 phenotype, thus promoting tumor angiogenesis and tumor growth. This work provides novel information about the critical role of ARF in the modulation of tumor microenvironment. PMID:27572316

  18. Delaying cluster growth of ionotropic induced alginate gelation by oligoguluronate.

    PubMed

    Padoł, Anna Maria; Maurstad, Gjertrud; Draget, Kurt Ingar; Stokke, Bjørn Torger

    2015-11-20

    Alginates form gels in the presence of various divalent ions, such as Ca(2+) that mediate lateral association of chain segments. Various procedures exist that introduce Ca(2+) to yield alginate hydrogels with overall homogeneous or controlled gradients in the concentration profiles. In the present study, the effect of adding oligomers of α-l-guluronic acid (oligoGs) to gelling solutions of alginate was investigated by determination of the cluster growth stimulated by in situ release of Ca(2+). Three different alginate samples varying in fraction of α-l-guluronic acid and molecular weights were employed. The cluster growth was determined for both pure alginates and alginates with two different concentrations of the oligoGs employing dynamic light scattering. The results show that addition of oligoG slows down the cluster growth, the more efficient for the alginates with higher fraction of α-l-guluronic acid, and the higher molecular weight. The efficiency in delaying and slowing the cluster growth induced by added oligoG were discussed in view of the molecular parameters of the alginates. These results show that oligoG can be added to alginate solutions to control the cluster growth and eventually also transition to the gel state. Quantitative relation between the concentration of added oligoG, type and molecular weight of the alginate, and concentration, can be employed as guidelines in tuning alginate cluster growth with specific properties.

  19. The Role of Tumor Cell-Derived Connective Tissue Growth Factor (CTGF/CCN2) in Pancreatic Tumor Growth

    PubMed Central

    Bennewith, Kevin L.; Huang, Xin; Ham, Christine M.; Graves, Edward E.; Erler, Janine T.; Kambham, Neeraja; Feazell, Jonathan; Yang, George P.; Koong, Albert

    2009-01-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CCN2 derived from either tumor cells or stromal cells as it affects the growth of pancreatic tumors is unknown. Using genetic inhibition of CCN2, we have discovered that CCN2 derived from tumor cells is a critical regulator of pancreatic tumor growth. Pancreatic tumor cells derived from CCN2 shRNA-expressing clones showed dramatically reduced growth in soft agar and when implanted subcutaneously. We also observed a role for CCN2 in the growth of pancreatic tumors implanted orthotopically, with tumor volume measurements obtained by PET imaging. Mechanistically, CCN2 protects cells from hypoxia-mediated apoptosis, providing an in vivo selection for tumor cells that express high levels of CCN2. We found that CCN2 expression and secretion was increased in hypoxic pancreatic tumor cells in vitro, and we observed co-localization of CCN2 and hypoxia in pancreatic tumor xenografts and clinical pancreatic adenocarcinomas. Furthermore, we found increased CCN2 staining in clinical pancreatic tumor tissue relative to stromal cells surrounding the tumor, supporting our assertion that tumor cell-derived CCN2 is important for pancreatic tumor growth. Taken together, these data improve our understanding of the mechanisms responsible for pancreatic tumor growth and progression, and also indicate that CCN2 produced by tumor cells represents a viable therapeutic target for the treatment of pancreatic cancer. PMID:19179545

  20. Clinical utility of array comparative genomic hybridization: uncovering tumor susceptibility in individuals with developmental delay.

    PubMed

    Adam, Margaret P; Justice, April N; Schelley, Susan; Kwan, Andrea; Hudgins, Louanne; Martin, Christa L

    2009-01-01

    Microarray-based comparative genomic hybridization can determine genome-wide copy number alterations at the kilobase level. We highlight the clinical utility of microarray-based comparative genomic hybridization in determining tumor susceptibility in 3 patients with dysmorphic features and developmental delay, likely decreasing both morbidity and mortality in these patients.

  1. A new ODE tumor growth modeling based on tumor population dynamics

    SciTech Connect

    Oroji, Amin; Omar, Mohd bin; Yarahmadian, Shantia

    2015-10-22

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan.

  2. A new ODE tumor growth modeling based on tumor population dynamics

    NASA Astrophysics Data System (ADS)

    Oroji, Amin; Omar, Mohd bin; Yarahmadian, Shantia

    2015-10-01

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan.

  3. A systematic analysis of experimental immunotherapies on tumors differing in size and duration of growth

    PubMed Central

    Wen, Frank T.; Thisted, Ronald A.; Rowley, Donald A.; Schreiber, Hans

    2012-01-01

    We conducted a systematic analysis to determine the reason for the apparent disparity of success of immunotherapy between clinical and experimental cancers. To do this, we performed a search of PubMed using the keywords “immunotherapy” AND “cancer” for the years of 1980 and 2010. The midspread of experimental tumors used in all the relevant literature published in 2010 were between 0.5–121 mm3 in volume or had grown for four to eight days. Few studies reported large tumors that could be considered representative of clinical tumors, in terms of size and duration of growth. The predominant effect of cancer immunotherapies was slowed or delayed outgrowth. Regression of tumors larger than 200 mm3 was observed only after passive antibody or adoptive T cell therapy. The effectiveness of other types of immunotherapy was generally scattered. By comparison, very few publications retrieved by the 1980 search could meet our selection criteria; all of these used tumors smaller than 100 mm3, and none reported regression. In the entire year of 2010, only 13 used tumors larger than 400 mm3, and nine of these reported tumor regression. Together, these results indicate that most recent studies, using many diverse approaches, still treat small tumors only to report slowed or delayed growth. Nevertheless, a few recent studies indicate effective therapy against large tumors when using passive antibody or adoptive T cell therapy. For the future, we aspire to witness the increased use of experimental studies treating tumors that model clinical cancers in terms of size and duration of growth. PMID:22720238

  4. Modulating mammary tumor growth, metastasis and immunosuppression by siRNA-induced MIF reduction in tumor microenvironment.

    PubMed

    Zhang, M; Yan, L; Kim, J A

    2015-10-01

    Macrophage migration inhibitory factor (MIF) has been identified as a major gene product upregulated in breast cancer cells-tissues upon the accumulation of macrophages. However, regulatory role of MIF in tumor microenvironment is not well understood. Previously, we have developed small interfering RNA (siRNA)-loaded nanoparticle system to effectively reduce MIF expression in both breast cancer cells and macrophages. Using this nanoparticle system, in this study we demonstrated that the siRNA-induced MIF reduction in murine mammary cancer line 4T1 and human breast cancer line MDA-MB-231 resulted in significant reduction of cell proliferation and increase of apoptosis; the siRNA-induced MIF reduction in tumor-associated macrophages resulted in a significant reduction of surface expression of CD74 and CD206 and a significant increase of surface expression of major histocompatibility complex II, as well as intracellular expression of tumor necrosis factor-α and interleukin-2. A direct injection of the MIF-siRNA-loaded nanoparticles into 4T1 tumor in mice resulted in effective reduction of intratumoral MIF. This led to a reduction of tumor growth and metastasis. This also resulted in a reduction of circulating myeloid-derived suppressive cells both in number and in suppressive function. CD4 T-cell infiltration to tumor was increased. More importantly, this not only slowed the growth of treated 4T1 tumor, but also delayed the growth and metastasis of a contralateral untreated 4T1-luc tumor, suggesting the development of systemic antitumor responses. This study demonstrates for the first time that the siRNA-mediated intratumoral MIF reduction can induce antitumoral immune response via reducing systemic immune suppression.

  5. Delayed Frost Growth on Jumping-Drop Superhydrophobic Surfaces

    SciTech Connect

    Boreyko, Jonathan B; Collier, Pat

    2013-01-01

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an inter-drop frost wave. The growth of this inter-drop frost front is shown to be up to three times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of inter-drop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an inter-drop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser was found to be superior to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by minimizing the success of interdrop ice bridge formation.

  6. Delayed frost growth on jumping-drop superhydrophobic surfaces.

    PubMed

    Boreyko, Jonathan B; Collier, C Patrick

    2013-02-26

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an interdrop frost wave. The growth of this interdrop frost front is shown to be up to 3 times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of interdrop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an interdrop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser minimized frost formation relative to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by limiting the success of interdrop ice bridge formation.

  7. Existence of Limit Cycles in the Solow Model with Delayed-Logistic Population Growth

    PubMed Central

    2014-01-01

    This paper is devoted to the existence and stability analysis of limit cycles in a delayed mathematical model for the economy growth. Specifically the Solow model is further improved by inserting the time delay into the logistic population growth rate. Moreover, by choosing the time delay as a bifurcation parameter, we prove that the system loses its stability and a Hopf bifurcation occurs when time delay passes through critical values. Finally, numerical simulations are carried out for supporting the analytical results. PMID:24592147

  8. Existence of limit cycles in the Solow model with delayed-logistic population growth.

    PubMed

    Bianca, Carlo; Guerrini, Luca

    2014-01-01

    This paper is devoted to the existence and stability analysis of limit cycles in a delayed mathematical model for the economy growth. Specifically the Solow model is further improved by inserting the time delay into the logistic population growth rate. Moreover, by choosing the time delay as a bifurcation parameter, we prove that the system loses its stability and a Hopf bifurcation occurs when time delay passes through critical values. Finally, numerical simulations are carried out for supporting the analytical results.

  9. Modified Gompertz equation for electrotherapy murine tumor growth kinetics: predictions and new hypotheses

    PubMed Central

    2010-01-01

    Background Electrotherapy effectiveness at different doses has been demonstrated in preclinical and clinical studies; however, several aspects that occur in the tumor growth kinetics before and after treatment have not yet been revealed. Mathematical modeling is a useful instrument that can reveal some of these aspects. The aim of this paper is to describe the complete growth kinetics of unperturbed and perturbed tumors through use of the modified Gompertz equation in order to generate useful insight into the mechanisms that underpin this devastating disease. Methods The complete tumor growth kinetics for control and treated groups are obtained by interpolation and extrapolation methods with different time steps, using experimental data of fibrosarcoma Sa-37. In the modified Gompertz equation, a delay time is introduced to describe the tumor's natural history before treatment. Different graphical strategies are used in order to reveal new information in the complete kinetics of this tumor type. Results The first stage of complete tumor growth kinetics is highly non linear. The model, at this stage, shows different aspects that agree with those reported theoretically and experimentally. Tumor reversibility and the proportionality between regions before and after electrotherapy are demonstrated. In tumors that reach partial remission, two antagonistic post-treatment processes are induced, whereas in complete remission, two unknown antitumor mechanisms are induced. Conclusion The modified Gompertz equation is likely to lead to insights within cancer research. Such insights hold promise for increasing our understanding of tumors as self-organizing systems and, the possible existence of phase transitions in tumor growth kinetics, which, in turn, may have significant impacts both on cancer research and on clinical practice. PMID:21029411

  10. The model muddle: in search of tumor growth laws.

    PubMed

    Gerlee, Philip

    2013-04-15

    In this article, we will trace the historical development of tumor growth laws, which in a quantitative fashion describe the increase in tumor mass/volume over time. These models are usually formulated in terms of differential equations that relate the growth rate of the tumor to its current state and range from the simple one-parameter exponential growth model to more advanced models that contain a large number of parameters. Understanding the assumptions and consequences of such models is important, as they often underpin more complex models of tumor growth. The conclusion of this brief survey is that although much improvement has occurred over the last century, more effort and new models are required if we are to understand the intricacies of tumor growth.

  11. Extracellular Vesicles from Metastatic Rat Prostate Tumors Prime the Normal Prostate Tissue to Facilitate Tumor Growth

    PubMed Central

    Halin Bergström, Sofia; Hägglöf, Christina; Thysell, Elin; Bergh, Anders; Wikström, Pernilla; Lundholm, Marie

    2016-01-01

    Accumulating data indicates that tumor-derived extracellular vesicles (EVs) are responsible for tumor-promoting effects. However, if tumor EVs also prepare the tumor-bearing organ for subsequent tumor growth, and if this effect is different in low and high malignant tumors is not thoroughly explored. Here we used orthotopic rat Dunning R-3327 prostate tumors to compare the role of EVs from fast growing and metastatic MatLyLu (MLL) tumors with EVs from more indolent and non-metastatic Dunning G (G) tumors. Prostate tissue pre-conditioned with MLL-EVs in vivo facilitated G tumor establishment compared to G-EVs. MLL-EVs increased prostate epithelial proliferation and macrophage infiltration into the prostate compared to G-EVs. Both types of EVs increased macrophage endocytosis and the mRNA expression of genes associated with M2 polarization in vitro, with MLL-EVs giving the most pronounced effects. MLL-EVs also altered the mRNA expression of growth factors and cytokines in primary rat prostate fibroblasts compared to G-EVs, suggesting fibroblast activation. Our findings propose that EVs from metastatic tumors have the ability to prime the prostate tissue and enhance tumor growth to a higher extent than EVs from non-metastatic tumors. Identifying these differences could lead to novel therapeutic targets and potential prognostic markers for prostate cancer. PMID:27550147

  12. Vascular normalization induced by sinomenine hydrochloride results in suppressed mammary tumor growth and metastasis.

    PubMed

    Zhang, Huimin; Ren, Yu; Tang, Xiaojiang; Wang, Ke; Liu, Yang; Zhang, Li; Li, Xiao; Liu, Peijun; Zhao, Changqi; He, Jianjun

    2015-03-09

    Solid tumor vasculature is characterized by structural and functional abnormality and results in a hostile tumor microenvironment that mediates several deleterious aspects of tumor behavior. Sinomenine is an alkaloid extracted from the Chinese medicinal plant, Sinomenium acutum, which has been utilized to treat rheumatism in China for over 2000 years. Though sinomenine has been demonstrated to mediate a wide range of pharmacological actions, few studies have focused on its effect on tumor vasculature. We showed here that intraperitoneally administration of 100 mg/kg sinomenine hydrochloride (SH, the hydrochloride chemical form of sinomenine) in two orthotopic mouse breast cancer models for 14 days, delayed mammary tumor growth and decreased metastasis by inducing vascular maturity and enhancing tumor perfusion, while improving chemotherapy and tumor immunity. The effects of SH on tumor vessels were caused in part by its capability to restore the balance between pro-angiogenic factor (bFGF) and anti-angiogenic factor (PF4). However 200 mg/kg SH didn't exhibit the similar inhibitory effect on tumor progression due to the immunosuppressive microenvironment caused by excessive vessel pruning, G-CSF upregulation, and GM-CSF downregulation. Altogether, our findings suggest that SH induced vasculature normalization contributes to its anti-tumor and anti-metastasis effect on breast cancer at certain dosage.

  13. Vascular Normalization Induced by Sinomenine Hydrochloride Results in Suppressed Mammary Tumor Growth and Metastasis

    PubMed Central

    Zhang, Huimin; Ren, Yu; Tang, Xiaojiang; Wang, Ke; Liu, Yang; Zhang, Li; Li, Xiao; Liu, Peijun; Zhao, Changqi; He, Jianjun

    2015-01-01

    Solid tumor vasculature is characterized by structural and functional abnormality and results in a hostile tumor microenvironment that mediates several deleterious aspects of tumor behavior. Sinomenine is an alkaloid extracted from the Chinese medicinal plant, Sinomenium acutum, which has been utilized to treat rheumatism in China for over 2000 years. Though sinomenine has been demonstrated to mediate a wide range of pharmacological actions, few studies have focused on its effect on tumor vasculature. We showed here that intraperitoneally administration of 100 mg/kg sinomenine hydrochloride (SH, the hydrochloride chemical form of sinomenine) in two orthotopic mouse breast cancer models for 14 days, delayed mammary tumor growth and decreased metastasis by inducing vascular maturity and enhancing tumor perfusion, while improving chemotherapy and tumor immunity. The effects of SH on tumor vessels were caused in part by its capability to restore the balance between pro-angiogenic factor (bFGF) and anti-angiogenic factor (PF4). However 200 mg/kg SH didn't exhibit the similar inhibitory effect on tumor progression due to the immunosuppressive microenvironment caused by excessive vessel pruning, G-CSF upregulation, and GM-CSF downregulation. Altogether, our findings suggest that SH induced vasculature normalization contributes to its anti-tumor and anti-metastasis effect on breast cancer at certain dosage. PMID:25749075

  14. A multiphase model for three-dimensional tumor growth

    PubMed Central

    Sciumè, G; Shelton, S; Gray, WG; Miller, CT; Hussain, F; Ferrari, M; Decuzzi, P; Schrefler, BA

    2014-01-01

    Several mathematical formulations have analyzed the time-dependent behaviour of a tumor mass. However, most of these propose simplifications that compromise the physical soundness of the model. Here, multiphase porous media mechanics is extended to model tumor evolution, using governing equations obtained via the Thermodynamically Constrained Averaging Theory (TCAT). A tumor mass is treated as a multiphase medium composed of an extracellular matrix (ECM); tumor cells (TC), which may become necrotic depending on the nutrient concentration and tumor phase pressure; healthy cells (HC); and an interstitial fluid (IF) for the transport of nutrients. The equations are solved by a Finite Element method to predict the growth rate of the tumor mass as a function of the initial tumor-to-healthy cell density ratio, nutrient concentration, mechanical strain, cell adhesion and geometry. Results are shown for three cases of practical biological interest such as multicellular tumor spheroids (MTS) and tumor cords. First, the model is validated by experimental data for time-dependent growth of an MTS in a culture medium. The tumor growth pattern follows a biphasic behaviour: initially, the rapidly growing tumor cells tend to saturate the volume available without any significant increase in overall tumor size; then, a classical Gompertzian pattern is observed for the MTS radius variation with time. A core with necrotic cells appears for tumor sizes larger than 150 μm, surrounded by a shell of viable tumor cells whose thickness stays almost constant with time. A formula to estimate the size of the necrotic core is proposed. In the second case, the MTS is confined within a healthy tissue. The growth rate is reduced, as compared to the first case – mostly due to the relative adhesion of the tumor and healthy cells to the ECM, and the less favourable transport of nutrients. In particular, for tumor cells adhering less avidly to the ECM, the healthy tissue is progressively displaced

  15. A Mathematical Model of Prostate Tumor Growth Under Hormone Therapy with Mutation Inhibitor

    NASA Astrophysics Data System (ADS)

    Tao, Youshan; Guo, Qian; Aihara, Kazuyuki

    2010-04-01

    This paper extends Jackson’s model describing the growth of a prostate tumor with hormone therapy to a new one with hypothetical mutation inhibitors. The new model not only considers the mutation by which androgen-dependent (AD) tumor cells mutate into androgen-independent (AI) ones but also introduces inhibition which is assumed to change the mutation rate. The tumor consists of two types of cells (AD and AI) whose proliferation and apoptosis rates are functions of androgen concentration. The mathematical model represents a free-boundary problem for a nonlinear system of parabolic equations, which describe the evolution of the populations of the above two types of tumor cells. The tumor surface is a free boundary, whose velocity is equal to the cell’s velocity there. Global existence and uniqueness of solutions of this model is proved. Furthermore, explicit formulae of tumor volume at any time t are found in androgen-deprived environment under the assumption of radial symmetry, and therefore the dynamics of tumor growth under androgen-deprived therapy could be predicted by these formulae. Qualitative analysis and numerical simulation show that controlling the mutation may improve the effect of hormone therapy or delay a tumor relapse.

  16. The phase-field model in tumor growth

    NASA Astrophysics Data System (ADS)

    Travasso, Rui D. M.; Castro, Mario; Oliveira, Joana C. R. E.

    2011-01-01

    Tumor growth is becoming a central problem in biophysics both from its social and medical interest and, more fundamentally, because it is a remarkable example of an emergent complex system. Focusing on the description of the spatial and dynamical features of tumor growth, in this paper we review recent tumor modeling approaches using a technique borrowed from materials science: the phase-field models. These models allow us, with a large degree of generality, to identify the paramount mechanisms causing the uncontrolled growth of tumor cells as well as to propose new guidelines for experimentation both in simulation and in the laboratory. We finish by discussing open directions of research in phase-field modeling of tumor growth to catalyze the interest of physicists and mathematicians in this emergent field.

  17. Rapid and delayed effects of epidermal growth factor on gluconeogenesis.

    PubMed Central

    Soler, C; Soley, M

    1993-01-01

    Most reports on the effects of epidermal growth factor (EGF) on gluconeogenesis have indicated that such effects depend on the substrate used and are only observable after a lag time of 30-40 min. Recently, an immediate and transient effect of EGF on glucose synthesis was described in a perfused liver system. Here we extend the study of the effect of EGF on gluconeogenesis to isolated hepatocytes from fasted rats. The delayed effect of EGF on gluconeogenesis was studied by adding the substrate 40 min after the peptide. Under these conditions EGF increased glucose synthesis from pyruvate, decreased it when the substrate was lactate or glycerol and did not modify gluconeogensis from fructose or dihydroxyacetone. EGF did not affect the metabolic flux through glycolysis, determined as the production of lactate+pyruvate from 30 mM glucose. Furthermore, EGF did not modify the metabolic flux through pyruvate kinase, determined as the production of lactate+pyruvate from 1 mM dihydroxyacetone. The differing effects of EGF on gluconeogenesis depending on the substrate used can be explained by the effects of EGF on the cytosolic redox state (measured as the lactate/pyruvate ratio). About 20 min after the addition of EGF, the mitochondrial redox state (measured as the 3-hydroxybutyrate/acetoacetate ratio) decreased. This effect of EGF was blocked by ammonium, which also abolished the effect of the peptide on gluconeogenesis. Thus the effect of EGF at the mitochondrial level appears to be necessary for its effects on gluconeogenesis. Taken together, our results indicate that the delayed effects of EGF on gluconeogenesis are secondary to the effects of the peptide at both the mitochondrial and cytosolic levels. In addition to these delayed effects, we observed that EGF rapidly and transiently stimulated glucose synthesis from lactate, decreased the cytosolic redox state and increased oxygen consumption. All of these rapid effects required the presence of extracellular calcium

  18. Tumor associated osteoclast-like giant cells promote tumor growth and lymphangiogenesis by secreting vascular endothelial growth factor-C

    SciTech Connect

    Hatano, Yu; Nakahama, Ken-ichi; Isobe, Mitsuaki; Morita, Ikuo

    2014-03-28

    Highlights: • M-CSF and RANKL expressing HeLa cells induced osteoclastogenesis in vitro. • We established OGC-containing tumor model in vivo. • OGC-containing tumor became larger independent of M-CSF or RANKL effect. • VEGF-C secreted from OGCs was a one of candidates for OGC-containing tumor growth. - Abstract: Tumors with osteoclast-like giant cells (OGCs) have been reported in a variety of organs and exert an invasive and prometastatic phenotype, but the functional role of OGCs in the tumor environment has not been fully clarified. We established tumors containing OGCs to clarify the role of OGCs in tumor phenotype. A mixture of HeLa cells expressing macrophage colony-stimulating factor (M-CSF, HeLa-M) and receptor activator of nuclear factor-κB ligand (RANKL, HeLa-R) effectively supported the differentiation of osteoclast-like cells from bone marrow macrophages in vitro. Moreover, a xenograft study showed OGC formation in a tumor composed of HeLa-M and HeLa-R. Surprisingly, the tumors containing OGCs were significantly larger than the tumors without OGCs, although the growth rates were not different in vitro. Histological analysis showed that lymphangiogenesis and macrophage infiltration in the tumor containing OGCs, but not in other tumors were accelerated. According to quantitative PCR analysis, vascular endothelial growth factor (VEGF)-C mRNA expression increased with differentiation of osteoclast-like cells. To investigate whether VEGF-C expression is responsible for tumor growth and macrophage infiltration, HeLa cells overexpressing VEGF-C (HeLa-VC) were established and transplanted into mice. Tumors composed of HeLa-VC mimicked the phenotype of the tumors containing OGCs. Furthermore, the vascular permeability of tumor microvessels also increased in tumors containing OGCs and to some extent in VEGF-C-expressing tumors. These results suggest that macrophage infiltration and vascular permeability are possible mediators in these tumors. These

  19. An unusual manifestation of brain tumor: development of delayed hemiplegia after cardiopulmonary bypass.

    PubMed

    Kurisu, Kazuhiro; Hisahara, Manabu; Ando, Yusuke; Tominaga, Ryuji

    2007-01-01

    Cerebral swelling after cardiopulmonary bypass might trigger a critical cerebral consequence resulting from intracranial space-occupying lesion. We experienced a 75-year-old woman who suffered from a delayed left hemiplegia after mitral valve replacement. Urgent diagnostic imaging revealed the presence of a brain tumor with perifocal cerebral edema. Fluid shifts occurring within a few days after the cardiopulmonary bypass, manifesting the focal cerebral edema, played a key role in this unique clinical course.

  20. Brain tumor modeling: glioma growth and interaction with chemotherapy

    NASA Astrophysics Data System (ADS)

    Banaem, Hossein Y.; Ahmadian, Alireza; Saberi, Hooshangh; Daneshmehr, Alireza; Khodadad, Davood

    2011-10-01

    In last decade increasingly mathematical models of tumor growths have been studied, particularly on solid tumors which growth mainly caused by cellular proliferation. In this paper we propose a modified model to simulate the growth of gliomas in different stages. Glioma growth is modeled by a reaction-advection-diffusion. We begin with a model of untreated gliomas and continue with models of polyclonal glioma following chemotherapy. From relatively simple assumptions involving homogeneous brain tissue bounded by a few gross anatomical landmarks (ventricles and skull) the models have been expanded to include heterogeneous brain tissue with different motilities of glioma cells in grey and white matter. Tumor growth is characterized by a dangerous change in the control mechanisms, which normally maintain a balance between the rate of proliferation and the rate of apoptosis (controlled cell death). Result shows that this model closes to clinical finding and can simulate brain tumor behavior properly.

  1. Nutrient diffusion and interspecies competition in tumor growth

    NASA Astrophysics Data System (ADS)

    Menchon, Silvia; Condat, Carlos A.

    2002-03-01

    A nutrient competition model of cancer growth is used to study tumor evolution when two cancer cell subpopulations are present. The emergence of a new species in the active area of a tumor can drastically change its morphology and growth rate. By using reproductive advantages, the new species may generate instabilities that transform a latent tumor into a fast-growing one. Alternatively, the increased feeding requirements of the new species can starve it, making the mutation not viable. The geometry and dynamics of competitive growth are analyzed in detail.

  2. Decreased Mitochondrial OGG1 Expression is Linked to Mitochondrial Defects and Delayed Hepatoma Cell Growth

    PubMed Central

    Lee, Young-Kyoung; Youn, Hwang-Guem; Wang, Hee-Jung; Yoon, Gyesoon

    2013-01-01

    Many solid tumor cells exhibit mitochondrial respiratory impairment; however, the mechanisms of such impairment in cancer development remain unclear. Here, we demonstrate that SNU human hepatoma cells with declined mitochondrial respiratory activity showed decreased expression of mitochondrial 8-oxoguanine DNA glycosylase/lyase (mtOGG1), a mitochondrial DNA repair enzyme; similar results were obtained with human hepatocellular carcinoma tissues. Among several OGG1-2 variants with a mitochondrial- targeting sequence (OGG1-2a, -2b, -2c, -2d, and -2e), OGG1-2a was the major mitochondrial isoform in all examined hepatoma cells. Interestingly, hepatoma cells with low mtOGG1 levels showed delayed cell growth and increased intracellular reactive oxygen species (ROS) levels. Knockdown of OGG1-2 isoforms in Chang-L cells, which have active mitochondrial respiration with high mtOGG1 levels, significantly decreased cellular respiration and cell growth, and increased intracellular ROS. Overexpression of OGG1-2a in SNU423 cells, which have low mtOGG1 levels, effectively recovered cellular respiration and cell growth activities, and decreased intracellular ROS. Taken together, our results suggest that mtOGG1 plays an important role in maintaining mitochondrial respiration, thereby contributing to cell growth of hepatoma cells. PMID:23677377

  3. Decreased cyclin B1 expression contributes to G2 delay in human brain tumor cells after treatment with camptothecin.

    PubMed Central

    Janss, A. J.; Maity, A.; Tang, C. B.; Muschel, R. J.; McKenna, W. G.; Sutton, L.; Phillips, P. C.

    2001-01-01

    DNA damage produces delayed mitosis (G2/M delay) in proliferating cells, and shortening the delay sensitizes human malignant glioma and medulloblastoma cells to cytotoxic chemotherapy. Although activation of the cyclin-dependent kinase CDC2 mediates G2/M transition in all tumor cells studied to date, regulation of CDC2 varies between tumor types. Persistent hyperphosphorylation of kinase and reduced cyclin expression have been implicated as mediators of treatment-induced G2 delay in different tumor models. To evaluate regulation of G2/M transition in human brain tumors, we studied the expression and/or activity of CDC2 kinase and cyclins A and B1 in U-251 MG and DAOY medulloblastoma cells after their treatment with camptothecin (CPT). Synchronized cells were treated during S phase, then harvested at predetermined intervals for evaluation of cell cycle kinetics, kinase activity mRNA, and protein expression. CPT produced G2 delay associated with decreased CDC2 kinase activity and cyclin B1 expression. Kinase activity was associated with CDC2 bound to cyclin B1, not cyclin A, in both cell lines. Cyclin A mRNA and protein expression were reduced after CPT treatment; however, decreased protein expression was short lived and moderate in the glioma and primitive neuroectodermal tumor/medulloblastoma cells, respectively. We conclude that G2 delay is a common response of brain tumor cells to chemotherapy with topoisomerase I inhibitors and that a mechanism of this delay may be reduced expression of cyclin B1. PMID:11305412

  4. Motif mimetic of epsin perturbs tumor growth and metastasis

    PubMed Central

    Dong, Yunzhou; Wu, Hao; Rahman, H.N. Ashiqur; Liu, Yanjun; Pasula, Satish; Tessneer, Kandice L.; Cai, Xiaofeng; Liu, Xiaolei; Chang, Baojun; McManus, John; Hahn, Scott; Dong, Jiali; Brophy, Megan L.; Yu, Lili; Song, Kai; Silasi-Mansat, Robert; Saunders, Debra; Njoku, Charity; Song, Hoogeun; Mehta-D’Souza, Padmaja; Towner, Rheal; Lupu, Florea; McEver, Rodger P.; Xia, Lijun; Boerboom, Derek; Srinivasan, R. Sathish; Chen, Hong

    2015-01-01

    Tumor angiogenesis is critical for cancer progression. In multiple murine models, endothelium-specific epsin deficiency abrogates tumor progression by shifting the balance of VEGFR2 signaling toward uncontrolled tumor angiogenesis, resulting in dysfunctional tumor vasculature. Here, we designed a tumor endothelium–targeting chimeric peptide (UPI) for the purpose of inhibiting endogenous tumor endothelial epsins by competitively binding activated VEGFR2. We determined that the UPI peptide specifically targets tumor endothelial VEGFR2 through an unconventional binding mechanism that is driven by unique residues present only in the epsin ubiquitin–interacting motif (UIM) and the VEGFR2 kinase domain. In murine models of neoangiogenesis, UPI peptide increased VEGF-driven angiogenesis and neovascularization but spared quiescent vascular beds. Further, in tumor-bearing mice, UPI peptide markedly impaired functional tumor angiogenesis, tumor growth, and metastasis, resulting in a notable increase in survival. Coadministration of UPI peptide with cytotoxic chemotherapeutics further sustained tumor inhibition. Equipped with localized tumor endothelium–specific targeting, our UPI peptide provides potential for an effective and alternative cancer therapy. PMID:26571402

  5. Penfluridol suppresses pancreatic tumor growth by autophagy-mediated apoptosis

    PubMed Central

    Ranjan, Alok; Srivastava, Sanjay K.

    2016-01-01

    Pancreatic tumors exhibit enhanced autophagy as compared to any other cancer, making it resistant to chemotherapy. We evaluated the effect of penfluridol against pancreatic cancer. Penfluridol treatment induced apoptosis and inhibited the growth of Panc-1, BxPC-3 and AsPC-1, pancreatic cancer cells with IC50 ranging between 6–7 μM after 24 h of treatment. Significant autophagy was induced by penfluridol treatment in pancreatic cancer cells. Punctate LC3B and autophagosomes staining confirmed autophagy. Inhibiting autophagy by chloroquine, bafilomycin, 3-methyladenine or LC3BsiRNA, significantly blocked penfluridol-induced apoptosis, suggesting that autophagy lead to apoptosis in our model. Penfluridol treatment suppressed the growth of BxPC-3 tumor xenografts by 48% as compared to 17% when treated in combination with chloroquine. Similarly, penfluridol suppressed the growth of AsPC-1 tumors by 40% versus 16% when given in combination with chloroquine. TUNEL staining and caspase-3 cleavage revealed less apoptosis in the tumors from mice treated with penfluridol and chloroquine as compared to penfluridol alone. Penfluridol treatment also suppressed the growth of orthotopically implanted Panc-1 tumors by 80% by inducing autophagy-mediated apoptosis in the tumors. These studies established that penfluridol inhibits pancreatic tumor growth by autophagy-mediated apoptosis. Since penfluridol is already in clinic, positive findings from our study will accelerate its clinical development. PMID:27189859

  6. Phase transition in tumor growth: I avascular development

    NASA Astrophysics Data System (ADS)

    Izquierdo-Kulich, E.; Rebelo, I.; Tejera, E.; Nieto-Villar, J. M.

    2013-12-01

    We propose a mechanism for avascular tumor growth based on a simple chemical network. This model presents a logistic behavior and shows a “second order” phase transition. We prove the fractal origin of the empirical logistics and Gompertz constant and its relation to mitosis and apoptosis rate. Finally, the thermodynamics framework developed demonstrates the entropy production rate as a Lyapunov function during avascular tumor growth.

  7. A Mathematical Model Coupling Tumor Growth and Angiogenesis

    PubMed Central

    Gomez, Hector

    2016-01-01

    We present a mathematical model for vascular tumor growth. We use phase fields to model cellular growth and reaction-diffusion equations for the dynamics of angiogenic factors and nutrients. The model naturally predicts the shift from avascular to vascular growth at realistic scales. Our computations indicate that the negative regulation of the Delta-like ligand 4 signaling pathway slows down tumor growth by producing a larger density of non-functional capillaries. Our results show good quantitative agreement with experiments. PMID:26891163

  8. Prevention and delay in progression of human pancreatic cancer by stable overexpression of the opioid growth factor receptor.

    PubMed

    Zagon, Ian S; Kreiner, Shawn; Heslop, Jeffery J; Conway, Andrea B; Morgan, Clinton R; McLaughlin, Patricia J

    2008-08-01

    This study examined overexpression of the opioid growth factor receptor (OGFr) in pancreatic cancer cells and phenotypic changes in tumorigenicity. Tumors of MIA PaCa-2 cells transfected with OGFr cDNA (OGFr-1) had 3.3 times more OGFr than empty vector (EV) neoplasias, and 4.3 times more OGFr than tumors from wild-type (WT) mice. No differences in OGFr binding were detected between tumors of EV and WT animals. Tumor incidence in OGFr-1 animals was reduced by up to 50% from EV mice. Latency times for OGFr-1 tumor expression were increased 30%, tumor volume was decreased 70%, and DNA synthesis was reduced 24% relative to EV mice. Exogenous OGF reduced OGFr-1 tumor volume up to 55% compared to OGFr-1 mice given vehicle. These data support OGFr gene function as a regulator of cell proliferation that impacts on tumorigenic expression, and suggest that molecular and pharmacological manipulation of OGFr may prevent or delay human pancreatic cancer.

  9. Statistical inference for tumor growth inhibition T/C ratio.

    PubMed

    Wu, Jianrong

    2010-09-01

    The tumor growth inhibition T/C ratio is commonly used to quantify treatment effects in drug screening tumor xenograft experiments. The T/C ratio is converted to an antitumor activity rating using an arbitrary cutoff point and often without any formal statistical inference. Here, we applied a nonparametric bootstrap method and a small sample likelihood ratio statistic to make a statistical inference of the T/C ratio, including both hypothesis testing and a confidence interval estimate. Furthermore, sample size and power are also discussed for statistical design of tumor xenograft experiments. Tumor xenograft data from an actual experiment were analyzed to illustrate the application.

  10. Bee venom inhibits growth of human cervical tumors in mice

    PubMed Central

    Kim, Tae Myoung; Jung, Yu Yeon; Park, Mi Hee; Oh, Sang Hyun; Yun, Hye Seok; Jun, Hyung Ok; Yoo, Hwan Soo; Han, Sang-Bae; Lee, Ung Soo; Yoon, Joo Hee; Song, Min Jong; Hong, Jin Tae

    2015-01-01

    We studied whether bee venom (BV) inhibits cervical tumor growth through enhancement of death receptor (DR) expressions and inactivation of nuclear factor kappa B (NF-κB) in mice. In vivo study showed that BV (1 mg/kg) inhibited tumor growth. Similar inhibitory effects of BV on cancer growth in primary human cervical cancer cells were also found. BV (1–5 μg/ml) also inhibited the growth of cancer cells, Ca Ski and C33Aby the induction of apoptotic cell death in a dose dependent manner. Agreed with cancer cell growth inhibition, expression of death receptors; FAS, DR3 and DR6, and DR downstream pro-apoptotic proteins including caspase-3 and Bax was concomitantly increased, but the NF-κB activity and the expression of Bcl-2 were inhibited by treatment with BV in tumor mice, human cancer cell and human tumor samples as well as cultured cancer cells. In addition, deletion of FAS, DR3 and DR6 by small interfering RNA significantly reversed BV-induced cell growth inhibitory effects as well as NF-κB inactivation. These results suggest that BV inhibits cervical tumor growth through enhancement of FAS, DR3 and DR6 expression via inhibition of NF-κB pathway. PMID:25730901

  11. On the growth rates of human malignant tumors: implications for medical decision making.

    PubMed

    Friberg, S; Mattson, S

    1997-08-01

    Testicular carcinomas, pediatric tumors, and some mesenchymal tumors are examples of rapidly proliferating cell populations, for which the tumor volume doubling time (TVDT) can be counted in days. Cancers from the breast, prostate, and colon are frequently slow-growing, displaying a TVDT of months or years. Irrespective of their growth rates, most human tumors have been found: to start from one single cell, to have a long subclinical period, to grow at constant rates for long periods of time, to start to metastasize often even before the primary is detected, and to have metastases that often grow at approximately the same rate as the primary tumor. The recognition of basic facts in tumor cell kinetics is essential in the evaluation of important present-day strategies in oncology. Among the facts emphasized in this review are: (1) Screening programs. Most tumors are several years old when detectable by present-day diagnostic methods. This makes the term "early detection" questionable. (2) Legal trials. The importance of so-called doctor's delay is often discussed, but the prognostic value of "early" detection is overestimated. (3) Analyses of clinical trials. Such analysis may be differentiated depending on the growth rates of the type of tumor studied. Furthermore, uncritical analysis of survival data may be misleading if the TVDT is not taken into consideration. (4) Analyses of epidemiological data. If causes of malignant tumors in humans are searched for, the time of exposure must be extended far back in the subject's history. (5) Risk estimations by insurance companies. For the majority of human cancers, the 5-year survival rate is not a valid measurement for cure. Thus, basic knowledge of tumor kinetics may have important implications for political health programs, legal trials, medical science, and insurance policies.

  12. A Big Bang model of human colorectal tumor growth.

    PubMed

    Sottoriva, Andrea; Kang, Haeyoun; Ma, Zhicheng; Graham, Trevor A; Salomon, Matthew P; Zhao, Junsong; Marjoram, Paul; Siegmund, Kimberly; Press, Michael F; Shibata, Darryl; Curtis, Christina

    2015-03-01

    What happens in early, still undetectable human malignancies is unknown because direct observations are impractical. Here we present and validate a 'Big Bang' model, whereby tumors grow predominantly as a single expansion producing numerous intermixed subclones that are not subject to stringent selection and where both public (clonal) and most detectable private (subclonal) alterations arise early during growth. Genomic profiling of 349 individual glands from 15 colorectal tumors showed an absence of selective sweeps, uniformly high intratumoral heterogeneity (ITH) and subclone mixing in distant regions, as postulated by our model. We also verified the prediction that most detectable ITH originates from early private alterations and not from later clonal expansions, thus exposing the profile of the primordial tumor. Moreover, some tumors appear 'born to be bad', with subclone mixing indicative of early malignant potential. This new model provides a quantitative framework to interpret tumor growth dynamics and the origins of ITH, with important clinical implications.

  13. Near-criticality underlies the behavior of early tumor growth

    NASA Astrophysics Data System (ADS)

    Remy, Guillaume; Cluzel, Philippe

    2016-04-01

    The controlling factors that underlie the growth of tumors have often been hard to identify because of the presence in this system of a large number of intracellular biochemical parameters. Here, we propose a simplifying framework to identify the key physical parameters that govern the early growth of tumors. We model growth by means of branching processes where cells of different types can divide and differentiate. First, using this process that has only one controlling parameter, we study a one cell type model and compute the probability for tumor survival and the time of tumor extinction. Second, we show that when cell death and cell division are perfectly balanced, stochastic effects dominate the growth dynamics and the system exhibits a near-critical behavior that resembles a second-order phase transition. We show, in this near-critical regime, that the time interval before tumor extinction is power-law distributed. Finally, we apply this branching formalism to infer, from experimental growth data, the number of different cell types present in the observed tumor.

  14. Mathematical Modeling of Branching Morphogenesis and Vascular Tumor Growth

    NASA Astrophysics Data System (ADS)

    Yan, Huaming

    Feedback regulation of cell lineages is known to play an important role in tissue size control, but the effect in tissue morphogenesis has yet to be explored. We first use a non-spatial model to show that a combination of positive and negative feedback on stem and/or progenitor cell self-renewal leads to bistable or bi-modal growth behaviors and ultrasensitivity to external growth cues. Next, a spatiotemporal model is used to demonstrate spatial patterns such as local budding and branching arise in this setting, and are not consequences of Turing-type instabilities. We next extend the model to a three-dimensional hybrid discrete-continuum model of tumor growth to study the effects of angiogenesis, tumor progression and cancer therapies. We account for the crosstalk between the vasculature and cancer stem cells (CSCs), and CSC transdifferentiation into vascular endothelial cells (gECs), as observed experimentally. The vasculature stabilizes tumor invasiveness but considerably enhances growth. A gEC network structure forms spontaneously within the hypoxic core, consistent with experimental findings. The model is then used to study cancer therapeutics. We demonstrate that traditional anti-angiogenic therapies decelerate tumor growth, but make the tumor highly invasive. Chemotherapies help to reduce tumor sizes, but cannot control the invasion. Anti-CSC therapies that promote differentiation or disturb the stem cell niche effectively reduce tumor invasiveness. However, gECs inherit mutations present in CSCs and are resistant to traditional therapies. We show that anti-gEC treatments block the support on CSCs by gECs, and reduce both tumor size and invasiveness. Our study suggests that therapies targeting the vasculature, CSCs and gECs, when combined, are highly synergistic and are capable of controlling both tumor size and shape.

  15. Predicting the Probability of Abnormal Stimulated Growth Hormone Response in Children After Radiotherapy for Brain Tumors

    SciTech Connect

    Hua Chiaho; Wu Shengjie; Chemaitilly, Wassim; Lukose, Renin C.; Merchant, Thomas E.

    2012-11-15

    Purpose: To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. Methods and Materials: We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n = 72), low-grade glioma (n = 28) or craniopharyngioma (n = 6), who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test {>=}7 ng/mL. Results: Independent predictor variables identified by multivariate logistic regression with high statistical significance (p < 0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Conclusions: Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency.

  16. Time delay and noise explaining the behaviour of the cell growth in fermentation process

    SciTech Connect

    Ayuobi, Tawfiqullah; Rosli, Norhayati; Bahar, Arifah; Salleh, Madihah Md

    2015-02-03

    This paper proposes to investigate the interplay between time delay and external noise in explaining the behaviour of the microbial growth in batch fermentation process. Time delay and noise are modelled jointly via stochastic delay differential equations (SDDEs). The typical behaviour of cell concentration in batch fermentation process under this model is investigated. Milstein scheme is applied for solving this model numerically. Simulation results illustrate the effects of time delay and external noise in explaining the lag and stationary phases, respectively for the cell growth of fermentation process.

  17. A multiphase model for three-dimensional tumor growth

    NASA Astrophysics Data System (ADS)

    Sciumè, G.; Shelton, S.; Gray, W. G.; Miller, C. T.; Hussain, F.; Ferrari, M.; Decuzzi, P.; Schrefler, B. A.

    2013-01-01

    Several mathematical formulations have analyzed the time-dependent behavior of a tumor mass. However, most of these propose simplifications that compromise the physical soundness of the model. Here, multiphase porous media mechanics is extended to model tumor evolution, using governing equations obtained via the thermodynamically constrained averaging theory. A tumor mass is treated as a multiphase medium composed of an extracellular matrix (ECM); tumor cells (TCs), which may become necrotic depending on the nutrient concentration and tumor phase pressure; healthy cells (HCs); and an interstitial fluid for the transport of nutrients. The equations are solved by a finite element method to predict the growth rate of the tumor mass as a function of the initial tumor-to-healthy cell density ratio, nutrient concentration, mechanical strain, cell adhesion and geometry. Results are shown for three cases of practical biological interest such as multicellular tumor spheroids (MTSs) and tumor cords. First, the model is validated by experimental data for time-dependent growth of an MTS in a culture medium. The tumor growth pattern follows a biphasic behavior: initially, the rapidly growing TCs tend to saturate the volume available without any significant increase in overall tumor size; then, a classical Gompertzian pattern is observed for the MTS radius variation with time. A core with necrotic cells appears for tumor sizes larger than 150 μm, surrounded by a shell of viable TCs whose thickness stays almost constant with time. A formula to estimate the size of the necrotic core is proposed. In the second case, the MTS is confined within a healthy tissue. The growth rate is reduced, as compared to the first case—mostly due to the relative adhesion of the TCs and HCs to the ECM, and the less favorable transport of nutrients. In particular, for HCs adhering less avidly to the ECM, the healthy tissue is progressively displaced as the malignant mass grows, whereas TC

  18. Keratin 17 promotes epithelial proliferation and tumor growth by polarizing the immune response in skin

    PubMed Central

    DePianto, Daryle; Kerns, Michelle; Dlugosz, Andrzej A.; Coulombe, Pierre A.

    2010-01-01

    Basaloid skin tumors, including basal cell carcinoma (BCC) and basaloid follicular hamartoma (BFH), are associated with aberrant Hedgehog (Hh) signaling1 and, in the case of BCC, an expanding set of genetic variants including keratin 5 (K5)2, an intermediate filament-forming protein. We show that genetic ablation of keratin 17 (K17) protein, which is induced in basaloid skin tumors3,4 and co-polymerizes with K5 in vivo5, delays BFH tumor initiation and growth in mice with constitutive Hh signaling in epidermis6,7. The delay is preceded by reduced inflammation and a polarization of inflammatory cytokines from a Th1/Th17- to a Th2-dominated profile. Absence of K17 also attenuates hyperplasia and inflammation in a model of acute dermatitis. Re-expression of K17 in Gli2tg K17−/− keratinocytes induces select Th1 chemokines with established roles in BCC. Our findings establish a novel immunomodulatory role for K17 in Hh-driven basaloid skin tumors that could impact additional tumor settings, psoriasis, and wound repair. PMID:20871598

  19. MerTK inhibition in tumor leukocytes decreases tumor growth and metastasis

    PubMed Central

    Cook, Rebecca S.; Jacobsen, Kristen M.; Wofford, Anne M.; DeRyckere, Deborah; Stanford, Jamie; Prieto, Anne L.; Redente, Elizabeth; Sandahl, Melissa; Hunter, Debra M.; Strunk, Karen E.; Graham, Douglas K.; Earp, H. Shelton

    2013-01-01

    MerTK, a receptor tyrosine kinase (RTK) of the TYRO3/AXL/MerTK family, is expressed in myeloid lineage cells in which it acts to suppress proinflammatory cytokines following ingestion of apoptotic material. Using syngeneic mouse models of breast cancer, melanoma, and colon cancer, we found that tumors grew slowly and were poorly metastatic in MerTK–/– mice. Transplantation of MerTK–/– bone marrow, but not wild-type bone marrow, into lethally irradiated MMTV-PyVmT mice (a model of metastatic breast cancer) decreased tumor growth and altered cytokine production by tumor CD11b+ cells. Although MerTK expression was not required for tumor infiltration by leukocytes, MerTK–/– leukocytes exhibited lower tumor cell–induced expression of wound healing cytokines, e.g., IL-10 and growth arrest-specific 6 (GAS6), and enhanced expression of acute inflammatory cytokines, e.g., IL-12 and IL-6. Intratumoral CD8+ T lymphocyte numbers were higher and lymphocyte proliferation was increased in tumor-bearing MerTK–/– mice compared with tumor-bearing wild-type mice. Antibody-mediated CD8+ T lymphocyte depletion restored tumor growth in MerTK–/– mice. These data demonstrate that MerTK signaling in tumor-associated CD11b+ leukocytes promotes tumor growth by dampening acute inflammatory cytokines while inducing wound healing cytokines. These results suggest that inhibition of MerTK in the tumor microenvironment may have clinical benefit, stimulating antitumor immune responses or enhancing immunotherapeutic strategies. PMID:23867499

  20. MerTK inhibition in tumor leukocytes decreases tumor growth and metastasis.

    PubMed

    Cook, Rebecca S; Jacobsen, Kristen M; Wofford, Anne M; DeRyckere, Deborah; Stanford, Jamie; Prieto, Anne L; Redente, Elizabeth; Sandahl, Melissa; Hunter, Debra M; Strunk, Karen E; Graham, Douglas K; Earp, H Shelton

    2013-08-01

    MerTK, a receptor tyrosine kinase (RTK) of the TYRO3/AXL/MerTK family, is expressed in myeloid lineage cells in which it acts to suppress proinflammatory cytokines following ingestion of apoptotic material. Using syngeneic mouse models of breast cancer, melanoma, and colon cancer, we found that tumors grew slowly and were poorly metastatic in MerTK-/- mice. Transplantation of MerTK-/- bone marrow, but not wild-type bone marrow, into lethally irradiated MMTV-PyVmT mice (a model of metastatic breast cancer) decreased tumor growth and altered cytokine production by tumor CD11b+ cells. Although MerTK expression was not required for tumor infiltration by leukocytes, MerTK-/- leukocytes exhibited lower tumor cell-induced expression of wound healing cytokines, e.g., IL-10 and growth arrest-specific 6 (GAS6), and enhanced expression of acute inflammatory cytokines, e.g., IL-12 and IL-6. Intratumoral CD8+ T lymphocyte numbers were higher and lymphocyte proliferation was increased in tumor-bearing MerTK-/- mice compared with tumor-bearing wild-type mice. Antibody-mediated CD8+ T lymphocyte depletion restored tumor growth in MerTK-/- mice. These data demonstrate that MerTK signaling in tumor-associated CD11b+ leukocytes promotes tumor growth by dampening acute inflammatory cytokines while inducing wound healing cytokines. These results suggest that inhibition of MerTK in the tumor microenvironment may have clinical benefit, stimulating antitumor immune responses or enhancing immunotherapeutic strategies.

  1. Melanoma Proteoglycan Modifies Gene Expression to Stimulate Tumor Cell Motility, Growth and Epithelial to Mesenchymal Transition

    PubMed Central

    Yang, Jianbo; Price, Matthew A.; Li, GuiYuan; Bar-Eli, Menashe; Salgia, Ravi; Jagedeeswaran, Ramasamy; Carlson, Jennifer H.; Ferrone, Soldano; Turley, Eva A.; McCarthy, James B.

    2009-01-01

    Melanoma chondroitin sulfate proteoglycan (MCSP) is a plasma membrane-associated proteoglycan that facilitates the growth, motility and invasion of tumor cells. MCSP expression in melanoma cells enhances integrin function and constitutive activation of Erk 1,2. The current studies were performed to determine the mechanism by which MCSP expression promotes tumor growth and motility. The results demonstrate that MCSP expression in radial growth phase (RGP), vertical growth phase (VGP) or metastatic cell lines causes sustained activation of Erk 1,2, enhanced growth and motility which all require the cytoplasmic domain of the MCSP core protein. MCSP expression in an RGP cell line also promotes an epithelial to mesenchymal transition (EMT) based on changes in cell morphology and the expression of several EMT markers. Finally MCSP enhances the expression of c-Met and HGF, and inhibiting c-Met expression or activation limits the increased growth and motility of multiple melanoma cell lines. The studies collectively demonstrate an importance for MCSP in promoting progression by an epigenetic mechanism and they indicate that MCSP could be targeted to delay or inhibit tumor progression in patients. PMID:19738072

  2. Phase transitions in tumor growth: III vascular and metastasis behavior

    NASA Astrophysics Data System (ADS)

    Llanos-Pérez, J. A.; Betancourt-Mar, J. A.; Cocho, G.; Mansilla, R.; Nieto-Villar, José Manuel

    2016-11-01

    We propose a mechanism for avascular, vascular and metastasis tumor growth based on a chemical network model. Vascular growth and metastasis, appear as a hard phase transition type, as "first order", through a supercritical Andronov-Hopf bifurcation, emergence of limit cycle and then through a cascade of bifurcations type saddle-foci Shilnikov's bifurcation. Finally, the thermodynamics framework developed shows that the entropy production rate, as a Lyapunov function, indicates the directional character and stability of the dynamical behavior of tumor growth according to this model.

  3. A minority of carcinoma cells producing acidic fibroblast growth factor induces a community effect for tumor progression.

    PubMed Central

    Jouanneau, J; Moens, G; Bourgeois, Y; Poupon, M F; Thiery, J P

    1994-01-01

    It is generally accepted that primary tumors become heterogeneous as a consequence of tumor-cell genetic instability. Clonal dominance has been shown to occur in some experimental models allowing a subpopulation of cells to overgrow the primary heterogeneous tumor and to metastasize. Alternatively, interactions among coexisting tumor subpopulations may contribute to the emergence of a malignant invasive primary solid tumor. We asked the question whether emergence of carcinoma cells producing a growth/dissociating factor within a tumor cell population may be a determinant for tumor progression and for clonal dominance. To mimic such a situation, we have investigated the impact of tumor subpopulation heterogeneity in an in vivo model in which mixtures of carcinoma cells that differ in their ability to produce acidic fibroblast growth factor are injected into nude mice. Our data indicate that a growth-factor-producing cell subpopulation can confer increased tumorigenicity to an entire cell population and subsequently elicit a shorter delay for appearance of metastasis. A community effect via cell interactions may account for a heterogeneous tumor cell population rather than clonal dominance during progression of certain tumor types. Images Fig. 3 PMID:7506417

  4. TNFα antagonization alters NOS2 dependent nasopharyngeal carcinoma tumor growth.

    PubMed

    Bourouba, Mehdi; Zergoun, Ahmed-Amine; Maffei, Joseph S; Chila, Dalia; Djennaoui, Djamel; Asselah, Fatima; Amir-Tidadini, Zine-Charef; Touil-Boukoffa, Chafia; Zaman, Muhammad H

    2015-07-01

    Tumor necrosis factor (TNFα) is a pro-inflammatory cytokine which mediates via nitric oxide (NO) several carcinogenic processes. Increasing evidences suggest that NO promotes inflammation induced growth of nasopharyngeal carcinoma (NPC). In patients, TNFα synthesis associates with poor survival. To explore the effect of the cytokine on NO production and NOS2 dependent NPC growth, NO2(-) (nitrite) producing cells in patients were analyzed in vitro. We observed that patients' monocytes/macrophages (Mo/Ma) and primary tumor biopsies synthesized significant amounts of NO2(-). Interestingly, tumor explants derived NO2(-) levels were more important in elderly patients in comparison with juveniles. Endogenous TNFα neutralization with an anti-TNFα monoclonal antibody (mAb) successfully inhibited NO2(-) synthesis by blood mononuclear cells and tumor explants. Recombinant TNFα (rTNFα) enhanced NO2(-) synthesis and C666-1 NPC cell proliferation. NOS2 selective inhibition (1400W) and TNFα antagonization with an anti-TNFα mAb potently inhibited rTNFα induced C666-1 proliferation and NO2(-) production. Importantly, primary tumors treated with the anti-TNFα mAb also displayed reduced proliferation index (Ki67). Altogether, our results define monocytes/macrophages and the primary tumor as major sources of circulating NO2(-) in NPC patients and support the idea that antibody dependent inhibition of the TNFα/NOS2 pathway may alter NPC tumor growth.

  5. Expression of protein tyrosine phosphatase alpha (RPTPalpha) in human breast cancer correlates with low tumor grade, and inhibits tumor cell growth in vitro and in vivo.

    PubMed

    Ardini, E; Agresti, R; Tagliabue, E; Greco, M; Aiello, P; Yang, L T; Ménard, S; Sap, J

    2000-10-12

    Tyrosine phosphorylation is controlled by a balance of tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Whereas the contribution of PTKs to breast tumorigenesis is the subject of intense scrutiny, the potential role of PTPs is poorly known. RPTPalpha is implicated in the activation of Src family kinases, and regulation of integrin signaling, cell adhesion, and growth factor responsiveness. To explore its potential contribution to human neoplasia, we surveyed RPTPalpha protein levels in primary human breast cancer. We found RPTPalpha levels to vary widely among tumors, with 29% of cases manifesting significant overexpression. High RPTPalpha protein levels correlated significantly with low tumor grade and positive estrogen receptor status. Expression of RPTPalpha in breast carcinoma cells led to growth inhibition, associated with increased accumulation in G0 and G1, and delayed tumor growth and metastasis. To our knowledge, this is the first example of a study correlating expression level of a specific bona fide PTP with neoplastic disease status in humans.

  6. Role of Fetuin-A in Breast Tumor Cell Growth

    DTIC Science & Technology

    2009-03-01

    Growth PRINCIPAL INVESTIGATOR: Josiah Ochieng, Ph.D. CONTRACTING ORGANIZATION: Meharry Medical College Nashville, TN 37208...COVERED (From - To) 4. TITLE AND SUBTITLE Role of fetuin-A in Breast Tumor Cell Growth 5a. CONTRACT NUMBER W81XWH-07-1-0254 5b. GRANT NUMBER...hypothesis of this grant is that fetuin-A is a major serum derived growth factor for breast carcinoma cells and creates a favorable environment for the

  7. The Role of Oxygen in Avascular Tumor Growth

    PubMed Central

    Grimes, David Robert; Kannan, Pavitra; McIntyre, Alan; Kavanagh, Anthony; Siddiky, Abul; Wigfield, Simon; Harris, Adrian; Partridge, Mike

    2016-01-01

    The oxygen status of a tumor has significant clinical implications for treatment prognosis, with well-oxygenated subvolumes responding markedly better to radiotherapy than poorly supplied regions. Oxygen is essential for tumor growth, yet estimation of local oxygen distribution can be difficult to ascertain in situ, due to chaotic patterns of vasculature. It is possible to avoid this confounding influence by using avascular tumor models, such as tumor spheroids, a much better approximation of realistic tumor dynamics than monolayers, where oxygen supply can be described by diffusion alone. Similar to in situ tumours, spheroids exhibit an approximately sigmoidal growth curve, often approximated and fitted by logistic and Gompertzian sigmoid functions. These describe the basic rate of growth well, but do not offer an explicitly mechanistic explanation. This work examines the oxygen dynamics of spheroids and demonstrates that this growth can be derived mechanistically with cellular doubling time and oxygen consumption rate (OCR) being key parameters. The model is fitted to growth curves for a range of cell lines and derived values of OCR are validated using clinical measurement. Finally, we illustrate how changes in OCR due to gemcitabine treatment can be directly inferred using this model. PMID:27088720

  8. Mathematical modeling of tumor growth and metastatic spreading: validation in tumor-bearing mice.

    PubMed

    Hartung, Niklas; Mollard, Séverine; Barbolosi, Dominique; Benabdallah, Assia; Chapuisat, Guillemette; Henry, Gerard; Giacometti, Sarah; Iliadis, Athanassios; Ciccolini, Joseph; Faivre, Christian; Hubert, Florence

    2014-11-15

    Defining tumor stage at diagnosis is a pivotal point for clinical decisions about patient treatment strategies. In this respect, early detection of occult metastasis invisible to current imaging methods would have a major impact on best care and long-term survival. Mathematical models that describe metastatic spreading might estimate the risk of metastasis when no clinical evidence is available. In this study, we adapted a top-down model to make such estimates. The model was constituted by a transport equation describing metastatic growth and endowed with a boundary condition for metastatic emission. Model predictions were compared with experimental results from orthotopic breast tumor xenograft experiments conducted in Nod/Scidγ mice. Primary tumor growth, metastatic spread and growth were monitored by 3D bioluminescence tomography. A tailored computational approach allowed the use of Monolix software for mixed-effects modeling with a partial differential equation model. Primary tumor growth was described best by Bertalanffy, West, and Gompertz models, which involve an initial exponential growth phase. All other tested models were rejected. The best metastatic model involved two parameters describing metastatic spreading and growth, respectively. Visual predictive check, analysis of residuals, and a bootstrap study validated the model. Coefficients of determination were [Formula: see text] for primary tumor growth and [Formula: see text] for metastatic growth. The data-based model development revealed several biologically significant findings. First, information on both growth and spreading can be obtained from measures of total metastatic burden. Second, the postulated link between primary tumor size and emission rate is validated. Finally, fast growing peritoneal metastases can only be described by such a complex partial differential equation model and not by ordinary differential equation models. This work advances efforts to predict metastatic spreading

  9. Reaction-diffusion model for the growth of avascular tumor

    NASA Astrophysics Data System (ADS)

    Ferreira, S. C.; Martins, M. L.; Vilela, M. J.

    2002-02-01

    A nutrient-limited model for avascular cancer growth including cell proliferation, motility, and death is presented. The model qualitatively reproduces commonly observed morphologies for primary tumors, and the simulated patterns are characterized by its gyration radius, total number of cancer cells, and number of cells on tumor periphery. These very distinct morphological patterns follow Gompertz growth curves, but exhibit different scaling laws for their surfaces. Also, the simulated tumors incorporate a spatial structure composed of a central necrotic core, an inner rim of quiescent cells and a narrow outer shell of proliferating cells in agreement with biological data. Finally, our results indicate that the competition for nutrients among normal and cancer cells may be a determining factor in generating papillary tumor morphology.

  10. Semiautomatic growth analysis of multicellular tumor spheroids.

    PubMed

    Rodday, Bjoern; Hirschhaeuser, Franziska; Walenta, Stefan; Mueller-Klieser, Wolfgang

    2011-10-01

    Multicellular tumor spheroids (MCTS) are routinely employed as three-dimensional in vitro models to study tumor biology. Cultivation of MCTS in spinner flasks provides better growing conditions, especially with regard to the availability of nutrients and oxygen, when compared with microtiter plates. The main endpoint of drug response experiments is spheroid size. It is common practice to analyze spheroid size manually with a microscope and an ocular micrometer. This requires removal of some spheroids from the flask, which entails major limitations such as loss of MCTS and the risk of contamination. With this new approach, the authors present an efficient and highly reproducible method to analyze the size of complete MCTS populations in culture containers with transparent, flat bottoms. MCTS sediments are digitally scanned and spheroid volumes are calculated by computerized image analysis. The equipment includes regular office hardware (personal computer, flatbed scanner) and software (Adobe Photoshop, Microsoft Excel, ImageJ). The accuracy and precision of the method were tested using industrial precision steel beads with known diameter. In summary, in comparison with other methods, this approach provides benefits in terms of semiautomation, noninvasiveness, and low costs.

  11. Tumor-environment biomimetics delay peritoneal metastasis formation by deceiving and redirecting disseminated cancer cells.

    PubMed

    De Vlieghere, Elly; Gremonprez, Félix; Verset, Laurine; Mariën, Lore; Jones, Christopher J; De Craene, Bram; Berx, Geert; Descamps, Benedicte; Vanhove, Christian; Remon, Jean-Paul; Ceelen, Wim; Demetter, Pieter; Bracke, Marc; De Geest, Bruno G; De Wever, Olivier

    2015-06-01

    Peritoneal metastasis is life threatening and is the result of an extensive communication between disseminated cancer cells, mesothelial cells and cancer-associated fibroblasts (CAF). CAFs secrete extracellular matrix (ECM) proteins creating a receptive environment for peritoneal implantation. Considering cancer as an ecosystem may provide opportunities to exploit CAFs to create biomimetic traps to deceive and redirect cancer cells. We have designed microparticles (MP) containing a CAF-derived ECM-surface that is intended to compete with natural niches. CAFs were encapsulated in alginate/gelatine beads (500-750 μm in diameter) functionalised with a polyelectrolyte coating (MP[CAF]). The encapsulated CAFs remain viable and metabolically active (≥35 days), when permanently encapsulated. CAF-derived ECM proteins are retained by the non-biodegradable coating. Adhesion experiments mimicking the environment of the peritoneal cavity show the selective capture of floating cancer cells from different tumor origins by MP[CAF] compared to control MP. MP[CAF] are distributed throughout the abdominal cavity without attachment to intestinal organs and without signs of inflammatory reaction. Intraperitoneal delivery of MP[CAF] and sequential removal redirects cancer cell adhesion from the surgical wound to the MP[CAF], delays peritoneal metastasis formation and prolongs animal survival. Our experiments suggest the use of a biomimetic trap based on tumor-environment interactions to delay peritoneal metastasis.

  12. SKI knockdown inhibits human melanoma tumor growth in vivo.

    PubMed

    Chen, Dahu; Lin, Qiushi; Box, Neil; Roop, Dennis; Ishii, Shunsuke; Matsuzaki, Koichi; Fan, Tao; Hornyak, Thomas J; Reed, Jon A; Stavnezer, Ed; Timchenko, Nikolai A; Medrano, Estela E

    2009-12-01

    The SKI protein represses the TGF-beta tumor suppressor pathway by associating with the Smad transcription factors. SKI is upregulated in human malignant melanoma tumors in a disease-progression manner and its overexpression promotes proliferation and migration of melanoma cells in vitro. The mechanisms by which SKI antagonizes TGF-beta signaling in vivo have not been fully elucidated. Here we show that human melanoma cells in which endogenous SKI expression was knocked down by RNAi produced minimal orthotopic tumor xenograft nodules that displayed low mitotic rate and prominent apoptosis. These minute tumors exhibited critical signatures of active TGF-beta signaling including high levels of nuclear Smad3 and p21(Waf-1), which are not found in the parental melanomas. To understand how SKI promotes tumor growth we used gain- and loss-of-function approaches and found that simultaneously to blocking the TGF-beta-growth inhibitory pathway, SKI promotes the switch of Smad3 from tumor suppression to oncogenesis by favoring phosphorylations of the Smad3 linker region in melanoma cells but not in normal human melanocytes. In this context, SKI is required for preventing TGF-beta-mediated downregulation of the oncogenic protein c-MYC, and for inducing the plasminogen activator inhibitor-1, a mediator of tumor growth and angiogenesis. Together, the results indicate that SKI exploits multiple regulatory levels of the TGF-beta pathway and its deficiency restores TGF-beta tumor suppressor and apoptotic activities in spite of the likely presence of oncogenic mutations in melanoma tumors.

  13. From the Cover: Glutamate antagonists limit tumor growth

    NASA Astrophysics Data System (ADS)

    Rzeski, Wojciech; Turski, Lechoslaw; Ikonomidou, Chrysanthy

    2001-05-01

    Neuronal progenitors and tumor cells possess propensity to proliferate and to migrate. Glutamate regulates proliferation and migration of neurons during development, but it is not known whether it influences proliferation and migration of tumor cells. We demonstrate that glutamate antagonists inhibit proliferation of human tumor cells. Colon adenocarcinoma, astrocytoma, and breast and lung carcinoma cells were most sensitive to the antiproliferative effect of the N-methyl-D-aspartate antagonist dizocilpine, whereas breast and lung carcinoma, colon adenocarcinoma, and neuroblastoma cells responded most favorably to the -amino-3-hydroxy-5-methyl-4-isoxazole-propionate antagonist GYKI52466. The antiproliferative effect of glutamate antagonists was Ca2+ dependent and resulted from decreased cell division and increased cell death. Morphological alterations induced by glutamate antagonists in tumor cells consisted of reduced membrane ruffling and pseudopodial protrusions. Furthermore, glutamate antagonists decreased motility and invasive growth of tumor cells. These findings suggest anticancer potential of glutamate antagonists.

  14. Pinning of Tumoral Growth by Enhancement of the Immune Response

    NASA Astrophysics Data System (ADS)

    Brú, A.; Albertos, S.; García-Asenjo, J. A.; Brú, I.

    2004-06-01

    Tumor growth is a surface phenomenon of the molecular beam epitaxy universality class in which diffusion at the surface is the determining factor. This Letter reports experiments performed in mice showing that these dynamics can, however, be changed. By stimulating the immune response, we induced strong neutrophilia around the tumor. The neutrophils hindered cell surface diffusion so much that they induced new dynamics compatible with the slower quenched-disorder Edwards-Wilkinson universality class. Important clinical effects were also seen, including remarkably high tumor necrosis (around 80% 90% of the tumor), a general increase in survival time [the death ratio in the control group is 15.76 times higher than in the treated group (equivalent to a Cox's model hazard ratio of 0.85; 95% confidence interval 0.76 0.95, p=0.004)], and even the total elimination of some tumors.

  15. Regulatory B cells preferentially accumulate in tumor-draining lymph nodes and promote tumor growth.

    PubMed

    Ganti, Sheila N; Albershardt, Tina C; Iritani, Brian M; Ruddell, Alanna

    2015-07-20

    Our previous studies found that B16-F10 melanoma growth in the rear footpad of immunocompetent mice induces marked B cell accumulation within tumor-draining popliteal lymph nodes (TDLN). This B cell accumulation drives TDLN remodeling that precedes and promotes metastasis, indicating a tumor-promoting role for TDLN B cells. Here we show that phenotypic characterization of lymphocytes in mice bearing B16-F10 melanomas identifies preferential accumulation of T2-MZP B cells in the TDLN. Comparison of non-draining LNs and spleens of tumor-bearing mice with LNs and spleens from naïve mice determined that this pattern of B cell accumulation was restricted to the TDLN. B cell-deficient and immunocompetent mice reconstituted with T2-MZP B cells but not with other B cell subsets displayed accelerated tumor growth, demonstrating that T2-MZP B cells possess regulatory activity in tumor-bearing mice. Unlike splenic regulatory B cells, however, these TDLN B cells did not exhibit increased IL-10 production, nor did they promote Treg generation in the TDLN. These findings demonstrate that tumors initially signal via the lymphatic drainage to stimulate the preferential accumulation of T2-MZP regulatory B cells. This local response may be an early and critical step in generating an immunosuppressive environment to permit tumor growth and metastasis.

  16. Neuropilin-1 stimulates tumor growth by increasing fibronectin fibril assembly in the tumor microenvironment

    PubMed Central

    Yaqoob, Usman; Cao, Sheng; Shergill, Uday; Jagavelu, Kumaravelu; Geng, Zhimin; Yin, Meng; de Assuncao, Thiago M; Cao, Ying; Szabolcs, Anna; Thorgeirsson, Snorri; Schwartz, Martin; Yang, Ju Dong; Ehman, Richard; Roberts, Lewis; Mukhopadhyay, Debabrata; Shah, Vijay H.

    2012-01-01

    The tumor microenvironment, including stromal myofibroblasts and associated matrix proteins, regulates cancer cell invasion and proliferation. Here we report that neuropilin-1 (NRP-1) orchestrates communications between myofibroblasts and soluble fibronectin (FN) that promote α5β1 integrin-dependent FN fibril assembly, matrix stiffness, and tumor growth. Tumor growth and FN fibril assembly was reduced by genetic depletion or antibody neutralization of NRP-1 from stromal myofibroblasts in vivo. Mechanistically, the increase in FN fibril assembly required glycosylation of serine 612 of the extracellular domain of NRP-1, an intact intracellular NRP-1 SEA domain, and intracellular associations between NRP-1, the scaffold protein GIPC, and the nonreceptor tyrosine kinase c-Abl, that augmented α5β1 FN fibril assembly activity. Analysis of human cancer specimens established an association between tumoral NRP-1 levels and clinical outcome. Our findings indicate that NRP-1 activates the tumor microenvironment, thereby promoting tumor growth. These results not only identify new molecular mechanisms of FN fibril assembly but also have important implications for therapeutic targeting of the myofibroblast in the tumor microenvironment. PMID:22738912

  17. [Effect of fenugreek on the growth of different genesis tumors].

    PubMed

    Zhilenko, V V; Zalietok, S P; Klenov, O O

    2012-01-01

    This paper deals with antitumor properties of a fenugreek (Trigonella Foenum Graecum L.) as to the different genesis tumors--the Ca755 mouse mammary carcinoma and the Guerin's carcinoma in rats. Fenugreek powder was shown to inhibit (25-40 %) growth of certain tumors, decrease (27-63%) level of malone dialdehyde in liver, heart and kidney. Consumption of fenugreek was accompanied with decreased polyamines (spermine, spermidine, putrescine) content in tumor tissue. Inclusion of fenugreek to allowance was shown to improve certain blood value.

  18. Comparative effects of CT imaging measurement on RECIST endpoints and tumor growth kinetics modeling

    PubMed Central

    Li, Claire H.; Bies, Robert R.; Wang, Yaning; Sharma, Manish R.; Karovic, Sanja; Werk, Lynn; Edelman, Martin J.; Miller, Antonius A.; Vokes, Everett E.; Oto, Aytek; Ratain, Mark J.; Schwartz, Lawrence H.; Maitland, Michael L.

    2015-01-01

    Quantitative assessments of tumor burden and modeling of longitudinal growth could improve phase 2 oncology trials. To identify obstacles to wider use of quantitative measures we obtained recorded linear tumor measurements from 3 published lung cancer trials. Model-based parameters of tumor burden change were estimated and compared with similarly sized samples from separate trials. Time-to-tumor-growth (TTG) was computed from measurements recorded on case report forms and a second radiologist blinded to the form data. RECIST-based progression-free survival (PFS) measures were perfectly concordant between the original forms data and the blinded radiologist re-evaluation (intra-class correlation coefficient (ICC) = 1), but these routine inter-rater differences in the identification and measurement of target lesions were associated with an average 18 week delay (range −20 – 55 weeks) in TTG (ICC = 0.32). To exploit computational metrics for improving statistical power in small clinical trials will require increased precision of tumor burden assessments. PMID:26790562

  19. Delayed Effects of Whole Brain Radiotherapy in Germ Cell Tumor Patients With Central Nervous System Metastases

    SciTech Connect

    Doyle, Danielle M. Einhorn, Lawrence H.

    2008-04-01

    Purpose: Central nervous system (CNS) metastases are uncommon in patients with germ cell tumors, with an incidence of 2-3%. CNS metastases have been managed with whole brain radiotherapy (WBRT) and concomitant cisplatin-based combination chemotherapy. Our previous study did not observe serious CNS toxicity (Int J Radiat Oncol Biol Phys 1991;22:17-22). We now report on 5 patients who developed delayed significant CNS toxicity. Patients and Methods: We observed 5 patients with delayed CNS toxicity. The initial diagnosis was between 1981 and 2003. All patients had poor-risk disease according to the International Germ Cell Consensus Collaborative Group criteria. Of the 5 patients, 3 had CNS metastases at diagnosis and 2 developed relapses with CNS metastases. These 5 patients underwent WBRT to 4,000-5,000 cGy in 18-28 fractions concurrently with cisplatin-based chemotherapy. Results: All 5 patients developed delayed symptoms consistent with progressive multifocal leukoencephalopathy. The symptoms included seizures, hemiparesis, cranial neuropathy, headaches, blindness, dementia, and ataxia. The median time from WBRT to CNS symptoms was 72 months (range, 9-228). Head imaging revealed multiple abnormalities consistent with gliosis and diffuse cerebral atrophy. Of the 5 patients, 3 had progressive and 2 stable symptoms. Treatment with surgery and/or steroids had modest benefit. The progressive multifocal leukoencephalopathy resulted in significant debility in all 5 patients, resulting in death (3 patients), loss of work, steroid-induced morbidity, and recurrent hospitalizations. Conclusion: Whole brain radiotherapy is not innocuous in young patients with germ cell tumors and can cause late CNS toxicity.

  20. Effect of tumor microenvironmental factors on tumor growth dynamics modeled by correlated colored noises with colored cross-correlation

    NASA Astrophysics Data System (ADS)

    Idris, Ibrahim Mu'awiyya; Abu Bakar, Mohd Rizam

    2016-07-01

    The effect of non-immunogenic tumor microenvironmental factors on tumor growth dynamics modeled by correlated additive and multiplicative colored noises is investigated. Using the Novikov theorem, Fox approach and Ansatz of Hanggi, an approximate Fokker-Planck equation for the system is obtained and analytic expression for the steady state distribution Pst(x) is derived. Based on the numerical results, we find that fluctuations of microenvironmental factors within the tumor site with parameter θ have a diffusive effect on the tumor growth dynamics, and the tumor response to the microenvironmental factors with parameter α inhibits growth at weak correlation time τ. Moreover, at increasing correlation time τ the inhibitive effect of tumor response α is suppressed and instead a systematic growth promotion is noticed. The result also reveals that the strength of the correlation time τ has a strong influence on the growth effects exerted by the non-immunogenic component of tumor microenvironment on tumor growth.

  1. Embelin suppresses pancreatic cancer growth by modulating tumor immune microenvironment.

    PubMed

    Marsh, Justine L; Jackman, Chris P; Tang, Su-Ni; Shankar, Sharmila; Srivastava, Rakesh K

    2014-01-01

    Since pancreatic carcinoma is largely refractory to conventional therapies, development of novel agents is required for the effective treatment of pancreatic cancer. The objective of this paper was to examine the molecular mechanisms by which embelin inhibited human pancreatic cancer growth in mice by modulating tumor immune microenvironment. Embelin inhibited PANC-1 tumor growth, angiogenesis, and metastasis which were associated with suppression of Akt and Sonic Hedgehog (Shh) pathways. Embelin inhibited the expression of Bcl-2, cyclin D1, CDK2 and CDK6, IL-6 and IL-8, and induced the expression of Bax in tumor tissues. Embelin also reversed epithelial-mesenchymal transition by up-regulating E-cadherin and inhibiting the expression of Snail, Slug and Zeb1. Embelin inhibited pancreatic cancer growth in Kras(G12D) mice by modulating tumor immune microenvironment where CTL, NKT, γδT, NK, and IFNγ (Th1 type) cells were up-regulated, and Th17, PMN-MDSC, IL-6 and IL-8 (Th2 type) immune cells were inhibited. These data suggest that embelin can inhibit pancreatic cancer growth by modulating tumor immune microenvironment and Akt and Shh pathways, and inhibiting inflammation. Embelin may offer therapeutic benefits for the treatment and/or prevention of pancreatic cancer.

  2. Inhibition of lung tumor growth and augmentation of radiosensitivity by decreasing peroxiredoxin I expression

    SciTech Connect

    Chen, M.-F.; Keng, Peter C.; Shau Hungyi; Wu, C.-T.; Hu, Y.-C.; Liao, S.-K.; Chen, W.-C. . E-mail: miaofen@adm.cgmh.org.tw

    2006-02-01

    Purpose: In this study, we examined the role of peroxiredoxin I (Prx I) in lung cancer cell growth in vitro and in vivo and its influence on these tumor cells' sensitivity to radiotherapy. Methods and materials: We established stable transfectants of A549 (p53+) and H1299 (p53-) lung carcinoma cell lines with Prx I antisense to downregulate their Prx I protein. We then examined their in vitro biologic changes and used nude mice xenografts of these cell lines to compare tumor invasion, spontaneous metastatic capacity, and sensitivity to radiotherapy. Results: The Prx I antisense transfectants of both cell lines showed a significant reduction in Prx I protein production. Prx I antisense transfectants grew more slowly than did the wild type. As xenografts in mice, A549 Prx I antisense transfectants showed a threefold delay in the generation of palpable tumors. The incidence of spontaneous metastasis of Prx I antisense transfectants was significantly less than that of the wild-type cells. Furthermore, irradiation of Prx I antisense transfectants caused more than twice the growth delay compared with the wild type. Conclusion: The results of these studies suggest that inactivation of Prx I may be a promising approach to improve the treatment outcome of patients with lung cancer.

  3. Targeted Proapoptotic Peptides Depleting Adipose Stromal Cells Inhibit Tumor Growth

    PubMed Central

    Daquinag, Alexes C; Tseng, Chieh; Zhang, Yan; Amaya-Manzanares, Felipe; Florez, Fernando; Dadbin, Ali; Zhang, Tao; Kolonin, Mikhail G

    2016-01-01

    Progression of many cancers is associated with tumor infiltration by mesenchymal stromal cells (MSC). Adipose stromal cells (ASC) are MSC that serve as adipocyte progenitors and endothelium-supporting cells in white adipose tissue (WAT). Clinical and animal model studies indicate that ASC mobilized from WAT are recruited by tumors. Direct evidence for ASC function in tumor microenvironment has been lacking due to unavailability of approaches to specifically inactivate these cells. Here, we investigate the effects of a proteolysis-resistant targeted hunter-killer peptide D-WAT composed of a cyclic domain CSWKYWFGEC homing to ASC and of a proapoptotic domain KLAKLAK2. Using mouse bone marrow transplantation models, we show that D-WAT treatment specifically depletes tumor stromal and perivascular cells without directly killing malignant cells or tumor-infiltrating leukocytes. In several mouse carcinoma models, targeted ASC cytoablation reduced tumor vascularity and cell proliferation resulting in hemorrhaging, necrosis, and suppressed tumor growth. We also validated a D-WAT derivative with a proapoptotic domain KFAKFAK2 that was found to have an improved cytoablative activity. Our results for the first time demonstrate that ASC, recruited as a component of tumor microenvironment, support cancer progression. We propose that drugs targeting ASC can be developed as a combination therapy complementing conventional cancer treatments. PMID:26316391

  4. Importance of cell damage causing growth delay for high pressure inactivation of Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Nanba, Masaru; Nomura, Kazuki; Nasuhara, Yusuke; Hayashi, Manabu; Kido, Miyuki; Hayashi, Mayumi; Iguchi, Akinori; Shigematsu, Toru; Hirayama, Masao; Ueno, Shigeaki; Fujii, Tomoyuki

    2013-06-01

    A high pressure (HP) tolerant (barotolerant) mutant a2568D8 and a variably barotolerant mutant a1210H12 were generated from Saccharomyces cerevisiae using ultra-violet mutagenesis. The two mutants, a barosensitive mutant a924E1 and the wild-type strain, were pressurized (225 MPa), and pressure inactivation behavior was analyzed. In the wild-type strain, a proportion of the growth-delayed cells were detected after exposure to HP. In a924E1, the proportion of growth-delayed cells significantly decreased compared with the wild-type. In a2568D8, the proportion of growth-delayed cells increased and the proportion of inactivated cells decreased compared with the wild-type. In a1210H12, the growth-delayed cells could not be detected within 120 s of exposure to HP. The proportion of growth-delayed cells, which incurred the damage, would affect the survival ratio by HP. These results suggested that cellular changes in barotolerance caused by mutations are remarkably affected by the ability to recover from cellular damage, which results in a growth delay.

  5. Inhibition of tumor growth and metastasis by photoimmunotherapy targeting tumor-associated macrophage in a sorafenib-resistant tumor model.

    PubMed

    Zhang, Chenran; Gao, Liquan; Cai, Yuehong; Liu, Hao; Gao, Duo; Lai, Jianhao; Jia, Bing; Wang, Fan; Liu, Zhaofei

    2016-04-01

    Tumor-associated macrophages (TAMs) play essential roles in tumor invasion and metastasis, and contribute to drug resistance. Clinical evidence suggests that TAM levels are correlated with local tumor relapse, distant metastasis, and poor prognosis in patients. In this study, we synthesized a TAM-targeted probe (IRD-αCD206) by conjugating a monoclonal anti-CD206 antibody with a near-infrared phthalocyanine dye. We then investigated the potential application of the IRD-αCD206 probe to near-infrared fluorescence (NIRF) imaging and photoimmunotherapy (PIT) of tumors resistant to treatment with the kinase inhibitor sorafenib. Sorafenib treatment had no effect on tumor growth in a 4T1 mouse model of breast cancer, but induced M2 macrophage polarization in tumors. M2 macrophage recruitment by sorafenib-treated 4T1 tumors was noninvasively visualized by in vivo NIRF imaging of IRD-αCD206. Small-animal single-photon emission computed tomography (SPECT)/CT and intratumoral microdistribution analysis indicated TAM-specific localization of the IRD-αCD206 probe in 4T1 tumors after several rounds of sorafenib treatment. Upon light irradiation, IRD-αCD206 suppressed the growth of sorafenib-resistant tumors. In vivo CT imaging and ex vivo histological analysis confirmed the inhibition of lung metastasis in mice by IRD-αCD206 PIT. These results demonstrate the utility of the IRD-αCD206 probe for TAM-targeted diagnostic imaging and treatment of tumors that are resistant to conventional therapeutics.

  6. Growth inhibition, tumor maturation, and extended survival in experimental brain tumors in rats treated with phenylacetate.

    PubMed

    Ram, Z; Samid, D; Walbridge, S; Oshiro, E M; Viola, J J; Tao-Cheng, J H; Shack, S; Thibault, A; Myers, C E; Oldfield, E H

    1994-06-01

    Phenylacetate is a naturally occurring plasma component that suppresses the growth of tumor cells and induces differentiation in vitro. To evaluate the in vivo potential and preventive and therapeutic antitumor efficacy of sodium phenylacetate against malignant brain tumors, Fischer 344 rats (n = 50) bearing cerebral 9L gliosarcomas received phenylacetate by continuous s.c. release starting on the day of tumor inoculation (n = 10) using s.c. osmotic minipumps (550 mg/kg/day for 28 days). Rats with established brain tumors (n = 12) received continuous s.c. phenylacetate supplemented with additional daily i.p. dose (300 mg/kg). Control rats (n = 25) were treated in a similar way with saline. Rats were sacrificed during treatment for electron microscopic studies of their tumors, in vivo proliferation assays, and measurement of phenylacetate levels in the serum and cerebrospinal fluid. Treatment with phenylacetate extended survival when started on the day of tumor inoculation (P < 0.01) or 7 days after inoculation (P < 0.03) without any associated adverse effects. In the latter group, phenylacetate levels in pooled serum and cerebrospinal fluid samples after 7 days of treatment were in the therapeutic range as determined in vitro (2.45 mM in serum and 3.1 mM in cerebrospinal fluid). Electron microscopy of treated tumors demonstrated marked hypertrophy and organization of the rough endoplasmic reticulum, indicating cell differentiation, in contrast to the scant and randomly distributed endoplasmic reticulum in tumors from untreated animals. In addition, in vitro studies demonstrated dose-dependent inhibition of the rate of tumor proliferation and restoration of anchorage dependency, a marker of phenotypic reversion. Phenylacetate, used at clinically achievable concentrations, prolongs survival of rats with malignant brain tumors through induction of tumor differentiation. Its role in the treatment of brain tumors and other cancers should be explored further.

  7. Phase transitions in tumor growth: II prostate cancer cell lines

    NASA Astrophysics Data System (ADS)

    Llanos-Pérez, J. A.; Betancourt-Mar, A.; De Miguel, M. P.; Izquierdo-Kulich, E.; Royuela-García, M.; Tejera, E.; Nieto-Villar, J. M.

    2015-05-01

    We propose a mechanism for prostate cancer cell lines growth, LNCaP and PC3 based on a Gompertz dynamics. This growth exhibits a multifractal behavior and a "second order" phase transition. Finally, it was found that the cellular line PC3 exhibits a higher value of entropy production rate compared to LNCaP, which is indicative of the robustness of PC3, over to LNCaP and may be a quantitative index of metastatic potential tumors.

  8. Hypoxia Promotes Tumor Growth in Linking Angiogenesis to Immune Escape

    PubMed Central

    Chouaib, Salem; Messai, Yosra; Couve, Sophie; Escudier, Bernard; Hasmim, Meriem; Noman, Muhammad Zaeem

    2012-01-01

    Despite the impressive progress over the past decade, in the field of tumor immunology, such as the identification of tumor antigens and antigenic peptides, there are still many obstacles in eliciting an effective immune response to eradicate cancer. It has become increasingly clear that tumor microenvironment plays a crucial role in the control of immune protection. Tumors have evolved to utilize hypoxic stress to their own advantage by activating key biochemical and cellular pathways that are important in progression, survival, and metastasis. Hypoxia-inducible factor (HIF-1) and vascular endothelial growth factor (VEGF) play a determinant role in promoting tumor cell growth and survival. Hypoxia contributes to immune suppression by activating HIF-1 and VEGF pathways. Accumulating evidence suggests a link between hypoxia and tumor tolerance to immune surveillance through the recruitment of regulatory cells (regulatory T cells and myeloid derived suppressor cells). In this regard, hypoxia (HIF-1α and VEGF) is emerging as an attractive target for cancer therapy. How the microenvironmental hypoxia poses both obstacles and opportunities for new therapeutic immune interventions will be discussed. PMID:22566905

  9. Joint fitting reveals hidden interactions in tumor growth.

    PubMed

    Barberis, L; Pasquale, M A; Condat, C A

    2015-01-21

    Tumor growth is often the result of the simultaneous development of two or more cancer cell populations. Crucial to the system evolution are the interactions between these populations. To obtain information about these interactions we apply the recently developed vector universality (VUN) formalism to various instances of competition between tumor populations. The formalism allows us (a) to quantify the growth mechanisms of a HeLa cell colony, describing the phenotype switching responsible for its fast expansion, (b) to reliably reconstruct the evolution of the necrotic and viable fractions in both in vitro and in vivo tumors using data for the time dependences of the total masses alone, and (c) to show how the shedding of cells leading to subspheroid formation is beneficial to both the spheroid and subspheroid populations, suggesting that shedding is a strong positive influence on cancer dissemination.

  10. Development, Selection, and Validation of Tumor Growth Models

    NASA Astrophysics Data System (ADS)

    Shahmoradi, Amir; Lima, Ernesto; Oden, J. Tinsley

    In recent years, a multitude of different mathematical approaches have been taken to develop multiscale models of solid tumor growth. Prime successful examples include the lattice-based, agent-based (off-lattice), and phase-field approaches, or a hybrid of these models applied to multiple scales of tumor, from subcellular to tissue level. Of overriding importance is the predictive power of these models, particularly in the presence of uncertainties. This presentation describes our attempt at developing lattice-based, agent-based and phase-field models of tumor growth and assessing their predictive power through new adaptive algorithms for model selection and model validation embodied in the Occam Plausibility Algorithm (OPAL), that brings together model calibration, determination of sensitivities of outputs to parameter variances, and calculation of model plausibilities for model selection. Institute for Computational Engineering and Sciences.

  11. Building Context with Tumor Growth Modeling Projects in Differential Equations

    ERIC Educational Resources Information Center

    Beier, Julie C.; Gevertz, Jana L.; Howard, Keith E.

    2015-01-01

    The use of modeling projects serves to integrate, reinforce, and extend student knowledge. Here we present two projects related to tumor growth appropriate for a first course in differential equations. They illustrate the use of problem-based learning to reinforce and extend course content via a writing or research experience. Here we discuss…

  12. Altered tumor cell growth and tumorigenicity in models of microgravity

    NASA Astrophysics Data System (ADS)

    Yamauchi, K.; Taga, M.; Furian, L.; Odle, J.; Sundaresan, A.; Pellis, N.; Andrassy, R.; Kulkarni, A.

    Spaceflight environment and microgravity (MG) causes immune dysfunction and is a major health risk to humans, especially during long-term space missions. The effects of microgravity environment on tumor growth and carcinogenesis are yet unknown. Hence, we investigated the effects of simulated MG (SMG) on tumor growth and tumorigenicity using in vivo and in vitro models. B16 melanoma cells were cultured in static flask (FL) and rotating wall vessel bioreactors (BIO) to measure growth and properties, melanin production and apoptosis. BIO cultures had 50% decreased growth (p<0.01), increased doubling time and a 150% increase in melanin production (p<0.05). Flow cytometric analysis showed increased apoptosis in BIO. When BIO cultured melanoma cells were inoculated sc in mice there was a significant increase in tumorigenicity as compared to FL cells. Thus SMG may have supported &selected highly tumorigenic cells and it is pos sible that in addition to decreased immune function MG may alter tumor cell characteristics and invasiveness. Thus it is important to study effects of microgravity environment and its stressors using experimental tumors and SMG to understand and evaluate carcinogenic responses to true microgravity. Further studies on carcinogenic events and their mechanisms will allow us develop and formulate countermeasures and protect space travelers. Additional results will be presented. (Supported by NASA NCC8-168 grant, ADK)

  13. The impact of stress on tumor growth: peripheral CRF mediates tumor-promoting effects of stress

    PubMed Central

    2010-01-01

    Introduction Stress has been shown to be a tumor promoting factor. Both clinical and laboratory studies have shown that chronic stress is associated with tumor growth in several types of cancer. Corticotropin Releasing Factor (CRF) is the major hypothalamic mediator of stress, but is also expressed in peripheral tissues. Earlier studies have shown that peripheral CRF affects breast cancer cell proliferation and motility. The aim of the present study was to assess the significance of peripheral CRF on tumor growth as a mediator of the response to stress in vivo. Methods For this purpose we used the 4T1 breast cancer cell line in cell culture and in vivo. Cells were treated with CRF in culture and gene specific arrays were performed to identify genes directly affected by CRF and involved in breast cancer cell growth. To assess the impact of peripheral CRF as a stress mediator in tumor growth, Balb/c mice were orthotopically injected with 4T1 cells in the mammary fat pad to induce breast tumors. Mice were subjected to repetitive immobilization stress as a model of chronic stress. To inhibit the action of CRF, the CRF antagonist antalarmin was injected intraperitoneally. Breast tissue samples were histologically analyzed and assessed for neoangiogenesis. Results Array analysis revealed among other genes that CRF induced the expression of SMAD2 and β-catenin, genes involved in breast cancer cell proliferation and cytoskeletal changes associated with metastasis. Cell transfection and luciferase assays confirmed the role of CRF in WNT- β-catenin signaling. CRF induced 4T1 cell proliferation and augmented the TGF-β action on proliferation confirming its impact on TGFβ/SMAD2 signaling. In addition, CRF promoted actin reorganization and cell migration, suggesting a direct tumor-promoting action. Chronic stress augmented tumor growth in 4T1 breast tumor bearing mice and peripheral administration of the CRF antagonist antalarmin suppressed this effect. Moreover, antalarmin

  14. Dietary branched-chain amino acid (BCAA) and tumor growth

    SciTech Connect

    Chan, W.; Baron, L.; Baron, P.; White, F.; Banks, W.L. Jr.

    1986-03-05

    The effects of high dietary BCAA on tumor growth was examined in adult male Fischer 344 rats inoculated with 10/sup 6/ viable MCA fibrosarcoma cells. Ten days after tumor inoculation, when tumors were of palpable size, rats were divided into two groups at random. The experimental(E) group was fed the AIN-76 diet supplemented with 4X the BCAA content of diet casein and the control(C) group was fed the AIN-76 made isonitrogenous with the E diet by glutamic acid supplementation. Five rats from each group were killed at days 0,3,6, and 9. Rats were injected with /sup 14/C-Tyrosine and /sup 3/H-Thymidine i.p. (2 and 4 uCi/100g BW, respectively) an hour before they were killed. The incorporation of /sup 14/C and /sup 3/H into the acid insoluble fraction of the tumor tissues samples were measured. Single cell suspension of tumor were prepared for cell cycle kinetics analysis using a Coulter EPICS IV flow microflorometer. The percentage of normal and hyperdiploid cells were analyzed. Results showed that both tumor size and weight were doubled at each time point the rats were killed. At day 0, the /sup 3/H and /sup 14/C incorporation were 32 +/- 10dpm and 27 +/- 4dpm/mg tumor, respectively. The /sup 3/H incorporation dropped in both diet groups at days 6 and 9 but the /sup 14/C incorporation showed a decrease only at day 9. These changes were statistically significant, P>0.05. No difference in the tumor growth parameters used in this study can be attributed to the high dietary BCAA.

  15. Evaluation of Tumor Response after Short-Course Radiotherapy and Delayed Surgery for Rectal Cancer

    PubMed Central

    Rega, Daniela; Pecori, Biagio; Scala, Dario; Avallone, Antonio; Pace, Ugo; Petrillo, Antonella; Aloj, Luigi; Tatangelo, Fabiana; Delrio, Paolo

    2016-01-01

    Purpose Neoadjuvant therapy is able to reduce local recurrence in rectal cancer. Immediate surgery after short course radiotherapy allows only for minimal downstaging. We investigated the effect of delayed surgery after short-course radiotherapy at different time intervals before surgery, in patients affected by rectal cancer. Methods From January 2003 to December 2013 sixty-seven patients with the following characteristics have been selected: clinical (c) stage T3N0 ≤ 12 cm from the anal verge and with circumferential resection margin > 5 mm (by magnetic resonance imaging); cT2, any N, < 5 cm from anal verge; and patients facing tumors with enlarged nodes and/or CRM+ve who resulted unfit for chemo-radiation, were also included. Patients underwent preoperative short-course radiotherapy with different interval to surgery were divided in three groups: A (within 6 weeks), B (between 6 and 8 weeks) and C (after more than 8 weeks). Hystopatolgical response to radiotherapy was measured by Mandard’s modified tumor regression grade (TRG). Results All patients completed the scheduled treatment. Sixty-six patients underwent surgery. Fifty-three of which (80.3%) received a sphincter saving procedure. Downstaging occurred in 41 cases (62.1%). The analysis of subgroups showed an increasing prevalence of TRG 1–2 prolonging the interval to surgery (group A—16.7%, group B—36.8% and 54.3% in group C; p value 0.023). Conclusions Preoperative short-course radiotherapy is able to downstage rectal cancer if surgery is delayed. A higher rate of TRG 1–2 can be obtained if interval to surgery is prolonged to more than 8 weeks. PMID:27548058

  16. Harnessing High Density Lipoproteins to Block Transforming Growth Factor Beta and to Inhibit the Growth of Liver Tumor Metastases

    PubMed Central

    Medina-Echeverz, José; Fioravanti, Jessica; Díaz-Valdés, Nancy; Frank, Kathrin; Aranda, Fernando; Gomar, Celia; Ardaiz, Nuria; Dotor, Javier; Umansky, Viktor; Prieto, Jesús; Berraondo, Pedro

    2014-01-01

    Transforming growth factor β (TGF-β) is a powerful promoter of cancer progression and a key target for antitumor therapy. As cancer cells exhibit active cholesterol metabolism, high density lipoproteins (HDLs) appear as an attractive delivery system for anticancer TGFβ-inhibitory molecules. We constructed a plasmid encoding a potent TGF-β-blocking peptide (P144) linked to apolipoprotein A-I (ApoA-I) through a flexible linker (pApoLinkerP144). The ApoLinkerP144 sequence was then incorporated into a hepatotropic adeno-associated vector (AAVApoLinkerP144). The aim was to induce hepatocytes to produce HDLs containing a modified ApoA-I capable of blocking TGF-β. We observed that transduction of the murine liver with pApoLinkerP144 led to the appearance of a fraction of circulating HDL containing the fusion protein. These HDLs were able to attenuate TGF-β signaling in the liver and to enhance IL-12 -mediated IFN-γ production. Treatment of liver metastasis of MC38 colorectal cancer with AAVApoLinkerP144 resulted in a significant reduction of tumor growth and enhanced expression of IFN-γ and GM-CSF in cancerous tissue. ApoLinkerP144 also delayed MC38 liver metastasis in Rag2−/−IL2rγ−/− immunodeficient mice. This effect was associated with downregulation of TGF-β target genes essential for metastatic niche conditioning. Finally, in a subset of ret transgenic mice, a model of aggressive spontaneous metastatic melanoma, AAVApoLinkerP144 delayed tumor growth in association with increased CD8+ T cell numbers in regional lymph nodes. In conclusion, modification of HDLs to transport TGF-β-blocking molecules is a novel and promising approach to inhibit the growth of liver metastases by immunological and non-immunological mechanisms. PMID:24797128

  17. Human STEAP3 maintains tumor growth under hypoferric condition

    SciTech Connect

    Isobe, Taichi; Baba, Eishi; Arita, Shuji; Komoda, Masato; Tamura, Shingo; Shirakawa, Tsuyoshi; Ariyama, Hiroshi; Takaishi, Shigeo; Kusaba, Hitoshi; and others

    2011-11-01

    Iron is essential in cellular proliferation and survival based on its crucial roles in DNA and ATP synthesis. Tumor cells proliferate rapidly even in patients with low serum iron, although their actual mechanisms are not well known. To elucidate molecular mechanisms of efficient tumor progression under the hypoferric condition, we studied the roles of six-transmembrane epithelial antigen of the prostate family member 3 (STEAP3), which was reported to facilitate iron uptake. Using Raji cells with low STEAP3 mRNA expression, human STEAP3-overexpressing cells were established. The impact of STEAP3 expression was analyzed about the amount of iron storage, the survival under hypoferric conditions in vitro and the growth of tumor in vivo. STEAP3 overexpression increased ferritin, an indicator of iron storage, in STEAP3-overexpressing Raji cells. STEAP3 gave Raji cells the resistance to iron deprivation-induced apoptosis. These STEAP3-overexpressing Raji cells preserved efficient growth even in hypoferric mice, while parental Raji cells grew less rapidly. In addition, iron deficiency enhanced STEAP3 mRNA expression in tumor cells. Furthermore, human colorectal cancer tissues exhibited more STEAP3 mRNA expression and iron storage compared with normal colon mucosa. These findings indicate that STEAP3 maintains iron storage in human malignant cells and tumor proliferation under the hypoferric condition. -- Highlights: {yields} STEAP3 expression results in increment of stored intracellular iron. {yields} Iron deprivation induces expression of STEAP3. {yields} Colorectal cancer expresses STEAP3 highly and stores iron much. {yields} STEAP3 expressing tumors preserves growth even in mice being hypoferremia.

  18. Dietary rice component, Oryzanol, inhibits tumor growth in tumor-bearing Mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scope: We investigated the effects of rice bran and components on tumor growth in mice. Methods and results: Mice fed standard diets supplemented with rice bran, '-oryzanol, Ricetrienol®, ferulic acid, or phytic acid for 2 weeks were inoculated with CT-26 colon cancer cells and fed the same diet fo...

  19. Noscapine inhibits tumor growth in TMZ-resistant gliomas.

    PubMed

    Jhaveri, Niyati; Cho, Heeyeon; Torres, Shering; Wang, Weijun; Schönthal, Axel H; Petasis, Nicos A; Louie, Stan G; Hofman, Florence M; Chen, Thomas C

    2011-12-22

    Noscapine, a common oral antitussive agent, has been shown to have potent antitumor activity in a variety of cancers. Treatment of glioblastoma multiforme (GBM) with temozolomide (TMZ), its current standard of care, is problematic because the tumor generally recurs and is then resistant to this drug. We therefore investigated the effects of noscapine on human TMZ-resistant GBM tumors. We found that noscapine significantly decreased TMZ-resistant glioma cell growth and invasion. Using the intracranial xenograft model, we showed that noscapine increased survival of animals with TMZ-resistant gliomas. Thus noscapine can provide an alternative therapeutic approach for the treatment of TMZ-resistant gliomas.

  20. Tumor Regression and Delayed Onset Toxicity Following B7-H4 CAR T Cell Therapy.

    PubMed

    Smith, Jenessa B; Lanitis, Evripidis; Dangaj, Denarda; Buza, Elizabeth; Poussin, Mathilde; Stashwick, Caitlin; Scholler, Nathalie; Powell, Daniel J

    2016-11-01

    B7-H4 protein is frequently overexpressed in ovarian cancer. Here, we engineered T cells with novel B7-H4-specific chimeric antigen receptors (CARs) that recognized both human and murine B7-H4 to test the hypothesis that B7-H4 CAR T cell therapy can be applied safely in preclinical models. B7-H4 CAR T cells specifically secreted IFN-γ and lysed B7-H4(+) targets. In vivo, B7-H4 CAR T cells displayed antitumor reactivity against B7-H4(+) human ovarian tumor xenografts. Unexpectedly, B7-H4 CAR T cell treatment reproducibly showed delayed, lethal toxicity 6-8 weeks after therapy. Comprehensive assessment of murine B7-H4 protein distribution uncovered expression in ductal and mucosal epithelial cells in normal tissues. Postmortem analysis revealed the presence of widespread histologic lesions that correlated with B7-H4(+) expression, and were inconsistent with graft versus host disease. Lastly, expression patterns of B7-H4 protein in normal human tissue were comparable to distribution in mice, advancing our understanding of B7-H4. We conclude that B7-H4 CAR therapy mediates control of cancer outgrowth. However, long-term engraftment of B7-H4 CAR T cells mediates lethal, off-tumor toxicity that is likely due to wide expression of B7-H4 in healthy mouse organs. This model system provides a unique opportunity for preclinical evaluation of safety approaches that limit CAR-mediated toxicity after tumor destruction in vivo.

  1. Effect of puberty on rates of bone growth and mineralisation: with observations in male delayed puberty.

    PubMed Central

    Krabbe, S; Christiansen, C; Rødbro, P; Transbøl, I

    1979-01-01

    The bone mineral content (BMC) and body height were measured in 301 normal children and adolescents aged 7--20 years, and in 8 boys with constitutional delayed puberty aged 14--17 years. Serum testosterone was measured in the last group as well as in a subpopulation of the normal children and adolescents. The growth spurt, which coincided with a steep increase of serum testosterone in boys, indicated a great change in skeletal growth and mineralisation in both sexes. After the growth spurt, linear growth slowed down considerably while bone mineralisation rose steeply. When low levels of serum testosterone were maintained, as in delayed puberty, these combined changes of skeletal growth and mineralisation did not occur. It is suggested that gonadal hormones are the true initiators of the short-lived growth spurt as well as of prolonged acceleration of bone mineralisation. PMID:533299

  2. Netrin-4 regulates angiogenic responses and tumor cell growth

    SciTech Connect

    Nacht, Mariana; St Martin, Thia B.; Byrne, Ann; Klinger, Katherine W.; Teicher, Beverly A.; Madden, Stephen L. Jiang, Yide

    2009-03-10

    Netrin-4 is a 628 amino acid basement membrane component that promotes neurite elongation at low concentrations but inhibits neurite extension at high concentrations. There is a growing body of literature suggesting that several molecules, including netrins, are regulators of both neuronal and vascular growth. It is believed that molecules that guide neural growth and development are also involved in regulating morphogenesis of the vascular tree. Further, netrins have recently been implicated in controlling epithelial cell branching morphogenesis in the breast, lung and pancreas. Characterization of purified netrin-4 in in vitro angiogenesis assays demonstrated that netrin-4 markedly inhibits HMVEC migration and tube formation. Moreover, netrin-4 inhibits proliferation of a variety of human tumor cells in vitro. Netrin-4 has only modest effects on proliferation of endothelial and other non-transformed cells. Netrin-4 treatment results in phosphorylation changes of proteins that are known to control cell growth. Specifically, Phospho-Akt-1, Phospho-Jnk-2, and Phospho-c-Jun are reduced in tumor cells that have been treated with netrin-4. Together, these data suggest a potential role for netrin-4 in regulating tumor growth.

  3. Polyploidization delay in rat hepatocytes under liver growth inhibition by hypokinesia

    NASA Technical Reports Server (NTRS)

    Faktor, V. M.; Malyutin, V. F.; Li, S. Y.; Brodskiy, V. Y.

    1981-01-01

    A study of young rats, weighing 55 to 59 g, after being for 10 days in conditions of limited mobility, shows a retardation of body growth as well as that of liver growth. The decrease in the rate of growth is accompanied by a reduction of cell proliferation and by delay polyploidization of hepatocytes in the liver of experimental rats. The materials, methods, and results of research are discussed.

  4. Effect of intermittent fasting on prostate cancer tumor growth in a mouse model.

    PubMed

    Thomas, J A; Antonelli, J A; Lloyd, J C; Masko, E M; Poulton, S H; Phillips, T E; Pollak, M; Freedland, S J

    2010-12-01

    Caloric restriction (CR) has been shown to have anti-cancer properties. However, CR may be difficult to apply in humans secondary to compliance and potentially deleterious effects. An alternative is intermittent CR, or in the extreme case intermittent fasting (IF). In a previous small pilot study, we found 2 days per week of IF with ad libitum feeding on the other days resulted in trends toward prolonged survival of mice bearing prostate cancer xenografts. We sought to confirm these findings in a larger study. A total of 100 (7- to 8-week-old) male severe combined immunodeficiency mice were injected subcutaneously with 1 × 10(5) LAPC-4 prostate cancer cells. Mice were randomized to either ad libitum Western Diet (44% carbohydrates, 40% fat and 16% protein) or ad libitum Western Diet with twice-weekly 24 h fasts (IF). Tumor volumes and mouse bodyweights were measured twice weekly. Mice were killed when tumor volumes reached 1000 mm(3). Serum and tumor were collected for analysis of the insulin/insulin-like growth factor 1 (IGF-1) hormonal axis. Overall, there was no difference in mouse survival (P=0.37) or tumor volumes (P ≥ 0.10) between groups. Mouse body weights were similar between arms (P=0.84). IF mice had significantly higher serum IGF-1 levels and IGF-1/IGFBP-3 ratios at killing (P<0.001). However, no difference was observed in serum insulin, IGFBP-3 or tumor phospho-Akt levels (P ≥ 0.39). IF did not improve mouse survival nor did it delay prostate tumor growth. This may be secondary to metabolic adaptations to the 24 h fasting periods. Future studies are required to optimize CR for application in humans.

  5. Stability and Hopf bifurcation for a regulated logistic growth model with discrete and distributed delays

    NASA Astrophysics Data System (ADS)

    Fang, Shengle; Jiang, Minghui

    2009-12-01

    In this paper, we investigate the stability and Hopf bifurcation of a new regulated logistic growth with discrete and distributed delays. By choosing the discrete delay τ as a bifurcation parameter, we prove that the system is locally asymptotically stable in a range of the delay and Hopf bifurcation occurs as τ crosses a critical value. Furthermore, explicit algorithm for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is derived by normal form theorem and center manifold argument. Finally, an illustrative example is also given to support the theoretical results.

  6. Conditional loss of ErbB3 delays mammary gland hyperplasia induced by mutant PIK3CA without affecting mammary tumor latency, gene expression, or signaling.

    PubMed

    Young, Christian D; Pfefferle, Adam D; Owens, Philip; Kuba, María G; Rexer, Brent N; Balko, Justin M; Sánchez, Violeta; Cheng, Hailing; Perou, Charles M; Zhao, Jean J; Cook, Rebecca S; Arteaga, Carlos L

    2013-07-01

    Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of phosphoinositide 3-kinase (PI3K), have been shown to transform mammary epithelial cells (MEC). Studies suggest this transforming activity requires binding of mutant p110α via p85 to phosphorylated YXXM motifs in activated receptor tyrosine kinases (RTK) or adaptors. Using transgenic mice, we examined if ErbB3, a potent activator of PI3K, is required for mutant PIK3CA-mediated transformation of MECs. Conditional loss of ErbB3 in mammary epithelium resulted in a delay of PIK3CA(H1047R)-dependent mammary gland hyperplasia, but tumor latency, gene expression, and PI3K signaling were unaffected. In ErbB3-deficient tumors, mutant PI3K remained associated with several tyrosyl phosphoproteins, potentially explaining the dispensability of ErbB3 for tumorigenicity and PI3K activity. Similarly, inhibition of ErbB RTKs with lapatinib did not affect PI3K signaling in PIK3CA(H1047R)-expressing tumors. However, the p110α-specific inhibitor BYL719 in combination with lapatinib impaired mammary tumor growth and PI3K signaling more potently than BYL719 alone. Furthermore, coinhibition of p110α and ErbB3 potently suppressed proliferation and PI3K signaling in human breast cancer cells harboring PIK3CA(H1047R). These data suggest that PIK3CA(H1047R)-driven tumor growth and PI3K signaling can occur independently of ErbB RTKs. However, simultaneous blockade of p110α and ErbB RTKs results in superior inhibition of PI3K and mammary tumor growth, suggesting a rational therapeutic combination against breast cancers harboring PIK3CA activating mutations.

  7. The role of mechanical forces in tumor growth and therapy

    PubMed Central

    Jain, Rakesh K.; Martin, John D.; Stylianopoulos, Triantafyllos

    2014-01-01

    Tumors generate physical forces during growth and progression. These physical forces are able to compress blood and lymphatic vessels, reducing perfusion rates and creating hypoxia. When exerted directly on cancer cells, they can increase their invasive and metastatic potential. Tumor vessels - while nourishing the tumor - are usually leaky and tortuous, which further decreases perfusion. Hypo-perfusion and hypoxia contribute to immune-evasion, promote malignant progression and metastasis, and reduce the efficacy of a number of therapies, including radiation. In parallel, vessel leakiness together with vessel compression cause a uniformly elevated interstitial fluid pressure that hinders delivery of blood-borne therapeutic agents, lowering the efficacy of chemo- and nano-therapies. In addition, shear stresses exerted by flowing blood and interstitial fluid modulate the behavior of cancer and a variety of host cells. Taming these physical forces can improve therapeutic outcomes in many cancers. PMID:25014786

  8. Integrative models of vascular remodeling during tumor growth

    PubMed Central

    Rieger, Heiko; Welter, Michael

    2015-01-01

    Malignant solid tumors recruit the blood vessel network of the host tissue for nutrient supply, continuous growth, and gain of metastatic potential. Angiogenesis (the formation of new blood vessels), vessel cooption (the integration of existing blood vessels into the tumor vasculature), and vessel regression remodel the healthy vascular network into a tumor-specific vasculature that is in many respects different from the hierarchically organized arterio-venous blood vessel network of the host tissues. Integrative models based on detailed experimental data and physical laws implement in silico the complex interplay of molecular pathways, cell proliferation, migration, and death, tissue microenvironment, mechanical and hydrodynamic forces, and the fine structure of the host tissue vasculature. With the help of computer simulations high-precision information about blood flow patterns, interstitial fluid flow, drug distribution, oxygen and nutrient distribution can be obtained and a plethora of therapeutic protocols can be tested before clinical trials. In this review, we give an overview over the current status of integrative models describing tumor growth, vascular remodeling, blood and interstitial fluid flow, drug delivery, and concomitant transformations of the microenvironment. © 2015 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc. PMID:25808551

  9. The role of the microenvironment in tumor growth and invasion

    PubMed Central

    Kim, Yangjin; Stolarska, Magdalena A.; Othmer, Hans G.

    2011-01-01

    Mathematical modeling and computational analysis are essential for understanding the dynamics of the complex gene networks that control normal development and homeostasis, and can help to understand how circumvention of that control leads to abnormal outcomes such as cancer. Our objectives here are to discuss the different mechanisms by which the local biochemical and mechanical microenvironment, which is comprised of various signaling molecules, cell types and the extracellular matrix (ECM), affects the progression of potentially-cancerous cells, and to present new results on two aspects of these effects. We first deal with the major processes involved in the progression from a normal cell to a cancerous cell at a level accessible to a general scientific readership, and we then outline a number of mathematical and computational issues that arise in cancer modeling. In Section 2 we present results from a model that deals with the effects of the mechanical properties of the environment on tumor growth, and in Section 3 we report results from a model of the signaling pathways and the tumor microenvironment (TME), and how their interactions affect the development of breast cancer. The results emphasize anew the complexities of the interactions within the TME and their effect on tumor growth, and show that tumor progression is not solely determined by the presence of a clone of mutated immortal cells, but rather that it can be ‘community-controlled’. It Takes a Village – Hilary Clinton PMID:21736894

  10. Disrupting Hypoxia-Induced Bicarbonate Transport Acidifies Tumor Cells and Suppresses Tumor Growth.

    PubMed

    McIntyre, Alan; Hulikova, Alzbeta; Ledaki, Ioanna; Snell, Cameron; Singleton, Dean; Steers, Graham; Seden, Peter; Jones, Dylan; Bridges, Esther; Wigfield, Simon; Li, Ji-Liang; Russell, Angela; Swietach, Pawel; Harris, Adrian L

    2016-07-01

    Tumor hypoxia is associated clinically with therapeutic resistance and poor patient outcomes. One feature of tumor hypoxia is activated expression of carbonic anhydrase IX (CA9), a regulator of pH and tumor growth. In this study, we investigated the hypothesis that impeding the reuptake of bicarbonate produced extracellularly by CA9 could exacerbate the intracellular acidity produced by hypoxic conditions, perhaps compromising cell growth and viability as a result. In 8 of 10 cancer cell lines, we found that hypoxia induced the expression of at least one bicarbonate transporter. The most robust and frequent inductions were of the sodium-driven bicarbonate transporters SLC4A4 and SLC4A9, which rely upon both HIF1α and HIF2α activity for their expression. In cancer cell spheroids, SLC4A4 or SLC4A9 disruption by either genetic or pharmaceutical approaches acidified intracellular pH and reduced cell growth. Furthermore, treatment of spheroids with S0859, a small-molecule inhibitor of sodium-driven bicarbonate transporters, increased apoptosis in the cell lines tested. Finally, RNAi-mediated attenuation of SLC4A9 increased apoptosis in MDA-MB-231 breast cancer spheroids and dramatically reduced growth of MDA-MB-231 breast tumors or U87 gliomas in murine xenografts. Our findings suggest that disrupting pH homeostasis by blocking bicarbonate import might broadly relieve the common resistance of hypoxic tumors to anticancer therapy. Cancer Res; 76(13); 3744-55. ©2016 AACR.

  11. Bursts of Bipolar Microsecond Pulses Inhibit Tumor Growth

    NASA Astrophysics Data System (ADS)

    Sano, Michael B.; Arena, Christopher B.; Bittleman, Katelyn R.; Dewitt, Matthew R.; Cho, Hyung J.; Szot, Christopher S.; Saur, Dieter; Cissell, James M.; Robertson, John; Lee, Yong W.; Davalos, Rafael V.

    2015-10-01

    Irreversible electroporation (IRE) is an emerging focal therapy which is demonstrating utility in the treatment of unresectable tumors where thermal ablation techniques are contraindicated. IRE uses ultra-short duration, high-intensity monopolar pulsed electric fields to permanently disrupt cell membranes within a well-defined volume. Though preliminary clinical results for IRE are promising, implementing IRE can be challenging due to the heterogeneous nature of tumor tissue and the unintended induction of muscle contractions. High-frequency IRE (H-FIRE), a new treatment modality which replaces the monopolar IRE pulses with a burst of bipolar pulses, has the potential to resolve these clinical challenges. We explored the pulse-duration space between 250 ns and 100 μs and determined the lethal electric field intensity for specific H-FIRE protocols using a 3D tumor mimic. Murine tumors were exposed to 120 bursts, each energized for 100 μs, containing individual pulses 1, 2, or 5 μs in duration. Tumor growth was significantly inhibited and all protocols were able to achieve complete regressions. The H-FIRE protocol substantially reduces muscle contractions and the therapy can be delivered without the need for a neuromuscular blockade. This work shows the potential for H-FIRE to be used as a focal therapy and merits its investigation in larger pre-clinical models.

  12. Bursts of Bipolar Microsecond Pulses Inhibit Tumor Growth.

    PubMed

    Sano, Michael B; Arena, Christopher B; Bittleman, Katelyn R; DeWitt, Matthew R; Cho, Hyung J; Szot, Christopher S; Saur, Dieter; Cissell, James M; Robertson, John; Lee, Yong W; Davalos, Rafael V

    2015-10-13

    Irreversible electroporation (IRE) is an emerging focal therapy which is demonstrating utility in the treatment of unresectable tumors where thermal ablation techniques are contraindicated. IRE uses ultra-short duration, high-intensity monopolar pulsed electric fields to permanently disrupt cell membranes within a well-defined volume. Though preliminary clinical results for IRE are promising, implementing IRE can be challenging due to the heterogeneous nature of tumor tissue and the unintended induction of muscle contractions. High-frequency IRE (H-FIRE), a new treatment modality which replaces the monopolar IRE pulses with a burst of bipolar pulses, has the potential to resolve these clinical challenges. We explored the pulse-duration space between 250 ns and 100 μs and determined the lethal electric field intensity for specific H-FIRE protocols using a 3D tumor mimic. Murine tumors were exposed to 120 bursts, each energized for 100 μs, containing individual pulses 1, 2, or 5 μs in duration. Tumor growth was significantly inhibited and all protocols were able to achieve complete regressions. The H-FIRE protocol substantially reduces muscle contractions and the therapy can be delivered without the need for a neuromuscular blockade. This work shows the potential for H-FIRE to be used as a focal therapy and merits its investigation in larger pre-clinical models.

  13. Cyclooxygenase-Dependent Tumor Growth through Evasion of Immunity

    PubMed Central

    Zelenay, Santiago; van der Veen, Annemarthe G.; Böttcher, Jan P.; Snelgrove, Kathryn J.; Rogers, Neil; Acton, Sophie E.; Chakravarty, Probir; Girotti, Maria Romina; Marais, Richard; Quezada, Sergio A.; Sahai, Erik; Reis e Sousa, Caetano

    2015-01-01

    Summary The mechanisms by which melanoma and other cancer cells evade anti-tumor immunity remain incompletely understood. Here, we show that the growth of tumors formed by mutant BrafV600E mouse melanoma cells in an immunocompetent host requires their production of prostaglandin E2, which suppresses immunity and fuels tumor-promoting inflammation. Genetic ablation of cyclooxygenases (COX) or prostaglandin E synthases in BrafV600E mouse melanoma cells, as well as in NrasG12D melanoma or in breast or colorectal cancer cells, renders them susceptible to immune control and provokes a shift in the tumor inflammatory profile toward classic anti-cancer immune pathways. This mouse COX-dependent inflammatory signature is remarkably conserved in human cutaneous melanoma biopsies, arguing for COX activity as a driver of immune suppression across species. Pre-clinical data demonstrate that inhibition of COX synergizes with anti-PD-1 blockade in inducing eradication of tumors, implying that COX inhibitors could be useful adjuvants for immune-based therapies in cancer patients. PMID:26343581

  14. Bursts of Bipolar Microsecond Pulses Inhibit Tumor Growth

    PubMed Central

    Sano, Michael B.; Arena, Christopher B.; Bittleman, Katelyn R.; DeWitt, Matthew R.; Cho, Hyung J.; Szot, Christopher S.; Saur, Dieter; Cissell, James M.; Robertson, John; Lee, Yong W.; Davalos, Rafael V.

    2015-01-01

    Irreversible electroporation (IRE) is an emerging focal therapy which is demonstrating utility in the treatment of unresectable tumors where thermal ablation techniques are contraindicated. IRE uses ultra-short duration, high-intensity monopolar pulsed electric fields to permanently disrupt cell membranes within a well-defined volume. Though preliminary clinical results for IRE are promising, implementing IRE can be challenging due to the heterogeneous nature of tumor tissue and the unintended induction of muscle contractions. High-frequency IRE (H-FIRE), a new treatment modality which replaces the monopolar IRE pulses with a burst of bipolar pulses, has the potential to resolve these clinical challenges. We explored the pulse-duration space between 250 ns and 100 μs and determined the lethal electric field intensity for specific H-FIRE protocols using a 3D tumor mimic. Murine tumors were exposed to 120 bursts, each energized for 100 μs, containing individual pulses 1, 2, or 5 μs in duration. Tumor growth was significantly inhibited and all protocols were able to achieve complete regressions. The H-FIRE protocol substantially reduces muscle contractions and the therapy can be delivered without the need for a neuromuscular blockade. This work shows the potential for H-FIRE to be used as a focal therapy and merits its investigation in larger pre-clinical models. PMID:26459930

  15. Impact of body mass index on growth in boys with delayed puberty.

    PubMed

    Nathan, Brandon M; Sedlmeyer, Ines L; Palmert, Mark R

    2006-08-01

    It is unclear whether overweight but otherwise healthy boys with delayed puberty have a variation of constitutional delay of growth and maturation (CDGM) or a different etiology for their pubertal delay. To characterize better this group of boys and investigate whether their growth pattern distinguishes them from boys with typical CDGM, growth data were analyzed in eight overweight (BMI SDS > or = 85th percentile) and 37 non-overweight (BMI SDS <85th percentile) boys with delayed puberty. Primary outcome measures included predicted height (PH) and adult height (AH). At diagnosis of delayed puberty, the overweight boys had less delayed bone ages (chronological age [CA] - bone age [BA] = 1.2 +/- 1.0 vs 2.5 +/- 1.1 years, p <0.01), greater height SDS for CA (-0.5 +/- 0.7 vs -2.4 +/- 0.8, p <0.001), and greater height SDS for BA (0.6 +/- 0.9 vs -0.4 +/- 1.1, p <0.05). PH for the overweight boys exceeded their mid-parental height (MPH) by 5.0 +/- 7.2 cm while non-overweight boys were predicted to fall below their MPH by 2.8 +/- 6.3 cm (p <0.01). Available AH data corroborated the differences in PH, with a trend for overweight boys to have greater height relative to their MPH than the non-overweight boys. These observations suggest that in the context of delayed puberty, being overweight may modulate adult height and/or that the etiology of delayed puberty in overweight boys may differ from typical CDGM.

  16. Maternal MDMA administration in mice leads to neonatal growth delay.

    PubMed

    Kaizaki, Asuka; Tanaka, Sachiko; Yoshida, Takemi; Numazawa, Satoshi

    2014-02-01

    The psychoactive recreational drug 3,4-methylenedioxymethamphetamine (MDMA) is widely abused. The fact that MDMA induces neurotoxic damage in serotonergic nerve endings is well known. However, the effects of MDMA on pregnant and neonatal animals remain unknown. Therefore, we studied the effects of gestational exposure to MDMA on birth, growth, and behavior of pups. Female BALB/c mice were orally administered either water (10 ml/kg) or MDMA (20 mg/10 ml/kg) from gestational day 1 to postnatal day (P) 21. MDMA did not affect the birth rate, but the survival rate of the pups significantly decreased. A significant reduction in body weight gain was observed in pups from MDMA-administered dams during P3-P21. Maternal MDMA treatment caused an attenuated cliff avoidance reaction and decreased motor function in the pups, as determined by the wire hanging test. These results suggest that MDMA treatment during pregnancy and lactation causes growth retardation and dysfunction of motor neurons in mouse pups.

  17. In-vivo visualization of melanoma tumor microvessels and blood flow velocity changes accompanying tumor growth

    NASA Astrophysics Data System (ADS)

    Ishida, Hiroki; Hachiga, Tadashi; Andoh, Tsugunobu; Akiguchi, Shunsuke

    2012-11-01

    We demonstrate that using micro multipoint laser Doppler velocimetry (μ-MLDV) for noninvasive in-vivo imaging of blood vessels is useful for diagnosing malignant melanomas by comparison with visual diagnosis by dermoscopy. The blood flow velocity in microvessels varied during growth of melanomas transplanted in mouse ears. Mouse ears were observed by μ-MLDV up to 16 days after transplantation. The blood flow velocity in the tumor increased with increasing time and reached maximum of 4.5 mm/s at 9 days, which is more than twice that prior to transplantation. After 12 days, when the lesion had grown to an area of 6.6 mm2, we observed the formation of new blood vessels in the tumor. Finally, when the lesion had an area of 18 mm2 after 16 days, the flow velocity in the tumor decreased to approximately 3.2 mm/s.

  18. Caveolin-1 is down-regulated in alveolar rhabdomyosarcomas and negatively regulates tumor growth

    PubMed Central

    Huertas-Martínez, Juan; Rello-Varona, Santiago; Herrero-Martín, David; Barrau, Ignasi; García-Monclús, Silvia; Sáinz-Jaspeado, Miguel; Lagares-Tena, Laura; Núñez-Álvarez, Yaiza; Mateo-Lozano, Silvia; Mora, Jaume; Roma, Josep; Toran, Nuria; Moran, Sebastian; López-Alemany, Roser; Gallego, Soledad; Esteller, Manel; Peinado, Miguel A.; Xavier García del, Muro; Tirado, Oscar M.

    2014-01-01

    Rhabdomyosarcoma is the most common soft tissue sarcoma of childhood and adolescence. Despite advances in therapy, patients with histological variant of rhabdomyosarcoma known as alveolar rhabdomyosarcoma (ARMS) have a 5-year survival of less than 30%. Caveolin-1 (CAV1), encoding the structural component of cellular caveolae, is a suggested tumor suppressor gene involved in cell signaling. In the present study we report that compared to other forms of rhabdomyosarcoma (RMS) CAV1 expression is either undetectable or very low in ARMS cell lines and tumor samples. DNA methylation analysis of the promoter region and azacytidine-induced re-expression suggest the involvement of epigenetic mechanisms in the silencing of CAV1. Reintroduction of CAV1 in three of these cell lines impairs their clonogenic capacity and promotes features of muscular differentiation. In vitro, CAV1-expressing cells show high expression of Caveolin-3 (CAV3), a muscular differentiation marker. Blockade of MAPK signaling is also observed. In vivo, CAV1-expressing xenografts show growth delay, features of muscular differentiation and increased cell death. In summary, our results suggest that CAV1 could function as a potent tumor suppressor in ARMS tumors. Inhibition of CAV1 function therefore, could contribute to aberrant cell proliferation, leading to ARMS development. PMID:25313138

  19. Polyphenol-rich extract of Pimenta dioica berries (Allspice) kills breast cancer cells by autophagy and delays growth of triple negative breast cancer in athymic mice

    PubMed Central

    Zhang, Lei; Shamaladevi, Nagarajarao; Jayaprakasha, Guddadarangavvanahally K.; Patil, Bhimu S.; Lokeshwar, Bal L.

    2015-01-01

    Bioactive compounds from edible plants have limited efficacy in treating advanced cancers, but they have potential to increase the efficacy of chemotherapy drugs in a combined treatment. An aqueous extract of berries of Pimenta dioica (Allspice) shows promise as one such candidate for combination therapy or chemoprevention. An aqueous extract of Allspice (AAE) was tested against human breast cancer (BrCa) cells in vitro and in vivo. AAE reduced the viability and clonogenic growth of several types of BrCa cells (IC50 ≤ 100 μg/ml) with limited toxicity in non-tumorigenic, quiescent cells (IC50 >200 μg/ml). AAE induced cytotoxicity in BrCa was inconsistent with apoptosis, but was associated with increased levels of autophagy markers LC3B and LC3B-positive puncta. Silencing the expression of autophagy related genes (ATGs) prevented AAE-induced cell death. Further, AAE caused inhibition of Akt/mTOR signaling, and showed enhanced cytotoxicity when combined with rapamycin, a chemotherapy drug and an inhibitor of mTOR signaling. Oral administration (gavage) of AAE into athymic mice implanted with MDA-MB231 tumors inhibited tumor growth slightly but not significantly (mean decrease ~ 14%, p ≥ 0.20) if mice were gavaged post-tumor implant. Tumor growth showed a significant delay (38%) in tumor palpability and growth rate (time to reach tumor volume ≥ 1,000 mm3) when mice were pre-dosed with AAE for two weeks. Analysis of tumor tissues showed increased levels of LC3B in AAE treated tumors, indicating elevated autophagic tumor cell death in vivo in treated mice. These results demonstrate antitumor and chemo-preventive activity of AAE against BrCa and potential for adjuvant to mTOR inhibition. PMID:25945840

  20. Polyphenol-rich extract of Pimenta dioica berries (Allspice) kills breast cancer cells by autophagy and delays growth of triple negative breast cancer in athymic mice.

    PubMed

    Zhang, Lei; Shamaladevi, Nagarajarao; Jayaprakasha, Guddadarangavvanahally K; Patil, Bhimu S; Lokeshwar, Bal L

    2015-06-30

    Bioactive compounds from edible plants have limited efficacy in treating advanced cancers, but they have potential to increase the efficacy of chemotherapy drugs in a combined treatment. An aqueous extract of berries of Pimenta dioica (Allspice) shows promise as one such candidate for combination therapy or chemoprevention. An aqueous extract of Allspice (AAE) was tested against human breast cancer (BrCa) cells in vitro and in vivo. AAE reduced the viability and clonogenic growth of several types of BrCa cells (IC50 ≤ 100 μg/ml) with limited toxicity in non-tumorigenic, quiescent cells (IC50 >200 μg/ml). AAE induced cytotoxicity in BrCa was inconsistent with apoptosis, but was associated with increased levels of autophagy markers LC3B and LC3B-positive puncta. Silencing the expression of autophagy related genes (ATGs) prevented AAE-induced cell death. Further, AAE caused inhibition of Akt/mTOR signaling, and showed enhanced cytotoxicity when combined with rapamycin, a chemotherapy drug and an inhibitor of mTOR signaling. Oral administration (gavage) of AAE into athymic mice implanted with MDA-MB231 tumors inhibited tumor growth slightly but not significantly (mean decrease ~ 14%, p ≥ 0.20) if mice were gavaged post-tumor implant. Tumor growth showed a significant delay (38%) in tumor palpability and growth rate (time to reach tumor volume ≥ 1,000 mm3) when mice were pre-dosed with AAE for two weeks. Analysis of tumor tissues showed increased levels of LC3B in AAE treated tumors, indicating elevated autophagic tumor cell death in vivo in treated mice. These results demonstrate antitumor and chemo-preventive activity of AAE against BrCa and potential for adjuvant to mTOR inhibition.

  1. Formation of giant crystalline grain via delayed growth process driven by organic molecular anisotropy

    NASA Astrophysics Data System (ADS)

    Al-Mahboob, A.; Fujikawa, Y.; Sadowski, J. T.; Hashizume, T.; Sakurai, T.

    2010-12-01

    The growth of (001)-oriented pentacene ( C22H14 , Pn) thin films on silicon surfaces has been extensively studied to elucidate the role of molecular anisotropy in nucleation and island evolution in organic film growth. In situ real-time low-energy electron microscopy studies of growth of Pn revealed a delayed, low-density nucleation that could be related to the difference in the orientation of this anisotropic molecule in its diffusing state and in the crystalline film. In contrast to the growth of Pn on self-assembled monolayers or SiO2 , we observed a delayed nucleation and formation of extraordinarily large grains (in submillimeter scale) on semiconducting α3-Bi-Si(111) and on semimetallic Bi(0001)/Si(111) with a continuation in film growth after stopping Pn deposition. The delayed and very low-density nucleation and continuing growth after stopping deposition could be explained by a incorporation-limited growth processes resulted from a large energy barrier for Pn nucleation in standing-up orientation, as the molecule needs to reorient itself from a lying-down, diffusing state in order to build into the crystalline film.

  2. Haploinsufficiency of the Myc regulator Mtbp extends survival and delays tumor development in aging mice

    PubMed Central

    Grieb, Brian C.; Boyd, Kelli; Mitra, Ramkrishna; Eischen, Christine M.

    2016-01-01

    Alterations of specific genes can modulate aging. Myc, a transcription factor that regulates the expression of many genes involved in critical cellular functions was shown to have a role in controlling longevity. Decreased expression of Myc inhibited many of the deleterious effects of aging and increased lifespan in mice. Without altering Myc expression, reduced levels of Mtbp, a recently identified regulator of Myc, limit Myc transcriptional activity and proliferation, while increased levels promote Myc-mediated effects. To determine the contribution of Mtbp to the effects of Myc on aging, we studied a large cohort of Mtbp heterozygous mice and littermate matched wild-type controls. Mtbp haploinsufficiency significantly increased longevity and maximal survival in mice. Reduced levels of Mtbp did not alter locomotor activity, litter size, or body size, but Mtbp heterozygous mice did exhibit elevated markers of metabolism, particularly in the liver. Mtbp+/− mice also had a significant delay in spontaneous cancer development, which was most prominent in the hematopoietic system, and an altered tumor spectrum compared to Mtbp+/+ mice. Therefore, the data suggest Mtbp is a regulator of longevity in mice that mimics some, but not all, of the properties of Myc in aging. PMID:27803394

  3. Optimal Design for Informative Protocols in Xenograft Tumor Growth Inhibition Experiments in Mice.

    PubMed

    Lestini, Giulia; Mentré, France; Magni, Paolo

    2016-09-01

    Tumor growth inhibition (TGI) models are increasingly used during preclinical drug development in oncology for the in vivo evaluation of antitumor effect. Tumor sizes are measured in xenografted mice, often only during and shortly after treatment, thus preventing correct identification of some TGI model parameters. Our aims were (i) to evaluate the importance of including measurements during tumor regrowth and (ii) to investigate the proportions of mice included in each arm. For these purposes, optimal design theory based on the Fisher information matrix implemented in PFIM4.0 was applied. Published xenograft experiments, involving different drugs, schedules, and cell lines, were used to help optimize experimental settings and parameters using the Simeoni TGI model. For each experiment, a two-arm design, i.e., control versus treatment, was optimized with or without the constraint of not sampling during tumor regrowth, i.e., "short" and "long" studies, respectively. In long studies, measurements could be taken up to 6 g of tumor weight, whereas in short studies the experiment was stopped 3 days after the end of treatment. Predicted relative standard errors were smaller in long studies than in corresponding short studies. Some optimal measurement times were located in the regrowth phase, highlighting the importance of continuing the experiment after the end of treatment. In the four-arm designs, the results showed that the proportions of control and treated mice can differ. To conclude, making measurements during tumor regrowth should become a general rule for informative preclinical studies in oncology, especially when a delayed drug effect is suspected.

  4. Effects of Ion Irradiation on Seedlings Growth Monitored by Ultraweak Delayed Luminescence

    PubMed Central

    Abe, Tomoko; Cirrone, Giuseppe A. P.; Cuttone, Giacomo; Gulino, Marisa; Musumeci, Francesco; Romano, Francesco; Ryuto, Hiromichi; Scordino, Agata

    2016-01-01

    The optical technique based on the measurement of delayed luminescence emitted from the biological samples has demonstrated its ability to provide valid and predictive information on the functional status of various biological systems. We want to extend this technique to study the effect of ionizing radiation on biological systems. In particular we are interested in the action of ion beams, used for therapeutic purposes or to increase the biological diversity. In general, the assessment of the damage that radiation produces both in the target objects and in the surrounding tissues, requires considerable time because is based on biochemical analysis or on the examination of the evolution of the irradiated systems. The delayed luminescence technique could help to simplify this investigation. We have so started our studies performing irradiations of some relatively simple vegetable models. In this paper we report results obtained from mung bean (Vigna radiata) seeds submitted to a 12C ion beam at the energy of 62 MeV/nucleon. The dry seeds were irradiated at doses from 50 to 7000 Gy. The photoinduced delayed luminescence of each seed before and after ion irradiation was measured. The growth of seedlings after irradiation was compared with that of untreated seeds. A growth reduction on increasing the dose was registered. The results show strong correlations between the ion irradiation dose, seeds growth and delayed luminescence intensity. In particular, the delayed luminescence intensity is correlated by a logistic function to the seedlings elongation and, after performing a suitable measurement campaign based on blind tests, it could become a tool able to predict the growth of seeds after ion irradiation. Moreover these results demonstrate that measurements of delayed luminescence could be used as a fast and non-invasive technique to check the effects of ion beams on relatively simple biological systems. PMID:27936220

  5. Delayed fertilization and pollen-tube growth in pistils of Fagus japonica (Fagaceae).

    PubMed

    Sogo, Akiko; Tobe, Hiroshi

    2006-12-01

    In contrast to most angiosperms, in which fertilization occurs 1 or 2 days after pollination, in some plant orders, including the Fagales, fertilization is delayed from 4 days to more than 1 year, raising questions regarding why fertilization is delayed and where and how pollen tubes remain in the pistil during the delay. To answer these questions, we investigated pollen-tube growth in pistils of Fagus japonica (Fagaceae), which are tricarpellate and have six ovules, using light, fluorescence, and scanning electron microscopy. The ovules were immature at the time of pollination and required 5 weeks to become fully developed. During this 5 weeks, pollen tubes grew from the stigma to the embryo sac in association with the development of ovules and intermittently in three steps with two growth-cessation sites, i.e., on the funicle and near the micropyle. The number of pollen tubes was gradually reduced from many to one at the two growth-cessation sites, and fertilization occurred in one ovule that apparently developed earlier than the others in the pistil. Thus, delayed fertilization plays an important role in gametophyte competition and selection leading to nonrandom fertilization. Intermittent pollen-tube growth is also likely widespread in angiosperms because it is known in other Fagales and an unrelated order Garryales.

  6. Senescence from glioma stem cell differentiation promotes tumor growth

    PubMed Central

    Ouchi, Rie; Okabe, Sachiko; Migita, Toshiro; Nakano, Ichiro; Seimiya, Hiroyuki

    2016-01-01

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs’ role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. PMID:26775840

  7. Pharmacokinetic-pharmacodynamic modeling of biomarker response and tumor growth inhibition to an orally available heat shock protein 90 inhibitor in a human tumor xenograft mouse model.

    PubMed

    Yamazaki, Shinji; Nguyen, Leslie; Vekich, Sylvia; Shen, Zhongzhou; Yin, Min-Jean; Mehta, Pramod P; Kung, Pei-Pei; Vicini, Paolo

    2011-09-01

    PF04942847 [2-amino-4-{4-chloro-2-[2-(4-fluoro-1H-pyrazol-1-yl)ethoxy]-6-methylphenyl}-N-(2,2-difluoropropyl)-5,7-dihydro-6H-pyrrolo[3,4-d]pyrimidine-6-carboxamide] was identified as an orally available, ATP-competitive, small-molecule inhibitor of heat shock protein 90 (HSP90). The objectives of the present study were: 1) to characterize the pharmacokinetic-pharmacodynamic relationship of the plasma concentrations of PF04942847 to the inhibition of HSP90-dependent protein kinase, AKT, as a biomarker and 2) to characterize the relationship of AKT degradation to tumor growth inhibition as a pharmacological response (antitumor efficacy). Athymic mice implanted with MDA-MB-231 human breast cancer cells were treated with PF04942847 once daily at doses selected to encompass ED(50) values. Plasma concentrations of PF04942847 were adequately described by a two-compartment pharmacokinetic model. A time delay (hysteresis) was observed between the plasma concentrations of PF04942847 and AKT degradation; therefore, a link model was used to account for the hysteresis. The model reasonably fit the time courses of AKT degradation with the estimated EC(50) of 18 ng/ml. For tumor growth inhibition, the signal transduction model reasonably fit the inhibition of individual tumor growth curves with the estimated EC(50) of 7.3 ng/ml. Thus, the EC(50) for AKT degradation approximately corresponded to the EC(50) to EC(80) for tumor growth inhibition, suggesting that 50% AKT degradation was required for significant antitumor efficacy (50-80%). The consistent relationship between AKT degradation and antitumor efficacy was also demonstrated by applying an integrated signal transduction model for linking AKT degradation to tumor growth inhibition. The present results will be helpful in determining the appropriate dosing regimen and guiding dose escalation to achieve efficacious systemic exposure in the clinic.

  8. Mediastinal Desmoid Tumor With Remarkably Rapid Growth: A Case Report.

    PubMed

    Lee, Joon Hyung; Jeong, Jae Seok; Kim, So Ri; Jin, Gong Yong; Chung, Myoung Ja; Kuh, Ja Hong; Lee, Yong Chul

    2015-12-01

    Desmoid tumors (DTs) are a group of rare and benign soft tissue tumors that result from monoclonal proliferation of well-differentiated fibroblasts. Since DTs tend to infiltrate and compress adjacent structures, the location of DTs is one of the most crucial factors for determining the severity of the disease. Furthermore, DTs can further complicate the clinical course of patients when the growth is remarkably rapid, especially for DTs occurring in anatomically critical compartments, including the thoracic cavity.The authors report a case of a 71-year-old man with a known mediastinal mass incidentally detected 4 months ago, presenting dyspnea with right-sided atelectasis and massive pleural effusion. Imaging studies revealed a 16.4 × 9.4-cm fibrous mass with high glucose metabolism in the anterior mediastinum. The mass infiltrated into the chest wall and also displaced the mediastinum contralaterally. Interestingly, the tumor had an extremely rapid doubling time of 31.3 days.En bloc resection of the tumor was performed as a curative as well as a diagnostic measure. Histopathologic examination showed spindle cells with low cellularity and high collagen deposition in the stroma. Immunohistochemical staining was positive for nuclear β-catenin. Based on these pathologic findings, the mass was diagnosed as DT. After surgery, there has been no evidence of recurrence of disease in the patient.This patient presents a mediastinal DT with extremely rapid growth. Notably, the doubling time of DT in our case was the shortest among reported cases of DT. Our experience also highlights the benefits of early interventional strategy, especially for rapidly growing DTs in the thoracic cavity.

  9. Triparanol suppresses human tumor growth in vitro and in vivo

    SciTech Connect

    Bi, Xinyu; Han, Xingpeng; Zhang, Fang; He, Miao; Zhang, Yi; Zhi, Xiu-Yi; Zhao, Hong

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Demonstrate Triparanol can block proliferation in multiple cancer cells. Black-Right-Pointing-Pointer Demonstrate Triparanol can induce apoptosis in multiple cancer cells. Black-Right-Pointing-Pointer Proved Triparanol can inhibit Hedgehog signaling in multiple cancer cells. Black-Right-Pointing-Pointer Demonstrated Triparanol can impede tumor growth in vivo in mouse xenograft model. -- Abstract: Despite the improved contemporary multidisciplinary regimens treating cancer, majority of cancer patients still suffer from adverse effects and relapse, therefore posing a significant challenge to uncover more efficacious molecular therapeutics targeting signaling pathways central to tumorigenesis. Here, our study have demonstrated that Triparanol, a cholesterol synthesis inhibitor, can block proliferation and induce apoptosis in multiple human cancer cells including lung, breast, liver, pancreatic, prostate cancer and melanoma cells, and growth inhibition can be rescued by exogenous addition of cholesterol. Remarkably, we have proved Triparanol can significantly repress Hedgehog pathway signaling in these human cancer cells. Furthermore, study in a mouse xenograft model of human lung cancer has validated that Triparanol can impede tumor growth in vivo. We have therefore uncovered Triparanol as potential new cancer therapeutic in treating multiple types of human cancers with deregulated Hedgehog signaling.

  10. Congenital Cutis Laxa Type 2 Associated With Recurrent Aspiration Pneumonia and Growth Delay: Case Report.

    PubMed

    Rahmati, Mohammadbagher; Yazdanparast, Maryam; Jahanshahi, Keramatallah; Zakeri, Mohadese

    2015-10-01

    Cutis laxa is a connective tissue disorder caused by deficiency of fibro elastic plexus, which can involve multiple organs. It is inherited in autosomal dominant, autosomal recessive, and X-linked. Autosomal recessive cutis laxa type 2, which appears to compromise a spectrum of disorders, starts with severe wrinkly skin syndrome and leads to more severe diseases related to growth and developmental delays and skeletal anomalies. The clinical manifestations in some of cases of Cutis laxa consist of redundant loose skin, pre-and post-natal growth deficiency, mental retardation, large fontanels, and dislocation of the hips. The authors present the case of a female patient with involved internal organ disorder and delay in growth in addition to skin laxity in which gene sequence analysis of PYCR1 indicated C.797G>A mutation.

  11. Congenital Cutis Laxa Type 2 Associated With Recurrent Aspiration Pneumonia and Growth Delay: Case Report

    PubMed Central

    Rahmati, Mohammadbagher; Yazdanparast, Maryam; Jahanshahi, Keramatallah; Zakeri, Mohadese

    2015-01-01

    Cutis laxa is a connective tissue disorder caused by deficiency of fibro elastic plexus, which can involve multiple organs. It is inherited in autosomal dominant, autosomal recessive, and X-linked. Autosomal recessive cutis laxa type 2, which appears to compromise a spectrum of disorders, starts with severe wrinkly skin syndrome and leads to more severe diseases related to growth and developmental delays and skeletal anomalies. The clinical manifestations in some of cases of Cutis laxa consist of redundant loose skin, pre-and post-natal growth deficiency, mental retardation, large fontanels, and dislocation of the hips. The authors present the case of a female patient with involved internal organ disorder and delay in growth in addition to skin laxity in which gene sequence analysis of PYCR1 indicated C.797G>A mutation. PMID:26516448

  12. Constitutional Delay Influences the Auxological Response to Growth Hormone Treatment in Children with Short Stature and Growth Hormone Sufficiency

    PubMed Central

    Gunn, Katherine C.; Cutfield, Wayne S.; Hofman, Paul L.; Jefferies, Craig A.; Albert, Benjamin B.; Gunn, Alistair J.

    2014-01-01

    In a retrospective, population based cohort study, we examined whether constitutional delay was associated with the growth response to growth hormone (GH) in children with short stature and normal GH responses. 70 patients were treated with 21 GH iu/m2/week from 1975 to 2013 throughout New Zealand. Demographic and auxological data were prospectively collected and standard deviation scores (SDS) were calculated for height (HtSDS), yearly growth velocity (GV-SDS), body mass index (BMI-SDS) and predicted adult height (PAH-SDS) at time of the last available bone age. In the first year, GH was associated with marked increase in HtSDS (+0.46 (0.19, 0.76), p < 0.001) and GV-SDS (from −1.9 (−3.6, −0.7) to +2.7 (0.45, 4.2), p < 0.001). The increase in HtSDS but not in GV-SDS was greatest with younger patients and greater bone age delay, with no effect of sex, BMI-SDS or baseline HtSDS. PAH-SDS increased with treatment (+0.94 (0.18, 1.5)); increased PAH-SDS was associated with less bone age delay and greater initial increase in HtSDS. This study shows that greater bone age delay was associated with greater initial improvement in height but less improvement in predicted adult heights, suggesting that children with very delayed bone ages may show accelerated maturation during GH treatment. PMID:25317732

  13. Tubulin binding cofactor C (TBCC) suppresses tumor growth and enhances chemosensitivity in human breast cancer cells

    PubMed Central

    2010-01-01

    Background Microtubules are considered major therapeutic targets in patients with breast cancer. In spite of their essential role in biological functions including cell motility, cell division and intracellular transport, microtubules have not yet been considered as critical actors influencing tumor cell aggressivity. To evaluate the impact of microtubule mass and dynamics on the phenotype and sensitivity of breast cancer cells, we have targeted tubulin binding cofactor C (TBCC), a crucial protein for the proper folding of α and β tubulins into polymerization-competent tubulin heterodimers. Methods We developed variants of human breast cancer cells with increased content of TBCC. Analysis of proliferation, cell cycle distribution and mitotic durations were assayed to investigate the influence of TBCC on the cell phenotype. In vivo growth of tumors was monitored in mice xenografted with breast cancer cells. The microtubule dynamics and the different fractions of tubulins were studied by time-lapse microscopy and lysate fractionation, respectively. In vitro sensitivity to antimicrotubule agents was studied by flow cytometry. In vivo chemosensitivity was assayed by treatment of mice implanted with tumor cells. Results TBCC overexpression influenced tubulin fraction distribution, with higher content of nonpolymerizable tubulins and lower content of polymerizable dimers and microtubules. Microtubule dynamicity was reduced in cells overexpressing TBCC. Cell cycle distribution was altered in cells containing larger amounts of TBCC with higher percentage of cells in G2-M phase and lower percentage in S-phase, along with slower passage into mitosis. While increased content of TBCC had little effect on cell proliferation in vitro, we observed a significant delay in tumor growth with respect to controls when TBCC overexpressing cells were implanted as xenografts in vivo. TBCC overexpressing variants displayed enhanced sensitivity to antimicrotubule agents both in vitro and

  14. Analysis of a diffuse interface model of multispecies tumor growth

    NASA Astrophysics Data System (ADS)

    Dai, Mimi; Feireisl, Eduard; Rocca, Elisabetta; Schimperna, Giulio; Schonbek, Maria E.

    2017-04-01

    We consider a diffuse interface model for tumor growth recently proposed in Chen et al (2014 Int. J. Numer. Methods Biomed. Eng. 30 726–54). In this new approach sharp interfaces are replaced by narrow transition layers arising due to adhesive forces among the cell species. Hence, a continuum thermodynamically consistent model is introduced. The resulting PDE system couples four different types of equations: a Cahn–Hilliard type equation for the tumor cells (which include proliferating and dead cells), a Darcy law for the tissue velocity field, whose divergence may be different from 0 and depend on the other variables, a transport equation for the proliferating (viable) tumor cells, and a quasi-static reaction diffusion equation for the nutrient concentration. We establish existence of weak solutions for the PDE system coupled with suitable initial and boundary conditions. In particular, the proliferation function at the boundary is supposed to be nonnegative on the set where the velocity \\mathbf{u} satisfies \\mathbf{u}\\centerdot ν >0 , where ν is the outer normal to the boundary of the domain.

  15. Delayed union of the clavicle treated with plasma rich in growth factors.

    PubMed

    Seijas, Roberto; Santana-Suarez, Romen Y; Garcia-Balletbo, Montserrat; Cuscó, Xavier; Ares, Oscar; Cugat, Ramón

    2010-10-01

    Nonunion is an uncommon complication of fracture of the clavicle; it is usually treated surgically. The use of biological treatments in this type of condition is increasingly more common because of their ease of application. Plasma rich in growth factors (PRGF) has been used in delayed healing and in nonunion of fractures. We report a case of delayed union fracture of the clavicle in which biological treatment was chosen before considering surgery. Three percutaneous injections of PRGF, one every 2 weeks, were delivered into the delayed union site. The autologous PGRF used was obtained through the patented PRGF system. Three months after the final dose, computed tomography study showed healing of the bone. The patient regained complete mobility of the shoulder without pain. Currently she is able to carry out all the normal life activities and experiences no pain.

  16. Nicotinic Acetylcholine Receptor Signaling in Tumor Growth and Metastasis

    PubMed Central

    Singh, Sandeep; Pillai, Smitha; Chellappan, Srikumar

    2011-01-01

    Cigarette smoking is highly correlated with the onset of a variety of human cancers, and continued smoking is known to abrogate the beneficial effects of cancer therapy. While tobacco smoke contains hundreds of molecules that are known carcinogens, nicotine, the main addictive component of tobacco smoke, is not carcinogenic. At the same time, nicotine has been shown to promote cell proliferation, angiogenesis, and epithelial-mesenchymal transition, leading to enhanced tumor growth and metastasis. These effects of nicotine are mediated through the nicotinic acetylcholine receptors that are expressed on a variety of neuronal and nonneuronal cells. Specific signal transduction cascades that emanate from different nAChR subunits or subunit combinations facilitate the proliferative and prosurvival functions of nicotine. Nicotinic acetylcholine receptors appear to stimulate many downstream signaling cascades induced by growth factors and mitogens. It has been suggested that antagonists of nAChR signaling might have antitumor effects and might open new avenues for combating tobacco-related cancer. This paper examines the historical data connecting nicotine tumor progression and the recent efforts to target the nicotinic acetylcholine receptors to combat cancer. PMID:21541211

  17. VCC-1, a novel chemokine, promotes tumor growth

    SciTech Connect

    Weinstein, Edward J.; Head, Richard; Griggs, David W.; Sun Duo; Evans, Robert J.; Swearingen, Michelle L.; Westlin, Marisa M.; Mazzarella, Richard . E-mail: richard.a.mazzarella@pfizer.com

    2006-11-10

    We have identified a novel human gene by transcriptional microarray analysis, which is co-regulated in tumors and angiogenesis model systems with VEGF expression. Isolation of cDNA clones containing the full-length VCC-1 transcript from both human and mouse shows a 119 amino acid protein with a 22 amino acid cleavable signal sequence in both species. Comparison of the protein product of this gene with hidden Markov models of all known proteins shows weak but significant homology with two known chemokines, SCYA17 and SCYA16. Northern analysis of human tissues detects a 1 kb band in lung and skeletal muscle. Murine VCC-1 expression can also be detected in lung as well as thyroid, submaxillary gland, epididymis, and uterus tissues by slot blot analysis. By quantitative real time RT-PCR 71% of breast tumors showed 3- to 24-fold up-regulation of VCC-1. In situ hybridization of breast carcinomas showed strong expression of the gene in both normal and transformed mammary gland ductal epithelial cells. In vitro, human microvascular endothelial cells grown on fibronectin increase VCC-1 expression by almost 100-fold. In addition, in the mouse angioma endothelial cell line PY4.1 the gene was over-expressed by 28-fold 6 h after induction of tube formation while quiescent and proliferating cells showed no change. VCC-1 expression is also increased by VEGF and FGF treatment, about 6- and 5-fold, respectively. Finally, 100% of mice injected with NIH3T3 cells over-expressing VCC-1 develop rapidly progressing tumors within 21 days while no growth is seen in any control mice injected with NIH3T3 cells containing the vector alone. These results strongly suggest that VCC-1 plays a role in angiogenesis and possibly in the development of tumors in some tissue types.

  18. Insulin-like growth factors and insulin: at the crossroad between tumor development and longevity.

    PubMed

    Novosyadlyy, Ruslan; Leroith, Derek

    2012-06-01

    Numerous lines of evidence indicate that insulin-like growth factor signaling plays an important role in the regulation of life span and tumor development. In the present paper, the role of individual components of insulin-like growth factor signaling in aging and tumor development has been extensively analyzed. The molecular mechanisms underlying aging and tumor development are frequently overlapping. Although the link between reduced insulin-like growth factor signaling and suppressed tumor growth and development is well established, it remains unclear whether extended life span results from direct suppression of insulin-like growth factor signaling or this effect is caused by indirect mechanisms such as improved insulin sensitivity.

  19. Devazepide, a nonpeptide antagonist of CCK receptors, induces apoptosis and inhibits Ewing tumor growth.

    PubMed

    Carrillo, Jaime; Agra, Noelia; Fernández, Noemí; Pestaña, Angel; Alonso, Javier

    2009-08-01

    The Ewing family of tumors is a group of highly malignant tumors that mainly arise in bone and most often affect children and young adults in the first two decades of life. Despite the use of multimodal therapy, the long-term disease-free survival rate of patients with Ewing tumors is still disappointingly low, making the discovery of innovative therapeutic strategies all the more necessary. We have recently shown that cholecystokinin (CCK), a neuroendocrine peptide, involved in many biological functions, including cell growth and proliferation, is a relevant target of the EWS/FLI1 oncoprotein characteristic of Ewing tumors. CCK silencing inhibits cell proliferation and tumor growth in vivo, suggesting that CCK acts as an autocrine growth factor for Ewing cells. Here, we analyzed the impact of two CCK receptor antagonists, devazepide (a CCK1-R antagonist) and L365 260 (a CCK2-R antagonist), on the growth of Ewing tumor cells. Devazepide (10 micromol/l) inhibited cell growth of four different Ewing tumor cells in vitro (range 85-88%), whereas the effect of the CCK2-R antagonist on cell growth was negligible. In a mouse tumor xenograft model, devazepide reduced tumor growth by 40%. Flow cytometry experiments showed that devazepide, but not L365 260, induced apoptosis of Ewing tumor cells. In summary, devazepide induces cell death of Ewing tumor cells, suggesting that it could represent a new therapeutic approach in the management of Ewing's tumor patients.

  20. Role of constitutive behavior and tumor-host mechanical interactions in the state of stress and growth of solid tumors.

    PubMed

    Voutouri, Chrysovalantis; Mpekris, Fotios; Papageorgis, Panagiotis; Odysseos, Andreani D; Stylianopoulos, Triantafyllos

    2014-01-01

    Mechanical forces play a crucial role in tumor patho-physiology. Compression of cancer cells inhibits their proliferation rate, induces apoptosis and enhances their invasive and metastatic potential. Additionally, compression of intratumor blood vessels reduces the supply of oxygen, nutrients and drugs, affecting tumor progression and treatment. Despite the great importance of the mechanical microenvironment to the pathology of cancer, there are limited studies for the constitutive modeling and the mechanical properties of tumors and on how these parameters affect tumor growth. Also, the contribution of the host tissue to the growth and state of stress of the tumor remains unclear. To this end, we performed unconfined compression experiments in two tumor types and found that the experimental stress-strain response is better fitted to an exponential constitutive equation compared to the widely used neo-Hookean and Blatz-Ko models. Subsequently, we incorporated the constitutive equations along with the corresponding values of the mechanical properties - calculated by the fit - to a biomechanical model of tumor growth. Interestingly, we found that the evolution of stress and the growth rate of the tumor are independent from the selection of the constitutive equation, but depend strongly on the mechanical interactions with the surrounding host tissue. Particularly, model predictions - in agreement with experimental studies - suggest that the stiffness of solid tumors should exceed a critical value compared with that of the surrounding tissue in order to be able to displace the tissue and grow in size. With the use of the model, we estimated this critical value to be on the order of 1.5. Our results suggest that the direct effect of solid stress on tumor growth involves not only the inhibitory effect of stress on cancer cell proliferation and the induction of apoptosis, but also the resistance of the surrounding tissue to tumor expansion.

  1. Delayed hydride crack growth study on irradiated Zr-2.5Nb pressure tube

    NASA Astrophysics Data System (ADS)

    Shah, Priti Kotak; Dubey, J. S.; Kumar, Ashwini; Shriwastaw, R. S.; Rath, B. N.; Pandit, K. M.; Dhotre, M. P.; Mishra, P.; Alur, V. D.; Anantharaman, S.

    2015-05-01

    Delayed hydride crack (DHC) growth study was carried out on irradiated Indian Zr-2.5Nb pressure tube which had seen around 8 effective full power years of operation. Disc compact tension type specimens were used for the DHC tests at 210 °C, 250 °C, 265 °C and 290 °C. This paper discusses the test methodology, results generated and compares it with that obtained on the as-fabricated pressure tube of similar specification.

  2. A model of economic growth with physical and human capital: The role of time delays.

    PubMed

    Gori, Luca; Guerrini, Luca; Sodini, Mauro

    2016-09-01

    This article aims at analysing a two-sector economic growth model with discrete delays. The focus is on the dynamic properties of the emerging system. In particular, this study concentrates on the stability properties of the stationary solution, characterised by analytical results and geometrical techniques (stability crossing curves), and the conditions under which oscillatory dynamics emerge (through Hopf bifurcations). In addition, this article proposes some numerical simulations to illustrate the behaviour of the system when the stationary equilibrium is unstable.

  3. A model of economic growth with physical and human capital: The role of time delays

    NASA Astrophysics Data System (ADS)

    Gori, Luca; Guerrini, Luca; Sodini, Mauro

    2016-09-01

    This article aims at analysing a two-sector economic growth model with discrete delays. The focus is on the dynamic properties of the emerging system. In particular, this study concentrates on the stability properties of the stationary solution, characterised by analytical results and geometrical techniques (stability crossing curves), and the conditions under which oscillatory dynamics emerge (through Hopf bifurcations). In addition, this article proposes some numerical simulations to illustrate the behaviour of the system when the stationary equilibrium is unstable.

  4. Delayed methotrexate excretion in infants and young children with primary central nervous system tumors and postoperative fluid collections

    PubMed Central

    Wright, Karen D.; Panetta, John C.; Onar-Thomas, Arzu; Reddick, Wilburn E.; Patay, Zoltan; Qaddoumi, Ibrahim; Broniscer, Alberto; Robinson, Giles; Boop, Frederick A.; Klimo, Paul; Ward, Deborah; Gajjar, Amar; Stewart, Clinton F.

    2014-01-01

    Purpose High-dose methotrexate (HD-MTX) has been used to treat children with central nervous system tumors. Accumulation of MTX within pleural, peritoneal, or cardiac effusions has led to delayed excretion and increased risk of systemic toxicity. This retrospective study analyzed the association of intracranial post-resection fluid collections with MTX plasma disposition in infants and young children with brain tumors. Methods Brain MRI findings were analyzed for postoperative intracranial fluid collections in 75 pediatric patients treated with HD-MTX and for whom serial MTX plasma concentrations ([MTX]) were collected. Delayed plasma excretion was defined as [MTX] ≥1μM at 42 hours (h). Leucovorin was administered at 42 h and then every 6 h until [MTX] <0.1μM. Population and individual MTX pharmacokinetic parameters were estimated by nonlinear mixed-effects modeling. Results Fifty-eight patients had intracranial fluid collections present. Population average (inter-individual variation) MTX clearance was 96.0 ml/min/m2 (41.1 CV%) and increased with age. Of the patients with intracranial fluid collections, 24 had delayed excretion; only 2 of the 17 without fluid collections (p<0.04) had delayed excretion. Eleven patients had grade 3 or 4 toxicities attributed to HD-MTX. No significant difference was observed in intracranial fluid collection, total leucovorin dosing, or hydration fluids between those with and without toxicity. Conclusions Although an intracranial fluid collection is associated with delayed MTX excretion, HD-MTX can be safely administered with monitoring of infants and young children with intracranial fluid collections. Infants younger than one year may need additional monitoring to avoid toxicity. PMID:25342291

  5. T Model of Growth and its Application in Systems of Tumor-Immune Dynamics

    PubMed Central

    Tabatabai, Mohammad A.; Eby, Wayne M.; Singh, Karan P.; Bae, Sejong

    2015-01-01

    In this paper we introduce a new growth model called T growth model. This model is capable of representing sigmoidal growth as well as biphasic growth. This dual capability is achieved without introducing additional parameters. The T model is useful in modeling cellular proliferation or regression of cancer cells, stem cells, bacterial growth and drug dose-response relationships. We recommend usage of the T growth model for the growth of tumors as part of any system of differential equations. Use of this model within a system will allow more flexibility in representing the natural rate of tumor growth. For illustration, we examine some systems of tumor-immune interaction in which the T growth rate is applied. We also apply the model to a set of tumor growth data. PMID:23906156

  6. Effect of recombinant human interferon-alpha A/D on in vivo murine tumor cell growth.

    PubMed

    Uno, K; Shimizu, S; Inaba, K; Kitaura, M; Nakahira, K; Kato, T; Yamaguchi, Y; Muramatsu, S

    1988-05-01

    We investigated the effect of human recombinant interferon-alpha A/D A/D-IFN), which is known to delay the growth of murine tumor cells, on the growth of S1 and R1 subline cells of murine Meth A fibrosarcoma in the peritoneal cavity of mice. In vitro growth of S1 cells was sensitive to, and that of R1 cells was resistant to, the direct effect of A/D-IFN, as with murine natural IFN-alpha/beta, which was used originally to isolate these sublines. In vivo, however, the growth of not only S1 cells but also R1 cells was suppressed by the administration of A/D-IFN, and the survival time of tumor-bearing mice was prolonged. Although A/D-IFN had a direct effect on S1 cells in vivo, R1 cells were susceptible only to the indirect effect via the host cells. Macrophages (M phi) harvested from the peritoneal cavity of A/D-IFN-treated mice bearing ascitic R1 cells were very effective in suppressing the in vitro growth of R1 cells; those from non-R1-bearing A/D-IFN-treated mice were less effective. The results of in vitro experiments indicate that M phi are very probably activated by the synergism of A/D-IFN and M phi diameter-activating factor(s) produced by lymphoid cells in tumor-bearing mice.

  7. Cytotoxic T lymphocyte-dependent tumor growth inhibition by a vascular endothelial growth factor-superantigen conjugate

    SciTech Connect

    Sun, Qingwen; Jiang, Songmin; Han, Baohui; Sun, Tongwen; Li, Zhengnan; Zhao, Lina; Gao, Qiang; Sun, Jialin

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer We construct and purify a fusion protein VEGF-SEA. Black-Right-Pointing-Pointer VEGF-SEA strongly repressed the growth of murine solid sarcoma 180 (S180) tumors. Black-Right-Pointing-Pointer T cells driven by VEGF-SEA were accumulated around tumor cells bearing VEGFR by mice image model. Black-Right-Pointing-Pointer VEGF-SEA can serve as a tumor targeting agent and sequester CTLs into the tumor site. Black-Right-Pointing-Pointer The induced CTLs could release the cytokines, perforins and granzyme B to kill the tumor cells. -- Abstract: T cells are major lymphocytes in the blood and passengers across the tumor vasculature. If these T cells are retained in the tumor site, a therapeutic potential will be gained by turning them into tumor-reactive cytotoxic T lymphocytes (CTLs). A fusion protein composed of human vascular endothelial growth factor (VEGF) and staphylococcal enterotoxin A (SEA) with a D227A mutation strongly repressed the growth of murine solid sarcoma 180 (S180) tumors (control versus VEGF-SEA treated with 15 {mu}g, mean tumor weight: 1.128 g versus 0.252 g, difference = 0.876 g). CD4{sup +} and CD8{sup +} T cells driven by VEGF-SEA were accumulated around VEGFR expressing tumor cells and the induced CTLs could release the tumoricidal cytokines, such as interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha). Meanwhile, intratumoral CTLs secreted cytolytic pore-forming perforin and granzyme B proteins around tumor cells, leading to the death of tumor cells. The labeled fusion proteins were gradually targeted to the tumor site in an imaging mice model. These results show that VEGF-SEA can serve as a tumor targeting agent and sequester active infiltrating CTLs into the tumor site to kill tumor cells, and could therefore be a potential therapeutical drug for a variety of cancers.

  8. Fibroblast cell interactions with human melanoma cells affect tumor cell growth as a function of tumor progression.

    PubMed Central

    Cornil, I; Theodorescu, D; Man, S; Herlyn, M; Jambrosic, J; Kerbel, R S

    1991-01-01

    It is known from a variety of experimental systems that the ability of tumor cells to grow locally and metastasize can be affected by the presence of adjacent normal tissues and cells, particularly mesenchymally derived stromal cells such as fibroblasts. However, the comparative influence of such normal cell-tumor cell interactions on tumor behavior has not been thoroughly investigated from the perspective of different stages of tumor progression. To address this question we assessed the influence of normal dermal fibroblasts on the growth of human melanoma cells obtained from different stages of tumor progression. We found that the in vitro growth of most (4 out of 5) melanoma cell lines derived from early-stage radial growth phase or vertical growth phase metastatically incompetent primary lesions is repressed by coculture with normal dermal fibroblasts, suggesting that negative homeostatic growth controls are still operative on melanoma cells from early stages of disease. On the other hand, 9 out of 11 melanoma cell lines derived from advanced metastatically competent vertical growth phase primary lesions, or from distant metastases, were found to be consistently stimulated to grow in the presence of dermal fibroblasts. Evidence was obtained to show that this discriminatory fibroblastic influence is mediated by soluble inhibitory and stimulatory growth factor(s). Taken together, these results indicate that fibroblast-derived signals can have antithetical growth effects on metastatic versus metastatically incompetent tumor subpopulations. This resultant conversion in responsiveness to host tissue environmental factors may confer upon small numbers of metastatically competent cells a growth advantage, allowing them to escape local growth constraints both in the primary tumor site and at distant ectopic tissue sites. PMID:2068080

  9. Reexpression of LSAMP inhibits tumor growth in a preclinical osteosarcoma model

    PubMed Central

    2014-01-01

    Background Osteosarcomas are the most common primary malignant tumors of bone, showing complex chromosomal rearrangements with multiple gains and losses. A frequent deletion within the chromosomal region 3q13.31 has been identified by us and others, and is mainly reported to be present in osteosarcomas. The purpose of the study was to further characterize the frequency and the extent of the deletion in an extended panel of osteosarcoma samples, and the expression level of the affected genes within the region. We have identified LSAMP as the target gene for the deletion, and have studied the functional implications of LSAMP-reexpression. Methods LSAMP copy number, expression level and protein level were investigated by quantitative PCR and western blotting in an osteosarcoma panel. The expression of LSAMP was restored in an osteosarcoma cell line, and differences in proliferation rate, tumor formation, gene expression, migration rate, differentiation capabilities, cell cycle distribution and apoptosis were investigated by metabolic dyes, tumor formation in vivo, gene expression profiling, time-lapse photography, differentiation techniques and flow cytometry, respectively. Results We found reduced copy number of LSAMP in 45/76 osteosarcoma samples, reduced expression level in 25/42 samples and protein expression in 9/42 samples. By restoring the expression of LSAMP in a cell line with a homozygous deletion of the gene, the proliferation rate in vitro was significantly reduced and tumor growth in vivo was significantly delayed. In response to reexpression of LSAMP, mRNA expression profiling revealed consistent upregulation of the genes hairy and enhancer of split 1 (HES1), cancer/testis antigen 2 (CTAG2) and kruppel-like factor 10 (KLF10). Conclusions The high frequency and the specificity of the deletion indicate that it is important for the development of osteosarcomas. The deletion targets the tumor suppressor LSAMP, and based on the functional evidence, the tumor

  10. Analysis of a ``phase transition'' from tumor growth to latency

    NASA Astrophysics Data System (ADS)

    Delsanto, P. P.; Romano, A.; Scalerandi, M.; Pescarmona, G. P.

    2000-08-01

    A mathematical model, based on the local interaction simulation approach, is developed in order to allow simulations of the spatiotemporal evolution of neoplasies. The model consists of a set of rules, which govern the interaction of cancerous cells among themselves and in competition with other cell populations for the acquisition of essential nutrients. As a result of small variations in the basic parameters, it leads to four different outcomes: indefinite growth, metastasis, latency, and complete regression. In the present contribution a detailed analysis of the dormant phase is carried on and the critical parameters for the transition to other phases are computed. Interesting chaotic behaviors can also be observed, with different attractors in the parameters space. Interest in the latency phase has been aroused by therapeutical strategies aiming to reduce a growing tumor to dormancy. The effect of such strategies may be simulated with our approach.

  11. Carbon monoxide expedites metabolic exhaustion to inhibit tumor growth.

    PubMed

    Wegiel, Barbara; Gallo, David; Csizmadia, Eva; Harris, Clair; Belcher, John; Vercellotti, Gregory M; Penacho, Nuno; Seth, Pankaj; Sukhatme, Vikas; Ahmed, Asif; Pandolfi, Pier Paolo; Helczynski, Leszek; Bjartell, Anders; Persson, Jenny Liao; Otterbein, Leo E

    2013-12-01

    One classical feature of cancer cells is their metabolic acquisition of a highly glycolytic phenotype. Carbon monoxide (CO), one of the products of the cytoprotective molecule heme oxygenase-1 (HO-1) in cancer cells, has been implicated in carcinogenesis and therapeutic resistance. However, the functional contributions of CO and HO-1 to these processes are poorly defined. In human prostate cancers, we found that HO-1 was nuclear localized in malignant cells, with low enzymatic activity in moderately differentiated tumors correlating with relatively worse clinical outcomes. Exposure to CO sensitized prostate cancer cells but not normal cells to chemotherapy, with growth arrest and apoptosis induced in vivo in part through mitotic catastrophe. CO targeted mitochondria activity in cancer cells as evidenced by higher oxygen consumption, free radical generation, and mitochondrial collapse. Collectively, our findings indicated that CO transiently induces an anti-Warburg effect by rapidly fueling cancer cell bioenergetics, ultimately resulting in metabolic exhaustion.

  12. Targeting Gli Transcription Activation by Small Molecule Suppresses Tumor Growth

    PubMed Central

    Bosco-Clément, Geneviève; Zhang, Fang; Chen, Zhao; Zhou, Hai-Meng; Li, Hui; Mikami, Iwao; Hirata, Tomomi; Yagui-Beltran, Adam; Lui, Natalie; Do, Hanh T.; Cheng, Tiffany; Tseng, Hsin-Hui; Choi, Helen; Fang, Li-Tai; Kim, Il-Jin; Yue, Dongsheng; Wang, Changli; Zheng, Qingfeng; Fujii, Naoaki; Mann, Michael; Jablons, David M.; He, Biao

    2014-01-01

    Targeted inhibition of Hedgehog signaling at the cell membrane has been associated with anti-cancer activity in preclinical and early clinical studies. Hedgehog signaling involves activation of Gli transcription factors that can also be induced by alternative pathways. In this study we identified an interaction between Gli proteins and a transcription co-activator TAF9, and validated its functional relevance in regulating Gli transactivation. We also describe a novel, synthetic small molecule, FN1-8, that efficiently interferes with Gli/TAF9 interaction and down-regulate Gli/TAF9 dependent transcriptional activity. More importantly, FN1-8 suppresses cancer cell proliferation in vitro and inhibits tumor growth in vivo. Our results suggest that blocking Gli transactivation, a key control point of multiple oncogenic pathways, may be an effective anti-cancer strategy. PMID:23686308

  13. ARNT2 Regulates Tumoral Growth in Oral Squamous Cell Carcinoma

    PubMed Central

    Kimura, Yasushi; Kasamatsu, Atsushi; Nakashima, Dai; Yamatoji, Masanobu; Minakawa, Yasuyuki; Koike, Kazuyuki; Fushimi, Kazuaki; Higo, Morihiro; Endo-Sakamoto, Yosuke; Shiiba, Masashi; Tanzawa, Hideki; Uzawa, Katsuhiro

    2016-01-01

    Aryl hydrocarbon receptor nuclear translocator (ARNT) 2 is a transcriptional factor related to adaptive responses against cellular stress from a xenobiotic substance. Recent evidence indicates ARNT is involved in carcinogenesis and cancer progression; however, little is known about the relevance of ARNT2 in the behavior of oral squamous cell carcinoma (OSCC). In the current study, we evaluated the ARNT2 mRNA and protein expression levels in OSCC in vitro and in vivo and the clinical relationship between ARNT2 expression levels in primary OSCCs and their clinicopathologic status by quantitative reverse transcriptase-polymerase chain reaction, immunoblotting, and immunohistochemistry. Using ARNT2 overexpression models, we performed functional analyses to investigate the critical roles of ARNT2 in OSCC. ARNT2 mRNA and protein were down-regulated significantly (P < 0.05 for both comparisons) in nine OSCC-derived cells and primary OSCC (n=100 patients) compared with normal counterparts. In addition to the data from exogenous experiments that ARNT2-overexpressed cells showed decreased cellular proliferation, ARNT2-positive OSCC cases were correlated significantly (P < 0.05) with tumoral size. Since von Hippel-Lindau tumor suppressor, E3 ubiquitin protein ligase, a negative regulator of hypoxia-inducible factor (HIF1)-α, is a downstream molecule of ARNT2, we speculated that HIF1-α and its downstream molecules would have key functions in cellular growth. Consistent with our hypothesis, overexpressed ARNT2 cells showed down-regulation of HIF1-α, which causes hypofunctioning of glucose transporter 1, leading to decreased cellular growth. Our results proposed for the first time that the ARNT2 level is an indicator of cellular proliferation in OSCCs. Therefore, ARNT2 may be a potential therapeutic target against progression of OSCCs. PMID:27076852

  14. Voluntary Running Suppresses Tumor Growth through Epinephrine- and IL-6-Dependent NK Cell Mobilization and Redistribution.

    PubMed

    Pedersen, Line; Idorn, Manja; Olofsson, Gitte H; Lauenborg, Britt; Nookaew, Intawat; Hansen, Rasmus Hvass; Johannesen, Helle Hjorth; Becker, Jürgen C; Pedersen, Katrine S; Dethlefsen, Christine; Nielsen, Jens; Gehl, Julie; Pedersen, Bente K; Thor Straten, Per; Hojman, Pernille

    2016-03-08

    Regular exercise reduces the risk of cancer and disease recurrence. Yet the mechanisms behind this protection remain to be elucidated. In this study, tumor-bearing mice randomized to voluntary wheel running showed over 60% reduction in tumor incidence and growth across five different tumor models. Microarray analysis revealed training-induced upregulation of pathways associated with immune function. NK cell infiltration was significantly increased in tumors from running mice, whereas depletion of NK cells enhanced tumor growth and blunted the beneficial effects of exercise. Mechanistic analyses showed that NK cells were mobilized by epinephrine, and blockade of β-adrenergic signaling blunted training-dependent tumor inhibition. Moreover, epinephrine induced a selective mobilization of IL-6-sensitive NK cells, and IL-6-blocking antibodies blunted training-induced tumor suppression, intratumoral NK cell infiltration, and NK cell activation. Together, these results link exercise, epinephrine, and IL-6 to NK cell mobilization and redistribution, and ultimately to control of tumor growth.

  15. Photoacoustic endoscopic imaging study of melanoma tumor growth in a rat colorectum in vivo

    NASA Astrophysics Data System (ADS)

    Li, Chiye; Yang, Joon-Mo; Chen, Ruimin; Zhang, Yu; Xia, Younan; Zhou, Qifa; Shung, K. Kirk; Wang, Lihong V.

    2013-03-01

    We performed a photoacoustic endoscopic imaging study of melanoma tumor growth in a nude rat in vivo. After inducing the tumor at the colorectal wall of the animal, we monitored the tumor development in situ by using a photoacoustic endoscopic system. This paper introduces our experimental method for tumor inoculation and presents imaging results showing the morphological changes of the blood vasculature near the tumor region according to the tumor progress. Our study could provide insights for future studies on tumor development in small animals.

  16. Serial circulating immune complex levels and mitogen responses during progressive tumor growth in WF rats.

    PubMed

    Rodrick, M L; Steele, G; Ross, D S; Lahey, S J; Deasy, J M; Rayner, A A; Harte, P J; Wilson, R E; Munroe, A E; King, V P

    1983-06-01

    Inbred male WF rats were given im injections of one of two antigenically and histologically distinct syngeneic tumor isografts, adenocarcinoma DMH-W 163 or spontaneous renal cell carcinoma SPK. Serum and peripheral blood lymphocytes were harvested from tumor-bearing and normal age-matched controls before and after isograft challenge at weekly intervals. Serial circulating immune complex (CIC) levels were quantitated by polyethylene glycol (PEG) insolubilization. T-cell mitogen responses to phytohemagglutinin (PHA) and concanavalin A (Con A) were followed serially. Tumor growth was measured at least weekly. PEG-CIC values rose early after tumor injection, increased with tumor growth, and declined in some animals just before death. Mitogen response to PHA was significantly decreased in isografted tumor-bearing rats, particularly at later stages of tumor development, compared to normal uninoculated controls. Responses to Con A were variable, and suppression was not always seen in tumor bearers. In animals that did not have progressive tumor growth after isograft injection, PEG-CIC levels did not change and responses to PHA were not suppressed. Patterns of CIC change and responses to PHA were not affected by differences in tumor histology or growth rates. Thus serial CIC levels measured by the PEG assay correlate with tumor growth and precede nonspecific suppression of T-cell mitogenic response in these animal tumor models.

  17. Metabolic remodeling of the tumor microenvironment: migration stimulating factor (MSF) reprograms myofibroblasts toward lactate production, fueling anabolic tumor growth.

    PubMed

    Carito, Valentina; Bonuccelli, Gloria; Martinez-Outschoorn, Ubaldo E; Whitaker-Menezes, Diana; Caroleo, Maria Cristina; Cione, Erika; Howell, Anthony; Pestell, Richard G; Lisanti, Michael P; Sotgia, Federica

    2012-09-15

    Migration stimulating factor (MSF) is a genetically truncated N-terminal isoform of fibronectin that is highly expressed during mammalian development in fetal fibroblasts, and during tumor formation in human cancer-associated myofibroblasts. However, its potential functional role in regulating tumor metabolism remains unexplored. Here, we generated an immortalized fibroblast cell line that recombinantly overexpresses MSF and studied their properties relative to vector-alone control fibroblasts. Our results indicate that overexpression of MSF is sufficient to confer myofibroblastic differentiation, likely via increased TGF-b signaling. In addition, MSF activates the inflammation-associated transcription factor NFκB, resulting in the onset of autophagy/mitophagy, thereby driving glycolytic metabolism (L-lactate production) in the tumor microenvironment. Consistent with the idea that glycolytic fibroblasts fuel tumor growth (via L-lactate, a high-energy mitochondrial fuel), MSF fibroblasts significantly increased tumor growth, by up to 4-fold. Mechanistic dissection of the MSF signaling pathway indicated that Cdc42 lies downstream of MSF and fibroblast activation. In accordance with this notion, Cdc42 overexpression in immortalized fibroblasts was sufficient to drive myofibroblast differentiation, to provoke a shift towards glycolytic metabolism and to promote tumor growth by up to 2-fold. In conclusion, the MSF/Cdc42/NFκB signaling cascade may be a critical druggable target in preventing "Warburg-like" cancer metabolism in tumor-associated fibroblasts. Thus, MSF functions in the metabolic remodeling of the tumor microenvironment by metabolically reprogramming cancer-associated fibroblasts toward glycolytic metabolism.

  18. Injectable intratumoral depot of thermally responsive polypeptide-radionuclide conjugates delays tumor progression in a mouse model

    PubMed Central

    Liu, Wenge; MacKay, J. Andrew; Dreher, Matthew R.; Chen, Mingnan; McDaniel, Jonathan R.; Simnick, Andrew J.; Callahan, Daniel J.; Zalutsky, Michael R.; Chilkoti, Ashutosh

    2010-01-01

    This study evaluated a biodegradable drug delivery system for local cancer radiotherapy consisting of a thermally sensitive elastin-like polypeptide (ELP) conjugated to a therapeutic radionuclide. Two ELPs (49 kD) were synthesized using genetic engineering to test the hypothesis that injectable biopolymeric depots can retain radionuclides locally and reduce the growth of tumors. A thermally sensitive polypeptide, ELP1, was designed to spontaneously undergo a soluble-insoluble phase transition (forming viscous microparticles) between room temperature and body temperature upon intratumoral injection, while ELP2 was designed to remain soluble upon injection and to serve as a negative control for the effect of aggregate assembly. After intratumoral administration of radionuclide conjugates of ELPs into implanted tumor xenografts in nude mice, their retention within the tumor, spatio-temporal distribution, and therapeutic effect were quantified. The residence time of the radionuclide-ELP1 in the tumor was significantly longer than the thermally insensitive ELP2 conjugate. In addition, the thermal transition of ELP1 significantly protected the conjugated radionuclide from dehalogenation, whereas the conjugated radionuclide on ELP2 was quickly eliminated from the tumor and cleaved from the biopolymer. These attributes of the thermally sensitive ELP1 depot improved the antitumor efficacy of iodine-131 compared to the soluble ELP2 control. This novel injectable and biodegradable depot has the potential to control advanced-stage cancers by reducing the bulk of inoperable tumors, enabling surgical removal of de-bulked tumors, and preserving healthy tissues. PMID:20117157

  19. Delayed soil thawing affects root and shoot functioning and growth in Scots pine.

    PubMed

    Repo, Tapani; Lehto, Tarja; Finér, Leena

    2008-10-01

    In boreal regions, soil can remain frozen after the start of the growing season. We compared relationships between root characteristics and water relations in Scots pine (Pinus sylvestris L.) saplings subjected to soil frost treatments before and during the first week of the growing period in a controlled environment experiment. Delayed soil thawing delayed the onset of sap flow or totally blocked it if soil thawing lagged the start of the growing period by 7 days. This effect was reflected in the electrical impedance of needles and trunks and in the relative electrolyte leakage of needles. Prolonged soil frost reduced or completely inhibited root growth. In unfrozen soil, limited trunk sap flow was observed despite unfavorable aboveground growing conditions (low temperature, low irradiance, short photoperiod). Following the earliest soil thaw, sap flow varied during the growing season, depending on light and temperature conditions, phenological stage of the plant and the amount of live needles in the canopy. The results suggest that delayed soil thawing can reduce tree growth, and if prolonged, it can be lethal.

  20. The Contributions of HIF-Target Genes to Tumor Growth in RCC

    PubMed Central

    Zhang, Ting; Niu, Xiaohua; Liao, Lili; Cho, Eun-Ah; Yang, Haifeng

    2013-01-01

    Somatic mutations or loss of expression of tumor suppressor VHL happen in the vast majority of clear cell Renal Cell Carcinoma, and it’s causal for kidney cancer development. Without VHL, constitutively active transcription factor HIF is strongly oncogenic and is essential for tumor growth. However, the contribution of individual HIF-responsive genes to tumor growth is not well understood. In this study we examined the contribution of important HIF-responsive genes such as VEGF, CCND1, ANGPTL4, EGLN3, ENO2, GLUT1 and IGFBP3 to tumor growth in a xenograft model using immune-compromised nude mice. We found that the suppression of VEGF or CCND1 impaired tumor growth, suggesting that they are tumor-promoting genes. We further discovered that the lack of ANGPTL4, EGLN3 or ENO2 expression did not change tumor growth. Surprisingly, depletion of GLUT1 or IGFBP3 significantly increased tumor growth, suggesting that they have tumor-inhibitory functions. Depletion of IGFBP3 did not lead to obvious activation of IGFIR. Unexpectedly, the depletion of IGFIR protein led to significant increase of IGFBP3 at both the protein and mRNA levels. Concomitantly, the tumor growth was greatly impaired, suggesting that IGFBP3 might suppress tumor growth in an IGFIR-independent manner. In summary, although the overall transcriptional activity of HIF is strongly tumor-promoting, the expression of each individual HIF-responsive gene could either enhance, reduce or do nothing to the kidney cancer tumor growth. PMID:24260413

  1. Tumor Growth Model with PK Input for Neuroblastoma Drug Development

    DTIC Science & Technology

    2015-09-01

    toward this goal by developing a whole-body PBPK model with an individualized tumor compartment for topotecan in mice bearing NB5 neuroblastoma tumors...utilized contrast-enhanced ultrasound (CEUS) derived individual tumor blood flow and blood volume measurements from NB5 tumor bearing mice. We were... bearing mice for each of the four TPT dosages. The second priority time points have been completed for three of the four dosages in tumor bearing

  2. Patient-derived xenograft (PDX) tumors increase growth rate with time.

    PubMed

    Pearson, Alexander T; Finkel, Kelsey A; Warner, Kristy A; Nör, Felipe; Tice, David; Martins, Manoela D; Jackson, Trachette L; Nör, Jacques E

    2016-02-16

    Patient-derived xenograft (PDX) models are frequently used for translational cancer research, and are assumed to behave consistently as the tumor ages. However, growth rate constancy as a function of time is unclear. Notably, variable PDX growth rates over time might have implications for the interpretation of translational studies. We characterized four PDX models through several in vivo passages from primary human head and neck squamous cell carcinoma and salivary gland adenoid cystic carcinoma. We developed a mathematical approach to merge growth data from different passages into a single measure of relative tumor volume normalized to study initiation size. We analyzed log-relative tumor volume increase with linear mixed effect models. Two oral pathologists analyzed the PDX tissues to determine if histopathological feature changes occurred over in vivo passages. Tumor growth rate increased over time. This was determined by repeated measures linear regression statistical analysis in four different PDX models. A quadratic statistical model for the temporal effect predicted the log-relative tumor volume significantly better than a linear time effect model. We found a significant correlation between passage number and histopathological features of higher tumor grade. Our mathematical treatment of PDX data allows statistical analysis of tumor growth data over long periods of time, including over multiple passages. Non-linear tumor growth in our regression models revealed the exponential growth rate increased over time. The dynamic tumor growth rates correlated with quantifiable histopathological changes that related to passage number in multiple types of cancer.

  3. Patient-derived xenograft (PDX) tumors increase growth rate with time

    PubMed Central

    Pearson, Alexander T.; Finkel, Kelsey A.; Warner, Kristy A.; Nör, Felipe; Tice, David; Martins, Manoela D.; Jackson, Trachette L.; Nör, Jacques E.

    2016-01-01

    Patient-derived xenograft (PDX) models are frequently used for translational cancer research, and are assumed to behave consistently as the tumor ages. However, growth rate constancy as a function of time is unclear. Notably, variable PDX growth rates over time might have implications for the interpretation of translational studies. We characterized four PDX models through several in vivo passages from primary human head and neck squamous cell carcinoma and salivary gland adenoid cystic carcinoma. We developed a mathematical approach to merge growth data from different passages into a single measure of relative tumor volume normalized to study initiation size. We analyzed log-relative tumor volume increase with linear mixed effect models. Two oral pathologists analyzed the PDX tissues to determine if histopathological feature changes occurred over in vivo passages. Tumor growth rate increased over time. This was determined by repeated measures linear regression statistical analysis in four different PDX models. A quadratic statistical model for the temporal effect predicted the log-relative tumor volume significantly better than a linear time effect model. We found a significant correlation between passage number and histopathological features of higher tumor grade. Our mathematical treatment of PDX data allows statistical analysis of tumor growth data over long periods of time, including over multiple passages. Non-linear tumor growth in our regression models revealed the exponential growth rate increased over time. The dynamic tumor growth rates correlated with quantifiable histopathological changes that related to passage number in multiple types of cancer. PMID:26783960

  4. RhoA knockout fibroblasts lose tumor-inhibitory capacity in vitro and promote tumor growth in vivo

    PubMed Central

    Alkasalias, Twana; Alexeyenko, Andrey; Hennig, Katharina; Danielsson, Frida; Lebbink, Robert Jan; Fielden, Matthew; Turunen, S. Pauliina; Lehti, Kaisa; Kashuba, Vladimir; Madapura, Harsha S.; Bozoky, Benedek; Lundberg, Emma; Balland, Martial; Guvén, Hayrettin; Klein, George; Gad, Annica K. B.; Pavlova, Tatiana

    2017-01-01

    Fibroblasts are a main player in the tumor-inhibitory microenvironment. Upon tumor initiation and progression, fibroblasts can lose their tumor-inhibitory capacity and promote tumor growth. The molecular mechanisms that underlie this switch have not been defined completely. Previously, we identified four proteins overexpressed in cancer-associated fibroblasts and linked to Rho GTPase signaling. Here, we show that knocking out the Ras homolog family member A (RhoA) gene in normal fibroblasts decreased their tumor-inhibitory capacity, as judged by neighbor suppression in vitro and accompanied by promotion of tumor growth in vivo. This also induced PC3 cancer cell motility and increased colony size in 2D cultures. RhoA knockout in fibroblasts induced vimentin intermediate filament reorganization, accompanied by reduced contractile force and increased stiffness of cells. There was also loss of wide F-actin stress fibers and large focal adhesions. In addition, we observed a significant loss of α-smooth muscle actin, which indicates a difference between RhoA knockout fibroblasts and classic cancer-associated fibroblasts. In 3D collagen matrix, RhoA knockout reduced fibroblast branching and meshwork formation and resulted in more compactly clustered tumor-cell colonies in coculture with PC3 cells, which might boost tumor stem-like properties. Coculturing RhoA knockout fibroblasts and PC3 cells induced expression of proinflammatory genes in both. Inflammatory mediators may induce tumor cell stemness. Network enrichment analysis of transcriptomic changes, however, revealed that the Rho signaling pathway per se was significantly triggered only after coculturing with tumor cells. Taken together, our findings in vivo and in vitro indicate that Rho signaling governs the inhibitory effects by fibroblasts on tumor-cell growth. PMID:28174275

  5. RhoA knockout fibroblasts lose tumor-inhibitory capacity in vitro and promote tumor growth in vivo.

    PubMed

    Alkasalias, Twana; Alexeyenko, Andrey; Hennig, Katharina; Danielsson, Frida; Lebbink, Robert Jan; Fielden, Matthew; Turunen, S Pauliina; Lehti, Kaisa; Kashuba, Vladimir; Madapura, Harsha S; Bozoky, Benedek; Lundberg, Emma; Balland, Martial; Guvén, Hayrettin; Klein, George; Gad, Annica K B; Pavlova, Tatiana

    2017-02-21

    Fibroblasts are a main player in the tumor-inhibitory microenvironment. Upon tumor initiation and progression, fibroblasts can lose their tumor-inhibitory capacity and promote tumor growth. The molecular mechanisms that underlie this switch have not been defined completely. Previously, we identified four proteins overexpressed in cancer-associated fibroblasts and linked to Rho GTPase signaling. Here, we show that knocking out the Ras homolog family member A (RhoA) gene in normal fibroblasts decreased their tumor-inhibitory capacity, as judged by neighbor suppression in vitro and accompanied by promotion of tumor growth in vivo. This also induced PC3 cancer cell motility and increased colony size in 2D cultures. RhoA knockout in fibroblasts induced vimentin intermediate filament reorganization, accompanied by reduced contractile force and increased stiffness of cells. There was also loss of wide F-actin stress fibers and large focal adhesions. In addition, we observed a significant loss of α-smooth muscle actin, which indicates a difference between RhoA knockout fibroblasts and classic cancer-associated fibroblasts. In 3D collagen matrix, RhoA knockout reduced fibroblast branching and meshwork formation and resulted in more compactly clustered tumor-cell colonies in coculture with PC3 cells, which might boost tumor stem-like properties. Coculturing RhoA knockout fibroblasts and PC3 cells induced expression of proinflammatory genes in both. Inflammatory mediators may induce tumor cell stemness. Network enrichment analysis of transcriptomic changes, however, revealed that the Rho signaling pathway per se was significantly triggered only after coculturing with tumor cells. Taken together, our findings in vivo and in vitro indicate that Rho signaling governs the inhibitory effects by fibroblasts on tumor-cell growth.

  6. Growth retardation and delayed puberty in children and adolescents with juvenile idiopathic arthritis.

    PubMed

    Umławska, Wioleta; Prusek-Dudkiewicz, Anna

    2010-03-01

    Juvenile idiopathic arthritis (JIA) is the most common joint disorder in developing children. Juvenile idiopathic arthritis is difficult to diagnose and treat. In some patients, signs and symptoms can be frustratingly inconsistent, contradictory or idiosyncratic. Short stature in patients with JIA is usually due to reduced growth in the lower extremities, and only rarely due to reduced growth in the spinal column. In some studies, children with JIA were found to have infantile body proportions. Puberty is delayed in children with JIA. In children with chronic arthritic disorders, there is a strong correlation between the activity of the disease and the age of puberty. The main goals in reducing growth retardation in children with JIA are promoting timely remission and reducing the duration and dosage of corticosteroid treatment. It is important to regularly monitor physical development. Further improvements to the treatment protocol depend on continued interdisciplinary research involving paediatricians, rheumatologists and clinical anthropologists.

  7. Epidermal growth factor receptor expression in radiation-induced dog lung tumors by immunocytochemical localization

    SciTech Connect

    Leung, F.L.; Park, J.F.; Dagle, G.E.

    1993-06-01

    In studies to determine the role of growth factors in radiation-induced lung cancer, epidermal growth factor (EGFR) expression was examined by immunocytochemistry in 51 lung tumors from beagle dogs exposed to inhaled plutonium; 21 of 51 (41%) tumors were positive for EGFR. The traction of tumors positive for EGFR and the histological type of EGFR-positive tumors in the plutonium-exposed dogs were not different from spontaneous dog lung tumors, In which 36% were positive for EGFR. EGFR involvement in Pu-induced lung tumors appeared to be similar to that in spontaneous lung tumors. However, EGFR-positive staining was observed in only 1 of 16 tumors at the three lowest Pu exposure levels, compared to 20 of 35 tumors staining positive at the two highest Pu exposure levels. The results in dogs were in good agreement with the expression of EGFR reported in human non-small cell carcinoma of the lung, suggesting that Pu-induced lung tumors in the dog may be a suitable animal model to investigate the role of EGFR expression in lung carcinogenesis. In humans, EGFR expression in lung tumors has been primarily related to histological tumor types. In individual dogs with multiple primary lung tumors, the tumors were either all EGFR positive or EGFR negative, suggesting that EGFR expression may be related to the response of the individual dog as well as to the histological type of tumor.

  8. PHOSPHOLIPASE D (PLD) DRIVES CELL INVASION, TUMOR GROWTH AND METASTASIS IN A HUMAN BREAST CANCER XENOGRAPH MODEL

    PubMed Central

    Henkels, Karen M.; Boivin, Gregory P.; Dudley, Emily S.; Berberich, Steven J.; Gomez-Cambronero, Julian

    2014-01-01

    Breast cancer is one of the most common malignancies in human females in the world. One protein that has elevated enzymatic lipase activity in breast cancers in vitro is phospholipase D (PLD), which is also involved in cell migration. We demonstrate that the PLD2 isoform, which was analyzed directly in the tumors, is crucial for cell invasion that contributes critically to the growth and development of breast tumors and lung metastases in vivo. We used three complementary strategies in a SCID mouse model and also addressed the underlying molecular mechanism. First, the PLD2 gene was silenced in highly metastatic, aggressive breast cancer cells (MDA-MB-231) with lentivirus-based shRNA, which were xenotransplanted in SCID mice. The resulting mouse primary mammary tumors were reduced in size (65%, p<0.05) and their onset delayed when compared to control tumors. Second, we stably overexpressed PLD2 in low-invasive breast cancer cells (MCF-7) with a biscistronic MIEG retroviral vector and observed that these cells were converted into a highly aggressive phenotype, as primary tumors that formed following xenotransplantation were larger, grew faster and developed lung metastases more readily. Third, we implanted osmotic pumps into SCID xenotransplanted mice that delivered two different small-molecule inhibitors of PLD activity (FIPI and NOPT). These inhibitors led to significant (>70%, p<0.05) inhibition of primary tumor growth, metastatic axillary tumors and lung metastases. In order to define the underlying mechanism, we determined that the machinery of PLD-induced cell invasion is mediated by phosphatidic acid (PA), WASp, Grb2 and Rac2 signaling events that ultimately affect actin polymerization and cell invasion. In summary, this study shows that PLD has a central role in the development, metastasis and level of aggressiveness of breast cancer, raising the possibility that PLD2 could be used as a new therapeutic target. PMID:23752189

  9. Tumor STAT1 transcription factor activity enhances breast tumor growth and immune suppression mediated by myeloid-derived suppressor cells.

    PubMed

    Hix, Laura M; Karavitis, John; Khan, Mohammad W; Shi, Yihui H; Khazaie, Khashayarsha; Zhang, Ming

    2013-04-26

    Previous studies had implicated the IFN-γ transcription factor signal transducer and activator of transcription 1 (STAT1) as a tumor suppressor. However, accumulating evidence has correlated increased STAT1 activation with increased tumor progression in multiple types of cancer, including breast cancer. Indeed, we present evidence that tumor up-regulation of STAT1 activity in human and mouse mammary tumors correlates with increasing disease progression to invasive carcinoma. A microarray analysis comparing low aggressive TM40D and highly aggressive TM40D-MB mouse mammary carcinoma cells revealed significantly higher STAT1 activity in the TM40D-MB cells. Ectopic overexpression of constitutively active STAT1 in TM40D cells promoted mobilization of myeloid-derived suppressor cells (MDSCs) and inhibition of antitumor T cells, resulting in aggressive tumor growth in tumor-transplanted, immunocompetent mice. Conversely, gene knockdown of STAT1 in the metastatic TM40D-MB cells reversed these events and attenuated tumor progression. Importantly, we demonstrate that in human breast cancer, the presence of tumor STAT1 activity and tumor-recruited CD33(+) myeloid cells correlates with increasing disease progression from ductal carcinoma in situ to invasive carcinoma. We conclude that STAT1 activity in breast cancer cells is responsible for shaping an immunosuppressive tumor microenvironment, and inhibiting STAT1 activity is a promising immune therapeutic approach.

  10. Enalapril and ASS inhibit tumor growth in a transgenic mouse model of islet cell tumors.

    PubMed

    Fendrich, V; Lopez, C L; Manoharan, J; Maschuw, K; Wichmann, S; Baier, A; Holler, J P; Ramaswamy, A; Bartsch, D K; Waldmann, J

    2014-10-01

    Accumulating evidence suggests a role for angiotensin-converting enzymes involving the angiotensin II-receptor 1 (AT1-R) and the cyclooxygenase pathway in carcinogenesis. The effects of ASS and enalapril were assessed in vitro and in a transgenic mouse model of pancreatic neuroendocrine neoplasms (pNENs). The effects of enalapril and ASS on proliferation and expression of the AGTR1A and its target gene vascular endothelial growth factor (Vegfa) were assessed in the neuroendocrine cell line BON1. Rip1-Tag2 mice were treated daily with either 0.6 mg/kg bodyweight of enalapril i.p., 20 mg/kg bodyweight of ASS i.p., or a vehicle in a prevention (weeks 5-12) and a survival group (week 5 till death). Tumor surface, weight of pancreatic glands, immunostaining for AT1-R and nuclear factor kappa beta (NFKB), and mice survival were analyzed. In addition, sections from human specimens of 20 insulinomas, ten gastrinomas, and 12 non-functional pNENs were evaluated for AT1-R and NFKB (NFKB1) expression and grouped according to the current WHO classification. Proliferation was significantly inhibited by enalapril and ASS in BON1 cells, with the combination being the most effective. Treatment with enalapril and ASS led to significant downregulation of known target genes Vegf and Rela at RNA level. Tumor growth was significantly inhibited by enalapril and ASS in the prevention group displayed by a reduction of tumor size (84%/67%) and number (30%/45%). Furthermore, daily treatment with enalapril and ASS prolonged the overall median survival compared with vehicle-treated Rip1-Tag2 (107 days) mice by 9 and 17 days (P=0.016 and P=0.013). The AT1-R and the inflammatory transcription factor NFKB were abolished completely upon enalapril and ASS treatment. AT1-R and NFKB expressions were observed in 80% of human pNENs. Enalapril and ASS may provide an approach for chemoprevention and treatment of pNENs.

  11. Enhancing chemotherapeutic drug inhibition on tumor growth by ultrasound: an in vivo experiment.

    PubMed

    Zhao, Ying-Zheng; Lu, Cui-Tao; Zhou, Zhi-Cai; Jin, Zhuo; Zhang, Lu; Sun, Chang-Zheng; Xu, Yan-Yan; Gao, Hui-Sheng; Tian, Ji-Lai; Gao, Feng-Hou; Tang, Qin-Qin; Li, Wei; Xiang, Qi; Li, Xiao-Kun; Li, Wen-Feng

    2011-02-01

    An in vivo study on enhancing epirubicin hydrochloride (EPI) inhibition on tumor growth by ultrasound (US) was reported. Five-week-old male nude mice were used and HL-60 cells were s.c. (subcutaneous injection) inoculated in axilla of these mice. Six groups were designed and five consecutive treatments were applied to investigate the inhibition on tumor growth and body weight growth. US applied locally to the tumor resulted in a substantially increased drug uptake in tumor cells. The inhibition on tumor growth depended on the position of drug injection and phospholipid-based microbubble (PMB) application. Tumor growth rate under group 1 (PMB+US) was similar to that of blank control. The order of the inhibition on tumor volume growth was: group 4 (s.c. EPI+PMB+US) > group 5 intraperitoneal (i.p. EPI+PMB+US) > group 2 (i.p. EPI) > group 3 (s.c. EPI+US) > group 1 (PMB+US). Similar conclusion was obtained from experimental measurements of tumor weight change. The order of animal survival status for EPI administration groups was: group 4 > group 5 > group 2 > group 3. Chemotherapeutic drug inhibition on tumor growth could be enhanced by local US combined with PMB, which might provide a potential application for US-mediated chemotherapy.

  12. Primitive neuroectodermal tumor presenting as a delayed sequela to cranial irradiation and intrathecal methotrexate

    SciTech Connect

    Barasch, E.S.; Altieri, D.; Decker, R.E.; Ahmed, S.; Lin, J.

    1988-11-01

    A patient developed a primitive neuroectodermal tumor (PNET) many years after therapeutic cerebral radiation and methotrexate treatment for leukemia. The differential radiologic and histologic diagnoses, as well as the possible co-oncogenic effects of radiation and methotrexate, are evaluated.

  13. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model.

    PubMed

    Desai, Sejal; Srambikkal, Nishad; Yadav, Hansa D; Shetake, Neena; Balla, Murali M S; Kumar, Amit; Ray, Pritha; Ghosh, Anu; Pandey, B N

    2016-01-01

    Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE) in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells) tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander) WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated) when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2) and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper insight about

  14. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model

    PubMed Central

    Desai, Sejal; Srambikkal, Nishad; Yadav, Hansa D.; Shetake, Neena; Balla, Murali M. S.; Kumar, Amit; Ray, Pritha; Ghosh, Anu

    2016-01-01

    Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE) in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells) tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander) WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated) when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2) and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper insight about

  15. FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal

    PubMed Central

    Haemmerle, Monika; Bottsford-Miller, Justin; Pradeep, Sunila; Taylor, Morgan L.; Hansen, Jean M.; Dalton, Heather J.; Stone, Rebecca L.; Cho, Min Soon; Nick, Alpa M.; Nagaraja, Archana S.; Gutschner, Tony; Gharpure, Kshipra M.; Mangala, Lingegowda S.; Han, Hee Dong; Zand, Behrouz; Armaiz-Pena, Guillermo N.; Wu, Sherry Y.; Pecot, Chad V.; Burns, Alan R.; Lopez-Berestein, Gabriel; Afshar-Kharghan, Vahid; Sood, Anil K.

    2016-01-01

    Recent studies in patients with ovarian cancer suggest that tumor growth may be accelerated following cessation of antiangiogenesis therapy; however, the underlying mechanisms are not well understood. In this study, we aimed to compare the effects of therapy withdrawal to those of continuous treatment with various antiangiogenic agents. Cessation of therapy with pazopanib, bevacizumab, and the human and murine anti-VEGF antibody B20 was associated with substantial tumor growth in mouse models of ovarian cancer. Increased tumor growth was accompanied by tumor hypoxia, increased tumor angiogenesis, and vascular leakage. Moreover, we found hypoxia-induced ADP production and platelet infiltration into tumors after withdrawal of antiangiogenic therapy, and lowering platelet counts markedly inhibited tumor rebound after withdrawal of antiangiogenic therapy. Focal adhesion kinase (FAK) in platelets regulated their migration into the tumor microenvironment, and FAK-deficient platelets completely prevented the rebound tumor growth. Additionally, combined therapy with a FAK inhibitor and the antiangiogenic agents pazopanib and bevacizumab reduced tumor growth and inhibited negative effects following withdrawal of antiangiogenic therapy. In summary, these results suggest that FAK may be a unique target in situations in which antiangiogenic agents are withdrawn, and dual targeting of FAK and VEGF could have therapeutic implications for ovarian cancer management. PMID:27064283

  16. Indapamide blocks the rapid component of the delayed rectifier current in atrial tumor cells (AT-1 cells).

    PubMed

    Kabir, S M; Bhattacharyya, M L; Robinson, T R

    2000-03-31

    We studied the effects of a well known blocker (indapamide) of the slow component (I(ks)) of the delayed rectifier (I(k)) on K(+) currents in atrial tumor myocytes derived from transgenic mice (AT-1 cells) using one electrode voltage clamp method. These cells have been shown to express mRNAs encoding cardiac K(+) channels and display a cardiac electrophysiological phenotype. The major K(+) current is the rapid component (I(kr)) of the delayed rectifier current (I(k)). The purpose of this study was to show that a diuretic agent, indapamide, which was shown to be a selective blocker of the slow component (I(ks)) of delayed rectifier, also blocks I(kr) in a dose dependent manner. The steady state current at the end of a 1s pulse (I(1s), step to +40 mV from a holding potential of -40 mV) was 1070.4+/-202.2 pA (n=5) and the tail current (I(tail)) was 416.3+/-112.9 pA. Indapamide (750 microM) reduced I(1s) and I(tail) to 254.5+/-62.3 pA and 42.2+/-37.7 pA respectively. Indapamide induced block was partially reversible for higher concentrations (> or =750 microM).

  17. mTOR inhibitors block Kaposi sarcoma growth by inhibiting essential autocrine growth factors and tumor angiogenesis.

    PubMed

    Roy, Debasmita; Sin, Sang-Hoon; Lucas, Amy; Venkataramanan, Raman; Wang, Ling; Eason, Anthony; Chavakula, Veenadhari; Hilton, Isaac B; Tamburro, Kristen M; Damania, Blossom; Dittmer, Dirk P

    2013-04-01

    Kaposi sarcoma originates from endothelial cells and it is one of the most overt angiogenic tumors. In Sub-Saharan Africa, where HIV and the Kaposi sarcoma-associated herpesvirus (KSHV) are endemic, Kaposi sarcoma is the most common cancer overall, but model systems for disease study are insufficient. Here, we report the development of a novel mouse model of Kaposi sarcoma, where KSHV is retained stably and tumors are elicited rapidly. Tumor growth was sensitive to specific allosteric inhibitors (rapamycin, CCI-779, and RAD001) of the pivotal cell growth regulator mTOR. Inhibition of tumor growth was durable up to 130 days and reversible. mTOR blockade reduced VEGF secretion and formation of tumor vasculature. Together, the results show that mTOR inhibitors exert a direct anti-Kaposi sarcoma effect by inhibiting angiogenesis and paracrine effectors, suggesting their application as a new treatment modality for Kaposi sarcoma and other cancers of endothelial origin.

  18. Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors

    PubMed Central

    2013-01-01

    Introduction Mesenchymal stem cells (MSCs) are known to migrate to tumor tissues. This behavior of MSCs has been exploited as a tumor-targeting strategy for cell-based cancer therapy. However, the effects of MSCs on tumor growth are controversial. This study was designed to determine the effect of MSCs on the growth of breast and prostate tumors. Methods Bone marrow-derived MSCs (BM-MSCs) were isolated and characterized. Effects of BM-MSCs on tumor cell proliferation were analyzed in a co-culture system with mouse breast cancer cell 4T1 or human prostate cancer cell DU145. Tumor cells were injected into nude mice subcutaneously either alone or coupled with BM-MSCs. The expression of cell proliferation and angiogenesis-related proteins in tumor tissues were immunofluorescence analyzed. The angiogenic effect of BM-MSCs was detected using a tube formation assay. The effects of the crosstalk between tumor cells and BM-MSCs on expression of angiogenesis related markers were examined by immunofluorescence and real-time PCR. Results Both co-culturing with mice BM-MSCs (mBM-MSCs) and treatment with mBM-MSC-conditioned medium enhanced the growth of 4T1 cells. Co-injection of 4T1 cells and mBM-MSCs into nude mice led to increased tumor size compared with injection of 4T1 cells alone. Similar experiments using DU145 cells and human BM-MSCs (hBM-MSCs) instead of 4T1 cells and mBM-MSCs obtained consistent results. Compared with tumors induced by injection of tumor cells alone, the blood vessel area was greater in tumors from co-injection of tumor cells with BM-MSCs, which correlated with decreased central tumor necrosis and increased tumor cell proliferation. Furthermore, both conditioned medium from hBM-MSCs alone and co-cultures of hBM-MSCs with DU145 cells were able to promote tube formation ability of human umbilical vein endothelial cells. When hBM-MSCs are exposed to the DU145 cell environment, the expression of markers associated with neovascularization (macrophage

  19. IL-17A produced by γδ T cells promotes tumor growth in hepatocellular carcinoma.

    PubMed

    Ma, Shoubao; Cheng, Qiao; Cai, Yifeng; Gong, Huanle; Wu, Yan; Yu, Xiao; Shi, Liyun; Wu, Depei; Dong, Chen; Liu, Haiyan

    2014-04-01

    Interleukin (IL)-17A is expressed in the tumor microenvironment where it appears to contribute to tumor development, but its precise role in tumor immunity remains controversial. Here, we report mouse genetic evidence that IL-17A is critical for tumor growth. IL-17A-deficient mice exhibited reduced tumor growth, whereas systemic administration of recombinant mouse IL-17A promoted the growth of hepatocellular carcinoma. The tumor-promoting effect of IL-17A was mediated through suppression of antitumor responses, especially CD8(+) T-cell responses. Furthermore, we found that IL-17A was produced mainly by Vγ4 γδ T cells, insofar as depleting Vγ4 γδ T cells reduced tumor growth, whereas adoptive transfer of Vγ4 γδ T cells promoted tumor growth. Mechanistic investigations showed that IL-17A induced CXCL5 production by tumor cells to enhance the infiltration of myeloid-derived suppressor cells (MDSC) to tumor sites in a CXCL5/CXCR2-dependent manner. IL-17A also promoted the suppressive activity of MDSC to reinforce suppression of tumoral immunity. Moreover, we found that MDSC could induce IL-17A-producing γδ T cells via production of IL-1β and IL-23. Conversely, IL-17A could also enhance production of IL-1β and IL-23 in MDSC as a positive feedback. Together, our results revealed a novel mechanism involving cross-talk among γδ T cells, MDSCs, and tumor cells through IL-17A production. These findings offer new insights into how IL-17A influences tumor immunity, with potential implications for the development of tumor immunotherapy.

  20. Reactivation of mutant p53 by a dietary-related compound phenethyl isothiocyanate inhibits tumor growth

    PubMed Central

    Aggarwal, M; Saxena, R; Sinclair, E; Fu, Y; Jacobs, A; Dyba, M; Wang, X; Cruz, I; Berry, D; Kallakury, B; Mueller, S C; Agostino, S D; Blandino, G; Avantaggiati, M L; Chung, F-L

    2016-01-01

    Mutations in the p53 tumor-suppressor gene are prevalent in human cancers. The majority of p53 mutations are missense, which can be classified into contact mutations (that directly disrupts the DNA-binding activity of p53) and structural mutations (that disrupts the conformation of p53). Both of the mutations can disable the normal wild-type (WT) p53 activities. Nevertheless, it has been amply documented that small molecules can rescue activity from mutant p53 by restoring WT tumor-suppressive functions. These compounds hold promise for cancer therapy and have now entered clinical trials. In this study, we show that cruciferous-vegetable-derived phenethyl isothiocyanate (PEITC) can reactivate p53 mutant under in vitro and in vivo conditions, revealing a new mechanism of action for a dietary-related compound. PEITC exhibits growth-inhibitory activity in cells expressing p53 mutants with preferential activity toward p53R175, one of the most frequent ‘hotspot' mutations within the p53 sequence. Mechanistic studies revealed that PEITC induces apoptosis in a p53R175 mutant-dependent manner by restoring p53 WT conformation and transactivation functions. Accordingly, in PEITC-treated cells the reactivated p53R175 mutant induces apoptosis by activating canonical WT p53 targets, inducing a delay in S and G2/M phase, and by phosphorylating ATM/CHK2. Interestingly, the growth-inhibitory effects of PEITC depend on the redox state of the cell. Further, PEITC treatments render the p53R175 mutant sensitive to degradation by the proteasome and autophagy in a concentration-dependent manner. PEITC-induced reactivation of p53R175 and its subsequent sensitivity to the degradation pathways likely contribute to its anticancer activities. We further show that dietary supplementation of PEITC is able to reactivate WT activity in vivo as well, inhibiting tumor growth in xenograft mouse model. These findings provide the first example of mutant p53 reactivation by a dietary compound and

  1. Delayed cardiac metastasis from phyllodes breast tumor presenting as cardiogenic shock.

    PubMed

    Garg, Naveen; Moorthy, Nagaraja; Agrawal, Surendra K; Pandey, Santanu; Kumari, Niraj

    2011-01-01

    Malignant metastases to the heart and pericardium, which occur far more often than do primary cardiac neoplasms, typically lead to fatal outcomes. The phyllodes tumor is a rare, predominantly benign fibroepithelial breast neoplasm with variable malignancy potential. Herein, we describe the case of a 35-year-old woman who, 3 years after undergoing a simple mastectomy for a rapidly enlarging breast neoplasm, presented with cardiogenic shock and was found to have a large right ventricular tumor that obstructed the right ventricular outflow tract. Despite successful resection of the ventricular mass and a right atrial mass of organized thrombus, the patient died 8 days postoperatively of multiorgan failure due to severe right ventricular dysfunction. Histopathologic analysis determined that the right ventricular mass was a malignant, metastatic phyllodes tumor. To our knowledge, this is only the 2nd reported case of a phyllodes tumor that metastasized to the heart and presented as an intracavitary mass with cardiogenic shock. In addition to discussing our patient's case, we review the pertinent medical literature.

  2. miR-21 coordinates tumor growth and modulates KRIT1 levels.

    PubMed

    Orso, Francesca; Balzac, Fiorella; Marino, Marco; Lembo, Antonio; Retta, Saverio Francesco; Taverna, Daniela

    2013-08-16

    miR-21 is overexpressed in tumors and it displays oncogenic activity. Here, we show that expression of miR-21 in primary tumors anticorrelates with KRIT1/CCM1, an interacting partner of the Ras-like GTPase Rap1, involved in Cerebral Cavernous Malformations (CCM). We present evidences that miR-21 silences KRIT1 by targeting its mRNA 3'UTR and that this interaction is involved in tumor growth control. In fact, miR-21 over-expression or KRIT1 knock-down promote anchorage independent tumor cell growth compared to controls, whereas the opposite is observed when anti-miR-21 or KRIT1 overexpression are employed. Our findings suggest that miR-21 promotes tumor cell growth, at least in part, by down-modulating the potential tumor suppressor KRIT1.

  3. miR-21 coordinates tumor growth and modulates KRIT1 levels

    PubMed Central

    Orso, Francesca; Balzac, Fiorella; Marino, Marco; Lembo, Antonio; Retta, Saverio Francesco; Taverna, Daniela

    2013-01-01

    miR-21 is overexpressed in tumors and it displays oncogenic activity. Here, we show that expression of miR-21 in primary tumors anticorrelates with KRIT1/CCM1, an interacting partner of the Ras-like GTPase Rap1, involved in Cerebral Cavernous Malformations (CCM). We present evidences that miR-21 silences KRIT1 by targeting its mRNA 3′UTR and that this interaction is involved in tumor growth control. In fact, miR-21 over-expression or KRIT1 knock-down promote anchorage independent tumor cell growth compared to controls, whereas the opposite is observed when anti-miR-21 or KRIT1 overexpression are employed. Our findings suggest that miR-21 promotes tumor cell growth, at least in part, by down-modulating the potential tumor suppressor KRIT1. PMID:23872064

  4. Cisplatin Nephrotoxicity and Longitudinal Growth in Children With Solid Tumors

    PubMed Central

    Jiménez-Triana, Clímaco Andres; Castelán-Martínez, Osvaldo D.; Rivas-Ruiz, Rodolfo; Jiménez-Méndez, Ricardo; Medina, Aurora; Clark, Patricia; Rassekh, Rod; Castañeda-Hernández, Gilberto; Carleton, Bruce; Medeiros, Mara

    2015-01-01

    Abstract Cisplatin, a major antineoplastic drug used in the treatment of solid tumors, is a known nephrotoxin. This retrospective cohort study evaluated the prevalence and severity of cisplatin nephrotoxicity in 54 children and its impact on height and weight. We recorded the weight, height, serum creatinine, and electrolytes in each cisplatin cycle and after 12 months of treatment. Nephrotoxicity was graded as follows: normal renal function (Grade 0); asymptomatic electrolyte disorders, including an increase in serum creatinine, up to 1.5 times baseline value (Grade 1); need for electrolyte supplementation <3 months and/or increase in serum creatinine 1.5 to 1.9 times from baseline (Grade 2); increase in serum creatinine 2 to 2.9 times from baseline or need for electrolyte supplementation for more than 3 months after treatment completion (Grade 3); and increase in serum creatinine ≥3 times from baseline or renal replacement therapy (Grade 4). Nephrotoxicity was observed in 41 subjects (75.9%). Grade 1 nephrotoxicity was observed in 18 patients (33.3%), Grade 2 in 5 patients (9.2%), and Grade 3 in 18 patients (33.3%). None had Grade 4 nephrotoxicity. Nephrotoxicity patients were younger and received higher cisplatin dose, they also had impairment in longitudinal growth manifested as statistically significant worsening on the height Z Score at 12 months after treatment. We used a multiple logistic regression model using the delta of height Z Score (baseline-12 months) as dependent variable in order to adjust for the main confounder variables such as: germ cell tumor, cisplatin total dose, serum magnesium levels at 12 months, gender, and nephrotoxicity grade. Patients with nephrotoxicity Grade 1 where at higher risk of not growing (OR 5.1, 95% CI 1.07–24.3, P = 0.04). The cisplatin total dose had a significant negative relationship with magnesium levels at 12 months (Spearman r = −0.527, P = <0.001). PMID:26313789

  5. [HPV DNA vaccines expressing recombinant CRT/HPV6bE7 fusion protein inhibit tumor growth and angiogenic activity].

    PubMed

    Xu, Yan; Cheng, Hao; Zhao, Ke-Jia; Zhu, Ke-Jian; Zhang, Xing

    2007-11-01

    This paper was to study the angiogenic inhibitory effect and the potential antitumor effect of the constructed recombinant DNA vaccine CRT/HPV6bE7 in vivo. The C57BL/6 mice were vaccinated respectively with recombinant CRT/HPV6bE7 DNA plamids. The inhibitory effects on angiogenesis of generated vaccines in vivo were evaluated by a bFGF-induced angiogenesis assay using the Matrigel kit. To investigate the potential antitumor effect, the mean tumor weights, sizes and tumor appearing times were measured in C57BL/6 mice treated with HPV6bE7-expressing B16 cells. The results indicated that the recombinants CRT180/HPV6bE7 and CRT180 showed strong anti-angiogenic effects in bFGF-induced angiogenesis in vivo. Moreover, CRT180/HPV6bE7 and CRT180 DNA vaccines could significantly inhibit the tumor growth in tumor challenge experiment, and CRT180/HPV6bE7 was superior to other vaccines in delaying tumor formation time, limiting tumor size and weight in tumor protection experiment. In conclusion, recombinant CRT180/HPV6bE7 DNA could elicit a most efficient anti-angiogenic effect and inhibit tumor growth in mice inoculated with DNA vaccines. The antiangiogenic activity of CRT were suggested residing in a domain between CRT 120-180 aa.

  6. The autophagic tumor stroma model of cancer or "battery-operated tumor growth": A simple solution to the autophagy paradox.

    PubMed

    Martinez-Outschoorn, Ubaldo E; Whitaker-Menezes, Diana; Pavlides, Stephanos; Chiavarina, Barbara; Bonuccelli, Gloria; Casey, Trimmer; Tsirigos, Aristotelis; Migneco, Gemma; Witkiewicz, Agnieszka; Balliet, Renee; Mercier, Isabelle; Wang, Chengwang; Flomenberg, Neal; Howell, Anthony; Lin, Zhao; Caro, Jaime; Pestell, Richard G; Sotgia, Federica; Lisanti, Michael P

    2010-11-01

    The role of autophagy in tumorigenesis is controversial. Both autophagy inhibitors (chloroquine) and autophagy promoters (rapamycin) block tumorigenesis by unknown mechanism(s). This is called the "Autophagy Paradox". We have recently reported a simple solution to this paradox. We demonstrated that epithelial cancer cells use oxidative stress to induce autophagy in the tumor microenvironment. As a consequence, the autophagic tumor stroma generates recycled nutrients that can then be used as chemical building blocks by anabolic epithelial cancer cells. This model results in a net energy transfer from the tumor stroma to epithelial cancer cells (an energy imbalance), thereby promoting tumor growth. This net energy transfer is both unilateral and vectorial, from the tumor stroma to the epithelial cancer cells, representing a true host-parasite relationship. We have termed this new paradigm "The Autophagic Tumor Stroma Model of Cancer Cell Metabolism" or "Battery-Operated Tumor Growth". In this sense, autophagy in the tumor stroma serves as a "battery" to fuel tumor growth, progression and metastasis, independently of angiogenesis. Using this model, the systemic induction of autophagy will prevent epithelial cancer cells from using recycled nutrients, while the systemic inhibiton of autophagy will prevent stromal cells from producing recycled nutrients-both effectively "starving" cancer cells. We discuss the idea that tumor cells could become resistant to the systemic induction of autophagy, by the upregulation of natural endogenous autophagy inhibitors in cancer cells. Alternatively, tumor cells could also become resistant to the systemic induction of autophagy, by the genetic silencing/deletion of pro-autophagic molecules, such as Beclin1. If autophagy resistance develops in cancer cells, then the systemic inhibition of autophagy would provide a therapeutic solution to this type of drug resistance, as it would still target autophagy in the tumor stroma. As such, an

  7. Expectant management of vestibular schwannoma: a retrospective multivariate analysis of tumor growth and outcome.

    PubMed

    Hughes, Mark; Skilbeck, Christopher; Saeed, Shakeel; Bradford, Robert

    2011-09-01

    We conducted a retrospective observational study to assess the consequences of conservative management of vestibular schwannoma (VS). Data were collected from tertiary neuro-otological referral units in United Kingdom. The study included 59 patients who were managed conservatively with radiological diagnosis of VS. The main outcome measures were growth rate and rate of failure of conservative management. Multivariate analysis sought correlation between tumor growth and (i) demographic features, (ii) tumor characteristics. The mean tumor growth was 0.66 mm/y. 11 patients (19%) required intervention. Mean time to intervention was 37 months with two notable late "failures" occurring at 75 and 84 months. Tumors extending into the cerebellopontine angle (CPA) grew significantly faster than intracanalicular tumors (p = 0.0045). No association was found between growth rate and age, sex, tumor laterality, facial nerve function, and grade of hearing loss. Conservative management is acceptable for a subset of patients. Tumors extending into the CPA at diagnosis grow significantly faster than intracanalicular tumors. No growth within 5 years of surveillance does not guarantee a continued indolent growth pattern; surveillance must therefore continue.

  8. Halofuginone inhibits angiogenesis and growth in implanted metastatic rat brain tumor model--an MRI study.

    PubMed

    Abramovitch, Rinat; Itzik, Anna; Harel, Hila; Nagler, Arnon; Vlodavsky, Israel; Siegal, Tali

    2004-01-01

    Tumor growth and metastasis depend on angiogenesis; therefore, efforts are made to develop specific angiogenic inhibitors. Halofuginone (HF) is a potent inhibitor of collagen type alpha1(I). In solid tumor models, HF has a potent antitumor and antiangiogenic effect in vivo, but its effect on brain tumors has not yet been evaluated. By employing magnetic resonance imaging (MRI), we monitored the effect of HF on tumor progression and vascularization by utilizing an implanted malignant fibrous histiocytoma metastatic rat brain tumor model. Here we demonstrate that treatment with HF effectively and dose-dependently reduced tumor growth and angiogenesis. On day 13, HF-treated tumors were fivefold smaller than control (P < .001). Treatment with HF significantly prolonged survival of treated animals (142%; P = .001). In HF-treated rats, tumor vascularization was inhibited by 30% on day 13 and by 37% on day 19 (P < .05). Additionally, HF treatment inhibited vessel maturation (P = .03). Finally, in HF-treated rats, we noticed the appearance of a few clusters of satellite tumors, which were distinct from the primary tumor and usually contained vessel cores. This phenomenon was relatively moderate when compared to previous reports of other antiangiogenic agents used to treat brain tumors. We therefore conclude that HF is effective for treatment of metastatic brain tumors.

  9. Delay of growth and development in children with bronchial asthma, atopic dermatitis and allergic rhinitis.

    PubMed

    Baum, W F; Schneyer, U; Lantzsch, A M; Klöditz, E

    2002-04-01

    The elevated incidence of short stature (body height < (-)x - 2s), skeletal retardation and delayed puberty in children with bronchial asthma or atopic dermatitis is generally attributed to the severity of the disorder. However, a series of findings indicate a causal influence of the atopy and the existence of atopic skeletal retardation per se.The observation that children with atopic disorders, whether bronchial asthma, atopic dermatitis or allergic rhinitis, exhibit a rate of short stature that is twice to five times higher than normal indicates atopic and thus genetically determined influences. The elevated prevalence of short stature associated with allergic rhinitis is especially significant, as this disorder cannot be included among the severe chronic disorders. The fact that skeletal retardation is more prevalent in boys than in girls by a ratio of about 2:1 and that a significantly more marked retardation of bone maturation is found in atopic in comparisons with non-atopic asthmatics also lend support to this postulation. The clinical relevance of atopic growth retardation is also supported by the close interaction of pathophysiological basal mechanisms of bone metabolism and the atopy status. Thus the local growth factor prostaglandin E(2) (PGE(2)), which is important for bone metabolism, is also a messenger substance for the immediate and late allergic reaction. The platelet-activating factor (PAF), as one of the strongest mediators in the pathogenesis of allergic disorders, influences the PGE(2) synthesis in the osteoblasts. These relationships show that atopy-dependent imbalances in the complex system of local and systemic growth factors can certainly lead to disturbance of skeletal maturation which may delay growth and development in atopic children. In order to verify these assumptions it is necessary to research the interaction of local growth factors (particularly the roles of PGE(2), PAF and IGF I) in the skeletons of children of short stature

  10. Powdery Mildew Decreases the Radial Growth of Oak Trees with Cumulative and Delayed Effects over Years.

    PubMed

    Bert, Didier; Lasnier, Jean-Baptiste; Capdevielle, Xavier; Dugravot, Aline; Desprez-Loustau, Marie-Laure

    2016-01-01

    Quercus robur and Q. petraea are major European forest tree species. They have been affected by powdery mildew caused by Erysiphe alphitoides for more than a century. This fungus is a biotrophic foliar pathogen that diverts photosynthetate from the plant for its own nutrition. We used a dendrochronological approach to investigate the effects of different levels of infection severity on the radial growth of young oak trees. Oak infection was monitored at individual tree level, at two sites in southwestern France, over a five-year period (2001-2005). Mean infection severity was almost 75% (infected leaf area) at the end of the 2001 growing season, at both sites, but only about 40% in 2002, and 8%, 5% and 2% in 2003, 2004 and 2005, respectively. Infection levels varied considerably between trees and were positively related between 2001 and 2002. Increment cores were taken from each tree to assess annual ring widths and increases in basal area. Annual radial growth was standardised to take the effect of tree size into account. Annual standardised radial growth was significantly and negatively correlated with infection severity in the same year, for both 2001 and 2002, and at both sites. The decrease in growth reached 70-90% for highly infected trees. The earlywood width was poorly correlated with infection severity, but the proportion of latewood in tree rings was lower in highly infected trees (60%) than in less heavily infected trees (85%). Infection in 2001 and 2002 was found to have a cumulative effect on radial growth in these years, together with a delayed effect detectable in 2003. Thus, even non-lethal pathogens like powdery mildew can have a significant impact on tree functioning. This impact should be taken into account in growth and yield models, to improve predictions of forest net primary production.

  11. Powdery Mildew Decreases the Radial Growth of Oak Trees with Cumulative and Delayed Effects over Years

    PubMed Central

    Bert, Didier; Lasnier, Jean-Baptiste; Capdevielle, Xavier; Dugravot, Aline; Desprez-Loustau, Marie-Laure

    2016-01-01

    Quercus robur and Q. petraea are major European forest tree species. They have been affected by powdery mildew caused by Erysiphe alphitoides for more than a century. This fungus is a biotrophic foliar pathogen that diverts photosynthetate from the plant for its own nutrition. We used a dendrochronological approach to investigate the effects of different levels of infection severity on the radial growth of young oak trees. Oak infection was monitored at individual tree level, at two sites in southwestern France, over a five-year period (2001–2005). Mean infection severity was almost 75% (infected leaf area) at the end of the 2001 growing season, at both sites, but only about 40% in 2002, and 8%, 5% and 2% in 2003, 2004 and 2005, respectively. Infection levels varied considerably between trees and were positively related between 2001 and 2002. Increment cores were taken from each tree to assess annual ring widths and increases in basal area. Annual radial growth was standardised to take the effect of tree size into account. Annual standardised radial growth was significantly and negatively correlated with infection severity in the same year, for both 2001 and 2002, and at both sites. The decrease in growth reached 70–90% for highly infected trees. The earlywood width was poorly correlated with infection severity, but the proportion of latewood in tree rings was lower in highly infected trees (60%) than in less heavily infected trees (85%). Infection in 2001 and 2002 was found to have a cumulative effect on radial growth in these years, together with a delayed effect detectable in 2003. Thus, even non-lethal pathogens like powdery mildew can have a significant impact on tree functioning. This impact should be taken into account in growth and yield models, to improve predictions of forest net primary production. PMID:27177029

  12. Pericyte–fibroblast transition promotes tumor growth and metastasis

    PubMed Central

    Hosaka, Kayoko; Yang, Yunlong; Seki, Takahiro; Fischer, Carina; Dubey, Olivier; Fredlund, Erik; Hartman, Johan; Religa, Piotr; Ishii, Yoko; Sasahara, Masakiyo; Larsson, Ola; Cossu, Giulio; Cao, Renhai; Lim, Sharon; Cao, Yihai

    2016-01-01

    Vascular pericytes, an important cellular component in the tumor microenvironment, are often associated with tumor vasculatures, and their functions in cancer invasion and metastasis are poorly understood. Here we show that PDGF-BB induces pericyte–fibroblast transition (PFT), which significantly contributes to tumor invasion and metastasis. Gain- and loss-of-function experiments demonstrate that PDGF-BB-PDGFRβ signaling promotes PFT both in vitro and in in vivo tumors. Genome-wide expression analysis indicates that PDGF-BB–activated pericytes acquire mesenchymal progenitor features. Pharmacological inhibition and genetic deletion of PDGFRβ ablate the PDGF-BB–induced PFT. Genetic tracing of pericytes with two independent mouse strains, TN-AP-CreERT2:R26R-tdTomato and NG2-CreERT2:R26R-tdTomato, shows that PFT cells gain stromal fibroblast and myofibroblast markers in tumors. Importantly, coimplantation of PFT cells with less-invasive tumor cells in mice markedly promotes tumor dissemination and invasion, leading to an increased number of circulating tumor cells and metastasis. Our findings reveal a mechanism of vascular pericytes in PDGF-BB–promoted cancer invasion and metastasis by inducing PFT, and thus targeting PFT may offer a new treatment option of cancer metastasis. PMID:27608497

  13. Co-option of pre-existing vascular beds in adipose tissue controls tumor growth rates and angiogenesis

    PubMed Central

    Lim, Sharon; Hosaka, Kayoko; Nakamura, Masaki; Cao, Yihai

    2016-01-01

    Many types of cancer develop in close association with highly vascularized adipose tissues. However, the role of adipose pre-existing vascular beds on tumor growth and angiogenesis is unknown. Here we report that pre-existing microvascular density in tissues where tumors originate is a crucial determinant for tumor growth and neovascularization. In three independent tumor types including breast cancer, melanoma, and fibrosarcoma, inoculation of tumor cells in the subcutaneous tissue, white adipose tissue (WAT), and brown adipose tissue (BAT) resulted in markedly differential tumor growth rates and angiogenesis, which were in concordance with the degree of pre-existing vascularization in these tissues. Relative to subcutaneous tumors, WAT and BAT tumors grew at accelerated rates along with improved neovascularization, blood perfusion, and decreased hypoxia. Tumor cells implanted in adipose tissues contained leaky microvessel with poor perivascular cell coverage. Thus, adipose vasculature predetermines the tumor microenvironment that eventually supports tumor growth. PMID:27203675

  14. A tumor cell growth inhibitor from Saposhnikovae divaricata.

    PubMed

    Kuo, Yuh-Chi; Lin, Yun-Lian; Huang, Cheng-Po; Shu, Jia-Wei; Tsai, Wei-Jern

    2002-01-01

    In the present study, we tested ethanolic extracts from 10 Chinese herbs for their effects on K562, Raji, Wish, HeLa, Calu-1, and Vero tumor cells proliferation. On a percentage basis, panaxynol purified from Saposhnikovae divaricata had the highest inhibitory activity on various tumor cells proliferation. Cell-cycle analysis indicated that panaxynol arrested the cell cycle progression of tumor cells from the G1 transition to the S phase. In an attempt to further localize the point in the cell cycle where arrest occurred, gene expression of cyclin E, a key regulatory event leading to the G1/S boundary was examined. Results indicated that the levels of cyclin E mRNA in various tumor cells were decreased by panaxynol. Thus, the suppressant effects of panaxynol on proliferation of various tumor cells appeared to be mediated, at least in part, through impairments of cyclin E mRNA levels and arresting cell cycle progression in the cells.

  15. Fufang Kushen injection inhibits sarcoma growth and tumor-induced hyperalgesia via TRPV1 signaling pathways

    PubMed Central

    Zhao, Zhizheng; Fan, Huiting; Higgins, Tim; Qi, Jia; Haines, Diana; Trivett, Anna; Oppenheim, Joost J.; Wei, Hou; Li, Jie; Lin, Hongsheng; Howard, O.M. Zack

    2014-01-01

    Cancer pain is a deleterious consequence of tumor growth and related inflammation. Opioids and antiinflammatory drugs provide first line treatment for cancer pain, but both are limited by side effects. Fufang Kushen injection (FKI) is GMP produced, traditional Chinese medicine used alone or with chemotherapy to reduce cancer-associated pain. FKI limited mouse sarcoma growth both in vivo and in vitro, in part, by reducing the phosphorylation of ERK and AKT kinases and BAD. FKI inhibited TRPV1 mediated capsaicin-induced ERK phosphorylation and reduced tumor-induced proinflammatory cytokine production. Thus, FKI limited cancer pain both directly by blocking TRPV1 signaling and indirectly by reducing tumor growth. PMID:25242356

  16. Administration of granulocyte colony-stimulating factor with radiotherapy promotes tumor growth by stimulating vascularization in tumor-bearing mice.

    PubMed

    Kim, Joong Sun; Son, Yeonghoon; Bae, Min Ji; Lee, Minyoung; Lee, Chang Geun; Jo, Wol Soon; Kim, Sung Dae; Yang, Kwangmo

    2015-07-01

    Although granulocyte-colony stimulating factor (G-CSF) is commonly used to support recovery from radiation-induced side-effects, the precise effects of G-CSF on colon cancer under radiotherapy remain poorly understood. In the present study, to investigate the effects of tumor growth following radiotherapy and G-CSF administration in a murine xenograft model of colon cancer, female BALB/c mice were injected with cells of a colon carcinoma cell line (CT26) with irradiation and G-CSF, alone or in combination. Mice received 2 Gy of focal radiation daily for 5 days and intraperitoneal injection of G-CSF (100 µg/kg/day) after irradiation for 7 days. Changes in the levels of myeloperoxidase (MPO), vascular endothelial growth factor (VEGF), matrix metalloproteinase type 9 (MMP-9) and CD31 were assessed in the mouse cancer induced by injection of colon cancer cells. We observed that G-CSF increased the number of circulating neutrophils, but facilitated tumor growth. However, G-CSF treatment did not affect radiation-induced cytotoxicity and cell viability in CT26 cells in vitro. Increased levels of myeloperoxidase, a neutrophil marker and those of vascular endothelial growth factor were observed in tumors with G-CSF supplementation. In addition, we found that increased levels of CD31 and matrix metalloproteinase-9 were correlated with the enhanced tumor growth after G-CSF treatment. Therefore, these data suggest that G-CSF may contribute to tumor growth and decrease the antitumor effect of radiotherapy, possibly by promoting vascularization in cancer lesions.

  17. Inhibition of melanocortin 1 receptor slows melanoma growth, reduces tumor heterogeneity and increases survival

    PubMed Central

    Kansal, Rita G.; McCravy, Matthew S.; Basham, Jacob H.; Earl, Joshua A.; McMurray, Stacy L.; Starner, Chelsey J.

    2016-01-01

    Melanoma risk is increased in patients with mutations of melanocortin 1 receptor (MC1R) yet the basis for the increased risk remains unknown. Here we report in vivo evidence supporting a critical role for MC1R in regulating melanoma tumor growth and determining overall survival time. Inhibition of MC1R by its physiologically relevant competitive inhibitor, agouti signaling protein (ASIP), reduced melanin synthesis and morphological heterogeneity in murine B16-F10 melanoma cells. In the lungs of syngeneic C57BL/6 mice, mCherry-marked, ASIP-secreting lung tumors inhibited MC1R on neighboring tumors lacking ASIP in a dose dependent manner as evidenced by a proportional loss of pigment in tumors from mice injected with 1:1, 3:1 and 4:1 mixtures of parental B16-F10 to ASIP-expressing tumor cells. ASIP-expressing B16-F10 cells formed poorly pigmented tumors in vivo that correlated with a 20% longer median survival than those bearing parental B16-F10 tumors (p=0.0005). Mice injected with 1:1 mixtures also showed survival benefit (p=0.0054), whereas injection of a 4:1 mixture showed no significant difference in survival. The longer survival time of mice bearing ASIP-expressing tumors correlated with a significantly slower growth rate than parental B16-F10 tumors as judged by quantification of numbers of tumors and total tumor load (p=0.0325), as well as a more homogeneous size and morphology of ASIP-expressing lung tumors. We conclude that MC1R plays an important role in regulating melanoma growth and morphology. Persistent inhibition of MC1R provided a significant survival advantage resulting in part from slower tumor growth, establishing MC1R as a compelling new molecular target for metastatic melanoma. PMID:27028866

  18. Hyaluronan suppresses prostate tumor cell proliferation through diminished expression of N-cadherin and aberrant growth factor receptor signaling

    SciTech Connect

    Bharadwaj, Alamelu G.; Goodrich, Nathaniel P.; McAtee, Caitlin O.; Haferbier, Katie; Oakley, Gregory G.; Wahl, James K.; Simpson, Melanie A.

    2011-05-01

    Hyaluronan (HA) production has been functionally implicated in prostate tumorigenesis and metastasis. We previously used prostate tumor cells overexpressing the HA synthesizing enzyme HAS3 or the clinically relevant hyaluronidase Hyal1 to show that excess HA production suppresses tumor growth, while HA turnover accelerates spontaneous metastasis from the prostate. Here, we examined pathways responsible for effects of HAS3 and Hyal1 on tumor cell phenotype. Detailed characterization of cell cycle progression revealed that expression of Hyal1 accelerated cell cycle re-entry following synchronization, whereas HAS3 alone delayed entry. Hyal1 expressing cells exhibited a significant reduction in their ability to sustain ERK phosphorylation upon stimulation by growth factors, and in their expression of the cyclin-dependent kinase inhibitor p21. In contrast, HAS3 expressing cells showed prolonged ERK phosphorylation and increased expression of both p21 and p27, in asynchronous and synchronized cultures. Changes in cell cycle regulatory proteins were accompanied by HA-induced suppression of N-cadherin, while E-cadherin expression and {beta}-catenin expression and distribution remained unchanged. Our results are consistent with a model in which excess HA synthesis suppresses cell proliferation by promoting homotypic E-cadherin mediated cell-cell adhesion, consequently signaling to elevate cell cycle inhibitor expression and suppress G1- to S-phase transition.

  19. Methionine enkephalin (MENK) inhibits tumor growth through regulating CD4+Foxp3+ regulatory T cells (Tregs) in mice.

    PubMed

    Li, Xuan; Meng, Yiming; Plotnikoff, Nicolas P; Youkilis, Gene; Griffin, Noreen; Wang, Enhua; Lu, Changlong; Shan, Fengping

    2015-01-01

    Methionine enkephalin (MENK), an endogenous neuropeptide, plays an crucial role in both neuroendocrine and immune systems. CD4+Foxp3+ regulatory T cells (Tregs) are identified as a major subpopulation of T lymphocytes in suppressing immune system to keep balanced immunity. The aim of this research work was to elucidate the mechanisms via which MENK interacts with Tregs in cancer situation. The influence of MENK on transforming growth factor-β (TGF-β) mediated conversion from naïve CD4+CD25- T cells to CD4+CD25+ Tregs was determined and the data from flow cytometry (FCM) analysis indicated that MENK effectively inhibited the expression of Foxp3 during the process of TGF-βinduction. Furthermore, this inhibiting process was accompanied by diminishing phosphorylation and nuclear translocation of Smad2/3, confirmed by western blot (WB) analysis and immunofluorescence (IF) at molecular level. We established sarcoma mice model with S180 to investigate whether MENK could modulate Tregs in tumor circumstance. Our findings showed that MENK delayed the development of tumor in S180 tumor bearing mice and down-regulated level of Tregs. Together, these novel findings reached a conclusion that MENK could inhibit Tregs activity directly and retard tumor development through down-regulating Tregs in mice. This work advances the deepening understanding of the influence of MENK on Tregs in cancer situation, and relation of MENK with immune system, supporting the implication of MENK as a new strategy for cancer immunotherapy.

  20. Vaccination with OVA-bound nanoparticles encapsulating IL-7 inhibits the growth of OVA-expressing E.G7 tumor cells in vivo.

    PubMed

    Toyota, Hiroko; Yanase, Noriko; Yoshimoto, Takayuki; Harada, Mitsunori; Kato, Yasuki; Mizuguchi, Junichiro

    2015-01-01

    Immunotherapy has gained special attention due to its specific effects on tumor cells and systemic action to block metastasis. We recently demonstrated that ovalbumin (OVA) conjugated to the surface of nanoparticles (NPs) (OVA‑NPs) can manipulate humoral immune responses. In the present study, we aimed to ascertain whether vaccination with OVA-NPs entrapping IL-7 (OVA-NPs-IL-7) are able to induce antitumor immune responses in vivo. Pretreatment with a subcutaneous inoculation of OVA-NPs delayed the growth of thymic lymphoma cells expressing a model tumor antigen OVA (E.G7-OVA), and OVA-NPs-IL-7 substantially blocked the growth of E.G7-OVA tumor cells, although NPs-IL-7 alone had a meager effect, as assessed by the mean tumor size and the percentage of tumor-free mice. However, pretreatment with OVA-NPs-IL-7 failed to reduce the growth of parental thymic tumor cells, suggesting that the antitumor effect was antigen-specific. A tetramer assay revealed that vaccination with OVA-NPs-IL-7 tended to enhance the proportion of cytotoxic T cells (CTLs) specific for OVA. When the tumor-free mice inoculated with OVA-NPs-IL-7 plus EG.7 cells were rechallenged with E.G7-OVA cells, they demonstrated reduced growth compared with that in the control mice. Thus, a single subcutaneous injection of OVA-NPs-IL-7 into mice induced tumor-specific and also memory-like immune responses, resulting in regression of tumor cells. Antigens on NPs entrapping IL-7 would be a promising carrier to develop and enhance immune responses, including humoral and cellular immunity as well as a method of drug delivery to a specific target of interest.

  1. Effects of tumor growth on interleukins and circulating immune complexes. Mechanisms of immune unresponsiveness.

    PubMed

    Ravikumar, T; Steele, G; Rodrick, M; Ross, D; Wilson, R; Lahey, S; Wright, D; Munroe, A; King, V

    1984-03-15

    This study delineates the temporal relationship between immune complex formation and tumor growth, and provides one possible explanation for host immunosuppression during tumor growth. The authors have studied serial circulating immune complex (CIC) levels and interleukin (IL) elaboration by peripheral blood cells (IL-1 production by adherent mononuclear cells [AMC]; and IL-2 generation by peripheral blood mononuclear cells [PBMC]) during the growth of syngeneic tumor isografts in an inbred rat model. Male Wistar/Furth (W/Fu) rats were injected, subcutaneously (SC) with 2 X 10(6) W163 ( a dimethylhydrazine [DMH]-induced colon adenocarcinoma) cells into their hind limbs. Serial CIC levels, (measured by the antigen nonspecific polyethylene glycol turbidity assay) and IL-1 and IL-2 production were measured before isografting and weekly thereafter. Progressive local tumor growth occurred for 3 weeks followed by regional lymph node metastases during the fourth week. During local tumor growth, there was a progressive rise in CIC levels (123% rise compared with baseline value; P less than 0.05) which correlated with a fall in both IL-1 and IL-2 generation (r = -0.768). At the time of regional metastasis, the mean CIC levels declined, and there was a further significant decrease in IL production (IL-1 = 0.9% and IL-2 = 10% of controls in tumor bearers). These results show that progressive tumor growth results in decreased IL production by host PBC, and suggest that CIC may be involved in regulating IL generation.

  2. Endothelial cell tumor growth is Ape/ref-1 dependent

    PubMed Central

    Biswas, Ayan; Khanna, Savita; Roy, Sashwati; Pan, Xueliang; Sen, Chandan K.

    2015-01-01

    Tumor-forming endothelial cells have highly elevated levels of Nox-4 that release H2O2 into the nucleus, which is generally not compatible with cell survival. We sought to identify compensatory mechanisms that enable tumor-forming endothelial cells to survive and proliferate under these conditions. Ape-1/ref-1 (Apex-1) is a multifunctional protein that promotes DNA binding of redox-sensitive transcription factors, such as AP-1, and repairs oxidative DNA damage. A validated mouse endothelial cell (EOMA) tumor model was used to demonstrate that Nox-4-derived H2O2 causes DNA oxidation that induces Apex-1 expression. Apex-1 functions as a chaperone to keep transcription factors in a reduced state. In EOMA cells Apex-1 enables AP-1 binding to the monocyte chemoattractant protein-1 (mcp-1) promoter and expression of that protein is required for endothelial cell tumor formation. Intraperitoneal injection of the small molecule inhibitor E3330, which specifically targets Apex-1 redox-sensitive functions, resulted in a 50% decrease in tumor volume compared with mice injected with vehicle control (n = 6 per group), indicating that endothelial cell tumor proliferation is dependent on Apex-1 expression. These are the first reported results to establish Nox-4 induction of Apex-1 as a mechanism promoting endothelial cell tumor formation. PMID:26108661

  3. Endothelial Jagged1 promotes solid tumor growth through both pro-angiogenic and angiocrine functions.

    PubMed

    Pedrosa, Ana-Rita; Trindade, Alexandre; Carvalho, Catarina; Graça, José; Carvalho, Sandra; Peleteiro, Maria C; Adams, Ralf H; Duarte, António

    2015-09-15

    Angiogenesis is an essential process required for tumor growth and progression. The Notch signaling pathway has been identified as a key regulator of the neo-angiogenic process. Jagged-1 (Jag1) is a Notch ligand required for embryonic and retinal vascular development, which direct contribution to the regulation of tumor angiogenesis remains to be fully characterized. The current study addresses the role of endothelial Jagged1-mediated Notch signaling in the context of tumoral angiogenesis in two different mouse tumor models: subcutaneous Lewis Lung Carcinoma (LLC) tumor transplants and the autochthonous Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP). The role of endothelial Jagged1 in tumor growth and neo-angiogenesis was investigated with endothelial-specific Jag1 gain- and loss-of-function mouse mutants (eJag1OE and eJag1cKO). By modulating levels of endothelial Jag1, we observed that this ligand regulates tumor vessel density, branching, and perivascular maturation, thus affecting tumor vascular perfusion. The pro-angiogenic function is exerted by its ability to positively regulate levels of Vegfr-2 while negatively regulating Vegfr-1. Additionally, endothelial Jagged1 appears to exert an angiocrine function possibly by activating Notch3/Hey1 in tumor cells, promoting proliferation, survival and epithelial-to-mesenchymal transition (EMT), potentiating tumor development. These findings provide valuable mechanistic insights into the role of endothelial Jagged1 in promoting solid tumor development and support the notion that it may constitute a promising target for cancer therapy.

  4. PlGF knockout delays brain vessel growth and maturation upon systemic hypoxic challenge

    PubMed Central

    Freitas-Andrade, Moises; Carmeliet, Peter; Charlebois, Claudie; Stanimirovic, Danica B; Moreno, Maria J

    2012-01-01

    In this study, we have investigated the potential role of placental growth factor (PlGF) in hypoxia-induced brain angiogenesis. To this end, PlGF wild-type (PlGF+/+) and PlGF knockout (PlGF−/−) mice were exposed to whole body hypoxia (10% oxygen) for 7, 14, and 21 days. PlGF+/+ animals exhibited a significant ∼40% increase in angiogenesis after 7 days of hypoxia compared with controls, while in PlGF−/− this effect only occurred after 14 days of hypoxia. No differences in pericyte/smooth muscle cell (SMC) coverage between the two genotypes were observed. After 14 days of hypoxia, PlGF−/− microvessels had a significant increase in fibrinogen accumulation and extravasation compared with those of PlGF+/+, which correlated with endothelial cell disruption of the tight junction protein claudin-5. These vessels displayed large lumens, were surrounded by reactive astrocytes, lacked both pericyte/SMC coverage and endothelial vascular endothelial growth factor expression, and regressed after 21 days of hypoxia. Vascular endothelial growth factor expression levels were found to be significantly lower in the frontal cortex of PlGF−/− compared with those in PlGF+/+ animals during the first 5 days of hypoxia, which in combination with the lack of PlGF may have contributed to the delayed angiogenic response and the prothrombotic phenotype observed in the PlGF−/−animals. PMID:22126916

  5. Tumor growth model for atlas based registration of pathological brain MR images

    NASA Astrophysics Data System (ADS)

    Moualhi, Wafa; Ezzeddine, Zagrouba

    2015-02-01

    The motivation of this work is to register a tumor brain magnetic resonance (MR) image with a normal brain atlas. A normal brain atlas is deformed in order to take account of the presence of a large space occupying tumor. The method use a priori model of tumor growth assuming that the tumor grows in a radial way from a starting point. First, an affine transformation is used in order to bring the patient image and the brain atlas in a global correspondence. Second, the seeding of a synthetic tumor into the brain atlas provides a template for the lesion. Finally, the seeded atlas is deformed combining a method derived from optical flow principles and a model for tumor growth (MTG). Results show that an automatic segmentation method of brain structures in the presence of large deformation can be provided.

  6. Preterm Birth: A Primary Etiological Factor for Delayed Oral Growth and Development

    PubMed Central

    Thayath, Muhamad Nishad; Singh, Shikha; Sinha, Anju

    2015-01-01

    ABSTRACT Preterm and low birthweight children comprise approximately 6% of all live births. It is now a well-known fact that premature children experience many oral complications associated with their preterm births. Prematurely born infants have a short prenatal development period and they are prone to many serious medical problems during the neonatal period, which may affect the development of oral tissues. Adverse perinatal factors, premature birth and exceptional early adaptation to extra-uterine life and functional activity may influence dental occlusal development and symmetry in the jaws. Thus, the goal of the present paper is to elucidate further the effect of preterm birth on the development of the dentition. How to cite this article: Zaidi I, Thayath MN, Singh S, Sinha A. Preterm Birth: A Primary Etiological Factor for Delayed Oral Growth and Development. Int J Clin Pediatr Dent 2015;8(3): 215-219. PMID:26628856

  7. Antitumor immunization of mothers delays tumor development in cancer-prone offspring

    PubMed Central

    Barutello, Giuseppina; Curcio, Claudia; Spadaro, Michela; Arigoni, Maddalena; Trovato, Rosalinda; Bolli, Elisabetta; Zheng, Yujuan; Ria, Francesco; Quaglino, Elena; Iezzi, Manuela; Riccardo, Federica; Holmgren, Lars; Forni, Guido; Cavallo, Federica

    2015-01-01

    Maternal immunization is successfully applied against some life-threatening infectious diseases as it can protect the mother and her offspring through the passive transfer of maternal antibodies. Here, we sought to evaluate whether the concept of maternal immunization could also be applied to cancer immune-prevention. We have previously shown that antibodies induced by DNA vaccination against rat Her2 (neu) protect heterozygous neu-transgenic female (BALB-neuT) mice from autochthonous mammary tumor development. We, herein, seek to evaluate whether a similar maternal immunization can confer antitumor protection to BALB-neuT offspring. Significantly extended tumor-free survival was observed in BALB-neuT offspring born and fed by mothers vaccinated against neu, as compared to controls. Maternally derived anti-neu immunoglobulin G (IgG) was successfully transferred from mothers to newborns and was responsible for the protective effect. Vaccinated mothers and offspring also developed active immunity against neu as revealed by the presence of T–cell-mediated cytotoxicity against the neu immunodominant peptide. This active response was due to the milk transfer of immune complexes that were formed between the neu extracellular domain, shed from vaccine-transfected muscle cells, and the anti-neu IgG induced by the vaccine. These findings show that maternal immunization has the potential to hamper mammary cancer in genetically predestinated offspring and to develop into applications against lethal neonatal cancer diseases for which therapeutic options are currently unavailable. PMID:26155401

  8. Effects of Acanthus ebracteatus Vahl on tumor angiogenesis and on tumor growth in nude mice implanted with cervical cancer

    PubMed Central

    Mahasiripanth, Taksanee; Hokputsa, Sanya; Niruthisard, Somchai; Bhattarakosol, Parvapan; Patumraj, Suthiluk

    2012-01-01

    Purpose The aim of this study was to examine the effects of the crude extract of Acanthus ebracteatus Vahl (AE) on tumor growth and angiogenesis by utilizing a tumor model in which nude mice were implanted with cervical cancer cells containing human papillomavirus 16 DNA (HPV-16 DNA). Materials and methods The growth-inhibitory effect of AE was investigated in four different cell types: CaSki (HPV-16 positive), HeLa (HPV-18 positive), hepatocellular carcinoma cells (HepG2), and human dermal fibroblast cells (HDFs). The cell viabilities and IC50 values of AE were determined in cells incubated with AE for different lengths of time. To conduct studies in vivo, female BALB/c nude mice (aged 6–7 weeks, weighing 20–25 g) were used. A cervical cancer-derived cell line (CaSki) with integrated HPV-16 DNA was injected subcutaneously (1 × 107 cells/200 μL) in the middle dorsum of each animal (HPV group). One week after injection, mice were fed orally with AE crude extract at either 300 or 3000 mg/kg body weight/day for 14 or 28 days (HPV-AE groups). Tumor microvasculature and capillary vascularity were determined using laser scanning confocal microscopy. Tumor tissue was collected from each mouse to evaluate tumor histology and vascular endothelial growth factor (VEGF) immunostaining. Results The time-response curves of AE and the dose-dependent effect of AE on growth inhibition were determined. After a 48-hour incubation period, the IC50 of AE in CaSki was discovered to be significantly different from that of HDFs (P < 0.05). A microvascular network was observed around the tumor area in the HPV group on days 21 and 35. Tumor capillary vascularity in the HPV group was significantly increased compared with the control group (P < 0.001). High-dose treatment of AE extract (HPV-3000AE group) significantly attenuated the increase in VEGF expression and tumor angiogenesis in mice that received either the 14- or 28-day treatment period (P < 0.001). Conclusion Our novel

  9. Notch1 and notch2 have opposite effects on embryonal brain tumor growth.

    PubMed

    Fan, Xing; Mikolaenko, Irina; Elhassan, Ihab; Ni, Xingzhi; Wang, Yunyue; Ball, Douglas; Brat, Daniel J; Perry, Arie; Eberhart, Charles G

    2004-11-01

    The role of Notch signaling in tumorigenesis can vary; Notch1 acts as an oncogene in some neoplasms, and a tumor suppressor in others. Here, we show that different Notch receptors can have opposite effects in a single tumor type. Expression of truncated, constitutively active Notch1 or Notch2 in embryonal brain tumor cell lines caused antagonistic effects on tumor growth. Cell proliferation, soft agar colony formation, and xenograft growth were all promoted by Notch2 and inhibited by Notch1. We also found that Notch2 receptor transcripts are highly expressed in progenitor cell-derived brain tumors such as medulloblastomas, whereas Notch1 is scarce or undetectable. This parallels normal cerebellar development, during which Notch2 is predominantly expressed in proliferating progenitors and Notch1 in postmitotic differentiating cells. Given the oncogenic effects of Notch2, we analyzed its gene dosage in 40 embryonal brain tumors, detecting an increased copy number in 15% of cases. Notch2 gene amplification was confirmed by fluorescence in situ hybridization in one case with extremely high Notch2 mRNA levels. In addition, expression of the Notch pathway target gene Hes1 in medulloblastomas was associated with significantly shorter patient survival (P = 0.01). Finally, pharmacological inhibition of Notch signaling suppresses growth of medulloblastoma cells. Our data indicate that Notch1 and Notch2 can have opposite effects on the growth of a single tumor type, and show that Notch2 can be overexpressed after gene amplification in human tumors.

  10. Comparing immune-tumor growth models with drug therapy using optimal control

    NASA Astrophysics Data System (ADS)

    Martins, Marisa C.; Rocha, Ana Maria A. C.; Costa, M. Fernanda P.; Fernandes, Edite M. G. P.

    2016-06-01

    In this paper we compare the dynamics of three tumor growth models that include an immune system and a drug administration therapy using optimal control. The objective is to minimize a combined function of the total of tumor cells over time and a chemotherapeutic drug administration.

  11. Expression of endothelial cell-specific receptor tyrosine kinases and growth factors in human brain tumors.

    PubMed Central

    Hatva, E.; Kaipainen, A.; Mentula, P.; Jääskeläinen, J.; Paetau, A.; Haltia, M.; Alitalo, K.

    1995-01-01

    Key growth factor-receptor interactions involved in angiogenesis are possible targets for therapy of CNS tumors. Vascular endothelial growth factor (VEGF) is a highly specific endothelial cell mitogen that has been shown to stimulate angiogenesis, a requirement for solid tumor growth. The expression of VEGF, the closely related placental growth factor (PIGF), the newly cloned endothelial high affinity VEGF receptors KDR and FLT1, and the endothelial orphan receptors FLT4 and Tie were analyzed by in situ hybridization in normal human brain tissue and in the following CNS tumors: gliomas, grades II, III, IV; meningiomas, grades I and II; and melanoma metastases to the cerebrum. VEGF mRNA was up-regulated in the majority of low grade tumors studied and was highly expressed in cells of malignant gliomas. Significantly elevated levels of Tie, KDR, and FLT1 mRNAs, but not FLT4 mRNA, were observed in malignant tumor endothelia, as well as in endothelia of tissues directly adjacent to the tumor margin. In comparison, there was little or no receptor expression in normal brain vasculature. Our results are consistent with the hypothesis that these endothelial receptors are induced during tumor progression and may play a role in tumor angiogenesis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7856749

  12. Expression of nerve growth factor receptor in paraffin-embedded soft tissue tumors.

    PubMed Central

    Perosio, P. M.; Brooks, J. J.

    1988-01-01

    Identification of growth factors and receptors in mesenchymal tumors may be crucial to understanding of growth regulation in sarcomas. During an immunohistochemical study of the expression of growth factors and receptors in human soft tissue tumors (STT), only 1 antisera capable of working in paraffin-embedded tissue was noted. A detailed study of 141 STT was undertaken to determine the frequency of expression of nerve growth factor receptor (NGF-R), its specificity and sensitivity for neural tumors, and the effect of fixation on detection. In normal mesenchymal tissue, only nerve sheath and perivascular staining was seen. No immunoreactivity was seen in many tumors including rhabdomyosarcoma, angiosarcoma, liposarcoma, Ewing's sarcoma, and alveolar soft part sarcoma. Less than 15% of tumors of smooth muscle, fibrous, or fibrohistiocytic origin showed immunoreactivity, usually focal. In contrast, a high frequency of immunoreactivity was noted in tumors of neural origin (74%). This included granular cell tumors (100%), Schwannoma/neurofibroma (91%), malignant Schwannoma (78%), neuroblastoma/neuroepithelioma (60%), and paraganglioma (57%). A high rate of reactivity was also seen in synovial sarcomas (80%), undifferentiated sarcomas (60%), and hemangiopericytomas (43%), suggesting a potential relationship to the neural phenotype. Among the neural tumors, Bouin's fixation was superior to formalin, suggesting that immunoreactivity for NGF-R is affected by fixation. This antibody may be a useful adjunct marker diagnostically. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 Figure 9 Figure 10 PMID:2456020

  13. Adiponectin deficiency promotes tumor growth in mice by reducing macrophage infiltration.

    PubMed

    Sun, Yutong; Lodish, Harvey F

    2010-08-05

    Adiponectin is an adipocyte-derived plasma protein that has been implicated in regulating angiogenesis, but the role of adiponectin in regulating this process is still controversial. In this study, in order to determine whether adiponectin affects tumor growth and tumor induced vascularization, we implanted B16F10 melanoma and Lewis Lung Carcinoma cells subcutaneously into adiponectin knockout and wild-type control mice, and found that adiponectin deficiency markedly promoted the growth of both tumors. Immunohistochemical analyses indicated that adiponectin deficiency reduced macrophage recruitment to the tumor, but did not affect cancer cell mitosis, apoptosis, or tumor-associated angiogenesis. In addition, treatment with recombinant adiponectin did not affect the proliferation of cultured B16F10 tumor cells. Importantly, the restoration of microphage infiltration at an early stage of tumorigenesis by means of co-injection of B16F10 cells and macrophages reversed the increased tumor growth in adiponectin knockout mice. Thus, we conclude that the enhanced tumor growth observed in adiponectin deficient mice is likely due to the reduction of macrophage infiltration rather than enhanced angiogenesis.

  14. Platelets Promote Tumor Growth and Metastasis via Direct Interaction between Aggrus/Podoplanin and CLEC-2

    PubMed Central

    Takagi, Satoshi; Sato, Shigeo; Oh-hara, Tomoko; Takami, Miho; Koike, Sumie; Mishima, Yuji; Hatake, Kiyohiko; Fujita, Naoya

    2013-01-01

    The platelet aggregation-inducing factor Aggrus, also known as podoplanin, is frequently upregulated in several types of tumors and enhances hematogenous metastasis by interacting with and activating the platelet receptor CLEC-2. Thus, Aggrus–CLEC-2 binding could be a therapeutic molecular mechanism for cancer therapy. We generated a new anti-human Aggrus monoclonal antibody, MS-1, that suppressed Aggrus–CLEC-2 binding, Aggrus-induced platelet aggregation, and Aggrus-mediated tumor metastasis. Interestingly, the MS-1 monoclonal antibody attenuated the growth of Aggrus-positive tumors in vivo. Moreover, the humanized chimeric MS-1 antibody, ChMS-1, also exhibited strong antitumor activity against Aggrus-positive lung squamous cell carcinoma xenografted into NOD-SCID mice compromising antibody-dependent cellular cytotoxic and complement-dependent cytotoxic activities. Because Aggrus knockdown suppressed platelet-induced proliferation in vitro and tumor growth of the lung squamous cell carcinoma in vivo, Aggrus may be involved in not only tumor metastasis but also tumor growth by promoting platelet-tumor interaction, platelet activation, and secretion of platelet-derived factors in vivo. Our results indicate that molecular target drugs inhibiting specific platelet–tumor interactions can be developed as antitumor drugs that suppress both metastasis and proliferation of tumors such as lung squamous cell carcinoma. PMID:23991201

  15. Growth factors from tumor microenvironment possibly promote the proliferation of glioblastoma-derived stem-like cells in vitro.

    PubMed

    Guo, JingJing; Niu, Rui; Huang, Wenhui; Zhou, Mengliang; Shi, Jixing; Zhang, Luyong; Liao, Hong

    2012-10-01

    Glioblastoma multiform is a lethal brain glial tumor characterized by low survival and high recurrence, partially attributed to the glioblastoma stem cells according to recent researches. Microenvironment or niche in tumor tissue is believed to provide essential support for the aberrant growth of tumor stem cells. In order to explore the effect of growth factors in tumor microenvironment on glioblastoma stem cells behavior, glioblastoma-derived stem-like cells (GDSCs) were isolated from adult human glioblastoma specimen with antibody against surface marker CD133 and were co-cultured with various tumor cells including U87MG cells, unsorted glioblastoma tumor cells, CD133(-) cells and normal rat primary astrocytes. Results suggested that tumor cells could promote GDSCs proliferation while non-tumor cells could not, and several growth factors were exclusively detected in the co-culture system with tumor cells. It was concluded that growth factors derived from tumor microenvironment possibly contributed to the uncontrolled proliferation of GDSCs.

  16. Hypoxia-inducible factor 1α promotes primary tumor growth and tumor-initiating cell activity in breast cancer

    PubMed Central

    2012-01-01

    Introduction Overexpression of the oxygen-responsive transcription factor hypoxia-inducible factor 1α (HIF-1α) correlates with poor prognosis in breast cancer patients. The mouse mammary tumor virus polyoma virus middle T (MMTV-PyMT) mouse is a widely utilized preclinical mouse model that resembles human luminal breast cancer and is highly metastatic. Prior studies in which the PyMT model was used demonstrated that HIF-1α is essential to promoting carcinoma onset and lung metastasis, although no differences in primary tumor end point size were observed. Using a refined model system, we investigated whether HIF-1α is directly implicated in the regulation of tumor-initiating cells (TICs) in breast cancer. Methods Mammary tumor epithelial cells were created from MMTV-PyMT mice harboring conditional alleles of Hif1a, followed by transduction ex vivo with either adenovirus β-galactosidase or adenovirus Cre to generate wild-type (WT) and HIF-1α-null (KO) cells, respectively. The impact of HIF-1α deletion on tumor-initiating potential was investigated using tumorsphere assays, limiting dilution transplantation and gene expression analysis. Results Efficient deletion of HIF-1α reduced primary tumor growth and suppressed lung metastases, prolonging survival. Loss of HIF-1α led to reduced expression of markers of the basal lineage (K5/K14) in cells and tumors and of multiple genes involved in the epithelial-to-mesenchymal transition. HIF-1α also enhanced tumorsphere formation at normoxia and hypoxia. Decreased expression of several genes in the Notch pathway as well as Vegf and Prominin-1 (CD133)was observed in response to Hif1a deletion. Immunohistochemistry confirmed that CD133 expression was reduced in KO cells and in tumorspheres. Tumorsphere formation was enhanced in CD133hi versus CD133neg cells sorted from PyMT tumors. Limiting dilution transplantation of WT and KO tumor cells into immunocompetent recipients revealed > 30-fold enrichment of TICs in WT cells

  17. Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways

    SciTech Connect

    Tong, Qingyi; Qing, Yong; Wu, Yang; Hu, Xiaojuan; Jiang, Lei; Wu, Xiaohua

    2014-12-01

    Dioscin has shown cytotoxicity against cancer cells, but its in vivo effects and the mechanisms have not elucidated yet. The purpose of the current study was to assess the antitumor effects and the molecular mechanisms of dioscin. We showed that dioscin could inhibit tumor growth in vivo and has no toxicity at the test condition. The growth suppression was accompanied by obvious blood vessel decrease within solid tumors. We also found dioscin treatment inhibited the proliferation of cancer and endothelial cell lines, and most sensitive to primary cultured human umbilical vein endothelial cells (HUVECs). What's more, analysis of HUVECs migration, invasion, and tube formation exhibited that dioscin has significantly inhibitive effects to these actions. Further analysis of blood vessel formation in the matrigel plugs indicated that dioscin could inhibit VEGF-induced blood vessel formation in vivo. We also identified that dioscin could suppress the downstream protein kinases of VEGFR2, including Src, FAK, AKT and Erk1/2, accompanied by the increase of phosphorylated P38MAPK. The results potently suggest that dioscin may be a potential anticancer drug, which efficiently inhibits angiogenesis induced by VEGFR2 signaling pathway as well as AKT/MAPK pathways. - Highlights: • Dioscin inhibits tumor growth in vivo and does not exhibit any toxicity. • Dioscin inhibits angiogenesis within solid tumors. • Dioscin inhibits the proliferation, migration, invasion, and tube formation of HUVECs. • Dioscin inhibits VEGF–induced blood vessel formation in vivo. • Dioscin inhibits VEGFR2 signaling pathway as well as AKT/MAPK pathway.

  18. Cell motility and ECM proteolysis regulate tumor growth and tumor relapse by altering the fraction of cancer stem cells and their spatial scattering.

    PubMed

    Kumar, Sandeep; Kulkarni, Rahul; Sen, Shamik

    2016-04-29

    Tumors consist of multiple cell sub-populations including cancer stem cells (CSCs), transiently amplifying cells and terminally differentiated cells (TDCs), with the CSC fraction dictating the aggressiveness of the tumor and drug sensitivity. In epithelial cancers, tumor growth is influenced greatly by properties of the extracellular matrix (ECM), with cancer progression associated with an increase in ECM density. However, the extent to which increased ECM confinement induced by an increase in ECM density influences tumor growth and post treatment relapse dynamics remains incompletely understood. In this study, we use a cellular automata-based discrete modeling approach to study the collective influence of ECM density, cell motility and ECM proteolysis on tumor growth, tumor heterogeneity, and tumor relapse after drug treatment. We show that while increased confinement suppresses tumor growth and the spatial scattering of CSCs, this effect can be reversed when cells become more motile and proteolytically active. Our results further suggest that, in addition to the absolute number of CSCs, their spatial positioning also plays an important role in driving tumor growth. In a nutshell, our study suggests that, in confined environments, cell motility and ECM proteolysis are two key factors that regulate tumor growth and tumor relapse dynamics by altering the number and spatial distribution of CSCs.

  19. Cell motility and ECM proteolysis regulate tumor growth and tumor relapse by altering the fraction of cancer stem cells and their spatial scattering

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Kulkarni, Rahul; Sen, Shamik

    2016-06-01

    Tumors consist of multiple cell sub-populations including cancer stem cells (CSCs), transiently amplifying cells and terminally differentiated cells (TDCs), with the CSC fraction dictating the aggressiveness of the tumor and drug sensitivity. In epithelial cancers, tumor growth is influenced greatly by properties of the extracellular matrix (ECM), with cancer progression associated with an increase in ECM density. However, the extent to which increased ECM confinement induced by an increase in ECM density influences tumor growth and post treatment relapse dynamics remains incompletely understood. In this study, we use a cellular automata-based discrete modeling approach to study the collective influence of ECM density, cell motility and ECM proteolysis on tumor growth, tumor heterogeneity, and tumor relapse after drug treatment. We show that while increased confinement suppresses tumor growth and the spatial scattering of CSCs, this effect can be reversed when cells become more motile and proteolytically active. Our results further suggest that, in addition to the absolute number of CSCs, their spatial positioning also plays an important role in driving tumor growth. In a nutshell, our study suggests that, in confined environments, cell motility and ECM proteolysis are two key factors that regulate tumor growth and tumor relapse dynamics by altering the number and spatial distribution of CSCs.

  20. Inhibition of solid tumor growth by gene transfer of VEGF receptor-1 mutants.

    PubMed

    Heidenreich, Regina; Machein, Marcia; Nicolaus, Anke; Hilbig, Andreas; Wild, Carola; Clauss, Matthias; Plate, Karl H; Breier, Georg

    2004-09-01

    Vascular endothelial growth factor (VEGF) and the high-affinity VEGF receptor Flk-1/KDR (VEGFR-2) are key regulators of tumor angiogenesis. Strategies to block VEGF/VEGFR-2 signaling were successfully used to inhibit experimental tumor growth and indicated that VEGFR-2 is the main signaling VEGF receptor in proliferating tumor endothelium. Here, we investigated the role of the VEGF receptor-1 (VEGFR-1/Flt-1) in the vascularization of 2 different experimental tumors in vivo. VEGFR-1 mutants were generated that lack the intracellular tyrosine kinase domain. Retrovirus-mediated gene transfer of the VEGFR-1 mutants led to a strong reduction of tumor growth and angiogenesis in xenografted C6 glioma and in syngeneic BFS-1 fibrosarcoma. Histological analysis of the inhibited fibrosarcoma revealed reduced vascular density, decreased tumor cell proliferation as well as increased tumor cell apoptosis and the formation of necrosis. The retroviral gene transfer of the full length VEGFR-1 also caused a significant reduction of tumor growth in both models. The inhibitory effects of the VEGFR-1 mutants and the full length VEGFR-1 in BFS-1 fibrosarcoma were mediated through host tumor endothelial cells because the BFS-1 fibrosarcoma cells were not infected by the retrovirus. The formation of heterodimers between VEGFR-2 and full length or truncated VEGFR-1 was observed in vitro and might contribute to the growth inhibitory effect by modulating distinct signal transduction pathways. The results of our study underline the central role of the VEGF/VEGFR-1 signaling system in tumor angiogenesis and demonstrate that VEGFR-1 can serve as a target for anti-angiogenic gene therapy.

  1. Delaying Chemotherapy in the Treatment of Hormone Receptor–Positive, Human Epidermal Growth Factor Receptor 2–Negative Advanced Breast Cancer

    PubMed Central

    Brufsky, Adam M.

    2015-01-01

    Global guidelines for the management of locally advanced or metastatic hormone receptor–positive (HR-positive), human epidermal growth factor 2–negative (HER2-negative) breast cancer recommend endocrine therapy as first-line treatment for all patients, regardless of age or postmenopausal status. However, current practice patterns in the United States and Europe suggest that these modes of therapy are not being used as recommended, and many patients with advanced HR-positive, HER2-negative disease are being treated first-line with chemotherapy or switched to chemotherapy after a single endocrine therapy. Given that chemotherapy is associated with increased toxicity and reduced quality of life (QOL) compared with endocrine therapy, prolonging the duration of response obtained with endocrine therapy may help delay chemotherapy and its attendant toxicities. Several strategies to delay or overcome endocrine resistance and thereby postpone chemotherapy have been explored, including the use of second-line endocrine agents with different mechanisms of action, adding targeted agents that inhibit specific resistance pathways, and adding agents that act in complementary or synergistic ways to inhibit tumor cell proliferation. This review analyzes the different therapy options available to HR-positive, HER2-negative patients with advanced breast cancer that can be used to delay chemotherapy and enhance QOL. PMID:26793013

  2. Growth Delay as an Index of Allostatic Load in Young Children: Predictions to Disinhibited Social Approach and Diurnal Cortisol Activity

    PubMed Central

    Johnson, Anna E.; Bruce, Jacqueline; Tarullo, Amanda R.; Gunnar, Megan R.

    2012-01-01

    The goal of this study was to examine whether growth delay can serve as an index of allostatic load during early development, as it is well known that the activity of stress-mediating systems inhibits growth. The participants were children adopted internationally from institutional care (n = 36), children adopted internationally from foster care (n = 6), and nonadopted children (n = 35). For the adopted children, height-for-age and weight-for-height were assessed at adoption; for all children, disinhibited social approach (DSA; termed elsewhere as “indiscriminate friendliness”) and diurnal cortisol were assessed at 6–8 years (M = 6.9 years). For internationally adopted children in general, and postinstitutionalized children specifically, linear growth delay assessed at the time of adoption was associated with more dysregulated behavior in response to an unfamiliar adult (i.e., greater DSA) and a more dysregulated diurnal cortisol rhythm (i.e., higher late-afternoon and evening values). Further, among the most growth-delayed children, higher cortisol levels later in the day were correlated with DSA. The potential for using growth delay as an allostatic load indicator and the possible problems and limitations in its use in child populations are discussed. PMID:21756437

  3. Tumor growth in complex, evolving microenvironmental geometries: A diffuse domain approach

    PubMed Central

    Chen, Ying; Lowengrub, John S.

    2014-01-01

    We develop a mathematical model of tumor growth in complex, dynamic microenvironments with active, deformable membranes. Using a diffuse domain approach, the complex domain is captured implicitly using an auxiliary function and the governing equations are appropriately modified, extended and solved in a larger, regular domain. The diffuse domain method enables us to develop an efficient numerical implementation that does not depend on the space dimension or the microenvironmental geometry. We model homotypic cell-cell adhesion and heterotypic cell-basement membrane (BM) adhesion with the latter being implemented via a membrane energy that models cell-BM interactions. We incorporate simple models of elastic forces and the degradation of the BM and ECM by tumor-secreted matrix degrading enzymes. We investigate tumor progression and BM response as a function of cell-BM adhesion and the stiffness of the BM. We find tumor sizes tend to be positively correlated with cell-BM adhesion since increasing cell-BM adhesion results in thinner, more elongated tumors. Prior to invasion of the tumor into the stroma, we find a negative correlation between tumor size and BM stiffness as the elastic restoring forces tend to inhibit tumor growth. In order to model tumor invasion of the stroma, we find it necessary to downregulate cell-BM adhesiveness, which is consistent with experimental observations. A stiff BM promotes invasiveness because at early stages the opening in the BM created by MDE degradation from tumor cells tends to be narrower when the BM is stiffer. This requires invading cells to squeeze through the narrow opening and thus promotes fragmentation that then leads to enhanced growth and invasion. In three dimensions, the opening in the BM was found to increase in size even when the BM is stiff because of pressure induced by growing tumor clusters. A larger opening in the BM can increase the potential for further invasiveness by increasing the possibility that additional

  4. Modeling protective anti-tumor immunity via preventative cancer vaccines using a hybrid agent-based and delay differential equation approach.

    PubMed

    Kim, Peter S; Lee, Peter P

    2012-01-01

    A next generation approach to cancer envisions developing preventative vaccinations to stimulate a person's immune cells, particularly cytotoxic T lymphocytes (CTLs), to eliminate incipient tumors before clinical detection. The purpose of our study is to quantitatively assess whether such an approach would be feasible, and if so, how many anti-cancer CTLs would have to be primed against tumor antigen to provide significant protection. To understand the relevant dynamics, we develop a two-compartment model of tumor-immune interactions at the tumor site and the draining lymph node. We model interactions at the tumor site using an agent-based model (ABM) and dynamics in the lymph node using a system of delay differential equations (DDEs). We combine the models into a hybrid ABM-DDE system and investigate dynamics over a wide range of parameters, including cell proliferation rates, tumor antigenicity, CTL recruitment times, and initial memory CTL populations. Our results indicate that an anti-cancer memory CTL pool of 3% or less can successfully eradicate a tumor population over a wide range of model parameters, implying that a vaccination approach is feasible. In addition, sensitivity analysis of our model reveals conditions that will result in rapid tumor destruction, oscillation, and polynomial rather than exponential decline in the tumor population due to tumor geometry.

  5. Early treatment with metformin induces resistance against tumor growth in adult rats.

    PubMed

    Trombini, Amanda B; Franco, Claudinéia Cs; Miranda, Rosiane A; de Oliveira, Júlio C; Barella, Luiz F; Prates, Kelly V; de Souza, Aline A; Pavanello, Audrei; Malta, Ananda; Almeida, Douglas L; Tófolo, Laize P; Rigo, Kesia P; Ribeiro, Tatiane As; Fabricio, Gabriel S; de Sant'Anna, Juliane R; Castro-Prado, Marialba Aa; de Souza, Helenir Medri; de Morais, Hely; Mathias, Paulo Cf

    2015-01-01

    It is known that antidiabetic drug metformin, which is used worldwide, has anti-cancer effects and can be used to prevent cancer growth. We tested the hypothesis that tumor cell growth can be inhibited by early treatment with metformin. For this purpose, adult rats chronically treated with metformin in adolescence or in adulthood were inoculated with Walker 256 carcinoma cells. Adult rats that were treated with metformin during adolescence presented inhibition of tumor growth, and animals that were treated during adult life did not demonstrate any changes in tumor growth. Although we do not have data to disclose a molecular mechanism to the preventive metformin effect, we present, for the first time, results showing that cancer growth in adult life is dependent on early life intervention, thus supporting a new therapeutic prevention for cancer.

  6. Simulation of 3D tumor cell growth using nonlinear finite element method.

    PubMed

    Dong, Shoubing; Yan, Yannan; Tang, Liqun; Meng, Junping; Jiang, Yi

    2016-01-01

    We propose a novel parallel computing framework for a nonlinear finite element method (FEM)-based cell model and apply it to simulate avascular tumor growth. We derive computation formulas to simplify the simulation and design the basic algorithms. With the increment of the proliferation generations of tumor cells, the FEM elements may become larger and more distorted. Then, we describe a remesh and refinement processing of the distorted or over large finite elements and the parallel implementation based on Message Passing Interface to improve the accuracy and efficiency of the simulation. We demonstrate the feasibility and effectiveness of the FEM model and the parallelization methods in simulations of early tumor growth.

  7. Tumor fibroblast–derived epiregulin promotes growth of colitis-associated neoplasms through ERK

    PubMed Central

    Neufert, Clemens; Becker, Christoph; Türeci, Özlem; Waldner, Maximilian J.; Backert, Ingo; Floh, Katharina; Atreya, Imke; Leppkes, Moritz; Jefremow, Andre; Vieth, Michael; Schneider-Stock, Regine; Klinger, Patricia; Greten, Florian R.; Threadgill, David W.; Sahin, Ugur; Neurath, Markus F.

    2013-01-01

    Molecular mechanisms specific to colitis-associated cancers have been poorly characterized. Using comparative whole-genome expression profiling, we observed differential expression of epiregulin (EREG) in mouse models of colitis-associated, but not sporadic, colorectal cancer. Similarly, EREG expression was significantly upregulated in cohorts of patients with colitis-associated cancer. Furthermore, tumor-associated fibroblasts were identified as a major source of EREG in colitis-associated neoplasms. Functional studies showed that Ereg-deficient mice, although more prone to colitis, were strongly protected from colitis-associated tumors. Serial endoscopic studies revealed that EREG promoted tumor growth rather than initiation. Additionally, we demonstrated that fibroblast-derived EREG requires ERK activation to induce proliferation of intestinal epithelial cells (IEC) and tumor development in vivo. To demonstrate the functional relevance of EREG-producing tumor-associated fibroblasts, we developed a novel system for adoptive transfer of these cells via mini-endoscopic local injection. It was found that transfer of EREG-producing, but not Ereg-deficient, fibroblasts from tumors significantly augmented growth of colitis-associated neoplasms in vivo. In conclusion, our data indicate that EREG and tumor-associated fibroblasts play a crucial role in controlling tumor growth in colitis-associated neoplasms. PMID:23549083

  8. Tumor fibroblast-derived epiregulin promotes growth of colitis-associated neoplasms through ERK.

    PubMed

    Neufert, Clemens; Becker, Christoph; Türeci, Özlem; Waldner, Maximilian J; Backert, Ingo; Floh, Katharina; Atreya, Imke; Leppkes, Moritz; Jefremow, Andre; Vieth, Michael; Schneider-Stock, Regine; Klinger, Patricia; Greten, Florian R; Threadgill, David W; Sahin, Ugur; Neurath, Markus F

    2013-04-01

    Molecular mechanisms specific to colitis-associated cancers have been poorly characterized. Using comparative whole-genome expression profiling, we observed differential expression of epiregulin (EREG) in mouse models of colitis-associated, but not sporadic, colorectal cancer. Similarly, EREG expression was significantly upregulated in cohorts of patients with colitis-associated cancer. Furthermore, tumor-associated fibroblasts were identified as a major source of EREG in colitis-associated neoplasms. Functional studies showed that Ereg-deficient mice, although more prone to colitis, were strongly protected from colitis-associated tumors. Serial endoscopic studies revealed that EREG promoted tumor growth rather than initiation. Additionally, we demonstrated that fibroblast-derived EREG requires ERK activation to induce proliferation of intestinal epithelial cells (IEC) and tumor development in vivo. To demonstrate the functional relevance of EREG-producing tumor-associated fibroblasts, we developed a novel system for adoptive transfer of these cells via mini-endoscopic local injection. It was found that transfer of EREG-producing, but not Ereg-deficient, fibroblasts from tumors significantly augmented growth of colitis-associated neoplasms in vivo. In conclusion, our data indicate that EREG and tumor-associated fibroblasts play a crucial role in controlling tumor growth in colitis-associated neoplasms.

  9. The effect of housing temperature on the growth of CT26 tumor expressing fluorescent protein EGFP

    NASA Astrophysics Data System (ADS)

    Yuzhakova, Diana V.; Shirmanova, Marina V.; Lapkina, Irina V.; Serebrovskaya, Ekaterina O.; Lukyanov, Sergey A.; Zagaynova, Elena V.

    2016-04-01

    To date, the effect of housing temperature on tumor development in the immunocompetent mice has been studied on poorly immunogenic cancer models. Standard housing temperature 20-26°C was shown to cause chronic metabolic cold stress and promote tumor progression via suppression of the antitumor immune response, whereas a thermoneutral temperature 30-31°C was more preferable for normal metabolism of mice and inhibited tumor growth. Our work represents the first attempt to discover the potential effect of housing temperature on the development of highly immunogenic tumor. EGFP-expressing murine colon carcinoma CT26 generated in Balb/c mice was used as a tumor model. No statistically significant differences were shown in tumor incidences and growth rates at 20°C, 25°C and 30°C for non-modified CT26. Maintaining mice challenged with CT26-EGFP cells at 30°C led to complete inhibition of tumor development. In summary, we demonstrated that the housing temperature is important for the regulation of growth of highly immunogenic tumors in mice through antitumor immunity.

  10. Pu-erh Tea Inhibits Tumor Cell Growth by Down-Regulating Mutant p53

    PubMed Central

    Zhao, Lanjun; Jia, Shuting; Tang, Wenru; Sheng, Jun; Luo, Ying

    2011-01-01

    Pu-erh tea is a kind of fermented tea with the incorporation of microorganisms’ metabolites. Unlike green tea, the chemical characteristics and bioactivities of Pu-erh tea are still not well understood. Using water extracts of Pu-erh tea, we analyzed the tumor cell growth inhibition activities on several genetically engineered mouse tumor cell lines. We found that at the concentration that did not affect wild type mouse embryo fibroblasts (MEFs) growth, Pu-erh tea extracts could inhibit tumor cell growth by down-regulated S phase and cause G1 or G2 arrest. Further study showed that Pu-erh tea extracts down-regulated the expression of mutant p53 in tumor cells at the protein level as well as mRNA level. The same concentration of Pu-erh tea solution did not cause p53 stabilization or activation of its downstream pathways in wild type cells. We also found that Pu-erh tea treatment could slightly down-regulate both HSP70 and HSP90 protein levels in tumor cells. These data revealed the action of Pu-erh tea on tumor cells and provided the possible mechanism for Pu-erh tea action, which explained its selectivity in inhibiting tumor cells without affecting wild type cells. Our data sheds light on the application of Pu-erh tea as an anti-tumor agent with low side effects. PMID:22174618

  11. Pu-erh tea inhibits tumor cell growth by down-regulating mutant p53.

    PubMed

    Zhao, Lanjun; Jia, Shuting; Tang, Wenru; Sheng, Jun; Luo, Ying

    2011-01-01

    Pu-erh tea is a kind of fermented tea with the incorporation of microorganisms' metabolites. Unlike green tea, the chemical characteristics and bioactivities of Pu-erh tea are still not well understood. Using water extracts of Pu-erh tea, we analyzed the tumor cell growth inhibition activities on several genetically engineered mouse tumor cell lines. We found that at the concentration that did not affect wild type mouse embryo fibroblasts (MEFs) growth, Pu-erh tea extracts could inhibit tumor cell growth by down-regulated S phase and cause G1 or G2 arrest. Further study showed that Pu-erh tea extracts down-regulated the expression of mutant p53 in tumor cells at the protein level as well as mRNA level. The same concentration of Pu-erh tea solution did not cause p53 stabilization or activation of its downstream pathways in wild type cells. We also found that Pu-erh tea treatment could slightly down-regulate both HSP70 and HSP90 protein levels in tumor cells. These data revealed the action of Pu-erh tea on tumor cells and provided the possible mechanism for Pu-erh tea action, which explained its selectivity in inhibiting tumor cells without affecting wild type cells. Our data sheds light on the application of Pu-erh tea as an anti-tumor agent with low side effects.

  12. Physical Activity Counteracts Tumor Cell Growth in Colon Carcinoma C26-Injected Muscles: An Interim Report

    PubMed Central

    Hiroux, Charlotte; Vandoorne, Tijs; Koppo, Katrien; De Smet, Stefan; Hespel, Peter; Berardi, Emanuele

    2016-01-01

    Skeletal muscle tissue is a rare site of tumor metastasis but is the main target of the degenerative processes occurring in cancer-associated cachexia syndrome. Beneficial effects of physical activity in counteracting cancer-related muscle wasting have been described in the last decades. Recently it has been shown that, in tumor xeno-transplanted mouse models, physical activity is able to directly affect tumor growth by modulating inflammatory responses in the tumor mass microenvironment. Here, we investigated the effect of physical activity on tumor cell growth in colon carcinoma C26 cells injected tibialis anterior muscles of BALB/c mice. Histological analyses revealed that 4 days of voluntary wheel running significantly counteracts tumor cell growth in C26-injected muscles compared to the non-injected sedentary controls. Since striated skeletal muscle tissue is the site of voluntary contraction, our results confirm that physical activity can also directly counteract tumor cell growth in a metabolically active tissue that is usually not a target for metastasis. PMID:27478560

  13. A hybrid cellular automaton model of solid tumor growth and bioreductive drug transport.

    PubMed

    Kazmi, Nabila; Hossain, M A; Phillips, Roger M

    2012-01-01

    Bioreductive drugs are a class of hypoxia selective drugs that are designed to eradicate the hypoxic fraction of solid tumors. Their activity depends upon a number of biological and pharmacological factors and we used a mathematical modeling approach to explore the dynamics of tumor growth, infusion, and penetration of the bioreductive drug Tirapazamine (TPZ). An in-silico model is implemented to calculate the tumor mass considering oxygen and glucose as key microenvironmental parameters. The next stage of the model integrated extra cellular matrix (ECM), cell-cell adhesion, and cell movement parameters as growth constraints. The tumor microenvironments strongly influenced tumor morphology and growth rates. Once the growth model was established, a hybrid model was developed to study drug dynamics inside the hypoxic regions of tumors. The model used 10, 50 and 100 \\mu {\\rm M} as TPZ initial concentrations and determined TPZ pharmacokinetic (PK) (transport) and pharmacodynamics (cytotoxicity) properties inside hypoxic regions of solid tumor. The model results showed that diminished drug transport is a reason for TPZ failure and recommend the optimization of the drug transport properties in the emerging TPZ generations. The modeling approach used in this study is novel and can be a step to explore the behavioral dynamics of TPZ.

  14. Mesenchymal Stem Cell-Derived Extracellular Vesicles: Roles in Tumor Growth, Progression, and Drug Resistance

    PubMed Central

    Tu, Huaijun; Yang, Yazhi; Wu, Qiong

    2017-01-01

    Mesenchymal stem cells (MSCs) are ubiquitously present in many tissues. Due to their unique advantages, MSCs have been widely employed in clinical studies. Emerging evidences indicate that MSCs can also migrate to the tumor surrounding stroma and exert complex effects on tumor growth and progression. However, the effect of MSCs on tumor growth is still a matter of debate. Several studies have shown that MSCs could favor tumor growth. On the contrary, other groups have demonstrated that MSCs suppressed tumor progression. Extracellular vesicles have emerged as a new mechanism of cell-to-cell communication in the development of tumor diseases. MSCs-derived extracellular vesicles (MSC-EVs) could mimic the effects of the mesenchymal stem cells from which they originate. Different studies have reported that MSC-EVs may exert various effects on the growth, metastasis, and drug response of different tumor cells by transferring proteins, messenger RNA, and microRNA to recipient cells. In the present review, we summarize the components of MSC-EVs and discuss the roles of MSC-EVs in different malignant diseases, including the related mechanisms that may account for their therapeutic potential. MSC-EVs open up a promising opportunity in the treatment of cancer with increased efficacy. PMID:28377788

  15. A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors.

    PubMed

    Rubin, Joshua B; Kung, Andrew L; Klein, Robyn S; Chan, Jennifer A; Sun, YanPing; Schmidt, Karl; Kieran, Mark W; Luster, Andrew D; Segal, Rosalind A

    2003-11-11

    The vast majority of brain tumors in adults exhibit glial characteristics. Brain tumors in children are diverse: Many have neuronal characteristics, whereas others have glial features. Here we show that activation of the Gi protein-coupled receptor CXCR4 is critical for the growth of both malignant neuronal and glial tumors. Systemic administration of CXCR4 antagonist AMD 3100 inhibits growth of intracranial glioblastoma and medulloblastoma xenografts by increasing apoptosis and decreasing the proliferation of tumor cells. This reflects the ability of AMD 3100 to reduce the activation of extracellular signal-regulated kinases 1 and 2 and Akt, all of which are pathways downstream of CXCR4 that promote survival, proliferation, and migration. These studies (i) demonstrate that CXCR4 is critical to the progression of diverse brain malignances and (ii) provide a scientific rationale for clinical evaluation of AMD 3100 in treating both adults and children with malignant brain tumors.

  16. Iron and copper act synergistically to delay anaerobic growth of bacteria.

    PubMed

    Bird, Lina J; Coleman, Maureen L; Newman, Dianne K

    2013-06-01

    Transition metals are known to cause toxic effects through their interaction with oxygen, but toxicity under anoxic conditions is poorly understood. Here we investigated the effects of iron (Fe) and copper (Cu) on the anaerobic growth and gene expression of the purple phototrophic bacterium Rhodopseudomonas palustris TIE-1. We found that Fe(II) and Cu(II) act synergistically to delay anaerobic growth at environmentally relevant metal concentrations. Cu(I) and Cu(II) had similar effects both alone and in the presence of ascorbate, a Cu(II) reductant, indicating that reduction of Cu(II) to Cu(I) by Fe(II) is not sufficient to explain the growth inhibition. Addition of Cu(II) increased the toxicity of Co(II) and Ni(II); in contrast, Ni(II) toxicity was diminished in the presence of Fe(II). The synergistic anaerobic toxicity of Fe(II) and Cu(II) was also observed for Escherichia coli MG1655, Shewanella oneidensis MR-1, and Rhodobacter capsulatus SB1003. Gene expression analyses for R. palustris identified three regulatory genes that respond to Cu(II) and not to Fe(II): homologs of cueR and cusR, two known proteobacterial copper homeostasis regulators, and csoR, a copper regulator recently identified in Mycobacterium tuberculosis. Two P-type ATPase efflux pumps, along with an F(o)F(1) ATP synthase, were also upregulated by Cu(II) but not by Fe(II). An Escherichia coli mutant deficient in copA, cus, and cueO showed a smaller synergistic effect, indicating that iron might interfere with one or more of the copper homeostasis systems. Our results suggest that interactive effects of transition metals on microbial physiology may be widespread under anoxic conditions, although the molecular mechanisms remain to be more fully elucidated.

  17. Molecular Characterization of Growth Hormone-producing Tumors in the GC Rat Model of Acromegaly

    PubMed Central

    Martín-Rodríguez, Juan F.; Muñoz-Bravo, Jose L.; Ibañez-Costa, Alejandro; Fernandez-Maza, Laura; Balcerzyk, Marcin; Leal-Campanario, Rocío; Luque, Raúl M.; Castaño, Justo P.; Venegas-Moreno, Eva; Soto-Moreno, Alfonso; Leal-Cerro, Alfonso; Cano, David A.

    2015-01-01

    Acromegaly is a disorder resulting from excessive production of growth hormone (GH) and consequent increase of insulin-like growth factor 1 (IGF-I), most frequently caused by pituitary adenomas. Elevated GH and IGF-I levels results in wide range of somatic, cardiovascular, endocrine, metabolic, and gastrointestinal morbidities. Subcutaneous implantation of the GH-secreting GC cell line in rats leads to the formation of tumors. GC tumor-bearing rats develop characteristics that resemble human acromegaly including gigantism and visceromegaly. However, GC tumors remain poorly characterized at a molecular level. In the present work, we report a detailed histological and molecular characterization of GC tumors using immunohistochemistry, molecular biology and imaging techniques. GC tumors display histopathological and molecular features of human GH-producing tumors, including hormone production, cell architecture, senescence activation and alterations in cell cycle gene expression. Furthermore, GC tumors cells displayed sensitivity to somatostatin analogues, drugs that are currently used in the treatment of human GH-producing adenomas, thus supporting the GC tumor model as a translational tool to evaluate therapeutic agents. The information obtained would help to maximize the usefulness of the GC rat model for research and preclinical studies in GH-secreting tumors. PMID:26549306

  18. Extravascular red blood cells and hemoglobin promote tumor growth and therapeutic resistance as endogenous danger signals.

    PubMed

    Yin, Tao; He, Sisi; Liu, Xiaoling; Jiang, Wei; Ye, Tinghong; Lin, Ziqiang; Sang, Yaxiong; Su, Chao; Wan, Yang; Shen, Guobo; Ma, Xuelei; Yu, Min; Guo, Fuchun; Liu, Yanyang; Li, Ling; Hu, Qiancheng; Wang, Yongsheng; Wei, Yuquan

    2015-01-01

    Hemorrhage is a common clinical manifestation in patients with cancer. Intratumor hemorrhage has been demonstrated to be a poor prognostic factor for cancer patients. In this study, we investigated the role of RBCs and hemoglobin (Hb) in the process of tumor progression and therapeutical response. RBCs and Hb potently promoted tumor cell proliferation and syngenic tumor growth. RBCs and Hb activated the reactive oxygen species-NF-κB pathway in both tumor cells and macrophages. RBCs and Hb also induced chemoresistance mediated, in part, by upregulating ABCB1 gene expression. Tumor growth induced by RBCs was accompanied by an inflammatory signature, increased tumor vasculature, and influx of M2 macrophages. In both the peritoneal cavity and tumor microenvironment, extravascular RBCs rapidly recruited monocyte-macrophages into the lesion sites. In addition, RBCs and Hb increased several nucleotide-binding oligomerization domain-like receptors' expression and induced IL-1β release. Our results provide novel insights into the protumor function of RBCs and Hb as endogenous danger signals, which can promote tumor cell proliferation, macrophage recruitment, and polarization. Hemorrhage may represent a useful prognostic factor for cancer patients because of its role in tumor promotion and chemoresistance.

  19. Molecular Characterization of Growth Hormone-producing Tumors in the GC Rat Model of Acromegaly.

    PubMed

    Martín-Rodríguez, Juan F; Muñoz-Bravo, Jose L; Ibañez-Costa, Alejandro; Fernandez-Maza, Laura; Balcerzyk, Marcin; Leal-Campanario, Rocío; Luque, Raúl M; Castaño, Justo P; Venegas-Moreno, Eva; Soto-Moreno, Alfonso; Leal-Cerro, Alfonso; Cano, David A

    2015-11-09

    Acromegaly is a disorder resulting from excessive production of growth hormone (GH) and consequent increase of insulin-like growth factor 1 (IGF-I), most frequently caused by pituitary adenomas. Elevated GH and IGF-I levels results in wide range of somatic, cardiovascular, endocrine, metabolic, and gastrointestinal morbidities. Subcutaneous implantation of the GH-secreting GC cell line in rats leads to the formation of tumors. GC tumor-bearing rats develop characteristics that resemble human acromegaly including gigantism and visceromegaly. However, GC tumors remain poorly characterized at a molecular level. In the present work, we report a detailed histological and molecular characterization of GC tumors using immunohistochemistry, molecular biology and imaging techniques. GC tumors display histopathological and molecular features of human GH-producing tumors, including hormone production, cell architecture, senescence activation and alterations in cell cycle gene expression. Furthermore, GC tumors cells displayed sensitivity to somatostatin analogues, drugs that are currently used in the treatment of human GH-producing adenomas, thus supporting the GC tumor model as a translational tool to evaluate therapeutic agents. The information obtained would help to maximize the usefulness of the GC rat model for research and preclinical studies in GH-secreting tumors.

  20. Protection of Xenopus laevis embryos against alcohol-induced delayed gut maturation and growth retardation by peroxiredoxin 5 and catalase.

    PubMed

    Peng, Ying; Yang, Pai-Hao; Ng, Samuel S M; Lum, Ching Tung; Kung, Hsiang-Fu; Lin, Marie C

    2004-07-16

    Accumulated evidence indicates that maternal alcohol consumption causes fetal enteric damage and growth retardation. In this study, we investigated the underlying molecular mechanisms in a Xenopus model of fetal alcohol exposure. We established a condition of transient alcohol exposure that produces tadpoles with delayed gut maturation and decreased body length. We then investigated the roles of reactive oxygen species (ROS) and reactive nitrogen species (RNS) by microinjecting plasmids expressing catalase and peroxiredoxin 5 (PRDX5) into two-cell stage embryos. Finally, the effects of these enzymes on the expression of key gut developmental genes were determined by animal cap explant assay. We showed that exposure of Xenopus embryos to 0.5% alcohol from stage 13 to stage 22 produced tadpoles with delayed gut maturation, reduced growth, and down-regulation in several gut developmental genes, with VegT, Pax6 and Sox17 most vulnerable. We further demonstrated that microinjection of catalase attenuated alcohol-induced ROS production and restored the expression of VegT and Pax6, but protected the embryos from delayed gut development and retarded growth only partially. By contrast, microinjection of PRDX5 reduced both ROS and RNS production, and prevented the gut and growth defects, and restored VegT, Pax6 and Sox17 gene expression. A positive correlation was found between delayed gut maturation and reduced body length. These results indicate the crucial roles of both the ROS-Pax6 and RNS-Sox17 signaling axes in alcohol-induced fetal gut defects and growth retardation. In addition, they suggest strongly a cause-and-effect relationship between alcohol-induced delayed gut maturation and growth retardation.

  1. Mitochondrial biogenesis in epithelial cancer cells promotes breast cancer tumor growth and confers autophagy resistance.

    PubMed

    Salem, Ahmed F; Whitaker-Menezes, Diana; Howell, Anthony; Sotgia, Federica; Lisanti, Michael P

    2012-11-15

    Here, we set out to test the novel hypothesis that increased mitochondrial biogenesis in epithelial cancer cells would "fuel" enhanced tumor growth. For this purpose, we generated MDA-MB-231 cells (a triple-negative human breast cancer cell line) overexpressing PGC-1α and MitoNEET, which are established molecules that drive mitochondrial biogenesis and increased mitochondrial oxidative phosphorylation (OXPHOS). Interestingly, both PGC-1α and MitoNEET increased the abundance of OXPHOS protein complexes, conferred autophagy resistance under conditions of starvation and increased tumor growth by up to ~3-fold. However, this increase in tumor growth was independent of neo-angiogenesis, as assessed by immunostaining and quantitation of vessel density using CD31 antibodies. Quantitatively similar increases in tumor growth were also observed by overexpression of PGC-1β and POLRMT in MDA-MB-231 cells, which are also responsible for mediating increased mitochondrial biogenesis. Thus, we propose that increased mitochondrial "power" in epithelial cancer cells oncogenically promotes tumor growth by conferring autophagy resistance. As such, PGC-1α, PGC-1β, mitoNEET and POLRMT should all be considered as tumor promoters or "metabolic oncogenes." Our results are consistent with numerous previous clinical studies showing that metformin (a weak mitochondrial "poison") prevents the onset of nearly all types of human cancers in diabetic patients. Therefore, metformin (a complex I inhibitor) and other mitochondrial inhibitors should be developed as novel anticancer therapies, targeting mitochondrial metabolism in cancer cells.

  2. Blocking tumor growth by targeting autophagy and SQSTM1 in vivo.

    PubMed

    Wei, Huijun; Guan, Jun-Lin

    2015-01-01

    Autophagy is a highly conserved cellular process for degradation of bulk cytoplasmic materials in response to starvation and maintenance of cellular homeostasis. Dysfunction of autophagy is implicated in a variety of diseases including cancer. In a recent study, we devised a system for inducible deletion of an essential autophagy gene Rb1cc1/Fip200 in established tumor cells in vivo and showed that Rb1cc1 is required for maintaining tumor growth. We further investigated the role of the accumulated SQSTM1 in Rb1cc1-null autophagy-deficient tumor cells. To our surprise, the increased SQSTM1 was not responsible for the inhibition of tumor growth, but rather supported the residual growth of tumors (i.e., partially compensated for the defective growth caused by Rb1cc1 deletion). Further analysis indicated that SQSTM1 promoted tumor growth in autophagy-deficient cells at least partially through its activation of the NFKB signaling pathway. A working model is proposed to account for our findings, which suggest that targeting both autophagy and the consequently increased SQSTM1 may be exploited for developing more effective cancer therapies.

  3. Multicenter study on adult growth hormone level in postoperative pituitary tumor patients.

    PubMed

    Cheng, Jing-min; Gu, Jian-wen; Kuang, Yong-qin; Ma, Yuan; Xia, Xun; Yang, Tao; Lu, Min; He, Wei-qi; Sun, Zhi-yong; Zhang, Yan-chao

    2015-03-01

    The objective of this study is to observe the adult growth hormone level in postoperative pituitary tumor patients of multi-centers, and explore the change of hypophyseal hormones in postoperative pituitary tumor patients. Sixty patients with pituitary tumor admitted during March, 2011-March, 2012 were selected. Postoperative hypophyseal hormone deficiency and the change of preoperative, intraoperative, and postoperative growth hormone levels were recorded. Growth hormone hypofunction was the most common hormonal hypofunction, which took up to 85.0 %. Adrenocortical hormone hypofunction was next to it and accounted for 58.33 %. GH + ACTH + TSH + Gn deficiency was the most common in postoperative hormone deficiency, which took up to 40.00 %, and GH + ACTH + TSH + Gn + AVP and GH deficiencies were next to it and accounted for 23.33 and 16.67 %, respectively. The hormone levels in patients after total pituitary tumor resection were significantly lower than those after partial pituitary tumor resection, and the difference was statistically significant; growth hormone and serum prolactin levels after surgery in two groups were decreased, and the difference was statistically significant. The incidence rate of growth hormone deficiency in postoperative pituitary tumor patients is high, which is usually complicated with deficiency of various hypophyseal hormones. In clinical, we should pay attention to the levels of the hypopnyseal hormones, and take timely measures to avoid postoperative complications.

  4. Combining fisetin and ionizing radiation suppresses the growth of mammalian colorectal cancers in xenograft tumor models.

    PubMed

    Leu, Jyh-Der; Wang, Bo-Shen; Chiu, Shu-Jun; Chang, Chun-Yuan; Chen, Chien-Chih; Chen, Fu-Du; Avirmed, Shiirevnyamba; Lee, Yi-Jang

    2016-12-01

    Fisetin (3,7,3',4'-tetrahydroxyflavone), which belongs to the flavonoid group of polyphenols and is found in a wide range of plants, has been reported to exhibit a number of biological activities in human cancer cells, including antioxidant, anti-inflammatory, antiangiogenic, anti-invasive and antiproliferative effects. Although previous in vitro studies have shown that fisetin treatment increases the apoptotic rate and enhances the radiosensitivity of human colorectal cancer cells, the in vivo effects of fisetin on tumor growth remain unclear. In the present study a murine xenograft tumor model was employed to investigate the therapeutic effects of fisetin in combination with radiation on CT-26 colon cancer cells and human HCT116 colorectal cancer cells. This revealed that intratumoral injection of fisetin significantly suppressed the growth of CT-26 tumors compared with the untreated control group, but had little effect on the growth of HCT116 tumors. However, fisetin in combination with 2-Gy radiation enhanced tumor suppressor activity in murine colon and human colorectal xenograft tumors, as compared with 2-Gy fractionated radiation administered alone for 5 days and fisetin alone. Interestingly, fisetin downregulated the expression of the oncoprotein securin in a p53-independent manner. However, securin-null HCT116 tumors showed only moderate sensitivity to fisetin treatment, and the combination of fisetin and radiation did not significantly suppress securin-null HCT116 tumor growth compared with normal HCT116 tumors. Therefore, the role of securin in mediating the effect of fisetin on colorectal cancer growth warrants further investigation. In conclusion, the results of the current study provide important preclinical data for evaluating the efficacy of fisetin and radiation combination treatment as an adjuvant chemoradiotherapy for human colorectal cancers.

  5. Combining fisetin and ionizing radiation suppresses the growth of mammalian colorectal cancers in xenograft tumor models

    PubMed Central

    Leu, Jyh-Der; Wang, Bo-Shen; Chiu, Shu-Jun; Chang, Chun-Yuan; Chen, Chien-Chih; Chen, Fu-Du; Avirmed, Shiirevnyamba; Lee, Yi-Jang

    2016-01-01

    Fisetin (3,7,3′,4′-tetrahydroxyflavone), which belongs to the flavonoid group of polyphenols and is found in a wide range of plants, has been reported to exhibit a number of biological activities in human cancer cells, including antioxidant, anti-inflammatory, antiangiogenic, anti-invasive and antiproliferative effects. Although previous in vitro studies have shown that fisetin treatment increases the apoptotic rate and enhances the radiosensitivity of human colorectal cancer cells, the in vivo effects of fisetin on tumor growth remain unclear. In the present study a murine xenograft tumor model was employed to investigate the therapeutic effects of fisetin in combination with radiation on CT-26 colon cancer cells and human HCT116 colorectal cancer cells. This revealed that intratumoral injection of fisetin significantly suppressed the growth of CT-26 tumors compared with the untreated control group, but had little effect on the growth of HCT116 tumors. However, fisetin in combination with 2-Gy radiation enhanced tumor suppressor activity in murine colon and human colorectal xenograft tumors, as compared with 2-Gy fractionated radiation administered alone for 5 days and fisetin alone. Interestingly, fisetin downregulated the expression of the oncoprotein securin in a p53-independent manner. However, securin-null HCT116 tumors showed only moderate sensitivity to fisetin treatment, and the combination of fisetin and radiation did not significantly suppress securin-null HCT116 tumor growth compared with normal HCT116 tumors. Therefore, the role of securin in mediating the effect of fisetin on colorectal cancer growth warrants further investigation. In conclusion, the results of the current study provide important preclinical data for evaluating the efficacy of fisetin and radiation combination treatment as an adjuvant chemoradiotherapy for human colorectal cancers. PMID:28105204

  6. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation

    NASA Astrophysics Data System (ADS)

    Unkelbach, Jan; Menze, Bjoern H.; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A.

    2014-02-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  7. Loss of glycogen debranching enzyme AGL drives bladder tumor growth via induction of hyaluronic acid synthesis

    PubMed Central

    Guin, Sunny; Ru, Yuanbin; Agarwal, Neeraj; Lew, Carolyn R.; Owens, Charles; Comi, Giacomo P.; Theodorescu, Dan

    2015-01-01

    Purpose We demonstrated that Amylo-alpha-1-6-glucosidase-4-alpha-glucanotransferase (AGL) is a tumor growth suppressor and prognostic marker in human bladder cancer. Here we determine how AGL loss enhances tumor growth, hoping to find therapeutically tractable targets/pathways that could be used in patients with low AGL expressing tumors. Experimental Design We transcriptionally profiled bladder cell lines with different AGL expression. By focusing on transcripts overexpressed as a function of low AGL and associated with adverse clinicopathologic variables in human bladder tumors, we sought to increase the chances of discovering novel therapeutic opportunities. Results One such transcript was hyaluronic acid synthase 2 (HAS2), an enzyme responsible for hyaluronic acid (HA) synthesis. HAS2 expression was inversely proportional to that of AGL in bladder cancer cells and immortalized and normal urothelium. HAS2 driven HA synthesis was enhanced in bladder cancer cells with low AGL and this drove anchorage dependent and independent growth. siRNA mediated depletion of HAS2 or inhibition of HA synthesis by 4-Methylumbelliferone (4MU) abrogated in vitro and xenograft growth of bladder cancer cells with low AGL. AGL and HAS2 mRNA expression in human tumors was inversely correlated in patient datasets. Patients with high HAS2 and low AGL tumor mRNA expression had poor survival lending clinical support to xenograft findings that HAS2 drives growth of tumors with low AGL. Conclusion Our study establishes HAS2 mediated HA synthesis as a driver of growth of bladder cancer with low AGL and provides preclinical rationale for personalized targeting of HAS2/HA signaling in patients with low AGL expressing tumors. PMID:26490312

  8. Effect of Melatonin on Tumor Growth and Angiogenesis in Xenograft Model of Breast Cancer

    PubMed Central

    Jardim-Perassi, Bruna Victorasso; Arbab, Ali S.; Ferreira, Lívia Carvalho; Borin, Thaiz Ferraz; Varma, Nadimpalli R. S.; Iskander, A. S. M.; Shankar, Adarsh; Ali, Meser M.; de Campos Zuccari, Debora Aparecida Pires

    2014-01-01

    As neovascularization is essential for tumor growth and metastasis, controlling angiogenesis is a promising tactic in limiting cancer progression. Melatonin has been studied for their inhibitory properties on angiogenesis in cancer. We performed an in vivo study to evaluate the effects of melatonin treatment on angiogenesis in breast cancer. Cell viability was measured by MTT assay after melatonin treatment in triple-negative breast cancer cells (MDA-MB-231). After, cells were implanted in athymic nude mice and treated with melatonin or vehicle daily, administered intraperitoneally 1 hour before turning the room light off. Volume of the tumors was measured weekly with a digital caliper and at the end of treatments animals underwent single photon emission computed tomography (SPECT) with Technetium-99m tagged vascular endothelial growth factor (VEGF) C to detect in vivo angiogenesis. In addition, expression of pro-angiogenic/growth factors in the tumor extracts was evaluated by membrane antibody array and collected tumor tissues were analyzed with histochemical staining. Melatonin in vitro treatment (1 mM) decreased cell viability (p<0.05). The breast cancer xenografts nude mice treated with melatonin showed reduced tumor size and cell proliferation (Ki-67) compared to control animals after 21 days of treatment (p<0.05). Expression of VEGF receptor 2 decreased significantly in the treated animals compared to that of control when determined by immunohistochemistry (p<0.05) but the changes were not significant on SPECT (p>0.05) images. In addition, there was a decrease of micro-vessel density (Von Willebrand Factor) in melatonin treated mice (p<0.05). However, semiquantitative densitometry analysis of membrane array indicated increased expression of epidermal growth factor receptor and insulin-like growth factor 1 in treated tumors compared to vehicle treated tumors (p<0.05). In conclusion, melatonin treatment showed effectiveness in reducing tumor growth and cell

  9. Prevalent expression of fibroblast growth factor (FGF) receptors and FGF2 in human tumor cell lines.

    PubMed

    Chandler, L A; Sosnowski, B A; Greenlees, L; Aukerman, S L; Baird, A; Pierce, G F

    1999-05-05

    Basic fibroblast growth factor (FGF2) has potent mitogenic and angiogenic activities that have been implicated in tumor development and malignant progression. The biological effects of FGF2 and other members of the FGF ligand family are mediated by 4 transmembrane tyrosine kinase receptors (FGFRs). To better understand the roles of FGFRs in cancer, the expression of FGF2 and each of the 4 FGFRs was assessed by RNase protection analysis of 60 human tumor cell lines, representing 9 tumor types. Expression of at least one FGFR isoform was detected in 90% and FGF2 mRNA in 35% of the cell lines. Our comprehensive analysis of FGF2 and FGFR expression in human tumor cell lines provides evidence that FGF signaling pathways are active in a majority of human tumor cell lines, and lends support to the development of anti-tumor strategies that target FGFRs.

  10. A Peer Support and Personal Growth Group for Parents with a Child Who Is Developmentally Disabled or Delayed.

    ERIC Educational Resources Information Center

    Van Pelt, Jeff

    The manual describes development of a personal growth and peer support group for parents of developmentally delayed or disabled children which was designed to help parents adjust expectations about their infant or young child and to accommodate the handicap. Initial decisions regarding leader and participant characteristics and frequency and…

  11. An activated form of ADAM10 is tumor selective and regulates cancer stem-like cells and tumor growth

    PubMed Central

    Saha, Nayanendu; Eissman, Moritz F.; Xu, Kai; Llerena, Carmen; Kusebauch, Ulrike; Ding, Bi-Sen; Cao, Zhongwei; Rafii, Shahin; Ernst, Matthias; Scott, Andrew M.; Nikolov, Dimitar B.; Lackmann, Martin

    2016-01-01

    The transmembrane metalloprotease ADAM10 sheds a range of cell surface proteins, including ligands and receptors of the Notch, Eph, and erbB families, thereby activating signaling pathways critical for tumor initiation and maintenance. ADAM10 is thus a promising therapeutic target. Although widely expressed, its activity is normally tightly regulated. We now report prevalence of an active form of ADAM10 in tumors compared with normal tissues, in mouse models and humans, identified by our conformation-specific antibody mAb 8C7. Structure/function experiments indicate mAb 8C7 binds an active conformation dependent on disulfide isomerization and oxidative conditions, common in tumors. Moreover, this active ADAM10 form marks cancer stem-like cells with active Notch signaling, known to mediate chemoresistance. Importantly, specific targeting of active ADAM10 with 8C7 inhibits Notch activity and tumor growth in mouse models, particularly regrowth after chemotherapy. Our results indicate targeted inhibition of active ADAM10 as a potential therapy for ADAM10-dependent tumor development and drug resistance. PMID:27503072

  12. Intratumoral Heterogeneity for Expression of Tyrosine Kinase Growth Factor Receptors in Human Colon Cancer Surgical Specimens and Orthotopic Tumors

    PubMed Central

    Kuwai, Toshio; Nakamura, Toru; Kim, Sun-Jin; Sasaki, Takamitsu; Kitadai, Yasuhiko; Langley, Robert R.; Fan, Dominic; Hamilton, Stanley R.; Fidler, Isaiah J.

    2008-01-01

    The design of targeted therapy, particularly patient-specific targeted therapy, requires knowledge of the presence and intratumoral distribution of tyrosine kinase receptors. To determine whether the expression of such receptors is constant or varies between and within individual colon cancer neoplasms, we examined the pattern of expression of the ligands, epidermal growth factor, vascular endothelial growth factor, and platelet-derived growth factor-B as well as their respective receptors in human colon cancer surgical specimens and orthotopic human colon cancers growing in the cecal wall of nude mice. The expression of the epidermal growth factor receptor and the vascular endothelial growth factor receptor on tumor cells and stromal cells, including tumor-associated endothelial cells, was heterogeneous in surgical specimens and orthotopic tumors. In some tumors, the receptor was expressed on both tumor cells and stromal cells, and in other tumors the receptor was expressed only on tumor cells or only on stromal cells. In contrast, the platelet-derived growth factor receptor was expressed only on stromal cells in both surgical specimens and orthotopic tumors. Examination of receptor expression in both individual surgical specimens and orthotopic tumors revealed that the platelet-derived growth factor receptor was expressed only on stromal cells and that the patterns of epidermal growth factor receptor and vascular endothelial growth factor receptor 2 expression differed between tumor cells. This heterogeneity in receptor expression among different tumor cells suggests that targeting a single tyrosine kinase may not yield eradication of the disease. PMID:18202197

  13. Immunostimulatory early phenotype of tumor-associated macrophages does not predict tumor growth outcome in an HLA-DR mouse model of prostate cancer.

    PubMed

    Riabov, Vladimir; Kim, David; Chhina, Surmeet; Alexander, Richard B; Klyushnenkova, Elena N

    2015-07-01

    Tumor-associated macrophages (TAM) were shown to support the progression of many solid tumors. However, anti-tumor properties of TAM were also reported in several types of cancer. Here, we investigated the phenotype and functions of TAM in two transgenic mouse models of prostate cancer that display striking differences in tumor growth outcome. Mice expressing prostate-specific antigen (PSA) as a self-antigen specifically in prostate (PSAtg mice) rejected PSA-expressing transgenic adenocarcinoma of mouse prostate (TRAMP) tumors. However, the introduction of HLA-DRB1*1501 (DR2b) transgene presenting PSA-derived peptides in a MHC class II-restricted manner exacerbated the growth of TRAMP-PSA tumors in DR2bxPSA F 1 mice. Despite the difference in tumor growth outcome, tumors in both strains were equally and intensively infiltrated by macrophages on the first week after tumor challenge. TAM exhibited mixed M1/M2 polarization and simultaneously produced pro-inflammatory (TNFα, IL1β) and anti-inflammatory (IL10) cytokines. TAM from both mouse strains demonstrated antigen-presenting potential and pronounced immunostimulatory activity. Moreover, they equally induced apoptosis of tumor cells. In vivo depletion of macrophages in DR2bxPSA F 1 but not PSAtg mice aggravated tumor growth suggesting that macrophages more strongly contribute to anti-tumor immunity when specific presentation of PSA to CD4+ T cells is possible. In summary, we conclude that in the early stages of tumor progression, the phenotype and functional properties of TAM did not predict tumor growth outcome in two transgenic prostate cancer models. Furthermore, we demonstrated that during the initial stage of prostate cancer development, TAM have the potential to activate T cell immunity and mediate anti-tumor effects.

  14. Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1β.

    PubMed

    Kim, Jung-Eun; Phan, Thuy Xuan; Nguyen, Vu Hong; Dinh-Vu, Hong-Van; Zheng, Jin Hai; Yun, Misun; Park, Sung-Gyoo; Hong, Yeongjin; Choy, Hyon E; Szardenings, Michael; Hwang, Won; Park, Jin-A; Park, SunHee; Im, Sin-Hyeog; Min, Jung-Joon

    2015-01-01

    Although strains of attenuated Salmonella typhimurium and wild-type Escherichia coli show similar tumor-targeting capacities, only S. typhimurium significantly suppresses tumor growth in mice. The aim of the present study was to examine bacteria-mediated immune responses by conducting comparative analyses of the cytokine profiles and immune cell populations within tumor tissues colonized by E. coli or attenuated Salmonellae. CT26 tumor-bearing mice were treated with two different bacterial strains: S. typhimurium defective in ppGpp synthesis (ΔppGpp Salmonellae) or wild-type E. coli MG1655. Cytokine profiles and immune cell populations in tumor tissue colonized by these two bacterial strains were examined at two time points based on the pattern of tumor growth after ΔppGpp Salmonellae treatment: 1) when tumor growth was suppressed ('suppression stage') and 2) when they began to re-grow ('re-growing stage'). The levels of IL-1β and TNF-α were markedly increased in tumors colonized by ΔppGpp Salmonellae. This increase was associated with tumor regression; the levels of both IL-1β and TNF-α returned to normal level when the tumors started to re-grow. To identify the immune cells primarily responsible for Salmonellae-mediated tumor suppression, we examined the major cell types that produce IL-1β and TNF-α. We found that macrophages and dendritic cells were the main producers of TNF-α and IL-1β. Inhibiting IL-1β production in Salmonellae-treated mice restored tumor growth, whereas tumor growth was suppressed for longer by local administration of recombinant IL-1β or TNF-α in conjunction with Salmonella therapy. These findings suggested that IL-1β and TNF-α play important roles in Salmonella-mediated cancer therapy. A better understanding of host immune responses in Salmonella therapy may increase the success of a given drug, particularly when various strategies are combined with bacteriotherapy.

  15. Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1β

    PubMed Central

    Kim, Jung-Eun; Phan, Thuy Xuan; Nguyen, Vu Hong; Dinh-Vu, Hong-Van; Zheng, Jin Hai; Yun, Misun; Park, Sung-Gyoo; Hong, Yeongjin; Choy, Hyon E.; Szardenings, Michael; Hwang, Won; Park, Jin-A; Park, SunHee; Im, Sin-Hyeog; Min, Jung-Joon

    2015-01-01

    Although strains of attenuated Salmonella typhimurium and wild-type Escherichia coli show similar tumor-targeting capacities, only S. typhimurium significantly suppresses tumor growth in mice. The aim of the present study was to examine bacteria-mediated immune responses by conducting comparative analyses of the cytokine profiles and immune cell populations within tumor tissues colonized by E. coli or attenuated Salmonellae. CT26 tumor-bearing mice were treated with two different bacterial strains: S. typhimurium defective in ppGpp synthesis (ΔppGpp Salmonellae) or wild-type E. coli MG1655. Cytokine profiles and immune cell populations in tumor tissue colonized by these two bacterial strains were examined at two time points based on the pattern of tumor growth after ΔppGpp Salmonellae treatment: 1) when tumor growth was suppressed ('suppression stage') and 2) when they began to re-grow ('re-growing stage'). The levels of IL-1β and TNF-α were markedly increased in tumors colonized by ΔppGpp Salmonellae. This increase was associated with tumor regression; the levels of both IL-1β and TNF-α returned to normal level when the tumors started to re-grow. To identify the immune cells primarily responsible for Salmonellae-mediated tumor suppression, we examined the major cell types that produce IL-1β and TNF-α. We found that macrophages and dendritic cells were the main producers of TNF-α and IL-1β. Inhibiting IL-1β production in Salmonellae-treated mice restored tumor growth, whereas tumor growth was suppressed for longer by local administration of recombinant IL-1β or TNF-α in conjunction with Salmonella therapy. These findings suggested that IL-1β and TNF-α play important roles in Salmonella-mediated cancer therapy. A better understanding of host immune responses in Salmonella therapy may increase the success of a given drug, particularly when various strategies are combined with bacteriotherapy. PMID:26516371

  16. Tumor Growth Suppression Induced by Biomimetic Silk Fibroin Hydrogels

    PubMed Central

    Yan, Le-Ping; Silva-Correia, Joana; Ribeiro, Viviana P.; Miranda-Gonçalves, Vera; Correia, Cristina; da Silva Morais, Alain; Sousa, Rui A.; Reis, Rui M.; Oliveira, Ana L.; Oliveira, Joaquim M.; Reis, Rui L.

    2016-01-01

    Protein-based hydrogels with distinct conformations which enable encapsulation or differentiation of cells are of great interest in 3D cancer research models. Conformational changes may cause macroscopic shifts in the hydrogels, allowing for its use as biosensors and drug carriers. In depth knowledge on how 3D conformational changes in proteins may affect cell fate and tumor formation is required. Thus, this study reports an enzymatically crosslinked silk fibroin (SF) hydrogel system that can undergo intrinsic conformation changes from random coil to β-sheet conformation. In random coil status, the SF hydrogels are transparent, elastic, and present ionic strength and pH stimuli-responses. The random coil hydrogels become β-sheet conformation after 10 days in vitro incubation and 14 days in vivo subcutaneous implantation in rat. When encapsulated with ATDC-5 cells, the random coil SF hydrogel promotes cell survival up to 7 days, whereas the subsequent β-sheet transition induces cell apoptosis in vitro. HeLa cells are further incorporated in SF hydrogels and the constructs are investigated in vitro and in an in vivo chick chorioallantoic membrane model for tumor formation. In vivo, Angiogenesis and tumor formation are suppressed in SF hydrogels. Therefore, these hydrogels provide new insights for cancer research and uses of biomaterials. PMID:27485515

  17. Tumor Growth Suppression Induced by Biomimetic Silk Fibroin Hydrogels

    NASA Astrophysics Data System (ADS)

    Yan, Le-Ping; Silva-Correia, Joana; Ribeiro, Viviana P.; Miranda-Gonçalves, Vera; Correia, Cristina; da Silva Morais, Alain; Sousa, Rui A.; Reis, Rui M.; Oliveira, Ana L.; Oliveira, Joaquim M.; Reis, Rui L.

    2016-08-01

    Protein-based hydrogels with distinct conformations which enable encapsulation or differentiation of cells are of great interest in 3D cancer research models. Conformational changes may cause macroscopic shifts in the hydrogels, allowing for its use as biosensors and drug carriers. In depth knowledge on how 3D conformational changes in proteins may affect cell fate and tumor formation is required. Thus, this study reports an enzymatically crosslinked silk fibroin (SF) hydrogel system that can undergo intrinsic conformation changes from random coil to β-sheet conformation. In random coil status, the SF hydrogels are transparent, elastic, and present ionic strength and pH stimuli-responses. The random coil hydrogels become β-sheet conformation after 10 days in vitro incubation and 14 days in vivo subcutaneous implantation in rat. When encapsulated with ATDC-5 cells, the random coil SF hydrogel promotes cell survival up to 7 days, whereas the subsequent β-sheet transition induces cell apoptosis in vitro. HeLa cells are further incorporated in SF hydrogels and the constructs are investigated in vitro and in an in vivo chick chorioallantoic membrane model for tumor formation. In vivo, Angiogenesis and tumor formation are suppressed in SF hydrogels. Therefore, these hydrogels provide new insights for cancer research and uses of biomaterials.

  18. Mechanisms by which SMARCB1 loss drives rhabdoid tumor growth

    PubMed Central

    Kim, Kimberly H.; Roberts, Charles W. M.

    2014-01-01

    SMARCB1 (INI1/SNF5/BAF47), a core subunit of the SWI/SNF (BAF) chromatin-remodeling complex, is inactivated in the large majority of rhabdoid tumors and germline heterozygous SMARCB1 mutations form the basis for rhabdoid predisposition syndrome. Mouse models validated Smarcb1 as a bona fide tumor suppressor as Smarcb1 inactivation in mice results in 100% of the animals rapidly developing cancer. SMARCB1 was the first subunit of the SWI/SNF complex found mutated in cancer. More recently, at least seven other genes encoding SWI/SNF subunits have been identified as recurrently mutated in cancer. Collectively, 20% of all human cancers contain a SWI/SNF mutation. Consequently, investigation of the mechanisms by which SMARCB1 mutation causes cancer has relevance not only for rhabdoid tumors, but also potentially for the wide variety of SWI/NSNF mutant cancers. Here we discuss normal functions of SMARCB1 and the SWI/SNF complex as well as mechanistic and potentially therapeutic insights that have emerged. PMID:24853101

  19. 3D cell culture systems modeling tumor growth determinants in cancer target discovery.

    PubMed

    Thoma, Claudio R; Zimmermann, Miriam; Agarkova, Irina; Kelm, Jens M; Krek, Wilhelm

    2014-04-01

    Phenotypic heterogeneity of cancer cells, cell biological context, heterotypic crosstalk and the microenvironment are key determinants of the multistep process of tumor development. They sign responsible, to a significant extent, for the limited response and resistance of cancer cells to molecular-targeted therapies. Better functional knowledge of the complex intra- and intercellular signaling circuits underlying communication between the different cell types populating a tumor tissue and of the systemic and local factors that shape the tumor microenvironment is therefore imperative. Sophisticated 3D multicellular tumor spheroid (MCTS) systems provide an emerging tool to model the phenotypic and cellular heterogeneity as well as microenvironmental aspects of in vivo tumor growth. In this review we discuss the cellular, chemical and physical factors contributing to zonation and cellular crosstalk within tumor masses. On this basis, we further describe 3D cell culture technologies for growth of MCTS as advanced tools for exploring molecular tumor growth determinants and facilitating drug discovery efforts. We conclude with a synopsis on technological aspects for on-line analysis and post-processing of 3D MCTS models.

  20. Fas ligand based immunotherapy: A potent and effective neoadjuvant with checkpoint inhibitor properties, or a systemically toxic promoter of tumor growth?

    PubMed

    Modiano, Jaime F; Bellgrau, Donald

    2016-02-01

    Fas ligand (FasL, CD95L) is a 40-kDa type II transmembrane protein that binds to Fas (CD95) receptors and promotes programmed cell death. Fas receptors are expressed at higher levels in many tumors than in normal cells; however, systemic administration of FasL or agonistic anti-Fas antibodies to mice with tumors caused lethal hepatitis. Somewhat paradoxically, elimination of Fas or FasL from tumors also leads to death induced by CD95 receptor/ligand elimination (DICE). At face value, this suggests that Fas signaling not only kills normal cells, but that it also is essential for tumor cell survival. Targeting this pathway may not only fail to kill tumors, but instead may even enhance their growth, leading some to report the demise of Fas ligand in cancer immunotherapy. But, to paraphrase Mark Twain, is this death an exaggeration? Here, we provide a careful examination of the literature exploring the merits of FasL as a novel form of cancer immunotherapy. With local administration using delivery vectors that achieve high levels of expression in the tumor environment, our results indicate that the potential for systemic toxicity is eliminated in higher mammals, and that a systemic anti-tumor response ensues, which delays or prevents progression and simultaneously attacks distant metastases.

  1. Non-invasive optical imaging of tumor growth in intact animals

    NASA Astrophysics Data System (ADS)

    Lu, Jinling; Li, Pengcheng; Luo, Qingming; Zhu, Dan

    2003-12-01

    We describe here a system for rapidly visualizing tumor growth in intact rodent mice that is simple, rapid, and eminently accessible and repeatable. We have established new rodent tumor cell line -- SP2/0-GFP cells that stably express high level of green fluorescent protein (GFP) by transfected with a plasmid that encoded GFP using electroporation and selected with G418 for 3 weeks. 1 x 104 - 1x107 SP2/0-GFP mouse melanoma cells were injected s.c. in the ears and legs of 6- to 7-week-old syngeneic male BALB/c mice, and optical images visualized real-time the engrafted tumor growth. The tumor burden was monitored over time by cryogenically cooled charge coupled device (CCD) camera focused through a stereo microscope. The results show that the fluorescence intensity of GFP-expressing tumor is comparably with the tumor growth and/or depress. This in vivo optical imaging based on GFP is sensitive, external, and noninvasive. It affords continuous visual monitoring of malignant growth within intact animals, and may comprise an ideal tool for evaluating antineoplastic therapies.

  2. Tumor Growth Prediction with Reaction-Diffusion and Hyperelastic Biomechanical Model by Physiological Data Fusion

    PubMed Central

    Wong, Ken C. L.; Summers, Ronald M.; Kebebew, Electron; Yao, Jianhua

    2015-01-01

    The goal of tumor growth prediction is to model the tumor growth process, which can be achieved by physiological modeling and model personalization from clinical measurements. Although image-driven frameworks have been proposed with promising results, several issues such as infinitesimal strain assumptions, complicated personalization procedures, and the lack of functional information, may limit their prediction accuracy. In view of these issues, we propose a framework for pancreatic neuroendocrine tumor growth prediction, which comprises a FEM-based tumor growth model with coupled reaction-diffusion equation and nonlinear biomechanics. Physiological data fusion of structural and functional images is used to improve the subject-specificity of model personalization, and a derivative-free global optimization algorithm is adopted to facilitate the complicated model and accommodate flexible choices of objective functions. With this flexibility, we propose an objective function accounting for both the tumor volume difference and the root-mean-squared error of intracellular volume fractions. Experiments were performed on synthetic and clinical data to verify the parameter estimation capability and the prediction performance. Comparisons of using different biomechanical models and objective functions were also performed. From the experimental results of eight patient data sets, the average recall, precision, Dice coefficient, and relative volume difference between predicted and measured tumor volumes were 84.5±6.9%, 85.8±8.2%, 84.6±1.7%, and 14.2±8.4%, respectively. PMID:25962846

  3. Decreasing CNPY2 Expression Diminishes Colorectal Tumor Growth and Development through Activation of p53 Pathway.

    PubMed

    Yan, Ping; Gong, Hui; Zhai, Xiaoyan; Feng, Yi; Wu, Jun; He, Sheng; Guo, Jian; Wang, Xiaoxia; Guo, Rui; Xie, Jun; Li, Ren-Ke

    2016-04-01

    Neovascularization drives tumor development, and angiogenic factors are important neovascularization initiators. We recently identified the secreted angiogenic factor CNPY2, but its involvement in cancer has not been explored. Herein, we investigate CNPY2's role in human colorectal cancer (CRC) development. Tumor samples were obtained from CRC patients undergoing surgery. Canopy 2 (CNPY2) expression was analyzed in tumor and adjacent normal tissue. Stable lines of human HCT116 cells expressing CNPY2 shRNA or control shRNA were established. To determine CNPY2's effects on tumor xenografts in vivo, human CNPY2 shRNA HCT116 cells and controls were injected into nude mice, separately. Cellular apoptosis, growth, and angiogenesis in the xenografts were evaluated. CNPY2 expression was significantly higher in CRC tissues. CNPY2 knockdown in HCT116 cells inhibited growth and migration and promoted apoptosis. In xenografts, CNPY2 knockdown prevented tumor growth and angiogenesis and promoted apoptosis. Knockdown of CNPY2 in the HCT116 CRC cell line reversibly increased p53 activity. The p53 activation increased cyclin-dependent kinase inhibitor p21 and decreased cyclin-dependent kinase 2, thereby inhibiting tumor cell growth, inducing cell apoptosis, and reducing angiogenesis both in vitro and in vivo. CNPY2 may play a critical role in CRC development by enhancing cell proliferation, migration, and angiogenesis and by inhibiting apoptosis through negative regulation of the p53 pathway. Therefore, CNPY2 may represent a novel CRC therapeutic target and prognostic indicator.

  4. Stochastic modeling of the tumor volume assessment and growth patterns in hepatocellular carcinoma.

    PubMed

    Sãftoiu, Adrian; Ciurea, Tudorel; Gorunescu, Florin; Rogoveanu, Ion; Georgescu, Claudia

    2004-06-01

    The growth pattern of hepatocellular carcinoma (HCC) arising from cirrhosis is variable and depends on the degree of differentiation and vascularization. Because growth is not constant in the natural history of HCC, prediction of subsequent growth rate based on tumor volume doubling time and correlation with histological and ultrasonographical characteristics at the moment of initial diagnosis are usually unreliable. The aim of our study was to assess the growth patterns of HCC with the aid of stochastic modeling. Thus, we included in our study 27 patients with histologically proven HCC, which had multiple (more than three)follow-up ultrasound studies in a six months interval. The patients did not receive any treatment during the observation period. HCC was visualized by computer aided ultrasound imaging, obtaining both the primary size quantification and the edge-detection enhancement. By a bi-cubic B-spline interpolation of points on the edges (3-D Bezier approximation) we approximated the surfaces shapes, and using the hit or miss Monte Carlo method we accurately estimate the tumor volume. Starting from the previous tumor volumes time series recorded during the first six months of evolution we applied both a linear, exponential and logarithmic smoothing to forecast the future size of the HCC tumor in the next six months. Our conclusion was that a dynamic forecasting model of HCC volumes could be very accurate for the assessment of tumor volume doubling time usually obtained by two discrete volume measurements of the tumor.

  5. Lysosomal acid lipase in mesenchymal stem cell stimulation of tumor growth and metastasis

    PubMed Central

    Zhao, Ting; Yan, Cong; Du, Hong

    2016-01-01

    Bone marrow mesenchymal stem cells (MSCs) are an important participant in the tumor microenvironment, in which they promote tumor growth and progression. Here we report for the first time that depletion of lysosomal acid lipase (LAL) in MSCs impairs their abilities to stimulate tumor growth and metastasis both in allogeneic and syngeneic mouse models. Reduced cell viability was observed in LAL-deficient (lal−/−) MSCs, which was a result of both increased apoptosis and decreased proliferation due to cell cycle arrest. The synthesis and secretion of cytokines and chemokines that are known to mediate MSCs' tumor-stimulating and immunosuppressive effects, i.e., IL-6, MCP-1 and IL-10, were down-regulated in lal−/− MSCs. When tumor cells were treated with the conditioned medium from lal−/− MSCs, decreased proliferation was observed, accompanied by reduced activation of oncogenic intracellular signaling molecules in tumor cells. Co-injection of lal−/− MSCs and B16 melanoma cells into wild type mice not only induced CD8+ cytotoxic T cells, but also decreased accumulation of tumor-promoting Ly6G+CD11b+ myeloid-derived suppressor cells (MDSCs), which may synergistically contribute to the impairment of tumor progression. Furthermore, lal−/− MSCs showed impaired differentiation towards tumor-associated fibroblasts. In addition, MDSCs facilitated MSC proliferation, which was mediated by MDSC-secreted cytokines and chemokines. Our results indicate that LAL plays a critical role in regulating MSCs' ability to stimulate tumor growth and metastasis, which provides a mechanistic basis for targeting LAL in MSCs to reduce the risk of cancer metastasis. PMID:27531897

  6. Tumors induce coordinate growth of artery, vein, and lymphatic vessel triads

    PubMed Central

    2014-01-01

    Background Tumors drive blood vessel growth to obtain oxygen and nutrients to support tumor expansion, and they also can induce lymphatic vessel growth to facilitate fluid drainage and metastasis. These processes have generally been studied separately, so that it is not known how peritumoral blood and lymphatic vessels grow relative to each other. Methods The murine B16-F10 melanoma and chemically-induced squamous cell carcinoma models were employed to analyze large red-colored vessels growing between flank tumors and draining lymph nodes. Immunostaining and microscopy in combination with dye injection studies were used to characterize these vessels. Results Each peritumoral red-colored vessel was found to consist of a triad of collecting lymphatic vessel, vein, and artery, that were all enlarged. Peritumoral veins and arteries were both functional, as detected by intravenous dye injection. The enlarged lymphatic vessels were functional in most mice by subcutaneous dye injection assay, however tumor growth sometimes blocked lymph drainage to regional lymph nodes. Large red-colored vessels also grew between benign papillomas or invasive squamous cell carcinomas and regional lymph nodes in chemical carcinogen-treated mice. Immunostaining of the red-colored vessels again identified the clustered growth of enlarged collecting lymphatics, veins, and arteries in the vicinity of these spontaneously arising tumors. Conclusions Implanted and spontaneously arising tumors induce coordinate growth of blood and lymphatic vessel triads. Many of these vessel triads are enlarged over several cm distance between the tumor and regional lymph nodes. Lymphatic drainage was sometimes blocked in mice before lymph node metastasis was detected, suggesting that an unknown mechanism alters lymph drainage patterns before tumors reach draining lymph nodes. PMID:24886322

  7. Perfusion, oxygenation status and growth of experimental tumors upon photodynamic therapy with Pd-bacteriopheophorbide.

    PubMed

    Kelleher, Debra K; Thews, Oliver; Scherz, Avigdor; Salomon, Yoram; Vaupel, Peter

    2004-06-01

    The aim of this study was to assess the anti-tumor effect of photodynamic therapy (PDT) using a novel bacteriochlorophyll derivative, palladium-bacteriopheophorbide (TOOKAD) on tumor growth, perfusion and oxygenation. Rat DS-sarcomas were treated with either TOOKAD-PDT (2 mg/kg, i.v., immediate illumination) or one of the control treatments (sham-treatment, illumination without photosensitizer, or photosensitizer without illumination). The light source was an infrared-A irradiator fitted with appropriate filters, so that the wavelengths applied (665-800 nm) included the absorption maximum of TOOKAD at 763 nm. Tumor volume was monitored for 90 days after treatment or until a target volume (3.5 ml) was reached. TOOKAD-PDT dramatically inhibited tumor growth with 92% of tumors not reaching the target volume within the observation period. In further experiments, tumor perfusion was assessed using laser Doppler flowmetry. Upon TOOKAD-PDT treatment, a rapid, pronounced decrease in perfusion was seen, down to levels corresponding to only 3% of initial values. Tumor oxygenation monitoring revealed parallel decreases, with levels corresponding to anoxia being reached. The significant anti-tumor effects presented in this report, taken together with the chemical and pharmacokinetic properties of the novel photosensitizer TOOKAD, underline the therapeutic potential of this approach in which flow stasis and induction of anoxia are key elements.

  8. In vivo Cytokine Gene Transfer by Gene Gun Reduces Tumor Growth in Mice

    NASA Astrophysics Data System (ADS)

    Sun, Wenn H.; Burkholder, Joseph K.; Sun, Jian; Culp, Jerilyn; Turner, Joel; Lu, Xing G.; Pugh, Thomas D.; Ershler, William B.; Yang, Ning-Sun

    1995-03-01

    Implantation of tumor cells modified by in vitro cytokine gene transfer has been shown by many investigators to result in potent in vivo antitumor activities in mice. Here we describe an approach to tumor immunotherapy utilizing direct transfection of cytokine genes into tumorbearing animals by particle-mediated gene transfer. In vivo transfection of the human interleukin 6 gene into the tumor site reduced methylcholanthrene-induced fibrosarcoma growth, and a combination of murine tumor necrosis factor α and interferon γ genes inhibited growth of a renal carcinoma tumor model (Renca). In addition, treatment with murine interleukin 2 and interferon γ genes prolonged the survival of Renca tumor-bearing mice and resulted in tumor eradication in 25% of the test animals. Transgene expression was demonstrated in treated tissues by ELISA and immunohistochemical analysis. Significant serum levels of interleukin 6 and interferon γ were detected, demonstrating effective secretion of transgenic proteins from treated skin into the bloodstream. This in vivo cytokine gene therapy approach provides a system for evaluating the antitumor properties of various cytokines in different tumor models and has potential utility for human cancer gene therapy.

  9. Monoclonal Antibodies Targeting Tumor Growth | NCI Technology Transfer Center | TTC

    Cancer.gov

    The NCI Nanobiology Program, Protein Interaction Group is seeking parties to license or co-develop, evaluate, or commercialize monoclonal antibodies against the insulin-like growth factor for the treatment of cancer.

  10. The growth of cultured human foreskin keratinocytes is not stimulated by a tumor promoter.

    PubMed

    Fischer, S M; Viaje, A; Mills, G D; Wong, E W; Weeks, C E; Slaga, T J

    1984-01-01

    The tumor promoter 12-O-tetradecanoyl phorbol-13-acetate (TPA) does not stimulate the growth of human epidermal cells in foreskin explant cultures; a dose-dependent inhibition is seen at doses higher than 10(-5) micrograms/ml. TPA also inhibits epidermal growth factor-stimulated growth and does not induce ornithine decarboxylase activity or increase polyamine levels. This is not due to the rapid breakdown of TPA, since TPA is not metabolized to any appreciable extent.

  11. The Role of Tumor Associated Macrophage in Recurrent Growth of Tumor Stem Cell

    DTIC Science & Technology

    2012-09-01

    Sica . Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23: 549-555...2002 3. Alberto Mantovani, Paola Allavena1, Antonio Sica and Frances Balkwill. Cancer-related inflammation. Nature. 454: 436-444, 2008 4. Karin E. de

  12. Antagonists of growth hormone-releasing hormone suppress in vivo tumor growth and gene expression in triple negative breast cancers.

    PubMed

    Perez, Roberto; Schally, Andrew V; Vidaurre, Irving; Rincon, Ricardo; Block, Norman L; Rick, Ferenc G

    2012-09-01

    This study evaluated the effects of a modern antagonistic analog of GHRH on tumor growth and on expression of inflammatory cytokine genes in two models of human triple negative breast cancers (TNBC). The TNBC subtype is refractory to the treatment options available for other hormone-independent breast cancers. Inflammatory cytokines play a major role in the cellular signaling associated with breast cancer pathogenesis and enhance epithelial-mesenchymal transitions (EMT), drug resistance, and metastatic potential. Growth hormone-releasing hormone (GHRH) is a hypothalamic neuropeptide which regulates the synthesis and release of growth hormone by the pituitary and is an autocrine/paracrine growth factor for multiple human cancers. The effects of analogs of GHRH on tumoral cytokine expression have not been previously investigated. Animals bearing xenografts of the human TNBC cell lines, HCC1806 and MX-1, were treated with MIA-602, an antagonistic analog of GHRH. Treatment with MIA-602 significantly reduced tumor growth. We quantified transcript levels of the genes for several inflammatory cytokines. Expression of INFγ, IL-1α, IL-4, IL-6, IL-8, IL-10, and TNFα, was significantly reduced by treatment with MIA-602. We conclude that treatment of TNBC with GHRH antagonists reduces tumor growth through an action mediated by tumoral GHRH receptors and produces a suppression of inflammatory cytokine signaling. Silencing of GHRH receptors in vitro with siRNA inhibited the expression of GHRH-R genes and inflammatory cytokine genes in HCC1806 and MX-1 cells. Further studies on GHRH antagonists may facilitate the development of new strategies for the treatment of resistant cancers.

  13. a Discrete Simulation of Tumor Growth Concerning Nutrient Influence

    NASA Astrophysics Data System (ADS)

    Sun, L.; Chang, Y. F.; Cai, X.

    We develop a 2-D discrete model to simulate malignant cells growing in healthy tissues using a thermodynamic method on the basis of Potts model. After introducing a malignant seed in a healthy tissue, we use a set of adjustment factors, including the interaction between cells and nutrient, to simulate the growth of malignant cells under different environments. This allows us to investigate the effects of environment on malignant cell growth and the formation of cancer.

  14. Combined effects of X rays, Ro 03-8799, and hyperthermia on growth, necrosis, and cell proliferation in a mouse tumor

    SciTech Connect

    George, K.C.; Streffer, C.; Pelzer, T.

    1989-04-01

    A mouse adenocarcinoma was treated with 20 Gy X rays, hyperthermia (30 minutes at 43 degrees C), Ro-03-8799, or a combination of two or three of these agents. Combined treatments increase growth delay in the tumor and this was greatest with the combination of all three modalities. Extensive amounts of necrosis were observed after the combined treatments. This effect was most pronounced after treatment modalities including hyperthermia. On the other hand, the radiation-induced micronucleus formation was more enhanced by the sensitizer than by hyperthermia. After X irradiation and combined treatments with X rays a G2-block was observed in DNA-histograms. Tetraploid cells appeared in large amounts that started DNA synthesis followed by necrosis. From these tumors it was impossible to obtain regular DNA-histograms. Tumor regression is a combined result of reduced cell renewal, increased cytogenetic damage, and development of necrosis.

  15. Host knockout of E-prostanoid 2 receptors reduces tumor growth and causes major alterations of gene expression in prostaglandin E2-producing tumors

    PubMed Central

    Asting, Annika Gustafsson; Iresjö, Britt-Marie; Nilsberth, Camilla; Smedh, Ulrika; Lundholm, Kent

    2017-01-01

    Prostaglandin E2 (PGE2) is elevated in a variety of malignant tumors and has been shown to affect several hallmarks of cancer. Accordingly, the PGE2 receptor, E-prostanoid 2 (EP2), has been reported to be associated with patient survival and reduced tumor growth in EP2-knockout mice. Thus, the aim of the present study was to screen for major gene expression alterations in tumor tissue growing in EP2-knockout mice. EP2-knockout mice were bred and implanted with EP2 receptor-expressing and PGE2-producing epithelial-like tumors. Tumor tissue and plasma were collected and used for analyses with gene expression microarrays and multiplex enzyme-linked immunosorbent assays. Tumor growth, acute phase reactions/systemic inflammation and the expression of interleukin-6 were reduced in EP2-knockout tumor-bearing mice. Several hundreds of genes displayed major changes of expression in the tumor tissue when grown in EP2-knockout mice. Such gene alterations involved several different cellular functions, including stemness, migration and cell signaling. Besides gene expression, several long non-coding RNAs were downregulated in the tumors from the EP2-knockout mice. Overall, PGE2 signaling via host EP2 receptors affected a large number of different genes involved in tumor progression based on signaling between host stroma and tumor cells, which caused reduced tumor growth. PMID:28123585

  16. Chicken HSP70 DNA vaccine inhibits tumor growth in a canine cancer model.

    PubMed

    Yu, Wen-Ying; Chuang, Tien-Fu; Guichard, Cécile; El-Garch, Hanane; Tierny, Dominique; Laio, Albert Taiching; Lin, Ching-Si; Chiou, Kuo-Hao; Tsai, Cheng-Long; Liu, Chen-Hsuan; Li, Wen-Chiuan; Fischer, Laurent; Chu, Rea-Min

    2011-04-18

    Immunization with xenogeneic DNA is a promising cancer treatment to overcome tolerance to self-antigens. Heat shock protein 70 (HSP70) is over-expressed in various kinds of tumors and is believed to be involved in tumor progression. This study tested a xenogeneic chicken HSP70 (chHSP70) DNA vaccine in an experimental canine transmissible venereal tumor (CTVT) model. Three vaccination strategies were compared: the first (PE) was designed to evaluate the prophylactic efficacy of chHSP70 DNA vaccination by delivering the vaccine before tumor inoculation in a prime boost setting, the second (T) was designed to evaluate the therapeutic efficacy of the same prime boost vaccine by vaccinating the dogs after tumor inoculation; the third (PT) was similar to the first strategy (PE), with the exception that the electroporation booster injection was replaced with a transdermal needle-free injection. Tumor growth was notably inhibited only in the PE dogs, in which the vaccination program triggered tumor regression significantly sooner than in control dogs (NT). The CD4(+) subpopulation of tumor-infiltrating lymphocytes and canine HSP70 (caHSP70)-specific IFN-γ-secreting lymphocytes were significantly increased during tumor regression in the PE dogs as compared to control dogs, demonstrating that specific tolerance to caHSP70 has been overcome. In contrast, no benefit of the therapeutic strategy (T) could be noticed and the (PT) strategy only led to partial control of tumor growth. In summary, antitumor prophylactic activity was demonstrated using the chHSP70 DNA vaccine including a boost via electroporation. Our data stressed the importance of DNA electroporation as a booster to get the full benefit of DNA vaccination but also of cancer immunotherapy initiation as early as possible. Xenogeneic chHSP70 DNA vaccination including an electroporation boost is a potential vaccine to HSP70-expressing tumors, although further research is still required to better understand true

  17. Diffuse optical spectroscopy monitoring of oxygen state and hemoglobin concentration during SKBR-3 tumor model growth

    NASA Astrophysics Data System (ADS)

    Orlova, A. G.; Kirillin, M. Yu; Volovetsky, A. B.; Shilyagina, N. Yu; Sergeeva, E. A.; Golubiatnikov, G. Yu; Turchin, I. V.

    2017-01-01

    Tumor oxygenation and hemoglobin content are the key indicators of the tumor status which can be efficiently employed for prognosis of tumor development and choice of treatment strategy. We report on monitoring of these parameters in SKBR-3 (human breast adenocarcinoma) tumors established as subcutaneous tumor xenografts in athymic nude mice by diffuse optical spectroscopy (DOS). A simple continuous wave fiber probe DOS system is employed. Optical properties extraction approach is based on diffusion approximation. Statistically significant difference between measured values of normal tissue and tumor are demonstrated. Hemoglobin content in tumor increases from 7.0  ±  4.2 μM to 30.1  ±  16.1 μM with tumor growth from 150  ±  80 mm3 to 1300  ±  650 mm3 which is determined by gradual increase of deoxyhemoglobin content while measured oxyhemoglobin content does not demonstrate any statistically significant variations. Oxygenation in tumor falls quickly from 52.8  ±  24.7% to 20.2  ±  4.8% preceding acceleration of tumor growth. Statistical analysis indicated dependence of oxy-, deoxy- and total hemoglobin on tumor volume (p  <  0.01). DOS measurements of oxygen saturation are in agreement with independent measurements of oxygen partial pressure by polarography (Pearson’s correlation coefficient equals 0.8).

  18. The transcription factor Ets21C drives tumor growth by cooperating with AP-1

    PubMed Central

    Toggweiler, Janine; Willecke, Maria; Basler, Konrad

    2016-01-01

    Tumorigenesis is driven by genetic alterations that perturb the signaling networks regulating proliferation or cell death. In order to block tumor growth, one has to precisely know how these signaling pathways function and interplay. Here, we identified the transcription factor Ets21C as a pivotal regulator of tumor growth and propose a new model of how Ets21C could affect this process. We demonstrate that a depletion of Ets21C strongly suppressed tumor growth while ectopic expression of Ets21C further increased tumor size. We confirm that Ets21C expression is regulated by the JNK pathway and show that Ets21C acts via a positive feed-forward mechanism to induce a specific set of target genes that is critical for tumor growth. These genes are known downstream targets of the JNK pathway and we demonstrate that their expression not only depends on the transcription factor AP-1, but also on Ets21C suggesting a cooperative transcriptional activation mechanism. Taken together we show that Ets21C is a crucial player in regulating the transcriptional program of the JNK pathway and enhances our understanding of the mechanisms that govern neoplastic growth. PMID:27713480

  19. CD200-expressing human basal cell carcinoma cells initiate tumor growth.

    PubMed

    Colmont, Chantal S; Benketah, Antisar; Reed, Simon H; Hawk, Nga V; Telford, William G; Ohyama, Manabu; Udey, Mark C; Yee, Carole L; Vogel, Jonathan C; Patel, Girish K

    2013-01-22

    Smoothened antagonists directly target the genetic basis of human basal cell carcinoma (BCC), the most common of all cancers. These drugs inhibit BCC growth, but they are not curative. Although BCC cells are monomorphic, immunofluorescence microscopy reveals a complex hierarchical pattern of growth with inward differentiation along hair follicle lineages. Most BCC cells express the transcription factor KLF4 and are committed to terminal differentiation. A small CD200(+) CD45(-) BCC subpopulation that represents 1.63 ± 1.11% of all BCC cells resides in small clusters at the tumor periphery. By using reproducible in vivo xenograft growth assays, we determined that tumor initiating cell frequencies approximate one per 1.5 million unsorted BCC cells. The CD200(+) CD45(-) BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200(+) CD45(-) cells, representing ~1,500-fold enrichment. CD200(-) CD45(-) BCC cells were unable to form tumors. These findings establish a platform to study the effects of Smoothened antagonists on BCC tumor initiating cell and also suggest that currently available anti-CD200 therapy be considered, either as monotherapy or an adjunct to Smoothened antagonists, in the treatment of inoperable BCC.

  20. Relationship Between Organization of Mammary Tumors and the Ability of Tumor Cells to Replicate Mammary Tumor Virus and to Recognize Growth-Inhibitory Contact Signals In Vitro

    PubMed Central

    McGrath, Charles M.; Nandi, S.; Young, Lawrence

    1972-01-01

    Mammary tumor virus (MTV) replication was confined primarily to cells organized as acini in intact mouse mammary glands. Primary mammary tumors maintained a high degree of acinar organization and cells therein continued to replicate MTV vegetatively. Nonacinar mammary cells, derived by serial transplantation of acinar tumor cells, no longer actively replicated MTV. This suggests that phenotypic differences exist among mammary epithelial cells in their ability to support virus replication, that a fundamental relationship exists between the organization of epithelium for secretion and active virus replication, and that this relationship is not altered as a primary consequence of neoplastic transformation. Mammary epithelial cells from pregnant, non-tumor-bearing, MTV-infected BALB/cfC3H mice or from acinar mammary tumors from a number of mouse strains were grown in primary monolayer cultures. Such cell cultures under the influence of insulin and cortisol exhibited the ability to organize into discrete three-dimensional structures called “domes.” MTV replication in such cultures took place primarily in cells within the organized domes. Cells cultured from nonacinar tumors did not exhibit any propensity to organize into domes, nor did they replicate MTV in primary culture. This suggests that the cell organizational requirement for MTV replication observed in vivo is conserved in primary culture. Dome formation is not an effect of virus replication, as cells from uninfected BALB/c animals organized into domes in culture without concomitant MTV replication. Growth-regulating signals, exerted between contiguous cells in cultures of non-MTV-infected mammary epithelium, were not modified by the occurrence of active virus replication nor as a direct consequence of neoplastic transformation. Cells derived from nontumor BALB/cfC3H glands and from spontaneous tumors exhibited cell growth kinetics, saturation densities, and deoxyribonucleic acid synthesis kinetics nearly

  1. Cytotoxic activity and absence of tumor growth stimulation of standardized mistletoe extracts in human tumor models in vitro.

    PubMed

    Kelter, Gerhard; Schierholz, Jörg M; Fischer, Imma U; Fiebig, Heinz-Herbert

    2007-01-01

    Mistletoe extracts are widely used in complementary and alternative cancer therapy in Europe. The extracts possess cytotoxic, as well as immunostimulatory effects. However, some investigators have suggested that low doses of mistletoe extracts could also induce tumor growth. The mistletoe extracts Helixor A, Helixor M and Helixor P were investigated for growth inhibitory and stimulatory effects in a panel of 38 human tumor cell lines in vitro. Mistletoe lectin I (ML-1), adriamycin and interleukin-6 (IL-6) were used as reference compounds. All three mistletoe preparations showed cytotoxic activity [T/C (Test/Control) < 30%]: Helixor P was the most potent, followed by Helixor M and Helixor A with IC50 (50% inhibitory concentration) values of 68.4, 114 and 133 microg/ml, respectively. The IC50 values of ML-1 and adriamycin were 0.026 and 0.069 microg/ml. None of the human tumor cell lines in the panel showed growth stimulation (T/C (Test/Control) > 125%) by the mistletoe extracts or ML-1, apart from two exceptions in the colon carcinoma cell line HCC-2998, in which Helixor M and ML-1 showed a marginal stimulation (TIC 128% and 131%, respectively) at one concentration only. Further investigations into the latter effect of Helixor M and ML-1 in the HCC-2998 line using five different proliferation assays, modified cell culture conditions and the identical production charge of mistletoe extract, as well as a new one, did not confirm the previous observation. It was concluded that the marginal stimulation found in the earlier experiments was a statistical coincidence. Helixor mistletoe preparations and ML-1 have cytotoxic activity and do not stimulate tumor cell proliferation in vitro which is in accordance with previous scientifically based observations on aqueous mistletoe extracts.

  2. A Rigorous Sharp Interface Limit of a Diffuse Interface Model Related to Tumor Growth

    NASA Astrophysics Data System (ADS)

    Rocca, Elisabetta; Scala, Riccardo

    2016-11-01

    In this paper, we study the rigorous sharp interface limit of a diffuse interface model related to the dynamics of tumor growth, when a parameter ɛ, representing the interface thickness between the tumorous and non-tumorous cells, tends to zero. More in particular, we analyze here a gradient-flow-type model arising from a modification of the recently introduced model for tumor growth dynamics in Hawkins-Daruud et al. (Int J Numer Math Biomed Eng 28:3-24, 2011) (cf. also Hilhorst et al. Math Models Methods Appl Sci 25:1011-1043, 2015). Exploiting the techniques related to both gradient flows and gamma convergence, we recover a condition on the interface Γ relating the chemical and double-well potentials, the mean curvature, and the normal velocity.

  3. The Importance of Neighborhood Scheme Selection in Agent-based Tumor Growth Modeling.

    PubMed

    Tzedakis, Georgios; Tzamali, Eleftheria; Marias, Kostas; Sakkalis, Vangelis

    2015-01-01

    Modeling tumor growth has proven a very challenging problem, mainly due to the fact that tumors are highly complex systems that involve dynamic interactions spanning multiple scales both in time and space. The desire to describe interactions in various scales has given rise to modeling approaches that use both continuous and discrete variables, known as hybrid approaches. This work refers to a hybrid model on a 2D square lattice focusing on cell movement dynamics as they play an important role in tumor morphology, invasion and metastasis and are considered as indicators for the stage of malignancy used for early prognosis and effective treatment. Considering various distributions of the microenvironment, we explore how Neumann vs. Moore neighborhood schemes affects tumor growth and morphology. The results indicate that the importance of neighborhood selection is critical under specific conditions that include i) increased hapto/chemo-tactic coefficient, ii) a rugged microenvironment and iii) ECM degradation.

  4. Cancer cell-binding peptide fused Fc domain activates immune effector cells and blocks tumor growth

    PubMed Central

    Mobergslien, Anne; Peng, Qian; Vasovic, Vlada; Sioud, Mouldy

    2016-01-01

    Therapeutic strategies aiming at mobilizing immune effector cells to kill tumor cells independent of tumor mutational load and MHC expression status are expected to benefit cancer patients. Recently, we engineered various peptide-Fc fusion proteins for directing Fcg receptor-bearing immune cells toward tumor cells. Here, we investigated the immunostimulatory and anti-tumor effects of one of the engineered Fc fusion proteins (WN-Fc). In contrast to the Fc control, soluble WN-Fc-1 fusion protein activated innate immune cells (e.g. monocytes, macrophages, dendritic cells, NK cells), resulting in cytokine production and surface display of the lytic granule marker CD107a on NK cells. An engineered Fc-fusion variant carrying two peptide sequences (WN-Fc-2) also activated immune cells and bound to various cancer cell types with high affinity, including the murine 4T1 breast carcinoma cells. When injected into 4T1 tumor-bearing BALB/c mice, both peptide-Fc fusions accumulated in tumor tissues as compared to other organs such as the lungs. Moreover, treatment of 4T1 tumor-bearing BALB/c mice by means of two intravenous injections of the WN-Fc fusion proteins inhibited tumor growth with WN-Fc-2 being more effective than WN-Fc-1. Treatment resulted in tumor infiltration by T cells and NK cells. These new engineered WN-Fc fusion proteins may be a promising alternative to existing immunotherapies for cancer. PMID:27713158

  5. Extract of Cordyceps militaris inhibits angiogenesis and suppresses tumor growth of human malignant melanoma cells.

    PubMed

    Ruma, I Made Winarsa; Putranto, Endy Widya; Kondo, Eisaku; Watanabe, Risayo; Saito, Ken; Inoue, Yusuke; Yamamoto, Ken-Ichi; Nakata, Susumu; Kaihata, Masaji; Murata, Hitoshi; Sakaguchi, Masakiyo

    2014-07-01

    Angiogenesis is essential for tumor development and metastasis. Among several angiogenic factors, vascular endothelial growth factor receptor (VEGF) is important for tumor-derived angiogenesis and commonly overexpressed in solid tumors. Thus, many antitumor strategies targeting VEGF have been developed to inhibit cancer angiogenesis, offering insights into the successful treatment of solid cancers. However, there are a number of issues such as harmful effects on normal vascularity in clinical trials. Taking this into consideration, we employed Cordyceps militaris as an antitumor approach due to its biological safety in vivo. The herbal medicinal mushroom Cordyceps militaris has been reported to show potential anticancer properties including anti-angiogenic capacity; however, its concrete properties have yet to be fully demonstrated. In this study, we aimed to elucidate the biological role of Cordyceps militaris extract in tumor cells, especially in regulating angiogenesis and tumor growth of a human malignant melanoma cell line. We demonstrated that Cordyceps militaris extract remarkably suppressed tumor growth via induction of apoptotic cell death in culture that links to the abrogation of VEGF production in melanoma cells. This was followed by mitigation of Akt1 and GSK-3β activation, while p38α phosphorylation levels were increased. Extract treatment in mouse model xenografted with human melanoma cells resulted in a dramatic antitumor effect with down-regulation of VEGF expression. The results suggest that suppression of tumor growth by Cordyceps militaris extract is, at least, mediated by its anti-angiogenicity and apoptosis induction capacities. Cordyceps militaris extract may be a potent antitumor herbal drug for solid tumors.

  6. Role of CD44 in Malignant Peripheral Nerve Sheath Tumor Growth and Metastasis

    DTIC Science & Technology

    2002-09-01

    Malignant peripheral nerve sheath tumors ( MPNSTs ) are aggressive malignancies that arise within peripheral nerves. These tumors occur with increased...and abnormal expression of the epidermal growth factor receptor (EGFR). We previously found that MPNSTs express increased levels of the CD44 family...kinase activity (and not increased Ras-GTP) contributes to MPNST cell invasion. We further find that EGFR contributes at least part of the elevated Src

  7. Glomus tumors of the fingers: Expression of vascular endothelial growth factor

    PubMed Central

    Honsawek, Sittisak; Kitidumrongsook, Pravit; Luangjarmekorn, Pobe; Pataradool, Kawee; Thanakit, Voranuch; Patradul, Adisorn

    2016-01-01

    Glomus tumors are uncommon, benign, small neurovascular neoplasms derived from glomus bodies in the reticular dermis. Glomus bodies are found throughout the body to regulate body temperature and skin circulation; however, they are concentrated in the fingers and the sole of the foot. The typical presentation is a solitary nodule in the subungual or periungual area of the distal phalanx. The primary treatment of choice is surgical removal. We investigated expression of vascular endothelial growth factor (VEGF) using immunohistochemistry in glomus tumors of the fingers. All five glomus tumor samples were positive for VEGF expression. VEGF immunoreactivity was largely localized to the cytoplasm of tumor cells, suggesting a contribution of VEGF to the vascularization of glomus tumors. PMID:28032039

  8. Immunohistochemical detection of growth hormone (GH) in canine hepatoid gland tumors.

    PubMed

    Petterino, Claudio; Martini, Marco; Castagnaro, Massimo

    2004-05-01

    The aim of this study was to detect immunohistochemically means growth hormone (GH) in 24 hepatoid gland adenomas and 5 hepatoid gland carcinomas and to compare the difference of immunoreactivity between types of tumors. The tumors were classified according to the WHO standards. Tissue sections which were prepared from formalin-fixed, paraffin wax-embedded tissues from 25 male and 4 female dogs were carried out immunostaining using polyclonal primary anti-hGH and EnVision method. Of 24 hepatoid gland adenomas (perianal gland adenomas) 23 (95.8%) were positive. All 5 hepatoid gland carcinomas (perianal gland carcinomas) were positive. No statistically significant differences in percentage of labelled cells between malignant and benign tumors were seen. The present demonstration of GH in hepatoid gland tumors adds new data on GH in extra-pituitary tissues and hormon-dependent tumors.

  9. PPARγ ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis

    PubMed Central

    Panigrahy, Dipak; Singer, Samuel; Shen, Lucy Q.; Butterfield, Catherine E.; Freedman, Deborah A.; Chen, Emy J.; Moses, Marsha A.; Kilroy, Susan; Duensing, Stefan; Fletcher, Christopher; Fletcher, Jonathan A.; Hlatky, Lynn; Hahnfeldt, Philip; Folkman, Judah; Kaipainen, Arja

    2002-01-01

    Several drugs approved for a variety of indications have been shown to exhibit antiangiogenic effects. Our study focuses on the PPARγ ligand rosiglitazone, a compound widely used in the treatment of type 2 diabetes. We demonstrate, for the first time to our knowledge, that PPARγ is highly expressed in tumor endothelium and is activated by rosiglitazone in cultured endothelial cells. Furthermore, we show that rosiglitazone suppresses primary tumor growth and metastasis by both direct and indirect antiangiogenic effects. Rosiglitazone inhibits bovine capillary endothelial cell but not tumor cell proliferation at low doses in vitro and decreases VEGF production by tumor cells. In our in vivo studies, rosiglitazone suppresses angiogenesis in the chick chorioallantoic membrane, in the avascular cornea, and in a variety of primary tumors. These results suggest that PPARγ ligands may be useful in treating angiogenic diseases such as cancer by inhibiting angiogenesis. PMID:12370270

  10. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal.

    PubMed

    Benjamin, L E; Golijanin, D; Itin, A; Pode, D; Keshet, E

    1999-01-01

    Features that distinguish tumor vasculatures from normal blood vessels are sought to enable the destruction of preformed tumor vessels. We show that blood vessels in both a xenografted tumor and primary human tumors contain a sizable fraction of immature blood vessels that have not yet recruited periendothelial cells. These immature vessels are selectively obliterated as a consequence of vascular endothelial growth factor (VEGF) withdrawal. In a xenografted glioma, the selective vulnerability of immature vessels to VEGF loss was demonstrated by downregulating VEGF transgene expression using a tetracycline-regulated expression system. In human prostate cancer, the constitutive production of VEGF by the glandular epithelium was suppressed as a consequence of androgen-ablation therapy. VEGF loss led, in turn, to selective apoptosis of endothelial cells in vessels devoid of periendothelial cells. These results suggest that the unique dependence on VEGF of blood vessels lacking periendothelial cells can be exploited to reduce an existing tumor vasculature.

  11. Transplantation of human renal cell carcinoma into NMRI nu/nu mice. III. Effect of irradiation on tumor acceptance and tumor growth

    SciTech Connect

    Otto, U.; Huland, H.; Baisch, H.; Kloeppel, G.

    1985-07-01

    Irradiation of human renal cell carcinoma before radical tumor nephrectomy resulted in a significantly lower acceptance rate (1 of 7) in nude mice than for nonirradiated tumors (all of 13). The tumor tissue was transplanted into NMRI nu/nu mice immediately after nephrectomy. In this experimental system the authors demonstrated the reduced vitality of human tumor cells after irradiation. In a second series of experiments, 3 morphologically different human renal cell carcinomas were irradiated at various doses after establishment in nude mice. The irradiated tumor tissue was transplanted to the next passage. The morphology, proliferation rate and growth of these tumors were compared with those of nonirradiated controls. Radiation effect was dose dependent in the responding tumor types. The characteristics correlated with radiosensitivity were high proliferation rate (measured by flow cytometry), low cytologic grading and fast growth rate in the nude mice.

  12. Food intake, tumor growth, and weight loss in EP2 receptor subtype knockout mice bearing PGE2-producing tumors

    PubMed Central

    Iresjö, Britt-Marie; Wang, Wenhua; Nilsberth, Camilla; Andersson, Marianne; Lönnroth, Christina; Smedh, Ulrika

    2015-01-01

    Previous studies in our laboratory have demonstrated that prostaglandin (PG) E2 is involved in anorexia/cachexia development in MCG 101 tumor-bearing mice. In the present study, we investigate the role of PGE receptor subtype EP2 in the development of anorexia after MCG 101 implantation in wild-type (EP2+/+) or EP2-receptor knockout (EP2−/−) mice. Our results showed that host absence of EP2 receptors attenuated tumor growth and development of anorexia in tumor-bearing EP2 knockout mice compared to tumor-bearing wild-type animals. Microarray profiling of the hypothalamus revealed a relative twofold change in expression of around 35 genes including mRNA transcripts coding for Phospholipase A2 and Prostaglandin D2 synthase (Ptgds) in EP2 receptor knockout mice compared to wild-type mice. Prostaglandin D2 synthase levels were increased significantly in EP2 receptor knockouts, suggesting that improved food intake may depend on altered balance of prostaglandin production in hypothalamus since PGE2 and PGD2 display opposing effects in feeding control. PMID:26197930

  13. Fish oil supplementation reduces cachexia and tumor growth while improving renal function in tumor-bearing rats.

    PubMed

    Coelho, Isabela; Casare, Fernando; Pequito, Danielle C T; Borghetti, Gina; Yamazaki, Ricardo K; Brito, Gleisson A P; Kryczyk, Marcelo; Fernandes, Luiz Claudio; Coimbra, Terezila M; Fernandez, Ricardo

    2012-11-01

    The objective of the present work was to study the renal function of healthy and tumor-bearing rats chronically supplemented with fish oil (FO), a source of n-3 polyunsaturated fatty acids. Weanling male rats were divided in two groups, one control (C) and another orally supplemented for 70 days with FO (1 g/kg body weight). After this time, half the animals of each group were injected in the right flank with a suspension of Walker 256 tumor cells (W and WFO). The W group had less proteinemia reflecting cachectic proteolysis, FO reversed this fact. Tumor weight gain was also reduced in WFO. Glomerular filtration rate (GFR) was not different in FO or W compared to C, but was higher in WFO. Renal plasma flow (RPF) was higher in the FO supplemented groups. The W group had lower plasma osmolality than the C group, but FO supplementation resulted in normalization of this parameter. Fractional sodium excretion (FE(Na+)) of FO rats was similar to C. Proximal Na(+) reabsorption, evaluated by lithium clearance, was similar among the groups. Urinary thromboxane B(2) (TXB(2)) excretion was lower in the supplemented groups. The number of macrophages in renal tissue was higher in W compared to C rats, but was lower in WFO rats compared to W rats. In conclusion, FO supplementation resulted in less tumor growth and cachexia, and appeared to be renoprotective, as suggested by higher RPF and GFR.

  14. Placental growth factor is a survival factor for tumor endothelial cells and macrophages.

    PubMed

    Adini, Avner; Kornaga, Tad; Firoozbakht, Farshid; Benjamin, Laura E

    2002-05-15

    The vascular endothelial growth factor (VEGF)-related factor, placental growth factor (PlGF),has been shown recently to play an important role in pathological VEGF-driven angiogenesis. In this study, we examine the effects of mPlGF/PlGF-2 overexpression in tumors grown from glioma cells containing a tetracycline-regulated mPlGF cDNA. Overexpression of mPlGF leads to increased tumor growth and vascular survival. When tetracycline is used to abruptly withdraw mPlGF overexpression, we see increased apoptosis in both vascular cells and macrophages. In addition, PlGF-2 induces survival gene expression and inhibits apoptosis in vitro. Thus, we propose that PlGF-2 contributes to tumor angiogenesis by providing increased survival function to endothelial cells and macrophages.

  15. Time until first significant difference in in vivo tumor growth experiments.

    PubMed

    Heitjan, D F; Kunselman, S

    1995-01-01

    In in vivo tumor growth experiments it is common to report the tumor measurement time at which the volume distributions of the treatment groups become significantly different. This method of analysis, as commonly practiced, is deficient in that its type I error rate exceeds the usual nominal rate of 5%, unless one specifically corrects for multiple comparisons. A second problem is that many investigators evidently interpret the time of first significance as a statistical parameter--i.e., a fixed but unknown property of the model that one can estimate by experimentation. In fact the time until first significance, like the power of the test, depends both on true model parameters (such as mean growth curves and experimental variability) and on features of the experimental design, such as the sample size and the spacing of the measurement times. We argue that investigators would do better to compare treatment groups by modeling tumor growth curves or estimating volume doubling times.

  16. Nav1.5 regulates breast tumor growth and metastatic dissemination in vivo.

    PubMed

    Nelson, Michaela; Yang, Ming; Millican-Slater, Rebecca; Brackenbury, William J

    2015-10-20

    Voltage-gated Na+ channels (VGSCs) mediate action potential firing and regulate adhesion and migration in excitable cells. VGSCs are also expressed in cancer cells. In metastatic breast cancer (BCa) cells, the Nav1.5 α subunit potentiates migration and invasion. In addition, the VGSC-inhibiting antiepileptic drug phenytoin inhibits tumor growth and metastasis. However, the functional activity of Nav1.5 and its specific contribution to tumor progression in vivo has not been delineated. Here, we found that Nav1.5 is up-regulated at the protein level in BCa compared with matched normal breast tissue. Na+ current, reversibly blocked by tetrodotoxin, was retained in cancer cells in tumor tissue slices, thus directly confirming functional VGSC activity in vivo. Stable down-regulation of Nav1.5 expression significantly reduced tumor growth, local invasion into surrounding tissue, and metastasis to liver, lungs and spleen in an orthotopic BCa model. Nav1.5 down-regulation had no effect on cell proliferation or angiogenesis within the in tumors, but increased apoptosis. In vitro, Nav1.5 down-regulation altered cell morphology and reduced CD44 expression, suggesting that VGSC activity may regulate cellular invasion via the CD44-src-cortactin signaling axis. We conclude that Nav1.5 is functionally active in cancer cells in breast tumors, enhancing growth and metastatic dissemination. These findings support the notion that compounds targeting Nav1.5 may be useful for reducing metastasis.

  17. Vascular CD39/ENTPD1 Directly Promotes Tumor Cell Growth by Scavenging Extracellular Adenosine Triphosphate12

    PubMed Central

    Feng, Lili; Sun, Xiaofeng; Csizmadia, Eva; Han, Lihui; Bian, Shu; Murakami, Takashi; Wang, Xin; Robson, Simon C; Wu, Yan

    2011-01-01

    Extracellular adenosine triphosphate (ATP) is known to boost immune responses in the tumor microenvironment but might also contribute directly to cancer cell death. CD39/ENTPD1 is the dominant ectonucleotidase expressed by endothelial cells and regulatory T cells and catalyzes the sequential hydrolysis of ATP to AMP that is further degraded to adenosine by CD73/ecto-5′-nucleotidase. We have previously shown that deletion of Cd39 results in decreased growth of transplanted tumors in mice, as a result of both defective angiogenesis and heightened innate immune responses (secondary to loss of adenosinergic immune suppression). Whether alterations in local extracellular ATP and adenosine levels as a result of CD39 bioactivity directly affect tumor growth and cytotoxicity has not been investigated to date. We show here that extracellular ATP exerts antitumor activity by directly inhibiting cell proliferation and promoting cancer cell death. ATP-induced antiproliferative effects and cell death are, in large part, mediated through P2X7 receptor signaling. Tumors in Cd39 null mice exhibit increased necrosis in association with P2X7 expression. We further demonstrate that exogenous soluble NTPDase, or CD39 expression by cocultured liver sinusoidal endothelial cells, stimulates tumor cell proliferation and limits cell death triggered by extracellular ATP. Collectively, our findings indicate that local expression of CD39 directly promotes tumor cell growth by scavenging extracellular ATP. Pharmacological or targeted inhibition of CD39 enzymatic activity may find utility as an adjunct therapy in cancer management. PMID:21390184

  18. Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms

    PubMed Central

    Herroon, Mackenzie K.; Rajagurubandara, Erandi; Hardaway, Aimalie L.; Powell, Katelyn; Turchick, Audrey; Feldmann, Daniel; Podgorski, Izabela

    2013-01-01

    Incidence of skeletal metastases and death from prostate cancer greatly increases with age and obesity, conditions which increase marrow adiposity. Bone marrow adipocytes are metabolically active components of bone metastatic niche that modulate the function of neighboring cells; yet the mechanisms of their involvement in tumor behavior in bone have not been explored. In this study, using experimental models of intraosseous tumor growth and diet-induced obesity, we demonstrate the promoting effects of marrow fat on growth and progression of skeletal prostate tumors. We reveal that exposure to lipids supplied by marrow adipocytes induces expression of lipid chaperone FABP4, pro-inflammatory interleukin IL-1β, and oxidative stress protein HMOX-1 in metastatic tumor cells and stimulates their growth and invasiveness. We show that FABP4 is highly overexpressed in prostate skeletal tumors from obese mice and in bone metastasis samples from prostate cancer patients. In addition, we provide results suggestive of bi-directional interaction between FABP4 and PPARγ pathways that may be driving aggressive tumor cell behavior in bone. Together, our data provide evidence for functional relationship between bone marrow adiposity and metastatic prostate cancers and unravel the FABP4/IL-1β axis as a potential therapeutic target for this presently incurable disease. PMID:24240026

  19. Influence of selenium on the growth of N-nitrosomethylurea-induced mammary tumor cells in culture

    SciTech Connect

    Lewko, W.M.; McConnell, K.P.

    1985-10-01

    Selenium is an essential dietary trace element which has anticancer properties. Among its effects in rats, selenium has been shown to inhibit the development of carcinogen-induced mammary tumors by interfering with the post-initiation, promotion phase of carcinogenesis. We studied the effects of selenium on the growth of rat mammary tumor cells in primary culture. The objective was to determine whether selenium had any direct influence on cell growth which might explain its influence on tumor development. Rat mammary tumors were induced by N-nitrosomethylurea. The addition of low concentrations of sodium selenite, less than 1.0 ..mu..g/ml, stimulated tumor cell proliferation. Protein synthesis and the production of type IV collagen increased within the first hour of exposure, prior to any measurable increase in DNA synthesis. Concentrations of selenite greater than 1.0 ..mu..g/ml inhibited cell proliferation, the synthesis of protein, and the replication of DNA in a dose-related manner. These studies demonstrated that selenium has the potential to influence the post-initiation phase of rat mammary tumorigenesis by directly altering the growth of tumor cells, possibly through the regulation of protein synthesis.

  20. Model of avascular tumor growth and response to low dose exposure

    NASA Astrophysics Data System (ADS)

    Rodriguez Aguirre, J. M.; Custidiano, E. R.

    2011-12-01

    A single level cellular automata model is described and used to simulate early tumor growth, and the response of the tumor cells under low dose radiation affects. In this model the cell cycle of the population of normal and cancer cells is followed. The invasion mechanism of the tumor is simulated by a local factor that takes into account the microenvironment hardness to cell development, in a picture similar to the AMTIH model. The response of normal and cancer cells to direct effects of radiation is tested for various models and a model of bystander response is implemented.

  1. Loss of endothelial programmed cell death 10 activates glioblastoma cells and promotes tumor growth

    PubMed Central

    Zhu, Yuan; Zhao, Kai; Prinz, Anja; Keyvani, Kathy; Lambertz, Nicole; Kreitschmann-Andermahr, Ilonka; Lei, Ting; Sure, Ulrich

    2016-01-01

    Background Neo-angiogenesis is a hallmark of glioblastoma (GBM) and is sustained by autocrine and paracrine interactions between neoplastic and nonneoplastic cells. Programmed cell death 10 (PDCD10) is ubiquitously expressed in nearly all tissues and plays crucial roles in regulating angiogenesis and apoptosis. We recently discovered the absence of PDCD10 expression in the tumor vessels of GBM patients. This raised the hypothesis that loss of endothelial PDCD10 affected GBM cell phenotyping and tumor progression. Methods Endothelial PDCD10 was silenced by siRNA and lentiviral shRNA. The tumor cell phenotype was studied in direct and indirect co-culture of endothelial cells (ECs) with U87 or LN229. Angiogenic protein array was performed in the media of PDCD10-silenced ECs. Tumor angiogenesis and tumor growth were investigated in a human GBM xenograft mouse model. Results Endothelial silence of PDCD10 significantly stimulated tumor cell proliferation, migration, adhesion, and invasion and inhibited apoptosis in co-cultures. Stable knockdown of endothelial PDCD10 increased microvessel density and the formation of a functional vascular network, leading to a 4-fold larger tumor mass in mice. Intriguingly, endothelial deletion of PDCD10 increased (≥2-fold) the release of 20 of 55 tested proangiogenic factors including VEGF, which in turn activated Erk1/2 and Akt in GBM cells. Conclusions For the first time, we provide evidence that loss of endothelial PDCD10 activates GBM cells and promotes tumor growth, most likely via a paracrine mechanism. PDCD10 shows a tumor-suppressor-like function in the cross talk between ECs and tumor cells and is potentially implicated in GBM progression. PMID:26254477

  2. Oral administration of Polypodium leucotomos delays skin tumor development and increases epidermal p53 expression and the anti-oxidant status of UV-irradiated hairless mice.

    PubMed

    Rodríguez-Yanes, Esperanza; Cuevas, Jesús; González, Salvador; Mallol, Jordi

    2014-07-01

    Chronic exposure to ultraviolet radiation (UVR) induces skin tumors in hairless mice. Daily oral administration of a Polypodium leucotomos (PL) extract significantly delayed tumor development in PL-treated versus non-PL-treated mice. UVR and/or PL treatment modified several oxidative stress markers. In all irradiated mice, erythrocytic glutathione S-transferase (GST) activity and glutathione disulphide (GSSG) content increased and in all PL-treated mice GSSG content decreased, specially in non-irradiated animals, and total plasma anti-oxidant capacity (ORAC) increased. In dorsolateral non-tumoral skin of all irradiated mice, glutathione reductase (GR) and glutathione peroxidase (GPx) activities increased and GSSG decreased in non-irradiated PL-treated animals. UVR induced a steep increase of p53 expression in epidermal cells. In non-tumoral skin, this increase was significantly higher in PL-treated animals than in non-treated mice and can contribute in delaying tumor development, either by repairing the damaged DNA or by increasing apoptosis. These results reinforce the usefulness of PL as systemic photoprotective agent, especially in patients highly sensitive to UVR.

  3. Tumor growth reduction in Walker 256 tumor-bearing rats performing anaerobic exercise: participation of Bcl-2, Bax, apoptosis, and peroxidation.

    PubMed

    de Lima, Carina; Alves, Luciana; Iagher, Fabíola; Machado, Andressa Franzoi; Kryczyk, Marcelo; Yamazaki, Ricardo Key; Brito, Gleisson Alisson Pereira; Nunes, Everson Araújo; Naliwaiko, Katya; Fernandes, Luiz Cláudio

    2011-08-01

    Physical activity has been used in cancer prevention and treatment. In this study, we investigated some of the mechanisms by which anaerobic exercise reduces tumor growth. To do so, rats were trained for 8 weeks. Training consisted of jumping in a swimming pool for ten 30-s sets, with a load that was 50% of body weight attached to the back, 4 times per week. At the sixth week, anaerobic exercise trained rats (EX group) were inoculated with a suspension of Walker 256 tumor cells. Tumor weight, apoptotic tumor cells, tumor Bax and Bcl-2 protein expression, tumor lipid peroxidation, and tumor cell proliferation ex vivo were evaluated. Tumor weight was significantly lower in the EX group (∼30%) than in rats that did not undergo training (sedentary group) (p < 0.05). Apoptosis in the tumor cells of EX rats was 2-fold higher than in the tumor cells of sedentary rats; in addition, Bax expression increased by 10% and Bcl-2 decreased by 13% in EX rats. Lipid peroxidation was 4-fold higher in the tumor cells of EX rats than in those of sedentary rats (p < 0.05). Tumor cell proliferation ex vivo was 29% lower in the EX group than in the sedentary group (p < 0.05). In conclusion, Walker 256 tumor-bearing exercised rats presented more tumor cell apoptosis, a higher tumor content of lipid peroxides, pro-apoptotic protein expression balance, and reduced tumor weight and cell proliferation ex vivo, compared with sedentary rats. These events, together, account for the lower tumor growth we observed in the EX rats.

  4. A partial differential equation model and its reduction to an ordinary differential equation model for prostate tumor growth under intermittent hormone therapy.

    PubMed

    Tao, Youshan; Guo, Qian; Aihara, Kazuyuki

    2014-10-01

    Hormonal therapy with androgen suppression is a common treatment for advanced prostate tumors. The emergence of androgen-independent cells, however, leads to a tumor relapse under a condition of long-term androgen deprivation. Clinical trials suggest that intermittent androgen suppression (IAS) with alternating on- and off-treatment periods can delay the relapse when compared with continuous androgen suppression (CAS). In this paper, we propose a mathematical model for prostate tumor growth under IAS therapy. The model elucidates initial hormone sensitivity, an eventual relapse of a tumor under CAS therapy, and a delay of a relapse under IAS therapy, which are due to the coexistence of androgen-dependent cells, androgen-independent cells resulting from reversible changes by adaptation, and androgen-independent cells resulting from irreversible changes by genetic mutations. The model is formulated as a free boundary problem of partial differential equations that describe the evolution of populations of the abovementioned three types of cells during on-treatment periods and off-treatment periods. Moreover, the model can be transformed into a piecewise linear ordinary differential equation model by introducing three new volume variables, and the study of the resulting model may help to devise optimal IAS schedules.

  5. Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi.

    PubMed

    Juniper, S; Abbott, L K

    2006-07-01

    Colonisation of plant roots by some arbuscular mycorrhizal (AM) fungi is reduced in the presence of sodium chloride (NaCl), probably due to a direct effect of NaCl on the fungi. However, there appear to be differences between the fungi in their ability to colonise plants in the presence of NaCl. This experiment tested the hypothesis that propagules of different isolates and species of AM fungi from saline and nonsaline soils would differ in their ability to germinate and grow in the presence of NaCl in the soil solution. Spores or pieces of root colonised by a range of AM fungi were incubated between filters buried in soil to which NaCl had been added at concentrations of 0, 150 or 300 mM in the soil solution. At regular intervals, filters were removed from the soil and both the percentage of propagules which had germinated and the length of proliferating hyphae were determined. Germination of spores of AM fungi studied was delayed in the presence of NaCl, but the fungi differed in the extent to which germination was inhibited. Two isolates of Scutellospora calospora reached maximum germination in 300 mM NaCl, but neither of two isolates of Acaulospora laevis germinated in the presence of NaCl. Germination of spores of the other fungi, including some isolated from saline soil, fell between these extremes. For some fungi, the specific rate of hyphal extension was reduced by NaCl. For others, the specific rate of growth was similar in the presence of NaCl to that in the control treatment, but overall production of hyphae was reduced in the NaCl treatments because germination was reduced.

  6. Agent-Based Modeling of Cancer Stem Cell Driven Solid Tumor Growth.

    PubMed

    Poleszczuk, Jan; Macklin, Paul; Enderling, Heiko

    2016-01-01

    Computational modeling of tumor growth has become an invaluable tool to simulate complex cell-cell interactions and emerging population-level dynamics. Agent-based models are commonly used to describe the behavior and interaction of individual cells in different environments. Behavioral rules can be informed and calibrated by in vitro assays, and emerging population-level dynamics may be validated with both in vitro and in vivo experiments. Here, we describe the design and implementation of a lattice-based agent-based model of cancer stem cell driven tumor growth.

  7. Vav1 promotes lung cancer growth by instigating tumor-microenvironment cross-talk via growth factor secretion.

    PubMed

    Sebban, Shulamit; Farago, Marganit; Rabinovich, Shiran; Lazer, Galit; Idelchuck, Yulia; Ilan, Lena; Pikarsky, Eli; Katzav, Shulamit

    2014-10-15

    Vav1 is a signal transducer that functions as a scaffold protein and a regulator of cytoskeleton organization in the hematopoietic system, where it is exclusively expressed. Recently, Vav1 was shown to be involved in diverse human cancers, including lung cancer. We demonstrate that lung cancer cells that abnormally express Vav1 secrete growth factors in a Vav1-dependent manner. Transcriptome analysis demonstrated that Vav1 depletion results in a marked reduction in the expression of colony-stimulating-factor-1 (CSF1), a hematopoietic growth factor. The association between Vav1 expression and CSF1 was further supported by signal transduction experiments, supporting involvement of Vav1 in regulating lung cancer secretome. Blocking of ERK phosphorylation, led to a decrease in CSF1 transcription, thus suggesting a role for ERK, a downstream effector of Vav1, in CSF1 expression. CSF1-silenced cells exhibited reduced focus formation, proliferation abilities, and growth in NOD/SCID mice. CSF1-silenced H358 cells resulted in significantly smaller tumors, showing increased fibrosis and a decrease in tumor infiltrating macrophages. Finally, immunohistochemical analysis of primary human lung tumors revealed a positive correlation between Vav1 and CSF1 expression, which was associated with tumor grade. Additional results presented herein suggest a potential cross-talk between cancer cells and the microenvironment controlled by CSF1/Vav1 signaling pathways.

  8. Vav1 promotes lung cancer growth by instigating tumor-microenvironment cross-talk via growth factor secretion

    PubMed Central

    Rabinovich, Shiran; Lazer, Galit; Idelchuck, Yulia; Ilan, Lena; Pikarsky, Eli; Katzav, Shulamit

    2014-01-01

    Vav1 is a signal transducer that functions as a scaffold protein and a regulator of cytoskeleton organization in the hematopoietic system, where it is exclusively expressed. Recently, Vav1 was shown to be involved in diverse human cancers, including lung cancer. We demonstrate that lung cancer cells that abnormally express Vav1 secrete growth factors in a Vav1-dependent manner. Transcriptome analysis demonstrated that Vav1 depletion results in a marked reduction in the expression of colony-stimulating-factor-1 (CSF1), a hematopoietic growth factor. The association between Vav1 expression and CSF1 was further supported by signal transduction experiments, supporting involvement of Vav1 in regulating lung cancer secretome. Blocking of ERK phosphorylation, led to a decrease in CSF1 transcription, thus suggesting a role for ERK, a downstream effector of Vav1, in CSF1 expression. CSF1-silenced cells exhibited reduced focus formation, proliferation abilities, and growth in NOD/SCID mice. CSF1-silenced H358 cells resulted in significantly smaller tumors, showing increased fibrosis and a decrease in tumor infiltrating macrophages. Finally, immunohistochemical analysis of primary human lung tumors revealed a positive correlation between Vav1 and CSF1 expression, which was associated with tumor grade. Additional results presented herein suggest a potential cross-talk between cancer cells and the microenvironment controlled by CSF1/Vav1 signaling pathways. PMID:25313137

  9. Extracellular Superoxide Dismutase: Growth Promoter or Tumor Suppressor?

    PubMed Central

    Laukkanen, Mikko O.

    2016-01-01

    Extracellular superoxide dismutase (SOD3) gene transfer to tissue damage results in increased healing, increased cell proliferation, decreased apoptosis, and decreased inflammatory cell infiltration. At molecular level, in vivo SOD3 overexpression reduces superoxide anion (O2−) concentration and increases mitogen kinase activation suggesting that SOD3 could have life-supporting characteristics. The hypothesis is further strengthened by the observations showing significantly increased mortality in conditional knockout mice. However, in cancer SOD3 has been shown to either increase or decrease cell proliferation and survival depending on the model system used, indicating that SOD3-derived growth mechanisms are not completely understood. In this paper, the author reviews the main discoveries in SOD3-dependent growth regulation and signal transduction. PMID:27293512

  10. The mob as tumor suppressor (mats1) gene is required for growth control in developing zebrafish embryos.

    PubMed

    Yuan, Yuan; Lin, Shuo; Zhu, Zuoyan; Zhang, Wenxia; Lai, Zhi-Chun

    2009-01-01

    The mob as tumor suppressor (mats) family genes are highly conserved in evolution. The Drosophila mats gene functions in the Hippo signaling pathway to control tissue growth by regulating cell proliferation and apoptosis. However, nothing is known about whether mats family genes are required for the normal development of vertebrates. Here we report that zebrafish has three mats family genes. Expression of mats1 is maternally activated and continues during embryogenesis. Through a morpholino-based knockdown approach, we found that mats1 is required for normal embryonic development. Reduction of mats1 function caused developmental delay, a phenotype similar to that of Drosophila mats homozygous mutants. Both cell proliferation and apoptosis were defective in mats1 morphant embryos. Moreover, mats1 morphant cells exhibited a growth advantage in chimeric embryos, similar to mats mutant cells in mosaic tissues in Drosophila. Therefore mats1 plays a critical role in regulating cell proliferation and apoptosis during early development in zebrafish, and the role of mats family genes in growth regulation is conserved in both invertebrates and vertebrates. This work shows that zebrafish can be a good model organism for further analysis of Hippo signaling pathway.

  11. Neurofibroma-associated macrophages play roles in tumor growth and response to pharmacological inhibition.

    PubMed

    Prada, Carlos E; Jousma, Edwin; Rizvi, Tilat A; Wu, Jianqiang; Dunn, R Scott; Mayes, Debra A; Cancelas, Jose A; Dombi, Eva; Kim, Mi-Ok; West, Brian L; Bollag, Gideon; Ratner, Nancy

    2013-01-01

    Neurofibromatosis type 1 (NF1) is a common genetic disease that predisposes 30-50 % of affected individuals to develop plexiform neurofibromas. We found that macrophage infiltration of both mouse and human neurofibromas correlates with disease progression. Macrophages accounted for almost half of neurofibroma cells, leading us to hypothesize that nerve macrophages are inflammatory effectors in neurofibroma development and/or growth. We tested the effects of PLX3397, a dual kit/fms kinase inhibitor that blocks macrophage infiltration, in the Dhh-Cre; Nf1(flox/flox) mouse model of GEM grade I neurofibroma. In mice aged 1-4 months, prior to development of nerve pathology and neurofibroma formation, PLX3397 did not impair tumor initiation and increased tumor volume compared to controls. However, in mice aged 7-9 months, after tumor establishment, a subset of mice demonstrating the largest reductions in macrophages after PLX3397 exhibited cell death and tumor volume regression. Macrophages are likely to provide an initial line of defense against developing tumors. Once tumors are established, they become tumor permissive. Macrophage depletion may result in impaired tumor maintenance and represent a therapeutic strategy for neurofibroma therapy.

  12. Biomarker- versus drug-driven tumor growth inhibition models: an equivalence analysis.

    PubMed

    Sardu, Maria Luisa; Poggesi, Italo; De Nicolao, Giuseppe

    2015-12-01

    The mathematical modeling of tumor xenograft experiments following the dosing of antitumor drugs has received much attention in the last decade. Biomarker data can further provide useful insights on the pathological processes and be used for translational purposes in the early clinical development. Therefore, it is of particular interest the development of integrated pharmacokinetic-pharmacodynamic (PK-PD) models encompassing drug, biomarker and tumor-size data. This paper investigates the reciprocal consistency of three types of models: drug-to-tumor, such as established drug-driven tumor growth inhibition (TGI) models, drug-to-biomarker, e.g. indirect response models, and biomarker-to-tumor, e.g. the more recent biomarker-driven TGI models. In particular, this paper derives a mathematical relationship that guarantees the steady-state equivalence of the cascade of drug-to-biomarker and biomarker-to-tumor models with a drug-to-tumor TGI model. Using the Simeoni TGI model as a reference, conditions for steady-state equivalence are worked out and used to derive a new biomarker-driven model. Simulated and real data are used to show that in realistic cases the steady-state equivalence extends also to transient responses. The possibility of predicting the drug-to-tumor potency of a new candidate drug based only on biomarker response is discussed.

  13. The Host Defense Peptide Cathelicidin Is Required for NK Cell-Mediated Suppression of Tumor Growth

    PubMed Central

    Büchau, Amanda S.; Morizane, Shin; Trowbridge, Janet; Schauber, Jürgen; Kotol, Paul; Bui, Jack D.; Gallo, Richard L.

    2010-01-01

    Tumor surveillance requires the interaction of multiple molecules and cells that participate in innate and the adaptive immunity. Cathelicidin was initially identified as an antimicrobial peptide, although it is now clear that it fulfills a variety of immune functions beyond microbial killing. Recent data have suggested contrasting roles for cathelicidin in tumor development. Because its role in tumor surveillance is not well understood, we investigated the requirement of cathelicidin in controlling transplantable tumors in mice. Cathelicidin was observed to be abundant in tumor-infiltrating NK1.1+ cells in mice. The importance of this finding was demonstrated by the fact that cathelicidin knockout mice (Camp−/−) permitted faster tumor growth than wild type controls in two different xenograft tumor mouse models (B16.F10 and RMA-S). Functional in vitro analyses found that NK cells derived from Camp−/− versus wild type mice showed impaired cytotoxic activity toward tumor targets. These findings could not be solely attributed to an observed perforin deficiency in freshly isolated Camp−/− NK cells, because this deficiency could be partially restored by IL-2 treatment, whereas cytotoxic activity was still defective in IL-2-activated Camp−/− NK cells. Thus, we demonstrate a previously unrecognized role of cathelicidin in NK cell antitumor function. PMID:19949065

  14. Neurofibroma-associated macrophages play roles in tumor growth and response to pharmacological inhibition

    PubMed Central

    Prada, Carlos E.; Jousma, Edwin; Rizvi, Tilat A.; Wu, Jianqiang; Dunn, R. Scott; Mayes, Debra A.; Cancelas, Jose A.; Dombi, Eva; Kim, Mi-Ok; West, Brian L.; Bollag, Gideon

    2012-01-01

    Neurofibromatosis type 1 (NF1) is a common genetic disease that predisposes 30–50 % of affected individuals to develop plexiform neurofibromas. We found that macrophage infiltration of both mouse and human neurofibromas correlates with disease progression. Macrophages accounted for almost half of neurofibroma cells, leading us to hypothesize that nerve macrophages are inflammatory effectors in neurofibroma development and/or growth. We tested the effects of PLX3397, a dual kit/fms kinase inhibitor that blocks macrophage infiltration, in the Dhh-Cre; Nf1flox/flox mouse model of GEM grade I neurofibroma. In mice aged 1–4 months, prior to development of nerve pathology and neurofibroma formation, PLX3397 did not impair tumor initiation and increased tumor volume compared to controls. However, in mice aged 7–9 months, after tumor establishment, a subset of mice demonstrating the largest reductions in macrophages after PLX3397 exhibited cell death and tumor volume regression. Macrophages are likely to provide an initial line of defense against developing tumors. Once tumors are established, they become tumor permissive. Macrophage depletion may result in impaired tumor maintenance and represent a therapeutic strategy for neurofibroma therapy. PMID:23099891

  15. Thyroid hormone suppresses expression of stathmin and associated tumor growth in hepatocellular carcinoma

    PubMed Central

    Tseng, Yi-Hsin; Huang, Ya-Hui; Lin, Tzu-Kang; Wu, Sheng-Ming; Chi, Hsiang-Cheng; Tsai, Chung-Ying; Tsai, Ming-Ming; Lin, Yang-Hsiang; Chang, Wei-Chun; Chang, Ya-Ting; Chen, Wei-Jan; Lin, Kwang-Huei

    2016-01-01

    Stathmin (STMN1), a recognized oncoprotein upregulated in various solid tumors, promotes microtubule disassembly and modulates tumor growth and migration activity. However, the mechanisms underlying the genetic regulation of STMN1 have yet to be elucidated. In the current study, we report that thyroid hormone receptor (THR) expression is negatively correlated with STMN1 expression in a subset of clinical hepatocellular carcinoma (HCC) specimens. We further identified the STMN1 gene as a target of thyroid hormone (T3) in the HepG2 hepatoma cell line. An analysis of STMN1 expression profile and mechanism of transcriptional regulation revealed that T3 significantly suppressed STMN1 mRNA and protein expression, and further showed that THR directly targeted the STMN1 upstream element to regulate STMN1 transcriptional activity. Specific knockdown of STMN1 suppressed cell proliferation and xenograft tumor growth in mice. In addition, T3 regulation of cell growth arrest and cell cycle distribution were attenuated by overexpression of STMN1. Our results suggest that the oncogene STMN1 is transcriptionally downregulated by T3 in the liver. This T3-mediated suppression of STMN1 supports the theory that T3 plays an inhibitory role in HCC tumor growth, and suggests that the lack of normal THR function leads to elevated STMN1 expression and malignant growth. PMID:27934948

  16. Ecto-5’-Nucleotidase Overexpression Reduces Tumor Growth in a Xenograph Medulloblastoma Model

    PubMed Central

    Cappellari, Angélica R.; Pillat, Micheli M.; Souza, Hellio D. N.; Dietrich, Fabrícia; Oliveira, Francine H.; Figueiró, Fabrício; Abujamra, Ana L.; Roesler, Rafael; Lecka, Joanna; Sévigny, Jean; Battastini, Ana Maria O.; Ulrich, Henning

    2015-01-01

    Background Ecto-5’-nucleotidase/CD73 (ecto-5’-NT) participates in extracellular ATP catabolism by converting adenosine monophosphate (AMP) into adenosine. This enzyme affects the progression and invasiveness of different tumors. Furthermore, the expression of ecto-5’-NT has also been suggested as a favorable prognostic marker, attributing to this enzyme contradictory functions in cancer. Medulloblastoma (MB) is the most common brain tumor of the cerebellum and affects mainly children. Materials and Methods The effects of ecto-5’-NT overexpression on human MB tumor growth were studied in an in vivo model. Balb/c immunodeficient (nude) 6 to 14-week-old mice were used for dorsal subcutaneous xenograph tumor implant. Tumor development was evaluated by pathophysiological analysis. In addition, the expression patterns of adenosine receptors were verified. Results The human MB cell line D283, transfected with ecto-5’-NT (D283hCD73), revealed reduced tumor growth compared to the original cell line transfected with an empty vector. D283hCD73 generated tumors with a reduced proliferative index, lower vascularization, the presence of differentiated cells and increased active caspase-3 expression. Prominent A1 adenosine receptor expression rates were detected in MB cells overexpressing ecto-5’-NT. Conclusion This work suggests that ecto-5’-NT promotes reduced tumor growth to reduce cell proliferation and vascularization, promote higher differentiation rates and initiate apoptosis, supposedly by accumulating adenosine, which then acts through A1 adenosine receptors. Therefore, ecto-5’-NT might be considered an important prognostic marker, being associated with good prognosis and used as a potential target for therapy. PMID:26491983

  17. Ovarian high-grade serous carcinoma with a noninvasive growth pattern simulating a serous borderline tumor.

    PubMed

    Imamura, Hiroko; Ohishi, Yoshihiro; Aman, Murasaki; Shida, Kaai; Shinozaki, Tomoko; Yasutake, Nobuko; Sonoda, Kenzo; Kato, Kiyoko; Oda, Yoshinao

    2015-10-01

    Ovarian serous borderline tumors (SBTs) being a precursor of low-grade serous carcinomas are morphologically characterized by noninvasive growth and low-grade cytology. On the other hand, many pathologists regard cytologically high-grade, noninvasive (HG-noninv) ovarian serous tumors resembling SBTs in low magnification as conventional high-grade serous carcinomas (HGSCs) by personal experiences. Nonetheless, there are no established molecular characteristic of such tumors. In this study, therefore, we attempted to provide the molecular evidence. We selected 37 ovarian serous tumors that exhibited a cytologically HG-noninv growth pattern, including 36 tumors that coexisted with conventional invasive HGSC components (HG-inv) and a single tumor exclusively composed of pure HG-noninv. Histologically, all HG-noninv showed many mitotic figures, and serous tubal intraepithelial carcinomas were identified in 3 tumors with HG-noninv. Immunohistochemically, most HG-noninv showed aberrant p53 expression, frequent IMP3 positivity, p16 overexpression, a high MIB-1 labeling index, and infrequent PAX2. By molecular analysis, the pure HG-noninv and 13 HGSCs with HG-noninv showed TP53 mutations, but KRAS/BRAF mutations were not detected in any of them. In 1 tumor, we detected an identical TP53 mutation in both HG-noninv and HG-inv components by using laser capture microdissection. These immunohistochemical and molecular features of HG-noninv were similar to those of conventional invasive HGSCs but different from those of SBTs. In conclusion, our results showed that a cytologically HG-noninv growth pattern simulating an SBT is a morphological spectrum of HGSC, but not a true SBT.

  18. Regulation of tumor growth by circulating full-length chromogranin A

    PubMed Central

    Gasparri, Anna; Sacchi, Angelina; Colombo, Barbara; Fiocchi, Martina; Perani, Laura; Venturini, Massimo; Tacchetti, Carlo; Sen, Suvajit; Borges, Ricardo; Dondossola, Eleonora; Esposito, Antonio; Mahata, Sushil K.; Corti, Angelo

    2016-01-01

    Chromogranin A (CgA), a neuroendocrine secretory protein, and its fragments are present in variable amounts in the blood of normal subjects and cancer patients. We investigated whether circulating CgA has a regulatory function in tumor biology and progression. Systemic administration of full-length CgA, but not of fragments lacking the C-terminal region, could reduce tumor growth in murine models of fibrosarcoma, mammary adenocarcinoma, Lewis lung carcinoma, and primary and metastatic melanoma, with U-shaped dose-response curves. Tumor growth inhibition was associated with reduction of microvessel density and blood flow in neoplastic tissues. Neutralization of endogenous CgA with antibodies against its C-terminal region (residues 410-439) promoted tumor growth. Structure-function studies showed that the C-terminal region of CgA contains a bioactive site and that cleavage of this region causes a marked loss of anti-angiogenic and anti-tumor potency. Mechanistic studies showed that full-length CgA could induce, with a U-shaped dose-response curve, the production of protease nexin-1 in endothelial cells, a serine protease inhibitor endowed of anti-angiogenic activity. Gene silencing or neutralization of protease nexin-1 with specific antibodies abolished both anti-angiogenic and anti-tumor effects of CgA. These results suggest that circulating full-length CgA is an important inhibitor of angiogenesis and tumor growth, and that cleavage of its C-terminal region markedly reduces its activity. Pathophysiological changes in CgA blood levels and/or its fragmentation might regulate disease progression in cancer patients. PMID:27683038

  19. 2-(ω-Carboxyethyl)pyrrole Antibody as a New Inhibitor of Tumor Angiogenesis and Growth.

    PubMed

    Wu, Chunying; Wang, Xizhen; Tomko, Nicholas; Zhu, Junqing; Wang, William R; Zhu, Jinle; Wang, Yanming; Salomon, Robert G

    2016-09-22

    Angiogenesis is a fundamental process in the progression, invasion, and metastasis of tumors. Therapeutic drugs such as bevacizumab and ranibuzumab have thus been developed to inhibit vascular endothelial growth factor (VEFG)-promoted angiogenesis. While these anti-angiogenic drugs have been commonly used in the treatment of cancer, patients often develop significant resistance that limits the efficacy of anti-VEGF therapies to a short period of time. This is in part due to the fact that an independent pathway of angiogenesis exists, which is mediated by 2-(ω-carboxyethyl)pyrrole (CEP) in a TLR2 receptor-dependent manner that can compensate for inhibition of the VEGF-mediated pathway. In this work, we evaluated a CEP antibody as a new tumor growth inhibitor that blocks CEP-induced angiogenesis. We first evaluated the effectiveness of a CEP antibody as a monotherapy to impede tumor growth in two human tumor xenograft models. We then determined the synergistic effects of bevacizumab and CEP antibody in a combination therapy, which demonstrated that blocking of the CEP-mediated pathway significantly enhanced the anti-angiogenic efficacy of bevacizumab in tumor growth inhibition indicating that CEP antibody is a promising chemotherapeutic drug. To facilitate potential translational studies of CEP-antibody, we also conducted longitudinal imaging studies and identified that FMISO-PET is a non-invasive imaging tool that can be used to quantitatively monitor the anti-angiogenic effects of CEP-antibody in the clinical setting. That treatment with CEP antibody induces hypoxia in tumor tissue was indicated by 43% higher uptake of [18F]FMISO in CEP antibody-treated tumor xenografs than in the control PBS-treated littermates.

  20. Effect of soy isoflavones on the growth of human breast tumors: findings from preclinical studies

    PubMed Central

    Kwon, Youngjoo

    2014-01-01

    Breast cancer is the most common cancer among women worldwide, and many women with breast cancer live more than 5 years after their diagnosis. Breast cancer patients and survivors have a greater interest in taking soy foods and isoflavone supplements. However, the effect of isoflavones on breast cancer remains controversial. Thus, it is critical to determine if and when isoflavones are beneficial or detrimental to breast cancer patients. According to the available preclinical data, high concentrations of isoflavones inhibit the proliferation of breast cancer cells, regardless of their estrogen receptor (ER) status. In comparison, genistein, a major isoflavone, has stimulated tumor growth at low concentrations and mitigated tamoxifen efficacy in ER-positive breast cancer. Studies have indicated that the relative levels of genistein and estrogen at the target site are important to determine the genistein effect on the ER-positive tumor growth. However, studies using ovariectomized mice and subcutaneous xenograft models might not truly reflect estrogen concentrations in human breast tumors. Moreover, it may be an oversimplification that isoflavones stimulate hormone-dependent tumor growth due to their potential estrogenic effect since studies also suggest nonestrogenic anticancer effects of isoflavones and ER-independent anticancer activity of tamoxifen. Therefore, the concentrations of isoflavones and estrogen in human breast tumors should be considered better in future preclinical studies and the parameters that can estimate those levels in breast tumors are required in human clinical/epidemiological investigation. In addition, it will be important to identify the molecular mechanisms that either inhibit or promote the growth of breast cancer cells by soy isoflavones, and use those molecules to evaluate the relevance of the preclinical findings to the human disease and to predict the health effects of isoflavones in human breast tumors. PMID:25493176

  1. Radiotherapy planning for glioblastoma based on a tumor growth model: implications for spatial dose redistribution.

    PubMed

    Unkelbach, Jan; Menze, Bjoern H; Konukoglu, Ender; Dittmann, Florian; Ayache, Nicholas; Shih, Helen A

    2014-02-07

    Gliomas differ from many other tumors as they grow infiltratively into the brain parenchyma rather than forming a solid tumor mass with a well-defined boundary. Tumor cells can be found several centimeters away from the central tumor mass that is visible using current imaging techniques. The infiltrative growth characteristics of gliomas question the concept of a radiotherapy target volume that is irradiated to a homogeneous dose-the standard in current clinical practice. We discuss the use of the Fisher-Kolmogorov glioma growth model in radiotherapy treatment planning. The phenomenological tumor growth model assumes that tumor cells proliferate locally and migrate into neighboring brain tissue, which is mathematically described via a partial differential equation for the spatio-temporal evolution of the tumor cell density. In this model, the tumor cell density drops approximately exponentially with distance from the visible gross tumor volume, which is quantified by the infiltration length, a parameter describing the distance at which the tumor cell density drops by a factor of e. This paper discusses the implications for the prescribed dose distribution in the periphery of the tumor. In the context of the exponential cell kill model, an exponential fall-off of the cell density suggests a linear fall-off of the prescription dose with distance. We introduce the dose fall-off rate, which quantifies the steepness of the prescription dose fall-off in units of Gy mm(-1). It is shown that the dose fall-off rate is given by the inverse of the product of radiosensitivity and infiltration length. For an infiltration length of 3 mm and a surviving fraction of 50% at 2 Gy, this suggests a dose fall-off of approximately 1 Gy mm(-1). The concept is illustrated for two glioblastoma patients by optimizing intensity-modulated radiotherapy plans. The dose fall-off rate concept reflects the idea that infiltrating gliomas lack a defined boundary and are characterized by a

  2. Radiotherapy planning for glioblastoma based on a tumor growth model: implications for spatial dose redistribution

    NASA Astrophysics Data System (ADS)

    Unkelbach, Jan; Menze, Bjoern H.; Konukoglu, Ender; Dittmann, Florian; Ayache, Nicholas; Shih, Helen A.

    2014-02-01

    Gliomas differ from many other tumors as they grow infiltratively into the brain parenchyma rather than forming a solid tumor mass with a well-defined boundary. Tumor cells can be found several centimeters away from the central tumor mass that is visible using current imaging techniques. The infiltrative growth characteristics of gliomas question the concept of a radiotherapy target volume that is irradiated to a homogeneous dose—the standard in current clinical practice. We discuss the use of the Fisher-Kolmogorov glioma growth model in radiotherapy treatment planning. The phenomenological tumor growth model assumes that tumor cells proliferate locally and migrate into neighboring brain tissue, which is mathematically described via a partial differential equation for the spatio-temporal evolution of the tumor cell density. In this model, the tumor cell density drops approximately exponentially with distance from the visible gross tumor volume, which is quantified by the infiltration length, a parameter describing the distance at which the tumor cell density drops by a factor of e. This paper discusses the implications for the prescribed dose distribution in the periphery of the tumor. In the context of the exponential cell kill model, an exponential fall-off of the cell density suggests a linear fall-off of the prescription dose with distance. We introduce the dose fall-off rate, which quantifies the steepness of the prescription dose fall-off in units of Gy mm-1. It is shown that the dose fall-off rate is given by the inverse of the product of radiosensitivity and infiltration length. For an infiltration length of 3 mm and a surviving fraction of 50% at 2 Gy, this suggests a dose fall-off of approximately 1 Gy mm-1. The concept is illustrated for two glioblastoma patients by optimizing intensity-modulated radiotherapy plans. The dose fall-off rate concept reflects the idea that infiltrating gliomas lack a defined boundary and are characterized by a continuous

  3. Gompertz model with delays and treatment: mathematical analysis.

    PubMed

    Bodnar, Marek; Piotrowska, Monika Joanna; Foryś, Urszula

    2013-06-01

    In this paper we study the delayed Gompertz model, as a typical model of tumor growth, with a term describing external interference that can reflect a treatment, e.g. chemotherapy. We mainly consider two types of delayed models, the one with the delay introduced in the per capita growth rate (we call it the single delayed model) and the other with the delay introduced in the net growth rate (the double delayed model). We focus on stability and possible stability switches with increasing delay for the positive steady state. Moreover, we study a Hopf bifurcation, including stability of arising periodic solutions for a constant treatment. The analytical results are extended by numerical simulations for a pharmacokinetic treatment function.

  4. Cellular and Tumor Radiosensitivity is Correlated to Epidermal Growth Factor Receptor Protein Expression Level in Tumors Without EGFR Amplification;Epidermal growth factor receptor; Radiotherapy; Squamous cell carcinoma; Biomarker; Local tumor control

    SciTech Connect

    Kasten-Pisula, Ulla; Saker, Jarob; Eicheler, Wolfgang; Krause, Mechthild; Yaromina, Ala; Meyer-Staeckling, Soenke; Scherkl, Benjamin; Kriegs, Malte; Brandt, Burkhard; Grenman, Reidar; Petersen, Cordula; Baumann, Michael; Dikomey, Ekkehard

    2011-07-15

    Purpose: There is conflicting evidence for whether the expression of epidermal growth factor receptor in human tumors can be used as a marker of radioresponse. Therefore, this association was studied in a systematic manner using squamous cell carcinoma (SCC) cell lines grown as cell cultures and xenografts. Methods and Materials: The study was performed with 24 tumor cell lines of different tumor types, including 10 SCC lines, which were also investigated as xenografts on nude mice. Egfr gene dose and the length of CA-repeats in intron 1 were determined by polymerase chain reaction, protein expression in vitro by Western blot and in vivo by enzyme-linked immunosorbent assay, and radiosensitivity in vitro by colony formation. Data were correlated with previously published tumor control dose 50% data after fractionated irradiation of xenografts of the 10 SCC. Results: EGFR protein expression varies considerably, with most tumor cell lines showing moderate and only few showing pronounced upregulation. EGFR upregulation could only be attributed to massive gene amplification in the latter. In the case of little or no amplification, in vitro EGFR expression correlated with both cellular and tumor radioresponse. In vivo EGFR expression did not show this correlation. Conclusions: Local tumor control after the fractionated irradiation of tumors with little or no gene amplification seems to be dependent on in vitro EGFR via its effect on cellular radiosensitivity.

  5. Critical Role of Shp2 in Tumor Growth Involving Regulation of c-Myc

    PubMed Central

    Ren, Yuan; Chen, Zhengming; Chen, Liwei; Fang, Bin; Win-Piazza, Hla; Haura, Eric; Koomen, John M.; Wu, Jie

    2010-01-01

    Activating mutants of Shp2 protein tyrosine phosphatase, encoded by the PTPN11 gene, are linked to leukemia. In solid tumors, however, PTPN11 mutations occur at low frequencies, while the wild-type Shp2 is activated by protein tyrosine kinases (PTKs) in cancer cells and mediates PTK signaling. Therefore, it is important to address whether the wild-type Shp2 plays a functional role critical for tumor growth. Using shRNAs and a PTP-inactive mutant to inhibit Shp2, we find here that tumor growth of DU145 prostate cancer and H292 lung cancer cells depends on Shp2. Suppression of Shp2 inhibited cell proliferation, decreased c-Myc, and increased p27 expression in cell cultures. In H292 tumor tissues, c-Myc–positive cells coincided with Ki67-positive cells, and smaller tumors from Shp2 knockdown cells had less c-Myc–positive cells and more nuclear p27. Shp2-regulated c-Myc expression was mediated by Src and Erk1/2. Down-regulation of c-Myc reduced cell proliferation, while up-regulation of c-Myc in Shp2 knockdown H292 cells partially rescued the inhibitory effect of Shp2 suppression on cell proliferation. Tyrosine phosphoproteomic analysis of H292 tumor tissues showed that Shp2 could both up-regulate and down-regulate tyrosine phosphorylation on cellular proteins. Among other changes, Shp2 inhibition increased phosphorylation of Src Tyr-530 and Cdk1 Thr-14/Tyr-15 and decreased phosphorylation of Erk1- and Erk2-activating sites in the tumors. Significantly, we found that Shp2 positively regulated Gab1 Tyr-627/Tyr-659 phosphorylation. This finding reveals that Shp2 can autoregulate its own activating signal. Shp2 Tyr-62/Tyr-63 phosphorylation was observed in tumor tissues, indicating that Shp2 is activated in the tumors. PMID:21442024

  6. β1 integrin- and JNK-dependent tumor growth upon hypofractionated radiation

    PubMed Central

    Sayeed, Aejaz; Lu, Huimin; Liu, Qin; II, David Deming; Duffy, Alexander; McCue, Peter; Dicker, Adam P.; Davis, Roger J.; Gabrilovich, Dmitry; Rodeck, Ulrich; Altieri, Dario C.; Languino, Lucia R.

    2016-01-01

    Radiation therapy is an effective cancer treatment modality although tumors invariably become resistant. Using the transgenic adenocarcinoma of mouse prostate (TRAMP) model system, we report that a hypofractionated radiation schedule (10 Gy/day for 5 consecutive days) effectively blocks prostate tumor growth in wild type (β1wt /TRAMP) mice as well as in mice carrying a conditional ablation of β1 integrins in the prostatic epithelium (β1pc-/- /TRAMP). Since JNK is known to be suppressed by β1 integrins and mediates radiation-induced apoptosis, we tested the effect of SP600125, an inhibitor of c-Jun amino-terminal kinase (JNK) in the TRAMP model system. Our results show that SP600125 negates the effect of radiation on tumor growth in β1pc-/- /TRAMP mice and leads to invasive adenocarcinoma. These effects are associated with increased focal adhesion kinase (FAK) expression and phosphorylation in prostate tumors in β1pc-/- /TRAMP mice. In marked contrast, radiation-induced tumor growth suppression, FAK expression and phosphorylation are not altered by SP600125 treatment of β1wt /TRAMP mice. Furthermore, we have reported earlier that abrogation of insulin-like growth factor receptor (IGF-IR) in prostate cancer cells enhances the sensitivity to radiation. Here we further explore the β1/IGF-IR crosstalk and report that β1 integrins promote cell proliferation partly by enhancing the expression of IGF-IR. In conclusion, we demonstrate that β1 integrin-mediated inhibition of JNK signaling modulates tumor growth rate upon hypofractionated radiation. PMID:27438371

  7. Phytochemical potential of Eruca sativa for inhibition of melanoma tumor growth.

    PubMed

    Khoobchandani, M; Ganesh, N; Gabbanini, S; Valgimigli, L; Srivastava, M M

    2011-06-01

    Solvent extracts from the aerial and root parts and seed oil from E. sativa (rocket salad) were assayed for anticancer activity against melanoma cells. The seed oil (isothiocyanates rich) significantly (p<0.01) reduced the tumor growth comparable to the control. Remarkably, the seed oil inhibited melanoma growth and angiogenesis in mice without any major toxicity. The findings qualify seed oil for further investigations in the real of cancer prevention and treatment.

  8. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress

    PubMed Central

    Zaugg, Kathrin; Yao, Yi; Reilly, Patrick T.; Kannan, Karuppiah; Kiarash, Reza; Mason, Jacqueline; Huang, Ping; Sawyer, Suzanne K.; Fuerth, Benjamin; Faubert, Brandon; Kalliomäki, Tuula; Elia, Andrew; Luo, Xunyi; Nadeem, Vincent; Bungard, David; Yalavarthi, Sireesha; Growney, Joseph D.; Wakeham, Andrew; Moolani, Yasmin; Silvester, Jennifer; Ten, Annick You; Bakker, Walbert; Tsuchihara, Katsuya; Berger, Shelley L.; Hill, Richard P.; Jones, Russell G.; Tsao, Ming; Robinson, Murray O.; Thompson, Craig B.; Pan, Guohua; Mak, Tak W.

    2011-01-01

    Tumor cells gain a survival/growth advantage by adapting their metabolism to respond to environmental stress, a process known as metabolic transformation. The best-known aspect of metabolic transformation is the Warburg effect, whereby cancer cells up-regulate glycolysis under aerobic conditions. However, other mechanisms mediating metabolic transformation remain undefined. Here we report that carnitine palmitoyltransferase 1C (CPT1C), a brain-specific metabolic enzyme, may participate in metabolic transformation. CPT1C expression correlates inversely with mammalian target of rapamycin (mTOR) pathway activation, contributes to rapamycin resistance in murine primary tumors, and is frequently up-regulated in human lung tumors. Tumor cells constitutively expressing CPT1C show increased fatty acid (FA) oxidation, ATP production, and resistance to glucose deprivation or hypoxia. Conversely, cancer cells lacking CPT1C produce less ATP and are more sensitive to metabolic stress. CPT1C depletion via siRNA suppresses xenograft tumor growth and metformin responsiveness in vivo. CPT1C can be induced by hypoxia or glucose deprivation and is regulated by AMPKα. Cpt1c-deficient murine embryonic stem (ES) cells show sensitivity to hypoxia and glucose deprivation and altered FA homeostasis. Our results indicate that cells can use a novel mechanism involving CPT1C and FA metabolism to protect against metabolic stress. CPT1C may thus be a new therapeutic target for the treatment of hypoxic tumors. PMID:21576264

  9. An Adaptive Multigrid Algorithm for Simulating Solid Tumor Growth Using Mixture Models

    PubMed Central

    Wise, S.M.; Lowengrub, J.S.; Cristini, V.

    2010-01-01

    In this paper we give the details of the numerical solution of a three-dimensional multispecies diffuse interface model of tumor growth, which was derived in (Wise et al., J. Theor. Biol. 253 (2008)) and used to study the development of glioma in (Frieboes et al., NeuroImage 37 (2007) and tumor invasion in (Bearer et al., Cancer Research, 69 (2009)) and (Frieboes et al., J. Theor. Biol. 264 (2010)). The model has a thermodynamic basis, is related to recently developed mixture models, and is capable of providing a detailed description of tumor progression. It utilizes a diffuse interface approach, whereby sharp tumor boundaries are replaced by narrow transition layers that arise due to differential adhesive forces among the cell-species. The model consists of fourth-order nonlinear advection-reaction-diffusion equations (of Cahn-Hilliard-type) for the cell-species coupled with reaction-diffusion equations for the substrate components. Numerical solution of the model is challenging because the equations are coupled, highly nonlinear, and numerically stiff. In this paper we describe a fully adaptive, nonlinear multigrid/finite difference method for efficiently solving the equations. We demonstrate the convergence of the algorithm and we present simulations of tumor growth in 2D and 3D that demonstrate the capabilities of the algorithm in accurately and efficiently simulating the progression of tumors with complex morphologies. PMID:21076663

  10. Cimetidine suppresses lung tumor growth in mice through proapoptosis of myeloid-derived suppressor cells.

    PubMed

    Zheng, Yisheng; Xu, Meng; Li, Xiao; Jia, Jinpeng; Fan, Kexing; Lai, Guoxiang

    2013-05-01

    Cimetidine, a histamine type-2 receptor antagonist, is known to inhibit the growth of several tumors in human and animals, however the mechanism of action underlying this effect remains largely unknown. Here, in the mice model of 3LL lung tumor, cimetidine showed significant inhibition of tumor growth. However, an in vitro study demonstrated that cimetidine showed no effect on proliferation, survival, migration and invasion of 3LL cells. We found that cimetidine reduced CD11b(+)Gr-1(+) myeloid derived-suppressive cell (MDSC) accumulation in spleen, blood and tumor tissue of tumor-bearing mice. In vitro coculture assay showed that cimetidine reversed MDSC-mediated T-cell suppression, and improved IFN-γ production. Further investigation demonstrated that the NO production and arginase I expression of MDSCs were reduced, and MDSCs prone to apoptosis by cimetidine treatment. However, MDSC differentiation was not affect by cimetidine. Importantly, although histamine H2 receptor was expressed in MDSC surface, histamine could not reverse the proapoptosis of cimetidine. Moreover, famotidine also did not have this capacity. We found that cimetidine could induce Fas and FasL expression in MDSC surface, and sequentially regulate caspase-dependent apoptosis pathway. Thus, these findings revealed a novel mechanism for cimetidine to inhibit tumor via modulation of MDSC apoptosis.

  11. Possible mechanisms by which pro- and prebiotics influence colon carcinogenesis and tumor growth.

    PubMed

    Reddy, B S

    1999-07-01

    Oligofructose and inulin, selective fermentable chicory fructans, have been shown to stimulate the growth of bifidobacteria, which are regarded as beneficial strains in the colon. Studies were designed to evaluate inulin (Raftiline) and oligofructose (Raftilose) for their potential inhibitory properties against the development of colonic aberrant crypt foci (ACF) in rats. ACF are putative preneoplastic lesions from which adenomas and carcinomas may develop in the colon. The results of this study indicate that dietary administration of oligofructose and inulin inhibits the development of ACF in the colon, suggesting the potential colon tumor inhibitory properties of chicory fructans. The degree of ACF inhibition was more pronounced in animals given inulin than in those fed oligofructose. Because these prebiotics selectively stimulate the growth of bifidobacteria, ornithine decarboxylase (ODC) activities, ras-p21 ontoprotein expressions and tumor inhibitory activity of lyophilized cultures of Bifidobacterium longum against chemically induced colon and mammary carcinogenesis and against colonic tumor cell proliferation were examined. Dietary administration of lyophilized cultures of B. longum strongly suppressed colon and mammary tumor development and tumor burden. Inhibition of colon carcinogenesis was associated with a decrease in colonic mucosal cell proliferation and activities of colonic mucosal and tumor ornithine decarboxylase and ras-p21. Human clinical trials are likely to broaden our insight into the importance of the pre- and probiotics in health and disease.

  12. A cellular automata model for avascular solid tumor growth under the effect of therapy

    NASA Astrophysics Data System (ADS)

    Reis, E. A.; Santos, L. B. L.; Pinho, S. T. R.

    2009-04-01

    Tumor growth has long been a target of investigation within the context of mathematical and computer modeling. The objective of this study is to propose and analyze a two-dimensional stochastic cellular automata model to describe avascular solid tumor growth, taking into account both the competition between cancer cells and normal cells for nutrients and/or space and a time-dependent proliferation of cancer cells. Gompertzian growth, characteristic of some tumors, is described and some of the features of the time-spatial pattern of solid tumors, such as compact morphology with irregular borders, are captured. The parameter space is studied in order to analyze the occurrence of necrosis and the response to therapy. Our findings suggest that transitions exist between necrotic and non-necrotic phases (no-therapy cases), and between the states of cure and non-cure (therapy cases). To analyze cure, the control and order parameters are, respectively, the highest probability of cancer cell proliferation and the probability of the therapeutic effect on cancer cells. With respect to patterns, it is possible to observe the inner necrotic core and the effect of the therapy destroying the tumor from its outer borders inwards.

  13. Disruption of lysosome function promotes tumor growth and metastasis in Drosophila.

    PubMed

    Chi, Congwu; Zhu, Huanhu; Han, Min; Zhuang, Yuan; Wu, Xiaohui; Xu, Tian

    2010-07-09

    Lysosome function is essential to many physiological processes. It has been suggested that deregulation of lysosome function could contribute to cancer. Through a genetic screen in Drosophila, we have discovered that mutations disrupting lysosomal degradation pathway components contribute to tumor development and progression. Loss-of-function mutations in the Class C vacuolar protein sorting (VPS) gene, deep orange (dor), dramatically promote tumor overgrowth and invasion of the Ras(V12) cells. Knocking down either of the two other components of the Class C VPS complex, carnation (car) and vps16A, also renders Ras(V12) cells capable for uncontrolled growth and metastatic behavior. Finally, chemical disruption of the lysosomal function by feeding animals with antimalarial drugs, chloroquine or monensin, leads to malignant tumor growth of the Ras(V12) cells. Taken together, our data provide evidence for a causative role of lysosome dysfunction in tumor growth and invasion and indicate that members of the Class C VPS complex behave as tumor suppressors.

  14. An uncleavable form of pro–scatter factor suppresses tumor growth and dissemination in mice

    PubMed Central

    Mazzone, Massimiliano; Basilico, Cristina; Cavassa, Silvia; Pennacchietti, Selma; Risio, Mauro; Naldini, Luigi; Comoglio, Paolo M.; Michieli, Paolo

    2004-01-01

    Scatter factor (SF), also known as hepatocyte growth factor, is ubiquitously present in the extracellular matrix of tissues in the form of an inactive precursor (pro-SF). In order to acquire biological activity, pro-SF must be cleaved by specific proteases present on the cell surface. The mature form of SF controls invasive cues in both physiological and pathological processes through activation of its receptor, the Met tyrosine kinase. By substituting a single amino acid in the proteolytic site, we engineered an unprocessable form of pro-SF (uncleavable SF). Using lentivirus vector technology, we achieved local or systemic delivery of uncleavable SF in mice. We provide evidence that (a) uncleavable SF inhibits both protease-mediated pro-SF conversion and active SF–induced Met activation; (b) local expression of uncleavable SF in tumors suppresses tumor growth, impairs tumor angiogenesis, and prevents metastatic dissemination; and (c) systemic expression of uncleavable SF dramatically inhibits the growth of transplanted tumors and abolishes the formation of spontaneous metastases without perturbing vital physiological functions. These data show that proteolytic activation of pro-SF is a limiting step in tumor progression, thus suggesting a new strategy for the treatment or prevention of the malignant conversion of neoplastic lesions. PMID:15545993

  15. An uncleavable form of pro-scatter factor suppresses tumor growth and dissemination in mice.

    PubMed

    Mazzone, Massimiliano; Basilico, Cristina; Cavassa, Silvia; Pennacchietti, Selma; Risio, Mauro; Naldini, Luigi; Comoglio, Paolo M; Michieli, Paolo

    2004-11-01

    Scatter factor (SF), also known as hepatocyte growth factor, is ubiquitously present in the extracellular matrix of tissues in the form of an inactive precursor (pro-SF). In order to acquire biological activity, pro-SF must be cleaved by specific proteases present on the cell surface. The mature form of SF controls invasive cues in both physiological and pathological processes through activation of its receptor, the Met tyrosine kinase. By substituting a single amino acid in the proteolytic site, we engineered an unprocessable form of pro-SF (uncleavable SF). Using lentivirus vector technology, we achieved local or systemic delivery of uncleavable SF in mice. We provide evidence that (a) uncleavable SF inhibits both protease-mediated pro-SF conversion and active SF-induced Met activation; (b) local expression of uncleavable SF in tumors suppresses tumor growth, impairs tumor angiogenesis, and prevents metastatic dissemination; and (c) systemic expression of uncleavable SF dramatically inhibits the growth of transplanted tumors and abolishes the formation of spontaneous metastases without perturbing vital physiological functions. These data show that proteolytic activation of pro-SF is a limiting step in tumor progression, thus suggesting a new strategy for the treatment or prevention of the malignant conversion of neoplastic lesions.

  16. Exploring Drug Dosing Regimens In Vitro Using Real-Time 3D Spheroid Tumor Growth Assays.

    PubMed

    Lal-Nag, Madhu; McGee, Lauren; Titus, Steven A; Brimacombe, Kyle; Michael, Sam; Sittampalam, Gurusingham; Ferrer, Marc

    2017-03-01

    Two-dimensional monolayer cell proliferation assays for cancer drug discovery have made the implementation of large-scale screens feasible but only seem to reflect a simplified view that oncogenes or tumor suppressor genes are the genetic drivers of cancer cell proliferation. However, there is now increased evidence that the cellular and physiological context in which these oncogenic events occur play a key role in how they drive tumor growth in vivo and, therefore, in how tumors respond to drug treatments. In vitro 3D spheroid tumor models are being developed to better mimic the physiology of tumors in vivo, in an attempt to improve the predictability and efficiency of drug discovery for the treatment of cancer. Here we describe the establishment of a real-time 3D spheroid growth, 384-well screening assay. The cells used in this study constitutively expressed green fluorescent protein (GFP), which enabled the real-time monitoring of spheroid formation and the effect of chemotherapeutic agents on spheroid size at different time points of sphere growth and drug treatment. This real-time 3D spheroid assay platform represents a first step toward the replication in vitro of drug dosing regimens being investigated in vivo. We hope that further development of this assay platform will allow the investigation of drug dosing regimens, efficacy, and resistance before preclinical and clinical studies.

  17. Effect propagation in a toxicokinetic/toxicodynamic model explains delayed effects on the growth of unicellular green algae Scenedesmus vacuolatus.

    PubMed

    Vogs, Carolina; Bandow, Nicole; Altenburger, Rolf

    2013-04-01

    Ecotoxicological standard tests assess toxic effects by exposing an organism to high concentrations over defined periods of time. To evaluate toxicity under field conditions such as fluctuating and pulsed exposures, process-based toxicokinetic/toxicodynamic (TK/TD) models may be used for extrapolation from the existing evidence. A TK/TD model was developed that simulates the effect on growth of the green algae Scenedesmus vacuolatus continuously exposed to the model chemicals norflurazon, triclosan, and N-phenyl-2-naphthylamine. A pharmacological time-response model describing the effects of anticancer treatments on cancer cell growth was adapted and modified to model the affected growth of synchronized algae cells. The TK/TD model simulates the temporal effect course by linking the ambient concentration of a chemical to the observable adverse effect via an internal concentration and a sequence of biological events in the organism. The parameters of the toxicodynamic model are related to the growth characteristics of algae cells, a no effect concentration, the chemical efficacy as well as the ability of recovery and repair, and the delay during damage propagation. The TK/TD model fits well to the observed algae growth. The effect propagation through cumulative cell damage explained the observed delayed responses better than just the toxicokinetics. The TK/TD model could facilitate the link between several effect levels within damage propagation, which prospectively may be helpful to model adverse outcome pathways and time-dependent mixture effects.

  18. Lack of growth of a pregnancy-dependent mouse mammary tumor (TPDMT-4) in the absence of pituitary hormones.

    PubMed

    Matsuzawa, A; Yamamoto, T

    1977-04-01

    Mammary tumors of line TPDMT-4, established in DDD mice, were characterized by growth during pregnancy and regression after parturition; this resulted in higher growth peaks in subsequent pregnancies in breeders and no growth in virgins. The effect of hypophysectomy on tumor growth in mice given 17beta-estradiol (E) and progesterone (P) or deoxycorticosterone acetate (DCA) was investigated. Growth of cancers occurred in E+P- and E+DCA-treated virgins, but not in cholesterol-treated virgins. Tumors did not grow to palpable sizes in cholesterol-, E+P-, and E+DCA-treated hypophysectomized virgins; this indicated that pituitary hormones were essential for tumor growth. Impalpable cholesterol-treated, 5 of 10 E+P-treated, and 3 of 6 E+DCA-treated hypophysectomized animals. The neoplasms showed ductal and tubular structures that were lined by a single layer of well-differentiated buoidal epithelium, which suggested that the tumor line might be derived from ductal cells.

  19. Growth Hormone Protects the Intestine Preserving Radiotherapy Efficacy on Tumors: A Short-Term Study.

    PubMed

    Caz, Victor; Elvira, Marcos; Tabernero, Maria; Grande, Antonio G; Lopez-Plaza, Bricia; de Miguel, Enrique; Largo, Carlota; Santamaria, Monica

    2015-01-01

    The efficacy of radiotherapy on tumors is hampered by its devastating adverse effects on healthy tissue, particularly that of the gastrointestinal tract. These effects cause acute symptoms that are so disruptive to patients that they can lead to interruption of the radiotherapy program. These adverse effects could limit the intensity of radiation received by the patient, resulting in a sublethal dose to the tumor, thus increasing the risk of tumor resistance. The lack of an effective treatment to protect the bowel during radiation therapy to allow higher radiation doses that are lethal to the tumor has become a barrier to implementing effective therapy. In this study, we present a comparative analysis of both intestinal and tumor tissue in regard to the efficacy and the preventive impact of a short-term growth hormone (GH) treatment in tumor-bearing rats as a protective agent during radiotherapy. Our data show that the exogenous administration of GH improved intestinal recovery after radiation treatment while preserving the therapeutic effect against the tumor. GH significantly increased proliferation in the irradiated intestine but not in the irradiated tumors, as assessed by Positron Emission Tomography and the proliferative markers Ki67, cyclin D3, and Proliferating Cell Nuclear Antigen. This proliferative effect was consistent with a significant increase in irradiated intestinal villi and crypt length. Furthermore, GH significantly decreased caspase-3 activity in the intestine, whereas GH did not produce this effect in the irradiated tumors. In conclusion, short-term GH treatment protects the bowel, inducing proliferation while reducing apoptosis in healthy intestinal tissue and preserving radiotherapy efficacy on tumors.

  20. Growth Hormone Protects the Intestine Preserving Radiotherapy Efficacy on Tumors: A Short-Term Study

    PubMed Central

    Caz, Victor; Elvira, Marcos; Tabernero, Maria; Grande, Antonio G.; Lopez-Plaza, Bricia; de Miguel, Enrique; Largo, Carlota; Santamaria, Monica

    2015-01-01

    The efficacy of radiotherapy on tumors is hampered by its devastating adverse effects on healthy tissue, particularly that of the gastrointestinal tract. These effects cause acute symptoms that are so disruptive to patients that they can lead to interruption of the radiotherapy program. These adverse effects could limit the intensity of radiation received by the patient, resulting in a sublethal dose to the tumor, thus increasing the risk of tumor resistance. The lack of an effective treatment to protect the bowel during radiation therapy to allow higher radiation doses that are lethal to the tumor has become a barrier to implementing effective therapy. In this study, we present a comparative analysis of both intestinal and tumor tissue in regard to the efficacy and the preventive impact of a short-term growth hormone (GH) treatment in tumor-bearing rats as a protective agent during radiotherapy. Our data show that the exogenous administration of GH improved intestinal recovery after radiation treatment while preserving the therapeutic effect against the tumor. GH significantly increased proliferation in the irradiated intestine but not in the irradiated tumors, as assessed by Positron Emission Tomography and the proliferative markers Ki67, cyclin D3, and Proliferating Cell Nuclear Antigen. This proliferative effect was consistent with a significant increase in irradiated intestinal villi and crypt length. Furthermore, GH significantly decreased caspase-3 activity in the intestine, whereas GH did not produce this effect in the irradiated tumors. In conclusion, short-term GH treatment protects the bowel, inducing proliferation while reducing apoptosis in healthy intestinal tissue and preserving radiotherapy efficacy on tumors. PMID:26670463

  1. [Autowaves in a model of growth of an invasive tumor].

    PubMed

    Kolobov, A V; Gubernov, V V; Polezhaev, A A

    2009-01-01

    A mathematical model for the invasive tumour growth has been constructed, which takes cell division, death, and motility into account. The model includes local cell density and the distribution of nutrient (oxygen) concentration. Cancer cells die in the absence of nutrients; therefore, the distribution of oxygen in tissue substantially affects both the tumour proliferation rate and structure. The model adequately describes the experimentally measured rate of tumour proliferation. The existence of autowave solutions has been demonstrated, and their properties have been investigated. The results are compared with the properties of the Kolmogorov-Petrovskii-Piskunov and Fisher equations. It is shown that the nutrient distribution influences the speed selection and the convergence of the initial conditions to the automodel solution.

  2. Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth.

    PubMed

    Soman, Neelesh R; Baldwin, Steven L; Hu, Grace; Marsh, Jon N; Lanza, Gregory M; Heuser, John E; Arbeit, Jeffrey M; Wickline, Samuel A; Schlesinger, Paul H

    2009-09-01

    The in vivo application of cytolytic peptides for cancer therapeutics is hampered by toxicity, nonspecificity, and degradation. We previously developed a specific strategy to synthesize a nanoscale delivery vehicle for cytolytic peptides by incorporating the nonspecific amphipathic cytolytic peptide melittin into the outer lipid monolayer of a perfluorocarbon nanoparticle. Here, we have demonstrated that the favorable pharmacokinetics of this nanocarrier allows accumulation of melittin in murine tumors in vivo and a dramatic reduction in tumor growth without any apparent signs of toxicity. Furthermore, direct assays demonstrated that molecularly targeted nanocarriers selectively delivered melittin to multiple tumor targets, including endothelial and cancer cells, through a hemifusion mechanism. In cells, this hemifusion and transfer process did not disrupt the surface membrane but did trigger apoptosis and in animals caused regression of precancerous dysplastic lesions. Collectively, these data suggest that the ability to restrain the wide-spectrum lytic potential of a potent cytolytic peptide in a nanovehicle, combined with the flexibility of passive or active molecular targeting, represents an innovative molecular design for chemotherapy with broad-spectrum cytolytic peptides for the treatment of cancer at multiple stages.

  3. Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth

    PubMed Central

    Soman, Neelesh R.; Baldwin, Steven L.; Hu, Grace; Marsh, Jon N.; Lanza, Gregory M.; Heuser, John E.; Arbeit, Jeffrey M.; Wickline, Samuel A.; Schlesinger, Paul H.

    2009-01-01

    The in vivo application of cytolytic peptides for cancer therapeutics is hampered by toxicity, nonspecificity, and degradation. We previously developed a specific strategy to synthesize a nanoscale delivery vehicle for cytolytic peptides by incorporating the nonspecific amphipathic cytolytic peptide melittin into the outer lipid monolayer of a perfluorocarbon nanoparticle. Here, we have demonstrated that the favorable pharmacokinetics of this nanocarrier allows accumulation of melittin in murine tumors in vivo and a dramatic reduction in tumor growth without any apparent signs of toxicity. Furthermore, direct assays demonstrated that molecularly targeted nanocarriers selectively delivered melittin to multiple tumor targets, including endothelial and cancer cells, through a hemifusion mechanism. In cells, this hemifusion and transfer process did not disrupt the surface membrane but did trigger apoptosis and in animals caused regression of precancerous dysplastic lesions. Collectively, these data suggest that the ability to restrain the wide-spectrum lytic potential of a potent cytolytic peptide in a nanovehicle, combined with the flexibility of passive or active molecular targeting, represents an innovative molecular design for chemotherapy with broad-spectrum cytolytic peptides for the treatment of cancer at multiple stages. PMID:19726870

  4. Mathematical model and its fast numerical method for the tumor growth.

    PubMed

    Lee, Hyun Geun; Kim, Yangjin; Kim, Junseok

    2015-12-01

    In this paper, we reformulate the diffuse interface model of the tumor growth (S.M. Wise et al., Three-dimensional multispecies nonlinear tumor growth-I: model and numerical method, J. Theor. Biol. 253 (2008) 524--543). In the new proposed model, we use the conservative second-order Allen--Cahn equation with a space--time dependent Lagrange multiplier instead of using the fourth-order Cahn--Hilliard equation in the original model. To numerically solve the new model, we apply a recently developed hybrid numerical method. We perform various numerical experiments. The computational results demonstrate that the new model is not only fast but also has a good feature such as distributing excess mass from the inside of tumor to its boundary regions.

  5. Fluctuations induced extinction and stochastic resonance effect in a model of tumor growth with periodic treatment

    NASA Astrophysics Data System (ADS)

    Li, Dongxi; Xu, Wei; Guo, Yongfeng; Xu, Yong

    2011-01-01

    We investigate a stochastic model of tumor growth derived from the catalytic Michaelis-Menten reaction with positional and environmental fluctuations under subthreshold periodic treatment. Firstly, the influences of environmental fluctuations on the treatable stage are analyzed numerically. Applying the standard theory of stochastic resonance derived from the two-state approach, we derive the signal-to-noise ratio (SNR) analytically, which is used to measure the stochastic resonance phenomenon. It is found that the weak environmental fluctuations could induce the extinction of tumor cells in the subthreshold periodic treatment. The positional stability is better in favor of the treatment of the tumor cells. Besides, the appropriate and feasible treatment intensity and the treatment cycle should be highlighted considered in the treatment of tumor cells.

  6. Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides

    PubMed Central

    Otto, Christoph; Kaemmerer, Ulrike; Illert, Bertram; Muehling, Bettina; Pfetzer, Nadja; Wittig, Rainer; Voelker, Hans Ullrich; Thiede, Arnulf; Coy, Johannes F

    2008-01-01

    Background Among the most prominent metabolic alterations in cancer cells are the increase in glucose consumption and the conversion of glucose to lactic acid via the reduction of pyruvate even in the presence of oxygen. This phenomenon, known as aerobic glycolysis or the Warburg effect, may provide a rationale for therapeutic strategies that inhibit tumour growth by administration of a ketogenic diet with average protein but low in carbohydrates and high in fat enriched with omega-3 fatty acids and medium-chain triglycerides (MCT). Methods Twenty-four female NMRI nude mice were injected subcutaneously with tumour cells of the gastric adenocarcinoma cell line 23132/87. The animals were then randomly split into two feeding groups and fed either a ketogenic diet (KD group; n = 12) or a standard diet (SD group; n = 12) ad libitum. Experiments were ended upon attainment of the target tumor volume of 600 mm3 to 700 mm3. The two diets were compared based on tumour growth and survival time (interval between tumour cell injection and attainment of target tumour volume). Results The ketogenic diet was well accepted by the KD mice. The tumour growth in the KD group was significantly delayed compared to that in the SD group. Tumours in the KD group reached the target tumour volume at 34.2 ± 8.5 days versus only 23.3 ± 3.9 days in the SD group. After day 20, tumours in the KD group grew faster although the differences in mean tumour growth continued significantly. Importantly, they revealed significantly larger necrotic areas than tumours of the SD group and the areas with vital tumour cells appear to have had fewer vessels than tumours of the SD group. Viable tumour cells in the border zone surrounding the necrotic areas of tumours of both groups exhibited a glycolytic phenotype with expression of glucose transporter-1 and transketolase-like 1 enzyme. Conclusion Application of an unrestricted ketogenic diet enriched with omega-3 fatty acids and MCT delayed tumour growth in

  7. Statins improve survival by inhibiting spontaneous metastasis and tumor growth in a mouse melanoma model

    PubMed Central

    Tsubaki, Masanobu; Takeda, Tomoya; Kino, Toshiki; Obata, Naoya; Itoh, Tatsuki; Imano, Motohiro; Mashimo, Kenji; Fujiwara, Daichiro; Sakaguchi, Katsuhiko; Satou, Takao; Nishida, Shozo

    2015-01-01

    Metastatic melanoma is a life-threatening disease for which no effective treatment is currently available. In melanoma cells, Rho overexpression promotes invasion and metastasis. However, the effect of statins on spontaneous metastasis and tumor growth remains unclear. In the present study, we investigated the mechanism of statin-mediated tumor growth and metastasis inhibition in an in vivo model. We found that statins significantly inhibited spontaneous metastasis and tumor growth. Statins inhibited the mRNA expression and enzymatic activities of matrix metalloproteinases (MMPs) in vivo and also suppressed the mRNA and protein expression of very late antigens (VLAs). Moreover, statins inhibited the prenylation of Rho as well as the phosphorylation of LIM kinase, serum response factor (SRF), and c-Fos downstream of the Rho signaling pathway. In addition, statins enhanced p53, p21, and p27 expression and reduced phosphorylation of cyclin-dependent kinase and expression of cyclin D1 and E2. These results indicate that statins suppress Rho signaling pathways, thereby inhibiting tumor metastasis and growth. Furthermore, statins markedly improved the survival rate in a metastasis model, suggesting that statins have potential clinical applications for the treatment of metastatic cancers. PMID:26693069

  8. Chaotic attractors in tumor growth and decay: a differential equation model.

    PubMed

    Harney, Michael; Yim, Wen-sau

    2015-01-01

    Tumorigenesis can be modeled as a system of chaotic nonlinear differential equations. A simulation of the system is realized by converting the differential equations to difference equations. The results of the simulation show that an increase in glucose in the presence of low oxygen levels decreases tumor growth.

  9. Walker 256 Tumor Growth Suppression by Crotoxin Involves Formyl Peptide Receptors and Lipoxin A4

    PubMed Central

    Brigatte, Patrícia; Faiad, Odair Jorge; Ferreira Nocelli, Roberta Cornélio; Landgraf, Richardt G.; Palma, Mario Sergio; Cury, Yara; Curi, Rui; Sampaio, Sandra Coccuzzo

    2016-01-01

    We investigated the effects of Crotoxin (CTX), the main toxin of South American rattlesnake (Crotalus durissus terrificus) venom, on Walker 256 tumor growth, the pain symptoms associated (hyperalgesia and allodynia), and participation of endogenous lipoxin A4. Treatment with CTX (s.c.), daily, for 5 days reduced tumor growth at the 5th day after injection of Walker 256 carcinoma cells into the plantar surface of adult rat hind paw. This observation was associated with inhibition of new blood vessel formation and decrease in blood vessel diameter. The treatment with CTX raised plasma concentrations of lipoxin A4 and its natural analogue 15-epi-LXA4, an effect mediated by formyl peptide receptors (FPRs). In fact, the treatment with Boc-2, an inhibitor of FPRs, abolished the increase in plasma levels of these mediators triggered by CTX. The blockage of these receptors also abolished the inhibitory action of CTX on tumor growth and blood vessel formation and the decrease in blood vessel diameter. Together, the results herein presented demonstrate that CTX increases plasma concentrations of lipoxin A4 and 15-epi-LXA4, which might inhibit both tumor growth and formation of new vessels via FPRs. PMID:27190493

  10. The C-terminus of IGFBP-5 suppresses tumor growth by inhibiting angiogenesis

    PubMed Central

    Hwang, Jae Ryoung; Cho, Young-Jae; Lee, Yoonna; Park, Youngmee; Han, Hee Dong; Ahn, Hyung Jun; Lee, Je-Ho; Lee, Jeong-Won

    2016-01-01

    Insulin-like growth factor-binding protein 5 (IGFBP-5) plays a role in cell growth, differentiation, and apoptosis. In this study, we found that IGFBP5 was markedly downregulated in ovarian cancer tissue. We investigated the functional significance of IGFBP-5 as a tumor suppressor. To determine functional regions of IGFBP-5, truncation mutants were prepared and were studied the effect on tumor growth. Expression of C-terminal region of IGFBP-5 significantly decreased tumor growth in an ovarian cancer xenograft. A peptide derived from the C-terminus of IGFBP-5 (BP5-C) was synthesized to evaluate the minimal amino acid motif that retained anti-tumorigenic activity and its effect on angiogenesis was studied. BP5-C peptide decreased the expression of VEGF-A and MMP-9, phosphorylation of Akt and ERK, and NF-kB activity, and inhibited angiogenesis in in vitro and ex vivo systems. Furthermore, BP5-C peptide significantly decreased tumor weight and angiogenesis in both ovarian cancer orthotopic xenograft and patient-derived xenograft mice. These results suggest that the C-terminus of IGFBP-5 exerts anti-cancer activity by inhibiting angiogenesis via regulation of the Akt/ERK and NF-kB–VEGF/MMP-9 signaling pathway, and might be considered as a novel angiogenesis inhibitor for the treatment of ovarian cancer. PMID:28008951

  11. A Multi-Compartment Mathematical Model of Cancer Stem Cell Driven Tumor Growth Dynamics

    PubMed Central

    Weekes, Suzanne L.; Barker, Brian; Bober, Sarah; Cisneros, Karina; Cline, Justina; Thompson, Amanda; Hlatky, Lynn; Hahnfeldt, Philip; Enderling, Heiko

    2014-01-01

    Tumors are appreciated to be an intrinsically heterogeneous population of cells with varying proliferation capacities and tumorigenic potentials. As a central tenet of the so-called cancer stem cell hypothesis, most cancer cells have only a limited lifespan and thus cannot initiate or re-initiate tumors. Longevity and clonogenicity are properties unique to the subpopulation of cancer stem cells. To understand the implications of the population structure suggested by this hypothesis - a hierarchy consisting of cancer stem cells and progeny non-stem cancer cells which experience a reduction in their remaining proliferation capacity per division - we set out to develop a mathematical model for the development of the aggregate population. We show that overall tumor progression rate during the exponential growth phase is identical to the growth rate of the cancer stem cell compartment. Tumors with identical stem cell proportions, however, can have different growth rates, dependent on the proliferation kinetics of all participating cell populations. Analysis of the model revealed that the proliferation potential of non-stem cancer cells is likely to be small to reproduce biologic observations. Furthermore, a single compartment of non-stem cancer cell population may adequately represent population growth dynamics only when the compartment proliferation rate is scaled with the generational hierarchy depth. PMID:24840956

  12. Inhibition of Tumor Growth and Metastasis by a Combination of Escherichia coli–mediated Cytolytic Therapy and Radiotherapy

    PubMed Central

    Jiang, Sheng-Nan; Phan, Thuy X; Nam, Taek-Keun; Nguyen, Vu H; Kim, Hyung-Seok; Bom, Hee-Seung; Choy, Hyon E; Hong, Yeongjin; Min, Jung-Joon

    2010-01-01

    We have reported that Escherichia coli K-12 colonizes hypoxic and necrotic tumor regions after intravenous injection into tumor-bearing mice. In this study, we established a novel strategy for cancer therapy using engineered bacteria to enhance the therapeutic effects of radiation. E. coli strain K-12 was engineered to produce cytolysin A (ClyA), and its effects on tumor growth in primary and metastatic tumor models were evaluated. A single treatment with E. coli–expressing ClyA significantly decreased tumor growth rates initially (9 days after treatment); however, the tumors tended to grow thereafter. With only radiotherapy (RT; 21 Gy), the tumor growth rates were retarded, but not the tumor sizes. A combination of therapy with E. coli–expressing ClyA and radiation [a total of 5 × 107 colony-forming units (CFU) and 21 Gy] resulted in significant tumor shrinkage and even complete disappearance of tumors in mice with tumors derived from murine CT26 colon cancer. Furthermore, treatment with E. coli–expressing ClyA markedly suppressed metastatic tumor growth and prolonged the survival time in mice. The results described here indicate that therapy with engineered E. coli could significantly improve the results of RT, and could exert a striking inhibitory effect on the development of lung metastasis. PMID:20051939

  13. The stem cell mobilizer StemEnhance does not promote tumor growth in an orthotopic model of human breast cancer.

    PubMed

    Drapeau, Christian; Ma, Huaiyu; Yang, Zhijian; Tang, Li; Hoffman, Robert M; Schaeffer, David J

    2009-01-01

    Bone marrow-derived stem cells (BMDSC) have been implicated in tumor formation, though it is not clear whether they contribute to tumor growth. A novel mobilizer of BMDSC (StemEnhance; SE) was used to investigate whether its daily administration promotes tumor growth. Forty mice were surgically transplanted with human MDA-MB-435-GFP breast cancer into the mammary fat pad of nude mice, The mice were gavaged for six weeks with 300 mg/kg of SE. Tumor growth was monitored using live whole-body fluorescence imaging. At the end of the study, tumors were excised and weighed. At the start of the feeding trial, tumor areas for both control and experimental group were statistically identical. Tumor growth rate was slower in the SE group (p = 0.014) when compared to the control group. After 6 weeks, tumor areas were 40% larger in the control p < 0.01) and mean tumor weight was 35% smaller in the SE-treated group (0.44 g vs. 0.68 g; p = 0.031). Feeding of SE did not promote tumor growth but rather reduced the growth of human MDA-MB-435 breast cancer.

  14. Patrinia scabiosaefolia inhibits colorectal cancer growth through suppression of tumor angiogenesis.

    PubMed

    Chen, Liwu; Liu, Liya; Ye, Ling; Shen, Aling; Chen, Youqin; Sferra, Thomas J; Peng, Jun

    2013-09-01

    Angiogenesis is an essential process for tumor development and metastasis, therefore inhibition of tumor angiogenesis has become a promising strategy for anticancer treatments. Patrinia scabiosaefolia, a well-known Oriental folk medicine, has been shown to be effective in the clinical treatment of gastrointestinal cancers. However, the precise mechanism of its tumoricidal activity remains largely unknown. Using a colorectal cancer (CRC) mouse xenograft model, the human colon carcinoma cell line HT-29 and human umbilical vein endothelial cells (HUVECs), in the present study we evaluated the effects of an ethanol extract of Patrinia scabiosaefolia (EEPS) on tumor angiogenesis in vivo and in vitro, and investigated the underlying molecular mechanisms. We found that EEPS treatment significantly reduced the tumor volume in CRC mice and decreased the intratumoral microvessel density in tumor tissues. In addition, EEPS inhibited several key processes of angiogenesis, including the proliferation, migration and tube formation of HUVECs. Moreover, EEPS treatment suppressed the expression of VEGF-A in CRC tumors and HT-29 cells. Collectively, our data suggest that Patrinia scabiosaefolia inhibits CRC growth likely via suppression of tumor angiogenesis.

  15. Hypercholesterolemia induces angiogenesis and accelerates growth of breast tumors in vivo.

    PubMed

    Pelton, Kristine; Coticchia, Christine M; Curatolo, Adam S; Schaffner, Carl P; Zurakowski, David; Solomon, Keith R; Moses, Marsha A

    2014-07-01

    Obesity and metabolic syndrome are linked to an increased prevalence of breast cancer among postmenopausal women. A common feature of obesity, metabolic syndrome, and a Western diet rich in saturated fat is a high level of circulating cholesterol. Epidemiological reports investigating the relationship between high circulating cholesterol levels, cholesterol-lowering drugs, and breast cancer are conflicting. Here, we modeled this complex condition in a well-controlled, preclinical animal model using innovative isocaloric diets. Female severe combined immunodeficient mice were fed a low-fat/no-cholesterol diet and then randomized to four isocaloric diet groups: low-fat/no-cholesterol diet, with or without ezetimibe (cholesterol-lowering drug), and high-fat/high-cholesterol diet, with or without ezetimibe. Mice were implanted orthotopically with MDA-MB-231 cells. Breast tumors from animals fed the high-fat/high-cholesterol diet exhibited the fastest progression. Significant differences in serum cholesterol level between groups were achieved and maintained throughout the study; however, no differences were observed in intratumoral cholesterol levels. To determine the mechanism of cholesterol-induced tumor progression, we analyzed tumor proliferation, apoptosis, and angiogenesis and found a significantly greater percentage of proliferating cells from mice fed the high-fat/high-cholesterol diet. Tumors from hypercholesterolemic animals displayed significantly less apoptosis compared with the other groups. Tumors from high-fat/high-cholesterol mice had significantly higher microvessel density compared with tumors from the other groups. These results demonstrate that hypercholesterolemia induces angiogenesis and accelerates breast tumor growth in vivo.

  16. Forkhead box protein A1 is a prognostic predictor and promotes tumor growth of gastric cancer

    PubMed Central

    Ren, Hongyu; Zhang, Pei; Tang, Yong; Wu, Mengping; Zhang, Weikang

    2015-01-01

    Previous studies have demonstrated the cancer-type specific role of forkhead box protein A1 (FOXA1) in human malignancies. However, the clinical significance of FOXA1 and its biological function in gastric cancer remain unknown. In this study, the expression of FOXA1 in 80 pairs of gastric cancer tissues and corresponding non-tumor tissues was analyzed using immunohistochemistry and quantitative real-time polymerase chain reaction. We found that the levels of FOXA1 protein and mRNA in gastric cancer tissues were significantly higher than those in matched tumor-adjacent tissues. Furthermore, clinical association analysis indicated that the positive expression of FOXA1 was associated with adverse clinicopathological characteristics of gastric cancer patients including poor tumor differentiation, large tumor size, and advanced tumor-node-metastasis tumor stage. Notably, gastric cancer patients with positive expression of FOXA1 had a poorer 5-year overall survival and recurrence-free survival. In addition, FOXA1 knockdown remarkably inhibited cell proliferation and induced apoptosis in both SGC-7901 and MGC-803 cells. In vivo studies indicated that FOXA1 knockdown prominently suppressed tumor growth of gastric cancer in a nude mouse xenograft model. Mechanistically, we disclosed that the expression of Yes-associated protein was decreased accordingly after FOXA1 knockdown in both SGC-7901 and MGC-803 cells. Taken together, our data suggest that FOXA1 may serve as a promising prognostic indicator and an attractive therapeutic target of gastric cancer. PMID:26527889

  17. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo

    NASA Astrophysics Data System (ADS)

    Som, Avik; Raliya, Ramesh; Tian, Limei; Akers, Walter; Ippolito, Joseph E.; Singamaneni, Srikanth; Biswas, Pratim; Achilefu, Samuel

    2016-06-01

    The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3 in tumors increases tumor pH over time. The associated induction of tumor growth stasis is putatively interpreted as a pHe increase. This study establishes an approach to prepare nano-CaCO3 over a wide particle size range, a formulation that stabilizes the nanomaterials in aqueous solutions, and a pH-sensitive nano-platform capable of modulating the acidic environment of cancer for potential therapeutic benefits.The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3

  18. Occurrence of DNET and other brain tumors in Noonan syndrome warrants caution with growth hormone therapy.

    PubMed

    McWilliams, Geoffrey D; SantaCruz, Karen; Hart, Blaine; Clericuzio, Carol

    2016-01-01

    Noonan syndrome (NS) is an autosomal dominant developmental disorder caused by mutations in the RAS-MAPK signaling pathway that is well known for its relationship with oncogenesis. An 8.1-fold increased risk of cancer in Noonan syndrome has been reported, including childhood leukemia and solid tumors. The same study found a patient with a dysembryoplastic neuroepithelial tumor (DNET) and suggested that DNET tumors are associated with NS. Herein we report an 8-year-old boy with genetically confirmed NS and a DNET. Literature review identified eight other reports, supporting the association between NS and DNETs. The review also ascertained 13 non-DNET brain tumors in individuals with NS, bringing to 22 the total number of NS patients with brain tumors. Tumor growth while receiving growth hormone (GH) occurred in our patient and one other patient. It is unknown whether the development or progression of tumors is augmented by GH therapy, however there is concern based on epidemiological, animal and in vitro studies. This issue was addressed in a 2015 Pediatric Endocrine Society report noting there is not enough data available to assess the safety of GH therapy in children with neoplasia-predisposition syndromes. The authors recommend that GH use in children with such disorders, including NS, be undertaken with appropriate surveillance for malignancies. Our case report and literature review underscore the association of NS with CNS tumors, particularly DNET, and call attention to the recommendation that clinicians treating NS patients with GH do so with awareness of the possibility of increased neoplasia risk.

  19. GROWTH FACTORS AND COX2 IN WOUND HEALING: AN EXPERIMENTAL STUDY WITH EHRLICH TUMORS

    PubMed Central

    SALGADO, Flávio L. L.; ARTIGIANI-NETO, Ricardo; LOPES-FILHO, Gaspar de Jesus

    2016-01-01

    ABSTRACT Background: Healing is an innate biological phenomenon, and carcinogenesis acquired, but with common humoral and cellular elements. Carcinogenesis interferes negatively in healing. Aim: To evaluate the histological changes in laparotomy scars of healthy Balb/c mice and with an Ehrlich tumor in its various forms of presentation. Methods: Fifty-four mice were divided into three groups of 18 animals. First group was the control; the second had Ehrlich tumor with ascites; and the third had the subcutaneous form of this tumor. Seven days after tumor inoculation, all 54 mice were submitted to laparotomy. All of the animals in the experiment were operated on again on 7th day after surgery, with resection of the scar and subsequent euthanasia of the animal. The scars were sent for histological assessment using immunohistochemical techniques to evaluate Cox-2 (cyclooxygenase 2), VEGF (vascular endothelial growth factor) and FGF (fibroblast growth factor). Semi-quantitatively analysis was done in the laparotomy scars and in the abdominal walls far away from the site of the operation. Results: Assessing the weight of the animals, the correct inoculation of the tumor and weight gain in the group with tumoral ascites was observed. The histological studies showed that groups with the tumor showed a statistically significant higher presence of Cox-2 compared to the control. In the Cox-2 analysis of the abdominal wall, the ascites group showed the most significant difference. VEGF did not present any significant differences between the three groups, regardless of the site. The FGF showed a significant increase in animals with the tumor. Conclusion: Histological findings in both laparotomy scar and the abdominal wall showed that with Ehrlich's neoplasia there was an exacerbated inflammatory response, translated by more intense expression of Cox-2 and greater fibroblast proliferation, translated by more intense expression of FGF, that is, it stimulated both the immediate

  20. Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonist attenuate tumor growth via polarization of neutrophils toward an antitumor phenotype

    PubMed Central

    Shrestha, Sanjeeb; Noh, Jae Myoung; Kim, Shin-Yeong; Ham, Hwa-Yong; Kim, Yeon-Ja; Yun, Young-Jin; Kim, Min-Ju; Kwon, Min-Soo; Song, Dong-Keun; Hong, Chang-Won

    2016-01-01

    ABSTRACT Tumor microenvironments polarize neutrophils to protumoral phenotypes. Here, we demonstrate that the angiotensin converting enzyme inhibitors (ACEis) and angiotensin II type 1 receptor (AGTR1) antagonist attenuate tumor growth via polarization of neutrophils toward an antitumoral phenotype. The ACEis or AGTR1 antagonist enhanced hypersegmentation of human neutrophils and increased neutrophil cytotoxicity against tumor cells. This neutrophil hypersegmentation was dependent on the mTOR pathway. In a murine tumor model, ACEis and AGTR1 antagonist attenuated tumor growth and enhanced neutrophil hypersegmentation. ACEis inhibited tumor-induced polarization of neutrophils to a protumoral phenotype. Neutrophil depletion reduced the antitumor effect of ACEi. Together, these data suggest that the modulation of Ang II pathway attenuates tumor growth via polarization of neutrophils to an antitumoral phenotype. PMID:26942086

  1. Compensatory renal growth and function in postnephrectomized patients with Wilms tumor

    SciTech Connect

    Walker, R.D.; Reid, C.F.; Richard, G.A.; Talbert, J.L.; Rogers, B.M.

    1982-02-01

    The objective of this study was to determine whether or not renal growth and function were adversely affected in the remaining kidneys of patients who had undergone nephrectomy for Wilms tumor. These patients received chemotherapy and some radiotherapy (tumoricidal agents which might affect the remaining kidney). Renal growth was compared between the treatment groups and normal renal growth. Hypertrophy did occur and did not appear to be affected by subsequent treatment. Renal function was minimally altered in all treatment groups irrespective of the type of treatment.

  2. Endothelial Robo4 suppresses breast cancer growth and metastasis through regulation of tumor angiogenesis.

    PubMed

    Zhao, Helong; Ahirwar, Dinesh K; Oghumu, Steve; Wilkie, Tasha; Powell, Catherine A; Nasser, Mohd W; Satoskar, Abhay R; Li, Dean Y; Ganju, Ramesh K

    2016-02-01

    Targeting tumor angiogenesis is a promising alternative strategy for improvement of breast cancer therapy. Robo4 (roundabout homolog 4) signaling has been shown to protect endothelial integrity during sepsis shock and arthritis, and inhibit Vascular Endothelial Growth Factor (VEGF) signaling during pathological angiogenesis of retinopathy, which indicates that Robo4 might be a potential target for angiogenesis in breast cancer. In this study, we used immune competent Robo4 knockout mouse model to show that endothelial Robo4 is important for suppressing breast cancer growth and metastasis. And this effect does not involve the function of Robo4 on hematopoietic stem cells. Robo4 inhibits breast cancer growth and metastasis by regulating tumor angiogenesis, endothelial leakage and tight junction protein zonula occludens protein-1 (ZO-1) downregulation. Treatment with SecinH3, a small molecule drug which deactivates ARF6 downstream of Robo4, can enhance Robo4 signaling and thus inhibit breast cancer growth and metastasis. SecinH3 mediated its effect by reducing tumor angiogenesis rather than directly affecting cancer cell proliferation. In conclusion, endothelial Robo4 signaling is important for suppressing breast cancer growth and metastasis, and it can be targeted (enhanced) by administrating a small molecular drug.

  3. Mammary gland specific expression of Brk/PTK6 promotes delayed involution and tumor formation associated with activation of p38 MAPK

    PubMed Central

    2011-01-01

    Introduction Protein tyrosine kinases (PTKs) are frequently overexpressed and/or activated in human malignancies, and regulate cancer cell proliferation, cellular survival, and migration. As such, they have become promising molecular targets for new therapies. The non-receptor PTK termed breast tumor kinase (Brk/PTK6) is overexpressed in approximately 86% of human breast tumors. The role of Brk in breast pathology is unclear. Methods We expressed a WAP-driven Brk/PTK6 transgene in FVB/n mice, and analyzed mammary glands from wild-type (wt) and transgenic mice after forced weaning. Western blotting and immunohistochemistry (IHC) studies were conducted to visualize markers of mammary gland involution, cell proliferation and apoptosis, as well as Brk, STAT3, and activated p38 mitogen-activated protein kinase (MAPK) in mammary tissues and tumors from WAP-Brk mice. Human (HMEC) or mouse (HC11) mammary epithelial cells were stably or transiently transfected with Brk cDNA to assay p38 MAPK signaling and cell survival in suspension or in response to chemotherapeutic agents. Results Brk-transgenic dams exhibited delayed mammary gland involution and aged mice developed infrequent tumors with reduced latency relative to wt mice. Consistent with delayed involution, mammary glands of transgenic animals displayed decreased STAT3 phosphorylation, a marker of early-stage involution. Notably, p38 MAPK, a pro-survival signaling mediator downstream of Brk, was activated in mammary glands of Brk transgenic relative to wt mice. Brk-dependent signaling to p38 MAPK was recapitulated by Brk overexpression in the HC11 murine mammary epithelial cell (MEC) line and human MEC, while Brk knock-down in breast cancer cells blocked EGF-stimulated p38 signaling. Additionally, human or mouse MECs expressing Brk exhibited increased anchorage-independent survival and resistance to doxorubicin. Finally, breast tumor biopsies were subjected to IHC analysis for co-expression of Brk and phospho-p38 MAPK

  4. Intrathecal administration of nerve growth factor delays GAP 43 expression and early phase regeneration of adult rat peripheral nerve.

    PubMed

    Hirata, Akira; Masaki, Toshihiro; Motoyoshi, Kazuo; Kamakura, Keiko

    2002-07-19

    Whether nerve growth factor (NGF) promotes peripheral nerve regeneration in vivo, in particular in adults, is controversial. We therefore examined the effect of exogenous NGF on nerve regeneration and the expression of GAP 43 (growth-associated protein 43) in adult rats. NGF was infused intrathecally via an osmotic mini-pump, while control rats received artificial cerebrospinal fluid. Two days after the infusion was initiated, the right sciatic nerves were transected or crushed, and the animals allowed to survive for 3 to 11 days. The right DRG, the right proximal stump of the transected sciatic nerve, and the posterior horn of the spinal cord were examined by Western blotting, immunohistochemistry, and electron microscopy. GAP 43 immunoreactivity in the NGF-treated animals was significantly lower than in the aCSF-treated controls. Electron microscopy showed that the number of myelinated and unmyelinated axons decreased significantly in the NGF-treated rats as compared with the controls. These findings are indicative that exogenous NGF delayed GAP 43 induction and the early phase of peripheral nerve regeneration and supports the hypothesis that the loss of NGF supply from peripheral targets via retrograde transport caused by axotomy serves as a signal for DRG neurons to invoke regenerative responses. NGF administered intrathecally may delay the neurons' perception of the reduction of the endogenous NGF, causing a delay in conversion of DRG neurons from the normal physiological condition to regrowth state.

  5. A Cahn-Hilliard model of vascularized tumor growth in a complex evolving confinement using a diffuse domain approach

    NASA Astrophysics Data System (ADS)

    Chuang, Yao-Li; Cristini, Vittorio; Chen, Ying; Li, Xiangrong; Frieboes, Hermann; Lowengrub, John

    2012-02-01

    Understanding the spatiotemporal evolution of tumor growth is essential for developing effective strategies to treat cancers. Various studies have suggested that spatial heterogeneity during tumors growth is a key factor associated with subsequent tumor invasion and the effectiveness of chemotherapy. Spatial heterogeneity may arise due to morphological instability of the tumors and the complex tissue structure surrounding the tumors. In previous works, we have used a Cahn-Hilliard tumor growth model to study the morphological instability for tumors in non-resisting tissues. However, most tumors are surrounded by complex tissue structures and confined in the capsules of some organs or between certain basement membranes. The capsules and basement membranes may be distorted by interacting with the evolving tumors, affecting the morphological instability. Here we adopt a novel diffuse domain approach to adapt our previous Cahn-Hilliard model for tumor growth in such complex evolving environments. As an example, we apply the model to simulate the evolution of lymphoma in a lymph node, incorporating also the tumor-induced angiogenesis.

  6. Paradoxical overexpression of MBNL2 in hepatocellular carcinoma inhibits tumor growth and invasion

    PubMed Central

    Lee, Yu-Hsin; Jhuang, Yu-Lin; Chen, Yu-Ling; Jeng, Yung-Ming; Yuan, Ray-Hwang

    2016-01-01

    Pre-mRNA alternative splicing is an essential step in the process of gene expression. It provides cells with the opportunity to create various protein isoforms. Disruptions of alternative splicing are associated with various diseases, including cancer. The muscleblind-like (MBNL) protein is a splicing regulatory protein. Overexpression of MBNL proteins in embryonic stem cells promotes differentiated cell-like alternative splicing patterns. We examined the expression level of MBNL2 in 143 resected HCCs using immunohistochemistry. MBNL2 was overexpressed in 51 (35.7%) HCCs. The overexpression of MBNL2 correlated with smaller tumor size (≤ 3 cm, P = 0.0108) and low tumor stage (Stage I, P = 0.0026), indicating that MBNL2 expression was lost in the late stage of HCC development. Furthermore, patients with MBNL2-positive HCCs had a borderline better 5-year overall survival (P = 0.0579). In non-cancerous liver parenchyma, MBNL2 was stained on the Canals of Hering and hepatocytes newly derived from hepatic progenitor cells. The overexpression of MBNL2 in Hep-J5 cells suppressed proliferation, tumorsphere formation, migration, and in vitro invasion, and also reduced in vivo tumor growth in NOD/SCID mice. In contrast, MBNL2 depletion with RNA interference in Huh7 cells increased in vitro migration and invasion, but did not enhance tumor growth. These results indicate that MBNL2 is a tumor suppressor in hepatocarcinogenesis. PMID:27564110

  7. Epigenetic silencing of NTSR1 is associated with lateral and noninvasive growth of colorectal tumors

    PubMed Central

    Niinuma, Takeshi; Yamano, Hiro-o; Nojima, Masanori; Yoshikawa, Kennjiro; Kimura, Tomoaki; Takagi, Ryo; Harada, Eiji; Harada, Taku; Maruyama, Reo; Sasaki, Yasushi; Tokino, Takashi; Shinomura, Yasuhisa; Sugai, Tamotsu; Imai, Kohzoh; Suzuki, Hiromu

    2015-01-01

    Our aim was to identify DNA methylation changes associated with the growth pattern and invasiveness of colorectal cancers (CRCs). Comparison of the methylation statuses of large (≥20 mm in diameter along the colonic surface) noninvasive tumors (NTs) and small (<20 mm in diameter along the colonic surface) invasive tumors (ITs) using CpG island microarray analysis showed neurotensin receptor 1 (NTSR1) to be hypermethylated in large NTs. Quantitative bisulfite pyrosequencing revealed that NTSR1 is frequently methylated in colorectal tumors, with large NTs exhibiting the highest methylation levels. The higher NTSR1 methylation levels were associated with better prognoses. By contrast, NTSR1 copy number gains were most frequent among small ITs. Methylation of NTSR1 was associated with the gene's silencing in CRC cell lines, whereas ectopic expression of NTSR1 promoted proliferation and invasion by CRC cells. Analysis of primary tumors composed of adenomatous and malignant portions revealed that NTSR1 is frequently methylated in the adenomatous portion, while methylation levels are generally lower in the cancerous portions. These results suggest that NTSR1 methylation is associated with lateral and noninvasive growth of colorectal tumors, while low levels of methylation may contribute to the malignant potential through activation of NTSR1. Our data also indicate that NTSR1 methylation may be a prognostic biomarker in CRC. PMID:26334593

  8. Inhibition of Galectin-1 Sensitizes HRAS-driven Tumor Growth to Rapamycin Treatment.

    PubMed

    Michael, James V; Wurtzel, Jeremy G T; Goldfinger, Lawrence E

    2016-10-01

    The goal of this study was to develop combinatorial application of two drugs currently either in active use as anticancer agents (rapamycin) or in clinical trials (OTX008) as a novel strategy to inhibit Harvey RAS (HRAS)-driven tumor progression. HRAS anchored to the plasma membrane shuttles from the lipid ordered (Lo) domain to the lipid ordered/lipid disordered border upon activation, and retention of HRAS at these sites requires galectin-1. We recently showed that genetically enforced Lo sequestration of HRAS inhibited mitogen-activated protein kinase (MAPK) signaling, but not phoshatidylinositol 3-kinase (PI3K) activation. Here we show that inhibition of galectin-1 with OTX008 sequestered HRAS in the Lo domain, blocked HRAS-mediated MAPK signaling, and attenuated HRAS-driven tumor progression in mice. HRAS-driven tumor growth was also attenuated by treatment with mammalian target of rapamycin (mTOR) inhibitor rapamycin, and this effect was further enhanced in tumors driven by Lo-sequestered HRAS. These drugs also revealed bidirectional cross-talk in HRAS pathways. Moreover, dual pathway inhibition with OTX008 and rapamycin resulted in nearly complete ablation of HRAS-driven tumor growth. These findings indicate that membrane microdomain sequestration of HRAS with galectin-1 inhibition, coupled with mTOR inhibition, may support a novel therapeutic approach to treat HRAS-mutant cancer.

  9. Epidermal growth factor facilitates melanoma lymph node metastasis by influencing tumor lymphangiogenesis.

    PubMed

    Bracher, Andreas; Cardona, Ana Soler; Tauber, Stefanie; Fink, Astrid M; Steiner, Andreas; Pehamberger, Hubert; Niederleithner, Heide; Petzelbauer, Peter; Gröger, Marion; Loewe, Robert

    2013-01-01

    Alterations in epidermal growth factor (EGF) expression are known to be of prognostic relevance in human melanoma, but EGF-mediated effects on melanoma have not been extensively studied. As lymph node metastasis usually represents the first major step in melanoma progression, we were trying to identify a potential role of primary tumor-derived EGF in the mediation of melanoma lymph node metastases. Stable EGF knockdown (EGFkd) in EGF-high (M24met) and EGF-low (A375) expressing melanoma cells was generated. Only in EGF-high melanoma cells, EGFkd led to a significant reduction of lymph node metastasis and primary tumor lymphangiogenesis in vivo, as well as impairment of tumor cell migration in vitro. Moreover, EGF-induced sprouting of lymphatic but not of blood endothelial cells was abolished using supernatants of M24met EGFkd cells. In addition, M24met EGFkd tumors showed reduced vascular endothelial growth factor-C (VEGF-C) expression levels. Similarly, in human primary melanomas, a direct correlation between EGF/VEGF-C and EGF/Prox-1 expression levels was found. Finally, melanoma patients with lymph node micrometastases undergoing sentinel node biopsy were found to have significantly elevated EGF serum levels as compared with sentinel lymph node-negative patients. Our data indicate that tumor-derived EGF is important in mediating melanoma lymph node metastasis.

  10. Growth hormone deficiency following radiation therapy of primary brain tumors in children.

    PubMed

    Kanev, P M; Lefebvre, J F; Mauseth, R S; Berger, M S

    1991-05-01

    The medical records of 123 patients treated for brain tumors at Children's Hospital and Medical Center, Seattle, Washington, between 1985 and 1987 were reviewed. The endocrinological complications of radiation therapy and the effectiveness of growth hormone (GH) replacement therapy were assessed. These were the first 2 years after synthetic GH became available. The disease pathology was confirmed at craniotomy or biopsy in 108 patients. Ninety-five children completed radiation therapy and 65 of these were alive at the time of review; these 65 children represent the study population. The most common tumor types were medulloblastoma, craniopharyngioma, and ependymoma. Endocrine evaluation was initiated with changes in the patients' growth velocity. Patient workup included skeletal x-ray films for determination of bone and analysis of thyroxin, thyroid-stimulating hormone, and somatomedin-C levels. Following 1-dopa and clonidine stimulation, provocative studies of GH levels were performed. Growth hormone failure and short stature were observed in 26 children, most commonly in the 2nd year after tumor treatment. Eight patients with GH failure were also hypothyroid. Hormone replacement therapy was initiated with recombinant GH, 0.05 mg/kg/day, and all children so treated showed an increase in height, with eight patients experiencing catch-up growth. There were no complications of therapy or tumor recurrence. Studies of baseline bone age and somatomedin-C levels on completion of radiation therapy are recommended. Comprehensive endocrine studies should follow changes in the patients' growth velocity. With early GH replacement, catch-up growth is possible and normal adult heights may be achieved.

  11. Effect of cadmium exposure on primary tumor growth and cell-mediated cytotoxicity in mice bearing MSB sarcomas.

    PubMed

    Kerkvliet, N I; Koller, L D; Baecher, L G; Brauner, J A

    1979-08-01

    In vivo MSB tumor growth and cell-mediated cytotoxicity (CMC) to MSB tumor cells in vitro were studied in male C57BL/6 mice exposed to 0, 3, 30, or 300 ppm Cd as CdCl2 in their drinking water for 21 weeks prior to and during tumor growth. CMC was assessed on days 5, 12, and 19 post injection with the use of both a 51Cr release assay and a 51Cr post-label assay. Cd exposure significantly inhibited the growth of MSB tumors in vivo and enhanced the levels of CMC in the tumor-bearing hosts. Peak levels of CMC on day 12 post tumor injection were significantly increased in Cd-exposed animals. However, whereas the inhibition of tumor growth was directly dependent on the dose of Cd, the enhancement of CMC was inversely related to dosage. These data suggested that other mechanisms in addition to increased CMC were involved in tumor growth inhibition. Possible factors such as direct inhibition of tumor growth by Cd and decreased serum blocking levels in Cd-exposed animals are discussed.

  12. Gastrointestinal hormones stimulate growth of Foregut Neuroendocrine Tumors by transactivating the EGF receptor.

    PubMed

    Di Florio, Alessia; Sancho, Veronica; Moreno, Paola; Delle Fave, Gianfranco; Jensen, Robert T

    2013-03-01

    Foregut neuroendocrine tumors [NETs] usually pursuit a benign course, but some show aggressive behavior. The treatment of patients with advanced NETs is marginally effective and new approaches are needed. In other tumors, transactivation of the EGF receptor (EGFR) by growth factors, gastrointestinal (GI) hormones and lipids can stimulate growth, which has led to new treatments. Recent studies show a direct correlation between NET malignancy and EGFR expression, EGFR inhibition decreases basal NET growth and an autocrine growth effect exerted by GI hormones, for some NETs. To determine if GI hormones can stimulate NET growth by inducing transactivation of EGFR, we examined the ability of EGF, TGFα and various GI hormones to stimulate growth of the human foregut carcinoid,BON, the somatostatinoma QGP-1 and the rat islet tumor,Rin-14B-cell lines. The EGFR tyrosine-kinase inhibitor, AG1478 strongly inhibited EGF and the GI hormones stimulated cell growth, both in BON and QGP-1 cells. In all the three neuroendocrine cell lines studied, we found EGF, TGFα and the other growth-stimulating GI hormones increased Tyr(1068) EGFR phosphorylation. In BON cells, both the GI hormones neurotensin and a bombesin analogue caused a time- and dose-dependent increase in EGFR phosphorylation, which was strongly inhibited by AG1478. Moreover, we found this stimulated phosphorylation was dependent on Src kinases, PKCs, matrix metalloproteinase activation and the generation of reactive oxygen species. These results raise the possibility that disruption of this signaling cascade by either EGFR inhibition alone or combined with receptor antagonists may be a novel therapeutic approach for treatment of foregut NETs/PETs.

  13. Gastrointestinal hormones stimulate growth of Foregut Neuroendocrine Tumors by transactivating the EGF receptor

    PubMed Central

    Di Florio, Alessia; Sancho, Veronica; Moreno, Paola; Fave, Gianfranco Delle; Jensen, Robert T.

    2012-01-01

    Foregut Neuroendocrine Tumors[NETs] usually pursuit a benign course, but some show aggressive behavior. The treatment of patients with advanced NETs is marginally effective and new approaches are needed. In other tumors, transactivation of the EGF receptor(EGFR) by growth factors, gastrointestinal(GI) hormones and lipids can stimulate growth, which has led to new treatments. Recent studies show a direct correlation between NET malignancy and EGFR expression, EGFR inhibition decreases basal NET growth and an autocrine growth effect exerted by GI hormones, for some NETs. To determine if GI hormones can stimulate NET growth by inducing transactivation of EGFR, we examined the ability of EGF, TGFα and various GI hormones to stimulate growth of the human foregut carcinoid, BON, the somatostatinoma QGP-1 and the rat islet tumor, Rin-14B-cell lines. The EGFR tyrosine-kinase inhibitor, AG1478 strongly inhibited EGF and the GI hormones stimulated cell growth, both in BON and QGP-1 cells. In all the three neuroendocrine cell lines studied, we found EGF, TGFα and the other growth-stimulating GI hormones increased Tyr1068 EGFR phosphorylation. In BON cells, both the GI hormones neurotensin and a bombesin analogue caused a time- and dose-dependent increase in EGFR phosphorylation, which was strongly inhibited by AG1478. Moreover, we found this stimulated phosphorylation was dependent on Src kinases, PKCs, matrix metalloproteinase activation and the generation of reactive oxygen species. These results raise the possibility that disruption of this signaling cascade by either EGFR inhibition alone or combined with receptor antagonists may be a novel therapeutic approach for treatment of foregut NETs/PETs. PMID:23220008

  14. c-Met inhibitors attenuate tumor growth of small cell hypercalcemic ovarian carcinoma (SCCOHT) populations.

    PubMed

    Otte, Anna; Rauprich, Finn; von der Ohe, Juliane; Yang, Yuanyuan; Kommoss, Friedrich; Feuerhake, Friedrich; Hillemanns, Peter; Hass, Ralf

    2015-10-13

    A cellular model (SCCOHT-1) of the aggressive small cell hypercalcemic ovarian carcinoma demonstrated constitutive chemokine and growth factor production including HGF. A simultaneous presence of c-Met in 41% SCCOHT-1 cells suggested an autocrine growth mechanism. Expression of c-Met was also observed at low levels in the corresponding BIN-67 cell line (6.5%) and at high levels in ovarian adenocarcinoma cells (NIH:OVCAR-3 (84.4%) and SK-OV-3 (99.3%)). Immunohistochemistry of c-Met expression in SCCOHT tumors revealed a heterogeneous distribution between undetectable levels and 80%. Further characterization of SCCOHT-1 and BIN-67 cells by cell surface markers including CD90 and EpCAM demonstrated similar patterns with differences to the ovarian adenocarcinoma cells. HGF stimulation of SCCOHT-1 cells was associated with c-Met phosphorylation at Tyr1349 and downstream Thr202/Tyr204 phosphorylation of p44/42 MAP kinase. This HGF-induced signaling cascade was abolished by the c-Met inhibitor foretinib. Cell cycle analysis after foretinib treatment demonstrated enhanced G2 accumulation and increasing apoptosis within 72 h. Moreover, the IC50 of foretinib revealed 12.4 nM in SCCOHT-1 cells compared to 411 nM and 481 nM in NIH:OVCAR-3 and SK-OV-3 cells, respectively, suggesting potential therapeutic effects. Indeed, SCCOHT-1 and BIN-67 tumor xenografts in NODscid mice exhibited an approximately 10-fold and 5-fold reduced tumor size following systemic application of foretinib, respectively. Furthermore, foretinib-treated tumors revealed a significantly reduced vascularization and little if any c-Met-mediated signal transduction. Similar findings of reduced proliferative capacity and declined tumor size were observed after siRNA-mediated c-Met knock-down in SCCOHT-1 cells demonstrating that in vivo inhibition of these pathways contributed to an attenuation of SCCOHT tumor growth.

  15. Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo

    SciTech Connect

    Chian, Song; Thapa, Ruby; Chi, Zhexu; Wang, Xiu Jun; Tang, Xiuwen

    2014-05-16

    Highlights: • Luteolin inhibits the Nrf2 pathway in mouse liver and in xenografted tumors. • Luteolin markedly inhibits the growth of xenograft tumors. • Luteolin enhances the anti-cancer effect of cisplatin in mice in vivo. • Luteolin could serve as an adjuvant in the chemotherapy of NSCLC. - Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) is over-expressed in many types of tumor, promotes tumor growth, and confers resistance to anticancer therapy. Hence, Nrf2 is regarded as a novel therapeutic target in cancer. Previously, we reported that luteolin is a strong inhibitor of Nrf2 in vitro. Here, we showed that luteolin reduced the constitutive expression of NAD(P)H quinone oxidoreductase 1 in mouse liver in a time- and dose-dependent manner. Further, luteolin inhibited the expression of antioxidant enzymes and glutathione transferases, decreasing the reduced glutathione in the liver of wild-type mice under both constitutive and butylated hydroxyanisole-induced conditions. In contrast, such distinct responses were not detected in Nrf2{sup −/−} mice. In addition, oral administration of luteolin, either alone or combined with intraperitoneal injection of the cytotoxic drug cisplatin, greatly inhibited the growth of xenograft tumors from non-small-cell lung cancer (NSCLC) cell line A549 cells grown subcutaneously in athymic nude mice. Cell proliferation, the expression of Nrf2, and antioxidant enzymes were all reduced in tumor xenograft tissues. Furthermore, luteolin enhanced the anti-cancer effect of cisplatin. Together, our findings demonstrated that luteolin inhibits the Nrf2 pathway in vivo and can serve as an adjuvant in the chemotherapy of NSCLC.

  16. Cell-permeable iron inhibits vascular endothelial growth factor receptor-2 signaling and tumor angiogenesis

    PubMed Central

    Kir, Devika; Saluja, Manju; Modi, Shrey; Venkatachalam, Annapoorna; Schnettler, Erica; Roy, Sabita; Ramakrishnan, Sundaram

    2016-01-01

    Angiogenesis is important for tumor growth and metastasis. Hypoxia in tumors drives this angiogenic response by stabilizing Hypoxia Inducible Factors (HIF) and target genes like Vascular Endothelial Growth Factor (VEGF). HIF stability is regulated by Prolylhydroxylases (PHD)-mediated modification. Iron is an important cofactor in regulating the enzymatic activity of PHDs. Reducing intracellular iron, for instance, mimics hypoxia and induces a pro-angiogenic response. It is hypothesized that increasing the intracellular iron levels will have an opposite, anti-angiogenic effect. We tested this hypothesis by perturbing iron homeostasis in endothelial cells using a unique form of iron, Ferric Ammonium Citrate (FAC). FAC is a cell-permeable form of iron, which can passively enter into cells bypassing the transferrin receptor mediated uptake of transferrin-bound iron. Our studies show that FAC does not decrease the levels of HIF-1α and HIF-2α in endothelial cells but inhibits the autocrine stimulation of VEGF-Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) system by blocking receptor tyrosine kinase phosphorylation. FAC inhibits VEGF-induced endothelial cell proliferation, migration, tube formation and sprouting. Finally, systemic administration of FAC inhibits VEGF and tumor cell-induced angiogenesis in vivo. In conclusion, our studies show that cell-permeable iron attenuates VEGFR-2 mediated signaling and inhibits tumor angiogenesis. PMID:27589831

  17. Contour instabilities and micro-structures in early tumor growth models

    NASA Astrophysics Data System (ADS)

    Ben Amar, Martine; Ciarletta, Pasquale; Chatelain, Clément; Balois, Thibaut

    2012-02-01

    Clinical diagnosis of skin cancers is based on several morphological criteria, among which growth, color, border instabilities and microstructures (e.g. dots, nests) sparsely distributed within the tumor lesion. We use the multiphase mixture models adapted to the skin to explain various patterning occurring in the avascular phase. Restricting to a simple but realistic version of these models with an elastic cell-to-cell interaction and a growth rate dependent on diffusing nutrients, we prove analytically that the tumor cell concentration at the border acts as a control parameter inducing a bifurcation with loss of circular symmetry which explains the instabilities of the tumor border. The finite wavelength at threshold has the size of the proliferating peritumoral zone. We apply our predictions to melanoma growth since these instabilities are crucial for the early diagnosis. The same model is used to show the existence of micro-structures. Taking into account a reaction-diffusion coupling between nutrient consumption and cellular proliferation, we show that two-phase models may undergo a spinodal decomposition even when considering mass exchanges between the phases. The cell-nutrient interaction defines a typical diffusive length in the problem, which is found to control the saturation of a growing separated domain, thus stabilizing the microstructural pattern. The distribution and the evolution of such emerging cluster morphologies are successfully compared to the clinical observation of microstructural patterns in tumor lesions.

  18. The retinoblastoma gene functions as a growth and tumor suppressor in human bladder carcinoma cells

    SciTech Connect

    Takahashi, Rei; Hashimoto, Tomoko; Hongji Xu; Shixu Hu; Bigo-Marshall, H.; Benedict, W.F. ); Matsui, Toshimitsu Kobe Univ. School of Medicine ); Miki, Toru; Aaronson, S.A. )

    1991-06-15

    The product of the human retinoblastoma gene (RB) is a nuclear phosphoprotein that is thought to function as a tumor suppressor. Mutations of RB frequently occur in human bladder carcinoma. To investigate the significance of the functional loss of this gene in bladder cancer, an RB expression plasmid (pBARB) under control of the human {beta}-actin promoter was transfected into the bladder carcinoma cell line HTB9, which lacks RB expression. Marker-selected transfectants that expressed RB protein were identified by immunoblotting and immunohistochemical staining. In selected clones, stable RB expression has persisted over 1 yr under standard culture conditions with 10% serum. However, RB expression caused major alterations of HTB9 growth properties both in vitro and in vivo. RB{sup +} tranfectants lacked the ability to form colonies in semi-solid medium, and their growth rate was significantly decreased in 3% serum. In addition, the tumorigenicity of these transfectants was markedly decreased. Tumors that formed in nude mice were much smaller and had a longer latency period but were indistinguishable microscopically from those produced by parental cells. Slower growing tumors were RB{sup +}, as measured by nuclear staining of their RB protein and by a normal RB protein pattern on immunoblots. These findings support the concept that the RB gene acts as both a growth and tumor suppressor in bladder cancer cells.

  19. 3-Bromopyruvate inhibits human gastric cancer tumor growth in nude mice via the inhibition of glycolysis.

    PubMed

    Xian, Shu-Lin; Cao, Wei; Zhang, Xiao-Dong; Lu, Yun-Fei

    2015-02-01

    Tumor cells primarily depend upon glycolysis in order to gain energy. Therefore, the inhibition of glycolysis may inhibit tumor growth. Our previous study demonstrated that 3-bromopyruvate (3-BrPA) inhibited gastric cancer cell proliferation in vitro. However, the ability of 3-BrPA to suppress tumor growth in vivo, and its underlying mechanism, have yet to be elucidated. The aim of the present study was to investigate the inhibitory effect of 3-BrPA in an animal model of gastric cancer. It was identified that 3-BrPA exhibited strong inhibitory effects upon xenograft tumor growth in nude mice. In addition, the antitumor function of 3-BrPA exhibited a dose-effect association, which was similar to that of the chemotherapeutic agent, 5-fluorouracil. Furthermore, 3-BrPA exhibited low toxicity in the blood, liver and kidneys of the nude mice. The present study hypothesized that the inhibitory effect of 3-BrPA is achieved through the inhibition of hexokinase activity, which leads to the downregulation of B-cell lymphoma 2 (Bcl-2) expression, the upregulation of Bcl-2-associated X protein expression and the subsequent activation of caspase-3. These data suggest that 3-BrPA may be a novel therapy for the treatment of gastric cancer.

  20. SIRT6 Depletion Suppresses Tumor Growth by Promoting Cellular Senescence Induced by DNA Damage in HCC

    PubMed Central

    Lee, Namgyu; Ryu, Hye Guk; Kwon, Jung-Hee; Kim, Dae-Kyum; Kim, Sae Rom; Wang, Hee Jung; Kim, Kyong-Tai; Choi, Kwan Yong

    2016-01-01

    The role of Sirtuin 6 (SIRT6) as a tumor suppressor or oncogene in liver cancer remains controversial. Thus, we identified the specific role of SIRT6 in the progression of hepatocellular carcinoma (HCC). SIRT6 expression was significantly higher in HCC cell lines and HCC tissues from 138 patients than in an immortalized hepatocyte cell line, THLE-2 and non-tumor tissues, respectively. SIRT6 knockdown by shRNA suppressed the growth of HCC cells and inhibited HCC tumor growth in vivo. In addition, SIRT6 silencing significantly prevented the growth of HCC cell lines by inducing cellular senescence in the p16/Rb- and p53/p21-pathway independent manners. Microarray analysis revealed that the expression of genes involved in nucleosome assembly was apparently altered in SIRT6-depleted Hep3B cells. SIRT6 knockdown promoted G2/M phase arrest and downregulation of genes encoding histone variants associated with nucleosome assembly, which could be attributed to DNA damage. Taken together, our findings suggest that SIRT6 acts as a tumor promoter by preventing DNA damage and cellular senescence, indicating that SIRT6 represents a potential therapeutic target for the treatment of HCC. PMID:27824900

  1. Lipid phosphate phosphatase-1 expression in cancer cells attenuates tumor growth and metastasis in mice.

    PubMed

    Tang, Xiaoyun; Benesch, Matthew G K; Dewald, Jay; Zhao, Yuan Y; Patwardhan, Neeraj; Santos, Webster L; Curtis, Jonathan M; McMullen, Todd P W; Brindley, David N

    2014-11-01

    Lipid phosphate phosphatase-1 (LPP1) degrades lysophosphatidate (LPA) and attenuates receptor-mediated signaling. LPP1 expression is low in many cancer cells and tumors compared with normal tissues. It was hypothesized from studies with cultured cells that increasing LPP1 activity would decrease tumor growth and metastasis. This hypothesis has never been tested in vivo. To do this, we inducibly expressed LPP1 or a catalytically inactive mutant in cancer cells. Expressing active LPP1 increased extracellular LPA degradation by 5-fold. It also decreased the stimulation of Ca(2+) transients by LPA, a nondephosphorylatable LPA1/2 receptor agonist and a protease-activated receptor-1 peptide. The latter results demonstrate that LPP1 has effects downstream of receptor activation. Decreased Ca(2+) mobilization and Rho activation contributed to the effects of LPP1 in attenuating the LPA-induced migration of MDA-MB-231 breast cancer cells and their growth in 3D culture. Increasing LPP1 expression in breast and thyroid cancer cells decreased tumor growth and the metastasis by up to 80% compared with expression of inactive LPP1 or green fluorescent protein in syngeneic and xenograft mouse models. The present work demonstrates for the first time that increasing the LPP1 activity in three lines of aggressive cancer cells decreases their abilities to produce tumors and metastases in mice.

  2. Salmonella VNP20009-mediated RNA interference of ABCB5 moderated chemoresistance of melanoma stem cell and suppressed tumor growth more potently.

    PubMed

    Zhang, Xiaoxin; Cheng, Xiawei; Lai, Yueyang; Zhou, Yuqiang; Cao, Wenmin; Hua, Zi-Chun

    2016-03-22

    Drug resistance remains an obstacle hindering the success of chemotherapy. Cancer stem cells (CSCs) have been recently found to confer resistance to chemotherapy. Therefore functional markers of CSCs should be discovered and specific therapies targeting these cells should be developed. In our investigation, a small population of B16F10 cells which was positive for ATP-binding cassette sub-family B member 5 (ABCB5) was isolated. This population displayed characteristics similar to those of CSCs and ABCB5 was identified to confer tumor growth and drug resistance in B16F10 cell line. Although targeting ABCB5 by small short interfering RNA delivered by VNP20009 failed to inhibit tumor growth, the combined treatment of VNP-shABCB5 and chemotherapy can act synergistically to delay tumor growth and enhance survival time in a primary B16F10 mice model. Results suggest that the combined treatment of VNP-shABCB5 and chemotherapy can improve the efficacy of chemotherapeutic drugs. Therefore, this combination therapy is of potential significance for melanoma treatment.

  3. Salmonella VNP20009-mediated RNA interference of ABCB5 moderated chemoresistance of melanoma stem cell and suppressed tumor growth more potently

    PubMed Central

    Zhang, Xiaoxin; Cheng, Xiawei; Lai, Yueyang; Zhou, Yuqiang; Cao, Wenmin; Hua, Zi-Chun

    2016-01-01

    Drug resistance remains an obstacle hindering the success of chemotherapy. Cancer stem cells (CSCs) have been recently found to confer resistance to chemotherapy. Therefore functional markers of CSCs should be discovered and specific therapies targeting these cells should be developed. In our investigation, a small population of B16F10 cells which was positive for ATP-binding cassette sub-family B member 5 (ABCB5) was isolated. This population displayed characteristics similar to those of CSCs and ABCB5 was identified to confer tumor growth and drug resistance in B16F10 cell line. Although targeting ABCB5 by small short interfering RNA delivered by VNP20009 failed to inhibit tumor growth, the combined treatment of VNP-shABCB5 and chemotherapy can act synergistically to delay tumor growth and enhance survival time in a primary B16F10 mice model. Results suggest that the combined treatment of VNP-shABCB5 and chemotherapy can improve the efficacy of chemotherapeutic drugs. Therefore, this combination therapy is of potential significance for melanoma treatment. PMID:26910836

  4. Interferon gamma-induced human guanylate binding protein 1 inhibits mammary tumor growth in mice.

    PubMed

    Lipnik, Karoline; Naschberger, Elisabeth; Gonin-Laurent, Nathalie; Kodajova, Petra; Petznek, Helga; Rungaldier, Stefanie; Astigiano, Simonetta; Ferrini, Silvano; Stürzl, Michael; Hohenadl, Christine

    2010-01-01

    Interferon gamma (IFN-gamma) has recently been implicated in cancer immunosurveillance. Among the most abundant proteins induced by IFN-gamma are guanylate binding proteins (GBPs), which belong to the superfamily of large GTPases and are widely expressed in various species. Here, we investigated whether the well-known human GBP-1 (hGBP-1), which has been shown to exert antiangiogenic activities and was described as a prognostic marker in colorectal carcinomas, may contribute to an IFN-gamma-mediated tumor defense. To this end, an IFN-independent, inducible hGBP-1 expression system was established in murine mammary carcinoma (TS/A) cells, which were then transplanted into syngeneic immune-competent Balb/c mice. Animals carrying TS/A cells that had been given doxycycline for induction of hGBP-1 expression revealed a significantly reduced tumor growth compared with mock-treated mice. Immunohistochemical analysis of the respective tumors demonstrated a tightly regulated, high-level expression of hGBP-1. No signs of an enhanced immunosurveillance were observed by investigating the number of infiltrating B and T cells. However, hemoglobin levels as well as the number of proliferating tumor cells were shown to be significantly reduced in hGBP-1-expressing tumors. This finding corresponded to reduced amounts of vascular endothelial growth factor A (VEGF-A) released by hGBP-1-expressing TS/A cells in vitro and reduced VEGF-A protein levels in the corresponding mammary tumors in vivo. The results suggest that hGBP-1 may contribute to IFN-gamma-mediated antitumorigenic activities by inhibiting paracrine effects of tumor cells on angiogenesis. Consequently, owing to these activities GBPs might be considered as potent members in an innate, IFN-gamma-induced antitumoral defense system.

  5. In vivo tumor growth of high-grade serous ovarian cancer cell lines

    PubMed Central

    Mitra, Anirban; Davis, David A.; Tomar, Sunil; Roy, Lynn; Gurler, Hilal; Xie, Jia; Lantvit, Daniel D.; Cardenas, Horacio; Fang, Fang; Liu, Yueying; Loughran, Elizabeth; Yang, Jing; Stack, M. Sharon; Emerson, Robert E; Cowden Dahl, Karen D.; Barbolina, Maria; Nephew, Kenneth P.; Matei, Daniela; Burdette, Joanna E.

    2015-01-01

    Objective Genomic studies of ovarian cancer (OC) cell lines frequently used in research revealed that these cells do not fully represent high-grade serous ovarian cancer (HGSOC), the most common OC histologic type. However, OC lines that appear to genomically resemble HGSOC have not been extensively used and their growth characteristics in murine xenografts are essentially unknown. Methods To better understand growth patterns and characteristics of HGSOC cell lines in vivo, CAOV3, COV362, KURAMOCHI, NIH-OVCAR3, OVCAR4, OVCAR5, OVCAR8, OVSAHO, OVKATE, SNU119, UWB1.289 cells were assessed for tumor formation in nude mice. Cells were injected intraperitoneally (i.p.) or subcutaneously (s.c.) in female athymic nude mice and allowed to grow (maximum of 90 days) and tumor formation was analyzed. All tumors were sectioned and assessed using H&E staining and immunohistochemistry for p53, PAX8 and WT1 expression. Results Six lines (OVCAR3, OVCAR4, OVCAR5, OVCAR8, CAOV3, and OVSAHO) formed i.p xenografts with HGSOC histology. OVKATE and COV362 formed s.c. tumors only. Rapid tumor formation was observed for OVCAR3, OVCAR5 and OVCAR8, but only OVCAR8 reliably formed ascites. Tumors derived from OVCAR3, OVCAR4, and OVKATE displayed papillary features. Of the 11 lines examined, three (Kuramochi, SNU119 and UWB1.289) were non-tumorigenic. Conclusions Our findings help further define which HGSOC cell models reliably generate tumors and/or ascites, critical information for preclinical drug development, validating in vitro findings, imaging and prevention studies by the OC research community. PMID:26050922

  6. Growth hormone therapy and risk of recurrence/progression in intracranial tumors: a meta-analysis.

    PubMed

    Shen, Liang; Sun, Chun Ming; Li, Xue Tao; Liu, Chuan Jin; Zhou, You Xin

    2015-10-01

    Growth hormone deficiency is common in intracranial tumors, which is usually treated with surgery and radiotherapy. A number of previous studies have investigated the relationship between the growth hormone replacement therapy (GHRT) and risk of tumor recurrence/progression; however, the evidence remains controversial. We conducted a meta-analysis of published studies to estimate the potential relation between GHRT and intracranial tumors recurrence/progression. Three comprehensive databases, PUBMED, EMBASE, and Cochrane Library, were researched with no limitations, covering all published studies till the end of July, 2014. Reference lists from identified studies were also screened for additional database. The summary relative risks (RR) and 95% confidence intervals (CI) were calculated by fixed-effects models for estimation. Fifteen eligible studies, involving more than 2232 cases and 3606 controls, were included in our meta-analysis. The results indicated that intracranial tumors recurrence/progression was not associated with GHRT (RR 0.48, 95% CI 0.39-0.56), and for children, the pooled RR was 0.44 and 95% CI was 0.34-0.54. In subgroup analysis, risks of recurrence/progression were decreased for craniopharyngioma, medulloblastoma, astrocytoma, glioma, but not for pituitary adenomas, and non-functioning pituitary adenoma (NFPA), ependymoma. Results from our analysis indicate that GHRT decreases the risk of recurrence/progression in children with intracranial tumors, craniopharyngioma, medulloblastoma, astrocytoma, or glioma. However, GHRT for pituitary adenomas, NFPA, and ependymoma was not associated with the recurrence/progression of the tumors. GH replacement seems safe from the aspect of risk of tumor progression.

  7. STC1 expression is associated with tumor growth and metastasis in breast cancer.

    PubMed

    Chang, Andy C-M; Doherty, Judy; Huschtscha, Lily I; Redvers, Richard; Restall, Christina; Reddel, Roger R; Anderson, Robin L

    2015-01-01

    Stanniocalcin-1 (STC1) is a secreted glycoprotein implicated in several pathologies including retinal degeneration, cerebral ischemia, angiogenesis and inflammation. Aberrant STC1 expression has been reported in breast cancer but the significance of this is not clear. High levels of STC1 expression were found in the aggressive 4T1 murine mammary tumor cells and in the MDA-MB-231 human breast cancer line. To investigate its significance, stable clones with STC1 down-regulation using shRNA were generated in both tumor models. The consequences of STC1 down-regulation on cell proliferation, chemotactic invasion, tumor growth and metastasis were assessed. Down-regulation of STC1 in the 4T1 murine mammary tumor cells had a major impact on mammary tumor growth. This observation was replicated in a second tumor model with the MDA-MB-231 human breast cancer line, with a significant reduction in primary tumor formation and a major inhibition of metastasis as well. Interestingly, in both models, proliferation in vitro was not affected. Subsequent microarray gene expression profiling identified 30 genes to be significantly altered by STC1 down-regulation, the majority of which are associated with known hallmarks of carcinogenesis. Furthermore, bioinformatic analysis of breast cancer datasets revealed that high expression of STC1 is associated with poor survival. This is the first study to show definitively that STC1 plays an oncogenic role in breast cancer, and indicates that STC1 could be a potential therapeutic target for treatment of breast cancer patients.

  8. Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth

    PubMed Central

    Benzekry, Sébastien; Lamont, Clare; Beheshti, Afshin; Tracz, Amanda; Ebos, John M. L.; Hlatky, Lynn; Hahnfeldt, Philip

    2014-01-01

    Despite internal complexity, tumor growth kinetics follow relatively simple laws that can be expressed as mathematical models. To explore this further, quantitative analysis of the most classical of these were performed. The models were assessed against data from two in vivo experimental systems: an ectopic syngeneic tumor (Lewis lung carcinoma) and an orthotopically xenografted human breast carcinoma. The goals were threefold: 1) to determine a statistical model for description of the measurement error, 2) to establish the descriptive power of each model, using several goodness-of-fit metrics and a study of parametric identifiability, and 3) to assess the models' ability to forecast future tumor growth. The models included in the study comprised the exponential, exponential-linear, power law, Gompertz, logistic, generalized logistic, von Bertalanffy and a model with dynamic carrying capacity. For the breast data, the dynamics were best captured by the Gompertz and exponential-linear models. The latter also exhibited the highest predictive power, with excellent prediction scores (≥80%) extending out as far as 12 days in the future. For the lung data, the Gompertz and power law models provided the most parsimonious and parametrically identifiable description. However, not one of the models was able to achieve a substantial prediction rate (≥70%) beyond the next day data point. In this context, adjunction of a priori information on the parameter distribution led to considerable improvement. For instance, forecast success rates went from 14.9% to 62.7% when using the power law model to predict the full future tumor growth curves, using just three data points. These results not only have important implications for biological theories of tumor growth and the use of mathematical modeling in preclinical anti-cancer drug investigations, but also may assist in defining how mathematical models could serve as potential prognostic tools in the clinic. PMID:25167199

  9. Truncating Prolactin Receptor Mutations Promote Tumor Growth in Murine Estrogen Receptor-Alpha Mammary Carcinomas.

    PubMed

    Griffith, Obi L; Chan, Szeman Ruby; Griffith, Malachi; Krysiak, Kilannin; Skidmore, Zachary L; Hundal, Jasreet; Allen, Julie A; Arthur, Cora D; Runci, Daniele; Bugatti, Mattia; Miceli, Alexander P; Schmidt, Heather; Trani, Lee; Kanchi, Krishna-Latha; Miller, Christopher A; Larson, David E; Fulton, Robert S; Vermi, William; Wilson, Richard K; Schreiber, Robert D; Mardis, Elaine R

    2016-09-27

    Estrogen receptor alpha-positive (ERα+) luminal tumors are the most frequent subtype of breast cancer. Stat1(-/-) mice develop mammary tumors that closely recapitulate the biological characteristics of this cancer subtype. To identify transforming events that contribute to tumorigenesis, we performed whole genome sequencing of Stat1(-/-) primary mammary tumors and matched normal tissues. This investigation identified somatic truncating mutations affecting the prolactin receptor (PRLR) in all tumor and no normal samples. Targeted sequencing confirmed the presence of these mutations in precancerous lesions, indicating that this is an early event in tumorigenesis. Functional evaluation of these heterozygous mutations in Stat1(-/-) mouse embryonic fibroblasts showed that co-expression of truncated and wild-type PRLR led to aberrant STAT3 and STAT5 activation downstream of the receptor, cellular transformation in vitro, and tumor formation in vivo. In conclusion, truncating mutations of PRLR promote tumor growth in a model of human ERα+ breast cancer and warrant further investigation.

  10. Cimetidine induces apoptosis in gastric cancer cells in vitro and inhibits tumor growth in vivo.

    PubMed

    Jiang, Cheng-Gang; Liu, Fu-Rong; Yu, Miao; Li, Jia-Bin; Xu, Hui-Mian

    2010-03-01

    Cimetidine, a histamine-2 (H2) receptor antagonist, has been demonstrated to have anticancer effects on various types of malignancies. However, the mechanisms of its action on gastric cancer are not completely understood. This study was designed to investigate its antitumor effect and underlying mechanisms in human gastric cancer SGC-7901 and MGC-803 cells. The MTT assay was used to evaluate cell viability, and flow cytometry, acridine orange staining and transmission electron microscopy were used to detect apoptosis, for cultured cells. The protein expression in cells was evaluated by Western blot analysis and colorimetric assay. Gastric tumors were established by subcutaneous injection of SGC-7901 cells in nude BALB/c mice, and cimetidine was administered to the mice. The size of tumors was monitored and the weight of tumors was examined. The exposure of gastric cancer cells to cimetidine resulted in growth inhibition and the induction of apoptosis in a dose-dependent manner. Activation of the caspase cascade for both the extrinsic and intrinsic pathways were demonstrated in vitro, including caspase-8, -9 and -3. We also found that the expression of Bcl-2 protein decreased and the expression of Bax protein increased which lead to an increase of the Bax/Bcl-2 ratio. In mice bearing SGC-7901 xenograft tumors, administration of cimetidine showed a significant decrease of tumor volumes and tumor weight compared with the control. Our results showed that cimetidine exhibited antitumor effects in gastric cancer cells with an induction of apoptosis.

  11. Personality-Targeted Interventions Delay the Growth of Adolescent Drinking and Binge Drinking

    ERIC Educational Resources Information Center

    Conrod, Patricia J.; Castellanos, Natalie; Mackie, Clare

    2008-01-01

    Background: Personality factors are implicated in the vulnerability to adolescent alcohol misuse. This study examined whether providing personality-targeted interventions in early adolescence can delay drinking and binge drinking in high-risk youth. Methods: A randomised control trial was carried out with 368 adolescents recruited from years 9 and…

  12. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    SciTech Connect

    Yu, Wei; Chai, Hongyan; Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue; Yang, Guifang; Cai, Xiaojun; Falck, John R.; Yang, Jing

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  13. INHIBITION OF RHABDOMYOSARCOMA CELL AND TUMOR GROWTH BY TARGETING SPECIFICITY PROTEIN (Sp) TRANSCRIPTION FACTORS

    PubMed Central

    Chadalapaka, Gayathri; Jutooru, Indira; Sreevalsan, Sandeep; Pathi, Satya; Kim, Kyounghyun; Chen, Candy; Crose, Lisa; Linardic, Corinne; Safe, Stephen

    2012-01-01

    Specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 are highly expressed in rhabdomyosarcoma (RMS) cells. In tissue arrays of RMS tumor cores from 71 patients, 80% of RMS patients expressed high levels of Sp1 protein, whereas low expression of Sp1 was detected in normal muscle tissue. The non-steroidal anti-inflammatory drug (NSAID) tolfenamic acid (TA) inhibited growth and migration of RD and RH30 RMS cell lines and also inhibited tumor growth in vivo using a mouse xenograft (RH30 cells) model. The effects of TA were accompanied by downregulation of Sp1, Sp3, Sp4 and Sp-regulated genes in RMS cells and tumors, and the role of Sp protein downregulation in mediating inhibition of RD and RH30 cell growth and migration was confirmed by individual and combined knockdown of Sp1, Sp3 and Sp4 proteins by RNA interference. TA treatment and Sp knockdown in RD and RH30 cells also showed that four genes that are emerging as individual drug targets for treating RMS, namely c-MET, insulin-like growth factor receptor (IGFR), PDGFRα and CXCR4, are also Sp-regulated genes. These results suggest that NSAIDs such as TA may have potential clinical efficacy in drug combinations for treating RMS patients. PMID:22815231

  14. Digital holographic microscopy for imaging growth and treatment response in 3D tumor models

    NASA Astrophysics Data System (ADS)

    Li, Yuyu; Petrovic, Ljubica; Celli, Jonathan P.; Yelleswarapu, Chandra S.

    2014-03-01

    While three-dimensional tumor models have emerged as valuable tools in cancer research, the ability to longitudinally visualize the 3D tumor architecture restored by these systems is limited with microscopy techniques that provide only qualitative insight into sample depth, or which require terminal fixation for depth-resolved 3D imaging. Here we report the use of digital holographic microscopy (DHM) as a viable microscopy approach for quantitative, non-destructive longitudinal imaging of in vitro 3D tumor models. Following established methods we prepared 3D cultures of pancreatic cancer cells in overlay geometry on extracellular matrix beds and obtained digital holograms at