Brain tumor segmentation based on local independent projection-based classification.
Huang, Meiyan; Yang, Wei; Wu, Yao; Jiang, Jun; Chen, Wufan; Feng, Qianjin
2014-10-01
Brain tumor segmentation is an important procedure for early tumor diagnosis and radiotherapy planning. Although numerous brain tumor segmentation methods have been presented, enhancing tumor segmentation methods is still challenging because brain tumor MRI images exhibit complex characteristics, such as high diversity in tumor appearance and ambiguous tumor boundaries. To address this problem, we propose a novel automatic tumor segmentation method for MRI images. This method treats tumor segmentation as a classification problem. Additionally, the local independent projection-based classification (LIPC) method is used to classify each voxel into different classes. A novel classification framework is derived by introducing the local independent projection into the classical classification model. Locality is important in the calculation of local independent projections for LIPC. Locality is also considered in determining whether local anchor embedding is more applicable in solving linear projection weights compared with other coding methods. Moreover, LIPC considers the data distribution of different classes by learning a softmax regression model, which can further improve classification performance. In this study, 80 brain tumor MRI images with ground truth data are used as training data and 40 images without ground truth data are used as testing data. The segmentation results of testing data are evaluated by an online evaluation tool. The average dice similarities of the proposed method for segmenting complete tumor, tumor core, and contrast-enhancing tumor on real patient data are 0.84, 0.685, and 0.585, respectively. These results are comparable to other state-of-the-art methods.
Malinowski, Kathleen; McAvoy, Thomas J; George, Rohini; Dieterich, Sonja; D'Souza, Warren D
2013-07-01
To determine how best to time respiratory surrogate-based tumor motion model updates by comparing a novel technique based on external measurements alone to three direct measurement methods. Concurrently measured tumor and respiratory surrogate positions from 166 treatment fractions for lung or pancreas lesions were analyzed. Partial-least-squares regression models of tumor position from marker motion were created from the first six measurements in each dataset. Successive tumor localizations were obtained at a rate of once per minute on average. Model updates were timed according to four methods: never, respiratory surrogate-based (when metrics based on respiratory surrogate measurements exceeded confidence limits), error-based (when localization error ≥ 3 mm), and always (approximately once per minute). Radial tumor displacement prediction errors (mean ± standard deviation) for the four schema described above were 2.4 ± 1.2, 1.9 ± 0.9, 1.9 ± 0.8, and 1.7 ± 0.8 mm, respectively. The never-update error was significantly larger than errors of the other methods. Mean update counts over 20 min were 0, 4, 9, and 24, respectively. The same improvement in tumor localization accuracy could be achieved through any of the three update methods, but significantly fewer updates were required when the respiratory surrogate method was utilized. This study establishes the feasibility of timing image acquisitions for updating respiratory surrogate models without direct tumor localization.
Malinowski, Kathleen; McAvoy, Thomas J.; George, Rohini; Dieterich, Sonja; D’Souza, Warren D.
2013-01-01
Purpose: To determine how best to time respiratory surrogate-based tumor motion model updates by comparing a novel technique based on external measurements alone to three direct measurement methods. Methods: Concurrently measured tumor and respiratory surrogate positions from 166 treatment fractions for lung or pancreas lesions were analyzed. Partial-least-squares regression models of tumor position from marker motion were created from the first six measurements in each dataset. Successive tumor localizations were obtained at a rate of once per minute on average. Model updates were timed according to four methods: never, respiratory surrogate-based (when metrics based on respiratory surrogate measurements exceeded confidence limits), error-based (when localization error ≥3 mm), and always (approximately once per minute). Results: Radial tumor displacement prediction errors (mean ± standard deviation) for the four schema described above were 2.4 ± 1.2, 1.9 ± 0.9, 1.9 ± 0.8, and 1.7 ± 0.8 mm, respectively. The never-update error was significantly larger than errors of the other methods. Mean update counts over 20 min were 0, 4, 9, and 24, respectively. Conclusions: The same improvement in tumor localization accuracy could be achieved through any of the three update methods, but significantly fewer updates were required when the respiratory surrogate method was utilized. This study establishes the feasibility of timing image acquisitions for updating respiratory surrogate models without direct tumor localization. PMID:23822413
Ultrasound-enhanced localized chemotherapy of drug-sensitive and multidrug resistant tumors
NASA Astrophysics Data System (ADS)
Rapoport, Natalya Y.; Gao, Zhonggao; Kamaev, Pavel; Christensen, Douglas A.
2006-05-01
A new modality of targeted tumor chemotherapy is based on the drug encapsulation in polymeric nanoparticles followed by a localized release at the tumor site triggered by focused ultrasound. Effect of 1 MHz and 3 MHz unfocused ultrasound applied locally to the tumor on the Doxorubicin (DOX) biodistribution and tumor growth rates was measured for ovarian carcinoma tumors in nu/nu mice. The bioeffects of ultrasound were investigated on the systemic and cellular levels. Growth rates of A2780 ovarian carcinoma tumors were substantially reduced by combining micellar drug delivery with tumor irradiation. Ultrasound effect was not thermal as manifested by intratumoral temperature measurements during sonication. Biodistribution studies showed that ultrasound did not enhance micelle extravasation. Main mechanisms of the ultrasound-enhanced chemotherapy included (i) passive targeting of drug-loaded micelles to the tumor interstitium; (ii) ultrasound-triggered localized drug release from micelles in the tumor volume; (iii) enhanced micelle and drug diffusion through the tumor interstitium; and (iv) ultrasound-triggered cell membrane damage resulting in the enhanced micelle and drug uptake by tumor cells.
Martínez-Ramos, David; Fortea-Sanchis, Carlos; Escrig-Sos, Javier; Prats-de Puig, Miguel; Queralt-Martín, Raquel; Salvador-Sanchis, José Luís
2014-01-01
Conservative surgery can be regarded as the standard treatment for most early stage breast tumors. However, a minority of patients treated with conservative surgery will present local or locoregional recurrence. Therefore, it is of interest to evaluate the possible factors associated with this recurrence. A population-based retrospective study using data from the Tumor Registry of Castellón (Valencia, Spain) of patients operated on for primary nonmetastatic breast cancer between January 2000 and December 2008 was designed. Kaplan-Meier curves and log-rank test to estimate 5-year local recurrence were used. Two groups of patients were defined, one with conservative surgery and another with nonconservative surgery. Cox multivariate analysis was conducted. The total number of patients was 410. Average local recurrence was 6.8%. In univariate analysis, only tumor size and lymph node involvement showed significant differences. On multivariate analysis, independent prognostic factors were conservative surgery (hazard ratio [HR] 4.62; 95% confidence interval [CI]: 1.12-16.82), number of positive lymph nodes (HR 1.07; 95% CI: 1.01-1.17) and tumor size (in mm) (HR 1.02; 95% CI: 1.01-1.06). Local recurrence after breast-conserving surgery is higher in tumors >2 cm. Although tumor size should not be a contraindication for conservative surgery, it should be a risk factor to be considered.
APPLICATION OF ISOTOPE ENCEPHALOGRAPHY AND ELECTROENCEPHALOSCOPY FOR LOCALIZATION OF BRAIN TUMOURS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamov, V.N.; Badmayev, C.N.; Bekhtereva, N.P.
1959-10-31
The problems of diagnosis and localization of brain tumors in some cases present many difficulities and make the neurosurgeon seek for additional methods of investigation. In such circumstances usage of the tracer technique in diagnostics is of considerable help, as it has obvious advantages compared with other methods of investigation, such as safety, painlessness, non-traumatism, absence of undesirable after effects, accuracy, and relative simplicity. The present communication is based on the results of clinical observations on 150 patients with verified brain tumors. Analyses of the data show that the accuracy of the brain tumor localizations vary, depending upon the depthmore » of the tumor site and conceniration of labelled material in the area of tumor growth. The diagnostic value of the method is doubtful in cases of tumors of posterior fossa, base of the brain, or the lesions of median line. The application of isotope encephalography is successfully supplemented by the new method of investigations, i.e., electroencephaloscopy, which allows the localization of deeply set tumors. Possibilities and limitations of the method are discussed. It is concluded that the isotope encephalography and electroencephaloscopy represent very valuable diagnostic methods which alongside with other auxiliary methods are widely used in diagnosis of brain tumors. (C.H.)« less
Suzuki, Mitsuya; Yamada, Chikako; Inoue, Rika; Kashio, Akinori; Saito, Yuki; Nakanishi, Wakako
2008-10-01
We aimed to analyze the factors influencing caloric response and vestibular evoked myogenic potential (VEMP) in vestibular schwannoma. The subjects comprised 130 patients with unilateral vestibular schwannoma pathologically diagnosed by surgery. Caloric response and the amplitude and latency of VEMP were measured and analyzed based on the nerve of origin, localization, and size of the tumor. The tumors were classified into 3 types based on localization: intracanalicular, intermediate, and medial; and into 4 grades based on size: 9 mm or less, 10 to 19 mm, 20 to 29 mm, and 30 mm or greater. : Abnormal rates of caloric response and VEMP in patients with tumors arising from the superior vestibular nerve were not significantly different from those in patients with tumors of the inferior vestibular nerve. In the intermediate and medial type-but not in the intracanalicular type-a significant difference in tumor size was observed between patients with normal caloric response and those with canal paresis as also between patients with normal VEMP and those with abnormal VEMP. In patients with tumors that maximally measured 10 to 19 mm or of the intermediate type, the p- and n-wave latencies of VEMP were significantly prolonged compared with those in the normal opposite ear. 1) The nerve of origin of tumors cannot be predicted based on caloric response and VEMP. 2) In the intermediate and medial types, caloric response and the VEMP amplitude are significantly diminished in association with an increase in tumor size. 3) Prolonged VEMP latencies seem to be not only caused by tumor compression to the brainstem or vestibular spinal tract but also by tumor compression isolated to the inferior vestibular nerve.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badiyan, Shahed N.; Rao, Rajesh C.; Apicelli, Anthony J.
Purpose: To assess the impact on local tumor control of intraoperative ultrasonographic plaque visualization and selective application of transpupillary thermotherapy (TTT) in the treatment of posterior uveal melanoma with iodine-125 (I-125) episcleral plaque brachytherapy (EPB). Methods and Materials: Retrospective analysis of 526 patients treated with I-125 EPB for posterior uveal melanoma. Clinical features, dosimetric parameters, TTT treatments, and local tumor control outcomes were recorded. Statistical analysis was performed using Cox proportional hazards and Kaplan-Meier life table method. Results: The study included 270 men (51%) and 256 women (49%), with a median age of 63 years (mean, 62 years; range, 16-91more » years). Median dose to the tumor apex was 94.4 Gy (mean, 97.8; range, 43.9-183.9) and to the tumor base was 257.9 Gy (mean, 275.6; range, 124.2-729.8). Plaque tilt >1 mm away from the sclera at plaque removal was detected in 142 cases (27%). Supplemental TTT was performed in 72 patients (13.7%). One or 2 TTT sessions were required in 71 TTT cases (98.6%). After a median follow-up of 45.9 months (mean, 53.4 months; range, 6-175 months), local tumor recurrence was detected in 19 patients (3.6%). Local tumor recurrence was associated with lower dose to the tumor base (P=.02). Conclusions: Ultrasound-guided plaque localization of I-125 EPB is associated with excellent local tumor control. Detection of plaque tilt by ultrasonography at plaque removal allows supplemental TTT to be used in patients at potentially higher risk for local recurrence while sparing the majority of patients who are at low risk. Most patients require only 1 or 2 TTT sessions.« less
Höckel, Michael; Schmidt, Katja; Bornmann, Karoline; Horn, Lars-Christian; Dornhöfer, Nadja
2010-10-01
Current local treatment of vulvar cancer is wide tumor excision and radical vulvectomy based on functional anatomy established from the adult and on the view of radial progressive tumor permeation. Standard surgery is associated with a considerable local failure rate and severe disturbance of the patients' body image. Vulvar field resection (VFR) is based on ontogenetic anatomy and on the concept of local tumor spread within permissive compartments. VFR combined with anatomical reconstruction (AR) is proposed as a new surgical approach to the treatment of vulvar cancer. A prospective trial was launched to test the compartment theory for vulvar cancer and to assess safety and effectiveness of the new therapy. In 54 consecutive patients 46 tumors were locally confined to the tissue compartment differentiated from the vulvar anlage. The 8 tumors having transgressed into adjacent tissue compartments of different embryonic origins exhibited signs of advanced malignant progression. 38 patients with vulvar cancer, stages T1-3 were treated with VFR and AR. The perioperative complication rate was low. At 19 (3-50) months follow-up no patient failed locally. 33 patients estimated their body image as undisturbed. Vulvar cancer permeates within ontogenetic tissue compartments and surgical treatment with VFR and AR appears to be safe and effective. Patients should benefit from the new approach as local tumor control is high and the preserved tissue can be successfully used for restoration of vulvar form and function. Confirmatory trials with more patients and longer follow-up are suggested. Copyright © 2010 Elsevier Inc. All rights reserved.
Best, Myron G.; Sol, Nik; Kooi, Irsan; Tannous, Jihane; Westerman, Bart A.; Rustenburg, François; Schellen, Pepijn; Verschueren, Heleen; Post, Edward; Koster, Jan; Ylstra, Bauke; Ameziane, Najim; Dorsman, Josephine; Smit, Egbert F.; Verheul, Henk M.; Noske, David P.; Reijneveld, Jaap C.; Nilsson, R. Jonas A.; Tannous, Bakhos A.; Wesseling, Pieter; Wurdinger, Thomas
2015-01-01
Summary Tumor-educated blood platelets (TEPs) are implicated as central players in the systemic and local responses to tumor growth, thereby altering their RNA profile. We determined the diagnostic potential of TEPs by mRNA sequencing of 283 platelet samples. We distinguished 228 patients with localized and metastasized tumors from 55 healthy individuals with 96% accuracy. Across six different tumor types, the location of the primary tumor was correctly identified with 71% accuracy. Also, MET or HER2-positive, and mutant KRAS, EGFR, or PIK3CA tumors were accurately distinguished using surrogate TEP mRNA profiles. Our results indicate that blood platelets provide a valuable platform for pan-cancer, multiclass cancer, and companion diagnostics, possibly enabling clinical advances in blood-based “liquid biopsies”. PMID:26525104
Multifunctional platinum-based nanoparticles for biomedical applications.
Cheng, Qinqin; Liu, Yangzhong
2017-03-01
Platinum-based anticancer drugs play a central role in current cancer therapy. However, their applicability and efficacy are limited by drug resistance and adverse effects. Nanocarrier-based platinum drug delivery systems are promising alternatives to circumvent the disadvantages of bare platinum drugs. The various properties of nanoparticle chemistry allow for the trend toward multiple functionality. Nanoparticles preferentially accumulate at the tumor site through passive targeting, and the attachment of tumor targeting moieties further enhances their tumor-specific localization as well as tumor cell uptake. The introduction of stimuli-responsive groups into drug delivery systems can further achieve spatially and temporally controlled drug release in response to specific stimuli. Combination therapy strategies have been used to promote synergetic efficacy and overcome the resistance of platinum drugs. The tumor-localized drug delivery strategies exhibit benefits for preventing local tumor recurrence. In addition, the combination of platinum drugs and imaging agents in one unity allows the cancer diagnostics for real-time monitoring the distribution of drug-loaded nanoparticles inside the body and tumor. This review discusses recent scientific advances in multifunctional nanoparticle formulations of platinum drugs, and these designs exhibit new potential of multifunctional nanoparticles for delivering platinum-based anticancer drugs. WIREs Nanomed Nanobiotechnol 2017, 9:e1410. doi: 10.1002/wnan.1410 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.
Mueller, Jenna L.; Fu, Henry L.; Mito, Jeffrey K.; Whitley, Melodi J.; Chitalia, Rhea; Erkanli, Alaattin; Dodd, Leslie; Cardona, Diana M.; Geradts, Joseph; Willett, Rebecca M.; Kirsch, David G.; Ramanujam, Nimmi
2015-01-01
The goal of resection of soft tissue sarcomas located in the extremity is to preserve limb function while completely excising the tumor with a margin of normal tissue. With surgery alone, one-third of patients with soft tissue sarcoma of the extremity will have local recurrence due to microscopic residual disease in the tumor bed. Currently, a limited number of intraoperative pathology-based techniques are used to assess margin status; however, few have been widely adopted due to sampling error and time constraints. To aid in intraoperative diagnosis, we developed a quantitative optical microscopy toolbox, which includes acriflavine staining, fluorescence microscopy, and analytic techniques called sparse component analysis and circle transform to yield quantitative diagnosis of tumor margins. A series of variables were quantified from images of resected primary sarcomas and used to optimize a multivariate model. The sensitivity and specificity for differentiating positive from negative ex vivo resected tumor margins was 82% and 75%. The utility of this approach was tested by imaging the in vivo tumor cavities from 34 mice after resection of a sarcoma with local recurrence as a bench mark. When applied prospectively to images from the tumor cavity, the sensitivity and specificity for differentiating local recurrence was 78% and 82%. For comparison, if pathology was used to predict local recurrence in this data set, it would achieve a sensitivity of 29% and a specificity of 71%. These results indicate a robust approach for detecting microscopic residual disease, which is an effective predictor of local recurrence. PMID:25994353
Engulfing tumors with synthetic extracellular matrices for cancer immunotherapy.
Hori, Yuki; Stern, Patrick J; Hynes, Richard O; Irvine, Darrell J
2009-12-01
Local immunotherapies are under investigation for the treatment of unresectable tumors and sites of solid tumor resection to prevent local recurrence. Successful local therapy could also theoretically elicit systemic immune responses against cancer. Here we explored the delivery of therapeutic dendritic cells (DCs), cytokines, or other immunostimulatory factors to tumors via the use of 'self-gelling' hydrogels based on the polysaccharide alginate, injected peritumorally around established melanoma lesions. Peritumoral injection of alginate matrices loaded with DCs and/or an interleukin-15 superagonist (IL-15SA) around 14-day established ova-expressing B16F0 murine melanoma tumors promoted immune cell accumulation in the peritumoral matrix, and matrix infiltration correlated with tumor infiltration by leukocytes. Single injections of IL-15SA-carrying gels concentrated the cytokine in the tumor site approximately 40-fold compared to systemic injection and enabled a majority of treated animals to suppress tumor growth for a week or more. Further, we found that single injections of alginate matrices loaded with IL-15SA and the Toll-like receptor ligand CpG or two injections of gels carrying IL-15SA alone could elicit comparable anti-tumor activity without the need for exogenous DCs. Thus, injectable alginate gels offer an attractive platform for local tumor immunotherapy, and facilitate combinatorial treatments designed to promote immune responses locally at a tumor site while limiting systemic exposure to potent immunomodulatory factors.
Ware, Matthew J.; Krzykawska-Serda, Martyna; Chak-Shing Ho, Jason; Newton, Jared; Suki, Sarah; Law, Justin; Nguyen, Lam; Keshishian, Vazrik; Serda, Maciej; Taylor, Kimberly; Curley, Steven A.; Corr, Stuart J.
2017-01-01
Interactions of high-frequency radio waves (RF) with biological tissues are currently being investigated as a therapeutic platform for non-invasive cancer hyperthermia therapy. RF delivers thermal energy into tissues, which increases intra-tumoral drug perfusion and blood-flow. Herein, we describe an optical-based method to optimize the short-term treatment schedules of drug and hyperthermia administration in a 4T1 breast cancer model via RF, with the aim of maximizing drug localization and homogenous distribution within the tumor microenvironment. This method, based on the analysis of fluorescent dyes localized into the tumor, is more time, cost and resource efficient, when compared to current analytical methods for tumor-targeting drug analysis such as HPLC and LC-MS. Alexa-Albumin 647 nm fluorphore was chosen as a surrogate for nab-paclitaxel based on its similar molecular weight and albumin driven pharmacokinetics. We found that RF hyperthermia induced a 30–40% increase in Alexa-Albumin into the tumor micro-environment 24 h after treatment when compared to non-heat treated mice. Additionally, we showed that the RF method of delivering hyperthermia to tumors was more localized and uniform across the tumor mass when compared to other methods of heating. Lastly, we provided insight into some of the factors that influence the delivery of RF hyperthermia to tumors. PMID:28287120
Ware, Matthew J; Krzykawska-Serda, Martyna; Chak-Shing Ho, Jason; Newton, Jared; Suki, Sarah; Law, Justin; Nguyen, Lam; Keshishian, Vazrik; Serda, Maciej; Taylor, Kimberly; Curley, Steven A; Corr, Stuart J
2017-03-13
Interactions of high-frequency radio waves (RF) with biological tissues are currently being investigated as a therapeutic platform for non-invasive cancer hyperthermia therapy. RF delivers thermal energy into tissues, which increases intra-tumoral drug perfusion and blood-flow. Herein, we describe an optical-based method to optimize the short-term treatment schedules of drug and hyperthermia administration in a 4T1 breast cancer model via RF, with the aim of maximizing drug localization and homogenous distribution within the tumor microenvironment. This method, based on the analysis of fluorescent dyes localized into the tumor, is more time, cost and resource efficient, when compared to current analytical methods for tumor-targeting drug analysis such as HPLC and LC-MS. Alexa-Albumin 647 nm fluorphore was chosen as a surrogate for nab-paclitaxel based on its similar molecular weight and albumin driven pharmacokinetics. We found that RF hyperthermia induced a 30-40% increase in Alexa-Albumin into the tumor micro-environment 24 h after treatment when compared to non-heat treated mice. Additionally, we showed that the RF method of delivering hyperthermia to tumors was more localized and uniform across the tumor mass when compared to other methods of heating. Lastly, we provided insight into some of the factors that influence the delivery of RF hyperthermia to tumors.
NASA Astrophysics Data System (ADS)
Ware, Matthew J.; Krzykawska-Serda, Martyna; Chak-Shing Ho, Jason; Newton, Jared; Suki, Sarah; Law, Justin; Nguyen, Lam; Keshishian, Vazrik; Serda, Maciej; Taylor, Kimberly; Curley, Steven A.; Corr, Stuart J.
2017-03-01
Interactions of high-frequency radio waves (RF) with biological tissues are currently being investigated as a therapeutic platform for non-invasive cancer hyperthermia therapy. RF delivers thermal energy into tissues, which increases intra-tumoral drug perfusion and blood-flow. Herein, we describe an optical-based method to optimize the short-term treatment schedules of drug and hyperthermia administration in a 4T1 breast cancer model via RF, with the aim of maximizing drug localization and homogenous distribution within the tumor microenvironment. This method, based on the analysis of fluorescent dyes localized into the tumor, is more time, cost and resource efficient, when compared to current analytical methods for tumor-targeting drug analysis such as HPLC and LC-MS. Alexa-Albumin 647 nm fluorphore was chosen as a surrogate for nab-paclitaxel based on its similar molecular weight and albumin driven pharmacokinetics. We found that RF hyperthermia induced a 30-40% increase in Alexa-Albumin into the tumor micro-environment 24 h after treatment when compared to non-heat treated mice. Additionally, we showed that the RF method of delivering hyperthermia to tumors was more localized and uniform across the tumor mass when compared to other methods of heating. Lastly, we provided insight into some of the factors that influence the delivery of RF hyperthermia to tumors.
Combs, Stephanie E; Kalbe, Adriana; Nikoghosyan, Anna; Ackermann, Benjamin; Jäkel, Oliver; Haberer, Thomas; Debus, Jürgen
2011-01-01
To asses carbon ion radiation therapy (RT) performed as re-irradiation in 28 patients with recurrent tumors. Twenty-eight patients were treated with carbon ion RT as re-irradiation for recurrent chordoma and chondrosarcoma of the skull base (n=16 and n=2), one chordoma and one chondrosarcoma of the os sacrum, high-risk meningioma (n=3), adenoid-cystic carcinoma (n=4) as well as one SCCHN. All patients were treated using active raster scanning, and treatment planning was performed on CT- and MRI-basis. All patients were followed prospectively during follow-up. In all patients re-irradiation could be applied safely without interruptions. For skull base tumors, local tumor control after re-irradiation was 92% at 24 months and 64% at 36 months. Survival after re-irradiation was 86% at 24 months, and 43% at 60 months. In all three meningiomas treated with C12 for re-irradiation, the tumor recurrence was located within the former RT-field. Two patients developed tumor progression at 6 months, and in one patient the tumor remained stable for 67 months. In patients with head-and-neck tumors, three patients developed local tumor progression at 12, 24 and 29 months after re-irradiation. Median local progression-free survival was 24 months. For sacral tumors, re-irradiation offered palliation with tumor control for 24 and 36 months. Due to the physical characteristics particle therapy offers a new treatment modality in cases with tumor recurrences. With carbon ions, the additional biological benefits may be exploited for long-term tumor control. Further evaluation in a larger patients' cohort will be performed in the future. Copyright © 2010. Published by Elsevier Ireland Ltd.
Best, Myron G; Sol, Nik; Kooi, Irsan; Tannous, Jihane; Westerman, Bart A; Rustenburg, François; Schellen, Pepijn; Verschueren, Heleen; Post, Edward; Koster, Jan; Ylstra, Bauke; Ameziane, Najim; Dorsman, Josephine; Smit, Egbert F; Verheul, Henk M; Noske, David P; Reijneveld, Jaap C; Nilsson, R Jonas A; Tannous, Bakhos A; Wesseling, Pieter; Wurdinger, Thomas
2015-11-09
Tumor-educated blood platelets (TEPs) are implicated as central players in the systemic and local responses to tumor growth, thereby altering their RNA profile. We determined the diagnostic potential of TEPs by mRNA sequencing of 283 platelet samples. We distinguished 228 patients with localized and metastasized tumors from 55 healthy individuals with 96% accuracy. Across six different tumor types, the location of the primary tumor was correctly identified with 71% accuracy. Also, MET or HER2-positive, and mutant KRAS, EGFR, or PIK3CA tumors were accurately distinguished using surrogate TEP mRNA profiles. Our results indicate that blood platelets provide a valuable platform for pan-cancer, multiclass cancer, and companion diagnostics, possibly enabling clinical advances in blood-based "liquid biopsies". Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Benndorf, Matthias; Neubauer, Jakob; Langer, Mathias; Kotter, Elmar
2017-03-01
In the diagnostic process of primary bone tumors, patient age, tumor localization and to a lesser extent sex affect the differential diagnosis. We therefore aim to develop a pretest probability calculator for primary malignant bone tumors based on population data taking these variables into account. We access the SEER (Surveillance, Epidemiology and End Results Program of the National Cancer Institute, 2015 release) database and analyze data of all primary malignant bone tumors diagnosed between 1973 and 2012. We record age at diagnosis, tumor localization according to the International Classification of Diseases (ICD-O-3) and sex. We take relative probability of the single tumor entity as a surrogate parameter for unadjusted pretest probability. We build a probabilistic (naïve Bayes) classifier to calculate pretest probabilities adjusted for age, tumor localization and sex. We analyze data from 12,931 patients (647 chondroblastic osteosarcomas, 3659 chondrosarcomas, 1080 chordomas, 185 dedifferentiated chondrosarcomas, 2006 Ewing's sarcomas, 281 fibroblastic osteosarcomas, 129 fibrosarcomas, 291 fibrous malignant histiocytomas, 289 malignant giant cell tumors, 238 myxoid chondrosarcomas, 3730 osteosarcomas, 252 parosteal osteosarcomas, 144 telangiectatic osteosarcomas). We make our probability calculator accessible at http://ebm-radiology.com/bayesbone/index.html . We provide exhaustive tables for age and localization data. Results from tenfold cross-validation show that in 79.8 % of cases the pretest probability is correctly raised. Our approach employs population data to calculate relative pretest probabilities for primary malignant bone tumors. The calculator is not diagnostic in nature. However, resulting probabilities might serve as an initial evaluation of probabilities of tumors on the differential diagnosis list.
NASA Astrophysics Data System (ADS)
Schulz-Ertner, Daniela
In skull base tumors associated with a low radiosensitivity for conventional radiotherapy (RT), irradiation with proton or carbon ion beams facilitates a safe and accurate application of high tumor doses due to the favorable beam localization properties of these particle beams. Cranial nerves, the brain stem and normal brain tissue can at the same time be optimally spared.
Improving cancer treatment with cyclotron produced radionuclides. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, S.M.; Finn, R.D.
1992-08-04
Our goal is to improve the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The grant includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. The radiochemistry group seeks to develop innovative cyclotron targetry, radiopharmaceuticals, and radiolabeled antibodies, which are then used to assess important unanswered questions in tumor pharmacology and immunology. Examples include selected positron emitting radionuclides, such as Iodine-124, and Ga-66; I-124, I-123, I-131 labeled iododeoxyuridine, C-11 colchicine, and antimetabolites, like C-11 methotrexate; and radiolabeled antibodies, 3F8, M195, A33, and MRK16 for application in the pharmacology and immunologymore » projects. The pharmacology program studies tumor resistance to chemotherapy, particularly the phenomenon of multidrug resistance and the relationship between tumor uptake and retention and the tumor response for anti-metabolite drugs. The immunology program studies the physiology of antibody localization at the tissue level as the basis for novel approaches to improving tumor localization such as through the use of an artificial lymphatic system which mechanically reduces intratumoral pressures in tumors in vivo. Quantitative imaging approaches based on PET and SPECT in radioimmunotherapy are studied to give greater insight into the physiology of tumor localization and dosimetry.« less
Improving cancer treatment with cyclotron produced radionuclides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, S.M.; Finn, R.D.
1992-08-04
Our goal is to improve the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The grant includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. The radiochemistry group seeks to develop innovative cyclotron targetry, radiopharmaceuticals, and radiolabeled antibodies, which are then used to assess important unanswered questions in tumor pharmacology and immunology. Examples include selected positron emitting radionuclides, such as Iodine-124, and Ga-66; I-124, I-123, I-131 labeled iododeoxyuridine, C-11 colchicine, and antimetabolites, like C-11 methotrexate; and radiolabeled antibodies, 3F8, M195, A33, and MRK16 for application in the pharmacology and immunologymore » projects. The pharmacology program studies tumor resistance to chemotherapy, particularly the phenomenon of multidrug resistance and the relationship between tumor uptake and retention and the tumor response for anti-metabolite drugs. The immunology program studies the physiology of antibody localization at the tissue level as the basis for novel approaches to improving tumor localization such as through the use of an artificial lymphatic system which mechanically reduces intratumoral pressures in tumors in vivo. Quantitative imaging approaches based on PET and SPECT in radioimmunotherapy are studied to give greater insight into the physiology of tumor localization and dosimetry.« less
NASA Astrophysics Data System (ADS)
Gao, Yang; Chen, Maomao; Wu, Junyu; Zhou, Yuan; Cai, Chuangjian; Wang, Daliang; Luo, Jianwen
2017-09-01
Fluorescence molecular imaging has been used to target tumors in mice with xenograft tumors. However, tumor imaging is largely distorted by the aggregation of fluorescent probes in the liver. A principal component analysis (PCA)-based strategy was applied on the in vivo dynamic fluorescence imaging results of three mice with xenograft tumors to facilitate tumor imaging, with the help of a tumor-specific fluorescent probe. Tumor-relevant features were extracted from the original images by PCA and represented by the principal component (PC) maps. The second principal component (PC2) map represented the tumor-related features, and the first principal component (PC1) map retained the original pharmacokinetic profiles, especially of the liver. The distribution patterns of the PC2 map of the tumor-bearing mice were in good agreement with the actual tumor location. The tumor-to-liver ratio and contrast-to-noise ratio were significantly higher on the PC2 map than on the original images, thus distinguishing the tumor from its nearby fluorescence noise of liver. The results suggest that the PC2 map could serve as a bioimaging marker to facilitate in vivo tumor localization, and dynamic fluorescence molecular imaging with PCA could be a valuable tool for future studies of in vivo tumor metabolism and progression.
Vogelbaum, Michael A; Angelov, Lilyana; Lee, Shih-Yuan; Li, Liang; Barnett, Gene H; Suh, John H
2006-06-01
The maximal tolerated dose (MTD) for stereotactic radiosurgery (SRS) for brain tumors was established by the Radiation Therapy Oncology Group (RTOG) in protocol 90-05, which defined three dose groups based on the maximal tumor diameter. The goal in this retrospective study was to determine whether differences in doses to the margins of brain metastases affect the ability of SRS to achieve local control. Between 1997 and 2003, 202 patients harboring 375 tumors that met study entry criteria underwent SRS for treatment of one or multiple brain metastases. The median overall follow-up duration was 10.7 months (range 3-83 months). A dose of 24 Gy to the tumor margin had a significantly lower risk of local failure than 15 or 18 Gy (p = 0.0005; hazard ratio 0.277, confidence interval [CI] 0.134-0.573), whereas the 15- and 18-Gy groups were not significantly different from each other (p = 0.82) in this regard. The 1-year local control rate was 85% (95% CI 78-92%) in tumors treated with 24 Gy, compared with 49% (CI 30-68%) in tumors treated with 18 Gy and 45% (CI 23-67%) in tumors treated with 15 Gy. Overall patient survival was independent of dose to the tumor margin. Use of the RTOG 90-05 dosing scheme for brain metastases is associated with a variable local control rate. Tumors larger than 2 cm are less effectively controlled than smaller lesions, which can be safely treated with 24 Gy. Prospective evaluations of the relationship between dose to the tumor margin and local control should be performed to confirm these observations.
CyberKnife Radiosurgery of Skull-base Tumors: A UK Center Experience
Wilson, Hannah P; Price, Patricia M; Ashkan, Keyoumars; Edwards, Andrew; Green, Melanie M; Cross, Timothy; Beaney, Ronald P; Davies, Rhiannon; Sibtain, Amen; Plowman, Nick P
2018-01-01
The study aim was to evaluate patient individualized Cyberknife® treatment for heterogeneous skull-base tumors. Patients treated between 2009 and 2013 at The Harley Street Clinic were studied. In total, 66 patients received 15–30 Gy in 1–5 fractions to a median planning target volume (PTV) of 6.4 cc, including patients with secondary, multiple, residual and recurrent tumors, and those with tumors of uncertain pathological type. Outcome analysis was pragmatically restricted to 35 patients who had single, primary tumors treated with curative intent, and sufficient diagnostic and outcome information. Sixteen vestibular schwannoma patients with median PTV 3.8 cc (range 0.81–19.6) received 18–25 Gy in 3–5 fractions: 81% showed no acute toxicity, 50% reported no late toxicity, 71% of symptoms were stable/improved and local control was 100% at 11.4 months median follow-up. Twelve meningioma patients with median PTV of 5.5 cc (range 0.68–22.3) received 17–30 Gy in 1–5 fractions: 83% experienced no acute toxicity, 33% reported no late toxicity, 88% of symptoms were stable/improved and local control was 100% at 22.1 months median follow-up. Seven patients with other tumor types with median PTV of 24.3 cc (range 7.6–100.5) received 15–28.5 Gy in 1–5 fractions: 57% experienced no acute toxicity, 57% reported no late toxicities, 66% of symptoms were stable and local control was 43% at 14.9 months median follow-up. When tumor types were considered together, smaller tumors (PTV < 6.4 cc) showed reduced acute toxicity (p = 0.01). Overall, smaller benign tumors showed low acute toxicity, excellent local control, and good symptom management: a focus on enhanced neurological preservation may refine outcomes. For other tumor types outcome was encouraging: a focus on optimal dose and fractionation scheduling may reduce toxicity and improve local control. Individual patient experiences are detailed where valuable lessons were gained for optimizing local control and minimizing toxicity.
Willerding, Linus; Limmer, Simone; Hossann, Martin; Zengerle, Anja; Wachholz, Kirsten; Ten Hagen, Timo L M; Koning, Gerben A; Sroka, Ronald; Lindner, Lars H; Peller, Michael
2016-01-28
Systemic chemotherapy of solid tumors could be enhanced by local hyperthermia (HT) in combination with thermosensitive liposomes (TSL) as drug carriers. In such an approach, effective HT of the tumor is considered essential for successful triggering local drug release and targeting of the drug to the tumor. To investigate the effect of HT method on the effectiveness of drug delivery, a novel laser-based HT device designed for the use in magnetic resonance imaging (MRI) was compared systematically with the frequently used cold light lamp and water bath HT. Long circulating phosphatidyldiglycerol-based TSL (DPPG2-TSL) with encapsulated doxorubicin (DOX) were used as drug carrier enabling intravascular drug release. Experiments were performed in male Brown Norway rats with a syngeneic soft tissue sarcoma (BN 175) located on both hind legs. One tumor was heated while the second tumor remained unheated as a reference. Six animals were investigated per HT method. DPPG2-TSL were injected i.v. at a stable tumor temperature above 40°C. Thereafter, temperature was maintained for 60min. Total DOX concentration in plasma, tumor tissue and muscle was determined post therapy by HPLC. Finally, the new laser-based device was tested in a MRI environment at 3T using DPPG2-TSL with encapsulated Gd-based contrast agent. All methods showed effective DOX delivery by TSL with 4.5-23.1ng/mg found in the heated tumors. In contrast, DOX concentration in the non-heated tumors was 0.5±0.1ng/mg. Independent of used HT methods, higher DOX levels were found in the smaller tumors. In comparison water bath induced lowest DOX delivery but still showing fourfold higher DOX concentrations compared to the non-heated tumors. With the laser-based applicator, a 13 fold higher DOX deposition was possible for large tumors and a 15 fold higher for the small tumors, respectively. Temperature gradients in the tumor tissue were higher with the laser and cold light lamp (-0.3°C/mm to -0.5°C/mm) compared to the water bath (-0.1°C/mm and -0.2°C/mm). Visualization of HT in the MRI demonstrated successful localized heating throughout the entire tumor volume by contrast agent release from DPPG2-TSL. In conclusion, HT triggered drug delivery by using DPPG2-TSL is a promising tool in chemotherapy but effectiveness markedly depended on the method of heating and also on tumor size. Local HT using a cold light lamp or the new laser applicator allowed more efficient drug delivery than using a regional water bath heating. MR-compatibility of the new applicator gives the opportunity for future experiments investing drug delivery in more detail by MRI at low technical efforts. Copyright © 2015 Elsevier B.V. All rights reserved.
The gold standard of care for hepatocellular carcinoma patients with intermediate- to locally advanced tumors is transcatheter arterial chemoembolization (TACE), a procedure whereby the tumor is targeted both with local chemotherapy and restriction of local blood supply. NCI scientists have identified a 14-gene signature predictive of response to TACE, and NCI seeks licensees or co-development partners to develop the technology toward commercialization.
Soussan, Michael; Cyrta, Joanna; Pouliquen, Christelle; Chouahnia, Kader; Orlhac, Fanny; Martinod, Emmanuel; Eder, Véronique; Morère, Jean-François; Buvat, Irène
2014-09-01
To study whether volume-based indices of fluorine 18 fluorodeoxyglucose positron emission tomographic (PET)/computed tomographic (CT) imaging is an accurate tool to predict the amount of residual viable tumor after induction chemotherapy in patients with locally advanced non-small cell lung cancer (NSCLC). This study was approved by institutional review board with waivers of informed consent. Twenty-two patients with locally advanced NSCLC underwent surgery after induction chemotherapy. All had pre- and posttreatment FDG PET/CT scans. CT largest diameter, CT volume, maximum standardized uptake value (SUVmax), mean SUV (SUVmean), metabolic tumor volume (TV), and total lesion glycolysis of primary tumor were calculated. Changes in tumor measurements were determined by dividing follow-up by baseline measurement (ratio index). Amounts of residual viable tumor, necrosis, fibrous tissue, inflammatory infiltrate, and Ki-67 proliferative index were estimated on resected tumor. Correlations between imaging indices and histologic parameters were estimated by using Spearman correlation coefficients or Mann-Whitney tests. No baseline or posttreatment indices correlated with percentage of residual viable tumor. TV ratio was the only index that correlated with percentage of residual viable tumor (r = 0.61 [95% confidence interval: 0.24, 0.81]; P = .003). Conversely, SUVmax and SUVmean ratios were only indices correlated with Ki-67 (r = 0.62 [95% confidence interval: 0.24, 0.82]; P = .003; and r = 0.60 [95% confidence interval: 0.21, 0.81]; P = .004, respectively). Total lesion glycolysis ratio was moderately correlated with residual viable tumor (r = 0.53 [95% confidence interval: 0.13, 0.78]; P = .01) and with Ki-67 (r = 0.57 [95% confidence interval: 0.18, 0.80]; P = .006). No ratios were correlated with presence of inflammatory infiltrate or foamy macrophages. TV and total lesion glycolysis ratios were the only indices correlated with residual viable tumor after induction chemotherapy in locally advanced NSCLC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cifter, G; Redler, G; Lee, C
Purpose: Compared to traditional radiotherapy techniques, stereotactic body radiation therapy (SBRT) provides more favorable outcomes during the treatment of certain lung tumors. Despite advancements in image guidance, accurate target localization still remains a challenge. In this work, we expand our knowledge of a novel scatter imaging modality in order to develop a real-time tumor localization method using scattered photons from the patient during treatment. Methods: Images of the QUASAR™ Respiratory Motion Phantom were taken by irradiating it on a Varian TrueBeam accelerator. The scattered radiation was detected using a flat panel-based pinhole camera detection system. Two motion settings were investigated:more » static and dynamic. In the former, the lung tumor was manually shifted between imaging. In the latter, the lung tumor was set to move at a certain frequency and amplitude while the images were acquired continuously for one minute. The accuracy of tumor localization and the irradiation time required to distinguish the lung tumor were studied. Results: The comparison of measured and expected location of the lung tumor during static motion was shown to be under standard deviation (STD) of 0.064 with a mean STD of 0.031cm. The dynamic motion was taken at a rate of 1400 MU/min for one minute and the measured location of the lung tumor was then compared with the QUASAR phantom’s sinusoidal motion pattern and the agreement found to be at an average STD of 0.275cm. The location of the lung tumor was investigated using aggregate images consisting of 1 or 2 frames/image and the change was below STD of 0.30cm. The lung tumor also appeared to be blurrier in images consisting of two frames. Conclusion: Based on our preliminary results real-time image guidance using the scatter imaging modality to localize and track tumors during lung SBRT has the potential to become clinical reality.« less
NASA Astrophysics Data System (ADS)
Sadeghi-Goughari, M.; Mojra, A.; Sadeghi, S.
2016-02-01
Intraoperative Thermal Imaging (ITI) is a new minimally invasive diagnosis technique that can potentially locate margins of brain tumor in order to achieve maximum tumor resection with least morbidity. This study introduces a new approach to ITI based on artificial tactile sensing (ATS) technology in conjunction with artificial neural networks (ANN) and feasibility and applicability of this method in diagnosis and localization of brain tumors is investigated. In order to analyze validity and reliability of the proposed method, two simulations were performed. (i) An in vitro experimental setup was designed and fabricated using a resistance heater embedded in agar tissue phantom in order to simulate heat generation by a tumor in the brain tissue; and (ii) A case report patient with parafalcine meningioma was presented to simulate ITI in the neurosurgical procedure. In the case report, both brain and tumor geometries were constructed from MRI data and tumor temperature and depth of location were estimated. For experimental tests, a novel assisted surgery robot was developed to palpate the tissue phantom surface to measure temperature variations and ANN was trained to estimate the simulated tumor’s power and depth. Results affirm that ITI based ATS is a non-invasive method which can be useful to detect, localize and characterize brain tumors.
Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Cepeda-Negrete, Jonathan; Ibarra-Manzano, Mario Alberto; Chalopin, Claire
2017-12-01
Brain tumor segmentation is a routine process in a clinical setting and provides useful information for diagnosis and treatment planning. Manual segmentation, performed by physicians or radiologists, is a time-consuming task due to the large quantity of medical data generated presently. Hence, automatic segmentation methods are needed, and several approaches have been introduced in recent years including the Localized Region-based Active Contour Model (LRACM). There are many popular LRACM, but each of them presents strong and weak points. In this paper, the automatic selection of LRACM based on image content and its application on brain tumor segmentation is presented. Thereby, a framework to select one of three LRACM, i.e., Local Gaussian Distribution Fitting (LGDF), localized Chan-Vese (C-V) and Localized Active Contour Model with Background Intensity Compensation (LACM-BIC), is proposed. Twelve visual features are extracted to properly select the method that may process a given input image. The system is based on a supervised approach. Applied specifically to Magnetic Resonance Imaging (MRI) images, the experiments showed that the proposed system is able to correctly select the suitable LRACM to handle a specific image. Consequently, the selection framework achieves better accuracy performance than the three LRACM separately. Copyright © 2017 Elsevier Ltd. All rights reserved.
Patient-specific model-based segmentation of brain tumors in 3D intraoperative ultrasound images.
Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Lindner, Dirk; Arlt, Felix; Ituna-Yudonago, Jean Fulbert; Chalopin, Claire
2018-03-01
Intraoperative ultrasound (iUS) imaging is commonly used to support brain tumor operation. The tumor segmentation in the iUS images is a difficult task and still under improvement because of the low signal-to-noise ratio. The success of automatic methods is also limited due to the high noise sensibility. Therefore, an alternative brain tumor segmentation method in 3D-iUS data using a tumor model obtained from magnetic resonance (MR) data for local MR-iUS registration is presented in this paper. The aim is to enhance the visualization of the brain tumor contours in iUS. A multistep approach is proposed. First, a region of interest (ROI) based on the specific patient tumor model is defined. Second, hyperechogenic structures, mainly tumor tissues, are extracted from the ROI of both modalities by using automatic thresholding techniques. Third, the registration is performed over the extracted binary sub-volumes using a similarity measure based on gradient values, and rigid and affine transformations. Finally, the tumor model is aligned with the 3D-iUS data, and its contours are represented. Experiments were successfully conducted on a dataset of 33 patients. The method was evaluated by comparing the tumor segmentation with expert manual delineations using two binary metrics: contour mean distance and Dice index. The proposed segmentation method using local and binary registration was compared with two grayscale-based approaches. The outcomes showed that our approach reached better results in terms of computational time and accuracy than the comparative methods. The proposed approach requires limited interaction and reduced computation time, making it relevant for intraoperative use. Experimental results and evaluations were performed offline. The developed tool could be useful for brain tumor resection supporting neurosurgeons to improve tumor border visualization in the iUS volumes.
Accurate segmenting of cervical tumors in PET imaging based on similarity between adjacent slices.
Chen, Liyuan; Shen, Chenyang; Zhou, Zhiguo; Maquilan, Genevieve; Thomas, Kimberly; Folkert, Michael R; Albuquerque, Kevin; Wang, Jing
2018-06-01
Because in PET imaging cervical tumors are close to the bladder with high capacity for the secreted 18 FDG tracer, conventional intensity-based segmentation methods often misclassify the bladder as a tumor. Based on the observation that tumor position and area do not change dramatically from slice to slice, we propose a two-stage scheme that facilitates segmentation. In the first stage, we used a graph-cut based algorithm to obtain initial contouring of the tumor based on local similarity information between voxels; this was achieved through manual contouring of the cervical tumor on one slice. In the second stage, initial tumor contours were fine-tuned to more accurate segmentation by incorporating similarity information on tumor shape and position among adjacent slices, according to an intensity-spatial-distance map. Experimental results illustrate that the proposed two-stage algorithm provides a more effective approach to segmenting cervical tumors in 3D 18 FDG PET images than the benchmarks used for comparison. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kulkarni, Yogesh M.; Chambers, Emily; McGray, A. J. Robert; Ware, Jason S.; Bramson, Jonathan L.
2012-01-01
Interleukin-12 (IL12) enhances anti-tumor immunity when delivered to the tumor microenvironment. However, local immunoregulatory elements dampen the efficacy of IL12. The identity of these local mechanisms used by tumors to suppress immunosurveillance represents a key knowledge gap for improving tumor immunotherapy. From a systems perspective, local suppression of anti-tumor immunity is a closed-loop system - where system response is determined by an unknown combination of external inputs and local cellular cross-talk. Here, we recreated this closed-loop system in vitro and combined quantitative high content assays, in silico model-based inference, and a proteomic workflow to identify the biochemical cues responsible for immunosuppression. Following an induction period, the B16 melanoma cell model, a transplantable model for spontaneous malignant melanoma, inhibited the response of a T helper cell model to IL12. This paracrine effect was not explained by induction of apoptosis or creation of a cytokine sink, despite both mechanisms present within the co-culture assay. Tumor-derived Wnt-inducible signaling protein-1 (WISP-1) was identified to exert paracrine action on immune cells by inhibiting their response to IL12. Moreover, WISP-1 was expressed in vivo following intradermal challenge with B16F10 cells and was inferred to be expressed at the tumor periphery. Collectively, the data suggest that (1) biochemical cues associated with epithelial-to-mesenchymal transition can shape anti-tumor immunity through paracrine action and (2) remnants of the immunoselective pressure associated with evolution in cancer include both sculpting of tumor antigens and expression of proteins that proactively shape anti-tumor immunity. PMID:22777646
The "Trojan Horse" approach to tumor immunotherapy: targeting the tumor microenvironment.
Nelson, Delia; Fisher, Scott; Robinson, Bruce
2014-01-01
Most anticancer therapies including immunotherapies are given systemically; yet therapies given directly into tumors may be more effective, particularly those that overcome natural suppressive factors in the tumor microenvironment. The "Trojan Horse" approach of intratumoural delivery aims to promote immune-mediated destruction by inducing microenvironmental changes within the tumour at the same time as avoiding the systemic toxicity that is often associated with more "full frontal" treatments such as transfer of large numbers of laboratory-expanded tumor-specific cytotoxic T lymphocytes or large intravenous doses of cytokine. Numerous studies have demonstrated that intratumoural therapy has the capacity to minimizing local suppression, inducing sufficient "dangerous" tumor cell death to cross-prime strong immune responses, and rending tumor blood vessels amenable to immune cell traffic to induce effector cell changes in secondary lymphoid organs. However, the key to its success is the design of a sound rational approach based on evidence. There is compelling preclinical data for local immunotherapy approaches in tumor immunology. This review summarises how immune events within a tumour can be modified by local approaches, how this can affect systemic antitumor immunity such that distal sites are attacked, and what approaches have been proven most successful so far in animals and patients.
Wanet, Marie; Delor, Antoine; Hanin, François-Xavier; Ghaye, Benoît; Van Maanen, Aline; Remouchamps, Vincent; Clermont, Christian; Goossens, Samuel; Lee, John Aldo; Janssens, Guillaume; Bol, Anne; Geets, Xavier
2017-10-01
The aim of the study was to assess the feasibility of an individualized 18F fluorodeoxyglucose positron emission tomography (FDG-PET)-guided dose escalation boost in non-small cell lung cancer (NSCLC) patients and to assess its impact on local tumor control and toxicity. A total of 13 patients with stage II-III NSCLC were enrolled to receive a dose of 62.5 Gy in 25 fractions to the CT-based planning target volume (PTV; primary turmor and affected lymph nodes). The fraction dose was increased within the individual PET-based PTV (PTV PET ) using intensity modulated radiotherapy (IMRT) with a simultaneous integrated boost (SIB) until the predefined organ-at-risk (OAR) threshold was reached. Tumor response was assessed during follow-up by means of repeat FDG-PET/computed tomography. Acute and late toxicity were recorded and classified according to the CTCAE criteria (Version 4.0). Local progression-free survival was determined using the Kaplan-Meier method. The average dose to PTV PET reached 89.17 Gy for peripheral and 75 Gy for central tumors. After a median follow-up period of 29 months, seven patients were still alive, while six had died (four due to distant progression, two due to grade 5 toxicity). Local progression was seen in two patients in association with further recurrences. One and 2-year local progression free survival rates were 76.9% and 52.8%, respectively. Three cases of acute grade 3 esophagitis were seen. Two patients with central tumors developed late toxicity and died due to severe hemoptysis. These results suggest that a non-uniform and individualized dose escalation based on FDG-PET in IMRT delivery is feasible. The doses reached were higher in patients with peripheral compared to central tumors. This strategy enables good local control to be achieved at acceptable toxicity rates. However, dose escalation in centrally located tumors with direct invasion of mediastinal organs must be performed with great caution in order to avoid severe late toxicity.
Dolati, Parviz; Gokoglu, Abdulkerim; Eichberg, Daniel; Zamani, Amir; Golby, Alexandra; Al-Mefty, Ossama
2015-01-01
Background: Skull base tumors frequently encase or invade adjacent normal neurovascular structures. For this reason, optimal tumor resection with incomplete knowledge of patient anatomy remains a challenge. Methods: To determine the accuracy and utility of image-based preoperative segmentation in skull base tumor resections, we performed a prospective study. Ten patients with skull base tumors underwent preoperative 3T magnetic resonance imaging, which included thin section three-dimensional (3D) space T2, 3D time of flight, and magnetization-prepared rapid acquisition gradient echo sequences. Imaging sequences were loaded in the neuronavigation system for segmentation and preoperative planning. Five different neurovascular landmarks were identified in each case and measured for accuracy using the neuronavigation system. Each segmented neurovascular element was validated by manual placement of the navigation probe, and errors of localization were measured. Results: Strong correspondence between image-based segmentation and microscopic view was found at the surface of the tumor and tumor-normal brain interfaces in all cases. The accuracy of the measurements was 0.45 ± 0.21 mm (mean ± standard deviation). This information reassured the surgeon and prevented vascular injury intraoperatively. Preoperative segmentation of the related cranial nerves was possible in 80% of cases and helped the surgeon localize involved cranial nerves in all cases. Conclusion: Image-based preoperative vascular and neural element segmentation with 3D reconstruction is highly informative preoperatively and could increase the vigilance of neurosurgeons for preventing neurovascular injury during skull base surgeries. Additionally, the accuracy found in this study is superior to previously reported measurements. This novel preliminary study is encouraging for future validation with larger numbers of patients. PMID:26674155
Dolati, Parviz; Gokoglu, Abdulkerim; Eichberg, Daniel; Zamani, Amir; Golby, Alexandra; Al-Mefty, Ossama
2015-01-01
Skull base tumors frequently encase or invade adjacent normal neurovascular structures. For this reason, optimal tumor resection with incomplete knowledge of patient anatomy remains a challenge. To determine the accuracy and utility of image-based preoperative segmentation in skull base tumor resections, we performed a prospective study. Ten patients with skull base tumors underwent preoperative 3T magnetic resonance imaging, which included thin section three-dimensional (3D) space T2, 3D time of flight, and magnetization-prepared rapid acquisition gradient echo sequences. Imaging sequences were loaded in the neuronavigation system for segmentation and preoperative planning. Five different neurovascular landmarks were identified in each case and measured for accuracy using the neuronavigation system. Each segmented neurovascular element was validated by manual placement of the navigation probe, and errors of localization were measured. Strong correspondence between image-based segmentation and microscopic view was found at the surface of the tumor and tumor-normal brain interfaces in all cases. The accuracy of the measurements was 0.45 ± 0.21 mm (mean ± standard deviation). This information reassured the surgeon and prevented vascular injury intraoperatively. Preoperative segmentation of the related cranial nerves was possible in 80% of cases and helped the surgeon localize involved cranial nerves in all cases. Image-based preoperative vascular and neural element segmentation with 3D reconstruction is highly informative preoperatively and could increase the vigilance of neurosurgeons for preventing neurovascular injury during skull base surgeries. Additionally, the accuracy found in this study is superior to previously reported measurements. This novel preliminary study is encouraging for future validation with larger numbers of patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rüegsegger, Michael B.; Steiner, Patrick; Kowal, Jens H., E-mail: jens.kowal@artorg.unibe.ch
Purpose: External beam radiation therapy is currently considered the most common treatment modality for intraocular tumors. Localization of the tumor and efficient compensation of tumor misalignment with respect to the radiation beam are crucial. According to the state of the art procedure, localization of the target volume is indirectly performed by the invasive surgical implantation of radiopaque clips or is limited to positioning the head using stereoscopic radiographies. This work represents a proof-of-concept for direct and noninvasive tumor referencing based on anterior eye topography acquired using optical coherence tomography (OCT). Methods: A prototype of a head-mounted device has been developedmore » for automatic monitoring of tumor position and orientation in the isocentric reference frame for LINAC based treatment of intraocular tumors. Noninvasive tumor referencing is performed with six degrees of freedom based on anterior eye topography acquired using OCT and registration of a statistical eye model. The proposed prototype was tested based on enucleated pig eyes and registration accuracy was measured by comparison of the resulting transformation with tilt and torsion angles manually induced using a custom-made test bench. Results: Validation based on 12 enucleated pig eyes revealed an overall average registration error of 0.26 ± 0.08° in 87 ± 0.7 ms for tilting and 0.52 ± 0.03° in 94 ± 1.4 ms for torsion. Furthermore, dependency of sampling density on mean registration error was quantitatively assessed. Conclusions: The tumor referencing method presented in combination with the statistical eye model introduced in the past has the potential to enable noninvasive treatment and may improve quality, efficacy, and flexibility of external beam radiotherapy of intraocular tumors.« less
Antigen localization controls T cell-mediated tumor immunity.
Zeelenberg, Ingrid S; van Maren, Wendy W C; Boissonnas, Alexandre; Van Hout-Kuijer, Maaike A; Den Brok, Martijn H M G M; Wagenaars, Jori A L; van der Schaaf, Alie; Jansen, Eric J R; Amigorena, Sebastian; Théry, Clotilde; Figdor, Carl G; Adema, Gosse J
2011-08-01
Effective antitumor immunotherapy requires the identification of suitable target Ags. Interestingly, many of the tumor Ags used in clinical trials are present in preparations of secreted tumor vesicles (exosomes). In this study, we compared T cell responses elicited by murine MCA101 fibrosarcoma tumors expressing a model Ag at different localizations within the tumor cell in association with secreted vesicles (exosomes), as a nonsecreted cell-associated protein, or as secreted soluble protein. Remarkably, we demonstrated that only the tumor-secreting vesicle-bound Ag elicited a strong Ag-specific CD8(+) T cell response, CD4(+) T cell help, Ag-specific Abs, and a decrease in the percentage of immunosuppressive regulatory T cells in the tumor. Moreover, in a therapeutic tumor model of cryoablation, only in tumors secreting vesicle-bound Ag could Ag-specific CD8(+) T cells still be detected up to 16 d after therapy. We concluded that the localization of an Ag within the tumor codetermines whether a robust immunostimulatory response is elicited. In vivo, vesicle-bound Ag clearly skews toward a more immunogenic phenotype, whereas soluble or cell-associated Ag expression cannot prevent or even delay outgrowth and results in tumor tolerance. This may explain why particular immunotherapies based on these vesicle-bound tumor Ags are potentially successful. Therefore, we conclude that this study may have significant implications in the discovery of new tumor Ags suitable for immunotherapy and that their location should be taken into account to ensure a strong antitumor immune response.
Simpson, Guy R; Han, Ziqun; Liu, Binlei; Wang, Yibing; Campbell, Gregor; Coffin, Robert S
2006-05-01
We have previously developed an oncolytic herpes simplex virus-1 based on a clinical virus isolate, which was deleted for ICP34.5 to provide tumor selected replication and ICP47 to increase antigen presentation as well as tumor selective virus replication. A phase I/II clinical trial using a version of this virus expressing granulocyte macrophage colony-stimulating factor has shown promising results. The work reported here aimed to develop a version of this virus in which local tumor control was further increased through the combined expression of a highly potent prodrug activating gene [yeast cytosine deaminase/uracil phospho-ribosyltransferase fusion (Fcy::Fur)] and the fusogenic glycoprotein from gibbon ape leukemia virus (GALV), which it was hoped would aid the spread of the activated prodrug through the tumor. Viruses expressing the two genes individually or in combination were constructed and tested, showing (a) GALV and/or Fcy::Fur expression did not affect virus growth; (b) GALV expression causes cell fusion and increases the tumor cell killing at least 30-fold in vitro and tumor shrinkage 5- to 10-fold in vivo; (c) additional expression of Fcy::Fur combined with 5-fluorocytosine administration improves tumor shrinkage further. These results indicate, therefore, that the combined expression of the GALV protein and Fcy::Fur provides a highly potent oncolytic virus with improved capabilities for local tumor control. It is intended to enter the GALV/Fcy::Fur expressing virus into clinical development for the treatment of tumor types, such as pancreatic or lung cancer, where local control would be anticipated to be clinically advantageous.
Höckel, Michael; Horn, Lars-Christian; Einenkel, Jens
2012-11-01
Pelvic exenteration is mainly applied as a salvage operation for a subset of patients with persistent and recurrent cervicovaginal cancer. The procedure can also cure locally advanced primary disease not suitable for radiotherapy. However, high operative abortion and intralesional tumor resection rates significantly limit its clinical benefit. To improve locoregional tumor control we have proposed to establish cancer surgery on ontogenetic anatomy and, consequently, we have developed the (Laterally) Extended Endopelvic Resection ((L)EER). (L)EER is clinically and histopathologically evaluated with a monocentric prospective observational study. Patients with advanced and recurrent cervicovaginal cancer are treatment candidates if distant metastases and tumor fixation at the region of the sciatic foramen can be excluded. 91 patients with locally advanced primary (n=30) and recurrent or persistent (n=61) carcinoma of the cervix and vagina were treated with (L)EER. 74% of the tumors were fixed to the pelvic wall. No (L)EER treatment was aborted, R0 resection was histopathologically confirmed in all cases. (L)EER definitively controlled the locoregional cancer in 92% (95% CI: 85-99) of the patients. Five year overall survival probability was 61% (95% CI: 49-72). The results of (L)EER treatment confirm the concept of cancer surgery based on ontogenetic anatomy. In patients with locally advanced and recurrent cervicovaginal cancer (L)EER achieves locoregional tumor control both with central disease and with tumors fixed to the pelvic side wall except at the region of the sciatic foramen. Copyright © 2012 Elsevier Inc. All rights reserved.
Radiofrequency ablation of liver tumors (I): biological background.
Vanagas, Tomas; Gulbinas, Antanas; Pundzius, Juozas; Barauskas, Giedrius
2010-01-01
Majority of patients suffering from liver tumors are not candidates for surgery. Currently, minimal invasive techniques have become available for local destruction of hepatic tumors. Radiofrequency ablation is based on biological response to tissue hyperthermia. The aim of this article is to review available biological data on tissue destruction mechanisms. Experimental evidence shows that tissue injury following thermal ablation occurs in two distinct phases. The initial phase is direct injury, which is determined by energy applied, tumor biology, and tumor microenvironment. The temperature varies along the ablation zone and this is reflected by different morphological changes in affected tissues. The local hyperthermia alters metabolism, exacerbates tissue hypoxia, and increases thermosensitivity. The second phase - indirect injury - is observed after the cessation of heat stimulus. This phase represents a balance of several promoting and inhibiting mechanisms, such as induction of apoptosis, heat shock proteins, Kupffer cell activation, stimulation of the immune response, release of cytokines, and ischemia-reperfusion injury. A deeper understanding of the underlying mechanisms may possibly lead to refinements in radiofrequency ablation technology, resulting in advanced local tumor control and prolonged overall survival.
Magdoom, Kulam Najmudeen; Pishko, Gregory L.; Rice, Lori; Pampo, Chris; Siemann, Dietmar W.; Sarntinoranont, Malisa
2014-01-01
Systemic drug delivery to solid tumors involving macromolecular therapeutic agents is challenging for many reasons. Amongst them is their chaotic microvasculature which often leads to inadequate and uneven uptake of the drug. Localized drug delivery can circumvent such obstacles and convection-enhanced delivery (CED) - controlled infusion of the drug directly into the tissue - has emerged as a promising delivery method for distributing macromolecules over larger tissue volumes. In this study, a three-dimensional MR image-based computational porous media transport model accounting for realistic anatomical geometry and tumor leakiness was developed for predicting the interstitial flow field and distribution of albumin tracer following CED into the hind-limb tumor (KHT sarcoma) in a mouse. Sensitivity of the model to changes in infusion flow rate, catheter placement and tissue hydraulic conductivity were investigated. The model predictions suggest that 1) tracer distribution is asymmetric due to heterogeneous porosity; 2) tracer distribution volume varies linearly with infusion volume within the whole leg, and exponentially within the tumor reaching a maximum steady-state value; 3) infusion at the center of the tumor with high flow rates leads to maximum tracer coverage in the tumor with minimal leakage outside; and 4) increasing the tissue hydraulic conductivity lowers the tumor interstitial fluid pressure and decreases the tracer distribution volume within the whole leg and tumor. The model thus predicts that the interstitial fluid flow and drug transport is sensitive to porosity and changes in extracellular space. This image-based model thus serves as a potential tool for exploring the effects of transport heterogeneity in tumors. PMID:24619021
Brain MRI Tumor Detection using Active Contour Model and Local Image Fitting Energy
NASA Astrophysics Data System (ADS)
Nabizadeh, Nooshin; John, Nigel
2014-03-01
Automatic abnormality detection in Magnetic Resonance Imaging (MRI) is an important issue in many diagnostic and therapeutic applications. Here an automatic brain tumor detection method is introduced that uses T1-weighted images and K. Zhang et. al.'s active contour model driven by local image fitting (LIF) energy. Local image fitting energy obtains the local image information, which enables the algorithm to segment images with intensity inhomogeneities. Advantage of this method is that the LIF energy functional has less computational complexity than the local binary fitting (LBF) energy functional; moreover, it maintains the sub-pixel accuracy and boundary regularization properties. In Zhang's algorithm, a new level set method based on Gaussian filtering is used to implement the variational formulation, which is not only vigorous to prevent the energy functional from being trapped into local minimum, but also effective in keeping the level set function regular. Experiments show that the proposed method achieves high accuracy brain tumor segmentation results.
Central neurocytoma: Management recommendations based on a 35-year experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leenstra, James L.; Rodriguez, Fausto J.; Frechette, Christina M.
2007-03-15
Purpose: To examine the outcomes of patients with histologically confirmed central neurocytomas. Methods and Materials: The data from 45 patients with central neurocytomas diagnosed between 1971 and 2003 were retrospectively evaluated. Various combinations of surgery, radiotherapy (RT), and chemotherapy had been used for treatment. Results: The median follow-up was 10.0 years. The 10-year overall survival and local control rate was 83% and 60%, respectively. Patients whose tumor had a mitotic index of <3 (per 10 high-power fields) experienced a 10-year survival and local control rate of 89% and 74%, respectively, compared with 57% (p = 0.040) and 46% (p =more » 0.14) for patients with a tumor mitotic index of {>=}3. The 10-year survival and local control rate was 90% and 74% for patients with typical tumors compared with 63% (p = 0.055) and 46% (p = 0.41) for those with atypical tumors. A comparison of gross total resection with subtotal resection showed no significant difference in survival or local control. Postoperative RT improved local control at 10 years (75% with RT vs. 51% without RT, p = 0.045); however, this did not translate into a survival benefit. No 1p19q deletions were found in the 19 tumors tested. Conclusion: Although the overall prognosis is quite favorable, one-third of patients experienced tumor recurrence or progression at 10 years, regardless of the extent of the initial resection. Postoperative RT significantly improved local control but not survival, most likely because of the effectiveness of salvage RT. For incompletely resected atypical tumors and/or those with a high mitotic index, consideration should be given to adjuvant RT because of the more aggressive nature.« less
Guo, Gang; Yu, Miao; Xiao, Wei; Celis, Esteban; Cui, Yan
2017-01-01
Mutations in tumor suppressor p53 remain a vital mechanism of tumor escape from apoptosis and senescence. Emerging evidence suggests that p53 dysfunction also fuels inflammation and supports tumor immune evasion, thereby serving as an immunological driver of tumorigenesis. Therefore, targeting p53 in the tumor microenvironment (TME) also represents an immunologically desirable strategy for reversing immunosuppression and enhancing antitumor immunity. Using a pharmacological p53 activator nutlin-3a, we show that local p53 activation in TME comprising overt tumor infiltrating leukocytes (TILeus) induces systemic antitumor immunity and tumor regression, but not in TME with scarce TILeus, such as B16 melanoma. Maneuvers that recruit leukocytes to TME, such as TLR3 ligand in B16 tumors, greatly enhanced nutlin-induced antitumor immunity and tumor control. Mechanistically, nutlin-3a-induced antitumor immunity was contingent on two non-redundant but immunologically synergistic p53-dependent processes: reversal of immunosuppression in TME and induction of tumor immunogenic cell death (ICD), leading to activation and expansion of polyfunctional CD8 CTLs and tumor regression. Our study demonstrates that unlike conventional tumoricidal therapies, which rely on effective p53 targeting in each tumor cell and often associate with systemic toxicity, this immune-based strategy requires only limited local p53 activation to alter the immune landscape of TME and subsequently amplify immune response to systemic antitumor immunity. Hence, targeting the p53 pathway in TME can be exploited to reverse immunosuppression and augment therapeutic benefits beyond tumoricidal effects to harness tumor-specific, durable, and systemic antitumor immunity with minimal toxicity. PMID:28280037
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafata, K; Ren, L; Cai, J
2016-06-15
Purpose: To develop a methodology based on digitally-reconstructed-fluoroscopy (DRF) to quantitatively assess target localization accuracy of lung SBRT, and to evaluate using both a dynamic digital phantom and a patient dataset. Methods: For each treatment field, a 10-phase DRF is generated based on the planning 4DCT. Each frame is pre-processed with a morphological top-hat filter, and corresponding beam apertures are projected to each detector plane. A template-matching algorithm based on cross-correlation is used to detect the tumor location in each frame. Tumor motion relative beam aperture is extracted in the superior-inferior direction based on each frame’s impulse response to themore » template, and the mean tumor position (MTP) is calculated as the average tumor displacement. The DRF template coordinates are then transferred to the corresponding MV-cine dataset, which is retrospectively filtered as above. The treatment MTP is calculated within each field’s projection space, relative to the DRF-defined template. The field’s localization error is defined as the difference between the DRF-derived-MTP (planning) and the MV-cine-derived-MTP (delivery). A dynamic digital phantom was used to assess the algorithm’s ability to detect intra-fractional changes in patient alignment, by simulating different spatial variations in the MV-cine and calculating the corresponding change in MTP. Inter-and-intra-fractional variation, IGRT accuracy, and filtering effects were investigated on a patient dataset. Results: Phantom results demonstrated a high accuracy in detecting both translational and rotational variation. The lowest localization error of the patient dataset was achieved at each fraction’s first field (mean=0.38mm), with Fx3 demonstrating a particularly strong correlation between intra-fractional motion-caused localization error and treatment progress. Filtering significantly improved tracking visibility in both the DRF and MV-cine images. Conclusion: We have developed and evaluated a methodology to quantify lung SBRT target localization accuracy based on digitally-reconstructed-fluoroscopy. Our approach may be useful in potentially reducing treatment margins to optimize lung SBRT outcomes. R01-184173.« less
NASA Astrophysics Data System (ADS)
Herrmann, Kristen; Lee Koo, Yong-Eun; Orringer, Daniel A.; Sagher, Oren; Philbert, Martin; Kopelman, Raoul
2013-03-01
Photosensitizer-conjugated polyacrylamide nanoparticles were prepared for in vivo characterization of the minimally invasive and localized treatment of photodynamic therapy (PDT) on brain tumors. By incorporating a variety of nanoparticle matrixes, choosing methylene blue as a photosensitizer, and targeting the nanoparticle by the use of F3 peptide we have made nanoparticle-based PDT improvements to current PDT efficiency. Quantitative growth patterns were determined through visual observation of the tumorigenic response to various treatments by the use of an animal cranial window model. PDT treatments with methylene blue-polyacrylamide (MB-PAA) nanoparticles produced significant adjournment of tumor growth over control groups, clearly demonstrating the advantages of nanoparticle-based PDT agents for the eradication of local tumors, leading to the potential palliation of the advancing disease.
Haddad, Mustafa M; Schmit, Grant D; Kurup, A Nicholas; Schmitz, John J; Boorjian, Stephen A; Geske, Jennifer; Thompson, R Houston; Callstrom, Matthew R; Atwell, Thomas D
2018-06-07
To evaluate treatment outcomes with percutaneous cryoablation (PCA) based on renal cell carcinoma (RCC) histology. Patients treated with PCA for a solitary, sporadic stage T1a RCC from 2003 to 2016 were identified from a single institution's renal ablation registry. Patients with multiple tumors, history of RCC, or genetic syndromes associated with RCC (n = 60); no specific RCC subtype determined from core biopsy (n = 66); RCC subtype other than clear-cell or papillary (n = 7); or less than 3 mo of follow-up imaging (n = 5) were excluded. In total, 173 patients met study inclusion criteria. Oncologic outcomes, clinical outcomes, and complications were evaluated based on tumor subtype. Of the 173 patients who underwent PCA for a stage T1a RCC, 130 (75%) had clear-cell RCC (ccRCC) and 43 (25%) had papillary RCC (pRCC). Median tumor size was 2.9 cm (range, 1.3-4.0 cm). Technically successful cryoablation was achieved in all 173 patients. Local tumor recurrence developed in 6 patients with ccRCC (4.6%), new renal tumors developed in 1 patient (0.8%), and metastatic RCC developed in 1 patient (0.8%) who also had local tumor recurrence. No patients with pRCC showed local tumor recurrence, new renal tumors, or metastatic disease. The 5-year disease-free survival rate in patients with ccRCC was 88%, compared with 100% in patients with pRCC (P = .48). Nine patients (5.2%), all with ccRCC, experienced major complications (P = .11). Percutaneous ablation is a viable treatment option for patients with clinical stage T1a pRCC and ccRCC. Percutaneous ablation may be a very favorable treatment strategy particularly for pRCC. Copyright © 2018 SIR. Published by Elsevier Inc. All rights reserved.
Improved intratumoral nanoparticle extravasation and penetration by mild hyperthermia.
Li, Li; ten Hagen, Timo L M; Bolkestein, Michiel; Gasselhuber, Astrid; Yatvin, Jeremy; van Rhoon, Gerard C; Eggermont, Alexander M M; Haemmerich, Dieter; Koning, Gerben A
2013-04-28
Accumulation of nanoparticles in solid tumors depends on their extravasation. However, vascular permeability is very heterogeneous within a tumor and among different tumor types, hampering efficient delivery. Local hyperthermia at a tumor can improve nanoparticle delivery by increasing tumor vasculature permeability, perfusion and interstitial fluid flow. The aim of this study is to investigate hyperthermia conditions required to improve tumor vasculature permeability, subsequent liposome extravasation and interstitial penetration in 4 tumor models. Tumors are implanted in dorsal skin flap window chambers and observed for liposome (~85 nm) accumulation by intravital confocal microscopy. Local hyperthermia at 41°C for 30 min initiates liposome extravasation through permeable tumor vasculature in all 4 tumor models. A further increase in nanoparticle extravasation occurs while continuing heating to 1h, which is a clinically relevant duration. After hyperthermia, the tumor vasculature remains permeable for 8h. We visualize gaps in the endothelial lining of up to 10 μm induced by HT. Liposomes extravasate through these gaps and penetrate into the interstitial space to at least 27.5 μm in radius from the vessel walls. Whole body optical imaging confirms HT induced extravasation while liposome extravasation was absent at normothermia. In conclusion, a thermal dose of 41°C for 1h is effective to induce long-lasting permeable tumor vasculature for liposome extravasation and interstitial penetration. These findings hold promise for improved intratumoral drug delivery upon application of local mild hyperthermia prior to administration of nanoparticle-based drug delivery systems. Copyright © 2013 Elsevier B.V. All rights reserved.
Okuda, Hiroshi; Nakahara, Masahiro; Yano, Takuya; Bekki, Tomoaki; Takechi, Hitomi; Yoshikawa, Toru; Mochizuki, Tetsuya; Abe, Tomoyuki; Fujikuni, Nobuaki; Sasada, Tatsunari; Yamaki, Minoru; Amano, Hironobu; Noriyuki, Toshio
2017-11-01
Several recent reports have described the administration of preoperative chemotherapy for locally advanced rectal cancer. In our hospital, preoperative chemotherapy based on oxaliplatin was administered for locally advanced rectal cancer with a tumor diameter of 5 cm or more and half semicircularity or more, and curative resection with laparoscopic surgery was performed after tumor shrinkage. We have experienced 25 cases that underwent preoperative chemotherapy for local advanced rectal cancer in our hospital from May 2012 to April 2016. No tumor increased in size during preoperative chemotherapy and there were no cases where R0 resection was impossible. In addition, no distant metastasis during chemotherapy was observed. Postoperative complications were observed in 3 cases(12%), and anastomotic leakage was observed in 1 case (4%), but conservative treatment was possible. Multidisciplinary treatment of preoperative chemotherapy and surgery should be considered as a therapeutic strategy for locally advanced rectal cancer, mainly in medical institutions without radiation treatment facilities.
Bulthuis, Vincent J; Hanssens, Patrick E J; Lie, Suan Te; van Overbeeke, Jacobus J
2014-01-01
The dural tail (DT) has been described as a common feature in meningiomas. There is a great variation of tumor invasion and extent of tumor cells in the DT. Therefore, the necessity to include the whole DT in Gamma Knife radiosurgery is not clear, since inclusion increases the target volume and therefore increases the risk of complications. In this analysis, we evaluated whether the complete tail should be included as part of the target in Gamma Knife radiosurgery for meningiomas. Between June 2002 and December 2010, Gamma Knife radiosurgery was performed in 160 patients with 203 meningiomas with a DT. In 105 tumors, the diagnosis was based on magnetic resonance imaging (MRI) characteristics, and in 98 tumors, the diagnosis was confirmed by histopathologic examination after surgery. The median volume of the tumors was 3.55 cc. All tumors were treated with Gamma Knife radiosurgery with a median prescribed dose of 13 Gy (range 11-15), resulting in a median marginal dose of 11 Gy (range 10-15). Only the part of the DT closely related to the tumor mass was included in the target. The median follow-up period was 41 months (range 12-123). In image-based meningiomas, the overall local control rate was 96.2% with 2- and 5-year control rates of 98.0% and 95.1%, respectively. In WHO grade I tumors, the overall local control rate was 85.9% with 2- and 5-year control rates of 94.5% and 88.0%, respectively. The overall local control rate in World Health Organization (WHO) grade II tumors was 70.6% with control rates of 83.4% and 64.4% after 2 and 5 years, respectively. The growth of all new tumors was found in the radiation target area. No tumor growth was observed in the part of the DT that had been excluded from the target volume. We found in this study that routinely excluding the DT from the target does not lead to out-of-field tumor progression. Given the possibility that the DT is infiltrated with tumor cells, regular follow-up is needed.
NASA Astrophysics Data System (ADS)
Hoopes, P. Jack; Mazur, Courtney M.; Osterberg, Bjorn; Song, Ailin; Gladstone, David J.; Steinmetz, Nicole F.; Veliz, Frank A.; Bursey, Alicea A.; Wagner, Robert J.; Fiering, Steven N.
2017-02-01
Although there is long association of medical hyperthermia and immune stimulation, the relative lack of a quantifiable and reproducible effect has limited the utility and advancement of this relationship in preclinical/clinical cancer and non-cancer settings. Recent cancer-based immune findings (immune checkpoint modulators etc.) including improved mechanistic understanding and biological tools now make it possible to modify and exploit the immune system to benefit conventional cancer treatments such as radiation and hyperthermia. Based on the prior experience of our research group including; cancer-based heat therapy, magnetic nanoparticle (mNP) hyperthermia, radiation biology, cancer immunology and Cowpea Mosaic Virus that has been engineered to over express antigenic proteins without RNA or DNA (eCPMV/VLP). This research was designed to determine if and how the intra-tumoral delivery of mNP hyperthermia and VLP can work together to improve local and systemic tumor treatment efficacy. Using the C3H mouse/MTG-B mammary adenocarcinoma cell model and the C57-B6 mouse/B-16-F10 melanoma cancer cell model, our data suggests the appropriate combination of intra-tumoral mNP heat (e.g. 43°C /30-60 minutes) and VLP (100 μg/200 mm3 tumor) not only result in significant primary tumor regression but the creation a systemic immune reaction that has the potential to retard secondary tumor growth (abscopal effect) and resist tumor rechallenge. Molecular data from these experiments suggest treatment based cell damage and immune signals such as Heat Shock Protein (HSP) 70/90, calreticulin, MTA1 and CD47 are potential targets that can be exploited to enhance the local and systemic (abscopal effect) immune potential of hyperthermia cancer treatment
Zhang, Lianru; Li, Rutian; Chen, Hong; Wei, Jia; Qian, Hanqing; Su, Shu; Shao, Jie; Wang, Lifeng; Qian, Xiaoping; Liu, Baorui
2017-01-01
Cell membrane-derived nanoparticles are becoming more attractive because of their ability to mimic many features of their source cells. This study reports on a biomimetic delivery platform based on human cytotoxic T-lymphocyte membranes. In this system, the surface of poly-lactic- co -glycolic acid nanoparticles was camouflaged using T-lymphocyte membranes, and local low-dose irradiation (LDI) was used as a chemoattractant for nanoparticle targeting. The T-lymphocyte membrane coating was verified using dynamic light scattering, transmission electron microscopy, and confocal laser scanning microscopy. This new platform reduced nanoparticle phagocytosis by macrophages to 23.99% ( P =0.002). Systemic administration of paclitaxel-loaded T-lymphocyte membrane-coated nanoparticles inhibited the growth of human gastric cancer by 56.68% in Balb/c nude mice. Application of LDI at the tumor site significantly increased the tumor growth inhibition rate to 88.50%, and two mice achieved complete remission. Furthermore, LDI could upregulate the expression of adhesion molecules in tumor vessels, which is important in the process of leukocyte adhesion and might contribute to the localization of T-lymphocyte membrane-encapsulated nanoparticles in tumors. Therefore, this new drug-delivery platform retained both the long circulation time and tumor site accumulation ability of human cytotoxic T lymphocytes, while local LDI could significantly enhance tumor localization.
Tustumi, Francisco; Kimura, Cintia Mayumi Sakurai; Takeda, Flavio Roberto; Sallum, Rubens Antônio Aissar; Ribeiro-Junior, Ulysses; Cecconello, Ivan
2016-01-01
Knowing esophageal tumors behavior in relationship to lymph node involvement, distant metastases and local tumor invasion is of paramount importance for the best esophageal tumors management. To describe lymph node involvement, distant metastases, and local tumor invasion in esophageal carcinoma, according to tumor topography and histology. A total of 444 patients with esophageal squamous cell carcinoma and 105 adenocarcinoma were retrospectively analyzed. They were divided into four groups: adenocarcinoma and squamous cell carcinoma in the three esophageal segments: cervical, middle, and distal. They were compared based on their CT scans at the time of the diagnosis. Nodal metastasis showed great relationship with of primary tumor site. Lymph nodes of hepatogastric, perigastric and peripancreatic ligaments were mainly affected in distal tumors. Periaortic, interaortocaval and portocaval nodes were more commonly found in distal squamous carcinoma; subcarinal, paratracheal and subaortic nodes in middle; neck chains were more affected in cervical squamous carcinoma. Adenocarcinoma had a higher frequency of peritoneal involvement (11.8%) and liver (24.5%) than squamous cell carcinoma. Considering the local tumor invasion, the more cranial neoplasia, more common squamous invasion of airways, reaching 64.7% in the incidence of cervical tumors. Middle esophageal tumors invade more often aorta (27.6%) and distal esophageal tumors, the pericardium and the right atrium (10.4%). Esophageal adenocarcinoma and squamous cell carcinoma in different topographies present peculiarities in lymph node involvement, distant metastasis and local tumor invasion. These differences must be taken into account in esophageal cancer patients' care. Conhecer o comportamento das neoplasias esofágicas em relação à disseminação linfonodal, distribuição de metástases e invasão local do tumor, pode auxiliar o manejo dos pacientes. Descrever o envolvimento linfonodal, disseminação metastática e invasão local dos carcinomas esofágicos, de acordo com a topografia e o tipo histológico do tumor. Pacientes com diagnóstico de carcinoma espinocelular de esôfago (n=444) e adenocarcinoma de esôfago (n=105) foram retrospectivamente analisados. Foram divididos em quatro grupos: adenocarcinoma e carcinoma espinocelular do segmento cervical, médio e distal. Tais grupos foram comparados baseando-se em tomografias computadorizadas realizadas no momento do diagnóstico. Disseminação linfonodal mostrou grande associação com topografia do tumor. Linfonodos do ligamento hepatogástrico, perigástricos e peripancreáticos foram acometidos principalmente por tumores de esôfago distal; linfonodos periaórticos, interaortocavais, portocavais no carcinoma espinocelular de esôfago distal; e linfonodos subcarinais, paratraqueais, subaórticos nos tumores de esôfago médio. Cadeias cervicais foram acometidas por espinocelulares cervicais. Adenocarcinoma teve maior frequência de acometimento peritoneal (11,8%) e hepático (24,5%) do que carcinoma espinocelular. Considerando invasão tumoral local, quanto mais cranial a neoplasia, mais comum a invasão do espinocelular em vias aéreas, chegando à incidência de 64,7% nos tumores cervicais. Tumores de esôfago médio invadem mais frequentemente aorta (27,6%) e tumores de esôfago distal, o pericárdio e átrio direito (10,4%). Adenocarcinoma e carcinoma espinocelular de esôfago em diferentes topografias apresentam peculiaridades na disseminação linfática, metástases à distância e invasão local do tumor. Tais diferenças devem ser consideradas no manejo do paciente com carcinoma esofágico.
Nizam-Uddin, N; Elshafiey, Ibrahim
2017-01-01
This paper proposes a hybrid hyperthermia treatment system, utilizing two noninvasive modalities for treating brain tumors. The proposed system depends on focusing electromagnetic (EM) and ultrasound (US) energies. The EM hyperthermia subsystem enhances energy localization by incorporating a multichannel wideband setting and coherent-phased-array technique. A genetic algorithm based optimization tool is developed to enhance the specific absorption rate (SAR) distribution by reducing hotspots and maximizing energy deposition at tumor regions. The treatment performance is also enhanced by augmenting an ultrasonic subsystem to allow focused energy deposition into deep tumors. The therapeutic faculty of ultrasonic energy is assessed by examining the control of mechanical alignment of transducer array elements. A time reversal (TR) approach is then investigated to address challenges in energy focus in both subsystems. Simulation results of the synergetic effect of both modalities assuming a simplified model of human head phantom demonstrate the feasibility of the proposed hybrid technique as a noninvasive tool for thermal treatment of brain tumors.
Elshafiey, Ibrahim
2017-01-01
This paper proposes a hybrid hyperthermia treatment system, utilizing two noninvasive modalities for treating brain tumors. The proposed system depends on focusing electromagnetic (EM) and ultrasound (US) energies. The EM hyperthermia subsystem enhances energy localization by incorporating a multichannel wideband setting and coherent-phased-array technique. A genetic algorithm based optimization tool is developed to enhance the specific absorption rate (SAR) distribution by reducing hotspots and maximizing energy deposition at tumor regions. The treatment performance is also enhanced by augmenting an ultrasonic subsystem to allow focused energy deposition into deep tumors. The therapeutic faculty of ultrasonic energy is assessed by examining the control of mechanical alignment of transducer array elements. A time reversal (TR) approach is then investigated to address challenges in energy focus in both subsystems. Simulation results of the synergetic effect of both modalities assuming a simplified model of human head phantom demonstrate the feasibility of the proposed hybrid technique as a noninvasive tool for thermal treatment of brain tumors. PMID:28840125
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunavoelgyi, Roman; Dieckmann, Karin, E-mail: karin.dieckmann@meduniwien.ac.at; Gleiss, Andreas
2011-09-01
Purpose: To evaluate long-term local tumor control, visual acuity, and survival after hypofractionated linear accelerator-based stereotactic photon radiotherapy in patients with choroidal melanoma. Methods and Materials: Between 1997 and 2007, 212 patients with choroidal melanoma unsuitable for ruthenium-106 brachytherapy or local resection were treated stereotactically at a linear accelerator with 6-MV photon beams at the Medical University of Vienna in five fractions over 7 days. Twenty-four patients received a total dose of 70 Gy (five fractions of 14 Gy), 158 a total dose of 60 Gy (five fractions of 12 Gy) and 30 patients a total dose of 50 Gymore » (five fractions of 10 Gy) applied on the 80% isodose. Ophthalmologic examinations were performed at baseline and every 3 months in the first 2 years, every 6 months until 5 years, and once a year thereafter until 10 years after radiotherapy. Assessment of visual acuity, routine ophthalmologic examinations, and measurement of tumor base dimension and height using standardized A-scan and B-scan echography were done at each visit. Funduscopy and fluorescein angiography were done when necessary to document tumor response. Results: Median tumor height and volume decreased from 4.8 mm and 270.7 mm{sup 3} at baseline to 2.6 mm and 86.6 mm{sup 3} at the last individual follow-up, respectively (p < 0.001, p < 0.001). Median visual acuity decreased from 0.55 at baseline to hand motion at the last individual follow-up (p < 0.001). Local tumor control was 95.9% after 5 years and 92.6% after 10 years. Thirty-two patients developed metastatic disease, and 22 of these patients died during the follow-up period. Conclusion: Hypofractionated stereotactic photon radiotherapy with 70 to 50 Gy delivered in five fractions in 7 days is sufficient to achieve excellent local tumor control in patients with malignant melanoma of the choroid. Disease outcome and vision are comparable to those achieved with proton beam radiotherapy. Decreasing the total dose below 60 Gy seems to be possible.« less
Lee, John Y-K.; Thawani, Jayesh P.; Pierce, John; Zeh, Ryan; Martinez-Lage, Maria; Chanin, Michelle; Venegas, Ollin; Nims, Sarah; Learned, Kim; Keating, Jane; Singhal, Sunil
2016-01-01
Background Although real-time localization of gliomas has improved with intraoperative image guidance systems, these tools are limited by brain shift, surgical cavity deformation, and expense. Objective To propose a novel method to perform near-infrared (NIR) imaging during glioma resections based on preclinical and clinical investigations, in order to localize tumors and to potentially identify residual disease. Methods Fifteen patients were identified and administered an FDA-approved, NIR contrast agent (Second Window indocyanine green [ICG], 5 mg/kg) prior to surgical resection. An NIR camera was utilized to localize the tumor prior to resection and to visualize surgical margins following resection. Neuropathology and MR imaging data were used to assess the accuracy and precision of NIR-fluorescence in identifying tumor tissue. Results NIR visualization of 15 gliomas (10 glioblastoma multiforme, 1 anaplastic astrocytoma, 2 low grade astrocytoma, 1 juvenile pilocytic astrocytoma, and 1 ganglioglioma) was performed 22.7 hours (mean) after intravenous injection of ICG. During surgery, 12/15 tumors were visualized with the NIR camera. The mean signal-to-background ratio was 9.5 ± 0.8 and fluorescence was noted through the dura to a maximum parenchymal depth of 13 mm. The best predictor of positive fluorescence was enhancement on T1-weighted imaging; this correlated with SBR (P = .03). Non-enhancing tumors did not demonstrate NIR fluorescence. Using pathology as the gold standard, the technique demonstrated a sensitivity of 98% and specificity of 45% to identify tumor in gadolinium-enhancing specimens (n = 71). Conclusion Using Second Window ICG, gadolinium-enhancing tumors can be localized through brain parenchyma intraoperatively. Its utility for margin detection is promising but limited by lower specificity. PMID:27741220
Miller, Benjamin J; Gao, Yubo; Duchman, Kyle R
2017-09-01
There is continuing debate regarding the ideal modality for local control of the primary tumor for patients with Ewing's sarcoma. The primary aim of this study is to investigate the impact of the method of local control on overall survival in patients with Ewing's sarcoma. The National Cancer Data Base was used to identify patients <40 years of age with high-grade Ewing's sarcoma of bone. A Kaplan-Meier survival analysis was performed at 2, 5, and 10 years. Factors with a level of significance of P < 0.1 at the 5-year time point were included in a multivariate Cox proportional hazards model. Diminished 5-year survival was noted for patients with metastatic disease, local control with radiation alone, age ≥18 years, tumor size >8 cm, and male sex while controlling for tumor site. Surgery alone was consistently the method of local control that resulted in the highest overall survival. Surgery alone resulted in the best overall survival for patients with Ewing's sarcoma of bone. The results of this investigation provide support to the approach of surgical resection with negative margins when possible. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Foxley, Sean; Fan, Xiaobing; River, Jonathan; Zamora, Marta; Markiewicz, Erica; Sokka, Shunmugavelu; Karczmar, Gregory S.
2012-05-01
This pilot study investigated the feasibility of using MRI based on BOLD (blood-oxygen-level-dependent) contrast to detect physiological effects of locally induced hyperthermia in a rodent tumor model. Nude mice bearing AT6.1 rodent prostate tumors inoculated in the hind leg were imaged using a 9.4 T scanner using a multi-gradient echo pulse sequence to acquire high spectral and spatial resolution (HiSS) data. Temperature increases of approximately 6 °C were produced in tumor tissue using fiber-optic-guided light from a 250 W halogen lamp. HiSS data were acquired over three slices through the tumor and leg both prior to and during heating. Water spectra were produced from these datasets for each voxel at each time point. Time-dependent changes in water resonance peak width were measured during 15 min of localized tumor heating. The results demonstrated that hyperthermia produced both significant increases and decreases in water resonance peak width. Average decreases in peak width were significantly larger in the tumor rim than in normal muscle (p = 0.04). The effect of hyperthermia in tumor was spatially heterogeneous, i.e. the standard deviation of the change in peak width was significantly larger in the tumor rim than in normal muscle (p = 0.005). Therefore, mild hyperthermia produces spatially heterogeneous changes in water peak width in both tumor and muscle. This may reflect heterogeneous effects of hyperthermia on local oxygenation. The peak width changes in tumor and muscle were significantly different, perhaps due to abnormal tumor vasculature and metabolism. Response to hyperthermia measured by MRI may be useful for identifying and/or characterizing suspicious lesions as well as guiding the development of new hyperthermia protocols.
An accelerated technique for irradiation of malignant canine nasal and paranasal sinus tumors.
Adams, W M; Miller, P E; Vail, D M; Forrest, L J; MacEwen, E G
1998-01-01
Tumor and normal tissue response was assessed in 21 dogs with malignant nasal tumors given 42 Gy cobalt radiation in 9 or 10 fractions over 11 to 13 days. Local tumor/clinical relapse recurred in 68% of dogs, with a median relapse free interval (RFI) of 270 days. Median survival was 428 days. One year survival for all dogs was 60%. RFI and survival times are better than, or similar to, previous reports of dogs treated with radiotherapy only. Acute radiation effects were severe in one dog. Late effects were severe in six of 15 dogs (40%) with durable tumor control. Late effects included bilateral blindness (3), osteoradionecrosis (3), and seizures (1). These six dogs had a median survival of 705 days. Loss of vision occurred in at least one eye in nine dogs (47%). Tumor staging based on CT findings was predictive for survival duration. Tumor histology was not predictive of outcome. Labrador Retrievers were significantly over-represented. Despite comparable or improved tumor control and survival times provided by this accelerated protocol, relative to other radiotherapy reports, local failure remains the major cause of death, and late radiation effects can be severe in dogs with durable tumor control.
Elasticity-based identification of tumor margins using Brillouin spectroscopy
NASA Astrophysics Data System (ADS)
Troyanova-Wood, Maria; Meng, Zhaokai; Yakovlev, Vladislav V.
2016-03-01
The purpose of this study is to demonstrate the efficacy of using Brillouin spectroscopy for differentiation between healthy and cancerous tissues. Previous studies of various cancers indicate that elasticity of the tumor differs from that of the surrounding tissue. We hypothesize that it is possible to distinguish between normal and malignant areas based on their Brillouin measurements. Brillouin spectroscopy is an emerging spectroscopic technique capable of assessing the local elasticity of samples by measuring the Brillouin shift. In the present study, we have used malignant melanoma tissue samples from Sinclair miniature swine to demonstrate the validity of our proposed application. We performed Brillouin measurements on healthy tissue, normal tumor and regressing tumor (as indicated by depigmentation of tissue). Overall, the tumors were found to be stiffer than the surrounding healthy tissue. However, the regressing tumor displayed the elastic properties closer to that of the healthy tissue. Based on the Brillouin measurements, we have successfully differentiated between the tumor and healthy tissues with a high degree of confidence (p<104 for normal tumor, p<0.05 for regressing tumor). Our results indicate that Brillouin spectroscopy is an appropriate tool to not only pinpoint tumor boundaries, but also to monitor tumor growth or evaluate its response to treatment.
Ohri, Nitin; Duan, Fenghai; Snyder, Bradley S; Wei, Bo; Machtay, Mitchell; Alavi, Abass; Siegel, Barry A; Johnson, Douglas W; Bradley, Jeffrey D; DeNittis, Albert; Werner-Wasik, Maria; El Naqa, Issam
2016-06-01
In a secondary analysis of American College of Radiology Imaging Network (ACRIN) 6668/RTOG 0235, high pretreatment metabolic tumor volume (MTV) on (18)F-FDG PET was found to be a poor prognostic factor for patients treated with chemoradiotherapy for locally advanced non-small cell lung cancer (NSCLC). Here we utilize the same dataset to explore whether heterogeneity metrics based on PET textural features can provide additional prognostic information. Patients with locally advanced NSCLC underwent (18)F-FDG PET prior to treatment. A gradient-based segmentation tool was used to contour each patient's primary tumor. MTV, maximum SUV, and 43 textural features were extracted for each tumor. To address overfitting and high collinearity among PET features, the least absolute shrinkage and selection operator (LASSO) method was applied to identify features that were independent predictors of overall survival (OS) after adjusting for MTV. Recursive binary partitioning in a conditional inference framework was utilized to identify optimal thresholds. Kaplan-Meier curves and log-rank testing were used to compare outcomes among patient groups. Two hundred one patients met inclusion criteria. The LASSO procedure identified 1 textural feature (SumMean) as an independent predictor of OS. The optimal cutpoint for MTV was 93.3 cm(3), and the optimal SumMean cutpoint for tumors above 93.3 cm(3) was 0.018. This grouped patients into three categories: low tumor MTV (n = 155; median OS, 22.6 mo), high tumor MTV and high SumMean (n = 23; median OS, 20.0 mo), and high tumor MTV and low SumMean (n = 23; median OS, 6.2 mo; log-rank P < 0.001). We have described an appropriate methodology to evaluate the prognostic value of textural PET features in the context of established prognostic factors. We have also identified a promising feature that may have prognostic value in locally advanced NSCLC patients with large tumors who are treated with chemoradiotherapy. Validation studies are warranted. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Ohri, Nitin; Duan, Fenghai; Snyder, Bradley S.; Wei, Bo; Machtay, Mitchell; Alavi, Abass; Siegel, Barry A.; Johnson, Douglas W.; Bradley, Jeffrey D.; DeNittis, Albert; Werner-Wasik, Maria; El Naqa, Issam
2016-01-01
In a secondary analysis of American College of Radiology Imaging Network (ACRIN) 6668/RTOG 0235, high pretreatment metabolic tumor volume (MTV) on 18F-FDG PET was found to be a poor prognostic factor for patients treated with chemoradiotherapy for locally advanced non–small cell lung cancer (NSCLC). Here we utilize the same dataset to explore whether heterogeneity metrics based on PET textural features can provide additional prognostic information. Methods Patients with locally advanced NSCLC underwent 18F-FDG PET prior to treatment. A gradient-based segmentation tool was used to contour each patient’s primary tumor. MTV, maximum SUV, and 43 textural features were extracted for each tumor. To address over-fitting and high collinearity among PET features, the least absolute shrinkage and selection operator (LASSO) method was applied to identify features that were independent predictors of overall survival (OS) after adjusting for MTV. Recursive binary partitioning in a conditional inference framework was utilized to identify optimal thresholds. Kaplan–Meier curves and log-rank testing were used to compare outcomes among patient groups. Results Two hundred one patients met inclusion criteria. The LASSO procedure identified 1 textural feature (SumMean) as an independent predictor of OS. The optimal cutpoint for MTV was 93.3 cm3, and the optimal Sum-Mean cutpoint for tumors above 93.3 cm3 was 0.018. This grouped patients into three categories: low tumor MTV (n = 155; median OS, 22.6 mo), high tumor MTV and high SumMean (n = 23; median OS, 20.0 mo), and high tumor MTV and low SumMean (n = 23; median OS, 6.2 mo; log-rank P < 0.001). Conclusion We have described an appropriate methodology to evaluate the prognostic value of textural PET features in the context of established prognostic factors. We have also identified a promising feature that may have prognostic value in locally advanced NSCLC patients with large tumors who are treated with chemoradiotherapy. Validation studies are warranted. PMID:26912429
Xu, Lin; Wang, Chunhong; Wen, Zhenke; Zhou, Ya; Liu, Zhongmin; Liang, Yongjie; Xu, Zengguang; Ren, Tao
2010-01-01
Adoptive cell transfer immunotherapy using tumor infiltrating lymphocytes (TILs) was an important therapeutic strategy against tumors. But the efficacy remains limited and development of new strategies is urgent. Recent evidence suggested that CpG-ODNs might be a potent candidate for tumor immunotherapy. Here we firstly reported that CpG-ODNs could significantly enhance the antitumor efficacy of adoptively transferred TILs in vivo accompanied by enhanced activity capacity and proliferation of CD8+ T cells and CD8+ T cells, as well as a Th1 polarization immune response. Most importantly, we found that CpG-ODNs could significantly elevate the infiltration of Th17 cells in tumor mass, which contributed to anti-tumor efficacy of TILs in vivo. Our findings suggested that CpG ODNs could enhance the anti-tumor efficacy of adoptively transferred TILs through modifying Th1 polarization and local infiltration of Th17 cells, which might provide a clue for developing a new strategy for ACT based on TILs. PMID:20981279
NASA Astrophysics Data System (ADS)
Wodzinski, Marek; Skalski, Andrzej; Ciepiela, Izabela; Kuszewski, Tomasz; Kedzierawski, Piotr; Gajda, Janusz
2018-02-01
Knowledge about tumor bed localization and its shape analysis is a crucial factor for preventing irradiation of healthy tissues during supportive radiotherapy and as a result, cancer recurrence. The localization process is especially hard for tumors placed nearby soft tissues, which undergo complex, nonrigid deformations. Among them, breast cancer can be considered as the most representative example. A natural approach to improving tumor bed localization is the use of image registration algorithms. However, this involves two unusual aspects which are not common in typical medical image registration: the real deformation field is discontinuous, and there is no direct correspondence between the cancer and its bed in the source and the target 3D images respectively. The tumor no longer exists during radiotherapy planning. Therefore, a traditional evaluation approach based on known, smooth deformations and target registration error are not directly applicable. In this work, we propose alternative artificial deformations which model the tumor bed creation process. We perform a comprehensive evaluation of the most commonly used deformable registration algorithms: B-Splines free form deformations (B-Splines FFD), different variants of the Demons and TV-L1 optical flow. The evaluation procedure includes quantitative assessment of the dedicated artificial deformations, target registration error calculation, 3D contour propagation and medical experts visual judgment. The results demonstrate that the currently, practically applied image registration (rigid registration and B-Splines FFD) are not able to correctly reconstruct discontinuous deformation fields. We show that the symmetric Demons provide the most accurate soft tissues alignment in terms of the ability to reconstruct the deformation field, target registration error and relative tumor volume change, while B-Splines FFD and TV-L1 optical flow are not an appropriate choice for the breast tumor bed localization problem, even though the visual alignment seems to be better than for the Demons algorithm. However, no algorithm could recover the deformation field with sufficient accuracy in terms of vector length and rotation angle differences.
Qian, Yushen; Von Eyben, Rie; Liu, Yufei; Chin, Frederick T; Miao, Zheng; Apte, Sandeep; Carter, Justin N; Binkley, Michael S; Pollom, Erqi L; Harris, Jeremy P; Prionas, Nicolas D; Kissel, Madelyn; Simmons, Amanda; Diehn, Maximilian; Shultz, David B; Brown, J Martin; Maxim, Peter G; Koong, Albert C; Graves, Edward E; Loo, Billy W
2018-04-18
Tumor hypoxia contributes to radiation resistance. A noninvasive assessment of tumor hypoxia would be valuable for prognostication and possibly selection for hypoxia-targeted therapies. 18 F-pentafluorinated etanidazole ( 18 F-EF5) is a nitroimidazole derivative that has demonstrated promise as a positron emission tomography (PET) hypoxia imaging agent in preclinical and clinical studies. However, correlation of imageable hypoxia by 18 F-EF5 PET with clinical outcomes after radiation therapy remains limited. Our study prospectively enrolled 28 patients undergoing radiation therapy for localized lung or other tumors to receive pretreatment 18 F-EF5 PET imaging. Depending on the level of 18 F-EF5 tumor uptake, patients underwent functional manipulation of tumor oxygenation with either carbogen breathing or oral dichloroacetate followed by repeated 18 F-EF5 PET. The hypoxic subvolume of tumor was defined as the proportion of tumor voxels exhibiting higher 18 F-EF5 uptake than the 95th percentile of 18 F-EF5 uptake in the blood pool. Tumors with a hypoxic subvolume ≥ 10% on baseline 18 F-EF5 PET imaging were classified as hypoxic by imaging. A Cox model was used to assess the correlation between imageable hypoxia and clinical outcomes after treatment. At baseline, imageable hypoxia was demonstrated in 43% of all patients (12 of 28), including 6 of 16 patients with early-stage non-small cell lung cancer treated with stereotactic ablative radiation therapy and 6 of 12 patients with other cancers. Carbogen breathing was significantly associated with decreased imageable hypoxia, while dichloroacetate did not result in a significant change under our protocol conditions. Tumors with imageable hypoxia had a higher incidence of local recurrence at 12 months (30%) than those without (0%) (P < .01). Noninvasive hypoxia imaging by 18 F-EF5 PET identified imageable hypoxia in about 40% of tumors in our study population. Local tumor recurrence after highly conformal radiation therapy was higher in tumors with imageable hypoxia. Copyright © 2018 Elsevier Inc. All rights reserved.
Fikri, Ahmad Saad Fathinul; Kroiss, A; Ahmad, A Z F; Zanariah, H; Lau, W F E; Uprimny, C; Donnemiller, E; Kendler, D; Nordin, A J; Virgolini, I J
2014-06-01
To our knowledge, data are lacking on the role of 18F-FDG PET/CT in the localization and prediction of neuroendocrine tumors, in particular the pheochromocytoma/paraganglioma (PCC/PGL) group. To evaluate the role of 18F-FDG PET/CT in localizing and predicting the malignant potential of PCC/PGL. Twenty-three consecutive patients with a history of PCC/PGL, presenting with symptoms related to catecholamine excess, underwent 18F-FDG PET/CT. Final confirmation of the diagnosis was made using the composite references. PET/CT findings were analyzed on a per-lesion basis and a per-patient basis. Tumor SUVmax was analyzed to predict the dichotomization of patient endpoints for the local disease and metastatic groups. We investigated 23 patients (10 men, 13 women) with a mean age of 46.43 ± 3.70 years. Serum catecholamine levels were elevated in 82.60% of these patients. There were 136 sites (mean SUVmax: 16.39 ± 3.47) of validated disease recurrence. The overall sensitivities for diagnostic CT, FDG PET, and FDG PET/CT were 86.02%, 87.50%, and 98.59%, respectively. Based on the composite references, 39.10% of patients had local disease. There were significant differences in the SUVmax distribution between the local disease and metastatic groups; a significant correlation was noted when a SUVmax cut-off was set at 9.2 (P<0.05). In recurrent PCC/PGL, diagnostic 18F-FDG PET/CT is a superior tool in the localization of recurrent tumors. Tumor SUVmax is a potentially useful predictor of malignant tumor potential. © The Foundation Acta Radiologica 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Simulating Heterogeneous Tumor Cell Populations
Bar-Sagi, Dafna; Mishra, Bud
2016-01-01
Certain tumor phenomena, like metabolic heterogeneity and local stable regions of chronic hypoxia, signify a tumor’s resistance to therapy. Although recent research has shed light on the intracellular mechanisms of cancer metabolic reprogramming, little is known about how tumors become metabolically heterogeneous or chronically hypoxic, namely the initial conditions and spatiotemporal dynamics that drive these cell population conditions. To study these aspects, we developed a minimal, spatially-resolved simulation framework for modeling tissue-scale mixed populations of cells based on diffusible particles the cells consume and release, the concentrations of which determine their behavior in arbitrarily complex ways, and on stochastic reproduction. We simulate cell populations that self-sort to facilitate metabolic symbiosis, that grow according to tumor-stroma signaling patterns, and that give rise to stable local regions of chronic hypoxia near blood vessels. We raise two novel questions in the context of these results: (1) How will two metabolically symbiotic cell subpopulations self-sort in the presence of glucose, oxygen, and lactate gradients? We observe a robust pattern of alternating striations. (2) What is the proper time scale to observe stable local regions of chronic hypoxia? We observe the stability is a function of the balance of three factors related to O2—diffusion rate, local vessel release rate, and viable and hypoxic tumor cell consumption rate. We anticipate our simulation framework will help researchers design better experiments and generate novel hypotheses to better understand dynamic, emergent whole-tumor behavior. PMID:28030620
Höckel, Michael; Horn, Lars-Christian; Illig, Romana; Dornhöfer, Nadja; Fritsch, Helga
2011-08-01
We have suggested to base cancer surgery on ontogenetic anatomy and the compartment theory of tumor permeation in order to improve local tumor control and to lower treatment-related morbidity. Following the validation of this concept for the uterine cervix, proximal vagina and vulva, this study explores its applicability for the distal vagina. Serial transverse sections of female embryos and fetuses aged 8-17 weeks were assessed for the morphological changes in the region defined by the deep urogenital sinus-vaginal plate complex. Histopathological pattern analysis of local tumor spread was performed with carcinomas of the lower genital tract involving the distal vagina to test the compartment theory. Ontogenetically, the female urethra, urethrovaginal septum, distal vagina and rectovaginal septum represent a morphogenetic unit derived from the deep urogenital sinus-vaginal plate complex. Herein, the posterior urethra, the urethrovaginal septum and the distal vagina form a distinct subcompartment differentiated from the dorsal wall of the urogenital sinus. From 150 consecutive patients with distal vaginectomy as part of their surgical treatment 26 carcinomas of the lower genital tract had infiltrated the distal vagina. All 22 tumors involving the ventral wall invaded the urethra/periurethral tissue. Of the five carcinomas involving the dorsal wall none invaded the rectum/mesorectum. The pattern of local tumor permeation of lower genital tract cancer in the distal vagina can be consistently explained with ontogenetic anatomy and the compartment theory. Copyright © 2011 Elsevier Inc. All rights reserved.
Time-resolved fluorescence spectroscopy of human brain tumors
NASA Astrophysics Data System (ADS)
Marcu, Laura; Thompson, Reid C.; Garde, Smita; Sedrak, Mark; Black, Keith L.; Yong, William H.
2002-05-01
Fluorescence spectroscopy of the endogenous emission of brain tumors has been researched as a potentially important method for the intraoperative localization of brain tumor margins. In this study, we investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) for demarcation of primary brain tumors by studying the time-resolved spectra of gliomas of different histologic grades. Time-resolved fluorescence (3 ns, 337 nm excitation) from excised human brain tumor show differences between the time-resolved emission of malignant glioma and normal brain tissue (gray and white matter). Our findings suggest that brain tumors can be differentiated from normal brain tissue based upon unique time-resolved fluorescence signature.
Two patients with rare mixed adenoneuroendocrine carcinomas of the rectum.
Gül-Klein, Safak; Sinn, Marianne; Jurmeister, Philipp Sebastian; Biebl, Matthias; Weiß, Sascha; Rau, Beate; Bläker, Hendrik; Pratschke, Johann; Aigner, Felix
2018-01-01
Mixed adenoneuroendocrine carcinomas of the gastrointestinal tract are until today poorly understood and thus very challenging for interdisciplinary therapy. We herewith report the first case series of patients with a primary mixed adenoneuroendocrine carcinoma of the rectum. Both cases were initially diagnosed as adenocarcinoma and only secondarily with mixed adenoneuroendocrine carcinoma and had a poor outcome due to a rapid tumor progression and resistance to chemotherapy. A 65-year-old female presented with local tumor recurrence and hepatopulmonary metastasis 1 year after primary surgery for adenocarcinoma of the rectum and consecutive radiochemotherapy regimen. Fluorouracil (5-FU) was followed by bevacizumab- and capecitabine-based chemotherapy but had to be discontinued due to side effects and progressive disease. Progressive local pain syndrome accompanied by recurrent bleeding episodes led to a local tumor-debulking operation. Afterward, mixed adenoneuroendocrine carcinoma as the underlying diagnosis in the final histopathological examination was detected. The patient died 3 months after the operation in the context of a fulminant tumor progress. A 63-year-old male patient underwent neoadjuvant radiochemotherapy and laparoscopic rectum resection. After 5 months, postoperative oxaliplatin/capecitabine-based adjuvant chemotherapy was switched to carboplatin/etopsid due to a progressive polyneuropathy and biopsy-proven pulmonary metastasis. The patient then had to be switched to local radiation of cerebral metastases and Topotecan due to cerebral bleeding episodes but died 18 months after the initial diagnosis. In conclusion of our case series, mixed adenoneuroendocrine carcinomas of the rectum should be considered as a rare but aggressive tumor entity. An early and detailed histopathological diagnosis is required in order to establish an individual interdisciplinary treatment concept.
Bardakhchyan, Samvel; Kager, Leo; Danielyan, Samvel; Avagyan, Armen; Karamyan, Nerses; Vardevanyan, Hovhannes; Mkhitaryan, Sergey; Papyan, Ruzanna; Zohrabyan, Davit; Safaryan, Liana; Sargsyan, Lilit; Harutyunyan, Lilit; Hakobyan, Lusine; Iskanyan, Samvel; Tamamyan, Gevorg
2017-03-29
Giant cell tumor of bone (GCT) is a rare primary bone tumor, which can metastasize and undergo malignant transformation. The standard treatment of GCT is surgery. In patients with unresectable or metastatic disease, additional therapeutic options are available. These include blocking of the receptor activator of NF-kappa B ligand (RANKL) signaling pathway, which plays a role in the pathogenesis of GCT of bone, via the anti-RANKL monoclonal antibody denosumab. Herein we report on a female teenager who presented in a very poor clinical condition (cachexia, diplopia, strabismus, dysphonia with palsy of cranial nerves V, VI, VIII, IX, X, XI and XII) due to progressive disease, after incomplete resection and adjuvant radiotherapy, of a GCT which affected the cervical spine (C1 and C2) as well as the skull base; and who had an impressive clinical response to denosumab therapy. To the best of our knowledge, this is the youngest patient ever reported with a skull base tumor treated with denosumab. In situations when surgery can be postponed and local aggressiveness of the tumor does not urge for acute surgical intervention, upfront use of denosumab in order to reduce the tumor size might be considered. Principally, the goal of denosumab therapy is to reduce tumor size as much as possible, with the ultimate goal to make local surgery (or as in our case re-surgery) amenable. However, improvement in quality of life, as demonstrated in our patient, is also an important aspect of such targeted therapies.
Cancer Liquid Biopsy: Is It Ready for Clinic?
Pan, Ying; Ji, John S; Jin, Jason Gang; Kuo, Winston Patrick; Kang, Hongjun
2017-01-01
The management of cancer relies on a combination of imaging and tissue biopsy for diagnosis, monitoring, and molecular classification-based patient stratification to ensure appropriate treatment. Conventional tissue biopsy harvests tumor samples with invasive procedures, which are often difficult for patients with advanced disease. Given the well-recognized intratumor genetic heterogeneity [1], the biopsy of small tumor fragments does not necessarily represent all the genetic aberrations in the tumor, but sampling the entire tumor in each patient is not realistic. Moreover, tumors evolve all the time from local to advanced disease and by adapting to selective pressure from treatment.
Hou, Lin; Shan, Xiaoning; Hao, Lisha; Feng, Qianhua; Zhang, Zhenzhong
2017-05-01
Localized cancer treatment with combination therapy has attracted increasing attention for effective inhibition of tumor growth. In this work, we introduced diffusion molecular retention (DMR) tumor targeting effect, a new strategy that employed transferrin (Tf) modified hollow mesoporous CuS nanoparticles (HMCuS NPs) to undergo extensive diffuse through the interstitium and tumor retention after a peritumoral (PT) injection. Herein, HMCuS NPs with strong near-infrared (NIR) absorption and photothermal conversion efficiency could serve as not only a drug carrier but also a powerful contrast agent for photoacoustic imaging to guide chemo-phototherapy. The iron-dependent artesunate (AS), which possessed profound cytotoxicity against tumor cell, was used as model drug. As a result, this AS loaded Tf-HMCuS NPs (AS/Tf-HMCuS NPs) system could specially target to tumor cells and synchronously deliver AS as well as irons into tumor to achieve enhanced antitumor activity. It was found that AS/Tf-HMCuS NPs was taken up by MCF-7 cells via Tf-mediated endocytosis, and could effectively convert NIR light into heat for photothermal therapy as well as generated high levels of reactive oxygen species (ROS) for photodynamic therapy. In addition, in vivo antitumor efficacy studies showed that tumor-bearing mice treated with AS/Tf-HMCuS NPs through peritumoral (PT) injection under NIR laser irradiation displayed the strongest inhibition rate of about 74.8%, even with the reduced frequency of administration. Furthermore, to demonstrate DMR, the optical imaging, photoacoustic tomography and immunofluorescence after PT injection were adopted to track the behavior of AS/Tf-HMCuS NPs in vivo. The results exhibited that Tf-HMCuS NPs prolonged the local accumulation and retention together with slow vascular uptake and extensive interstitial diffusion, which was consistent with the biodistribution studies of AS/Tf-HMCuS NPs. Therefore, the approach of localized delivery through DMR combined with multi-mechanism therapy may be a promising method for cancer treatment. In recent years, localized cancer treatment using different biomaterials has attracted increasing attention for effective inhibition of tumor growth. However, it is still challenging for this kind of system to achieve a high drug loading, overcome biological barriers from the site of injection to the site of action, and combine synergetic therapy with diagnosis without adversely affecting the formation process. This study provides a localized diffusion molecular retention (DMR) tumor targeting drug delivery system based on hollow mesoporous copper sulfide nanoparticles (HMCuS NPs) entrapment of anticancer drug for the first time, which can achieve high drug loading, improve local drug accumulation and retention, accomplish synergistic combination of chemo-phototherapy, and finally enhance antitumor effect. In addition, HMCuS NPs also possesses the property suitable for photoacoustic imaging, which could offer us a theranostic platform. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Y; Pollom, E; Loo, B
Purpose: To evaluate whether tumor textural features extracted from both pre- and mid-treatment FDG-PET images predict early response to chemoradiotherapy in locally advanced head and neck cancer, and investigate whether they provide complementary value to conventional volume-based measurements. Methods: Ninety-four patients with locally advanced head and neck cancers were retrospectively studied. All patients received definitive chemoradiotherapy and underwent FDG-PET planning scans both before and during treatment. Within the primary tumor we extracted 6 textural features based on gray-level co-occurrence matrices (GLCM): entropy, dissimilarity, contrast, correlation, energy, and homogeneity. These image features were evaluated for their predictive power of treatment responsemore » to chemoradiotherapy in terms of local recurrence free survival (LRFS) and progression free survival (PFS). Logrank test were used to assess the statistical significance of the stratification between low- and high-risk groups. P-values were adjusted for multiple comparisons by the false discovery rate (FDR) method. Results: All six textural features extracted from pre-treatment PET images significantly differentiated low- and high-risk patient groups for LRFS (P=0.011–0.038) and PFS (P=0.029–0.034). On the other hand, none of the textural features on mid-treatment PET images was statistically significant in stratifying LRFS (P=0.212–0.445) or PFS (P=0.168–0.299). An imaging signature that combines textural feature (GLCM homogeneity) and metabolic tumor volume showed an improved performance for predicting LRFS (hazard ratio: 22.8, P<0.0001) and PFS (hazard ratio: 13.9, P=0.0005) in leave-one-out cross validation. Intra-tumor heterogeneity measured by textural features was significantly lower in mid-treatment PET images than in pre-treatment PET images (T-test: P<1.4e-6). Conclusion: Tumor textural features on pretreatment FDG-PET images are predictive for response to chemoradiotherapy in locally advanced head and neck cancer. The complementary information offered by textural features improves patient stratification and may potentially aid in personalized risk-adaptive therapy.« less
Proton Radiation Therapy for Head and Neck Cancer: A Review of the Clinical Experience to Date
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holliday, Emma B.; Frank, Steven J., E-mail: sjfrank@mdanderson.org
2014-06-01
Proton beam radiation has been used for cancer treatment since the 1950s, but recent increasing interest in this form of therapy and the construction of hospital-based and clinic-based facilities for its delivery have greatly increased both the number of patients and the variety of tumors being treated with proton therapy. The mass of proton particles and their unique physical properties (ie, the Bragg peak) allow proton therapy to spare normal tissues distal to the tumor target from incidental irradiation. Initial observations show that proton therapy is particularly useful for treating tumors in challenging locations close to nontarget critical structures. Specifically,more » improvements in local control outcomes for patients with chordoma, chonodrosarcoma, and tumors in the sinonasal regions have been reported in series using proton. Improved local control and survival outcomes for patients with cancer of the head and neck region have also been seen with the advent of improvements in better imaging and multimodality therapy comprising surgery, radiation therapy, and chemotherapy. However, aggressive local therapy in the proximity of critical normal structures to tumors in the head and neck region may produce debilitating early and late toxic effects. Great interest has been expressed in evaluating whether proton therapy can improve outcomes, especially early and late toxicity, when used in the treatment of head and neck malignancies. This review summarizes the progress made to date in addressing this question.« less
Domingues, Patrícia Henriques; Sousa, Pablo; Otero, Álvaro; Gonçalves, Jesus Maria; Ruiz, Laura; de Oliveira, Catarina; Lopes, Maria Celeste; Orfao, Alberto; Tabernero, Maria Dolores
2014-01-01
Background Tumor recurrence remains the major clinical complication of meningiomas, the majority of recurrences occurring among WHO grade I/benign tumors. In the present study, we propose a new scoring system for the prognostic stratification of meningioma patients based on analysis of a large series of meningiomas followed for a median of >5 years. Methods Tumor cytogenetics were systematically investigated by interphase fluorescence in situ hybridization in 302 meningioma samples, and the proposed classification was further validated in an independent series of cases (n = 132) analyzed by high-density (500K) single-nucleotide polymorphism (SNP) arrays. Results Overall, we found an adverse impact on patient relapse-free survival (RFS) for males, presence of brain edema, younger patients (<55 years), tumor size >50 mm, tumor localization at intraventricular and anterior cranial base areas, WHO grade II/III meningiomas, and complex karyotypes; the latter 5 variables showed an independent predictive value in multivariate analysis. Based on these parameters, a prognostic score was established for each individual case, and patients were stratified into 4 risk categories with significantly different (P < .001) outcomes. These included a good prognosis group, consisting of approximately 20% of cases, that showed a RFS of 100% ± 0% at 10 years and a very poor-prognosis group with a RFS rate of 0% ± 0% at 10 years. The prognostic impact of the scoring system proposed here was also retained when WHO grade I cases were considered separately (P < .001). Conclusions Based on this risk-stratification classification, different strategies may be adopted for follow-up, and eventually also for treatment, of meningioma patients at different risks for relapse. PMID:24536048
NASA Astrophysics Data System (ADS)
Penjweini, Rozhin; Kim, Michele M.; Ong, Yi Hong; Zhu, Timothy C.
2017-02-01
This preclinical study examines four dosimetric quantities (light fluence, photosensitizer photobleaching ratio, PDT dose, and reacted singlet oxygen ([1O2]rx)) to predict local control rate (LCR) for 2-(1-Hexyloxyethyl)-2-devinyl pyropheophorbide (HPPH)-mediated photodynamic therapy (PDT). Mice bearing radiation-induced fibrosarcoma (RIF) tumors were treated with different in-air fluences (135, 250 and 350 J/cm2) and in-air fluence rates (50, 75 and 150 mW/cm2) at 0.25 mg/kg HPPH and a drug-light interval of 24 hours using a 1 cm diameter collimated laser beam at 665 nm wavelength. A macroscopic model was used to calculate ([1O2]rx)) based on in vivo explicit dosimetry of the initial tissue oxygenation, photosensitizer concentration, and tissue optical properties. PDT dose was defined as a temporal integral of drug concentration and fluence rate (φ) at a 3 mm tumor depth. Light fluence rate was calculated throughout the treatment volume based on Monte-Carlo simulation and measured tissue optical properties. The tumor volume of each mouse was tracked for 30 days after PDT and Kaplan-Meier analyses for LCR were performed based on a tumor volume <=100 mm3, for four dose metrics: fluence, HPPH photobleaching rate, PDT dose, and ([1O2]rx)). The results of this study showed that ([1O2]rx)) is the best dosimetric quantity that can predict tumor response and correlate with LCR.
Hao, Yoshiteru; Numata, Kazushi; Ishii, Tomohiro; Fukuda, Hiroyuki; Maeda, Shin; Nakano, Masayuki; Tanaka, Katsuaki
2017-05-07
To evaluate whether pathologically early hepatocellular carcinoma (HCC) exhibited local tumor progression after radiofrequency ablation (RFA) less often than typical HCC. Fifty pathologically early HCCs [tumor diameter (mm): mean, 15.8; range, 10-23; follow-up days after RFA: median, 1213; range, 216-2137] and 187 typical HCCs [tumor diameter (mm): mean, 15.6; range, 6-30; follow-up days after RFA: median, 1116; range, 190-2328] were enrolled in this retrospective study. The presence of stromal invasion (namely, tumor cell invasion into the intratumoral portal tracts) was considered to be the most important pathologic finding for the diagnosis of early HCCs. Typical HCC was defined as the presence of a hyper-vascular lesion accompanied by delayed washout using contrast-enhanced computed tomography or contrast-enhanced magnetic resonance imaging. Follow-up examinations were performed at 3-mo intervals to monitor for signs of local tumor progression. The local tumor progression rates of pathologically early HCCs and typical HCCs were then determined using the Kaplan-Meier method. During the follow-up period for the 50 pathologically early HCCs, 49 (98%) of the nodules did not exhibit local tumor progression. However, 1 nodule (2%) was associated with a local tumor progression found 636 d after RFA. For the 187 typical HCCs, 46 (24.6%) of the nodules exhibited local recurrence after RFA. The follow-up period until the local tumor progression of typical HCC was a median of 605 d, ranging from 181 to 1741 d. Among the cases with typical HCCs, local tumor progression had occurred in 7.0% (7/187), 16.0% (30/187), 21.9% (41/187) and 24.6% (46/187) of the cases at 1, 2, 3 and 4 years, respectively. Pathologically early HCC was statistically associated with a lower rate of local tumor progression, compared with typical HCC, when evaluated using a log-rank test ( P = 0.002). The rate of local tumor progression for pathologically early HCCs after RFA was significantly lower than that for typical HCCs.
Hao, Yoshiteru; Numata, Kazushi; Ishii, Tomohiro; Fukuda, Hiroyuki; Maeda, Shin; Nakano, Masayuki; Tanaka, Katsuaki
2017-01-01
AIM To evaluate whether pathologically early hepatocellular carcinoma (HCC) exhibited local tumor progression after radiofrequency ablation (RFA) less often than typical HCC. METHODS Fifty pathologically early HCCs [tumor diameter (mm): mean, 15.8; range, 10-23; follow-up days after RFA: median, 1213; range, 216-2137] and 187 typical HCCs [tumor diameter (mm): mean, 15.6; range, 6-30; follow-up days after RFA: median, 1116; range, 190-2328] were enrolled in this retrospective study. The presence of stromal invasion (namely, tumor cell invasion into the intratumoral portal tracts) was considered to be the most important pathologic finding for the diagnosis of early HCCs. Typical HCC was defined as the presence of a hyper-vascular lesion accompanied by delayed washout using contrast-enhanced computed tomography or contrast-enhanced magnetic resonance imaging. Follow-up examinations were performed at 3-mo intervals to monitor for signs of local tumor progression. The local tumor progression rates of pathologically early HCCs and typical HCCs were then determined using the Kaplan-Meier method. RESULTS During the follow-up period for the 50 pathologically early HCCs, 49 (98%) of the nodules did not exhibit local tumor progression. However, 1 nodule (2%) was associated with a local tumor progression found 636 d after RFA. For the 187 typical HCCs, 46 (24.6%) of the nodules exhibited local recurrence after RFA. The follow-up period until the local tumor progression of typical HCC was a median of 605 d, ranging from 181 to 1741 d. Among the cases with typical HCCs, local tumor progression had occurred in 7.0% (7/187), 16.0% (30/187), 21.9% (41/187) and 24.6% (46/187) of the cases at 1, 2, 3 and 4 years, respectively. Pathologically early HCC was statistically associated with a lower rate of local tumor progression, compared with typical HCC, when evaluated using a log-rank test (P = 0.002). CONCLUSION The rate of local tumor progression for pathologically early HCCs after RFA was significantly lower than that for typical HCCs. PMID:28533668
Wang, Donghui; Ge, Naijian; Yang, Tingting; Peng, Feng; Qiao, Yuqin; Li, Qianwen
2018-01-01
Abstract Construction of localized drug‐eluting systems with synergistic chemothermal tumor‐killing abilities is promising for biomedical implants directly contacting with tumor tissues. In this study, an intelligent and biocompatible drug‐loading platform, based on a gold nanorods‐modified butyrate‐inserted NiTi‐layered double hydroxides film (Au@LDH/B), is prepared on the surface of nitinol alloy. The prepared films function as drug‐loading “sponges,” which pump butyrate out under near‐infrared (NIR) irradiation and resorb drugs in water when the NIR laser is shut off. The stimuli‐responsive release of butyrate is verified to be related with the NIR‐triggered crystal phase transformation of Au@LDH/B. In vitro and in vivo studies reveal that the prepared films possess excellent biosafety and high efficiency in synergistic thermochemo tumor therapy, showing a promising application in the construction of localized stimuli‐responsive drug‐delivery systems. PMID:29721424
Hicks, Martin J; Funato, Kosuke; Wang, Lan; Aronowitz, Eric; Dyke, Jonathan P; Ballon, Douglas J; Havlicek, David F; Frenk, Esther Z; De, Bishnu P; Chiuchiolo, Maria J; Sondhi, Dolan; Hackett, Neil R; Kaminsky, Stephen M; Tabar, Viviane; Crystal, Ronald G
2015-01-01
The median survival of glioblastoma multiforme (GBM) is approximately 1 year. Following surgical removal, systemic therapies are limited by the blood-brain barrier. To circumvent this, we developed a method to modify neurons with the genetic sequence for therapeutic monoclonal antibodies using adeno-associated virus (AAV) gene transfer vectors, directing persistent, local expression in the tumor milieu. The human U87MG GBM cell line or patient-derived early passage GBM cells were administered to the striatum of NOD/SCID immunodeficient mice. AAVrh.10BevMab, an AAVrh.10-based vector coding for bevacizumab (Avastin), an anti-human vascular endothelial growth factor (VEGF) monoclonal antibody, was delivered to the area of the GBM xenograft. Localized expression of bevacizumab was demonstrated by quantitative PCR, ELISA and western blotting. Immunohistochemistry showed that bevacizumab was expressed in neurons. Concurrent administration of AAVrh.10BevMab with the U87MG tumor reduced tumor blood vessel density and tumor volume, and increased survival. Administration of AAVrh.10BevMab 1 week after U87MG xenograft reduced growth and increased survival. Studies with patient-derived early passage GBM primary cells showed a reduction in primary tumor burden with an increased survival. These data support the strategy of AAV-mediated central nervous system gene therapy to treat GBM, overcoming the blood-brain barrier through local, persistent delivery of an anti-angiogenesis monoclonal antibody.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozak, Kevin R.; Hamidi, Maryam; Manning, Matthew
2012-06-01
Purpose: This study examines the management and outcomes of muscle-invasive bladder cancer in the United States. Methods and Materials: Patients with muscle-invasive bladder cancer diagnosed between 1988 and 2006 were identified in the Surveillance, Epidemiology, and End Results (SEER) database. Patients were classified according to three mutually exclusive treatment categories based on the primary initial treatment: no local management, radiotherapy, or surgery. Overall survival was assessed with Kaplan-Meier analysis and Cox models based on multiple factors including treatment utilization patterns. Results: The study population consisted of 26,851 patients. Age, sex, race, tumor grade, histology, and geographic location were associated withmore » differences in treatment (all p < 0.01). Patients receiving definitive radiotherapy tended to be older and have less differentiated tumors than patients undergoing surgery (RT, median age 78 years old and 90.6% grade 3/4 tumors; surgery, median age 71 years old and 77.1% grade 3/4 tumors). No large shifts in treatment were seen over time, with most patients managed with surgical resection (86.3% for overall study population). Significant survival differences were observed according to initial treatment: median survival, 14 months with no definitive local treatment; 17 months with radiotherapy; and 43 months for surgery. On multivariate analysis, differences in local utilization rates of definitive radiotherapy did not demonstrate a significant effect on overall survival (hazard ratio, 1.002; 95% confidence interval, 0.999-1.005). Conclusions: Multiple factors influence the initial treatment strategy for muscle-invasive bladder cancer, but definitive radiotherapy continues to be used infrequently. Although patients who undergo surgery fare better, a multivariable model that accounted for patient and tumor characteristics found no survival detriment to the utilization of definitive radiotherapy. These results support continued research into bladder preservation strategies and suggest that definitive radiotherapy represents a viable initial treatment strategy for those who wish to attempt to preserve their native bladder.« less
Shurin, Michael R.; Potapovich, Alla I.; Tyurina, Yulia Y.; Tourkova, Irina L.; Shurin, Galina V.; Kagan, Valerian E.
2014-01-01
Dendritic cells (DC) loaded with tumor antigens from apoptotic/necrotic tumor cells are commonly used as vaccines for cancer therapy. However, the use of dead tumor cells may cause both tolerance and immunity, making the effect of vaccination unpredictable. To deliver live tumor “cargoes” into DC, we developed a new approach based on the “labeling” of tumors with a phospholipid “eat-me” signal, phosphatidylserine. Expression of phosphatidylserine on live tumor cells mediated their recognition and endocytosis by DC resulting in the presentation of tumor antigens to antigen-specific T cells. In mice, topical application of phosphatidylserine-containing ointment over melanoma induced tumor-specific CTL, local and systemic antitumor immunity, and inhibited tumor growth. Thus, labeling of tumors with phosphatidylserine is a promising strategy for cancer immunotherapy. PMID:19276376
Takahashi, Hideo; Kahramangil, Bora; Berber, Eren
2018-04-01
Microwave thermosphere ablation is a new treatment modality that creates spherical ablation zones using a single antenna. This study aims to analyze local recurrence associated with this new treatment modality in patients with malignant liver tumors. This is a prospective clinical study of patients who underwent microwave thermosphere ablation of malignant liver tumors between September 2014 and March 2017. Clinical, operative, and oncologic parameters were analyzed using Kaplan-Meier survival and Cox proportional hazards model. One hundred patients underwent 301 ablations. Ablations were performed laparoscopically in 87 and open in 13 patients. Pathology included neuroendocrine liver metastasis (n = 115), colorectal liver metastasis (n = 100), hepatocellular cancer (n = 21), and other tumor types (n = 65). Ninety-day morbidity was 7% with one not procedure-related mortality. Median follow-up was 16 months with 65% of patients completing at least 12 months of follow-up. The rate of local tumor recurrence rate per lesion was 6.6% (20/301). Local tumor, new hepatic, and extrahepatic recurrences were detected in 15%, 40%, and 40% of patients, respectively. Local recurrence rate per pathology was 12% for both colorectal liver metastasis (12/100) and other metastatic tumors (8/65). No local recurrence was observed to date in the neuroendocrine liver metastasis and in the limited number of patients with hepatocellular cancers. Tumor size >3 cm and tumor type were independent predictors of local recurrence. This is the first study to analyze local recurrence after microwave thermosphere ablation of malignant liver tumors. Short-term local tumor control rate compares favorably with that reported for radiofrequency and other microwave technologies in the literature. Copyright © 2017 Elsevier Inc. All rights reserved.
Bilateral renal oncocytoma in a Greyhound dog.
Buergelt, C D; Adjiri-Awere, A
2000-03-01
A bilateral, locally invasive renal oncocytoma was diagnosed in a 10-year-old spayed female Greyhound dog. The diagnosis was based on positive staining of the tumor with the periodic acid-Schiff reaction prior to diastase treatment, on the immunohistochemical expression of cytoplasmic cytokeratin, and on the prominence of mitochondria in the tumor cells.
Biodegradable polymers for targeted delivery of anti-cancer drugs.
Doppalapudi, Sindhu; Jain, Anjali; Domb, Abraham J; Khan, Wahid
2016-06-01
Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy. This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered. Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.
Localization of liver tumors in freehand 3D laparoscopic ultrasound
NASA Astrophysics Data System (ADS)
Shahin, O.; Martens, V.; Besirevic, A.; Kleemann, M.; Schlaefer, A.
2012-02-01
The aim of minimally invasive laparoscopic liver interventions is to completely resect or ablate tumors while minimizing the trauma caused by the operation. However, restrictions such as limited field of view and reduced depth perception can hinder the surgeon's capabilities to precisely localize the tumor. Typically, preoperative data is acquired to find the tumor(s) and plan the surgery. Nevertheless, determining the precise position of the tumor is required, not only before but also during the operation. The standard use of ultrasound in hepatic surgery is to explore the liver and identify tumors. Meanwhile, the surgeon mentally builds a 3D context to localize tumors. This work aims to upgrade the use of ultrasound in laparoscopic liver surgery. We propose an approach to segment and localize tumors intra-operatively in 3D ultrasound. We reconstruct a 3D laparoscopic ultrasound volume containing a tumor. The 3D image is then preprocessed and semi-automatically segmented using a level set algorithm. During the surgery, for each subsequent reconstructed volume, a fast update of the tumor position is accomplished via registration using the previously segmented and localized tumor as a prior knowledge. The approach was tested on a liver phantom with artificial tumors. The tumors were localized in approximately two seconds with a mean error of less than 0.5 mm. The strengths of this technique are that it can be performed intra-operatively, it helps the surgeon to accurately determine the location, shape and volume of the tumor, and it is repeatable throughout the operation.
Weinberg, Brent D; Boreta, Lauren; Braunstein, Steve; Cha, Soonmee
2018-07-01
Glioblastomas are aggressive brain tumors that frequently recur in the subventricular zone (SVZ) despite maximal treatment. The purpose of this study was to evaluate imaging patterns of subventricular progression and impact of recurrent subventricular tumor involvement and radiation dose to patient outcome. Retrospective review of 50 patients diagnosed with glioblastoma and treated with surgery, radiation, and concurrent temozolomide from January 2012 to June 2013 was performed. Tumors were classified based on location, size, and cortical and subventricular zone involvement. Survival was compared based on recurrence type, distance from the initial enhancing tumor (local ≤ 2 cm, distant > 2 cm), and the radiation dose at the recurrence site. Progression of enhancing subventricular tumor was common at both local (58%) and distant (42%) sites. Median survival was better after local SVZ recurrence than distant SVZ recurrence (8.7 vs. 4.3 months, p = 0.04). Radiation doses at local SVZ recurrence sites recurrence averaged 57.0 ± 4.0 Gy compared to 44.7 ± 6.7 Gy at distant SVZ recurrence sites (p = 0.008). Distant subventricular progression at a site receiving ≤ 45 Gy predicted worse subsequent survival (p = 0.05). Glioblastomas frequently recurred in the subventricular zone, and patient survival was worse when enhancing tumor occurred at sites that received lower radiation doses. This recurrent disease may represent disease undertreated at the time of diagnosis, and further study is needed to determine if improved treatment strategies, such as including the subventricular zone in radiation fields, could improve clinical outcomes.
Rossowska, Joanna; Anger, Natalia; Szczygieł, Agnieszka; Mierzejewska, Jagoda; Pajtasz-Piasecka, Elżbieta
2018-06-28
The excessive amounts of immunosuppressive factors present in a tumor microenvironment (TME) reduce the effectiveness of cancer vaccines. The main objective of our research was to improve the effectiveness of dendritic cell (DC)-based immunotherapy or chemoimmunotherapy composed of cyclophosphamide (CY) and DCs by application of lentivectors encoding shRNA specific to IL-10 (shIL10 LVs) in murine colon carcinoma MC38 model. The efficacy of shIL10 LVs in silencing of IL-10 expression was measured both in vitro and in vivo using Real-Time PCR and ELISA assays. In addition, the influence of intratumorally inoculated lentivectors on MC38 tumor microenvironment was examined using flow cytometry method. The effect of applied therapeutic schemes was determined by measurement of tumor growth inhibition and activation state of local and systemic immune response. We observed that intratumorally inoculated shIL10 LVs transduced tumor and TME-infiltrating cells and reduced the secretion of IL-10. Application of shIL10 LVs for three consecutive weeks initiated tumor growth inhibition, whereas treatment with shIL10 LVs and BMDC/TAg did not enhance the antitumor effect. However, when pretreatment with CY was introduced to the proposed scheme, we noticed high MC38 tumor growth inhibition accompanied by reduction of MDSCs and Tregs in TME, as well as activation of potent local and systemic Th1-type antitumor response. The obtained data shows that remodeling of TME by shIL10 LVs and CY enhances DC activity and supports them during regeneration and actuation of a potent antitumor response. Therefore, therapeutic strategies aimed at local IL-10 elimination using lentiviral vectors should be further investigated in context of combined chemoimmunotherapies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzyubak, Oleksandr; Kincaid, Russell; Hertanto, Agung
Purpose: Target localization accuracy of cone-beam CT (CBCT) images used in radiation treatment of respiratory disease sites is affected by motion artifacts (blurring and streaking). The authors have previously reported on a method of respiratory motion correction in thoracic CBCT at end expiration (EE). The previous retrospective study was limited to examination of reducing motion artifacts in a small number of patient cases. They report here on a prospective study in a larger group of lung cancer patients to evaluate respiratory motion-corrected (RMC)-CBCT ability to improve lung tumor localization accuracy and reduce motion artifacts in Linac-mounted CBCT images. A secondmore » study goal examines whether the motion correction derived from a respiration-correlated CT (RCCT) at simulation yields similar tumor localization accuracy at treatment. Methods: In an IRB-approved study, 19 lung cancer patients (22 tumors) received a RCCT at simulation, and on one treatment day received a RCCT, a respiratory-gated CBCT at end expiration, and a 1-min CBCT. A respiration monitor of abdominal displacement was used during all scans. In addition to a CBCT reconstruction without motion correction, the motion correction method was applied to the same 1-min scan. Projection images were sorted into ten bins based on abdominal displacement, and each bin was reconstructed to produce ten intermediate CBCT images. Each intermediate CBCT was deformed to the end expiration state using a motion model derived from RCCT. The deformed intermediate CBCT images were then added to produce a final RMC-CBCT. In order to evaluate the second study goal, the CBCT was corrected in two ways, one using a model derived from the RCCT at simulation [RMC-CBCT(sim)], the other from the RCCT at treatment [RMC-CBCT(tx)]. Image evaluation compared uncorrected CBCT, RMC-CBCT(sim), and RMC-CBCT(tx). The gated CBCT at end expiration served as the criterion standard for comparison. Using automatic rigid image registration, each CBCT was registered twice to the gated CBCT, first aligned to spine, second to tumor in lung. Localization discrepancy was defined as the difference between tumor and spine registration. Agreement in tumor localization with the gated CBCT was further evaluated by calculating a normalized cross correlation (NCC) of pixel intensities within a volume-of-interest enclosing the tumor in lung. Results: Tumor localization discrepancy was reduced with RMC-CBCT(tx) in 17 out of 22 cases relative to no correction. If one considers cases in which tumor motion is 5 mm or more in the RCCT, tumor localization discrepancy is reduced with RMC-CBCT(tx) in 14 out of 17 cases (p = 0.04), and with RMC-CBCT(sim) in 13 out of 17 cases (p = 0.05). Differences in localization discrepancy between correction models [RMC-CBCT(sim) vs RMC-CBCT(tx)] were less than 2 mm. In 21 out of 22 cases, improvement in NCC was higher with RMC-CBCT(tx) relative to no correction (p < 0.0001). Differences in NCC between RMC-CBCT(sim) and RMC-CBCT(tx) were small. Conclusions: Motion-corrected CBCT improves lung tumor localization accuracy and reduces motion artifacts in nearly all cases. Motion correction at end expiration using RCCT acquired at simulation yields similar results to that using a RCCT on the treatment day (2–3 weeks after simulation)« less
Dzyubak, Oleksandr; Kincaid, Russell; Hertanto, Agung; Hu, Yu-Chi; Pham, Hai; Rimner, Andreas; Yorke, Ellen; Zhang, Qinghui; Mageras, Gig S
2014-10-01
Target localization accuracy of cone-beam CT (CBCT) images used in radiation treatment of respiratory disease sites is affected by motion artifacts (blurring and streaking). The authors have previously reported on a method of respiratory motion correction in thoracic CBCT at end expiration (EE). The previous retrospective study was limited to examination of reducing motion artifacts in a small number of patient cases. They report here on a prospective study in a larger group of lung cancer patients to evaluate respiratory motion-corrected (RMC)-CBCT ability to improve lung tumor localization accuracy and reduce motion artifacts in Linac-mounted CBCT images. A second study goal examines whether the motion correction derived from a respiration-correlated CT (RCCT) at simulation yields similar tumor localization accuracy at treatment. In an IRB-approved study, 19 lung cancer patients (22 tumors) received a RCCT at simulation, and on one treatment day received a RCCT, a respiratory-gated CBCT at end expiration, and a 1-min CBCT. A respiration monitor of abdominal displacement was used during all scans. In addition to a CBCT reconstruction without motion correction, the motion correction method was applied to the same 1-min scan. Projection images were sorted into ten bins based on abdominal displacement, and each bin was reconstructed to produce ten intermediate CBCT images. Each intermediate CBCT was deformed to the end expiration state using a motion model derived from RCCT. The deformed intermediate CBCT images were then added to produce a final RMC-CBCT. In order to evaluate the second study goal, the CBCT was corrected in two ways, one using a model derived from the RCCT at simulation [RMC-CBCT(sim)], the other from the RCCT at treatment [RMC-CBCT(tx)]. Image evaluation compared uncorrected CBCT, RMC-CBCT(sim), and RMC-CBCT(tx). The gated CBCT at end expiration served as the criterion standard for comparison. Using automatic rigid image registration, each CBCT was registered twice to the gated CBCT, first aligned to spine, second to tumor in lung. Localization discrepancy was defined as the difference between tumor and spine registration. Agreement in tumor localization with the gated CBCT was further evaluated by calculating a normalized cross correlation (NCC) of pixel intensities within a volume-of-interest enclosing the tumor in lung. Tumor localization discrepancy was reduced with RMC-CBCT(tx) in 17 out of 22 cases relative to no correction. If one considers cases in which tumor motion is 5 mm or more in the RCCT, tumor localization discrepancy is reduced with RMC-CBCT(tx) in 14 out of 17 cases (p = 0.04), and with RMC-CBCT(sim) in 13 out of 17 cases (p = 0.05). Differences in localization discrepancy between correction models [RMC-CBCT(sim) vs RMC-CBCT(tx)] were less than 2 mm. In 21 out of 22 cases, improvement in NCC was higher with RMC-CBCT(tx) relative to no correction (p < 0.0001). Differences in NCC between RMC-CBCT(sim) and RMC-CBCT(tx) were small. Motion-corrected CBCT improves lung tumor localization accuracy and reduces motion artifacts in nearly all cases. Motion correction at end expiration using RCCT acquired at simulation yields similar results to that using a RCCT on the treatment day (2-3 weeks after simulation).
Fujarewicz, Krzysztof; Lakomiec, Krzysztof
2016-12-01
We investigate a spatial model of growth of a tumor and its sensitivity to radiotherapy. It is assumed that the radiation dose may vary in time and space, like in intensity modulated radiotherapy (IMRT). The change of the final state of the tumor depends on local differences in the radiation dose and varies with the time and the place of these local changes. This leads to the concept of a tumor's spatiotemporal sensitivity to radiation, which is a function of time and space. We show how adjoint sensitivity analysis may be applied to calculate the spatiotemporal sensitivity of the finite difference scheme resulting from the partial differential equation describing the tumor growth. We demonstrate results of this approach to the tumor proliferation, invasion and response to radiotherapy (PIRT) model and we compare the accuracy and the computational effort of the method to the simple forward finite difference sensitivity analysis. Furthermore, we use the spatiotemporal sensitivity during the gradient-based optimization of the spatiotemporal radiation protocol and present results for different parameters of the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rottmann, J; Berbeco, R; Keall, P
Purpose: To maximize normal tissue sparing for treatments requiring motion encompassing margins. Motion mitigation techniques including DMLC or couch tracking can freeze tumor motion within the treatment aperture potentially allowing for smaller treatment margins and thus better sparing of normal tissue. To enable for a safe application of this concept in the clinic we propose adapting margins dynamically in real-time during radiotherapy delivery based on personalized tumor localization confidence. To demonstrate technical feasibility we present a phantom study. Methods: We utilize a realistic anthropomorphic dynamic thorax phantom with a lung tumor model embedded close to the spine. The tumor, amore » 3D-printout of a patient's GTV, is moved 15mm peak-to-peak by diaphragm compression and monitored by continuous EPID imaging in real-time. Two treatment apertures are created for each beam, one representing ITV -based and the other GTV-based margin expansion. A soft tissue localization (STiL) algorithm utilizing the continuous EPID images is employed to freeze tumor motion within the treatment aperture by means of DMLC tracking. Depending on a tracking confidence measure (TCM), the treatment aperture is adjusted between the ITV and the GTV leaf. Results: We successfully demonstrate real-time personalized margin adjustment in a phantom study. We measured a system latency of about 250 ms which we compensated by utilizing a respiratory motion prediction algorithm (ridge regression). With prediction in place we observe tracking accuracies better than 1mm. For TCM=0 (as during startup) an ITV-based treatment aperture is chosen, for TCM=1 a GTV-based aperture and for 0« less
Whole Exome Sequencing of a Patient with Metastatic Hidradenocarcinoma and Review of the Literature
Gupta, Eva; Guthrie, Kimberly J.; Krishna, Murli; Asmann, Yan; Parker, Alexander S.; Joseph, Richard W.
2015-01-01
Hidradenocarcinoma is a rare malignancy of the sweat glands with only a few cases reported in literature. The management of these tumors is based on the extent of disease with local disease managed with surgical resection. These can tumors carry a high potential of lymphatic and vascular spread and local and distant metastases are not uncommon. Given the rarity of the tumor and lack of genetic and clinical data about these tumors, there is no consensus on the proper management of metastatic disease. Here in we report the first case of metastatic hidradenocarcinoma with detailed molecular profiling including whole exome sequencing. We identified mutations in multiple genes including two that are potentially targetable: PTCH1 and TCF7L1. Further work is necessary to not only confirm the presence of these mutations but also to confirm the clinical significance. PMID:25918615
Whole exome sequencing of a patient with metastatic hidradenocarcinoma and review of the literature.
Gupta, Eva; Guthrie, Kimberly J; Krishna, Murli; Asmann, Yan; Parker, Alexander S; Joseph, Richard W
2015-02-11
Hidradenocarcinoma is a rare malignancy of the sweat glands with only a few cases reported in literature. The management of these tumors is based on the extent of disease with local disease managed with surgical resection. These can tumors carry a high potential of lymphatic and vascular spread and local and distant metastases are not uncommon. Given the rarity of the tumor and lack of genetic and clinical data about these tumors, there is no consensus on the proper management of metastatic disease. Here in we report the first case of metastatic hidradenocarcinoma with detailed molecular profiling including whole exome sequencing. We identified mutations in multiple genes including two that are potentially targetable: PTCH1 and TCF7L1. Further work is necessary to not only confirm the presence of these mutations but also to confirm the clinical significance.
Cancer treatment by photodynamic therapy combined with NK-cell-line-based adoptive immunotherapy
NASA Astrophysics Data System (ADS)
Korbelik, Mladen; Sun, Jinghai
1998-05-01
Treatment of solid cancers by photodynamic therapy (PDT) triggers a strong acute inflammatory reaction localized to the illuminated malignant tissue. This event is regulated by a massive release of various potent mediators which have a profound effect not only on local host cell populations, but also attract different types of immune cells to the treated tumor. Phagocytosis of PDT-damaged cancerous cells by antigen presenting cells, such as activated tumor associated macrophages, enables the recognition of even poorly immunogenic tumors by specific immune effector cells and the generation of immune memory populations. Because of its inflammatory/immune character, PDT is exceptionally responsive to adjuvant treatments with various types of immunotherapy. Combining PDT with immuneactivators, such as cytokines or other specific or non-specific immune agents, rendered marked improvements in tumor cures with various cancer models. Another clinically attractive strategy is adoptive immunotherapy, and the prospects of its use in conjunction with PDT are outlined.
Tumors Presenting as Multiple Cranial Nerve Palsies
Kumar, Kishore; Ahmed, Rafeeq; Bajantri, Bharat; Singh, Amandeep; Abbas, Hafsa; Dejesus, Eddy; Khan, Rana Raheel; Niazi, Masooma; Chilimuri, Sridhar
2017-01-01
Cranial nerve palsy could be one of the presenting features of underlying benign or malignant tumors of the head and neck. The tumor can involve the cranial nerves by local compression, direct infiltration or by paraneoplastic process. Cranial nerve involvement depends on the anatomical course of the cranial nerve and the site of the tumor. Patients may present with single or multiple cranial nerve palsies. Multiple cranial nerve involvement could be sequential or discrete, unilateral or bilateral, painless or painful. The presentation could be acute, subacute or recurrent. Anatomic localization is the first step in the evaluation of these patients. The lesion could be in the brain stem, meninges, base of skull, extracranial or systemic disease itself. We present 3 cases of underlying neoplasms presenting as cranial nerve palsies: a case of glomus tumor presenting as cochlear, glossopharyngeal, vagus and hypoglossal nerve palsies, clivus tumor presenting as abducens nerve palsy, and diffuse large B-cell lymphoma presenting as oculomotor, trochlear, trigeminal and abducens nerve palsies due to paraneoplastic involvement. History and physical examination, imaging, autoantibodies and biopsy if feasible are useful for the diagnosis. Management outcomes depend on the treatment of the underlying tumor. PMID:28553221
Laurence, Valérie; Pierga, Jean-Yves; Barthier, Sophie; Babinet, Antoine; Alapetite, Claire; Palangié, Thao; de Pinieux, Gonzagues; Anract, Philippe; Pouillart, Pierre
2005-06-01
Ewing tumors remain of poor prognosis, with 5-year overall survival of 55% to 65% in localized patients and not exceeding 25% in primarily metastatic disease. Several reports, mainly in children, have reported that some patients with poor-risk Ewing tumors may benefit from high-dose chemotherapy (HDCT) with autologous stem cell rescue. This retrospective study analyzed 46 patients treated in our institution between 1987 and 2000 for localized or primary metastatic Ewing tumors by HDCT followed by stem cell rescue. Median follow up was 7.1 years. Median age was 21 years (range, 15-46 years). Twenty-two percent of patients had metastases at diagnosis. The tumor site was axial in 56% of patients. Median tumor size was 9.5 cm. The treatment regimen consisted of induction chemotherapy, local treatment, maintenance chemotherapy, and consolidation HDCT based on alkylating agents. No toxic death was observed in the intensive therapy phase. Five-year overall survival and progression-free survival were 63 +/- 7.7% and 47 +/- 7.6%, respectively. Pejorative prognostic factors in this population were metastases at diagnosis (5-year overall survival 34% vs.71%, P = 0.017) and poor pathologic response (5-year overall survival 44% vs.77%, P = 0.03). This retrospective study shows a high long-term survival rate with high-dose chemotherapy in adults.
Price, Eric W; Carnazza, Kathryn E; Carlin, Sean D; Cho, Andrew; Edwards, Kimberly J; Sevak, Kuntal K; Glaser, Jonathan M; de Stanchina, Elisa; Janjigian, Yelena Y; Lewis, Jason S
2017-09-01
The hepatocyte growth factor (HGF) binding antibody rilotumumab (AMG102) was modified for use as a 89 Zr-based immuno-PET imaging agent to noninvasively determine the local levels of HGF protein in tumors. Because recent clinical trials of HGF-targeting therapies have been largely unsuccessful in several different cancers (e.g., gastric, brain, lung), we have synthesized and validated 89 Zr-DFO-AMG102 as a companion diagnostic for improved identification and selection of patients having high local levels of HGF in tumors. To date, patient selection has not been performed using the local levels of HGF protein in tumors. Methods: The chelator p -SCN-Bn-DFO was conjugated to AMG102, radiolabeling with 89 Zr was performed in high radiochemical yields and purity (>99%), and binding affinity of the modified antibody was confirmed using an enzyme-linked immunosorbent assay (ELISA)-type binding assay. PET imaging, biodistribution, autoradiography and immunohistochemistry, and ex vivo HGF ELISA experiments were performed on murine xenografts of U87MG (HGF-positive, MET-positive) and MKN45 (HGF-negative, MET-positive) and 4 patient-derived xenografts (MET-positive, HGF unknown). Results: Tumor uptake of 89 Zr-DFO-AMG102 at 120 h after injection in U87MG xenografts (HGF-positive) was high (36.8 ± 7.8 percentage injected dose per gram [%ID/g]), whereas uptake in MKN45 xenografts (HGF-negative) was 5.0 ± 1.3 %ID/g and a control of nonspecific human IgG 89 Zr-DFO-IgG in U87MG tumors was 11.5 ± 3.3 %ID/g, demonstrating selective uptake in HGF-positive tumors. Similar experiments performed in 4 different gastric cancer patient-derived xenograft models showed low uptake of 89 Zr-DFO-AMG102 (∼4-7 %ID/g), which corresponded with low HGF levels in these tumors (ex vivo ELISA). Autoradiography, immunohistochemical staining, and HGF ELISA assays confirmed that elevated levels of HGF protein were present only in U87MG tumors and that 89 Zr-DFO-AMG102 uptake was closely correlated with HGF protein levels in tumors. Conclusion: The new immuno-PET imaging agent 89 Zr-DFO-AMG102 was successfully synthesized, radiolabeled, and validated in vitro and in vivo to selectively accumulate in tumors with high local levels of HGF protein. These results suggest that 89 Zr-DFO-AMG102 would be a valuable companion diagnostic tool for the noninvasive selection of patients with elevated local concentrations of HGF in tumors for planning any HGF-targeted therapy, with the potential to improve clinical outcomes. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
NASA Astrophysics Data System (ADS)
Penjweini, Rozhin; Kim, Michele M.; Ong, Yi Hong; Zhu, Timothy C.
2017-02-01
Although photodynamic therapy (PDT) is an established modality for the treatment of cancer, current dosimetric quantities do not account for the variations in PDT oxygen consumption for different fluence rates (φ). In this study we examine the efficacy of reacted singlet oxygen concentration ([1O2]rx) to predict long-term local control rate (LCR) for Photofrin-mediated PDT. Radiation-induced fibrosarcoma (RIF) tumors in the right shoulders of female C3H mice are treated with different in-air fluences of 225-540 J/cm2 and in-air fluence rate (φair) of 50 and 75 mW/cm2 at 5 mg/kg Photofrin and a drug-light interval of 24 hours using a 1 cm diameter collimated laser beam at 630 nm wavelength. [1O2]rx is calculated by using a macroscopic model based on explicit dosimetry of Photofrin concentration, tissue optical properties, tissue oxygenation and blood flow changes during PDT. The tumor volume of each mouse is tracked for 90 days after PDT and Kaplan-Meier analyses for LCR are performed based on a tumor volume <=100 mm3, for the four dose metrics light fluence, photosensitizer photobleaching rate, PDT dose and [1O2]rx. PDT dose is defined as a temporal integral of photosensitizer concentration and Φ at a 3 mm tumor depth. φ is calculated throughout the treatment volume based on Monte-Carlo simulation and measured tissue optical properties. Our preliminary studies show that [1O2]rx is the best dosimetric quantity that can predict tumor response and correlate with LCR. Moreover, [1O2]rx calculated using the blood flow changes was in agreement with [1O2]rx calculated based on the actual tissue oxygenation.
Children’s Oncology Group’s 2013 Blueprint for Research: Rare Tumors
Rodriguez-Galindo, Carlos; Krailo, Mark; Frazier, Lindsay; Chintagumpala, Murali; Amatruda, James; Katzenstein, Howard; Malogolowkin, Marcio; Spector, Logan; Pashankar, Farzana; Meyers, Rebecka; Tomlinson, Gail
2015-01-01
In the US, approximately 2,000 children are diagnosed with rare cancers each year, with 5-year survival ranging from <20% for children with advanced carcinomas to >95% for children with intraocular retinoblastoma or localized germ cell tumors. During the last years, 12 clinical studies have been successfully completed in children with retinoblastoma, liver tumors, germ cell tumors, and infrequent malignancies, including therapeutic, epidemiologic, and biologic studies. Current efforts are centered in the development of large international collaborations to consolidate evidence-based definitions and risk stratifications that will support international Phase 3 clinical trials in germ cell tumors, hepatoblastoma, and other rare cancers. PMID:23255219
Lightner, Amy L; Shurell, Elizabeth; Dawson, Nicole; Omidvar, Yasaman; Foster, Nova
2015-03-01
Phyllodes tumors of the breast are rare fibroepithelial tumors that are characterized as benign, borderline, or malignant based on cellular characteristics such as stromal overgrowth and number of mitoses. Currently, there is a lack of consensus on risk factors and management of patients with phyllodes tumors, which has led to variation in treatment patterns as well as patient outcomes across many institutions. This study seeks to understand the clinicopathologic features, risk factors for local and metastatic recurrence, and clinical outcomes of patients with phyllodes tumors to better define optimal treatment patterns.
Shkarubo, Alexey Nikolaevich; Chernov, Ilia Valerievich; Ogurtsova, Anna Anatolievna; Moshchev, Dmitry Aleksandrovich; Lubnin, Andrew Jurievich; Andreev, Dmitry Nicolaevich; Koval, Konstantin Vladimirovich
2017-02-01
Intraoperative identification of cranial nerves is crucial for safe surgery of skull base tumors. Currently, only a small number of published papers describe the technique of trigger electromyography (t-EMG) in endoscopic endonasal removal of such tumors. To assess the effectiveness of t-EMG in preventing intraoperative cranial nerve damage in endoscopic endonasal surgery of skull base tumors. Nine patients were operated on using the endoscopic endonasal approach within a 1-year period. The tumors included large skull base chordomas and trigeminal neurinomas localized in the cavernous sinus. During the surgical process, cranial nerve identification was carried out using monopolar and bipolar t-EMG methods. Assessment of cranial nerve functional activity was conducted both before and after tumor removal. We mapped 17 nerves in 9 patients. Third, fifth, and sixth cranial nerves were identified intraoperatively. There were no cases of postoperative functional impairment of the mapped cranial nerves. In one case we were unable to get an intraoperative response from the fourth cranial nerve and observed its postoperative transient plegia (the function was normal before surgery). t-EMG allows surgeons to control the safety of cranial nerves both during and after skull base tumor removal. Copyright © 2016 Elsevier Inc. All rights reserved.
Peller, Michael; Willerding, Linus; Limmer, Simone; Hossann, Martin; Dietrich, Olaf; Ingrisch, Michael; Sroka, Ronald; Lindner, Lars H
2016-09-10
The efficacy of systemically applied, classical anti-cancer drugs is limited by insufficient selectivity to the tumor and the applicable dose is limited by side effects. Efficacy could be further improved by targeting of the drug to the tumor. Using thermosensitive liposomes (TSL) as a drug carrier, targeting is achieved by control of temperature in the target volume. In such an approach, effective local hyperthermia (40-43°C) (HT) of the tumor is considered essential but technically challenging. Thus, visualization of local heating and drug release using TSL is considered an important tool for further improvement. Visualization and feasibility of chemodosimetry by magnetic resonance imaging (MRI) has previously been demonstrated using TSL encapsulating both, contrast agent (CA) and doxorubicin (DOX) simultaneously in the same TSL. Dosimetry has been facilitated using T1-relaxation time change as a surrogate marker for DOX deposition in the tumor. To allow higher loading of the TSL and to simplify clinical development of new TSL formulations a new approach using a mixture of TSL either loaded with DOX or MRI-CA is suggested. This was successfully tested using phosphatidyldiglycerol-based TSL (DPPG2-TSL) in Brown Norway rats with syngeneic soft tissue sarcomas (BN175) implanted at both hind legs. After intravenous application of DOX-TSL and CA-TSL, heating of one tumor above 40°C for 1h using laser light resulted in highly selective DOX uptake. The DOX-concentration in the heated tumor tissue compared to the non-heated tumor showed an almost 10-fold increase. T1 and additional MRI surrogate parameters such as signal phase change were correlated to intratumoral DOX concentration. Visualization of DOX delivery in the sense of a chemodosimetry was demonstrated. Although phase-based MR-thermometry was affected by CA-TSL, phase information was found suitable for DOX concentration assessment. Local differences of DOX concentration in the tumors indicated the need for visualization of drug release for further improvement of targeting. Copyright © 2016 Elsevier B.V. All rights reserved.
Akagunduz, Ozlem Ozkaya; Savas, Recep; Yalman, Deniz; Kocacelebi, Kenan; Esassolak, Mustafa
2015-11-01
To evaluate the predictive value of adaptive threshold-based metabolic tumor volume (MTV), maximum standardized uptake value (SUVmax) and maximum lean body mass corrected SUV (SULmax) measured on pretreatment positron emission tomography and computed tomography (PET/CT) imaging in head and neck cancer patients treated with definitive radiotherapy/chemoradiotherapy. Pretreatment PET/CT of the 62 patients with locally advanced head and neck cancer who were treated consecutively between May 2010 and February 2013 were reviewed retrospectively. The maximum FDG uptake of the primary tumor was defined according to SUVmax and SULmax. Multiple threshold levels between 60% and 10% of the SUVmax and SULmax were tested with intervals of 5% to 10% in order to define the most suitable threshold value for the metabolic activity of each patient's tumor (adaptive threshold). MTV was calculated according to this value. We evaluated the relationship of mean values of MTV, SUVmax and SULmax with treatment response, local recurrence, distant metastasis and disease-related death. Receiver-operating characteristic (ROC) curve analysis was done to obtain optimal predictive cut-off values for MTV and SULmax which were found to have a predictive value. Local recurrence-free (LRFS), disease-free (DFS) and overall survival (OS) were examined according to these cut-offs. Forty six patients had complete response, 15 had partial response, and 1 had stable disease 6 weeks after the completion of treatment. Median follow-up of the entire cohort was 18 months. Of 46 complete responders 10 had local recurrence, and of 16 partial or no responders 10 had local progression. Eighteen patients died. Adaptive threshold-based MTV had significant predictive value for treatment response (p=0.011), local recurrence/progression (p=0.050), and disease-related death (p=0.024). SULmax had a predictive value for local recurrence/progression (p=0.030). ROC curves analysis revealed a cut-off value of 14.00 mL for MTV and 10.15 for SULmax. Three-year LRFS and DFS rates were significantly lower in patients with MTV ≥ 14.00 mL (p=0.026, p=0.018 respectively), and SULmax≥10.15 (p=0.017, p=0.022 respectively). SULmax did not have a significant predictive value for OS whereas MTV had (p=0.025). Adaptive threshold-based MTV and SULmax could have a role in predicting local control and survival in head and neck cancer patients. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Campbell, Kirby R.; Campagnola, Paul J.
2017-11-01
The collagen architecture in all human ovarian cancers is substantially remodeled, where these alterations are manifested in different fiber widths, fiber patterns, and fibril size and packing. Second harmonic generation (SHG) microscopy has differentiated normal tissues from high-grade serous (HGS) tumors with high accuracy; however, the classification between low-grade serous, endometrioid, and benign tumors was less successful. We postulate this is due to known higher genetic variation in these tissues relative to HGS tumors, which are genetically similar, and this results in more heterogeneous collagen remodeling in the respective matrix. Here, we examine fiber widths and SHG emission intensity and directionality locally within images (e.g., 10×10 microns) and show that normal tissues and HGS tumors are more uniform in fiber properties as well as in fibril size and packing than the other tissues. Moreover, these distributions are in good agreement with phase matching considerations relating SHG emission directionality and intensity. The findings show that in addition to average collagen assembly properties the intrinsic heterogeneity must also be considered as another aspect of characterization. These local analyses showed differences not shown in pure intensity-based image analyses and may provide further insight into disease etiology of the different tumor subtypes.
NASA Astrophysics Data System (ADS)
Sweeney, Elizabeth E.; Burga, Rachel A.; Li, Chaoyang; Zhu, Yuan; Fernandes, Rohan
2016-11-01
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive tumors with low survival rates and the leading cause of death in neurofibromatosis type 1 (NF1) patients under 40 years old. Surgical resection is the standard of care for MPNSTs, but is often incomplete and can generate loss of function, necessitating the development of novel treatment methods for this patient population. Here, we describe a novel combination therapy comprising MEK inhibition and nanoparticle-based photothermal therapy (PTT) for MPNSTs. MEK inhibitors block activity driven by Ras, an oncogene constitutively activated in NF1-associated MPNSTs, while PTT serves as a minimally invasive method to ablate cancer cells. Our rationale for combining these seemingly disparate techniques for MPNSTs is based on several reports demonstrating the efficacy of systemic chemotherapy with local PTT. We combine the MEK inhibitor, PD-0325901 (PD901), with Prussian blue nanoparticles (PBNPs) as PTT agents, to block MEK activity and simultaneously ablate MPNSTs. Our data demonstrate the synergistic effect of combining PD901 with PBNP-based PTT, which converge through the Ras pathway to generate apoptosis, necrosis, and decreased proliferation, thereby mitigating tumor growth and increasing survival of MPNST-bearing animals. Our results suggest the potential of this novel local-systemic combination “nanochemotherapy” for treating patients with MPNSTs.
Sweeney, Elizabeth E; Burga, Rachel A; Li, Chaoyang; Zhu, Yuan; Fernandes, Rohan
2016-11-11
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive tumors with low survival rates and the leading cause of death in neurofibromatosis type 1 (NF1) patients under 40 years old. Surgical resection is the standard of care for MPNSTs, but is often incomplete and can generate loss of function, necessitating the development of novel treatment methods for this patient population. Here, we describe a novel combination therapy comprising MEK inhibition and nanoparticle-based photothermal therapy (PTT) for MPNSTs. MEK inhibitors block activity driven by Ras, an oncogene constitutively activated in NF1-associated MPNSTs, while PTT serves as a minimally invasive method to ablate cancer cells. Our rationale for combining these seemingly disparate techniques for MPNSTs is based on several reports demonstrating the efficacy of systemic chemotherapy with local PTT. We combine the MEK inhibitor, PD-0325901 (PD901), with Prussian blue nanoparticles (PBNPs) as PTT agents, to block MEK activity and simultaneously ablate MPNSTs. Our data demonstrate the synergistic effect of combining PD901 with PBNP-based PTT, which converge through the Ras pathway to generate apoptosis, necrosis, and decreased proliferation, thereby mitigating tumor growth and increasing survival of MPNST-bearing animals. Our results suggest the potential of this novel local-systemic combination "nanochemotherapy" for treating patients with MPNSTs.
Choy, D; Sham, J S; Wei, W I; Ho, C M; Wu, P M
1993-02-15
To evaluate the efficacy of radioactive gold grain implant via the split palate approach in the control of locally recurrent or persistent nasopharyngeal carcinoma. Forty-three patients, 10 for persistent NPC, 28 for first relapse in the nasopharynx, and five for second relapse in the nasopharynx, were treated. The diameter of the tumors at the time of gold grain implant ranged from 0.5 to 5 cm, the number of gold grains inserted varied from 4 to 14, the median number was seven. There was no significant difference in the control of the primary tumor for persistent disease (80% at 5 years), first relapse (61% at 5 years) and second relapse (80% at 3 years), p = 0.8845. The difference in survival between the three subgroups of patients, however, was highly significant (p = 0.0040). Thirty patients had CT evaluation before gold grain implant and the tumor was found confined to the nasopharynx in 21, in the remaining nine patients erosion of the sphenoid sinus or other parts of the base of skull was noted. The difference in the control between those patients with tumors confined to the nasopharynx and those patients with extranasopharyngeal extension of tumor almost reached statistical significance (81% and 44% respectively at 5 years, p = 0.0554). For the six patients who developed local recurrence after gold grain implant and were evaluable for the pattern of failure, the recurrent tumors were considered originating from another region of the nasopharynx in four, and in-field failure in the other two cases. Radioactive gold grain implant as salvage treatment provides satisfactory control of persistent and recurrent nasopharyngeal carcinoma. The local control was better when the tumor was localized to the nasopharynx, thus underlines the importance of close follow-up for early recognition of relapse and persistent tumor. However, such patients still suffered from high incidence of regional and distant failure, the pathophysiology and management of which require further investigation.
Are 10-, 10-12-, or > 12-mm prostate biopsy core quality control cutoffs reasonable?
Sanches, Brunno C F; Lalli, Ana Luiza; Azal Neto, Wilmar; Billis, Athanase; Reis, Leonardo Oliveira
2018-07-01
To explore the role of prostate biopsy core length on prediction of index tumor clinical significance and localization on radical prostatectomy (RP) and time to recurrence, hypothesizing 10-, 10-12-, or > 12-mm minimum core as potential biopsy quality control. Assessed 2424 prostate biopsy cores and corresponding RP of 202 patients submitted to the first set of 12 cores prostate biopsy between 2010 and 2015. Analyzed biopsy core length, age, prostate volume (PV), free and total PSA ratio, PSA density, RP index tumor clinical significance, extension, localization, surgical margins, and cancer control. Prostate biopsy confronted to surgical specimens defined Gleason grade-grouping system (1-5) agreement. Median age was 63.7 years, PSA 10.1 ng/dl, PSA density 28%, and mean follow-up 5 years. Recurrence was identified in 64 (31.7%) patients and predicted by PSA > 10 at time of diagnosis (p = 0.008), seminal vesicle invasion (p = 0.0019), core tumor percentage (p = 0.033), and tumor localization predominantly in the prostate base (p = 0017). The mean core length was longer in index tumor positive cores (p = 0.043) and in tumors classified as clinically insignificant (p = 0.011), without impact on tumor localization (basal vs apical p = 0.592; left vs. right p = 0.320). Biopsy core length categories (≤ 10, 10-12 and > 12 mm) did not significantly impact Gleason grade-grouping agreement or time to recurrence (p > 0.05). Core length was not significantly different in all Gleason grade-groupings 1-5 (p = 0.312). Prostate biopsy core length impacts tumor characterization; however, 10 mm minimum core length and even 10-12- and > 12-mm categories failed as a biopsy quality control in our data.
Tracking tumor boundary in MV-EPID images without implanted markers: A feasibility study.
Zhang, Xiaoyong; Homma, Noriyasu; Ichiji, Kei; Takai, Yoshihiro; Yoshizawa, Makoto
2015-05-01
To develop a markerless tracking algorithm to track the tumor boundary in megavoltage (MV)-electronic portal imaging device (EPID) images for image-guided radiation therapy. A level set method (LSM)-based algorithm is developed to track tumor boundary in EPID image sequences. Given an EPID image sequence, an initial curve is manually specified in the first frame. Driven by a region-scalable energy fitting function, the initial curve automatically evolves toward the tumor boundary and stops on the desired boundary while the energy function reaches its minimum. For the subsequent frames, the tracking algorithm updates the initial curve by using the tracking result in the previous frame and reuses the LSM to detect the tumor boundary in the subsequent frame so that the tracking processing can be continued without user intervention. The tracking algorithm is tested on three image datasets, including a 4-D phantom EPID image sequence, four digitally deformable phantom image sequences with different noise levels, and four clinical EPID image sequences acquired in lung cancer treatment. The tracking accuracy is evaluated based on two metrics: centroid localization error (CLE) and volume overlap index (VOI) between the tracking result and the ground truth. For the 4-D phantom image sequence, the CLE is 0.23 ± 0.20 mm, and VOI is 95.6% ± 0.2%. For the digital phantom image sequences, the total CLE and VOI are 0.11 ± 0.08 mm and 96.7% ± 0.7%, respectively. In addition, for the clinical EPID image sequences, the proposed algorithm achieves 0.32 ± 0.77 mm in the CLE and 72.1% ± 5.5% in the VOI. These results demonstrate the effectiveness of the authors' proposed method both in tumor localization and boundary tracking in EPID images. In addition, compared with two existing tracking algorithms, the proposed method achieves a higher accuracy in tumor localization. In this paper, the authors presented a feasibility study of tracking tumor boundary in EPID images by using a LSM-based algorithm. Experimental results conducted on phantom and clinical EPID images demonstrated the effectiveness of the tracking algorithm for visible tumor target. Compared with previous tracking methods, the authors' algorithm has the potential to improve the tracking accuracy in radiation therapy. In addition, real-time tumor boundary information within the irradiation field will be potentially useful for further applications, such as adaptive beam delivery, dose evaluation.
Tracking tumor boundary in MV-EPID images without implanted markers: A feasibility study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaoyong, E-mail: xiaoyong@ieee.org; Homma, Noriyasu, E-mail: homma@ieee.org; Ichiji, Kei, E-mail: ichiji@yoshizawa.ecei.tohoku.ac.jp
2015-05-15
Purpose: To develop a markerless tracking algorithm to track the tumor boundary in megavoltage (MV)-electronic portal imaging device (EPID) images for image-guided radiation therapy. Methods: A level set method (LSM)-based algorithm is developed to track tumor boundary in EPID image sequences. Given an EPID image sequence, an initial curve is manually specified in the first frame. Driven by a region-scalable energy fitting function, the initial curve automatically evolves toward the tumor boundary and stops on the desired boundary while the energy function reaches its minimum. For the subsequent frames, the tracking algorithm updates the initial curve by using the trackingmore » result in the previous frame and reuses the LSM to detect the tumor boundary in the subsequent frame so that the tracking processing can be continued without user intervention. The tracking algorithm is tested on three image datasets, including a 4-D phantom EPID image sequence, four digitally deformable phantom image sequences with different noise levels, and four clinical EPID image sequences acquired in lung cancer treatment. The tracking accuracy is evaluated based on two metrics: centroid localization error (CLE) and volume overlap index (VOI) between the tracking result and the ground truth. Results: For the 4-D phantom image sequence, the CLE is 0.23 ± 0.20 mm, and VOI is 95.6% ± 0.2%. For the digital phantom image sequences, the total CLE and VOI are 0.11 ± 0.08 mm and 96.7% ± 0.7%, respectively. In addition, for the clinical EPID image sequences, the proposed algorithm achieves 0.32 ± 0.77 mm in the CLE and 72.1% ± 5.5% in the VOI. These results demonstrate the effectiveness of the authors’ proposed method both in tumor localization and boundary tracking in EPID images. In addition, compared with two existing tracking algorithms, the proposed method achieves a higher accuracy in tumor localization. Conclusions: In this paper, the authors presented a feasibility study of tracking tumor boundary in EPID images by using a LSM-based algorithm. Experimental results conducted on phantom and clinical EPID images demonstrated the effectiveness of the tracking algorithm for visible tumor target. Compared with previous tracking methods, the authors’ algorithm has the potential to improve the tracking accuracy in radiation therapy. In addition, real-time tumor boundary information within the irradiation field will be potentially useful for further applications, such as adaptive beam delivery, dose evaluation.« less
Maleke, Caroline; Luo, Jianwen; Gamarnik, Viktor; Lu, Xin L; Konofagou, Elisa E
2010-07-01
The objective of this study is to show that Harmonic Motion Imaging (HMI) can be used as a reliable tumor-mapping technique based on the tumor's distinct stiffness at the early onset of disease. HMI is a radiation-force-based imaging method that generates a localized vibration deep inside the tissue to estimate the relative tissue stiffness based on the resulting displacement amplitude. In this paper, a finite-element model (FEM) study is presented, followed by an experimental validation in tissue-mimicking polyacrylamide gels and excised human breast tumors ex vivo. This study compares the resulting tissue motion in simulations and experiments at four different gel stiffnesses and three distinct spherical inclusion diameters. The elastic moduli of the gels were separately measured using mechanical testing. Identical transducer parameters were used in both the FEM and experimental studies, i.e., a 4.5-MHz single-element focused ultrasound (FUS) and a 7.5-MHz diagnostic (pulse-echo) transducer. In the simulation, an acoustic pressure field was used as the input stimulus to generate a localized vibration inside the target. Radiofrequency (rf) signals were then simulated using a 2D convolution model. A one-dimensional cross-correlation technique was performed on the simulated and experimental rf signals to estimate the axial displacement resulting from the harmonic radiation force. In order to measure the reliability of the displacement profiles in estimating the tissue stiffness distribution, the contrast-transfer efficiency (CTE) was calculated. For tumor mapping ex vivo, a harmonic radiation force was applied using a 2D raster-scan technique. The 2D HMI images of the breast tumor ex vivo could detect a malignant tumor (20 x 10 mm2) surrounded by glandular and fat tissues. The FEM and experimental results from both gels and breast tumors ex vivo demonstrated that HMI was capable of detecting and mapping the tumor or stiff inclusion with various diameters or stiffnesses. HMI may thus constitute a promising technique in tumor detection (>3 mm in diameter) and mapping based on its distinct stiffness.
Kono, Masashi; Inoue, Tatsuo; Kudo, Masatoshi; Chishina, Hirokazu; Arizumi, Tadaaki; Takita, Masahiro; Kitai, Satoshi; Yada, Norihisa; Hagiwara, Satoru; Minami, Yasunori; Ueshima, Kazuomi; Nishida, Naoshi; Murakami, Takamichi
2014-01-01
The purpose of this study was to evaluate the risk factors for local recurrence with radiofrequency ablation (RFA) for hepatocellular carcinoma (HCC) measuring ≤2 cm. This study involved 234 patients with 274 HCCs measuring ≤2 cm who had undergone RFA as the initial treatment. The mean tumor diameter was 1.478 cm. The median follow-up period was 829 days. We evaluated the post-RFA cumulative local recurrence rate and analyzed the risk factors contributing to clinical outcomes. Cumulative local recurrence rates were 9, 19 and 19% at 1, 2 and 3 years, respectively. Among the 145 cases with a complete safety margin (SM) after RFA, only 4 developed local tumor recurrence and the cumulative rates of local tumor recurrence at 1, 2 and 3 years were 2, 3 and 3%, respectively. Among the 129 cases with incomplete SM, local tumor recurrence developed in 34 and the cumulative rates of local tumor progression at 1, 2 and 3 years were 14, 36 and 36%, respectively. In multivariate analysis, significant risk factors were tumor location (liver surface), irregular gross type and SM <5 mm. Even with HCC measuring ≤2 cm, location and gross type of tumor should be carefully evaluated before RFA is performed.
Stapf, Marcus; Teichgräber, Ulf; Hilger, Ingrid
2017-01-01
Heat-based approaches have been considered as promising tools due to their ability to directly eradicate tumor cells and/or increase the sensitivity of tumors to radiation- or chemotherapy. In particular, the heating of magnetic nanoparticles (MNPs) via an alternating magnetic field can provide a handy alternative for a localized tumor treatment. To amplify the efficacy of magnetically induced thermal treatments, we elucidated the superior tumor-destructive effect of methotrexate-coupled MNPs (MTX/MNPs) in combination with magnetic heating (nanochemothermia) over the thermal treatment alone. Our studies in a murine bladder xenograft model revealed the enormous potential of nanochemothermia for a localized and relapse-free destruction of tumors which was superior to the thermal treatment alone. Nanochemothermia remarkably fostered the reduction of tumor volume. It impaired proapoptotic signaling (eg, p-p53), cell survival (eg, p-ERK1/2), and cell cycle (cyclins) pathways. Additionally, heat shock proteins (eg, HSP70) were remarkably affected. Moreover, nanochemothermia impaired the induction of angiogenic signaling by decreasing, for example, the levels of VEGF-R1 and MMP9, although an increasing tumor hypoxia was indicated by elevated Hif-1α levels. In contrast, tumor cells were able to recover after the thermal treatments alone. In conclusion, nanochemothermia on the basis of MTX/MNPs was superior to the thermal treatment due to a modification of cellular pathways, particularly those associated with the cellular survival and tumor vasculature. This allowed very efficient and relapse-free destruction of tumors. PMID:28435259
Stapf, Marcus; Teichgräber, Ulf; Hilger, Ingrid
2017-01-01
Heat-based approaches have been considered as promising tools due to their ability to directly eradicate tumor cells and/or increase the sensitivity of tumors to radiation- or chemotherapy. In particular, the heating of magnetic nanoparticles (MNPs) via an alternating magnetic field can provide a handy alternative for a localized tumor treatment. To amplify the efficacy of magnetically induced thermal treatments, we elucidated the superior tumor-destructive effect of methotrexate-coupled MNPs (MTX/MNPs) in combination with magnetic heating (nanochemothermia) over the thermal treatment alone. Our studies in a murine bladder xenograft model revealed the enormous potential of nanochemothermia for a localized and relapse-free destruction of tumors which was superior to the thermal treatment alone. Nanochemothermia remarkably fostered the reduction of tumor volume. It impaired proapoptotic signaling (eg, p-p53), cell survival (eg, p-ERK1/2), and cell cycle (cyclins) pathways. Additionally, heat shock proteins (eg, HSP70) were remarkably affected. Moreover, nanochemothermia impaired the induction of angiogenic signaling by decreasing, for example, the levels of VEGF-R1 and MMP9, although an increasing tumor hypoxia was indicated by elevated Hif-1α levels. In contrast, tumor cells were able to recover after the thermal treatments alone. In conclusion, nanochemothermia on the basis of MTX/MNPs was superior to the thermal treatment due to a modification of cellular pathways, particularly those associated with the cellular survival and tumor vasculature. This allowed very efficient and relapse-free destruction of tumors.
Multiple template-based fluoroscopic tracking of lung tumor mass without implanted fiducial markers
NASA Astrophysics Data System (ADS)
Cui, Ying; Dy, Jennifer G.; Sharp, Gregory C.; Alexander, Brian; Jiang, Steve B.
2007-10-01
Precise lung tumor localization in real time is particularly important for some motion management techniques, such as respiratory gating or beam tracking with a dynamic multi-leaf collimator, due to the reduced clinical tumor volume (CTV) to planning target volume (PTV) margin and/or the escalated dose. There might be large uncertainties in deriving tumor position from external respiratory surrogates. While tracking implanted fiducial markers has sufficient accuracy, this procedure may not be widely accepted due to the risk of pneumothorax. Previously, we have developed a technique to generate gating signals from fluoroscopic images without implanted fiducial markers using a template matching method (Berbeco et al 2005 Phys. Med. Biol. 50 4481-90, Cui et al 2007 Phys. Med. Biol. 52 741-55). In this paper, we present an extension of this method to multiple-template matching for directly tracking the lung tumor mass in fluoroscopy video. The basic idea is as follows: (i) during the patient setup session, a pair of orthogonal fluoroscopic image sequences are taken and processed off-line to generate a set of reference templates that correspond to different breathing phases and tumor positions; (ii) during treatment delivery, fluoroscopic images are continuously acquired and processed; (iii) the similarity between each reference template and the processed incoming image is calculated; (iv) the tumor position in the incoming image is then estimated by combining the tumor centroid coordinates in reference templates with proper weights based on the measured similarities. With different handling of image processing and similarity calculation, two such multiple-template tracking techniques have been developed: one based on motion-enhanced templates and Pearson's correlation score while the other based on eigen templates and mean-squared error. The developed techniques have been tested on six sequences of fluoroscopic images from six lung cancer patients against the reference tumor positions manually determined by a radiation oncologist. The tumor centroid coordinates automatically detected using both methods agree well with the manually marked reference locations. The eigenspace tracking method performs slightly better than the motion-enhanced method, with average localization errors less than 2 pixels (1 mm) and the error at a 95% confidence level of about 2-4 pixels (1-2 mm). This work demonstrates the feasibility of direct tracking of a lung tumor mass in fluoroscopic images without implanted fiducial markers using multiple reference templates.
In situ method for estimating cell survival in a solid tumor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfieri, A.A.; Hahn, E.W.
1978-09-01
The response of the murine Meth-A fibrosarcoma to single and fractionated doses of x-irradiation, actinomycin D chemotherapy, and/or concomitant local tumor hyperthermia was assayed with the use of an in situ method for estimating cell kill within a solid tumor. The cell survival assay was based on a standard curve plotting number of inoculated viable cells with and without radiation-inactivated homologous tumor cells versus the time required for i.m. tumors to grow to 1.0 cu cm. The time for post-treatment tumors to grow to 1.0 cu cm was cross-referenced to the standard curve, and the number of surviving cells contributingmore » to tumor regrowth was estimated. The resulting surviving fraction curves closely resemble those obtained with in vitro systems.« less
Dendritic cell-based vaccines for pancreatic cancer and melanoma.
Mulé, James J
2009-09-01
Based on leads from our recent animal studies, we are embarking on a series of new clinical trials to evaluate potential improvements in dendritic cell (DC)-based vaccines for melanoma and pancreatic cancer. The first new strategy involves the use of a powerful chemokine (denoted secondary lymphoid tissue chemokine; SLC/CCL-21), which can both create functioning lymph node-like structures at sites of vaccination with tumor-loaded DCs and dramatically enhance vaccine efficacy in animal tumor models. Using this strategy, we are embarking on a clinical trial in melanoma patients with the intent to create functioning, ectopic, lymph node-like structures to enhance host antitumor immunity. The second strategy, in the setting of pancreatic cancer, involves a gene therapy and immunotherapy combination of a locally administered tumor necrosis factor-alpha gene vector followed by radiation (to induce tumor apoptosis/necrosis) and intratumorally administered monocyte-derived DCs (to uptake and present antigens from dying tumor cells to elicit potent, systemic, antitumor immunity).
Computational Model of Population Dynamics Based on the Cell Cycle and Local Interactions
NASA Astrophysics Data System (ADS)
Oprisan, Sorinel Adrian; Oprisan, Ana
2005-03-01
Our study bridges cellular (mesoscopic) level interactions and global population (macroscopic) dynamics of carcinoma. The morphological differences and transitions between well and smooth defined benign tumors and tentacular malignat tumors suggest a theoretical analysis of tumor invasion based on the development of mathematical models exhibiting bifurcations of spatial patterns in the density of tumor cells. Our computational model views the most representative and clinically relevant features of oncogenesis as a fight between two distinct sub-systems: the immune system of the host and the neoplastic system. We implemented the neoplastic sub-system using a three-stage cell cycle: active, dormant, and necrosis. The second considered sub-system consists of cytotoxic active (effector) cells — EC, with a very broad phenotype ranging from NK cells to CTL cells, macrophages, etc. Based on extensive numerical simulations, we correlated the fractal dimensions for carcinoma, which could be obtained from tumor imaging, with the malignat stage. Our computational model was able to also simulate the effects of surgical, chemotherapeutical, and radiotherapeutical treatments.
NASA Astrophysics Data System (ADS)
Isabelle, Martin; Klubben, William; He, Ting; Laughney, Ashley M.; Glaser, Adam; Krishnaswamy, Venkataramanan; Hoopes, P. Jack; Hasan, Tayyaba; Pogue, Brian W.
2011-02-01
Biophysical changes such as inflammation and necrosis occur immediately following PDT and may be used to assess the treatment response to PDT treatment in-vivo. This study uses localized reflectance measurements to quantify the scatter changes in tumor tissue occurring in response to verteporfin-based PDT treatment in xenograft pancreas tumors. Nude mice were implanted with subcutaneous AsPC-1 pancreatic tumors cells in matrigel, and allowed to establish solid tumors near 100mm3 volume. The mice were sensitized with 1mg/kg of the active component of verteporfin (benzoporphryin derivative, BPD), one hour before light delivery. The optical irradiation was performed using a 1 cm cylindrical interstitial diffusing tip fiber with 20J of red light (690nm). Tumor tissue was excised progressively and imaged, from 1 day to 4 weeks, after PDT treatment. The tissue sections were stained and analyzed by an expert veterinary pathologist, who provided information on tissue regions of interest. This information was correlated with variations in scattering and absorption parameters elucidated from the spectral images and the degree of necrosis and inflammation involvement was identified. Areas of necrosis and dead cells exhibited the lowest average scatter irradiance signature (3.78 and 4.07 respectively) compared to areas of viable pancreatic tumor cells and areas of inflammation (5.81 and 7.19 respectively). Bilirubin absorbance parameters also showed a lower absorbance value in necrotic tissue and areas of dead cells (0.05 and 0.1 respectively) compared to tissue areas for viable pancreatic tumor cells and areas of inflammation (0.28 and 0.35). These results demonstrate that localized reflectance spectroscopy is an imaging modality that can be used to identify tissue features associated with PDT treatment (e.g. necrosis and inflammation) that can be correlated with histopathologically-reviewed H&E stained slides. Further study of this technique may provide means for automated discrimination of tissue features based on scatter and absorbance maps elucidated from reflectance spectral datasets and provide a valuable tool for treatment response monitoring during PDT and enabling more effective treatment planning. These results are relevant to verteporfin-based PDT trial for treatment pancreatic cancer in non-surgical candidate cases (VERTPAC-1 University College London, PI Pereira), where individualized assessment of damage and response could be beneficial, if this study is proven to be a well-controlled imaging tool.
Fischer, H-P
2005-05-01
High dosage regional chemotherapy, chemoembolization and other methods of regional treatment are commonly used to treat unresectable primary liver malignancies and liver metastases. In liver malignancies of childhood neoadjuvant chemotherapy is successfully combined with surgical treatment. Chemotherapy and local tumor ablation lead to characteristic histomorphologic changes: Complete destruction of the tumor tissue and its vascular bed is followed by encapsulated necroses. After selective eradication of the tumor cells under preservation of the fibrovasular bed the tumor is replaced by hypocellular edematous and fibrotic tissue. If completely damaged tumor tissue is absorbed quickly, the tumor area is replaced by regenerating liver tissue. Obliterating fibrohyalinosis of tumor vessels, and perivascular edema or necrosis indicate tissue damage along the vascular bed. Degenerative pleomorphism of tumor cells, steatosis, hydropic swelling and Malloryhyalin in HCC can represent cytologic findings of cytotoxic cellular damage. Macroscopic type of HCC influences significantly the response to treatment. Multinodular HCC often contain viable tumor nodules close to destroyed nodules after treatment. Encapsulated uninodular tumors undergo complete necrosis much easier. Large size and a tumor capsule limitate the effect of percutaneous injection of ethanol into HCC. In carcinomas with an infiltrating border, especially in metastases of adenocarcinomas and hepatic cholangiocarcinoma cytostatic treatment damages the tumor tissue mainly in the periphery. Nevertheless the infiltrating rim, portal veins, lymphatic spaces and bile ducts as well as the angle between liver capsule, tumor nodule and bordering parenchyma are the main refugees of viable tumor tissue even after high dosage regional chemotherapy. This local resistance is caused by special local conditions of vascularization and perfusion. These residues are the source of local tumor progression and distant metastases. Besides intrinsic cellular mechanisms architectural, and microenvironmental factors relevantly limitate the effect of intensive locoregional therapy.
NASA Astrophysics Data System (ADS)
Yao, Hanchun; Cao, Li; Zhao, Weiwei; Zhang, Suge; Zeng, Man; Du, Bin
2017-10-01
In this study, a tumor-targeting poly( d, l-lactic-co-glycolic acid) (PLGA) loaded "off-on" fluorescent probe nanoparticle (PFN) delivery system was developed to evaluate the region of tumor by off-on fluorescence. The biodegradability of the nanosize PFN delivery system readily released the probe under tumor acidic conditions. The probe with good biocompatibility was used to monitor the intracellular glutathione (GSH) of cancer cells and selectively localize to mitochondria for tumor imaging. The incorporated tumor-targeting probe was based on the molecular photoinduced electron transfer (PET) mechanism preventing fluorescence ("off" state) and could be easily released under tumor acidic conditions. However, the released tumor-targeting fluorescence probe molecule was selective towards GSH with high selectivity and an ultra-sensitivity for the mitochondria of cancer cells and tissues significantly increasing the probe molecule fluorescence signal ("on" state). The tumor-targeting fluorescence probe showed sensitivity to GSH avoiding interference from cysteine and homocysteine. The PFNs could enable fluorescence-guided cancer imaging during cancer therapy. This work may expand the biological applications of PFNs as a diagnostic reagent, which will be beneficial for fundamental research in tumor imaging. [Figure not available: see fulltext.
Schostak, M; Miller, K; Schrader, M
2008-01-01
Radical prostatectomy for treatment of prostate cancer is a technically sophisticated operation. Simpler therapies have therefore been developed in the course of decades. The decisive advantage of a radical operation is the chance of a cure with minimal collateral damage. It is the only approach that enables precise tumor staging. The 10-year progression-free survival probability is approximately 85% for a localized tumor with negative resection margins. This high cure rate is unsurpassed by competitive treatment modalities. Nowadays, experienced surgeons achieve excellent functional results (for example, recovery of continence and erectile function) with minimum morbidity. Even in the locally advanced stage, results are very good compared to those obtained with other treatment modalities. Pathological staging enables stratified adjuvant therapy based on concrete information. The overall prognosis can thus be significantly improved.
Clinical features and outcomes in patients with extraskeletal Ewing sarcoma
Applebaum, Mark A.; Worch, Jennifer; Matthay, Katherine K.; Goldsby, Robert; Neuhaus, John; West, Daniel C.; DuBois, Steven G.
2010-01-01
Background Ewing sarcoma can arise in either bone or soft tissue locations. We sought to investigate if patient characteristics, treatment strategies, and outcomes differ between skeletal Ewing sarcoma and extraskeletal Ewing sarcoma (EES). Procedure Patients < 40 years of age with Ewing sarcoma or peripheral primitive neuroectodermal tumor (PNET) reported to the US SEER database from 1973 to 2007 were evaluated based on skeletal (n=1519) vs. extraskeletal (n=683) site of origin. Patient characteristics were compared using Fisher exact tests. Overall survival was estimated by Kaplan-Meier methods and compared using log-rank tests and Cox models. Results Patients with EES had a higher mean age (19.5 vs. 16.3 years; p < 0.001) and were less likely to be male (53.4% vs. 63.3%; p < 0.001) or white (84.8% vs. 92.5%; p < 0.001) compared to patients with skeletal tumors. Extraskeletal tumors were more likely to arise in axial locations (72.9% vs. 54.2%; p = 0.001), though less likely to arise specifically in the pelvis (19.8% vs. 26.6%; p < 0.001). Metastatic status or tumor size did not differ by group. Five-year overall survival was superior for localized EES compared to localized skeletal tumors (69.7% vs. 62.6%; p = 0.02). The hazard ratio for death in patients with localized skeletal tumors compared to localized EES was 2.36 (95% CI 1.61-3.44) beyond 24 months from initial diagnosis. Conclusions Patient characteristics and outcomes differ among patients with EES compared to patients with skeletal Ewing sarcoma. These findings may have important implications for patient care. PMID:21692057
Han, Kyung Su; Sohn, Dae Kyung; Kim, Dae Yong; Kim, Byung Chang; Hong, Chang Won; Chang, Hee Jin; Kim, Sun Young; Baek, Ji Yeon; Park, Sung Chan; Kim, Min Ju; Oh, Jae Hwan
2016-04-01
Local excision may be an another option for selected patients with markedly down-staged rectal cancer after preoperative chemoradiation therapy (CRT), and proper evaluation of post-CRT tumor stage (ypT) is essential prior to local excision of these tumors. This study was designed to determine the correlations between endoscopic findings and ypT of rectal cancer. In this study, 481 patients with locally advanced rectal cancer who underwent preoperative CRT followed by surgical resection between 2004 and 2013 at a single institution were evaluated retrospectively. Pathological good response (p-GR) was defined as ypT ≤ 1, and pathological minimal or no response (p-MR) as ypT ≥ 2. The patients were randomly classified according to two groups, a testing (n=193) and a validation (n=288) group. Endoscopic criteria were determined from endoscopic findings and ypT in the testing group and used in classifying patients in the validation group as achieving or not achieving p-GR. Based on findings in the testing group, the endoscopic criteria for p-GR included scarring, telangiectasia, and erythema, whereas criteria for p-MR included nodules, ulcers, strictures, and remnant tumors. In the validation group, the kappa statistic was 0.965 (p < 0.001), and the sensitivity, specificity, positive predictive value, and negative predictive value were 0.362, 0.963, 0.654, and 0.885, respectively. The endoscopic criteria presented are easily applicable for evaluation of ypT after preoperative CRT for rectal cancer. These criteria may be used for selection of patients for local excision of down-staged rectal tumors, because patients with p-MR could be easily ruled out.
Failure Patterns in Patients with Esophageal Cancer Treated with Definitive Chemoradiation
Welsh, James; Settle, Stephen H.; Amini, Arya; Xiao, Lianchun; Suzuki, Akihiro; Hayashi, Yuki; Hofstetter, Wayne; Komaki, Ritsuko; Liao, Zhongxing; Ajani, Jaffer A.
2012-01-01
Purpose Local failure after definitive chemoradiation therapy for unresectable esophageal cancer remains problematic. Little is known about the failure pattern based on modern day radiation treatment volumes. We hypothesized that most local failures would be within the gross tumor volume (GTV), where the bulk of the tumor burden resides. Methods and Materials We reviewed treatment volumes for 239 patients who underwent definitive chemoradiation therapy and compared this information with failure patterns on follow-up positron emission (PET). Failures were categorized as within the GTV, the larger clinical target volume (CTV, which encompasses microscopic disease), or the still larger planning target volume (PTV, which encompasses setup variability) or outside the radiation field. Results At a median follow-up time of 52.6 months (95% CI: 46.1 – 56.7 months), 119 patients (50%) had experienced local failure, 114 (48%) had distant failure, and 74 (31%) had no evidence of failure. Of all local failures, 107 (90%) were in the GTV, 27 (23%) in the CTV; and 14 (12%) in the PTV. In multivariate analysis, GTV failure was associated with tumor status (T3/T4 vs. T1/T2: OR=6.35, p value =0.002), change in standardized uptake value on PET before and after treatment (decrease >52%: OR=0.368, p value = 0.003) and tumor length (>8 cm: 4.08, p value = 0.009). Conclusions Most local failures after definitive chemoradiation for unresectable esophageal cancer occur in the GTV. Future therapeutic strategies should focus on enhancing local control. PMID:22565611
Brandi, Giovanni; Deserti, Marzia; Vasuri, Francesco; Farioli, Andrea; Degiovanni, Alessio; Palloni, Andrea; Frega, Giorgio; Barbera, Maria A; de Lorenzo, Stefania; Garajova, Ingrid; Di Marco, Mariacristina; Pinna, Antonio D; Cescon, Matteo; Cucchetti, Alessandro; Ercolani, Giorgio; D'Errico-Grigioni, Antonietta; Pantaleo, Maria A; Biasco, Guido; Tavolari, Simona
2016-05-01
The use of gemcitabine as an adjuvant modality for cholangiocarcinoma (CC) is increasing, but limited data are available on predictive biomarkers of response. Human equilibrative nucleoside transporter 1 (hENT-1) is the major transporter involved in gemcitabine intracellular uptake. This study investigated the putative predictive role of hENT-1 localization in tumor cells of CC patients undergoing treatment with adjuvant gemcitabine. Seventy-one consecutive patients with resected CC receiving adjuvant gemcitabine at our center were retrospectively analyzed by immunohistochemistry for hENT-1 localization in tumor cells. The main outcome measure was disease-free survival (DFS). Hazard ratios (HRs) of relapse and associated 95% confidence intervals (CIs) were obtained from proportional hazards regression models stratified on quintiles of propensity score. Twenty-three (32.4%) cases were negative for hENT-1, 22 (31.0%) were positive in the cytoplasm only, and 26 (36.6%) showed concomitant cytoplasm/membrane staining. Patients with membrane hENT-1 had a longer DFS (HR 0.49, 95% CI 0.24-0.99, p = .046) than those who were negative or positive only in the cytoplasm of tumor cells. Notably, the association between DFS and membrane hENT-1 was dependent on the number of gemcitabine cycles (one to two cycles: HR 0.96, 95% CI 0.34-2.68; three to four cycles: HR 0.99, 95% CI 0.34-2.90; five to six cycles: HR 0.27, 95% CI 0.10-0.77). hENT-1 localization on tumor cell membrane may predict response to adjuvant gemcitabine in CC patients receiving more than four cycles of chemotherapy. Further prospective randomized trials on larger populations are required to confirm these preliminary results, so that optimal gemcitabine-based chemotherapy may be tailored for CC patients in the adjuvant setting. Gemcitabine is becoming an increasingly used adjuvant modality in cholangiocarcinoma (CC), but limited data are available on predictive biomarkers of response. In this study, patients receiving more than four cycles of adjuvant gemcitabine and harboring Human equilibrative nucleoside transporter 1 (hENT-1, the major transporter involved in gemcitabine intracellular uptake) on tumor cell membrane had a longer disease-free survival compared with patients negative or positive for hENT-1 only in the cytoplasm of tumor cells. Overall these results may lay the basis for further prospective randomized trials based on a larger population of patients and may prove useful for tailoring appropriate gemcitabine-based chemotherapy for CC patients in the adjuvant setting. ©AlphaMed Press.
Masunaga, Shin-ichiro; Sakurai, Yoshinori; Tanaka, Hiroki; Suzuki, Minoru; Kondo, Natsuko; Narabayashi, Masaru; Tano, Keizo; Maruhashi, Akira; Ono, Koji
2013-01-01
Background To evaluate the usefulness of fractionated administration of wortmannin combined with γ-ray irradiation in terms of local tumor response and lung metastatic potential, referring to the response of intratumor quiescent (Q) cells. Methods B16-BL6 melanoma tumor-bearing C57BL/6 mice were continuously given 5-bromo-2’-deoxyuridine (BrdU) to label all proliferating (P) cells. The tumor-bearing mice then received γ-ray irradiation after wortmannin treatment through a single or 4 consecutive daily intraperitoneal administrations up to a total dose of 4 mg/kg in combination with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH). Immediately after the irradiation, cells from some tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (= P + Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumor-bearing mice, 17 days after irradiation, macroscopic lung metastases were enumerated. Results Wortmannin raised the sensitivity of Q cells more remarkably than the total cell population in both single and daily administrations. Daily administration of wortmannin elevated the sensitivity of both the total and Q cell populations, but especially the total cell population, compared with single administration. Daily administration, especially combined with MTH, decreased the number of lung metastases. Conclusion Daily fractionated administration of wortmannin in combination with γ-ray irradiation was thought to be more promising than single administration because of its potential to enhance local tumor response and repress lung metastatic potential. PMID:29147327
Diagnosing and discriminating between primary and secondary aneurysmal bone cysts
Sasaki, Hiromi; Nagano, Satoshi; Shimada, Hirofumi; Yokouchi, Masahiro; Setoguchi, Takao; Ishidou, Yasuhiro; Kunigou, Osamu; Maehara, Kosuke; Komiya, Setsuro
2017-01-01
Aneurysmal bone cysts (ABCs) are benign bony lesions frequently accompanied by multiple cystic lesions and aggressive bone destruction. They are relatively rare lesions, representing only 1% of bone tumors. The pathogenesis of ABCs has yet to be elucidated. In the present study, a series of 22 cases of primary and secondary ABC from patients treated in Department of Orthopedic Surgery, Kagoshima University Hospital (Kagoshima, Japan) from 2001–2015 were retrospectively analyzed. The average age at the time of diagnosis of primary ABC was 17.9 years. Intralesional curettage and artificial bone grafting were performed in the majority of the patients with primary ABC. The local recurrence rate following curettage for primary ABC was 18%, and the cause of local recurrence was considered to be insufficient curettage. Although no adjuvant therapy was administered during the surgeries, it may assist the prevention of local recurrence in certain cases. The cases of secondary ABC were preceded by benign bone tumors, including fibrous dysplasia, giant cell tumors, chondroblastoma and non-ossifying fibroma. The features of the secondary ABC typically reflected those of the preceding bone tumor. In the majority of cases, distinguishing the primary ABC from the secondary ABC was possible based on characteristic features, including age of the patient at diagnosis and the tumor location. In cases that exhibit ambiguous features, including a soft tissue mass or a thick septal enhancement on the preoperative magnetic resonance images, a biopsy must be obtained in order to exclude other types of aggressive bone tumors, including giant cell tumor, osteosarcoma and telangiectatic osteosarcoma. PMID:28454393
Inter-rater reliability of surgical reviews for AREN03B2: a COG renal tumor committee study.
Hamilton, Thomas E; Barnhart, Douglas; Gow, Kenneth; Ferrer, Fernando; Kandel, Jessica; Glick, Richard; Dasgupta, Roshni; Naranjo, Arlene; He, Ying; Gratias, Eric; Geller, James; Mullen, Elizabeth; Ehrlich, Peter
2014-01-01
The Children's Oncology Group (COG) renal tumor study (AREN03B2) requires real-time central review of radiology, pathology, and the surgical procedure to determine appropriate risk-based therapy. The purpose of this study was to determine the inter-rater reliability of the surgical reviews. Of the first 3200 enrolled AREN03B2 patients, a sample of 100 enriched for blood vessel involvement, spill, rupture, and lymph node involvement was selected for analysis. The surgical assessment was then performed independently by two blinded surgical reviewers and compared to the original assessment, which had been completed by another of the committee surgeons. Variables assessed included surgeon-determined local tumor stage, overall disease stage, type of renal procedure performed, presence of tumor rupture, occurrence of intraoperative tumor spill, blood vessel involvement, presence of peritoneal implants, and interpretation of residual disease. Inter-rater reliability was measured using the Fleiss' Kappa statistic two-sided hypothesis tests (Kappa, p-value). Local tumor stage correlated in all 3 reviews except in one case (Kappa=0.9775, p<0.001). Similarly, overall disease stage had excellent correlation (0.9422, p<0.001). There was strong correlation for type of renal procedure (0.8357, p<0.001), presence of tumor rupture (0.6858, p<0.001), intraoperative tumor spill (0.6493, p<0.001), and blood vessel involvement (0.6470, p<0.001). Variables that had lower correlation were determination of the presence of peritoneal implants (0.2753, p<0.001) and interpretation of residual disease status (0.5310, p<0.001). The inter-rater reliability of the surgical review is high based on the great consistency in the 3 independent review results. This analysis provides validation and establishes precedent for real-time central surgical review to determine treatment assignment in a risk-based stratagem for multimodal cancer therapy. © 2014.
Sakaguchi, Masazumi; Kan, Takatsugu; Tsubono, Michihiko; Kii, Eiji
2014-04-01
Here we report 2 cases of curative resection following preoperative chemotherapy with bevacizumab for locally advanced colon cancer. Case 1 was a 62-year-old man admitted with constipation, abdominal distention, and abdominal pain. An abdominal computed tomography(CT)scan revealed an obstructive tumor of the sigmoid colon with invasion into the bladder. A diverting colostomy was performed, and chemotherapy with mFOLFOX6(infusional 5-fluorouracil/Leucovorin+ oxaliplatin) plus bevacizumab was initiated. The tumor shrunk markedly after 6 courses of this treatment. Thereafter, laparoscopy- assisted sigmoidectomy was successfully performed. Case 2 was a 61-year-old woman admitted with diarrhea, abdominal pain, and fever. An abdominal CT scan revealed an obstructive tumor of the sigmoid colon with invasion into the ileum, uterus and retroperitoneum. A diverting colostomy was performed, and chemotherapy with XELOX(capecitabine+ oxaliplatin)plus bevacizumab was initiated. The tumor shrunk markedly after 6 courses of this treatment. Thereafter, laparoscopy- assisted sigmoidectomy was successfully performed. Both cases demonstrated partial clinical responses to chemotherapy; thus, curative resection surgeries were performed. There were no perioperative complications. Therefore, we conclude that oxaliplatin-based chemotherapy plus bevacizumab and laparoscopic resection could be very effective for locally advanced colon cancer.
Li, Ruijiang; Jia, Xun; Lewis, John H; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Jiang, Steve B
2010-06-01
To develop an algorithm for real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy. Given a set of volumetric images of a patient at N breathing phases as the training data, deformable image registration was performed between a reference phase and the other N-1 phases, resulting in N-1 deformation vector fields (DVFs). These DVFs can be represented efficiently by a few eigenvectors and coefficients obtained from principal component analysis (PCA). By varying the PCA coefficients, new DVFs can be generated, which, when applied on the reference image, lead to new volumetric images. A volumetric image can then be reconstructed from a single projection image by optimizing the PCA coefficients such that its computed projection matches the measured one. The 3D location of the tumor can be derived by applying the inverted DVF on its position in the reference image. The algorithm was implemented on graphics processing units (GPUs) to achieve real-time efficiency. The training data were generated using a realistic and dynamic mathematical phantom with ten breathing phases. The testing data were 360 cone beam projections corresponding to one gantry rotation, simulated using the same phantom with a 50% increase in breathing amplitude. The average relative image intensity error of the reconstructed volumetric images is 6.9% +/- 2.4%. The average 3D tumor localization error is 0.8 +/- 0.5 mm. On an NVIDIA Tesla C1060 GPU card, the average computation time for reconstructing a volumetric image from each projection is 0.24 s (range: 0.17 and 0.35 s). The authors have shown the feasibility of reconstructing volumetric images and localizing tumor positions in 3D in near real-time from a single x-ray image.
Fang, S; Liang, J; Qian, T; Wang, Y; Liu, X; Fan, X; Li, S; Wang, Y; Jiang, T
2017-10-01
The accuracy of preoperative blood oxygen level-dependent fMRI remains controversial. This study assessed the association between the anatomic location of a tumor and the accuracy of fMRI-based motor function mapping in diffuse lower-grade gliomas. Thirty-five patients with lower-grade gliomas involving motor areas underwent preoperative blood oxygen level-dependent fMRI scans with grasping tasks and received intraoperative direct cortical stimulation. Patients were classified into an overlapping group and a nonoverlapping group, depending on the extent to which blood oxygen level-dependent fMRI and direct cortical stimulation results concurred. Tumor location was quantitatively measured, including the shortest distance from the tumor to the hand knob and the deviation distance of the midpoint of the hand knob in the lesion hemisphere relative to the midline compared with the normal contralateral hemisphere. A 4-mm shortest distance from the tumor to the hand knob value was identified as optimal for differentiating the overlapping and nonoverlapping group with the receiver operating characteristic curve (sensitivity, 84.6%; specificity, 77.8%). The shortest distances from the tumor to the hand knob of ≤4 mm were associated with inaccurate fMRI-based localizations of the hand motor cortex. The shortest distances from the tumor to the hand knob were larger ( P = .002), and the deviation distances for the midpoint of the hand knob in the lesion hemisphere were smaller ( P = .003) in the overlapping group than in the nonoverlapping group. This study suggests that the shortest distance from the tumor to the hand knob and the deviation distance for the midpoint of the hand knob on the lesion hemisphere are predictive of the accuracy of blood oxygen level-dependent fMRI results. Smaller shortest distances from the tumor to the hand knob and larger deviation distances for the midpoint of hand knob on the lesion hemisphere are associated with less accuracy of motor cortex localization with blood oxygen level-dependent fMRI. Preoperative fMRI data for surgical planning should be used cautiously when the shortest distance from the tumor to the hand knob is ≤4 mm, especially for lower-grade gliomas anterior to the central sulcus. © 2017 by American Journal of Neuroradiology.
Jang, Jeon Yeob; Choi, Nayeon; Ko, Young-Hyeh; Chung, Man Ki; Son, Young-Ik; Baek, Chung-Hwan; Baek, Kwan-Hyuck; Jeong, Han-Sin
2017-06-01
The extent of surgical safety margin (gross tumor border to resection margin) in oral cancer surgery remains unclear, and no study has determined the differential impact of close surgical margin and microscopic extension according to primary tumor size in oral cancers. We retrospectively analyzed the clinical data of 325 patients with surgically treated oral cavity squamous cell carcinomas to determine the effect of a close surgical margin (<5 mm) (cSM 5 ) on local recurrence. In addition, the depth of microscopic tumor infiltration was determined in 90 available surgical specimens. The cSM 5 was not related to the risk of local tumor recurrence in early-stage oral cancer, while it significantly increased the rate of local tumor recurrence in resectable advanced-stage oral cancers (hazard ratio 3.157, 95 % confidence interval 1.050-9.407, p = 0.041). Addition of postoperative adjuvant radiation to early-stage tumors with cSM 5 did not further reduce the local recurrence rate compared to surgery alone. The depth of microscopic tumor extension from the gross tumor border was significantly associated with primary tumor thickness (ρ = 0.390, p < 0.001) and tumor sizes (ρ = 0.308, p = 0.003), which was a median (range) of 0.84 (0.14-2.32) mm in T1, 1.06 (0.20-4.34) mm in T2, and 1.77 (0.13-4.70) mm in T3-4. The cSM 5 was a significant risk factor for local recurrence only in advanced oral cancers, but not in early-stage tumors, where microscopic tumor extension was not beyond 3 mm in T1 tumors. Thus, the extent of surgical safety margin can be redefined according to the primary tumor size.
Global and Targeted Pathway Impact of Gliomas on White Matter Integrity Based on Lobar Localization.
Ormond, David R; D'Souza, Shawn; Thompson, John A
2017-09-07
Primary brain tumors comprise 28% of all tumors and 80% of malignant tumors. Pathophysiology of high-grade gliomas includes significant distortion of white matter architecture, necrosis, the breakdown of the blood brain barrier, and increased intracranial pressure. Diffusion tensor imaging (DTI), a diffusion weighted imaging technique, can be used to assess white matter architecture. Use of DTI as a non-invasive pathophysiological tool to analyze glioma impact on white matter microstructure has yet to be fully explored. Preliminary assessment of DTI tractography was done as a measure of intracranial tumor impact on white matter architecture. Specifically, we addressed three questions: 1) whether glioma differentially affects local white matter structure compared to metastasis, 2) whether glioma affects tract integrity of major white matter bundles, 3) whether glioma lobe localization affects tract integrity of different white matter bundles. In this study, we retrospectively investigated preoperative DTI scans from 24 patients undergoing tumor resection. Fiber tractography was estimated using a deterministic fiber tracking algorithm in DSI (diffusion spectrum imaging) Studio. The automatic anatomical labeling (AAL) atlas was used to define the left and right (L/R) hemisphere regions of interest (ROI). In addition, the John Hopkins University (JHU) White Matter Atlas was used to auto-segment major white matter bundle ROIs. For all tracts derived from ROI seed targets, we computed the following parameters: tract number, tract length, fractional anisotropy (FA), axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD). The DTI tractography analysis revealed that white matter integrity in the hemisphere ipsilateral to intracranial tumor was significantly compromised compared to the control contralateral hemisphere. No differences were observed between high vs low-grade gliomas, however, gliomas induced significantly greater white matter degradation than metastases. In addition, targeted analysis of major white matter bundles important for sensory/motor function (i.e., corticospinal tract and superior longitudinal fasciculus) revealed tract-parameter specific susceptibility due to the presence of the tumor. Finally, major tract bundles were differentially affected based on lobar localization of the glioma. These DTI-based tractographic analyses complement findings from gross histopathological examination of glioma impact on neural tissue. Global and focal white matter architecture, ipsilateral to glioma, shows higher rates of degradation or edema - based on DTI tractographic metrics - in comparison to normal brain or metastases. Gliomas, which arise in the parietal lobe, also have a higher negative impact (potentially due to increased edema) on white matter integrity of the superior longitudinal fasciculus(SLF) than those which arise in the frontal lobe. Future studies will focus on using preoperative and postoperative tractography to predict functional deficits following resective surgery.
Tumor segmentation on FDG-PET: usefulness of locally connected conditional random fields
NASA Astrophysics Data System (ADS)
Nishio, Mizuho; Kono, Atsushi K.; Koyama, Hisanobu; Nishii, Tatsuya; Sugimura, Kazuro
2015-03-01
This study aimed to develop software for tumor segmentation on 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET). To segment the tumor from the background, we used graph cut, whose segmentation energy was generally divided into two terms: the unary and pairwise terms. Locally connected conditional random fields (LCRF) was proposed for the pairwise term. In LCRF, a three-dimensional cubic window with length L was set for each voxel, and voxels within the window were considered for the pairwise term. To evaluate our method, 64 clinically suspected metastatic bone tumors were tested, which were revealed by FDG-PET. To obtain ground truth, the tumors were manually delineated via consensus of two board-certified radiologists. To compare the LCRF accuracy, other types of segmentation were also applied such as region-growing based on 35%, 40%, and 45% of the tumor maximum standardized uptake value (RG35, RG40, and RG45, respectively), SLIC superpixels (SS), and region-based active contour models (AC). To validate the tumor segmentation accuracy, a dice similarity coefficient (DSC) was calculated between manual segmentation and result of each technique. The DSC difference was tested using the Wilcoxon signed rank test. The mean DSCs of LCRF at L = 3, 5, 7, and 9 were 0.784, 0.801, 0.809, and 0.812, respectively. The mean DSCs of other techniques were RG35, 0.633; RG40, 0.675; RG45, 0.689; SS, 0.709; and AC, 0.758. The DSC differences between LCRF and other techniques were statistically significant (p <0.05). In conclusion, tumor segmentation was more reliably performed with LCRF relative to other techniques.
NASA Astrophysics Data System (ADS)
Hoopes, P. Jack; Moodie, Karen L.; Petryk, Alicia A.; Petryk, James D.; Sechrist, Shawntel; Gladstone, David J.; Steinmetz, Nicole F.; Veliz, Frank A.; Bursey, Alicea A.; Wagner, Robert J.; Rajan, Ashish; Dugat, Danielle; Crary-Burney, Margaret; Fiering, Steven N.
2017-02-01
It has recently been shown that cancer treatments such as radiation and hyperthermia, which have conventionally been viewed to have modest immune based anti-cancer effects, may, if used appropriately stimulate a significant and potentially effective local and systemic anti-cancer immune effect (abscopal effect) and improved prognosis. Using eight spontaneous canine cancers (2 oral melanoma, 3 oral amelioblastomas and 1 carcinomas), we have shown that hypofractionated radiation (6 x 6 Gy) and/or magnetic nanoparticle hyperthermia (2 X 43°C / 45 minutes) and/or an immunogenic virus-like nanoparticle (VLP, 2 x 200 μg) are capable of delivering a highly effective cancer treatment that includes an immunogenic component. Two tumors received all three therapeutic modalities, one tumor received radiation and hyperthermia, two tumors received radiation and VLP, and three tumors received only mNP hyperthermia. The treatment regimen is conducted over a 14-day period. All patients tolerated the treatments without complication and have had local and distant tumor responses that significantly exceed responses observed following conventional therapy (surgery and/or radiation). The results suggest that both hypofractionated radiation and hyperthermia have effective immune responses that are enhanced by the intratumoral VLP treatment. Molecular data from these tumors suggest Heat Shock Protein (HSP) 70/90, calreticulin and CD47 are targets that can be exploited to enhance the local and systemic (abscopal effect) immune potential of radiation and hyperthermia cancer treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jan, Nuzhat; Balik, Salim; Hugo, Geoffrey D.
Purpose: To analyze primary tumor (PT) and lymph node (LN) position changes relative to each other and relative to anatomic landmarks during conventionally fractionated radiation therapy for patients with locally advanced lung cancer. Methods and Materials: In 12 patients with locally advanced non-small cell lung cancer PT, LN, carina, and 1 thoracic vertebra were manually contoured on weekly 4-dimensional fan-beam CT scans. Systematic and random interfraction displacements of all contoured structures were identified in the 3 cardinal directions, and resulting setup margins were calculated. Time trends and the effect of volume changes on displacements were analyzed. Results: Three-dimensional displacement vectorsmore » and systematic/random interfraction displacements were smaller for carina than for vertebra both for PT and LN. For PT, mean (SD) 3-dimensional displacement vectors with carina-based alignment were 7 (4) mm versus 9 (5) mm with bony anatomy (P<.0001). For LN, smaller displacements were found with carina- (5 [3] mm, P<.0001) and vertebra-based (6 [3] mm, P=.002) alignment compared with using PT for setup (8 [5] mm). Primary tumor and LN displacements relative to bone and carina were independent (P>.05). Displacements between PT and bone (P=.04) and between PT and LN (P=.01) were significantly correlated with PT volume regression. Displacements between LN and carina were correlated with LN volume change (P=.03). Conclusions: Carina-based setup results in a more reproducible PT and LN alignment than bony anatomy setup. Considering the independence of PT and LN displacement and the impact of volume regression on displacements over time, repeated CT imaging even with PT-based alignment is recommended in locally advanced disease.« less
Zhong, Jim; Ferris, Matthew J; Switchenko, Jeffrey; Press, Robert H; Buchwald, Zachary; Olson, Jeffrey J; Eaton, Bree R; Curran, Walter J; Shu, Hui-Kuo G; Crocker, Ian R; Patel, Kirtesh R
Although historical trials have established the role of surgical resection followed by whole brain irradiation (WBRT) for brain metastases, WBRT has recently been shown to cause significant neurocognitive decline. Many practitioners have employed postoperative stereotactic radiosurgery (SRS) to tumor resection cavities to increase local control without causing significant neurocognitive sequelae. However, studies analyzing outcomes of large brain metastases treated with resection and postoperative SRS are lacking. Here we compare outcomes in patients with large brain metastases >4 cm to those with smaller metastases ≤4 cm treated with surgical resection followed by SRS to the resection cavity. Consecutive patients with brain metastases treated at our institution with surgical resection and postoperative SRS were retrospectively reviewed. Patients were stratified into ≤4 cm and >4 cm cohorts based on preoperative maximal tumor dimension. Cumulative incidence of local failure, radiation necrosis, and death were analyzed for the 2 cohorts using a competing-risk model, defined as the time from SRS treatment date to the measured event, death, or last follow-up. A total of 117 consecutive cases were identified. Of these patients, 90 (77%) had preoperative tumors ≤4 cm, and 27 (23%) >4 cm in greatest dimension. The only significant baseline difference between the 2 groups was a higher proportion of patients who underwent gross total resection in the ≤4 cm compared with the >4 cm cohort, 76% versus 48%, respectively (P <.01). The 1-year rates of local failure, radiation necrosis, and overall survival for the ≤4 cm and >4 cm cohorts were 12.3% and 16.0%, 26.9% and 28.4%, and 80.6% and 67.6%, respectively (all P >.05). The rates of local failure and radiation necrosis were not statistically different on multivariable analysis based on tumor size. Brain metastases >4 cm in largest dimension managed by resection and radiosurgery to the tumor cavity have promising local control rates without a significant increase in radiation necrosis on our retrospective review. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Can computerized tomography accurately stage childhood renal tumors?
Abdelhalim, Ahmed; Helmy, Tamer E; Harraz, Ahmed M; Abou-El-Ghar, Mohamed E; Dawaba, Mohamed E; Hafez, Ashraf T
2014-07-01
Staging of childhood renal tumors is crucial for treatment planning and outcome prediction. We sought to identify whether computerized tomography could accurately predict the local stage of childhood renal tumors. We retrospectively reviewed our database for patients diagnosed with childhood renal tumors and treated surgically between 1990 and 2013. Inability to retrieve preoperative computerized tomography, intraoperative tumor spillage and nonWilms childhood renal tumors were exclusion criteria. Local computerized tomography stage was assigned by a single experienced pediatric radiologist blinded to the pathological stage, using a consensus similar to the Children's Oncology Group Wilms tumor staging system. Tumors were stratified into up-front surgery and preoperative chemotherapy groups. The radiological stage of each tumor was compared to the pathological stage. A total of 189 tumors in 179 patients met inclusion criteria. Computerized tomography staging matched pathological staging in 68% of up-front surgery (70 of 103), 31.8% of pre-chemotherapy (21 of 66) and 48.8% of post-chemotherapy scans (42 of 86). Computerized tomography over staged 21.4%, 65.2% and 46.5% of tumors in the up-front surgery, pre-chemotherapy and post-chemotherapy scans, respectively, and under staged 10.7%, 3% and 4.7%. Computerized tomography staging was more accurate in tumors managed by up-front surgery (p <0.001) and those without extracapsular extension (p <0.001). The validity of computerized tomography staging of childhood renal tumors remains doubtful. This staging is more accurate for tumors treated with up-front surgery and those without extracapsular extension. Preoperative computerized tomography can help to exclude capsular breach. Treatment strategy should be based on surgical and pathological staging to avoid the hazards of inaccurate staging. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffith, K.D.; Read, E.J.; Carrasquillo, J.A.
Patients with metastatic melanoma undergoing therapy with cyclophosphamide (CPM), tumor-infiltrating lymphocytes (TIL), and interleukin-2 (IL-2) were studied for the ability of their 111In-labeled TIL or peripheral blood lymphocytes (PBL) to localize in sites of tumor using gamma camera imaging and biopsies. Nineteen infusions of radiolabeled TIL were given to 18 patients, while five patients received radiolabeled autologous PBL during TIL therapy. Clear tumor localization was seen on 13 of 18 nuclear scan series performed on 111In-TIL recipients, while tumor was imaged in only one of four scan sequences on patients given 111In-PBL. Nineteen paired biopsies of tumor and normal skinmore » were completed on 10 patients receiving 111In-TIL, while eight biopsies were done on three PBL patients receiving 111In-PBL. The mean percentage of total injectate activity localizing per gram of tumor tissue was 0.0049% in the TIL group and 0.0010% in the PBL group (P2 = .0004). The mean of the tumor to normal skin ratios of the 111In-TIL group was three times that for 111In-PBL (P2 = .0072). One patient was studied by nuclear scanning on three consecutive treatment courses of CPM, TIL, and IL-2. He initially demonstrated clear tumor localization by 111In-TIL at several sites, then faint localization with 111In-PBL at a single site, and subsequently positive tumor imaging on repeat 111In-TIL infusion at multiple sites. These results confirm and expand our initial data demonstrating that human TIL transferred with CPM pretreatment and followed by IL-2 preferentially localize to tumor sites and indicate that this localization is greater for TIL than PBL.« less
Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted therapies.
Mangraviti, Antonella; Gullotti, David; Tyler, Betty; Brem, Henry
2016-10-28
Despite recent technological advancements and promising preclinical experiments, brain tumor patients are still met with limited treatment options. Some of the barriers to clinical improvements include the systemic toxicity of cytotoxic compounds, the impedance of the blood brain barrier (BBB), and the lack of therapeutic agents that can selectively target the intracranial tumor environment. To overcome such barriers, a number of chemotherapeutic agents and nucleic acid-based therapies are rapidly being synthesized and tested as new brain tumor-targeted delivery strategies. Novel carriers include liposomal and polymeric nanoparticles, wafers, microchips, microparticle-based nanoplatforms and cells-based vectors. Strong preclinical results suggest that these nanotechnologies are set to transform the therapeutic paradigm for brain tumor treatment. In addition to new tumoricidal agents, parallel work is also being conducted on the BBB front. Preclinical testing of chemical and physical modulation strategies is yielding improved intracranial concentrations. New diagnostic and therapeutic imaging techniques, such as high-intensity focused ultrasound and MRI-guided focused ultrasound, are being used to modulate the BBB in a more precise and non-invasive manner. This review details some of the tremendous advances that are being explored in current brain tumor targeted therapies, including local implant development, nanobiotechnology-based delivery strategies, and techniques of BBB manipulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Munro, Malcolm G
2016-01-01
To demonstrate a technique designed to expand the capabilities of hysteroscopic intrauterine morcellators to deep type 1 and type 2 lesions. The technique comprises "release" of the tumor using a bipolar radiofrequency needle, followed by dissection and extraction with an electromechanical morcellator, all under local anesthesia. Description of technique using images and video (Canadian Task Force classification Class III). Office uterine procedure and imaging center; academic medical center. Following the administration of local anesthesia and access to the endometrial cavity with a 5.5-mm-o.d. hysteroscopic sheath with a 5 Fr operative channel, a 5 Fr bipolar needle electrode system is used to circumscribe the leiomyoma and enter the pseudocapsule, thereby "releasing" the lesion. Blunt dissection is performed as appropriate and then the system is switched to a hysteroscopic morcellating system (MyoSure; Hologic, Bedford, MA), which is then used to further dissect and remove the target lesion with electromechanical morcellation. The development of intrauterine morcellators has facilitated the performance of hysteroscopic myomectomy, especially under local anesthesia, but the side aperture-based design of the systems limits their use in International Federation of Gynecology and Obstetrics (FIGO) type 1 and 2 tumors, particularly those located at the uterine fundus. This technique, based in part on a previously published technique of leiomyoma release, improves access of the electromechanical morcellator to leiomyomas that previously were inaccessible, and minimizes myometrial trauma by dissecting the tumor via the relatively avascular pseudocapsule. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.
Zhou, Zhi-Rui; Wang, Chen-Chen; Sun, Xiang-Jie; Yang, Zhao-Zhi; Chen, Xing-Xing; Shao, Zhi-Ming; Yu, Xiao-Li; Guo, Xiao-Mao
2018-04-01
The aim of this study was to explore the independent prognostic factors related to postoperative recurrence-free survival (RFS) in patients with breast phyllodes tumors (PTBs). A retrospective analysis was conducted in Fudan University Shanghai Cancer Center. According to histological type, patients with benign PTBs were classified as a low-risk group, while borderline and malignant PTBs were classified as a high-risk group. The Cox regression model was adopted to identify factors affecting postoperative RFS in the two groups, and a nomogram was generated to predict recurrence-free survival at 1, 3, and 5 years. Among the 404 patients, 168 (41.6%) patients had benign PTB, 184 (45.5%) had borderline PTB, and 52 (12.9%) had malignant PTB. Fifty-five patients experienced postoperative local recurrence, including six benign cases, 26 borderline cases, and 22 malignant cases; the three histological types of PTB had local recurrence rates of 3.6%, 14.1%, and 42.3%, respectively. Stromal cell atypia was an independent prognostic factor for RFS in the low-risk group, while the surgical approach and tumor border were independent prognostic factors for RFS in the high-risk group, and patients receiving simple excision with an infiltrative tumor border had a higher recurrence rate. A nomogram developed based on clinicopathologic features and surgical approaches could predict recurrence-free survival at 1, 3, and 5 years. For high-risk patients, this predictive nomogram based on tumor border, tumor residue, mitotic activity, degree of stromal cell hyperplasia, and atypia can be applied for patient counseling and clinical management. The efficacy of adjuvant radiotherapy remains uncertain. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Marks, Fay A.; Tomlinson, Harold W.; Brooksby, Glen W.
1993-09-01
A new technique called Ultrasound Tagging of Light (UTL) for imaging breast tissue is described. In this approach, photon localization in turbid tissue is achieved by cross- modulating a laser beam with focussed, pulsed ultrasound. Light which passes through the ultrasound focal spot is `tagged' with the frequency of the ultrasound pulse. The experimental system uses an Argon-Ion laser, a single PIN photodetector, and a 1 MHz fixed-focus pulsed ultrasound transducer. The utility of UTL as a photon localization technique in scattering media is examined using tissue phantoms consisting of gelatin and intralipid. In a separate study, in vivo optical reflectance spectrophotometry was performed on human breast tumors implanted intramuscularly and subcutaneously in nineteen nude mice. The validity of applying a quadruple wavelength breast cancer discrimination metric (developed using breast biopsy specimens) to the in vivo condition was tested. A scatter diagram for the in vivo model tumors based on this metric is presented using as the `normal' controls the hands and fingers of volunteers. Tumors at different growth stages were studied; these tumors ranged in size from a few millimeters to two centimeters. It is expected that when coupled with a suitable photon localization technique like UTL, spectral discrimination methods like this one will prove useful in the detection of breast cancer by non-ionizing means.
Clinical Study of Orthogonal-View Phase-Matched Digital Tomosynthesis for Lung Tumor Localization.
Zhang, You; Ren, Lei; Vergalasova, Irina; Yin, Fang-Fang
2017-01-01
Compared to cone-beam computed tomography, digital tomosynthesis imaging has the benefits of shorter scanning time, less imaging dose, and better mechanical clearance for tumor localization in radiation therapy. However, for lung tumors, the localization accuracy of the conventional digital tomosynthesis technique is affected by the lack of depth information and the existence of lung tumor motion. This study investigates the clinical feasibility of using an orthogonal-view phase-matched digital tomosynthesis technique to improve the accuracy of lung tumor localization. The proposed orthogonal-view phase-matched digital tomosynthesis technique benefits from 2 major features: (1) it acquires orthogonal-view projections to improve the depth information in reconstructed digital tomosynthesis images and (2) it applies respiratory phase-matching to incorporate patient motion information into the synthesized reference digital tomosynthesis sets, which helps to improve the localization accuracy of moving lung tumors. A retrospective study enrolling 14 patients was performed to evaluate the accuracy of the orthogonal-view phase-matched digital tomosynthesis technique. Phantom studies were also performed using an anthropomorphic phantom to investigate the feasibility of using intratreatment aggregated kV and beams' eye view cine MV projections for orthogonal-view phase-matched digital tomosynthesis imaging. The localization accuracy of the orthogonal-view phase-matched digital tomosynthesis technique was compared to that of the single-view digital tomosynthesis techniques and the digital tomosynthesis techniques without phase-matching. The orthogonal-view phase-matched digital tomosynthesis technique outperforms the other digital tomosynthesis techniques in tumor localization accuracy for both the patient study and the phantom study. For the patient study, the orthogonal-view phase-matched digital tomosynthesis technique localizes the tumor to an average (± standard deviation) error of 1.8 (0.7) mm for a 30° total scan angle. For the phantom study using aggregated kV-MV projections, the orthogonal-view phase-matched digital tomosynthesis localizes the tumor to an average error within 1 mm for varying magnitudes of scan angles. The pilot clinical study shows that the orthogonal-view phase-matched digital tomosynthesis technique enables fast and accurate localization of moving lung tumors.
NASA Astrophysics Data System (ADS)
Ibsen, Stuart Duncan
One of the major challenges of modern chemotherapy is to deliver a therapeutic dose of active drug to the tumor tissue without causing systemic exposure. The realization of this goal could considerably reduce the negative side effects experienced by patients. The work conducted in this thesis looks at two different approaches to trigger drug activation with the use of external energy sources. This avoids the challenges of relying solely on biochemical and environmental differences as triggers. The two triggers used were low intensity focused ultrasound and 365 nm light delivered with a custom designed needle UV LED fiber optic system. Both can be localized within the body to spatially highlight just the tumor tissue creating a stark differentiation between it and the healthy tissue. The 365nm light based delivery scheme developed here was the first demonstration of a photoactivatable doxorubicin (DOX) prodrug called DOX-PCB. DOX-PCB was shown to be 200 times less toxic than DOX and could be activated to a fully therapeutic form upon exposure to 365nm light. The pharmacokinetics showed a circulation half life comparable to that of DOX and stability against in vivo metabolic degradation. The 365 nm light was shown to adequately irradiate a centimeter of tumor tissue and cause localized activation. In vivo tumors exposed to the light had significantly higher doses of DOX than unexposed control tumors in the same individual. The second delivery scheme made use of focused ultrasound to activate echogenic drug delivery vehicles. These vehicles were the first demonstration of encapsulating microbubbles within liposomes. Specially designed optical equipment documented that the microbubble was ultrasound responsive. The microbubble was shown to violently cavitate and rupture the outer liposome membrane releasing the payload contents. The three dimensional localization of activation was demonstrated in tissue phantoms. The strengths of these two delivery schemes could complement each other when used together. The delivery vehicle could achieve high doses of DOX-PCB within the tumor while the low toxicity prevents harm to the liver and spleen. The 365 nm light could then activate just the DOX-PCB found within the tumor itself causing localized cell death.
Xu, Leyuan; Yeudall, W Andrew; Yang, Hu
2017-07-15
The utility of folic acid (FA)-decorated polyamidoamine dendrimer G4 (G4-FA) as a vector was investigated for local delivery of siRNA. In a xenograft HN12 (or HN12-YFP) tumor mouse model of head and neck squamous cell carcinomas (HNSCC), intratumorally (i.t.) injected G4-FA exhibited high tumor uptake and sustained highly localized retention in the tumors according to near infrared (NIR) imaging assessment. siRNA against vascular endothelial growth factor A (siVEGFA) was chosen as a therapeutic modality. Compared to the nontherapeutic treatment groups (PBS solution or dendrimer complexed with nontherapeutic siRNA against green fluorescent protein (siGFP)), G4-FA/siVEGFA showed tumor inhibition effects in single-dose and two-dose regimen studies. In particular, two doses of G4-FA/siVEGFA i.t. administered eight days apart resulted in a more profound inhibition of tumor growth, accompanied with significant reduction in angiogenesis, as judged by CD31 staining and microvessel counts. Tumor size reduction in the two-dose regimen study was ascertained semi-quantitatively by live fluorescence imaging of YFP tumors and independently supported antitumor effects of G4-FA/siVEGFA. Taken together, G4-FA shows high tumor uptake and sustained retention properties, making it a suitable platform for local delivery of siRNAs to treat cancers that are readily accessible such as HNSCC. Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and is difficult to transfect for gene therapy. We developed folate receptor (FR)-targeted polyamidoamine (PAMAM) dendrimer for enhanced delivery of genes to HNSCC and gained in-depth understanding of how gene delivery and transfection in head and neck squamous cancer cells can be enhanced via FR-targeted PAMAM dendrimers. The results we report here are encouraging and present latest advances in using dendrimers for cancer therapies, in particular for HNSCC. Our work has demonstrated that localized delivery of FR-targeted PAMAM dendrimer G4 complexed with siVEGFA resulted in pronounced tumor suppression in an HN12 xenograft tumor model. Tumor suppression was attributed to enhanced tumor uptake of siRNA and prolonged nanoparticle retention in the tumor. Taken together, G4-FA shows high tumor uptake and sustained highly localized retention properties, making it a suitable platform for local delivery of siRNAs to treat cancers that are readily accessible such as HNSCC. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Texaphyrins: Tumor Localizing Redox Active Expanded Porphyrins
Arambula, Jonathan F.; Preihs, Christian; Borthwick, Derric; Magda, Darren; Sessler, Jonathan L.
2011-01-01
Texaphyrins, a class of tumor selective expanded porphyrins capable of coordinating large metals, have been found to act as redox mediators within biological systems. This review summarizes studies involving their experimentaluse in cancer chemotherapy. Mechanistic insights involving their presumed mode of action are also described, as well as certain structure activity relationships. Finally, newer texaphyrin-based applications associated with targeted drug delivery are presented. PMID:21355841
LDR vs. HDR brachytherapy for localized prostate cancer: the view from radiobiological models.
King, Christopher R
2002-01-01
Permanent LDR brachytherapy and temporary HDR brachytherapy are competitive techniques for clinically localized prostate radiotherapy. Although a randomized trial will likely never be conducted comparing these two forms of brachytherapy, a comparative radiobiological modeling analysis proves useful in understanding some of their intrinsic differences, several of which could be exploited to improve outcomes. Radiobiological models based upon the linear quadratic equations are presented for fractionated external beam, fractionated (192)Ir HDR brachytherapy, and (125)I and (103)Pd LDR brachytherapy. These models incorporate the dose heterogeneities present in brachytherapy based upon patient-derived dose volume histograms (DVH) as well as tumor doubling times and repair kinetics. Radiobiological parameters are normalized to correspond to three accepted clinical risk factors based upon T-stage, PSA, and Gleason score to compare models with clinical series. Tumor control probabilities (TCP) for LDR and HDR brachytherapy (as monotherapy or combined with external beam) are compared with clinical bNED survival rates. Predictions are made for dose escalation with HDR brachytherapy regimens. Model predictions for dose escalation with external beam agree with clinical data and validate the models and their underlying assumptions. Both LDR and HDR brachytherapy achieve superior tumor control when compared with external beam at conventional doses (<70 Gy), but similar to results from dose escalation series. LDR brachytherapy as boost achieves superior tumor control than when used as monotherapy. Stage for stage, both LDR and current HDR regimens achieve similar tumor control rates, in agreement with current clinical data. HDR monotherapy with large-dose fraction sizes might achieve superior tumor control compared with LDR, especially if prostate cancer possesses a high sensitivity to dose fractionation (i.e., if the alpha/beta ratio is low). Radiobiological models support the current clinical evidence for equivalent outcomes in localized prostate cancer with either LDR or HDR brachytherapy using current dose regimens. However, HDR brachytherapy dose escalation regimens might be able to achieve higher biologically effective doses of irradiation in comparison to LDR, and hence improved outcomes. This advantage over LDR would be amplified should prostate cancer possess a high sensitivity to dose fractionation (i.e., a low alpha/beta ratio) as the current evidence suggests.
3-D in vivo brain tumor geometry study by scaling analysis
NASA Astrophysics Data System (ADS)
Torres Hoyos, F.; Martín-Landrove, M.
2012-02-01
A new method, based on scaling analysis, is used to calculate fractal dimension and local roughness exponents to characterize in vivo 3-D tumor growth in the brain. Image acquisition was made according to the standard protocol used for brain radiotherapy and radiosurgery, i.e., axial, coronal and sagittal magnetic resonance T1-weighted images, and comprising the brain volume for image registration. Image segmentation was performed by the application of the k-means procedure upon contrasted images. We analyzed glioblastomas, astrocytomas, metastases and benign brain tumors. The results show significant variations of the parameters depending on the tumor stage and histological origin.
CREATE: Cross-tumoral Phase 2 With Crizotinib
2018-01-18
Locally Advanced and/or Metastatic Anaplastic Large Cell Lymphoma; Locally Advanced and/or Metastatic Inflammatory Myofibroblastic Tumor; Locally Advanced and/or Metastatic Papillary Renal Cell Carcinoma Type 1; Locally Advanced and/or Metastatic Alveolar Soft Part Sarcoma; Locally Advanced and/or Metastatic Clear Cell Sarcoma; Locally Advanced and/or Metastatic Alveolar Rhabdomyosarcoma
Li, Shuying; Wang, Yunyan; Hu, Likuan; Liang, Yingchun; Cai, Jing
2014-11-01
The large errors of routine localization for eyeball tumors restricted X-ray radiosurgery application, just for the eyeball to turn around. To localize the accuracy site, the micro-vacuo-certo-contacting ophthalmophanto (MVCCOP) method was used. Also, the outcome of patients with tumors in the eyeball was evaluated. In this study, computed tomography (CT) localization accuracy was measured by repeating CT scan using MVCCOP to fix the eyeball in radiosurgery. This study evaluated the outcome of the tumors and the survival of the patients by follow-up. The results indicated that the accuracy of CT localization of Brown-Roberts-Wells (BRW) head ring was 0.65 mm and maximum error was 1.09 mm. The accuracy of target localization of tumors in the eyeball using MVCCOP was 0.87 mm averagely, and the maximum error was 1.19 mm. The errors of fixation of the eyeball were 0.84 mm averagely and 1.17 mm maximally. The total accuracy was 1.34 mm, and 95% confidence accuracy was 2.09 mm. The clinical application of this method in 14 tumor patients showed satisfactory results, and all of the tumors showed the clear rims. The site of ten retinoblastomas was decreased significantly. The local control interval of tumors were 6 ∼ 24 months, median of 10.5 months. The survival of ten patients was 7 ∼ 30 months, median of 16.5 months. Also, the tumors were kept stable or shrank in the other four patients with angioma and melanoma. In conclusion, the MVCCOP is suitable and dependable for X-ray radiosurgery for eyeball tumors. The tumor control and survival of patients are satisfactory, and this method can effectively postpone or avoid extirpation of eyeball.
Dolati, Parviz; Eichberg, Daniel; Golby, Alexandra; Zamani, Amir; Laws, Edward
2016-11-01
Transsphenoidal surgery (TSS) is the most common approach for the treatment of pituitary tumors. However, misdirection, vascular damage, intraoperative cerebrospinal fluid leakage, and optic nerve injuries are all well-known complications, and the risk of adverse events is more likely in less-experienced hands. This prospective study was conducted to validate the accuracy of image-based segmentation coupled with neuronavigation in localizing neurovascular structures during TSS. Twenty-five patients with a pituitary tumor underwent preoperative 3-T magnetic resonance imaging (MRI), and MRI images loaded into the navigation platform were used for segmentation and preoperative planning. After patient registration and subsequent surgical exposure, each segmented neural or vascular element was validated by manual placement of the navigation probe or Doppler probe on or as close as possible to the target. Preoperative segmentation of the internal carotid artery and cavernous sinus matched with the intraoperative endoscopic and micro-Doppler findings in all cases. Excellent correspondence between image-based segmentation and the endoscopic view was also evident at the surface of the tumor and at the tumor-normal gland interfaces. Image guidance assisted the surgeons in localizing the optic nerve and chiasm in 64% of cases. The mean accuracy of the measurements was 1.20 ± 0.21 mm. Image-based preoperative vascular and neural element segmentation, especially with 3-dimensional reconstruction, is highly informative preoperatively and potentially could assist less-experienced neurosurgeons in preventing vascular and neural injury during TSS. In addition, the accuracy found in this study is comparable to previously reported neuronavigation measurements. This preliminary study is encouraging for future prospective intraoperative validation with larger numbers of patients. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopelson, G.; Linggood, R.M.; Kleinman, G.M.
1983-01-15
For 43 medulloblatoma patients who had five-and ten-year actuarial survival rates of 56%, prognostic factors of statistical significance included: T-stage, M-stage and histopathologic tumor score. Posterior fossa local control rates were also function of T-stage and TS. Combining TS with T-stage, patients fell into three prognostic and local control groups, which may have different future management implications: Small (T1,2) tumors of favorable (TS less than or equal to 5) histology had a 92% ten-year actuarial survival rate with 100% (8/8) local control; no change from current management is suggested. For the intermediate prognosis group, increasing the irradiation dose alone maymore » improve survival because these tumors exhibited an irradiation dose-response relationship. However, it is the poor prognosis group which might be suitable for future adjuvant chemotherapy or radiosensitizer trials since there is no evidence that higher irradiation doses improve local control. This article identifies prognostic subgroups based on histologic type and TM staging in medulloblastoma patients which potentially may be utilized to improve therapeutic results, and confirms the value of staging patients with central nervous system malignancies.« less
Yamazaki, T; Pitt, J M; Vétizou, M; Marabelle, A; Flores, C; Rekdal, Ø; Kroemer, G; Zitvogel, L
2016-01-01
Intratumoral immunotherapies aim at reducing local immunosuppression, as well as reinstating and enhancing systemic anticancer T-cell functions, without inducing side effects. LTX-315 is a first-in-class oncolytic peptide-based local immunotherapy that meets these criteria by inducing a type of malignant cell death that elicits anticancer immune responses. Here, we show that LTX-315 rapidly reprograms the tumor microenvironment by decreasing the local abundance of immunosuppressive Tregs and myeloid-derived suppressor cells and by increasing the frequency of polyfunctional T helper type 1/type 1 cytotoxic T cells with a concomitant increase in cytotoxic T-lymphocyte antigen-4 (CTLA4) and drop in PD-1 expression levels. Logically, in tumors that were resistant to intratumoral or systemic CTLA4 blockade, subsequent local inoculation of LTX-315 cured the animals or caused tumor regressions with abscopal effects. This synergistic interaction between CTLA4 blockade and LTX-315 was reduced upon blockade of the β-chain of the interleukin-2 receptor (CD122). This preclinical study provides a strong rationale for administering the oncolytic peptide LTX-315 to patients who are receiving treatment with the CTLA4 blocking antibody ipilimumab. PMID:27082453
Strati, Titika-Marina; Kotoula, Vassiliki; Kostopoulos, Ioannis; Manousou, Kyriaki; Papadimitriou, Christos; Lazaridis, Georgios; Lakis, Sotiris; Pentheroudakis, George; Pectasides, Dimitrios; Pazarli, Elissavet; Christodoulou, Christos; Razis, Evangelia; Pavlakis, Kitty; Magkou, Christina; Chrisafi, Sofia; Aravantinos, Gerasimos; Bafaloukos, Dimitrios; Papakostas, Pavlos; Gogas, Helen; Kalogeras, Konstantine T; Fountzilas, George
2017-05-01
The Notch pathway has been implicated in triple-negative breast cancer (TNBC). Herein, we studied the subcellular localization of the less investigated Notch2 and Notch3 and that of the Jagged1 (Jag1) ligand in patients with operable TNBC. We applied immunohistochemistry for Notch2, Notch3 and Jag1 in 333 tumors from TNBC patients treated with adjuvant anthracycline-based chemotherapy. We evaluated cytoplasmic (c), membranous (m) and nuclear (n) protein localization. c-Notch2 (35% positive tumors), c-Notch3 (63%), c-Jag1 (43%), m-Notch3 (23%) and n-Jag1 (17%) were analyzed individually and by using hierarchical clustering for prognostic evaluation. Upon multivariate analysis, compared to high m-Notch3 in the absence of n-Jag1 (cluster 4), all other marker combinations (clusters 1, 2, 3) conferred significantly higher risk for relapse (p<0.05). Specific Notch3 and Jag1 subcellular localization patterns may provide clues for the behavior of the tumors and potentially for Jag1 targeting in TNBC patients. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
NASA Astrophysics Data System (ADS)
Kobayashi, Hisataka
2017-02-01
Near infrared photoimmunotherapy (NIR-PIT) is a new type of molecularly-targeted photo-therapy based on conjugating a near infrared silica-phthalocyanine dye, IR700, to a monoclonal antibody (MAb) targeting target-specific cell-surface molecules. When exposed to NIR light, the conjugate rapidly induces a highly-selective cell death only in receptor-positive, MAb-IR700-bound cells. Current immunotherapies for cancer seek to modulate the balance among different immune cell populations, thereby promoting anti-tumor immune responses. However, because these are systemic therapies, they often cause treatment-limiting autoimmune adverse effects. It would be ideal to manipulate the balance between suppressor and effector cells within the tumor without disturbing homeostasis elsewhere in the body. CD4+CD25+Foxp3+ regulatory T cells (Tregs) are well-known immune-suppressor cells that play a key role in tumor immuno-evasion and have been the target of systemic immunotherapies. We used CD25-targeted NIR-PIT to selectively deplete Tregs, thus activating CD8+ T and NK cells and restoring local anti-tumor immunity. This not only resulted in regression of the treated tumor but also induced responses in separate untreated tumors of the same cell-line derivation. We conclude that CD25-targeted NIR-PIT causes spatially selective depletion of Tregs, thereby providing an alternative approach to cancer immunotherapy that can treat not only local tumors but also distant metastatic tumors.
Aoun, Fouad; Peltier, Alexandre; van Velthoven, Roland
2014-01-01
To provide an overview of the currently available literature regarding local control of primary tumor and oligometastases in metastatic prostate cancer and salvage lymph node dissection of clinical lymph node relapse after curative treatment of prostate cancer. Evidence Acquisition. A systematic literature search was conducted in 2014 to identify abstracts, original articles, review articles, research articles, and editorials relevant to the local control in metastatic prostate cancer. Evidence Synthesis. Local control of primary tumor in metastatic prostate cancer remains experimental with low level of evidence. The concept is supported by a growing body of genetic and molecular research as well as analogy with other cancers. There is only one retrospective observational population based study showing prolonged survival. To eradicate oligometastases, several options exist with excellent local control rates. Stereotactic body radiotherapy is safe, well tolerated, and efficacious treatment for lymph node and bone lesions. Both biochemical and clinical progression are slowed down with a median time to initiate ADT of 2 years. Salvage lymph node dissection is feasible in patients with clinical lymph node relapse after local curable treatment. Conclusion. Despite encouraging oncologic midterm results, a complete cure remains elusive in metastatic prostate cancer patients. Further advances in imaging are crucial in order to rapidly evolve beyond the proof of concept. PMID:25485280
AlMasri, Omar A; Brown, Emma E; Forster, Alan; Kamel, Mahmoud H
2014-11-01
The aim in this paper was to localize and detect incipient damage to the ophthalmic and maxillary branches of the trigeminal nerve during tumor surgery. This was an observational study of patients with skull base, retroorbital, or cavernous sinus tumors warranting dissection toward the cavernous sinus at a university hospital. Stimuli were applied as normal during approach to the cavernous sinus to localize cranial nerves (CNs) III, IV, and VI. Recordings were also obtained from the facial muscles to localize CN VII. The trigeminofacial reflex was sought simply by observing a longer time base routinely. Clear facial electromyography responses were reproduced when stimuli were applied to the region of V1, V2, and V3. Response latency was increased compared with direct CN VII stimuli seen in some cases. Responses gave early warning of approach to these sensory trigeminal branches. The authors submit this as a new technique, which may improve the chances of preserving trigeminal sensory branches during surgery in this region.
Li, Baopu; Meng, Max Q-H
2012-05-01
Tumor in digestive tract is a common disease and wireless capsule endoscopy (WCE) is a relatively new technology to examine diseases for digestive tract especially for small intestine. This paper addresses the problem of automatic recognition of tumor for WCE images. Candidate color texture feature that integrates uniform local binary pattern and wavelet is proposed to characterize WCE images. The proposed features are invariant to illumination change and describe multiresolution characteristics of WCE images. Two feature selection approaches based on support vector machine, sequential forward floating selection and recursive feature elimination, are further employed to refine the proposed features for improving the detection accuracy. Extensive experiments validate that the proposed computer-aided diagnosis system achieves a promising tumor recognition accuracy of 92.4% in WCE images on our collected data.
NASA Astrophysics Data System (ADS)
Gräfe, James L.
2017-09-01
Proton therapy is an alternative external beam cancer treatment modality to the conventional linear accelerator-based X-ray radiotherapy. An inherent by-product of proton-nuclear interactions is the production of secondary neutrons. These neutrons have long been thought of as a secondary contaminant, nuisance, and source of secondary cancer risk. In this paper, a method is proposed to use these neutrons to identify and localize the presence of the tumor through neutron capture reactions with the gadolinium-based MRI contrast agent. This could provide better confidence in tumor targeting by acting as an additional quality assurance tool of tumor position during treatment. This effectively results in a neutron induced nuclear medicine scan. Gadolinium (Gd), is an ideal candidate for this novel nuclear contrast imaging procedure due to its unique nuclear properties and its widespread use as a contrast agent in MRI. Gd has one of the largest thermal neutron capture cross sections of all the stable nuclides, and the gadolinium-based contrast agents localize in leaky tissues and tumors. Initial characteristics of this novel concept were explored using the Monte Carlo code MCNP6. The number of neutron capture reactions per Gy of proton dose was found to be approximately 50,000 neutron captures/Gy, for a 8 cm3 tumor containing 300 ppm Gd at 8 cm depth with a simple simulation designed to represent the active delivery method. Using the passive method it is estimated that this number can be up to an order of magnitude higher. The thermal neutron distribution was found to not be localized within the spread out Bragg peak (SOBP) for this geometrical configuration and therefore would not allow for the identification of a geometric miss of the tumor by the proton SOBP. However, this potential method combined with nuclear medicine imaging and fused with online CBCT and prior MRI or CT imaging could help to identify tumor position during treatment. More computational and experimental work are required to determine the feasibility of this new technique termed Proton Neutron Gamma-X Detection (PNGXD). The initial concept of this procedure is presented in this paper as well as future research directions.
Radiofrequency ablation of hepatocellular carcinoma: Mono or multipolar?
Cartier, Victoire; Boursier, Jérôme; Lebigot, Jérôme; Oberti, Frédéric; Fouchard-Hubert, Isabelle; Aubé, Christophe
2016-03-01
Thermo-ablation by radiofrequency is recognized as a curative treatment for early-stage hepatocellular carcinoma. However, local recurrence may occur because of incomplete peripheral tumor destruction. Multipolar radiofrequency has been developed to increase the size of the maximal ablation zone. We aimed to compare the efficacy of monopolar and multipolar radiofrequency for the treatment of hepatocellular carcinoma and determine factors predicting failure. A total of 171 consecutive patients with 214 hepatocellular carcinomas were retrospectively included. One hundred fifty-eight tumors were treated with an expandable monopolar electrode and 56 with a multipolar technique using several linear bipolar electrodes. Imaging studies at 6 weeks after treatment, then every 3 months, assessed local effectiveness. Radiofrequency failure was defined as persistent residual tumor after two sessions (primary radiofrequency failure) or local tumor recurrence during follow-up. This study received institutional review board approval (number 2014/77). Imaging showed complete tumor ablation in 207 of 214 lesions after the first session of radiofrequency. After a second session, only two cases of residual viable tumor were observed. During follow-up, there were 46 local tumor recurrences. Thus, radiofrequency failure occurred in 48/214 (22.4%) cases. By multivariate analysis, technique (P < 0.001) and tumor size (P = 0.023) were independent predictors of radiofrequency failure. Failure rate was lower with the multipolar technique for tumors < 25 mm (P = 0.023) and for tumors between 25 and 45 mm (P = 0.082). There was no difference for tumors ≥ 45 mm (P = 0.552). Compared to monopolar radiofrequency, multipolar radiofrequency improves tumor ablation with a subsequent lower rate of local tumor recurrence. © 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
Vogl, Thomas J; Nour-Eldin, Nour-Eldin; Emad-Eldin, Sally; Naguib, Nagy NN; Trojan, Joerg; Ackermann, Hans; Abdelaziz, Omar
2011-01-01
AIM: To evaluate the effect of portal vein thrombosis and arterioportal shunts on local tumor response in advanced cases of unresectable hepatocellular carcinoma treated by transarterial chemoembolization. METHODS: A retrospective study included 39 patients (mean age: 66.4 years, range: 45-79 years, SD: 7) with unresectable hepatocellular carcinoma (HCC) who were treated with repetitive transarterial chemoembolization (TACE) in the period between March 2006 and October 2009. The effect of portal vein thrombosis (PVT) (in 19 out of 39 patients), the presence of arterioportal shunt (APS) (in 7 out of 39), the underlying liver pathology, Child-Pugh score, initial tumor volume, number of tumors and tumor margin definition on imaging were correlated with the local tumor response after TACE. The initial and end therapy local tumor responses were evaluated according to the response evaluation criteria in solid tumors (RECIST) and magnetic resonance imaging volumetric measurements. RESULTS: The treatment protocols were well tolerated by all patients with no major complications. Local tumor response for all patients according to RECIST criteria were partial response in one patient (2.6%), stable disease in 34 patients (87.1%), and progressive disease in 4 patients (10.2%). The MR volumetric measurements showed that the PVT, APS, underlying liver pathology and tumor margin definition were statistically significant prognostic factors for the local tumor response (P = 0.018, P = 0.008, P = 0.034 and P = 0.001, respectively). The overall 6-, 12- and 18-mo survival rates from the initial TACE were 79.5%, 37.5% and 21%, respectively. CONCLUSION: TACE may be exploited safely for palliative tumor control in patients with advanced unresectable HCC; however, tumor response is significantly affected by the presence or absence of PVT and APS. PMID:21455325
Thrall, Donald E.; LaRue, Susan M.; Yu, Daohai; Samulski, Thaddeus; Sanders, Linda; Case, Beth; Rosner, Gary; Azuma, Chieko; Poulson, Jeannie; Pruitt, Amy F.; Stanley, Wilma; Hauck, Marlene L.; Williams, Laurel; Hess, Paul; Dewhirst, Mark W.
2009-01-01
Purpose To test that prospective delivery of higher thermal dose is associated with longer tumor control duration. Experimental Design 122 dogs with a heatable soft tissue sarcoma were randomized to receive a low (2–5 CEM43°CT90) or high (20–50 CEM43°CT90) thermal dose in combination with radiotherapy. Most dogs (90%) received 4–6 hyperthermia treatments over 5 weeks. Results In the primary analysis, median (95% CI) duration of local control in the low dose group was 1.2 (0.7–2.1) years versus 1.9 (1.4–3.2) years in the high dose group (logrank p=0.28). The probability (95% CI) of tumor control at one year in the low vs. high dose groups was 0.57 (0.43–0.70) vs. 0.74 (0.62–0.86), respectively. Using multivariable procedure, thermal dose group (p=0.023), total duration of heating (p=0.008), tumor volume (p=0.041) and tumor grade (p=0.027) were significantly related to duration of local tumor control. When correcting for volume, grade and duration of heating, dogs in the low dose group were 2.3 times as likely to experience local failure. Conclusions Thermal dose is directly related to local control duration in irradiated canine sarcomas. Longer heating being associated with shorter local tumor control was unexpected. However, the effect of thermal dose on tumor control was stronger than for heating duration. The heating duration effect is possibly mediated through deleterious effects on tumor oxygenation. These results are the first to show the value of prospectively controlled thermal dose in achieving local tumor control with thermoradiotherapy, and they establish a paradigm for prescribing thermoradiotherapy and writing a thermal prescription. PMID:16033838
Systemic siRNA Nanoparticle-Based Drugs Combined with Radiofrequency Ablation for Cancer Therapy
Ahmed, Muneeb; Kumar, Gaurav; Navarro, Gemma; Wang, Yuanguo; Gourevitch, Svetlana; Moussa, Marwan H.; Rozenblum, Nir; Levchenko, Tatyana; Galun, Eithan; Torchilin, Vladimir P.; Goldberg, S. Nahum
2015-01-01
Purpose Radiofrequency thermal ablation (RFA) of hepatic and renal tumors can be accompanied by non-desired tumorigenesis in residual, untreated tumor. Here, we studied the use of micelle-encapsulated siRNA to suppress IL-6-mediated local and systemic secondary effects of RFA. Methods We compared standardized hepatic or renal RFA (laparotomy, 1 cm active tip at 70±2°C for 5 min) and sham procedures without and with administration of 150nm micelle-like nanoparticle (MNP) anti-IL6 siRNA (DOPE-PEI conjugates, single IP dose 15 min post-RFA, C57Bl mouse:3.5 ug/100ml, Fisher 344 rat: 20ug/200ul), RFA/scrambled siRNA, and RFA/empty MNPs. Outcome measures included: local periablational cellular infiltration (α-SMA+ stellate cells), regional hepatocyte proliferation, serum/tissue IL-6 and VEGF levels at 6-72hr, and distant tumor growth, tumor proliferation (Ki-67) and microvascular density (MVD, CD34) in subcutaneous R3230 and MATBIII breast adenocarcinoma models at 7 days. Results For liver RFA, adjuvant MNP anti-IL6 siRNA reduced RFA-induced increases in tissue IL-6 levels, α-SMA+ stellate cell infiltration, and regional hepatocyte proliferation to baseline (p<0.04, all comparisons). Moreover, adjuvant MNP anti-IL6- siRNA suppressed increased distant tumor growth and Ki-67 observed in R3230 and MATBIII tumors post hepatic RFA (p<0.01). Anti-IL6 siRNA also reduced RFA-induced elevation in VEGF and tumor MVD (p<0.01). Likewise, renal RFA-induced increases in serum IL-6 levels and distant R3230 tumor growth was suppressed with anti-IL6 siRNA (p<0.01). Conclusions Adjuvant nanoparticle-encapsulated siRNA against IL-6 can be used to modulate local and regional effects of hepatic RFA to block potential unwanted pro-oncogenic effects of hepatic or renal RFA on distant tumor. PMID:26154425
Masunaga, Shin-ichiro; Sanada, Yu; Moriwaki, Takahiro; Tano, Keizo; Sakurai, Yoshinori; Tanaka, Hiroki; Suzuki, Minoru; Kondo, Natsuko; Narabayashi, Masaru; Watanabe, Tsubasa; Nakagawa, Yosuke; Maruhashi, Akira; Ono, Koji
2014-01-01
Background The aim of this study was to evaluate the significance of fractionated administration of thalidomide combined with γ-ray irradiation in terms of local tumor response and lung metastatic potential, referring to the response of intratumor quiescent (Q) cells. Methods B16-BL6 melanoma tumor-bearing C57BL/6 mice were continuously given 5-bromo-2’-deoxyuridine (BrdU) to label all proliferating (P) cells. The tumor-bearing mice then received γ-ray irradiation after thalidomide treatment through a single or two consecutive daily intraperitoneal administrations up to a total dose of 400 mg/kg in combination with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH). Immediately after the irradiation, cells from some tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (= P + Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumor-bearing mice, 17 days after irradiation, macroscopic lung metastases were enumerated. Results Thalidomide raised the sensitivity of the total cell population more remarkably than Q cells in both single and daily administrations. Daily administration of thalidomide elevated the sensitivity of both the total and Q cell populations, but especially the total cell population, compared with single administration. Daily administration, especially combined with MTH, decreased the number of lung metastases. Conclusion Daily fractionated administration of thalidomide in combination with γ-ray irradiation was thought to be more promising than single administration because of its potential to enhance local tumor response and repress lung metastatic potential. PMID:29147396
Miao, Hongsheng; Choi, Bryan D; Suryadevara, Carter M; Sanchez-Perez, Luis; Yang, Shicheng; De Leon, Gabriel; Sayour, Elias J; McLendon, Roger; Herndon, James E; Healy, Patrick; Archer, Gary E; Bigner, Darell D; Johnson, Laura A; Sampson, John H
2014-01-01
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and is uniformly lethal. T-cell-based immunotherapy offers a promising platform for treatment given its potential to specifically target tumor tissue while sparing the normal brain. However, the diffuse and infiltrative nature of these tumors in the brain parenchyma may pose an exceptional hurdle to successful immunotherapy in patients. Areas of invasive tumor are thought to reside behind an intact blood brain barrier, isolating them from effective immunosurveillance and thereby predisposing the development of "immunologically silent" tumor peninsulas. Therefore, it remains unclear if adoptively transferred T cells can migrate to and mediate regression in areas of invasive GBM. One barrier has been the lack of a preclinical mouse model that accurately recapitulates the growth patterns of human GBM in vivo. Here, we demonstrate that D-270 MG xenografts exhibit the classical features of GBM and produce the diffuse and invasive tumors seen in patients. Using this model, we designed experiments to assess whether T cells expressing third-generation chimeric antigen receptors (CARs) targeting the tumor-specific mutation of the epidermal growth factor receptor, EGFRvIII, would localize to and treat invasive intracerebral GBM. EGFRvIII-targeted CAR (EGFRvIII+ CAR) T cells demonstrated in vitro EGFRvIII antigen-specific recognition and reactivity to the D-270 MG cell line, which naturally expresses EGFRvIII. Moreover, when administered systemically, EGFRvIII+ CAR T cells localized to areas of invasive tumor, suppressed tumor growth, and enhanced survival of mice with established intracranial D-270 MG tumors. Together, these data demonstrate that systemically administered T cells are capable of migrating to the invasive edges of GBM to mediate antitumor efficacy and tumor regression.
Li, Ruijiang; Fahimian, Benjamin P; Xing, Lei
2011-07-01
Monoscopic x-ray imaging with on-board kV devices is an attractive approach for real-time image guidance in modern radiation therapy such as VMAT or IMRT, but it falls short in providing reliable information along the direction of imaging x-ray. By effectively taking consideration of projection data at prior times and/or angles through a Bayesian formalism, the authors develop an algorithm for real-time and full 3D tumor localization with a single x-ray imager during treatment delivery. First, a prior probability density function is constructed using the 2D tumor locations on the projection images acquired during patient setup. Whenever an x-ray image is acquired during the treatment delivery, the corresponding 2D tumor location on the imager is used to update the likelihood function. The unresolved third dimension is obtained by maximizing the posterior probability distribution. The algorithm can also be used in a retrospective fashion when all the projection images during the treatment delivery are used for 3D localization purposes. The algorithm does not involve complex optimization of any model parameter and therefore can be used in a "plug-and-play" fashion. The authors validated the algorithm using (1) simulated 3D linear and elliptic motion and (2) 3D tumor motion trajectories of a lung and a pancreas patient reproduced by a physical phantom. Continuous kV images were acquired over a full gantry rotation with the Varian TrueBeam on-board imaging system. Three scenarios were considered: fluoroscopic setup, cone beam CT setup, and retrospective analysis. For the simulation study, the RMS 3D localization error is 1.2 and 2.4 mm for the linear and elliptic motions, respectively. For the phantom experiments, the 3D localization error is < 1 mm on average and < 1.5 mm at 95th percentile in the lung and pancreas cases for all three scenarios. The difference in 3D localization error for different scenarios is small and is not statistically significant. The proposed algorithm eliminates the need for any population based model parameters in monoscopic image guided radiotherapy and allows accurate and real-time 3D tumor localization on current standard LINACs with a single x-ray imager.
Dawes, Ryan P.; Madden, Kelley S.
2016-01-01
Activation of the sympathetic nervous system (SNS) drives breast cancer progression in preclinical breast cancer models, but it has yet to be established if neoplastic and stromal cells residing in the tumor are directly targeted by locally released norepinephrine (NE). In murine orthotopic and spontaneous mammary tumors, tyrosine hydroxylase (TH)+ sympathetic nerves were limited to the periphery of the tumor. No TH+ staining was detected deeper within these tumors, even in regions with a high density of blood vessels. NE concentration was much lower in tumors compared to the more densely innervated spleen, reflecting the relative paucity of tumor TH+ innervation. Tumor and spleen NE concentration decreased with increased tissue mass. In mice treated with the neurotoxin 6-hydroxydopamine (6-OHDA) to selectively destroy sympathetic nerves, tumor NE concentration was reduced approximately 50%, suggesting that the majority of tumor NE is derived from local sympathetic nerves. To evaluate NE utilization, NE turnover in orthotopic 4T1 mammary tumors was compared to spleen under baseline and stress conditions. In non-stressed mice, NE turnover was equivalent between tumor and spleen. In mice exposed to a stressor, tumor NE turnover was increased compared to spleen NE turnover, and compared to non-stressed tumor NE turnover. Together, these results demonstrate that NE in mammary tumors is derived from local sympathetic nerves that synthesize and metabolize NE. However, differences between spleen and tumor NE turnover with stressor exposure suggest that sympathetic NE release is regulated differently within the tumor microenvironment compared to the spleen. Local mammary tumor sympathetic innervation, despite its limited distribution, is responsive to stressor exposure and therefore can contribute to stress-induced tumor progression. PMID:26718447
de Bruin, Elza C.; van de Pas, Simone; van de Velde, Cornelis J. H.; van Krieken, J. Han J. M.; Peltenburg, Lucy T. C.; Marijnen, Corrie A. M.
2007-01-01
The level of apoptosis in rectal carcinomas of patients treated by surgery only predicts local failure; patients with intrinsically high-apoptotic tumors develop less local recurrences than patients with low levels of apoptosis. To identify genes involved in this intrinsic apoptotic process in vivo, 47 rectal tumors with known apoptotic phenotype (24 low- and 23 high-apoptotic) were analyzed by oligonucleotide microarray technology. We identified several genes differentially expressed between low- and high-apoptotic tumors. Unsupervised clustering of the tumors based on expression levels of these genes separated the low-apoptotic from the high-apoptotic tumors, indicating a gene expression-dependent regulation. In addition, this clustering revealed two subgroups of high-apoptotic tumors. One high-apoptotic subgroup showed subtle differences in mRNA and protein expression of the known apoptotic regulators BAX, cIAP2 and ARC compared to the low-apoptotic tumors. The other subgroup of high-apoptotic tumors showed high expression of immune-related genes; predominantly HLA class II and chemokines, but also HLA class I and interferon-inducible genes were highly expressed. Immunohistochemistry revealed HLA-DR expression in epithelial tumor cells in 70% of these high-apoptotic tumors. The expression data suggest that high levels of apoptosis in rectal carcinoma patients can be the result of either slightly altered expression of known pro- and anti-apoptotic genes or high expression of immune-related genes. Electronic supplementary material The online version of this article (doi: 10.1007/s10495-007-0088-2) contains supplementary material, which is available to authorized users. PMID:17610066
IL-33 activates tumor stroma to promote intestinal polyposis.
Maywald, Rebecca L; Doerner, Stephanie K; Pastorelli, Luca; De Salvo, Carlo; Benton, Susan M; Dawson, Emily P; Lanza, Denise G; Berger, Nathan A; Markowitz, Sanford D; Lenz, Heinz-Josef; Nadeau, Joseph H; Pizarro, Theresa T; Heaney, Jason D
2015-05-12
Tumor epithelial cells develop within a microenvironment consisting of extracellular matrix, growth factors, and cytokines produced by nonepithelial stromal cells. In response to paracrine signals from tumor epithelia, stromal cells modify the microenvironment to promote tumor growth and metastasis. Here, we identify interleukin 33 (IL-33) as a regulator of tumor stromal cell activation and mediator of intestinal polyposis. In human colorectal cancer, IL-33 expression was induced in the tumor epithelium of adenomas and carcinomas, and expression of the IL-33 receptor, IL1RL1 (also referred to as IL1-R4 or ST2), localized predominantly to the stroma of adenoma and both the stroma and epithelium of carcinoma. Genetic and antibody abrogation of responsiveness to IL-33 in the Apc(Min/+) mouse model of intestinal tumorigenesis inhibited proliferation, induced apoptosis, and suppressed angiogenesis in adenomatous polyps, which reduced both tumor number and size. Similar to human adenomas, IL-33 expression localized to tumor epithelial cells and expression of IL1RL1 associated with two stromal cell types, subepithelial myofibroblasts and mast cells, in Apc(Min/+) polyps. In vitro, IL-33 stimulation of human subepithelial myofibroblasts induced the expression of extracellular matrix components and growth factors associated with intestinal tumor progression. IL-33 deficiency reduced mast cell accumulation in Apc(Min/+) polyps and suppressed the expression of mast cell-derived proteases and cytokines known to promote polyposis. Based on these findings, we propose that IL-33 derived from the tumor epithelium promotes polyposis through the coordinated activation of stromal cells and the formation of a protumorigenic microenvironment.
PARTICIPATION OF THE COAGULATION MECHANISM IN TUMOR LOCALIZATION OF I$sup 131$-LABELLED FIBRINOGEN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaeffer, J.R.
A transplantable tumor of the rat, the Murphy-Sturm lymphosarcoma, was found to contain 15 to 25% of the adminlstered radioactive dose 18 hours after intravenous injection of I/sup 131/-labeled rat fibrinogen in a rat bearing a tumor in the 2 to 12 gm weight range. At this time the concentration of radioactivity per gm of tumor was found to be some 4 to 15 times that of such vascular organs as the liver and kidney, smaller tumors (2 to 5 gm) localizing much more of the injected radioactive dose per gm than larger tumors (8 to 12 gm). These tumorsmore » did not concentrate radioactivity after intravenous injection of either I/sup 131/ gamma -globulin or inorganic NaI/sup 131/. The administration of heparin or warfarin in dosages adequate to completely inhibit the blood coagulation mechanism throughout the 18-hour experimental period decreased this specific tumor localization of I/sup 131/ fibrinogen by 60 to 80%. It is concluded that the coagulation mechanism participates in the localization of I/ sup 131/ fibrinogen in the Murphy-Sturm lymphosarcoma. Physiological mechanisms of action other than the anticoagulative one which could possibly explain the effect of heparin and warfarin on tumor localization are discussed. No experimental evidence for an enhancement of fibrinolysis as the mechanism of tumor I/sup 131/ localization decrease by the drugs was found. In particular, these anticoagulants did not decrease whole--body radioactivity retention, and the radioactivity retained in the tumor-bearing rats receiving anticoagulant was highly clottable 18 hours after injection of I/sup 131/ fibrinogen. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pucar, Darko; Hricak, Hedvig; Shukla-Dave, Amita
2007-09-01
Purpose: To determine whether prostate cancer local recurrence after radiation therapy (RT) occurs at the site of primary tumor by retrospectively comparing the tumor location on pre-RT and post-RT magnetic resonance imaging (MRI) and using step-section pathology after salvage radical prostatectomy (SRP) as the reference standard. Methods and Materials: Nine patients with localized prostate cancer were treated with intensity modulated RT (69-86.4 Gy), and had pre-RT and post-RT prostate MRI, biopsy-proven local recurrence, and SRP. The location and volume of lesions on pre-RT and post-RT MRI were correlated with step-section pathology findings. Tumor foci >0.2 cm{sup 3} and/or resulting inmore » extraprostatic disease on pathology were considered clinically significant. Results: All nine significant tumor foci (one in each patient; volume range, 0.22-8.63 cm{sup 3}) were detected both on pre-RT and post-RT MRI and displayed strikingly similar appearances on pre-RT and post-RT MRI and step-section pathology. Two clinically insignificant tumor foci ({<=}0.06 cm{sup 3}) were not detected on imaging. The ratios between tumor volumes on pathology and on post-RT MRI ranged from 0.52 to 2.80. Conclusions: Our study provides a direct visual confirmation that clinically significant post-RT local recurrence occurs at the site of primary tumor. Our results are in agreement with reported clinical and pathologic results and support the current practice of boosting the radiation dose within the primary tumor using imaging guidance. They also suggest that monitoring of primary tumor with pre-RT and post-RT MRI could lead to early detection of local recurrence amenable to salvage treatment.« less
Inui, Toshio; Amitani, Haruka; Kubo, Kentaro; Kuchiike, Daisuke; Uto, Yoshihiro; Nishikata, Takahito; Mette, Martin
2016-07-01
Macrophage activating factor (MAF)-based immunotherapy has a wide application for use in treating many diseases via macrophage activation. Sonodynamic therapy (SDT) using low-intensity ultrasound and tumor treating field (TTF) therapy are novel therapeutic modalities. SDT is usually combined with ozone therapy to improve local hypoxia within the tumor environment. We treated a 77-year-old male diagnosed with non-small cell lung cancer ((NSCLC) stage 3B) using second-generation serum GcMAF and oral colostrum MAF-based immunotherapy combined with SDT, TTF and ozone therapies. This case report demonstrates that GcMAF, oral colostrum MAF, SDT, TTF and ozone therapy can be used for NSCLC without adverse effects. This case report suggests a new concept of cancer treatment using local destruction of cancer tissue, in this case conducted with SDT and TTF therapy, to be used in combination with serum GcMAF and colostrum MAF immunotherapy as a systemic treatment. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Rotoli, Deborah; Morales, Manuel; Ávila, Julio; Maeso, María Del Carmen; García, María Del Pino; Mobasheri, Ali; Martín-Vasallo, Pablo
2017-04-22
Scaffold proteins play pivotal roles in the regulation of signaling pathways, integrating external and internal stimuli to various cellular outputs. We report the pattern of cellular and subcellular expression of scaffoldins angiomotin-like 2 (AmotL2), FK506 binding protein 5 (FKBP51) and IQ motif containing GTPase-activating protein 1 (IQGAP1) in colorectal cancer (CRC) and metastases in liver resected after oxaliplatin-based chemotherapy (CT). Positive immunostaining for the three scaffoldins was found in most cells in healthy colon, tumor, healthy liver and metastasized liver. The patterns of expression of AmotL2, FKBP51 and IQGAP1 show the greatest variability in immune system cells and neurons and glia cells and the least in blood vessel cells. The simultaneous subcellular localization in tumor cells and other cell types within the tumor suggest an involvement of these three scaffoldins in cancer biology, including a role in Epithelial Mesenchymal Transition. The display in differential localization and quantitative expression of AmotL2, FKBP51, and IQGAP1 could be used as biomarkers for more accurate tumor staging and as potential targets for anti-cancer therapeutics by blocking or slowing down their interconnecting functions. Tough further research needs to be done in order to improve these assessments.
NASA Astrophysics Data System (ADS)
Nadiarnykh, Oleg; Moll, Annette C.; de Boer, Johannes F.
2016-03-01
We demonstrate a novel optical coherence tomography system specifically developed and validated for clinical imaging of retinoblastoma tumors in pediatric patients. The existing treatment options for this malignant tumor of the retina aim at reduction of tumor (re)growth risks, and vision preservation. The choice of optimal treatment strongly depends on skilled and detailed clinical assessment. Due to the limitations of the existing real-time diagnostic tools the patients at risk are periodically monitored with retinal imaging to confirm the absence of new tumor seedings. Three-dimensional visualization of tissue layer and microvasculature at improved axial and lateral resolution of interference-based OCT imaging provides sensitivity for detection of vital tumor tissue concurrent with local treatment. Our METC-approved system accommodates for the range of optical parameters of infants' eyes, and uses the 1050nm wavelength to access the deeper choroid layers of retina. The prototype is designed for patients in supine position under general anesthesia, where ergonomic handheld module is connected to fiber-based optical setup via umbilical cord. The system conforms to clinical safety requirements, including fully isolated low-voltage electric circuit. Focusing is performed with a mechanically tunable lens, where resolution is 6 µm axially, and varies with focusing at 10-18µm laterally. We will present optical design, performance limitations, and results of the ongoing clinical study, including the increased OCT diagnostic sensitivity in three dimensions in comparison with the established clinical imaging modalities. We will discuss images of early, active, and treated tumors, as well as follow-up on patients after local and systemic treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garsa, Adam A.; Badiyan, Shahed N.; DeWees, Todd
2014-10-01
Purpose: To evaluate local control rates and predictors of individual tumor local control for brain metastases from non-small cell lung cancer (NSCLC) treated with stereotactic radiosurgery (SRS). Methods and Materials: Between June 1998 and May 2011, 401 brain metastases in 228 patients were treated with Gamma Knife single-fraction SRS. Local failure was defined as an increase in lesion size after SRS. Local control was estimated using the Kaplan-Meier method. The Cox proportional hazards model was used for univariate and multivariate analysis. Receiver operating characteristic analysis was used to identify an optimal cutpoint for conformality index relative to local control. Amore » P value <.05 was considered statistically significant. Results: Median age was 60 years (range, 27-84 years). There were 66 cerebellar metastases (16%) and 335 supratentorial metastases (84%). The median prescription dose was 20 Gy (range, 14-24 Gy). Median overall survival from time of SRS was 12.1 months. The estimated local control at 12 months was 74%. On multivariate analysis, cerebellar location (hazard ratio [HR] 1.94, P=.009), larger tumor volume (HR 1.09, P<.001), and lower conformality (HR 0.700, P=.044) were significant independent predictors of local failure. Conformality index cutpoints of 1.4-1.9 were predictive of local control, whereas a cutpoint of 1.75 was the most predictive (P=.001). The adjusted Kaplan-Meier 1-year local control for conformality index ≥1.75 was 84% versus 69% for conformality index <1.75, controlling for tumor volume and location. The 1-year adjusted local control for cerebellar lesions was 60%, compared with 77% for supratentorial lesions, controlling for tumor volume and conformality index. Conclusions: Cerebellar tumor location, lower conformality index, and larger tumor volume were significant independent predictors of local failure after SRS for brain metastases from NSCLC. These results warrant further investigation in a prospective setting.« less
Krammer, Julia; Dutschke, Anja; Kaiser, Clemens G; Schnitzer, Andreas; Gerhardt, Axel; Radosa, Julia C; Brade, Joachim; Schoenberg, Stefan O; Wasser, Klaus
2016-01-01
To evaluate whether tumor localization and method of preoperative biopsy affect sentinel lymph node (SLN) detection after periareolar nuclide injection in breast cancer patients. 767 breast cancer patients were retrospectively included. For lymphscintigraphy periareolar nuclide injection was performed and the SLN was located by gamma camera. Patient and tumor characteristics were correlated to the success rate of SLN mapping. SLN marking failed in 9/61 (14.7%) patients with prior vacuum-assisted biopsy and 80/706 (11.3%) patients with prior core needle biopsy. Individually evaluated, biopsy method (p = 0.4) and tumor localization (p = 0.9) did not significantly affect the SLN detection rate. Patients with a vacuum-assisted biopsy of a tumor in the upper outer quadrant had a higher odds ratio of failing in SLN mapping (OR 3.8, p = 0.09) compared to core needle biopsy in the same localization (OR 0.9, p = 0.5). Tumor localization and preoperative biopsy method do not significantly impact SLN mapping with periareolar nuclide injection. However, the failure risk tends to rise if vacuum-assisted biopsy of a tumor in the upper outer quadrant is performed.
Concerted action of IFN-α and IFN-λ induces local NK cell immunity and halts cancer growth.
Lasfar, Ahmed; de laTorre, Andrew; Abushahba, Walid; Cohen-Solal, Karine A; Castaneda, Ismael; Yuan, Yao; Reuhl, Kenneth; Zloza, Andrew; Raveche, Elizabeth; Laskin, Debra L; Kotenko, Sergei V
2016-08-02
Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer. No significant improvement has been reported with currently available systemic therapies. IFN-α has been tested in both clinic and animal models and only moderate benefits have been observed. In animal models, similar modest antitumor efficacy has also been reported for IFN-λ, a new type of IFN that acts through its own receptor complex. In the present study, the antitumor efficacy of the combination of IFN-α and IFN-λ was tested in the BNL mouse hepatoma model. This study was accomplished by using either engineered tumor cells (IFN-α/IFN-λ gene therapy) or by directly injecting tumor-bearing mice with IFN-α/IFN-λ. Both approaches demonstrated that IFN-α/IFN-λ combination therapy was more efficacious than IFN monotherapy based on either IFN-α or IFN-λ. In complement to tumor surgery, IFN-α/IFN-λ combination induced complete tumor remission. Highest antitumor efficacy has been obtained following local administration of IFN-α/IFN-λ combination at the tumor site that was associated with strong NK cells tumor infiltration. This supports the use of IFN-α/IFN-λ combination as a new cancer immunotherapy for stimulating antitumor response after cancer surgery.
Concerted action of IFN-α and IFN-λ induces local NK cell immunity and halts cancer growth
Lasfar, Ahmed; de la Torre, Andrew; Abushahba, Walid; Cohen-Solal, Karine A; Castaneda, Ismael; Yuan, Yao; Reuhl, Kenneth; Zloza, Andrew; Raveche, Elizabeth; Laskin, Debra L; Kotenko, Sergei V
2016-01-01
Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer. No significant improvement has been reported with currently available systemic therapies. IFN-α has been tested in both clinic and animal models and only moderate benefits have been observed. In animal models, similar modest antitumor efficacy has also been reported for IFN-λ, a new type of IFN that acts through its own receptor complex. In the present study, the antitumor efficacy of the combination of IFN-α and IFN-λ was tested in the BNL mouse hepatoma model. This study was accomplished by using either engineered tumor cells (IFN-α/IFN-λ gene therapy) or by directly injecting tumor-bearing mice with IFN-α/IFN-λ. Both approaches demonstrated that IFN-α/IFN-λ combination therapy was more efficacious than IFN monotherapy based on either IFN-α or IFN-λ. In complement to tumor surgery, IFN-α/IFN-λ combination induced complete tumor remission. Highest antitumor efficacy has been obtained following local administration of IFN-α/IFN-λ combination at the tumor site that was associated with strong NK cells tumor infiltration. This supports the use of IFN-α/IFN-λ combination as a new cancer immunotherapy for stimulating antitumor response after cancer surgery. PMID:27363032
Grisendi, Giulia; Bussolari, Rita; Veronesi, Elena; Piccinno, Serena; Burns, Jorge S; De Santis, Giorgio; Loschi, Pietro; Pignatti, Marco; Di Benedetto, Fabrizio; Ballarin, Roberto; Di Gregorio, Carmela; Guarneri, Valentina; Piccinini, Lino; Horwitz, Edwin M; Paolucci, Paolo; Conte, PierFranco; Dominici, Massimo
2011-01-01
A tumor represents a complex structure containing malignant cells strictly coupled with a large variety of surrounding cells constituting the tumor stroma (TS). In recent years, the importance of TS for cancer initiation, development, local invasion and metastases has become increasingly clear allowing the identification of TS as one of the possible ways to indirectly target tumors. Inside the heterogeneous stromal cell population, tumor associated fibroblasts (TAF) play a crucial role providing both functional and supportive environments. During both tumor and stroma development, several findings suggest that TAF could be recruited from different sources such as locally derived host fibroblasts, via epithelial/endothelial mesenchymal transitions or from circulating pools of fibroblasts deriving form mesenchymal progenitors, namely mesenchymal stem/stromal cells (MSC). These insights prompted scientists to identify multimodal approaches to target TS by biomolecules, monoclonal antibodies, and more recently via cell based strategies. These latter strategies appear extremely promising, although still associated with debated and unclear findings. This review discusses crosstalk between cancers and their stroma, dissecting specific tumor types, such as sarcoma, pancreatic and breast carcinoma, where stroma plays distinct paradigmatic roles. The recognition of these distinct stromal functions may help in planning effective and safer approaches aimed either to eradicate or to substitute TS by novel compounds and/or MSC having specific killing activities. PMID:22016827
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Fangyao; Vishwanath, Karthik; Salama, Joseph K.
Purpose: To test whether oxygenation kinetics correlate with the likelihood for local tumor control after fractionated radiation therapy. Methods and Materials: We used diffuse reflectance spectroscopy to noninvasively measure tumor vascular oxygenation and total hemoglobin concentration associated with radiation therapy of 5 daily fractions (7.5, 9, or 13.5 Gy/d) in FaDu xenografts. Spectroscopy measurements were obtained immediately before each daily radiation fraction and during the week after radiation therapy. Oxygen saturation and total hemoglobin concentration were computed using an inverse Monte Carlo model. Results: First, oxygenation kinetics during and after radiation therapy, but before tumor volumes changed, were associated with localmore » tumor control. Locally controlled tumors exhibited significantly faster increases in oxygenation after radiation therapy (days 12-15) compared with tumors that recurred locally. Second, within the group of tumors that recurred, faster increases in oxygenation during radiation therapy (day 3-5 interval) were correlated with earlier recurrence times. An area of 0.74 under the receiver operating characteristic curve was achieved when classifying the local control tumors from all irradiated tumors using the oxygen kinetics with a logistic regression model. Third, the rate of increase in oxygenation was radiation dose dependent. Radiation doses ≤9.5 Gy/d did not initiate an increase in oxygenation, whereas 13.5 Gy/d triggered significant increases in oxygenation during and after radiation therapy. Conclusions: Additional confirmation is required in other tumor models, but these results suggest that monitoring tumor oxygenation kinetics could aid in the prediction of local tumor control after radiation therapy.« less
Paliwal, Bhudatt; Hill, Patrick; Bayouth, John E; Geurts, Mark W; Baschnagel, Andrew M; Bradley, Kristin A; Harari, Paul M; Rosenberg, Stephen; Brower, Jeffrey V; Wojcieszynski, Andrzej P; Hullett, Craig; Bayliss, R A; Labby, Zacariah E; Bassetti, Michael F
2018-01-01
Magnetic resonance-guided radiation therapy (MRgRT) offers advantages for image guidance for radiotherapy treatments as compared to conventional computed tomography (CT)-based modalities. The superior soft tissue contrast of magnetic resonance (MR) enables an improved visualization of the gross tumor and adjacent normal tissues in the treatment of abdominal and thoracic malignancies. Online adaptive capabilities, coupled with advanced motion management of real-time tracking of the tumor, directly allow for high-precision inter-/intrafraction localization. The primary aim of this case series is to describe MR-based interventions for localizing targets not well-visualized with conventional image-guided technologies. The abdominal and thoracic sites of the lung, kidney, liver, and gastric targets are described to illustrate the technological advancement of MR-guidance in radiotherapy. PMID:29872602
Urinary bladder cancer T-staging from T2-weighted MR images using an optimal biomarker approach
NASA Astrophysics Data System (ADS)
Wang, Chuang; Udupa, Jayaram K.; Tong, Yubing; Chen, Jerry; Venigalla, Sriram; Odhner, Dewey; Guzzo, Thomas J.; Christodouleas, John; Torigian, Drew A.
2018-02-01
Magnetic resonance imaging (MRI) is often used in clinical practice to stage patients with bladder cancer to help plan treatment. However, qualitative assessment of MR images is prone to inaccuracies, adversely affecting patient outcomes. In this paper, T2-weighted MR image-based quantitative features were extracted from the bladder wall in 65 patients with bladder cancer to classify them into two primary tumor (T) stage groups: group 1 - T stage < T2, with primary tumor locally confined to the bladder, and group 2 - T stage < T2, with primary tumor locally extending beyond the bladder. The bladder was divided into 8 sectors in the axial plane, where each sector has a corresponding reference standard T stage that is based on expert radiology qualitative MR image review and histopathologic results. The performance of the classification for correct assignment of T stage grouping was then evaluated at both the patient level and the sector level. Each bladder sector was divided into 3 shells (inner, middle, and outer), and 15,834 features including intensity features and texture features from local binary pattern and gray-level co-occurrence matrix were extracted from the 3 shells of each sector. An optimal feature set was selected from all features using an optimal biomarker approach. Nine optimal biomarker features were derived based on texture properties from the middle shell, with an area under the ROC curve of AUC value at the sector and patient level of 0.813 and 0.806, respectively.
Skull base tumors: a comprehensive review of transfacial swing osteotomy approaches.
Moreira-Gonzalez, Andrea; Pieper, Daniel R; Cambra, Jorge Balaguer; Simman, Richard; Jackson, Ian T
2005-03-01
Numerous techniques have been proposed for the resection of skull base tumors, each one unique with regard to the region exposed and degree of technical complexity. This study describes the use of transfacial swing osteotomies in accessing lesions located at various levels of the cranial base. Eight patients who underwent transfacial swings for exposure and resection of cranial base lesions between 1996 and 2002 were studied. The mandible was the choice when wide exposure of nasopharyngeal and midline skull base tumors was necessary, especially when they involved the infratemporal fossa. The midfacial swing osteotomy was an option when access to the entire clivus was necessary. An orbital swing approach was used to access large orbital tumors lying inferior to the optic nerve and posterior to the globe, a region that is often difficult to visualize. Gross total tumor excision was possible in all patients. Six patients achieved disease control and two had recurrences. The complications of cerebrospinal fluid leak, infection, hematoma, or cranial nerve damage did not occur. After surgery, some patients experienced temporary symptoms caused by local swelling. The aesthetic result was considered good. Transfacial swing osteotomies provide a wide exposure to tumors that occur in the central skull base area. Excellent knowledge of the detailed anatomy of this region is paramount to the success of this surgery. The team concept is essential; it is built around the craniofacial surgeon and an experienced skull base neurosurgeon.
Cao, Hui; Wang, Ming
2016-11-25
Gastrointestinal stromal tumor(GIST) is the most common mesenchymal tumor in the gastrointestinal tract. Due to the occult onset, GIST may present as local advanced or with metastatic disease at diagnosis. Imatinib mesylate (IM) has effectively improved the prognosis of GIST patients and has been established as principle therapy in metastatic GIST. The role of IM as an adjunction to surgery in the management of high-risk and local advanced GIST is also highly regarded. The role of surgery in metastatic or recurrent GIST is still a controversial clinic problem. For local advanced GIST or GIST in the unfavorable anatomic site(e.g. esophagogastric junction, duodenum, and rectum), based on the limited evidence, surgery may have potential benefits as conversion therapy. Surgery may have a limited favorable impact on progression-free survival and overall survival for those patients whose disease is responding to imatinib or those with limited focal progression. Patients with extensive advanced relapse metastatic GIST or imatinib-resistant disease should not undergo surgery unless emergency situation or complication occurs, where palliative intervention may be justified.
Limmer, Simone; Hahn, Jasmin; Schmidt, Rebecca; Wachholz, Kirsten; Zengerle, Anja; Lechner, Katharina; Eibl, Hansjörg; Issels, Rolf D; Hossann, Martin; Lindner, Lars H
2014-09-01
The pyrimidine analogue gemcitabine (dFdC) is frequently used in the treatment of patients with solid tumors. However, after i.v. application dFdC is rapidly inactivated by metabolization. Here, the potential of thermosensitive liposomes based on 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol (DPPG2-TSL) were investigated as carrier and targeting system for delivery of dFdC in combination with local hyperthermia (HT). DPPG2-TSL were prepared by the lipid film hydration and extrusion method and characterized by dynamic light scattering, thin layer chromatography, phosphate assay and HPLC. In vivo experiments were performed in Brown Norway rats with a syngeneic soft tissue sarcoma. Local HT treatment was performed by light exposure. DPPG2-TSL were stable at 37°C in serum and showed a temperature dependent dFdC release >40°C. Plasma half-life of dFdC was strongly increased from 0.07 h (non-liposomal) to 0.53 h (liposomal, vesicle size 105 nm) or 2.59 h (liposomal, 129 nm). Therapy of BN175 tumors with dFdC encapsulated in DPPG2-TSL + HT showed significant improvement in tumor growth delay compared to non-liposomal dFdC without HT (p < 0.05), non-liposomal dFdC with HT (p < 0.01), and liposomal dFdC without HT (p < 0.05), respectively. Gemcitabine encapsulated in DPPG2-TSL in combination with local HT is a promising tool for the treatment of solid tumors. Therefore, these encouraging results ask for further investigation and evaluation.
Deserti, Marzia; Vasuri, Francesco; Farioli, Andrea; Degiovanni, Alessio; Palloni, Andrea; Frega, Giorgio; Barbera, Maria A.; de Lorenzo, Stefania; Garajova, Ingrid; Di Marco, Mariacristina; Pinna, Antonio D.; Cescon, Matteo; Cucchetti, Alessandro; Ercolani, Giorgio; D’Errico-Grigioni, Antonietta; Pantaleo, Maria A.; Biasco, Guido; Tavolari, Simona
2016-01-01
Background. The use of gemcitabine as an adjuvant modality for cholangiocarcinoma (CC) is increasing, but limited data are available on predictive biomarkers of response. Human equilibrative nucleoside transporter 1 (hENT-1) is the major transporter involved in gemcitabine intracellular uptake. This study investigated the putative predictive role of hENT-1 localization in tumor cells of CC patients undergoing treatment with adjuvant gemcitabine. Methods. Seventy-one consecutive patients with resected CC receiving adjuvant gemcitabine at our center were retrospectively analyzed by immunohistochemistry for hENT-1 localization in tumor cells. The main outcome measure was disease-free survival (DFS). Hazard ratios (HRs) of relapse and associated 95% confidence intervals (CIs) were obtained from proportional hazards regression models stratified on quintiles of propensity score. Results. Twenty-three (32.4%) cases were negative for hENT-1, 22 (31.0%) were positive in the cytoplasm only, and 26 (36.6%) showed concomitant cytoplasm/membrane staining. Patients with membrane hENT-1 had a longer DFS (HR 0.49, 95% CI 0.24–0.99, p = .046) than those who were negative or positive only in the cytoplasm of tumor cells. Notably, the association between DFS and membrane hENT-1 was dependent on the number of gemcitabine cycles (one to two cycles: HR 0.96, 95% CI 0.34–2.68; three to four cycles: HR 0.99, 95% CI 0.34–2.90; five to six cycles: HR 0.27, 95% CI 0.10–0.77). Conclusion. hENT-1 localization on tumor cell membrane may predict response to adjuvant gemcitabine in CC patients receiving more than four cycles of chemotherapy. Further prospective randomized trials on larger populations are required to confirm these preliminary results, so that optimal gemcitabine-based chemotherapy may be tailored for CC patients in the adjuvant setting. Implications for Practice: Gemcitabine is becoming an increasingly used adjuvant modality in cholangiocarcinoma (CC), but limited data are available on predictive biomarkers of response. In this study, patients receiving more than four cycles of adjuvant gemcitabine and harboring Human equilibrative nucleoside transporter 1 (hENT-1, the major transporter involved in gemcitabine intracellular uptake) on tumor cell membrane had a longer disease-free survival compared with patients negative or positive for hENT-1 only in the cytoplasm of tumor cells. Overall these results may lay the basis for further prospective randomized trials based on a larger population of patients and may prove useful for tailoring appropriate gemcitabine-based chemotherapy for CC patients in the adjuvant setting. PMID:27032872
Baum, Christian L; Wright, Adam C; Martinez, Juan-Carlos; Arpey, Christopher J; Brewer, Jerry D; Roenigk, Randall K; Otley, Clark C
2018-01-01
Most primary cutaneous squamous cell carcinomas are cured with surgery. A subset, however, may develop local and nodal metastasis that may eventuate in disease-specific; death. This subset has been variably termed high risk. Herein, we review; an emerging body of data on the risks of these outcomes and propose an evidence-based; risk stratification for low-, intermediate-, and high-risk tumors that takes into; account both tumor and patient characteristics. Finally, we discuss a framework for; management of these tumors on the basis of data, when available, and our; recommendations when data are sparse. Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.
Cerenkov and radioluminescence imaging of brain tumor specimens during neurosurgery
NASA Astrophysics Data System (ADS)
Spinelli, Antonello Enrico; Schiariti, Marco P.; Grana, Chiara M.; Ferrari, Mahila; Cremonesi, Marta; Boschi, Federico
2016-05-01
We presented the first example of Cerenkov luminescence imaging (CLI) and radioluminescence imaging (RLI) of human tumor specimens. A patient with a brain meningioma localized in the left parietal region was injected with 166 MBq of Y90-DOTATOC the day before neurosurgery. The specimens of the tumor removed during surgery were imaged using both CLI and RLI using an optical imager prototype developed in our laboratory. The system is based on a cooled electron multiplied charge coupled device coupled with an f/0.95 17-mm C-mount lens. We showed for the first time the possibility of obtaining CLI and RLI images of fresh human brain tumor specimens removed during neurosurgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seki, Akihiko, E-mail: sekia@igtc.jp; Hori, Shinichi, E-mail: horishin@igtc.jp; Sueyoshi, Satoru, E-mail: sueyoshis@igtc.jp
2013-12-15
Purpose: This retrospective study aimed to evaluate the safety and local efficacy of transcatheter arterial embolization (TAE) with superabsorbent polymer microspheres (SAP-MS) in patients with pulmonary metastases from renal cell carcinoma (RCC). Methods: Sixteen patients with unresectable pulmonary metastases from RCC refractory to standard therapy were enrolled to undergo TAE with the purpose of mass reduction and/or palliation. The prepared SAP-MS swell to approximately two times larger than their dry-state size (100-150 {mu}m [n = 14], 50-100 {mu}m [n = 2]). Forty-nine pulmonary nodules (lung n = 22, mediastinal lymph node n = 17, and hilar lymph node n =more » 10) were selected as target lesions for evaluation. Local tumor response was evaluated 3 months after TAE according to Response Evaluation Criteria in Solid Tumors (RECIST; version 1.1). The relationship between tumor enhancement ratio by CT during selective angiography and local tumor response was evaluated. Results: The number of TAE sessions per patient ranged from 1 to 5 (median 2.9). Embolized arteries at initial TAE were bronchial arteries in 14 patients (87.5 %) and nonbronchial systemic arteries in 11 patients (68.8 %). Nodule-based evaluation showed that 5 (10.2 %) nodules had complete response, 17 (34.7 %) had partial response, 15 (30.6 %) had stable disease, and 12 (24.5 %) had progressive disease. The response rate was significantly greater in 22 lesions that had a high tumor enhancement ratio than in 27 lesions that had a slight or moderate ratio (90.9 vs. 7.4 %, p = 0.01). Severe TAE-related adverse events did not occur. Conclusion: TAE with SAP-MS might be a well-tolerated and locally efficacious palliative option for patients with pulmonary metastases from RCC.« less
The safety and efficacy of gamma knife surgery in management of glomus jugulare tumor
2010-01-01
Background Glomus jugulare is a slowly growing, locally destructive tumor located in the skull base with difficult surgical access. The operative approach is, complicated by the fact that lesions may be both intra and extradural with engulfment of critical neurovascular structures. The tumor is frequently highly vascular, thus tumor resection entails a great deal of morbidity and not infrequent mortality. At timeslarge residual tumors are left behind. To decrease the morbidity associated with surgical resection of glomus jugulare, gamma knife surgery (GKS) was performed as an alternative in 13 patients to evaluate its safety and efficacy. Methods A retrospective review of 13 residual or unresectable glomus jagulare treated with GKS between 2004 and 2008.. Of these, 11 patients underwent GKS as the primary management and one case each was treated for postoperative residual disease and postembolization. The radiosurgical dose to the tumor margin ranged between 12-15 Gy. Results Post- gamma knife surgery and during the follow-up period twelve patients demonstrated neurological stability while clinical improvement was achieved in 5 patients. One case developed transient partial 7th nerve palsy that responded to medical treatment. In all patients radiographic MRI follow-up was obtained, the tumor size decreased in two cases and remained stable (local tumor control) in eleven patients. Conclusions Gamma knife surgery provids tumor control with a lowering of risk of developing a new cranial nerve injury in early follow-up period. This procedure can be safely used as a primary management tool in patients with glomus jugulare tumors, or in patients with recurrent tumors in this location. If long-term results with GKS are equally effective it will emerge as a good alternative to surgical resection. PMID:20819207
Skull base bony lesions: Management nuances; a retrospective analysis from a Tertiary Care Centre
Singh, Amit Kumar; Srivastava, Arun Kumar; Sardhara, Jayesh; Bhaisora, Kamlesh Singh; Das, Kuntal Kanti; Mehrotra, Anant; Sahu, Rabi Narayan; Jaiswal, Awadhesh Kumar; Behari, Sanjay
2017-01-01
Background: Skull base lesions are not uncommon, but their management has been challenging for surgeons. There is large no of bony tumors at the skull base which has not been studied in detail as a group. These tumors are difficult not only because of their location but also due to their variability in the involvement of important local structure. Through this retrospective analysis from a Tertiary Care Centre, we are summarizing the details of skull base bony lesions and its management nuances. Materials and Methods: The histopathologically, radiologically, and surgically proven cases of skull base bony tumors or lesions involving bone were analyzed from the neurosurgery, neuropathology record of our Tertiary Care Institute from January 2009 to January 2014. All available preoperative and postoperative details were noted from their case files. The extent of excision was ascertained from operation records and postoperative magnetic resonance imaging if available. Results: We have surgically managed 41 cases of skull base bony tumors. It includes 11 patients of anterior skull base, 13 middle skull base, and 17 posterior skull base bony tumors. The most common bony tumor was chordoma 15 (36.6%), followed by fibrous dysplasia 5 (12.2%), chondrosarcoma (12.2%), and ewings sarcoma-peripheral primitive neuroectodermal tumor (EWS-pPNET) five cases (12.2%) each. There were more malignant lesions (n = 29, 70.7%) at skull base than benign (n = 12, 29.3%) lesions. The surgical approach employed depended on location of tumor and pathology. Total mortality was 8 (20%) of whom 5 patients were of histological proven EWS-pPNET. Conclusions: Bony skull base lesion consists of wide variety of lesions, and requires multispecialty management. The complex lesions required tailored approaches surgery of these lesions. With the advent of microsurgical and endoscopic techniques, and use of navigation better outcomes are being seen, but these lesions require further study for development of proper management plan. PMID:28761532
Ishikawa, Toru; Kubota, Tomoyuki; Abe, Hiroyuki; Nagashima, Aiko; Hirose, Kanae; Togashi, Tadayuki; Seki, Keiichi; Honma, Terasu; Yoshida, Toshiaki; Kamimura, Tomoteru; Nemoto, Takeo; Takeda, Keiko; Ishihara, Noriko
2012-01-01
To assess the ability to predict the local recurrence of hepatocellular carcinoma by analyzing tissues adhering to the radiofrequency ablation probe after complete ablation. From May 2002 to March 2011, tissue specimens adhering to the radiofrequency ablation probe from 284 radiofrequency ablation sessions performed for hepatocellular carcinomas ≤3 cm in size were analyzed. The specimens were classified as either viable tumor tissue or complete necrosis, and the local recurrence rates were calculated using the Kaplan-Meier method. From the tumors ≤3 cm in size, viable tissue was present in 6 (2.1%) of 284 specimens, and the local recurrence rates after 1 and 2 years of follow-up were 6.7% and 11.2%, respectively. Local recurrence developed significantly earlier in the viable tissue group. The recurrence rate was not significantly different based on whether transcatheter arterial chemoembolization was performed. The histopathology of the tissue adhering to the radiofrequency ablation probes used for hepatocellular carcinoma treatment can predict local recurrence. Additional aggressive treatment for patients with viable tissue can therefore improve the overall survival.
Brain tumor segmentation in MR slices using improved GrowCut algorithm
NASA Astrophysics Data System (ADS)
Ji, Chunhong; Yu, Jinhua; Wang, Yuanyuan; Chen, Liang; Shi, Zhifeng; Mao, Ying
2015-12-01
The detection of brain tumor from MR images is very significant for medical diagnosis and treatment. However, the existing methods are mostly based on manual or semiautomatic segmentation which are awkward when dealing with a large amount of MR slices. In this paper, a new fully automatic method for the segmentation of brain tumors in MR slices is presented. Based on the hypothesis of the symmetric brain structure, the method improves the interactive GrowCut algorithm by further using the bounding box algorithm in the pre-processing step. More importantly, local reflectional symmetry is used to make up the deficiency of the bounding box method. After segmentation, 3D tumor image is reconstructed. We evaluate the accuracy of the proposed method on MR slices with synthetic tumors and actual clinical MR images. Result of the proposed method is compared with the actual position of simulated 3D tumor qualitatively and quantitatively. In addition, our automatic method produces equivalent performance as manual segmentation and the interactive GrowCut with manual interference while providing fully automatic segmentation.
[Risk factors for malignant evolution of gastrointestinal stromal tumors].
Andrei, S; Andrei, Adriana; Tonea, A; Andronesi, D; Becheanu, G; Dumbravă, Mona; Pechianu, C; Herlea, V; Popescu, I
2007-01-01
Gastrointestinal stromal tumors are the most frequent non-epithelial digestive tumors, being classified in the group of primitive mesenchymal tumors of the digestive tract. These tumors have a non predictable evolution and where stratified regarding the risk for malignant behavior in 4 categories: very low risk, low risk, intermediate risk and high risk. We performed a retrospective non randomised study including the patients with gastrointestinal stromal tumors treated in the Department of General Surgery and Liver Transplantation of Fundeni Clinical Institute in the period January 2002 - June 2007, to define the epidemiological, clinico-paraclinical, histological and especially evolutive features of the gastrointestinal stromal tumors from this group, with a special regard to the risk factors for their malignant behavior. The most important risk factors in gastrointestinal stromal tumors are the tumor size and the mitotic index, based on them being realised the classification of Fletcher in the 4 risk categories mentioned above. In our group all the local advanced or metastatic gastrointestinal stromal tumors, regardless of their location, were classified in the group of high risk for the malignant behavior. The gastric location and the epithelioid type were positive prognostic factors, and the complete resection of the tumor, an other important positive prognostic feature, was possible in about 80% of the cases, probably because the gastrointestinal stromal tumors in our study were diagnosed in less advanced evolutive situations, only about one third being metastatic and about 14% being locally advanced at the time of diagnose. The association with other neoplasias was in our cases insignificant, only 5% of the patients presenting concomitant malignant digestive tumors and 7.6% intraabdominal benign tumors. Gastrointestinal stromal tumors remain a challenge for the medical staff, regarding their diagnose and therapeutical management, the stratification of the risk for their malignant behavior being essential for the evolution of these patients.
Maxwell, Aaron W P; Baird, Grayson L; Iannuccilli, Jason D; Mayo-Smith, William W; Dupuy, Damian E
2017-05-01
Purpose To evaluate the performance of the radius, exophytic or endophytic, nearness to collecting system or sinus, anterior or posterior, and location relative to polar lines (RENAL) nephrometry and preoperative aspects and dimensions used for anatomic classification (PADUA) scoring systems and other tumor biometrics for prediction of local tumor recurrence in patients with renal cell carcinoma after thermal ablation. Materials and Methods This HIPAA-compliant study was performed with a waiver of informed consent after institutional review board approval was obtained. A retrospective evaluation of 207 consecutive patients (131 men, 76 women; mean age, 71.9 years ± 10.9) with 217 biopsy-proven renal cell carcinoma tumors treated with thermal ablation was conducted. Serial postablation computed tomography (CT) or magnetic resonance (MR) imaging was used to evaluate for local tumor recurrence. For each tumor, RENAL nephrometry and PADUA scores were calculated by using imaging-derived tumor morphologic data. Several additional tumor biometrics and combinations thereof were also measured, including maximum tumor diameter. The Harrell C index and hazard regression techniques were used to quantify associations with local tumor recurrence. Results The RENAL (hazard ratio, 1.43; P = .003) and PADUA (hazard ratio, 1.80; P < .0001) scores were found to be significantly associated with recurrence when regression techniques were used but demonstrated only poor to fair discrimination according to Harrell C index results (C, 0.68 and 0.75, respectively). Maximum tumor diameter showed the highest discriminatory strength of any individual variable evaluated (C, 0.81) and was also significantly predictive when regression techniques were used (hazard ratio, 2.98; P < .0001). For every 1-cm increase in diameter, the estimated rate of recurrence risk increased by 198%. Conclusion Maximum tumor diameter demonstrates superior performance relative to existing tumor scoring systems and other evaluated biometrics for prediction of local tumor recurrence after renal cell carcinoma ablation. © RSNA, 2016.
Heppner, K. J.; Matrisian, L. M.; Jensen, R. A.; Rodgers, W. H.
1996-01-01
Matrix metalloproteinase (MMP) family members have been associated with advanced-stage cancer and contribute to tumor progression, invasion, and metastasis as determined by inhibitor studies. In situ hybridization was performed to analyze the expression and localization of all known MMPs in a series of human breast cancer biopsy specimens. Most MMPs were localized to tumor stroma, and all MMPs had very distinct expression patterns. Matrilysin was expressed by morphologically normal epithelial ducts within tumors and in tissue from reduction mammoplasties, and by epithelial-derived tumor cells. Many family members, including stromelysin-3, gelatinase A, MT-MMP, interstitial collagenase, and stromelysin-1 were localized to fibroblasts of tumor stroma of invasive cancers but in quite distinct, and generally widespread, patterns. Gelatinase B, collagenase-3, and metalloelastase expression were more focal; gelatinase B was primarily localized to endothelial cells, collagenase-3 to isolated tumor cells, and metalloelastase to cytokeratin-negative, macrophage-like cells. The MMP inhibitor, TIMP-1, was expressed in both stromal and tumor components in most tumors, and neither stromelysin-2 nor neutrophil collagenase were detected in any of the tumors. These results indicate that there is very tight and complex regulation in the expression of MMP family members in breast cancer that generally represents a host response to the tumor and emphasize the need to further evaluate differential functions for MMP family members in breast tumor progression. Images Figure 1 Figure 2 Figure 3 PMID:8686751
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhou, S; Cai, W; Hurwitz, M
2015-06-15
Purpose: Respiratory-correlated cone-beam CT (4DCBCT) images acquired immediately prior to treatment have the potential to represent patient motion patterns and anatomy during treatment, including both intra- and inter-fractional changes. We develop a method to generate patient-specific motion models based on 4DCBCT images acquired with existing clinical equipment and used to generate time varying volumetric images (3D fluoroscopic images) representing motion during treatment delivery. Methods: Motion models are derived by deformably registering each 4DCBCT phase to a reference phase, and performing principal component analysis (PCA) on the resulting displacement vector fields. 3D fluoroscopic images are estimated by optimizing the resulting PCAmore » coefficients iteratively through comparison of the cone-beam projections simulating kV treatment imaging and digitally reconstructed radiographs generated from the motion model. Patient and physical phantom datasets are used to evaluate the method in terms of tumor localization error compared to manually defined ground truth positions. Results: 4DCBCT-based motion models were derived and used to generate 3D fluoroscopic images at treatment time. For the patient datasets, the average tumor localization error and the 95th percentile were 1.57 and 3.13 respectively in subsets of four patient datasets. For the physical phantom datasets, the average tumor localization error and the 95th percentile were 1.14 and 2.78 respectively in two datasets. 4DCBCT motion models are shown to perform well in the context of generating 3D fluoroscopic images due to their ability to reproduce anatomical changes at treatment time. Conclusion: This study showed the feasibility of deriving 4DCBCT-based motion models and using them to generate 3D fluoroscopic images at treatment time in real clinical settings. 4DCBCT-based motion models were found to account for the 3D non-rigid motion of the patient anatomy during treatment and have the potential to localize tumor and other patient anatomical structures at treatment time even when inter-fractional changes occur. This project was supported, in part, through a Master Research Agreement with Varian Medical Systems, Inc., Palo Alto, CA. The project was also supported, in part, by Award Number R21CA156068 from the National Cancer Institute.« less
Aggressive fibromatosis (fibrosarcoma) of the facial nerve.
Pulec, J L
1993-07-01
Aggressive fibromatosis of the facial nerve is a very rare tumor. Three cases have been previously reported. The tumor is locally recurrent and often has a fatal outcome. This report is of a ten-year-old boy whose tumor originally developed in the parotid area with subsequent spread to the base of the skull, the neck and the cerebellopontine angle. Treatment was by wide surgical excision, radiation therapy and chemotherapy. Despite treatment, the patient died. The clinical features of this case will be described. Only wide surgical excision early in the course of the disease may offer a chance for cure.
TU-CD-303-05: Unveiling Tumor Heterogeneity by Molecular Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeraj, R.
2015-06-15
Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation alsomore » initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of these advances in cancer biology research will give medical physicists a new perspective in daily clinical physics practice and in future radiation therapy technological development. Furthermore, academic medical physics should continue to be an integral part of the multidisciplinary cancer research community, harnessing our newly acquired understanding of radiation effects, and developing novel cost-effective treatment strategies to better combat cancer. Learning Objectives: Understand that localized radiation can lead to non-localized secondary effects such as radiation-induced immune response, bystander effect, and abscopal effect. Understand that the non-localized radiation effects may be harnessed to improve cancer treatment. Learn examples of physics participation in multidisciplinary research to advance cancer biology. Recognize the challenges and possibilities of physics applications in cancer research. Chang: NIH 5RC2CA148487-02 and 1U54CA151652-01 Graves: IDEA award (19IB-0106) from the California Breast Cancer Research Program (CBCRP), and by NIH P01 CA67166.« less
Wen, Liewei; Yang, Sihua; Zhong, Junping; Zhou, Quan; Xing, Da
2017-01-01
Multifunctional nanoparticle-mediated imaging and therapeutic techniques are promising modalities for accurate localization and targeted treatment of cancer in clinical settings. Thermoacoustic (TA) imaging is highly sensitive to detect the distribution of water, ions or specific nanoprobes and provides excellent resolution, good contrast and superior tissue penetrability. TA therapy is a potential non-invasive approach for the treatment of deep-seated tumors. In this study, human serum albumin (HSA)-functionalized superparamagnetic iron oxide nanoparticle (HSA-SPIO) is used as a multifunctional nanoprobe with clinical application potential for MRI, TA imaging and treatment of tumor. In addition to be a MRI contrast agent for tumor localization, HSA-SPIO can absorb pulsed microwave energy and transform it into shockwave via the thermoelastic effect. Thereby, the reconstructed TA image by detecting TA signal is expected to be a sensitive and accurate representation of the HSA-SPIO accumulation in tumor. More importantly, owing to the selective retention of HSA-SPIO in tumor tissues and strong TA shockwave at the cellular level, HSA-SPIO induced TA effect under microwave-pulse radiation can be used to highly-efficiently kill cancer cells and inhibit tumor growth. Furthermore, ultra-short pulsed microwave with high excitation efficiency and deep penetrability in biological tissues makes TA therapy a highly-efficient anti-tumor modality on the versatile platform. Overall, HSA-SPIO mediated MRI and TA imaging would offer more comprehensive diagnostic information and enable dynamic visualization of nanoagents in the tumorous tissue thereby tumor-targeted therapy. PMID:28638483
Wen, Liewei; Yang, Sihua; Zhong, Junping; Zhou, Quan; Xing, Da
2017-01-01
Multifunctional nanoparticle-mediated imaging and therapeutic techniques are promising modalities for accurate localization and targeted treatment of cancer in clinical settings. Thermoacoustic (TA) imaging is highly sensitive to detect the distribution of water, ions or specific nanoprobes and provides excellent resolution, good contrast and superior tissue penetrability. TA therapy is a potential non-invasive approach for the treatment of deep-seated tumors. In this study, human serum albumin (HSA)-functionalized superparamagnetic iron oxide nanoparticle (HSA-SPIO) is used as a multifunctional nanoprobe with clinical application potential for MRI, TA imaging and treatment of tumor. In addition to be a MRI contrast agent for tumor localization, HSA-SPIO can absorb pulsed microwave energy and transform it into shockwave via the thermoelastic effect. Thereby, the reconstructed TA image by detecting TA signal is expected to be a sensitive and accurate representation of the HSA-SPIO accumulation in tumor. More importantly, owing to the selective retention of HSA-SPIO in tumor tissues and strong TA shockwave at the cellular level, HSA-SPIO induced TA effect under microwave-pulse radiation can be used to highly-efficiently kill cancer cells and inhibit tumor growth. Furthermore, ultra-short pulsed microwave with high excitation efficiency and deep penetrability in biological tissues makes TA therapy a highly-efficient anti-tumor modality on the versatile platform. Overall, HSA-SPIO mediated MRI and TA imaging would offer more comprehensive diagnostic information and enable dynamic visualization of nanoagents in the tumorous tissue thereby tumor-targeted therapy.
A novel in situ permeation system and its utility in cancer tissue ablation
WATANABE, MASAMI
2015-01-01
Focal ablation therapy is an emerging treatment modality for localized cancer lesions. It is an attractive strategy for inhibiting tumor progression and preventing morbidity associated with open surgery. As for intratissue drug delivery systems for use in local therapy, the convection-enhanced delivery (CED) of liquid drugs has been utilized, particularly for the treatment of malignant brain tumors. Although the conventional CED system is useful for providing drug/vehicle-based local therapy, there are several reported disadvantages in terms of the ability to control the extent of drug diffusion. We herein developed and validated a novel in situ permeation (ISP)-MW-1 system for achieving intratissue drug diffusion. The ISP system includes a perfusion catheter connected to an injector and aspirator, which enables intratissue perfusion of the solute diluted in the vehicle in the tip-inserted cavity. We subsequently evaluated the utility of the ISP-MW-1 system for in situ permeation in a subcutaneous tumor model in hamsters. Dehydrated ethanol, saline and 50% acetic acid were evaluated as the vehicle, and methylene blue was used as a dissolved substance for evaluating the diffusion of the agent. As a result, almost all of the tumor tissue within the capsule (tumor size: ~3 cm) was permeated with the dehydrated ethanol and 50% acetic acid and partially with the saline. We further demonstrated that ISP treatment with 50% acetic acid completely ablated the subcutaneous tumors in all of the treated hamsters (n=3). Therefore, the ISP-MW-1 system is a promising approach for controlling the intratissue diffusion of therapeutic agents and for providing local ablation therapy for cancer lesions. We believe that this system may be applicable to a broad range of medicinal and industrial fields, such as regenerative medicine, drug delivery systems, biochemistry and material technologies as well as cancer therapy. PMID:26134633
Veenstra, Jesse J; Gibson, Heather M; Littrup, Peter J; Reyes, Joyce D; Cher, Michael L; Takashima, Akira; Wei, Wei-Zen
2014-10-01
Percutaneous cryoablation is a minimally invasive procedure for tumor destruction, which can potentially initiate or amplify antitumor immunity through the release of tumor-associated antigens. However, clinically efficacious immunity is lacking and regional recurrences are a limiting factor relative to surgical excision. To understand the mechanism of immune activation by cryoablation, comprehensive analyses of innate immunity and HER2/neu humoral and cellular immunity following cryoablation with or without peritumoral CpG injection were conducted using two HER2/neu(+) tumor systems in wild-type (WT), neu-tolerant, and SCID mice. Cryoablation of neu(+) TUBO tumor in BALB/c mice resulted in systemic immune priming, but not in neu-tolerant BALB NeuT mice. Cryoablation of human HER2(+) D2F2/E2 tumor enabled the functionality of tumor-induced immunity, but secondary tumors were refractory to antitumor immunity if rechallenge occurred during the resolution phase of the cryoablated tumor. A step-wise increase in local recurrence was observed in WT, neu-tolerant, and SCID mice, indicating a role of adaptive immunity in controlling residual tumor foci. Importantly, local recurrences were eliminated or greatly reduced in WT, neu tolerant, and SCID mice when CpG was incorporated in the cryoablation regimen, showing significant local control by innate immunity. For long-term protection, however, adaptive immunity was required because most SCID mice eventually succumbed to local tumor recurrence even with combined cryoablation and CpG treatment. This improved understanding of the mechanisms by which cryoablation affects innate and adaptive immunity will help guide appropriate combination of therapeutic interventions to improve treatment outcomes. ©2014 American Association for Cancer Research.
Accurate tumor localization and tracking in radiation therapy using wireless body sensor networks.
Pourhomayoun, Mohammad; Jin, Zhanpeng; Fowler, Mark
2014-07-01
Radiation therapy is an effective method to combat cancerous tumors by killing the malignant cells or controlling their growth. Knowing the exact position of the tumor is a very critical prerequisite in radiation therapy. Since the position of the tumor changes during the process of radiation therapy due to the patient׳s movements and respiration, a real-time tumor tracking method is highly desirable in order to deliver a sufficient dose of radiation to the tumor region without damaging the surrounding healthy tissues. In this paper, we develop a novel tumor positioning method based on spatial sparsity. We estimate the position by processing the received signals from only one implantable RF transmitter. The proposed method uses less number of sensors compared to common magnetic transponder based approaches. The performance of the proposed method is evaluated in two different cases: (1) when the tissue configuration is perfectly determined (acquired beforehand by MRI or CT) and (2) when there are some uncertainties about the tissue boundaries. The results demonstrate the high accuracy and performance of the proposed method, even when the tissue boundaries are imperfectly known. Copyright © 2014 Elsevier Ltd. All rights reserved.
Guckenberger, Matthias; Klement, Rainer J; Allgäuer, Michael; Andratschke, Nicolaus; Blanck, Oliver; Boda-Heggemann, Judit; Dieckmann, Karin; Duma, Marciana; Ernst, Iris; Ganswindt, Ute; Hass, Peter; Henkenberens, Christoph; Holy, Richard; Imhoff, Detlef; Kahl, Henning K; Krempien, Robert; Lohaus, Fabian; Nestle, Ursula; Nevinny-Stickel, Meinhard; Petersen, Cordula; Semrau, Sabine; Streblow, Jan; Wendt, Thomas G; Wittig, Andrea; Flentje, Michael; Sterzing, Florian
2016-03-01
To evaluate whether local tumor control probability (TCP) in stereotactic body radiotherapy (SBRT) varies between lung metastases of different primary cancer sites and between primary non-small cell lung cancer (NSCLC) and secondary lung tumors. A retrospective multi-institutional (n=22) database of 399 patients with stage I NSCLC and 397 patients with 525 lung metastases was analyzed. Irradiation doses were converted to biologically effective doses (BED). Logistic regression was used for local tumor control probability (TCP) modeling and the second-order bias corrected Akaike Information Criterion was used for model comparison. After median follow-up of 19 months and 16 months (n.s.), local tumor control was observed in 87.7% and 86.7% of the primary and secondary lung tumors (n.s.), respectively. A strong dose-response relationship was observed in the primary NSCLC and metastatic cohort but dose-response relationships were not significantly different: the TCD90 (dose to achieve 90% TCP; BED of maximum planning target volume dose) estimates were 176 Gy (151-223) and 160 Gy (123-237) (n.s.), respectively. The dose-response relationship was not influenced by the primary cancer site within the metastatic cohort. Dose-response relationships for local tumor control in SBRT were not different between lung metastases of various primary cancer sites and between primary NSCLC and lung metastases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
BATTLE: Biomarker-Based Approaches of Targeted Therapy for Lung Cancer Elimination
2007-04-01
localization, which • The combination of erlotinib and Ad-dnIGF-1R synergistically inhibits the growth of tumors in xenograft mouse models . able outcomes...of erlotinib and Ad-dnIGF-1R synergistically inhibits the growth of tumors in xenograft mouse models . Specific Aim 2.3: To investigate the...biomarkers and adaptive randomization via hierarchical Bayes modeling . 2) To study the molecular mechanisms of response and resistance to targeted
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markovina, Stephanie; Duan, Fenghai; Snyder, Bradley S.
2015-11-01
Purpose: The American College of Radiology Imaging Network (ACRIN) 6668/Radiation Therapy Oncology Group (RTOG) 0235 study demonstrated that standardized uptake values (SUV) on post-treatment [{sup 18}F]fluorodeoxyglucose-positron emission tomography (FDG-PET) correlated with survival in locally advanced non-small cell lung cancer (NSCLC). This secondary analysis determined whether SUV of regional lymph nodes (RLNs) on post-treatment FDG-PET correlated with patient outcomes. Methods and Materials: Included for analysis were patients treated with concurrent chemoradiation therapy, using radiation doses ≥60 Gy, with identifiable FDG-avid RLNs (distinct from primary tumor) on pretreatment FDG-PET, and post-treatment FDG-PET data. ACRIN core laboratory SUV measurements were used. Event time was calculatedmore » from the date of post-treatment FDG-PET. Local-regional failure was defined as failure within the treated RT volume and reported by the treating institution. Statistical analyses included Wilcoxon signed rank test, Kaplan-Meier curves (log rank test), and Cox proportional hazards regression modeling. Results: Of 234 trial-eligible patients, 139 (59%) had uptake in both primary tumor and RLNs on pretreatment FDG-PET and had SUV data from post-treatment FDG-PET. Maximum SUV was greater for primary tumor than for RLNs before treatment (P<.001) but not different post-treatment (P=.320). Post-treatment SUV of RLNs was not associated with overall survival. However, elevated post-treatment SUV of RLNs, both the absolute value and the percentage of residual activity compared to the pretreatment SUV were associated with inferior local-regional control (P<.001). Conclusions: High residual metabolic activity in RLNs on post-treatment FDG-PET is associated with worse local-regional control. Based on these data, future trials evaluating a radiation therapy boost should consider inclusion of both primary tumor and FDG-avid RLNs in the boost volume to maximize local-regional control.« less
Sharma, Mayur; Jia, Xuefei; Ahluwalia, Manmeet; Barnett, Gene H; Vogelbaum, Michael A; Chao, Samuel T; Suh, John H; Murphy, Erin S; Yu, Jennifer S; Angelov, Lilyana; Mohammadi, Alireza M
2017-09-01
Local progression (LP) and radiation necrosis (RN) occur in >20% of cases following stereotactic radiosurgery (SRS) for brain metastases (BM). Expected outcomes following SRS for BM include tumor control/shrinkage, local progression and radiation necrosis. 1427 patients with 4283 BM lesions were treated using SRS at Cleveland Clinic from 2000 to 2012. Clinical, imaging and radiosurgery data were collected from the database. Local tumor progression and RN were the primary end points and correlated with patient and tumor-related variables. 5.7% of lesions developed radiographic RN and 3.6% showed local progression at 6 months. Absence of new extracranial metastasis (P < 0.001), response to SRS at first follow-up scan (local progression versus stable size (P < 0.001), partial resolution versus complete resolution at first follow up [P = 0.009]), prior SRS to the same lesion (P < 0.001), IDL% (≤55; P < 0.001), maximum tumor diameter (>0.9 cm; P < 0.001) and MD/PD gradient index (≤1.8, P < 0.001) were independent predictors of high risk of local tumor progression. Absence of systemic metastases (P = 0.029), good neurological function at 1st follow-up (P ≤ 0.001), no prior SRS to other lesion (P = 0.024), low conformity index (≤1.9) (P = 0.009), large maximum target diameter (>0.9 cm) (P = 0.003) and response to SRS (tumor progression vs. stable size following SRS [P < 0.001]) were independent predictors of high risk of radiographic RN. Complete tumor response at first follow-up, maximum tumor diameter <0.9 cm, tumor volume <2.4 cc and no prior SRS to the index lesion are good prognostic factors with reduced risk of LP following SRS. Complete tumor response to SRS, poor neurological function at first follow-up, prior SRS to other lesions and high conformity index are favorable factors for not developing RN. Stable or partial response at first follow-up after SRS have same impact on local progression and RN compared to those with complete resolution or progression. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Alipour, Mohsen; Majidi, Asia; Molaabasi, Fatemeh; Sheikhnejad, Reza; Hosseinkhani, Saman
2018-04-30
Modulating cancer causing genes with nucleic acid based-molecules as cutting-edge approaches need efficient delivery systems to succeed in clinic. Herein, we report design and fabrication of a novel tissue penetrating Peptideticle with charge-structure switching in tumor microenvironment for an effective gene delivery. The comparative in vitro studies indicate that peptideticles identify and bind to tumor endothelial cells and efficiently penetrate into multicellular tumor spheroid. In addition, negatively charged peptideticle at pH 7.4, prevent unwanted interaction while it's sharp charge-structure switching at pH 6.2-6.9 (e.g.in tumor tissue) facilitates malignant cells penetration. More importantly, upon systemic administration into tumor bearing mice, peptideticles effectively localized in tumor tissue and delivered luciferase gene with a 200-fold higher efficiency compared to their non-pH-responsive counterparts. In conclusion, this study presents a robust nanoassembly of safe materials for high efficient tumor gene delivery. This article is protected by copyright. All rights reserved. © 2018 UICC.
Lattanzi, J P; Fein, D A; McNeeley, S W; Shaer, A H; Movsas, B; Hanks, G E
1997-01-01
We describe our initial experience with the AcQSim (Picker International, St. David, PA) computed tomography-magnetic resonance imaging (CT-MRI) fusion software in eight patients with intracranial lesions. MRI data are electronically integrated into the CT-based treatment planning system. Since MRI is superior to CT in identifying intracranial abnormalities, we evaluated the precision and feasibility of this new localization method. Patients initially underwent CT simulation from C2 to the most superior portion of the scalp. T2 and post-contrast T1-weighted MRI of this area was then performed. Patient positioning was duplicated utilizing a head cup and bridge of nose to forehead angle measurements. First, a gross tumor volume (GTV) was identified utilizing the CT (CT/GTV). The CT and MRI scans were subsequently fused utilizing a point pair matching method and a second GTV (CT-MRI/GTV) was contoured with the aid of both studies. The fusion process was uncomplicated and completed in a timely manner. Volumetric analysis revealed the CT-MRI/GTV to be larger than the CT/GTV in all eight cases. The mean CT-MRI/GTV was 28.7 cm3 compared to 16.7 cm3 by CT alone. This translated into a 72% increase in the radiographic tumor volume by CT-MRI. A simulated dose-volume histogram in two patients revealed that marginal portions of the lesion, as identified by CT and MRI, were not included in the high dose treatment volume as contoured with the use of CT alone. Our initial experience with the fusion software demonstrated an improvement in tumor localization with this technique. Based on these patients the use of CT alone for treatment planning purposes in central nervous system (CNS) lesions is inadequate and would result in an unacceptable rate of marginal misses. The importation of MRI data into three-dimensional treatment planning is therefore crucial to accurate tumor localization. The fusion process simplifies and improves precision of this task.
[Do ablative treatments modify the management of kidney tumors in the elderly?].
Long, J-A; Neuzillet, Y; Poissonnier, L; Lang, H; Paparel, P; Escudier, B; Rioux-Leclercq, N; Correas, J-M; Mejean, A; Baumert, H; Soulié, M; Patard, J-J
2009-11-01
The development of ablative techniques in renal oncology has profoundly changed treatment of small renal tumors. The objective of this review of the literature was to assess the arguments for treating localized kidney tumors with these techniques in the elderly patient. The two techniques retained because of their recognized use, for all approaches, are radiofrequency and cryotherapy. The data in the literature report more frequent local recurrence with these techniques than with surgical excision and an advantage to cryotherapy over radiofrequency. There seems to be no difference in terms of metastatic progression. Morbidity is not insignificant, with major complications in slightly less than 10% of cases. Given the need to consider small tumors (<4 cm), the advantage in terms of life expectancy is challenged by series studying active monitoring of the oldest patients who present co-morbidities. At present, the indications should therefore be measured and based on a general assessment of the patient, with particular consideration of the existing co-morbidities so as not to treat a patient while imposing undue complications. (c) 2009 Elsevier Masson SAS. All rights reserved.
Yuan, Jianchao; Zhang, Haiyuan; Kaur, Harpreet; Oupicky, David; Peng, Fangyu
2013-05-01
Poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymers were synthesized and characterized for tumor localization in vivo as a theranostic scaffold for cancer imaging and anticancer drug delivery targeting tumor angiogenesis. Tumor localization of the poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymers was visualized in mice bearing human prostate cancer xenografts by positron emission tomography (PET) using a microPET scanner. PET quantitative analysis demonstrated that tumor 64Cu radioactivity (2.75 ± 0.34 %ID/g) in tumor-bearing mice 3 hours following intravenous injection of the poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymers was significantly higher than the tumor 64Cu radioactivity (1.29 ± 0.26 %ID/g) in tumor-bearing mice injected with the nontargeted poly(HPMA)-DOTA-64Cu copolymers (p = .004). The poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymers hold potential as a theranostic scaffold for cancer imaging and radiochemotherapy of prostate cancer targeting tumor angiogenesis by noninvasive tracking with PET.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnapauff, Dirk, E-mail: dirk.schnapauff@charite.de; Denecke, Timm; Grieser, Christian
Purpose: This study was designed to investigate the clinical outcome of patients with irresectable, intrahepatic cholangiocarcinoma (IHC) treated with computed tomography (CT)-guided HDR-brachytherapy (CT-HDRBT) for local tumor ablation.MethodFifteen consecutive patients with histologically proven cholangiocarcinoma were selected for this retrospective study. Patients were treated by high-dose-rate internal brachytherapy (HDRBT) using an Iridium-192 source in afterloading technique through CT-guided percutaneous placed catheters. A total of 27 brachytherapy treatments were performed in these patients between 2006 and 2009. Median tumor enclosing target dose was 20 Gy, and mean target volume of the radiated tumors was 131 ({+-} 90) ml (range, 10-257 ml). Follow-upmore » consisted of clinical visits and magnetic resonance imaging of the liver every third month. Statistical evaluation included survival analysis using the Kaplan-Meier method. Results: After a median follow-up of 18 (range, 1-27) months after local ablation, 6 of the 15 patients are still alive; 4 of them did not get further chemotherapy and are regarded as disease-free. The reached median local tumor control was 10 months; median local tumor control, including repetitive local ablation, was 11 months. Median survival after local ablation was 14 months and after primary diagnosis 21 months. Conclusion: In view of current clinical data on the clinical outcome of cholangiocarcinoma, locally ablative treatment with CT-HDRBT represents a promising and safe technique for patients who are not eligible for tumor resection.« less
Feuvret, Loïc; Bracci, Stefano; Calugaru, Valentin; Bolle, Stéphanie; Mammar, Hamid; De Marzi, Ludovic; Bresson, Damien; Habrand, Jean-Louis; Mazeron, Jean-Jacques; Dendale, Rémi; Noël, Georges
2016-05-01
Chondrosarcoma is a rare malignant tumor of the cartilage affecting young adults. Surgery, followed by charged-particle irradiation, is considered the reference standard for the treatment of patients with grade I to II skull base chondrosarcoma. The present study was conducted to assess the effect of the quality of surgery and radiation therapy parameters on local control (LC) and overall survival (OS). From 1996 to 2013, 159 patients (median age 40 years, range 12-83) were treated with either protons alone or a combination of protons and photons. The median total dose delivered was 70.2 Gy (relative biologic effectiveness [RBE]; range 67-71). Debulking and biopsy were performed in 133 and 13 patients, respectively. With a median follow-up of 77 months (range 2-214), 5 tumors relapsed based on the initial gross tumor volume. The 5- and 10-year LC rates were 96.4% and 93.5%, respectively, and the 5- and 10-year OS rates were 94.9% and 87%, respectively. A total of 16 patients died (13 of intercurrent disease, 3 of disease progression). On multivariate analysis, age <40 years and primary disease status were independent favorable prognostic factors for progression-free survival and OS, and local tumor control was an independent favorable predictor of OS. In contrast, the extent of surgery, dosimetric parameters, and adjacent organs at risk were not prognostic factors for LC or OS. Systematic high-dose postoperative proton therapy for skull base chondrosarcoma can achieve a high LC rate with a low toxicity profile. Maximal safe surgery, followed by high-dose conformal proton therapy, is therefore recommended. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feuvret, Loïc, E-mail: loic.feuvret@psl.aphp.fr; Department of Radiation Oncology, Institut Curie–Centre de protonthérapie d'Orsay; Bracci, Stefano
Purpose: Chondrosarcoma is a rare malignant tumor of the cartilage affecting young adults. Surgery, followed by charged-particle irradiation, is considered the reference standard for the treatment of patients with grade I to II skull base chondrosarcoma. The present study was conducted to assess the effect of the quality of surgery and radiation therapy parameters on local control (LC) and overall survival (OS). Methods and Materials: From 1996 to 2013, 159 patients (median age 40 years, range 12-83) were treated with either protons alone or a combination of protons and photons. The median total dose delivered was 70.2 Gy (relative biologic effectiveness [RBE];more » range 67-71). Debulking and biopsy were performed in 133 and 13 patients, respectively. Results: With a median follow-up of 77 months (range 2-214), 5 tumors relapsed based on the initial gross tumor volume. The 5- and 10-year LC rates were 96.4% and 93.5%, respectively, and the 5- and 10-year OS rates were 94.9% and 87%, respectively. A total of 16 patients died (13 of intercurrent disease, 3 of disease progression). On multivariate analysis, age <40 years and primary disease status were independent favorable prognostic factors for progression-free survival and OS, and local tumor control was an independent favorable predictor of OS. In contrast, the extent of surgery, dosimetric parameters, and adjacent organs at risk were not prognostic factors for LC or OS. Conclusions: Systematic high-dose postoperative proton therapy for skull base chondrosarcoma can achieve a high LC rate with a low toxicity profile. Maximal safe surgery, followed by high-dose conformal proton therapy, is therefore recommended.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolden, Suzanne L., E-mail: woldens@mskcc.org; Lyden, Elizabeth R.; Arndt, Carola A.
Purpose: To determine local control according to clinical variables for patients with intermediate-risk rhabdomyosarcoma (RMS) treated on Children's Oncology Group protocol D9803. Patients and Methods: Of 702 patients enrolled, we analyzed 423 patients with central pathology–confirmed group III embryonal (n=280) or alveolar (group III, n=102; group I-II, n=41) RMS. Median age was 5 years. Patients received 42 weeks of VAC (vincristine, dactinomycin, cyclophosphamide) or VAC alternating with VTC (T = topotecan). Local therapy with 50.4 Gy radiation therapy with or without delayed primary excision began at week 12 for group III patients. Patients with group I/II alveolar RMS received 36-41.4 Gy. Local failure (LF) was definedmore » as local progression as a first event with or without concurrent regional or distant failure. Results: At a median follow-up of 6.6 years, patients with clinical group I/II alveolar RMS had a 5-year event-free survival rate of 69% and LF of 10%. Among patients with group III RMS, 5-year event-free survival and LF rates were 70% and 19%, respectively. Local failure rates did not differ by histology, nodal status, or primary site, though there was a trend for increased LF for retroperitoneal (RP) tumors (P=.12). Tumors ≥5 cm were more likely to fail locally than tumors <5 cm (25% vs 10%, P=.0004). Almost all (98%) RP tumors were ≥5 cm, with no difference in LF by site when the analysis was restricted to tumors ≥5 cm (P=.86). Conclusion: Local control was excellent for clinical group I/II alveolar RMS. Local failure constituted 63% of initial events in clinical group III patients and did not vary by histology or nodal status. The trend for higher LF in RP tumors was related to tumor size. There has been no clear change in local control over RMS studies, including IRS-III and IRS-IV. Novel approaches are warranted for larger tumors (≥5 cm).« less
Yang, Yi; Zhao, Hang; Jia, YanPeng; Guo, QingFa; Qu, Ying; Su, Jing; Lu, XiaoLing; Zhao, YongXiang; Qian, ZhiYong
2016-01-01
Local anti-oncogene delivery providing high local concentration of gene, increasing antitumor effect and decreasing systemic side effects is currently attracting interest in cancer therapy. In this paper, a novel local sustained anti-oncogene delivery system, PECE thermoresponsive hydrogel containing folate-poly (ester amine) (FA-PEA) polymer/DNA (tumor suppressor) complexes, is demonstrated. First, a tumor-targeted biodegradable folate-poly (ester amine) (FA-PEA) polymer based on low-molecular-weight polyethyleneimine (PEI) was synthesized and characterized, and the application for targeted gene delivery was investigated. The polymer had slight cytotoxicity and high transfection efficiency in vitro compared with PEI 25k, which indicated that FA-PEA was a potential vector for targeted gene delivery. Meanwhile, we successfully prepared a thermoresponsive PECE hydrogel composite containing FA-PEA/DNA complexes which could contain the genes and slowly release the genes into cells. We concluded the folate-poly (ester amine) (FA-PEA) polymer would be useful for targeted gene delivery, and the novel gene delivery composite based on biodegradable folate-poly (ester amine) polymer and thermosensitive PECE hydrogel showed potential for sustained gene release. PMID:26883682
The value of nodal information in predicting lung cancer relapse using 4DPET/4DCT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Heyse, E-mail: heyse.li@mail.utoronto.ca; Becker, Nathan; Raman, Srinivas
2015-08-15
Purpose: There is evidence that computed tomography (CT) and positron emission tomography (PET) imaging metrics are prognostic and predictive in nonsmall cell lung cancer (NSCLC) treatment outcomes. However, few studies have explored the use of standardized uptake value (SUV)-based image features of nodal regions as predictive features. The authors investigated and compared the use of tumor and node image features extracted from the radiotherapy target volumes to predict relapse in a cohort of NSCLC patients undergoing chemoradiation treatment. Methods: A prospective cohort of 25 patients with locally advanced NSCLC underwent 4DPET/4DCT imaging for radiation planning. Thirty-seven image features were derivedmore » from the CT-defined volumes and SUVs of the PET image from both the tumor and nodal target regions. The machine learning methods of logistic regression and repeated stratified five-fold cross-validation (CV) were used to predict local and overall relapses in 2 yr. The authors used well-known feature selection methods (Spearman’s rank correlation, recursive feature elimination) within each fold of CV. Classifiers were ranked on their Matthew’s correlation coefficient (MCC) after CV. Area under the curve, sensitivity, and specificity values are also presented. Results: For predicting local relapse, the best classifier found had a mean MCC of 0.07 and was composed of eight tumor features. For predicting overall relapse, the best classifier found had a mean MCC of 0.29 and was composed of a single feature: the volume greater than 0.5 times the maximum SUV (N). Conclusions: The best classifier for predicting local relapse had only tumor features. In contrast, the best classifier for predicting overall relapse included a node feature. Overall, the methods showed that nodes add value in predicting overall relapse but not local relapse.« less
Method for localizing heating in tumor tissue
Doss, James D.; McCabe, Charles W.
1977-04-12
A method for a localized tissue heating of tumors is disclosed. Localized radio frequency current fields are produced with specific electrode configurations. Several electrode configurations are disclosed, enabling variations in electrical and thermal properties of tissues to be exploited.
Muthuswamy, Ravikumar; Corman, John M; Dahl, Kathryn; Chatta, Gurkamal S; Kalinski, Pawel
2016-09-01
Local infiltration of CD8(+) T cells (CTLs) in tumor lesions predicts overall clinical outcomes and the clinical benefit of cancer patients from immune checkpoint blockade. In the current study, we evaluated local production of different classes of chemokines in prostate cancer lesions, and the feasibility of their modulation to promote selective entry of CTLs into prostate tumors. Chemokine expression in prostate cancer lesion was analyzed by TaqMan-based quantitative PCR, confocal fluorescence microscopy and ELISA. For ex vivo chemokine modulation analysis, prostate tumor explants from patients undergoing primary prostate cancer resections were cultured for 24 hr, in the absence or presence of the combination of poly-I:C, IFNα, and celecoxib (PAC). The numbers of cells producing defined chemokines in the tissues were analyzed by confocal microscopy. Chemotaxis of effector CD8(+) T cells towards the untreated and PAC-treated tumor explant supernatants were evaluated in a standard in vitro migration assays, using 24 well trans-well plates. The number of effector cells that migrated was enumerated by flow cytometry. Pearson (r) correlation was used for analyzing correlations between chemokines and immune filtrate, while paired two tailed students t-test was used for comparison between treatment groups. Prostate tumors showed uniformly low levels of CTL/NK/Th1-recruiting chemokines (CCL5, CXCL9, CXCL10) but expressed high levels of chemokines implicated in the attraction of myeloid derived suppressor cells (MDSC) and regulatory T cells (Treg ): CCL2, CCL22, and CXCL12. Strong positive correlations were observed between CXCL9 and CXCL10 and local CD8 expression. Tumor expression levels of CCL2, CCL22, and CXCL12 were correlated with intratumoral expression of MDSC/Treg markers: FOXP3, CD33, and NCF2. Treatment with PAC suppressed intratumoral production of the Treg -attractant CCL22 and Treg /MDSC-attractant, CXCL12, while increasing the production of the CTL attractant, CXCL10. These changes in local chemokine production were accompanied by the reduced ability of the ex vivo-treated tumors to attract CD4(+) FOXP3(+) Treg cells, and strongly enhanced attraction of the CD8(+) Granzyme B(+) CTLs. Our data demonstrate that the chemokine environment in prostate cancer can be reprogrammed to selectively enhance the attraction of type-1 effector immune cells and reduce local attraction of MDSCs and Tregs . Prostate 76:1095-1105, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Chua, Daniel T T; Sham, Jonathan S T; Hung, Kwan-Ngai; Leung, Lucullus H T; Au, Gordon K H
2006-12-01
Stereotactic radiosurgery has been employed as a salvage treatment of local failures of nasopharyngeal carcinoma (NPC). To identify patients that would benefit from radiosurgery, we reviewed our data with emphasis on factors that predicted treatment outcome. A total of 48 patients with local failures of NPC were treated by stereotactic radiosurgery between March 1996 and February 2005. Radiosurgery was administered using a modified linear accelerator with single or multiple isocenters to deliver a median dose of 12.5 Gy to the target periphery. Median follow-up was 54 months. Five-year local failure-free probability after radiosurgery was 47.2% and 5-year overall survival rate was 46.9%. Neuroendocrine complications occurred in 27% of patients but there were no treatment-related deaths. Time interval from primary radiotherapy, retreatment T stage, prior local failures and tumor volume were significant predictive factors of local control and/or survival whereas age was of marginal significance in predicting survival. A radiosurgery prognostic scoring system was designed based on these predictive factors. Five-year local failure-free probabilities in patients with good, intermediate and poor prognostic scores were 100%, 42.5%, and 9.6%. The corresponding five-year overall survival rates were 100%, 51.1%, and 0%. Important factors that predicted tumor control and survival after radiosurgery were identified. Patients with good prognostic score should be treated by radiosurgery in view of the excellent results. Patients with intermediate prognostic score may also be treated by radiosurgery but those with poor prognostic score should receive other salvage treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talleur, Aimee C.; Navid, Fariba; Spunt, Sheri L.
Purpose: To determine the rate of local failure using focal conformal, limited margin radiation therapy (RT) and dose escalation for tumors ≥8 cm (greatest dimension at diagnosis) in children and young adults with Ewing sarcoma (EWS). Methods and Materials: Eligible patients with EWS were treated on a phase 2 institutional trial of focal conformal, limited margin RT using conformal or intensity modulated techniques. The treatment volume incorporated a 1-cm constrained margin around the gross tumor. Unresected tumors, <8 cm at diagnosis, received a standard dose of 55.8 Gy and tumors ≥8 cm, an escalated dose to 64.8 Gy. Patients with microscopic residual disease after resectionmore » received adjuvant RT to 50.4 Gy. Adjuvant brachytherapy was permitted in selected patients. Results: Forty-five patients were enrolled: 26 with localized and 19 with metastatic disease. Median (range) age, tumor size, and follow-up were 13.0 years (2.9-24.7 years), 9.0 cm (2.4-17.0 cm), and 54.5 months (1.9-122.2 months), respectively. All patients received systemic chemotherapy. The median (range) RT dose for all patients was 56.1 Gy (45-65.5 Gy). Seventeen patients received adjuvant, 16 standard-dose, and 12 escalated-dose RT. Failures included 1 local, 10 distant, and 1 local/distant. The estimated 10-year cumulative incidence of local failure was 4.4% ± 3.1%, with no statistical difference seen between RT treatment groups and no local failures in the escalated-dose RT treatment group. Conclusions: Treatment with focal conformal, limited margin RT, including dose escalation for larger tumors, provides favorable local tumor control in EWS.« less
A Case of Recurrent Anaplastic Meningioma of the Skull Base with Radiologic Response to Hydroxyurea
Gurberg, Joshua; Bouganim, Nathaniel; Shenouda, George; Zeitouni, Anthony
2014-01-01
Anaplastic meningiomas are rare and aggressive tumors with a high propensity for local recurrence. Surgical resection and postoperative radiotherapy are the standard of care for primary disease and local recurrences. Refractory disease is managed with chemotherapy with limited success. A highly efficacious, well-tolerated chemotherapeutic agent has yet to be found for this disease entity. Hydroxyurea is currently receiving renewed attention because of its efficacy in inducing apoptosis of meningioma cells in vitro and its favorable side-effect profile. Thus far, in humans, this agent has only induced stable disease. We describe the first patient showing a near complete/partial clinical and radiological regression after 5 months of 25 mg/kg of hydroxyurea once daily, given within 1 month after stereotactic fractionated reirradiation of a previously irradiated and operated anaplastic meningioma of the skull base. Magnetic resonance imaging showed a significant and sustained response with tumor shrinkage and cavitation. PMID:25083390
Imaging hypoxia using 3D photoacoustic spectroscopy
NASA Astrophysics Data System (ADS)
Stantz, Keith M.
2010-02-01
Purpose: The objective is to develop a multivariate in vivo hemodynamic model of tissue oxygenation (MiHMO2) based on 3D photoacoustic spectroscopy. Introduction: Low oxygen levels, or hypoxia, deprives cancer cells of oxygen and confers resistance to irradiation, some chemotherapeutic drugs, and oxygen-dependent therapies (phototherapy) leading to treatment failure and poor disease-free and overall survival. For example, clinical studies of patients with breast carcinomas, cervical cancer, and head and neck carcinomas (HNC) are more likely to suffer local reoccurrence and metastasis if their tumors are hypoxic. A novel method to non invasively measure tumor hypoxia, identify its type, and monitor its heterogeneity is devised by measuring tumor hemodynamics, MiHMO2. Material and Methods: Simulations are performed to compare tumor pO2 levels and hypoxia based on physiology - perfusion, fractional plasma volume, fractional cellular volume - and its hemoglobin status - oxygen saturation and hemoglobin concentration - based on in vivo measurements of breast, prostate, and ovarian tumors. Simulations of MiHMO2 are performed to assess the influence of scanner resolutions and different mathematic models of oxygen delivery. Results: Sensitivity of pO2 and hypoxic fraction to photoacoustic scanner resolution and dependencies on model complexity will be presented using hemodynamic parameters for different tumors. Conclusions: Photoacoustic CT spectroscopy provides a unique ability to monitor hemodynamic and cellular physiology in tissue, which can be used to longitudinally monitor tumor oxygenation and its response to anti-angiogenic therapies.
Photodynamic therapy of locally advanced basal cell skin cancer
NASA Astrophysics Data System (ADS)
Riabov, Mikhail V.; Stranadko, Evgeny P.
2005-08-01
The treatment of locally spread basal-cell skin cancer is very difficult and often complicated with local recurrence. Traditional techniques are sometimes insufficient for this pathology, especially for recurrent tumors. In the State Research Center for Laser Medicine photodynamic therapy had been used for treatment of 103 patients with locally spread basal-cell skin cancer, including 64 with recurrent tumors. Therapeutic effect has been achieved in all cases, including complete tumor resorption in 67% of patients. Presented paper contains analysis of immediate and long-term follow-up results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pai Panandiker, Atmaram S., E-mail: atmaram.pai-panandiker@stjude.org; Merchant, Thomas E.; Beltran, Chris
Purpose: To assess the pattern of treatment failure associated with current therapeutic paradigms for childhood atypical teratoid rhabdoid tumors (AT/RT). Methods and Materials: Pediatric patients with AT/RT of the central nervous system treated at our institution between 1987 and 2007 were retrospectively evaluated. Overall survival (OS), progression-free survival, and cumulative incidence of local failure were correlated with age, sex, tumor location, extent of disease, and extent of surgical resection. Radiotherapy (RT) sequencing, chemotherapy, dose, timing, and volume administered after resection were also evaluated. Results: Thirty-one patients at a median age of 2.3 years at diagnosis (range, 0.45-16.87 years) were enrolledmore » into protocols that included risk- and age-stratified RT. Craniospinal irradiation with focal tumor bed boost (median dose, 54 Gy) was administered to 18 patients. Gross total resection was achieved in 16. Ten patients presented with metastases at diagnosis. RT was delayed more than 3 months in 20 patients and between 1 and 3 months in 4; 7 patients received immediate postoperative irradiation preceding high-dose alkylator-based chemotherapy. At a median follow-up of 48 months, the cumulative incidence of local treatment failure was 37.5% {+-} 9%; progression-free survival was 33.2% {+-} 10%; and OS was 53.5% {+-} 10%. Children receiving delayed RT ({>=}1 month postoperatively) were more likely to experience local failure (hazard ratio [HR] 1.23, p = 0.007); the development of distant metastases before RT increased the risk of progression (HR 3.49, p = 0.006); and any evidence of disease progressionbefore RT decreased OS (HR 20.78, p = 0.004). Disease progression occurred in 52% (11/21) of children with initially localized tumors who underwent gross total resection, and the progression rate increased proportionally with increasing delay from surgery to RT. Conclusions: Delayed RT is associated with a higher rate of local and metastatic disease progression in children with AT/RT. Current treatment regimens for pediatric patients with AT/RT are distinctly age stratified; novel protocols investigating RT volumes and sequencing are needed.« less
NASA Astrophysics Data System (ADS)
Nadiarnykh, Oleg; Moll, Annette C.; de Boer, Johannes F.
2016-03-01
We demonstrate a novel optical coherence tomography system specifically developed and validated for clinical imaging of retinoblastoma tumors in pediatric patients. The existing treatment options for this malignant tumor of the retina aim at reduction of tumor (re)growth risks, and vision preservation. The choice of optimal treatment strongly depends on skilled and detailed clinical assessment. Currently, the patients at risk are periodically monitored with retinal imaging for possible morphological changes over time, and new tumor seedings, as the existing real-time diagnostic tools are limited. Three-dimensional visualization of tissue layer and microvasculature at improved axial and lateral resolution of interference-based OCT imaging provides sensitivity for detection of vital tumor tissue concurrent with local treatment. Our METC-approved system accommodates for the range of optical parameters of infants' eyes, and uses the 1050nm wavelength to access the deeper choroid layers of retina. The prototype is designed for patients in supine position under general anesthesia, where ergonomic handheld module is connected to fiber-based optical setup via umbilical cord. The system conforms to clinical safety requirements, including fully isolated low-voltage electric circuit. Focusing is performed with a mechanically tunable lens, where resolution is 6 µm axially, and varies with focusing at 10-18µm laterally. We will present optical design, performance limitations, and results of the ongoing clinical study, including the increased OCT diagnostic sensitivity in three dimensions in comparison with the established clinical imaging modalities. We will discuss images of early, active, and treated tumors, as well as follow-up on patients after local and systemic treatments.
Maxwell, Jessica H; Thompson, Lester D R; Brandwein-Gensler, Margaret S; Weiss, Bernhard G; Canis, Martin; Purgina, Bibianna; Prabhu, Arpan V; Lai, Chi; Shuai, Yongli; Carroll, William R; Morlandt, Anthony; Duvvuri, Umamaheswar; Kim, Seungwon; Johnson, Jonas T; Ferris, Robert L; Seethala, Raja; Chiosea, Simion I
2015-12-01
Positive margins are associated with poor prognosis among patients with oral tongue squamous cell carcinoma (SCC). However, wide variation exists in the margin sampling technique. To determine the effect of the margin sampling technique on local recurrence (LR) in patients with stage I or II oral tongue SCC. A retrospective study was conducted from January 1, 1986, to December 31, 2012, in 5 tertiary care centers following tumor resection and elective neck dissection in 280 patients with pathologic (p)T1-2 pN0 oral tongue SCC. Analysis was conducted from June 1, 2013, to January 20, 2015. In group 1 (n = 119), tumor bed margins were not sampled. In group 2 (n = 61), margins were examined from the glossectomy specimen, found to be positive or suboptimal, and revised with additional tumor bed margins. In group 3 (n = 100), margins were primarily sampled from the tumor bed without preceding examination of the glossectomy specimen. The margin status (both as a binary [positive vs negative] and continuous [distance to the margin in millimeters] variable) and other clinicopathologic parameters were compared across the 3 groups and correlated with LR. Local recurrence. Age, sex, pT stage, lymphovascular or perineural invasion, and adjuvant radiation treatment were similar across the 3 groups. The probability of LR-free survival at 3 years was 0.9 and 0.8 in groups 1 and 3, respectively (P = .03). The frequency of positive glossectomy margins was lowest in group 1 (9 of 117 [7.7%]) compared with groups 2 and 3 (28 of 61 [45.9%] and 23 of 95 [24.2%], respectively) (P < .001). Even after excluding cases with positive margins, the median distance to the closest margin was significantly narrower in group 3 (2 mm) compared with group 1 (3 mm) (P = .008). The status (positive vs negative) of margins obtained from the glossectomy specimen correlated with LR (P = .007), while the status of tumor bed margins did not. The status of the tumor bed margin was 24% sensitive (95% CI, 16%-34%) and 92% specific (95% CI, 85%-97%) for detecting a positive glossectomy margin. The margin sampling technique affects local control in patients with oral tongue SCC. Reliance on margin sampling from the tumor bed is associated with worse local control, most likely owing to narrower margin clearance and greater incidence of positive margins. A resection specimen-based margin assessment is recommended.
Early Oral Tongue Squamous Cell Carcinoma Sampling of Margins From Tumor Bed and Worse Local Control
Maxwell, Jessica H.; Thompson, Lester D. R.; Brandwein-Gensler, Margaret S.; Weiss, Bernhard G.; Canis, Martin; Purgina, Bibianna; Prabhu, Arpan V.; Lai, Chi; Shuai, Yongli; Carroll, William R.; Morlandt, Anthony; Duvvuri, Umamaheswar; Kim, Seungwon; Johnson, Jonas T.; Ferris, Robert L.; Seethala, Raja; Chiosea, Simion I.
2017-01-01
IMPORTANCE Positive margins are associated with poor prognosis among patients with oral tongue squamous cell carcinoma (SCC). However, wide variation exists in the margin sampling technique. OBJECTIVE To determine the effect of the margin sampling technique on local recurrence (LR) in patients with stage I or II oral tongue SCC. DESIGN, SETTING, AND PARTICIPANTS A retrospective study was conducted from January 1, 1986, to December 31, 2012, in 5 tertiary care centers following tumor resection and elective neck dissection in 280 patients with pathologic (p)T1-2 pN0 oral tongue SCC. Analysis was conducted from June 1, 2013, to January 20, 2015. INTERVENTIONS In group 1 (n = 119), tumor bed margins were not sampled. In group 2 (n = 61), margins were examined from the glossectomy specimen, found to be positive or suboptimal, and revised with additional tumor bed margins. In group 3 (n = 100), margins were primarily sampled from the tumor bed without preceding examination of the glossectomy specimen. The margin status (both as a binary [positive vs negative] and continuous [distance to the margin in millimeters] variable) and other clinicopathologic parameters were compared across the 3 groups and correlated with LR. MAIN OUTCOMES AND MEASURES Local recurrence. RESULTS Age, sex, pT stage, lymphovascular or perineural invasion, and adjuvant radiation treatment were similar across the 3 groups. The probability of LR-free survival at 3 years was 0.9 and 0.8 in groups 1 and 3, respectively (P = .03). The frequency of positive glossectomy margins was lowest in group 1 (9 of 117 [7.7%]) compared with groups 2 and 3 (28 of 61 [45.9%] and 23 of 95 [24.2%], respectively) (P < .001). Even after excluding cases with positive margins, the median distance to the closest margin was significantly narrower in group 3 (2 mm) compared with group 1 (3 mm) (P = .008). The status (positive vs negative) of margins obtained from the glossectomy specimen correlated with LR (P = .007), while the status of tumor bed margins did not. The status of the tumor bed margin was 24% sensitive (95% CI, 16%-34%) and 92% specific (95% CI, 85%-97%) for detecting a positive glossectomy margin. CONCLUSIONS AND RELEVANCE The margin sampling technique affects local control in patients with oral tongue SCC. Reliance on margin sampling from the tumor bed is associated with worse local control, most likely owing to narrower margin clearance and greater incidence of positive margins. A resection specimen–based margin assessment is recommended. PMID:26225798
Heiduschka, Gregor; Virk, Sohaib A; Palme, Carsten E; Ch'ng, Sydney; Elliot, Michael; Gupta, Ruta; Clark, Jonathan
2016-04-01
To assess whether small oral squamous cell carcinomas (OSCC) require the same margin clearance as large tumors. We evaluated the association between the ratio of the closest margin to tumor size (MSR) and tumor thickness (MTR) with local control and survival. The clinicopathologic and follow up data were obtained for 501 OSCC patients who had surgical resection with curative intent at our institution. MTR and MSR were computed and their associations with local control and survival were assessed using multivariable Cox-regression model. Survival curves were generated using the Kaplan-Meier method. MTR was a better predictor of disease control than MSR. MTR was a predictor of local failure (p=0.033) and disease specific death (p=0.038) after adjusting for perineural invasion, lymphovascular involvement, nodal status, and radiotherapy. A threshold MTR value of 0.3 was identified, above which the risk of local recurrence was low. The ratio of margin to tumor thickness was an independent predictor for local recurrence and disease specific death in this cohort. A MTR>0.3 can serve as a useful tool for adjuvant therapy planning as it combines tumor thickness and margin clearance, two well established prognostic factors. The minimum safe margin can be calculated by multiplying the tumor thickness by 0.3. Further prospective studies in other institutions are warranted to confirm the prognostic utility of MTR and assess the generalizability of our threshold values. Copyright © 2016 Elsevier Ltd. All rights reserved.
Possible role of laser phototherapy in laser immunotherapy
NASA Astrophysics Data System (ADS)
Hode, Tomas; Hode, Lars
2009-02-01
Laser immunotherapy is a promising cancer treatment method that induces antitumor immunity and appears to be effective both locally and systemically. In this context, an important factor is the overall state of the immune system, both locally and systemically. The success of any immunotherapy treatment depends on the balance between the local immunosuppressive forces induced by the tumor and the immune response of the host organism. Factors that influence this balance include heat-shock proteins (for example HSP70), transforming growth factor β (TGF-β), tumor necrosis factor α (TNF-α), interleukins, and more. Laser phototherapy, which is based on non-thermal photobiological processes, has been shown to modulate the body's own immune response, both locally and systemically, with a strong influence on for example cytokine production and heat-shock protein synthesis. Laser phototherapy may therefore be an important component in the overall efficacy of laser immunotherapy, and may tip the balance between the immunosuppressive and immunostimulatory forces in favor of immunostimulation.
On the global dynamics of a chronic myelogenous leukemia model
NASA Astrophysics Data System (ADS)
Krishchenko, Alexander P.; Starkov, Konstantin E.
2016-04-01
In this paper we analyze some features of global dynamics of a three-dimensional chronic myelogenous leukemia (CML) model with the help of the stability analysis and the localization method of compact invariant sets. The behavior of CML model is defined by concentrations of three cellpopulations circulating in the blood: naive T cells, effector T cells specific to CML and CML cancer cells. We prove that the dynamics of the CML system around the tumor-free equilibrium point is unstable. Further, we compute ultimate upper bounds for all three cell populations and provide the existence conditions of the positively invariant polytope. One ultimate lower bound is obtained as well. Moreover, we describe the iterative localization procedure for refining localization bounds; this procedure is based on cyclic using of localizing functions. Applying this procedure we obtain conditions under which the internal tumor equilibrium point is globally asymptotically stable. Our theoretical analyses are supplied by results of the numerical simulation.
Surgical resection after TNFerade therapy for locally advanced pancreatic cancer.
Chadha, Manpreet K; Litwin, Alan; Levea, Charles; Iyer, Renuka; Yang, Gary; Javle, Milind; Gibbs, John F
2009-09-04
Treatment of pancreatic cancer remains a major oncological challenge and survival is dismal. Most patients, present with advanced disease at diagnosis and are not candidates for curative resection. Preoperative chemoradiation may downstage and improve survival in locally advanced pancreatic cancer. This has prompted investigators to look for novel neoadjuvant therapies. Gene therapy for pancreatic cancer is a novel investigational approach that may have promise. TNFerade is a replication deficient adenovirus vector carrying the human tumor necrosis factor (TNF)-alpha gene regulated under control of a radiation-inducible gene promoter. Transfection of tumor cells with TNFerade maximizes the antitumor effect of TNF-alpha under influence of radiation leading to synergistic effects in preclinical studies. We describe a case of locally advanced unresectable pancreatic cancer treated with a novel multimodal approach utilizing gene therapy with TNFerade and concurrent chemoradiation that was followed by successful surgical resection. Neoadjuvant TNFerade based chemoradiation therapy may be a useful adjunct to treatment of locally advanced pancreatic cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edmondson, Elijah F., E-mail: elijah.edmondson@colostate.edu; Hunter, Nancy R.; Weil, Michael M.
2015-07-15
Purpose: To investigate differences in tumor histotype, incidence, latency, and strain susceptibility in mice exposed to single-dose or clinically relevant, fractioned-dose γ-ray radiation. Methods and Materials: C3Hf/Kam and C57BL/6J mice were locally irradiated to the right hindlimb with either single large doses between 10 and 70 Gy or fractionated doses totaling 40 to 80 Gy delivered at 2-Gy/d fractions, 5 d/wk, for 4 to 8 weeks. The mice were closely evaluated for tumor development in the irradiated field for 800 days after irradiation, and all tumors were characterized histologically. Results: A total of 210 tumors were induced within the radiation field in 788 mice. Anmore » overall decrease in tumor incidence was observed after fractionated irradiation (16.4%) in comparison with single-dose irradiation (36.1%). Sarcomas were the predominant postirradiation tumor observed (n=201), with carcinomas occurring less frequently (n=9). The proportion of mice developing tumors increased significantly with total dose for both single-dose and fractionated schedules, and latencies were significantly decreased in mice exposed to larger total doses. C3Hf/Kam mice were more susceptible to tumor induction than C57BL/6J mice after single-dose irradiation; however, significant differences in tumor susceptibilities after fractionated radiation were not observed. For both strains of mice, osteosarcomas and hemangiosarcomas were significantly more common after fractionated irradiation, whereas fibrosarcomas and malignant fibrous histiocytomas were significantly more common after single-dose irradiation. Conclusions: This study investigated the tumorigenic effect of acute large doses in comparison with fractionated radiation in which both the dose and delivery schedule were similar to those used in clinical radiation therapy. Differences in tumor histotype after single-dose or fractionated radiation exposures provide novel in vivo evidence for differences in tumor susceptibility among stromal cell populations.« less
Novelli, Giorgio; Gramegna, Marco; Tonellini, Gabriele; Valente, Gabriella; Boni, Pietro; Bozzetti, Alberto; Sozzi, Davide
2016-09-01
Osteoblastoma is a benign tumor of bone, representing less than 1% of bone tumors. Craniomaxillofacial localizations account for up to 15% of the total and frequently involve the posterior mandible. Endo-orbital localization is very rare, with most occurring in young patients. Very few of these tumors become malignant. Orbital localization requires radical removal of the tumor followed by careful surgical reconstruction of the orbit to avoid subsequent aesthetic or functional problems. Here, we present a clinical case of this condition and describe a surgical protocol that uses and integrates state-of-the art technologies to achieve orbital reconstruction.
Lung tumor tracking in fluoroscopic video based on optical flow
Xu, Qianyi; Hamilton, Russell J.; Schowengerdt, Robert A.; Alexander, Brian; Jiang, Steve B.
2008-01-01
Respiratory gating and tumor tracking for dynamic multileaf collimator delivery require accurate and real-time localization of the lung tumor position during treatment. Deriving tumor position from external surrogates such as abdominal surface motion may have large uncertainties due to the intra- and interfraction variations of the correlation between the external surrogates and internal tumor motion. Implanted fiducial markers can be used to track tumors fluoroscopically in real time with sufficient accuracy. However, it may not be a practical procedure when implanting fiducials bronchoscopically. In this work, a method is presented to track the lung tumor mass or relevant anatomic features projected in fluoroscopic images without implanted fiducial markers based on an optical flow algorithm. The algorithm generates the centroid position of the tracked target and ignores shape changes of the tumor mass shadow. The tracking starts with a segmented tumor projection in an initial image frame. Then, the optical flow between this and all incoming frames acquired during treatment delivery is computed as initial estimations of tumor centroid displacements. The tumor contour in the initial frame is transferred to the incoming frames based on the average of the motion vectors, and its positions in the incoming frames are determined by fine-tuning the contour positions using a template matching algorithm with a small search range. The tracking results were validated by comparing with clinician determined contours on each frame. The position difference in 95% of the frames was found to be less than 1.4 pixels (∼0.7 mm) in the best case and 2.8 pixels (∼1.4 mm) in the worst case for the five patients studied. PMID:19175094
Lung tumor tracking in fluoroscopic video based on optical flow.
Xu, Qianyi; Hamilton, Russell J; Schowengerdt, Robert A; Alexander, Brian; Jiang, Steve B
2008-12-01
Respiratory gating and tumor tracking for dynamic multileaf collimator delivery require accurate and real-time localization of the lung tumor position during treatment. Deriving tumor position from external surrogates such as abdominal surface motion may have large uncertainties due to the intra- and interfraction variations of the correlation between the external surrogates and internal tumor motion. Implanted fiducial markers can be used to track tumors fluoroscopically in real time with sufficient accuracy. However, it may not be a practical procedure when implanting fiducials bronchoscopically. In this work, a method is presented to track the lung tumor mass or relevant anatomic features projected in fluoroscopic images without implanted fiducial markers based on an optical flow algorithm. The algorithm generates the centroid position of the tracked target and ignores shape changes of the tumor mass shadow. The tracking starts with a segmented tumor projection in an initial image frame. Then, the optical flow between this and all incoming frames acquired during treatment delivery is computed as initial estimations of tumor centroid displacements. The tumor contour in the initial frame is transferred to the incoming frames based on the average of the motion vectors, and its positions in the incoming frames are determined by fine-tuning the contour positions using a template matching algorithm with a small search range. The tracking results were validated by comparing with clinician determined contours on each frame. The position difference in 95% of the frames was found to be less than 1.4 pixels (approximately 0.7 mm) in the best case and 2.8 pixels (approximately 1.4 mm) in the worst case for the five patients studied.
2005-05-01
AD_ Award Number: DAMD17-03-1-0353 TITLE: Monitoring of Breast Tumor Response to Local Chemotherapeutic Agent Delivered by Biodegradable Fibers...30 Apr 2005 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Monitoring of Breast Tumor Response to Local Chemotherapeutic Agent Delivered by Biodegradable ... biodegradable fiber 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON OF ABSTRACT OF PAGES a. REPORT b. ABSTRACT c
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santoro, J. P.; McNamara, J.; Yorke, E.
2012-10-15
Purpose: There is increasingly widespread usage of cone-beam CT (CBCT) for guiding radiation treatment in advanced-stage lung tumors, but difficulties associated with daily CBCT in conventionally fractionated treatments include imaging dose to the patient, increased workload and longer treatment times. Respiration-correlated cone-beam CT (RC-CBCT) can improve localization accuracy in mobile lung tumors, but further increases the time and workload for conventionally fractionated treatments. This study investigates whether RC-CBCT-guided correction of systematic tumor deviations in standard fractionated lung tumor radiation treatments is more effective than 2D image-based correction of skeletal deviations alone. A second study goal compares respiration-correlated vs respiration-averaged imagesmore » for determining tumor deviations. Methods: Eleven stage II-IV nonsmall cell lung cancer patients are enrolled in an IRB-approved prospective off-line protocol using RC-CBCT guidance to correct for systematic errors in GTV position. Patients receive a respiration-correlated planning CT (RCCT) at simulation, daily kilovoltage RC-CBCT scans during the first week of treatment and weekly scans thereafter. Four types of correction methods are compared: (1) systematic error in gross tumor volume (GTV) position, (2) systematic error in skeletal anatomy, (3) daily skeletal corrections, and (4) weekly skeletal corrections. The comparison is in terms of weighted average of the residual GTV deviations measured from the RC-CBCT scans and representing the estimated residual deviation over the treatment course. In the second study goal, GTV deviations computed from matching RCCT and RC-CBCT are compared to deviations computed from matching respiration-averaged images consisting of a CBCT reconstructed using all projections and an average-intensity-projection CT computed from the RCCT. Results: Of the eleven patients in the GTV-based systematic correction protocol, two required no correction, seven required a single correction, one required two corrections, and one required three corrections. Mean residual GTV deviation (3D distance) following GTV-based systematic correction (mean {+-} 1 standard deviation 4.8 {+-} 1.5 mm) is significantly lower than for systematic skeletal-based (6.5 {+-} 2.9 mm, p= 0.015), and weekly skeletal-based correction (7.2 {+-} 3.0 mm, p= 0.001), but is not significantly lower than daily skeletal-based correction (5.4 {+-} 2.6 mm, p= 0.34). In two cases, first-day CBCT images reveal tumor changes-one showing tumor growth, the other showing large tumor displacement-that are not readily observed in radiographs. Differences in computed GTV deviations between respiration-correlated and respiration-averaged images are 0.2 {+-} 1.8 mm in the superior-inferior direction and are of similar magnitude in the other directions. Conclusions: An off-line protocol to correct GTV-based systematic error in locally advanced lung tumor cases can be effective at reducing tumor deviations, although the findings need confirmation with larger patient statistics. In some cases, a single cone-beam CT can be useful for assessing tumor changes early in treatment, if more than a few days elapse between simulation and the start of treatment. Tumor deviations measured with respiration-averaged CT and CBCT images are consistent with those measured with respiration-correlated images; the respiration-averaged method is more easily implemented in the clinic.« less
Biomedical research with cyclotron produced radionuclides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laughlin, J.S.; Benua, R.S.; Tilbury, R.S.
1979-09-01
Progress is reported on: metabolic and tumor localization in man and animals; radiodrug development; dosimetry for internally deposited isotopes; and radioactive material transfer system. Based on experience with /sup 13/N-glutamate in osteogenic sarcoma and Ewing's sarcoma, we conclude that (a) the /sup 13/N label enters tumor tissue rapidly at a rate similar to that at which activity leaves the blood, suggesting that the labeled glutamate itself is being transported into the tumor rather than some labeled metabolite; (b) uptake in the tumor is related to its metabolic activity, but factors such as blood flow are also important; (c) changes inmore » the glutamate scan accurately reflect the response of osteogenic sarcoma to pre-operative chemotherapy as measured by conventional means, and that it is desirable to extend this experience to other types of tumors. /sup 13/N-Glutamate (and other /sup 13/N-labeled compounds) afford several advantages over conventional tumor imaging agents, such as rapid blood clearance and localization, low radiation exposure and the possibility of obtaining accurate, three-dimensional quantitative images via positron emission tomography. It is doubtful that these advantages will justify the routine use of /sup 13/N-glutamate to detect tumors or to monitor therapy except in clinical situations where conventional techniques are unsatisfactory. The value of /sup 1/3N-glutamate is as a tool to assess the metabolic requirement of neoplastic tissue in cancer patients in-vivo. (PCS)« less
Nakae, Shunsuke; Kato, Takema; Murayama, Kazuhiro; Sasaki, Hikaru; Abe, Masato; Kumon, Masanobu; Kumai, Tadashi; Yamashiro, Kei; Inamasu, Joji; Hasegawa, Mitsuhiro; Kurahashi, Hiroki; Hirose, Yuichi
2017-01-01
Most IDH mutant gliomas harbor either 1p/19q co-deletions or TP53 mutation; 1p/19q co-deleted tumors have significantly better prognoses than tumors harboring TP53 mutations. To investigate the clinical factors that contribute to differences in tumor progression of IDH mutant gliomas, we classified recurrent tumor patterns based on MRI and correlated these patterns with their genomic characterization. Accordingly, in IDH mutant gliomas (N = 66), 1p/19 co-deleted gliomas only recurred locally, whereas TP53 mutant gliomas recurred both locally and in remote intracranial regions. In addition, diffuse tensor imaging suggested that remote intracranial recurrence in the astrocytomas, IDH-mutant with TP53 mutations may occur along major fiber bundles. Remotely recurrent tumors resulted in a higher mortality and significantly harbored an 8q gain; astrocytomas with an 8q gain resulted in significantly shorter overall survival than those without an 8q gain. OncoScan® arrays and next-generation sequencing revealed specific 8q regions (i.e., between 8q22 and 8q24) show a high copy number. In conclusion, only tumors with TP53 mutations showed patterns of remote recurrence in IDH mutant gliomas. Furthermore, an 8q gain was significantly associated with remote intracranial recurrence and can be considered a poor prognostic factor in astrocytomas, IDH-mutant. PMID:29156679
3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models
Dhou, Salam; Hurwitz, Martina; Mishra, Pankaj; Cai, Weixing; Rottmann, Joerg; Li, Ruijiang; Williams, Christopher; Wagar, Matthew; Berbeco, Ross; Ionascu, Dan; Lewis, John H.
2015-01-01
3D fluoroscopic images represent volumetric patient anatomy during treatment with high spatial and temporal resolution. 3D fluoroscopic images estimated using motion models built using 4DCT images, taken days or weeks prior to treatment, do not reliably represent patient anatomy during treatment. In this study we develop and perform initial evaluation of techniques to develop patient-specific motion models from 4D cone-beam CT (4DCBCT) images, taken immediately before treatment, and use these models to estimate 3D fluoroscopic images based on 2D kV projections captured during treatment. We evaluate the accuracy of 3D fluoroscopic images by comparing to ground truth digital and physical phantom images. The performance of 4DCBCT- and 4DCT- based motion models are compared in simulated clinical situations representing tumor baseline shift or initial patient positioning errors. The results of this study demonstrate the ability for 4DCBCT imaging to generate motion models that can account for changes that cannot be accounted for with 4DCT-based motion models. When simulating tumor baseline shift and patient positioning errors of up to 5 mm, the average tumor localization error and the 95th percentile error in six datasets were 1.20 and 2.2 mm, respectively, for 4DCBCT-based motion models. 4DCT-based motion models applied to the same six datasets resulted in average tumor localization error and the 95th percentile error of 4.18 and 5.4 mm, respectively. Analysis of voxel-wise intensity differences was also conducted for all experiments. In summary, this study demonstrates the feasibility of 4DCBCT-based 3D fluoroscopic image generation in digital and physical phantoms, and shows the potential advantage of 4DCBCT-based 3D fluoroscopic image estimation when there are changes in anatomy between the time of 4DCT imaging and the time of treatment delivery. PMID:25905722
Kamran, Sophia C; Manuel, Matthias M; Catalano, Paul; Cho, Linda; Damato, Antonio L; Lee, Larissa J; Schmidt, Ehud J; Viswanathan, Akila N
To compare clinical outcomes of MR-based versus CT-based high-dose-rate interstitial brachytherapy (ISBT) for vaginal recurrence of endometrioid endometrial cancer (EC). We reviewed 66 patients with vaginal recurrent EC; 18 had MR-based ISBT on a prospective clinical trial and 48 had CT-based treatment. Kaplan-Meier survival modeling was used to generate estimates for local control (LC), disease-free interval (DFI), and overall survival (OS), and multivariate Cox modeling was used to assess prognostic factors. Toxicities were evaluated and compared. Median followup was 33 months (CT 30 months, MR 35 months). Median cumulative equivalent dose in 2-Gy fractions was 75.5 Gy for MR-ISBT and 73.8 Gy for CT-ISBT (p = 0.58). MR patients were older (p = 0.03) and had larger tumor size (>4 cm vs. ≤ 4 cm) compared to CT patients (p = 0.04). For MR-based versus CT-based ISBT, 3-year KM rate for local control was 100% versus 78% (p = 0.04), DFI was 69% versus 55% (p = 0.1), and OS was 63% versus 75% (p = 0.81), respectively. On multivariate analysis, tumor Grade 3 was associated with worse OS (HR 3.57, 95% CI 1.25, 11.36) in a model with MR-ISBT (HR 0.56, 95% CI 0.16, 1.89). Toxicities were not significantly different between the two modalities. Despite worse patient prognostic features, MR-ISBT was associated with a significantly better (100%) 3-year local control, comparable survival, and improved DFI rates compared to CT. Toxicities did not differ compared to CT-ISBT patients. Tumor grade contributed as the most significant predictor for survival. Larger prospective studies are needed to assess the impact of MR-ISBT on survival outcomes. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arrayeh, Elnasif; Westphalen, Antonio C.; Kurhanewicz, John
2012-04-01
Purpose: To determine if local recurrence of prostate cancer after radiation therapy occurs at the same site as the primary tumor before treatment, using longitudinal magnetic resonance (MR) imaging and MR spectroscopic imaging to assess dominant tumor location. Methods and Materials: This retrospective study was HIPAA compliant and approved by our Committee on Human Research. We identified all patients in our institutional prostate cancer database (1996 onward) who underwent endorectal MR imaging and MR spectroscopic imaging before radiotherapy for biopsy-proven prostate cancer and again at least 2 years after radiotherapy (n = 124). Two radiologists recorded the presence, location, andmore » size of unequivocal dominant tumor on pre- and postradiotherapy scans. Recurrent tumor was considered to be at the same location as the baseline tumor if at least 50% of the tumor location overlapped. Clinical and biopsy data were collected from all patients. Results: Nine patients had unequivocal dominant tumor on both pre- and postradiotherapy imaging, with mean pre- and postradiotherapy dominant tumor diameters of 1.8 cm (range, 1-2.2) and 1.9 cm (range, 1.4-2.6), respectively. The median follow-up interval was 7.3 years (range, 2.7-10.8). Dominant recurrent tumor was at the same location as dominant baseline tumor in 8 of 9 patients (89%). Conclusions: Local recurrence of prostate cancer after radiation usually occurs at the same site as the dominant primary tumor at baseline, suggesting supplementary focal therapy aimed at enhancing local tumor control would be a rational addition to management.« less
Schauer, Tim; Frahm, Michael; Heise, Ulrike; Zimmermann, Kurt; Erhardt, Marc; Weiss, Siegfried
2017-01-01
Cancer is a devastating disease and a large socio-economic burden. Novel therapeutic solutions are on the rise, although a cure remains elusive. Application of microorganisms represents an ancient therapeutic strategy, lately revoked and refined via simultaneous attenuation and amelioration of pathogenic properties. Salmonella Typhimurium has prevailed in preclinical development. Yet, using virulent strains for systemic treatment might cause severe side effects. In the present study, we highlight a modified strain based on Salmonella Typhimurium UK-1 expressing hexa-acylated Lipid A. We corroborate improved anti-tumor properties of this strain and investigate to which extent an intra-tumoral (i.t.) route of infection could help improve safety and retain advantages of systemic intravenous (i.v.) application. Our results show that i.t. infection exhibits therapeutic efficacy against CT26 and F1.A11 tumors similar to a systemic route of inoculation. Moreover, i.t. application allows extensive dose titration without compromising tumor colonization. Adverse colonization of healthy organs was generally reduced via i.t. infection and accompanied by less body weight loss of the murine host. Despite local application, adjuvanticity remained, and a CT26-specific CD8+ T cell response was effectively stimulated. Most interestingly, also secondary tumors could be targeted with this strategy, thereby extending the unique tumor targeting ability of Salmonella. The i.t. route of inoculation may reap the benefits of systemic infection and aid in safety assurance while directing potency of an oncolytic vector to where it is most needed, namely the primary tumor. PMID:28637010
Kocijancic, Dino; Felgner, Sebastian; Schauer, Tim; Frahm, Michael; Heise, Ulrike; Zimmermann, Kurt; Erhardt, Marc; Weiss, Siegfried
2017-07-25
Cancer is a devastating disease and a large socio-economic burden. Novel therapeutic solutions are on the rise, although a cure remains elusive. Application of microorganisms represents an ancient therapeutic strategy, lately revoked and refined via simultaneous attenuation and amelioration of pathogenic properties. Salmonella Typhimurium has prevailed in preclinical development. Yet, using virulent strains for systemic treatment might cause severe side effects. In the present study, we highlight a modified strain based on Salmonella Typhimurium UK-1 expressing hexa-acylated Lipid A. We corroborate improved anti-tumor properties of this strain and investigate to which extent an intra-tumoral (i.t.) route of infection could help improve safety and retain advantages of systemic intravenous (i.v.) application. Our results show that i.t. infection exhibits therapeutic efficacy against CT26 and F1.A11 tumors similar to a systemic route of inoculation. Moreover, i.t. application allows extensive dose titration without compromising tumor colonization. Adverse colonization of healthy organs was generally reduced via i.t. infection and accompanied by less body weight loss of the murine host. Despite local application, adjuvanticity remained, and a CT26-specific CD8+ T cell response was effectively stimulated. Most interestingly, also secondary tumors could be targeted with this strategy, thereby extending the unique tumor targeting ability of Salmonella. The i.t. route of inoculation may reap the benefits of systemic infection and aid in safety assurance while directing potency of an oncolytic vector to where it is most needed, namely the primary tumor.
Local Control After Stereotactic Body Radiation Therapy for Liver Tumors.
Ohri, Nitin; Tomé, Wolfgang A; Méndez Romero, Alejandra; Miften, Moyed; Ten Haken, Randall K; Dawson, Laura A; Grimm, Jimm; Yorke, Ellen; Jackson, Andrew
2018-01-06
To quantitatively evaluate published experiences with hepatic stereotactic body radiation therapy (SBRT), to determine local control rates after treatment of primary and metastatic liver tumors and to examine whether outcomes are affected by SBRT dosing regimen. We identified published articles that reported local control rates after SBRT for primary or metastatic liver tumors. Biologically effective doses (BEDs) were calculated for each dosing regimen using the linear-quadratic equation. We excluded series in which a wide range of BEDs was used. Individual lesion data for local control were extracted from actuarial survival curves, and data were aggregated to form a single dataset. Actuarial local control curves were generated using the Kaplan-Meier method after grouping lesions by disease type and BED (<100 Gy 10 vs >100 Gy 10 ). Comparisons were made using log-rank testing. Thirteen articles met all inclusion criteria and formed the dataset for this analysis. The 1-, 2-, and 3-year actuarial local control rates after SBRT for primary liver tumors (n = 431) were 93%, 89%, and 86%, respectively. Lower 1- (90%), 2- (79%), and 3-year (76%) actuarial local control rates were observed for liver metastases (n = 290, log-rank P = .011). Among patients treated with SBRT for primary liver tumors, there was no evidence that local control is influenced by BED within the range of schedules used. For liver metastases, on the other hand, outcomes were significantly better for lesions treated with BEDs exceeding 100 Gy 10 (3-year local control 93%) than for those treated with BEDs of ≤100 Gy 10 (3-year local control 65%, P < .001). Stereotactic body radiation therapy for primary liver tumors provides high rates of durable local control, with no clear evidence for a dose-response relationship among commonly utilized schedules. Excellent local control rates are also seen after SBRT for liver metastases when BEDs of >100 Gy 10 are utilized. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Via, Riccardo, E-mail: riccardo.via@polimi.it; Fassi, Aurora; Fattori, Giovanni
Purpose: External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging. The system was designed for capturing the tridimensional (3D) ocular motion and provides an on-line estimation of intraocular lesions position based on a priori knowledge coming from volumetric imaging. Methods: Eye tracking is performed by localizing cornea and pupil centers on stereo images captured by twomore » calibrated video cameras, exploiting eye reflections produced by infrared illumination. Additionally, torsional eye movements are detected by template matching in the iris region of eye images. This information allows estimating the 3D position and orientation of the eye by means of an eye local reference system. By combining ETS measurements with volumetric imaging for treatment planning [computed tomography (CT) and magnetic resonance (MR)], one is able to map the position of the lesion to be treated in local eye coordinates, thus enabling real-time tumor referencing during treatment setup and irradiation. Experimental tests on an eye phantom and seven healthy subjects were performed to assess ETS tracking accuracy. Results: Measurements on phantom showed an overall median accuracy within 0.16 mm and 0.40° for translations and rotations, respectively. Torsional movements were affected by 0.28° median uncertainty. On healthy subjects, the gaze direction error ranged between 0.19° and 0.82° at a median working distance of 29 cm. The median processing time of the eye tracking algorithm was 18.60 ms, thus allowing eye monitoring up to 50 Hz. Conclusions: A noninvasive ETS prototype was designed to perform real-time target localization and eye movement monitoring during ocular radiotherapy treatments. The device aims at improving state-of-the-art invasive procedures based on surgical implantation of radiopaque clips and repeated acquisition of X-ray images, with expected positive effects on treatment quality and patient outcome.« less
Via, Riccardo; Fassi, Aurora; Fattori, Giovanni; Fontana, Giulia; Pella, Andrea; Tagaste, Barbara; Riboldi, Marco; Ciocca, Mario; Orecchia, Roberto; Baroni, Guido
2015-05-01
External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging. The system was designed for capturing the tridimensional (3D) ocular motion and provides an on-line estimation of intraocular lesions position based on a priori knowledge coming from volumetric imaging. Eye tracking is performed by localizing cornea and pupil centers on stereo images captured by two calibrated video cameras, exploiting eye reflections produced by infrared illumination. Additionally, torsional eye movements are detected by template matching in the iris region of eye images. This information allows estimating the 3D position and orientation of the eye by means of an eye local reference system. By combining ETS measurements with volumetric imaging for treatment planning [computed tomography (CT) and magnetic resonance (MR)], one is able to map the position of the lesion to be treated in local eye coordinates, thus enabling real-time tumor referencing during treatment setup and irradiation. Experimental tests on an eye phantom and seven healthy subjects were performed to assess ETS tracking accuracy. Measurements on phantom showed an overall median accuracy within 0.16 mm and 0.40° for translations and rotations, respectively. Torsional movements were affected by 0.28° median uncertainty. On healthy subjects, the gaze direction error ranged between 0.19° and 0.82° at a median working distance of 29 cm. The median processing time of the eye tracking algorithm was 18.60 ms, thus allowing eye monitoring up to 50 Hz. A noninvasive ETS prototype was designed to perform real-time target localization and eye movement monitoring during ocular radiotherapy treatments. The device aims at improving state-of-the-art invasive procedures based on surgical implantation of radiopaque clips and repeated acquisition of X-ray images, with expected positive effects on treatment quality and patient outcome.
Roudsari, Laila C.; Jeffs, Sydney E.; Witt, Amber S.; Gill, Bartley J.; West, Jennifer L.
2016-01-01
Tumor angiogenesis is critical to tumor growth and metastasis, yet much is unknown about the role vascular cells play in the tumor microenvironment. In vitro models that mimic in vivo tumor neovascularization facilitate exploration of this role. Here we investigated lung adenocarcinoma cancer cells (344SQ) and endothelial and pericyte vascular cells encapsulated in cell-adhesive, proteolytically-degradable poly(ethylene) glycol-based hydrogels. 344SQ in hydrogels formed spheroids and secreted proangiogenic growth factors that significantly increased with exposure to transforming growth factor beta 1 (TGF-β1), a potent tumor progression-promoting factor. Vascular cells in hydrogels formed tubule networks with localized activated TGF-β1. To study cancer cell-vascular cell interactions, we engineered a 2-layer hydrogel with 344SQ and vascular cell layers. Large, invasive 344SQ clusters (area > 5,000 μm2, circularity < 0.25) developed at the interface between the layers, and were not evident further from the interface or in control hydrogels without vascular cells. A modified model with spatially restricted 344SQ and vascular cell layers confirmed that observed cluster morphological changes required close proximity to vascular cells. Additionally, TGF-β1 inhibition blocked endothelial cell-driven 344SQ migration. Our findings suggest vascular cells contribute to tumor progression and establish this culture system as a platform for studying tumor vascularization. PMID:27596933
NASA Astrophysics Data System (ADS)
Roudsari, Laila C.; Jeffs, Sydney E.; Witt, Amber S.; Gill, Bartley J.; West, Jennifer L.
2016-09-01
Tumor angiogenesis is critical to tumor growth and metastasis, yet much is unknown about the role vascular cells play in the tumor microenvironment. In vitro models that mimic in vivo tumor neovascularization facilitate exploration of this role. Here we investigated lung adenocarcinoma cancer cells (344SQ) and endothelial and pericyte vascular cells encapsulated in cell-adhesive, proteolytically-degradable poly(ethylene) glycol-based hydrogels. 344SQ in hydrogels formed spheroids and secreted proangiogenic growth factors that significantly increased with exposure to transforming growth factor beta 1 (TGF-β1), a potent tumor progression-promoting factor. Vascular cells in hydrogels formed tubule networks with localized activated TGF-β1. To study cancer cell-vascular cell interactions, we engineered a 2-layer hydrogel with 344SQ and vascular cell layers. Large, invasive 344SQ clusters (area > 5,000 μm2, circularity < 0.25) developed at the interface between the layers, and were not evident further from the interface or in control hydrogels without vascular cells. A modified model with spatially restricted 344SQ and vascular cell layers confirmed that observed cluster morphological changes required close proximity to vascular cells. Additionally, TGF-β1 inhibition blocked endothelial cell-driven 344SQ migration. Our findings suggest vascular cells contribute to tumor progression and establish this culture system as a platform for studying tumor vascularization.
Yata, Tomoya; Takahashi, Yuki; Tan, Mengmeng; Nakatsuji, Hirotaka; Ohtsuki, Shozo; Murakami, Tatsuya; Imahori, Hiroshi; Umeki, Yuka; Shiomi, Tomoki; Takakura, Yoshinobu; Nishikawa, Makiya
2017-11-01
Success of tumor photothermal immunotherapy requires a system that induces heat stress in cancer cells and enhances strong anti-tumor immune responses. Here, we designed a composite-type immunostimulatory DNA hydrogel consisting of a hexapod-like structured DNA (hexapodna) with CpG sequences and gold nanoparticles. Mixing of the properly designed hexapodna and oligodeoxynucleotide-modified gold nanoparticles resulted in the formation of composite-type gold nanoparticle-DNA hydrogels. Laser irradiation of the hydrogel resulted in the release of hexapodna, which efficiently stimulated immune cells to release proinflammatory cytokines. Then, EG7-OVA tumor-bearing mice received an intratumoral injection of a gold nanoparticle-DNA hydrogel, followed by laser irradiation at 780 nm. This treatment increased the local temperature and the mRNA expression of heat shock protein 70 in the tumor tissue, increased tumor-associated antigen-specific IgG levels in the serum, and induced tumor-associated antigen-specific interferon-γ production from splenocytes. Moreover, the treatment significantly retarded the tumor growth and extended the survival of the tumor-bearing mice. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hamamoto, Yasushi; Kataoka, Masaaki; Yamashita, Motohiro; Shinkai, Tetsu; Kubo, Yoshiro; Sugawara, Yoshifumi; Inoue, Takeshi; Sakai, Shinya; Aono, Shoji; Takahashi, Tadaaki; Semba, Takatoshi; Uwatsu, Kotaro
2010-02-01
The optimal dose of stereotactic body radiotherapy (SBRT) for metastatic lung tumors has not been clarified. Local control rates of metastatic lung tumors treated with SBRT of 48 Gy in four fractions, which is one of the common dose schedules for Stage I primary lung cancer in Japan, were examined. Between 2006 and 2008, 12 metastatic lung tumors (colorectal cancer, 7; others, 5) in 10 patients and 56 lesions of Stage I primary lung cancer (T1, 43; T2, 13) in 52 patients were treated with SBRT of 48 Gy in four fractions at the isocenter. Two-year overall survival rates were 86% for patients with metastatic lung tumors and 96% for patients with Stage I primary lung cancer (P = 0.4773). One- and 2-year local control rates were 48% and 25% for metastatic lung tumors, and 91% and 88% for Stage I primary lung cancer, respectively (P < 0.0001). The local control rates after SBRT of 48 Gy in four fractions were significantly worse in metastatic lung tumors compared with Stage I primary lung cancer. In SBRT, metastatic lung tumors should be clearly differentiated from primary lung cancer and should be given higher doses.
Intensity-Modulated Radiotherapy for Sinonasal Tumors: Ghent University Hospital Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madani, Indira; Bonte, Katrien; Vakaet, Luc
2009-02-01
Purpose: To report the long-term outcome of intensity-modulated radiotherapy (IMRT) for sinonasal tumors. Methods and Materials: Between July 1998 and November 2006, 84 patients with sinonasal tumors were treated with IMRT to a median dose of 70 Gy in 35 fractions. Of the 84 patients, 73 had a primary tumor and 11 had local recurrence. The tumor histologic type was adenocarcinoma in 54, squamous cell carcinoma in 17, esthesioneuroblastoma in 9, and adenoid cystic carcinoma in 4. The tumors were located in the ethmoid sinus in 47, maxillary sinus in 19, nasal cavity in 16, and multiple sites in 2.more » Postoperative IMRT was performed in 75 patients and 9 patients received primary IMRT. Results: The median follow-up of living patients was 40 months (range, 8-106). The 5-year local control, overall survival, disease-specific survival, disease-free survival, and freedom from distant metastasis rate was 70.7%, 58.5%, 67%, 59.3%, and 82.2%, respectively. No difference was found in local control and survival between patients with primary or recurrent tumors. On multivariate analysis, invasion of the cribriform plate was significantly associated with lower local control (p = 0.0001) and overall survival (p = 0.0001). Local and distant recurrence was detected in 19 and 10 patients, respectively. Radiation-induced blindness was not observed. One patient developed Grade 3 radiation-induced retinopathy and neovascular glaucoma. Nonocular late radiation-induced toxicity comprised complete lacrimal duct stenosis in 1 patient and brain necrosis in 3 patients. Osteoradionecrosis of the maxilla and brain necrosis were detected in 1 of the 5 reirradiated patients. Conclusion: IMRT for sinonasal tumors provides low rates of radiation-induced toxicity without blindness with high local control and survival. IMRT could be considered as the treatment of choi0008.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breneman, John, E-mail: john.breneman@uchealth.com; Meza, Jane; Donaldson, Sarah S.
2012-06-01
Purpose: To analyze the effect of reduced-dose radiotherapy on local control in children with low-risk rhabdomyosarcoma (RMS) treated in the Children's Oncology Group D9602 study. Methods and Materials: Patients with low-risk RMS were nonrandomly assigned to receive radiotherapy doses dependent on the completeness of surgical resection of the primary tumor (clinical group) and the presence of involved regional lymph nodes. After resection, most patients with microscopic residual and uninvolved nodes received 36 Gy, those with involved nodes received 41.4 to 50.4 Gy, and those with orbital primary tumors received 45 Gy. All patients received vincristine and dactinomycin, with cyclophosphamide addedmore » for patient subsets with a higher risk of relapse in Intergroup Rhabdomyosarcoma Study Group III and IV studies. Results: Three hundred forty-two patients were eligible for analysis; 172 received radiotherapy as part of their treatment. The cumulative incidence of local/regional failure was 15% in patients with microscopic involved margins when cyclophosphamide was not part of the treatment regimen and 0% when cyclophosphamide was included. The cumulative incidence of local/regional failure was 14% in patients with orbital tumors. Protocol-specified omission of radiotherapy in girls with Group IIA vaginal tumors (n = 5) resulted in three failures for this group. Conclusions: In comparison with Intergroup Rhabdomyosarcoma Study Group III and IV results, reduced-dose radiotherapy does not compromise local control for patients with microscopic tumor after surgical resection or with orbital primary tumors when cyclophosphamide is added to the treatment program. Girls with unresected nonbladder genitourinary tumors require radiotherapy for postsurgical residual tumor for optimal local control to be achieved.« less
Cohen-Gogo, Sarah; Cellier, Cécile; Coindre, Jean-Michel; Mosseri, Véronique; Pierron, Gaëlle; Guillemet, Cécile; Italiano, Antoine; Brugières, Laurence; Orbach, Daniel; Laurence, Valérie; Delattre, Olivier; Michon, Jean
2014-12-01
This retrospective multicenter study assessed the clinical, radiological and pathological presentation, treatment and outcome of 26 patients with Ewing-like sarcoma harboring BCOR-CCNB3 gene fusion transcript. Tumor samples had been collected between 1994 and April 2012. Eligibility criteria included assessment of a BCOR-CCNB3 transcript-positive tumor after molecular analysis and availability of minimal clinical and pathological data. Radiological data were also retrieved when possible. Data were analyzed by descriptive statistics and methods for survival analysis. Median age at diagnosis was 13.1 years (5.9 to 25.6 years). Most patients (24/26) had localized tumors. All tumors but five were localized to bone. CCNB3 immunochemistry showed strong nuclear staining on all samples. No specific radiological features were found. Most patients received chemotherapy (15 according to protocols designed for Ewing tumors), before and/or after local treatment (surgery and/or radiotherapy, with 46.2% receiving both). Local and metastatic relapses were of poor prognosis. Induction chemotherapy and treatment according to an Ewing protocol might influence survival for patients with localized tumors. Sixteen patients are alive in complete remission with a median follow-up of 86 months. Five year overall survival and disease-free survival were respectively 76.5% (95% CI, 58%-95%) and 67.9% (95% CI, 48%-88%). BCOR-CCNB3 transcript-positive Ewing-like sarcoma diagnosis should be discussed for a transcript-negative small round cell sarcoma in a child, adolescent or young adult patient. Diagnosis needs to be stated through CCNB3 immunochemistry or transcript identification. The exquisite chemosensitivity of these tumors should encourage the use of polychemotherapy for appropriate care, associated with best local tumor control. © 2014 Wiley Periodicals, Inc.
Rose, Peter G.; Java, James; Whitney, Charles W.; Stehman, Frederick B.; Lanciano, Rachelle; Thomas, Gillian M.; DiSilvestro, Paul A.
2015-01-01
Purpose To evaluate the prognostic factors in locally advanced cervical cancer limited to the pelvis and develop nomograms for 2-year progression-free survival (PFS), 5-year overall survival (OS), and pelvic recurrence. Patients and Methods We retrospectively reviewed 2,042 patients with locally advanced cervical carcinoma enrolled onto Gynecologic Oncology Group clinical trials of concurrent cisplatin-based chemotherapy and radiotherapy. Nomograms for 2-year PFS, five-year OS, and pelvic recurrence were created as visualizations of Cox proportional hazards regression models. The models were validated by bootstrap-corrected, relatively unbiased estimates of discrimination and calibration. Results Multivariable analysis identified prognostic factors including histology, race/ethnicity, performance status, tumor size, International Federation of Gynecology and Obstetrics stage, tumor grade, pelvic node status, and treatment with concurrent cisplatin-based chemotherapy. PFS, OS, and pelvic recurrence nomograms had bootstrap-corrected concordance indices of 0.62, 0.64, and 0.73, respectively, and were well calibrated. Conclusion Prognostic factors were used to develop nomograms for 2-year PFS, 5-year OS, and pelvic recurrence for locally advanced cervical cancer clinically limited to the pelvis treated with concurrent cisplatin-based chemotherapy and radiotherapy. These nomograms can be used to better estimate individual and collective outcomes. PMID:25732170
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collen, Christine, E-mail: ccollen@uzbrussel.be; Ampe, Ben; Gevaert, Thierry
2011-11-15
Purpose: To evaluate and compare outcomes for patients with vestibular schwannoma (VS) treated in a single institution with linac-based stereotactic radiosurgery (SRS) or by fractionated stereotactic radiotherapy (SRT). Methods and Materials: One hundred and nineteen patients (SRS = 78, SRT = 41) were treated. For both SRS and SRT, beam shaping is performed by a mini-multileaf collimator. For SRS, a median single dose of 12.5 Gy (range, 11-14 Gy), prescribed to the 80% isodose line encompassing the target, was applied. Of the 42 SRT treatments, 32 treatments consisted of 10 fractions of 3-4 Gy, and 10 patients received 25 sessionsmore » of 2 Gy, prescribed to the 100% with the 95% isodose line encompassing the planning target volume. Mean largest tumor diameter was 16.6 mm in the SRS and 24.6 mm in the SRT group. Local tumor control, cranial nerve toxicity, and preservation of useful hearing were recorded. Any new treatment-induced cranial nerve neuropathy was scored as a complication. Results: Median follow-up was 62 months (range, 6-136 months), 5 patients progressed, resulting in an overall 5-year local tumor control of 95%. The overall 5-year facial nerve preservation probability was 88% and facial nerve neuropathy was statistically significantly higher after SRS, after prior surgery, for larger tumors, and in Koos Grade {>=}3. The overall 5-year trigeminal nerve preservation probability was 96%, not significantly influenced by any of the risk factors. The overall 4-year probability of preservation of useful hearing (Gardner-Robertson score 1 or 2) was 68%, not significantly different between SRS or SRT (59% vs. 82%, p = 0.089, log rank). Conclusion: Linac-based RT results in good local control and acceptable clinical outcome in small to medium-sized vestibular schwannomas (VSs). Radiosurgery for large VSs (Koos Grade {>=}3) remains a challenge because of increased facial nerve neuropathy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasson, Rian M.; Briggs, Alexandra; Rizvi, Hira
2014-02-14
Highlights: • Wnt/β-catenin signaling is aberrantly activated in most colorectal cancers. • Locked nucleic acid (LNA)-based antisense is a novel tool for cancer therapy. • β-Catenin inhibition was observed in mature intestinal tissue of LNA-treated mice. • Further investigation of Wnt/β-catenin targeted therapies is warranted. - Abstract: Background: Previously, we showed that short-term inhibition of β-catenin expression and reversal of aberrant β-catenin subcellular localization by the selective COX-2 inhibitor celecoxib is associated with adenoma regression in the C57BL/6J Min/+ mouse. Conversly, long-term administration resulted in tumor resistance, leading us to investigate alternative methods for selective β-catenin chemoprevention. In this study,more » we hypothesized that disruption of β-catenin expression by EZN-3892, a selective locked nucleic acid (LNA)-based β-catenin inhibitor, would counteract the tumorigenic effect of Apc loss in Min/+ adenomas while preserving normal intestinal function. Materials and methods: C57BL/6J Apc{sup +/+} wild-type (WT) and Min/+ mice were treated with the maximum tolerated dose (MTD) of EZN-3892 (30 mg/kg). Drug effect on tumor numbers, β-catenin protein expression, and nuclear β-catenin localization were determined. Results: Although the tumor phenotype and β-catenin nuclear localization in Min/+ mice did not change following drug administration, we observed a decrease in β-catenin expression levels in the mature intestinal tissue of treated Min/+ and WT mice, providing proof of principle regarding successful delivery of the LNA-based antisense vehicle. Higher doses of EZN-3892 resulted in fatal outcomes in Min/+ mice, likely due to β-catenin ablation in the intestinal tissue and loss of function. Conclusions: Our data support the critical role of Wnt/β-catenin signaling in maintaining intestinal homeostasis and highlight the challenges of effective drug delivery to target disease without permanent toxicity to normal cellular function.« less
Nelson, Lindsey; Lapsiwala, Samir; Haughton, Victor M; Noyes, Jane; Sadrzadeh, Amir H; Moritz, Chad H; Meyerand, M Elizabeth; Badie, Behnam
2002-11-01
Injury to the supplementary motor area (SMA) is thought to be responsible for transient motor and speech deficits following resection of tumors involving the medial frontal lobe. Because direct intraoperative localization of SMA is difficult, the authors hypothesized that functional magnetic resonance (fMR) imaging might be useful in predicting the risk of postoperative deficits in patients who undergo resection of tumors in this region. Twelve patients who had undergone fMR imaging mapping while performing speech and motor tasks prior to excision of their tumor, that is, based on anatomical landmarks involving the SMA, were included in this study. The distance between the edge of the tumor and the center of SMA activation was measured and was correlated with the risk of incurring postoperative neurological deficits. In every patient, SMA activation was noted in the superior frontal gyrus on preoperative fMR imaging. Two speech and two motor deficits typical of SMA injury were observed in three of the 12 patients. The two speech deficits occurred in patients with tumors involving the dominant hemisphere, whereas one of the motor deficits occurred in a patient with a tumor in the nondominant hemisphere. The risk of developing a postoperative speech or motor deficit was 100% when the distance between the SMA and the tumor was 5 mm or less. When the distance between SMA activation and the lesion was greater than 5 mm, the risk of developing a motor or a speech deficit was 0% (p = 0.0007). Early data from this study indicated that fMR imaging might be useful in localizing the SMA and in determining the risk of postoperative deficits in patients who undergo resection of tumors located in the medial frontal lobe.
Sheng, Zonghai; Hu, Dehong; Zheng, Mingbin; Zhao, Pengfei; Liu, Huilong; Gao, Duyang; Gong, Ping; Gao, Guanhui; Zhang, Pengfei; Ma, Yifan; Cai, Lintao
2014-12-23
Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is a light-activated local treatment modality that is under intensive preclinical and clinical investigations for cancer. To enhance the treatment efficiency of phototherapy and reduce the light-associated side effects, it is highly desirable to improve drug accumulation and precision guided phototherapy for efficient conversion of the absorbed light energy to reactive oxygen species (ROS) and local hyperthermia. In the present study, a programmed assembly strategy was developed for the preparation of human serum albumin (HSA)-indocyanine green (ICG) nanoparticles (HSA-ICG NPs) by intermolecular disulfide conjugations. This study indicated that HSA-ICG NPs had a high accumulation with tumor-to-normal tissue ratio of 36.12±5.12 at 24 h and a long-term retention with more than 7 days in 4T1 tumor-bearing mice, where the tumor and its margin, normal tissue were clearly identified via ICG-based in vivo near-infrared (NIR) fluorescence and photoacoustic dual-modal imaging and spectrum-resolved technology. Meanwhile, HSA-ICG NPs efficiently induced ROS and local hyperthermia simultaneously for synergetic PDT/PTT treatments under a single NIR laser irradiation. After an intravenous injection of HSA-ICG NPs followed by imaging-guided precision phototherapy (808 nm, 0.8 W/cm2 for 5 min), the tumor was completely suppressed, no tumor recurrence and treatments-induced toxicity were observed. The results suggest that HSA-ICG NPs generated by programmed assembly as smart theranostic nanoplatforms are highly potential for imaging-guided cancer phototherapy with PDT/PTT synergistic effects.
NASA Astrophysics Data System (ADS)
Koybasi, Ozhan; Mishra, Pankaj; St. James, Sara; Lewis, John H.; Seco, Joao
2014-02-01
For the radiation treatment of lung cancer patients, four-dimensional computed tomography (4D-CT) is a common practice used clinically to image tumor motion and subsequently determine the internal target volume (ITV) from the maximum intensity projection (MIP) images. ITV, which is derived from short pre-treatment 4D-CT scan (<6 s per couch position), may not adequately cover the extent of tumor motion during the treatment, particularly for patients that exhibit a large respiratory variability. Inaccurate tumor localization may result in under-dosage of the tumor or over-dosage of the surrounding tissues. The purpose of this study is therefore to assess the degree of tumor under-dosage in case of regular and irregular breathing for proton radiotherapy using ITV-based treatment planning. We place a spherical lesion into a modified XCAT phantom that is also capable of producing 4D images based on irregular breathing, and move the tumor according to real tumor motion data, which is acquired over multiple days by tracking gold fiducial markers implanted into the lung tumors of patients. We derive ITVs by taking the union of all tumor positions during 6 s of tumor motion in the phantom using the first day patient tumor tracking data. This is equivalent to ITVs generated clinically from cine-mode 4D-CT MIP images. The treatment plans created for different ITVs are then implemented on dynamic phantoms with tumor motion governed by real tumor tracking data from consecutive days. By comparing gross tumor volume dose distribution on days of ‘treatment’ with the ITV dose distribution, we evaluate the deviation of the actually delivered dose from the predicted dose. Our results have shown that the proton treatment planning on ITV derived from pre-treatment cine-mode 4D-CT can result in under-dosage (dose covering 95% of volume) of the tumor by up to 25.7% over 3 min of treatment for the patient with irregular respiratory motion. Tumor under-dosage is less significant for the patient with relatively regular breathing. We have demonstrated that proton therapy using the pre-treatment 4D-CT based ITV method can lead to significant under-dosage of the tumor, highlighting the need for daily customization to generate a target volume that represents tumor positions during the treatment more accurately.
Diagnostic Study of Tumor Characteristics in Patients With Ewing's Sarcoma
2013-06-20
Localized Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor
Fu, Y S; Perzin, K H
1976-06-01
In a study of 256 nonepithelial neoplasms involving the nasal cavity, paranasal sinuses, and nasopharynx, 23 lesions were classified as fibrous tissue tumors, including four cases of "fibroma", six of fibromatosis, and thirteen of fibrosarcoma. The clinical findings associated with these lesions are described, their histologic features illustrated, results of therapy presented and clinicopathologic correlations made. The "fibromas" presented a small localized nodules. None recurred after local excision. Fibromatosis, a locally aggressive tumor, does not metastasize, but may cause considerable morbidity or even death due to local infiltration which may be difficult to control surgically. Fibrosarcoma may cause death either by local infiltration or by metastasis, but has a better prognosis than most other sarcomas of this region. We recommend that a large en block resection be performed initially for fibromatosis and fibrosarcoma growing in this area, after the diagnosis has been made by biopsy. In this series, including patients who had more than one operation, recurrent tumor was seen following 10 of 12 limited local excisions performed for fibromatosis and fibrosarcoma, but in only one of 13 patients after a large bloc resection. The problems involved in histologically differentiating fibrous tissue tumors from other lesions are discussed. A patient with the rare syndrome of multicentric fibromatosis with spontaneous regression of lesions is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allibhai, Zishan; Taremi, Mojgan; Bezjak, Andrea
2013-12-01
Purpose: Stereotactic body radiation therapy for medically inoperable early-stage non-small cell lung cancer (NSCLC) offers excellent control rates. Most published series deal mainly with small (usually <4 cm), peripheral, solitary tumors. Larger tumors are associated with poorer outcomes (ie, lower control rates, higher toxicity) when treated with conventional RT. It is unclear whether SBRT is sufficiently potent to control these larger tumors. We therefore evaluated and examined the influence of tumor size on treatment outcomes after SBRT. Methods and Materials: Between October 2004 and October 2010, 185 medically inoperable patients with early (T1-T2N0M0) NSCLC were treated on a prospective researchmore » ethics board-approved single-institution protocol. Prescription doses were risk-adapted based on tumor size and location. Follow-up included prospective assessment of toxicity (as per Common Terminology Criteria for Adverse Events, version 3.0) and serial computed tomography scans. Patterns of failure, toxicity, and survival outcomes were calculated using Kaplan-Meier method, and the significance of tumor size (diameter, volume) with respect to patient, treatment, and tumor factors was tested. Results: Median follow-up was 15.2 months. Tumor size was not associated with local failure but was associated with regional failure (P=.011) and distant failure (P=.021). Poorer overall survival (P=.001), disease-free survival (P=.001), and cause-specific survival (P=.005) were also significantly associated with tumor size (with tumor volume more significant than diameter). Gross tumor volume and planning target volume were significantly associated with grade 2 or worse radiation pneumonitis. However, overall rates of grade ≥3 pneumonitis were low and not significantly affected by tumor or target size. Conclusions: Currently employed stereotactic body radiation therapy dose regimens can provide safe effective local therapy even for larger solitary NSCLC tumors (up to 5.7 cm in tumor diameter or 100 cm{sup 3} in tumor volume) but are associated with more nonlocal failures as well as poorer survival. These observations suggest these patients may benefit from more extensive staging or consideration of adjuvant therapy.« less
Lymphocytic infiltration of bladder after local cellular immunotherapy.
Ingram, M; Bishai, M B; Techy, G B; Narayan, K S; Saroufeem, R; Yazan, O; Marshall, C E
2000-01-01
This is a case report of a patient who received cellular immunotherapy, in the form of local injections of autologous stimulated lymphocytes (ASL) into individual tumors in the urinary bladder. A major consideration in cellular immunotherapy being the ability of immune cells to reach all target areas, we hypothesized that direct delivery of effector cells into individual bladder tumors might assure such access. ASL were generated by exposing the patient's PBL to phytohemagglutinin and culturing them in the presence of IL-2 to expand the population. ASL were injected into the base of individual bladder tumors three times at intervals of 3 weeks. The patient died of a myocardial infarct, unrelated to cell therapy, 20 days after the third injection. An autopsy was performed. Histological sections of the bladder showed extensive lymphocytic infiltration of virtually the entire organ. No conclusions about the therapeutic efficacy of local immunotherapy using ASL are possible. Nevertheless, the observations reported, taken together with reports of therapeutic efficacy of other immunotherapy regimens in the management of bladder cancer, suggest that ready access of stimulated lymphocytes to all regions of the organ may account, in part, for the relatively high rate of therapeutic success reported for various immunotherapy regimens for this malignancy.
Kong, Seong-Ho; Haouchine, Nazim; Soares, Renato; Klymchenko, Andrey; Andreiuk, Bohdan; Marques, Bruno; Shabat, Galyna; Piechaud, Thierry; Diana, Michele; Cotin, Stéphane; Marescaux, Jacques
2017-07-01
Augmented reality (AR) is the fusion of computer-generated and real-time images. AR can be used in surgery as a navigation tool, by creating a patient-specific virtual model through 3D software manipulation of DICOM imaging (e.g., CT scan). The virtual model can be superimposed to real-time images enabling transparency visualization of internal anatomy and accurate localization of tumors. However, the 3D model is rigid and does not take into account inner structures' deformations. We present a concept of automated AR registration, while the organs undergo deformation during surgical manipulation, based on finite element modeling (FEM) coupled with optical imaging of fluorescent surface fiducials. Two 10 × 1 mm wires (pseudo-tumors) and six 10 × 0.9 mm fluorescent fiducials were placed in ex vivo porcine kidneys (n = 10). Biomechanical FEM-based models were generated from CT scan. Kidneys were deformed and the shape changes were identified by tracking the fiducials, using a near-infrared optical system. The changes were registered automatically with the virtual model, which was deformed accordingly. Accuracy of prediction of pseudo-tumors' location was evaluated with a CT scan in the deformed status (ground truth). In vivo: fluorescent fiducials were inserted under ultrasound guidance in the kidney of one pig, followed by a CT scan. The FEM-based virtual model was superimposed on laparoscopic images by automatic registration of the fiducials. Biomechanical models were successfully generated and accurately superimposed on optical images. The mean measured distance between the estimated tumor by biomechanical propagation and the scanned tumor (ground truth) was 0.84 ± 0.42 mm. All fiducials were successfully placed in in vivo kidney and well visualized in near-infrared mode enabling accurate automatic registration of the virtual model on the laparoscopic images. Our preliminary experiments showed the potential of a biomechanical model with fluorescent fiducials to propagate the deformation of solid organs' surface to their inner structures including tumors with good accuracy and automatized robust tracking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, Sunil, E-mail: skrishnan@mdanderson.org; Chadha, Awalpreet S.; Suh, Yelin
2016-03-15
Purpose: To review outcomes of locally advanced pancreatic cancer (LAPC) patients treated with dose-escalated intensity modulated radiation therapy (IMRT) with curative intent. Methods and Materials: A total of 200 patients with LAPC were treated with induction chemotherapy followed by chemoradiation between 2006 and 2014. Of these, 47 (24%) having tumors >1 cm from the luminal organs were selected for dose-escalated IMRT (biologically effective dose [BED] >70 Gy) using a simultaneous integrated boost technique, inspiration breath hold, and computed tomographic image guidance. Fractionation was optimized for coverage of gross tumor and luminal organ sparing. A 2- to 5-mm margin around the gross tumor volume wasmore » treated using a simultaneous integrated boost with a microscopic dose. Overall survival (OS), recurrence-free survival (RFS), local-regional and distant RFS, and time to local-regional and distant recurrence, calculated from start of chemoradiation, were the outcomes of interest. Results: Median radiation dose was 50.4 Gy (BED = 59.47 Gy) with a concurrent capecitabine-based (86%) regimen. Patients who received BED >70 Gy had a superior OS (17.8 vs 15.0 months, P=.03), which was preserved throughout the follow-up period, with estimated OS rates at 2 years of 36% versus 19% and at 3 years of 31% versus 9% along with improved local-regional RFS (10.2 vs 6.2 months, P=.05) as compared with those receiving BED ≤70 Gy. Degree of gross tumor volume coverage did not seem to affect outcomes. No additional toxicity was observed in the high-dose group. Higher dose (BED) was the only predictor of improved OS on multivariate analysis. Conclusion: Radiation dose escalation during consolidative chemoradiation therapy after induction chemotherapy for LAPC patients improves OS and local-regional RFS.« less
Effects of surgery, immunization, and laser immunotherapy on a non-immunogenic metastic tumor model
NASA Astrophysics Data System (ADS)
Chen, Wei R.; Huang, Zheng; Andrienko, Kirill; Stefanov, Stefan; Wolf, Roman F.; Liu, Hong
2006-08-01
Traditional local cancer treatment modalities include surgery and radiation, which has the immediate tumor response due to tumor removal or radiation induced cell death. However, such therapeutic approaches usually do not result in eradiation of tumors, particularly when treating metastatic tumors. In fact, local treatment of primary tumors may stimulate the growth and spread of remote metastasis. Commonly used systemic therapies include chemotherapy and immunotherapy, which target the dividing cells or the immune systems. However, in addition to the severe side effects, chemotherapy often suppresses the immune systems, hence lessening the host's ability to fight the disease. Immunotherapy, on the other hand, aims at educating and stimulating immune systems using either general immune enhancements or antigen-oriented specific immune stimulation. However, so far, the traditional immunotherapy has yielded only limited success in treating cancer patients. A different approach is needed. To combine the advantages of both local therapies for acute and targeted treatment responses and the systemic therapies for stimulation of the immune systems, laser immunotherapy was proposed to use selective photothermal therapy as the local treatment modality and the adjuvant-assisted immunotherapy for systemic control. Laser immunotherapy has show positive results in treating metastatic tumors. In this study, we conducted a comparative study using surgery, freeze-thaw immunization and laser immunotherapy in the treatment of metastatic rat mammary tumors. Our results showed that removal of the primary tumors was unsuccessful at changing the course of tumor progression. The tumor cell lysate immunization delayed the emergence of metastases but did not provide immunity against the tumor challenge. Laser immunotherapy, on the other hand, resulted in regression and eradication.
2013-01-15
Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Fallopian Tube Cancer; Gastrointestinal Stromal Tumor; Localized Extrahepatic Bile Duct Cancer; Localized Gallbladder Cancer; Localized Gastrointestinal Carcinoid Tumor; Localized Resectable Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Gastrointestinal Carcinoid Tumor; Ovarian Sarcoma; Ovarian Stromal Cancer; Primary Peritoneal Cavity Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Adult Soft Tissue Sarcoma; Recurrent Colon Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Small Intestine Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage 0 Non-small Cell Lung Cancer; Stage I Adult Soft Tissue Sarcoma; Stage I Colon Cancer; Stage I Gastric Cancer; Stage I Non-small Cell Lung Cancer; Stage I Ovarian Epithelial Cancer; Stage I Ovarian Germ Cell Tumor; Stage I Pancreatic Cancer; Stage I Rectal Cancer; Stage I Uterine Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage II Colon Cancer; Stage II Gastric Cancer; Stage II Non-small Cell Lung Cancer; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage II Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Uterine Sarcoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adult Soft Tissue Sarcoma; Stage IV Colon Cancer; Stage IV Gastric Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer; Stage IV Rectal Cancer; Stage IV Uterine Sarcoma; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metaizeau, J.P.; Olive, D.; Bey, P.
1984-04-01
In conservative treatment of malignant bone tumors, assessment of the local condition is difficult. The radiological changes seen in the irradiated tumor and the frequent occurrence of pathological fractures at this site may give rise to the fear that the tumor has relapsed. Resection of the whole of the involved bone is the best way to assure adequate local control but the extent of the bone defect and the bad local conditions secondary to irradiation make reconstruction hazardous. In two patients (one with Ewing's sarcoma of the femur and one with osteogenic sarcoma of the humerus) the authors used amore » free, vascularized fibular graft for the reconstruction having obtained consolidation of the limb after resection of the irradiated tumor, with preservation of its function. The encouraging results obtained have suggested a conservative attitude as primary treatment of specific malignant bone tumors.« less
Transoral robotic surgery for parapharyngeal space tumors.
O'Malley, Bert W; Quon, Harry; Leonhardt, Fernando D; Chalian, Ara A; Weinstein, Gregory S
2010-01-01
To evaluate the outcomes of patients with parapharyngeal space (PPS) tumors treated with a transoral robotic surgery (TORS) approach. We prospectively enrolled well-defined benign PPS tumors accessible from the oropharynx with no carotid encasement or bone erosion. We designated outcome measures that included technical feasibility of the approach, local tumor control and complication rates. Descriptive statistics were used to summarize the outcome data. With a mean follow-up of 29.9 months (range 12-40 months), a total of 10 patients have been enrolled. TORS was completed in 9 of 10 patients with acceptable operative time and blood loss and no significant complications including hemorrhage, infection, trismus or tumor spillage. Local control has been 100% for 7 patients with pleomorphic adenomas. We confirm the safety and feasibility of the TORS approach for PPS tumors that achieves a high local control and low surgical complication rate. TORS is a viable approach for removing benign tumors and lesions of the PPS. Copyright © 2010 S. Karger AG, Basel.
Solin, Lawrence J; Gray, Robert; Goldstein, Lori J; Recht, Abram; Baehner, Frederick L; Shak, Steven; Badve, Sunil; Perez, Edith A; Shulman, Lawrence N; Martino, Silvana; Davidson, Nancy E; Sledge, George W; Sparano, Joseph A
2012-07-01
The present study was performed to evaluate the significance of biologic subtype and 21-gene recurrence score relative to local recurrence and local-regional recurrence after breast conservation treatment with radiation. Eastern Cooperative Oncology Group E2197 was a prospective randomized clinical trial that compared two adjuvant systemic chemotherapy regimens for patients with operable breast carcinoma with 1-3 positive lymph nodes or negative lymph nodes with tumor size >1.0 cm. The study population was a subset of 388 patients with known 21-gene recurrence score and treated with breast conservation surgery, systemic chemotherapy, and definitive radiation treatment. Median follow-up was 9.7 years (range = 3.7-11.6 years). The 10-year rates of local recurrence and local-regional recurrence were 5.4 % and 6.6 %, respectively. Neither biologic subtype nor 21-gene Recurrence Score was associated with local recurrence or local-regional recurrence on univariate or multivariate analyses (all P ≥ 0.12). The 10-year rates of local recurrence were 4.9 % for hormone receptor positive, HER2-negative tumors, 6.0 % for triple negative tumors, and 6.4 % for HER2-positive tumors (P = 0.76), and the 10-year rates of local-regional recurrence were 6.3, 6.9, and 7.2 %, respectively (P = 0.79). For hormone receptor-positive tumors, the 10-year rates of local recurrence were 3.2, 2.9, and 10.1 % for low, intermediate, and high 21-gene recurrence score, respectively (P = 0.17), and the 10-year rates of local-regional recurrence were 3.8, 5.1, and 12.0 %, respectively (P = 0.12). For hormone receptor-positive tumors, the 21-gene recurrence score evaluated as a continuous variable was significant for local-regional recurrence (hazard ratio 2.66; P = 0.03). The 10-year rates of local recurrence and local-regional recurrence were reasonably low in all subsets of patients. Neither biologic subtype nor 21-gene recurrence score should preclude breast conservation treatment with radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayr, Nina A.; Center for Advanced Radiation Technology and Therapy; Wang, Jian Z.
2009-08-01
Purpose: The tumor oxygenation status is likely influenced by two major factors: local tumor blood supply (tumor perfusion) and its systemic oxygen carrier, hemoglobin (Hgb). Each has been independently shown to affect the radiotherapy (RT) outcome in cervical cancer. This study assessed the effect of local tumor perfusion, systemic Hgb levels, and their combination on the treatment outcome in cervical cancer. Methods and Materials: A total of 88 patients with cervical cancer, Stage IB2-IVA, who were treated with RT/chemotherapy, underwent serial dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) before RT, at 20-22 Gy, and at 45-50 Gy. The DCE-MRI perfusion parameters,more » mean and lowest 10th percentile of the signal intensity distribution in the tumor pixels, and the Hgb levels, including pre-RT, nadir, and mean Hgb (average of weekly Hgb during RT), were correlated with local control and disease-specific survival. The median follow-up was 4.6 years. Results: Local recurrence predominated in the group with both a low mean Hgb (<11.2 g/dL) and low perfusion (lowest 10th percentile of signal intensity <2.0 at 20-22 Gy), with a 5-year local control rate of 60% vs. 90% for all other groups (p = .001) and a disease-specific survival rate of 41% vs. 72% (p = .008), respectively. In the group with both high mean Hgb and high perfusion, the 5-year local control rate and disease-specific survival rate was 100% and 78%, respectively. Conclusion: These results suggest that the compounded effects of Hgb level and tumor perfusion during RT influence the radioresponsiveness and survival in cervical cancer patients. The outcome was worst when both were impaired. The management of Hgb may be particularly important in patients with low tumor perfusion.« less
Development and characterization of a monoclonal antibody to human embryonal carcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khazaeli, M.B.; Beierwaltes, W.H.; Pitt, G.S.
1987-06-01
A monoclonal anti-testicular carcinoma antibody was obtained via the somatic cell fusion technique by immunization of BALB/c mice with freshly prepared single cell suspension from a patient with testicular embryonal carcinoma with choriocarcinoma components. The hybridoma supernates were screened against the testicular carcinoma cells used in the immunization as well as normal mononuclear white blood cells isolated from the same patient. An antibody (5F9) was selected which bound to fresh tumor cells from two patients with embryonal testicular carcinoma and failed to bind to fresh tumor cells from 24 patients (2 seminoma, 2 melanoma, 3 neck, 2 esophageal, 1 ovarian,more » 3 colon, 1 prostate, 2 breast, 1 liposarcoma, 3 endometrial, 1 kidney, 1 adrenal, 1 larynx and 1 bladder tumors) or cell suspensions prepared from normal liver, lung, spleen, ovary, testes, kidney, red blood cells or white blood cells. The antibody was tested for its binding to several well established cancer cell lines, and was found to bind to the BeWo human choriocarcinoma and two human embryonal carcinoma cell lines. The antibody did not react with 22 other cell lines or with hCG. The antibody was labeled with /sup 131/I and injected into nude mice bearing BeWo tumors and evaluated for tumor localization by performing whole body scans with a gamma camera 5 days later. Six mice injected with the antibody showed positive tumor localization without the need for background subtraction while six mice injected with MOPC-21, a murine myeloma immunoglobulin, demonstrated much less tumor localization. Tissue distribution studies performed after scanning showed specific tumor localization (8:1 tumor: muscle) for the monoclonal antibody and no specific localization for MOPC-21.« less
Collecting and Storing Biological Samples From Patients With Ewing Sarcoma
2017-12-11
Askin Tumor; Localized Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlad, Roxana M.; Kolios, Michael C.; Moseley, Joanne L.
Purpose: High frequency ultrasound imaging, 10-30 MHz, has the capability to assess tumor response to radiotherapy in mouse tumors as early as 24 h after treatment administration. The advantage of this technique is that the image contrast is generated by changes in the physical properties of dying cells. Therefore, a subject can be imaged before and multiple times during the treatment without the requirement of injecting specialized contrast agents. This study is motivated by a need to provide metrics of comparison between the volume and localization of cell death, assessed from histology, with the volume and localization of cell deathmore » surrogate, assessed as regions with increased echogeneity from ultrasound images. Methods: The mice were exposed to radiation doses of 2, 4, and 8 Gy. Ultrasound images were collected from each tumor before and 24 h after exposure to radiation using a broadband 25 MHz center frequency transducer. After radiotherapy, tumors exhibited hyperechoic regions in ultrasound images that corresponded to areas of cell death in histology. The ultrasound and histological images were rigidly registered. The tumors and regions of cell death were manually outlined on histological images. Similarly, the tumors and hyperechoic regions were outlined on the ultrasound images. Each set of contours was converted to a volumetric mesh in order to compare the volumes and the localization of cell death in histological and ultrasound images. Results: A shrinkage factor of 17{+-}2% was calculated from the difference in the tumor volumes evaluated from histological and ultrasound images. This was used to correct the tumor and cell death volumes assessed from histology. After this correction, the average absolute difference between the volume of cell death assessed from ultrasound and histological images was 11{+-}14% and the volume overlap was 70{+-}12%. Conclusions: The method provided metrics of comparison between the volume of cell death assessed from histology and that assessed from ultrasound images. It was applied here to evaluate the capability of ultrasound imaging to assess early tumor response to radiotherapy in mouse tumors. Similarly, it can be applied in the future to evaluate the capability of ultrasound imaging to assess early tumor response to other modalities of cancer treatment. The study contributes to an understanding of the capabilities and limitation of ultrasound imaging at noninvasively detecting cell death. This provides a foundation for future developments regarding the use of ultrasound in preclinical and clinical applications to adapt treatments based on tumor response to cancer therapy.« less
An Emerging Allee Effect Is Critical for Tumor Initiation and Persistence
Böttger, Katrin; Hatzikirou, Haralambos; Voss-Böhme, Anja; Cavalcanti-Adam, Elisabetta Ada; Herrero, Miguel A.; Deutsch, Andreas
2015-01-01
Tumor cells develop different strategies to cope with changing microenvironmental conditions. A prominent example is the adaptive phenotypic switching between cell migration and proliferation. While it has been shown that the migration-proliferation plasticity influences tumor spread, it remains unclear how this particular phenotypic plasticity affects overall tumor growth, in particular initiation and persistence. To address this problem, we formulate and study a mathematical model of spatio-temporal tumor dynamics which incorporates the microenvironmental influence through a local cell density dependence. Our analysis reveals that two dynamic regimes can be distinguished. If cell motility is allowed to increase with local cell density, any tumor cell population will persist in time, irrespective of its initial size. On the contrary, if cell motility is assumed to decrease with respect to local cell density, any tumor population below a certain size threshold will eventually extinguish, a fact usually termed as Allee effect in ecology. These results suggest that strategies aimed at modulating migration are worth to be explored as alternatives to those mainly focused at keeping tumor proliferation under control. PMID:26335202
Li, Shu-Xia; Yang, Yan-Qi; Jin, Li-Jian; Cai, Zhi-Gang; Sun, Zheng
2016-01-01
The aim of this study was to detect the survivin, carcinoembryonic antigen (CEA) and ErbB2 in the saliva, serum and local tumor-exfoliated cells of oral squamous cell carcinoma (OSCC) patients, for providing reliable tumor markers for the early detection of oral malignant cancer. The saliva, serum, and local tumor-exfoliated cell samples of 26 OSCC patients without chemotherapy and 10 non-cancer patients were collected in Department of Oral and Maxillofacial Surgery, School of Stomatology, Peking University. The contents of survivin, CEA and ErbB2 using were detected usingenzyme-linked immunosorbent assay. The survivin and CEA levels in saliva and local tumor-exfoliated cells of OSCC patients were significantly higher than those in the non-cancer patients (P < 0.05), but there was no significant difference in the content of the above factors in the serum sample between two groups. There was no significant difference in the ErbB2 content in the saliva, serum or local tumor-exfoliated cells between two groups. Survivin and CEA levels are significantly increased in the saliva and local tumor-exfoliated cells in OSCC patients, and they can be used as reliable markers for the early detection of oral malignant cancer.
Chiappini, Ciro; Campagnolo, Paola; Almeida, Carina S; Abbassi-Ghadi, Nima; Chow, Lesley W; Hanna, George B; Stevens, Molly M
2015-09-16
Porous silicon nanoneedles can map Cathepsin B activity across normal and tumor human esophageal mucosa. Assembling a peptide-based Cathepsin B cleavable sensor over a large array of nano-needles allows the discrimination of cancer cells from healthy ones in mixed culture. The same sensor applied to tissue can map Cathepsin B activity with high resolution across the tumor margin area of esophageal adenocarcinoma. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017-09-18
Desmoplastic Small Round Cell Tumor; Ewing Sarcoma of Bone or Soft Tissue; Localized Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graves, E.
2015-06-15
Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation alsomore » initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of these advances in cancer biology research will give medical physicists a new perspective in daily clinical physics practice and in future radiation therapy technological development. Furthermore, academic medical physics should continue to be an integral part of the multidisciplinary cancer research community, harnessing our newly acquired understanding of radiation effects, and developing novel cost-effective treatment strategies to better combat cancer. Learning Objectives: Understand that localized radiation can lead to non-localized secondary effects such as radiation-induced immune response, bystander effect, and abscopal effect. Understand that the non-localized radiation effects may be harnessed to improve cancer treatment. Learn examples of physics participation in multidisciplinary research to advance cancer biology. Recognize the challenges and possibilities of physics applications in cancer research. Chang: NIH 5RC2CA148487-02 and 1U54CA151652-01 Graves: IDEA award (19IB-0106) from the California Breast Cancer Research Program (CBCRP), and by NIH P01 CA67166.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, B.; Packard, B.S.; Read, E.J.
Lymphoid cells infiltrating into human tumors can be expanded in vitro in medium containing interleukin-2 (IL-2). Adoptive transfer of these tumor-infiltrating lymphocytes (TIL) mediates potent antitumor effects in murine tumor models. Clinical trials to evaluate the efficacy of these cells in patients with advanced cancer are underway. We have investigated whether infused TIL labeled with indium 111 (111In) oxine can traffic and localize to metastatic deposits of tumor. Six patients with metastatic malignant melanoma who had multiple sites of subcutaneous, nodal, and/or visceral disease were the subjects of the study. The patients received cyclophosphamide 36 hours before receiving the intravenousmore » (IV) infusion of TIL followed by IL-2 IV every eight hours. The distribution and localization of the TIL were evaluated using serial whole body gamma camera imaging, serial blood and urine samplings, and serial biopsies of tumor and normal tissue. 111In-labeled TIL localized to lung, liver, and spleen within two hours after the infusion of activity. Activity in the lung diminished within 24 hours. As early as 24 hours after injection of 111In-labeled TIL, localization of TIL to sites of metastatic deposits was demonstrated in all six patients using either imaging studies or biopsy specimens or both. 111In activity in tumor tissue biopsies ranged from three to 40 times greater than activity in normal tissue. A progressive increase in the radioactive counts at sites of tumor deposit was seen. This study shows that labeled TIL can localize preferentially to tumor, and provides information concerning the possible mechanism of the therapeutic effects of TIL.« less
Toward Brain Tumor Gene Therapy Using Multipotent Mesenchymal Stromal Cell Vectors
Bexell, Daniel; Scheding, Stefan; Bengzon, Johan
2010-01-01
Gene therapy of solid cancers has been severely restricted by the limited distribution of vectors within tumors. However, cellular vectors have emerged as an effective migratory system for gene delivery to invasive cancers. Implanted and injected multipotent mesenchymal stromal cells (MSCs) have shown tropism for several types of primary tumors and metastases. This capacity of MSCs forms the basis for their use as a gene vector system in neoplasms. Here, we review the tumor-directed migratory potential of MSCs, mechanisms of the migration, and the choice of therapeutic transgenes, with a focus on malignant gliomas as a model system for invasive and highly vascularized tumors. We examine recent findings demonstrating that MSCs share many characteristics with pericytes and that implanted MSCs localize primarily to perivascular niches within tumors, which might have therapeutic implications. The use of MSC vectors in cancer gene therapy raises concerns, however, including a possible MSC contribution to tumor stroma and vasculature, MSC-mediated antitumor immune suppression, and the potential malignant transformation of cultured MSCs. Nonetheless, we highlight the novel prospects of MSC-based tumor therapy, which appears to be a promising approach. PMID:20407426
Real-time tumor motion estimation using respiratory surrogate via memory-based learning
NASA Astrophysics Data System (ADS)
Li, Ruijiang; Lewis, John H.; Berbeco, Ross I.; Xing, Lei
2012-08-01
Respiratory tumor motion is a major challenge in radiation therapy for thoracic and abdominal cancers. Effective motion management requires an accurate knowledge of the real-time tumor motion. External respiration monitoring devices (optical, etc) provide a noninvasive, non-ionizing, low-cost and practical approach to obtain the respiratory signal. Due to the highly complex and nonlinear relations between tumor and surrogate motion, its ultimate success hinges on the ability to accurately infer the tumor motion from respiratory surrogates. Given their widespread use in the clinic, such a method is critically needed. We propose to use a powerful memory-based learning method to find the complex relations between tumor motion and respiratory surrogates. The method first stores the training data in memory and then finds relevant data to answer a particular query. Nearby data points are assigned high relevance (or weights) and conversely distant data are assigned low relevance. By fitting relatively simple models to local patches instead of fitting one single global model, it is able to capture highly nonlinear and complex relations between the internal tumor motion and external surrogates accurately. Due to the local nature of weighting functions, the method is inherently robust to outliers in the training data. Moreover, both training and adapting to new data are performed almost instantaneously with memory-based learning, making it suitable for dynamically following variable internal/external relations. We evaluated the method using respiratory motion data from 11 patients. The data set consists of simultaneous measurement of 3D tumor motion and 1D abdominal surface (used as the surrogate signal in this study). There are a total of 171 respiratory traces, with an average peak-to-peak amplitude of ∼15 mm and average duration of ∼115 s per trace. Given only 5 s (roughly one breath) pretreatment training data, the method achieved an average 3D error of 1.5 mm and 95th percentile error of 3.4 mm on unseen test data. The average 3D error was further reduced to 1.4 mm when the model was tuned to its optimal setting for each respiratory trace. In one trace where a few outliers are present in the training data, the proposed method achieved an error reduction of as much as ∼50% compared with the best linear model (1.0 mm versus 2.1 mm). The memory-based learning technique is able to accurately capture the highly complex and nonlinear relations between tumor and surrogate motion in an efficient manner (a few milliseconds per estimate). Furthermore, the algorithm is particularly suitable to handle situations where the training data are contaminated by large errors or outliers. These desirable properties make it an ideal candidate for accurate and robust tumor gating/tracking using respiratory surrogates.
Théon, Alain P; Wilson, W David; Magdesian, K Gary; Pusterla, Nicola; Snyder, Jack R; Galuppo, Larry D
2007-05-15
To determine outcome associated with cutaneous tumors treated via intratumoral chemotherapy with cisplatin and identify risk factors affecting local tumor control and complications in equidae. Retrospective case series. 573 equidae with 630 cutaneous tumors. Medical records of horses, mules, donkeys, and ponies with cutaneous tumors treated via intratumoral chemotherapy with cisplatin were analyzed. 549 horses, 13 mules, 8 donkeys, and 3 ponies with 630 histologically confirmed cutaneous tumors were included. Tumors included sarcoids (n = 409), squamous cell carcinomas (151), soft tissue sarcomas (28), cutaneous lymphomas (26), and melanomas (16). Overall cure rate, defined as local control at 4 years, was 93.3%. For all tumor stages combined, cure rates after 1 course of treatment were 96.3% for sarcoids, 96% for lymphomas, 88% for squamous cell carcinomas, 85% for soft tissue sarcomas, and 81% for melanomas. Treatment protocol, tumor stage, and prior treatment were significant prognostic factors for tumor control. Treatment efficacy was lower for large tumors, those with gross postoperative residual disease, and those that had been treated previously with other modalities. Treatment was well tolerated. Local reactions were more likely to occur and to be more severe after the third and fourth treatment sessions. Results confirmed the value of intratumoral chemotherapy with cisplatin for treatment of cutaneous tumors in equidae. The results cannot be extrapolated to other formulations of cisplatin or other protocols that might be used.
Herrera, Victoria LM; Colby, Aaron H; Tan, Glaiza AL; Moran, Ann M; O’Brien, Michael J; Colson, Yolonda L; Ruiz-Opazo, Nelson; Grinstaff, Mark W
2016-01-01
Aim: To evaluate the tumor localization and efficacy pH-responsive expansile nanoparticles (eNPs) as a drug delivery system for pancreatic peritoneal carcinomatosis (PPC) modeled in nude rats. Methods & materials: A Panc-1-cancer stem cell xeno1graft model of PPC was validated in vitro and in vivo. Tumor localization was tracked via in situ imaging of fluorescent eNPs. Survival of animals treated with paclitaxel-loaded eNPs (PTX-eNPs) was evaluated in vivo. Results: The Panc-1-cancer stem cell xenograft model recapitulates significant features of PPC. Rhodamine-labeled eNPs demonstrate tumor-specific, dose- and time-dependent localization to macro- and microscopic tumors following intraperitoneal injection. PTX-eNPs are as effective as free PTX in treating established PPC; but, PTX-eNPs result in fewer side effects. Conclusion: eNPs are a promising tool for the detection and treatment of PPC. PMID:27078118
Infrared imaging for tumor detection using antibodies conjugated magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Levy, Arie; Gannot, Israel
2008-04-01
Thermography is a well known approach for cost effective early detection of concourse tumors. However, till now - more than 5 decades after its introduction - it is not considered as a primary tool for cancer early detection, mainly because its poor performance compared to other techniques. This work offers a new thermographic approach for tumor detection which is based on the use of antibody conjugated magnetic nanoparticles ("MNP") as a tumor specific marker. Wename this method "Thermal Beacon Thermography" ("TBT"), and it has the potential to provide considerable advantages over conventional thermographic approach. TBT approach is based on the fact that MNP are producing heat when subjected to an alternating magnetic field ("AMF"). Once these particles are injected to the patient blood stream, they specifically accumulate at the tumor site, providing a local heat source at the tumor that can be activated and deactivated by external control. This heat source can be used as a "thermal beacon" in order to detect and locate tumor by detecting temperature changes at the skin surface using an IR camera and comparing them to a set of pre-calculated numerical predictions. Experiments were conducted using an in vitro tissue model together with industrial inductive heating system and an IR camera. The results shows that this approach can specifically detect small tumor phantom (D=1.5mm) which was embedded below the surface of the tissue phantom.
Expression patterns of emmprin and monocarboxylate transporter-1 in ovarian epithelial tumors.
Fukuoka, Miyoko; Hamasaki, Makoto; Koga, Kaori; Hayashi, Hiroyuki; Aoki, Mikiko; Kawarabayashi, Tatsuhiko; Miyamoto, Shingo; Nabeshima, Kazuki
2012-10-01
Emmprin is a transmembrane glycoprotein known as a matrix metalloproteinase inducer and is highly up-regulated in malignant cancer cells. The monocarboxylate transporters (MCTs) are responsible for H(+)-linked transport of monocarboxylates across the cell membrane. It was recently demonstrated that proper plasma membrane localization and activity of MCTs require the presence of emmprin as a chaperone and that MCT-1 also acts as chaperone for emmprin. The objectives of this study were to clarify emmprin and MCT-1 expression patterns in ovarian epithelial tumors and to elucidate the clinicopathological significance of co-localization of the two molecules. Immunohistochemical analysis of 205 epithelial tumors indicated that emmprin is always localized in cell membranes but its distribution differs according to tumor type: in lateral membranes in 89 % of adenomas, in lateral and basal membranes in 76 % of borderline tumors, and in membranes surrounding the entire cell in 98 % of carcinomas. Most carcinomas in situ also showed a lateral and basal expression pattern. In only 21 % of the carcinomas, the cells expressing membranous MCT-1 showed co-localized emmprin expression. Poor co-localization of the two molecules was more frequently found in serous carcinomas. However, the overall survival was not significantly different for the good and poor co-localization carcinoma groups. These findings indicate that the emmprin expression pattern might discriminate between invasive carcinomas and borderline tumors including carcinoma in situ. Moreover, there may be an as yet unidentified regulatory mechanism(s), for localization of MCT-1 and emmprin in cell membranes in vivo.
Myxofibrosarcoma of the sinus piriformis: case report and literature review.
Qiubei, Zhu; Cheng, Lin; Yaping, Xu; Shunzhang, Lin; Jingping, Fan
2012-11-15
Myxofibrosarcoma is a common sarcoma in the extremities of older people, but is rare in the head and neck region. Here, we report the case of a 42-year-old male patient in whom myxofibrosarcoma generated from the sinus piriformis. Histopathologically, the tumor was characterized by spindle cellular proliferation with moderate cellular density in fibromyxoid stroma. Immunohistochemically, the tumor cells showed positive reactivity for vimentin, Ki-67, smooth muscle actin, and CD34, but negative staining for S-100. Based on these results, the tumor was diagnosed as a low-grade myxofibrosarcoma. Resection of the tumor was performed via a transcervical approach. The patient's postoperative clinical course was uneventful and no local recurrence or distant metastasis has been found so far. The pathology, clinical characteristics, and treatment of myxofibrosarcoma are also reviewed.
Radiofrequency ablation of hepatocellular carcinoma: pros and cons.
Rhim, Hyunchul; Lim, Hyo K
2010-09-01
Among locoregional treatments for hepatocellular carcinoma (HCC), radiofrequency ablation (RFA) has been accepted as the most popular alternative to curative transplantation or resection, and it shows an excellent local tumor control rate and acceptable morbidity. The benefits of RFA have been universally validated by the practice guidelines of international societies of hepatology. The main advantages of RFA include 1) it is minimally invasive with acceptable morbidity, 2) it enables excellent local tumor control, 3) it has promising long-term survival, and 4) it is a multimodal approach. Based on these pros, RFA will play an important role in managing the patient with early HCC (smaller than 3 cm with fewer than four tumors). The main limitations of current RFA technology in hepatic ablation include 1) limitation of ablation volume, 2) technically infeasible in some tumors due to conspicuity and dangerous location, and 3) the heat-sink effect. Many technical approaches have been introduced to overcome those limitations, including a novel guiding modality, use of artificial fluid or air, and combined treatment strategies. RFA will continue to play a role as a representative ablative modality in the management of HCC, even in the era of targeted agents.
Radiofrequency Ablation of Hepatocellular Carcinoma: Pros and Cons
Lim, Hyo K.
2010-01-01
Among locoregional treatments for hepatocellular carcinoma (HCC), radiofrequency ablation (RFA) has been accepted as the most popular alternative to curative transplantation or resection, and it shows an excellent local tumor control rate and acceptable morbidity. The benefits of RFA have been universally validated by the practice guidelines of international societies of hepatology. The main advantages of RFA include 1) it is minimally invasive with acceptable morbidity, 2) it enables excellent local tumor control, 3) it has promising long-term survival, and 4) it is a multimodal approach. Based on these pros, RFA will play an important role in managing the patient with early HCC (smaller than 3 cm with fewer than four tumors). The main limitations of current RFA technology in hepatic ablation include 1) limitation of ablation volume, 2) technically infeasible in some tumors due to conspicuity and dangerous location, and 3) the heat-sink effect. Many technical approaches have been introduced to overcome those limitations, including a novel guiding modality, use of artificial fluid or air, and combined treatment strategies. RFA will continue to play a role as a representative ablative modality in the management of HCC, even in the era of targeted agents. PMID:21103289
Gating based on internal/external signals with dynamic correlation updates.
Wu, Huanmei; Zhao, Qingya; Berbeco, Ross I; Nishioka, Seiko; Shirato, Hiroki; Jiang, Steve B
2008-12-21
Precise localization of mobile tumor positions in real time is critical to the success of gated radiotherapy. Tumor positions are usually derived from either internal or external surrogates. Fluoroscopic gating based on internal surrogates, such as implanted fiducial markers, is accurate however requiring a large amount of imaging dose. Gating based on external surrogates, such as patient abdominal surface motion, is non-invasive however less accurate due to the uncertainty in the correlation between tumor location and external surrogates. To address these complications, we propose to investigate an approach based on hybrid gating with dynamic internal/external correlation updates. In this approach, the external signal is acquired at high frequency (such as 30 Hz) while the internal signal is sparsely acquired (such as 0.5 Hz or less). The internal signal is used to validate and update the internal/external correlation during treatment. Tumor positions are derived from the external signal based on the newly updated correlation. Two dynamic correlation updating algorithms are introduced. One is based on the motion amplitude and the other is based on the motion phase. Nine patients with synchronized internal/external motion signals are simulated retrospectively to evaluate the effectiveness of hybrid gating. The influences of different clinical conditions on hybrid gating, such as the size of gating windows, the optimal timing for internal signal acquisition and the acquisition frequency are investigated. The results demonstrate that dynamically updating the internal/external correlation in or around the gating window will reduce false positive with relatively diminished treatment efficiency. This improvement will benefit patients with mobile tumors, especially greater for early stage lung cancers, for which the tumors are less attached or freely floating in the lung.
Tumor exosomes: cellular postmen of cancer diagnosis and personalized therapy.
Sharma, Aman; Khatun, Zamila; Shiras, Anjali
2016-02-01
Nanosized (30-150 nm) extracellular vesicles 'exosomes' are secreted by cells for intercellular communication during normal and pathological conditions. Exosomes carry biomacromolecules from cell-of-origin and, therefore, represent molecular bioprint of the cell. Tumor-derived exosomes or TDEx modulate tumor microenvironment by transfer of macromolecules locally as well as at distant metastatic sites. Due to their biological stability, TDEx are rich source of biomarkers in cancer patients. TDEx focused cancer diagnosis allows liquid biopsy-based tumor typing and may facilitate therapy response monitoring by developing novel exosomes diagnostics. Therefore, efficient and specific capturing of exosomes for subsequent amplification of the biomessages; for example, DNA, RNA, miRNA can reinvent cancer diagnosis. Here, in this review, we discuss advancements in exosomes isolation strategies, presence of exosomes biomarkers and importance of TDEx in gauging tumor heterogeneity for their potential use in cancer diagnosis, therapy.
Wichtowski, Mateusz; Nowaczyk, Piotr; Kocur, Jacek; Murawa, Dawid
2016-01-01
Irreversible electroporation is a new, non-thermal ablation technique in the treatment of parenchymal organ tumors which uses short high voltage pulses of electricity in order to induce apoptosis of targeted cells. In this paper the application of this method of treatment in locally advanced pancreatic cancer (LAPC) and liver cancer is analyzed. Between 04.2014 and 09.2014 two patients with LAPC and one with colorectal liver metastasis (CRLM) were qualified for treatment with irreversible electroporation. Both patients remained under constant observation and control. PubMed/Medline, Embase and Google Scholar databases were searched and eight original reports on irreversible electroporation of pancreatic and liver tumors based on the biggest groups of patients were found. Two patients with LAPC and one with CRLM were qualified for ablation with irreversible electroporation. In all three patients a successful irreversible electroporation (IRE) procedure of the whole tumor was conducted. In the minimum seven-month follow-up 100% local control was achieved - without progression. In the literature review the local response to treatment ranged from 41% to 100%. The event-free survival rate in six-month observation was 94%. Ablation with irreversible electroporation is a new non-thermal ablation technique which has been demonstrated, both in the previously published studies and in the cases described in this paper, as a safe and efficient therapeutic method for patients with LAPC and CRLM.
Husain, Zain; Benevenia, Joseph; Uglialoro, Anthony D; Beebe, Kathleen S; Patterson, Francis R; Hameed, Meera R; Cathcart, Charles S
2011-05-01
Surgical resection has had control rates of 53% to 77% in the treatment of extra-abdominal desmoid tumors. Surgical excision combined with external beam radiation therapy (EBRT) has had local control rates of up to 83% in some series. The purpose of this study was to evaluate the effectiveness of resection combined with radiotherapy (brachytherapy, EBRT, or both) in the treatment of extra-abdominal desmoid tumors. We retrospectively reviewed the charts of 24 consecutive patients (27 histologically confirmed extra-abdominal desmoid tumors). Patients were included in the study if they had a lesion that was potentially resectable with a wide margin, allowing for limb salvage, and if they did not have a contraindication to radiotherapy. Limb functioning was assessed with the Musculoskeletal Tumor Society (MSTS) scoring system. Seventeen patients (7 men, 10 women) with 19 tumors met the inclusion criteria. Mean age at diagnosis was 23.4 years. Follow-up (mean, 4.28 years) involved serial clinical examinations and magnetic resonance imaging of tumor sites. After surgery, the tumors were treated with brachytherapy (n = 6), EBRT (n = 10), or both (n = 3). Two of the 17 tumors in patients with negative margins of resection recurred locally (local control rate, 88.2%). Mean MSTS score was 29/30 (96.7%). The role of surgery, radiotherapy, chemotherapy, hormone therapy, and other treatments for extra-abdominal desmoid tumors is not well defined. When wide-margin resection and radiotherapy can be performed with limb preservation surgery, local control and complication rates compare favorably with those of other reported methods of treatment. Given the results and limitations of our study, we cannot make a definitive recommendation as to which modality--brachytherapy or EBRT--should be used in the treatment of extra-abdominal desmoid tumors.
High-fat Diet-induced Inflammation Accelerates Prostate Cancer Growth via IL6 Signaling.
Hayashi, Takuji; Fujita, Kazutoshi; Nojima, Satoshi; Hayashi, Yujiro; Nakano, Kosuke; Ishizuya, Yu; Wang, Cong; Yamamoto, Yoshiyuki; Kinouchi, Toshiro; Matsuzaki, Kyosuke; Jingushi, Kentaro; Kato, Taigo; Kawashima, Atsunari; Nagahara, Akira; Ujike, Takeshi; Uemura, Motohide; Rodriguez Pena, Maria Del Carmen; Gordetsky, Jennifer B; Morii, Eiichi; Tsujikawa, Kazutake; Netto, George J; Nonomura, Norio
2018-05-18
High-fat diet (HFD) could induce prostate cancer progression. The aim of this study is to identify mechanisms of HFD-induced prostate cancer progression, focusing on inflammation. We administered HFD and celecoxib to autochthonous immunocompetent Pb-Cre+; Pten(fl/fl) model mice for prostate cancer. Tumor growth was evaluated by tumor weight and Ki67 stain, and local immune cells were assessed by flow cytometry at 22 weeks of age. Cytokines which correlated with tumor growth were identified, and the changes of tumor growth and local immune cells after inhibition of the cytokine signals were evaluated in the mice. Immunohistochemical analyses using prostatectomy specimens of obese patients were performed. HFD accelerated tumor growth, and increased the myeloid-derived suppressor cells (MDSCs) fraction and M2/M1 macrophage ratio in the model mice. Celecoxib suppressed tumor growth, and decreased both local MDSCs and M2/M1 macrophage ratio in HFD-fed mice. HFD-induced tumor growth was associated with IL6 secreted by prostatic macrophages, as were phosphorylated signal transducer and activator of transcription 3 (pSTAT3)-positive tumor cells. Anti-IL6 receptor antibody administration suppressed tumor growth, and decreased local MDSCs and pSTAT3-positive cell fractions in HFD-fed mice. The tumor-infiltrating CD11b-positive cell count was significantly higher in prostatectomy specimens of obese than those of non-obese prostate cancer patients. HFD increased MDSCs and accelerated prostate cancer tumor growth via IL6/pSTAT3 signaling in the mice. This mechanism could exist in obese prostate cancer patients. IL6-mediated inflammation could be a therapeutic target for prostate cancer. Copyright ©2018, American Association for Cancer Research.
Cook, Taylor
2014-01-01
Purpose. To evaluate our community-based institutional experience with plaque brachytherapy for uveal melanomas with a focus on local control rates, factors impacting disease progression, and dosimetric parameters impacting treatment toxicity. Methods and Materials. Our institution was retrospectively reviewed from 1996 to 2011; all patients who underwent plaque brachytherapy for uveal melanoma were included. Follow-up data were collected regarding local control, distant metastases, and side effects from treatment. Analysis was performed on factors impacting treatment outcomes and treatment toxicity. Results. A total of 107 patients underwent plaque brachytherapy, of which 88 had follow-up data available. Local control at 10 years was 94%. Freedom from progression (FFP) and overall survival at 10 years were 83% and 79%, respectively. On univariate analysis, there were no tumor or dosimetric treatment characteristics that were found to have a prognostic impact on FFP. Brachytherapy treatment was well tolerated, with clinically useful vision (>20/200) maintained in 64% of patients. Statistically significant dosimetric relationships were established with cataract, glaucoma, and retinopathy development (greatest P = 0.05). Conclusions. Treatment with plaque brachytherapy demonstrates excellent outcomes in a community-based setting. It is well tolerated and should remain a standard of care for COMS medium sized tumors. PMID:24734198
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rusthoven, Kyle E.; Olsen, Christine; Franklin, Wilbur
Purpose: To analyze the pathology, outcomes, and prognostic factors in patients with high-grade glioma undergoing reoperation after radiotherapy (RT). Methods and Materials: Fifty-one patients with World Health Organization Grade 3-4 glioma underwent reoperation after prior RT. The median dose of prior RT was 60 Gy, and 84% received chemotherapy as part of their initial treatment. Estimation of the percentage of necrosis and recurrent tumor in each reoperation specimen was performed. Pathology was classified as RT necrosis if {>=}80% of the specimen was necrotic and as tumor recurrence if {>=}20% was tumor. Predictors of survival were analyzed using log-rank comparisons andmore » Cox proportional hazards regression. Results: The median interval between the completion of RT and reoperation was 6.7 months (range, 1-59 months). Pathologic analysis showed RT necrosis in 27% and recurrence in 73% of cases. Thirteen patients required a reoperation for uncontrolled symptoms. Among them, 1 patient (8%) had pathology showing RT necrosis, and 12 (92%) had tumor recurrence. Median survival after reoperation was longer for patients with RT necrosis (21.8 months vs. 7.0 months, p = 0.047). In 7 patients with Grade 4 tumors treated with temozolomide-based chemoradiation with RT necrosis, median survival from diagnosis and reoperation were 30.2 months and 21.8 months, respectively. Conclusions: Patients with RT necrosis at reoperation have improved survival compared with patients with tumor recurrence. Future efforts to intensify local therapy and increase local tumor control in patients with high-grade glioma seem warranted.« less
Pienta, Kenneth J; McGregor, Natalie; Axelrod, Robert; Axelrod, David E
2008-01-01
We propose that there is an opportunity to devise new cancer therapies based on the recognition that tumors have properties of ecological systems. Traditionally, localized treatment has targeted the cancer cells directly by removing them (surgery) or killing them (chemotherapy and radiation). These modes of therapy have not always been effective because many tumors recur after these therapies, either because not all of the cells are killed (local recurrence) or because the cancer cells had already escaped the primary tumor environment (distant recurrence). There has been an increasing recognition that the tumor microenvironment contains host noncancer cells in addition to cancer cells, interacting in a dynamic fashion over time. The cancer cells compete and/or cooperate with nontumor cells, and the cancer cells may compete and/or cooperate with each other. It has been demonstrated that these interactions can alter the genotype and phenotype of the host cells as well as the cancer cells. The interaction of these cancer and host cells to remodel the normal host organ microenvironment may best be conceptualized as an evolving ecosystem. In classic terms, an ecosystem describes the physical and biological components of an environment in relation to each other as a unit. Here, we review some properties of tumor microenvironments and ecological systems and indicate similarities between them. We propose that describing tumors as ecological systems defines new opportunities for novel cancer therapies and use the development of prostate cancer metastases as an example. We refer to this as “ecological therapy” for cancer. PMID:19043526
Self-targeting of TNF-releasing cancer cells in preclinical models of primary and metastatic tumors.
Dondossola, Eleonora; Dobroff, Andrey S; Marchiò, Serena; Cardó-Vila, Marina; Hosoya, Hitomi; Libutti, Steven K; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata
2016-02-23
Circulating cancer cells can putatively colonize distant organs to form metastases or to reinfiltrate primary tumors themselves through a process termed "tumor self-seeding." Here we exploit this biological attribute to deliver tumor necrosis factor alpha (TNF), a potent antitumor cytokine, directly to primary and metastatic tumors in a mechanism that we have defined as "tumor self-targeting." For this purpose, we genetically engineered mouse mammary adenocarcinoma (TSA), melanoma (B16-F10), and Lewis lung carcinoma cells to produce and release murine TNF. In a series of intervention trials, systemic administration of TNF-expressing tumor cells was associated with reduced growth of both primary tumors and metastatic colonies in immunocompetent mice. We show that these malignant cells home to tumors, locally release TNF, damage neovascular endothelium, and induce massive cancer cell apoptosis. We also demonstrate that such tumor-cell-mediated delivery avoids or minimizes common side effects often associated with TNF-based therapy, such as acute inflammation and weight loss. Our study provides proof of concept that genetically modified circulating tumor cells may serve as targeted vectors to deliver anticancer agents. In a clinical context, this unique paradigm represents a personalized approach to be translated into applications potentially using patient-derived circulating tumor cells as self-targeted vectors for drug delivery.
Cui, Shaoguo; Mao, Lei; Jiang, Jingfeng; Liu, Chang; Xiong, Shuyu
2018-01-01
Brain tumors can appear anywhere in the brain and have vastly different sizes and morphology. Additionally, these tumors are often diffused and poorly contrasted. Consequently, the segmentation of brain tumor and intratumor subregions using magnetic resonance imaging (MRI) data with minimal human interventions remains a challenging task. In this paper, we present a novel fully automatic segmentation method from MRI data containing in vivo brain gliomas. This approach can not only localize the entire tumor region but can also accurately segment the intratumor structure. The proposed work was based on a cascaded deep learning convolutional neural network consisting of two subnetworks: (1) a tumor localization network (TLN) and (2) an intratumor classification network (ITCN). The TLN, a fully convolutional network (FCN) in conjunction with the transfer learning technology, was used to first process MRI data. The goal of the first subnetwork was to define the tumor region from an MRI slice. Then, the ITCN was used to label the defined tumor region into multiple subregions. Particularly, ITCN exploited a convolutional neural network (CNN) with deeper architecture and smaller kernel. The proposed approach was validated on multimodal brain tumor segmentation (BRATS 2015) datasets, which contain 220 high-grade glioma (HGG) and 54 low-grade glioma (LGG) cases. Dice similarity coefficient (DSC), positive predictive value (PPV), and sensitivity were used as evaluation metrics. Our experimental results indicated that our method could obtain the promising segmentation results and had a faster segmentation speed. More specifically, the proposed method obtained comparable and overall better DSC values (0.89, 0.77, and 0.80) on the combined (HGG + LGG) testing set, as compared to other methods reported in the literature. Additionally, the proposed approach was able to complete a segmentation task at a rate of 1.54 seconds per slice.
José, Anabel; Sobrevals, Luciano; Miguel Camacho-Sánchez, Juan; Huch, Meritxell; Andreu, Núria; Ayuso, Eduard; Navarro, Pilar; Alemany, Ramon; Fillat, Cristina
2013-01-01
Gene-based anticancer therapies delivered by adenoviruses are limited by the poor viral distribution into the tumor. In the current work we have explored the feasibility of targeting pancreatic tumors through a loco-regional route. We have taken advantage of the ductal network in the pancreas to retrogradelly inject adenoviruses through the common bile duct in two different mouse models of pancreatic carcinogenesis: The transgenic Ela-myc mice that develop mixed neoplasms displaying both acinar-like and duct-like neoplastic cells affecting the whole pancreas; and mice bearing PANC-1 and BxPC-3 orthotopic xenografts that constitute a model of localized human neoplastic tumors. We studied tumor targeting and the anticancer effects of newly thymidine kinase-engineered adenoviruses both in vitro and in vivo, and conducted comparative studies between intraductal or intravenous administration. Our data indicate that the intraductal delivery of adenovirus efficiently targets pancreatic tumors in the two mouse models. The in vivo application of AduPARTKT plus ganciclovir (GCV) treatment induced tumor regression in Ela-myc mice. Moreover, the intraductal injection of ICOVIR15-TKT oncolytic adenoviruses significantly improved mean survival of mice bearing PANC-1 and BxPC-3 pancreatic xenografts from 30 to 52 days and from 20 to 68 days respectively (p less than 0.0001) when combined with GCV. Of notice, both AduPARTKT and ICOVIR15-TKT antitumoral responses were stronger by ductal viral application than intravenously, in line with the 38-fold increase in pancreas transduction observed upon ductal administration. In summary our data show that cytotoxic adenoviruses retrogradelly injected to the pancreas can be a feasible approach to treat localized pancreatic tumors.
Beger, Hans G
2018-03-01
Pancreaticoduodenectomy and left-sided pancreatectomy are the surgical treatment standards for tumors of the pancreas. Surgeons, who are requested to treat patients with benign tumors, using standard oncological resections, face the challenge of sacrificing pancreatic and extra-pancreatic tissue. Tumor enucleation, pancreatic middle segment resection and local, duodenum-preserving pancreatic head resections are surgical procedures increasingly used as alternative treatment modalities compared to classical pancreatic resections. Use of local resection procedures for cystic neoplasms and neuro-endocrine tumors of the pancreas (panNETs) is associated with an improvement of procedure-related morbidity, when compared to classical Whipple OP (PD) and left-sided pancreatectomy (LP). The procedure-related advantages are a 90-day mortality below 1% and a low level of POPF B+C rates. Most importantly, the long-term benefits of the use of local surgical procedures are the preservation of the endocrine and exocrine pancreatic functions. PD performed for benign tumors on preoperative normo-glycemic patients is followed by the postoperative development of new onset of diabetes mellitus (NODM) in 4 to 24% of patients, measured by fasting blood glucose and/or oral/intravenous glucose tolerance test, according to the criteria of the international consensus guidelines. Persistence of new diabetes mellitus during the long-term follow-up after PD for benign tumors is observed in 14.5% of cases and after surgery for malignant tumors in 15.5%. Pancreatic exocrine insufficiency after PD is found in the long-term follow-up for benign tumors in 25% and for malignant tumors in 49%. Following LP, 14-31% of patients experience postoperatively NODM; many of the patients subsequently change to insulin-dependent diabetes mellitus (IDDM). The decision-making for cystic neoplasms and panNETs of the pancreas should be guided by the low surgical risk and the preservation of pancreatic metabolic functions when undergoing a limited, local, tissue-sparing procedure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palussiere, Jean, E-mail: J.Palussiere@bordeaux.unicancer.fr; Lagarde, Philippe, E-mail: P.Lagarde@bordeaux.unicancer.fr; Aupérin, Anne, E-mail: auperin@igr.fr
2015-02-15
PurposeTo evaluate the survival outcomes of percutaneous thermal ablation (RFA + microwaves) for patients presenting N0 non-small-cell lung cancer (NSCLC) ineligible for surgery.Materials and MethodsEighty-seven patients from two comprehensive cancer centers were included. Eighty-two patients were treated with RFA electrodes and five with microwave antenna. Overall survival (OS) and disease-free survival (DFS) were estimated and predictive factors of local tumor progression, OS and DFS identified and compared by univariate and multivariate analysesResultsMedian follow-up was 30.5 months (interquartile range 16.7–51) and tumor size was 21 mm (range 10–54 mm). Treatment was incomplete for 14 patients with a local tumor progression of 11.5, 18.3, and 21.1 % atmore » 1, 2, and 3 years, respectively. Two patients presented with neurological (grade III or IV) complications, and one died of respiratory and multivisceral failure as a result of the procedure at 29 days. In univariate analysis, increasing tumor size (P = 0.003) was the only predictive factor related to risk of local tumor progression. 5-year OS and DFS were 58.1 and 27.9 %, respectively. Sex (P = 0.044), pathology (P = 0.032), and tumor size >2 cm (P = 0.046) were prognostic factors for DFS. In multivariate analysis, pathology (P = 0.033) and tumor size >2 cm (P = 0.032) were independent prognostic factors for DFS.ConclusionsOversized and overlapping ablation of N0 NSCLC was well tolerated, effective, with few local tumor progressions, even over long-term follow-up. Increasing tumor size was the main prognostic factor linked to OS, DFS, and local tumor progression.« less
2013-01-01
Background To assess the therapeutic outcome and failure pattern of three-dimensional conformal radiotherapy (3D-CRT)-based concurrent chemoradiotherapy (CCRT) for recurrence of esophageal squamous cell carcinoma (SCC) after radical surgery. Methods Treatment outcome and failure pattern were retrospectively evaluated in 83 patients with localized cervical and thoracic recurrences after radical surgery for thoracic esophageal SCC. All patients were treated with 3DCRT-based CCRT (median radiation dose 60 Gy), in which 39 received concurrent cisplatin plus 5-fluorouracil (PF), and 44 received concurrent docetaxel plus cisplatin (TP). Treatment response was evaluated at 1–3 months after CCRT. Results With a median follow-up of 34 months (range, 2–116 months), the 3-year overall survival (OS) of all the patients was 51.8% and the median OS time was 43.0 months. The overall tumor response rate was 75.9% (63/83), with a complete remission (CR) rate of 44.6% (37/83). In univariate analysis, tumor response after CCRT (p = 0.000), recurrence site (p = 0.028) and concurrent chemotherapy (p = 0.090) showed a trend favoring better OS. Multivariate analysis revealed that tumor response after CCRT (p = 0.000) and concurrent chemotherapy (p = 0.010) were independent predictors of OS. Forty-seven patients had progressive diseases after CCRT, 27 had local failure (27/47, 57.4%), 18 had distant metastasis (18/47, 38.3%) and 2 had both local and distant failures (2/47, 4.3%). Conclusions 3DCRT-based CCRT is effective in postoperatively recurrent esophageal SCC. Patients that obtained complete remission after CCRT appeared to achieve long-term OS and might benefit from concurrent TP regimen. Local and distant failures remained high and prospective studies are needed to validate these factors. PMID:24139225
Bao, Yong; Liu, ShiLiang; Zhou, QiChao; Cai, PeiQiang; Anfossi, Simone; Li, QiaoQiao; Hu, YongHong; Liu, MengZhong; Fu, JianHua; Rong, TieHua; Li, Qun; Liu, Hui
2013-10-18
To assess the therapeutic outcome and failure pattern of three-dimensional conformal radiotherapy (3D-CRT)-based concurrent chemoradiotherapy (CCRT) for recurrence of esophageal squamous cell carcinoma (SCC) after radical surgery. Treatment outcome and failure pattern were retrospectively evaluated in 83 patients with localized cervical and thoracic recurrences after radical surgery for thoracic esophageal SCC. All patients were treated with 3DCRT-based CCRT (median radiation dose 60 Gy), in which 39 received concurrent cisplatin plus 5-fluorouracil (PF), and 44 received concurrent docetaxel plus cisplatin (TP). Treatment response was evaluated at 1-3 months after CCRT. With a median follow-up of 34 months (range, 2-116 months), the 3-year overall survival (OS) of all the patients was 51.8% and the median OS time was 43.0 months. The overall tumor response rate was 75.9% (63/83), with a complete remission (CR) rate of 44.6% (37/83). In univariate analysis, tumor response after CCRT (p = 0.000), recurrence site (p = 0.028) and concurrent chemotherapy (p = 0.090) showed a trend favoring better OS. Multivariate analysis revealed that tumor response after CCRT (p = 0.000) and concurrent chemotherapy (p = 0.010) were independent predictors of OS. Forty-seven patients had progressive diseases after CCRT, 27 had local failure (27/47, 57.4%), 18 had distant metastasis (18/47, 38.3%) and 2 had both local and distant failures (2/47, 4.3%). 3DCRT-based CCRT is effective in postoperatively recurrent esophageal SCC. Patients that obtained complete remission after CCRT appeared to achieve long-term OS and might benefit from concurrent TP regimen. Local and distant failures remained high and prospective studies are needed to validate these factors.
Indications of Carbon Ion Therapy at CNAO
NASA Astrophysics Data System (ADS)
Orecchia, Roberto; Rossi, Sandro; Fossati, Piero
2009-03-01
CNAO will be a dual center capable of providing therapeutic beams of protons and carbon ions with maximum energy of 400 MeV/u. At the beginning, it will be equipped with three treatment rooms with fixed horizontal and vertical beam lines. In a subsequent phase, two more rooms with a rotating gantry are foreseen. An active spot scanning dose delivery system will be employed. Initially, 80% of the treatments will be carried out with carbon ions. All patients will be treated within clinical trials to assess carbon ion indications with an evidence-based methodology. Seven disease-specific working groups have been developed: lung tumors, liver tumors, sarcomas, head and neck tumors, central nervous system lesions, eye tumors and pediatric tumors. The last two groups will be treated mainly with protons. In the first phase, CNAO will focus on head and neck cancers, treating inoperable, residual or recurrent malignant salivary gland tumors, mucosal melanoma, adenocarcinoma and unfavorably located SCC (nasal and paranasal sinuses). Carbon ions will be employed as a boost in the treatment of locally advanced, poor prognosis, SCC of the hypopharynx and tongue base. Bone and soft tissue sarcomas of the extremity will be treated with a limb-sparing approach, and trunk sarcomas will be treated with exclusive or post-operative irradiation. Skull base tumors (chordoma and chondrosarcoma), recurrent or malignant meningioma and glial tumors will be treated with carbon ions. After sufficient expertise has been gained in coping with organ motion, CNAO will start treating thoracic and abdominal targets. HCC will be treated in inoperable patients with one or more lesions that can be included in a single CTV. Early stage NSCLC will be treated. In the second phase, two more groups on gynecological malignancies and digestive tumors (esophageal cancer, rectal cancer, pancreatic cancer) will be created.
Establishment and maintenance of a standardized glioma tissue bank: Huashan experience.
Aibaidula, Abudumijiti; Lu, Jun-feng; Wu, Jin-song; Zou, He-jian; Chen, Hong; Wang, Yu-qian; Qin, Zhi-yong; Yao, Yu; Gong, Ye; Che, Xiao-ming; Zhong, Ping; Li, Shi-qi; Bao, Wei-min; Mao, Ying; Zhou, Liang-fu
2015-06-01
Cerebral glioma is the most common brain tumor as well as one of the top ten malignant tumors in human beings. In spite of the great progress on chemotherapy and radiotherapy as well as the surgery strategies during the past decades, the mortality and morbidity are still high. One of the major challenges is to explore the pathogenesis and invasion of glioma at various "omics" levels (such as proteomics or genomics) and the clinical implications of biomarkers for diagnosis, prognosis or treatment of glioma patients. Establishment of a standardized tissue bank with high quality biospecimens annotated with clinical information is pivotal to the solution of these questions as well as the drug development process and translational research on glioma. Therefore, based on previous experience of tissue banks, standardized protocols for sample collection and storage were developed. We also developed two systems for glioma patient and sample management, a local database for medical records and a local image database for medical images. For future set-up of a regional biobank network in Shanghai, we also founded a centralized database for medical records. Hence we established a standardized glioma tissue bank with sufficient clinical data and medical images in Huashan Hospital. By September, 2013, tissues samples from 1,326 cases were collected. Histological diagnosis revealed that 73 % were astrocytic tumors, 17 % were oligodendroglial tumors, 2 % were oligoastrocytic tumors, 4 % were ependymal tumors and 4 % were other central nervous system neoplasms.
Modeling Brain Dynamics in Brain Tumor Patients Using the Virtual Brain.
Aerts, Hannelore; Schirner, Michael; Jeurissen, Ben; Van Roost, Dirk; Achten, Eric; Ritter, Petra; Marinazzo, Daniele
2018-01-01
Presurgical planning for brain tumor resection aims at delineating eloquent tissue in the vicinity of the lesion to spare during surgery. To this end, noninvasive neuroimaging techniques such as functional MRI and diffusion-weighted imaging fiber tracking are currently employed. However, taking into account this information is often still insufficient, as the complex nonlinear dynamics of the brain impede straightforward prediction of functional outcome after surgical intervention. Large-scale brain network modeling carries the potential to bridge this gap by integrating neuroimaging data with biophysically based models to predict collective brain dynamics. As a first step in this direction, an appropriate computational model has to be selected, after which suitable model parameter values have to be determined. To this end, we simulated large-scale brain dynamics in 25 human brain tumor patients and 11 human control participants using The Virtual Brain, an open-source neuroinformatics platform. Local and global model parameters of the Reduced Wong-Wang model were individually optimized and compared between brain tumor patients and control subjects. In addition, the relationship between model parameters and structural network topology and cognitive performance was assessed. Results showed (1) significantly improved prediction accuracy of individual functional connectivity when using individually optimized model parameters; (2) local model parameters that can differentiate between regions directly affected by a tumor, regions distant from a tumor, and regions in a healthy brain; and (3) interesting associations between individually optimized model parameters and structural network topology and cognitive performance.
In Vivo Follow-up of Brain Tumor Growth via Bioluminescence Imaging and Fluorescence Tomography
Genevois, Coralie; Loiseau, Hugues; Couillaud, Franck
2016-01-01
Reporter gene-based strategies are widely used in experimental oncology. Bioluminescence imaging (BLI) using the firefly luciferase (Fluc) as a reporter gene and d-luciferin as a substrate is currently the most widely employed technique. The present paper compares the performances of BLI imaging with fluorescence imaging using the near infrared fluorescent protein (iRFP) to monitor brain tumor growth in mice. Fluorescence imaging includes fluorescence reflectance imaging (FRI), fluorescence diffuse optical tomography (fDOT), and fluorescence molecular Imaging (FMT®). A U87 cell line was genetically modified for constitutive expression of both the encoding Fluc and iRFP reporter genes and assayed for cell, subcutaneous tumor and brain tumor imaging. On cultured cells, BLI was more sensitive than FRI; in vivo, tumors were first detected by BLI. Fluorescence of iRFP provided convenient tools such as flux cytometry, direct detection of the fluorescent protein on histological slices, and fluorescent tomography that allowed for 3D localization and absolute quantification of the fluorescent signal in brain tumors. PMID:27809256
In Vivo Follow-up of Brain Tumor Growth via Bioluminescence Imaging and Fluorescence Tomography.
Genevois, Coralie; Loiseau, Hugues; Couillaud, Franck
2016-10-31
Reporter gene-based strategies are widely used in experimental oncology. Bioluminescence imaging (BLI) using the firefly luciferase (Fluc) as a reporter gene and d-luciferin as a substrate is currently the most widely employed technique. The present paper compares the performances of BLI imaging with fluorescence imaging using the near infrared fluorescent protein (iRFP) to monitor brain tumor growth in mice. Fluorescence imaging includes fluorescence reflectance imaging (FRI), fluorescence diffuse optical tomography (fDOT), and fluorescence molecular Imaging (FMT ® ). A U87 cell line was genetically modified for constitutive expression of both the encoding Fluc and iRFP reporter genes and assayed for cell, subcutaneous tumor and brain tumor imaging. On cultured cells, BLI was more sensitive than FRI; in vivo, tumors were first detected by BLI. Fluorescence of iRFP provided convenient tools such as flux cytometry, direct detection of the fluorescent protein on histological slices, and fluorescent tomography that allowed for 3D localization and absolute quantification of the fluorescent signal in brain tumors.
Successful treatment of mixed yolk sac tumor and mature teratoma in the spinal cord: case report.
Mukasa, Akitake; Yanagisawa, Shunsuke; Saito, Kuniaki; Tanaka, Shota; Takai, Keisuke; Shibahara, Junji; Ikegami, Masachika; Nakao, Yusuke; Takeshita, Katsushi; Matsutani, Masao; Saito, Nobuhito
2017-03-01
Primary spinal germ cell tumors are rare, and spinal nongerminomatous germ cell tumors represent an even rarer subset for which no standard therapy has been established. The authors report the case of a 24-year-old woman with multifocal primary spinal germ cell tumors scattered from T-12 to L-5 that consisted of yolk sac tumor and mature teratoma. After diagnostic partial resection, the patient was treated with 30 Gy of craniospinal irradiation and 30 Gy of local spinal irradiation, followed by 8 courses of chemotherapy based on ifosfamide, cisplatin, and etoposide (ICE). Salvage surgery was also performed for residual mature teratoma components after the third course of ICE chemotherapy. Chemotherapy was continued after the operation, but ifosfamide was entirely eliminated from the ICE regimen because severe myelosuppression was observed after previous courses. The patient remains recurrence free as of more than 5 years after the completion of chemotherapy. This case suggests that this treatment strategy is an effective option for primary spinal yolk sac tumor.
Influence of radiotherapy treatment concept on the outcome of patients with localized ependymomas.
Combs, Stephanie E; Kelter, Verena; Welzel, Thomas; Behnisch, Wolfgang; Kulozik, Andreas E; Bischof, Marc; Hof, Holger; Debus, Jürgen; Schulz-Ertner, Daniela
2008-07-15
To assess the outcome of 57 patients with localized ependymomas treated with radiotherapy (RT). Fifty-seven patients with localized ependymomas were treated with RT. Histology was myxopapillary ependymoma (n = 4), ependymoma (n = 23), and anaplastic ependymoma (n = 30). In 16 patients, irradiation of the craniospinal axis (CSI) was performed with a median dose of 20 Gy. Forty-one patients were treated with local RT, with a local dose of 45 Gy to the posterior fossa, including a boost to the tumor bed of 9 Gy. In 19 patients, the tumor bed was irradiated with a median dose of 54 Gy. Overall survival after primary diagnosis was 83% and 71% at 3 and 5 years. Five-year overall survival was 80% in low-grade and 79% in high-grade tumors. Survival from RT was 79% at 3 and 64% at 5 years. We could not show a significant difference in overall survival between CSI and local RT only. Freedom of local failure was 67% at 5 years in patients treated with CSI and 60% at 5 years after local RT. A rate of 83% for distant failure-free survival could be observed in the CSI group as opposed to 93% in the group receiving local RT only. Local RT in patients with localized tumors is equieffective to CSI. The radiation oncologist must keep in mind that patients with localized ependymomas benefit from local doses > or =45 Gy.
Imaging of tumor hypermetabolism with near-infrared fluorescence contrast agents
NASA Astrophysics Data System (ADS)
Chen, Yu; Zheng, Gang; Zhang, Zhihong; Blessington, Dana; Intes, Xavier; Achilefu, Samuel I.; Chance, Britton
2004-08-01
We have developed a high sensitivity near-infrared (NIR) optical imaging system for non-invasive cancer detection through molecular labeled fluorescent contrast agents. Near-infrared (NIR) imaging can probe tissue deeply thus possess the potential for non-invasively detection of breast or lymph node cancer. Recent developments in molecular beacons can selectively label various pre-cancer/cancer signatures and provide high tumor to background contrast. To increase the sensitivity in detecting fluorescent photons and the accuracy of localization, phase cancellation (in- and anti-phase) device is employed. This frequency-domain system utilizes the interference-like pattern of diffuse photon density wave to achieve high detection sensitivity and localization accuracy for the fluorescent heterogeneity embedded inside the scattering media. The opto-electronic system consists of the laser sources, fiber optics, interference filter to select the fluorescent photons and the high sensitivity photon detector (photomultiplier tube). The source-detector pair scans the tissue surface in multiple directions and the two-dimensional localization image can be obtained using goniometric reconstruction. In vivo measurements with tumor-bearing mouse model using the novel Cypate-mono-2-deoxy-glucose (Cypate-2-D-Glucosamide) fluorescent contrast agent, which targets the enhanced tumor glycolysis, demonstrated the feasibility on detection of 2 cm deep subsurface tumor in the tissue-like medium, with a localization accuracy within 2 ~ 3 mm. This instrument has the potential for tumor diagnosis and imaging, and the accuracy of the localization suggests that this system could help to guide the clinical fine-needle biopsy. This portable device would be complementary to X-ray mammogram and provide add-on information on early diagnosis and localization of early breast tumor.
Chen, Xiaoxia; Zhao, Jing; Chen, Tianshu; Gao, Tao; Zhu, Xiaoli; Li, Genxi
2018-01-01
Comprehensive analysis of the expression level and location of tumor-associated membrane proteins (TMPs) is of vital importance for the profiling of tumor cells. Currently, two kinds of independent techniques, i.e. ex situ detection and in situ imaging, are usually required for the quantification and localization of TMPs respectively, resulting in some inevitable problems. Methods: Herein, based on a well-designed and fluorophore-labeled DNAzyme, we develop an integrated and facile method, in which imaging and quantification of TMPs in situ are achieved simultaneously in a single system. The labeled DNAzyme not only produces localized fluorescence for the visualization of TMPs but also catalyzes the cleavage of a substrate to produce quantitative fluorescent signals that can be collected from solution for the sensitive detection of TMPs. Results: Results from the DNAzyme-based in situ imaging and quantification of TMPs match well with traditional immunofluorescence and western blotting. In addition to the advantage of two-in-one, the DNAzyme-based method is highly sensitivity, allowing the detection of TMPs in only 100 cells. Moreover, the method is nondestructive. Cells after analysis could retain their physiological activity and could be cultured for other applications. Conclusion: The integrated system provides solid results for both imaging and quantification of TMPs, making it a competitive method over some traditional techniques for the analysis of TMPs, which offers potential application as a toolbox in the future.
[Bronchopulmonary ACTH-producing tumors].
Pikunov, M Iu; Kuznetsov, N S; Latkina, N V; Dobreva, E A; Remizov, O V
2014-01-01
Neuroendocrine tumors have the ability to produce the hormones and vasoactive peptides. Excess of these hormones leads to different symptoms and syndromes because of organs' injuries. Detection of ACTH origin by using of modern diagnostic methods is not always possible. Lungs and bronchi are one of the most frequent localization of ACTH-producing tumors. It is considered that carcinoids with bronchopulmonary localization like a benign tumors in the clinical course. But at the same time carcinoid tends to metastasize, so timely diagnostics and treatment improve quality of life significant and increase the life expectancy of patients. The modern state of diagnostics and surgical treatment problem of ACTH-producing tumors with bronchopulmonary localization is presented in the article. It was described the brief historical background, clinical symptoms, instrumental and biochemical methods of diagnosis. The principles of surgical treatment are presented in the article.
Outcome of multimodality treatment of Ewing's sarcoma of the extremities.
Tiwari, Akshay; Gupta, Himesh; Jain, Sandeep; Kapoor, Gauri
2010-10-01
The management of Ewing's sarcoma family of tumors (ESFT, Ewing's sarcoma/primitive neuroectodermal tumor) has been established as a multimodality treatment. Advances in imaging and diagnostics, chemotherapy, surgical techniques, radiotherapy and prosthetic technology have resulted in drastic changes in the outcome of this disease, with most of the recent studies having 5-year survival rates of more than 60%. The Indian patients present at a more advanced stage and the compliance of treatment is suboptimal. While there is plenty of data in the world literature on the outcome of Ewing's sarcoma, there is paucity of data in Indian patients. Therefore, we conducted the present study to analyze the outcome of multimodality treatment of ESFT of the extremities at a tertiary nonprofit institute over a decade. 34 patients who had histopathologically proven diagnosis of Ewing's sarcoma of the extremities and had received treatment at our institute from 1997 through 2007 were included for analysis. The majority of patients had involvement of the femur (35%), followed by tibia (17%), fibula and foot (15% each), humerus (12%) and soft tissue of thigh (6%). Twenty-nine patients presented with localized disease (Enneking stage II B) while five patients presented with metastases (Enneking stage III). All patients received Vincristine, Actinomycin D, Cyclofosfamide + Ifosfamide and Etoposide (VAC+IE)-based chemotherapy and local treatment was offered to all but three patients having multicentric disease. The local treatment offered were, radiation (n= 15), surgery (n= 12) both surgery and radiation (n=4). All patients were analyzed for oncological outcome (event-free and overall survival, local and systemic relapses) by clinical and imaging evaluation and functional outcome by using the musculoskeletal tumor society (MSTS) score. These outcomes were correlated with age, sex, size of tumor, stage at presentation, modality of local treatment and site of relapse. At the final follow-up (mean, 26 months; median, 17 months; range, 3-97 months), the overall and event-free survivals were 47 ± 12% and 34 ± 9%, respectively. Sixty-two percent of the patients presented with a tumor size more than 8 cm. On correlation with age, sex, size of tumor, stage at presentation, modality of local treatment and site of relapse, no correlation of survival was seen with any of the variables except event-free survival with size of the tumor. The functional outcome of all the patients was satisfactory (MSTS score >16 out of 30). No patient underwent amputation. Although the demographic profile, stage at presentation and the local and systemic treatment regimen followed in our study was similar to the world literature, the outcome of Ewing's sarcoma in Indian patients were found to be inferior to that reported in the western literature. Larger multicentric studies with longer follow-up are required to exactly determine the key areas crucial in improving this outcome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, S.
Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation alsomore » initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of these advances in cancer biology research will give medical physicists a new perspective in daily clinical physics practice and in future radiation therapy technological development. Furthermore, academic medical physics should continue to be an integral part of the multidisciplinary cancer research community, harnessing our newly acquired understanding of radiation effects, and developing novel cost-effective treatment strategies to better combat cancer. Learning Objectives: Understand that localized radiation can lead to non-localized secondary effects such as radiation-induced immune response, bystander effect, and abscopal effect. Understand that the non-localized radiation effects may be harnessed to improve cancer treatment. Learn examples of physics participation in multidisciplinary research to advance cancer biology. Recognize the challenges and possibilities of physics applications in cancer research. Chang: NIH 5RC2CA148487-02 and 1U54CA151652-01 Graves: IDEA award (19IB-0106) from the California Breast Cancer Research Program (CBCRP), and by NIH P01 CA67166.« less
Lau, Steven K M; Patel, Kunal; Kim, Teddy; Knipprath, Erik; Kim, Gwe-Ya; Cerviño, Laura I; Lawson, Joshua D; Murphy, Kevin T; Sanghvi, Parag; Carter, Bob S; Chen, Clark C
2017-04-01
Frameless, surface imaging guided radiosurgery (SIG-RS) is a novel platform for stereotactic radiosurgery (SRS) wherein patient positioning is monitored in real-time through infra-red camera tracking of facial topography. Here we describe our initial clinical experience with SIG-RS for the treatment of benign neoplasms of the skull base. We identified 48 patients with benign skull base tumors consecutively treated with SIG-RS at a single institution between 2009 and 2011. Patients were diagnosed with meningioma (n = 22), vestibular schwannoma (n = 20), or nonfunctional pituitary adenoma (n = 6). Local control and treatment-related toxicity were retrospectively assessed. Median follow-up was 65 months (range 61-72 months). Prescription doses were 12-13 Gy in a single fraction (n = 18), 8 Gy × 3 fractions (n = 6), and 5 Gy × 5 fractions (n = 24). Actuarial tumor control rate at 5 years was 98%. No grade ≥3 treatment-related toxicity was observed. Grade ≤2 toxicity was associated with symptomatic lesions (p = 0.049) and single fraction treatment (p = 0.005). SIG-RS for benign skull base tumors produces clinical outcomes comparable to conventional frame-based SRS techniques while enhancing patient comfort.
[Imaging of breast tumors using MR elastography].
Lorenzen, J; Sinkus, R; Schrader, D; Lorenzen, M; Leussler, C; Dargatz, M; Röschmann, P
2001-01-01
Imaging of breast tumors using MR-Elastography. Low-frequency mechanical waves are transmitted into breast-tissue by means of an oscillator. The local characteristics of the mechanical wave are determined by the elastic properties of the tissue. By means of a motion-sensitive spin-echo-sequence these waves can be displayed within the phase of the MR image. Subsequently, these images can be used to reconstruct the local distribution of elasticity. In-vivo measurements were performed in 3 female patients with malignant tumors of the breast. All patients tolerated the measurement set-up without any untoward sensation in the contact area of skin and oszillator. The waves completely penetrated the breast, encompassing the axilla and regions close to the chest wall. All tumors were localized by MRE as structures of markedly stiffer tissue when compared to the surrounding tissue. Furthermore, in one patient, a metastasis in an axillary lymph node was detected. In all patients, local regions of increased elasticity were found in the remaining parenchyma of the breast, which, however, did not reach the high levels of elasticity found in the tumors. MRE is an imaging modality enabling adjunct tissue differentiation of mammary tumors.
Sensitivity of tumor cells towards CIGB-300 anticancer peptide relies on its nucleolar localization.
Perera, Yasser; Costales, Heydi C; Diaz, Yakelin; Reyes, Osvaldo; Farina, Hernan G; Mendez, Lissandra; Gómez, Roberto E; Acevedo, Boris E; Gomez, Daniel E; Alonso, Daniel F; Perea, Silvio E
2012-04-01
CIGB-300 is a novel anticancer peptide that impairs the casein kinase 2-mediated phosphorylation by direct binding to the conserved phosphoacceptor site on their substrates. Previous findings indicated that CIGB-300 inhibits tumor cell proliferation in vitro and induces tumor growth delay in vivo in cancer animal models. Interestingly, we had previously demonstrated that the putative oncogene B23/nucleophosmin (NPM) is the major intracellular target for CIGB-300 in a sensitive human lung cancer cell line. However, the ability of this peptide to target B23/NPM in cancer cells with differential CIGB-300 response phenotype remained to be determined. Interestingly, in this work, we evidenced that CIGB-300's antiproliferative activity on tumor cells strongly correlates with its nucleolar localization, the main subcellular localization of the previously identified B23/NPM target. Likewise, using CIGB-300 equipotent doses (concentration that inhibits 50% of proliferation), we demonstrated that this peptide interacts and inhibits B23/NPM phosphorylation in different cancer cell lines as evidenced by in vivo pull-down and metabolic labeling experiments. Moreover, such inhibition was followed by a fast apoptosis on CIGB-300-treated cells and also an impairment of cell cycle progression mainly after 5 h of treatment. Altogether, our data not only validates B23/NPM as a main target for CIGB-300 in cancer cells but also provides the first experimental clues to explain their differential antiproliferative response. Importantly, our findings suggest that further improvements to this cell penetrating peptide-based drug should entail its more efficient intracellular delivery at such subcellular localization. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.
Miniature Microwave Applicator for Murine Bladder Hyperthermia Studies
Salahi, Sara; Maccarini, Paolo F.; Rodrigues, Dario B.; Etienne, Wiguins; Landon, Chelsea D.; Inman, Brant A.; Dewhirst, Mark W.; Stauffer, Paul R.
2012-01-01
Purpose Novel combinations of heat with chemotherapeutic agents are often studied in murine tumor models. Currently, no device exists to selectively heat small tumors at depth in mice. In this project, we modelled, built and tested a miniature microwave heat applicator, the physical dimensions of which can be scaled to adjust the volume and depth of heating to focus on the tumor volume. Of particular interest is a device that can selectively heat murine bladder. Materials and Methods Using Avizo® segmentation software, we created a numerical mouse model based on micro-MRI scan data. The model was imported into HFSS™ simulation software and parametric studies were performed to optimize the dimensions of a water-loaded circular waveguide for selective power deposition inside a 0.15ml bladder. A working prototype was constructed operating at 2.45GHz. Heating performance was characterized by mapping fiber-optic temperature sensors along catheters inserted at depths of 0-1mm (subcutaneous), 2-3mm (vaginal), and 4-5mm (rectal) below the abdominal wall, with the mid-depth catheter adjacent to the bladder. Core temperature was monitored orally. Results Thermal measurements confirm the simulations which demonstrate that this applicator can provide local heating at depth in small animals. Measured temperatures in murine pelvis show well-localized bladder heating to 42-43°C while maintaining normothermic skin and core temperatures. Conclusions Simulation techniques facilitate the design optimization of microwave antennas for use in pre-clinical applications such as localized tumor heating in small animals. Laboratory measurements demonstrate the effectiveness of a new miniature water-coupled microwave applicator for localized heating of murine bladder. PMID:22690856
Reese, Adam C; Wessel, Sean R; Fisher, Susan G; Mydlo, Jack H
2016-08-01
The widespread adoption of prostate-specific antigen-based prostate cancer screening caused a stage migration toward earlier stage disease at diagnosis. We investigated whether this stage migration has persisted in a contemporary analysis of a population-based statewide cancer registry. We analyzed the Pennsylvania Cancer Registry, a statewide registry of all newly diagnosed cancers. Data were collected on prostate cancers diagnosed between 1992 and 2012. We determined age-adjusted prostate cancer incidence and mortality rates, as well as the distribution of tumor stage (localized, regional, or metastatic) at diagnosis, and assessed for changes in these variables over time using joinpoint analysis. Between 1992 and 2012, 210,831 new cases of prostate cancer were diagnosed in Pennsylvania, and 33,948 men died of disease. Age-adjusted prostate cancer incidence rates, and specifically the incidence of localized disease, have decreased dramatically since 2007 to 2008. Due to the decreased diagnosis of localized disease, regional and metastatic tumors have made up a greater percentage of all prostate cancer diagnoses in recent years, despite a relatively stable incidence of these advanced stage tumors. Over the past 2 decades, age-adjusted prostate cancer incidence rates in Pennsylvania have decreased, primarily because of the decreased detection of early-stage disease. There has been a corresponding shift toward more advanced disease at diagnosis. These findings may be explained by the decreased use of prostate-specific antigen-based screening, among other factors. The 2012 United States Preventative Services Task Force recommendations against prostate cancer screening may exacerbate this concerning trend, potentially resulting in an increase in prostate cancer-specific mortality. Copyright © 2016 Elsevier Inc. All rights reserved.
Localized Harmonic Motion Imaging for Focused Ultrasound Surgery Targeting
Curiel, Laura; Hynynen, Kullervo
2011-01-01
Recently, an in vivo real-time ultrasound-based monitoring technique that uses localized harmonic motion (LHM) to detect changes in tissues during focused ultrasound surgery (FUS) has been proposed to control the exposure. This technique can potentially be used as well for targeting imaging. In the present study we evaluated the potential of using LHM to detect changes in stiffness and the feasibility of using it for imaging purposes in phantoms and in vivo tumor detection. A single-element FUS transducer (80 mm focal length, 100 mm diameter, 1.485 MHz) was used for inducing a localized harmonic motion and a separate ultrasound diagnostic transducer excited by a pulser/receiver (5 kHz PRF, 5 MHz) was used to track motion. The motion was estimated using cross-correlation techniques on the acquired RF signal. Silicon phantom studies were performed in order to determine the size of inclusion that was possible to detect using this technique. Inclusions were discerned from the surroundings as a reduction on LHM amplitude and it was possible to depict inclusions as small as 4 mm. The amplitude of the induced LHM was always lower at the inclusions as compared with the one obtained at the surroundings. Ten New Zealand rabbits had VX2 tumors implanted on their thighs and LHM was induced and measured at the tumor region. Tumors (as small as 10 mm in length and 4 mm in width) were discerned from the surroundings as a reduction on LHM amplitude. PMID:21683514
Castelli, Joël; Depeursinge, Adrien; de Bari, Berardino; Devillers, Anne; de Crevoisier, Renaud; Bourhis, Jean; Prior, John O
2017-06-01
In the context of oropharyngeal cancer treated with definitive radiotherapy, the aim of this retrospective study was to identify the best threshold value to compute metabolic tumor volume (MTV) and/or total lesion glycolysis to predict local-regional control (LRC) and disease-free survival. One hundred twenty patients with a locally advanced oropharyngeal cancer from 2 different institutions treated with definitive radiotherapy underwent FDG PET/CT before treatment. Various MTVs and total lesion glycolysis were defined based on 2 segmentation methods: (i) an absolute threshold of SUV (0-20 g/mL) or (ii) a relative threshold for SUVmax (0%-100%). The parameters' predictive capabilities for disease-free survival and LRC were assessed using the Harrell C-index and Cox regression model. Relative thresholds between 40% and 68% and absolute threshold between 5.5 and 7 had a similar predictive value for LRC (C-index = 0.65 and 0.64, respectively). Metabolic tumor volume had a higher predictive value than gross tumor volume (C-index = 0.61) and SUVmax (C-index = 0.54). Metabolic tumor volume computed with a relative threshold of 51% of SUVmax was the best predictor of disease-free survival (hazard ratio, 1.23 [per 10 mL], P = 0.009) and LRC (hazard ratio: 1.22 [per 10 mL], P = 0.02). The use of different thresholds within a reasonable range (between 5.5 and 7 for an absolute threshold and between 40% and 68% for a relative threshold) seems to have no major impact on the predictive value of MTV. This parameter may be used to identify patient with a high risk of recurrence and who may benefit from treatment intensification.
Myositis Ossificans Mimicking Sarcoma, the Importance of Diagnostic Imaging – Case Report
Łuczyńska, Elżbieta; Kasperkiewicz, Hanna; Domalik, Agnieszka; Cwierz, Anna; Bobek-Billewicz, Barbara
2014-01-01
Summary Background Myositis ossificans is localized inflammatory process affecting skeletal muscles. Very rarely it can affect one of the neck muscles and present as a neck tumor, it can be misdiagnosed as the clinical, radiological and histological examinations can mimic a sarcoma. Case Report We report a 29 year old female patient with neck tumor suspected to be a sarcoma who underwent full diagnostics imaging and open bipsy with histopatological examination, afterwards surgical excision was performed. Conclusions The aim of this study was to present the differential diagnosis based on diagnostics imaging between MO and malignant tumors, such as parosteal sarcoma, synovial sarcoma and malignant fibrous histiocytoma. PMID:25077008
Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications
NASA Astrophysics Data System (ADS)
Shi, Donglu; Sadat, M. E.; Dunn, Andrew W.; Mast, David B.
2015-04-01
Iron oxide exhibits fascinating physical properties especially in the nanometer range, not only from the standpoint of basic science, but also for a variety of engineering, particularly biomedical applications. For instance, Fe3O4 behaves as superparamagnetic as the particle size is reduced to a few nanometers in the single-domain region depending on the type of the material. The superparamagnetism is an important property for biomedical applications such as magnetic hyperthermia therapy of cancer. In this review article, we report on some of the most recent experimental and theoretical studies on magnetic heating mechanisms under an alternating (AC) magnetic field. The heating mechanisms are interpreted based on Néel and Brownian relaxations, and hysteresis loss. We also report on the recently discovered photoluminescence of Fe3O4 and explain the emission mechanisms in terms of the electronic band structures. Both optical and magnetic properties are correlated to the materials parameters of particle size, distribution, and physical confinement. By adjusting these parameters, both optical and magnetic properties are optimized. An important motivation to study iron oxide is due to its high potential in biomedical applications. Iron oxide nanoparticles can be used for MRI/optical multimodal imaging as well as the therapeutic mediator in cancer treatment. Both magnetic hyperthermia and photothermal effect has been utilized to kill cancer cells and inhibit tumor growth. Once the iron oxide nanoparticles are up taken by the tumor with sufficient concentration, greater localization provides enhanced effects over disseminated delivery while simultaneously requiring less therapeutic mass to elicit an equal response. Multi-modality provides highly beneficial co-localization. For magnetite (Fe3O4) nanoparticles the co-localization of diagnostics and therapeutics is achieved through magnetic based imaging and local hyperthermia generation through magnetic field or photon application. Here, Fe3O4 nanoparticles are shown to provide excellent conjugation bases for entrapment of therapeutic molecules, fluorescent agents, and targeting ligands; enhancement of solid tumor treatment is achieved through co-application of local hyperthermia with chemotherapeutic agents.
Tamaki, Tomoaki; Iwakawa, Mayumi; Ohno, Tatsuya; Imadome, Kaori; Nakawatari, Miyako; Sakai, Minako; Tsujii, Hirohiko; Nakano, Takashi; Imai, Takashi
2009-05-01
To clarify how carbon-ion radiotherapy (C-ion) on primary tumors affects the characteristics of subsequently arising metastatic tumor cells. Mouse squamous cell carcinomas, NR-S1, in synergic C3H/HeMsNrs mice were irradiated with a single dose of 5-50 Gy of C-ion (290 MeV per nucleon, 6-cm spread-out Bragg peak) or gamma-rays ((137)Cs source) as a reference beam. The volume of the primary tumors and the number of metastatic nodules in lung were studied, and histologic analysis and microarray analysis of laser-microdissected tumor cells were also performed. Including 5 Gy of C-ion and 8 Gy of gamma-rays, which did not inhibit the primary tumor growth, all doses used in this study inhibited lung metastasis significantly. Pathologic findings showed no difference among the metastatic tumor nodules in the nonirradiated, C-ion-irradiated, and gamma-ray-irradiated groups. Clustering analysis of expression profiles among metastatic tumors and primary tumors revealed a single cluster consisting of metastatic tumors different from their original primary tumors, indicating that the expression profiles of the metastatic tumor cells were not affected by the local application of C-ion or gamma-ray radiotherapy. We found no difference in the incidence and histology, and only small differences in expression profile, of distant metastasis between local C-ion and gamma-ray radiotherapy. The application of local radiotherapy per se or the type of radiotherapy applied did not influence the transcriptional changes caused by metastasis in tumor cells.
Gieger, Tracy L; Théon, Alain P; Werner, Jonathan A; McEntee, Margaret C; Rassnick, Kenneth M; DeCock, Hilde E V
2003-01-01
The medical records of 24 dogs with histologically confirmed mast cell tumors (MCT) of the muzzle were retrospectively evaluated to determine their biologic behavior and prognostic factors. Information on signalment, tumor grade and stage, treatment methods, and pattern of and time to failure and death was obtained from the medical record. Twenty-three dogs were treated with combinations of radiotherapy, surgery, and chemotherapy; 1 dog received no treatment. There were 2 Grade 1, 15 Grade 11, and 7 Grade III tumors. Tumors were stage 0 (n = 8), stage 1 (5), stage 2 (6), stage 3 (4), and stage 4 (1). Mean and median survival times of treated dogs were 36 and 30 months, respectively. Prognostic factors affecting survival time included tumor grade and presence of metastasis at diagnosis. Dogs with Grade I and II tumors survived longer than dogs with Grade III tumors. Variables, including sex, age, gross versus microscopic disease, and treatment type were not found to affect survival. Local control rate was 75% at 1 year and 50% at 3 years. Tumor grade was the only variable found to affect local control. Dogs with Grade I tumors had longer disease-free intervals than those with Grade II tumors, and dogs with Grade II tumors had longer disease-free intervals than dogs with Grade III tumors. Eight of 9 dogs dying of MCT had local or regional disease progression. Muzzle MCT a rebiologically aggressive tumors with higher regional metastatic rates than previously reported for MCT in other sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, Miran; Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Shim, Kevin G.
Purpose: The oligometastatic state is an intermediate state between a malignancy that can be completely eradicated with conventional modalities and one in which a palliative approach is undertaken. Clinically, high rates of local tumor control are possible with stereotactic ablative radiation therapy (SABR), using precisely targeted, high-dose, low-fraction radiation therapy. However, in oligometastatic melanoma, virtually all patients develop progression systemically at sites not initially treated with ablative radiation therapy that cannot be managed with conventional chemotherapy and immunotherapy. We have demonstrated in mice that intravenous administration of vesicular stomatitis virus (VSV) expressing defined tumor-associated antigens (TAAs) generates systemic immune responsesmore » capable of clearing established tumors. Therefore, in the present preclinical study, we tested whether the combination of systemic VSV-mediated antigen delivery and SABR would be effective against oligometastatic disease. Methods and Materials: We generated a model of oligometastatic melanoma in C57BL/6 immunocompetent mice and then used a combination of SABR and systemically administered VSV-TAA viral immunotherapy to treat both local and systemic disease. Results: Our data showed that SABR generates excellent control or cure of local, clinically detectable, and accessible tumor through direct cell ablation. Also, the immunotherapeutic activity of systemically administered VSV-TAA generated T-cell responses that cleared subclinical metastatic tumors. We also showed that SABR induced weak T-cell-mediated tumor responses, which, particularly if boosted by VSV-TAA, might contribute to control of local and systemic disease. In addition, VSV-TAA therapy alone had significant effects on control of both local and metastatic tumors. Conclusions: We have shown in the present preliminary murine study using a single tumor model that this approach represents an effective, complementary combination therapy model that addresses the need for both systemic and local control in oligometastatic melanoma.« less
Using dynamic programming to improve fiducial marker localization
NASA Astrophysics Data System (ADS)
Wan, Hanlin; Ge, Jiajia; Parikh, Parag
2014-04-01
Fiducial markers are used in a wide range of medical imaging applications. In radiation therapy, they are often implanted near tumors and used as motion surrogates that are tracked with fluoroscopy. We propose a novel and robust method based on dynamic programming (DP) for retrospectively localizing radiopaque fiducial markers in fluoroscopic images. Our method was compared to template matching (TM) algorithms on 407 data sets from 24 patients. We found that the performance of TM varied dramatically depending on the template used (ranging from 47% to 92% of data sets with a mean error <1 mm). DP by itself requires no template and performed as well as the best TM method, localizing the markers in 91% of the data sets with a mean error <1 mm. Finally, by combining DP and TM, we were able to localize the markers in 99% of the data sets with a mean error <1 mm, regardless of the template used. Our results show that DP can be a powerful tool for analyzing tumor motion, capable of accurately locating fiducial markers in fluoroscopic images regardless of marker type, shape, and size.
Dawson, L A; Anzai, Y; Marsh, L; Martel, M K; Paulino, A; Ship, J A; Eisbruch, A
2000-03-15
To analyze the patterns of local-regional recurrence in patients with head and neck cancer treated with parotid-sparing conformal and segmental intensity-modulated radiotherapy (IMRT). Fifty-eight patients with head and neck cancer were treated with bilateral neck radiation (RT) using conformal or segmental IMRT techniques, while sparing a substantial portion of one parotid gland. The targets for CT-based RT planning included the gross tumor volume (GTV) (primary tumor and lymph node metastases) and the clinical target volume (CTV) (postoperative tumor bed, expansions of the GTVs and lymph node groups at risk of subclinical disease). Lymph node targets at risk of subclinical disease included the bilateral jugulodigastric and lower jugular lymph nodes, bilateral retropharyngeal lymph nodes at risk, and high jugular nodes at the base of skull in the side of the neck at highest risk (containing clinical neck metastases and/or ipsilateral to the primary tumor). The CTVs were expanded by 5 mm to yield planning target volumes (PTVs). Planning goals included coverage of all PTVs (with a minimum of 95% of the prescribed dose) and sparing of a substantial portion of the parotid gland in the side of the neck at less risk. The median RT doses to the gross tumor, the operative bed, and the subclinical disease PTVs were 70.4 Gy, 61.2 Gy, and 50.4 Gy respectively. All recurrences were defined on CT scans obtained at the time of recurrence, transferred to the pretreatment CT dataset used for RT planning, and analyzed using dose-volume histograms. The recurrences were classified as 1) "in-field," in which 95% or more of the recurrence volume (V(recur)) was within the 95% isodose; 2) "marginal," in which 20% to 95% of V(recur) was within the 95% isodose; or 3) "outside," in which less than 20% of V(recur) was within the 95% isodose. With a median follow-up of 27 months (range 6 to 60 months), 10 regional recurrences, 5 local recurrences (including one noninvasive recurrence) and 1 stomal recurrence were seen in 12 patients, for a 2-year actuarial local-regional control rate of 79% (95% confidence interval 68-90%). Ten patients (80%) relapsed in-field (in areas of previous gross tumor in nine patients), and two patients developed marginal recurrences in the side of the neck at highest risk (one in the high retropharyngeal nodes/base of skull and one in the submandibular nodes). Four regional recurrences extended superior to the jugulodigastric node, in the high jugular and retropharyngeal nodes near the base of skull of the side of the neck at highest risk. Three of these were in-field, in areas that had received the dose intended for subclinical disease. No recurrences were seen in the nodes superior to the jugulodigastric nodes in the side of the neck at less risk, where RT was partially spared. The majority of local-regional recurrences after conformal and segmental IMRT were "in-field," in areas judged to be at high risk at the time of RT planning, including the GTV, the operative bed, and the first echelon nodes. These findings motivate studies of dose escalation to the highest risk regions.
Trickler, W J; Nagvekar, A A; Dash, A K
2009-08-01
To determine the in vitro sub-cellular localization and in vivo efficacy of chitosan/GMO nanostructures containing paclitaxel (PTX) compared to a conventional PTX treatment (Taxol). The sub-cellular localization of coumarin-6 labeled chitosan/GMO nanostructures was determined by confocal microscopy in MDA-MB-231 cells. The antitumor efficacy was evaluated in two separate studies using FOX-Chase (CB17) SCID Female-Mice MDA-MB-231 xenograph model. Treatments consisted of intravenous Taxol or chitosan/GMO nanostructures with or without PTX, local intra-tumor bolus of Taxol or chitosan/GMO nanostructures with or without PTX. The tumor diameter and animal weight was monitored at various intervals. Histopathological changes were evaluated in end-point tumors. The tumor diameter increased at a constant rate for all the groups between days 7-14. After a single intratumoral bolus dose of chitosan/GMO containing PTX showed significant reduction in tumor diameter on day 15 when compared to control, placebo and intravenous PTX administration. The tumor diameter reached a maximal decrease (4-fold) by day 18, and the difference was reduced to approximately 2-fold by day 21. Qualitatively similar results were observed in a separate study containing PTX when administered intravenously. Chitosan/GMO nanostructures containing PTX are safe and effective administered locally or intravenously. Partially supported by DOD Award BC045664.
MASUNAGA, SHIN-ICHIRO; SAKURAI, YOSHINORI; TANO, KEIZO; TANAKA, HIROKI; SUZUKI, MINORU; KONDO, NATSUKO; NARABAYASHI, MASARU; WATANABE, TSUBASA; NAKAGAWA, YOSUKE; MARUHASHI, AKIRA; ONO, KOJI
2014-01-01
The aim of the present study was to evaluate the effect of bevacizumab on local tumor response and lung metastatic potential during boron neutron capture therapy (BNCT) and in particular, the response of intratumor quiescent (Q) cells. B16-BL6 melanoma tumor-bearing C57BL/6 mice were continuously administered bromodeoxyuridine (BrdU) to label all proliferating (P) tumor cells. The tumors were irradiated with thermal neutron beams following the administration of a 10B-carrier [L-para-boronophenylalanine-10B (BPA) or sodium mercaptoundecahydrododecaborate-10B (BSH)], with or without the administration of bevacizumab. This was further combined with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH, 40°C for 60 min). Immediately following the irradiation, cells from certain tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q cells and the total (P+Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumor-bearing mice, 17 days following irradiation, lung metastases were enumerated. Three days following bevacizumab administration, the sensitivity of the total tumor cell population following BPA-BNCT had increased more than that following BSH-BNCT. The combination with MTH, but not with nicotinamide, further enhanced total tumor cell population sensitivity. Regardless of the presence of a 10B-carrier, MTH enhanced the sensitivity of the Q cell population. Regardless of irradiation, the administration of bevacizumab, as well as nicotinamide treatment, demonstrated certain potential in reducing the number of lung metastases especially in BPA-BNCT compared with BSH-BNCT. Thus, the current study revealed that BNCT combined with bevacizumab has the potential to sensitize total tumor cells and cause a reduction in the number of lung metastases to a similar level as nicotinamide. PMID:24944637
A Bayesian network approach for modeling local failure in lung cancer
NASA Astrophysics Data System (ADS)
Oh, Jung Hun; Craft, Jeffrey; Lozi, Rawan Al; Vaidya, Manushka; Meng, Yifan; Deasy, Joseph O.; Bradley, Jeffrey D.; El Naqa, Issam
2011-03-01
Locally advanced non-small cell lung cancer (NSCLC) patients suffer from a high local failure rate following radiotherapy. Despite many efforts to develop new dose-volume models for early detection of tumor local failure, there was no reported significant improvement in their application prospectively. Based on recent studies of biomarker proteins' role in hypoxia and inflammation in predicting tumor response to radiotherapy, we hypothesize that combining physical and biological factors with a suitable framework could improve the overall prediction. To test this hypothesis, we propose a graphical Bayesian network framework for predicting local failure in lung cancer. The proposed approach was tested using two different datasets of locally advanced NSCLC patients treated with radiotherapy. The first dataset was collected retrospectively, which comprises clinical and dosimetric variables only. The second dataset was collected prospectively in which in addition to clinical and dosimetric information, blood was drawn from the patients at various time points to extract candidate biomarkers as well. Our preliminary results show that the proposed method can be used as an efficient method to develop predictive models of local failure in these patients and to interpret relationships among the different variables in the models. We also demonstrate the potential use of heterogeneous physical and biological variables to improve the model prediction. With the first dataset, we achieved better performance compared with competing Bayesian-based classifiers. With the second dataset, the combined model had a slightly higher performance compared to individual physical and biological models, with the biological variables making the largest contribution. Our preliminary results highlight the potential of the proposed integrated approach for predicting post-radiotherapy local failure in NSCLC patients.
Electrochemical treatment of mouse and rat fibrosarcomas with direct current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, C.K.; McDougall, J.A.; Ahn, C.
1997-03-01
Electrochemical treatment (ECT) of cancer utilizes direct current to produce chemical changes in tumors. ECT has been suggested as an effective alternative local cancer therapy. However, a methodology is not established, and mechanisms are not well studied. In vivo studies were conducted to evaluate the effectiveness of ECT on animal tumor models. Radiation-induced fibrosarcomas were implanted subcutaneously in 157 female C3H/HeJ mice. Larger rat fibrosarcomas were implanted on 34 female Fisher 344 rats. When the spheroidal tumors reached 10 mm in the mice, two to five platinum electrodes were inserted into the tumors at various spacings and orientations. Ten ratsmore » in a pilot group were treated when their ellipsoidal tumors were about 25 mm long; electrode insertion was similar to the later part of the mouse study; i.e., two at the base and two at the center. A second group of 24 rats was treated with six or seven electrodes when their tumors were about 20 mm long; all electrodes were inserted at the tumor base. Of the 24 rats, 12 of these were treated once, 10 were treated twice, and 2 were treated thrice. All treated tumors showed necrosis and regression for both mice and rats; however, later tumor recurrence reduced long-term survival. When multiple treatments were implemented, the best 3 month mouse tumor cure rate was 59.3%, and the best 6 month rat tumor cure rate was 75.0%. These preliminary results indicate that ECT is effective on the radiation-induced fibrosarcoma (RIF-1) mouse tumor and rat fibrosarcoma. The effectiveness is dependent on electrode placement and dosage.« less
Combination Chemotherapy in Treating Patients With Non-Metastatic Extracranial Ewing Sarcoma
2018-02-09
Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Childhood Supratentorial Primitive Neuroectodermal Tumor; Ewing Sarcoma of Bone; Extraosseous Ewing Sarcoma; Extraosseous Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Localized Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Peripheral Primitive Neuroectodermal Tumor of the Kidney; Untreated Childhood Supratentorial Primitive Neuroectodermal Tumor
Fisher, Charles G; Saravanja, Davor D; Dvorak, Marcel F; Rampersaud, Y Raja; Clarkson, Paul W; Hurlbert, John; Fox, Richard; Zhang, Hongbin; Lewis, Stephen; Riaz, Salman; Ferguson, Peter C; Boyd, Michael C
2011-05-01
Multicenter ambispective cohort analysis. The purpose of this study is to determine whether applying Enneking's principles to surgical management of primary bone tumors of the spine significant decreases local recurrence and/or mortality. Oncologic management of primary tumors of spine has historically been inconsistent, controversial, and open to individual interpretation. A multicenter ambispective cohort analysis from 4 tertiary care spine referral centers was done. Patients were analyzed in 2 cohorts, "Enneking Appropriate" (EA), surgical margin as recommended by Enneking, and "Enneking Inappropriate" (EI), surgical margin not recommended by Enneking. Benign tumors were not included in mortality analysis. Two cohorts represented an analytic dataset with 147 patients, 86 male, average age 46 years (range: 10-83). Median follow-up was 4 (2-7) years in the EA and 6 (5.5-15.5) years in the EI. Seventy-one patients suffered at least 1 local recurrence during the study, 57 of 77 in the EI group and 14 of 70 in the EA group. EI surgical approach caused higher risk of first local recurrence (P < 0.0001). There were 48 deaths in total; 29 in the EI group and 19 in the EA. There was a strong correlation between the first local recurrence and mortality with an odds ratio of 4.69, (P < 0.0001). EI surgical approach resulted in a higher risk of mortality with a hazard ratio of 3.10, (P = 0.0485) compared to EA approach. Surgery results in a significant reduction in local recurrence when primary bone tumors of the spine are resected with EA margins. Local recurrence has a high concordance with mortality in resection of these tumors. A significant decrease in mortality occurs when EA surgery is used.
Kobayashi, Hiroshi; Akiyama, Toru; Okuma, Tomotake; Shinoda, Yusuke; Oka, Hiroyuki; Ito, Nobuaki; Fukumoto, Seiji; Tanaka, Sakae; Kawano, Hirotaka
2017-12-01
Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome usually caused by phosphaturic mesenchymal tumors. Segmental resection has been recommended for these tumors in the bones because curettage was found to be associated with a high local recurrence rate. Navigation-assisted surgery provides radiological information to guide the surgeon during surgery. No previous study has reported on the efficacy of navigation-assisted surgery for tumors in patients with TIO. Therefore, the present study aimed to evaluate the efficacy of navigation-assisted surgery for tumors in patients with TIO. The study included seven patients with TIO who were treated between January 2003 and December 2014 at our hospital. All patients underwent surgical treatment with or without the use of a 3-dimensional (3D) fluoroscopy-based navigation system. The laboratory data and oncological outcomes were evaluated. The follow-up period was 8-128 months. The tumors were located at the femur (n = 4), ischium, spine and ilium (n = 1). Of the seven patients, five underwent navigation-assisted surgery and two underwent surgery without navigation assistance. In the two patients who underwent surgery without navigation assistance, a complete cure was not obtained and osteomalacia did not resolve. One of these two patients and the other five patients who underwent navigation-assisted surgery, one patient had incomplete resection due to massive invasion of the tumor into the spinal canal, but five patients achieved complete excision and recovered from osteomalacia. Navigation-assisted surgery using a 3D fluoroscopy-based navigation system is effective for tumors in patients with TIO.
The influence of the surgical wound on local tumor recurrence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, D.G.; Masterson, T.M.; Pace, R.
1989-09-01
Failure of a primary surgical treatment for cancer is often caused by recurrence of the tumor at the surgical site. The KHT mouse tumor system recapitulates this experience and provides a useful model to test strategies for reducing the incidence of local recurrence after surgical excision. There was an 82% local recurrence of the KHT tumor after surgery. A cell dilution assay indicated that it would require only 39 tumor cells injected into the wound site to result in the same (82%) incidence of tumors. This figure is in contrast to 340 cells required when the cells were injected intomore » an unwounded flank. With the B16 melanoma in C57B1 mice and the Meth A sarcoma in BALB/c mice, the number of cells necessary to induce a tumor (TD/50) was also significantly reduced when the cells were injected into a surgical wound rather than into nonwounded tissue. The difference in cell number was interpreted as the result of the presence of growth factors derived from the traumatized tissue and the inflammatory cells at the wound site. Neither a 5 nor a 15 Gy dose of x-radiation delivered to the wound site immediately after surgical excision of the KHT tumor resulted in a significant reduction in the incidence of local recurrences. When the same doses of x-radiation were given immediately after injecting 36 KHT cells into a wound, no tumors developed. This difference was believed to have resulted from the hypoxic condition in the wound site and the presence of residual clonogenic tumor cells in a nonproliferating (radioresistant) state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Indelicato, Daniel J.; Keole, Sameer R.; Shahlaee, Amir H.
2008-11-01
Purpose: More than 70% of Ewing tumors occur in the extremities and pelvis. This study identified factors influencing local control and functional outcomes after management with definitive radiotherapy (RT). Patients and Methods: A total of 75 patients with a localized Ewing tumor of the extremity or pelvis were treated with definitive RT at the University of Florida between 1970 and 2006 (lower extremity tumors in 30, pelvic tumors in 26, and upper extremity tumors in 19). RT was performed on a once-daily (40%) or twice-daily (60%) basis. The median dose was 55.2 Gy in 1.8-Gy daily fractions or 55.0 Gymore » in 1.2-Gy twice-daily fractions. The median observed follow-up was 4.7 years. Functional outcome was assessed using the Toronto Extremity Salvage Score. Results: The 10-year actuarial overall survival, cause-specific survival, freedom from relapse, and local control rate was 48%, 48%, 42%, and 71%, respectively. Of the 72 patients, 3 required salvage amputation. Inferior cause-specific survival was associated with larger tumors (81% for tumors <8 cm vs. 39% for tumors {>=}8 cm, p <0.05). No patient characteristics or treatment variables were predictive of local failure. No fractures occurred in patients treated with hyperfractionation or with tumors of the distal extremities. Severe late complications were more frequently associated with use of <8-MV photons and fields encompassing the entire bone or hemipelvis. A significantly better Toronto Extremity Salvage Score was associated with a late-effect biologically effective dose of <91.7 Gy{sub 3}. Conclusions: Limb preservation was effectively achieved through definitive RT. Treating limited field sizes with hyperfractionated high-energy RT could minimize long-term complications and provides superior functional outcomes.« less
Multiscale CNNs for Brain Tumor Segmentation and Diagnosis.
Zhao, Liya; Jia, Kebin
2016-01-01
Early brain tumor detection and diagnosis are critical to clinics. Thus segmentation of focused tumor area needs to be accurate, efficient, and robust. In this paper, we propose an automatic brain tumor segmentation method based on Convolutional Neural Networks (CNNs). Traditional CNNs focus only on local features and ignore global region features, which are both important for pixel classification and recognition. Besides, brain tumor can appear in any place of the brain and be any size and shape in patients. We design a three-stream framework named as multiscale CNNs which could automatically detect the optimum top-three scales of the image sizes and combine information from different scales of the regions around that pixel. Datasets provided by Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized by MICCAI 2013 are utilized for both training and testing. The designed multiscale CNNs framework also combines multimodal features from T1, T1-enhanced, T2, and FLAIR MRI images. By comparison with traditional CNNs and the best two methods in BRATS 2012 and 2013, our framework shows advances in brain tumor segmentation accuracy and robustness.
Selective imaging of cancer cells with a pH-activatable lysosome-targeting fluorescent probe.
Shi, Rongguang; Huang, Lu; Duan, Xiaoxue; Sun, Guohao; Yin, Gui; Wang, Ruiyong; Zhu, Jun-Jie
2017-10-02
Fluorescence imaging with tumor-specific fluorescent probe has emerged as a tool to aid surgeons in the identification and removal of tumor tissue. We report here a new lysosome-targeting fluorescent probe (NBOH) with BODIPY fluorephore to distinguish tumor tissue out of normal tissue based on different pH environment. The probe exhibited remarkable pH-dependent fluorescence behavior in a wide pH range from 3.0 to 11.0, especially a sensitive pH-dependent fluorescence change at pH range between 3.5 and 5.5, corresponding well to the acidic microenvironment of tumor cells, in aqueous solution. The response time of NBOH was extremely short and the photostability was proved to be good. Toxicity test and fluorescence cell imaging together with a sub-cellular localization study were carried out revealing its low biotoxicity and good cell membrane permeability. And NBOH was successfully applied to the imaging of tumor tissue in tumor-bearing mice suggesting potential application to surgery as a tumor-specific probe. Copyright © 2017 Elsevier B.V. All rights reserved.
Swiderska, Zaneta; Markiewicz, Tomasz; Grala, Bartlomiej; Slodkowska, Janina
2015-01-01
The paper presents a combined method for an automatic hot-spot areas selection based on penalty factor in the whole slide images to support the pathomorphological diagnostic procedure. The studied slides represent the meningiomas and oligodendrogliomas tumor on the basis of the Ki-67/MIB-1 immunohistochemical reaction. It allows determining the tumor proliferation index as well as gives an indication to the medical treatment and prognosis. The combined method based on mathematical morphology, thresholding, texture analysis and classification is proposed and verified. The presented algorithm includes building a specimen map, elimination of hemorrhages from them, two methods for detection of hot-spot fields with respect to an introduced penalty factor. Furthermore, we propose localization concordance measure to evaluation localization of hot spot selection by the algorithms in respect to the expert's results. Thus, the results of the influence of the penalty factor are presented and discussed. It was found that the best results are obtained for 0.2 value of them. They confirm effectiveness of applied approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, M.
Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation alsomore » initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of these advances in cancer biology research will give medical physicists a new perspective in daily clinical physics practice and in future radiation therapy technological development. Furthermore, academic medical physics should continue to be an integral part of the multidisciplinary cancer research community, harnessing our newly acquired understanding of radiation effects, and developing novel cost-effective treatment strategies to better combat cancer. Learning Objectives: Understand that localized radiation can lead to non-localized secondary effects such as radiation-induced immune response, bystander effect, and abscopal effect. Understand that the non-localized radiation effects may be harnessed to improve cancer treatment. Learn examples of physics participation in multidisciplinary research to advance cancer biology. Recognize the challenges and possibilities of physics applications in cancer research. Chang: NIH 5RC2CA148487-02 and 1U54CA151652-01 Graves: IDEA award (19IB-0106) from the California Breast Cancer Research Program (CBCRP), and by NIH P01 CA67166.« less
Hanna, Timothy Paul; Delaney, Geoffrey Paul; Barton, Michael Bernard
2016-09-01
To estimate the population benefit of radiotherapy (RT) for primary malignant brain tumors if evidence-based guidelines were routinely followed. This study investigated 5-year local control (LC) and 2- and 5-year overall survival (OS) benefits. RT benefit was the absolute proportional benefit of RT alone over no RT for radical indications, and over surgery alone for adjuvant indications. Chemoradiotherapy (CRT) benefit was the absolute incremental benefit of concurrent chemotherapy and RT over RT alone. Decision tree models were adapted to define the incidence of each indication. Citation databases were systematically queried for the highest level of evidence defining indication benefits. Meta-analysis was performed if there were multiple sources of the same evidence level, and deterministic and probabilistic sensitivity analysis was also performed. Among all patients with malignant brain tumors, 82% had indications for curative- or adjuvant-intent RT. The magnitude of benefit was based on level I or II evidence in 44% of all patients. A total of 25 relevant studies were used to quantify indication benefits. All RT benefit included in the model was irreplaceable. For malignant brain tumors, the estimated population benefit for RT alone was 9% for 5-year LC (95% CI, 7%-10%), 9% for 2-year OS (95% CI, 8%-11%), and 5% for 5-year OS (95% CI, 4%-5%). The incremental benefit of CRT was 1% for 5-year LC (95% CI, 0%-2%), 7% for 2-year OS (95% CI, 4%-11%), and 3% for 5-year OS (95% CI, 1%-5%). The model was robust in sensitivity analysis. When optimally used, RT provides an important benefit for many patients with malignant brain tumors. The model provided a robust means for estimating the magnitude of this benefit. Copyright © 2016 by the National Comprehensive Cancer Network.
NASA Astrophysics Data System (ADS)
Spinelli, Pasquale; Dal Fante, Marco; Mancini, Andrea
1995-03-01
Selectivity is the most emphasized advantage of photodynamic therapy (PDT). However, at drug and light doses used for clinical applications, response from normal tissue surrounding the tumor reduces the real selectivity of the drug-light system and increases the surface of the area responding to the treatment. It is now evident that light irradiation of a sensitized patient produces damage at a various degree not only in the tumor but also in non-neoplastic tissues included in the field of irradiation. We report our experience in endoscopic PDT of early stage tumors in tracheobronchial, gastrointestinal and urinary tracts, describing early and late local complications caused by the damage of normal tissues adjacent to the tumors and included in the field of light irradiation. Among 44 patients treated, local complications, attributable to a poor selectivity of the modality, occurred in 6 patients (14%). In particular, the rate of local complications was 9% in patients treated for esophageal tumors, 14% in patients with gastric tumors, 9% in patients with tracheobronchial tumors, and 67% in bladder cancer patients. Clinical pictures as well as endoscopic findings at various intervals from treatment showed that mucositis is a common event following endoscopic PDT. It causes exudation and significant tissue inflammatory response, whose consequences are different in the various organs treated. Photoradiation must be, as much as possible, limited to the malignant area.
[Benign bone tumors. General principles].
Hillmann, A; Gösling, T
2014-10-01
Benign bone tumors and tumor-like lesions are much more frequent than malignant bone tumors among the total number of tumors of the skeleton. This article gives a presentation of the characteristics and treatment modalities of benign bone tumors. In this article in-house treatment principles are compared with those in the currently available literature. Benign bone tumors are frequently found incidentally; however, the term benign does not always signify that a purely observational role is needed. Benign bone tumors differ in their biological behavior and can be latent, active or aggressive which determines the treatment approach. Some benign bone tumors are just as aggressive locally as malignant tumors. The most important diagnostic feature is still conventional radiography and a thorough systematic analysis is necessary. Therapy options range from ignore, wait and see up to wide resection. In contrast to malignant tumors the radicalism of resection can be weighed against the accompanying local control and loss of function. The treatment of benign bone tumors depends on the histological type and the biological activity. Most benign bone tumors are diagnosed incidentally and do not necessitate any treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maybody, Majid, E-mail: maybodym@mskcc.org; Grewal, Ravinder K.; Healey, John H.
2016-09-15
Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome caused by small benign tumors of mesenchymal origin also known as phosphaturic mesenchymal tumors mixed connective tissue variant. Excellent prognosis is expected with eradication of the culprit tumor. These small tumors are notoriously difficult to localize with conventional imaging studies; this often leads to an extensive work up and prolonged morbidity. We report a patient with clinical diagnosis of TIO whose culprit tumor was localized with Ga-68 DOTATOC PET/CT and MRI. Biopsy and cryoablation were performed under Ga-68 DOTATOC PET/CT guidance. Autoradiography of the biopsy specimen was performed and showed in situmore » correlation between Ga-68 DOTATOC uptake and histopathology with millimeter resolution.« less
Advances in oncological treatment: limitations of RECIST 1.1 criteria.
Grimaldi, Serena; Terroir, Marie; Caramella, Caroline
2018-06-01
RECIST 1.1 criteria are the standard for the response assessment of most solid tumors on computed tomography (CT). Nevertheless, the emergence of new classes of treatment in the lasts decades has brought new challenges in the evaluation of response. A PubMed online database literature search was performed in order to identify papers in English with full text available published up to September 2017. Some oncologic treatments, such as antiangiogenic agents, immunotherapy and local treatments, have proven to be effective despite atypical patterns of response. In patients undergoing these treatments, size-based evaluations, such as RECIST1.1, show some limitations, since they often underestimate the response. Some modified criteria have been proposed to improve the response assessment in several specific settings, such in gastrointestinal stromal tumors treated by antiangiogenic agents, hepatocellular carcinoma treated by local ablation or solid tumors treated by immunotherapy. New techniques of image analysis and imaging modalities other than CT, such as magnetic resonance imaging and positron emission tomography, may provide additional information and amend some of the limitations of size-based criteria. The emergence of new treatment paradigms and the increasing trend toward personalizing treatment should be associated with a concomitant evolution of response assessment, in both research and clinical settings.
Kim, Beom Kyung; Kang, Won Jun; Kim, Ja Kyung; Seong, Jinsil; Park, Jun Yong; Kim, Do Young; Ahn, Sang Hoon; Lee, Do Youn; Lee, Kwang Hoon; Lee, Jong Doo; Han, Kwang-Hyub
2011-10-15
Metabolic activity assessed by (18)F-fluorodeoxyglocuse-positron emission tomography ((18)F-FDG-PET) reflects biological aggressiveness and prognoses in various tumors. The authors present a correlation between tumor metabolic activity and clinical outcomes in patients with hepatocellular carcinoma (HCC). Over a 3-year period (2005-2008), 135 locally advanced HCC patients were treated with localized concurrent chemoradiotherapy (CCRT; external beam radiotherapy at 45 grays for 5 weeks plus concurrent hepatic arterial infusion of 5-fluorouracil during the first and fifth week) followed by repetitive hepatic arterial infusional chemotherapy with 5-fluorouracil and cisplatin. Among them, the authors studied 107 who received (18)F-FDG-PET before CCRT. Maximal standardized uptake values (SUVs) of tumors were calculated. The median maximal tumor SUV was 6.1 (range, 2.4-∼19.2). Patients with low maximal tumor SUVs (<6.1) had a higher disease control rate than those with high maximal tumor SUVs (≥6.1) (86.8% vs 68.5%, respectively, P = .023). Both median progression-free survival (PFS; 8.4 vs 5.2 months; P = .003) and overall survival (OS; 17.9 vs 11.3 months; P = .013) were significantly longer in the low maximal tumor SUV group than in the high maximal tumor SUV group, respectively. In multivariate analysis, low maximal tumor SUV and objective responses to CCRT remained significant for PFS and OS. The high maximal tumor SUV group was more likely to have extrahepatic metastasis within 6 months than the low maximal tumor SUV group (58.1% vs 26.8%, respectively; P < .001). Similar results were obtained for the maximal tumor SUV/normal liver maximal SUV ratio (<2 vs ≥2) concerning progression, death, and extrahepatic metastasis. Metabolic activity may be useful not only in predicting prognosis and treatment responses, but also in establishing optimal treatment plans in locally advanced HCC. Copyright © 2011 American Cancer Society.
Chiang, Kwo-Tsao; Lee, Shih-Yu; Chu, Hsin
2015-01-01
Abstract Dermatofibrosarcoma protuberans (DFSP) is a rare, slow growing, locally infiltrative tumor of intermediate malignancy. It is mostly found on the trunk and head, rarely on hands. The course of evaluation and treatment of a young pilot with DFSP on left middle finger is reported. The clinical issues and aeromedical considerations of this rare tumor is discussed. PMID:27252960
Wu, Wei; Chen, Albert Y C; Zhao, Liang; Corso, Jason J
2014-03-01
Detection and segmentation of a brain tumor such as glioblastoma multiforme (GBM) in magnetic resonance (MR) images are often challenging due to its intrinsically heterogeneous signal characteristics. A robust segmentation method for brain tumor MRI scans was developed and tested. Simple thresholds and statistical methods are unable to adequately segment the various elements of the GBM, such as local contrast enhancement, necrosis, and edema. Most voxel-based methods cannot achieve satisfactory results in larger data sets, and the methods based on generative or discriminative models have intrinsic limitations during application, such as small sample set learning and transfer. A new method was developed to overcome these challenges. Multimodal MR images are segmented into superpixels using algorithms to alleviate the sampling issue and to improve the sample representativeness. Next, features were extracted from the superpixels using multi-level Gabor wavelet filters. Based on the features, a support vector machine (SVM) model and an affinity metric model for tumors were trained to overcome the limitations of previous generative models. Based on the output of the SVM and spatial affinity models, conditional random fields theory was applied to segment the tumor in a maximum a posteriori fashion given the smoothness prior defined by our affinity model. Finally, labeling noise was removed using "structural knowledge" such as the symmetrical and continuous characteristics of the tumor in spatial domain. The system was evaluated with 20 GBM cases and the BraTS challenge data set. Dice coefficients were computed, and the results were highly consistent with those reported by Zikic et al. (MICCAI 2012, Lecture notes in computer science. vol 7512, pp 369-376, 2012). A brain tumor segmentation method using model-aware affinity demonstrates comparable performance with other state-of-the art algorithms.
A Patch-Based Approach for the Segmentation of Pathologies: Application to Glioma Labelling.
Cordier, Nicolas; Delingette, Herve; Ayache, Nicholas
2016-04-01
In this paper, we describe a novel and generic approach to address fully-automatic segmentation of brain tumors by using multi-atlas patch-based voting techniques. In addition to avoiding the local search window assumption, the conventional patch-based framework is enhanced through several simple procedures: an improvement of the training dataset in terms of both label purity and intensity statistics, augmented features to implicitly guide the nearest-neighbor-search, multi-scale patches, invariance to cube isometries, stratification of the votes with respect to cases and labels. A probabilistic model automatically delineates regions of interest enclosing high-probability tumor volumes, which allows the algorithm to achieve highly competitive running time despite minimal processing power and resources. This method was evaluated on Multimodal Brain Tumor Image Segmentation challenge datasets. State-of-the-art results are achieved, with a limited learning stage thus restricting the risk of overfit. Moreover, segmentation smoothness does not involve any post-processing.
Clinical Considerations of Focal Drug Delivery in Cancer Treatment.
Harris, Jamie; Klonoski, Samuel C; Chiu, Bill
2017-01-01
According to the US Center for Disease Control, cancer deaths are the second most common cause of mortality in both adults and children. Definitive treatment of solid tumors involves surgical resection with or without systemic chemotherapy and radiation. The advent of local drug delivery presents a unique treatment modality that can offer substantial benefits in cancer management. Three main phases in solid tumor management exist for the treating physician: initial diagnosis with tissue biopsy, surgical resection with or without chemotherapy, and management of metastatic disease. A literature review of both basic science as well as clinical trials using local drug delivery strategies in the management of solid tumors was done on PubMed. These were then further divided into the categories of initial tissue biopsy intervention, surgical resection, and management of metastatic disease. A total of 27 articles were review that included both pre-clinical as well as clinical investigation of local drug delivery therapies in the treatment of solid tumors. Treatments such as MRI guided therapies, FDA approved local therapies for intracranial gliomas as well as local therapy for single site metastatic disease were identified. This review focuses the current state of local drug delivery in the treatment of solid tumors in both the pre-clinical as well as clinical investigation settings. Local drug delivery therapy offers an exciting new treatment modality for solid malignancies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Nanotechnology-based approaches in anticancer research
Jabir, Nasimudeen R; Tabrez, Shams; Ashraf, Ghulam Md; Shakil, Shazi; Damanhouri, Ghazi A; Kamal, Mohammad A
2012-01-01
Cancer is a highly complex disease to understand, because it entails multiple cellular physiological systems. The most common cancer treatments are restricted to chemotherapy, radiation and surgery. Moreover, the early recognition and treatment of cancer remains a technological bottleneck. There is an urgent need to develop new and innovative technologies that could help to delineate tumor margins, identify residual tumor cells and micrometastases, and determine whether a tumor has been completely removed or not. Nanotechnology has witnessed significant progress in the past few decades, and its effect is widespread nowadays in every field. Nanoparticles can be modified in numerous ways to prolong circulation, enhance drug localization, increase drug efficacy, and potentially decrease chances of multidrug resistance by the use of nanotechnology. Recently, research in the field of cancer nanotechnology has made remarkable advances. The present review summarizes the application of various nanotechnology-based approaches towards the diagnostics and therapeutics of cancer. PMID:22927757
NASA Astrophysics Data System (ADS)
Liu, Xin; Samil Yetik, Imam
2012-04-01
Use of multispectral magnetic resonance imaging has received a great interest for prostate cancer localization in research and clinical studies. Manual extraction of prostate tumors from multispectral magnetic resonance imaging is inefficient and subjective, while automated segmentation is objective and reproducible. For supervised, automated segmentation approaches, learning is essential to obtain the information from training dataset. However, in this procedure, all patients are assumed to have similar properties for the tumor and normal tissues, and the segmentation performance suffers since the variations across patients are ignored. To conquer this difficulty, we propose a new iterative normalization method based on relative intensity values of tumor and normal tissues to normalize multispectral magnetic resonance images and improve segmentation performance. The idea of relative intensity mimics the manual segmentation performed by human readers, who compare the contrast between regions without knowing the actual intensity values. We compare the segmentation performance of the proposed method with that of z-score normalization followed by support vector machine, local active contours, and fuzzy Markov random field. Our experimental results demonstrate that our method outperforms the three other state-of-the-art algorithms, and was found to have specificity of 0.73, sensitivity of 0.69, and accuracy of 0.79, significantly better than alternative methods.
Development and study of 99mTc-1-Thio-D-glucose for visualization of malignant tumors
NASA Astrophysics Data System (ADS)
Zeltchan, R.; Medvedeva, A.; Sinilkin, I.; Bragina, O.; Chernov, V.; Stasyuk, E.; Rogov, A.; Il'ina, E.; Skuridin, V.
2017-09-01
The preclinical studies of 99mTc-1-Thio-D-glucose, a new tumor-seeking agent based on technetium-99m-labeled glucose derivative, were conducted, and the feasibility of using this radiopharmaceutical for tumor visualization was studied. The preclinical studies were carried out strictly in accordance with the local legislation and were regulated by the generally accepted research standards. 99mTc-1-Thio-D-glucose was found to have optimal pharmacokinetic and physico-chemical properties for diagnostic imaging and was proved to belong to the low-toxic substances. The potential utility of 99mTc-1-thio-D-glucose for tumor imaging was studied in vitro and in vivo models. The present study demonstrated that 99mTc-1-Thio-D-glucose is a prospective radiopharmaceutical for cancer visualization.
NASA Astrophysics Data System (ADS)
Janowczyk, Andrew; Chandran, Sharat; Feldman, Michael; Madabhushi, Anant
2011-03-01
In this paper we present the concept and associated methodological framework for a novel locally adaptive scale notion called local morphological scale (LMS). Broadly speaking, the LMS at every spatial location is defined as the set of spatial locations, with associated morphological descriptors, which characterize the local structure or heterogeneity for the location under consideration. More specifically, the LMS is obtained as the union of all pixels in the polygon obtained by linking the final location of trajectories of particles emanating from the location under consideration, where the path traveled by originating particles is a function of the local gradients and heterogeneity that they encounter along the way. As these particles proceed on their trajectory away from the location under consideration, the velocity of each particle (i.e. do the particles stop, slow down, or simply continue around the object) is modeled using a physics based system. At some time point the particle velocity goes to zero (potentially on account of encountering (a) repeated obstructions, (b) an insurmountable image gradient, or (c) timing out) and comes to a halt. By using a Monte-Carlo sampling technique, LMS is efficiently determined through parallelized computations. LMS is different from previous local scale related formulations in that it is (a) not a locally connected sets of pixels satisfying some pre-defined intensity homogeneity criterion (generalized-scale), nor is it (b) constrained by any prior shape criterion (ball-scale, tensor-scale). Shape descriptors quantifying the morphology of the particle paths are used to define a tensor LMS signature associated with every spatial image location. These features include the number of object collisions per particle, average velocity of a particle, and the length of the individual particle paths. These features can be used in conjunction with a supervised classifier to correctly differentiate between two different object classes based on local structural properties. In this paper, we apply LMS to the specific problem of classifying regions of interest in Ovarian Cancer (OCa) histology images as either tumor or stroma. This approach is used to classify lymphocytes as either tumor infiltrating lymphocytes (TILs) or non-TILs; the presence of TILs having been identified as an important prognostic indicator for disease outcome in patients with OCa. We present preliminary results on the tumor/stroma classification of 11,000 randomly selected locations of interest, across 11 images obtained from 6 patient studies. Using a Probabilistic Boosting Tree (PBT), our supervised classifier yielded an area under the receiver operation characteristic curve (AUC) of 0.8341 +/-0.0059 over 5 runs of randomized cross validation. The average LMS computation time at every spatial location for an image patch comprising 2000 pixels with 24 particles at every location was only 18s.
Hatt, Mathieu; Cheze-le Rest, Catherine; van Baardwijk, Angela; Lambin, Philippe; Pradier, Olivier; Visvikis, Dimitris
2011-11-01
The objectives of this study were to investigate the relationship between CT- and (18)F-FDG PET-based tumor volumes in non-small cell lung cancer (NSCLC) and the impact of tumor size and uptake heterogeneity on various approaches to delineating uptake on PET images. Twenty-five NSCLC cancer patients with (18)F-FDG PET/CT were considered. Seventeen underwent surgical resection of their tumor, and the maximum diameter was measured. Two observers manually delineated the tumors on the CT images and the tumor uptake on the corresponding PET images, using a fixed threshold at 50% of the maximum (T(50)), an adaptive threshold methodology, and the fuzzy locally adaptive Bayesian (FLAB) algorithm. Maximum diameters of the delineated volumes were compared with the histopathology reference when available. The volumes of the tumors were compared, and correlations between the anatomic volume and PET uptake heterogeneity and the differences between delineations were investigated. All maximum diameters measured on PET and CT images significantly correlated with the histopathology reference (r > 0.89, P < 0.0001). Significant differences were observed among the approaches: CT delineation resulted in large overestimation (+32% ± 37%), whereas all delineations on PET images resulted in underestimation (from -15% ± 17% for T(50) to -4% ± 8% for FLAB) except manual delineation (+8% ± 17%). Overall, CT volumes were significantly larger than PET volumes (55 ± 74 cm(3) for CT vs. from 18 ± 25 to 47 ± 76 cm(3) for PET). A significant correlation was found between anatomic tumor size and heterogeneity (larger lesions were more heterogeneous). Finally, the more heterogeneous the tumor uptake, the larger was the underestimation of PET volumes by threshold-based techniques. Volumes based on CT images were larger than those based on PET images. Tumor size and tracer uptake heterogeneity have an impact on threshold-based methods, which should not be used for the delineation of cases of large heterogeneous NSCLC, as these methods tend to largely underestimate the spatial extent of the functional tumor in such cases. For an accurate delineation of PET volumes in NSCLC, advanced image segmentation algorithms able to deal with tracer uptake heterogeneity should be preferred.
Simpson, Tyler R.; Li, Fubin; Montalvo-Ortiz, Welby; Sepulveda, Manuel A.; Bergerhoff, Katharina; Arce, Frederick; Roddie, Claire; Henry, Jake Y.; Yagita, Hideo; Wolchok, Jedd D.; Peggs, Karl S.; Ravetch, Jeffrey V.
2013-01-01
Treatment with monoclonal antibody specific for cytotoxic T lymphocyte–associated antigen 4 (CTLA-4), an inhibitory receptor expressed by T lymphocytes, has emerged as an effective therapy for the treatment of metastatic melanoma. Although subject to debate, current models favor a mechanism of activity involving blockade of the inhibitory activity of CTLA-4 on both effector (T eff) and regulatory (T reg) T cells, resulting in enhanced antitumor effector T cell activity capable of inducing tumor regression. We demonstrate, however, that the activity of anti–CTLA-4 antibody on the T reg cell compartment is mediated via selective depletion of T reg cells within tumor lesions. Importantly, T reg cell depletion is dependent on the presence of Fcγ receptor–expressing macrophages within the tumor microenvironment, indicating that T reg cells are depleted in trans in a context-dependent manner. Our results reveal further mechanistic insight into the activity of anti-CTLA-4–based cancer immunotherapy, and illustrate the importance of specific features of the local tumor environment on the final outcome of antibody-based immunomodulatory therapies. PMID:23897981
Cellular immunotherapy for malignant gliomas.
Lin, Yi; Okada, Hideho
2016-10-01
Cancer immunotherapy has made much progress in recent years. Clinical trials evaluating a variety of immunotherapeutic approaches are underway in patients with malignant gliomas. Thanks to recent advancements in cell engineering technologies, infusion of ex vivo prepared immune cells have emerged as promising strategies of cancer immunotherapy. Herein, the authors review recent and current studies using cellular immunotherapies for malignant gliomas. Specifically, they cover the following areas: a) cellular vaccine approaches using tumor cell-based or dendritic cell (DC)-based vaccines, and b) adoptive cell transfer (ACT) approaches, including lymphokine-activated killer (LAK) cells, γδ T cells, tumor-infiltrating lymphocytes (TIL), chimeric antigen receptor (CAR)-T cells and T-cell receptor (TCR) transduced T cells. While some of the recent studies have shown promising results, the ultimate success of cellular immunotherapy in brain tumor patients would require improvements in the following areas: 1) feasibility in producing cellular therapeutics; 2) identification and characterization of targetable antigens given the paucity and heterogeneity of tumor specific antigens; 3) the development of strategies to promote effector T-cell trafficking; 4) overcoming local and systemic immune suppression, and 5) proper interpretation of imaging data for brain tumor patients receiving immunotherapy.
Cellular immunotherapy for malignant gliomas
Lin, Yi
2016-01-01
Introduction Cancer immunotherapy has made much progress in recent years. Clinical trials evaluating a variety of immunotherapeutic approaches are underway in patients with malignant gliomas. Thanks to recent advancements in cell engineering technologies, infusion of ex vivo prepared immune cells have emerged as promising strategies of cancer immunotherapy. Areas covered Herein, the authors review recent and current studies using cellular immunotherapies for malignant gliomas. Specifically, they cover the following areas: a) cellular vaccine approaches using tumor cell-based or dendritic cell (DC)-based vaccines, and b) adoptive cell transfer (ACT) approaches, including lymphokine-activated killer (LAK) cells, γδ T cells, tumor-infiltrating lymphocytes (TIL), chimeric antigen receptor (CAR)-T cells and T-cell receptor (TCR) transduced T cells. Expert opinion While some of the recent studies have shown promising results, the ultimate success of cellular immunotherapy in brain tumor patients would require improvements in the following areas: 1) feasibility in producing cellular therapeutics; 2) identification and characterization of targetable antigens given the paucity and heterogeneity of tumor specific antigens; 3) the development of strategies to promote effector T-cell trafficking; 4) overcoming local and systemic immune suppression, and 5) proper interpretation of imaging data for brain tumor patients receiving immunotherapy. PMID:27434205
Alyaev, Yu G; Sirota, E S; Bezrukov, E A; Fiev, D N; Bukatov, M D; Letunovskii, A V; Byadretdinov, I Sh
2017-12-01
To evaluate the possibility of using 3D-printing in the management of patients with localized kidney cancer. The study comprised five patients with localized kidney cancer who were treated at the Urology Clinic of the I.M. Sechenov First Moscow State Medical University from January 2016 to April 2017. Along with the standard examination, the patients underwent multispiral computed tomography (MSCT) to produce patient-specific 3D-printed models of the kidney tumors using 3D modeling and 3D printing. To evaluate the effectiveness of using 3D-printed models, two-stage preoperative planning was conducted, and five surgeons were surveyed using a four-question multiple choice questionnaire. At the first stage, the planning of operations was carried out based on MSCT findings. At the second stage, the surgeons were given patient-specific soft 3D models of the kidney with a tumor for preoperative training. After preoperative training, patients underwent laparoscopic resection of the kidney with a tumor. According to the survey results, each of the participating surgeons at least once changed surgical plan based on data obtained with 3D printed models of the kidney with the tumor. The implementation of preoperative training using 3D printed models of the kidney turned out to be effective. All patients underwent laparoscopic surgery performed by a single surgeon with extensive experience in this type of surgery. The mean operative time was 187 minutes. All operations were performed with main renal artery occlusion. The men warm ischemia time was 19.5 minutes and the mean blood loss was 170 ml. There were no conversions to open surgery and organ-removing operations. There were no postoperative complications or deaths. All surgical margins were negative. Morphological examination showed that four patients had renal cell carcinoma one patient had the oncocytoma. The study demonstrated the promise of using 3D printing for preoperative planning and surgical performance due to a high-precision three-dimensional soft patient-specific model of the localized kidney.
Grover, Amelia C; Skarulis, Monica; Alexander, H Richard; Pingpank, James F; Javor, Edward D; Chang, Richard; Shawker, Thomas; Gorden, Phil; Cochran, Craig; Libutti, Steven K
2005-12-01
Preoperative imaging studies localize insulinomas in less than 50% of patients. Arteriography with calcium stimulation and venous sampling (ASVS) regionalizes greater than 90% of insulinomas but requires specialized expertise and an invasive procedure. This prospective study evaluated laparoscopic exploration with IOUS compared with the other localization procedures in patients with a sporadic insulinoma. Between March 2001 and October 2004, 14 patients (7 women and 7 men; mean age, 53) with an insulinoma were enrolled in an IRB-approved protocol. Computed tomography, magnetic resonance imaging, ultrasound scan, and arteriography with calcium stimulation and venous sampling were performed preoperatively. A surgeon, blinded to the results of the localizing studies, performed a laparoscopic exploration with intraoperative ultrasound (IOUS). At the completion of the exploration, the success of laparoscopy for localization was scored, and the tumor was resected. Twelve of 14 tumors were localized successfully before laparoscopy (noninvasive, 7 of 14; invasive, 11 of 14). Laparoscopic IOUS localized successfully 12 of 14 tumors. All lesions were resected, and all patients were cured (median follow-up, 36 months). Laparoscopic IOUS identified 86% of tumors. The authors consider laparoscopic IOUS to be equivalent to ASVS in localizing insulinomas. Further study is therefore warranted to determine the role of laparoscopy with IOUS in the localization and treatment algorithm for patients with sporadic insulinoma.
Liang, Hua; Deng, Liufu; Chmura, Steven; Burnette, Byron; Liadis, Nicole; Darga, Thomas; Beckett, Michael A.; Lingen, Mark W.; Witt, MaryEllyn; Weichselbaum, Ralph R.; Fu, Yang-Xin
2013-01-01
Local failures following radiation therapy are multifactorial and the contributions of the tumor and the host are complex. Current models of tumor equilibrium suggest that a balance exists between cell birth and cell death due to insufficient angiogenesis, immune effects, or intrinsic cellular factors. We investigated whether host immune responses contribute to radiation induced tumor equilibrium in animal models. We report an essential role for immune cells and their cytokines in suppressing tumor cell regrowth in two experimental animal model systems. Depletion of T cells or neutralization of interferon-gamma reversed radiation-induced equilibrium leading to tumor regrowth. We also demonstrate that PD-L1 blockade augments T cell responses leading to rejection of tumors in radiation induced equilibrium. We identify an active interplay between tumor cells and immune cells that occurs in radiation-induced tumor equilibrium and suggest a potential role for disruption of the PD-L1/PD-1 axis in increasing local tumor control. PMID:23630355
3D tumor localization through real-time volumetric x-ray imaging for lung cancer radiotherapy.
Li, Ruijiang; Lewis, John H; Jia, Xun; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Song, William Y; Jiang, Steve B
2011-05-01
To evaluate an algorithm for real-time 3D tumor localization from a single x-ray projection image for lung cancer radiotherapy. Recently, we have developed an algorithm for reconstructing volumetric images and extracting 3D tumor motion information from a single x-ray projection [Li et al., Med. Phys. 37, 2822-2826 (2010)]. We have demonstrated its feasibility using a digital respiratory phantom with regular breathing patterns. In this work, we present a detailed description and a comprehensive evaluation of the improved algorithm. The algorithm was improved by incorporating respiratory motion prediction. The accuracy and efficiency of using this algorithm for 3D tumor localization were then evaluated on (1) a digital respiratory phantom, (2) a physical respiratory phantom, and (3) five lung cancer patients. These evaluation cases include both regular and irregular breathing patterns that are different from the training dataset. For the digital respiratory phantom with regular and irregular breathing, the average 3D tumor localization error is less than 1 mm which does not seem to be affected by amplitude change, period change, or baseline shift. On an NVIDIA Tesla C1060 graphic processing unit (GPU) card, the average computation time for 3D tumor localization from each projection ranges between 0.19 and 0.26 s, for both regular and irregular breathing, which is about a 10% improvement over previously reported results. For the physical respiratory phantom, an average tumor localization error below 1 mm was achieved with an average computation time of 0.13 and 0.16 s on the same graphic processing unit (GPU) card, for regular and irregular breathing, respectively. For the five lung cancer patients, the average tumor localization error is below 2 mm in both the axial and tangential directions. The average computation time on the same GPU card ranges between 0.26 and 0.34 s. Through a comprehensive evaluation of our algorithm, we have established its accuracy in 3D tumor localization to be on the order of 1 mm on average and 2 mm at 95 percentile for both digital and physical phantoms, and within 2 mm on average and 4 mm at 95 percentile for lung cancer patients. The results also indicate that the accuracy is not affected by the breathing pattern, be it regular or irregular. High computational efficiency can be achieved on GPU, requiring 0.1-0.3 s for each x-ray projection.
Generalized Tumor Dose for Treatment Planning Decision Support
NASA Astrophysics Data System (ADS)
Zuniga, Areli A.
Modern radiation therapy techniques allow for improved target conformity and normal tissue sparing. These highly conformal treatment plans have allowed dose escalation techniques increasing the probability of tumor control. At the same time this conformation has introduced inhomogeneous dose distributions, making delivered dose characterizations more difficult. The concept of equivalent uniform dose (EUD) characterizes a heterogeneous dose distribution within irradiated structures as a single value and has been used in biologically based treatment planning (BBTP); however, there are no substantial validation studies on clinical outcome data supporting EUD's use and therefore has not been widely adopted as decision-making support. These highly conformal treatment plans have also introduced the need for safety margins around the target volume. These margins are designed to minimize geometrical misses, and to compensate for dosimetric and treatment delivery uncertainties. The margin's purpose is to reduce the chance of tumor recurrence. This dissertation introduces a new EUD formulation designed especially for tumor volumes, called generalized Tumor Dose (gTD). It also investigates, as a second objective, margins extensions for potential improvements in local control while maintaining or minimizing toxicity. The suitability of gTD to rank LC was assessed by means of retrospective studies in a head and neck (HN) squamous cell carcinoma (SCC) and non-small cell lung cancer (NSCLC) cohorts. The formulation was optimized based on two datasets (one of each type) and then, model validation was assessed on independent cohorts. The second objective of this dissertation was investigated by ranking the probability of LC of the primary disease adding different margin sizes. In order to do so, an already published EUD formula was used retrospectively in a HN and a NSCLC datasets. Finally, recommendations for the viability to implement this new formulation into a routine treatment planning process as well as the revision of safety margins to improve local tumor control maximizing normal tissue sparing in SCC of the HN and NSCLC are discussed.
Zhao, Shanshan; Geybels, Milan S; Leonardson, Amy; Rubicz, Rohina; Kolb, Suzanne; Yan, Qingxiang; Klotzle, Brandy; Bibikova, Marina; Hurtado-Coll, Antonio; Troyer, Dean; Lance, Raymond; Lin, Daniel W; Wright, Jonathan L; Ostrander, Elaine A; Fan, Jian-Bing; Feng, Ziding; Stanford, Janet L
2017-01-01
Aside from Gleason sum, few factors accurately identify the subset of prostate cancer patients at high risk for metastatic progression. We hypothesized that epigenetic alterations could distinguish prostate tumors with life-threatening potential. Epigenome-wide DNA methylation profiling was performed in surgically resected primary tumor tissues from a population-based (n = 430) and a replication (n = 80) cohort of prostate cancer patients followed prospectively for at least 5 years. Metastasis was confirmed by positive bone scan, MRI, CT, or biopsy, and death certificates confirmed cause of death. AUC, partial AUC (pAUC, 95% specificity), and P value criteria were used to select differentially methylated CpG sites that robustly stratify patients with metastatic-lethal from nonrecurrent tumors, and which were complementary to Gleason sum. Forty-two CpG biomarkers stratified patients with metastatic-lethal versus nonrecurrent prostate cancer in the discovery cohort, and eight of these CpGs replicated in the validation cohort based on a significant (P < 0.05) AUC (range, 0.66-0.75) or pAUC (range, 0.007-0.009). The biomarkers that improved discrimination of patients with metastatic-lethal prostate cancer include CpGs in five genes (ALKBH5, ATP11A, FHAD1, KLHL8, and PI15) and three intergenic regions. In the validation dataset, the AUC for Gleason sum alone (0.82) significantly increased with the addition of four individual CpGs (range, 0.86-0.89; all P <0.05). Eight differentially methylated CpGs that distinguish patients with metastatic-lethal from nonrecurrent tumors were validated. These novel epigenetic biomarkers warrant further investigation as they may improve prognostic classification of patients with clinically localized prostate cancer and provide new insights on tumor aggressiveness. Clin Cancer Res; 23(1); 311-9. ©2016 AACR. ©2016 American Association for Cancer Research.
Tixier, Florent; Hatt, Mathieu; Le Rest, Catherine Cheze; Le Pogam, Adrien; Corcos, Laurent; Visvikis, Dimitris
2012-01-01
18F-FDG PET measurement of standardized uptake values (SUV) is increasingly used for monitoring therapy response or predicting outcome. Alternative parameters computed through textural analysis were recently proposed to quantify the tumor tracer uptake heterogeneity as significant predictors of response. The primary objective of this study was the evaluation of the reproducibility of these heterogeneity measurements. Methods Double-baseline 18F-FDG PET scans of 16 patients acquired within a period of 4 days prior to any treatment were considered. A Bland-Altman analysis was carried out on six parameters based on histogram measurements and 17 heterogeneity parameters based on textural features obtained after discretization with values between 8 and 128. Results SUVmax and SUVmean reproducibility were similar to previously reported studies with a mean percentage difference of 4.7±19.5% and 5.5±21.2% respectively. By comparison better reproducibility was measured for some of the textural features describing tumor tracer local heterogeneity, such as entropy and homogeneity with a mean percentage difference of −2±5.4% and 1.8±11.5% respectively. Several of the tumor regional heterogeneity parameters such as the variability in the intensity and size of homogeneous tumor activity distribution regions had similar reproducibility to the SUV measurements with 95% confidence intervals of −22.5% to 3.1% and −1.1% to 23.5% respectively. These parameters were largely insensitive to the discretization range values. Conclusion Several of the parameters derived from textural analysis describing tumor tracer heterogeneity at local and regional scales had similar or better reproducibility as simple SUV measurements. These reproducibility results suggest that these FDG PET image derived parameters which have already been shown to have a predictive and prognostic value in certain cancer models, may be used within the context of therapy response monitoring or predicting patient outcome. PMID:22454484
A clinical study of 407 cases of nasopharyngeal carcinoma in Hong Kong
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teo, P.; Tsao, S.Y.; Shiu, W.
Four hundred and seven cases of nasopharyngeal carcinoma were analyzed retrospectively; 403/407 were evaluable for recurrence and survival. Parapharyngeal boost significantly decreased local recurrences in parapharyngeal diseases without base of skull involvement (T2p), but not with base of skull involvement (T3p). Enhanced local control of T2p with boost was significant without neoadjuvant chemotherapy. Tumors localized within the nasopharynx (T1) and tumors with nasal involvement (T2n) suffering from local persistences after external radiation therapy were treated with an intracavitary afterloading method. They had survival and recurrence rates comparable to complete responders to external radiation therapy. Patients with bulky cervical nodes (maximalmore » diameter greater than or equal to 4 cm, N1-N3), treated with neoadjuvant chemotherapy with cis-diamminedichloroplatinum II and 5-fluorouracil, had a regional failure rate, distant metastasis rate, actuarial survival rate, and disease-free survival rate comparable to those with smaller nodes treated with external radiation therapy alone. A simple modification of the Ho's classification by regrouping the T-stages into 'early T-stages' and 'advanced T-stages' and by combining the N1 and the N2 has greatly increased the power of the system in predicting local recurrence and distant metastasis, respectively. There was an overall improvement of the actuarial survival rate and disease-free survival rate over the historical control, and its significance is discussed.« less
Jales, Alessandra; Huang, Bruce; Fernando, Romaine I.; Hodge, James W.; Ardiani, Andressa; Apelian, David
2013-01-01
The embryonic T-box transcription factor brachyury is aberrantly expressed in a range of human tumors. Previous studies have demonstrated that brachyury is a driver of the epithelial-mesenchymal transition (EMT), a process associated with cancer progression. Brachyury expression in human tumor cells enhances tumor invasiveness in vitro and metastasis in vivo, and induces resistance to various conventional therapeutics including chemotherapy and radiation. These characteristics, and the selective expression of brachyury for a range of human tumor types vs. normal adult tissues, make brachyury an attractive tumor target. Due to its intracellular localization and the “undruggable” character of transcription factors, available options to target brachyury are currently limited. Here we report on the development and characterization of an immunological platform for the efficient targeting of brachyury-positive tumors consisting of a heat-killed, recombinant Saccharomyces cerevisiae (yeast)–brachyury vector-based vaccine (designated as GI-6301) that expresses the full-length human brachyury protein. We demonstrate that human dendritic cells treated with recombinant yeast-brachyury can activate and expand brachyury-specific CD4+ and CD8+ T cells in vitro that, in turn, can effectively lyse human tumor cells expressing the brachyury protein. Vaccination of mice with recombinant yeast-brachyury is also shown here to elicit brachyury-specific CD4+ and CD8+ T-cell responses, and to induce anti-tumor immunity in the absence of toxicity. Based on these results, a Phase I clinical trial of GI-6301 is currently ongoing in patients with advanced tumors; to our knowledge, this is the first vaccine platform aimed at targeting a driver of tumor EMT that has successfully reached the clinical stage. PMID:24125763
64Cu-Labeled Phosphonium Cations as PET Radiotracers for Tumor Imaging
Zhou, Yang; Liu, Shuang
2011-01-01
Alteration in mitochondrial transmembrane potential (ΔΨm) is an important characteristic of cancer. The observation that the enhanced negative mitochondrial potential is prevalent in tumor cell phenotype provides a conceptual basis for development of mitochondrion-targeting therapeutic drugs and molecular imaging probes. Since plasma and mitochondrial potentials are negative, many delocalized organic cations, such as rhodamine-123 and 3H-tetraphenylphosphonium, are electrophoretically driven through these membranes, and able to localize in the energized mitochondria of tumor cells. Cationic radiotracers, such as 99mTc-Sestamibi and 99mTc-Tetrofosmin, have been clinically used for diagnosis of cancer by single photon emission computed tomography (SPECT) and noninvasive monitoring of the multidrug resistance (MDR) transport function in tumors of different origin. However, their diagnostic and prognostic values are often limited due to their insufficient tumor localization (low radiotracer tumor uptake) and high radioactivity accumulation in the chest and abdominal regions (low tumor selectivity). In contrast, the 64Cu-labeled phosphonium cations represent a new class of PET (positron emission tomography) radiotracers with good tumor uptake and high tumor selectivity. This review article will focus on our recent experiences in evaluation of 64Cu-labeled phosphonium cations as potential PET radiotracers. The main objective is to illustrate the impact of radiometal chelate on physical, chemical and biological properties of 64Cu radiotracers. It will also discuss some important issues related to their tumor selectivity and possible tumor localization mechanism. PMID:21696200
Gamma Knife Surgery for Metastatic Brain Tumors from Gynecologic Cancer.
Matsunaga, Shigeo; Shuto, Takashi; Sato, Mitsuru
2016-05-01
The incidences of metastatic brain tumors from gynecologic cancer have increased. The results of Gamma Knife surgery (GKS) for the treatment of patients with brain metastases from gynecologic cancer (ovarian, endometrial, and uterine cervical cancers) were retrospectively analyzed to identify the efficacy and prognostic factors for local tumor control and survival. The medical records were retrospectively reviewed of 70 patients with 306 tumors who underwent GKS for brain metastases from gynecologic cancer between January 1995 and December 2013 in our institution. The primary cancers were ovarian in 33 patients with 147 tumors and uterine in 37 patients with 159 tumors. Median tumor volume was 0.3 cm(3). Median marginal prescription dose was 20 Gy. The local tumor control rates were 96.4% at 6 months and 89.9% at 1 year. There was no statistically significant difference between ovarian and uterine cancers. Higher prescription dose and smaller tumor volume were significantly correlated with local tumor control. Median overall survival time was 8 months. Primary ovarian cancer, controlled extracranial metastases, and solitary brain metastasis were significantly correlated with satisfactory overall survival. Median activities of daily living (ADL) preservation survival time was 8 months. Primary ovarian cancer, controlled extracranial metastases, and higher Karnofsky Performance Status score were significantly correlated with better ADL preservation. GKS is effective for control of tumor progression in patients with brain metastases from gynecologic cancer, and may provide neurologic benefits and preservation of the quality of life. Copyright © 2016 Elsevier Inc. All rights reserved.
Kuo, Hsing-Tao; Que, Jenny; Lin, Li-Ching; Yang, Ching-Chieh; Koay, Lok-Beng; Lin, Chia-Hui
2017-01-01
Abstract Stereotactic body radiation therapy (SBRT) for inoperable hepatocellular carcinoma (HCC) offers excellent local control rates. This study retrospectively analyzed the influence of different tumor size on treatment outcomes after SBRT. Between December 2008 and February 2014, 141 HCC patients were treated with Cyberknife SBRT. Patients were divided into 3 groups namely small tumors (≤4 cm), intermediate-sized (>4–<10 cm), and large (≥10 cm) tumors. Treatment outcomes, prognoses, and safety at each tumor size were compared and analyzed. A total of 52 patients with small tumors, 55 with intermediate tumors, and 34 patients with large tumors were retrospectively analyzed with a median follow-up of 16 months. Objective responses were achieved at 96.15%, 90.90%, and 76.47% for small, intermediate, and large tumors, respectively (P ≤ .0001) and the 3-year local control rates were 97.85%, 71.99%, and 82.14%, respectively (P = .0035). The 3-year overall survival rates were 50.26%, 45.29%, and 33.38% for small, intermediate, and large tumors, respectively (P = .3757). No significant differences were found in overall-survival, intra-hepatic recurrence free survival, disease-progression free survival, or distant metastasis-free survival. SBRT offers the best effective local control rate and response rate for small HCCs. However, tumor size did not significantly affect the overall survival rate, intra-hepatic recurrence free rate, or disease-progression free rate. PMID:29390360
The influence of macrophages and the tumor microenvironment on natural killer cells.
Krneta, T; Gillgrass, A; Ashkar, A A
2013-01-01
Numerous reviews in the field of NK cell biology dictate the pivotal role that NK cells play in tumor rejection. Although these cell types were originally described based on their cytotoxic ability, we now know that NK cells are not naturally born to kill. Both cellular interactions and the local environment in which the NK cell resides in may influence its cytotoxic functions. Just as organ specific NK cells have distinct phenotypic and functional differences, the tumor is a unique microenvironment in itself. The NK cells originally recruited to the tumor site are able to stimulate immune responses and aid in tumor destruction but eventually become persuaded otherwise by mechanisms of immunosuppression. Here, we review potential mechanisms and players involved in NK cell immunosuppression. In particular the effects of another innate immune player, macrophages, will be addressed in augmenting immunosuppression of NK cells within tumors. Tumor-associated macrophages (TAMs) are the main regulatory population of myeloid cells in the tumor and are characterized by their ability to promote tumor cell proliferation and metastasis. In addition, they express/release immunoregulatory factors which have been shown to directly inhibit NK cell function. Understanding how these two cell types interact in the distinct tumor microenvironment will allow us to consider therapies that target TAMs to promote enhanced NK cell activity.
Tumor-associated macrophages: implications in cancer immunotherapy.
Petty, Amy J; Yang, Yiping
2017-03-01
Tumor-associated macrophages (TAMs), representing most of the leukocyte population in solid tumors, demonstrate great phenotypic heterogeneity and diverse functional capabilities under the influence of the local tumor microenvironment. These anti-inflammatory and protumorigenic macrophages modulate the local microenvironment to facilitate tumor growth and metastasis. In this review, we examine the origin of TAMs and the complex regulatory networks within the tumor microenvironment that facilitate the polarization of TAMs toward a protumoral phenotype. More extensively, we evaluate the mechanisms by which TAMs mediate angiogenesis, metastasis, chemotherapeutic resistance and immune evasion. Lastly, we will highlight novel interventional strategies targeting TAMs in preclinical studies and in early clinical trials that have significant potential in improving efficacy of current chemotherapeutic and/or immunotherapeutic approaches.
Magnetically-Responsive Nanoparticles for Vectored Delivery of Cancer Therapeutics
NASA Astrophysics Data System (ADS)
Klostergaard, Jim; Bankson, James; Woodward, Wendy; Gibson, Don; Seeney, Charles
2010-12-01
We propose that physical targeting of therapeutics to tumors using magnetically-responsive nanoparticles (MNPs) will enhance intratumoral drug levels compared to free drugs in an effort to overcome tumor resistance. We evaluated the feasibility of magnetic enhancement of tumor extravasation of systemically-administered MNPs in human xenografts implanted in the mammary fatpads of nude mice. Mice with orthotopic tumors were injected systemically with MNPs, with a focused magnetic field juxtaposed over the tumor. Magnetic resonance imaging and scanning electron microscopy both indicated successful tumor localization of MNPs. Next, MNPs were modified with poly-ethylene-glycol (PEG) and their clearance compared by estimating signal attenuation in liver due to iron accumulation. The results suggested that PEG substitution could retard the rate of MNP plasma clearance, which may allow greater magnetically-enhanced tumor localization. We propose that this technology is clinically scalable to many types of both superficial as well as some viscerable tumors with existing magnetic technology.
CTLA4 aptamer delivers STAT3 siRNA to tumor-associated and malignant T cells
Herrmann, Andreas; Priceman, Saul J.; Kujawski, Maciej; Xin, Hong; Cherryholmes, Gregory A.; Zhang, Wang; Zhang, Chunyan; Lahtz, Christoph; Kowolik, Claudia; Forman, Steve J.; Kortylewski, Marcin; Yu, Hua
2014-01-01
Intracellular therapeutic targets that define tumor immunosuppression in both tumor cells and T cells remain intractable. Here, we have shown that administration of a covalently linked siRNA to an aptamer (apt) that selectively binds cytotoxic T lymphocyte–associated antigen 4 (CTLA4apt) allows gene silencing in exhausted CD8+ T cells and Tregs in tumors as well as CTLA4-expressing malignant T cells. CTLA4 expression was upregulated in CD8+ T cells in the tumor milieu; therefore, CTLA4apt fused to a STAT3-targeting siRNA (CTLA4apt–STAT3 siRNA) resulted in internalization into tumor-associated CD8+ T cells and silencing of STAT3, which activated tumor antigen–specific T cells in murine models. Both local and systemic administration of CTLA4apt–STAT3 siRNA dramatically reduced tumor-associated Tregs. Furthermore, CTLA4apt–STAT3 siRNA potently inhibited tumor growth and metastasis in various mouse tumor models. Importantly, CTLA4 expression is observed in T cells of patients with blood malignancies, and CTLA4apt–STAT3 siRNA treatment of immunodeficient mice bearing human T cell lymphomas promoted tumor cell apoptosis and tumor growth inhibition. These data demonstrate that a CTLA4apt-based siRNA delivery strategy allows gene silencing in both tumor-associated T cells and tumor cells and inhibits tumor growth and metastasis. PMID:24892807
Wichtowski, Mateusz; Nowaczyk, Piotr; Kocur, Jacek
2016-01-01
Aim of the study Irreversible electroporation is a new, non-thermal ablation technique in the treatment of parenchymal organ tumors which uses short high voltage pulses of electricity in order to induce apoptosis of targeted cells. In this paper the application of this method of treatment in locally advanced pancreatic cancer (LAPC) and liver cancer is analyzed. Material and methods Between 04.2014 and 09.2014 two patients with LAPC and one with colorectal liver metastasis (CRLM) were qualified for treatment with irreversible electroporation. Both patients remained under constant observation and control. PubMed/Medline, Embase and Google Scholar databases were searched and eight original reports on irreversible electroporation of pancreatic and liver tumors based on the biggest groups of patients were found. Results Two patients with LAPC and one with CRLM were qualified for ablation with irreversible electroporation. In all three patients a successful irreversible electroporation (IRE) procedure of the whole tumor was conducted. In the minimum seven-month follow-up 100% local control was achieved – without progression. In the literature review the local response to treatment ranged from 41% to 100%. The event-free survival rate in six-month observation was 94%. Conclusions Ablation with irreversible electroporation is a new non-thermal ablation technique which has been demonstrated, both in the previously published studies and in the cases described in this paper, as a safe and efficient therapeutic method for patients with LAPC and CRLM. PMID:27095938
Concurrent Tumor Segmentation and Registration with Uncertainty-based Sparse non-Uniform Graphs
Parisot, Sarah; Wells, William; Chemouny, Stéphane; Duffau, Hugues; Paragios, Nikos
2014-01-01
In this paper, we present a graph-based concurrent brain tumor segmentation and atlas to diseased patient registration framework. Both segmentation and registration problems are modeled using a unified pairwise discrete Markov Random Field model on a sparse grid superimposed to the image domain. Segmentation is addressed based on pattern classification techniques, while registration is performed by maximizing the similarity between volumes and is modular with respect to the matching criterion. The two problems are coupled by relaxing the registration term in the tumor area, corresponding to areas of high classification score and high dissimilarity between volumes. In order to overcome the main shortcomings of discrete approaches regarding appropriate sampling of the solution space as well as important memory requirements, content driven samplings of the discrete displacement set and the sparse grid are considered, based on the local segmentation and registration uncertainties recovered by the min marginal energies. State of the art results on a substantial low-grade glioma database demonstrate the potential of our method, while our proposed approach shows maintained performance and strongly reduced complexity of the model. PMID:24717540
Spatial Statistics for Segmenting Histological Structures in H&E Stained Tissue Images.
Nguyen, Luong; Tosun, Akif Burak; Fine, Jeffrey L; Lee, Adrian V; Taylor, D Lansing; Chennubhotla, S Chakra
2017-07-01
Segmenting a broad class of histological structures in transmitted light and/or fluorescence-based images is a prerequisite for determining the pathological basis of cancer, elucidating spatial interactions between histological structures in tumor microenvironments (e.g., tumor infiltrating lymphocytes), facilitating precision medicine studies with deep molecular profiling, and providing an exploratory tool for pathologists. This paper focuses on segmenting histological structures in hematoxylin- and eosin-stained images of breast tissues, e.g., invasive carcinoma, carcinoma in situ, atypical and normal ducts, adipose tissue, and lymphocytes. We propose two graph-theoretic segmentation methods based on local spatial color and nuclei neighborhood statistics. For benchmarking, we curated a data set of 232 high-power field breast tissue images together with expertly annotated ground truth. To accurately model the preference for histological structures (ducts, vessels, tumor nets, adipose, etc.) over the remaining connective tissue and non-tissue areas in ground truth annotations, we propose a new region-based score for evaluating segmentation algorithms. We demonstrate the improvement of our proposed methods over the state-of-the-art algorithms in both region- and boundary-based performance measures.
Primary surgery versus primary radiation-based treatment for locally advanced oropharyngeal cancer.
Kamran, Sophia C; Qureshi, Muhammad M; Jalisi, Scharukh; Salama, Andrew; Grillone, Gregory; Truong, Minh Tam
2018-06-01
Randomized data comparing surgery to radiation for locally advanced oropharyngeal cancer (OPC) are lacking. This study evaluated practice patterns and overall survival outcomes from the National Cancer Database. A total of 22,676 patients with stage III to IV, locally advanced OPC were treated between 2004 to 2013 with primary chemoradiation (CRT) or surgery with adjuvant radiotherapy with or without chemotherapy (aRT ± CT). Survival rates were estimated using the Kaplan-Meier method. Crude and adjusted hazard ratios (HR) were computed using Cox regression modeling. Median follow-up was 40.7 months; 8,555 and 14,121 patients received surgery with aRT ± CT and CRT, respectively. Corresponding 3-year survival was 85.4% and 72.6% (P < 0.0001). On multivariate analysis, adjusting for age, gender, race insurance status, median income, percentage with no high-school degree, Charlson-Deyo score, clinical tumor and node stage, tumor grade, facility type, treatment at > 1 facility, and human papillomavirus (HPV) status, surgery with aRT ± CT had a reduced hazard of death, HR, 0.79 (95% confidence interval 0.69-0.91), P = 0.001. Primary surgery with aRT ± CT for locally advanced OPC has an improved survival compared to primary radiation-based treatment even when stratified by HPV status. 2c. Laryngoscope, 128:1353-1364, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
Alvarez, Matheus; de Pina, Diana Rodrigues; Romeiro, Fernando Gomes; Duarte, Sérgio Barbosa; Miranda, José Ricardo de Arruda
2014-07-26
Hepatocellular carcinoma is a primary tumor of the liver and involves different treatment modalities according to the tumor stage. After local therapies, the tumor evaluation is based on the mRECIST criteria, which involves the measurement of the maximum diameter of the viable lesion. This paper describes a computed methodology to measure through the contrasted area of the lesions the maximum diameter of the tumor by a computational algorithm. 63 computed tomography (CT) slices from 23 patients were assessed. Non-contrasted liver and HCC typical nodules were evaluated, and a virtual phantom was developed for this purpose. Optimization of the algorithm detection and quantification was made using the virtual phantom. After that, we compared the algorithm findings of maximum diameter of the target lesions against radiologist measures. Computed results of the maximum diameter are in good agreement with the results obtained by radiologist evaluation, indicating that the algorithm was able to detect properly the tumor limits. A comparison of the estimated maximum diameter by radiologist versus the algorithm revealed differences on the order of 0.25 cm for large-sized tumors (diameter > 5 cm), whereas agreement lesser than 1.0 cm was found for small-sized tumors. Differences between algorithm and radiologist measures were accurate for small-sized tumors with a trend to a small decrease for tumors greater than 5 cm. Therefore, traditional methods for measuring lesion diameter should be complemented non-subjective measurement methods, which would allow a more correct evaluation of the contrast-enhanced areas of HCC according to the mRECIST criteria.
Molina, Camilo A; Ames, Christopher P; Chou, Dean; Rhines, Laurence D; Hsieh, Patrick C; Zadnik, Patricia L; Wolinsky, Jean-Paul; Gokaslan, Ziya L; Sciubba, Daniel M
2014-09-01
Chordomas involving the mobile spine are ideally managed via en bloc resection with reconstruction to optimize local control and possibly offer cure. In the cervical spine, local anatomy poses unique challenges, limiting the feasibility of aggressive resection. The authors present a multi-institutional series of 16 cases of cervical chordomas removed en bloc. Particular attention was paid to clinical outcome, complications, and recurrence. In addition, outcomes were assessed according to position of tumor at the C1-2 level versus the subaxial (SA) spine (C3-7). The authors reviewed cases involving patients who underwent en bloc resection of cervical chordoma at 4 large spine centers. Patients were included if the lesion epicenter involved the C-1 to C-7 vertebral bodies. Demographic data and details of surgery, follow-up course, exposure to adjuvant therapy, and complications were obtained. Outcome was correlated with presence of tumor in C1-2 versus subaxial spine via a Student t-test. Sixteen patients were identified (mean age at presentation 55 ± 14 years). Seven cases (44%) cases involved C1-2, and 16 involved the subaxial spine. Median survival did not differ significantly different between the C1-2 (72 months) and SA (60 months) groups (p = 0.65). A combined (staged anteroposterior) approach was used in 81% of the cases. Use of the combined approach was significantly more common in treatment of subaxial than C1-2 tumors (100% vs 57%, p = 0.04). En bloc resection was attempted via an anterior approach in 6% of cases (C1-2: 14.3%; SA: 0%; p = 0.17) and a posterior approach in 13% of cases (C1-2: 29%; SA: 0%; p = 0.09). The most commonly reported margin classification was marginal (56% of cases), followed by violated (25%) and wide (19%). En bloc excision of subaxial tumors was significantly more likely to result in marginal margins than excision of C1-2 tumors (C1-2: 29%; SA: 78%; p = 0.03). C1-2 tumors were associated with significantly higher rates of postoperative complications (C1-2: 71%; SA: 22%; p = 0.03). Both local and distant tumor recurrence was greatest for C1-2 tumors (local C1-2: 29%; local SA: 11%; distant C1-2: 14%; distant SA: 0%). Statistical analysis of tumor recurrence based on tumor location was not possible due to the small number of cases. There was no between-groups difference in exposure to postoperative adjuvant radiotherapy. There was no difference in median survival between groups receiving proton beam radiotherapy or intensity-modulated radiotherapy versus no radiation therapy (p = 0.8). Compared with en bloc resection of chordomas involving the subaxial cervical spine, en bloc resection of chordomas involving the upper cervical spine (C1-2) is associated with poorer outcomes, such as less favorable margins, higher rates of complications, and increased tumor recurrence. Data from this cohort do not support a statistically significant difference in survival for patients with C1-2 versus subaxial disease, but larger studies are needed to further study survival differences.
Advances in local ablation of malignant liver lesions
Eisele, Robert M
2016-01-01
Local ablation of liver tumors matured during the recent years and is now proven to be an effective tool in the treatment of malignant liver lesions. Advances focus on the improvement of local tumor control by technical innovations, individual selection of imaging modalities, more accurate needle placement and the free choice of access to the liver. Considering data found in the current literature for conventional local ablative treatment strategies, virtually no single technology is able to demonstrate an unequivocal superiority. Hints at better performance of microwave compared to radiofrequency ablation regarding local tumor control, duration of the procedure and potentially achievable larger size of ablation areas favour the comparably more recent treatment modality; image fusion enables more patients to undergo ultrasound guided local ablation; magnetic resonance guidance may improve primary success rates in selected patients; navigation and robotics accelerate the needle placement and reduces deviation of needle positions; laparoscopic thermoablation results in larger ablation areas and therefore hypothetically better local tumor control under acceptable complication rates, but seems to be limited to patients with no, mild or moderate adhesions following earlier surgical procedures. Apart from that, most techniques appear technically feasible, albeit demanding. Which technology will in the long run become accepted, is subject to future work. PMID:27099433
NASA Astrophysics Data System (ADS)
Lartizien, Carole; Kinahan, Paul E.; Comtat, Claude; Lin, Michael; Swensson, Richard G.; Trebossen, Regine; Bendriem, Bernard
2000-04-01
This work presents initial results from observer detection performance studies using the same volume visualization software tools that are used in clinical PET oncology imaging. Research into the FORE+OSEM and FORE+AWOSEM statistical image reconstruction methods tailored to whole- body 3D PET oncology imaging have indicated potential improvements in image SNR compared to currently used analytic reconstruction methods (FBP). To assess the resulting impact of these reconstruction methods on the performance of human observers in detecting and localizing tumors, we use a non- Monte Carlo technique to generate multiple statistically accurate realizations of 3D whole-body PET data, based on an extended MCAT phantom and with clinically realistic levels of statistical noise. For each realization, we add a fixed number of randomly located 1 cm diam. lesions whose contrast is varied among pre-calibrated values so that the range of true positive fractions is well sampled. The observer is told the number of tumors and, similar to the AFROC method, asked to localize all of them. The true positive fraction for the three algorithms (FBP, FORE+OSEM, FORE+AWOSEM) as a function of lesion contrast is calculated, although other protocols could be compared. A confidence level for each tumor is also recorded for incorporation into later AFROC analysis.
Boron neutron capture therapy of malignant brain tumors at the Brookhaven Medical Research Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joel, D.D.; Coderre, J.A.; Chanana, A.D.
1996-12-31
Boron neutron capture therapy (BNCT) is a bimodal form of radiation therapy for cancer. The first component of this treatment is the preferential localization of the stable isotope {sup 10}B in tumor cells by targeting with boronated compounds. The tumor and surrounding tissue is then irradiated with a neutron beam resulting in thermal neutron/{sup 10}B reactions ({sup 10}B(n,{alpha}){sup 7}Li) resulting in the production of localized high LET radiation from alpha and {sup 7}Li particles. These products of the neutron capture reaction are very damaging to cells, but of short range so that the majority of the ionizing energy released ismore » microscopically confined to the vicinity of the boron-containing compound. In principal it should be possible with BNCT to selectively destroy small nests or even single cancer cells located within normal tissue. It follows that the major improvements in this form of radiation therapy are going to come largely from the development of boron compounds with greater tumor selectivity, although there will certainly be advances made in neutron beam quality as well as the possible development of alternative sources of neutron beams, particularly accelerator-based epithermal neutron beams.« less
Tumor Burden Analysis on Computed Tomography by Automated Liver and Tumor Segmentation
Linguraru, Marius George; Richbourg, William J.; Liu, Jianfei; Watt, Jeremy M.; Pamulapati, Vivek; Wang, Shijun; Summers, Ronald M.
2013-01-01
The paper presents the automated computation of hepatic tumor burden from abdominal CT images of diseased populations with images with inconsistent enhancement. The automated segmentation of livers is addressed first. A novel three-dimensional (3D) affine invariant shape parameterization is employed to compare local shape across organs. By generating a regular sampling of the organ's surface, this parameterization can be effectively used to compare features of a set of closed 3D surfaces point-to-point, while avoiding common problems with the parameterization of concave surfaces. From an initial segmentation of the livers, the areas of atypical local shape are determined using training sets. A geodesic active contour corrects locally the segmentations of the livers in abnormal images. Graph cuts segment the hepatic tumors using shape and enhancement constraints. Liver segmentation errors are reduced significantly and all tumors are detected. Finally, support vector machines and feature selection are employed to reduce the number of false tumor detections. The tumor detection true position fraction of 100% is achieved at 2.3 false positives/case and the tumor burden is estimated with 0.9% error. Results from the test data demonstrate the method's robustness to analyze livers from difficult clinical cases to allow the temporal monitoring of patients with hepatic cancer. PMID:22893379
Marchand Crety, C; Garbar, C; Madelis, G; Guillemin, F; Soibinet Oudot, P; Eymard, J C; Servagi Vernat, S
2018-06-20
Granular cell or Abrikossoff's tumors are usually benign however rare malignant forms concern 1 to 3% of cases reported. Pelvic locations are exceptional. We report a case of a 43-years-old patient who had a benign Abrikossoff's tumor localized in the right femoral triangle diagnosed at the biopsy. The patient underwent a surgical tumorectomy and inguinal lymph nodes resection. Histologically, the tumor showed enough criteria to give diagnosis of malignancy: nuclear pleomorphism, tumor cell spindling, vesicular nuclei with large nucleoli. Moreover, five lymph nodes were metastatic. Immunohistochemistry findings confirmed the diagnosis of granular cell tumor which is positive for S100 protein and CD68 antibodies. The mitotic index was nevertheless low with a Ki67 labeling index of 1-2%. A large surgical revision with an inguinal curage following radiotherapy were decided on oncology committee. Adjuvant radiotherapy on the tumor bed and right inguinal area of 50 Gy in conventional fractionation was delivered with the aim of reducing local recurrence risk. There was no recurrence on longer follow-up (10 months post radiotherapy). Adjuvant radiotherapy seems an appropriate therapeutic approach, even if controversial, given that some authors report effectiveness on local disease progression.
Evaluation of Multiclass Model Observers in PET LROC Studies
NASA Astrophysics Data System (ADS)
Gifford, H. C.; Kinahan, P. E.; Lartizien, C.; King, M. A.
2007-02-01
A localization ROC (LROC) study was conducted to evaluate nonprewhitening matched-filter (NPW) and channelized NPW (CNPW) versions of a multiclass model observer as predictors of human tumor-detection performance with PET images. Target localization is explicitly performed by these model observers. Tumors were placed in the liver, lungs, and background soft tissue of a mathematical phantom, and the data simulation modeled a full-3D acquisition mode. Reconstructions were performed with the FORE+AWOSEM algorithm. The LROC study measured observer performance with 2D images consisting of either coronal, sagittal, or transverse views of the same set of cases. Versions of the CNPW observer based on two previously published difference-of-Gaussian channel models demonstrated good quantitative agreement with human observers. One interpretation of these results treats the CNPW observer as a channelized Hotelling observer with implicit internal noise
Treatment of Canine Oral Melanoma with Nanotechnology-Based Immunotherapy and Radiation.
Hoopes, P Jack; Wagner, Robert J; Duval, Kayla; Kang, Kevin; Gladstone, David J; Moodie, Karen L; Crary-Burney, Margaret; Ariaspulido, Hugo; Veliz, Frank A; Steinmetz, Nicole F; Fiering, Steven N
2018-04-12
The presence and benefit of a radiation therapy-associated immune reaction is of great interest as the overall interest in cancer immunotherapy expands. The pathological assessment of irradiated tumors rarely demonstrates consistent immune or inflammatory response. More recent information, primarily associated with the "abscopal effect", suggests a subtle radiation-based systemic immune response may be more common and have more therapeutic potential than previously believed. However, to be of consistent value, the immune stimulatory potential of radiation therapy (RT) will clearly need to be supported by combination with other immunotherapy efforts. In this study, using a spontaneous canine oral melanoma model, we have assessed the efficacy and tumor immunopathology of two nanotechnology-based immune adjuvants combined with RT. The immune adjuvants were administered intratumorally, in an approach termed "in situ vaccination", that puts immunostimulatory reagents into a recognized tumor and utilizes the endogenous antigens in the tumor as the antigens in the antigen/adjuvant combination that constitutes a vaccine. The radiation treatment consisted of a local 6 × 6 Gy tumor regimen given over a 12 day period. The immune adjuvants were a plant-based virus-like nanoparticle (VLP) and a 110 nm diameter magnetic iron oxide nanoparticle (mNPH) that was activated with an alternating magnetic field (AMF) to produce moderate heat (43 °C/60 min). The RT was used alone or combined with one or both adjuvants. The VLP (4 × 200 μg) and mNPH (2 × 7.5 mg/gram tumor) were delivered intratumorally respectively during the RT regimen. All patients received a diagnostic biopsy and CT-based 3-D radiation treatment plan prior to initiating therapy. Patients were assessed clinically 14-21 days post-treatment, monthly for 3 months following treatment, and bimonthly, thereafter. Immunohistopathologic assessment of the tumors was performed before and 14-21 days following treatment. Results suggest that addition of VLPs and/or mNPH to a hypofractionated radiation regimen increases the immune cell infiltration in the tumor, extends the tumor control interval, and has important systemic therapeutic potential.
Breer, Stefan; Brunkhorst, Thomas; Beil, F Timo; Peldschus, Kersten; Heiland, Max; Klutmann, Susanne; Barvencik, Florian; Zustin, Jozef; Gratz, Klaus-Friedrich; Amling, Michael
2014-07-01
Tumor-induced osteomalacia (TIO) is a paraneoplastic syndrome characterized by renal phosphate wasting, hypophosphatemia and low calcitriol levels as well as clinical symptoms like diffuse bone and muscle pain, fatigue fractures or increased fracture risk. Conventional imaging methods, however, often fail to detect the small tumors. Lately, tumor localization clearly improved by somatostatin-receptor (SSTR) imaging, such as octreotide scintigraphy or octreotide SPECT/CT. However, recent studies revealed that still a large number of tumors remained undetected by octreotide imaging. Hence, studies focused on different SSTR imaging methods such as 68Ga DOTA-NOC, 68Ga DOTA-TOC and 68Ga DOTA-TATE PET/CT with promising first results. Studies comparing different SSTR imaging methods for tumor localization in TIO are rare and thus little is known about diagnostic alternatives once a particular method failed to detect a tumor in patients with TIO. Here, we report the data of 5 consecutive patients suffering from TIO, who underwent both 111Indium-octreotide scintigraphy (111In-OCT) SPECT/CT as well as 68Ga DOTA-TATE PET/CT for tumor detection. While 111In-OCT SPECT/CT allowed tumor detection in only 1 of 5 patients, 68Ga DOTA-TATE PET/CT was able to localize the tumor in all patients. Afterwards, anatomical imaging of the region of interest was performed with CT and MRI. Thus, successful surgical resection of the tumor was achieved in all patients. Serum phosphate levels returned to normal and all patients reported relief of symptoms within weeks. Moreover, an iliac crest biopsy was obtained from every patient and revealed marked osteomalacia in all cases. Follow-up DXA revealed an increase in BMD of up to 34.5% 1-year postoperative, indicating remineralization. No recurrence was observed. In conclusion our data indicates that 68Ga DOTA-TATE PET/CT is an effective and promising diagnostic tool in the diagnosis of TIO, even in patients in whom 111In-OCT prior failed to detect a tumor. Copyright © 2014 Elsevier Inc. All rights reserved.
Improving nanoparticle diffusion through tumor collagen matrix by photo-thermal gold nanorods
NASA Astrophysics Data System (ADS)
Raeesi, Vahid; Chan, Warren C. W.
2016-06-01
Collagen (I) impairs the targeting of nanoparticles to tumor cells by obstructing their diffusion inside dense tumor interstitial matrix. This potentially makes large nanoparticles (>50 nm) reside near the tumor vessels and thereby compromises their functionality. Here we propose a strategy to locally improve nanoparticle transport inside collagen (I) component of the tumor tissue. We first used heat generating gold nanorods to alter collagen (I) matrix by local temperature elevation. We then explored this impact on the transport of 50 nm and 120 nm inorganic nanoparticles inside collagen (I). We demonstrated an increase in average diffusivity of 50 nm and 120 nm in the denatured collagen (I) by ~14 and ~21 fold, respectively, compared to intact untreated collagen (I) matrix. This study shows how nanoparticle-mediated hyperthermia inside tumor tissue can improve the transport of large nanoparticles through collagen (I) matrix. The ability to increase nanoparticles diffusion inside tumor stroma allows their targeting or other functionalities to take effect, thereby significantly improving cancer therapeutic or diagnostic outcome.Collagen (I) impairs the targeting of nanoparticles to tumor cells by obstructing their diffusion inside dense tumor interstitial matrix. This potentially makes large nanoparticles (>50 nm) reside near the tumor vessels and thereby compromises their functionality. Here we propose a strategy to locally improve nanoparticle transport inside collagen (I) component of the tumor tissue. We first used heat generating gold nanorods to alter collagen (I) matrix by local temperature elevation. We then explored this impact on the transport of 50 nm and 120 nm inorganic nanoparticles inside collagen (I). We demonstrated an increase in average diffusivity of 50 nm and 120 nm in the denatured collagen (I) by ~14 and ~21 fold, respectively, compared to intact untreated collagen (I) matrix. This study shows how nanoparticle-mediated hyperthermia inside tumor tissue can improve the transport of large nanoparticles through collagen (I) matrix. The ability to increase nanoparticles diffusion inside tumor stroma allows their targeting or other functionalities to take effect, thereby significantly improving cancer therapeutic or diagnostic outcome. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08463f
Angiofibroma Localized in the Sphenoid Sinus
Aksoy, Fadlullah; Vural, Omer; Ozturan, Orhan
2017-01-01
Juvenile nasopharyngeal angiofibroma is the most common benign tumor of the nasopharynx with complaints of unilateral nasal obstruction and recurrent nosebleeds in the young male population. Despite being a benign tumor, it can be aggressively destructive in surrounding tissues and bones by acting locally. The gold standard treatment method is the surgical excision of the tumor. This case report is a case of angiofibroma, a 32-year-old asymptomatic male patient with no evidence of clinical signs and endoscopic examination, which is recognized as a localized vascular mass lesion in the right sphenoid sinus on the cranial MR imaging. We prepared this case report that may represent an angiofibroma localized only within the sphenoid sinus which is very rare in the literature. PMID:29359061
Bateman, Nicholas W; Shoji, Yutaka; Conrads, Kelly A; Stroop, Kevin D; Hamilton, Chad A; Darcy, Kathleen M; Maxwell, George L; Risinger, John I; Conrads, Thomas P
2016-01-01
AT-rich interactive domain-containing protein 1A (ARID1A) is a recently identified nuclear tumor suppressor frequently altered in solid tumor malignancies. We have identified a bipartite-like nuclear localization sequence (NLS) that contributes to nuclear import of ARID1A not previously described. We functionally confirm activity using GFP constructs fused with wild-type or mutant NLS sequences. We further show that cyto-nuclear localized, bipartite NLS mutant ARID1A exhibits greater stability than nuclear-localized, wild-type ARID1A. Identification of this undescribed functional NLS within ARID1A contributes vital insights to rationalize the impact of ARID1A missense mutations observed in patient tumors. Copyright © 2015 Elsevier Inc. All rights reserved.
High-grade soft tissue sarcoma arising in a desmoid tumor: case report and review of the literature.
Bertucci, François; Faure, Marjorie; Ghigna, Maria-Rosa; Chetaille, Bruno; Guiramand, Jérôme; Moureau-Zabotto, Laurence; Sarran, Anthony; Perrot, Delphine
2015-01-01
Desmoid tumors are rare benign monoclonal fibroblastic tumors. Their aggressiveness is local with no potential for metastasis or dedifferentiation. Here we report on a 61-year-old patient who presented a locally advanced breast desmoid tumor diagnosed 20 years after post-operative radiotherapy for breast carcinoma. After 2 years of medical treatment, a high-grade undifferentiated pleomorphic soft tissue sarcoma arose within the desmoid tumor. Despite extensive surgery removing both tumors, the patient showed locoregional relapse by the sarcoma, followed by multimetastatic progression, then death 25 months after the surgery. The arising of a soft tissue sarcoma in a desmoid tumor is an exceptional event since our case is the fourth one reported so far in literature. It reinforces the need for timely and accurate diagnosis when a new mass develops in the region of a preexisting desmoid tumor, and more generally when a desmoid tumor modifies its clinical or radiological aspect.
Time-multiplexed two-channel capacitive radiofrequency hyperthermia with nanoparticle mediation.
Kim, Ki Soo; Hernandez, Daniel; Lee, Soo Yeol
2015-10-24
Capacitive radiofrequency (RF) hyperthermia suffers from excessive temperature rise near the electrodes and poorly localized heat transfer to the deep-seated tumor region even though it is known to have potential to cure ill-conditioned tumors. To better localize heat transfer to the deep-seated target region in which electrical conductivity is elevated by nanoparticle mediation, two-channel capacitive RF heating has been tried on a phantom. We made a tissue-mimicking phantom consisting of two compartments, a tumor-tissue-mimicking insert against uniform background agarose. The tumor-tissue-mimicking insert was made to have higher electrical conductivity than the normal-tissue-mimicking background by applying magnetic nanoparticle suspension to the insert. Two electrode pairs were attached on the phantom surface by equal-angle separation to apply RF electric field to the phantom. To better localize heat transfer to the tumor-tissue-mimicking insert, RF power with a frequency of 26 MHz was delivered to the two channels in a time-multiplexed way. To monitor the temperature rise inside the phantom, MR thermometry was performed at a 3T MRI intermittently during the RF heating. Finite-difference-time-domain (FDTD) electromagnetic and thermal simulations on the phantom model were also performed to verify the experimental results. As compared to the one-channel RF heating, the two-channel RF heating with time-multiplexed driving improved the spatial localization of heat transfer to the tumor-tissue-mimicking region in both the simulation and experiment. The two-channel RF heating also reduced the temperature rise near the electrodes significantly. Time-multiplexed two-channel capacitive RF heating has the capability to better localize heat transfer to the nanoparticle-mediated tumor region which has higher electrical conductivity than the background normal tissues.
Kirui, Dickson K.; Mai, Juahua; Palange, Anna-Lisa; Qin, Guoting; van de Ven, Anne L.; Liu, Xuewu; Shen, Haifa; Ferrari, Mauro
2014-01-01
Background Hyperthermia treatment has been explored as a strategy to overcome biological barriers that hinder effective drug delivery in solid tumors. Most studies have used mild hyperthermia treatment (MHT) to target the delivery of thermo-sensitive liposomes carriers. Others have studied its application to permeabilize tumor vessels and improve tumor interstitial transport. However, the role of MHT in altering tumor vessel interfacial and adhesion properties and its relationship to improved delivery has not been established. In the present study, we evaluated effects of MHT treatment on tumor vessel flow dynamics and expression of adhesion molecules and assessed enhancement in particle localization using mesoporous silicon vectors (MSVs). We also determined the optimal time window at which maximal accumulation occur. Results In this study, using intravital microscopy analyses, we showed that temporal mild hyperthermia (∼1 W/cm2) amplified delivery and accumulation of MSVs in orthotopic breast cancer tumors. The number of discoidal MSVs (1000×400 nm) adhering to tumor vasculature increased 6-fold for SUM159 tumors and 3-fold for MCF-7 breast cancer tumors. By flow chamber experiments and Western blotting, we established that a temporal increase in E-selectin expression correlated with enhanced particle accumulation. Furthermore, MHT treatment was shown to increase tumor perfusion in a time-dependent fashion. Conclusions Our findings reveal that well-timed mild hyperthermia treatment can transiently elevate tumor transport and alter vascular adhesion properties and thereby provides a means to enhance tumor localization of non-thermally sensitive particles such as MSVs. Such enhancement in accumulation could be leveraged to increase therapeutic efficacy and reduce drug dosing in cancer therapy. PMID:24558362
Fleming, Christopher; Rimner, Andreas; Cohen, Gil'ad N; Woo, Kaitlin M; Zhang, Zhigang; Rosenzweig, Kenneth E; Alektiar, Kaled M; Zelefsky, Michael J; Bains, Manjit S; Wu, Abraham J
2016-01-01
Local recurrence is a significant problem after surgical resection of thoracic tumors. As intraoperative radiotherapy (IORT) can deliver radiation directly to the threatened margin, we have used this therapy in an attempt to reduce local recurrence, using high-dose-rate (HDR) as well as low-dose-rate (LDR) techniques. We performed a retrospective review of patients undergoing LDR ((125)I) mesh placement or HDR ((192)Ir) afterloading therapy during lung tumor resection between 2001 and 2013 at our institution. Competing risks methods were used to estimate the cumulative incidence of local failure. We also assessed possible predictive factors of local failure. Fifty-nine procedures (41 LDR and 18 HDR) were performed on 58 patients. Median follow-up was 55.1 months. Cumulative incidence of local failure at 1, 2, and 3 years was 28.5%, 34.2%, and 34.2%, respectively. Median overall survival was 39.9 months. There was no significant difference in local failure according to margin status, HDR vs. LDR, use of adjuvant external beam radiotherapy, or metastatic vs. primary tumor. Two patients (3.4%) experienced Grade 3+ toxicities likely related to brachytherapy. Additionally, 7 patients experienced Grade 3+ postsurgical complications unlikely related to brachytherapy. IORT is associated with good local control after resection of thoracic tumors otherwise at very high risk for local recurrence. There is a low incidence of severe toxicity attributable to brachytherapy. HDR-IORT appears to have equivalent outcomes to LDR-IORT. HDR or LDR-IORT can, therefore, be considered in situations where the oncologic completeness of thoracic tumor resection is in doubt. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
An Aggressive Retroperitoneal Fibromatosis
Campara, Zoran; Spasic, Aleksandar; Aleksic, Predrag; Milev, Bosko
2016-01-01
Introduction: Aggressive fibromatosis (AF) is a heterogeneous group of mesenchymal tumors that have locally infiltrative growth and a tendency to relapse. The clinical picture is often conditioned by the obstruction of the ureter or small intestine. Diagnosis is based on clinical, radiological and histological parameters. A case report: We report a case of male patient, aged 35 years, with the retroperitoneal fibromatosis. He reported to the physician because of frequent urination with the feeling of pressure and pain. Computed tomography revealed the tumor mass on the front wall of the bladder with diameter of 70mm with signs of infiltration of the musculature of the anterior abdominal wall. Endoscopic transurethral biopsy showed proliferative lesion binders by type of fibromatosis. The tumor was surgically removed in a classical way. The patient feels well and has no recurrence thirty-six months after the operative procedure. Conclusion: The complete tumor resection is the therapeutic choice for the primary tumor as well as for a relapse. PMID:27147794
Incidental finding of upper lip Warthin tumor.
Petrocelli, Marzia; Sbordone, Carolina; Salzano, Giovanni; Orabona, Giovanni Dell'Aversana; Cassandro, Francesco Maria; Fusetti, Stefano; Califano, Luigi; Cassandro, Ettore
2017-11-14
This report shows an incidental finding of Warthin tumor in upper lip mucosa during hospitalization for a biting lesion of cheek mucosa MATERIALS AND METHODS: A 32-year-old male affected by a biting lesion of cheek mucosa was presented at Maxillo- Facial Unit of Federico II University. Clinical examination showed as an incidental finding a solid mass in the superficial layer of upper lip mucosa. We performed mini-invasive surgical treatment to obtain a radical excision of the cheek lesion at the same time as excision of Warthin tumor. a follow up of 12 months was performed. The complete healing of the two wounds was achieved, with no recurrence of any of the pathologies. The location of this Warthin tumor of minor salivary glands is very unusual. The role of imaging in diagnosis of Warthin tumor of minor salivary glands is to define localization, shape and dimension, contour, malignant features, nodal involvement. The role of fine needle aspiration cytology (FNAC) is critical in the diagnosis and therapy of minor salivary gland tumors. The surgical treatment in patients affected by Warthin tumour of minor salivary glands is local excision with a wide tumor free margin to prevent potential recurrence. Warthin tumor of minor salivary glands is a rare disease. We report a singular case of Warthin tumor localized in the upper lip mucosa, found as an incidental finding during a recovery for a biting lesion of cheek mucosa. Incidental finding, Minor salivary glands, Warthin tumor.
Plasmonic Nanobubbles Rapidly Detect and Destroy Drug-Resistant Tumors
Lukianova-Hleb, Ekaterina Y.; Ren, Xiaoyang; Townley, Debra; Wu, Xiangwei; Kupferman, Michael E.; Lapotko, Dmitri O.
2012-01-01
The resistance of residual cancer cells after oncological resection to adjuvant chemoradiotherapies results in both high recurrence rates and high non-specific tissue toxicity, thus preventing the successful treatment of such cancers as head and neck squamous cell carcinoma (HNSCC). The patients' survival rate and quality of life therefore depend upon the efficacy, selectivity and low non-specific toxicity of the adjuvant treatment. We report a novel, theranostic in vivo technology that unites both the acoustic diagnostics and guided intracellular delivery of anti-tumor drug (liposome-encapsulated doxorubicin, Doxil) in one rapid process, namely a pulsed laser-activated plasmonic nanobubble (PNB). HNSCC-bearing mice were treated with gold nanoparticle conjugates, Doxil, and single near-infrared laser pulses of low energy. Tumor-specific clusters of gold nanoparticles (solid gold spheres) converted the optical pulses into localized PNBs. The acoustic signals of the PNB detected the tumor with high specificity and sensitivity. The mechanical impact of the PNB, co-localized with Doxil liposomes, selectively ejected the drug into the cytoplasm of cancer cells. Cancer cell-specific generation of PNBs and their intracellular co-localization with Doxil improved the in vivo therapeutic efficacy from 5-7% for administration of only Doxil or PNBs alone to 90% thus demonstrating the synergistic therapeutic effect of the PNB-based intracellular drug release. This mechanism also reduced the non-specific toxicity of Doxil below a detectable level and the treatment time to less than one minute. Thus PNBs combine highly sensitive diagnosis, overcome drug resistance and minimize non-specific toxicity in a single rapid theranostic procedure for intra-operative treatment. PMID:23139725
Management of neuroendocrine tumors.
Chung, Clement
2016-11-01
Current strategies for managing neuroendocrine tumors (NETs) in adult patients are reviewed, with a focus on medication safety concerns. NETs usually originate in the gastrointestinal or bronchopulmonary tract. Symptoms due to hormonal hypersecretion often occur in patients with foregut or midgut NETs or liver metastases. Surgical resection is recommended for most localized NETs, while systemic cytotoxic chemotherapy is typically used for high-grade and pancreatic tumors. The standard of care for metastatic NETs is somatostatin analog therapy with octreotide (available in both short- and long-acting formulations) or a depot formulation of lanreotide. Everolimus and sunitinib are targeted therapies with approved indications for use in treating advanced pancreatic NETs. Some patients with liver-predominant disease or liver metastases may undergo regional chemoembolization procedures. Pharmacists should be cognizant of differences between newer and older chemoembolization agents and procedures, as well as differences between somatostatin analog products used as medications and the radiolabelled forms used in diagnostic scintigraphy. Other medication safety issues in NET management arise during perioperative supportive care, patient education, compliance counseling, and management of adverse effects of targeted therapies and chemotherapy, including stomatitis, hyperthyroidism, and hand-foot skin reaction. Somatostatin analog therapy is the mainstay for management of locally advanced or metastatic NETs. Liver-directed therapy is an option for localized unresectable disease; platinum-based chemotherapy is the first-line treatment for poorly differentiated tumors. Optimal sequencing of these treatments and targeted therapies such as everolimus and tyrosine kinase inhibitors remains to be elucidated. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belz, J; Kumar, R; Sridhar, S
Purpose: We propose an innovative combinatorial treatment strategy of Local ChemoRadiation Therapy (LCRT) using a sustained drug delivery platform in the form of a spacer to locally radio-sensitize the prostate with Docetaxel (DTX) enabling a synergistic cure with the use of lower radiation doses. These biodegradable spacers are physically similar to the inert spacers routinely used in prostate brachytherapy but are now loaded with formulations of DTX. Methods: Spacers were loaded with ∼500µg Docetaxel (DTX) for prostate cancer studies. The implants were characterized in vitro using SEM and HPLC. The release kinetic studies were carried out in buffer (pH 6.0)more » at 37°C. Subcutaneous PC3 tumors were xenografted in nude mice. Prostate cancer studies were done with and without radiation using SARRP at 5Gy, 10Gy, and 15Gy. Drug-loaded implants were injected once intratumorally using an 18G brachytherapy needle. Results: The release study in vitro showed a highly sustained release for multiple weeks at therapeutically relevant doses. The monotherapy with local DTX spacer showed sustained tumor inhibition compared to empty implants and an equivalent DTX dose given systemically. At 40 days, 89% survival was observed for mice treated with DTX implants compared with 0% in all other treatment groups. The combined treatment with local DTX spacer and radiation (10Gy) showed the highest degree of tumor suppression (significant tumor growth inhibition by day 90). The control mice showed continuous tumor growth and were scarified by day 56. Groups of mice treated with DTX-spacer or radiation alone showed initial tumor suppression but growth continued after day 60. A larger experiment is ongoing. Conclusion: This approach provides localized delivery of the chemotherapeutic sensitizer directly to the tumor and avoids the toxicities associated with both brachytherapy and current systemic delivery of docetaxel. Sustained release of DTX is an effective chemotherapy option alone or in combination with radiation therapy.« less
Clear cell hidradenocarcinoma of the breast: a very rare breast skin tumor.
Mezzabotta, Maurizio; Declich, Paolo; Cardarelli, Mery; Bellone, Stefano; Pacilli, Paolo; Riggio, Eliana; Pallino, Antonio
2012-01-01
Hidradenocarcinoma is an uncommon malignant intradermal tumor of sweat gland origin with a predilection for the face and extremities. It is encountered equally in males and females, usually in the second half of life. These tumors tend to be locally aggressive. In our case, the tumor was located relatively superficially but without any apparent connection to the overlying skin. The typical disease course includes local and sometimes multiple recurrences, and some patients develop regional lymph node and distant metastases. These type of tumors in the parenchyma of the breast are extremely rare. We report a case of hidradenocarcinoma in a 77-year-old woman who presented with a palpable inflammatory nodule in the right breast.
[Percutaneous ablation of malignant kidney tumors in rabbits by low frequency radio energy].
Moskovitz, B; Nativ, O; Sabo, E; Barbara, Y; Mordohovich, D; Kaftori, Y; Shalhav, A; Goldwasser, B
1998-01-01
Radio-frequency (RF) current has been used successfully to ablate normal human tissue. To investigate further the clinical application of this modality in tumors, we studied the potential of using RF percutaneously to destroy experimental kidney tumors. 35 outbred albino rabbits underwent direct-implantation of renal VX2 tumor during open surgery. After 21 days, ultrasonography was performed to show tumor presence and size. A shielded RF needle was designed to be inserted percutaneously through an introduction needle. An electrical insulation shield covering the RF needle was retractable, controlling the length of exposure of the RF needle inside the tissue. 22 days after tumor implantation, RF was applied via this special needle using a ZoMed International RF generator. In one group of rabbits the procedure was performed under direct vision during open surgery, while in another group treatment was percutaneous, the needle guided by palpation of the tumor. Rabbits were killed 3 days later and revealed 4-25 mm intra-tumoral RF-induced lesions. A direct relation was found between lesion size and the power and duration of RF applied (at 7.5 W, R = 0.48, and P = 0.32). Based on our preliminary results we can conclude that RF may have clinical applications in the near future for percutaneous local tumor control in parenchymal organs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokhrel, D; Sood, S; Shen, X
2016-06-15
Purpose: To present radiobiological modeling of TCP using tumor size-adjusted BED(s-BED)and PTV(D99) to lung SBRT patients treated with X-ray Voxel Monte Carlo(XVMC) algorithm, apply parameterized Lyman-NTCP model to predict grade-2 RP and subsequently, compare with clinical outcomes/observations. Methods: Dosimetric parameters and clinical follow-up for XVMC-based lung-SBRT patients were retrospectively evaluated. Patients were treated at Novalis-TX with hybrid(2 non-coplanar partial-arcs plus 3–6 static-beams)plan using HD-MLC/6MV-SRS-beam.For TCP,s-BED modelling was utilized: TCP=EXP[sBED-TCD50]/k/(1.0+EXP[sBED-TCD50]/k), where k=31Gy corresponding to TCD50=0Gy and s-BED was defined as BED10 minus 10 times the tumor diameter(in centimeters)by Ohri et al.(IJROBP,2012). For 2-yr local-control, we used more-realistic MC-computed PTVD99 as amore » predictive parameter, s-BED(D99).Due to relatively shorter median follow-up interval(12-months),Kaplan-Meier curves were generated to estimate 2-yr observed local-control and compared to predicted-rate by TCP modeling. For NTCP, we employed parameterized Lyman-NTCP model utilizing normal-lung DVH and α/β=3Gy fitted to predict grade-2 RP after lung-SBRT. Results: Total 108 patients (137 tumors) treated for 35–70Gy in 3–5 fractions, either primary-lung(n=74)or metastatic-lung(n=53)tumors were included.F or the given prescription dose with MC-computed MUs, 2-yr local-control rates with s-BED(D99) was 87±8%. Kaplan-Meier generated observed local-control rate at 2-yr was 87.5%,suggesting that PTV(D99) could be a potential predictor (p-value=0.38). Observed vs predicted TCP for primary-lung tumors and metastatic tumors were 97% vs 88±7% and 94% vs 86±9%.NTCP model predicted well for symptomatic-RP with predicted vs observed (3±5% vs 2%). Radiographic and clinically significant RP was observed in 13% and 2% of patients. Higher rates of radiographic change were observed in patients who received >50Gy compared to ≤50Gy(24% vs 10%). Conclusion: Utilizing MC-computed PTVD99, our TCP results were well correlated with clinical outcome. The predicted grade-2 RP rate was comparable to clinical observations. Clinical application of these radiobiological models may potentially allow for target dose escalation and/or lung-toxicity reduction. Further validation of these radiobiological models with longer follow up interval for large cohorts of lung-SBRT patients is anticipated.« less
Pretto, Francesca; Elia, Giuliano; Castioni, Nadia; Neri, Dario
2014-09-01
Antibody-cytokine fusion proteins ("immunocytokines") represent a promising class of armed antibody products, which allow the selective delivery of potent pro-inflammatory payloads at the tumor site. The antibody-based selective delivery of interleukin-2 (IL2) is particularly attractive for the treatment of metastatic melanoma, an indication for which this cytokine received marketing approval from the US Food and drug administration. We used the K1735M2 immunocompetent syngeneic model of murine melanoma to study the therapeutic activity of F8-IL2, an immunocytokine based on the F8 antibody in diabody format, fused to human IL2. F8-IL2 was shown to selectively localize at the tumor site in vivo, following intravenous administration, and to mediate tumor growth retardation, which was potentiated by the combination with paclitaxel or dacarbazine. Combination treatment led to a substantially more effective tumor growth inhibition, compared to the cytotoxic drugs used as single agents, without additional toxicity. Analysis of the immune infiltrate revealed a significant accumulation of CD4(+) T cells 24 h after the administration of the combination. The fusion proteins F8-IL2 and L19-IL2, specific to the alternatively spliced extra domain A and extra domain B of fibronectin respectively, were also studied in combination with tumor necrosis factor (TNF)-based immunocytokines. The combination treatment was superior to the action of the individual immunocytokines and was able to eradicate neoplastic lesions after a single intratumoral injection, a procedure that is being clinically used for the treatment of Stage IIIC melanoma. Collectively, these data reinforce the rationale for the use of IL2-based immunocytokines in combination with cytotoxic agents or TNF-based immunotherapy for the treatment of melanoma patients.
Williams, James K.; Entenberg, David; Wang, Yarong; Avivar-Valderas, Alvaro; Padgen, Michael; Clark, Ashley; Aguirre-Ghiso, Julio A.; Castracane, James; Condeelis, John S.
2016-01-01
ABSTRACT The tumor microenvironment is recognized as playing a significant role in the behavior of tumor cells and their progression to metastasis. However, tools to manipulate the tumor microenvironment directly, and image the consequences of this manipulation with single cell resolution in real time in vivo, are lacking. We describe here a method for the direct, local manipulation of microenvironmental parameters through the use of an implantable Induction Nano Intravital Device (iNANIVID) and simultaneous in vivo visualization of the results at single-cell resolution. As a proof of concept, we deliver both a sustained dose of EGF to tumor cells while intravital imaging their chemotactic response as well as locally induce hypoxia in defined microenvironments in solid tumors. PMID:27790386
Macrophage mediated PCI enhanced gene-directed enzyme prodrug therapy
NASA Astrophysics Data System (ADS)
Christie, Catherine E.; Zamora, Genesis; Kwon, Young J.; Berg, Kristian; Madsen, Steen J.; Hirschberg, Henry
2015-03-01
Photochemical internalization (PCI) is a photodynamic therapy-based approach for improving the delivery of macromolecules and genes into the cell cytosol. Prodrug activating gene therapy (suicide gene therapy) employing the transduction of the E. coli cytosine deaminase (CD) gene into tumor cells, is a promising method. Expression of this gene within the target cell produces an enzyme that converts the nontoxic prodrug, 5-FC, to the toxic metabolite, 5-fluorouracil (5-FU). 5-FC may be particularly suitable for brain tumors, because it can readily cross the bloodbrain barrier (BBB). In addition the bystander effect, where activated drug is exported from the transfected cancer cells into the tumor microenvironment, plays an important role by inhibiting growth of adjacent tumor cells. Tumor-associated macrophages (TAMs) are frequently found in and around glioblastomas. Monocytes or macrophages (Ma) loaded with drugs, nanoparticles or photosensitizers could therefore be used to target tumors by local synthesis of chemo attractive factors. The basic concept is to combine PCI, to enhance the ex vivo transfection of a suicide gene into Ma, employing specially designed core/shell NP as gene carrier.
The dual role of tumor necrosis factor (TNF) in cancer biology.
Bertazza, Loris; Mocellin, Simone
2010-01-01
Tumor necrosis factor (TNF) is a cytokine with well known anticancer properties and is being utilized as anticancer agent for the treatment of patients with locally advanced solid tumors. However, TNF role in cancer biology is debated. In fact, in spite of the wealth of evidence supporting its antitumor activity, the cascade of molecular events underlying TNF-mediated tumor regression observed in vivo is still incompletely elucidated. Furthermore, some preclinical findings suggest that TNF may even promote cancer development and progression. With this work we intend to summarize the molecular biology of TNF (with particular regard to its tumor-related activities) and review the experimental and clinical evidence currently available describing the complex and sometime apparently conflicting relationship between this cytokine, cancer biology and antitumor therapy. We also propose a model to explain the dual effect of TNF based on the exposure time and cytokine levels reached within the tumor microenvironment. Finally, we overview recent research findings that might lead to new ways for exploiting the anticancer potential of TNF in the clinical setting.
3D brain tumor localization and parameter estimation using thermographic approach on GPU.
Bousselham, Abdelmajid; Bouattane, Omar; Youssfi, Mohamed; Raihani, Abdelhadi
2018-01-01
The aim of this paper is to present a GPU parallel algorithm for brain tumor detection to estimate its size and location from surface temperature distribution obtained by thermography. The normal brain tissue is modeled as a rectangular cube including spherical tumor. The temperature distribution is calculated using forward three dimensional Pennes bioheat transfer equation, it's solved using massively parallel Finite Difference Method (FDM) and implemented on Graphics Processing Unit (GPU). Genetic Algorithm (GA) was used to solve the inverse problem and estimate the tumor size and location by minimizing an objective function involving measured temperature on the surface to those obtained by numerical simulation. The parallel implementation of Finite Difference Method reduces significantly the time of bioheat transfer and greatly accelerates the inverse identification of brain tumor thermophysical and geometrical properties. Experimental results show significant gains in the computational speed on GPU and achieve a speedup of around 41 compared to the CPU. The analysis performance of the estimation based on tumor size inside brain tissue also presented. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kouno, Tsutomu; Watanabe, Takashi; Umeda, Toru; Beppu, Yasuo; Kojima, Rie; Sungwon, Kim; Kobayashi, Yukio; Tobinai, Kensei; Hasegawa, Tadashi; Matsuno, Yoshihiro
2005-02-01
Monoclonal gammopathy of undetermined significance does not overexpress cluster of differentiation (CD) 56, but plasma cell myeloma frequently overexpressed it. However, plasma cell leukemia and extramedullary plasmacytoma usually down-regulate CD56 expression. Plasmacytoma, especially 'solitary plasmacytoma of bone', is difficult to diagnose as plasma cell neoplasm, because it occasionally appears similar to other bone tumors, both clinically and pathologically, and is rarely accompanied by monoclonal protein in the serum or urine. The present case was a patient with an osteolytic 'small round cell tumor' of the iliac bone, which also invaded the femora. An immunohistopathological finding of CD56 expression played a key role in making a diagnosis. The definitive diagnosis of plasmacytoma was made based on the electron microscopic findings. The plasma cells which infiltrated her sternum showed the same restriction to kappa light chain expression in their cytoplasms as that of the iliac bone tumor cells, but did not express CD56. Locally infiltrating osteolytic bone tumors should be examined for surface immunoglobulin light chains as well as CD56 expression when plasmacytoma is suspected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuji, Hiroshi; Ishikawa, Hitoshi; Yanagi, Takeshi
2007-03-01
Purpose: To evaluate the applicability of carbon ion beams for the treatment of choroidal melanoma with regard to normal tissue morbidity and local tumor control. Methods and Materials: Between January 2001 and February 2006, 59 patients with locally advanced or unfavorably located choroidal melanoma were enrolled in a Phase I/II clinical trial of carbon-ion radiotherapy at the National Institute of Radiologic Sciences. The primary endpoint of this study was normal tissue morbidity, and secondary endpoints were local tumor control and patient survival. Of the 59 subjects enrolled, 57 were followed >6 months and analyzed. Results: Twenty-three patients (40%) developed neovascularmore » glaucoma, and three underwent enucleation for eye pain due to elevated intraocular pressure. Incidence of neovascular glaucoma was dependent on tumor size and site. Five patients had died at analysis, three of distant metastasis and two of concurrent disease. All but one patient, who developed marginal recurrence, were controlled locally. Six patients developed distant metastasis, five in the liver and one in the lung. Three-year overall survival, disease-free survival, and local control rates were 88.2%, 84.8%, and 97.4%, respectively. No apparent dose-response relationship was observed in either tumor control or normal tissue morbidity at the dose range applied. Conclusion: Carbon-ion radiotherapy can be applied to choroidal melanoma with an acceptable morbidity and sufficient antitumor effect, even with tumors of unfavorable size or site.« less
Primary meningeal myxoid liposarcoma with aggressive behavior after recurrence: case report.
Watanabe, Noriyuki; Ohtani, Haruo; Mori, Shuichi; Iguchi, Masahiro; Zaboronok, Alexander; Sakamoto, Noriaki; Matsuda, Masahide; Ishikawa, Eiichi; Matsumura, Akira
2018-06-19
Although liposarcomas are the most common soft tissue sarcomas, their intracranial variants are extremely rare. Here, we present a case of a primary intracranial myxoid liposarcoma in a 23-year-old Japanese man who presented with generalized seizures and a mass in the left frontal lobe. The tumor was totally removed, and histological analyses pointed to liposarcoma. Thirteen years after his initial treatment, the patient presented with right-side weakness and local recurrence of tumor was discovered. Histology from the second resection confirmed the diagnosis of myxoid liposarcoma. Shortly after the second resection, progressive, new intracranial lesions were observed and despite a third resection, extensive intracerebral invasion by the tumor proved fatal. The histological features of myxoid liposarcoma were essentially similar with each recurrence, but the aggressive tumor behavior after the second operation did not align with expectations based on histological classification.
Loss of membranous Ep-CAM in budding colorectal carcinoma cells.
Gosens, Marleen J E M; van Kempen, Léon C L; van de Velde, Cornelis J H; van Krieken, J Han J M; Nagtegaal, Iris D
2007-02-01
Tumor budding is a histological feature that reflects loss of adhesion of tumor cells and is associated with locoregional metastasis of colorectal carcinoma. Although nuclear localization of beta-catenin is associated with tumor budding, the molecular mechanism remains largely elusive. In this study, we hypothesize that the epithelial cell adhesion molecule (Ep-CAM) is involved in tumor budding. In order to address this question, we performed immunohistochemistry on Ep-CAM using three different antibodies (monoclonal antibodies Ber-ep4 and 311-1K1 and a polyclonal antibody) and a double staining on beta-catenin and Ep-CAM. In addition, Ep-CAM mRNA was monitored with mRNA in situ hybridization. Subsequently, we determined the effect of Ep-CAM staining patterns on tumor spread in rectal cancer. In contrast to the tumor mass, budding cells of colorectal carcinoma displayed lack of membranous but highly increased cytoplasmic Ep-CAM staining and nuclear translocation of beta-catenin. mRNA in situ hybridization suggested no differences in Ep-CAM expression between the invasive front and the tumor mass. Importantly, reduced Ep-CAM staining at the invasive margin of rectal tumor specimens (n=133) correlated significantly with tumor budding, tumor grade and an increased risk of local recurrence (P=0.001, P=0.04 and P=0.03, respectively). These data demonstrate abnormal processing of Ep-CAM at the invasive margin of colorectal carcinomas. Our observations indicate that loss of membranous Ep-CAM is associated with nuclear beta-catenin localization and suggest that this contributes to reduced cell-cell adhesions, increased migratory potential and tumor budding.
Yang, Xiaoliang; Saito, Ryuta; Nakamura, Taigen; Zhang, Rong; Sonoda, Yukihiko; Kumabe, Toshihiro; Forsayeth, John; Bankiewicz, Krystof; Tominaga, Teiji
2016-01-01
In cases of malignant brain tumors, infiltrating tumor cells that exist at the tumor-surrounding brain tissue always escape from cytoreductive surgery and, protected by blood-brain barrier (BBB), survive the adjuvant chemoradiotherapy, eventually leading to tumor recurrence. Local interstitial delivery of chemotherapeutic agents is a promising strategy to target these cells. During our effort to develop effective drug delivery methods by intra-tumoral infusion of chemotherapeutic agents, we found consistent pattern of leakage from the tumor. Here we describe our findings and propose promising strategy to cover the brain tissue surrounding the tumor with therapeutic agents by means of convection-enhanced delivery. First, the intracranial tumor isograft model was used to define patterns of leakage from tumor mass after intra-tumoral infusion of the chemotherapeutic agents. Liposomal doxorubicin, although first distributed inside the tumor, distributed diffusely into the surrounding normal brain once the leakage happen. Trypan blue dye was used to evaluate the distribution pattern of peri-tumoral infusions. When infused intra- or peri-tumorally, infusates distributed robustly into the tumor border. Subsequently, volume of distributions with different infusion scheduling; including intra-tumoral infusion, peri-tumoral infusion after tumor resection, peri-tumoral infusion without tumor removal with or without systemic infusion of steroids, were compared with Evans-blue dye. Peri-tumoral infusion without tumor removal resulted in maximum volume of distribution. Prior use of steroids further increased the volume of distribution. Local interstitial drug delivery targeting tumor surrounding brain tissue before tumor removal should be more effective when targeting the invading cells.
[Giant-cell tumor of the patella with lung metastases: a case report].
Bahri, I; Ben Yahia, N; Boudawara, T; Makni, S; Fakhfakh, B; Kechaou, S; Keskes, H; Jlidi, R
2003-06-01
Giant-cell tumors are an infrequent clinical, radiological, and pathological entity observed in 5% of primary bone tumors. They generally occur at the epiphysis of long bones, particularly in the knee area but patellar localization seems very rare. Despite their perfectly benign histological aspect, giant-cell tumors may be aggressive, leading to local recurrence or even distant metastasis to the lung. We report a case of benign giant-cell tumor of the patella with lung metastasis observed in a 23-year-old woman. The aggressive radiological image was suggestive of chondrosarcoma. Histologically the differential diagnosis with chondroblastoma was difficult. The tumor and lung metastasis were treated by surgical resection. Four years later there has been no recurrence. We present the anatomic and clinical aspects of giant-cell tumor of the bone together with the diagnostic approach and the clinical course.
Spatiotemporal Patterns of Tumor Occurrence in Children with Intraocular Retinoblastoma.
King, Benjamin A; Parra, Carlos; Li, Yimei; Helton, Kathleen J; Qaddoumi, Ibrahim; Wilson, Matthew W; Ogg, Robert J
2015-01-01
To accurately map the retinal area covered by tumor in a prospectively enrolled cohort of children diagnosed with retinoblastoma. Orbital MRI in 106 consecutive retinoblastoma patients (44 bilateral) was analyzed. For MRI-visible tumors, the polar angle and angle of eccentricity of points defining tumor perimeter on the retina were determined by triangulation from images in three orthogonal planes. The centroid of the mapped area was calculated to approximate tumor origin, and the location and cumulative tumor burden were analyzed in relation to mutation type (germline vs. somatic), tumor area, and patient age at diagnosis. Location of small tumors undetected by MRI was approximated with fundoscopic images. Mapping was successful for 129 tumors in 91 eyes from 67 patients (39 bilateral, 43 germline mutation). Cumulative tumor burden was highest within the macula and posterior pole and was asymmetrically higher within the inferonasal periphery. Tumor incidence was lowest in the superotemporal periphery. Tumor location varied with age at diagnosis in a complex pattern. Tumor location was concentrated in the macula and superonasal periphery in patients <5.6 months, in the inferotemporal quadrant of the posterior pole in patients 5.6-8.8 months, in the inferonasal quadrant in patients 8.8-13.2 months, and in the nasal and superotemporal periphery in patients >13.2 months. The distribution of MRI-invisible tumors was consistent with the asymmetry of mapped tumors. MRI-based mapping revealed a previously unrecognized pattern of retinoblastoma localization that evolves with age at diagnosis. The structured spatiotemporal distribution of tumors may provide valuable clues about cellular or molecular events associated with tumorigenesis in the developing retina.
The Evolutionary Landscape of Localized Prostate Cancers Drives Clinical Aggression.
Espiritu, Shadrielle Melijah G; Liu, Lydia Y; Rubanova, Yulia; Bhandari, Vinayak; Holgersen, Erle M; Szyca, Lesia M; Fox, Natalie S; Chua, Melvin L K; Yamaguchi, Takafumi N; Heisler, Lawrence E; Livingstone, Julie; Wintersinger, Jeff; Yousif, Fouad; Lalonde, Emilie; Rouette, Alexandre; Salcedo, Adriana; Houlahan, Kathleen E; Li, Constance H; Huang, Vincent; Fraser, Michael; van der Kwast, Theodorus; Morris, Quaid D; Bristow, Robert G; Boutros, Paul C
2018-05-03
The majority of newly diagnosed prostate cancers are slow growing, with a long natural life history. Yet a subset can metastasize with lethal consequences. We reconstructed the phylogenies of 293 localized prostate tumors linked to clinical outcome data. Multiple subclones were detected in 59% of patients, and specific subclonal architectures associate with adverse clinicopathological features. Early tumor development is characterized by point mutations and deletions followed by later subclonal amplifications and changes in trinucleotide mutational signatures. Specific genes are selectively mutated prior to or following subclonal diversification, including MTOR, NKX3-1, and RB1. Patients with low-risk monoclonal tumors rarely relapse after primary therapy (7%), while those with high-risk polyclonal tumors frequently do (61%). The presence of multiple subclones in an index biopsy may be necessary, but not sufficient, for relapse of localized prostate cancer, suggesting that evolution-aware biomarkers should be studied in prospective studies of low-risk tumors suitable for active surveillance. Copyright © 2018 Elsevier Inc. All rights reserved.
Large gangliocytic paraganglioma of the duodenum: A rare entity.
Hernández, Alejandra Gordillo; Lanuza, Eduardo Dominguez-Adame; Matias, Auxiliadora Cano; Huertas, Rosario Perez; Rodriguez, Katherine Maria Gallardo; Perez, Purificacion Gallinato; Mompean, Fernando Oliva
2015-08-27
Gangliocytic paragangliomas are rare tumors that almost exclusively occur within the second portion of the duodenum. Although these tumors generally have a benign clinical course, they have the potential to recur or metastasize to regional lymph nodes. The case report presented here describes a 57-year-old female patient with melena, progressive asthenia, anemia, and a mass in the second-third portion of the duodenum that was treated by local excision. The patient was diagnosed with a friable bleeding tumor. The histologic analysis showed that the tumor was a 4 cm gangliocytic paraganglioma without a malignant cell pattern. In the absence of local invasion or distant metastasis, endoscopic resection represents a feasible, curative therapy. Although endoscopic polypectomy is currently considered the treatment of choice, it is not recommended if the size of the tumor is > 3 cm and/or there is active or recent bleeding. Patients diagnosed with a gangliocytic paraganglioma should be closely followed-up for possible local recurrence.
Large gangliocytic paraganglioma of the duodenum: A rare entity
Hernández, Alejandra Gordillo; Lanuza, Eduardo Dominguez-Adame; Matias, Auxiliadora Cano; Huertas, Rosario Perez; Rodriguez, Katherine Maria Gallardo; Perez, Purificacion Gallinato; Mompean, Fernando Oliva
2015-01-01
Gangliocytic paragangliomas are rare tumors that almost exclusively occur within the second portion of the duodenum. Although these tumors generally have a benign clinical course, they have the potential to recur or metastasize to regional lymph nodes. The case report presented here describes a 57-year-old female patient with melena, progressive asthenia, anemia, and a mass in the second-third portion of the duodenum that was treated by local excision. The patient was diagnosed with a friable bleeding tumor. The histologic analysis showed that the tumor was a 4 cm gangliocytic paraganglioma without a malignant cell pattern. In the absence of local invasion or distant metastasis, endoscopic resection represents a feasible, curative therapy. Although endoscopic polypectomy is currently considered the treatment of choice, it is not recommended if the size of the tumor is > 3 cm and/or there is active or recent bleeding. Patients diagnosed with a gangliocytic paraganglioma should be closely followed-up for possible local recurrence. PMID:26328037
Epelbaum, Ron; Frenkel, Alex; Haddad, Riad; Sikorski, Natalia; Strauss, Ludwig G; Israel, Ora; Dimitrakopoulou-Strauss, Antonia
2013-01-01
This study aimed to assess the role of a quantitative dynamic PET model in pancreatic cancer as a potential index of tumor aggressiveness and predictor of survival. Seventy-one patients with (18)F-FDG-avid adenocarcinoma of the pancreas before treatment were recruited, including 27 with localized tumors (11 underwent pancreatectomy, and 16 had localized nonresectable tumors) and 44 with metastatic disease. Dynamic (18)F-FDG PET images were acquired over a 60-min period, followed by a whole-body PET/CT study. Quantitative data measurements were based on a 2-compartment model, and the following variables were calculated: VB (fractional blood volume in target area), K(1) and k(2) (kinetic membrane transport parameters), k(3) and k(4) (intracellular (18)F-FDG phosphorylation and dephosphorylation parameters, respectively), and (18)F-FDG INF (global (18)F-FDG influx). The single significant variable for overall survival (OS) in patients with localized disease was (18)F-FDG INF. Patients with a high (18)F-FDG INF (>0.033 min(-1)) had a median OS of 6 and 5 mo for nonresectable and resected tumors, respectively, versus 15 and 19 mo for a low (18)F-FDG INF in nonresectable and resected tumors, respectively (P < 0.04). In metastatic disease, multivariate analysis found VB, K(1), and k(3) to be significant variables for OS (P < 0.043, <0.031, and <0.009, respectively). Prognostic factors for OS in the entire group of patients that were significant at multivariate analysis were stage of disease, VB, K(1), and (18)F-FDG INF (P < 0.00035, <0.03, <0.024, and <0.008, respectively). Median OS for all patients with a high (18)F-FDG INF, low VB, and high K(1) was 3 mo, as opposed to 14 mo in patients with a low (18)F-FDG INF, high VB, and low K(1) (P < 0.021), irrespective of stage and resectability. Quantitative (18)F-FDG kinetic parameters measured by dynamic PET in newly diagnosed pancreatic cancer correlated with the aggressiveness of disease. The (18)F-FDG INF was the single most significant variable for OS in patients with localized disease, whether resectable or not.
3D tensor-based blind multispectral image decomposition for tumor demarcation
NASA Astrophysics Data System (ADS)
Kopriva, Ivica; Peršin, Antun
2010-03-01
Blind decomposition of multi-spectral fluorescent image for tumor demarcation is formulated exploiting tensorial structure of the image. First contribution of the paper is identification of the matrix of spectral responses and 3D tensor of spatial distributions of the materials present in the image from Tucker3 or PARAFAC models of 3D image tensor. Second contribution of the paper is clustering based estimation of the number of the materials present in the image as well as matrix of their spectral profiles. 3D tensor of the spatial distributions of the materials is recovered through 3-mode multiplication of the multi-spectral image tensor and inverse of the matrix of spectral profiles. Tensor representation of the multi-spectral image preserves its local spatial structure that is lost, due to vectorization process, when matrix factorization-based decomposition methods (such as non-negative matrix factorization and independent component analysis) are used. Superior performance of the tensor-based image decomposition over matrix factorization-based decompositions is demonstrated on experimental red-green-blue (RGB) image with known ground truth as well as on RGB fluorescent images of the skin tumor (basal cell carcinoma).
Singh, L C; Chakraborty, Anurupa; Mishra, Ashwani K; Devi, Thoudam Regina; Sugandhi, Nidhi; Chintamani, Chintamani; Bhatnagar, Dinesh; Kapur, Sujala; Saxena, Sunita
2012-06-01
Locally advanced breast cancer (LABC) remains a clinical challenge as the majority of patients with this diagnosis develop distant metastases despite appropriate therapy. We analyzed expression of steroid and growth hormone receptor genes as well as gene associated with metabolism of chemotherapeutic drugs in locally advanced breast cancer before and after neoadjuvant chemotherapy (NACT) to study whether there is a change in gene expression induced by chemotherapy and whether such changes are associated with tumor response or non-response. Fifty patients were included with locally advanced breast cancer treated with cyclophosphamide, adriamycin, 5-fluorouracil (CAF)-based neoadjuvant chemotherapy before surgery. Total RNA was extracted from 50 match samples of pre- and post-NACT tumor tissues. RNA expression levels of epidermal growth factor receptor family genes including EGFR, ERBB2, ERBB3, androgen receptor (AR), and multidrug-resistance gene 1 (MDR1) were determined by quantitative real-time reverse transcriptase-polymerase chain reaction. Responders show significantly high levels of pre-NACT AR gene expression (P = 0.016), which reduces following NACT (P = 0.008), and hence can serve as a useful tool for the prediction of the success of neoadjuvant chemotherapy in individual cancer patients with locally advanced breast carcinoma. Moreover, a significant post-therapeutic increase in the expression levels of EGFR and MDR1 gene in responders (P = 0.026 and P < 0.001) as well as in non-responders (P = 0.055, P = 0.001) suggests that expression of these genes changes during therapy but they do not have any impact on tumor response, whereas a post-therapeutic reduction was observed in AR in responders. This indicates an independent predictive role of AR with response to NACT.
NASA Astrophysics Data System (ADS)
Zhang, Yumin; Yang, Cuihong; Wang, Weiwei; Liu, Jinjian; Liu, Qiang; Huang, Fan; Chu, Liping; Gao, Honglin; Li, Chen; Kong, Deling; Liu, Qian; Liu, Jianfeng
2016-02-01
Ample attention has focused on cancer drug delivery via prodrug nanoparticles due to their high drug loading property and comparatively lower side effects. In this study, we designed a PEG-DOX-Cur prodrug nanoparticle for simultaneous delivery of doxorubicin (DOX) and curcumin (Cur) as a combination therapy to treat cancer. DOX was conjugated to PEG by Schiff’s base reaction. The obtained prodrug conjugate could self-assemble in water at pH 7.4 into nanoparticles (PEG-DOX NPs) and encapsulate Cur into the core through hydrophobic interaction (PEG-DOX-Cur NPs). When the PEG-DOX-Cur NPs are internalized by tumor cells, the Schiff’s base linker between PEG and DOX would break in the acidic environment that is often observed in tumors, causing disassembling of the PEG-DOX-Cur NPs and releasing both DOX and Cur into the nuclei and cytoplasma of the tumor cells, respectively. Compared with free DOX, free Cur, free DOX-Cur combination, or PEG-DOX NPs, PEG-DOX-Cur NPs exhibited higher anti-tumor activity in vitro. In addition, the PEG-DOX-Cur NPs also showed prolonged blood circulation time, elevated local drug accumulation and increased tumor penetration. Enhanced anti-tumor activity was also observed from the PEG-DOX-Cur-treated animals, demonstrating better tumor inhibitory property of the NPs. Thus, the PEG-DOX-Cur prodrug nanoparticle system provides a simple yet efficient approach of drug delivery for chemotherapy.
Kemény, Lajos V; Kurgyis, Zsuzsanna; Buknicz, Tünde; Groma, Gergely; Jakab, Ádám; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B
2016-06-02
After the removal of primary cutaneous melanoma some patients develop local recurrences, even after having histologically tumor-free re-excision. A potential explanation behind this phenomenon is that tumor cells switch their phenotype, making their recognition via standard histopathological assessments extremely difficult. Tumor-stromal cell fusion has been proposed as a potential mechanism for tumor cells to acquire mesenchymal traits; therefore, we hypothesized that melanoma cells could acquire fibroblast- and macrophage-like phenotypes via cell fusion. We show that melanoma cells spontaneously fuse with human dermal fibroblasts and human peripheral blood monocytes in vitro. The hybrid cells' nuclei contain chromosomes from both parental cells and are indistinguishable from the parental fibroblasts or macrophages based on their morphology and immunophenotype, as they could lose the melanoma specific MART1 marker, but express the fibroblast marker smooth muscle actin or the macrophage marker CD68. Our results suggest that, by spontaneous cell fusion in vitro, tumor cells can adopt the morphology and immunophenotype of stromal cells while still carrying oncogenic, tumor-derived genetic information. Therefore, melanoma-stromal cell fusion might play a role in missing tumor cells by routine histopathological assessments.
Kemény, Lajos V.; Kurgyis, Zsuzsanna; Buknicz, Tünde; Groma, Gergely; Jakab, Ádám; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B.
2016-01-01
After the removal of primary cutaneous melanoma some patients develop local recurrences, even after having histologically tumor-free re-excision. A potential explanation behind this phenomenon is that tumor cells switch their phenotype, making their recognition via standard histopathological assessments extremely difficult. Tumor-stromal cell fusion has been proposed as a potential mechanism for tumor cells to acquire mesenchymal traits; therefore, we hypothesized that melanoma cells could acquire fibroblast- and macrophage-like phenotypes via cell fusion. We show that melanoma cells spontaneously fuse with human dermal fibroblasts and human peripheral blood monocytes in vitro. The hybrid cells’ nuclei contain chromosomes from both parental cells and are indistinguishable from the parental fibroblasts or macrophages based on their morphology and immunophenotype, as they could lose the melanoma specific MART1 marker, but express the fibroblast marker smooth muscle actin or the macrophage marker CD68. Our results suggest that, by spontaneous cell fusion in vitro, tumor cells can adopt the morphology and immunophenotype of stromal cells while still carrying oncogenic, tumor-derived genetic information. Therefore, melanoma–stromal cell fusion might play a role in missing tumor cells by routine histopathological assessments. PMID:27271591
[A rare tumor of the infratemporal fossa].
Bourhaleb, Z; Chekrine, T; Bouamama, I; Bouchbika, Z; Benchakroun, N; Jouhadi, H; Tawfiq, N; Sahraoui, S; Benider, A
2010-06-01
Giant cell tumors of bone (GCT) are usually benign and relatively rare. They have an aggressive behavior and an unpredictable prognosis. They occur mainly in the young adult, with a preferential localization in long bones. We report a giant cell infratemporal fossa tumor. A 55-year-old female patient consulted for swelling in the right cheek. Surgical excision was incomplete because of the subtemporal tumor localization. Histological assessment proved a GCT. Forty-five grays postoperative external radiotherapy was applied to the surgical site. The patient had local control at the 12-month follow-up. GCTs are seldom observed in the facial skeleton (2%). The recommended treatment is surgery. Radiotherapy can be indicated in case of incomplete or impossible surgical excision, or when surgery would be responsible for a major functional deficit. Copyright 2010 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Lei, Na; Gong, Changyang; Qian, Zhiyong; Luo, Feng; Wang, Cheng; Wang, Helan; Wei, Yuquan
2012-08-01
Many drug delivery systems (DDSs) have been investigated for local targeting of malignant disease with the intention of increasing anti-tumor activity and minimizing systemic toxicity. An injectable thermosensitive hydrogel was applied to prevent locoregional recurrence of 4T1 breast cancer in a mouse model. The presented hydrogel, which is based on poly(ethyleneglycol)-poly(ε-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE), flows freely at normal temperature, forms a gel within seconds in situ at body temperature, and eventually releases the drug in a consistent and sustained fashion as it gradually biodegrades. Locoregional recurrence after primary tumor removal was significantly inhibited in mice treated with the paclitaxel (PTX)-loaded PECE hydrogel subcutaneously (9.1%) administered, compared with the blank hydrogel (80.0%), systemic (77.8%) and locally (75.0%) administered PTX, and the control group (100%) (P < 0.01). In addition, tensile strength measurements of the surgical incisions showed that the PECE hydrogel accelerates wound healing at postoperative day 7 (P < 0.05), and days 4 and 14 (P > 0.05), in agreement with histopathological examinations. This novel DDSs represents a promising approach for local adjuvant therapy in malignant disease.
Lohkamp, Laura-Nanna; Vajkoczy, Peter; Budach, Volker; Kufeld, Markus
2018-05-01
Estimating efficacy, safety and outcome of frameless image-guided robotic radiosurgery for the treatment of recurrent brain metastases after whole brain radiotherapy (WBRT). We performed a retrospective single-center analysis including patients with recurrent brain metastases after WBRT, who have been treated with single session radiosurgery, using the CyberKnife® Radiosurgery System (CKRS) (Accuray Inc., CA) between 2011 and 2016. The primary end point was local tumor control, whereas secondary end points were distant tumor control, treatment-related toxicity and overall survival. 36 patients with 140 recurrent brain metastases underwent 46 single session CKRS treatments. Twenty one patients had multiple brain metastases (58%). The mean interval between WBRT and CKRS accounted for 2 years (range 0.2-7 years). The median number of treated metastases per treatment session was five (range 1-12) with a tumor volume of 1.26 ccm (mean) and a median tumor dose of 18 Gy prescribed to the 70% isodose line. Two patients experienced local tumor recurrence within the 1st year after treatment and 13 patients (36%) developed novel brain metastases. Nine of these patients underwent additional one to three CKRS treatments. Eight patients (22.2%) showed treatment-related radiation reactions on MRI, three with clinical symptoms. Median overall survival was 19 months after CKRS. The actuarial 1-year local control rate was 94.2%. CKRS has proven to be locally effective and safe due to high local tumor control rates and low toxicity. Thus CKRS offers a reliable salvage treatment option for recurrent brain metastases after WBRT.
Worrall, Douglas M; Brant, Jason A; Chai, Raymond L; Weinstein, Gregory S
2015-01-01
Cribriform adenocarcinoma of the tongue and minor salivary gland (CATMSG) is a rare, locally invasive, and poorly recognized tumor, typically occurring on the base of the tongue. This case report describes the previously unreported use of transoral robotic surgery (TORS) for the local resection of CATMSG in a novel location, the palatine tonsil, and leverages follow-up information to compare TORS to conventional surgical approaches. We performed transoral radical tonsillectomy, limited pharyngectomy, and base-of-tongue resection with staged left selective neck dissection. Tumor pathology revealed an infiltrating salivary gland carcinoma with perineural invasion and a histologically similar adenocarcinoma in 1 of 64 left neck lymph nodes. TORS was performed with no perioperative complications, and the patient was subsequently discharge on postoperative day 3 with a Dobhoff tube. Postoperatively, the Dobhoff tube was removed at 1 month, the patient was advanced to soft foods by mouth at 2 months, and 3-month positron emission tomography-computed tomography scan showed no evidence of distant metastases and evolving postsurgical changes in the left tonsillectomy bed. This case report highlights the use of TORS resection with minimal acute and long-term morbidity compared to conventional approaches for the resection of this rare, locally invasive salivary gland carcinoma in the palatine tonsil. © 2015 S. Karger AG, Basel.
Torheim, Turid; Groendahl, Aurora R; Andersen, Erlend K F; Lyng, Heidi; Malinen, Eirik; Kvaal, Knut; Futsaether, Cecilia M
2016-11-01
Solid tumors are known to be spatially heterogeneous. Detection of treatment-resistant tumor regions can improve clinical outcome, by enabling implementation of strategies targeting such regions. In this study, K-means clustering was used to group voxels in dynamic contrast enhanced magnetic resonance images (DCE-MRI) of cervical cancers. The aim was to identify clusters reflecting treatment resistance that could be used for targeted radiotherapy with a dose-painting approach. Eighty-one patients with locally advanced cervical cancer underwent DCE-MRI prior to chemoradiotherapy. The resulting image time series were fitted to two pharmacokinetic models, the Tofts model (yielding parameters K trans and ν e ) and the Brix model (A Brix , k ep and k el ). K-means clustering was used to group similar voxels based on either the pharmacokinetic parameter maps or the relative signal increase (RSI) time series. The associations between voxel clusters and treatment outcome (measured as locoregional control) were evaluated using the volume fraction or the spatial distribution of each cluster. One voxel cluster based on the RSI time series was significantly related to locoregional control (adjusted p-value 0.048). This cluster consisted of low-enhancing voxels. We found that tumors with poor prognosis had this RSI-based cluster gathered into few patches, making this cluster a potential candidate for targeted radiotherapy. None of the voxels clusters based on Tofts or Brix parameter maps were significantly related to treatment outcome. We identified one group of tumor voxels significantly associated with locoregional relapse that could potentially be used for dose painting. This tumor voxel cluster was identified using the raw MRI time series rather than the pharmacokinetic maps.
Indications of Carbon Ion Therapy at CNAO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orecchia, Roberto; European Institute of Oncology, via Ripamonti 435, Milano 20141; CNAO National Centre for Oncological Hadrontherapy, Via Caminadella 16, Milano 20123
2009-03-10
CNAO will be a dual center capable of providing therapeutic beams of protons and carbon ions with maximum energy of 400 MeV/u. At the beginning, it will be equipped with three treatment rooms with fixed horizontal and vertical beam lines. In a subsequent phase, two more rooms with a rotating gantry are foreseen. An active spot scanning dose delivery system will be employed. Initially, 80% of the treatments will be carried out with carbon ions. All patients will be treated within clinical trials to assess carbon ion indications with an evidence-based methodology. Seven disease-specific working groups have been developed: lungmore » tumors, liver tumors, sarcomas, head and neck tumors, central nervous system lesions, eye tumors and pediatric tumors. The last two groups will be treated mainly with protons. In the first phase, CNAO will focus on head and neck cancers, treating inoperable, residual or recurrent malignant salivary gland tumors, mucosal melanoma, adenocarcinoma and unfavorably located SCC (nasal and paranasal sinuses). Carbon ions will be employed as a boost in the treatment of locally advanced, poor prognosis, SCC of the hypopharynx and tongue base. Bone and soft tissue sarcomas of the extremity will be treated with a limb-sparing approach, and trunk sarcomas will be treated with exclusive or post-operative irradiation. Skull base tumors (chordoma and chondrosarcoma), recurrent or malignant meningioma and glial tumors will be treated with carbon ions. After sufficient expertise has been gained in coping with organ motion, CNAO will start treating thoracic and abdominal targets. HCC will be treated in inoperable patients with one or more lesions that can be included in a single CTV. Early stage NSCLC will be treated. In the second phase, two more groups on gynecological malignancies and digestive tumors (esophageal cancer, rectal cancer, pancreatic cancer) will be created.« less
Mao, Lei; Liu, Chang; Xiong, Shuyu
2018-01-01
Brain tumors can appear anywhere in the brain and have vastly different sizes and morphology. Additionally, these tumors are often diffused and poorly contrasted. Consequently, the segmentation of brain tumor and intratumor subregions using magnetic resonance imaging (MRI) data with minimal human interventions remains a challenging task. In this paper, we present a novel fully automatic segmentation method from MRI data containing in vivo brain gliomas. This approach can not only localize the entire tumor region but can also accurately segment the intratumor structure. The proposed work was based on a cascaded deep learning convolutional neural network consisting of two subnetworks: (1) a tumor localization network (TLN) and (2) an intratumor classification network (ITCN). The TLN, a fully convolutional network (FCN) in conjunction with the transfer learning technology, was used to first process MRI data. The goal of the first subnetwork was to define the tumor region from an MRI slice. Then, the ITCN was used to label the defined tumor region into multiple subregions. Particularly, ITCN exploited a convolutional neural network (CNN) with deeper architecture and smaller kernel. The proposed approach was validated on multimodal brain tumor segmentation (BRATS 2015) datasets, which contain 220 high-grade glioma (HGG) and 54 low-grade glioma (LGG) cases. Dice similarity coefficient (DSC), positive predictive value (PPV), and sensitivity were used as evaluation metrics. Our experimental results indicated that our method could obtain the promising segmentation results and had a faster segmentation speed. More specifically, the proposed method obtained comparable and overall better DSC values (0.89, 0.77, and 0.80) on the combined (HGG + LGG) testing set, as compared to other methods reported in the literature. Additionally, the proposed approach was able to complete a segmentation task at a rate of 1.54 seconds per slice. PMID:29755716
BI-09EphA3 RECEPTOR IS A MOLECULAR TARGET EXPRESSED IN MULTIPLE COMPARTMENTS OF GBM
Ferluga, Sara; Gibo, Denise; Debinski, Waldemar
2014-01-01
Eph receptor A3 belongs to the Eph family of receptor tyrosine kinases playing critical roles in cancer. We and others found this receptor to be over-expressed in Glioblastoma (GBM), but not in normal brain. EphA3 is a plasma membrane receptor, which is internalized upon ligand binding making it as an attractive target for specific drug delivery. EphA3 overexpression was found in tumor cells and tumor-initiating cells in GBM. However, we noted that EphA3-positive cells localize around the neovasculature, being consistent with tumor-infiltrating cells. Therefore, we decided to analyze EphA3 in relation to microglia/macrophages, as these cells highly infiltrate GBM favoring tumor progression. It has been demonstrated that glioma-infiltrating microglia acquire the M2 phenotype expressing CD163 and CD204 markers. Co-localization studies using immunofluorescence on tumor-derived primary cells showed that EphA3 co-localizes with CD163 on a sub-population of cells. The two markers also highly co-localize in snap-frozen sections of human GBM specimens, mainly in the perivascular region, as well as on cells within the bulk of the tumor and in the invasive ring, but not on the contralateral side of the diseased brain. EphA3 on snap-frozen specimens co-localized also with CD68, a more general macrophages marker, confirming the presence of EphA3 on these bone marrow-derived cells. Microglia/ macrophages have been shown also around tumor necrotic areas. We cultured GBM cells under normoxia, hypoxia and anoxia conditions and found that the levels of EphA3 receptor increased under anoxia compared to hypoxia, following the same pattern seen with CD163 and CD204. We have already generated a novel and specific cytotoxin capable of activating and internalizing the receptor and potently killing EphA3-overexpressing cells. In this study we demonstrate that by utilizing the EphA3 receptor, we will target not only tumor and tumor-initiating cells, but also infiltrating cells active in promoting glioma cell migration and growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belkacemi, Yazid; University of Lille II, Lille; Bousquet, Guilhem
Purpose: To better identify prognostic factors for local control and survival, as well as the role of different therapeutic options, for phyllodes tumors, a rare fibroepithelial neoplasm of the breast. Methods and Materials: Data from 443 women treated between 1971 and 2003 were collected from the Rare Cancer Network. The median age was 40 years (range, 12-87 years). Tumors were benign in 284 cases (64%), borderline in 80 cases (18%), and malignant in 79 cases (18%). Surgery consisted of breast-conserving surgery (BCS) in 377 cases (85%) and total mastectomy (TM) in 66 cases (15%). Thirty-nine patients (9%) received adjuvant radiotherapymore » (RT). Results: After a median follow-up of 106 months, local recurrence (LR) and distant metastases rates were 19% and 3.4%, respectively. In the malignant and borderline group (n = 159), RT significantly decreased LR (p = 0.02), and TM had better results than BCS (p = 0.0019). Multivariate analysis revealed benign histology, negative margins, and no residual disease (no RD) after initial treatment and RT delivery as independent favorable prognostic factors for local control; benign histology and low number of mitosis for disease-free survival; and pathologic tumor size = 3 cm and no tumor necrosis for overall survival. In the malignant and borderline subgroup multivariate analysis TM was the only favorable independent prognostic factor for disease-free survival. Conclusions: This study showed that phyllodes tumor patients with no RD after treatment have better local control. Benign tumors have a good prognosis after surgery alone. In borderline and malignant tumors, TM had better results than BCS. Thus, in these forms adjuvant RT should be considered according to histologic criteria.« less
Giuliano, Elizabeth A; Johnson, Philip J; Delgado, Cherlene; Pearce, Jacqueline W; Moore, Cecil P
2014-07-01
(i) To report the successful treatment of 10 cases of equine periocular squamous cell carcinoma (PSCC) with surgical excision and photodynamic therapy (PDT) using verteporfin. (ii) To evaluate time to first tumor recurrence between PDT-treated horses and horses treated with surgical excision and cryotherapy. A total of 24 equine PSCC cases were included: group 1 (n = 14) had excision and cryotherapy (1993–2003), group 2 (n = 10), excision and local PDT (2006–2010). Evaluated data: signalment, treatment method, tumor location, size, and time to first recurrence. Groups were compared via chi-square test for categorical variables and Wilcoxon rank-sum test for numeric variables. Time to tumor recurrence was examined using Kaplan–Meier product-limit survival analysis. Of 24 cases, nine breeds were affected. Mean age at treatment in years: 14 (range 5–24) in group 1; 11 (range 8–18) in group 2. Median tumor size: 163 mm2 (range 20–625 mm2) in group 1; 195 mm2 (range 45–775 mm2) in group 2. Signalment, tumor laterality, and size were not significantly different between groups. Time to recurrence was significantly different between groups (Logrank test, P = 0.0006). In group 1, 11/14 horses had tumor regrowth with median time to recurrence in months: 10 (range 1–44). In group 2 (minimum follow-up of 25 months; range 25–50), no horse demonstrated tumor recurrence after one treatment with excision and PDT. This represents the first report of local PDT using verteporfin for treatment of equine PSCC. Following surgery, the likelihood of tumor recurrence was significantly reduced with local PDT compared with cryotherapy. © 2013 American College of Veterinary Ophthalmologists.
Integrated photoacoustic/ultrasound/HFU system based on a clinical ultrasound imaging platform
NASA Astrophysics Data System (ADS)
Kim, Jeesu; Choi, Wonseok; Park, Eun-Yeong; Kim, Chulhong
2018-02-01
Non-invasive treatment of tumor is beneficial for the favorable prognosis of the patients. High Intensity Focused Ultrasound (HIFU) is an emerging non-invasive treatment tool that ablates tumor lesions by increasing local temperature without damaging surrounding tissues. In HIFU therapy, accurate focusing of the HIFU energy into the target lesion and real-time assessment of thermal distribution are critical for successful and safe treatment. Photoacoustic (PA) imaging is a novel biomedical imaging technique that can visualize functional information of biological tissues based on optical absorption and thermoelastic expansion. One unique feature of PA imaging is that the amplitude of the PA signal reflects the local temperature. Here, we demonstrate a real-time temperature monitoring system that can evaluate thermal distribution during HIFU therapy. We have integrated a HIFU treatment system, a clinical ultrasound (US) machine, and a tunable laser system and have acquired real-time PA/US images of in vitro phantoms and in vivo animals during HIFU therapy without interference from the therapeutic US waves. We have also evaluated the temperature monitoring capability of the system by comparing the amplitude of PA signals with the measured temperature in melanoma tumor bearing mice. Although much more updates are required for clinical applications, the results show the promising potential of the system to ensure accurate and safe HIFU therapy by monitoring the thermal distribution of the treatment area.
[Report on proton therapy according to good clinical practice at Hyogo Ion Beam Medical Center].
Murakami, Masao; Kagawa, Kazufumi; Hishikawa, Yoshio; Abe, Mitsuyuki
2002-02-01
The Hyogo Ion Beam Medical Center(HIBMC) is a hospital-based charged particle treatment facility. Having two treatment ion beams(proton and carbon) and five treatment rooms, it is a pioneer among particle institutes worldwide. In May 2001, proton therapy was started as a clinical study for patients with localized cancer originating in the head and neck, lung, liver, and prostate. The aim of this study was to investigate the safety, effectiveness, and stability of the treatment units and systems based on the evaluation of acute toxicity, tumor response, and working ratio of the machine, respectively. Six patients, including liver cancer in three, prostate cancer in two, and lung cancer in one, were treated. There was no cessation of therapy owing to machine malfunction. Full courses of proton therapy consisting of 154 portals in all six patients were given exactly as scheduled. None of the patients experienced severe acute reactions of more than grade 3 according to NCI-CTC criteria. Tumor response one month post-treatment was evaluable in five of the six patients, and was CR in 1 (prostate cancer), PR in 2 (lung cancer: 1, liver cancer: 1), and NC in 2(liver cancer: 2). These results indicate that our treatment units and systems are safe and reliable enough for proton irradiation to be used for several malignant tumors localized in the body.
Li, Wei; Dan, Gang; Jiang, Jianqing; Zheng, Yifeng; Zheng, Xiushan; Deng, Dan
2016-09-13
Recurrent or metastatic lung cancer is difficult to manage. This retrospective study aimed to assess the efficacy of repeated iodine-125 seed implantations combined with external beam radiotherapy (EBRT) for locally recurrent or metastatic stage-III/IV non-small cell lung cancer (NSCLC). Eighteen previously treated stage-III/IV NSCLC patients with local or metastatic recurrences underwent 1-to-3 iodine-125 implantations. Six of these patients received palliative EBRT and six patients received combined chemotherapy using gemcitabine and cisplatin. Near-term treatment efficacy was evaluated 3 months after seed implantation by comparing changes in tumor size on computed tomography images; the evaluated outcomes were complete response, partial response, stable disease, and local tumor control rate. Long-term efficacy was assessed based on 1- and 2-year survival rates. Patients were followed up for 6 to 50 months. The overall (i.e., complete + partial) response rate was 87.4 %. The local control rates after the first, second, and third years were 94.1, 58.8 and 41.2 %, respectively. The results of this study demonstrated that repeated implantation of radioactive particles combined with EBRT is a safe treatment that effectively controlled local recurrence and metastasis of stage III/IV NSCLC.
2018-03-12
Atypical Carcinoid Tumor; Carcinoid Tumor; Digestive System Neuroendocrine Neoplasm; Enterochromaffin Cell Serotonin-Producing Pancreatic Neuroendocrine Tumor; Functional Pancreatic Neuroendocrine Tumor; Intermediate Grade Lung Neuroendocrine Neoplasm; Low Grade Lung Neuroendocrine Neoplasm; Lung Atypical Carcinoid Tumor; Lung Carcinoid Tumor; Metastatic Digestive System Neuroendocrine Tumor G1; Neuroendocrine Neoplasm; Nonfunctional Pancreatic Neuroendocrine Tumor; Pancreatic Neuroendocrine Tumor; Stage IIIA Digestive System Neuroendocrine Tumor AJCC v7; Stage IIIB Digestive System Neuroendocrine Tumor AJCC v7; Stage IV Digestive System Neuroendocrine Tumor AJCC v7
Spurny, Christian; Kailayangiri, Sareetha; Altvater, Bianca; Jamitzky, Silke; Hartmann, Wolfgang; Wardelmann, Eva; Ranft, Andreas; Dirksen, Uta; Amler, Susanne; Hardes, Jendrik; Fluegge, Maike; Meltzer, Jutta; Farwick, Nicole; Greune, Lea; Rossig, Claudia
2018-01-19
Ewing sarcoma (EwS) is an aggressive mesenchymal cancer of bones or soft tissues. The mechanisms by which this cancer interacts with the host immune system to induce tolerance are not well understood. We hypothesized that the non-classical, immune-inhibitory HLA-molecule HLA-G contributes to immune escape of EwS. While HLA-G pos suppressor T cells were not increased in the peripheral blood of EwS patients, HLA-G was locally expressed on the tumor cells and/or on infiltrating lymphocytes in 16 of 47 pretherapeutic tumor biopsies and in 4 of 12 relapse tumors. HLA-G expression was not associated with risk-related patient variables or response to standard chemotherapy, but with significantly increased numbers of tumor-infiltrating CD3+ T cells compared to HLA-G neg EwS biopsies. In a mouse model, EwS xenografts after adoptive therapy with tumor antigen-specific CAR T cells strongly expressed HLA-G whereas untreated control tumors were HLA-G neg . IFN-γ stimulation of EwS cell lines in vitro induced expression of HLA-G protein. We conclude that EwS cells respond to tumor-infiltrating T cells by upregulation of HLA-G, a candidate mediator of local immune escape. Strategies that modulate HLA-G expression in the tumor microenvironment may enhance the efficacy of cellular immunotherapeutics in this cancer.
Pineal tumors: analysis of treatment results in 20 patients.
Amendola, Beatriz E; Wolf, Aizik; Coy, Sammie R; Amendola, Marco A; Eber, Daryl
2005-01-01
The authors evaluate their results when using gamma knife surgery (GKS) in the management of patients with tumors in the pineal region. This is a retrospective clinical evaluation of 20 patients with primary tumors of the pineal region treated with GKS from November 1994 through August 2003. There were 13 germ cell tumors, two pineoblastomas, two low-grade gliomas, one primitive neuroectodermal tumor, one teratoma, and one pineocytoma. There were 10 male and 10 female patients. Their median age was 15.5 years (range 5-71 years). The median margin dose was 11 Gy (range 8-20 Gy). The median target volume was 3.1 cm3 (range 0.1-49.9 cm3). Five patients received sequential systemic chemotherapy and four underwent adjuvant conventional radiation therapy. Seventeen (85%) of 20 patients are alive with a median survival of 30.4 months (range 0-85.7 months). Two patients required retreatment. Three patients died: one of unrelated causes, one who presented with extensive local disease, and the other of meningeal carcinomatosis with local control of the primary tumor. No complications from GKS were noted. This initial experience suggests that GKS is a valuable treatment modality for the management of pineal region tumors. This technique offers excellent local tumor control and minimal patient morbidity, allowing for immediate use of systemic chemotherapy and/or conventional radiation if indicated.
Kong, Feng-Ming; Ten Haken, Randall K.; Schipper, Matthew; Frey, Kirk A.; Hayman, James; Gross, Milton; Ramnath, Nithya; Hassan, Khaled A.; Matuszak, Martha; Ritter, Timothy; Bi, Nan; Wang, Weili; Orringer, Mark; Cease, Kemp B.; Lawrence, Theodore S.; Kalemkerian, Gregory P.
2017-01-01
IMPORTANCE Our previous studies demonstrated that tumors significantly decrease in size and metabolic activity after delivery of 45 Gy of fractionated radiatiotherapy (RT), and that metabolic shrinkage is greater than anatomic shrinkage. This study aimed to determine whether 18F-fludeoxyglucose–positron emission tomography/computed tomography (FDG-PET/CT) acquired during the course of treatment provides an opportunity to deliver higher-dose radiation to the more aggressive areas of the tumor to improve local tumor control without increasing RT-induced lung toxicity (RILT), and possibly improve survival. OBJECTIVE To determine whether adaptive RT can target high-dose radiation to the FDG-avid tumor on midtreatment FDG-PET to improve local tumor control of locally advanced non–small-cell lung cancer (NSCLC). DESIGN, SETTING, AND PARTICIPANTS A phase 2 clinical trial conducted at 2 academic medical centers with 42 patients who had inoperable or unresectable stage II to stage III NSCLC enrolled from November 2008, to May 2012. Patients with poor performance, more than 10% weight loss, poor lung function, and/or oxygen dependence were included, providing that the patients could tolerate the procedures of PET scanning and RT. INTERVENTION Conformal RT was individualized to a fixed risk of RILT (grade >2) and adaptively escalated to the residual tumor defined on midtreatment FDG-PET up to a total dose of 86 Gy in 30 daily fractions. Medically fit patients received concurrent weekly carboplatin plus paclitaxel followed by 3 cycles of consolidation. MAIN OUTCOMES AND MEASURES The primary end point was local tumor control. The trial was designed to achieve a 20% improvement in 2-year control from 34% of our prior clinical trial experience with 63 to 69 Gy in a similar patient population. RESULTS The trial reached its accrual goal of 42 patients: median age, 63 years (range, 45–83 years); male, 28 (67%); smoker or former smoker, 39 (93%); stage III, 38 (90%). Median tumor dose delivered was 83 Gy (range, 63–86 Gy) in 30 daily fractions. Median follow-up for surviving patients was 47 months. The 2-year rates of infield and overall local regional tumor controls (ie, including isolated nodal failure) were 82% (95% CI, 62%–92%) and 62% (95% CI, 43%–77%), respectively. Median overall survival was 25 months (95% CI, 12–32 months). The 2-year and 5-year overall survival rates were 52% (95% CI, 36%–66%) and 30% (95% CI, 16%–45%), respectively. CONCLUSIONS AND RELEVANCE Adapting RT-escalated radiation dose to the FDG-avid tumor detected by midtreatment PET provided a favorable local-regional tumor control. The RTOG 1106 trial is an ongoing clinical trial to validate this finding in a randomized fashion. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01190527 PMID:28570742
Inoue, Keita; Saegusa, Noriko; Omiya, Maho; Ashizawa, Tadashi; Miyata, Haruo; Komiyama, Masaru; Iizuka, Akira; Kume, Akiko; Sugino, Takashi; Yamaguchi, Ken; Kiyohara, Yoshio; Nakagawa, Masahiro; Akiyama, Yasuto
2015-02-01
Local recurrence is a major clinical issue following surgical resection in head and neck cancer, and the dissemination and lymph node metastasis of minimal residual disease is relatively difficult to treat due to the lack of suitable therapeutic approaches. In the present study, we developed and evaluated a novel immunotherapy using a skin flap transfer treated with sensitized dendritic cells (DC), termed the "immuno-flap," in a rat tumor model. After the local round area of skin was resected, SCC-158 cells (a rat head and neck cancer cell line) were inoculated into the muscle surface; lastly, the groin skin flap injected with mature DC was overlaid. Two weeks after the second DC injection, systemic immunological reactions and tumor size were measured. The DC-treated group showed a significant reduction in tumor size compared with the control. Although the induction of CTL activity in spleen cells was marginal, Th1 cytokines such as interleukin-2 and interferon-γ were elevated in the DC-treated group. These results suggest that a novel immunotherapy based on the immuno-flap method has the potential for clinical application to prevent the local recurrence of head and neck cancer patients. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.
Kumar, Jayant; Reccia, Isabella; Sodergren, Mikael H; Kusano, Tomokazu; Zanellato, Artur; Pai, Madhava; Spalding, Duncan; Zacharoulis, Dimitris; Habib, Nagy
2018-03-20
Despite careful patient selection and preoperative investigations curative resection rate (R0) in pancreaticoduodenectomy ranges from 15% to 87%. Here we describe a new palliative approach for pancreaticoduodenectomy using a radiofrequency energy device to ablate tumor in situ in patients undergoing R1/R2 resections for locally advanced pancreatic ductal adenocarcinoma where vascular reconstruction was not feasible. There was neither postoperative mortality nor significant morbidity. Each time the ablation lasted less than 15 minutes. Following radiofrequency ablation it was observed that the tumor remnant attached to the vessel had shrunk significantly. In four patients this allowed easier separation and dissection of the ablated tumor from the adherent vessel leading to R1 resection. In the other two patients, the ablated tumor did not separate from vessel due to true tumor invasion and patients had an R2 resection. The ablated remnant part of the tumor was left in situ. Whenever pancreaticoduodenectomy with R0 resection cannot be achieved, this new palliative procedure could be considered in order to facilitate resection and enable maximum destruction in remnant tumors. Six patients with suspected tumor infiltration and where vascular reconstruction was not warranted underwent radiofrequency-assisted pancreaticoduodenectomy for locally advanced pancreatic ductal adenocarcinoma. Radiofrequency was applied across the tumor vertically 5-10 mm from the edge of the mesenteric and portal veins. Following ablation, the duodenum and the head of pancreas were removed after knife excision along the ablated line. The remaining ablated tissue was left in situ attached to the vessel.
Milosevic, Michael F; Pintilie, Melania; Hedley, David W; Bristow, Robert G; Wouters, Bradly G; Oza, Amit M; Laframboise, Stephane; Hill, Richard P; Fyles, Anthony W
2014-10-01
Radiotherapy (RT) with concurrent cisplatin (CRT) is standard treatment for locally advanced cervical cancer. However, not all patients benefit from the addition of cisplatin to RT alone. This study explored the value of pretreatment tumor interstitial fluid pressure (IFP) and hypoxia measurements as predictors of cisplatin response in 291 patients who were treated with RT (1994-1998) or RT plus concurrent cisplatin (1999-2009). Clinical characteristics were similar between the two groups, apart from a greater proportion of patients with pelvic lymph node metastases and hypoxic tumors in the CRT cohort. Patients were followed for a median duration of 5.6 years. Information about recurrence and survival was recorded prospectively. The addition of cisplatin to RT improved survival compared to treatment with RT alone (HR 0.61, p = 0.0097). This improvement was confined to patients with high-IFP tumors at diagnosis (HR 0.40, p = 0.00091). There was no benefit of adding cisplatin in those with low-IFP tumors (HR 1.05, p = 0.87). There was no difference in the effectiveness of cisplatin in patients with more or less hypoxic tumors. In conclusion, patients with locally advanced cervical cancer and high tumor IFP at diagnosis have greater benefit from the addition of cisplatin to RT than those with low IFP. This may reflect high tumor cell proliferation, which is known to influence IFP, local tumor control and patient survival. © 2013 UICC.
Richardson, R C
1985-05-01
Soft-tissue tumors are similar in their behavior. Benign tumors can be easily resected in most cases, whereas malignant tumors are relentless in their locally invasive characteristics. A clear understanding of the constraints of the pathologist in reaching a confirmed diagnosis and a logical plan utilizing surgery as the major modality of therapy are necessary for successful management of these tumors. It appears that radiation combined with hyperthermia is beginning to play a significant role in the local control of soft-tissue sarcomas and that single or multi-agent chemotherapy may be of benefit in treatment of nonresectable or metastatic soft-tissue sarcomas. For the immediate future, surgery remains the only nonexperimental modality of therapy, but the rapid advances in the other therapy methods are encouraging.
Patibandla, Mohana Rao; Thotakura, Amit Kumar; Rao, Marabathina Nageswara; Addagada, Gokul Chowdary; Nukavarapu, Manisha Chowdary; Panigrahi, Manas Kumar; Uppin, Shantiveer; Challa, Sundaram; Dandamudi, Srinivas
2017-01-01
Giant-cell tumor (GCT) involving the skull base is rare. Sphenoid bone is the most commonly involved bone followed by petrous temporal bone. Histopathology and radiological features of these lesions are similar to GCT involving bone elsewhere. Unlike other sites, skull base is not an ideal site for the radical surgery. Hence adjuvant treatment has pivotal role. Radiation therapy with intensity-modulated radiation therapy, stereotactic radiosurgery or chemotherapy with adriamycin are promising as described in some case reports. Bisphosphonates showed good control in local recurrence. In vitro studies with Zolendronate loaded bone cement and phase 2 trials of Denosumab showed hopeful results, may be useful in future. PMID:28413541
[Evaluation of surgical treatment of keratoacanthoma].
Bogdanowski, T; Rubisz-Brzezińska, J; Macura-Gina, M; Skrzypek-Wawrzyniak, K
1990-01-01
From 1973 to 1988 in the Dermatological Surgery Unit of the 1st Department of Dermatology of the Silesian School of Medicine in Katowice 82 patients were treated surgically for keratoacanthoma. In 76 patients the defect was closed by simple bringing closer the edges or by local plastic surgery, in 6 patients it was covered with free full-thickness skin grafts. The preparations of the excised tumors from various places were examined histologically. In three cases the texture of carcinoma spinocellulare was found in the base of the tumor. In 98% of the patients the wounds healed by first intention.
SU-C-BRA-06: Automatic Brain Tumor Segmentation for Stereotactic Radiosurgery Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y; Stojadinovic, S; Jiang, S
Purpose: Stereotactic radiosurgery (SRS), which delivers a potent dose of highly conformal radiation to the target in a single fraction, requires accurate tumor delineation for treatment planning. We present an automatic segmentation strategy, that synergizes intensity histogram thresholding, super-voxel clustering, and level-set based contour evolving methods to efficiently and accurately delineate SRS brain tumors on contrast-enhance T1-weighted (T1c) Magnetic Resonance Images (MRI). Methods: The developed auto-segmentation strategy consists of three major steps. Firstly, tumor sites are localized through 2D slice intensity histogram scanning. Then, super voxels are obtained through clustering the corresponding voxels in 3D with reference to the similaritymore » metrics composited from spatial distance and intensity difference. The combination of the above two could generate the initial contour surface. Finally, a localized region active contour model is utilized to evolve the surface to achieve the accurate delineation of the tumors. The developed method was evaluated on numerical phantom data, synthetic BRATS (Multimodal Brain Tumor Image Segmentation challenge) data, and clinical patients’ data. The auto-segmentation results were quantitatively evaluated by comparing to ground truths with both volume and surface similarity metrics. Results: DICE coefficient (DC) was performed as a quantitative metric to evaluate the auto-segmentation in the numerical phantom with 8 tumors. DCs are 0.999±0.001 without noise, 0.969±0.065 with Rician noise and 0.976±0.038 with Gaussian noise. DC, NMI (Normalized Mutual Information), SSIM (Structural Similarity) and Hausdorff distance (HD) were calculated as the metrics for the BRATS and patients’ data. Assessment of BRATS data across 25 tumor segmentation yield DC 0.886±0.078, NMI 0.817±0.108, SSIM 0.997±0.002, and HD 6.483±4.079mm. Evaluation on 8 patients with total 14 tumor sites yield DC 0.872±0.070, NMI 0.824±0.078, SSIM 0.999±0.001, and HD 5.926±6.141mm. Conclusion: The developed automatic segmentation strategy, which yields accurate brain tumor delineation in evaluation cases, is promising for its application in SRS treatment planning.« less
TH-AB-202-01: Daily Lung Tumor Motion Characterization On EPIDs Using a Markerless Tiling Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozario, T; University of Texas at Dallas, Richardson, TX; Chiu, T
Purpose: Tracking lung tumor motion in real time allows for target dose escalation while simultaneously reducing dose to sensitive structures, thus increasing local control without increasing toxicity. We present a novel intra-fractional markerless lung tumor tracking algorithm using MV treatment beam images acquired during treatment delivery. Strong signals superimposed on the tumor significantly reduced the soft tissue resolution; while different imaging modalities involved introduce global imaging discrepancies. This reduced the comparison accuracies. A simple yet elegant Tiling algorithm is reported to overcome the aforementioned issues. Methods: MV treatment beam images were acquired continuously in beam’s eye view (BEV) by anmore » electronic portal imaging device (EPID) during treatment and analyzed to obtain tumor positions on every frame. Every frame of the MV image was simulated by a composite of two components with separate digitally reconstructed radiographs (DRRs): all non-moving structures and the tumor. This Titling algorithm divides the global composite DRR and the corresponding MV projection into sub-images called tiles. Rigid registration is performed independently on tile-pairs in order to improve local soft tissue resolution. This enables the composite DRR to be transformed accurately to match the MV projection and attain a high correlation value through a pixel-based linear transformation. The highest cumulative correlation for all tile-pairs achieved over a user-defined search range indicates the 2-D coordinates of the tumor location on the MV projection. Results: This algorithm was successfully applied to cine-mode BEV images acquired during two SBRT plans delivered five times with different motion patterns to each of two phantoms. Approximately 15000 beam’s eye view images were analyzed and tumor locations were successfully identified on every projection with a maximum/average error of 1.8 mm / 1.0 mm. Conclusion: Despite the presence of strong anatomical signal overlapping with tumor images, this markerless detection algorithm accurately tracks intrafractional lung tumor motions. This project is partially supported by an Elekta research grant.« less
Morshed, R A; Gutova, M; Juliano, J; Barish, M E; Hawkins-Daarud, A; Oganesyan, D; Vazgen, K; Yang, T; Annala, A; Ahmed, A U; Aboody, K S; Swanson, K R; Moats, R A; Lesniak, M S
2015-01-01
In preclinical studies, neural stem cell (NSC)-based delivery of oncolytic virus has shown great promise in the treatment of malignant glioma. Ensuring the success of this therapy will require critical evaluation of the spatial distribution of virus after NSC transplantation. In this study, the patient-derived GBM43 human glioma line was established in the brain of athymic nude mice, followed by the administration of NSCs loaded with conditionally replicating oncolytic adenovirus (NSC-CRAd-S-pk7). We determined the tumor coverage potential of oncolytic adenovirus by examining NSC distribution using magnetic resonance (MR) imaging and by three-dimensional reconstruction from ex vivo tissue specimens. We demonstrate that unmodified NSCs and NSC-CRAd-S-pk7 exhibit a similar distribution pattern with most prominent localization occurring at the tumor margins. We were further able to visualize the accumulation of these cells at tumor sites via T2-weighted MR imaging as well as the spread of viral particles using immunofluorescence. Our analyses reveal that a single administration of oncolytic virus-loaded NSCs allows for up to 31% coverage of intracranial tumors. Such results provide valuable insights into the therapeutic potential of this novel viral delivery platform.
Extravascular use of drug-eluting beads: A promising approach in compartment-based tumor therapy
Binder, Simon; Lewis, Andrew L; Löhr, J-Matthias; Keese, Michael
2013-01-01
Intraperitoneal carcinomatosis (PC) may occur with several tumor entities. The prognosis of patients suffering from PC is usually poor. Present treatment depends on the cancer entity and includes systemic chemotherapy, radiation therapy, hormonal therapy and surgical resection. Only few patients may also benefit from hyperthermic intraperitoneal chemotherapy with a complete tumor remission. These therapies are often accompanied by severe systemic side-effects. One approach to reduce side effects is to target chemotherapeutic agents to the tumor with carrier devices. Promising experimental results have been achieved using drug-eluting beads (DEBs). A series of in vitro and in vitro experiments has been conducted to determine the suitability of their extravascular use. These encapsulation devices were able to harbor CYP2B1 producing cells and to shield them from the hosts immune system when injected intratumorally. In this way ifosfamide - which is transformed into its active metabolites by CYP2B1 - could be successfully targeted into pancreatic tumor growths. Furthermore DEBs can be used to target chemotherapeutics into the abdominal cavity for treatment of PC. If CYP2B1 producing cells are proven to be save for usage in man and if local toxic effects of chemotherapeutics can be controlled, DEBs will become promising tools in compartment-based anticancer treatment. PMID:24282349
The leading cause of death from cancer is not a primary tumor but is the metastases, or invasion of tumor cells into other locations in the body, that result from it. A complex and incompletely understood process, metastatic tumor formation is thought to require several steps in which tumor cells invade the tissue surrounding the primary tumor, enter local blood vessels,
Breast tumors educate stromal tissue with individualized but coordinated proteomic signatures
Wang, Xuya; Mooradian, Arshag D.; Erdmann-Gilmore, Petra; Zhang, Qiang; Viner, Rosa; Davies, Sherri R.; Huang, Kuan-lin; Bomgarden, Ryan; Van Tine, Brian A.; Shao, Jieya; Ding, Li; Li, Shunqiang; Ellis, Matthew J.; Rogers, John C.; Townsend, R. Reid; Fenyö, David; Held, Jason M.
2017-01-01
Cancer forms specialized microenvironmental niches that promote local invasion and colonization. Engrafted patient-derived xenografts (PDXs) locally invade and colonize naïve stroma, while enabling unambiguous molecular discrimination of human proteins in the tumor from mouse proteins in the microenvironment. To characterize how patient breast tumors form a niche and educate naïve stroma, subcutaneous breast cancer PDXs were globally profiled using species-specific quantitative proteomics. Regulation of PDX stromal proteins by breast tumors was extensive, with thirty-five percent of the stromal proteome consistently altered by tumors across different animals and passages. Differentially regulated proteins in the stroma clustered into six signatures that included both known and novel contributors to tumor invasion and colonization. Stromal proteomes were coordinately regulated, though the sets of proteins altered by each tumor were highly distinct. Integrated analysis of tumor and stromal proteins, a comparison possible in xenograft models, indicated that the known hallmarks of cancer contribute pleiotropically to establishing and maintaining the tumor’s microenvironmental niche. Tumor education of the stroma is therefore an intrinsic property of breast tumors that is highly individualized, yet proceeds by consistent, non-random and defined tumor-promoting molecular alterations. PMID:28790197
Burckhardt, Marie-Anne; Schifferli, Alexandra; Krieg, Andreas H; Baumhoer, Daniel; Szinnai, Gabor; Rudin, Christoph
2015-01-01
Tumor-associated fibroblast growth factor 23 (FGF-23)-induced hypophosphatemic rickets is a rare but known pediatric entity first described in 1959. It results from local production of phosphatonins by benign and malignant mesenchymal tumors. We report an 8-year-old boy with tumor-associated hypophosphatemic rickets due to paraneoplastic FGF-23 secretion from a benign mesenchymal pelvic-bone tumor. Excessive FGF-23 production was visualized by immunohistochemistry in the resected tumor. Phosphate wasting stopped immediately after tumor resection. We reviewed 26 reports of pediatric patients with tumor-induced hypophosphatemic rickets; paraneoplastic FGF-23 secretion was documented in only three of them. All tumors developed inside bone, were benign in 21/26 cases, and were localized in femur/tibia (13/26), radius/ulna/humerus (7/26), pelvis (4/26), rib (1/26), and craniofacial (1/26) bones. Mean interval between onset of signs and/or symptoms and diagnosis was 34 months. In patients with hypophosphatemic rickets acquired beyond infancy, radiologic investigations for bone tumors need to be performed rapidly. In contrast to biochemical screening for increased circulating FGF-23 levels, immunohistochemical confirmation of FGF-23 production in resected tumor tissue can be regarded as being well established.
Vandeveer, Amanda J.; Fallon, Jonathan K.; Tighe, Robert; Sabzevari, Helen; Schlom, Jeffrey; Greiner, John W.
2016-01-01
Bacillus Calmette-Guerin (BCG) is the standard of care for intravesical therapy for carcinoma in situ and non–muscle invasive, nonmetastatic human urothelial carcinoma. While the responsiveness to this immunotherapeutic is believed to be linked with (i) a high number of somatic mutations and (ii) a large number of tumor-infiltrating lymphocytes, recent findings of the roles that inhibitory immune receptors and their ligands play in tumor evasion may provide insights into the limitations of the effectiveness of BCG and offer new targets for immune-based therapy. In this study, an aggressive, bioluminescent orthotopic bladder cancer model, MB49 tumor cells transfected with luciferase (MB49luc), was used to study the antitumor effects of avelumab, an antibody to PD-L1. MB49luc murine tumor cells form multifocal tumors on the mucosal wall of the bladder reminiscent of non–muscle invasive, nonmetastatic urothelial carcinomas. MB49luc bladder tumors are highly positive for the expression of PD-L1 and avelumab administration induced significant (P<0.05) antitumor effects. These antitumor effects were more dependent on the presence of CD4 than CD8 T cells, as determined by in vivo immune cell depletions. The findings suggest that in this bladder tumor model, interruption of the immune suppressive PD-1/PD-L1 complex releases a local adaptive immune response that, in turn, reduces tumor growth. This bladder tumor model can be used to further identify host antitumor immune mechanisms and evaluate combinations of immune-based therapies for carcinoma in situ and non–muscle invasive, nonmetastatic urothelial carcinoma, to provide the rationale for subsequent clinical studies. PMID:26921031
Vandeveer, Amanda J; Fallon, Jonathan K; Tighe, Robert; Sabzevari, Helen; Schlom, Jeffrey; Greiner, John W
2016-05-01
Bacillus Calmette-Guerin (BCG) is the standard of care for intravesical therapy for carcinoma in situ and non-muscle invasive, nonmetastatic human urothelial carcinoma. Although the responsiveness to this immunotherapeutic is believed to be linked with (i) a high number of somatic mutations and (ii) a large number of tumor-infiltrating lymphocytes, recent findings of the roles that inhibitory immune receptors and their ligands play in tumor evasion may provide insights into the limitations of the effectiveness of BCG and offer new targets for immune-based therapy. In this study, an aggressive, bioluminescent orthotopic bladder cancer model, MB49 tumor cells transfected with luciferase (MB49(luc)), was used to study the antitumor effects of avelumab, an antibody to PD-L1. MB49(luc) murine tumor cells form multifocal tumors on the mucosal wall of the bladder reminiscent of non-muscle invasive, nonmetastatic urothelial carcinomas. MB49(luc) bladder tumors are highly positive for the expression of PD-L1, and avelumab administration induced significant (P < 0.05) antitumor effects. These antitumor effects were more dependent on the presence of CD4 than CD8 T cells, as determined by in vivo immune cell depletions. The findings suggest that in this bladder tumor model, interruption of the immune-suppressive PD-1/PD-L1 complex releases a local adaptive immune response that, in turn, reduces tumor growth. This bladder tumor model can be used to further identify host antitumor immune mechanisms and evaluate combinations of immune-based therapies for carcinoma in situ and non-muscle invasive, nonmetastatic urothelial carcinoma, to provide the rationale for subsequent clinical studies. Cancer Immunol Res; 4(5); 452-62. ©2016 AACR. ©2016 American Association for Cancer Research.
Jiang, Zhong; Lohse, Christine M.; Chu, Peigou G.; Wu, Chin-Lee; Woda, Bruce A.; Rock, Kenneth L.; Kwon, Eugene D.
2009-01-01
BACKGROUND Whether an oncofetal protein, IMP3, can serve as a prognostic biomarker to predict metastasis for patients with localized papillary and chromophobe subtypes of renal cell carcinomas (RCCs) was investigated. METHODS The expression of IMP3 in 334 patients with primary papillary and chromophobe RCC from multiple medical centers was evaluated by immunohistochemistry. The 317 patients with localized papillary and chromophobe RCCs were further evaluated for outcome analyses. RESULTS IMP3 was significantly increased in a subset of localized papillary and chromophobe RCCs that subsequently metastasized. Patients with localized IMP3-positive tumors (n = 33; 10%) were over 10 times more likely to metastasize (risk ratio [RR], 11.38; 95% confidence interval [CI], 5.40–23.96; P <.001) and were nearly twice as likely to die (RR, 1.91; 95% CI, 1.13–3.22; P =.016) compared with patients with localized IMP3 negative tumors. The 5-year metastasis-free and overall survival rates were 64% and 58% for patients with IMP3-positive localized papillary and chromophobe RCCs compared with 98% and 85% for patients with IMP3 negative tumors, respectively. In multivariable analysis adjusting for the TNM stage and nuclear grade, patients with IMP3-positive tumors were still over 10 times more likely to progress to distant metastasis (RR, 13.45; 95% CI, 6.00–30.14; P <.001) and were still nearly twice as likely die (RR, 1.95; 95% CI, 1.15–3.31; P =.013) compared with patients with IMP3-negative tumors. CONCLUSIONS IMP3 is an independent prognostic biomarker that can be used to identify a subgroup of patients with localized papillary and chromophobe RCC who are at high risk for developing distant metastasis. PMID:18412154
Tanoue, Kiyonori; Shaw, Amanda Rosewell; Watanabe, Norihiro; Porter, Caroline; Rana, Bhakti; Gottschalk, Stephen; Brenner, Malcolm; Suzuki, Masataka
2017-01-01
Chimeric antigen receptor-modified T cells (CAR T-cells) produce pro-inflammatory cytokines that increase expression of T cell checkpoint signals such as PD-L1, which may inhibit their functionality against solid tumors. In this study, we evaluated in human tumor xenograft models the pro-inflammatory properties of an oncolytic adenovirus (Onc.Ad) with a helper-dependent Ad (HDAd) that expresses a PD-L1 blocking mini-antibody (mini-body) (HDPDL1), as a strategy to enhance CAR T-cell killing. Co-administration of these agents (CAd-VECPDL1) exhibited oncolytic effects with production of PD-L1 mini-body locally at the tumor site. On their own, HDPDL1 exhibited no anti-tumor effect and CAd-VECPDL1 alone reduced tumors only to volumes comparable to Onc.Ad treatment. However, combining CAd-VECPDL1 with HER2.CAR T-cells enhanced anti-tumor activity compared to treatment with either HER2.CAR T-cells alone, or HER2.CAR T-cells plus Onc.Ad. The benefits of locally produced PD-L1 mini-body by CAd-VECPDL1 could not be replicated by infusion of anti-PD-L1 IgG plus HER2.CAR T-cells and co-administration of Onc.Ad in a HER2+ prostate cancer xenograft model. Overall, our data document the superiority of local production of PD-L1 mini-body by CAd-VECPDL1 combined with administration of tumor-directed CAR T-cells to control the growth of solid tumors. PMID:28235763
Combined dendritic cell cryotherapy of tumor induces systemic antimetastatic immunity.
Machlenkin, Arthur; Goldberger, Ofir; Tirosh, Boaz; Paz, Adrian; Volovitz, Ilan; Bar-Haim, Erez; Lee, Sung-Hyung; Vadai, Ezra; Tzehoval, Esther; Eisenbach, Lea
2005-07-01
Cryotherapy of localized prostate, renal, and hepatic primary tumors and metastases is considered a minimally invasive treatment demonstrating a low complication rate in comparison with conventional surgery. The main drawback of cryotherapy is that it has no systemic effect on distant metastases. We investigated whether intratumoral injections of dendritic cells following cryotherapy of local tumors (cryoimmunotherapy) provides an improved approach to cancer treatment, combining local tumor destruction and systemic anticancer immunity. The 3LL murine Lewis lung carcinoma clone D122 and the ovalbumin-transfected B16 melanoma clone MO5 served as models for spontaneous metastasis. The antimetastatic effect of cryoimmunotherapy was assessed in the lung carcinoma model by monitoring mouse survival, lung weight, and induction of tumor-specific CTLs. The mechanism of cryoimmunotherapy was elucidated in the melanoma model using adoptive transfer of T cell receptor transgenic OT-I CTLs into the tumor-bearing mice, and analysis of Th1/Th2 responses by intracellular cytokine staining in CD4 and CD8 cells. Cryoimmunotherapy caused robust and tumor-specific CTL responses, increased Th1 responses, significantly prolonged survival and dramatically reduced lung metastasis. Although intratumor administration of dendritic cells alone increased the proliferation rate of CD8 cells, only cryoimmunotherapy resulted in the generation of effector memory cells. Furthermore, cryoimmunotherapyprotected mice that had survived primary MO5 tumors from rechallenge with parental tumors. These results present cryoimmunotherapy as a novel approach for systemic treatment of cancer. We envisage that cryotherapy of tumors combined with subsequent in situ immunotherapy by autologous unmodified immature dendritic cells can be applied in practice.
Antic, Tatjana; Taxy, Jerome B
2015-05-01
To evaluate the relationship between a positive resection margin in partial nephrectomy (PN) and local recurrence. From January 2005 through December 2012, there were 473 PNs in 466 patients at the University of Chicago. A positive margin was defined as tumor extending to the inked specimen edge, either the parenchymal interface or the peripheral fibroadipose tissue. A local recurrence was defined as an ipsilateral tumor of identical histologic type. Renal cell carcinoma (RCC) accounted for 406 tumors: 243 clear cell RCCs (CRCCs), 77 papillary RCCs (PRCCs), and 47 chromophobe RCCs (CHRCCs). Sixty-one RCCs had positive margins: 43 CRCCs, six PRCCs, nine CHRCCs, and three miscellaneous cell types. Of the 61 positive margins, four CRCCs (all originally multifocal) had a local recurrence, two of which occurred in the same patient. One translocation RCC also recurred. Six cases with negative resection margins had a recurrence. A literature review of 3,803 cases, including our study, shows positive margins in 173, of which 13 recurred; however, 39 with negative margins also recurred. A positive margin in PN seldom correlates with a local recurrence. However, protection from recurrence is not ensured by a negative margin. Copyright© by the American Society for Clinical Pathology.
2010-01-01
Background 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) is widely used in diagnostic cancer imaging. However, the use of 18F-FDG in PET-based imaging is limited by its specificity and sensitivity. In contrast, anti-TAG (tumor associated glycoprotein)-72 monoclonal antibodies are highly specific for binding to a variety of adenocarcinomas, including colorectal cancer. The aim of this preliminary study was to evaluate a complimentary determining region (CDR)-grafted humanized CH2-domain-deleted anti-TAG-72 monoclonal antibody (HuCC49deltaCH2), radiolabeled with iodine-124 (124I), as an antigen-directed and cancer-specific targeting agent for PET-based imaging. Methods HuCC49deltaCH2 was radiolabeled with 124I. Subcutaneous tumor implants of LS174T colon adenocarcinoma cells, which express TAG-72 antigen, were grown on athymic Nu/Nu nude mice as the xenograft model. Intravascular (i.v.) and intraperitoneal (i.p.) administration of 124I-HuCC49deltaCH2 was then evaluated in this xenograft mouse model at various time points from approximately 1 hour to 24 hours after injection using microPET imaging. This was compared to i.v. injection of 18F-FDG in the same xenograft mouse model using microPET imaging at 50 minutes after injection. Results At approximately 1 hour after i.v. injection, 124I-HuCC49deltaCH2 was distributed within the systemic circulation, while at approximately 1 hour after i.p. injection, 124I-HuCC49deltaCH2 was distributed within the peritoneal cavity. At time points from 18 hours to 24 hours after i.v. and i.p. injection, 124I-HuCC49deltaCH2 demonstrated a significantly increased level of specific localization to LS174T tumor implants (p = 0.001) when compared to the 1 hour images. In contrast, approximately 50 minutes after i.v. injection, 18F-FDG failed to demonstrate any increased level of specific localization to a LS174T tumor implant, but showed the propensity toward more nonspecific uptake within the heart, Harderian glands of the bony orbits of the eyes, brown fat of the posterior neck, kidneys, and bladder. Conclusions On microPET imaging, 124I-HuCC49deltaCH2 demonstrates an increased level of specific localization to tumor implants of LS174T colon adenocarcinoma cells in the xenograft mouse model on delayed imaging, while 18F-FDG failed to demonstrate this. The antigen-directed and cancer-specific 124I-radiolabled anti-TAG-72 monoclonal antibody conjugate, 124I-HuCC49deltaCH2, holds future potential for use in human clinical trials for preoperative, intraoperative, and postoperative PET-based imaging strategies, including fused-modality PET-based imaging platforms. PMID:20691066
González, Maraelys M; Morales, Dasha F; Cabrales, Luis E B; Pérez, Daniel J; Montijano, Juan I; Castañeda, Antonio R S; González, Victoriano G S; Posada, Oscar O; Martínez, Janet A; Delgado, Arlem G; Martínez, Karina G; Mon, Mayrel L; Monzón, Kalet L; Ciria, Héctor M C; Beatón, Emilia O; Brooks, Soraida C A; González, Tamara R; Jarque, Manuel V; Mateus, Miguel A Ó; Rodríguez, Jorge L G; Calzado, Enaide M
2018-06-05
Electrochemical treatment has been suggested as an effective alternative to local cancer therapy. Nevertheless, its effectiveness decreases when highly aggressive primary tumors are treated. The aim of this research was to understand the growth kinetics of the highly aggressive and metastatic primary F3II tumor growing in male and female BALB/c/Cenp mice under electrochemical treatment. Different amounts of electric charge (6, 9, and 18 C) were used. Two electrodes were inserted into the base, perpendicular to the tumor's long axis, keeping about 1 cm distance between them. Results have shown that the F3II tumor is highly sensitive to direct current. The overall effectiveness (complete response + partial response) of this physical agent was ≥75.0% and observed in 59.3% (16/27) of treated F3II tumors. Complete remission of treated tumors was observed in 22.2% (6/27). An unexpected result was the death of 11 direct current-treated animals (eight females and three males). It is concluded that direct current may be addressed to significantly affect highly aggressive and metastatic primary tumor growth kinetics, including the tumor complete response. Bioelectromagnetics. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Wasito, Ito; Hashim, Siti Zaiton M; Sukmaningrum, Sri
2007-01-01
Gene expression profiling plays an important role in the identification of biological and clinical properties of human solid tumors such as colorectal carcinoma. Profiling is required to reveal underlying molecular features for diagnostic and therapeutic purposes. A non-parametric density-estimation-based approach called iterative local Gaussian clustering (ILGC), was used to identify clusters of expressed genes. We used experimental data from a previous study by Muro and others consisting of 1,536 genes in 100 colorectal cancer and 11 normal tissues. In this dataset, the ILGC finds three clusters, two large and one small gene clusters, similar to their results which used Gaussian mixture clustering. The correlation of each cluster of genes and clinical properties of malignancy of human colorectal cancer was analysed for the existence of tumor or normal, the existence of distant metastasis and the existence of lymph node metastasis. PMID:18305825
Wasito, Ito; Hashim, Siti Zaiton M; Sukmaningrum, Sri
2007-12-30
Gene expression profiling plays an important role in the identification of biological and clinical properties of human solid tumors such as colorectal carcinoma. Profiling is required to reveal underlying molecular features for diagnostic and therapeutic purposes. A non-parametric density-estimation-based approach called iterative local Gaussian clustering (ILGC), was used to identify clusters of expressed genes. We used experimental data from a previous study by Muro and others consisting of 1,536 genes in 100 colorectal cancer and 11 normal tissues. In this dataset, the ILGC finds three clusters, two large and one small gene clusters, similar to their results which used Gaussian mixture clustering. The correlation of each cluster of genes and clinical properties of malignancy of human colorectal cancer was analysed for the existence of tumor or normal, the existence of distant metastasis and the existence of lymph node metastasis.
NASA Astrophysics Data System (ADS)
Milshteyn, Eugene; von Morze, Cornelius; Reed, Galen D.; Shang, Hong; Shin, Peter J.; Larson, Peder E. Z.; Vigneron, Daniel B.
2018-05-01
Acceleration of dynamic 2D (T2 Mapping) and 3D hyperpolarized 13C MRI acquisitions using the balanced steady-state free precession sequence was achieved with a specialized reconstruction method, based on the combination of low rank plus sparse and local low rank reconstructions. Methods were validated using both retrospectively and prospectively undersampled in vivo data from normal rats and tumor-bearing mice. Four-fold acceleration of 1-2 mm isotropic 3D dynamic acquisitions with 2-5 s temporal resolution and two-fold acceleration of 0.25-1 mm2 2D dynamic acquisitions was achieved. This enabled visualization of the biodistribution of [2-13C]pyruvate, [1-13C]lactate, [13C, 15N2]urea, and HP001 within heart, kidneys, vasculature, and tumor, as well as calculation of high resolution T2 maps.
Biopolymers for Antitumor Implantable Drug Delivery Systems: Recent Advances and Future Outlook.
Talebian, Sepehr; Foroughi, Javad; Wade, Samantha J; Vine, Kara L; Dolatshahi-Pirouz, Alireza; Mehrali, Mehdi; Conde, João; Wallace, Gordon G
2018-05-13
In spite of remarkable improvements in cancer treatments and survivorship, cancer still remains as one of the major causes of death worldwide. Although current standards of care provide encouraging results, they still cause severe systemic toxicity and also fail in preventing recurrence of the disease. In order to address these issues, biomaterial-based implantable drug delivery systems (DDSs) have emerged as promising therapeutic platforms, which allow local administration of drugs directly to the tumor site. Owing to the unique properties of biopolymers, they have been used in a variety of ways to institute biodegradable implantable DDSs that exert precise spatiotemporal control over the release of therapeutic drug. Here, the most recent advances in biopolymer-based DDSs for suppressing tumor growth and preventing tumor recurrence are reviewed. Novel emerging biopolymers as well as cutting-edge polymeric microdevices deployed as implantable antitumor DDSs are discussed. Finally, a review of a new therapeutic modality within the field, which is based on implantable biopolymeric DDSs, is given. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carbon-fiber-reinforced PEEK fixation system in the treatment of spine tumors: a preliminary report.
Boriani, Stefano; Tedesco, Giuseppe; Ming, Lu; Ghermandi, Riccardo; Amichetti, Maurizio; Fossati, Piero; Krengli, Marco; Mavilla, Loredana; Gasbarrini, Alessandro
2018-04-01
Protocols including combination of surgery and radiotherapy are more and more frequent in the treatment of bone tumors of the spine. In metastatic disease, combination of surgery and radiotherapy is since long time accepted, as based on clinical evidence. In primary tumors, combination of surgery and radiotherapy can be considered in all the cases in which a satisfactory oncological margin cannot be achieved: high-grade malignancies, recurrent tumors, huge tumors expanding in an extracompartimental area, and when tumor-free margin requires unacceptable functional sacrifices. However, metal implants are an obstacle in the collaboration between surgeons and radiation oncologists. Carbon-fiber-reinforced polyethil-ether-ether-ketone (CFR-PEEK) composite implants could make easier and more effective the treatment as radiolucent and not interfering with ionizing radiation and accelerated particles. The purpose of this article is to report the preliminary results from a cohort of patients treated with CFR-PEEK and to evaluate the safety and the non-inferiority of the device respect the commonly used titanium implants. This study concerns an ambispective cohort series of 34 tumor patients (14 metastases and 20 primaries, most of them recurrent) submitted to thoracic and lumbar spine fixation with a CFR-PEEK composite implants. Oncologic surgery was palliative decompression and fixation in 9 cases, tumor excision in 21, and enbloc resection in 4. Data collected for this preliminary report were all intraoperative remarks, incidence of complications, changes in neurological status, local control, and survival. All the cases were followed 6-36 months (mean 13 months). Only one intraoperative screw breakage occurred out of 232 implanted screws. Pain control and neurological improvement were the early clinical results. Two sacral screws loosening were found at 9 and 12 months in multilevel constructs performed on multirecurrent tumors. Six local recurrences were early found thanks to the implant radiolucency. Radiation oncologists' opinion was favourable as concerning better treatment planning on CT and lacking of scattering effect during the treatment. No artifacts on imaging studies mean early local recurrence detection. For radiation oncologists, no artifacts on imaging studies mean easier planning and no scattering effect means more effective and safe radiotherapy, particularly when particles are used. Moreover, it seems that the clinical use of CFR-PEEK composite implants may be safe and at least comparable with the commonly used titanium implants in terms of intraoperative complications, stability at weight bearing and at functional recovery. Larger patient series and longer follow-up are required to confirm these data.
Wolf, Benjamin; Ganzer, Roman; Stolzenburg, Jens-Uwe; Hentschel, Bettina; Horn, Lars-Christian; Höckel, Michael
2017-08-01
Based on ontogenetic-anatomic considerations, we have introduced total mesometrial resection (TMMR) and laterally extended endopelvic resection (LEER) as surgical treatments for patients with cancer of the uterine cervix FIGO stages I B1 - IV A. For a subset of patients with locally advanced disease we have sought to develop an operative strategy characterized by the resection of additional tissue at risk for tumor infiltration as compared to TMMR, but less than in LEER, preserving the urinary bladder function. We conducted a prospective single center study to evaluate the feasibility of extended mesometrial resection (EMMR) and therapeutic lymph node dissection as a surgical treatment approach for patients with cervical cancer fixed to the urinary bladder and/or its mesenteries as determined by intraoperative evaluation. None of the patients received postoperative adjuvant radiotherapy. 48 consecutive patients were accrued into the trial. Median tumor size was 5cm, and 85% of all patients were found to have lymph node metastases. Complete tumor resection (R0) was achieved in all cases. Recurrence free survival at 5years was 54.1% (95% CI 38.3-69.9). The overall survival rate was 62.6% (95% CI 45.6-79.6) at 5years. Perioperative morbidity represented by grade II and III complications (determined by the Franco-Italian glossary) occurred in 25% and 15% of patients, respectively. We demonstrate in this study the feasibility of EMMR as a surgical treatment approach for patients with locally advanced cervical cancer and regional lymph node invasion without the necessity for postoperative adjuvant radiation. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Vishwanath, Karthik; Jiang, Shudong; Gunn, Jason R.; Marra, Kayla; Andreozzi, Jacqueline M.; Pogue, Brian W.
2016-02-01
Radiation therapy is often used as the preferred clinical treatment for control of localized head and neck cancer. However, during the course of treatment (6-8 weeks), feedback about functional and/or physiological changes within impacted tissue are not obtained, given the onerous financial and/or logistical burdens of scheduling MRI, PET or CT scans. Diffuse optical sensing is well suited to address this problem since the instrumentation can be made low-cost and portable while still being able to non-invasively provide information about vascular oxygenation in vivo. Here we report results from studies that employed an optical fiber-based portable diffuse reflectance spectroscopy (DRS) system to longitudinally monitor changes in tumor vasculature within two head and neck cancer cell lines (SCC-15 and FaDu) xenografted in the flanks of nude mice, in two separate experiments. Once the tumor volumes were 100mm3, 67% of animals received localized (electron beam) radiation therapy in five fractions (8Gy/day, for 5 days) while 33% of the animals served as controls. DRS measurements were obtained from each animal on each day of treatment and then for two weeks post-treatment. Reflectance spectra were parametrized to extract total hemoglobin concentration and blood oxygen-saturation and the resulting time-trends of optical parameters appear to be dissimilar for the two cell-lines. These findings are also compared to previous animal experiments (using the FaDu line) that were irradiated using a photon beam radiotherapy protocol. These results and implications for the use of fiber-based DRS measurements made at local (irradiated) tumor site as a basis for identifying early radiotherapy-response are presented and discussed.
Expression of the cancer-testis antigen BORIS correlates with prostate cancer.
Cheema, Zubair; Hari-Gupta, Yukti; Kita, Georgia-Xanthi; Farrar, Dawn; Seddon, Ian; Corr, John; Klenova, Elena
2014-02-01
BORIS, a paralogue of the transcription factor CTCF, is a member of the cancer-testis antigen (CT) family. BORIS is normally present at high levels in the testis; however it is aberrantly expressed in various tumors and cancer cell lines. The main objectives of this study were to investigate BORIS expression together with sub-cellular localization in both prostate cell lines and tumor tissues, and assess correlations between BORIS and clinical/pathological characteristics. We examined BORIS mRNA expression, protein levels and cellular localization in a panel of human prostate tissues, cancer and benign, together with a panel prostate cell lines. We also compared BORIS levels and localization with clinical/pathological characteristics in prostate tumors. BORIS was detected in all inspected prostate cancer cell lines and tumors, but was absent in benign prostatic hyperplasia. Increased levels of BORIS protein positively correlated with Gleason score, T-stage and androgen receptor (AR) protein levels in prostate tumors. The relationship between BORIS and AR was further highlighted in prostate cell lines by the ability of ectopically expressed BORIS to activate the endogenous AR mRNA and protein. BORIS localization in the nucleus plus cytoplasm was also associated with higher BORIS levels and Gleason score. Detection of BORIS in prostate tumors suggests potential applications of BORIS as a biomarker for prostate cancer diagnosis, as an immunotherapy target and, potentially, a prognostic marker of more aggressive prostate cancer. The ability of BORIS to activate the AR gene indicates BORIS involvement in the growth and development of prostate tumors. © 2013 Wiley Periodicals, Inc.
Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles
Coulter, Jonathan A; Jain, Suneil; Butterworth, Karl T; Taggart, Laura E; Dickson, Glenn R; McMahon, Stephen J; Hyland, Wendy B; Muir, Mark F; Trainor, Coleman; Hounsell, Alan R; O’Sullivan, Joe M; Schettino, Giuseppe; Currell, Fred J; Hirst, David G; Prise, Kevin M
2012-01-01
Background This follow-up study aims to determine the physical parameters which govern the differential radiosensitization capacity of two tumor cell lines and one immortalized normal cell line to 1.9 nm gold nanoparticles. In addition to comparing the uptake potential, localization, and cytotoxicity of 1.9 nm gold nanoparticles, the current study also draws on comparisons between nanoparticle size and total nanoparticle uptake based on previously published data. Methods We quantified gold nanoparticle uptake using atomic emission spectroscopy and imaged intracellular localization by transmission electron microscopy. Cell growth delay and clonogenic assays were used to determine cytotoxicity and radiosensitization potential, respectively. Mechanistic data were obtained by Western blot, flow cytometry, and assays for reactive oxygen species. Results Gold nanoparticle uptake was preferentially observed in tumor cells, resulting in an increased expression of cleaved caspase proteins and an accumulation of cells in sub G1 phase. Despite this, gold nanoparticle cytotoxicity remained low, with immortalized normal cells exhibiting an LD50 concentration approximately 14 times higher than tumor cells. The surviving fraction for gold nanoparticle-treated cells at 3 Gy compared with that of untreated control cells indicated a strong dependence on cell type in respect to radiosensitization potential. Conclusion Gold nanoparticles were most avidly endocytosed and localized within cytoplasmic vesicles during the first 6 hours of exposure. The lack of significant cytotoxicity in the absence of radiation, and the generation of gold nanoparticle-induced reactive oxygen species provide a potential mechanism for previously reported radiosensitization at megavoltage energies. PMID:22701316
Wang, Shousen; Qin, Yong; Xiao, Deyong; Wu, Zhifeng; Wei, Liangfeng
2018-05-03
To evaluate the clinical value of three-dimensional (3D) CT reconstruction of the sphenoidal sinus separation in localizing sellar floor during endonasal transsphenoidal surgery, and determine the size and location of sellar floor fenestration. After exclusion,51 patients were eligible for study inclusion. A pre-operative CT scan of the paranasal sinus and CT scan and MRI of the pituitary gland were obtained. Sphenoidal sinus separation was reconstructed using Mimics 15.0 software and the quantity, shape, and orientation were observed and compared with intra-operative data, the purpose of which was to guide the localization of sellar floor. Anatomic variation of the sphenoidal sinus and adjacent structures, tumor and sella turcica morphology, minimal distance between the cavernous segment of the internal carotid artery(CSICA) bilaterally, and the shortest distance from the midline were measured. Based upon the shape of the sphenoidal sinus separation, sellar floor was accurately localized in all cases. Intra-operative sphenoidal sinus separation was consistent with pre-operative 3D CT reconstruction images. The sellar floor was extremely small in two patients, and insufficient fenestration of the sellar floor negatively affected tumor resection. Pre-operative 3D CT reconstruction is helpful for accurate and rapid localization of the saddle floor. The anatomic variation of sphenoidal sinus and adjacent structures, the characteristics of tumor and Sella, the minimum distance between bilateral CSICA and the shortest distance from the midline are helpful for the establishment of individualized Sellar bottom fenestration. Copyright © 2018. Published by Elsevier Inc.
Redjal, Navid; Zhu, Yanni; Shah, Khalid
2015-01-01
Despite advances in standard therapies, the survival of glioblastoma multiforme (GBM) patients has not improved. Limitations to successful translation of new therapies include poor delivery of systemic therapies and use of simplified preclinical models which fail to reflect the clinical complexity of GBMs. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis specifically in tumor cells and we have tested its efficacy by on-site delivery via engineered stem cells (SC) in mouse models of GBM that mimic the clinical scenario of tumor aggressiveness and resection. However, about half of tumor lines are resistant to TRAIL and overcoming TRAIL-resistance in GBM by combining therapeutic agents that are currently in clinical trials with SC-TRAIL and understanding the molecular dynamics of these combination therapies are critical to the broad use of TRAIL as a therapeutic agent in clinics. In this study, we screened clinically relevant chemotherapeutic agents for their ability to sensitize resistant GBM cell lines to TRAIL induced apoptosis. We show that low dose cisplatin increases surface receptor expression of death receptor 4/5 post G2 cycle arrest and sensitizes GBM cells to TRAIL induced apoptosis. In vivo, using an intracranial resection model of resistant primary human-derived GBM and real-time optical imaging, we show that a low dose of cisplatin in combination with synthetic extracellular matrix encapsulated SC-TRAIL significantly decreases tumor regrowth and increases survival in mice bearing GBM. This study has the potential to help expedite effective translation of local stem cell-based delivery of TRAIL into the clinical setting to target a broad spectrum of GBMs. © 2014 AlphaMed Press.
Eisbruch, A; Shewach, D S; Bradford, C R; Littles, J F; Teknos, T N; Chepeha, D B; Marentette, L J; Terrell, J E; Hogikyan, N D; Dawson, L A; Urba, S; Wolf, G T; Lawrence, T S
2001-02-01
To examine the feasibility and dose-limiting toxicity (DLT) of once-weekly gemcitabine at doses predicted in preclinical studies to produce radiosensitization, concurrent with a standard course of radiation for locally advanced head and neck cancer. Tumor incorporation of gemcitabine triphosphate (dFdCTP) was measured to assess whether adequate concentrations were achieved at each dose level. Twenty-nine patients with unresectable head and neck cancer received a course of radiation (70 Gy over 7 weeks, 5 days weekly) concurrent with weekly infusions of low-dose gemcitabine. Tumor biopsies were performed after the first gemcitabine infusion (before radiation started), and the intracellular concentrations of dFdCTP were measured. Severe acute and late mucosal and pharyngeal-related DLT required de-escalation of gemcitabine dose in successive patient cohorts receiving dose levels of 300 mg/m(2)/wk, 150 mg/m(2)/wk, and 50 mg/m(2)/wk. No DLT was observed at 10 mg/m(2)/wk. The rate of endoscopy- and biopsy-assessed complete tumor response was 66% to 87% in the various cohorts. Tumor dFdCTP levels were similar in patients receiving 50 to 300 mg/m(2) (on average, 1.55 pmol/mg, SD 1.15) but were barely or not detectable at 10 mg/m(2). A high rate of acute and late mucosa-related DLT and a high rate of complete tumor response were observed in this regimen at the dose levels of 50 to 300 mg/m(2), which also resulted in similar, subcytotoxic intracellular dFdCTP concentrations. These results demonstrate significant tumor and normal tissue radiosensitization by low-dose gemcitabine. Different regimens of combined radiation and gemcitabine should be evaluated, based on newer preclinical data promising an improved therapeutic ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakobsen, Anders, E-mail: anders.jakobsen@slb.regionsyddanmark.dk; University of Southern Denmark, Odense; Ploen, John
2012-11-15
Purpose: Locally advanced rectal cancer represents a major therapeutic challenge. Preoperative chemoradiation therapy is considered standard, but little is known about the dose-effect relationship. The present study represents a dose-escalation phase III trial comparing 2 doses of radiation. Methods and Materials: The inclusion criteria were resectable T3 and T4 tumors with a circumferential margin of {<=}5 mm on magnetic resonance imaging. The patients were randomized to receive 50.4 Gy in 28 fractions to the tumor and pelvic lymph nodes (arm A) or the same treatment supplemented with an endorectal boost given as high-dose-rate brachytherapy (10 Gy in 2 fractions; armmore » B). Concomitant chemotherapy, uftoral 300 mg/m{sup 2} and L-leucovorin 22.5 mg/d, was added to both arms on treatment days. The primary endpoint was complete pathologic remission. The secondary endpoints included tumor response and rate of complete resection (R0). Results: The study included 248 patients. No significant difference was found in toxicity or surgical complications between the 2 groups. Based on intention to treat, no significant difference was found in the complete pathologic remission rate between the 2 arms (18% and 18%). The rate of R0 resection was different in T3 tumors (90% and 99%; P=.03). The same applied to the rate of major response (tumor regression grade, 1+2), 29% and 44%, respectively (P=.04). Conclusions: This first randomized trial comparing 2 radiation doses indicated that the higher dose increased the rate of major response by 50% in T3 tumors. The endorectal boost is feasible, with no significant increase in toxicity or surgical complications.« less
Kawasaki, Riku; Sasaki, Yoshihiro; Akiyoshi, Kazunari
2017-01-29
Boron neutron capture therapy, based on the release of thermal neutron irradiation from boron, is a targeted radiation therapy for cancer. Targeted and sufficient accumulation of boron in tumor cells to achieve cytotoxic efficacy and reduce off-target effects remains a challenge. Carborane has been investigated for use as a delivery agent in boron neutron capture therapy because of its high boron content and chemical stability; however, it is cytotoxic, making safe delivery difficult. The aim of this study was to investigate the potential of carborane-bearing pullulan nanogels to safely and effectively deliver boron to tumor cells in vitro and in vivo and, consequently, assess their potential as a boron neutron capture therapeutic. Murine fibrosarcoma cells (CMS5a) were used for in vitro investigations of nanogel cytotoxicity, cell uptake. A mouse fibrosarcoma xenograft model was used to investigate the bio-distribution of nanogels after intravenous administration. The nanogels produced no apparent cytotoxicity and underwent cell uptake in CMS5a cells after a 24 h incubation at up to 2000 μg/mL and 400 μg/mL, respectively. The internalized nanogels were localized around the nuclear membrane. The nanogels were administered intravenously to mice bearing fibrosarcoma xenografts. Nanogel tumor localization likely occurred through the enhanced permeation and retention effect. The nanogels successfully reduced the cytotoxicity of carborane, were internalized into tumor cells, acted as a dual-delivery therapeutic and accumulated in tumors in vivo. Consequently, they demonstrate significant potential as a boron neutron capture therapeutic. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, J; Deasy, J O
Purpose: Concurrent chemo-radiation therapy (CCRT) has become a more common cancer treatment option with a better tumor control rate for several tumor sites, including head and neck and lung cancer. In this work, possible optimal chemotherapy schedules were investigated by implementing chemotherapy cell-kill into a tumor response model of RT. Methods: The chemotherapy effect has been added into a published model (Jeong et al., PMB (2013) 58:4897), in which the tumor response to RT can be simulated with the effects of hypoxia and proliferation. Based on the two-compartment pharmacokinetic model, the temporal concentration of chemotherapy agent was estimated. Log cell-killmore » was assumed and the cell-kill constant was estimated from the observed increase in local control due to concurrent chemotherapy. For a simplified two cycle CCRT regime, several different starting times and intervals were simulated with conventional RT regime (2Gy/fx, 5fx/wk). The effectiveness of CCRT was evaluated in terms of reduction in radiation dose required for 50% of control to find the optimal chemotherapy schedule. Results: Assuming the typical slope of dose response curve (γ50=2), the observed 10% increase in local control rate was evaluated to be equivalent to an extra RT dose of about 4 Gy, from which the cell-kill rate of chemotherapy was derived to be about 0.35. Best response was obtained when chemotherapy was started at about 3 weeks after RT began. As the interval between two cycles decreases, the efficacy of chemotherapy increases with broader range of optimal starting times. Conclusion: The effect of chemotherapy has been implemented into the resource-conservation tumor response model to investigate CCRT. The results suggest that the concurrent chemotherapy might be more effective when delayed for about 3 weeks, due to lower tumor burden and a larger fraction of proliferating cells after reoxygenation.« less
Recurrence Factors in Giant Cell Tumors of the Spine.
Ouyang, Han-Qiang; Jiang, Liang; Liu, Xiao-Guang; Wei, Feng; Yang, Shao-Min; Meng, Na; Jiang, Ping; Yu, Miao; Wu, Feng-Liang; Dang, Lei; Zhou, Hua; Zhang, Hua; Liu, Zhong-Jun
2017-07-05
Giant cell tumors (GCTs) are benign, locally aggressive tumors. We examined the rate of local recurrence of spinal GCTs and sought to identify recurrence factors in patients who underwent surgery. Between 1995 and 2014, 94 mobile spine GCT patients were treated at our hospital, comprising 43 male and 51 female patients with an average age of 33.4 years. Piecemeal intralesional spondylectomy and total en bloc spondylectomy (TES) were performed. Radiotherapy was suggested for recurrent or residual GCT cases. Since denosumab was not available before 2014 in our country, only interferon and/or zoledronic acid was suggested. Of the 94 patients, four underwent conservative treatment and 90 underwent operations. Seventy-five patients (79.8%) were followed up for a minimum of 24 months or until death. The median follow-up duration was 75.3 months. The overall recurrence rate was 37.3%. Ten patients (13.3%) died before the last follow-up (median: 18.5 months). Two patients (2.6%) developed osteogenic sarcoma. The local recurrence rate was 80.0% (24/30) in patients who underwent intralesional curettage, 8.8% (3/34) in patients who underwent extracapsular piecemeal spondylectomy, and 0 (0/9) in patients who underwent TES. The risk factors for local recurrence were lesions located in the cervical spine (P = 0.049), intralesional curettage (P < 0.001), repeated surgeries (P = 0.014), and malignancy (P < 0.001). Malignant transformation was a significant risk factor for death (P < 0.001). Cervical spinal tumors, curettage, and nonintact tumors were risk factors for local recurrence. Intralesional curettage and malignancy were the most important significant factors for local recurrence and death, respectively.
Park, Jun Seok; Sakai, Yoshiharu; Simon, NG Siu Man; Law, Wai Lun; Kim, Hyeong Rok; Oh, Jae Hwan; Shan, Hester Cheung Yui; Kwak, Sang Gyu; Choi, Gyu-Seog
2016-01-01
Abstract Controversy remains regarding whether preoperative chemoradiation protocol should be applied uniformly to all rectal cancer patients regardless of tumor height. This pooled analysis was designed to evaluate whether preoperative chemoradiation can be safely omitted in higher rectal cancer. An international consortium of 7 institutions was established. A review of the database that was collected from January 2004 to May 2008 identified a series of 2102 patients with stage II/III rectal or sigmoid cancer (control arm) without concurrent chemoradiation. Data regarding patient demographics, recurrence pattern, and oncological outcomes were analyzed. The primary end point was the 5-year local recurrence rate. The local relapse rate of the sigmoid colon cancer (SC) and upper rectal cancer (UR) cohorts was significantly lower than that of the mid/low rectal cancer group (M-LR), with 5-year estimates of 2.5% for the SC group, 3.5% for the UR group, and 11.1% for the M-LR group, respectively. A multivariate analysis showed that tumor depth, nodal metastasis, venous invasion, and lower tumor level were strongly associated with local recurrence. The cumulative incidence rate of local failure was 90.6%, 92.5%, and 94.4% for tumors located within 5, 7, and 9 cm from the anal verge, respectively. Routine use of preoperative chemoradiation for stage II/III rectal tumors located more than 8 to 9 cm above the anal verge would be excessive. The integration of a more individualized approach focused on systemic control is warranted to improve survival in patients with upper rectal cancer. PMID:27258487
Struss, Werner J; Tan, Zheng; Zachkani, Payam; Moskalev, Igor; Jackson, John K; Shademani, Ali; D'Costa, Ninadh M; Raven, Peter A; Frees, Sebastian; Chavez-Munoz, Claudia; Chiao, Mu; So, Alan I
2017-05-01
The vast majority of prostate cancer presents clinically localized to the prostate without evidence of metastasis. Currently, there are several modalities available to treat this particular disease. Despite radical prostatectomy demonstrating a modest prostate cancer specific mortality benefit in the PIVOT trial, several novel modalities have emerged to treat localized prostate cancer in patients that are either not eligible for surgery or that prefer an alternative approach. Athymic nude mice were subcutaneously inoculated with prostate cancer cells. The mice were divided into four cohorts, one cohort untreated, two cohorts received docetaxel (10 mg/kg) either subcutaneously (SC) or intravenously (IV) and the fourth cohort was treated using the magnetically-actuated docetaxel delivery device (MADDD), dispensing 1.5 μg of docetaxel per 30 min treatment session. Treatment in all three therapeutic arms (SC, IV, and MADDD) was administered once weekly for 6 weeks. Treatment efficacy was measured once a week according to tumor volume using ultrasound. In addition, calipers were used to assess tumor volume. Animals implanted with the device demonstrated no signs of distress or discomfort, neither local nor systemic symptoms of inflammation and infection. Using an independent sample t-test, the tumor growth rate of the treated tumors was significant when compared to the control. Post hoc Tukey HSD test results showed that the mean tumor growth rate of our device cohort was significantly lower than SC and control cohorts. Moreover, IV cohort showed slight reduction in mean tumor growth rates than the ones from the device cohort, however, there was no statistical significance in tumor growth rate between these two cohorts. Furthermore, immunohistochemistry demonstrated an increased cellular apoptosis in the MADDD treated tumors and a decreased proliferation when compared to the other cohorts. In addition, IV cohort showed increased treatment side effects (weight loss) when compared to the device cohort. Finally, MADDD showed minimal expression of CD45 comparable to the control cohort, suggesting no signs of chronic inflammation. In conclusion, this study showed for the first time that MADDD, clearly suppressed tumor growth in local prostate cancer tumors. This could potentially be a novel clinical treatment approach for localized prostate cancer. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daftari, Inder K.; Mishra, Kavita K.; O'Brien, Joan M.
Purpose: The purpose of this study is to evaluate a novel approach for treatment planning using digital fundus image fusion in EYEPLAN for proton beam radiation therapy (PBRT) planning for ocular melanoma. The authors used a prototype version of EYEPLAN software, which allows for digital registration of high-resolution fundus photographs. The authors examined the improvement in tumor localization by replanning with the addition of fundus photo superimposition in patients with macular area tumors. Methods: The new version of EYEPLAN (v3.05) software allows for the registration of fundus photographs as a background image. This is then used in conjunction with clinicalmore » examination, tantalum marker clips, surgeon's mapping, and ultrasound to draw the tumor contour accurately. In order to determine if the fundus image superimposition helps in tumor delineation and treatment planning, the authors identified 79 patients with choroidal melanoma in the macular location that were treated with PBRT. All patients were treated to a dose of 56 GyE in four fractions. The authors reviewed and replanned all 79 macular melanoma cases with superimposition of pretreatment and post-treatment fundus imaging in the new EYEPLAN software. For patients with no local failure, the authors analyzed whether fundus photograph fusion accurately depicted and confirmed tumor volumes as outlined in the original treatment plan. For patients with local failure, the authors determined whether the addition of the fundus photograph might have benefited in terms of more accurate tumor volume delineation. Results: The mean follow-up of patients was 33.6{+-}23 months. Tumor growth was seen in six eyes of the 79 macular lesions. All six patients were marginal failures or tumor miss in the region of dose fall-off, including one patient with both in-field recurrence as well as marginal. Among the six recurrences, three were managed by enucleation and one underwent retreatment with proton therapy. Three patients developed distant metastasis and all three patients have since died. The replanning of six patients with their original fundus photograph superimposed showed that in four cases, the treatment field adequately covered the tumor volume. In the other two patients, the overlaid fundus photographs indicated the area of marginal miss. The replanning with the fundus photograph showed improved tumor coverage in these two macular lesions. For the remaining patients without local failure, replanning with fundus photograph superimposition confirmed the tumor volume as drawn in the original treatment plan. Conclusions: Local control was excellent in patients receiving 56 GyE of PBRT for uveal melanomas in the macular region, which traditionally can be more difficult to control. Posterior lesions are better defined with the additional use of fundus image since they can be difficult to mark surgically. In one-third of treatment failing patients, the superposition of the fundus photograph would have clearly allowed improved localization of tumor. The current practice standard is to use the superimposition of the fundus photograph in addition to the surgeon's clinical and clip mapping of the tumor and ultrasound measurement to draw the tumor volume.« less
Real-time prediction of respiratory motion based on a local dynamic model in an augmented space
NASA Astrophysics Data System (ADS)
Hong, S.-M.; Jung, B.-H.; Ruan, D.
2011-03-01
Motion-adaptive radiotherapy aims to deliver ablative radiation dose to the tumor target with minimal normal tissue exposure, by accounting for real-time target movement. In practice, prediction is usually necessary to compensate for system latency induced by measurement, communication and control. This work focuses on predicting respiratory motion, which is most dominant for thoracic and abdominal tumors. We develop and investigate the use of a local dynamic model in an augmented space, motivated by the observation that respiratory movement exhibits a locally circular pattern in a plane augmented with a delayed axis. By including the angular velocity as part of the system state, the proposed dynamic model effectively captures the natural evolution of respiratory motion. The first-order extended Kalman filter is used to propagate and update the state estimate. The target location is predicted by evaluating the local dynamic model equations at the required prediction length. This method is complementary to existing work in that (1) the local circular motion model characterizes 'turning', overcoming the limitation of linear motion models; (2) it uses a natural state representation including the local angular velocity and updates the state estimate systematically, offering explicit physical interpretations; (3) it relies on a parametric model and is much less data-satiate than the typical adaptive semiparametric or nonparametric method. We tested the performance of the proposed method with ten RPM traces, using the normalized root mean squared difference between the predicted value and the retrospective observation as the error metric. Its performance was compared with predictors based on the linear model, the interacting multiple linear models and the kernel density estimator for various combinations of prediction lengths and observation rates. The local dynamic model based approach provides the best performance for short to medium prediction lengths under relatively low observation rate. Sensitivity analysis indicates its robustness toward the choice of parameters. Its simplicity, robustness and low computation cost makes the proposed local dynamic model an attractive tool for real-time prediction with system latencies below 0.4 s.
Real-time prediction of respiratory motion based on a local dynamic model in an augmented space.
Hong, S-M; Jung, B-H; Ruan, D
2011-03-21
Motion-adaptive radiotherapy aims to deliver ablative radiation dose to the tumor target with minimal normal tissue exposure, by accounting for real-time target movement. In practice, prediction is usually necessary to compensate for system latency induced by measurement, communication and control. This work focuses on predicting respiratory motion, which is most dominant for thoracic and abdominal tumors. We develop and investigate the use of a local dynamic model in an augmented space, motivated by the observation that respiratory movement exhibits a locally circular pattern in a plane augmented with a delayed axis. By including the angular velocity as part of the system state, the proposed dynamic model effectively captures the natural evolution of respiratory motion. The first-order extended Kalman filter is used to propagate and update the state estimate. The target location is predicted by evaluating the local dynamic model equations at the required prediction length. This method is complementary to existing work in that (1) the local circular motion model characterizes 'turning', overcoming the limitation of linear motion models; (2) it uses a natural state representation including the local angular velocity and updates the state estimate systematically, offering explicit physical interpretations; (3) it relies on a parametric model and is much less data-satiate than the typical adaptive semiparametric or nonparametric method. We tested the performance of the proposed method with ten RPM traces, using the normalized root mean squared difference between the predicted value and the retrospective observation as the error metric. Its performance was compared with predictors based on the linear model, the interacting multiple linear models and the kernel density estimator for various combinations of prediction lengths and observation rates. The local dynamic model based approach provides the best performance for short to medium prediction lengths under relatively low observation rate. Sensitivity analysis indicates its robustness toward the choice of parameters. Its simplicity, robustness and low computation cost makes the proposed local dynamic model an attractive tool for real-time prediction with system latencies below 0.4 s.
Experience with carbon ion radiotherapy at GSI
NASA Astrophysics Data System (ADS)
Jäkel, O.; Schulz-Ertner, D.; Karger, C. P.; Heeg, P.; Debus, J.
2005-12-01
At GSI, a radiotherapy facility was established using beam scanning and active energy variation. Between December 1997 and April 2004, 220 patients have been treated at this facility with carbon ions. Most patients are treated for chordoma and chondrosarcoma of the base of skull, using a dose of 60 Gye (Gray equivalent) in 20 fractions. Carbon ion therapy is also offered in a combination with conventional radiotherapy for a number of other tumors (adenoidcystic carcinoma, chordoma of the cervical spine and sacrum, atypical menningeoma). The patients treated for skull base tumors showed an overall local control rate after two years of 90%. The overall treatment toxicity was mild. This shows that carbon ion radiotherapy can safely be applied using a scanned beam and encouraged the Heidelberg university hospital to build a hospital based facility for ion therapy.
Wilhelm, Alexander; Galata, Christian; Beutner, Ulrich; Schmied, Bruno M; Warschkow, Rene; Steffen, Thomas; Brunner, Walter; Post, Stefan; Marti, Lukas
2018-03-01
This study assessed the influence of tumor localization of small bowel adenocarcinoma on survival after surgical resection. Patients with resected small bowel adenocarcinoma, ACJJ stage I-III, were identified from the Surveillance, Epidemiology, and End Results database from 2004 to 2013. The impact of tumor localization on overall and cancer-specific survival was assessed using Cox proportional hazard regression models with and without risk-adjustment and propensity score methods. Adenocarcinoma was localized to the duodenum in 549 of 1025 patients (53.6%). There was no time trend for duodenal localization (P = 0.514). The 5-year cancer-specific survival rate was 48.2% (95%CI: 43.3-53.7%) for patients with duodenal carcinoma and 66.6% (95%CI: 61.6-72.1%) for patients with cancer located in the jejunum or ileum. Duodenal localization was associated with worse overall and cancer-specific survival in univariable (HR = 1.73; HR = 1.81, respectively; both P < 0.001), multivariable (HR = 1.52; HR = 1.65; both P < 0.001), and propensity score-adjusted analyses (HR = 1.33, P = 0.012; HR = 1.50, P = 0.002). Furthermore, young age, retrieval of more than 12 regional lymph nodes, less advanced stage, and married matrimonial status were positive, independent prognostic factors. Duodenal localization is an independent risk factor for poor survival after resection of adenocarcinoma. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Hoang, Nu Bryan
Block copolymer micelles have emerged as a viable formulation strategy with several drugs relying on this technology in clinical evaluation. To date, information on the tumor penetration and intratumoral distribution of block copolymer micelles (BCM) has been quite limited. Thus, there is impetus to develop a radiolabeled formulation that can be used to gain invaluable insight into the intratumoral distribution of the BCMs. This information could then be used to direct formulation strategies as a means to optimize treatment outcomes. This thesis describes the synthesis and characterization of a targeted block copolymer micelle system based on poly(ethylene glycol)-block -poly(epsilon-caprolactone) labeled with the radionuclide Indium-111 (111In). The incorporation of the imageable component, 111In permits pursuit of image-guided drug delivery for real-time monitoring of tumor localization and intratumoral distribution. Intracellular trafficking of drugs and therapies such as Auger electron emitting radionuclides to perinuclear and nuclear regions of cells is critical to realizing their full therapeutic potential. HER2 specific antibodies (trastuzumab fab fragments) and nuclear localization signal peptides were conjugated to the surface of the BCMs to direct uptake in HER2 expressing cells and subsequent localization in the cell nucleus. Cell uptake was HER2 density dependent, confirming receptor-mediated internalization of the BCMs. Importantly, conjugation of NLS resulted in a significant increase in nuclear uptake of the radionuclide 111In. Successful nuclear targeting was shown to improve the antiproliferative effect of the Auger electrons. In addition, a significant radiation enhancement effect was observed by concurrent delivery of low-dose MTX and 111In in all breast cancer cell lines evaluated. Imaging enabled the accurate quantification of the specific tumor uptake of the micelles and visualization of their degree of tumor penetration in relation to microvessel density. Ultimately, the 111In-micelles could be used for such diverse applications as detection of malignancies, molecular characterization of tumors, improved therapy guidance and targeted anti-cancer treatment.