Sample records for tunable diffraction gratings

  1. Tunable resonance-domain diffraction gratings based on electrostrictive polymers.

    PubMed

    Axelrod, Ramon; Shacham-Diamand, Yosi; Golub, Michael A

    2017-03-01

    Critical combination of high diffraction efficiency and large diffraction angles can be delivered by resonance-domain diffractive optics with high aspect ratio and wavelength-scale grating periods. To advance from static to electrically tunable resonance-domain diffraction grating, we resorted to its replication onto 2-5 μm thick P(VDF-TrFE-CFE) electrostrictive ter-polymer membranes. Electromechanical and optical computer simulations provided higher than 90% diffraction efficiency, a large continuous deflection range exceeding 20°, and capabilities for adiabatic spatial modulation of the grating period and slant. A prototype of the tunable resonance-domain diffraction grating was fabricated in a soft-stamp thermal nanoimprinting process, characterized, optically tested, and provided experimental feasibility proof for the tunable sub-micron-period gratings on electrostrictive polymers.

  2. Beam-splitter switches based on zenithal bistable liquid-crystal gratings.

    PubMed

    Zografopoulos, Dimitrios C; Beccherelli, Romeo; Kriezis, Emmanouil E

    2014-10-01

    The tunable optical diffractive properties of zenithal bistable nematic liquid-crystal gratings are theoretically investigated. The liquid-crystal orientation is rigorously solved via a tensorial formulation of the Landau-de Gennes theory and the optical transmission properties of the gratings are investigated via full-wave finite-element frequency-domain simulations. It is demonstrated that by proper design the two stable states of the grating can provide nondiffracting and diffracting operation, the latter with equal power splitting among different diffraction orders. An electro-optic switching mechanism, based on dual-frequency nematic materials, and its temporal dynamics are further discussed. Such gratings provide a solution towards tunable beam-steering and beam-splitting components with extremely low power consumption.

  3. Continuous wavelength tunable laser source with optimum positioning of pivot axis for grating

    DOEpatents

    Pushkarsky, Michael; Amone, David F.

    2010-06-08

    A laser source (10) for generating a continuously wavelength tunable light (12) includes a gain media (16), an optical output coupler (36F), a cavity collimator (38A), a diffraction grating (30), a grating beam (54), and a beam attacher (56). The diffraction grating (30) is spaced apart from the cavity collimator (38A) and the grating (30) cooperates with the optical output coupler (36F) to define an external cavity (32). The grating (30) includes a grating face surface (42A) that is in a grating plane (42B). The beam attacher (56) retains the grating beam (54) and allows the grating beam (54) and the grating (30) to effectively pivot about a pivot axis (33) that is located approximately at an intersection of a pivot plane (50) and the grating plane (42B). As provided herein, the diffraction grating (30) can be pivoted about the unique pivot axis (33) to move the diffraction grating (30) relative to the gain media (16) to continuously tune the lasing frequency of the external cavity (32) and the wavelength of the output light (12) so that the output light (12) is mode hop free.

  4. Diffraction of digital micromirror device gratings and its effect on properties of tunable fiber lasers.

    PubMed

    Chen, Xiao; Yan, Bin-bin; Song, Fei-jun; Wang, Yi-quan; Xiao, Feng; Alameh, Kamal

    2012-10-20

    A digital micromirror device (DMD) is a kind of widely used spatial light modulator. We apply DMD as wavelength selector in tunable fiber lasers. Based on the two-dimensional diffraction theory, the diffraction of DMD and its effect on properties of fiber laser parameters are analyzed in detail. The theoretical results show that the diffraction efficiency is strongly dependent upon the angle of incident light and the pixel spacing of DMD. Compared with the other models of DMDs, the 0.55 in. DMD grating is an approximate blazed state in our configuration, which makes most of the diffracted radiation concentrated into one order. It is therefore a better choice to improve the stability and reliability of tunable fiber laser systems.

  5. MEMS-based tunable gratings and their applications

    NASA Astrophysics Data System (ADS)

    Yu, Yiting; Yuan, Weizheng; Qiao, Dayong

    2015-03-01

    The marriage of optics and MEMS has resulted in a new category of optical devices and systems that have unprecedented advantages compared with their traditional counterparts. As an important spatial light modulating technology, diffractive optical MEMS obtains a wide variety of successful commercial applications, e.g. projection displays, optical communication and spectral analysis, due to its features of highly compact, low-cost, IC-compatible, excellent performance, and providing possibilities for developing totally new, yet smart devices and systems. Three most successful MEMS diffraction gratings (GLVs, Polychromator and DMDs) are briefly introduced and their potential applications are analyzed. Then, three different MEMS tunable gratings developed by our group, named as micro programmable blazed gratings (μPBGs) and micro pitch-tunable gratings (μPTGs) working in either digital or analog mode, are demonstrated. The strategies to largely enhance the maximum blazed angle and grating period are described. Some preliminary application explorations based on the developed grating devices are also shown. For our ongoing research focus, we will further improve the device performance to meet the engineering application requirements.

  6. Fast tunable blazed MEMS grating for external cavity lasers

    NASA Astrophysics Data System (ADS)

    Tormen, Maurizio; Niedermann, Philippe; Hoogerwerf, Arno; Shea, Herbert; Stanley, Ross

    2017-11-01

    Diffractive MEMS are interesting for a wide range of applications, including displays, scanners or switching elements. Their advantages are compactness, potentially high actuation speed and in the ability to deflect light at large angles. We have designed and fabricated deformable diffractive MEMS grating to be used as tuning elements for external cavity lasers. The resulting device is compact, has wide tunability and a high operating speed. The initial design is a planar grating where the beams are free-standing and attached to each other using leaf springs. Actuation is achieved through two electrostatic comb drives at either end of the grating. To prevent deformation of the free-standing grating, the device is 10 μm thick made from a Silicon on Insulator (SOI) wafer in a single mask process. At 100V a periodicity tuning of 3% has been measured. The first resonant mode of the grating is measured at 13.8 kHz, allowing high speed actuation. This combination of wide tunability and high operating speed represents state of the art in the domain of tunable MEMS filters. In order to improve diffraction efficiency and to expand the usable wavelength range, a blazed version of the deformable MEMS grating has been designed. A key issue is maintaining the mechanical properties of the original device while providing optically smooth blazed beams. Using a process based on anisotropic KOH etching, blazed gratings have been obtained and preliminary characterization is promising.

  7. Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating.

    PubMed

    Lin, Chia-Jen; Li, Yu-Tai; Hsieh, Cho-Fan; Pan, Ru-Pin; Pan, Ci-Ling

    2008-03-03

    This investigation demonstrates the feasibility of a magnetically tunable liquid crystal phase grating for the terahertz wave. The phase grating can be used as a beam splitter. The ratio of the zeroth and first-order diffracted THz-beams (0.3 THz) polarized in a direction perpendicular to that of the grooves of the grating can be tuned from 4:1 to 1:2. When the THz wave is polarized in any other direction, this device can be operated as a polarizing beam splitter.

  8. Electrically tunable two-dimensional holographic polymer-dispersed liquid crystal grating with variable period

    NASA Astrophysics Data System (ADS)

    Wang, Kangni; Zheng, Jihong; Liu, Yourong; Gao, Hui; Zhuang, Songlin

    2017-06-01

    An electrically tunable two-dimensional (2D) holographic polymer-dispersed liquid crystal (H-PDLC) grating with variable period was fabricated by inserting a cylindrical lens in a conventional holographic interference beam. The interference between the plane wave and cylindrical wave resulting in varying intersection angles on the sample, combined with dual exposure along directions perpendicular to each other, generates a 2D H-PDLC grating with varied period. We have identified periods varying from 3.109 to 5.158 μm across a 16 mm width, with supporting theoretical equations for the period. The period exhibits a symmetrical square lattice in a diagonal direction, with an asymmetrical rectangular lattice in off-diagonal locations. With the first exposure at 2 s and the second exposure at 60 s, the phase separation between the prepolymer and liquid crystal was most evident. The diffraction properties and optic-electric characteristics were also studied. The diffraction efficiency of first-order light was observed to be 13.5% without external voltage, and the transmission efficiency of non-diffracted light was 78% with an applied voltage of 100 V. The proposed method provides the capability of generating period variation to the conventional holographic interference path, with potential application in diffractive optics such as tunable multi-wavelength organic lasing from a dye-doped 2D H-PDLC grating.

  9. Asymmetric diffraction by atomic gratings with optical PT symmetry in the Raman-Nath regime

    NASA Astrophysics Data System (ADS)

    Shui, Tao; Yang, Wen-Xing; Liu, Shaopeng; Li, Ling; Zhu, Zhonghu

    2018-03-01

    We propose and analyze an efficient scheme for the lopsided Raman-Nath diffraction of one-dimensional (1 D ) and two-dimensional (2 D ) atomic gratings with periodic parity-time (PT )-symmetric refractive index. The atomic grating is constructed by the cold-atomic vapor with two isotopes of rubidium, which is driven by weak probe field and space-dependent control field. Using experimentally achievable parameters, we identify the conditions under which PT -symmetric refractive index allows us to observe the lopsided Raman-Nath diffraction phenomenon and improve the diffraction efficiencies beyond what is achievable in a conventional atomic grating. The nontrivial atomic grating is a superposition of an amplitude grating and a phase grating. It is found that the lopsided Raman-Nath diffraction at the exceptional point (EP) of PT -symmetric grating originates from constructive and destructive interferences between the amplitude and phase gratings. Furthermore, we show that the PT -phase transition from unbroken to broken PT -symmetric regimes can modify the asymmetric distribution of the diffraction spectrum and that the diffraction efficiencies in the non-negative diffraction orders can be significantly enhanced when the atomic grating is pushed into a broken PT -symmetric phase. In addition, we also analyze the influence of the grating thickness on the diffraction spectrum. Our scheme may provide the possibility to design a gain-beam splitter with tunable splitting ratio and other optical components in integrated optics.

  10. Piezo activated mode tracking system for widely tunable mode-hop-free external cavity mid-IR semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Tittel, Frank K. (Inventor); Curl, Robert F. (Inventor); Wysocki, Gerard (Inventor)

    2010-01-01

    A widely tunable, mode-hop-free semiconductor laser operating in the mid-IR comprises a QCL laser chip having an effective QCL cavity length, a diffraction grating defining a grating angle and an external cavity length with respect to said chip, and means for controlling the QCL cavity length, the external cavity length, and the grating angle. The laser of claim 1 wherein said chip may be tuned over a range of frequencies even in the absence of an anti-reflective coating. The diffraction grating is controllably pivotable and translatable relative to said chip and the effective QCL cavity length can be adjusted by varying the injection current to the chip. The laser can be used for high resolution spectroscopic applications and multi species trace-gas detection. Mode-hopping is avoided by controlling the effective QCL cavity length, the external cavity length, and the grating angle so as to replicate a virtual pivot point.

  11. Optical and Acoustic Device Applications of Ferroelastic Crystals

    NASA Astrophysics Data System (ADS)

    Meeks, Steven Wayne

    This dissertation presents the discovery of a means of creating uniformly periodic domain gratings in a ferroelastic crystal of neodymium pentaphosphate (NPP). The uniform and non-uniform domain structures which can be created in NPP have the potential applications as tunable active gratings for lasers, tunable diffraction gratings, tunable Bragg reflection gratings, tunable acoustic filters, optical modulators, and optical domain wall memories. The interaction of optical and acoustic waves with ferroelastic domain walls in NPP is presented in detail. Acoustic amplitude reflection coefficients from a single domain wall in NPP are much larger than other ferroelastic-ferroelectrics such as gadolinium molybdate (GMO). Domain walls of NPP are used to make two demonstration acoustic devices: a tunable comb filter and a tunable delay line. The tuning process is accomplished by moving the position of the reflecting surface (the domain wall). A theory of the reflection of optical waves from NPP domain walls is discussed. The optical reflection is due to a change in the polarization of the wave, and not a change in the index, as the wave crosses the domain wall. Theoretical optical power reflection coefficients show good agreement with the experimentally measured values. The largest optical reflection coefficient of a single domain wall is at a critical angle and is 2.2% per domain wall. Techniques of injecting periodic and aperiodic domain walls into NPP are presented. The nucleation process of the uniformly periodic domain gratings in NPP is described in terms of a newly-discovered domain structure, namely the ferroelastic bubble. A ferroelastic bubble is the elastic analogue to the well-known magnetic bubble. The period of the uniformly periodic domain grating is tunable from 100 to 0.5 microns and the grating period may be tuned relatively rapidly. The Bragg efficiency of these tunable gratings is 77% for an uncoated crystal. Several demonstration devices which use these periodic structures are discussed. These devices are a tunable active grating laser (TAG laser), a tunable active grating (TAG), and a tunable acoustic bulk wave filter.

  12. Holographic Structuring of Elastomer Actuator: First True Monolithic Tunable Elastomer Optics.

    PubMed

    Ryabchun, Alexander; Kollosche, Matthias; Wegener, Michael; Sakhno, Oksana

    2016-12-01

    Volume diffraction gratings (VDGs) are inscribed selectively by diffusive introduction of benzophenone and subsequent UV-holographic structuring into an electroactive dielectric elastomer actuator (DEA), to afford a continuous voltage-controlled grating shift of 17%. The internal stress coupling of DEA and optical domain allows for a new generation of true monolithic tunable elastomer optics with voltage controlled properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Fabrication of tunable diffraction grating by imprint lithography with photoresist mold

    NASA Astrophysics Data System (ADS)

    Yamada, Itsunari; Ikeda, Yusuke; Higuchi, Tetsuya

    2018-05-01

    We fabricated a deformable transmission silicone [poly(dimethylsiloxane)] grating using a two-beam interference method and imprint lithography and evaluated its optical characteristics during a compression process. The grating pattern with 0.43 μm depth and 1.0 μm pitch was created on a silicone surface by an imprinting process with a photoresist mold to realize a simple, low-cost fabrication process. The first-order diffraction transmittance of this grating reached 10.3% at 632.8 nm wavelength. We also measured the relationship between the grating period and compressive stress to the fabricated elements. The grating period changed from 1.0 μm to 0.84 μm by 16.6% compression of the fabricated element in one direction, perpendicular to the grooves, and the first-order diffraction transmittance was 8.6%.

  14. Kirigami Nanocomposites as Wide-Angle Diffraction Gratings.

    PubMed

    Xu, Lizhi; Wang, Xinzhi; Kim, Yoonseob; Shyu, Terry C; Lyu, Jing; Kotov, Nicholas A

    2016-06-28

    Beam steering devices represent an essential part of an advanced optics toolbox and are needed in a spectrum of technologies ranging from astronomy and agriculture to biosensing and networked vehicles. Diffraction gratings with strain-tunable periodicity simplify beam steering and can serve as a foundation for light/laser radar (LIDAR/LADAR) components of robotic systems. However, the mechanical properties of traditional materials severely limit the beam steering angle and cycle life. The large strain applied to gratings can severely impair the device performance both in respect of longevity and diffraction pattern fidelity. Here, we show that this problem can be resolved using micromanufactured kirigami patterns from thin film nanocomposites based on high-performance stiff plastics, metals, and carbon nanotubes, etc. The kirigami pattern of microscale slits reduces the stochastic concentration of strain in stiff nanocomposites including those made by layer-by-layer assembly (LBL). The slit patterning affords reduction of strain by 2 orders of magnitude for stretching deformation and consequently enables reconfigurable optical gratings with over a 100% range of period tunability. Elasticity of the stiff nanocomposites and plastics makes possible cyclic reconfigurability of the grating with variable time constant that can also be referred to as 4D kirigami. High-contrast, sophisticated diffraction patterns with as high as fifth diffraction order can be obtained. The angular range of beam steering can be as large as 6.5° for a 635 nm laser beam compared to ∼1° in surface-grooved elastomer gratings and ∼0.02° in MEMS gratings. The versatility of the kirigami patterns, the diversity of the available nanocomposite materials, and their advantageous mechanical properties of the foundational materials open the path for engineering of reconfigurable optical elements in LIDARs essential for autonomous vehicles and other optical devices with spectral range determined by the kirigami periodicity.

  15. Real-time spectroscopic sensing using a widely tunable external cavity-QCL with MOEMS diffraction grating

    NASA Astrophysics Data System (ADS)

    Ostendorf, Ralf; Butschek, Lorenz; Merten, André; Grahmann, Jan; Jarvis, Jan; Hugger, Stefan; Fuchs, Frank; Wagner, Joachim

    2016-02-01

    We present spectroscopic measurements performed with an EC-QCL combining a broadly tunable quantum cascade laser chip with a tuning range of more than 300 cm-1 and a resonantly driven MOEMS scanner with an integrated diffraction grating for wavelength selection in Littrow configuration. The grating geometry was optimized to provide high diffraction efficiency over the wide tuning range of the QCL, thus assuring high power density and high spectral resolution in the MIR range. The MOEMS scanner has a resonance frequency of 1 kHz, hence allowing for two full wavelength scans, one up and the other downwards, within 1 ms. The capability for real-time spectroscopic sensing based on MOEMS EC-QCLs is demonstrated by transmission measurements performed on polystyrene reference absorber sheets as well as on gaseous samples of carbon monoxide. For the latter one, a large portion of the characteristic CO absorption band containing several absorption lines in the range of 2070 cm-1 to 2280 cm-1 can be monitored in real-time.

  16. Deformable silicone grating fabricated with a photo-imprinted polymer mold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Itsunari, E-mail: yamada.i@e.usp.ac.jp; Nishii, Junji; Saito, Mitsunori

    A tunable transmission grating was fabricated by molding a silicone elastomer (polydimethylsiloxane). Its optical characteristics were then evaluated during compression. For fabrication, a glass plate with a photoimprinted polymer grating film was used as a mold. Both the grating period and diffraction transmittance of the molded elastomer were functions of the compressive stress. The grating period changed from 3.02 to 2.86 μm during compressing the elastomer in the direction perpendicular to the grooves.

  17. Laser-induced transient grating setup with continuously tunable period

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vega-Flick, A.; Applied Physics Department, CINVESTAV-Unidad Mérida, Carretera Antigua a Progreso Km 6, Cordemex, Mérida, Yucatán 97310 Mexico; Eliason, J. K.

    2015-12-15

    We present a modification of the laser-induced transient grating setup enabling continuous tuning of the transient grating period. The fine control of the period is accomplished by varying the angle of the diffraction grating used to split excitation and probe beams. The setup has been tested by measuring dispersion of bulk and surface acoustic waves in both transmission and reflection geometries. The presented modification is fully compatible with optical heterodyne detection and can be easily implemented in any transient grating setup.

  18. The tunable optical magneto-electric effect in patterned manganese oxide superlattices

    NASA Astrophysics Data System (ADS)

    Pei, H. Y.; Zhang, Y. J.; Guo, S. J.; Ren, L. X.; Yan, H.; Chen, C. L.; Jin, K. X.; Luo, B. C.

    2018-05-01

    The optical magneto-electric (OME) effect has been widely investigated in magnetic materials, but obtaining the large and tunable OME effect is an ongoing challenge. We here design a tri-color superlattice composed of manganese oxides, Pr0.9Ca0.1MnO3, La0.9Sr0.1MnO3, and La0.9Sb0.1MnO3, where the space-inversion and time-reversal symmetries are broken. With the aid of the grating structure, the OME effect for near-infrared light in tri-color superlattices is investigated systematically through the Bragg diffraction method. The relative change of diffracted light intensity of the order n = ±1 has a strong dependence on the magnetization and polarization of the tri-color superlattice, whether the superlattice is irradiated in reflection or transmission geometries. Otherwise, the relative change of diffracted light intensity increases with the increase in the superlattice period and with the decrease in the grating period. The maximum relative change of diffracted light intensity in tri-color superlattices with the grating structure patterned is as large as 8.27%. These results pave the way for designing next-generation OME devices based on manganese oxides.

  19. The Harper–Hofstadter Hamiltonian and conical diffraction in photonic lattices with grating assisted tunneling

    DOE PAGES

    Dubček, Tena; Lelas, Karlo; Jukić, Dario; ...

    2015-12-07

    Here we propose the realization of a grating assisted tunneling scheme for tunable synthetic magnetic fields in optically induced one- and two-dimensional dielectric photonic lattices. As a signature of the synthetic magnetic fields, we demonstrate conical diffraction patterns in particular realization of these lattices, which possess Dirac points in k-space. Lastly, we compare the light propagation in these realistic (continuous) systems with the evolution in discrete models representing the Harper-Hofstadter Hamiltonian, and obtain excellent agreement.

  20. Two-color temporal focusing multiphoton excitation imaging with tunable-wavelength excitation

    NASA Astrophysics Data System (ADS)

    Lien, Chi-Hsiang; Abrigo, Gerald; Chen, Pei-Hsuan; Chien, Fan-Ching

    2017-02-01

    Wavelength tunable temporal focusing multiphoton excitation microscopy (TFMPEM) is conducted to visualize optical sectioning images of multiple fluorophore-labeled specimens through the optimal two-photon excitation (TPE) of each type of fluorophore. The tunable range of excitation wavelength was determined by the groove density of the grating, the diffraction angle, the focal length of lenses, and the shifting distance of the first lens in the beam expander. Based on a consideration of the trade-off between the tunable-wavelength range and axial resolution of temporal focusing multiphoton excitation imaging, the presented system demonstrated a tunable-wavelength range from 770 to 920 nm using a diffraction grating with groove density of 830 lines/mm. TPE fluorescence imaging examination of a fluorescent thin film indicated that the width of the axial confined excitation was 3.0±0.7 μm and the shifting distance of the temporal focal plane was less than 0.95 μm within the presented wavelength tunable range. Fast different wavelength excitation and three-dimensionally rendered imaging of Hela cell mitochondria and cytoskeletons and mouse muscle fibers were demonstrated. Significantly, the proposed system can improve the quality of two-color TFMPEM images through different excitation wavelengths to obtain higher-quality fluorescent signals in multiple-fluorophore measurements.

  1. Diffractive centrosymmetric 3D-transmission phase gratings positioned at the image plane of optical systems transform lightlike 4D-WORLD as tunable resonators into spectral metrics...

    NASA Astrophysics Data System (ADS)

    Lauinger, Norbert

    1999-08-01

    Diffractive 3D phase gratings of spherical scatterers dense in hexagonal packing geometry represent adaptively tunable 4D-spatiotemporal filters with trichromatic resonance in visible spectrum. They are described in the (lambda) - chromatic and the reciprocal (nu) -aspects by reciprocal geometric translations of the lightlike Pythagoras theorem, and by the direction cosine for double cones. The most elementary resonance condition in the lightlike Pythagoras theorem is given by the transformation of the grating constants gx, gy, gz of the hexagonal 3D grating to (lambda) h1h2h3 equals (lambda) 111 with cos (alpha) equals 0.5. Through normalization of the chromaticity in the von Laue-interferences to (lambda) 111, the (nu) (lambda) equals (lambda) h1h2h3/(lambda) 111-factor of phase velocity becomes the crucial resonance factor, the 'regulating device' of the spatiotemporal interaction between 3D grating and light, space and time. In the reciprocal space equal/unequal weights and times in spectral metrics result at positions of interference maxima defined by hyperbolas and circles. A database becomes built up by optical interference for trichromatic image preprocessing, motion detection in vector space, multiple range data analysis, patchwide multiple correlations in the spatial frequency spectrum, etc.

  2. Generation of ultra-wideband achromatic Airy plasmons on a graphene surface.

    PubMed

    Guan, Chunying; Yuan, Tingting; Chu, Rang; Shen, Yize; Zhu, Zheng; Shi, Jinhui; Li, Ping; Yuan, Libo; Brambilla, Gilberto

    2017-02-01

    Tunable ultra-wideband achromatic plasmonic Airy beams are demonstrated on graphene surfaces. Surface plasmonic polaritons are excited using diffractive gratings. The phase and amplitude of plasmonic waves on the graphene surface are determined by the relative position between the grating arrays and the duty ratio of the grating unit cell, respectively. The transverse acceleration and nondiffraction properties of plasmonic waves are observed. The achromatic Airy plasmons with identical acceleration trajectory at different excited frequencies can be achieved by tuning dynamically the Fermi energy of graphene without reoptimizing the grating structures. The proposed devices may find applications in photonics integrations and surface optical manipulation.

  3. Rigorous coupled wave analysis of acousto-optics with relativistic considerations.

    PubMed

    Xia, Guoqiang; Zheng, Weijian; Lei, Zhenggang; Zhang, Ruolan

    2015-09-01

    A relativistic analysis of acousto-optics is presented, and a rigorous coupled wave analysis is generalized for the diffraction of the acousto-optical effect. An acoustic wave generates a grating with temporally and spatially modulated permittivity, hindering direct applications of the rigorous coupled wave analysis for the acousto-optical effect. In a reference frame which moves with the acoustic wave, the grating is static, the medium moves, and the coupled wave equations for the static grating may be derived. Floquet's theorem is then applied to cast these equations into an eigenproblem. Using a Lorentz transformation, the electromagnetic fields in the grating region are transformed to the lab frame where the medium is at rest, and relativistic Doppler frequency shifts are introduced into various diffraction orders. In the lab frame, the boundary conditions are considered and the diffraction efficiencies of various orders are determined. This method is rigorous and general, and the plane waves in the resulting expansion satisfy the dispersion relation of the medium and are propagation modes. Properties of various Bragg diffractions are results, rather than preconditions, of this method. Simulations of an acousto-optical tunable filter made by paratellurite, TeO(2), are given as examples.

  4. Organic holographic polymer dispersed liquid crystal distributed feedback laser from different diffraction orders

    NASA Astrophysics Data System (ADS)

    Liu, Minghuan; Liu, Yonggang; Zhang, Guiyang; Peng, Zenghui; Li, Dayu; Ma, Ji; Xuan, Li

    2016-11-01

    Holographic polymer dispersed liquid crystal (HPDLC) based distributed feedback (DFB) lasers were prepared with poly (-methoxy-5-(2‧-ethyl-hexyloxy)-1,4-phenylene-vinylene) (MEH-PPV) film as the active medium layer. The HPDLC grating film was fabricated via holographic induced photopolymerization. The pure film spectra of MEH-PPV and the amplified spontaneous emission (ASE) spectrum were investigated. The laser device was single-longitudinal mode operation. The tunability of the HPDLC DFB laser was achieved by selecting different grating periods. The lasing performances were also characterized and compared from different diffraction orders. The lasing threshold increased with the diffraction order and the third order laser possessed the largest conversion efficiency in this device. The experimental results were in good agreement with the theoretical calculations.

  5. Tailoring Eigenmodes at Spectral Singularities in Graphene-based PT Systems.

    PubMed

    Zhang, Weixuan; Wu, Tong; Zhang, Xiangdong

    2017-09-12

    The spectral singularity existing in PT-synthetic plasmonic system has been widely investigated. Only lasing-mode can be excited resulting from the passive characteristic of metallic materials. Here, we investigated the spectral singularity in the hybrid structure composed of the photoexcited graphene and one-dimensional PT-diffractive grating. In this system, both lasing- and absorption-modes can be excited with the surface conductivity of photoexcited graphene being loss and gain, respectively. Remarkably, the spectral singularity will disappear with the optically pumped graphene to be lossless. In particular, we find that spectral singularities can exhibit symmetry-modes, when the loss and gain of the grating is unbalanced. Meanwhile, by tuning the loss (gain) of graphene and non-PT diffraction grating, lasing- and absorption-modes can also be excited. We hope that tunable optical modes at spectral singularities can have some applications in designing novel surface-enhanced spectroscopies and plasmon lasers.

  6. Grating-assisted demodulation of interferometric optical sensors.

    PubMed

    Yu, Bing; Wang, Anbo

    2003-12-01

    Accurate and dynamic control of the operating point of an interferometric optical sensor to produce the highest sensitivity is crucial in the demodulation of interferometric optical sensors to compensate for manufacturing errors and environmental perturbations. A grating-assisted operating-point tuning system has been designed that uses a diffraction grating and feedback control, functions as a tunable-bandpass optical filter, and can be used as an effective demodulation subsystem in sensor systems based on optical interferometers that use broadband light sources. This demodulation method has no signal-detection bandwidth limit, a high tuning speed, a large tunable range, increased interference fringe contrast, and the potential for absolute optical-path-difference measurement. The achieved 40-nm tuning range, which is limited by the available source spectrum width, 400-nm/s tuning speed, and a step resolution of 0.4 nm, is sufficient for most practical measurements. A significant improvement in signal-to-noise ratio in a fiber Fabry-Perot acoustic-wave sensor system proved that the expected fringe contrast and sensitivity increase.

  7. Optical fiber endface biosensor based on resonances in dielectric waveguide gratings

    NASA Astrophysics Data System (ADS)

    Wawro, Debra D.; Tibuleac, Sorin; Magnusson, Robert; Liu, Hanli

    2000-05-01

    A new fiber optic sensor integrating dielectric diffraction gratings and thin films on optical fiber endfaces is prosed for biomedical sensing applications. This device utilizes a resonant dielectric waveguide grating structure fabricated on an optical fiber endface to probe reactions occurring in a sensing layer deposited on its surface. The operation of this sensor is based upon a fundamental resonance effect that occurs in waveguide gratings. An incident broad- spectrum signal is guided within an optical fiber and is filtered to reflect or transmit a desired spectral band by the diffractive thin film structure on its endface. Slight changes in one or more parameters of the waveguide grating, such as refractive index or thickness, can result in a responsive shift of the reflected or transmitted spectral peak that can be detected with spectroscopic instruments. This new sensor concept combines improved sensitivity and accuracy with attractive features found separately in currently available fiber optic sensors, such as large dynamic range, small sensing proximity, real time operation, and remote sensing. Diffractive elements of this type consisting of a photoresist grating on a Si3N4 waveguide have been fabricated on multimode optical fiber endfaces with 100 micrometers cores. Preliminary experimental tests using a tunable Ti:sapphire laser indicate notches of 18 percent in the transmission spectrum of the fiber endface guided-mode resonance devices. A theoretical analysis of the device performance capabilities is presented and applied to evaluate the feasibility and potential advantages of this bioprobe.

  8. 5.5nm wavelength-tunable high-power MOPA diode laser system at 971 nm

    NASA Astrophysics Data System (ADS)

    Tawfieq, Mahmoud; Müller, André; Fricke, Jörg; Della Casa, Pietro; Ressel, Peter; Ginolas, Arnim; Feise, David; Sumpf, Bernd; Tränkle, Günther

    2018-02-01

    In this work, a widely tunable hybrid master oscillator power amplifier (MOPA) diode laser with 6.2 W of output power at 971.8 nm will be presented. The MO is a DBR laser, with a micro heater embedded on top of the DBR grating for wavelength tunability. The emitted light of the MO is collimated and coupled into a tapered amplifier using micro cylindrical lenses, all constructed on a compact 25 mm × 25 mm conduction cooled laser package. The MOPA system emits light with a measured spectral width smaller than 17 pm, limited by the spectrometer, and with a beam propagation factor of M2 1/e2 = 1.3 in the slow axis. The emission is thus nearly diffraction limited with 79% of the total power within the central lobe (4.9 W diffraction limited). The electrically controlled micro-heater provides up to 5.5 nm of wavelength tunability, up to a wavelength of 977.3 nm, while maintaining an output power variation of only +/- 0.16 % for the entire tuning range.

  9. Free-space wavelength-multiplexed optical scanner demonstration.

    PubMed

    Yaqoob, Zahid; Riza, Nabeel A

    2002-09-10

    Experimental demonstration of a no-moving-parts free-space wavelength-multiplexed optical scanner (W-MOS) is presented. With fast tunable lasers or optical filters and planar wavelength dispersive elements such as diffraction gratings, this microsecond-speed scanner enables large several-centimeter apertures for subdegree angular scans. The proposed W-MOS design incorporates a unique optical amplifier and variable optical attenuator combination that enables the calibration and modulation of the scanner response, leading to any desired scanned laser beam power shaping. The experimental setup uses a tunable laser centered at 1560 nm and a 600-grooves/mm blazed reflection grating to accomplish an angular scan of 12.92 degrees as the source is tuned over an 80-nm bandwidth. The values for calculated maximum optical beam divergance, required wavelength resolution, beam-pointing accuracy, and measured scanner insertion loss are 1.076 mrad, 0.172 nm, 0.06 mrad, and 4.88 dB, respectively.

  10. Broadly tunable picosecond ir source

    DOEpatents

    Campillo, A.J.; Hyer, R.C.; Shapiro, S.L.

    1980-04-23

    A picosecond traveling-wave parametric device capable of controlled spectral bandwidth and wavelength in the infrared is reported. Intense 1.064 ..mu..m picosecond pulses (1) pass through a 4.5 cm long LiNbO/sub 3/ optical parametric oscillator crystal (2) set at its degeneracy angle. A broad band emerges, and a simple grating (3) and mirror (4) arrangement is used to inject a selected narrow-band into a 2 cm long LiNbO/sub 3/ optical parametric amplifier crystal (5) along a second pump line. Typical input energies at 1.064 ..mu..m along both pump lines are 6 to 8 mJ for the oscillator and 10 mJ for the amplifier. This yields 1 mJ of tunable output in the range 1.98 to 2.38 ..mu..m which when down-converted in a 1 cm long CdSe crystal mixer (6) gives 2 ..mu..J of tunable radiation over the 14.8 to 18.5 ..mu..m region. The bandwidth and wavelength of both the 2 and 16 ..mu..m radiation output are controlled solely by the diffraction grating.

  11. Broadly tunable picosecond IR source

    DOEpatents

    Campillo, Anthony J.; Hyer, Ronald C.; Shapiro, Stanley J.

    1982-01-01

    A picosecond traveling-wave parametric device capable of controlled spectral bandwidth and wavelength in the infrared is reported. Intense 1.064 .mu.m picosecond pulses (1) pass through a 4.5 cm long LiNbO.sub.3 optical parametric oscillator crystal (2) set at its degeneracy angle. A broad band emerges, and a simple grating (3) and mirror (4) arrangement is used to inject a selected narrow-band into a 2 cm long LiNbO.sub.3 optical parametric amplifier crystal (5) along a second pump line. Typical input energies at 1.064 .mu.m along both pump lines are 6-8 mJ for the oscillator and 10 mJ for the amplifier. This yields 1 mJ of tunable output in the range 1.98 to 2.38 .mu.m which when down-converted in a 1 cm long CdSe crystal mixer (6) gives 2 .mu.J of tunable radiation over the 14.8 to 18.5 .mu.m region. The bandwidth and wavelength of both the 2 and 16 .mu.m radiation output are controlled solely by the diffraction grating.

  12. Near-infrared light-controlled tunable grating based on graphene/elastomer composites

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Jia, Shuhai; Wang, Yonglin; Tang, Zhenhua

    2018-02-01

    A near-infrared (nIR) light actuated tunable transmission optical grating based on graphene nanoplatelet (GNP)/polydimethylsiloxane (PDMS) and PDMS is proposed. A simple fabrication protocol is studied that allows integration of the grating with the actuation mechanism; both components are made from soft elastomers, and this ensure the tunability and the light-driven operation of the grating. The resulting grating structure demonstrates continuous period tunability of 2.7% under an actuation power density of 220 mW cm-2 within a period of 3 s and also demonstrates a time-independent characteristic. The proposed infrared activated grating can be developed for wireless remote light splitting in bio/chemical sensing and optical telecommunications applications.

  13. Evaluation of domain randomness in periodically poled lithium niobate by diffraction noise measurement.

    PubMed

    Dwivedi, Prashant Povel; Choi, Hee Joo; Kim, Byoung Joo; Cha, Myoungsik

    2013-12-16

    Random duty-cycle errors (RDE) in ferroelectric quasi-phase-matching (QPM) devices not only affect the frequency conversion efficiency, but also generate non-phase-matched parasitic noise that can be detrimental to some applications. We demonstrate an accurate but simple method for measuring the RDE in periodically poled lithium niobate. Due to the equivalence between the undepleted harmonic generation spectrum and the diffraction pattern from the QPM grating, we employed linear diffraction measurement which is much simpler than tunable harmonic generation experiments [J. S. Pelc, et al., Opt. Lett.36, 864-866 (2011)]. As a result, we could relate the RDE for the QPM device to the relative noise intensity between the diffraction orders.

  14. Creation of vector beams from a polarization diffraction grating using a programmable liquid crystal spatial light modulator and a q-plate

    NASA Astrophysics Data System (ADS)

    Badham, Katherine Emily

    This thesis presents the ability of complete polarization control of light to create a polarization diffraction grating (PDG). This system has the ability to create diffracted light with each order having a separate high-order polarization state in one location on the optical axis. First, an external Excel program is used to create a grating phase profile from userspecified target diffraction orders. High-order vector beams in this PDG are created using a combination of two devices---a liquid crystal spatial light modulator (LC-SLM) manufactured by Seiko Epson, and a tunable q -plate from Citizen Holdings Co. The transmissive SLM is positioned in an optical setup with a reflective architecture allowing control over both the horizontal and vertical components of the laser beam. The SLM has its LC director oriented vertically only affecting the vertically polarized state, however, the optical setup allows modulation of both vertical and horizontal components by the use of a quarter-wave plate (QWP) and a mirror to rotate the polarizations 90 degrees. Each half of the SLM is encoded with an anisotropic phase-only diffraction grating which are superimposed to create a select number of orders with the desired polarization states and equally distributed intensity. The technique of polarimetry is used to confirm the polarization state of each diffraction order. The q-plate is an inhomogeneous birefringent waveplate which has the ability to convert zero-order vector beams into first-order vector beams. The physical placement of this device into the system converts the orders with zero-order polarization states to first-order polarization states. The light vector patterns of each diffraction order confirm which first-order polarization state of is produced. A specially made PDG sextuplicator is encoded onto the SLM to generate six diffraction orders with separate states of polarization.

  15. An on-chip colloidal magneto-optical grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prikockis, M.; Wijesinghe, H.; Chen, A.

    2016-04-18

    Interacting nano- and micro-particles provide opportunities to create a wide range of useful colloidal and soft matter constructs. In this letter, we examine interacting superparamagnetic polymeric particles residing on designed permalloy (Ni{sub 0.8} Fe{sub 0.2}) shapes that are subject to weak time-orbiting magnetic fields. The precessing field and magnetic barriers that ensue along the outer perimeter of the shapes allow for containment concurrent with independent field-tunable ordering of the dipole-coupled particles. These remotely activated arrays with inter-particle spacing comparable to the wavelength of light yield microscopic on-chip surface gratings for beam steering and magnetically regulated light diffraction applications.

  16. Resonance surface plasmon spectroscopy by tunable enhanced light transmission through nanostructured gratings and thin films

    NASA Astrophysics Data System (ADS)

    Yeh, Wei-Hsun

    Surface plasmon resonance (SPR) is a powerful tool in probing interfacial events in that any changes of effective refractive index in the interface directly impact the behavior of surface plasmons, an electromagnetic wave, travelling along the interface. Surface plasmons (SPs) are generated only if the momemtum of incident light matches that of SPs in the interface. This thesis focuses on tuning the behavior of SPs by changing the topology of diffraction gratings, monitoring the thickness of thin films by diffraction gratings, and use of dispersion images to analyze complex optical responses of SPs through diffraction gratings. Chapter 1 covers the background/principle of SPR, comprehensive literature review, sensor applications, control of SPR spectral responses, and sensitivity of SPR. In Chapter 2, we illustrate a chirped grating with varying surface topology along its spatial position. We demonstrated that the features of nanostructure such as pitch and amplitude significantly impact the behavior of enhanced transmission. In addition, we also illustrate the sensing application of chirped grating and the results indicate that the chirped grating is a sensitive and information rich SPR platform. In chapter 3, we used a commercial DVD diffraction grating as a SPR coupler. A camera-mounted microscope with Bertrend lens attachment is used to observe the enhanced transmission. We demonstrate that this system can monitor the SPR responses and track the thickness of a silicon monoxide film without using a spectrophotometer. Surface plasmons are a result of collective oscillation of free electrons in the metal/dielectric interface. Thus, the interaction of SPs with delocalized electrons from molecular resonance is complex. In chapter 4, we perform both experimental and simulation works to address this complex interaction. Detailed examination and analysis show nontypical SPR responses. For p-polarized light, a branch of dispersion curve and quenching of SPs in the Q band of zinc phthalocyanine are observed. For both p- and s-polarized light, additional waveguided modes are observed and the wavelength from different guided modes are dispersed. Diffraction gratings can provide complicated optical information about SPs. Both front side (air/metal) and back side (metal/substrate) provide SPR signals simultaneously. In chapter 5, we use dispersion images to analyze the complicated optical responses of SPR from an asymmetrical diffraction grating consisting of three layers (air/gold/polycarbonate). We illustrate that clear identification of SPR responses from several diffraction orders at front side and back side can be achieved by the use of dispersion images. Theoretical prediction and experimental results show consistency. We also show that only the behavior of SPs from the front side is impacted by the deposition of Langmuir-Blodgett dielectric films. In chapter 6, we construct a diffraction grating that has a fixed pitch and several amplitudes on its surface by using interference lithography. The purpose of this work is to examine how the amplitude impacts the behavior of transmission peaks. Different amplitudes are successfully fabricated by varying development time in the lithography process. We observed that largest (optimized) enhanced transmission peak shows as the amplitude approach a critical value. Transmission is not maximized below or beyond a critical amplitude. We also found that transmission enhancements are strongly affected by the diffraction efficiencies. A maximum enhancement is observed as diffraction efficiency is largest where amplitude reaches the critical value. The experimental results are then compared to the simulation. (Abstract shortened by UMI.)

  17. Intracore and extracore examination of fiber gratings with coherent detection

    NASA Astrophysics Data System (ADS)

    Froggatt, Mark Earl

    2001-06-01

    This thesis introduces several new methods of measurement to aid in the production and evaluation of Bragg gratings in optical fiber. Five measurements are described: UV fringe visualization for grating production, weak grating measurement for distributed sensing, strong grating measurement for telecommunication applications, second harmonic grating measurement for grating chirp assessment, and grating visualization using radiation diffraction from strong Bragg gratings. The weak grating measurement for distributed strain sensing is a summary of work published prior to beginning the thesis research, and is provided for background purposes. The UV fringe visualization is accomplished by using a phase mask very close to the plane of the fiber to diffract the incoming beams used to write the Bragg grating into nearly parallel alignment, leading to macroscopic fringes indicative of the phase, frequency, amplitude, and contrast of the microscopic fringes incident on the fiber. The weak grating measurement uses Optical Frequency Domain Reflectometry (OFDR) to measure the spatial distribution of the coupling strength of weak gratings. Included in the description of the OFDR technique are recent advances in the precision monitoring of the emission wavelength of tunable lasers. The precise monitoring of wavelength is critical to the functioning of OFDR. The strong grating measurement is based on a modified form of OFDR and an analysis of the problem in the time and frequency domains to produce accurate measurements of both the reflection and transmission Transfer Functions for Bragg gratings. This measurement technique is also applicable to a wide variety of optical fiber devices, and is shown to be scalable to multiple port devices. The second-harmonic measurement for grating chirp analysis is similar to the weak grating measurement, but it was done at a wavelength resonant with the second- harmonic grating in the fiber-780 nm for 1550 nm reflection gratings. The second-harmonic grating results from nonlinearities in the grating growth process and, due to the great sensitivity of OFDR, is detectable for almost all fiber gratings. The grating visualization also uses half-wavelength (780 nm) illumination of the grating through the core. This technique uses the diffraction of light into the radiation modes to make the grating in the fiber externally visible. By operating near the perpendicular radiation condition, and introducing coherent counter- propagating light, the spatial frequency and the amplitude of the grating as functions of distance along the fiber can be measured. To better understand the radiation from Bragg gratings, a technique known as the Volume Current Method (VCM) was used to derive an expression for the radiation from a Bragg grating for all of the LP fiber modes.

  18. Wavelength-spacing-tunable multichannel filter incorporating a sampled chirped fiber Bragg grating based on a symmetrical chirp-tuning technique without center wavelength shift

    NASA Astrophysics Data System (ADS)

    Han, Young-Geun; Dong, Xinyong; Lee, Ju Han; Lee, Sang Bae

    2006-12-01

    We propose and experimentally demonstrate a simple and flexible scheme for a wavelength-spacing-tunable multichannel filter exploiting a sampled chirped fiber Bragg grating based on a symmetrical modification of the chirp ratio. Symmetrical bending along a sampled chirped fiber Bragg grating attached to a flexible cantilever beam induces a variation of the chirp ratio and a reflection chirp bandwidth of the grating without a center wavelength shift. Accordingly, the wavelength spacing of a sampled chirped fiber Bragg grating is continuously controlled by the reflection chirp bandwidth variation of the grating corresponding to the bending direction, which allows for realization of an effective wavelength-spacing-tunable multichannel filter. Based on the proposed technique, we achieve the continuous tunability of the wavelength spacing in a range from 1.51 to 6.11 nm, depending on the bending direction of the cantilever beam.

  19. Polarization-Insensitive Tunable Optical Filters based on Liquid Crystal Polarization Gratings

    NASA Astrophysics Data System (ADS)

    Nicolescu, Elena

    Tunable optical filters are widely used for a variety of applications including spectroscopy, optical communication networks, remote sensing, and biomedical imaging and diagnostics. All of these application areas can greatly benefit from improvements in the key characteristics of the tunable optical filters embedded in them. Some of these key parameters include peak transmittance, bandwidth, tuning range, and transition width. In recent years research efforts have also focused on miniaturizing tunable optical filters into physically small packages for compact portable spectroscopy and hyperspectral imaging applications such as real-time medical diagnostics and defense applications. However, it is important that miniaturization not have a detrimental effect on filter performance. The overarching theme of this dissertation is to explore novel configurations of Polarization Gratings (PGs) as simple, low-cost, polarization-insensitive alternatives to conventional optical filtering technologies for applications including hyperspectral imaging and telecommunications. We approach this goal from several directions with a combination of theory and experimental demonstration leading to, in our opinion, a significant contribution to the field. We present three classes of tunable optical filters, the first of which is an angle-filtering scheme where the stop-band wavelengths are redirected off axis and the passband is transmitted on-axis. This is achieved using a stacked configuration of polarization gratings of various thicknesses. To improve this class of filter, we also introduce a novel optical element, the Bilayer Polarization Grating, exhibiting unique optical properties and demonstrating complex anchoring conditions with high quality. The second class of optical filter is analogous to a Lyot filter, utilizing stacks of static or tunable waveplates sandwiched with polarizing elements. However, we introduce a new configuration using PGs and static waveplates to replace the polarizers in the system, thereby greatly increasing the filter throughput. We then turn our attention to a Fourier filtering technique. This is a fundamentally different filtering approach involving a single PG where the filtering functionality involves selecting a spectral band with a movable aperture or slit and a diffractive element (PG in our case). Finally, we study the integration of a PG in a multi-channel wavelength blocker system focusing on the practical and fundamental limitations of using a PG as a variable optical attenuator/wavelength blocker in a commercial optical telecommunications network.

  20. Ultra-widely tunable long-period holey-fiber grating by the use of mechanical pressure.

    PubMed

    Ceballos-Herrera, D E; Torres-Gómez, I; Martínez-Ríos, A; Anzueto-Sánchez, G; Alvarez-Chávez, J A; Selvas-Aguilar, R; Sánchez-Mondragón, J J

    2007-01-20

    We report an ultra-widely tunable long-period holey-fiber grating, which combines the wide-range single-mode behavior and transverse strain sensitivity of the holey fibers with the advantages of mechanically induced long-period fiber gratings. We obtain a versatile widely tunable long-period holey-fiber grating with attractive transmission spectral characteristics for optical communications, fiber-based amplifiers, and lasers. The mechanically induced long-period holey-fiber grating shows a continuous tuning range over 500 nm, more than 12 dB depth notches with less than 0.75 dB out-of-band losses, and bandwidth control from 10 to 40 nm.

  1. Tunable dual-band nearly perfect absorption based on a compound metallic grating

    NASA Astrophysics Data System (ADS)

    Gao, Hua; Zheng, Zhi-Yuan; Feng, Juan

    2017-02-01

    Traditional metallic gratings and novel metamaterials are two basic kinds of candidates for perfect absorption. Comparatively speaking, metallic grating is the preferred choice for the same absorption effect because it is structurally simpler and more convenient to fabricate. However, to date, most of the perfect absorption effects achieved based on metamaterials are also available using an metallic grating except the tunable dual(multi)-band perfect absorption. To fill this gap, in this paper, by adding subgrooves on the rear surface as well as inside the grating slits to a free-standing metallic grating, tunable dual-band perfect absorption is also obtained for the first time. The grooves inside the slits is to tune the frequency of the Cavity Mode(CM) resonance which enhances the transmission and suppresses the reflectance simultaneously. The grooves on the rear surface give rise to the phase resonance which not only suppresses the transmission but also reinforces the reflectance depression effect. Thus, when the phase resonance and the frequency tunable CM resonance occur together, transmission and reflection can be suppressed simultaneously, dual-band nearly perfect absorption with tunable frequencies is obtained. To our knowledge, this perfect absorption phenomenon is achieved for the first time in a designed metallic grating structure.

  2. Electro-Optic Diffraction Grating Tuned Laser.

    DTIC Science & Technology

    The patent concerns an electro - optic diffraction grating tuned laser comprising a laser medium, output mirror, retro-reflective grating and an electro - optic diffraction grating beam deflector positioned between the laser medium and the reflective diffraction grating. An optional angle multiplier may be used between the electro - optic diffraction grating and the reflective grating.

  3. Tunable and reconfigurable microwave filter by use of a Bragg-grating-based acousto-optic superlattice modulator.

    PubMed

    Delgado-Pinar, M; Mora, J; Díez, A; Andrés, M V; Ortega, B; Capmany, J

    2005-01-01

    We present an all-optical novel configuration for implementing multitap transversal filters by use of a broadband source sliced by fiber Bragg grating arrays generated by propagating an acoustic wave along a strong uniform fiber Bragg grating. The tunability and reconfigurability of the microwave filter are demonstrated.

  4. Novel diffraction gratings for next generation spectrographs with high spectral dispersion

    NASA Astrophysics Data System (ADS)

    Ebizuka, N.; Okamoto, T.; Hosobata, T.; Yamagata, Y.; Sasaki, M.; Uomoto, M.; Shimatsu, T.; Sato, S.; Hashimoto, N.; Tanaka, I.; Hattori, T.; Ozaki, S.; Aoki, W.

    2016-07-01

    As a transmission grating, a surface-relief (SR) grating with sawtooth shaped ridges and volume phase holographic (VPH) grating are widely used for instruments of astronomical observations. However the SR grating is difficult to achieve high diffraction efficiency at high angular dispersion, and the VPH grating has low diffraction efficiency in high diffraction orders. We propose novel gratings that solve these problems. We introduce the hybrid grism which combines a high refractive index prism with a replicated transmission grating, which has sawtooth shaped ridges of an acute apex angle. The birefringence VPH (B-VPH) grating which contains an anisotropic medium, such as a liquid crystal, achieves diffraction efficiency up to 100% at the first diffraction order for natural polarization and for circular polarization. The quasi-Bragg (QB) grating which consists of long rectangular mirrors aligned in parallel precisely, like a window blind, achieves diffraction efficiency of 60% or more in higher than the 4th diffraction order. The volume binary (VB) grating with narrow grooves also achieves diffraction efficiency of 60% or more in higher than the 6th diffraction order. The reflector facet transmission (RFT) grating which is a SR grating with sawtooth shaped ridges of an acute apex angle achieves diffraction efficiency up to 80% in higher than the 4th diffraction order.

  5. Electro-optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing.

    PubMed

    Kroesen, Sebastian; Horn, Wolfgang; Imbrock, Jörg; Denz, Cornelia

    2014-09-22

    optical tunable Bragg gratings in lithium niobate fabricated by direct femtosecond laser writing. The hybrid design that consists of a circular type-II waveguide and a multiscan type-I Bragg grating exhibits low loss ordinary and extraordinary polarized guiding as well as narrowband reflections in the c-band of optical communications. High bandwidth tunability of more than a peak width and nearly preserved electro-optic coefficients of r(13) = 7.59 pm V(-1) and r(33) = 23.21 pm V(-1) are demonstrated.

  6. Birefringence Bragg Binary (3B) grating, quasi-Bragg grating and immersion gratings

    NASA Astrophysics Data System (ADS)

    Ebizuka, Noboru; Morita, Shin-ya; Yamagata, Yutaka; Sasaki, Minoru; Bianco, Andorea; Tanabe, Ayano; Hashimoto, Nobuyuki; Hirahara, Yasuhiro; Aoki, Wako

    2014-07-01

    A volume phase holographic (VPH) grating achieves high angular dispersion and very high diffraction efficiency for the first diffraction order and for S or P polarization. However the VPH grating could not achieve high diffraction efficiency for non-polarized light at a large diffraction angle because properties of diffraction efficiencies for S and P polarizations are different. Furthermore diffraction efficiency of the VPH grating extinguishes toward a higher diffraction order. A birefringence binary Bragg (3B) grating is a thick transmission grating with optically anisotropic material such as lithium niobate or liquid crystal. The 3B grating achieves diffraction efficiency up to 100% for non-polarized light by tuning of refractive indices for S and P polarizations, even in higher diffraction orders. We fabricated 3B grating with liquid crystal and evaluated the performance of the liquid crystal grating. A quasi-Bragg (QB) grating, which consists long rectangle mirrors aligned in parallel precisely such as a window shade, also achieves high diffraction efficiency toward higher orders. We fabricated QB grating by laminating of silica glass substrates and glued by pressure fusion of gold films. A quasi-Bragg immersion (QBI) grating has smooth mirror hypotenuse and reflector array inside the hypotenuse, instead of step-like grooves of a conventional immersion grating. An incident beam of the QBI grating reflects obliquely at a reflector, then reflects vertically at the mirror surface and reflects again at the same reflector. We are going to fabricate QBI gratings by laminating of mirror plates as similar to fabrication of the QB grating. We will also fabricate silicon and germanium immersion gratings with conventional step-like grooves by means of the latest diamond machining methods. We introduce characteristics and performance of these gratings.

  7. Electrically-programmable diffraction grating

    DOEpatents

    Ricco, Antonio J.; Butler, Michael A.; Sinclair, Michael B.; Senturia, Stephen D.

    1998-01-01

    An electrically-programmable diffraction grating. The programmable grating includes a substrate having a plurality of electrodes formed thereon and a moveable grating element above each of the electrodes. The grating elements are electrostatically programmable to form a diffraction grating for diffracting an incident beam of light as it is reflected from the upper surfaces of the grating elements. The programmable diffraction grating, formed by a micromachining process, has applications for optical information processing (e.g. optical correlators and computers), for multiplexing and demultiplexing a plurality of light beams of different wavelengths (e.g. for optical fiber communications), and for forming spectrometers (e.g. correlation and scanning spectrometers).

  8. Metal-polymer nanocomposites for stretchable optics and plasmonics

    NASA Astrophysics Data System (ADS)

    Potenza, Marco A. C.; Minnai, Chloé; Milani, Paolo

    2016-12-01

    Stretchable and conformable optical devices open very exciting perspectives for the fabrication of systems incorporating diffracting and optical power in a single element and of tunable plasmonic filters and absorbers. The use of nanocomposites obtained by inserting metallic nanoparticles produced in the gas phase into polymeric matrices allows to effectively fabricate cheap and simple stretchable optical elements able to withstand thousands of deformations and stretching cycles without any degradation of their optical properties. The nanocomposite-based reflective optical devices show excellent performances and stability compared to similar devices fabricated with standard techniques. The nanocomposite-based devices can be therefore applied to arbitrary curved non-optical grade surfaces in order to achieve optical power and to minimize aberrations like astigmatism. Examples discussed here include stretchable reflecting gratings, plasmonic filters tunable by mechanical stretching and light absorbers.

  9. Analysis of holographic polymer-dispersed liquid crystals (HPDLCs) for tunable low frequency diffractive optical elements recording

    NASA Astrophysics Data System (ADS)

    Fernández, R.; Gallego, S.; Márquez, A.; Francés, J.; Martínez, F. J.; Pascual, I.; Beléndez, A.

    2018-02-01

    Holographic polymer dispersed liquid crystals (HPDLCs) are the result of the optimization of the photopolymer fabrication techniques. They are made by recording in a photopolymerization induced phase separation process (PIPS) in which the liquid crystal molecules diffuse to dark zones in the diffraction grating originated. Thanks to the addition of liquid crystal molecules to the composition, this material has a dynamic behavior by reorientation of the liquid crystal molecules applying an electrical field. In this sense, it is possible to use this material to make dynamic devices. In this work, we study the behavior of this material working in low frequencies with different spatial periods of blazed gratings, a sharp profile whose recording is possible thanks to the addition of a Holoeye LCoS-Pluto spatial light modulator with a resolution of 1920 × 1080 pixels (HD) and a pixel size of 8 × 8 μm2. This device allows us to have an accurate and dynamic control of the phase and amplitude of the recording beam.

  10. Electrically-programmable diffraction grating

    DOEpatents

    Ricco, A.J.; Butler, M.A.; Sinclair, M.B.; Senturia, S.D.

    1998-05-26

    An electrically-programmable diffraction grating is disclosed. The programmable grating includes a substrate having a plurality of electrodes formed thereon and a moveable grating element above each of the electrodes. The grating elements are electrostatically programmable to form a diffraction grating for diffracting an incident beam of light as it is reflected from the upper surfaces of the grating elements. The programmable diffraction grating, formed by a micromachining process, has applications for optical information processing (e.g. optical correlators and computers), for multiplexing and demultiplexing a plurality of light beams of different wavelengths (e.g. for optical fiber communications), and for forming spectrometers (e.g. correlation and scanning spectrometers). 14 figs.

  11. Free-space wavelength-multiplexed optical scanner.

    PubMed

    Yaqoob, Z; Rizvi, A A; Riza, N A

    2001-12-10

    A wavelength-multiplexed optical scanning scheme is proposed for deflecting a free-space optical beam by selection of the wavelength of the light incident on a wavelength-dispersive optical element. With fast tunable lasers or optical filters, this scanner features microsecond domain scan setting speeds and large- diameter apertures of several centimeters or more for subdegree angular scans. Analysis performed indicates an optimum scan range for a given diffraction order and grating period. Limitations include beam-spreading effects based on the varying scanner aperture sizes and the instantaneous information bandwidth of the data-carrying laser beam.

  12. Fluidic optics

    NASA Astrophysics Data System (ADS)

    Whitesides, George M.; Tang, Sindy K. Y.

    2006-09-01

    Fluidic optics is a new class of optical system with real-time tunability and reconfigurability enabled by the introduction of fluidic components into the optical path. We describe the design, fabrication, operation of a number of fluidic optical systems, and focus on three devices, liquid-core/liquid-cladding (L2) waveguides, microfluidic dye lasers, and diffraction gratings based on flowing, crystalline lattices of bubbles, to demonstrate the integration of microfluidics and optics. We fabricate these devices in poly(dimethylsiloxane) (PDMS) with soft-lithographic techniques. They are simple to construct, and readily integrable with microanalytical or lab-on-a-chip systems.

  13. Slow-light, band-edge waveguides for tunable time delays.

    PubMed

    Povinelli, M; Johnson, Steven; Joannopoulos, J

    2005-09-05

    We propose the use of slow-light, band-edge waveguides for compact, integrated, tunable optical time delays. We show that slow group velocities at the photonic band edge give rise to large changes in time delay for small changes in refractive index, thereby shrinking device size. Figures of merit are introduced to quantify the sensitivity, as well as the accompanying signal degradation due to dispersion. It is shown that exact calculations of the figures of merit for a realistic, three-dimensional grating structure are well predicted by a simple quadratic-band model, simplifying device design. We present adiabatic taper designs that attain <0.1% reflection in short lengths of 10 to 20 times the grating period. We show further that cascading two gratings compensates for signal dispersion and gives rise to a constant tunable time delay across bandwidths greater than 100GHz. Given typical loss values for silicon-on-insulator waveguides, we estimate that gratings can be designed to exhibit tunable delays in the picosecond range using current fabrication technology.

  14. Effective grating theory for resonance domain surface-relief diffraction gratings.

    PubMed

    Golub, Michael A; Friesem, Asher A

    2005-06-01

    An effective grating model, which generalizes effective-medium theory to the case of resonance domain surface-relief gratings, is presented. In addition to the zero order, it takes into account the first diffraction order, which obeys the Bragg condition. Modeling the surface-relief grating as an effective grating with two diffraction orders provides closed-form analytical relationships between efficiency and grating parameters. The aspect ratio, the grating period, and the required incidence angle that would lead to high diffraction efficiencies are predicted for TE and TM polarization and verified by rigorous numerical calculations.

  15. High-power, fixed, and tunable wavelength, grating-free cascaded Raman fiber lasers

    NASA Astrophysics Data System (ADS)

    Balaswamy, V.; Arun, S.; Aparanji, Santosh; Choudhury, Vishal; Supradeepa, V. R.

    2018-04-01

    Cascaded Raman lasers enable high powers at various wavelength bands inaccessible with conventional rare-earth doped lasers. The input and output wavelengths of conventional implementations are fixed by the constituent fiber gratings necessary for cascaded Raman conversion. We demonstrate here, a simple architecture for high power, fixed and wavelength tunable, grating-free, cascaded Raman conversion between different wavelength bands. The architecture is based on the recently proposed distributed feedback Raman lasers. Here, we implement a module which converts the Ytterbium band to the eye-safe 1.5micron region. We demonstrate pump-limited output powers of over 30W in fixed and continuously wavelength tunable configurations.

  16. Wavelength-division multiplexed optical integrated circuit with vertical diffraction grating

    NASA Technical Reports Server (NTRS)

    Lang, Robert J. (Inventor); Forouhar, Siamak (Inventor)

    1994-01-01

    A semiconductor optical integrated circuit for wave division multiplexing has a semiconductor waveguide layer, a succession of diffraction grating points in the waveguide layer along a predetermined diffraction grating contour, a semiconductor diode array in the waveguide layer having plural optical ports facing the succession of diffraction grating points along a first direction, respective semiconductor diodes in the array corresponding to respective ones of a predetermined succession of wavelengths, an optical fiber having one end thereof terminated at the waveguide layer, the one end of the optical fiber facing the succession of diffraction grating points along a second direction, wherein the diffraction grating points are spatially distributed along the predetermined contour in such a manner that the succession of diffraction grating points diffracts light of respective ones of the succession of wavelengths between the one end of the optical fiber and corresponding ones of the optical ports.

  17. Talbot effect of the defective grating in deep Fresnel region

    NASA Astrophysics Data System (ADS)

    Teng, Shuyun; Wang, Junhong; Zhang, Wei; Cui, Yuwei

    2015-02-01

    Talbot effect of the grating with different defect is studied theoretically and experimentally in this paper. The defects of grating include the loss of the diffraction unit, the dislocation of the diffraction unit and the modulation of the unit separation. The exact diffraction distributions of three kinds of defective gratings are obtained according to the finite-difference time-domain (FDTD) method. The calculation results show the image of the missing or dislocating unit appears at the Talbot distance (as mentioned in K. Patorski Prog. Opt., 27, 1989, pp.1-108). This is the so-called self-repair ability of grating imaging. In addition, some more phenomena are discovered. The loss or the dislocation of diffraction unit causes the diffraction distortion within a certain radial angle. The regular modulation of unit separation changes the original diffraction, but the new periodicity of the diffraction distribution rebuilds. The self-imaging of grating with smaller random modulation still keeps the partial self-repair ability, and yet this characteristic depends on the modulation degree of defective grating. These diffraction phenomena of the defective gratings are explained by use of the diffraction theory of grating. The practical experiment is also performed and the experimental results confirm the theoretic predictions.

  18. Multiple Optical Traps with a Single-Beam Optical Tweezer Utilizing Surface Micromachined Planar Curved Grating

    NASA Astrophysics Data System (ADS)

    Kuo, Ju-Nan; Chen, Kuan-Yu

    2010-11-01

    In this paper, we present a single-beam optical tweezer integrated with a planar curved diffraction grating for microbead manipulation. Various curvatures of the surface micromachined planar curved grating are systematically investigated. The planar curved grating was fabricated using multiuser micro-electro-mechanical-system (MEMS) processes (MUMPs). The angular separation and the number of diffracted orders were determined. Experimental results indicate that the diffraction patterns and curvature of the planar curved grating are closely related. As the curvature of the planar curved grating increases, the vertical diffraction angle increases, resulting in the strip patterns of the planar curved grating. A single-beam optical tweezer integrated with a planar curved diffraction grating was developed. We demonstrate a technique for creating multiple optical traps from a single laser beam using the developed planar curved grating. The strip patterns of the planar curved grating that resulted from diffraction were used to trap one row of polystyrene beads.

  19. Geometrically tunable Fabry-Perot filters based on reflection phase shift of high contrast gratings

    NASA Astrophysics Data System (ADS)

    Fang, Liang; Shi, Zhendong; Cheng, Xin; Peng, Xiang; Zhang, Hui

    2016-03-01

    We propose tunable Fabry-Perot filters constituted by double high contrast gratings (HCGs) arrays with different periods acting as reflectors separated by a fixed short cavity, based on high reflectivity and the variety reflection phase shift of HCG array which realize dynamic regulation of the filtering condition. Single optimized HCG obtains the reflectivity of higher than 99% in a grating period ranging from 0.68μm to 0.8μm across a bandwidth of 30nm near the 1.55μm wavelength. The filters can achieve the full width at half maximum (FWHM) of spectral line of less than 0.15nm, and the linear relationship of peak wavelengths and grating periods is established. The simulation results indicate a potential new approach to design a tunable narrowband transmission filter.

  20. Carbon Nanotube Mode-Locked Thulium Fiber Laser With 200 nm Tuning Range

    PubMed Central

    Meng, Yafei; Li, Yao; Xu, Yongbing; Wang, Fengqiu

    2017-01-01

    We demonstrated a mode-locked thulium/holmium (Tm/Ho) fiber laser continuously tunable across 200 nm (from 1860 nm to 2060 nm), which to the best of our knowledge represents the widest tuning range ever achieved for a passively mode-locked fiber laser oscillator. The combined use of a broadband carbon nanotube (CNT) saturable absorber and a diffraction grating mirror ensures ultra-broad tuning range, superb stability and repeatability, and makes the demonstrated laser a highly practical source for spectroscopy, imaging and optical communications. The laser emits <5 ps pulses with an optical spectral bandwidth of ∼3 nm across the full tuning range. Our results indicate that carbon nanotubes can be an excellent saturable absorber for achieving gain-bandwidth-limited tunable operation for 2 μm thulium fiber lasers. PMID:28322327

  1. Carbon Nanotube Mode-Locked Thulium Fiber Laser With 200 nm Tuning Range

    NASA Astrophysics Data System (ADS)

    Meng, Yafei; Li, Yao; Xu, Yongbing; Wang, Fengqiu

    2017-03-01

    We demonstrated a mode-locked thulium/holmium (Tm/Ho) fiber laser continuously tunable across 200 nm (from 1860 nm to 2060 nm), which to the best of our knowledge represents the widest tuning range ever achieved for a passively mode-locked fiber laser oscillator. The combined use of a broadband carbon nanotube (CNT) saturable absorber and a diffraction grating mirror ensures ultra-broad tuning range, superb stability and repeatability, and makes the demonstrated laser a highly practical source for spectroscopy, imaging and optical communications. The laser emits <5 ps pulses with an optical spectral bandwidth of ˜3 nm across the full tuning range. Our results indicate that carbon nanotubes can be an excellent saturable absorber for achieving gain-bandwidth-limited tunable operation for 2 μm thulium fiber lasers.

  2. High power continuous operation of a widely tunable quantum cascade laser with an integrated amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slivken, S.; Sengupta, S.; Razeghi, M., E-mail: razeghi@eecs.northwestern.edu

    2015-12-21

    Wide electrical tuning and high continuous output power is demonstrated from a single mode quantum cascade laser emitting at a wavelength near 4.8 μm. This is achieved in a space efficient manner by integrating an asymmetric sampled grating distributed feedback tunable laser with an optical amplifier. An initial demonstration of high peak power operation in pulsed mode is demonstrated first, with >5 W output over a 270 nm (113 cm{sup −1}) spectral range. Refinement of the geometry leads to continuous operation with a single mode spectral coverage of 300 nm (120 cm{sup −1}) and a maximum continuous power of 1.25 W. The output beam is shown tomore » be nearly diffraction-limited, even at high amplifier current.« less

  3. Diffraction of Nondiverging Bessel Beams by Fork-Shaped and Rectilinear Grating

    NASA Astrophysics Data System (ADS)

    Janicijevic, Ljiljana; Topuzoski, Suzana

    2007-04-01

    We present an investigation about Fresnel diffraction of Bessel beams, propagating as nondiverging within a distance Ln, with or without phase singularities, by rectilinear and fork-shaped gratings. The common general transmission function of these gratings is defined and specialized for three different cases: binary amplitude gratings, amplitude holograms and their phase versions. Solving the Fresnel diffraction integral in cylindrical coordinates, we obtain analytical expressions for the diffracted wave amplitude for all types of proposed gratings, and make conclusions about the existence of phase singularities and corresponding topological charges in the created by the gratings beams of different diffraction orders.

  4. High-repetition-rate widely tunable LiF : \\mathbf{\\mathsf{F}}_\\mathbf{\\mathsf{2}}^{-} color center lasers

    NASA Astrophysics Data System (ADS)

    Men, Shaojie; Liu, Zhaojun; Cong, Zhenhua; Rao, Han; Zhang, Sasa; Liu, Yang; Zverev, Petr G.; Konyushkin, Vasily A.; Zhang, Xingyu

    2016-02-01

    High-repetition-rate tunable LiF:\\text{F}2- color center lasers pumped by quasi-continuous-wave diode-side-pumped acousto-optically Q-switched Nd:YAG laser are demonstrated. Littrow-grating and Littman-grating tuning schemes are studied respectively. In the Littrow-grating scheme, the tuning range was 1085 nm to 1275 nm, and the maximal average output power was 275 mW. In the Littman-grating scheme, the tuning range was 1105.5 nm to 1215.5 nm, and the maximal average output power was 135 mW.

  5. Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing

    NASA Technical Reports Server (NTRS)

    Guo, Junpeng (Inventor)

    2015-01-01

    The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.

  6. Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing

    NASA Technical Reports Server (NTRS)

    Guo, Junpeng (Inventor)

    2016-01-01

    The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.

  7. Optical devices combining an organic semiconductor crystal with a two-dimensional inorganic diffraction grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitazawa, Takenori; Yamao, Takeshi, E-mail: yamao@kit.ac.jp; Hotta, Shu

    2016-02-01

    We have fabricated optical devices using an organic semiconductor crystal as an emission layer in combination with a two-dimensional (2D) inorganic diffraction grating used as an optical cavity. We formed the inorganic diffraction grating by wet etching of aluminum-doped zinc oxide (AZO) under a 2D cyclic olefin copolymer (COC) diffraction grating used as a mask. The COC diffraction grating was fabricated by nanoimprint lithography. The AZO diffraction grating was composed of convex prominences arranged in a triangular lattice. The organic crystal placed on the AZO diffraction grating indicated narrowed peaks in its emission spectrum under ultraviolet light excitation. These aremore » detected parallel to the crystal plane. The peaks were shifted by rotating the optical devices around the normal to the crystal plane, which reflected the rotational symmetries of the triangular lattice through 60°.« less

  8. High-power, fixed, and tunable wavelength, grating-free cascaded Raman fiber lasers.

    PubMed

    Balaswamy, V; Arun, S; Aparanji, Santosh; Choudhury, Vishal; Supradeepa, V R

    2018-04-01

    Cascaded Raman lasers enable high powers at various wavelength bands inaccessible with conventional rare-earth-doped lasers. The input and output wavelengths of conventional implementations are fixed by the constituent fiber gratings necessary for cascaded Raman conversion. We demonstrate here a simple architecture for high-power, fixed, and wavelength tunable, grating-free, cascaded Raman conversion between different wavelength bands. The architecture is based on the recently proposed distributed feedback Raman lasers. Here, we implement a module which converts the ytterbium band to the eye-safe 1.5 μm region. We demonstrate pump-limited output powers of over 30 W in fixed and continuously wavelength tunable configurations.

  9. Overview of diffraction gratings technologies for spaceflight satellites and ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Cotel, A.; Liard, A.; Desserouer, F.; Pichon, P.

    2017-11-01

    The diffraction gratings are widely used in Space-flight satellites for spectrograph instruments or in ground-based telescopes in astronomy. The diffraction gratings are one of the key optical components of such systems and have to exhibit very high optical performances. HORIBA Jobin Yvon S.A.S. (part of HORIBA Group) is in the forefront of such gratings development for more than 40 years. During the past decades, HORIBA Jobin Yvon (HJY) has developed a unique expertise in diffraction grating design and manufacturing processes for holographic, ruled or etched gratings. We will present in this paper an overview of diffraction grating technologies especially designed for space and astronomy applications. We will firstly review the heritage of the company in this field with the space qualification of different grating types. Then, we will describe several key grating technologies developed for specific space or astronomy projects: ruled blazed low groove density plane reflection grating, high-groove density holographic toroidal and spherical grating, and finally transmission Fused Silica Etched (FSE) grism-assembled grating. We will not present the Volume Phase Holographic (VPHG) grating type which is used in Astronomy.

  10. Overview of diffraction gratings technologies for space-flight satellites and astronomy

    NASA Astrophysics Data System (ADS)

    Cotel, Arnaud; Liard, Audrey; Desserouer, Frédéric; Bonnemason, Francis; Pichon, Pierre

    2014-09-01

    The diffraction gratings are widely used in Space-flight satellites for spectrograph instruments or in ground-based telescopes in astronomy. The diffraction gratings are one of the key optical components of such systems and have to exhibit very high optical performances. HORIBA Jobin Yvon S.A.S. (part of HORIBA Group) is in the forefront of such gratings development for more than 40 years. During the past decades, HORIBA Jobin Yvon (HJY) has developed a unique expertise in diffraction grating design and manufacturing processes for holographic, ruled or etched gratings. We will present in this paper an overview of diffraction grating technologies especially designed for space and astronomy applications. We will firstly review the heritage of the company in this field with the space qualification of different grating types. Then, we will describe several key grating technologies developed for specific space or astronomy projects: ruled blazed low groove density plane reflection grating, holographic blazed replica plane grating, high-groove density holographic toroidal and spherical grating and transmission Fused Silica Etched (FSE) grismassembled grating.

  11. A tunable single-monochromator Raman system based on the supercontinuum laser and tunable filters for resonant Raman profile measurements.

    PubMed

    Liu, X-L; Liu, H-N; Tan, P-H

    2017-08-01

    Resonant Raman spectroscopy requires that the wavelength of the laser used is close to that of an electronic transition. A tunable laser source and a triple spectrometer are usually necessary for resonant Raman profile measurements. However, such a system is complex with low signal throughput, which limits its wide application by scientific community. Here, a tunable micro-Raman spectroscopy system based on the supercontinuum laser, transmission grating, tunable filters, and single-stage spectrometer is introduced to measure the resonant Raman profile. The supercontinuum laser in combination with transmission grating makes a tunable excitation source with a bandwidth of sub-nanometer. Such a system exhibits continuous excitation tunability and high signal throughput. Its good performance and flexible tunability are verified by resonant Raman profile measurement of twisted bilayer graphene, which demonstrates its potential application prospect for resonant Raman spectroscopy.

  12. Multimode Surface Plasmon Excitations on Organic Thin Film/Metallic Diffraction Grating

    NASA Astrophysics Data System (ADS)

    Baba, Akira; Kanda, Kenji; Ohno, Tsutomu; Ohdaira, Yasuo; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao

    2010-01-01

    In this work, we demonstrate multimode surface plasmon (SP) excitations by white light irradiation on metallic diffraction grating/plastic substrates. Recordable compact discs were used as the diffraction grating substrates on which silver films were deposited by vacuum evaporation. Since the grating pitch (1.6 µm) was larger than that of diffraction gratings commonly used for the excitation of SPs, multimode SP excitations due to several diffraction orders were observed simultaneously in the wavelength region from 400 to 800 nm. The obtained SP excitations were then compared with the calculated SP dispersion on the grating. The multimode SP excitations were further studied on spin-coated poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) thin film/silver grating substrates. An increased photoluminescence intensity due to SP excitations was observed on MEH-PPV/silver grating surfaces.

  13. Phasor Analysis of Binary Diffraction Gratings with Different Fill Factors

    ERIC Educational Resources Information Center

    Martinez, Antonio; Sanchez-Lopez, Ma del Mar; Moreno, Ignacio

    2007-01-01

    In this work, we present a simple analysis of binary diffraction gratings with different slit widths relative to the grating period. The analysis is based on a simple phasor technique directly derived from the Huygens principle. By introducing a slit phasor and a grating phasor, the intensity of the diffracted orders and the grating's resolving…

  14. Suppressing Ghost Diffraction in E-Beam-Written Gratings

    NASA Technical Reports Server (NTRS)

    Wilson, Daniel; Backlund, Johan

    2009-01-01

    A modified scheme for electron-beam (E-beam) writing used in the fabrication of convex or concave diffraction gratings makes it possible to suppress the ghost diffraction heretofore exhibited by such gratings. Ghost diffraction is a spurious component of diffraction caused by a spurious component of grating periodicity as described below. The ghost diffraction orders appear between the main diffraction orders and are typically more intense than is the diffuse scattering from the grating. At such high intensity, ghost diffraction is the dominant source of degradation of grating performance. The pattern of a convex or concave grating is established by electron-beam writing in a resist material coating a substrate that has the desired convex or concave shape. Unfortunately, as a result of the characteristics of electrostatic deflectors used to control the electron beam, it is possible to expose only a small field - typically between 0.5 and 1.0 mm wide - at a given fixed position of the electron gun relative to the substrate. To make a grating larger than the field size, it is necessary to move the substrate to make it possible to write fields centered at different positions, so that the larger area is synthesized by "stitching" the exposed fields.

  15. Widely tunable long-period waveguide grating couplers

    NASA Astrophysics Data System (ADS)

    Bai, Y.; Liu, Q.; Lor, K. P.; Chiang, K. S.

    2006-12-01

    We demonstrate experimentally two widely tunable optical couplers formed with parallel long-period polymer waveguide gratings. One of the couplers consists of two parallel gratings and shows a peak coupling efficiency of ~34%. The resonance wavelength of the coupler can be tuned thermally with a sensitivity of 4.7 nm/°C. The experimental results agree well with the coupled-mode analysis. The other coupler consists of an array of ten widely separated gratings. A peak coupling efficiency of ~11% is obtained between the two best matched gratings in the array and the resonance wavelength can be tuned thermally with a sensitivity of -3.8 nm/°C. These couplers have the potential to be further developed into practical broadband add/drop multiplexers and signal dividers.

  16. Experimental observation of acoustic sub-harmonic diffraction by a grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jingfei, E-mail: benjamin.jf.liu@gatech.edu; Declercq, Nico F., E-mail: declercqdepatin@gatech.edu

    2014-06-28

    A diffraction grating is a spatial filter causing sound waves or optical waves to reflect in directions determined by the frequency of the waves and the period of the grating. The classical grating equation is the governing principle that has successfully described the diffraction phenomena caused by gratings. However, in this work, we show experimental observation of the so-called sub-harmonic diffraction in acoustics that cannot be explained by the classical grating equation. Experiments indicate two physical phenomena causing the effect: internal scattering effects within the corrugation causing a phase shift and nonlinear acoustic effects generating new frequencies. This discovery expandsmore » our current understanding of the diffraction phenomenon, and it also makes it possible to better design spatial diffraction spectra, such as a rainbow effect in optics with a more complicated color spectrum than a traditional rainbow. The discovery reveals also a possibly new technique to study nonlinear acoustics by exploitation of the natural spatial filtering effect inherent to an acoustic diffraction grating.« less

  17. Thermally tunable grating using thermo-responsive magnetic fluid

    NASA Astrophysics Data System (ADS)

    Zaibudeen, A. W.; Philip, John

    2017-04-01

    We report a thermally tunable grating prepared using poly(N-isopropylacrylamide) and super paramagnetic iron oxide nanoparticles. The array spacing is reversibly tuned by varying the temperature between 5 and 38 °C. Here, the ability of thermo-responsive polymer brushes to alter their conformation at an interface is exploited to control the grating spacing in nanoscale. The underlying mechanism for the temperature dependent conformational changes are studied by measuring the subtle intermolecular forces between the polymer covered interfaces. It is observed that the interparticle forces are repulsive and exponentially decaying with distance. The thermo-responsive grating is simple to use and offers a wide range of applications.

  18. Two-dimensional grating guided-mode resonance tunable filter.

    PubMed

    Kuo, Wen-Kai; Hsu, Che-Jung

    2017-11-27

    A two-dimensional (2D) grating guided-mode resonance (GMR) tunable filter is experimentally demonstrated using a low-cost two-step nanoimprinting technology with a one-dimensional (1D) grating polydimethylsiloxane mold. For the first nanoimprinting, we precisely control the UV LED irradiation dosage and demold the device when the UV glue is partially cured and the 1D grating mold is then rotated by three different angles, 30°, 60°, and 90°, for the second nanoimprinting to obtain 2D grating structures with different crossing angles. A high-refractive-index film ZnO is then coated on the surface of the grating structure to form the GMR filter devices. The simulation and experimental results demonstrate that the passband central wavelength of the filter can be tuned by rotating the device to change azimuth angle of the incident light. We compare these three 2D GMR filters with differential crossing angles and find that the filter device with a crossing angle of 60° exhibits the best performance. The tunable range of its central wavelength is 668-742 nm when the azimuth angle varies from 30° to 90°.

  19. Stratified Diffractive Optic Approach for Creating High Efficiency Gratings

    NASA Technical Reports Server (NTRS)

    Chambers, Diana M.; Nordin, Gregory P.

    1998-01-01

    Gratings with high efficiency in a single diffracted order can be realized with both volume holographic and diffractive optical elements. However, each method has limitations that restrict the applications in which they can be used. For example, high efficiency volume holographic gratings require an appropriate combination of thickness and permittivity modulation throughout the bulk of the material. Possible combinations of those two characteristics are limited by properties of currently available materials, thus restricting the range of applications for volume holographic gratings. Efficiency of a diffractive optic grating is dependent on its approximation of an ideal analog profile using discrete features. The size of constituent features and, consequently, the number that can be used within a required grating period restricts the applications in which diffractive optic gratings can be used. These limitations imply that there are applications which cannot be addressed by either technology. In this paper we propose to address a number of applications in this category with a new method of creating high efficiency gratings which we call stratified diffractive optic gratings. In this approach diffractive optic techniques are used to create an optical structure that emulates volume grating behavior. To illustrate the stratified diffractive optic grating concept we consider a specific application, a scanner for a space-based coherent wind lidar, with requirements that would be difficult to meet by either volume holographic or diffractive optic methods. The lidar instrument design specifies a transmissive scanner element with the input beam normally incident and the exiting beam deflected at a fixed angle from the optical axis. The element will be rotated about the optical axis to produce a conical scan pattern. The wavelength of the incident beam is 2.06 microns and the required deflection angle is 30 degrees, implying a grating period of approximately 4 microns. Creating a high efficiency volume grating with these parameters would require a grating thickness that cannot be attained with current photosensitive materials. For a diffractive optic grating, the number of binary steps necessary to produce high efficiency combined with the grating period requires feature sizes and alignment tolerances that are also unattainable with current techniques. Rotation of the grating and integration into a space-based lidar system impose the additional requirements that it be insensitive to polarization orientation, that its mass be minimized and that it be able to withstand launch and space environments.

  20. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, Michael D.; Britten, Jerald A.; Nguyen, Hoang T.; Boyd, Robert; Shore, Bruce W.

    1999-01-01

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described.

  1. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, M.D.; Britten, J.A.; Nguyen, H.T.; Boyd, R.; Shore, B.W.

    1999-05-25

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described. 7 figs.

  2. Diffraction gratings used as identifying markers

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1991-03-26

    A finely detailed diffraction grating is applied to an object as an identifier or tag which is unambiguous, difficult to duplicate, or remove and transfer to another item, and can be read and compared with prior readings with relative ease. The exact pattern of the diffraction grating is mapped by diffraction moire techniques and recorded for comparison with future readings of the same grating. 7 figures.

  3. Instrument and method for focusing X-rays, gamma rays and neutrons

    DOEpatents

    Smither, Robert K.

    1984-01-01

    A crystal diffraction instrument or diffraction grating instrument with an improved crystalline structure or grating spacing structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing or grating spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg diffraction angle for a monochromatic radiation and thereby increasing the usable area and acceptance angle. The increased planar spacing for the diffraction crystal is provided by the use of a temperature differential across the crystalline structure, by assembling a plurality of crystalline structures with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques. The increased diffraction grating element spacing is generated during the fabrication of the diffraction grating by controlling the cutting tool that is cutting the grooves or controlling the laser beam, electron beam or ion beam that is exposing the resist layer, etc. It is also possible to vary this variation in grating spacing by applying a thermal gradient to the diffraction grating in much the same manner as is done in the crystal diffraction case.

  4. Instrument and method for focusing x rays, gamma rays, and neutrons

    DOEpatents

    Smither, R.K.

    1982-03-25

    A crystal-diffraction instrument or diffraction-grating instrument is described with an improved crystalline structure or grating spacing structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing or grating spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg diffraction angle for a monochromatic radiation and thereby increasing the usable area and acceptance angle. The increased planar spacing for the diffraction crystal is provided by the use of a temperature differential across the line structures with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques. The increased diffraction grating element spacing is generated during the fabrication of the diffraction grating by controlling the cutting tool that is cutting the grooves or controlling the laser beam, electron beam, or ion beam that is exposing the resist layer, etc. It is also possible to vary this variation in grating spacing by applying a thermal gradient to the diffraction grating in much the same manner as is done in the crystal-diffraction case.

  5. Polycrystalline PLZT/ITO Ceramic Electro-Optic Phase Gratings: Electro- Optically Reconfigurable Diffractive Devices for Free-Space and In-Wafer Interconnects

    DTIC Science & Technology

    1994-09-01

    free-space and waveguide interconnects is investigated through the fabrication, testing and modeling of polycrystalline PLZT/ITO ceramic electro - optic phase...only gratings. PLZT Diffraction grating, Electro - optic diffraction grating, Optical switching, Optical interconnects, Reconfigurable interconnect

  6. A 10 micron heterodyne receiver for ultra high resolution astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Buhl, D.; Chin, G.; Faris, J.; Kostiuk, T.; Mumma, M. J.; Zipoy, D.

    1980-01-01

    An improved CO2 laser heterodyne spectrometer is examined. The present system uses reflective optics to eliminate refocusing at different wavelengths, and the local oscillator is a line-center-stabilized isotopic CO2 laser. A tunable diffraction grating makes possible easy and rapid selection of over 50 transitions per isotope of CO2. The IF (0 to 1.6 GHz) from the HgCdTe photomizer is analyzed by a 128-channel filter bank, consisting of 64 tunable 5-MHz filters and 64 fixed 25-MHz RF filters. These filters provide resolving powers of about 1,000,000 to 10,000,000 and velocity resolution of 50 to 250 m/sec; their output is synchronously detected, integrated, multiplexed and stored in a buffer memory for the desired integration period. Kitt Peak observations show the wide spectral coverage, wide mixer and electronics bandwidth, and high sensitivity of the system.

  7. Modeling spatially localized photonic nanojets from phase diffraction gratings

    NASA Astrophysics Data System (ADS)

    Geints, Yu. E.; Zemlyanov, A. A.

    2016-04-01

    We investigated numerically the specific spatially localized intense optical structure, a photonic nanojet (PNJ), formed in the near-field scattering of optical radiation at phase diffraction gratings. The finite-difference time-domain technique was employed to study the PNJ key parameters (length, width, focal distance, and intensity) produced by diffraction gratings with the saw-tooth, rectangle, and hemispheric line profiles. Our analysis showed that each type of diffraction gratings produces a photonic jet with unique characteristics. Based on the numerical calculations, we demonstrate that the PNJ could be manipulated in a wide range through the variation of period, duty cycle, and shape of diffraction grating rulings.

  8. Diffraction Gratings for High-Intensity Laser Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britten, J

    The scattering of light into wavelength-dependent discrete directions (orders) by a device exhibiting a periodic modulation of a physical attribute on a spatial scale similar to the wavelength of light has been the subject of study for over 200 years. Such a device is called a diffraction grating. Practical applications of diffraction gratings, mainly for spectroscopy, have been around for over 100 years. The importance of diffraction gratings in spectroscopy for the measurement of myriad properties of matter can hardly be overestimated. Since the advent of coherent light sources (lasers) in the 1960's, applications of diffraction gratings in spectroscopy havemore » further exploded. Lasers have opened a vast application space for gratings, and apace, gratings have enabled entirely new classes of laser systems. Excellent reviews of the history, fundamental properties, applications and manufacturing techniques of diffraction gratings up to the time of their publication can be found in the books by Hutley (1) and more recently Loewen and Popov (2). The limited scope of this chapter can hardly do justice to such a comprehensive subject, so the focus here will be narrowly limited to characteristics required for gratings suitable for high-power laser applications, and methods to fabricate them. A particular area of emphasis will be on maximally-efficient large-aperture gratings for short-pulse laser generation.« less

  9. Experimental demonstration of high sensitivity for silver rectangular grating-coupled surface plasmon resonance (SPR) sensing

    NASA Astrophysics Data System (ADS)

    Dai, Yanqiu; Xu, Huimei; Wang, Haoyu; Lu, Yonghua; Wang, Pei

    2018-06-01

    We experimentally demonstrated a high sensitivity of surface plasmon resonance (SPR) sensor with silver rectangular grating coupling. The reflection spectra of the silver gratings indicated that surface plasmon resonance can be excited by either positive or negative order diffraction of the grating, depending on the period of the gratings. Comparing to prism-coupled SPR sensor, the sensitivities are higher for negative order diffraction coupling in bigger coupling angle, but much smaller for positive order diffraction coupling of the gratings. High sensitivity of 254.13 degree/RIU is experimentally realized by grating-based SPR sensor in the negative diffraction excitation mode. Our work paves the way for compact and sensitive SPR sensor in the applications of biochemical and gas sensing.

  10. Construction of an Extended Cavity Tunable Diode Laser

    NASA Astrophysics Data System (ADS)

    Deveney, Edward; Metcalf, Harold; Noe, John

    2001-03-01

    A diverse and vast amount of experiments at the forefront of experimental physics typically use diode lasers as an integral part of their arrangement. However, researchers who use unmodified commercially available diode lasers run into several complications. The laser diode that is purchased is often not of the same wavelength as is advertised; thus the researcher’s desired wavelength is not met. Because the semiconductor has such a short external cavity, it is very sensitive to the injection current, changes in room temperature, and has a large linewidth making it harder to tune. To obtain a finely tuned diode laser, temperature and current controlling of the diode laser are used in conjunction with an extended semiconductor cavity. This is achieved by mounting the hermetically sealed assembly atop a thermoelectric cooler, which uses the Peltier effect. Furthermore, the variation of the injection current may be used as an additional control for the wavelength output of the diode. The power range of 70 mW as controlled by the injection current adjusts the wavelength by a span of only 4 nanometers. The extended cavity consists of a diffraction grating adhered to a mirror mount and is used for grating feedback. That in turn is used to reduce the linewidth sufficiently enough in order to provide much better tunability. In the next three weeks, the tunable diode laser will be specifically applied to research in the areas of Second Harmonic Generation in a PPLN Crystal and Saturated Rubidium Spectroscopy. This study was supported in part by NSF grant PHY99-12312.

  11. Nano-optomechanical characterization of surface-plasmon-based tunable filter integrated with comb-drive actuator

    NASA Astrophysics Data System (ADS)

    Honma, H.; Mitsudome, M.; Ishida, M.; Sawada, K.; Takahashi, K.

    2017-03-01

    We report a tunable plasmonic color filter consisting of a metamaterial periodic grating and microelectromechanical systems (MEMS) actuator. An aluminum subwavelength grating is integrated with electrostatic comb-drive actuators to expand the metal subwavelength period, which allows continuous control of the excitation wavelength of surface plasmons (SPs). We develop a batch fabrication process by employing a liftoff technique using an electron beam resist altered by the electron dose depending on different aspect ratios (length/width) for various components such as the subwavelength grating, nanohinge flexural suspensions, and comb fingers. We successfully demonstrate a continuous shift in the excitation wavelength over the 514-635 nm range by nanopitch expansion. The design margin of the grating period for SP excitation is evaluated by comparing the experimental pitch variation and theoretically calculated values. The resonance frequency of the tunable filter is optically measured to be approximately 10 kHz. The optically and mechanically obtained values agree well with the theory of electrostatic actuation and finite-difference time-domain simulation.

  12. Gelator-doped liquid-crystal phase grating with multistable and dynamic modes

    NASA Astrophysics Data System (ADS)

    Lin, Hui-Chi; Yang, Meng-Ru; Tsai, Sheng-Feng; Yan, Shih-Chiang

    2014-01-01

    We demonstrate a gelator-doped nematic liquid-crystal (LC) phase grating, which can be operated in both the multistable mode and the dynamic mode. Thermoreversible association and dissociation of the gelator molecules can vary and fix the multistable diffraction efficiencies of the gratings. A voltage (V) can also be applied to modulate dynamically the diffraction efficiencies of the grating, which behaves as a conventional LC grating. Experimental results show that the variations of the diffraction efficiencies in the multistable and dynamic modes are similar. The maximum diffraction efficiency is approximately 30% at V = 2 V.

  13. Gelator-doped liquid-crystal phase grating with multistable and dynamic modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Hui-Chi, E-mail: huichilin@nfu.edu.tw; Yang, Meng-Ru; Tsai, Sheng-Feng

    2014-01-06

    We demonstrate a gelator-doped nematic liquid-crystal (LC) phase grating, which can be operated in both the multistable mode and the dynamic mode. Thermoreversible association and dissociation of the gelator molecules can vary and fix the multistable diffraction efficiencies of the gratings. A voltage (V) can also be applied to modulate dynamically the diffraction efficiencies of the grating, which behaves as a conventional LC grating. Experimental results show that the variations of the diffraction efficiencies in the multistable and dynamic modes are similar. The maximum diffraction efficiency is approximately 30% at V = 2 V.

  14. Thermal tuning On narrow linewidth fiber laser

    NASA Astrophysics Data System (ADS)

    Han, Peiqi; Liu, Tianshan; Gao, Xincun; Ren, Shiwei

    2010-10-01

    At present, people have been dedicated to high-speed and large-capacity optical fiber communication system. Studies have been shown that optical wavelength division multiplexing (WDM) technology is an effective means of communication to increase the channel capacity. Tunable lasers have very important applications in high-speed, largecapacity optical communications, and distributed sensing, it can provide narrow linewidth and tunable laser for highspeed optical communication. As the erbium-doped fiber amplifier has a large gain bandwidth, the erbium-doped fiber laser can be achieved lasing wavelength tunable by adding a tunable filter components, so tunable filter device is the key components in tunable fiber laser.At present, fiber laser wavelength is tuned by PZT, if thermal wavelength tuning is combined with PZT, a broader range of wavelength tuning is appearance . Erbium-doped fiber laser is used in the experiments,the main research is the physical characteristics of fiber grating temperature-dependent relationship and the fiber grating laser wavelength effects. It is found that the fiber laser wavelength changes continuously with temperature, tracking several temperature points observed the self-heterodyne spectrum and found that the changes in spectra of the 3dB bandwidth of less than 1kHz, and therefore the fiber laser with election-mode fiber Bragg grating shows excellent spectral properties and wavelength stability.

  15. Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating.

    PubMed

    He, Xiaoying; Liu, Zhi-bo; Wang, D N

    2012-06-15

    We demonstrate a wavelength-tunable, passively mode-locked erbium-doped fiber laser based on graphene and chirped fiber Bragg grating. The saturable absorber used to enable passive mode-locking in the fiber laser is a section of microfiber covered by graphene film, which allows light-graphene interaction via the evanescent field of the microfiber. The wavelength of the laser can be continuously tuned by adjusting the chirped fiber Bragg grating, while maintaining mode-locking stability. Such a system has high potential in tuning the mode-locked laser pulses across a wide wavelength range.

  16. Refraction effects in soft x-ray multilayer blazed gratings.

    PubMed

    Voronov, D L; Salmassi, F; Meyer-Ilse, J; Gullikson, E M; Warwick, T; Padmore, H A

    2016-05-30

    A 2500 lines/mm Multilayer Blazed Grating (MBG) optimized for the soft x-ray wavelength range was fabricated and tested. The grating coated with a W/B4C multilayer demonstrated a record diffraction efficiency in the 2nd blazed diffraction order in the energy range from 500 to 1200 eV. Detailed investigation of the diffraction properties of the grating demonstrated that the diffraction efficiency of high groove density MBGs is not limited by the normal shadowing effects that limits grazing incidence x-ray grating performance. Refraction effects inherent in asymmetrical Bragg diffraction were experimentally confirmed for MBGs. The refraction affects the blazing properties of the MBGs and results in a shift of the resonance wavelength of the gratings and broadening or narrowing of the grating bandwidth depending on diffraction geometry. The true blaze angle of the MBGs is defined by both the real structure of the multilayer stack and by asymmetrical refraction effects. Refraction effects can be used as a powerful tool in providing highly efficient suppression of high order harmonics.

  17. Diffraction Revisited: Position of Diffraction Spots upon Rotation of a Transmission Grating

    ERIC Educational Resources Information Center

    Vollmer, Michael

    2005-01-01

    Diffraction gratings are often used in the laboratory to determine the wavelength of laser light. What happens to the spots on the screen if the grating is rotated in this set-up? The answer is nontrivial and instructive.

  18. Excitation of surface waves on one-dimensional solid–fluid phononic crystals and the beam displacement effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moiseyenko, Rayisa P.; Georgia Institute of Technology, UMI Georgia Tech – CNRS, George W. Woodruff School of Mechanical Engineering, Georgia Tech Lorraine, 2 rue Marconi, 57070 Metz-Technopole; Liu, Jingfei

    The possibility of surface wave generation by diffraction of pressure waves on deeply corrugated one-dimensional phononic crystal gratings is studied both theoretically and experimentally. Generation of leaky surface waves, indeed, is generally invoked in the explanation of the beam displacement effect that can be observed upon reflection on a shallow grating of an acoustic beam of finite width. True surface waves of the grating, however, have a dispersion that lies below the sound cone in water. They thus cannot satisfy the phase-matching condition for diffraction from plane waves of infinite extent incident from water. Diffraction measurements indicate that deeply corrugatedmore » one-dimensional phononic crystal gratings defined in a silicon wafer are very efficient diffraction gratings. They also confirm that all propagating waves detected in water follow the grating law. Numerical simulations however reveal that in the sub-diffraction regime, acoustic energy of a beam of finite extent can be transferred to elastic waves guided at the surface of the grating. Their leakage to the specular direction along the grating surface explains the apparent beam displacement effect.« less

  19. Reflective diffraction grating

    DOEpatents

    Lamartine, Bruce C.

    2003-06-24

    Reflective diffraction grating. A focused ion beam (FIB) micromilling apparatus is used to store color images in a durable medium by milling away portions of the surface of the medium to produce a reflective diffraction grating with blazed pits. The images are retrieved by exposing the surface of the grating to polychromatic light from a particular incident bearing and observing the light reflected by the surface from specified reception bearing.

  20. Near-field diffraction from amplitude diffraction gratings: theory, simulation and results

    NASA Astrophysics Data System (ADS)

    Abedin, Kazi Monowar; Rahman, S. M. Mujibur

    2017-08-01

    We describe a computer simulation method by which the complete near-field diffract pattern of an amplitude diffraction grating can be generated. The technique uses the method of iterative Fresnel integrals to calculate and generate the diffraction images. Theoretical background as well as the techniques to perform the simulation is described. The program is written in MATLAB, and can be implemented in any ordinary PC. Examples of simulated diffraction images are presented and discussed. The generated images in the far-field where they reduce to Fraunhofer diffraction pattern are also presented for a realistic grating, and compared with the results predicted by the grating equation, which is applicable in the far-field. The method can be used as a tool to teach the complex phenomenon of diffraction in classrooms.

  1. Diffraction efficiency of plasmonic gratings fabricated by electron beam lithography using a silver halide film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudheer,, E-mail: sudheer@rrcat.gov.in, E-mail: sudheer.rrcat@gmail.com; Tiwari, P.; Srivastava, Himanshu

    2016-07-28

    The silver nanoparticle surface relief gratings of ∼10 μm period are fabricated using electron beam lithography on the silver halide film substrate. Morphological characterization of the gratings shows that the period, the shape, and the relief depth in the gratings are mainly dependent on the number of lines per frame, the spot size, and the accelerating voltage of electron beam raster in the SEM. Optical absorption of the silver nanoparticle gratings provides a broad localized surface plasmon resonance peak in the visible region, whereas the intensity of the peaks depends on the number density of silver nanoparticles in the gratings. Themore » maximum efficiency of ∼7.2% for first order diffraction is observed for the grating fabricated at 15 keV. The efficiency is peaking at 560 nm with ∼380 nm bandwidth. The measured profiles of the diffraction efficiency for the gratings are found in close agreement with the Raman-Nath diffraction theory. This technique provides a simple and efficient method for the fabrication of plasmonic nanoparticle grating structures with high diffraction efficiency having broad wavelength tuning.« less

  2. Imaging spectrometer/camera having convex grating

    NASA Technical Reports Server (NTRS)

    Reininger, Francis M. (Inventor)

    2000-01-01

    An imaging spectrometer has fore-optics coupled to a spectral resolving system with an entrance slit extending in a first direction at an imaging location of the fore-optics for receiving the image, a convex diffraction grating for separating the image into a plurality of spectra of predetermined wavelength ranges; a spectrometer array for detecting the spectra; and at least one concave sperical mirror concentric with the diffraction grating for relaying the image from the entrance slit to the diffraction grating and from the diffraction grating to the spectrometer array. In one embodiment, the spectrometer is configured in a lateral mode in which the entrance slit and the spectrometer array are displaced laterally on opposite sides of the diffraction grating in a second direction substantially perpendicular to the first direction. In another embodiment, the spectrometer is combined with a polychromatic imaging camera array disposed adjacent said entrance slit for recording said image.

  3. Innovative diffraction gratings for high-resolution resonant inelastic soft x-ray scattering spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voronov, D.L.; Warwick, T.; Gullikson, E. M.

    2016-07-27

    High-resolution Resonant Inelastic X-ray Scattering (RIXS) requires diffraction gratings with very exacting characteristics. The gratings should provide both very high dispersion and high efficiency which are conflicting requirements and extremely challenging to satisfy in the soft x-ray region for a traditional grazing incidence geometry. To achieve high dispersion one should increase the groove density of a grating; this however results in a diffraction angle beyond the critical angle range and results in drastic efficiency loss. The problem can be solved by use of multilayer coated blazed gratings (MBG). In this work we have investigated the diffraction characteristics of MBGs viamore » numerical simulations and have developed a procedure for optimization of grating design for a multiplexed high resolution imaging spectrometer for RIXS spectroscopy to be built in sector 6 at the Advanced Light Source (ALS). We found that highest diffraction efficiency can be achieved for gratings optimized for 4{sup th} or 5{sup th} order operation. Fabrication of such gratings is an extremely challenging technological problem. We present a first experimental prototype of these gratings and report its performance. High order and high line density gratings have the potential to be a revolutionary new optical element that should have great impact in the area of soft x-ray RIXS.« less

  4. Integrated narrowband optical filter based on embedded subwavelength resonant grating structures

    DOEpatents

    Grann, Eric B.; Sitter, Jr., David N.

    2000-01-01

    A resonant grating structure in a waveguide and methods of tuning the performance of the grating structure are described. An apparatus includes a waveguide; and a subwavelength resonant grating structure embedded in the waveguide. The systems and methods provide advantages including narrowband filtering capabilities, minimal sideband reflections, spatial control, high packing density, and tunability.

  5. Inquiry with Laser Printer Diffraction Gratings

    ERIC Educational Resources Information Center

    Van Hook, Stephen J.

    2007-01-01

    The pages of "The Physics Teacher" have featured several clever designs for homemade diffraction gratings using a variety of materials--cloth, lithographic film, wire, compact discs, parts of aerosol spray cans, and pseudoliquids and pseudosolids. A different and inexpensive method I use to make low-resolution diffraction gratings takes advantage…

  6. System and technique for characterizing fluids using ultrasonic diffraction grating spectroscopy

    DOEpatents

    Greenwood, Margaret S [Richland, WA

    2008-07-08

    A system for determining property of multiphase fluids based on ultrasonic diffraction grating spectroscopy includes a diffraction grating on a solid in contact with the fluid. An interrogation device delivers ultrasound through the solid and a captures a reflection spectrum from the diffraction grating. The reflection spectrum exhibits peaks whose relative size depends on the properties of the various phases of the multiphase fluid. For example, for particles in a liquid, the peaks exhibit dependence on the particle size and the particle volume fraction. Where the exact relationship is know know a priori, data from different peaks of the same reflection spectrum or data from the peaks of different spectra obtained from different diffraction gratings can be used to resolve the size and volume fraction.

  7. Diffraction-Based Optical Switch

    NASA Technical Reports Server (NTRS)

    Sperno, Stevan M. (Inventor); Fuhr, Peter L. (Inventor); Schipper, John F. (Inventor)

    2005-01-01

    Method and system for controllably redirecting a light beam, having a central wavelength lambda, from a first light-receiving site to a second light-receiving site. A diffraction grating is attached to or part of a piezoelectric substrate, which is connected to one or two controllable voltage difference sources. When a substrate voltage difference is changed and the diffraction grating length in each of one or two directions is thereby changed, at least one of the diffraction angle, the diffraction order and the central wavelength is controllably changed. A diffracted light beam component, having a given wavelength, diffraction angle and diffraction order, that is initially received at a first light receiving site (e.g., a detector or optical fiber) is thereby controllably shifted or altered and can be received at a second light receiving site. A polynomially stepped, chirped grating is used in one embodiment. In another embodiment, an incident light beam, having at least one of first and second wavelengths, lambda1 and lambda2, is received and diffracted at a first diffraction grating to provide a first diffracted beam. The first diffracted beam is received and diffracted at a second diffraction grating to produce a second diffracted beam. The second diffracted beam is received at a light-sensitive transducer, having at least first and second spaced apart light detector elements that are positioned so that, when the incident light beam has wavelength lambda1 or lambda2 (lambda1 not equal to lambda2), the second diffracted beam is received at the first element or at the second element, respectively; change in a selected physical parameter at the second grating can also be sensed or measured. A sequence of spaced apart light detector elements can be positioned along a linear or curvilinear segment with equal or unequal spacing.

  8. Transparent Electrochemical Gratings from a Patterned Bistable Silver Mirror.

    PubMed

    Park, Chihyun; Na, Jongbeom; Han, Minsu; Kim, Eunkyoung

    2017-07-25

    Silver mirror patterns were formed reversibly on a polystyrene (PS)-patterned electrode to produce gratings through the electrochemical reduction of silver ions. The electrochemical gratings exhibited high transparency (T > 95%), similar to a see-through window, by matching the refractive index of the grating pattern with the surrounding medium. The gratings switch to a diffractive state upon the formation of a mirror pattern (T < 5%) with a high diffraction efficiency up to 40%, providing reversible diffractive gratings. The diffraction state was maintained in the voltage-off state (V-off) for 40 min, which demonstrated bistable reversible electrochemical grating (BREG) behavior. By carefully combining the BREGs through period matching, dual-color switching was achieved within the full color region, which exhibited three distinct optical switching states between -2.5, 0, and +2.5 V. The wide range of light tenability using the metallic BREGs developed herein enabled IR modulation, NIR light reflection, and on-demand heat transfer.

  9. Microsecond switchable thermal antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben-Abdallah, Philippe, E-mail: pba@institutoptique.fr; Benisty, Henri; Besbes, Mondher

    2014-07-21

    We propose a thermal antenna that can be actively switched on and off at the microsecond scale by means of a phase transition of a metal-insulator material, the vanadium dioxide (VO{sub 2}). This thermal source is made of a periodically patterned tunable VO{sub 2} nanolayer, which support a surface phonon-polariton in the infrared range in their crystalline phase. Using electrodes properly registered with respect to the pattern, the VO{sub 2} phase transition can be locally triggered by ohmic heating so that the surface phonon-polariton can be diffracted by the induced grating, producing a highly directional thermal emission. Conversely, when heatingmore » less, the VO{sub 2} layers cool down below the transition temperature, the surface phonon-polariton cannot be diffracted anymore so that thermal emission is inhibited. This switchable antenna could find broad applications in the domain of active thermal coatings or in those of infrared spectroscopy and sensing.« less

  10. Adaptable Diffraction Gratings With Wavefront Transformation

    NASA Technical Reports Server (NTRS)

    Iazikov, Dmitri; Mossberg, Thomas W.; Greiner, Christoph M.

    2010-01-01

    Diffraction gratings are optical components with regular patterns of grooves, which angularly disperse incoming light by wavelength. Traditional diffraction gratings have static planar, concave, or convex surfaces. However, if they could be made so that they can change the surface curvature at will, then they would be able to focus on particular segments, self-calibrate, or perform fine adjustments. This innovation creates a diffraction grating on a deformable surface. This surface could be bent at will, resulting in a dynamic wavefront transformation. This allows for self-calibration, compensation for aberrations, enhancing image resolution in a particular area, or performing multiple scans using different wavelengths. A dynamic grating gives scientists a new ability to explore wavefronts from a variety of viewpoints.

  11. Modeling spatially localized photonic nanojets from phase diffraction gratings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geints, Yu. E., E-mail: ygeints@iao.ru; Tomsk State University, 36, Lenina Avenue, Tomsk 634050; Zemlyanov, A. A.

    2016-04-21

    We investigated numerically the specific spatially localized intense optical structure, a photonic nanojet (PNJ), formed in the near-field scattering of optical radiation at phase diffraction gratings. The finite-difference time-domain technique was employed to study the PNJ key parameters (length, width, focal distance, and intensity) produced by diffraction gratings with the saw-tooth, rectangle, and hemispheric line profiles. Our analysis showed that each type of diffraction gratings produces a photonic jet with unique characteristics. Based on the numerical calculations, we demonstrate that the PNJ could be manipulated in a wide range through the variation of period, duty cycle, and shape of diffractionmore » grating rulings.« less

  12. Rewritable three-dimensional holographic data storage via optical forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yetisen, Ali K., E-mail: ayetisen@mgh.harvard.edu; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Montelongo, Yunuen

    2016-08-08

    The development of nanostructures that can be reversibly arranged and assembled into 3D patterns may enable optical tunability. However, current dynamic recording materials such as photorefractive polymers cannot be used to store information permanently while also retaining configurability. Here, we describe the synthesis and optimization of a silver nanoparticle doped poly(2-hydroxyethyl methacrylate-co-methacrylic acid) recording medium for reversibly recording 3D holograms. We theoretically and experimentally demonstrate organizing nanoparticles into 3D assemblies in the recording medium using optical forces produced by the gradients of standing waves. The nanoparticles in the recording medium are organized by multiple nanosecond laser pulses to produce reconfigurablemore » slanted multilayer structures. We demonstrate the capability of producing rewritable optical elements such as multilayer Bragg diffraction gratings, 1D photonic crystals, and 3D multiplexed optical gratings. We also show that 3D virtual holograms can be reversibly recorded. This recording strategy may have applications in reconfigurable optical elements, data storage devices, and dynamic holographic displays.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandula, Gábor, E-mail: mandula.gabor@wigner.mta.hu; Kis, Zsolt; Lengyel, Krisztián

    We report on a method for real-time dynamic calibration of a tunable external cavity diode laser by using a partially mode-matched plano-concave Fabry-Pérot interferometer in reflection geometry. Wide range laser frequency scanning is carried out by piezo-driven tilting of a diffractive grating playing the role of a frequency selective mirror in the laser cavity. The grating tilting system has a considerable mechanical inertness, so static laser frequency calibration leads to false results. The proposed real-time dynamic calibration based on the identification of primary- and Gouy-effect type secondary interference peaks with known frequency and temporal history can be used for amore » wide scanning range (from 0.2 GHz to more than 1 GHz). A concave spherical mirror with a radius of R = 100 cm and a plain 1% transmitting mirror was used as a Fabry-Pérot interferometer with various resonator lengths to investigate and demonstrate real-time calibration procedures for two kinds of laser frequency scanning functions.« less

  14. Fabrication and performance of efficient thin circular polarization gratings with Bragg properties using bulk photo-alignment of a liquid crystalline polymer

    NASA Astrophysics Data System (ADS)

    Sakhno, Oksana; Gritsai, Yuri; Sahm, Hagen; Stumpe, Joachim

    2018-03-01

    Thin circular polarization gratings, characterized by high diffraction efficiency and large, up to 42°, diffraction angles were created by polarization holography for the first time. The high efficiency of the gratings is the result of the specific properties of a photo-crosslinkable liquid crystalline polymer and a two-step photochemical/thermal processing procedure. A diffraction efficiency of up to 98% at 532 nm has been achieved for gratings with periods of 700 nm. In contrast to polarization gratings with larger periods these gratings exhibit Bragg properties. So one beam is either transmitted or diffracted depending on the direction of the circular polarization of the incident light, whereas the maximal diffraction efficiency is achieved only at the proper incident angle. The fabrication procedure consists of holographic exposure of the film at room temperature which provides the photo-selective cycloaddition of cinnamic ester groups. Upon subsequent thermal annealing above T g bulk photo-alignment of the LC polymer film occurs enhancing the optical anisotropy within the grating. The holographic patterning provides high spatial resolution, the arbitrary orientation of the LC director as well as high optical quality, thermal and chemical stability of the final gratings. Highly efficient symmetric and slanted circular polarization gratings were fabricated with the proposed technique.

  15. Recent and emerging applications of holographic photopolymers and nanocomposites

    NASA Astrophysics Data System (ADS)

    Naydenova, Izabela; Kotakonda, Pavani; Jallapuram, Raghavendra; Babeva, Tsvetanka; Mintova, S.; Bade, Denis; Martin, Suzanne; Toal, Vincent

    2010-11-01

    Sensing applications of holograms may be based on effects such as change in the spacing of the recorded fringes in a holographic diffraction grating in the presence of an analyte so that the direction of the diffracted laser light changes, or, in the case of a white light reflection grating, the wavelength of the diffracted light changes. An example is a reflection grating which swells in the presence of atmospheric moisture to indicate relative humidity by a change is the colour of the diffracted light. These devices make use of the photopolymer's ability to absorb moisture. In a more versatile approach one can add inorganic nanoparticles to the photopolymer composition. These nanoparticles have refractive indices that are different from that of the bulk photopolymer. During the holographic recording of diffraction gratings, the polymerisation and accompanying diffusion processes cause redistribution of the nanoparticles enhancing the holographic diffraction efficiency. Zeolite nanoparticles have the form of hollow cages enabling them to trap analyte molecules of appropriate sizes. The refractive index of the nanoparticle-analyte combination is normally different from that of the nanoparticles alone and this alters the refractive index modulation of the recorded grating, leading to a change in diffraction efficiency and hence of the strength of the diffracted light signal. Yet another approach makes use of a principle which we call dye deposition holography. The analyte is labelled using a dye which acts as a photosensitiser for the polymerisation process. When the analyte labeled is deposited on a layer containing the other photopolymer components photopolymerisation can take place. If the illumination is in the form of an interference pattern, a diffraction grating is formed, in the region where dye has been deposited. In this way the formation of a holographic diffraction grating itself becomes a sensing action with the potential for extremely high signal to noise ratio. The method also allows fabrication of photonic devices by direct writing, using photosensitising dye, of structures such as Fresnel zone plate lenses and waveguides onto the photopolymer layer followed by exposure to spatially uniform light. Our work on HDS is concerned with enhancing the diffraction efficiency of user selected very weak diffraction gratings by illumination with a single beam at the Bragg angle. Light in the illuminating beam is coupled into the diffracted beam and the two interfere to enhance the grating strength. In this way grating diffraction efficiency can be raised above a threshold so that a binary zero can be changed to binary one. A large number of identical weak holographic gratings may be multiplexed into the recording medium at the manufacturing stage, for user selection at the data recording stage. In this way consumer HDS systems could be made much more simply and cheaply than at present.

  16. Diffraction efficiency calculations of polarization diffraction gratings with surface relief

    NASA Astrophysics Data System (ADS)

    Nazarova, D.; Sharlandjiev, P.; Berberova, N.; Blagoeva, B.; Stoykova, E.; Nedelchev, L.

    2018-03-01

    In this paper, we evaluate the optical response of a stack of two diffraction gratings of equal one-dimensional periodicity. The first one is a surface-relief grating structure; the second, a volume polarization grating. This model is based on our experimental results from polarization holographic recordings in azopolymer films. We used films of commercially available azopolymer (poly[1-[4-(3-carboxy-4-hydroxyphenylazo) benzenesulfonamido]-1,2-ethanediyl, sodium salt]), shortly denoted as PAZO. During the recording process, a polarization grating in the volume of the material and a relief grating on the film surface are formed simultaneously. In order to evaluate numerically the optical response of this “hybrid” diffraction structure, we used the rigorous coupled-wave approach (RCWA). It yields stable numerical solutions of Maxwell’s vector equations using the algebraic eigenvalue method.

  17. A measurement of electron-wall interactions using transmission diffraction from nanofabricated gratings

    NASA Astrophysics Data System (ADS)

    Barwick, Brett; Gronniger, Glen; Yuan, Lu; Liou, Sy-Hwang; Batelaan, Herman

    2006-10-01

    Electron diffraction from metal coated freestanding nanofabricated gratings is presented, with a quantitative path integral analysis of the electron-grating interactions. Electron diffraction out to the 20th order was observed indicating the high quality of our nanofabricated gratings. The electron beam is collimated to its diffraction limit with ion-milled material slits. Our path integral analysis is first tested against single slit electron diffraction, and then further expanded with the same theoretical approach to describe grating diffraction. Rotation of the grating with respect to the incident electron beam varies the effective distance between the electron and grating bars. This allows the measurement of the image charge potential between the electron and the grating bars. Image charge potentials that were about 15% of the value for that of a pure electron-metal wall interaction were found. We varied the electron energy from 50to900eV. The interaction time is of the order of typical metal image charge response times and in principle allows the investigation of image charge formation. In addition to the image charge interaction there is a dephasing process reducing the transverse coherence length of the electron wave. The dephasing process causes broadening of the diffraction peaks and is consistent with a model that ascribes the dephasing process to microscopic contact potentials. Surface structures with length scales of about 200nm observed with a scanning tunneling microscope, and dephasing interaction strength typical of contact potentials of 0.35eV support this claim. Such a dephasing model motivated the investigation of different metallic coatings, in particular Ni, Ti, Al, and different thickness Au-Pd coatings. Improved quality of diffraction patterns was found for Ni. This coating made electron diffraction possible at energies as low as 50eV. This energy was limited by our electron gun design. These results are particularly relevant for the use of these gratings as coherent beam splitters in low energy electron interferometry.

  18. Stretchable and Tunable Microtectonic ZnO-Based Sensors and Photonics.

    PubMed

    Gutruf, Philipp; Zeller, Eike; Walia, Sumeet; Nili, Hussein; Sriram, Sharath; Bhaskaran, Madhu

    2015-09-16

    The concept of realizing electronic applications on elastically stretchable "skins" that conform to irregularly shaped surfaces is revolutionizing fundamental research into mechanics and materials that can enable high performance stretchable devices. The ability to operate electronic devices under various mechanically stressed states can provide a set of unique functionalities that are beyond the capabilities of conventional rigid electronics. Here, a distinctive microtectonic effect enabled oxygen-deficient, nanopatterned zinc oxide (ZnO) thin films on an elastomeric substrate are introduced to realize large area, stretchable, transparent, and ultraportable sensors. The unique surface structures are exploited to create stretchable gas and ultraviolet light sensors, where the functional oxide itself is stretchable, both of which outperform their rigid counterparts under room temperature conditions. Nanoscale ZnO features are embedded in an elastomeric matrix function as tunable diffraction gratings, capable of sensing displacements with nanometre accuracy. These devices and the microtectonic oxide thin film approach show promise in enabling functional, transparent, and wearable electronics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Chirped Grating Tunable Lasers for the Infrared Molecular Fingerprint Spectral Region

    DTIC Science & Technology

    2013-09-01

    lasers with chirped gratings and compare both normal DFB (pump stripe perpendicular to grating) and -DFB (pump stripe perpendicular to facets...structure. Because the period of grating increases gradually laterally, wavelength tuning is implemented by shifting pump stripe to different positions on...tilted with respect to facets and adjusting the pump stripe normal to the grating. Continuous tuning of 30 nm around 3.1 µm with 320 mW single facet

  20. Off-plane x-ray reflection grating fabrication

    NASA Astrophysics Data System (ADS)

    Peterson, Thomas J.; DeRoo, Casey T.; Marlowe, Hannah; McEntaffer, Randall L.; Miles, Drew M.; Tutt, James H.; Schultz, Ted B.

    2015-09-01

    Off-plane X-ray diffraction gratings with precision groove profiles at the submicron scale will be used in next generation X-ray spectrometers. Such gratings will be used on a current NASA suborbital rocket mission, the Off-plane Grating Rocket Experiment (OGRE), and have application for future grating missions. The fabrication of these gratings does not come without challenges. High performance off-plane gratings must be fabricated with precise radial grating patterns, optically at surfaces, and specific facet angles. Such gratings can be made using a series of common micro-fabrication techniques. The resulting process is highly customizable, making it useful for a variety of different mission architectures. In this paper, we detail the fabrication method used to produce high performance off-plane gratings and report the results of a preliminary qualification test of a grating fabricated in this manner. The grating was tested in the off-plane `Littrow' configuration, for which the grating is most efficient for a given diffraction order, and found to achieve 42% relative efficiency in the blaze order with respect to all diffracted light.

  1. Discrete wavelength-locked external cavity laser

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S. (Inventor); Silver, Joel A. (Inventor)

    2005-01-01

    An external cavity laser (and method of generating laser light) comprising: a laser light source; means for collimating light output by the laser light source; a diffraction grating receiving collimated light; a cavity feedback mirror reflecting light received from the diffraction grating back to the diffraction grating; and means for reliably tuning the external cavity laser to discrete wavelengths.

  2. Optical Sensing Device Containing Fiber Bragg Gratings

    DTIC Science & Technology

    2000-08-01

    Fabry - Perot (SFP) filter-based interrogation (Kersey et al. Opt. Lett.. 18, 1370-2. 1993), tunable acousto-optic filter inteiTOgation (Geiger et al...a tunable Fabry - Perot filter, and a tunable acousto-optical filter. Alternatively, scanning filter 28 can be omitted in device 10 of the present...invention when broadband light source 20 is a tunable broadband light source. More preferably, scanning filter 28 is a tunable Fabry - Perot filter

  3. Computer-generated holograms and diffraction gratings in optical security applications

    NASA Astrophysics Data System (ADS)

    Stepien, Pawel J.

    2000-04-01

    The term 'computer generated hologram' (CGH) describes a diffractive structure strictly calculated and recorded to diffract light in a desired way. The CGH surface profile is a result of the wavefront calculation rather than of interference. CGHs are able to form 2D and 3D images. Optically, variable devices (OVDs) composed of diffractive gratings are often used in security applications. There are various types of optically and digitally recorded gratings in security applications. Grating based OVDs are used to record bright 2D images with limited range of cinematic effects. These effects result form various orientations or densities of recorded gratings. It is difficult to record high quality OVDs of 3D objects using gratings. Stereo grams and analogue rainbow holograms offer 3D imaging, but they are darker and have lower resolution than grating OVDs. CGH based OVDs contains unlimited range of cinematic effects and high quality 3D images. Images recorded using CGHs are usually more noisy than grating based OVDs, because of numerical inaccuracies in CGH calculation and mastering. CGH based OVDs enable smooth integration of hidden and machine- readable features within an OVD design.

  4. Alternate Multilayer Gratings with Enhanced Diffraction Efficiency in the 500-5000 eV Energy Domain

    NASA Astrophysics Data System (ADS)

    Polack, François; Lagarde, Bruno; Idir, Mourad; Cloup, Audrey Liard; Jourdain, Erick; Roulliay, Marc; Delmotte, Franck; Gautier, Julien; Ravet-Krill, Marie-Françoise

    2007-01-01

    An alternate multilayer (AML) grating is a 2 dimensional diffraction structure formed on an optical surface, having a 0.5 duty cycle in the in-plane and in the in-depth direction. It can be made by covering a shallow depth laminar grating with a multilayer stack. We show here that their 2D structure confer AML gratings a high angular and energetic selectivity and therefore enhanced diffraction properties, when used in grazing incidence. In the tender X-ray range (500eV - 5000 eV) they behave much like blazed gratings. Over 15% efficiency has been measured on a 1200 lines/mm Mo/Si AML grating in the 1.2 - 1.5 keV energy range. Computer simulations show that selected multilayer materials such as Cr/C should allow diffraction efficiency over 50% at photon energies over 3 keV.

  5. Multilayer manipulated diffraction in flower beetles Torynorrhina flammea: intraspecific structural colouration variation

    NASA Astrophysics Data System (ADS)

    Song, C. X.; Liu, F.; Hao, Y. H.; Hu, X. H.; Zhang, Y. F.; Liu, X. H.

    2014-10-01

    We report that the intraspecific structural colouration variation of the beetle Torynorrhina flammea is a result of diffraction shifting manipulated by a multilayer sub-structure contained in a three-dimensional (3D) photonic architecture. With a perpendicularly 2D quasiperiodic diffraction grating inserted into the multilayer, the 3D photonic structure gives rise to anticrossing bandgaps of diffraction from the coupling of grating and multilayer bands. The angular dispersion of diffraction induced by the multilayer band shift behaves normally, in contrast to the ‘ultranegative’ behaviour controlled by the quasiperiodic grating. In addition, the diffraction wavelength is more sensitive to the multilayer periodicity than the diffraction grating constant, which explains the ‘smart’ biological selection of T. flammea in its intraspecific colouration variation from red to green to blue. The elucidated mechanism could be advantageous for the potential exploration of novel dispersive optical elements.

  6. Rectangular Relief Diffraction Gratings for Coherent Lidar Beam Scanning

    NASA Technical Reports Server (NTRS)

    Cole, H. J.; Chambers, D. M.; Dixit, S. N.; Britten, J. A.; Shore, B. W.; Kavaya, M. J.

    1999-01-01

    The application of specialized rectangular relief transmission gratings to coherent lidar beam scanning is presented. Two types of surface relief transmission grating approaches are studied with an eye toward potential insertion of a constant thickness, diffractive scanner where refractive wedges now exist. The first diffractive approach uses vertically oriented relief structure in the surface of an optical flat; illumination of the diffractive scanner is off-normal in nature. The second grating design case describes rectangular relief structure slanted at a prescribed angle with respect to the surface. In this case, illumination is normal to the diffractive scanner. In both cases, performance predictions for 2.0 micron, circularly polarized light at beam deflection angles of 30 or 45 degrees are presented.

  7. Phyllotactic arrangements of optical elements

    NASA Astrophysics Data System (ADS)

    Horacek, M.; Meluzin, P.; Kratky, S.; Matejka, M.; Kolarik, V.

    2017-05-01

    Phyllotaxy studies arrangements of biological entities, e.g. a placement of seeds in the flower head. Vogel (1979) presented a phyllotactic model based on series of seeds ordered along a primary spiral. This arrangement allows each seed to occupy the same area within a circular flower head. Recently, a similar arrangement of diffraction primitives forming a planar relief diffractive structure was presented. The planar relief structure was used for benchmarking and testing purposes of the electron beam writer patterning process. This contribution presents the analysis of local periods and azimuths of optical phyllotactic arrangements. Two kinds of network characteristic triangles are introduced. If the discussed planar structure has appropriate size and density, diffraction of the incoming light creates characteristic a phyllotactic diffraction pattern. Algorithms enabling the analysis of such behavior were developed and they were validated by fabricated samples of relief structures. Combined and higher diffraction orders are also analyzed. Different approaches enabling the creation of phyllotactic diffractive patterns are proposed. E-beam lithography is a flexible technology for various diffraction gratings origination. The e-beam patterning typically allows for the creation of optical diffraction gratings in the first diffraction order. Nevertheless, this technology enables also more complex grating to be prepared, e.g. blazed gratings and zero order gratings. Moreover, the mentioned kinds of gratings can be combined within one planar relief structure. The practical part of the presented work deals with the nano patterning of such structures by using two different types of the e-beam pattern generators.

  8. Large MOEMS diffraction grating results providing an EC-QCL wavelength scan of 20%

    NASA Astrophysics Data System (ADS)

    Grahmann, Jan; Merten, André; Herrmann, Andreas; Ostendorf, Ralf; Bleh, Daniela; Drabe, Christian; Kamenz, Jörg

    2015-02-01

    Experimental results of a large scanning grating with a diameter of 5mm and 1 kHz scan frequency are discussed. An optical diffraction grating is fabricated on a mirror single crystal silicon plate to scan the first diffraction order in the MIR-wavelength range over a quantum cascade laser facet. Special emphasis is on the development of the grating technology module to integrate it with high accuracy and reproducibility into the IPMS AME75 process flow. The principle EC-QCL setup with the scanning grating is described and first measurement results concerning laser output power and tuning range are presented.

  9. Diffraction encoded position measuring apparatus

    DOEpatents

    Tansey, Richard J.

    1991-01-01

    When a lightwave passes through a transmission grating, diffracted beams appear at the output or opposite side of the grating that are effectively Doppler shifted in frequency (phase) whereby a detector system can compare the phase of the zero order and higher order beams to obtain an indication of position. Multiple passes through the grating increase resolution for a given wavelength of a laser signal. The resolution can be improved further by using a smaller wavelength laser to generate the grating itself. Since the grating must only have a pitch sufficient to produce diffracted orders, inexpensive, ultraviolet wavelength lasers can be utilized and still obtain high resolution detection.

  10. Diffraction encoded position measuring apparatus

    DOEpatents

    Tansey, R.J.

    1991-09-24

    When a lightwave passes through a transmission grating, diffracted beams appear at the output or opposite side of the grating that are effectively Doppler shifted in frequency (phase) whereby a detector system can compare the phase of the zero order and higher order beams to obtain an indication of position. Multiple passes through the grating increase resolution for a given wavelength of a laser signal. The resolution can be improved further by using a smaller wavelength laser to generate the grating itself. Since the grating must only have a pitch sufficient to produce diffracted orders, inexpensive, ultraviolet wavelength lasers can be utilized and still obtain high resolution detection. 3 figures.

  11. New test of the dynamic theory of neutron diffraction by a moving grating

    NASA Astrophysics Data System (ADS)

    Zakharov, Maxim; Frank, Alexander; Kulin, German; Goryunov, Semyon

    2018-04-01

    Recently, multiwave dynamical theory of neutron diffraction by a moving grating was developed. The theory predicts that at a certain height of the grating profile a significant suppression of the zero-order diffraction may occur. The experiment to confirm predictions of this theory was performed. The resulting diffracted UCNs spectra were measured using time-of-flight Fourier diffractometer. The experimental data were compared with the results of numerical simulation and were found in a good agreement with theoretical predictions.

  12. Time-domain Brillouin scattering assisted by diffraction gratings

    NASA Astrophysics Data System (ADS)

    Matsuda, Osamu; Pezeril, Thomas; Chaban, Ievgeniia; Fujita, Kentaro; Gusev, Vitalyi

    2018-02-01

    Absorption of ultrashort laser pulses in a metallic grating deposited on a transparent sample launches coherent compression/dilatation acoustic pulses in directions of different orders of acoustic diffraction. Their propagation is detected by delayed laser pulses, which are also diffracted by the metallic grating, through the measurement of the transient intensity change of the first-order diffracted light. The obtained data contain multiple frequency components, which are interpreted by considering all possible angles for the Brillouin scattering of light achieved through multiplexing of the propagation directions of light and coherent sound by the metallic grating. The emitted acoustic field can be equivalently presented as a superposition of plane inhomogeneous acoustic waves, which constitute an acoustic diffraction grating for the probe light. Thus the obtained results can also be interpreted as a consequence of probe light diffraction by both metallic and acoustic gratings. The realized scheme of time-domain Brillouin scattering with metallic gratings operating in reflection mode provides access to wide range of acoustic frequencies from minimal to maximal possible values in a single experimental optical configuration for the directions of probe light incidence and scattered light detection. This is achieved by monitoring the backward and forward Brillouin scattering processes in parallel. Potential applications include measurements of the acoustic dispersion, simultaneous determination of sound velocity and optical refractive index, and evaluation of samples with a single direction of possible optical access.

  13. Diffraction efficiency study of holographic gratings in dichromated poly(vinyl alcohol) NiCl II•6H IIO doped

    NASA Astrophysics Data System (ADS)

    Fontanilla-Urdaneta, R. C.; Hernández-Garay, M. P.; Olivares-Pérez, A.; Páez-Trujillo, G.; Fuentes-Tapia, I.

    2008-02-01

    Experimental results to the saturation and diffraction efficiency from holographic gratings are presented in this investigation. The experiments were carried out during real time holographic gratings formation. Dichromated poly(vinyl alcohol) was doped with nickel(II) chloride hexahydrate and it is used like optical material. The influence of the hologram parameters to get the maximum diffraction efficiency is studied at room conditions. This study contributes to get more information about the behavior of this material for holographic gratings recording.

  14. Undergraduate Experiment with Fractal Diffraction Gratings

    ERIC Educational Resources Information Center

    Monsoriu, Juan A.; Furlan, Walter D.; Pons, Amparo; Barreiro, Juan C.; Gimenez, Marcos H.

    2011-01-01

    We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics…

  15. Silicon graphene Bragg gratings.

    PubMed

    Capmany, José; Domenech, David; Muñoz, Pascual

    2014-03-10

    We propose the use of interleaved graphene sections on top of a silicon waveguide to implement tunable Bragg gratings. The filter central wavelength and bandwidth can be controlled changing the chemical potential of the graphene sections. Apodization techniques are also presented.

  16. Measurement of the refractive index by using a rectangular cell with a fs-laser engraved diffraction grating inner wall.

    PubMed

    Durán-Ramírez, Víctor M; Martínez-Ríos, Alejandro; Guerrero-Viramontes, J Ascención; Muñoz-Maciel, Jesús; Peña-Lecona, Francisco G; Selvas-Aguilar, Romeo; Anzueto-Sánchez, Gilberto

    2014-12-01

    A very simple method to obtain the refractive index of liquids by using a rectangular glass cell and a diffraction grating engraved by fs laser ablation on the inner face of one of the walls of the cell is presented. When a laser beam impinges normally on the diffraction grating, the diffraction orders are deviated when they pass through the cell filled with the liquid to be measured. By measuring the deviation of the diffraction orders, we can determine the refractive index of the liquid.

  17. Diffraction in volume reflection gratings with variable fringe contrast.

    PubMed

    Brotherton-Ratcliffe, David; Bjelkhagen, Hans; Osanlou, Ardeshir; Excell, Peter

    2015-06-01

    The PSM model is used to analyze the process of diffraction occurring in volume reflection gratings in which fringe contrast is an arbitrary function of distance within the grating. General analytic expressions for diffraction efficiency at Bragg resonance are obtained for unslanted panchromatic lossless reflection gratings at oblique incidence. These formulas are then checked for several diverse fringe contrast profiles with numerical solutions of the Helmholtz equation, where exceptionally good agreement is observed. Away from Bragg resonance, the case of the hyperbolically decaying fringe contrast profile is shown to lead to an analytic expression for the diffraction efficiency and this is again compared successfully with numerical solutions of the Helmholtz equation.

  18. Diffraction gratings used as identifying markers

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1991-01-01

    A finely detailed defraction grating is applied to an object as an identifier or tag which is unambiguous, difficult to duplicate, or remove and transfer to another item, and can be read and compared with prior readings with relative ease. The exact pattern of the defraction grating is mapped by diffraction moire techniques and recorded for comparison with future readings of the same grating.

  19. Fourier optics analysis of grating sensors with tilt errors.

    PubMed

    Ferhanoglu, Onur; Toy, M Fatih; Urey, Hakan

    2011-06-15

    Dynamic diffraction gratings can be microfabricated with precision and offer extremely sensitive displacement measurements and light intensity modulation. The effect of pure translation of the moving part of the grating on diffracted order intensities is well known. This study focuses on the parameters that limit the intensity and the contrast of the interference. The effects of grating duty cycle, mirror reflectivities, sensor tilt and detector size are investigated using Fourier optics theory and Gaussian beam optics. Analytical findings reveal that fringe visibility becomes <0.3 when the optical path variation exceeds half the wavelength within the grating interferometer. The fringe visibility can be compensated by monitoring the interfering portion of the diffracted order light only through detector size reduction in the expense of optical power. Experiments were conducted with a grating interferometer that resulted in an eightfold increase in fringe visibility with reduced detector size, which is in agreement with theory. Findings show that diffraction grating readout principle is not limited to translating sensors but also can be used for sensors with tilt or other deflection modes.

  20. [Integration design and diffraction characteristics analysis of prism-grating-prism].

    PubMed

    He, Tian-Bo; Bayanheshig; Li, Wen-Hao; Kong, Peng; Tang, Yu-Guo

    2014-01-01

    Prism-grating-prism (PGP) module is the important dispersing component in the hyper spectral imager. In order to effectively predict the distribution of diffraction efficiency of the whole PGP component and its diffraction characteristics before fabrication, a method of the PGP integration design is proposed. From the point of view of the volume phase holographic grating (VPHG) design, combined with the restrictive correlation between the various parameters of prisms and grating, we compiled the analysis software for calculating the whole PGP's diffraction efficiency. Furthermore, the effects of the structure parameters of prisms and grating on the PGP's diffraction characteristics were researched in detail. In particular we discussed the Bragg wavelength shift behaviour of the grating and a broadband PGP spectral component with high diffraction efficiency was designed for the imaging spectrometers. The result of simulation indicated that the spectral bandwidth of the PGP becomes narrower with the dispersion coefficient of prism 1 material decreasing; Bragg wavelength shift characteristics broaden the bandwidth of VPHG both spectrally and angularly, higher angular selectivity is desirable for selection requirements of the prism 1 material, and it can be easily tuned to achieve spectral bandwidth suitable for imaging PGP spectrograph; the vertex angle of prism 1, the film thickness and relative permittivity modulation of the grating have a significant impact on the distribution of PGP's diffraction efficiency, so precision control is necessary when fabrication. The diffraction efficiency of the whole PGP component designed by this method is no less than 50% in the wavelength range from 400 to 1000 nm, the specific design parameters have been given in this paper that have a certain reference value for PGP fabrication.

  1. Blazed vector grating liquid crystal cells with photocrosslinkable polymeric alignment films fabricated by one-step polarizer rotation method

    NASA Astrophysics Data System (ADS)

    Kawai, Kotaro; Kuzuwata, Mitsuru; Sasaki, Tomoyuki; Noda, Kohei; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2014-12-01

    Blazed vector grating liquid crystal (LC) cells, in which the directors of low-molar-mass LCs are antisymmetrically distributed, were fabricated by one-step exposure of an empty glass cell inner-coated with a photocrosslinkable polymer LC (PCLC) to UV light. By adopting a LC cell structure, twisted nematic (TN) and homogeneous (HOMO) alignments were obtained in the blazed vector grating LC cells. Moreover, the diffraction efficiency of the blazed vector grating LC cells was greatly improved by increasing the thickness of the device in comparison with that of a blazed vector grating with a thin film structure obtained in our previous study. In addition, the diffraction efficiency and polarization states of ±1st-order diffracted beams from the resultant blazed vector grating LC cells were controlled by designing a blazed pattern in the alignment films, and these diffraction properties were well explained on the basis of Jones calculus and the elastic continuum theory of nematic LCs.

  2. Optically Tunable Gratings Based on Coherent Population Oscillation.

    PubMed

    Zhang, Xiao-Jun; Wang, Hai-Hua; Wang, Lei; Wu, Jin-Hui

    2018-05-01

    We theoretically study the optically tunable gratings based on a L-type atomic medium using coherent population oscillations from the angle of reflection and transmission of the probe field. Adopting a standing-wave driving field, the refractive index of the medium as well as the absorption are periodically modified. Consequently, the Bragg scattering causes the effective reflection. We show that different intensities of the control field lead to three types of reflection profile which actually correspond to different absorption/amplification features of the medium. We present a detailed analyses about the influence of amplification on the reflection profile as well. The coherent population oscillation is robust to the dephasing effect, and such induced gratings could have promising applications in nonlinear optics and all-optical information processing.

  3. Dynamic theory of neutron diffraction from a moving grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bushuev, V. A., E-mail: vabushuev@yandex.ru; Frank, A. I.; Kulin, G. V.

    2016-01-15

    A multiwave dynamic theory of diffraction of ultracold neutrons from a moving phase grating has been developed in the approximation of coupled slowly varying amplitudes of wavefunctions. The effect of the velocity, period, and height of grooves of the grating, as well as the spectral angular distribution of the intensity of incident neurons, on the discrete energy spectrum and the intensity of diffraction reflections of various orders has been analyzed.

  4. Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings

    PubMed Central

    Zheng, Shuang; Wang, Jian

    2017-01-01

    Measuring orbital angular momentum (OAM) states of vortex beams is of great importance in diverse applications employing OAM-carrying vortex beams. We present a simple and efficient scheme to measure OAM states (i.e. topological charge values) of vortex beams with annular gratings. The magnitude of the topological charge value is determined by the number of dark fringes after diffraction, and the sign of the topological charge value is distinguished by the orientation of the diffraction pattern. We first theoretically study the diffraction patterns using both annular amplitude and phase gratings. The annular phase grating shows almost 10-dB better diffraction efficiency compared to the annular amplitude grating. We then experimentally demonstrate the OAM states measurement of vortex beams using annular phase grating. The scheme works well even for high-order vortex beams with topological charge value as high as ± 25. We also experimentally show the evolution of diffraction patterns when slightly changing the fractional topological charge value of vortex beam from 0.1 to 1.0. In addition, the proposed scheme shows potential large tolerance of beam alignment during the OAM states measurement of vortex beams. PMID:28094325

  5. Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings.

    PubMed

    Zheng, Shuang; Wang, Jian

    2017-01-17

    Measuring orbital angular momentum (OAM) states of vortex beams is of great importance in diverse applications employing OAM-carrying vortex beams. We present a simple and efficient scheme to measure OAM states (i.e. topological charge values) of vortex beams with annular gratings. The magnitude of the topological charge value is determined by the number of dark fringes after diffraction, and the sign of the topological charge value is distinguished by the orientation of the diffraction pattern. We first theoretically study the diffraction patterns using both annular amplitude and phase gratings. The annular phase grating shows almost 10-dB better diffraction efficiency compared to the annular amplitude grating. We then experimentally demonstrate the OAM states measurement of vortex beams using annular phase grating. The scheme works well even for high-order vortex beams with topological charge value as high as ± 25. We also experimentally show the evolution of diffraction patterns when slightly changing the fractional topological charge value of vortex beam from 0.1 to 1.0. In addition, the proposed scheme shows potential large tolerance of beam alignment during the OAM states measurement of vortex beams.

  6. Signal-chip microcomputer control system for a diffraction grating ruling engine

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolin; Zhang, Yuhua; Yang, Houmin; Guo, Du

    1998-08-01

    A control system with a chip of 8031 single-chip microcomputer as its nucleus for a diffraction grating ruling engine has been developed, its hardware and software are presented in this paper. A series of techniques such as program-controlled amplifier and interference fringes subdivision as well as motor velocity step governing are adopted to improve the control accuracy. With this control system, 8 kinds of gratings of different spacings can be ruled, the positioning precision of the diffraction grating ruling engine (sigma) equals 3.6 nm, and the maximum positioning error is less than 14.6 nm.

  7. Design of a Binary Grating with Subwavelength Features that Acts as a Polarizing Beam Splitter.

    PubMed

    Pajewski, L; Borghi, R; Schettini, G; Frezza, F; Santarsiero, M

    2001-11-10

    A binary diffractive optical element, acting as a polarizing beam splitter, is proposed and analyzed. It behaves like a transmissive blazed grating, working on the first or the second diffraction order, depending on the polarization state of the incident radiation. The grating-phase profile required for both polarization states is obtained by means of suitably sized subwavelength groups etched in an isotropic dielectric medium. A rigorous electromagnetic analysis of the grating is presented, and numerical results concerning its performances in terms of diffraction efficiency as well as frequency and angular bandwidths are provided.

  8. Spatiotemporal optical pulse transformation by a resonant diffraction grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovastikov, N. V.; Bykov, D. A., E-mail: bykovd@gmail.com; Doskolovich, L. L., E-mail: leonid@smr.ru

    The diffraction of a spatiotemporal optical pulse by a resonant diffraction grating is considered. The pulse diffraction is described in terms of the signal (the spatiotemporal incident pulse envelope) passage through a linear system. An analytic approximation in the form of a rational function of two variables corresponding to the angular and spatial frequencies has been obtained for the transfer function of the system. A hyperbolic partial differential equation describing the general form of the incident pulse envelope transformation upon diffraction by a resonant diffraction grating has been derived from the transfer function. A solution of this equation has beenmore » obtained for the case of normal incidence of a pulse with a central frequency lying near the guided-mode resonance of a diffraction structure. The presented results of numerical simulations of pulse diffraction by a resonant grating show profound changes in the pulse envelope shape that closely correspond to the proposed theoretical description. The results of the paper can be applied in creating new devices for optical pulse shape transformation, in optical information processing problems, and analog optical computations.« less

  9. All-fibre ytterbium laser tunable within 45 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdullina, S R; Babin, S A; Vlasov, A A

    2007-12-31

    A tunable ytterbium-doped fibre laser is fabricated. The laser is tuned by using a tunable fibre Bragg grating (FBG) as a selecting intracavity element. The laser is tunable within 45 nm (from 1063 to 1108 nm) and emits {approx}6 W in the line of width {approx}0.15 nm, the output power and linewidth being virtually invariable within the tuning range. The method is proposed for synchronous tuning the highly reflecting and output FBGs, and a tunable ytterbium all-fibre laser is built. (lasers)

  10. Tunable Infrared Semiconductor Lasers

    DTIC Science & Technology

    2013-12-20

    stripe to different positions of an addressable chirped, location-dependent period grating to select the different lasing wavelengths. Interferometric...grating or vernier effects. Our tuning mechanism is to shift the pump stripe to different positions of an addressable chirped, location-dependent period... stripe is applied and the lateral direction is the perpendicular direction across the pump stripe and parallel to the grating lines.  The chirped

  11. Spectrally-Narrowed Emissions from Organic Crystals Having a One-Dimensional Grating on Their Surface.

    PubMed

    Yamamoto, Hiroyuki; Obara, Keiji; Higashihara, Shohei; Obama, Yuki; Yamao, Takeshi; Hotta, Shu

    2016-04-01

    We have succeeded in directly engraving one-dimensional diffraction gratings on the surface of organic semiconducting oligomer crystals by using focused ion beam (FIB) lithography and laser ablation (LA) methods. The FIB method enabled us to shape the gratings with varying periods down to ~150 nm. With the LA method a large-area grating with a ~500-nm period was readily accessible. All the above crystals indicated spectrally-narrowed emission (SNE) lines even in the case of shallow groove depths ~2-4 nm. In particular, we definitively observed the SNE pertinent to the first-order diffraction with the crystal having the diffraction grating of a 148.3-nm average period. The present results indicate utility of the built-in gratings that can directly be fabricated on the surface of the crystals.

  12. 3D structured illumination microscopy using an incoherent illumination system based on a Fresnel biprism

    NASA Astrophysics Data System (ADS)

    Shabani, H.; Doblas, A.; Saavedra, G.; Preza, C.

    2018-02-01

    Three-dimensional (3D) structured illumination (SI) patterns that include lateral and axial variations have attracted more attention recently as their use in fluorescence microscope enhances the 3D resolution of the native imaging system. 3D SI patterns have already been created by interfering three mutually-coherent waves using a diffraction grating or some electro-optical devices such as spatial light modulators. Here, an interesting approach to generate a 3D SI pattern of tunable modulation frequency is shown. Our proposed illumination system is based on the incoherent illumination of a Fresnel biprism using several equidistant linear sources (i.e., slits). Previously, we investigated and compared numerically this tunable SI microscopy (SIM) system with the one achieved with three-wave interference. In this contribution, we implement our proposed incoherent 3D SIM system of tunable-frequency in an open-setup. We evaluate the axial confinement of the illumination pattern obtained with this system by recording the SI pattern using a mirror sample and different number of slits and compare these data with simulation results. Moreover, we verify that with a higher number of slits used, the axial confinement of the pattern increases, and consequently, the system's optical sectioning capability improves.

  13. Metrology of variable-line-spacing x-ray gratings using the APS Long Trace Profiler

    NASA Astrophysics Data System (ADS)

    Sheung, Janet; Qian, Jun; Sullivan, Joseph; Thomasset, Muriel; Manton, Jonathan; Bean, Sunil; Takacs, Peter; Dvorak, Joseph; Assoufid, Lahsen

    2017-09-01

    As resolving power targets have increased with each generation of beamlines commissioned in synchrotron radiation facilities worldwide, diffraction gratings are quickly becoming crucial optical components for meeting performance targets. However, the metrology of variable-line-spacing (VLS) gratings for high resolution beamlines is not widespread; in particular, no metrology facility at any US DOE facility is currently equipped to fully characterize such gratings. To begin to address this issue, the Optics Group at the Advanced Photon Source at Argonne, in collaboration with SOLEIL and with support from Brookhaven National Laboratory (BNL), has developed an alternative beam path addition to the Long Trace Profiler (LTP) at Argonne's Advanced Photon Source. This significantly expands the functionality of the LTP not only to measure mirrors surface slope profile at normal incidence, but also to characterize the groove density of VLS diffraction gratings in the Littrow incidence up to 79°, which covers virtually all diffraction gratings used at synchrotrons in the first order. The LTP light source is a 20mW HeNe laser, which yields enough signal for diffraction measurements to be performed on low angle blazed gratings optimized for soft X-ray wavelengths. We will present the design of the beam path, technical requirements for the optomechanics, and our data analysis procedure. Finally, we discuss challenges still to be overcome and potential limitations with use of the LTP to perform metrology on diffraction gratings.

  14. Method to mosaic gratings that relies on analysis of far-field intensity patterns in two wavelengths

    NASA Astrophysics Data System (ADS)

    Hu, Yao; Zeng, Lijiang; Li, Lifeng

    2007-01-01

    We propose an experimental method to coherently mosaic two planar diffraction gratings. The method uses a Twyman-Green interferometer to guarantee the planar parallelism of the two sub-aperture gratings, and obtains the in-plane rotational error and the two translational errors from analysis of the far-field diffraction intensity patterns in two alignment wavelengths. We adjust the relative attitude and position of the two sub-aperture gratings to produce Airy disk diffraction patterns in both wavelengths. In our experiment, the repeatability of in-plane rotation adjustment was 2.35 μrad and that of longitudinal adjustment was 0.11 μm. The accuracy of lateral adjustment was about 2.9% of the grating period.

  15. Talbot effect of quasi-periodic grating.

    PubMed

    Zhang, Chong; Zhang, Wei; Li, Furui; Wang, Junhong; Teng, Shuyun

    2013-07-20

    Theoretic and experimental studies of the Talbot effect of quasi-periodic gratings are performed in this paper. The diffractions of periodic and quasi-periodic square aperture arrays in Fresnel fields are analyzed according to the scalar diffraction theory. The expressions of the diffraction intensities of two types of quasi-periodic gratings are deduced. Talbot images of the quasi-periodic gratings are predicted to appear at multiple certain distances. The quasi-periodic square aperture arrays are produced with the aid of a liquid crystal light modulator, and the self-images of the quasi-periodic gratings are measured successfully in the experiment. This study indicates that even a structure in short-range disorder may take on the self-imaging effect in a Fresnel field.

  16. Diffraction efficiency of radially-profiled off-plane reflection gratings

    NASA Astrophysics Data System (ADS)

    Miles, Drew M.; Tutt, James H.; DeRoo, Casey T.; Marlowe, Hannah; Peterson, Thomas J.; McEntaffer, Randall L.; Menz, Benedikt; Burwitz, Vadim; Hartner, Gisela; Laubis, Christian; Scholze, Frank

    2015-09-01

    Future X-ray missions will require gratings with high throughput and high spectral resolution. Blazed off-plane reflection gratings are capable of meeting these demands. A blazed grating profile optimizes grating efficiency, providing higher throughput to one side of zero-order on the arc of diffraction. This paper presents efficiency measurements made in the 0.3 - 1.5 keV energy band at the Physikalisch-Technische Bundesanstalt (PTB) BESSY II facility for three holographically-ruled gratings, two of which are blazed. Each blazed grating was tested in both the Littrow configuration and anti-Littrow configuration in order to test the alignment sensitivity of these gratings with regard to throughput. This paper outlines the procedure of the grating experiment performed at BESSY II and discuss the resulting efficiency measurements across various energies. Experimental results are generally consistent with theory and demonstrate that the blaze does increase throughput to one side of zero-order. However, the total efficiency of the non-blazed, sinusoidal grating is greater than that of the blazed gratings, which suggests that the method of manufacturing these blazed profiles fails to produce facets with the desired level of precision. Finally, evidence of a successful blaze implementation from first diffraction results of prototype blazed gratings produce via a new fabrication technique at the University of Iowa are presented.

  17. Phase-shifting point diffraction interferometer grating designs

    DOEpatents

    Naulleau, Patrick; Goldberg, Kenneth Alan; Tejnil, Edita

    2001-01-01

    In a phase-shifting point diffraction interferometer, by sending the zeroth-order diffraction to the reference pinhole of the mask and the first-order diffraction to the test beam window of the mask, the test and reference beam intensities can be balanced and the fringe contrast improved. Additionally, using a duty cycle of the diffraction grating other than 50%, the fringe contrast can also be improved.

  18. Diffracted wavefront measurement of a volume phase holographic grating at cryogenic temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanche, Pierre-Alexandre; Habraken, Serge; Lemaire, Philippe

    2006-09-20

    Flatness of the wavefront diffracted by grating can be mandatory for some applications. At ambient temperature, the wavefront diffracted by a volume phase holographic grating (VPHG) is well mastered by the manufacturing process and can be corrected or shaped by post polishing. However, to be used in cooled infrared spectrometers, VPHGs have to stand and work properly at low temperatures.We present the measurement of the wavefront diffracted by atypical VPHG at various temperatures down to 150 K and at several thermal inhomogeneity amplitudes. The particular grating observed was produced using a dichromated gelatine technique and encapsulated between two glass blanks.more » Diffracted wavefront measurements show that the wavefront is extremely stable according to the temperature as long as the latter is homogeneous over the grating stack volume. Increasing the thermal inhomogeneity increases the wavefront error that pinpoints the importance of the final instrument thermal design. This concludes the dichromated gelatine VPHG technology, used more and more in visible spectrometers, can be applied as it is to cooled IR spectrometers.« less

  19. EUV efficiency of a 6000-grooves per mm diffraction grating

    NASA Technical Reports Server (NTRS)

    Hurwitz, Mark; Bowyer, Stuart; Edelstein, Jerry; Harada, Tatsuo; Kita, Toshiaki

    1990-01-01

    In order to explore whether grooves ruled mechanically at a density of 6000 per mm can perform well at EUV wavelengths, a sample grating is measured with this density in an EUV calibration facility. Measurements are presented of the planar uniform line-space diffraction grating's efficiency and large-angle scattering.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imazono, Takashi, E-mail: imazono.takashi@jaea.go.jp; Koike, Masato; Nagano, Tetsuya

    Efficiently detecting the B-K emission band around 6.76 nm from a trace concentration of boron in steel compounds has motivated a theoretical exploration of means of increasing the diffraction efficiency of a laminar grating with carbon overcoating. To experimentally evaluate this enhancement, a Ni grating was coated with a high-density carbon film, i.e., diamond-like carbon (DLC). The first order diffraction efficiencies of the Ni gratings coated with and without DLC were measured to be 25.8 % and 16.9 %, respectively, at a wavelength of 6.76 nm and an angle of incidence of 87.07°. The ratio of diffraction efficiency obtained experimentallymore » vs. that calculated by numerical simulation is 0.87 for the DLC-coated Ni grating. The diffraction efficiency of a Ni grating coated with a low-density carbon film, amorphous carbon (a-C), was also slightly improved to be 19.6 %. Furthermore, a distinct minimum of the zeroth order lights of the two carbon-coated Ni gratings were observed at around 6.76 nm, which is coincident with the maximum of the first order light.« less

  1. Freely Tunable Broadband Polarization Rotator for Terahertz Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Ren-Hao; Zhou, Yu; Ren, Xiao-Ping

    2014-12-28

    A freely tunable polarization rotator for broadband terahertz waves is demonstrated using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized terahertz wave to any desired direction with nearly perfect conversion efficiency. This low-cost, high-efficiency, and freely tunable device has potential applications as material analysis, wireless communication, and THz imaging.

  2. Ultra-high density diffraction grating

    DOEpatents

    Padmore, Howard A.; Voronov, Dmytro L.; Cambie, Rossana; Yashchuk, Valeriy V.; Gullikson, Eric M.

    2012-12-11

    A diffraction grating structure having ultra-high density of grooves comprises an echellette substrate having periodically repeating recessed features, and a multi-layer stack of materials disposed on the echellette substrate. The surface of the diffraction grating is planarized, such that layers of the multi-layer stack form a plurality of lines disposed on the planarized surface of the structure in a periodical fashion, wherein lines having a first property alternate with lines having a dissimilar property on the surface of the substrate. For example, in one embodiment, lines comprising high-Z and low-Z materials alternate on the planarized surface providing a structure that is suitable as a diffraction grating for EUV and soft X-rays. In some embodiments, line density of between about 10,000 lines/mm to about 100,000 lines/mm is provided.

  3. Diffraction-based BioCD biosensor for point-of-care diagnostics

    NASA Astrophysics Data System (ADS)

    Choi, H.; Chang, C.; Savran, C.; Nolte, D.

    2018-02-01

    The BioCD platform technology uses spinning-disk interferometry to detect molecular binding to target molecular probes in biological samples. Interferometric configurations have included differential phase contrast and in-line quadrature detection. For the detection of extremely low analyte concentrations, nano- or microparticles can enhance the signal through background-free diffraction detection. Diffraction signal measurements on BioCD biosensors are achieved by forming gratings on a disc surface. The grating pattern was printed with biotinylated bovine serum albumin (BSA) and streptavidin coated beads were deployed. The diameter of the beads was 1 micron and strong protein bonding occurs between BSA and streptavidin-coated beads at the printed location. The wavelength for the protein binding detection was 635 nm. The periodic pattern on the disc amplified scattered light into the first-order diffraction position. The diffracted signal contains Mie scattering and a randomly-distributed-bead noise contributions. Variation of the grating pattern periodicity modulates the diffraction efficiency. To test multiple spatial frequencies within a single scan, we designed a fan-shaped grating to perform frequency filter multiplexing on a diffraction-based BioCD.

  4. Topology-optimized broadband surface relief transmission grating

    NASA Astrophysics Data System (ADS)

    Andkjær, Jacob; Ryder, Christian P.; Nielsen, Peter C.; Rasmussen, Thomas; Buchwald, Kristian; Sigmund, Ole

    2014-03-01

    We propose a design methodology for systematic design of surface relief transmission gratings with optimized diffraction efficiency. The methodology is based on a gradient-based topology optimization formulation along with 2D frequency domain finite element simulations for TE and TM polarized plane waves. The goal of the optimization is to find a grating design that maximizes diffraction efficiency for the -1st transmission order when illuminated by unpolarized plane waves. Results indicate that a surface relief transmission grating can be designed with a diffraction efficiency of more than 40% in a broadband range going from the ultraviolet region, through the visible region and into the near-infrared region.

  5. Multilayer diffraction grating

    DOEpatents

    Barbee, T.W. Jr.

    1990-04-10

    This invention is for a reflection diffraction grating that functions at X-ray to VUV wavelengths and at normal angles of incidence. The novel grating is comprised of a laminar grating of period D with flat-topped grating bars. A multiplicity of layered synthetic microstructures, of period d and comprised of alternating flat layers of two different materials, are disposed on the tops of the grating bars of the laminar grating. In another embodiment of the grating, a second multiplicity of layered synthetic microstructures are also disposed on the flat faces, of the base of the grating, between the bars. D is in the approximate range from 3,000 to 50,000 Angstroms, but d is in the approximate range from 10 to 400 Angstroms. The laminar grating and the layered microstructures cooperatively interact to provide many novel and beneficial instrumentational advantages. 2 figs.

  6. Multilayer diffraction grating

    DOEpatents

    Barbee, Jr., Troy W.

    1990-01-01

    This invention is for a reflection diffraction grating that functions at X-ray to VUV wavelengths and at normal angles of incidence. The novel grating is comprised of a laminar grating of period D with flat-topped grating bars. A multiplicity of layered synthetic microstructures, of period d and comprised of alternating flat layers of two different materials, are disposed on the tops of the grating bars of the laminar grating. In another embodiment of the grating, a second multiplicity of layered synthetic microstructures are also disposed on the flat faces, of the base of the grating, between the bars. D is in the approximate range from 3,000 to 50,000 Angstroms, but d is in the approximate range from 10 to 400 Angstroms. The laminar grating and the layered microstructures cooperatively interact to provide many novel and beneficial instrumentational advantages.

  7. Changes in diffraction efficiency of gratings with high fructose corn syrup by aging

    NASA Astrophysics Data System (ADS)

    Mejias-Brizuela, Nildia Y.; Olivares-Pérez, Arturo

    2017-03-01

    High fructose corn syrup was used for preparation of holographic gratings photosensitized with potassium bichromated, for to analyze the behavior of diffraction efficiency to first order. The behavior of diffraction efficiency to first order was analyzed at time intervals different: 24, 48, 72 and 96 hours, because to the recorded gratings showed instability 24 hours after of record. For this reason, we decided to study in the time the evolution of diffraction efficiency parameter for to determine the maximum modulation of material holographic (HFCS-bichromated). The study realized showed that after of 72 hours, the photosensitized material reaches its maximum modulation, with a diffraction efficiency to first order of 4 percent.

  8. Diffraction Efficiency Testing of Sinusoidal and Blazed Off-Plane Reflection Gratings

    NASA Astrophysics Data System (ADS)

    Tutt, James H.; McEntaffer, Randall L.; Marlowe, Hannah; Miles, Drew M.; Peterson, Thomas J.; Deroo, Casey T.; Scholze, Frank; Laubis, Christian

    2016-09-01

    Reflection gratings in the off-plane mount have the potential to enhance the performance of future high resolution soft X-ray spectrometers. Diffraction efficiency can be optimized through the use of blazed grating facets, achieving high-throughput on one side of zero-order. This paper presents the results from a comparison between a grating with a sinusoidally grooved profile and two gratings that have been blazed. The results show that the blaze does increase throughput to one side of zero-order; however, the total throughput of the sinusoidal gratings is greater than the blazed gratings, suggesting the method of manufacturing the blazed gratings does not produce precise facets. The blazed gratings were also tested in their Littrow and anti-Littrow configurations to quantify diffraction efficiency sensitivity to rotations about the grating normal. Only a small difference in the energy at which efficiency is maximized between the Littrow and anti-Littrow configurations is seen with a small shift in peak efficiency towards higher energies in the anti-Littrow case. This is due to a decrease in the effective blaze angle in the anti-Littrow mounting. This is supported by PCGrate-SX V6.1 modeling carried out for each blazed grating which predicts similar response trends in the Littrow and anti-Littrow orientations.

  9. Measurement system for diffraction efficiency of convex gratings

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Chen, Xin-hua; Zhou, Jian-kang; Zhao, Zhi-cheng; Liu, Quan; Luo, Chao; Wang, Xiao-feng; Tang, Min-xue; Shen, Wei-min

    2017-08-01

    A measurement system for diffraction efficiency of convex gratings is designed. The measurement system mainly includes four components as a light source, a front system, a dispersing system that contains a convex grating, and a detector. Based on the definition and measuring principle of diffraction efficiency, the optical scheme of the measurement system is analyzed and the design result is given. Then, in order to validate the feasibility of the designed system, the measurement system is set up and the diffraction efficiency of a convex grating with the aperture of 35 mm, the curvature-radius of 72mm, the blazed angle of 6.4°, the grating period of 2.5μm and the working waveband of 400nm-900nm is tested. Based on GUM (Guide to the Expression of Uncertainty in Measurement), the uncertainties in the measuring results are evaluated. The measured diffraction efficiency data are compared to the theoretical ones, which are calculated based on the grating groove parameters got by an atomic force microscope and Rigorous Couple Wave Analysis, and the reliability of the measurement system is illustrated. Finally, the measurement performance of the system is analyzed and tested. The results show that, the testing accuracy, the testing stability and the testing repeatability are 2.5%, 0.085% and 3.5% , respectively.

  10. Effects of pitch and shape for diffraction grating in LED fog lamp

    NASA Astrophysics Data System (ADS)

    Chen, Hsi-Chao; Lin, Jun-Yu; Wu, Jih-Huah; Ma, Shih-Hsin; Yang, Chi-Hao

    2011-10-01

    The characteristics of light-emitting diodes (LEDs) that make them energy-efficient and long-lasting light source for general illumination have attracted a great attention from the lighting industry and commercial market. As everyone know LEDs have the advantages of environmental protection, long lifetime, fast response time (μs), low voltage and good mechanical properties. Their high luminance and the wide region of the dominant wavelengths within the entire visible spectrum mean that people have high anticipations for the applications of LEDs. The output lighting from reflector in the traditional fog lamp was required to fit the standard of the ECE R19 F3 regulation. Therefore, this study investigated the effects of pitch and angle for a diffraction grating in LED fog lamp. The light pattern of fog lamp must be satisfied ECE regulations, so a design of diffraction grating to shift down the lighting was required. There are three LEDs (Cree XLamp XPE LEDs) as the light source in the fog lamp for the illumination efficiency. Then, an optimal simulation of diffraction grating was done for the pitch and angle of the diffraction grating at the test distance of 25 meters. The best pitch and angle was 2mm and 60 degree for the grating shape of wedge type.

  11. Design of compressors for FEL pulses using deformable gratings

    NASA Astrophysics Data System (ADS)

    Bonora, Stefano; Fabris, Nicola; Frassetto, Fabio; Giovine, Ennio; Miotti, Paolo; Quintavalla, Martino; Poletto, Luca

    2017-06-01

    We present the optical layout of soft X-rays compressors using reflective grating specifically designed to give both positive or negative group-delay dispersion (GDD). They are tailored for chirped-pulse-amplification experiments with FEL sources. The optical design originates from an existing compressor with plane gratings already realized and tested at FERMI, that has been demonstrated capable to introduce tunable negative GDD. Here, we discuss two novel designs for compressors using deformable gratings capable to give both negative and positive GDD. Two novel designs are discussed: 1) a design with two deformable gratings and an intermediate focus between the twos, that is demonstrated capable to introduce positive GDD; 2) a design with one deformable grating giving an intermediate focus, followed by a concave mirror and a plane grating, that is capable to give both positive and negative GDD depending on the distance between the second mirror and the second grating. Both the designs are tunable in wavelength and GDD, by acting on the deformable gratings, that are rotated to tune the wavelength and the GDD and deformed to introduce the radius required to keep the spectral focus. The deformable gratings have a laminar profile and are ruled on a thin silicon plane substrate. A piezoelectric actuator is glued on the back of the substrate and is actuated to give a radius of curvature that is varying from infinite (plane) to few meters. The ruling procedure, the piezoelectric actuator and the efficiency measurements in the soft X-rays will be presented. Some test cases are discussed for wavelengths shorter than 12 nm.

  12. X-ray Diffraction Gratings for Astrophysics

    NASA Astrophysics Data System (ADS)

    Paerels, Frits

    2010-12-01

    Over the past year, we have celebrated the tenth anniversary of the Chandra and XMM-Newton X-ray observatories. Both carry powerful, novel diffraction grating spectrometers, which have opened true X-ray spectroscopy for astrophysics. I will describe the design and operation of these instruments, as the background to some of the beautiful results they have produced. But these designs do not exhaust the versatility and essential simplicity of diffraction grating spectrometers, and I will discuss applications for the International X-ray Observatory IXO.

  13. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alessi, David A.; Rosso, Paul A.; Nguyen, Hoang T.

    Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. As a result, combining this technique with low absorption multilayer dielectric gratings developed in ourmore » group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.« less

  14. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers

    DOE PAGES

    Alessi, David A.; Rosso, Paul A.; Nguyen, Hoang T.; ...

    2016-12-26

    Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. As a result, combining this technique with low absorption multilayer dielectric gratings developed in ourmore » group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.« less

  15. Diffractive optics in industry and research: novel components for optical security systems

    NASA Astrophysics Data System (ADS)

    Laakkonen, Pasi; Turunen, Jari; Pietarinen, Juha; Siitonen, Samuli; Laukkanen, Janne; Jefimovs, Konstantins; Orava, Joni; Ritala, Mikko; Pilvi, Tero; Tuovinen, Hemmo; Ventola, Kalle; Vallius, Tuomas; Kaipiainen, Matti; Kuittinen, Markku

    2005-09-01

    Design and manufacturing of diffractive optical elements (DOEs) are presented. Mass replication methods for DOEs are explained including UV-replication, micro-injection moulding and reel-to-reel production. Novel applications of diffractive optics including spectroscopic surface relief gratings, antireflection surfaces, infrared light rejection gratings, light incoupling into thin waveguides, and additive diffractive colour mixing are presented.

  16. A Simple Diffraction Experiment Using Banana Stem as a Natural Grating

    ERIC Educational Resources Information Center

    Aji, Mahardika Prasetya; Karunawan, Jotti; Chasanah, Widyastuti Rochimatun; Nursuhud, Puji Iman; Wiguna, Pradita Ajeng; Sulhadi

    2017-01-01

    A simple diffraction experiment was designed using banana stem as natural grating. Coherent beams of lasers with wavelengths of 632.8 nm and 532 nm that pass through banana stem produce periodic diffraction patterns on a screen. The diffraction experiments were able to measure the distances between the slit of the banana stem, i.e. d = (28.76 ±…

  17. Tunable, superconducting, surface-emitting teraherz source

    DOEpatents

    Welp, Ulrich [Lisle, IL; Koshelev, Alexei E [Bolingbrook, IL; Gray, Kenneth E [Evanston, IL; Kwok, Wai-Kwong [Evanston, IL; Vlasko-Vlasov, Vitalii [Downers Grove, IL

    2009-10-27

    A compact, solid-state THz source based on the driven Josephson vortex lattice in a highly anisotropic superconductor such as Bi.sub.2Sr.sub.2CaCu.sub.2O.sub.8 that allows cw emission at tunable frequency. A second order metallic Bragg grating is used to achieve impedance matching and to induce surface emission of THz-radiation from a Bi.sub.2Sr.sub.2CaCu.sub.2O.sub.8 sample. Steering of the emitted THz beam is accomplished by tuning the Josephson vortex spacing around the grating period using a superimposed magnetic control field.

  18. Tunable, superconducting, surface-emitting teraherz source

    DOEpatents

    Welp, Ulrich; Koshelev, Alexei E.; Gray, Kenneth E.; Kwok, Wai-Kwong; Vlasko-Vlasov, Vitalii

    2010-05-11

    A compact, solid-state THz source based on the driven Josephson vortex lattice in a highly anisotropic superconductor such as Bi.sub.2Sr.sub.2CaCu.sub.2O.sub.8 that allows cw emission at tunable frequency. A second order metallic Bragg grating is used to achieve impedance matching and to induce surface emission of THz-radiation from a Bi.sub.2Sr.sub.2CaCu.sub.2O.sub.8 sample. Steering of the emitted THz beam is accomplished by tuning the Josephson vortex spacing around the grating period using a superimposed magnetic control field.

  19. Experimental demonstration of a ferroelectric liquid crystal tunable filter for fast demodulation of FBG sensors

    NASA Astrophysics Data System (ADS)

    Mathews, Sunish; Semenova, Yuliya; Rajan, Ginu; Farrell, Gerald

    2009-05-01

    A discretely tunable Surface-Stabilized Ferroelectric Liquid Crystal based Lyot Filter, with tuning speeds in the order of microseconds, is demonstrated experimentally as a channel dropper for the demodulation of multiple Fibre Bragg Grating sensors. The 3-stage Lyot Filter designed and experimentally verified can be used together with the high-speed ratiometric wavelength measurement system employing a fibre bend loss edge filter. Such systems can be used for the demodulation of distributed Fibre Bragg Grating sensors employed in applications such as structural monitoring, industrial sensing and haptic telerobotic surgical systems.

  20. Generation of individually modulated femtosecond pulse string by multilayer volume holographic gratings.

    PubMed

    Yan, Xiaona; Gao, Lirun; Yang, Xihua; Dai, Ye; Chen, Yuanyuan; Ma, Guohong

    2014-10-20

    A scheme to generate individually modulated femtosecond pulse string by multilayer volume holographic grating (MVHG) is proposed. Based on Kogelnik's coupled-wave theory and matrix optics, temporal and spectral expressions of diffracted field are given when a femtosecond pulse is diffracted by a MVHG. It is shown that the number of diffracted sub-pulses in the pulse string equals to the number of grating layers of the MVHG, peak intensity and duration of each diffracted sub-pulse depend on thickness of the corresponding grating layer, whereas pulse interval between adjacent sub-pulses is related to thickness of the corresponding buffer layer. Thus by modulating parameters of the MVHG, individually modulated femtosecond pulse string can be acquired. Based on Bragg selectivity of the volume grating and phase shift provided by the buffer layers, we give an explanation on these phenomena. The result is useful to design MVHG-based devices employed in optical communications, pulse shaping and processing.

  1. Metrology measurements for large-aperture VPH gratings

    NASA Astrophysics Data System (ADS)

    Zheng, Jessica R.; Gers, Luke; Heijmans, Jeroen

    2013-09-01

    The High Efficiency and Resolution Multi Element Spectrograph (HERMES) for the Australian Astronomical Observatory (AAO) uses four large aperture, high angle of incidence volume phase holographic gratings (VPHG) for high resolution `Galactic archaeology' spectroscopy. The large clear aperture, the high diffraction efficiency, the line frequency homogeneity, and mosaic alignment made manufacturing and testing challenging. We developed new metrology systems at the AAO to verify the performance of these VPH gratings. The measured diffraction efficiencies and line frequency of the VPH gratings received so far meet the vendor's provided data. The wavefront quality for the Blue VPH grating is good but the Green and Red VPH gratings need to be post polishing.

  2. Grating-based holographic diffraction methods for X-rays and neutrons: phase object approximation and dynamical theory

    DOE PAGES

    Feng, Hao; Ashkar, Rana; Steinke, Nina; ...

    2018-02-01

    A method dubbed grating-based holography was recently used to determine the structure of colloidal fluids in the rectangular grooves of a diffraction grating from X-ray scattering measurements. Similar grating-based measurements have also been recently made with neutrons using a technique called spin-echo small-angle neutron scattering. The analysis of the X-ray diffraction data was done using an approximation that treats the X-ray phase change caused by the colloidal structure as a small perturbation to the overall phase pattern generated by the grating. In this paper, the adequacy of this weak phase approximation is explored for both X-ray and neutron grating holography.more » Additionally, it is found that there are several approximations hidden within the weak phase approximation that can lead to incorrect conclusions from experiments. In particular, the phase contrast for the empty grating is a critical parameter. Finally, while the approximation is found to be perfectly adequate for X-ray grating holography experiments performed to date, it cannot be applied to similar neutron experiments because the latter technique requires much deeper grating channels.« less

  3. Coherent gradient sensing method and system for measuring surface curvature

    NASA Technical Reports Server (NTRS)

    Rosakis, Ares J. (Inventor); Moore, Jr., Nicholas R. (Inventor); Singh, Ramen P. (Inventor); Kolawa, Elizabeth (Inventor)

    2000-01-01

    A system and method for determining a curvature of a specularly reflective surface based on optical interference. Two optical gratings are used to produce a spatial displacement in an interference field of two different diffraction components produced by one grating from different diffraction components produced by another grating. Thus, the curvature of the surface can be determined.

  4. [Design method of convex master gratings for replicating flat-field concave gratings].

    PubMed

    Zhou, Qian; Li, Li-Feng

    2009-08-01

    Flat-field concave diffraction grating is the key device of a portable grating spectrometer with the advantage of integrating dispersion, focusing and flat-field in a single device. It directly determines the quality of a spectrometer. The most important two performances determining the quality of the spectrometer are spectral image quality and diffraction efficiency. The diffraction efficiency of a grating depends mainly on its groove shape. But it has long been a problem to get a uniform predetermined groove shape across the whole concave grating area, because the incident angle of the ion beam is restricted by the curvature of the concave substrate, and this severely limits the diffraction efficiency and restricts the application of concave gratings. The authors present a two-step method for designing convex gratings, which are made holographically with two exposure point sources placed behind a plano-convex transparent glass substrate, to solve this problem. The convex gratings are intended to be used as the master gratings for making aberration-corrected flat-field concave gratings. To achieve high spectral image quality for the replicated concave gratings, the refraction effect at the planar back surface and the extra optical path lengths through the substrate thickness experienced by the two divergent recording beams are considered during optimization. This two-step method combines the optical-path-length function method and the ZEMAX software to complete the optimization with a high success rate and high efficiency. In the first step, the optical-path-length function method is used without considering the refraction effect to get an approximate optimization result. In the second step, the approximate result of the first step is used as the initial value for ZEMAX to complete the optimization including the refraction effect. An example of design problem was considered. The simulation results of ZEMAX proved that the spectral image quality of a replicated concave grating is comparable with that of a directly recorded concave grating.

  5. Tunable negative-tap photonic microwave filter based on a cladding-mode coupler and an optically injected laser of large detuning.

    PubMed

    Chan, Sze-Chun; Liu, Qing; Wang, Zhu; Chiang, Kin Seng

    2011-06-20

    A tunable negative-tap photonic microwave filter using a cladding-mode coupler together with optical injection locking of large wavelength detuning is demonstrated. Continuous and precise tunability of the filter is realized by physically sliding a pair of bare fibers inside the cladding-mode coupler. Signal inversion for the negative tap is achieved by optical injection locking of a single-mode semiconductor laser. To couple light into and out of the cladding-mode coupler, a pair of matching long-period fiber gratings is employed. The large bandwidth of the gratings requires injection locking of an exceptionally large wavelength detuning that has never been demonstrated before. Experimentally, injection locking with wavelength detuning as large as 27 nm was achieved, which corresponded to locking the 36-th side mode. Microwave filtering with a free-spectral range tunable from 88.6 MHz to 1.57 GHz and a notch depth larger than 35 dB was obtained.

  6. Diffraction study of duty-cycle error in ferroelectric quasi-phase-matching gratings with Gaussian beam illumination

    NASA Astrophysics Data System (ADS)

    Dwivedi, Prashant Povel; Kumar, Challa Sesha Sai Pavan; Choi, Hee Joo; Cha, Myoungsik

    2016-02-01

    Random duty-cycle error (RDE) is inherent in the fabrication of ferroelectric quasi-phase-matching (QPM) gratings. Although a small RDE may not affect the nonlinearity of QPM devices, it enhances non-phase-matched parasitic harmonic generations, limiting the device performance in some applications. Recently, we demonstrated a simple method for measuring the RDE in QPM gratings by analyzing the far-field diffraction pattern obtained by uniform illumination (Dwivedi et al. in Opt Express 21:30221-30226, 2013). In the present study, we used a Gaussian beam illumination for the diffraction experiment to measure noise spectra that are less affected by the pedestals of the strong diffraction orders. Our results were compared with our calculations based on a random grating model, demonstrating improved resolution in the RDE estimation.

  7. Dual-function beam splitter of a subwavelength fused-silica grating.

    PubMed

    Feng, Jijun; Zhou, Changhe; Zheng, Jiangjun; Cao, Hongchao; Lv, Peng

    2009-05-10

    We present the design and fabrication of a novel dual-function subwavelength fused-silica grating that can be used as a polarization-selective beam splitter. For TM polarization, the grating can be used as a two-port beam splitter at a wavelength of 1550 nm with a total diffraction efficiency of 98%. For TE polarization, the grating can function as a high-efficiency grating, and the diffraction efficiency of the -1st order is 95% under Littrow mounting. This dual-function grating design is based on a simplified modal method. By using the rigorous coupled-wave analysis, the optimum grating parameters can be determined. Holographic recording technology and inductively coupled plasma etching are used to manufacture the fused-silica grating. Experimental results are in agreement with the theoretical values.

  8. Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings

    PubMed Central

    Gan, Qiaoqiang; Gao, Yongkang; Wagner, Kyle; Vezenov, Dmitri; Ding, Yujie J.; Bartoli, Filbert J.

    2011-01-01

    We report the experimental observation of a trapped rainbow in adiabatically graded metallic gratings, designed to validate theoretical predictions for this unique plasmonic structure. One-dimensional graded nanogratings were fabricated and their surface dispersion properties tailored by varying the grating groove depth, whose dimensions were confirmed by atomic force microscopy. Tunable plasmonic bandgaps were observed experimentally, and direct optical measurements on graded grating structures show that light of different wavelengths in the 500–700-nm region is “trapped” at different positions along the grating, consistent with computer simulations, thus verifying the “rainbow” trapping effect. PMID:21402936

  9. Shift-bonded resonance-domain diffraction gratings.

    PubMed

    Axelrod, Ramon; Shacham-Diamand, Yosi; Golub, Michael

    2016-10-20

    Resonance-domain-transmission diffractive optics with grating periods comparable to those of the illumination wavelength offers large angles of light deflection and nearly 100% Bragg diffraction efficiency. Optical design preferences for nearly normal incidence can be met by proper choice for the slant of the diffraction grooves relative to the substrate. However, straightforward fabrication of the slanted submicron high-aspect-ratio grooves is challenging. In this paper, optical performance comparable to that of the slanted grooves was achieved by an alternative solution of bonding two half-height symmetrical gratings with a lateral shift and an optional small longitudinal spacing. Results of design, nanofabrication, and optical testing are presented.

  10. Fiber Grating Coupled Light Source Capable of Tunable, Single Frequency Operation

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A. (Inventor); Duerksen, Gary L. (Inventor)

    2001-01-01

    Fiber Bragg grating coupled light sources can achieve tunable single-frequency (single axial and lateral spatial mode) operation by correcting for a quadratic phase variation in the lateral dimension using an aperture stop. The output of a quasi-monochromatic light source such as a Fabry Perot laser diode is astigmatic. As a consequence of the astigmatism, coupling geometries that accommodate the transverse numerical aperture of the laser are defocused in the lateral dimension, even for apsherical optics. The mismatch produces the quadratic phase variation in the feedback along the lateral axis at the facet of the laser that excites lateral modes of higher order than the TM(sub 00). Because the instability entails excitation of higher order lateral submodes, single frequency operation also is accomplished by using fiber Bragg gratings whose bandwidth is narrower than the submode spacing. This technique is particularly pertinent to the use of lensed fiber gratings in lieu of discrete coupling optics. Stable device operation requires overall phase match between the fed-back signal and the laser output. The fiber Bragg grating acts as a phase-preserving mirror when the Bragg condition is met precisely. The phase-match condition is maintained throughout the fiber tuning range by matching the Fabry-Perot axial mode wavelength to the passband center wavelength of the Bragg grating.

  11. Numerical model of tapered fiber Bragg gratings for comprehensive analysis and optimization of their sensing and strain-induced tunable dispersion properties.

    PubMed

    Osuch, Tomasz; Markowski, Konrad; Jędrzejewski, Kazimierz

    2015-06-10

    A versatile numerical model for spectral transmission/reflection, group delay characteristic analysis, and design of tapered fiber Bragg gratings (TFBGs) is presented. This approach ensures flexibility with defining both distribution of refractive index change of the gratings (including apodization) and shape of the taper profile. Additionally, sensing and tunable dispersion properties of the TFBGs were fully examined, considering strain-induced effects. The presented numerical approach, together with Pareto optimization, were also used to design the best tanh apodization profiles of the TFBG in terms of maximizing its spectral width with simultaneous minimization of the group delay oscillations. Experimental verification of the model confirms its correctness. The combination of model versatility and possibility to define the other objective functions of Pareto optimization creates a universal tool for TFBG analysis and design.

  12. The application of diffraction grating in the design of virtual reality (VR) system

    NASA Astrophysics Data System (ADS)

    Chen, Jiekang; Huang, Qitai; Guan, Min

    2017-10-01

    Virtual Reality (VR) products serve for human eyes ultimately, and the optical properties of VR optical systems must be consistent with the characteristic of human eyes. The monocular coaxial VR optical system is simulated in ZEMAX. A diffraction grating is added to the optical surface next to the eye, and the lights emitted from the diffraction grating are deflected, which can forming an asymmetrical field of view(FOV). Then the lateral chromatic aberration caused by the diffraction grating was corrected by the chromatic dispersion of the prism. Finally, the aspheric surface was added to further optimum design. During the optical design of the system, how to balance the dispersion of the diffraction grating and the prism is the main problem. The balance was achieved by adjusting the parameters of the grating and the prism constantly, and then using aspheric surfaces finally. In order to make the asymmetric FOV of the system consistent with the angle of the visual axis, and to ensure the stereo vision area clear, the smaller half FOV of monocular system is required to reach 30°. Eventually, a system with asymmetrical FOV of 30°+40° was designed. In addition, the aberration curve of the system was analyzed by ZEMAX, and the binocular FOV was calculated according to the principle of binocular overlap. The results show that the asymmetry of FOV of VR monocular optical system can fit to human eyes and the imaging quality match for the human visual characteristics. At the same time, the diffraction grating increases binocular FOV, which decreases the requirement for the design FOV of monocular system.

  13. A modal analysis of lamellar diffraction gratings in conical mountings

    NASA Technical Reports Server (NTRS)

    Li, Lifeng

    1992-01-01

    A rigorous modal analysis of lamellar grating, i.e., gratings having rectangular grooves, in conical mountings is presented. It is an extension of the analysis of Botten et al. which considered non-conical mountings. A key step in the extension is a decomposition of the electromagnetic field in the grating region into two orthogonal components. A computer program implementing this extended modal analysis is capable of dealing with plane wave diffraction by dielectric and metallic gratings with deep grooves, at arbitrary angles of incidence, and having arbitrary incident polarizations. Some numerical examples are included.

  14. Aplanatic and quasi-aplanatic diffraction gratings

    DOEpatents

    Hettrick, M.C.

    1987-09-14

    A reflection diffraction grating having a series of transverse minute grooves of progressively varying spacing along a concave surface enables use of such gratings for x-ray or longer wavelength imaging of objects. The variable groove spacing establishes aplanatism or substantially uniform magnetification across the optical aperture. The grating may be sued, for example, in x-ray microscopes or telescopes of the imaging type and in x-ray microprobed. Increased spatial resolution and field of view may be realized in x-ray imaging. 5 figs.

  15. Compact imaging spectrometer utilizing immersed gratings

    DOEpatents

    Lerner, Scott A.

    2005-12-20

    A compact imaging spectrometer comprising an entrance slit for directing light, lens means for receiving the light, refracting the light, and focusing the light; an immersed diffraction grating that receives the light from the lens means and defracts the light, the immersed diffraction grating directing the detracted light back to the lens means; and a detector that receives the light from the lens means.

  16. On the convergence of the coupled-wave approach for lamellar diffraction gratings

    NASA Technical Reports Server (NTRS)

    Li, Lifeng; Haggans, Charles W.

    1992-01-01

    Among the many existing rigorous methods for analyzing diffraction of electromagnetic waves by diffraction gratings, the coupled-wave approach stands out because of its versatility and simplicity. It can be applied to volume gratings and surface relief gratings, and its numerical implementation is much simpler than others. In addition, its predictions were experimentally validated in several cases. These facts explain the popularity of the coupled-wave approach among many optical engineers in the field of diffractive optics. However, a comprehensive analysis of the convergence of the model predictions has never been presented, although several authors have recently reported convergence difficulties with the model when it is used for metallic gratings in TM polarization. Herein, three points are made: (1) in the TM case, the coupled-wave approach converges much slower than the modal approach of Botten et al; (2) the slow convergence is caused by the use of Fourier expansions for the permittivity and the fields in the grating region; and (3) is manifested by the slow convergence of the eigenvalues and the associated modal fields. The reader is assumed to be familiar with the mathematical formulations of the coupled-wave approach and the modal approach.

  17. Construction of a Visible Diode Laser Source for Free Radical Photochemistry and Spectroscopy Experiments

    NASA Technical Reports Server (NTRS)

    Newman, Bronjelyn; Halpern, Joshua B.

    1997-01-01

    Tunable diode lasers are reliable sources of narrow-band light and comparatively cheap. Optical feedback simplifies frequency tuning of the laser diodes. We are building an inexpensive diode laser system incorporating optical feedback from a diffraction grating. The external optical cavity can be used with lasers that emit between 2 and 100 mW, and will also work if they are pulsed, although this will significantly degrade the bandwidth. The diode laser output power and bandwidth are comparable to CW dye lasers used in kinetics and dynamics experiments. However, their cost and maintenance will be much less as will alignment time. We intend to use the diode lasers to investigate CN and C2 kinetics as well as to study dissociation dynamics of atmospherically important molecules.

  18. Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry

    NASA Astrophysics Data System (ADS)

    Kawai, Kotaro; Sakamoto, Moritsugu; Noda, Kohei; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2017-01-01

    A tunable dichroic polarization beam splitter (tunable DPBS) simultaneously performs the follow functions: 1. Separation of a polarized incident beam into multiple pairs of orthogonally polarized beams; 2. Separation of the propagation direction of two wavelength incident beams after passing through the tunable DPBS; and 3. Control of both advanced polarization and wavelength separation capabilities by varying the temperature of the tunable DPBS. This novel complex optical property is realized by diffraction phenomena using a designed three-dimensional periodic structure of aligned liquid crystals in the tunable DPBS, which was fabricated quickly with precision in a one-step photoalignment using four-beam polarization interferometry. In experiments, we demonstrated that these diffraction properties are obtained by entering polarized beams of wavelengths 532 nm and 633 nm onto the tunable DPBS. These diffraction properties are described using the Jones calculus in a polarization propagation analysis. Of significance is that the aligned liquid crystal structure needed to obtain these diffraction properties was proposed based on a theoretical analysis, and these properties were then demonstrated experimentally. The tunable DPBS can perform several functions of a number of optical elements such as wave plates, polarization beam splitter, dichroic beam splitter, and tunable wavelength filter. Therefore, the tunable DPBS can contribute to greater miniaturization, sophistication, and cost reduction of optical systems used widely in applications, such as optical measurements, communications, and information processing.

  19. High-efficiency volume holograms recording on acrylamide and N,N'methylene-bis-acrylamide photopolymer with pulsed laser

    NASA Astrophysics Data System (ADS)

    Gallego, Sergi; Ortuno, Manuel; Garcia, Celia; Neipp, Cristian; Belendez, Augusto; Pascual, Inmaculada V.

    2004-09-01

    In order to achieve higher diffraction efficiencies of the volume gratings stored in acrylamide based photopolymer, we introduce in the photopolymer a crosslinker (N,N'methylene-bis-acrylamide). The presence of this component increase the rate polymerization and the modulation of refraction index. The recording was performed using a holographic copying process. The original was a grating of 1000 lines/mm processed using silver halide sensitized gelatine, with diffraction efficiency around 50 % for a reconstruction wavelength of 532 nm. The main beam was split in two secondary beams by the original grating, with an intensity ratio 1:1. The results obtained using the new composition of material are compared with the composition without crosslinker. In the other hand the no linearity of the material's response is also studied comparing the energetic sensitivity, diffraction efficiencies and index modulation of gratings recorded with pulsed and continuous laser. This study is realized fitting the angular scan of each grating using Kogelnik's theory. The gratings are recorded with wavelength of 532 nm when pulsed exposure is used and with wavelength of 514 nm when continues exposure is used. Using pulsed laser at 532 nm the photopolymer without crosslinker presents the diffraction efficiencies lightly smaller than 60%. In the other hand when the crosslinker has been introduced in photopolymer composition, the diffraction efficiencies achieves are higher than 85 %.

  20. Design and fabrication of sub-wavelength anti-reflection grating

    NASA Astrophysics Data System (ADS)

    Zou, Wenlong; Li, Chaoming; Chen, Xinrong; Cai, Zhijian; Wu, Jianhong

    2018-01-01

    In the high power laser system, the reflection of optical surface has a strong impact on the efficiency for luminous energy utilization. Fresnel reflection can be effectively suppressed by antireflection film. For that, the anti-reflection film is one of the important optical elements in high power laser system. The common preparation methods of anti-reflection film include monolayer film, multilayer film and sub-wavelength grating. The effectiveness of monolayer is unsatisfactory, and its application spectrum bandwidth is very narrow. The preparation process of multilayer film is complex and it is very expensive. The emerging technology of fabrication anti-reflection film is sub-wavelength grating. The zero order transmission diffraction efficiency depends on the period, etching depth and duty cycle of the grating. The structure parameters of antireflection grating were designed and optimized under small angle incidence of 351nm based on rigorous coupled wave analysis method. The impaction of zero order reflection diffraction and zero order transmission diffraction efficiency on period, duty cycle and etching depth of grating was discussed in detail in this paper. The sub-wavelength anti-reflection grating was fabricated by holographic and ion etching method.

  1. Research and design on orthogonal diffraction grating-based 3D nanometer displacement sensor

    NASA Astrophysics Data System (ADS)

    Liu, Baoshuai; Yuan, Yibao; Yin, Zhehao

    2017-10-01

    This study concerns an orthogonal diffraction grating-based nanometer displacement sensor. In this study, we performed calculation of displacements in the XYZ directions. In the optical measured path part, we used a two-dimensional orthogonal motion grating and a two-dimensional orthogonal reference grating with the pitch of 0.5um to measure the displacement of XYZ in three directions by detecting ±1st diffraction fringes. The self-collimated structure of the grating greatly extended the Z-axis range. We also simulated the optical path of the sensor with ZEMAX software and verified the feasibility of the scheme. For signal subdivision and processing, we combined large number counting (completed grating line) with small number counting (digital subdivision), realizing high multiples of subdivision of grating interference signals. We used PC to process the interference fringes and greatly improved the processing speed. In the scheme, the theoretical multiples of subdivision could reach 1024 with 10-bit AD conversion, but the actual multiples of subdivision was limited by the quality of the grating interference signals. So we introduced an orthogonal compensation circuit and a filter circuit to improve the signal quality.

  2. Devices useful for vacuum ultraviolet beam characterization including a movable stage with a transmission grating and image detector

    DOEpatents

    Gessner, Oliver; Kornilov, Oleg A; Wilcox, Russell B

    2013-10-29

    The invention provides for a device comprising an apparatus comprising (a) a transmission grating capable of diffracting a photon beam into a diffracted photon output, and (b) an image detector capable of detecting the diffracted photon output. The device is useful for measuring the spatial profile and diffraction pattern of a photon beam, such as a vacuum ultraviolet (VUV) beam.

  3. Spectral characteristics of multimode semiconductor lasers with a high-order surface diffraction grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolotarev, V V; Leshko, A Yu; Pikhtin, N A

    2014-10-31

    We have studied the spectral characteristics of multimode semiconductor lasers with high-order surface diffraction gratings based on asymmetric separate-confinement heterostructures grown by metalorganic vapour phase epitaxy (λ = 1070 nm). Experimental data demonstrate that, in the temperature range ±50 °C, the laser emission spectrum is ∼5 Å in width and contains a fine structure of longitudinal and transverse modes. A high-order (m = 15) surface diffraction grating is shown to ensure a temperature stability of the lasing spectrum dλ/dT = 0.9 Å K{sup -1} in this temperature range. From analysis of the fine structure of the lasing spectrum, we havemore » evaluated the mode spacing and, thus, experimentally determined the effective length of the Bragg diffraction grating, which was ∼400 μm in our samples. (lasers)« less

  4. Tunable dark modes in one-dimensional “diatomic” dielectric gratings

    DOE PAGES

    Zeng, Bo; Majumdar, Arka; Wang, Feng

    2015-05-04

    Recently researchers have demonstrated ultra high quality factor (Q) resonances in one-dimensional (1D) dielectric gratings. Here we theoretically investigate a new class of subwavelength 1D gratings, namely “diatomic” gratings with two nonequivalent subcells in one period, and utilize their intrinsic dark modes to achieve robust ultra high Q resonances. Such “diatomic” gratings provide extra design flexibility, and enable high Q resonators using thinner geometry with smaller filling factors compared to conventional designs like the high contrast gratings (HCGs). More importantly, we show that these high Q resonances can be efficiently tuned in situ, making the design appealing in various applicationsmore » including optical sensing, filtering and displays.« less

  5. Linear Fresnel Spectrometer Chip with Gradient Line Grating

    NASA Technical Reports Server (NTRS)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)

    2015-01-01

    A spectrometer that includes a grating that disperses light via Fresnel diffraction according to wavelength onto a sensing area that coincides with an optical axis plane of the grating. The sensing area detects the dispersed light and measures the light intensity associated with each wavelength of the light. Because the spectrometer utilizes Fresnel diffraction, it can be miniaturized and packaged as an integrated circuit.

  6. Compact Refractive Imaging Spectrometer Designs Utilizing Immersed Gratings

    DOEpatents

    Lerner, Scott A.; Bennett, Charles L.; Bixler, Jay V.; Kuzmenko, Paul J.; Lewis, Isabella T.

    2005-07-26

    A compact imaging spectrometer comprising an entrance slit for directing light, a first means for receiving the light and focusing the light, an immersed diffraction grating that receives the light from the first means and defracts the light, a second means for receiving the light from the immersed diffraction grating and focusing the light, and an image plane that receives the light from the second means

  7. Tunable Bragg filters with a phase transition material defect layer

    DOE PAGES

    Wang, Xi; Gong, Zilun; Dong, Kaichen; ...

    2016-01-01

    We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities.

  8. Tunable Bragg filters with a phase transition material defect layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xi; Gong, Zilun; Dong, Kaichen

    We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities.

  9. Periodical energy oscillation and pulse splitting in sinusoidal volume holographic grating.

    PubMed

    Yan, Xiaona; Gao, Lirun; Dai, Ye; Yang, Xihua; Chen, Yuanyuan; Ma, Guohong

    2014-07-28

    This paper presents dynamical diffraction properties of a femtosecond pulse in a sinusoidal volume holographic grating (VHG). By the modified coupled-wave equations of Kogelnik, we show that the diffraction of a femtosecond pulse on the VHG gives rise to periodical energy oscillation and pulse splitting. In the initial stage of diffraction, one diffracted pulse and one transmitted pulse emerge, and energy of the transmitted pulse periodically transfers to the diffracted pulse and vice versa. In the latter stage, both the diffracted and transmitted pulses split into two spatially separated pulses. One pair of transmitted and diffracted pulses propagates in the same direction and forms the output diffracted dual pulses of the VHG, and the other pair of pulses forms the output transmitted dual pulses. The pulse interval between each pair of dual pulses is in linearly proportional to the refractive index modulation and grating thickness. By the interference effect and group velocity difference we give explanations on the periodical energy oscillation and pulse splitting respectively.

  10. Deep-etched sinusoidal polarizing beam splitter grating.

    PubMed

    Feng, Jijun; Zhou, Changhe; Cao, Hongchao; Lv, Peng

    2010-04-01

    A sinusoidal-shaped fused-silica grating as a highly efficient polarizing beam splitter (PBS) is investigated based on the simplified modal method. The grating structure depends mainly on the ratio of groove depth to grating period and the ratio of incident wavelength to grating period. These ratios can be used as a guideline for the grating design at different wavelengths. A sinusoidal-groove PBS grating is designed at a wavelength of 1310 nm under Littrow mounting, and the transmitted TM and TE polarized waves are mainly diffracted into the zeroth order and the -1st order, respectively. The grating profile is optimized by using rigorous coupled-wave analysis. The designed PBS grating is highly efficient (>95.98%) over the O-band wavelength range (1260-1360 nm) for both TE and TM polarizations. The sinusoidal grating can exhibit higher diffraction efficiency, larger extinction ratio, and less reflection loss than the rectangular-groove PBS grating. By applying wet etching technology on the rectangular grating, which was manufactured by holographic recording and inductively coupled plasma etching technology, the sinusoidal grating can be approximately fabricated. Experimental results are in agreement with theoretical values.

  11. Field lens multiplexing in holographic 3D displays by using Bragg diffraction based volume gratings

    NASA Astrophysics Data System (ADS)

    Fütterer, G.

    2016-11-01

    Applications, which can profit from holographic 3D displays, are the visualization of 3D data, computer-integrated manufacturing, 3D teleconferencing and mobile infotainment. However, one problem of holographic 3D displays, which are e.g. based on space bandwidth limited reconstruction of wave segments, is to realize a small form factor. Another problem is to provide a reasonable large volume for the user placement, which means to provide an acceptable freedom of movement. Both problems should be solved without decreasing the image quality of virtual and real object points, which are generated within the 3D display volume. A diffractive optical design using thick hologram gratings, which can be referred to as Bragg diffraction based volume gratings, can provide a small form factor and high definition natural viewing experience of 3D objects. A large collimated wave can be provided by an anamorphic backlight unit. The complex valued spatial light modulator add local curvatures to the wave field he is illuminated with. The modulated wave field is focused onto to the user plane by using a volume grating based field lens. Active type liquid crystal gratings provide 1D fine tracking of approximately +/- 8° deg. Diffractive multiplex has to be implemented for each color and for a set of focus functions providing coarse tracking. Boundary conditions of the diffractive multiplexing are explained. This is done in regards to the display layout and by using the coupled wave theory (CWT). Aspects of diffractive cross talk and its suppression will be discussed including longitudinal apodized volume gratings.

  12. Application of holographic sub-wavelength diffraction gratings for monitoring of kinetics of bioprocesses

    NASA Astrophysics Data System (ADS)

    Tamulevičius, Tomas; Šeperys, Rimas; Andrulevičius, Mindaugas; Kopustinskas, Vitoldas; Meškinis, Šarūnas; Tamulevičius, Sigitas; Mikalayeva, Valeryia; Daugelavičius, Rimantas

    2012-09-01

    In this work we present a refractive index (RI) sensor based on a sub-wavelength holographic diffraction grating. The sensor chip was fabricated by dry etching of the finely spaced (d = 428 nm) diffraction grating in SiOx doped diamond like carbon (DLC) film. It is shown that employing a fabricated sensor chip, and using the proposed method of analysis of data, one can inspect kinetics of processes in liquids occurring in the vicinity of the grating surface. The method is based on the spectral composition analysis of polarized polychromatic light reflected from the sub-wavelength diffraction grating. The RI measurement system was tested with different model liquid analytes including 25 wt.%, 50 wt.% sugar water solutions, 10 °C, 50 °C distilled water, also Gram-positive bacteria Bacillus subtilis interaction with ion-permeable channels forming antibiotic gramicidin D and a murolytic enzyme lysozyme. Analysis of the data set of specular reflection spectra enabled us to follow the kinetics of the RI changes in the analyte with millisecond resolution. Detectable changes in the effective RI were not worse than Δn = 10-4.

  13. Tunable External Cavity Quantum Cascade Lasers (EC-QCL): an application field for MOEMS based scanning gratings

    NASA Astrophysics Data System (ADS)

    Grahmann, Jan; Merten, André; Ostendorf, Ralf; Fontenot, Michael; Bleh, Daniela; Schenk, Harald; Wagner, Hans-Joachim

    2014-03-01

    In situ process information in the chemical, pharmaceutical or food industry as well as emission monitoring, sensitive trace detection and biological sensing applications would increasingly rely on MIR-spectroscopic anal­ysis in the 3 μm - 12 μm wavelength range. However, cost effective, portable, low power consuming and fast spectrometers with a wide tuning range are not available so far. To provide these MIR-spectrometer properties, the combination of quantum cascade lasers with a MOEMS scanning grating as wavelength selective element in the external cavity is addressed to provide a very compact and fast tunable laser source for spectroscopic analysis.

  14. Tunable Stable Levitation Based on Casimir Interaction between Nanostructures

    NASA Astrophysics Data System (ADS)

    Liu, Xianglei; Zhang, Zhuomin M.

    2016-03-01

    Quantum levitation enabled by repulsive Casimir force has been desirable due to the potential exciting applications in passive-suspension devices and frictionless bearings. In this paper, dynamically tunable stable levitation is theoretically demonstrated based on the configuration of dissimilar gratings separated by an intervening fluid using exact scattering theory. The levitation position is insensitive to temperature variations and can be actively tuned by adjusting the lateral displacement between the two gratings. This work investigates the possibility of applying quantum Casimir interactions into macroscopic mechanical devices working in a noncontact and low-friction environment for controlling the position or transducing lateral movement into vertical displacement at the nanoscale.

  15. Delay-tunable gap-soliton-based slow-light system

    NASA Astrophysics Data System (ADS)

    Mok, Joe T.; de Sterke, C. Martijn; Eggleton, Benjamin J.

    2006-12-01

    We numerically and analytically evaluate the delay of solitons propagating slowly, and without broadening, in an apodized Bragg grating. Simulations indicate that a 100 mm Bragg grating with Δn = 10-3 can delay sub-nanosecond pulses by nearly 20 pulse widths without any change in the output pulse width. Delay tunability is achieved by simultaneously adjusting the launch power and detuning. A simple analytic model is developed to describe the monotonic dependence of delay on Δn and compared with simulations. As the intensity may be greatly enhanced due to a reduced velocity, a procedure for improving the delay while avoiding material damage is outlined.

  16. Development and calibration of mirrors and gratings for the Soft X-ray materials science beamline at the Linac Coherent Light Source free-electron laser

    DOE PAGES

    Soufli, Regina; Fernandez-Perea, Monica; Baker, Sherry L.; ...

    2012-04-18

    This article discusses the development and calibration of the x-ray reflective and diffractive elements for the Soft X-ray Materials Science (SXR) beamline of the Linac Coherent Light Source (LCLS) free-electron laser (FEL), designed for operation in the 500 – 2000 eV region. The surface topography of three Si mirror substrates and two Si diffraction grating substrates was examined by atomic force microscopy (AFM) and optical profilometry. The figure of the mirror substrates was also verified via surface slope measurements with a long trace profiler. A boron carbide (B 4C) coating especially optimized for the LCLS FEL conditions was deposited onmore » all SXR mirrors and gratings. Coating thickness uniformity of 0.14 nm root mean square (rms) across clear apertures extending to 205 mm length was demonstrated for all elements, as required to preserve the coherent wavefront of the LCLS source. The reflective performance of the mirrors and the diffraction efficiency of the gratings were calibrated at beamline 6.3.2 at the Advanced Light Source synchrotron. To verify the integrity of the nanometer-scale grating structure, the grating topography was examined by AFM before and after coating. This is to our knowledge the first time B 4C-coated diffraction gratings are demonstrated for operation in the soft x-ray region.« less

  17. High-resolution absolute position detection using a multiple grating

    NASA Astrophysics Data System (ADS)

    Schilling, Ulrich; Drabarek, Pawel; Kuehnle, Goetz; Tiziani, Hans J.

    1996-08-01

    To control electro-mechanical engines, high-resolution linear and rotary encoders are needed. Interferometric methods (grating interferometers) promise a resolution of a few nanometers, but have an ambiguity range of some microns. Incremental encoders increase the absolute measurement range by counting the signal periods starting from a defined initial point. In many applications, however, it is not possible to move to this initial point, so that absolute encoders have to be used. Absolute encoders generally have a scale with two or more tracks placed next to each other. Therefore, they use a two-dimensional grating structure to measure a one-dimensional position. We present a new method, which uses a one-dimensional structure to determine the position in one dimension. It is based on a grating with a large grating period up to some millimeters, having the same diffraction efficiency in several predefined diffraction orders (multiple grating). By combining the phase signals of the different diffraction orders, it is possible to establish the position in an absolute range of the grating period with a resolution like incremental grating interferometers. The principal functionality was demonstrated by applying the multiple grating in a heterodyne grating interferometer. The heterodyne frequency was generated by a frequency modulated laser in an unbalanced interferometer. In experimental measurements an absolute range of 8 mm was obtained while achieving a resolution of 10 nm.

  18. Features of Talbot effect on phase diffraction grating

    NASA Astrophysics Data System (ADS)

    Brazhnikov, Denis G.; Danko, Volodymyr P.; Kotov, Myhaylo M.; Kovalenko, Andriy V.

    2018-01-01

    The features of the Talbot effect using the phase diffraction gratings have been considered. A phase grating, unlike an amplitude grating, gives a constant light intensity in the observation plane at a distance multiple to half of the Talbot length ZT. In this case, the subject of interest consists in so-called fractional Talbot effect with the periodic intensity distribution observed in planes shifted from the position nZT/2 (the so-called Fresnel images). Binary phase diffraction gratings with varying phase steps have been investigated. Gratings were made photographically on holographic plates PFG-01. The phase shift was obtained by modulating the emulsion refraction index of the plates. Two types of gratings were used: a square grating with a fill factor of 0.5 and a checkerwise grating (square areas with a bigger and lower refractive index alternate in a checkerboard pattern). By the example of these gratings, the possibility of obtaining in the observation plane an image of a set of equidistant spots with a size smaller than the size of the phase-shifting elements of the grating (the so-called Talbot focusing) has been shown. Clear images of spots with a sufficient signal-to-noise ratio have been obtained for a square grating. Their period was equal to the period of the grating. For a grating with a checkerwise distribution of the refractive index, the spots have been located in positions corresponding to the centres of cells. In addition, the quality of the resulting pattern strongly depended on the magnitude of a grating phase step. As a result of the work, the possibility to obtain Talbot focusing has been shown and the use of this effect to wavefront investigation with a gradient sensor has been demonstrated.

  19. Performance of multilayer coated diffraction gratings in the EUV

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva A. M.; Thomas, Roger J.; Gum, Jeffrey S.; Condor, Charles E.

    1990-01-01

    The effect of multilayer coating application on the performance of a diffraction grating in the EUV spectral region was evaluated by examining the performance of a 3600-line/mm and a 1200-line/mm replica blazed gratings, designed for operation in the 300-A spectral region in first order. A ten-layer IrSi multilayer optimized for 304 A was deposited using electron-beam evaporation. The grating efficiency was measured on the SURF II calibration beamline in a chamber designed for calibrating the solar EUV rocket telescope and spectrograph multilayer coatings. A significant (by a factor of about 7) enhancement in grating efficiency in the 300-A region was demonstrated.

  20. Polarization-independent tunable spectral slicing filter in Ti:LiNbO3.

    PubMed

    Rabelo, Renato C; Eknoyan, Ohannes; Taylor, Henry F

    2011-02-01

    A two-port polarization-independent tunable spectral slicing filter at the 1530 nm wavelength regime is presented. The design utilizes an asymmetric interferometer with a sparse index grating along its arms. The sparse grating makes it possible to select equally spaced frequency channels from an incident WDM signal and to place nulls between them to coincide with the signal comb frequency. The number of selected channels and nulls between them depends on the number of coupling regions used in the sparse grating. The free spectral range depends on the spacing between the coupling regions. The Z-transform method is used to synthesize the filter and determine the spectral response. The operation of a device with six coupling regions is demonstrated, and good agreement with theoretical predictions is obtained. A 3 dB bandwidth of ∼1 nm and thermal tuning over a range of ∼13 nm are measured.

  1. Grating array systems having a plurality of gratings operative in a coherently additive mode and methods for making such grating array systems

    DOEpatents

    Kessler, Terrance J [Mendon, NY; Bunkenburg, Joachim [Victor, NY; Huang, Hu [Pittsford, NY

    2007-02-13

    A plurality of gratings (G1, G2) are arranged together with a wavefront sensor, actuators, and feedback system to align the gratings in such a manner, that they operate like a single, large, monolithic grating. Sub-wavelength-scale movements in the mechanical mounting, due to environmental influences, are monitored by an interferometer (28), and compensated by precision actuators (16, 18, 20) that maintain the coherently additive mode. The actuators define the grating plane, and are positioned in response to the wavefronts from the gratings and a reference flat, thus producing the interferogram that contains the alignment information. Movement of the actuators is also in response to a diffraction-limited spot on the CCD (36) to which light diffracted from the gratings is focused. The actuator geometry is implemented to take advantage of the compensating nature of the degrees of freedom between gratings, reducing the number of necessary control variables.

  2. Spatio-temporal modeling and optimization of a deformable-grating compressor for short high-energy laser pulses

    DOE PAGES

    Qiao, Jie; Papa, J.; Liu, X.

    2015-09-24

    Monolithic large-scale diffraction gratings are desired to improve the performance of high-energy laser systems and scale them to higher energy, but the surface deformation of these diffraction gratings induce spatio-temporal coupling that is detrimental to the focusability and compressibility of the output pulse. A new deformable-grating-based pulse compressor architecture with optimized actuator positions has been designed to correct the spatial and temporal aberrations induced by grating wavefront errors. An integrated optical model has been built to analyze the effect of grating wavefront errors on the spatio-temporal performance of a compressor based on four deformable gratings. Moreover, a 1.5-meter deformable gratingmore » has been optimized using an integrated finite-element-analysis and genetic-optimization model, leading to spatio-temporal performance similar to the baseline design with ideal gratings.« less

  3. Analytic theory of alternate multilayer gratings operating in single-order regime.

    PubMed

    Yang, Xiaowei; Kozhevnikov, Igor V; Huang, Qiushi; Wang, Hongchang; Hand, Matthew; Sawhney, Kawal; Wang, Zhanshan

    2017-07-10

    Using the coupled wave approach (CWA), we introduce the analytical theory for alternate multilayer grating (AMG) operating in the single-order regime, in which only one diffraction order is excited. Differing from previous study analogizing AMG to crystals, we conclude that symmetrical structure, or equal thickness of the two multilayer materials, is not the optimal design for AMG and may result in significant reduction in diffraction efficiency. The peculiarities of AMG compared with other multilayer gratings are analyzed. An influence of multilayer structure materials on diffraction efficiency is considered. The validity conditions of analytical theory are also discussed.

  4. Rayleigh and Wood anomalies in the diffraction of light from a perfectly conducting reflection grating

    NASA Astrophysics Data System (ADS)

    Maradudin, A. A.; Simonsen, I.; Polanco, J.; Fitzgerald, R. M.

    2016-02-01

    By means of a modal method we have calculated the angular dependence of the reflectivity and the efficiencies of several other diffracted orders of a perfectly conducting lamellar reflection grating illuminated by p-polarized light. These dependencies display the signatures of Rayleigh and Wood anomalies, usually associated with diffraction from a metallic grating. The Wood anomalies here are caused by the excitation of the surface electromagnetic waves supported by a periodically corrugated perfectly conducting surface, whose dispersion curves in both the nonradiative and radiative regions of the frequency-wavenumber plane are calculated.

  5. A Low Voltage Liquid Crystal Phase Grating with Switchable Diffraction Angles

    PubMed Central

    Chen, Haiwei; Tan, Guanjun; Huang, Yuge; Weng, Yishi; Choi, Tae-Hoon; Yoon, Tae-Hoon; Wu, Shin-Tson

    2017-01-01

    We demonstrate a simple yet high performance phase grating with switchable diffraction angles using a fringe field switching (FFS) liquid crystal (LC) cell. The LC rubbing angle is parallel to the FFS electrodes (i.e. α = 0°), leading to symmetric LC director distribution in a voltage-on state. Such a grating exhibits three unique features: 1) Two grating periods can be formed by controlling the applied voltage, resulting in switchable diffraction angles. In our design, the 1st diffraction order occurs at 4.3°, while the 2nd order appears at 8.6°. 2) The required voltage to achieve peak diffraction efficiency (η~32%) for the 1st order is only 4.4 V at λ = 633 nm as compared to 70 V for a conventional FFS-based phase grating in which α ≈ 7°, while the 2nd order (η~27%) is 15 V. 3). The measured rise and decay time for the 1st order is 7.62 ms and 6.75 ms, and for the 2nd order is 0.75 ms and 3.87 ms, respectively. To understand the physical mechanisms, we also perform device simulations. Good agreement between experiment and simulation is obtained. PMID:28054592

  6. Color separation gratings

    NASA Technical Reports Server (NTRS)

    Farn, Michael W.; Knowlden, Robert E.

    1993-01-01

    In this paper, we describe the theory, fabrication and test of a binary optics 'echelon'. The echelon is a grating structure which separates electromagnetic radiation of different wavelengths, but it does so according to diffraction order rather than by dispersion within one diffraction order, as is the case with conventional gratings. A prototype echelon, designed for the visible spectrum, is fabricated using the binary optics process. Tests of the prototype show good agreement with theoretical predictions.

  7. Fabrication update on critical-angle transmission gratings for soft x-ray grating spectrometers

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf K.; Bruccoleri, Alex; Mukherjee, Pran; Yam, Jonathan; Schattenburg, Mark L.

    2011-09-01

    Diffraction grating-based, wavelength dispersive high-resolution soft x-ray spectroscopy of celestial sources promises to reveal crucial data for the study of the Warm-Hot Intergalactic Medium, the Interstellar Medium, warm absorption and outflows in Active Galactic Nuclei, coronal emission from stars, and other areas of interest to the astrophysics community. Our recently developed critical-angle transmission (CAT) gratings combine the advantages of the Chandra high and medium energy transmission gratings (low mass, high tolerance of misalignments and figure errors, polarization insensitivity) with those of blazed reflection gratings (high broad band diffraction efficiency, high resolution through use of higher diffraction orders) such as the ones on XMM-Newton. Extensive instrument and system configuration studies have shown that a CAT grating-based spectrometer is an outstanding instrument capable of delivering resolving power on the order of 5,000 and high effective area, even with a telescope point-spread function on the order of many arc-seconds. We have fabricated freestanding, ultra-high aspect-ratio CAT grating bars from silicon-on-insulator wafers using both wet and dry etch processes. The 200 nm-period grating bars are supported by an integrated Level 1 support mesh, and a coarser external Level 2 support mesh. The resulting grating membrane is mounted to a frame, resulting in a grating facet. Many such facets comprise a grating array that provides light-weight coverage of large-area telescope apertures. Here we present fabrication results on the integration of CAT gratings and the different high-throughput support mesh levels and on membrane-frame bonding. We also summarize recent x-ray data analysis of 3 and 6 micron deep wet-etched CAT grating prototypes.

  8. Variable magnification variable dispersion glancing incidence imaging x-ray spectroscopic telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1991-01-01

    A variable magnification variable dispersion glancing incidence x-ray spectroscopic telescope capable of multiple high spatial revolution imaging at precise spectral lines of solar and stellar x-ray and extreme ultraviolet radiation sources includes a pirmary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable carries each providing a different magnification are positioned behind the primary focus at an inclination to the optical axis, each carrier carrying a series of ellipsoidal diffraction grating mirrors each having a concave surface on which the gratings are ruled and coated with a mutlilayer coating to reflect by diffraction a different desired wavelength. The diffraction grating mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A contoured detector such as an x-ray sensitive photogrpahic film is positioned at the second respective focus of each diffraction grating so that each grating may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected grating on the second carrier to receive radiation.

  9. Variable magnification variable dispersion glancing incidence imaging x ray spectroscopic telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard (Inventor)

    1990-01-01

    A variable magnification variable dispersion glancing incidence x ray spectroscopic telescope capable of multiple high spatial revolution imaging at precise spectral lines of solar and stellar x ray and extreme ultraviolet radiation sources includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable carriers each providing a different magnification are positioned behind the primary focus at an inclination to the optical axis, each carrier carrying a series of ellipsoidal diffraction grating mirrors each having a concave surface on which the gratings are ruled and coated with a multilayer coating to reflect by diffraction a different desired wavelength. The diffraction grating mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A contoured detector such as an x ray sensitive photographic film is positioned at the second respective focus of each diffraction grating so that each grating may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected grating on the second carrier to receive radiation.

  10. Diffractive element in extreme-UV lithography condenser

    DOEpatents

    Sweatt, William C.; Ray-Chaudhuri, Avijit

    2001-01-01

    Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.

  11. Diffractive element in extreme-UV lithography condenser

    DOEpatents

    Sweatt, William C.; Ray-Chaudhurl, Avijit K.

    2000-01-01

    Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.

  12. Blazed vector gratings fabricated using photosensitive polymer liquid crystals and control of polarization diffraction

    NASA Astrophysics Data System (ADS)

    Ono, Hiroshi; Kuzuwata, Mitsuru; Sasaki, Tomoyuki; Noda, Kohei; Kawatsuki, Nobuhiro

    2014-03-01

    The blazed vector grating possessing antisymmetric distributions of the birefringence were fabricated by exposing the line-focused linearly polarized ultraviolet light on the photosensitive polymer liquid crystals. The polarization states of the diffraction beams can be highly and widely controlled by designing the blazed structures, and the diffraction properties were well-explained by Jones calculus.

  13. Controlling total spot power from holographic laser by superimposing a binary phase grating.

    PubMed

    Liu, Xiang; Zhang, Jian; Gan, Yu; Wu, Liying

    2011-04-25

    By superimposing a tunable binary phase grating with a conventional computer-generated hologram, the total power of multiple holographic 3D spots can be easily controlled by changing the phase depth of grating with high accuracy to a random power value for real-time optical manipulation without extra power loss. Simulation and experiment results indicate that a resolution of 0.002 can be achieved at a lower time cost for normalized total spot power.

  14. Laboratory tools and e-learning elements in training of acousto-optics

    NASA Astrophysics Data System (ADS)

    Barócsi, Attila; Lenk, Sándor; Ujhelyi, Ferenc; Majoros, Tamás.; Maák, Paál.

    2015-10-01

    Due to the acousto-optic (AO) effect, the refractive index of an optical interaction medium is perturbed by an acoustic wave induced in the medium that builds up a phase grating that will diffract the incident light beam if the condition of constructive interference is satisfied. All parameters, such as magnitude, period or phase of the grating can be controlled that allows the construction of useful devices (modulators, switches, one or multi-dimensional deflectors, spectrum analyzers, tunable filters, frequency shifters, etc.) The research and training of acousto-optics have a long-term tradition at our department. In this presentation, we introduce the related laboratory exercises fitted into an e-learning frame. The BSc level exercise utilizes a laser source and an AO cell to demonstrate the effect and principal AO functions explaining signal processing terms such as amplitude or frequency modulation, modulation depth and Fourier transformation ending up in building a free space sound transmitting and demodulation system. The setup for MSc level utilizes an AO filter with mono- and polychromatic light sources to learn about spectral analysis and synthesis. Smart phones can be used to generate signal inputs or outputs for both setups as well as to help students' preparation and reporting.

  15. System and technique for characterizing fluids using ultrasonic diffraction grating spectroscopy

    DOEpatents

    Greenwood, Margaret S.

    2005-04-12

    A system for determining a property of a fluid based on ultrasonic diffraction grating spectroscopy includes a diffraction grating on a solid in contact with the fluid. An interrogation device delivers ultrasound through the solid and a captures a reflection spectrum from the diffraction grating. The reflection spectrum including a diffraction order equal to zero exhibits a peak whose location is used to determine speed of sound in the fluid. A separate measurement of the acoustic impedance is combined with the determined speed of sound to yield a measure of fluid density. A system for determining acoustic impedance includes an ultrasonic transducer on a first surface of a solid member, and an opposed second surface of the member is in contact with a fluid to be monitored. A longitudinal ultrasonic pulse is delivered through the solid member, and a multiplicity of pulse echoes caused by reflections of the ultrasonic pulse between the solid-fluid interface and the transducer-solid interface are detected. The decay rate of the detected echo amplitude as a function of echo number is used to determine acoustic impedance.

  16. Single beam write and/or replay of spatial heterodyne holograms

    DOEpatents

    Thomas, Clarence E.; Hanson, Gregory R.

    2007-11-20

    A method of writing a spatially heterodyne hologram having spatially heterodyne fringes includes: passing a single write beam through a spatial light modulator that digitally modulates said single write beam; and focusing the single write beam at a focal plane of a lens to impose a holographic diffraction grating pattern on the photorefractive crystal, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein only said single write beam is incident on said photorefractive crystal without a reference beam. A method of replaying a spatially heterodyne hologram having spatially heterodyne fringes at a replay angle includes: illuminating a photorefractive crystal having a holographic diffraction grating with a beam from a laser at an illumination angle, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein a difference between said illumination angle and said replay angle defines a diffraction angle .alpha. that is a function of a plane wave mathematically added to original object wave phase and amplitude data of said spatially heterodyne hologram having spatially heterodyne fringes.

  17. Compact silicon diffractive sensor: design, fabrication, and prototype.

    PubMed

    Maikisch, Jonathan S; Gaylord, Thomas K

    2012-07-01

    An in-plane constant-efficiency variable-diffraction-angle grating and an in-plane high-angular-selectivity grating are combined to enable a new compact silicon diffractive sensor. This sensor is fabricated in silicon-on-insulator and uses telecommunications wavelengths. A single sensor element has a micron-scale device size and uses intensity-based (as opposed to spectral-based) detection for increased integrability. In-plane diffraction gratings provide an intrinsic splitting mechanism to enable a two-dimensional sensor array. Detection of the relative values of diffracted and transmitted intensities is independent of attenuation and is thus robust. The sensor prototype measures refractive index changes of 10(-4). Simulations indicate that this sensor configuration may be capable of measuring refractive index changes three or four orders of magnitude smaller. The characteristics of this sensor type make it promising for lab-on-a-chip applications.

  18. Second-harmonic diffraction from holographic volume grating.

    PubMed

    Nee, Tsu-Wei

    2006-10-01

    The full polarization property of holographic volume-grating enhanced second-harmonic diffraction (SHD) is investigated theoretically. The nonlinear coefficient is derived from a simple atomic model of the material. By using a simple volume-grating model, the SHD fields and Mueller matrices are first derived. The SHD phase-mismatching effect for a thick sample is analytically investigated. This theory is justified by fitting with published experimental SHD data of thin-film samples. The SHD of an existing polymethyl methacrylate (PMMA) holographic 2-mm-thick volume-grating sample is investigated. This sample has two strong coupling linear diffraction peaks and five SHD peaks. The splitting of SHD peaks is due to the phase-mismatching effect. The detector sensitivity and laser power needed to measure these peak signals are quantitatively estimated.

  19. Analyzation of photopolymer materials shrunken influence for thick hologram gratings

    NASA Astrophysics Data System (ADS)

    Li, Zhenzhen; Xiao, Xue; Chen, Wei; Kang, Guoguo; Huang, Yong; Tan, Xiaodi

    2016-09-01

    The photopolymer materials are good media to record thick hologram gratings, because photopolymer materials have high resolution, low cost, simple process technology and so on. According to coupled wave theory for thick hologram gratings, we know that the same object beam can be reconstructed if the same reference beam is used to retrieve a thick hologram grating. However, the shrinkage always occurs in the photopolymer materials because of environment temperature, humidity, vibration etc. For instance, the same object beam cannot be reconstructed even the same reference beam to be used. In this paper, we will analysis the shrinkage influence of photopolymer materials for thick hologram gratings. We divide the photopolymer materials into several geometry layers, and analysis the reconstructed characteristics separately basing on coupled wave theory of Kogelnik. Through gradually continuous changing the angle between gratings and the border (we call it slant angle), we can build the geometry model of gratings bending caused by shrinkage of materials. We calculate wave complex amplitude diffracted from every layer, and superpose them to compute the total diffraction efficiency. We simulate above methods to obtain the curve of diffraction efficiency with reconstruction wavelength by using Matlab software. Comparing the simulated results with the experiments results, we can deduce the probable situation of thick hologram gratings bending after photopolymer materials shrink.

  20. Surveillance technique for hybrid WDM/PS-PON using a tunable OTDR

    NASA Astrophysics Data System (ADS)

    Hann, Swook; Yoo, Jun-sang; Park, Chang-soo

    2005-05-01

    A surveillance technique for passive optical networks (PON) is presented. The technique is based on the remote sensing of fiber Bragg grating using a tunable OTDR. Hybrid architecture of WDM and passive splitter-PON can be analyzed by the surveillance method at the central office under in-service state of PON.

  1. Using a cover layer to improve the damage resistance of gold-coated gratings induced by a picosecond pulsed laser

    NASA Astrophysics Data System (ADS)

    Xia, Zhilin; Wu, Yihan; Kong, Fanyu; Jin, Yunxia

    2018-04-01

    The chirped pulse amplification (CPA) technology is the main approach to achieve high-intensity short-pulse laser. Diffraction gratings are good candidates for stretching and compressing laser pulses in CPA. In this paper, a kind of gold-coated grating has been prepared and its laser damage experiment has been performed. The results reflect that the gratings laser damage was dominated by thermal ablation due to gold films or inclusions absorption and involved the deformation or eruption of the gold film. Based on these damage phenomena, a method of using a cover layer to prevent gold films from deforming and erupting has been adopted to improve the gold-coated gratings laser damage threshold. Since the addition of a cover layer changes the gratings diffraction efficiency, the gratings structure has been re-optimized. Furthermore, according to the calculated thermal stress distributions in gratings with optimized structures, the cover layer was demonstrated to be helpful for improving the gratings laser damage resistance if it is thick enough.

  2. Grating scattering BRDF and imaging performances: A test survey performed in the frame of the flex mission

    NASA Astrophysics Data System (ADS)

    Harnisch, Bernd; Deep, Atul; Vink, Ramon; Coatantiec, Claude

    2017-11-01

    Key components in optical spectrometers are the gratings. Their influence on the overall infield straylight of the spectrometer depends not only on the technology used for grating fabrication but also on the potential existence of ghost images caused by irregularities of the grating constant. For the straylight analysis of spectrometer no general Bidirectional Reflectance Distribution Function (BRDF) model of gratings exist, as it does for optically smooth surfaces. These models are needed for the determination of spectrometer straylight background and for the calculation of spectrometer out of band rejection performances. Within the frame of the Fluorescence Earth Explorer mission (FLEX), gratings manufactured using different technologies have been investigated in terms of straylight background and imaging performance in the used diffraction order. The gratings which have been investigated cover a lithographically written grating, a volume Bragg grating, two holographic gratings and an off-the-shelf ruled grating. In this paper we present a survey of the measured bidirectional reflectance/transmittance distribution function and the determination of an equivalent surface micro-roughness of the gratings, describing the scattering of the grating around the diffraction order. This is specifically needed for the straylight modeling of the spectrometer.

  3. Tunable liquid crystal photonic devices

    NASA Astrophysics Data System (ADS)

    Fan, Yun-Hsing

    2005-07-01

    Liquid crystal (LC)-based adaptive optics are important for information processing, optical interconnections, photonics, integrated optics, and optical communications due to their tunable optical properties. In this dissertation, we describe novel liquid crystal photonic devices. In Chap. 3, we demonstrate a novel electrically tunable-efficiency Fresnel lens which is devised for the first time using nanoscale PDLC. The tunable Fresnel lens is very desirable to eliminate the need of external spatial light modulator. The nanoscale LC devices are polarization independent and exhibit a fast response time. Because of the small droplet sizes, the operating voltage is higher than 100 Vrms. To lower the driving voltage, in Chap. 2 and Chap. 3, we have investigated tunable Fresnel lens using polymer-network liquid crystal (PNLC) and phase-separated composite film (PSCOF). The operating voltage is below 12 Vrms. The PNLC and PSCOF devices are polarization dependent. To overcome this shortcoming, stacking two cells with orthogonal alignment directions is a possibility. Using PNLC, we also demonstrated LC blazed grating. The diffraction efficiency of these devices is continuously controlled by the electric field. We also develop a system with continuously tunable focal length. A conventional mechanical zooming system is bulky and power hungry. In Chap. 4, we developed an electrically tunable-focus flat LC spherical lens and microlens array. A huge tunable range from 0.6 m to infinity is achieved by the applied voltage. In Chap. 5, we describe a LC microlens array whose focal length can be switched from positive to negative by the applied voltage. The fast response time feature of our LC microlens array will be very helpful in developing 3-D animated images. In Chap. 6, we demonstrate polymer network liquid crystals for switchable polarizers and optical shutters. The use of dual-frequency liquid crystal and special driving scheme leads to a sub-millisecond response time. In Chap. 7, for the first time, we demonstrate a fast-response and scattering-free homogeneously-aligned PNLC light modulator. The PNLC response time is ˜300x faster than that of a pure LC mixture. The PNLC cell also holds promise for mid and long infrared applications where response time is a critical issue.

  4. Wavelength-conserving grating router for intermediate wavelength density

    DOEpatents

    Deri, Robert J.; Patel, Rajesh R.; Bond, Steven W.; Bennett, Cory V.

    2007-03-20

    A wavelength router to be used for fiber optical networking router is based on a diffraction grating which utilizes only N wavelengths to interconnect N inputs to N outputs. The basic approach is to augment the grating with additional couplers or wavelength selective elements so than N-1 of the 2N-1 outputs are combined with other N outputs (leaving only N outputs). One embodiment uses directional couplers as combiners. Another embodiment uses wavelength-selective couplers. Another embodiment uses a pair of diffraction gratings to maintain parallel propagation of all optical beams. Also, beam combining can be implemented either by using retroflection back through the grating pair or by using couplers.

  5. Grazing-incidence grating compressor for applications to free-electron-lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frassetto, Fabio, E-mail: fabio.frassetto@pd.ifn.cnr.it; Miotti, Paolo; Poletto, Luca, E-mail: luca.poletto@ifn.cnr.it

    2016-07-27

    The design of a grating compressor for FEL pulses is discussed here. The design is based on the use of two grazing-incidence gratings. The available grating geometries, the classical diffraction mount and the off-plane one, are discussed.

  6. Fabrication of Extremely Short Length Fiber Bragg Gratings for Sensor Applications

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Rogowski, Robert S.; Tedjojuwono, Ken K.

    2002-01-01

    A new technique and a physical model for writing extremely short length Bragg gratings in optical fibers have been developed. The model describes the effects of diffraction on the spatial spectra and therefore, the wavelength spectra of the Bragg gratings. Using an interferometric technique and a variable aperture, short gratings of various lengths and center wavelengths were written in optical fibers. By selecting the related parameters, the Bragg gratings with typical length of several hundred microns and bandwidth of several nanometers can be obtained. These short gratings can be apodized with selected diffraction patterns and hence their broadband spectra have a well-defined bell shape. They are suitable for use as miniaturized distributed strain sensors, which have broad applications to aerospace research and industry as well.

  7. 8-beam local oscillator array at 4.7 THz generated by a phase grating and a quantum cascade laser.

    PubMed

    Mirzaei, B; Silva, J R G; Hayton, D; Groppi, C; Kao, T Y; Hu, Q; Reno, J L; Gao, J R

    2017-11-27

    We present an 8-beam local oscillator (LO) for the astronomically significant [OI] line at 4.7 THz. The beams are generated using a quantum cascade laser (QCL) in combination with a Fourier phase grating. The grating is fully characterized using a third order distributed feedback (DFB) QCL with a single mode emission at 4.7 THz as the input. The measured diffraction efficiency of 74.3% is in an excellent agreement with the calculated result of 75.4% using a 3D simulation. We show that the power distribution among the diffracted beams is uniform enough for pumping an array receiver. To validate the grating bandwidth, we apply a far-infrared (FIR) gas laser emission at 5.3 THz as the input and find a very similar performance in terms of efficiency, power distribution, and spatial configuration of the diffracted beams. Both results represent the highest operating frequencies of THz phase gratings reported in the literature. By injecting one of the eight diffracted 4.7 THz beams into a superconducting hot electron bolometer (HEB) mixer, we find that the coupled power, taking the optical loss into account, is in consistency with the QCL power value.

  8. A novel fiber Bragg grating wavelength demodulation system based on F-P etalon

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Guo, Jinghong; Xu, Guoliang; Lv, Lidong; Tu, Guojie; Xia, Lan

    2014-10-01

    This paper designs and implies a high precision FBG demodulation system which based on F-P etalon. In order to reduce the influence of the temperature drift effect, the peristaltic effect, and the nonlinear effect of F-P filter in traditional tunable filter method, F-P etalon is added as dynamical calibration and wavelength reference. Meanwhile segmentation demodulation which uses ASE spectral characteristics is applied to achieve high accuracy of the center wavelength of FBG. The experiment shows that the stability, resolution are 0.65pm, 0.23pm, respectively. Key words: fiber optics; fiber Bragg grating sensor system; tunable Fabry-Perot filter; F-P etalon; spectrum segmentation demodulation

  9. Tunable X-ray speckle-based phase-contrast and dark-field imaging using the unified modulated pattern analysis approach

    NASA Astrophysics Data System (ADS)

    Zdora, M.-C.; Thibault, P.; Deyhle, H.; Vila-Comamala, J.; Rau, C.; Zanette, I.

    2018-05-01

    X-ray phase-contrast and dark-field imaging provides valuable, complementary information about the specimen under study. Among the multimodal X-ray imaging methods, X-ray grating interferometry and speckle-based imaging have drawn particular attention, which, however, in their common implementations incur certain limitations that can restrict their range of applications. Recently, the unified modulated pattern analysis (UMPA) approach was proposed to overcome these limitations and combine grating- and speckle-based imaging in a single approach. Here, we demonstrate the multimodal imaging capabilities of UMPA and highlight its tunable character regarding spatial resolution, signal sensitivity and scan time by using different reconstruction parameters.

  10. Diffractive optical elements on non-flat substrates using electron beam lithography

    NASA Technical Reports Server (NTRS)

    Maker, Paul D. (Inventor); Muller, Richard E. (Inventor); Wilson, Daniel W. (Inventor)

    2002-01-01

    The present disclosure describes a technique for creating diffraction gratings on curved surfaces with electron beam lithography. The curved surface can act as an optical element to produce flat and aberration-free images in imaging spectrometers. In addition, the fabrication technique can modify the power structure of the grating orders so that there is more energy in the first order than for a typical grating. The inventors noticed that by using electron-beam lithography techniques, a variety of convex gratings that are well-suited to the requirements of imaging spectrometers can be manufactured.

  11. Electrically controlled lens and prism using nanoscale polymer-dispersed and polymer-networked liquid crystals

    NASA Astrophysics Data System (ADS)

    Fan, Yun Hsing; Ren, Hongwen; Wu, Shin Tson

    2004-05-01

    Inhomogeneous nanoscale polymer-dispersed liquid crystal (PDLC) devices having gradient nanoscale droplet distribution were fabricated. This gradient refractive index nanoscale (GRIN) PDLC film was obtained by exposing the LC/ monomer with a uniform ultraviolet (UV) light through a patterned photomask. The monomer and LC were mixed at 70: 30 wt% ratio. The area exposed to a weaker UV intensity would produce a larger droplet size, and vice versa. Owing to the nanoscale LC droplets involved, the GRIN PDLC devices are highly transparent in the whole visible region. The gradient refractive index profile can be used as switchable prism gratings, Fresnel lens, and positive and negative lenses with tunable focal lengths. Such a GRIN PDLC device is a broadband device and independent of light polarization. The diffraction efficiency of the lens is controllable by the applied voltage. The major advantages of the GRIN PDLC devices are in simple fabrication process, polarization-independent, and fast switching speed, although the required driving voltage is higher than 100 Vrms. To lower the driving voltage, the technique of polymer-networked liquid crystal (PNLC) has been developed. The PNLC was also produced by exposing the LC/monomer mixture with a uniform UV light through a patterned photomask. However, the monomer concentration in PNLC is only around 2-5 wt%. The formed PNLC structure exhibits a gradient polymer network distribution. The LC in the regions stabilized by a higher polymer concentration exhibits a higher threshold voltage. By using this technique, prism grating, tunable electronic lens and Fresnel lens have been demonstrated. The driving voltage is around 10 Vrms. A drawback of this kind of device is polarization dependence. To overcome the polarization dependence, stacking two orthogonal homogeneous PNLC lens is considered.

  12. Error Measurements in an Acousto-Optic Tunable Filter Fiber Bragg Grating Sensor System

    DTIC Science & Technology

    1994-05-01

    for an ideal AOTF, at 833 and 838 nm using a TeO2 crystal ............................ 33 Figure 3.12. Frequency characteristics of Equation (3.43...multiple channels in an AOTF requires the presence of multiple RF frequencies to establish the complex grating. Since the crystal used in the AOTF ( TeO2 ) is...in germano- silicate glass . This index modulation, Bragg grating, acts as an optical band rejection filter for those wavelengths that meet the Bragg

  13. Tunable overlapping long-period fiber grating and its bending vector sensing application

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Zhang, Weigang; Chen, Lei; Wang, Song; Zhang, Yunshan; Zhang, Yanxin; Kong, Lingxin; Yu, Lin; Yan, Tieyi; Li, Yanping

    2018-03-01

    A novel overlapping long-period fiber grating (OLPFG) is proposed and experimentally demonstrated in this paper. The OLPFG is composed of two partially overlapping long-period fiber gratings (LPFG). Based on the coupled model theory and transfer matrix method, it is found that the phase shift LPFG and LPFGs interference are two special situations of the proposed OLPFG. Moreover, the confirmation experiments verified that the proposed OLPFG has a high bending sensitivity in opposite directions, and the temperature crosstalk can be compensated spontaneously.

  14. Bandwidth-Tunable Fiber Bragg Gratings Based on UV Glue Technique

    NASA Astrophysics Data System (ADS)

    Fu, Ming-Yue; Liu, Wen-Feng; Chen, Hsin-Tsang; Chuang, Chia-Wei; Bor, Sheau-Shong; Tien, Chuen-Lin

    2007-07-01

    In this study, we have demonstrated that a uniform fiber Bragg grating (FBG) can be transformed into a chirped fiber grating by a simple UV glue adhesive technique without shifting the reflection band with respect to the center wavelength of the FBG. The technique is based on the induced strain of an FBG due to the UV glue adhesive force on the fiber surface that causes a grating period variation and an effective index change. This technique can provide a fast and simple method of obtaining the required chirp value of a grating for applications in the dispersion compensators, gain flattening in erbium-doped fiber amplifiers (EDFAs) or optical filters.

  15. Probing Atom-Surface Interactions by Diffraction of Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Bender, Helmar; Stehle, Christian; Zimmermann, Claus; Slama, Sebastian; Fiedler, Johannes; Scheel, Stefan; Buhmann, Stefan Yoshi; Marachevsky, Valery N.

    2014-01-01

    In this article, we analyze the Casimir-Polder interaction of atoms with a solid grating and the repulsive interaction between the atoms and the grating in the presence of an external laser source. The Casimir-Polder potential is evaluated exactly in terms of Rayleigh reflection coefficients and via an approximate Hamaker approach. The laser-tuned repulsive interaction is given in terms of Rayleigh transmission coefficients. The combined potential landscape above the solid grating is probed locally by diffraction of Bose-Einstein condensates. Measured diffraction efficiencies reveal information about the shape of the potential landscape in agreement with the theory based on Rayleigh decompositions.

  16. Polarizing beam splitter of deep-etched triangular-groove fused-silica gratings.

    PubMed

    Zheng, Jiangjun; Zhou, Changhe; Feng, Jijun; Wang, Bo

    2008-07-15

    We investigated the use of a deep-etched fused-silica grating with triangular-shaped grooves as a highly efficient polarizing beam splitter (PBS). A triangular-groove PBS grating is designed at a wavelength of 1550 nm to be used in optical communication. When it is illuminated in Littrow mounting, the transmitted TE- and TM-polarized waves are mainly diffracted in the minus-first and zeroth orders, respectively. The design condition is based on the average differences of the grating mode indices, which is verified by using rigorous coupled-wave analysis. The designed PBS grating is highly efficient over the C+L band range for both TE and TM polarizations (>97.68%). It is shown that such a triangular-groove PBS grating can exhibit a higher diffraction efficiency, a larger extinction ratio, and less reflection loss than the binary-phase fused-silica PBS grating.

  17. Fiber facet gratings for high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Vanek, Martin; Vanis, Jan; Baravets, Yauhen; Todorov, Filip; Ctyroky, Jiri; Honzatko, Pavel

    2017-12-01

    We numerically investigated the properties of diffraction gratings designated for fabrication on the facet of an optical fiber. The gratings are intended to be used in high-power fiber lasers as mirrors either with a low or high reflectivity. The modal reflectance of low reflectivity polarizing grating has a value close to 3% for TE mode while it is significantly suppressed for TM mode. Such a grating can be fabricated on laser output fiber facet. The polarizing grating with high modal reflectance is designed as a leaky-mode resonant diffraction grating. The grating can be etched in a thin layer of high index dielectric which is sputtered on fiber facet. We used refractive index of Ta2O5 for such a layer. We found that modal reflectance can be close to 0.95 for TE polarization and polarization extinction ratio achieves 18 dB. Rigorous coupled wave analysis was used for fast optimization of grating parameters while aperiodic rigorous coupled wave analysis, Fourier modal method and finite difference time domain method were compared and used to compute modal reflectance of designed gratings.

  18. Phase holograms in silver halide emulsions without a bleaching step

    NASA Astrophysics Data System (ADS)

    Belendez, Augusto; Madrigal, Roque F.; Pascual, Inmaculada V.; Fimia, Antonio

    2000-03-01

    Phase holograms in holographic emulsions are usually obtained by two bath processes (developing and bleaching). In this work we present a one step method to reach phase holograms with silver-halide emulsions. Which is based on the variation of the conditions of the typical developing processes of amplitude holograms. For this, we have used the well-known chemical developer, AAC, which is composed by ascorbic acid as a developing agent and sodium carbonate anhydrous as accelerator. Agfa 8E75 HD and BB-640 plates were used to obtain these phase gratings, whose colors are between yellow and brown. In function of the parameters of this developing method the resulting diffraction efficiency and optical density of the diffraction gratings were studied. One of these parameters studied is the influence of the grain size. In the case of Agfa plates diffraction efficiency around 18% with density < 1 has been reached, whilst with the BB-640 emulsion, whose grain is smaller than that of the Agfa, diffraction efficiency near 30% has been obtained. The resulting gratings were analyzed through X-ray spectroscopy showing the differences of the structure of the developed silver when amplitude and transmission gratings are obtained. The angular response of both (transmission and amplitude) gratings were studied, where minimal transmission is showed at the Braggs angle in phase holograms, whilst a maximal value is obtained in amplitude gratings.

  19. Beam splitting of low-contrast binary gratings under second Bragg angle incidence.

    PubMed

    Zheng, Jiangjun; Zhou, Changhe; Wang, Bo; Feng, Jijun

    2008-05-01

    Beam splitting of low-contrast rectangular gratings under second Bragg angle incidence is studied. The grating period is between lambda and 2lambda. The diffraction behaviors of the three transmitted propagating orders are illustrated by analyzing the first three propagating grating modes. From a simplified modal approach, the design conditions of gratings as a high-efficiency element with most of its energy concentrated in the -2nd transmitted order (~90%) and of gratings as a 1 x 2 beam splitter with a total efficiency over 90% are derived. The grating parameters for achieving exactly the splitting pattern by use of rigorous coupled-wave analysis verified the design method. A 1 x 3 beam splitter is also demonstrated. Moreover, the polarization-dependent diffraction behaviors are investigated, which suggest the possibility of designing polarization-selective elements under such a configuration. The proposed concept of using the second Bragg angle should be helpful for developing new grating-based devices.

  20. Optical-diffraction method for determining crystal orientation

    DOEpatents

    Sopori, B.L.

    1982-05-07

    Disclosed is an optical diffraction technique for characterizing the three-dimensional orientation of a crystal sample. An arbitrary surface of the crystal sample is texture etched so as to generate a pseudo-periodic diffraction grating on the surface. A laser light beam is then directed onto the etched surface, and the reflected light forms a farfield diffraction pattern in reflection. Parameters of the diffraction pattern, such as the geometry and angular dispersion of the diffracted beam are then related to grating shape of the etched surface which is in turn related to crystal orientation. This technique may be used for examining polycrystalline silicon for use in solar cells.

  1. Phononic crystal diffraction gratings

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Herbison, Sarah; Declercq, Nico F.; Laude, Vincent

    2012-02-01

    When a phononic crystal is interrogated by an external source of acoustic waves, there is necessarily a phenomenon of diffraction occurring on the external enclosing surfaces. Indeed, these external surfaces are periodic and the resulting acoustic diffraction grating has a periodicity that depends on the orientation of the phononic crystal. This work presents a combined experimental and theoretical study on the diffraction of bulk ultrasonic waves on the external surfaces of a 2D phononic crystal that consists of a triangular lattice of steel rods in a water matrix. The results of transmission experiments are compared with theoretical band structures obtained with the finite-element method. Angular spectrograms (showing frequency as a function of angle) determined from diffraction experiments are then compared with finite-element simulations of diffraction occurring on the surfaces of the crystal. The experimental results show that the diffraction that occurs on its external surfaces is highly frequency-dependent and has a definite relation with the Bloch modes of the phononic crystal. In particular, a strong influence of the presence of bandgaps and deaf bands on the diffraction efficiency is found. This observation opens perspectives for the design of efficient phononic crystal diffraction gratings.

  2. Diffraction-based optical correlator

    NASA Technical Reports Server (NTRS)

    Spremo, Stevan M. (Inventor); Fuhr, Peter L. (Inventor); Schipper, John F. (Inventor)

    2005-01-01

    Method and system for wavelength-based processing of a light beam. A light beam, produced at a chemical or physical reaction site and having at least first and second wavelengths, ?1 and ?2, is received and diffracted at a first diffraction grating to provide first and second diffracted beams, which are received and analyzed in terms of wavelength and/or time at two spaced apart light detectors. In a second embodiment, light from first and second sources is diffracted and compared in terms of wavelength and/or time to determine if the two beams arise from the same source. In a third embodiment, a light beam is split and diffracted and passed through first and second environments to study differential effects. In a fourth embodiment, diffracted light beam components, having first and second wavelengths, are received sequentially at a reaction site to determine whether a specified reaction is promoted, based on order of receipt of the beams. In a fifth embodiment, a cylindrically shaped diffraction grating (uniform or chirped) is rotated and translated to provide a sequence of diffracted beams with different wavelengths. In a sixth embodiment, incident light, representing one or more symbols, is successively diffracted from first and second diffraction gratings and is received at different light detectors, depending upon the wavelengths present in the incident light.

  3. Reflectors and tuning elements for widely-tunable GaAs-based sampled grating DBR lasers

    NASA Astrophysics Data System (ADS)

    Brox, O.; Wenzel, H.; Della Case, P.; Tawfieq, M.; Sumpf, B.; Weyers, M.; Knigge, A.

    2018-02-01

    Widely-tunable lasers without moving parts are attractive light sources for sensors in industry and biomedicine. In contrast to InP based sampled grating (SG) distributed Bragg reflector (DBR) diode lasers which are commercially available, shorter wavelength GaAs SG-DBR lasers are still under development. One reason is the difficulty to integrate gratings with coupling coefficients that are high enough for functional grating bursts with lengths below 10 μm. Recently we have demonstrated > 20 nm wide quasi-continuous tuning with a GaAs based SG-DBR laser emitting around 975 nm. Wavelength selective reflectors are realized with SGs having different burst periods for the front and back mirrors. Thermal tuning elements (resistors) which are placed on top of the SG allow the control of the spectral positions of the SG reflector combs and hence to adjust the Vernier mode. In this work we characterize subsections of the developed SG-DBR laser to further improve its performance. We study the impact of two different vertical structures (with vertical far field FWHMs of 41° and 24°) and two grating orders on the coupling coefficient. Gratings with coupling coefficients above 350 cm-1 have been integrated into SG-DBR lasers. We also examine electronic tuning elements (a technique which is typically applied in InP based SG-DBR lasers and allows tuning within nanoseconds) and discuss the limitations in the GaAs material system

  4. Trapezoidal diffraction grating beam splitters in single crystal diamond

    NASA Astrophysics Data System (ADS)

    Kiss, Marcell; Graziosi, Teodoro; Quack, Niels

    2018-02-01

    Single Crystal Diamond has been recognized as a prime material for optical components in high power applications due to low absorption and high thermal conductivity. However, diamond microstructuring remains challenging. Here, we report on the fabrication and characterization of optical diffraction gratings exhibiting a symmetric trapezoidal profile etched into a single crystal diamond substrate. The optimized grating geometry diffracts the transmitted optical power into precisely defined proportions, performing as an effective beam splitter. We fabricate our gratings in commercially available single crystal CVD diamond plates (2.6mm x 2.6mm x 0.3mm). Using a sputter deposited hard mask and patterning by contact lithography, the diamond is etched in an inductively coupled oxygen plasma with zero platen power. The etch process effectively reveals the characteristic {111} diamond crystal planes, creating a precisely defined angled (54.7°) profile. SEM and AFM measurements of the fabricated gratings evidence the trapezoidal shape with a pitch of 3.82μm, depth of 170 nm and duty cycle of 35.5%. Optical characterization is performed in transmission using a 650nm laser source perpendicular to the sample. The recorded transmitted optical power as function of detector rotation angle shows a distribution of 21.1% in the 0th order and 23.6% in each +/-1st order (16.1% reflected, 16.6% in higher orders). To our knowledge, this is the first demonstration of diffraction gratings with trapezoidal profile in single crystal diamond. The fabrication process will enable beam splitter gratings of custom defined optical power distribution profiles, while antireflection coatings can increase the efficiency.

  5. Monolithically Integrated Fiber Optic Coupler

    DTIC Science & Technology

    2013-01-14

    tilted Bragg gratings 24 are thermoelectric coolers (TECs) 30 that can modify the pitch of the tilted Bragg gratings 24, thereby changing their...reflective properties at specific wavelengths to provide tunability. Heating or cooling by thermoelectric coolers 30 causes expansion or contraction of...of a different wavelength of light. While thermoelectric coolers are preferred, devices 30 can be any reversible cooling/heating device that is

  6. Universal Network Access System

    DTIC Science & Technology

    2003-11-01

    128 Figure 37 The detail of the SCM TX , (LO; local oscillator, LPF; Low-pass filter, AMP; Amplifier, BPF ...with UNAS, ( BPF : band-pass filter, BM Rx; Burst Mode receiver, AWGR; Arrayed waveguide grating router, FBG; Fiber Bragg Grating, TL; Tunable Laser...protocols. Standard specifications and RFCs will be used as guidelines for implementation. Table 1 UNAS Serial I/O Formats Protocol Implement1

  7. Design and fabrication of directional diffractive device on glass substrate for multiview holographic 3D display

    NASA Astrophysics Data System (ADS)

    Su, Yanfeng; Cai, Zhijian; Liu, Quan; Zou, Wenlong; Guo, Peiliang; Wu, Jianhong

    2018-01-01

    Multiview holographic 3D display based on the nano-grating patterned directional diffractive device can provide 3D images with high resolution and wide viewing angle, which has attracted considerable attention. However, the current directional diffractive device fabricated on the photoresist is vulnerable to damage, which will lead to the short service life of the device. In this paper, we propose a directional diffractive device on glass substrate to increase its service life. In the design process, the period and the orientation of the nano-grating at each pixel are carefully calculated accordingly by the predefined position of the viewing zone, and the groove parameters are designed by analyzing the diffraction efficiency of the nano-grating pixel on glass substrate. In the experiment, a 4-view photoresist directional diffractive device with a full coverage of pixelated nano-grating arrays is efficiently fabricated by using an ultraviolet continuously variable spatial frequency lithography system, and then the nano-grating patterns on the photoresist are transferred to the glass substrate by combining the ion beam etching and the reactive ion beam etching for controlling the groove parameters precisely. The properties of the etched glass device are measured under the illumination of a collimated laser beam with a wavelength of 532nm. The experimental results demonstrate that the light utilization efficiency is improved and optimized in comparison with the photoresist device. Furthermore, the fabricated device on glass substrate is easier to be replicated and of better durability and practicability, which shows great potential in the commercial applications of 3D display terminal.

  8. Study of silicon strip waveguides with diffraction gratings and photonic crystals tuned to a wavelength of 1.5 µm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barabanenkov, M. Yu., E-mail: barab@iptm.ru; Vyatkin, A. F.; Volkov, V. T.

    2015-12-15

    Single-mode submicrometer-thick strip waveguides on silicon-on-insulator substrates, fabricated by silicon-planar-technology methods are considered. To solve the problem of 1.5-µm wavelength radiation input-output and its frequency filtering, strip diffraction gratings and two-dimensional photonic crystals are integrated into waveguides. The reflection and transmission spectra of gratings and photonic crystals are calculated. The waveguide-mode-attenuation coefficient for a polycrystalline silicon waveguide is experimentally estimated.

  9. Edge-enhanced imaging with polyvinyl alcohol/acrylamide photopolymer gratings.

    PubMed

    Márquez, Andrés; Neipp, Cristian; Beléndez, Augusto; Gallego, Sergi; Ortuño, Manuel; Pascual, Inmaculada

    2003-09-01

    We demonstrate edge-enhanced imaging produced by volume phase gratings recorded on a polyvinyl alcohol/acrylamide photopolymer. Bragg diffraction, exhibited by volume gratings, modifies the impulse response of the imaging system, facilitating spatial filtering operations with no need for a physical Fourier plane. We demonstrate that Kogelnik's coupled-wave theory can be used to calculate the transfer function for the transmitted and the diffracted orders. The experimental and simulated results agree, and they demonstrate the feasibility of our proposal.

  10. Two-port connecting-layer-based sandwiched grating by a polarization-independent design.

    PubMed

    Li, Hongtao; Wang, Bo

    2017-05-02

    In this paper, a two-port connecting-layer-based sandwiched beam splitter grating with polarization-independent property is reported and designed. Such the grating can separate the transmission polarized light into two diffraction orders with equal energies, which can realize the nearly 50/50 output with good uniformity. For the given wavelength of 800 nm and period of 780 nm, a simplified modal method can design a optimal duty cycle and the estimation value of the grating depth can be calculated based on it. In order to obtain the precise grating parameters, a rigorous coupled-wave analysis can be employed to optimize grating parameters by seeking for the precise grating depth and the thickness of connecting layer. Based on the optimized design, a high-efficiency two-port output grating with the wideband performances can be gained. Even more important, diffraction efficiencies are calculated by using two analytical methods, which are proved to be coincided well with each other. Therefore, the grating is significant for practical optical photonic element in engineering.

  11. Synchrotron radiation calibration of the EUVE variable line-spaced diffraction gratings at the NBS SURF II facility

    NASA Technical Reports Server (NTRS)

    Jelinsky, P.; Jelinsky, S. R.; Miller, A.; Vallerga, J.; Malina, R. F.

    1988-01-01

    The Extreme Ultraviolet Explorer (EUVE) has a spectrometer which utilizes variable line-spaced, plane diffraction gratings in the converging beam of a Wolter-Schwarzschild type II mirror. The gratings, microchannel plate detector, and thin film filters have been calibrated with continuum radiation provided by the NBS SURF II facility. These were calibrated in a continuum beam to find edges or other sharp spectral features in the transmission of the filters, quantum efficiency of the microchannel plate detector, and efficiency of the gratings. The details of the calibration procedure and the results of the calibration are presented.

  12. Simultaneous interrogation of interferometric and Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Brady, G.; Kalli, K.; Webb, D. J.; Jackson, D. A.; Reekie, L.; Archambault, J. L.

    1995-06-01

    We propose a new method for the simultaneous interrogation of conventional two-beam interferometers and Bragg grating sensors. The technique employs an unbalanced Mach-Zehnder interferometer illuminated by a single low-coherence source, which acts as a wavelength-tunable source for the grating and as a path-matched filter for the Fizeau interferometer, thus providing a high phase resolution output for each sensor. The grating sensor demonstrates a dynamic strain resolution of \\similar 0.05 mu 3 / \\radical Hz \\end-radical at 20 Hz, while the interferometric phase resolution is better than 1mrad/ \\radical Hz \\end-radical at 20 Hz, corresponding to an rms mirror displacement of 0.08 nm.

  13. Optical double-image cryptography based on diffractive imaging with a laterally-translated phase grating.

    PubMed

    Chen, Wen; Chen, Xudong; Sheppard, Colin J R

    2011-10-10

    In this paper, we propose a method using structured-illumination-based diffractive imaging with a laterally-translated phase grating for optical double-image cryptography. An optical cryptosystem is designed, and multiple random phase-only masks are placed in the optical path. When a phase grating is laterally translated just before the plaintexts, several diffraction intensity patterns (i.e., ciphertexts) can be correspondingly obtained. During image decryption, an iterative retrieval algorithm is developed to extract plaintexts from the ciphertexts. In addition, security and advantages of the proposed method are analyzed. Feasibility and effectiveness of the proposed method are demonstrated by numerical simulation results. © 2011 Optical Society of America

  14. Spatial Phase Coding for Incoherent Optical Processors

    NASA Technical Reports Server (NTRS)

    Tigin, D. V.; Lavrentev, A. A.; Gary, C. K.

    1994-01-01

    In this paper we introduce spatial phase coding of incoherent optical signals for representing signed numbers in optical processors and present an experimental demonstration of this coding technique. If a diffraction grating, such as an acousto-optic cell, modulates a stream of light, the image of the grating can be recovered from the diffracted beam. The position of the grating image, or more precisely its phase, can be used to denote the sign of the number represented by the diffracted light. The intensity of the light represents the magnitude of the number. This technique is more economical than current methods in terms of the number of information channels required to represent a number and the amount of post processing required.

  15. Phase-shifting point diffraction interferometer mask designs

    DOEpatents

    Goldberg, Kenneth Alan

    2001-01-01

    In a phase-shifting point diffraction interferometer, different image-plane mask designs can improve the operation of the interferometer. By keeping the test beam window of the mask small compared to the separation distance between the beams, the problem of energy from the reference beam leaking through the test beam window is reduced. By rotating the grating and mask 45.degree., only a single one-dimensional translation stage is required for phase-shifting. By keeping two reference pinholes in the same orientation about the test beam window, only a single grating orientation, and thus a single one-dimensional translation stage, is required. The use of a two-dimensional grating allows for a multiplicity of pinholes to be used about the pattern of diffracted orders of the grating at the mask. Orientation marks on the mask can be used to orient the device and indicate the position of the reference pinholes.

  16. Formation of high-order acoustic Bessel beams by spiral diffraction gratings

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Picó, R.; Sánchez-Morcillo, V.; Romero-García, V.; García-Raffi, L. M.; Staliunas, K.

    2016-11-01

    The formation of high-order Bessel beams by a passive acoustic device consisting of an Archimedes' spiral diffraction grating is theoretically, numerically, and experimentally reported in this paper. These beams are propagation-invariant solutions of the Helmholtz equation and are characterized by an azimuthal variation of the phase along its annular spectrum producing an acoustic vortex in the near field. In our system, the scattering of plane acoustic waves by the spiral grating leads to the formation of the acoustic vortex with zero pressure on axis and the angular phase dislocations characterized by the spiral geometry. The order of the generated Bessel beam and, as a consequence, the size of the generated vortex can be fixed by the number of arms in the spiral diffraction grating. The obtained results allow for obtaining Bessel beams with controllable vorticity by a passive device, which has potential applications in low-cost acoustic tweezers and acoustic radiation force devices.

  17. Critical-angle transmission grating technology development for high resolving power soft x-ray spectrometers on Arcus and Lynx

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf K.; Bruccoleri, Alexander R.; Song, Jungki; Kolodziejczak, Jeffery; Gaskin, Jessica A.; O'Dell, Stephen L.; Cheimetz, Peter; Hertz, Edward; Smith, Randall K.; Burwitz, Vadim; Hartner, Gisela; La Caria, Marlis-Madeleine; Schattenburg, Mark L.

    2017-08-01

    Soft x-ray spectroscopy with high resolving power (R = λ/Δλ) and large effective area (A) addresses numerous unanswered science questions about the physical laws that lead to the structure of our universe. In the soft x-ray band R > 1000 can currently only be achieved with diffraction grating-based spectroscopy. Criticalangle transmission (CAT) gratings combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of conventional transmission gratings (relaxed alignment tolerances and temperature requirements, transparent at higher energies, low mass), resulting in minimal mission resource requirements, while greatly improving figures of merit. Diffraction efficiency > 33% and R > 10, 000 have been demonstrated for CAT gratings. Last year the technology has been certified at Technology Readiness Level 4 based on a probe class mission concept. The Explorer-scale (A > 450 cm2 , R > 2500) grating spectroscopy Arcus mission can be built with today's CAT grating technology and has been selected in the current Explorer round for a Phase A concept study. Its figure of merit for the detection of weak absorption lines will be an order of magnitude larger than current instruments on Chandra and XMM-Newton. Further CAT grating technology development and improvements in the angular resolution of x-ray optics can provide another order of magnitude improvement in performance, as is envisioned for the X-ray Surveyor/Lynx mission concept currently under development for input into the 2020 Decadal Survey. For Arcus we have tested CAT gratings in a spectrometer setup in combination with silicon pore optics (SPO) and obtained resolving power results that exceed Arcus requirements before and after environmental testing of the gratings. We have recently fabricated the largest (32 mm x 32 mm) CAT gratings to date, and plan to increase grating size further. We mounted two of these large gratings to frames and aligned them in the roll direction using a laser-based technique. Simultaneous x-ray illumination of both gratings with an SPO module demonstrated that we can exceed Arcus grating-to-grating alignment requirements without x rays.

  18. Transmission Grating and Optics Technology Development for the Arcus Explorer Mission

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf; Arcus Team

    2018-01-01

    Arcus is a high-resolution x-ray spectroscopy MIDEX mission selected for a Phase A concept study. It is designed to explore structure formation through measurements of hot baryon distributions, feedback from black holes, and the formation and evolution of stars, disks, and exoplanet atmospheres. The design provides unprecedented sensitivity in the 1.2-5 nm wavelength band with effective area above 450 sqcm and spectral resolution R > 2500. The Arcus technology is based on 12 m-focal length silicon pore optics (SPO) developed for the European Athena mission, and critical-angle transmission (CAT) x-ray diffraction gratings and x-ray CCDs developed at MIT. The modular design consists of four parallel channels, each channel holding an optics petal, followed by a grating petal. CAT gratings are lightweight, alignment insensitive, high-efficiency x-ray transmission gratings that blaze into high diffraction orders, leading to high spectral resolution. Each optics petal represents an azimuthal sub-aperture of a full Wolter optic. The sub-aperturing effect increases spectral resolving power further. Two CCD readout strips receive photons from each channel, including higher-energy photons in 0th order. Each optics petal holds 34 SPO modules. Each grating petal holds 34 grating windows, and each window holds 4-6 grating facets. A grating facet consists of a silicon grating membrane, bonded to a flexure frame that interfaces with the grating window. We report on a sequence of tests with increasing complexity that systematically increase the Technology Readiness Level (TRL) for the combination of CAT gratings and SPOs towards TLR 6. CAT gratings have been evaluated in x rays for diffraction efficiency (> 30% at 2.5 nm) and for resolving power (R> 10,000). A CAT grating/SPO combination was measured at R ~ 3100 at blaze angles smaller than design values, exceeding Arcus requirements. Efficiency and resolving power were not impacted by vibration and thermal testing of gratings. A pair of large (32 mm x 32 mm) gratings was aligned using laser metrology, and alignment was verified under x rays. We present results on simultaneous illumination of the aligned grating pair, and describe our progress towards further tests.

  19. Holographic Gratings for Slow-Neutron Optics

    PubMed Central

    Klepp, Juergen; Pruner, Christian; Tomita, Yasuo; Geltenbort, Peter; Drevenšek-Olenik, Irena; Gyergyek, Saso; Kohlbrecher, Joachim; Fally, Martin

    2012-01-01

    Recent progress in the development of holographic gratings for neutron-optics applications is reviewed. We summarize the properties of gratings recorded in deuterated (poly)methylmethacrylate, holographic polymer-dispersed liquid crystals and nanoparticle-polymer composites revealed by diffraction experiments with slow neutrons. Existing and anticipated neutron-optical instrumentations based on holographic gratings are discussed.

  20. Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility (AXAF)

    NASA Technical Reports Server (NTRS)

    Schattenburg, M. L.; Canizares, C. R.; Dewey, D.; Levine, A. M.; Markert, T. H.

    1988-01-01

    The use of transmission gratings with grazing-incidence telescopes in celestial X-ray astrononmy is reviewed. The basic properties of transmission grating spectrometers and the use of 'phased' gratings to enhance the diffraction efficiency are outlined. The fabrication of the gratings is examined, giving special attention to the AXAF High Energy Transmission Grating. The performance of finite-period thick gratings is briefly discussed, and the performance of the transmission grating spectrometers planned for SPECTROSAT and AXAF are examined.

  1. Quantitative performance of a polarization diffraction grating polarimeter encoded onto two liquid-crystal-on-silicon displays

    NASA Astrophysics Data System (ADS)

    Cofré, Aarón; Vargas, Asticio; Torres-Ruiz, Fabián A.; Campos, Juan; Lizana, Angel; del Mar Sánchez-López, María; Moreno, Ignacio

    2017-11-01

    We present a quantitative analysis of the performance of a complete snapshot polarimeter based on a polarization diffraction grating (PDGr). The PDGr is generated in a common path polarization interferometer with a Z optical architecture that uses two liquid-crystal on silicon (LCoS) displays to imprint two different phase-only diffraction gratings onto two orthogonal linear states of polarization. As a result, we obtain a programmable PDGr capable to act as a simultaneous polarization state generator (PSG), yielding diffraction orders with different states of polarization. The same system is also shown to operate as a polarization state analyzer (PSA), therefore useful for the realization of a snapshot polarimeter. We analyze its performance using quantitative metrics such as the conditional number, and verify its reliability for the detection of states of polarization.

  2. Ultrasensitive, real-time analysis of biomarkers in breath using tunable external cavity laser and off-axis cavity-enhanced absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Bayrakli, Ismail; Akman, Hatice

    2015-03-01

    A robust biomedical sensor for ultrasensitive detection of biomarkers in breath based on a tunable external cavity laser (ECL) and an off-axis cavity-enhanced absorption spectroscopy (OA-CEAS) using an amplitude stabilizer is developed. A single-mode, narrow-linewidth, tunable ECL is demonstrated. A broadly coarse wavelength tuning range of 720 cm-1 for the spectral range between 6890 and 6170 cm-1 is achieved by rotating the diffraction grating forming a Littrow-type external-cavity configuration. A mode-hop-free tuning range of 1.85 cm-1 is obtained. The linewidths below 140 kHz are recorded. The ECL is combined with an OA-CEAS to perform laser chemical sensing. Our system is able to detect any molecule in breath at concentrations to the ppbv range that have absorption lines in the spectral range between 1450 and 1620 nm. Ammonia is selected as target molecule to evaluate the performance of the sensor. Using the absorption line of ammonia at 6528.76 cm-1, a minimum detectable absorption coefficient of approximately 1×10-8 cm-1 is demonstrated for 256 averages. This is achieved for a 1.4-km absorption path length and a 2-s data-acquisition time. These results yield a detection sensitivity of approximately 8.6×10-10 cm-1 Hz-1/2. Ammonia in exhaled breath is analyzed and found in a concentration of 870 ppb for our example.

  3. Ultrasensitive, real-time analysis of biomarkers in breath using tunable external cavity laser and off-axis cavity-enhanced absorption spectroscopy.

    PubMed

    Bayrakli, Ismail; Akman, Hatice

    2015-03-01

    A robust biomedical sensor for ultrasensitive detection of biomarkers in breath based on a tunable external cavity laser (ECL) and an off-axis cavity-enhanced absorption spectroscopy (OA-CEAS) using an amplitude stabilizer is developed. A single-mode, narrow-linewidth, tunable ECL is demonstrated. A broadly coarse wavelength tuning range of 720 cm⁻¹ for the spectral range between 6890 and 6170 cm⁻¹ is achieved by rotating the diffraction grating forming a Littrow-type external-cavity configuration. A mode-hop-free tuning range of 1.85 cm⁻¹ is obtained. The linewidths below 140 kHz are recorded. The ECL is combined with an OA-CEAS to perform laser chemical sensing. Our system is able to detect any molecule in breath at concentrations to the ppbv range that have absorption lines in the spectral range between 1450 and 1620 nm. Ammonia is selected as target molecule to evaluate the performance of the sensor. Using the absorption line of ammonia at 6528.76 cm⁻¹, a minimum detectable absorption coefficient of approximately 1×10⁻⁸ cm⁻¹ is demonstrated for 256 averages. This is achieved for a 1.4-km absorption path length and a 2-s data-acquisition time. These results yield a detection sensitivity of approximately 8.6×10⁻¹⁰ cm⁻¹ Hz(-1/2). Ammonia in exhaled breath is analyzed and found in a concentration of 870 ppb for our example.

  4. A Low-Voltage and High Uniformity Nano-Electro-Mechanical System Tunable Color Filter Based on Subwavelength Grating

    NASA Astrophysics Data System (ADS)

    Honma, Hiroaki; Takahashi, Kazuhiro; Ishida, Makoto; Sawada, Kazuaki

    2012-11-01

    This paper reports on the construction of a nano-electro-mechanical system (NEMS) tunable color filter based on a subwavelength grating with high color uniformity and a low drive voltage. We recently proposed a ground-voltage-ground (GVG)-type tunable color filter with a parallel-plate actuator with three pairs of electrodes to decrease the crosstalk due to the electrostatic attractive force between each pair of actuators. Our finite element method (FEM) simulation results indicate that the drive voltage is decreased by 10 V, as compared to that of the previously reported GV type. The proposed structure was fabricated using a silicon-on-insulator (SOI) wafer. The color tuning capability of the device was demonstrated by applying a drive voltage of 6.7 V. The reflected light intensity was decreased by 34% at a wavelength of 680 nm. Color uniformity was also obtained in the filter area by reducing the variation of the displacement on the one-dimensional actuator arrays.

  5. Spectrum synthesis for a spectrally tunable light source based on a DMD-convex grating Offner configuration

    NASA Astrophysics Data System (ADS)

    Ma, Suodong; Pan, Qiao; Shen, Weimin

    2016-09-01

    As one kind of light source simulation devices, spectrally tunable light sources are able to generate specific spectral shape and radiant intensity outputs according to different application requirements, which have urgent demands in many fields of the national economy and the national defense industry. Compared with the LED-type spectrally tunable light source, the one based on a DMD-convex grating Offner configuration has advantages of high spectral resolution, strong digital controllability, high spectrum synthesis accuracy, etc. As a key link of the above type light source to achieve target spectrum outputs, spectrum synthesis algorithm based on spectrum matching is therefore very important. An improved spectrum synthesis algorithm based on linear least square initialization and Levenberg-Marquardt iterative optimization is proposed in this paper on the basis of in-depth study of the spectrum matching principle. The effectiveness of the proposed method is verified by a series of simulations and experimental works.

  6. Watt-level tunable 1.5  μm narrow linewidth fiber ring laser based on a temperature tuning π-phase-shifted fiber Bragg grating.

    PubMed

    Sun, Junjie; Wang, Zefeng; Wang, Meng; Zhou, Zhiyue; Tang, Ni; Chen, Jinbao; Gu, Xijia

    2017-11-10

    A watt-level tunable 1.5 μm narrow linewidth fiber ring laser using a temperature tuning π-phase-shifted fiber Bragg grating (π-PSFBG) is demonstrated here, to the best of our knowledge, for the first time. The π-PSFBG is employed as both a narrow band filter and a wavelength tuning component, and its central wavelength is thermally tuned by a thermo-electric cooler. The maximum laser power is about 1.1 W with a linewidth of ∼318  MHz (∼2.57  pm) and a power fluctuation of less than 3%. The wavelength tuning range of the laser is about 1.29 nm with a sensitivity of ∼14.33  pm/°C, and the wavelength fluctuation is about 0.2 pm. This work provides important reference for tunable fiber lasers with both high power and narrow linewidth.

  7. 140 W peak power laser system tunable in the LWIR.

    PubMed

    Gutty, François; Grisard, Arnaud; Larat, Christian; Papillon, Dominique; Schwarz, Muriel; Gerard, Bruno; Ostendorf, Ralf; Rattunde, Marcel; Wagner, Joachim; Lallier, Eric

    2017-08-07

    We present a high peak power rapidly tunable laser system in the long-wave infrared comprising an external-cavity quantum cascade laser (EC-QCL) broadly tunable from 8 to 10 µm and an optical parametric amplifier (OPA) based on quasi phase-matching in orientation-patterned gallium arsenide (OP-GaAs) of fixed grating period. The nonlinear crystal is pumped by a pulsed fiber laser system to achieve efficient amplification in the OPA. Quasi phase-matching remains satisfied when the EC-QCL wavelength is swept from 8 to 10 µm with a crystal of fixed grating period through tuning the pump laser source around 2 µm. The OPA demonstrates parametric amplification from 8 µm to 10 µm and achieves output peak powers up to 140 W with spectral linewidths below 3.5 cm -1 . The beam profile quality (M 2 ) remains below 3.4 in both horizontal and vertical directions. Compared to the EC-QCL, the linewidth broadening is attributed to a coupling with the OPA.

  8. High-sensitivity detection of TNT

    PubMed Central

    Pushkarsky, Michael B.; Dunayevskiy, Ilya G.; Prasanna, Manu; Tsekoun, Alexei G.; Go, Rowel; Patel, C. Kumar N.

    2006-01-01

    We report high-sensitivity detection of 2,4,6-trinitrotoluene (TNT) by using laser photoacoustic spectroscopy where the laser radiation is obtained from a continuous-wave room temperature high-power quantum cascade laser in an external grating cavity geometry. The external grating cavity quantum cascade laser is continuously tunable over ≈400 nm around 7.3 μm and produces a maximum continuous-wave power of ≈200 mW. The IR spectroscopic signature of TNT is sufficiently different from that of nitroglycerine so that unambiguous detection of TNT without false positives from traces of nitroglycerine is possible. We also report the results of spectroscopy of acetylene in the 7.3-μm region to demonstrate continuous tunability of the IR source. PMID:17164325

  9. Impedance self-matching ultra-narrow linewidth fiber resonator by use of a tunable π-phase-shifted FBG.

    PubMed

    Jing, Mingyong; Yu, Bo; Hu, Jianyong; Hou, Huifang; Zhang, Guofeng; Xiao, Liantuan; Jia, Suotang

    2017-05-15

    In this paper, we present a novel ultra-narrow linewidth fiber resonator formed by a tunable polarization maintaining (PM) π-phase-shifted fiber Bragg grating and a PM uniform fiber Bragg grating with a certain length of PM single mode fiber patch cable between them. Theoretical prediction shows that this resonator has ultra-narrow linewidth resonant peaks and is easy to realize impedance matching. We experimentally obtain 3 MHz narrow linewidth impedance matched resonant peak in a 7.3 m ultra-long passive fiber cavity. The impedance self-matching characteristic of this resonator also makes itself particularly suitable for use in ultra-sensitive sensors, ultra-narrow band rejection optical filters and fiber lasers applications.

  10. Experiments and analysis of tunable monolithic 1- μm single-frequency fiber lasers with loop mirror filters

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Song, Huaqing; Wang, Xingpeng; Wang, Dongdong; Li, Li

    2018-03-01

    In this paper, we demonstrated thermally tunable 1- μm single-frequency fiber lasers utilizing loop mirror filters (LMFs) with unpumped Yb-doped fibers. The frequency selection and tracking was achieved by combining a fiber Bragg grating (FBG) and a dynamic grating established inside the LMF. The central emission wavelength was at 1064.07 nm with a tuning range of 1.4 nm, and the measured emission linewidth was less than 10 kHz. We also systematically studied the wavelength-tracking thermal stability of the LMF with separate thermal treatment upon the FBG and LMF, respectively. Finally, we presented a selection criterion for the minimum unpumped doped fiber length inside the LMF with experimental verification.

  11. Widely tunable asymmetric long-period fiber grating with high sensitivity using optical polymer on laser-ablated cladding.

    PubMed

    Chen, Nan-Kuang; Hsu, Der-Yi; Chi, Sien

    2007-08-01

    We demonstrate high-efficiency, wideband-tunable, laser-ablated long-period fiber gratings that use an optical polymer overlay. Portions of the fiber cladding are periodically removed by CO(2) laser pulses to induce periodic index changes for coupling the core mode into cladding modes. An optical polymer with a high thermo-optic coefficient with a dispersion distinct from that of silica is used on a deep-ablated cladding structure so that the effective indices of cladding modes become dispersive and the resonant wavelengths can be efficiently tuned. The tuning efficiency can be as high as 15.8 nm/ degrees C, and the tuning range can be wider than 105 nm (1545-1650 nm).

  12. Magnetic field gradient driven self-assembly of superparamagnetic nanoparticles using programmable magnetically-recorded templates

    NASA Astrophysics Data System (ADS)

    Ye, L.; Qi, B.; Lawton, T. G.; Mefford, O. T.; Rinaldi, C.; Garzon, S.; Crawford, T. M.

    2013-03-01

    Using the enormous magnetic field gradients (100 MT/m @ z =20 nm) present near the surface of magnetic recording media, we demonstrate the fabrication of diffraction gratings with lines consisting entirely of magnetic nanoparticles assembled from a colloidal fluid onto a disk drive medium, followed by transfer to a flexible and transparent polymer thin film. These nanomanufactured gratings have line spacings programmed with commercial magnetic recording and are inherently concave with radii of curvature controlled by varying the polymer film thickness. The diffracted intensity increases non-monotonically with the length of time the colloidal fluid remains on the disk surface. In addition to comparing longitudinal and perpendicular magnetic recording, a combination of spectral diffraction efficiency measurements, magnetometry, scanning electron microscopy and inductively coupled plasma atomic emmission spectroscopy of these gratings are employed to understand colloidal nanoparticle dynamics in this extreme gradient limit. Such experiments are necessary to optimize nanoparticle assembly and obtain uniform patterned features. This low-cost and sustainable approach to nanomanufacturing could enable low-cost, high-quality diffraction gratings as well as more complex polymer nanocomposite materials assembled with single-nanometer precision.

  13. Micro Ring Grating Spectrometer with Adjustable Aperture

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor); Choi, Sang H. (Inventor)

    2012-01-01

    A spectrometer includes a micro-ring grating device having coaxially-aligned ring gratings for diffracting incident light onto a target focal point, a detection device for detecting light intensity, one or more actuators, and an adjustable aperture device defining a circular aperture. The aperture circumscribes a target focal point, and directs a light to the detection device. The aperture device is selectively adjustable using the actuators to select a portion of a frequency band for transmission to the detection device. A method of detecting intensity of a selected band of incident light includes directing incident light onto coaxially-aligned ring gratings of a micro-ring grating device, and diffracting the selected band onto a target focal point using the ring gratings. The method includes using an actuator to adjust an aperture device and pass a selected portion of the frequency band to a detection device for measuring the intensity of the selected portion.

  14. Astronomical large Ge immersion grating by Canon

    NASA Astrophysics Data System (ADS)

    Sukegawa, Takashi; Suzuki, Takeshi; Kitamura, Tsuyoshi

    2016-07-01

    Immersion grating is a powerful optical device for thee infrared high-resolution spectroscope. Germanium (GGe) is the best material for a mid-infrared immersion grating because of Ge has very large reflective index (n=4.0). On the other hands, there is no practical Ge immersion grating under 5umm use. It was very difficult for a fragile IR crystal to manufacture a diffraction grating precisely. Our original free-forming machine has accuracy of a few nano-meter in positioning and stability. We already fabricated the large CdZnTe immersion grating. (Sukegawa et al. (2012), Ikeda et al. (2015)) Wee are developing Ge immersion grating that can be a good solution for high-resolution infrared spectroscopy with the large ground-based/space telescopes. We succeeded practical Ge immersion grating with the grooved area off 75mm (ruled direction) x 119mm (grove width) and the blaze angle of 75 degrees. Our astronomical large Ge immersion grating has the grooved area of 155mm (ruled direction) x 41mmm (groove width) and groove pitch off 91.74um. We also report optical performance of astronomical large Ge immersion grating with a metal coating on the diffraction surface.

  15. Tunable fiber Bragg grating ring lasers using macro fiber composite actuators

    NASA Astrophysics Data System (ADS)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-10-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley's optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from -500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG's holds promise for enhanced tunability in future research.

  16. Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-01-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.

  17. A 10Gbps optical burst switching network incorporating ultra-fast (5ns) wavelength switched tunable laser sources

    NASA Astrophysics Data System (ADS)

    Ryan, Neil; Todd, Michael; Farrell, Tom; Lavin, Adrian; Rigole, Pierre-Jean; Corbett, Brian; Roycroft, Brendan; Engelstaedter, Jan-Peter

    2017-11-01

    This paper outlines the development of a prototype optical burst mode switching network based upon a star topology, the ultimate application of which could be as a transparent payload processor onboard satellite repeaters. The network architecture incorporates multiple tunable laser sources, burst mode receivers and a passive optical router (Arrayed Waveguide Grating). Each tunable optical signal should carry >=10Gbps and be capable of wavelength switching in c. 5ns timescales. Two monolithic tunable laser types, based upon different technologies, will be utilised: a Slotted Fabry Perot laser (a Fabry Perot laser with slots added in order to introduce controlled cavity perturbations); and a Modulated Grating Y-Branch Laser (MGY: a widely tunable, multi-section device similar to the DBR laser). While the Slotted Fabry Perot laser is expected to achieve the required switching times, it is an immature technology not yet capable of achieving tunability over 80 ITU channels from a single chip. The MGY device is a more mature technology and has full C-band ITU channel coverage, but is not capable of the required short switching times. Hence, in order to facilitate the integration of this more mature technology into the prototype breadboard with the requisite switching time capabilities, a system of `dual laser' transmitters is being developed to enable data transmission from one MGY laser while the other switches and vice-versa. This work is being performed under ESA contract AO 1-5025/06/NL/PM, Optical Technologies for Ultra - fast Processing.

  18. Wavelength-division and spatial multiplexing using tandem interferometers for Bragg grating sensor networks

    NASA Astrophysics Data System (ADS)

    Kalli, K.; Brady, G. P.; Webb, D. J.; Jackson, D. A.; Zhang, L.; Bennion, I.

    1995-12-01

    We present a new method for the interrogation of large arrays of Bragg grating sensors. Eight gratings operating between the wavelengths of 1533 and 1555 nm have been demultiplexed. An unbalanced Mach-Zehnder interferometer illuminated by a single low-coherence source provides a high-phase-resolution output for each sensor, the outputs of which are sequentially selected in wavelength by a tunable Fabry-Perot interferometer. The minimum detectable strain measured was 90 n 3 / \\radical Hz \\end-radical at 7 Hz for a wavelength of 1535 nm.

  19. Theory of the special Smith-Purcell radiation from a rectangular grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Weihao, E-mail: liuwhao@ustc.edu.cn; He, Zhigang, E-mail: hezhg@ustc.edu.cn; Jia, Qika

    2015-12-15

    The recently uncovered special Smith-Purcell radiation (S-SPR) from the rectangular grating has significantly higher intensity than the ordinary Smith-Purcell radiation (SPR). Its monochromaticity and directivity are also much better. Here we explored the mechanism of the S-SPR by applying the fundamental electromagnetic theory and simulations. We have confirmed that the S-SPR is exactly from the radiating eigen modes of the grating. Its frequency and direction are well correlated with the beam velocity and structure parameters, which indicates its promising applications in tunable wave generation and beam diagnostic.

  20. Influence of temperature on the optical system with large diameter off-axis parabolic lenses

    NASA Astrophysics Data System (ADS)

    Su, Yaru; Ruan, Hao; Liu, Jie

    2016-10-01

    In this work, an optical system with large diameter off-axis parabolic lenses was adopted to achieve diffraction gratings by laser interference exposure. The diffraction wavefront aberration caused by temperature variations was simulated using ZEMAX. Through theoretical analysis and optical simulation, it is proved that the diffraction wavefront aberration of holographic grating caused by the pinhole's location errors (it is assumed that when the displacement of pinhole exists along one axis, the locations of the pinhole along the other two orthogonal axes are in a state of precise adjustment ) is much larger when the displacement occurs along z axis than along the other two axes, and the diffraction wavefront aberration is the smallest when the displacement occurs along x axis. If the ambient temperature changes by 1 degree, the PV value is 0.0631λ when the location of the pinhole changes by 0.121mm along z axis, 0.0034λor 0.0672λ when the location of the pinhole changes by 0.002mm along x axis or 0.03mm along y axis. To reach the diffraction limit (that means the PV value is 0.25λ), the decentering value of the pinhole along z axis should be less than 0.0341mm. In conclusion, the position error along z axis is an important factor to influence the PV value of diffraction grating, and the effect of temperature on the PV value of diffraction grating can be neglected.

  1. Fast integral methods for integrated optical systems simulations: a review

    NASA Astrophysics Data System (ADS)

    Kleemann, Bernd H.

    2015-09-01

    Boundary integral equation methods (BIM) or simply integral methods (IM) in the context of optical design and simulation are rigorous electromagnetic methods solving Helmholtz or Maxwell equations on the boundary (surface or interface of the structures between two materials) for scattering or/and diffraction purposes. This work is mainly restricted to integral methods for diffracting structures such as gratings, kinoforms, diffractive optical elements (DOEs), micro Fresnel lenses, computer generated holograms (CGHs), holographic or digital phase holograms, periodic lithographic structures, and the like. In most cases all of the mentioned structures have dimensions of thousands of wavelengths in diameter. Therefore, the basic methods necessary for the numerical treatment are locally applied electromagnetic grating diffraction algorithms. Interestingly, integral methods belong to the first electromagnetic methods investigated for grating diffraction. The development started in the mid 1960ies for gratings with infinite conductivity and it was mainly due to the good convergence of the integral methods especially for TM polarization. The first integral equation methods (IEM) for finite conductivity were the methods by D. Maystre at Fresnel Institute in Marseille: in 1972/74 for dielectric, and metallic gratings, and later for multiprofile, and other types of gratings and for photonic crystals. Other methods such as differential and modal methods suffered from unstable behaviour and slow convergence compared to BIMs for metallic gratings in TM polarization from the beginning to the mid 1990ies. The first BIM for gratings using a parametrization of the profile was developed at Karl-Weierstrass Institute in Berlin under a contract with Carl Zeiss Jena works in 1984-1986 by A. Pomp, J. Creutziger, and the author. Due to the parametrization, this method was able to deal with any kind of surface grating from the beginning: whether profiles with edges, overhanging non-functional profiles, very deep ones, very large ones compared to wavelength, or simple smooth profiles. This integral method with either trigonometric or spline collocation, iterative solver with O(N2) complexity, named IESMP, was significantly improved by an efficient mesh refinement, matrix preconditioning, Ewald summation method, and an exponentially convergent quadrature in 2006 by G. Schmidt and A. Rathsfeld from Weierstrass-Institute (WIAS) Berlin. The so-called modified integral method (MIM) is a modification of the IEM of D. Maystre and has been introduced by L. Goray in 1995. It has been improved for weak convergence problems in 2001 and it was the only commercial available integral method for a long time, known as PCGRATE. All referenced integral methods so far are for in-plane diffraction only, no conical diffraction was possible. The first integral method for gratings in conical mounting was developed and proven under very weak conditions by G. Schmidt (WIAS) in 2010. It works for separated interfaces and for inclusions as well as for interpenetrating interfaces and for a large number of thin and thick layers in the same stable way. This very fast method has then been implemented for parallel processing under Unix and Windows operating systems. This work gives an overview over the most important BIMs for grating diffraction. It starts by presenting the historical evolution of the methods, highlights their advantages and differences, and gives insight into new approaches and their achievements. It addresses future open challenges at the end.

  2. Electro-Optic Modulator.

    DTIC Science & Technology

    An electro - optic modulator is used to modulate coherent light beams by the application of an electric potential. It combines a Fabry-Perot etalon and...a diffraction grating in a single unit. An etalon is constructed with an electro - optic material between reflecting surfaces. A voltage applied...between alternate, spaced-apart electrodes of a metal grid attached to one reflecting surface induces a diffraction grating in the electro optic material. Light entering the etalon is diffracted, reflected and efficiently coupled out.

  3. Investigation on the special Smith-Purcell radiation from a nano-scale rectangular metallic grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Weiwei; Liu, Weihao, E-mail: liuwhao@ustc.edu.cn; Jia, Qika

    The special Smith-Purcell radiation (S-SPR), which is from the radiating eigen modes of a grating, has remarkable higher intensity than the ordinary Smith-Purcell radiation. Yet in previous studies, the gratings were treated as perfect conductor without considering the surface plasmon polaritons (SPPs) which are of significance for the nano-scale gratings especially in the optical region. In present paper, the rigorous theoretical investigations on the S-SPR from a nano-grating with SPPs taken into consideration are carried out. The dispersion relations and radiation characteristics are obtained, and the results are verified by simulations. According to the analyses, the tunable light radiation canmore » be achieved by the S-SPR from a nano-grating, which offers a new prospect for developing the nano-scale light sources.« less

  4. Label-free detection of real-time DNA amplification using a nanofluidic diffraction grating

    NASA Astrophysics Data System (ADS)

    Yasui, Takao; Ogawa, Kensuke; Kaji, Noritada; Nilsson, Mats; Ajiri, Taiga; Tokeshi, Manabu; Horiike, Yasuhiro; Baba, Yoshinobu

    2016-08-01

    Quantitative DNA amplification using fluorescence labeling has played an important role in the recent, rapid progress of basic medical and molecular biological research. Here we report a label-free detection of real-time DNA amplification using a nanofluidic diffraction grating. Our detection system observed intensity changes during DNA amplification of diffracted light derived from the passage of a laser beam through nanochannels embedded in a microchannel. Numerical simulations revealed that the diffracted light intensity change in the nanofluidic diffraction grating was attributed to the change of refractive index. We showed the first case reported to date for label-free detection of real-time DNA amplification, such as specific DNA sequences from tubercle bacilli (TB) and human papillomavirus (HPV). Since our developed system allows quantification of the initial concentration of amplified DNA molecules ranging from 1 fM to 1 pM, we expect that it will offer a new strategy for developing fundamental techniques of medical applications.

  5. Improved Resolution Optical Time Stretch Imaging Based on High Efficiency In-Fiber Diffraction.

    PubMed

    Wang, Guoqing; Yan, Zhijun; Yang, Lei; Zhang, Lin; Wang, Chao

    2018-01-12

    Most overlooked challenges in ultrafast optical time stretch imaging (OTSI) are sacrificed spatial resolution and higher optical loss. These challenges are originated from optical diffraction devices used in OTSI, which encode image into spectra of ultrashort optical pulses. Conventional free-space diffraction gratings, as widely used in existing OTSI systems, suffer from several inherent drawbacks: limited diffraction efficiency in a non-Littrow configuration due to inherent zeroth-order reflection, high coupling loss between free-space gratings and optical fibers, bulky footprint, and more importantly, sacrificed imaging resolution due to non-full-aperture illumination for individual wavelengths. Here we report resolution-improved and diffraction-efficient OTSI using in-fiber diffraction for the first time to our knowledge. The key to overcome the existing challenges is a 45° tilted fiber grating (TFG), which serves as a compact in-fiber diffraction device offering improved diffraction efficiency (up to 97%), inherent compatibility with optical fibers, and improved imaging resolution owning to almost full-aperture illumination for all illumination wavelengths. 50 million frames per second imaging of fast moving object at 46 m/s with improved imaging resolution has been demonstrated. This conceptually new in-fiber diffraction design opens the way towards cost-effective, compact and high-resolution OTSI systems for image-based high-throughput detection and measurement.

  6. Optical microwave filter based on spectral slicing by use of arrayed waveguide gratings.

    PubMed

    Pastor, Daniel; Ortega, Beatriz; Capmany, José; Sales, Salvador; Martinez, Alfonso; Muñoz, Pascual

    2003-10-01

    We have experimentally demonstrated a new optical signal processor based on the use of arrayed waveguide gratings. The structure exploits the concept of spectral slicing combined with the use of an optical dispersive medium. The approach presents increased flexibility from previous slicing-based structures in terms of tunability, reconfiguration, and apodization of the samples or coefficients of the transversal optical filter.

  7. Tunable Optical Assembly with Vibration Dampening

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Allison, Sidney G.; Fox, Robert L.

    2008-01-01

    Since their market introduction in 1995, fiber Bragg gratings (FBGs) have emerged as excellent means of measuring such parameters as strain and temperature. Distributed-grating sensing is particularly beneficial for such structural-health monitoring applications such as those of 'smart' structures or integrated vehicle health management in aerospace vehicles. Because of the variability of their output wavelengths, tunable lasers have become widely used as means of measuring FBGs. Several versions of a lightweight assembly for strain-tuning an FBG and dampening its vibrations have been constructed. The main components of such an assembly are one or more piezoelectric actuators, an optical fiber containing one or more Bragg grating(s), a Bragg-grating strain-measurement system, and a voltage source for actuation. The piezoelectric actuators are, more specifically, piezoceramic fiber composite actuators and, can be, still more specifically, of a type known in the art as macro-fiber composite (MFC) actuators. In fabrication of one version of the assembly, the optical fiber containing the Bragg grating(s) is sandwiched between the piezoelectric actuators along with an epoxy that is used to bond the optical fiber to both actuators, then the assembly is placed in a vacuum bag and kept there until the epoxy is cured. Bonding an FBG directly into an MFC actuator greatly reduces the complexity, relative to assemblies, that include piezoceramic fiber composite actuators, hinges, ferrules, and clamp blocks with setscrews. Unlike curved actuators, MFC actuators are used in a flat configuration and are less bulky. In addition, the MFC offers some vibration dampening and support for the optical fiber whereas, in a curved piezoelectric actuator assembly, the optical fiber is exposed, and there is nothing to keep the exposed portion from vibrating.

  8. The infrared imaging spectrograph (IRIS) for TMT: reflective ruled diffraction grating performance testing and discussion

    NASA Astrophysics Data System (ADS)

    Meyer, Elliot; Chen, Shaojie; Wright, Shelley A.; Moore, Anna M.; Larkin, James E.; Simard, Luc; Marie, Jerome; Mieda, Etsuko; Gordon, Jacob

    2014-07-01

    We present the efficiency of near-infrared reflective ruled diffraction gratings designed for the InfraRed Imaging Spectrograph (IRIS). IRIS is a first light, integral field spectrograph and imager for the Thirty Meter Telescope (TMT) and narrow field infrared adaptive optics system (NFIRAOS). IRIS will operate across the near-infrared encompassing the ZYJHK bands (~0.84 - 2.4μm) with multiple spectral resolutions. We present our experimental setup and analysis of the efficiency of selected reflective diffraction gratings. These measurements are used as a comparison sample against selected candidate Volume Phase Holographic (VPH) gratings (see Chen et al., this conference). We investigate the efficiencies of five ruled gratings designed for IRIS from two separate vendors. Three of the gratings accept a bandpass of 1.19-1.37μm (J band) with ideal spectral resolutions of R=4000 and R=8000, groove densities of 249 and 516 lines/mm, and blaze angles of 9.86° and 20.54° respectively. The other two gratings accept a bandpass of 1.51-1.82μm (H Band) with an ideal spectral resolution of R=4000, groove density of 141 lines/mm, and blaze angle of 9.86°. The fraction of flux in each diffraction mode was compared to both a pure reflection mirror as well as the sum of the flux measured in all observable modes. We measure the efficiencies off blaze angle for all gratings and the efficiencies between the polarization transverse magnetic (TM) and transverse electric (TE) states. The peak reflective efficiencies are 98.90 +/- 3.36% (TM) and 84.99 +/- 2.74% (TM) for the H-band R=4000 and J-band R=4000 respectively. The peak reflective efficiency for the J-band R=8000 grating is 78.78 +/- 2.54% (TE). We find that these ruled gratings do not exhibit a wide dependency on incident angle within +/-3°. Our best-manufactured gratings were found to exhibit a dependency on the polarization state of the incident beam with a ~10-20% deviation, consistent with the theoretical efficiency predictions. This work will significantly contribute to the selection of the final grating type and vendor for the IRIS optical system, and are also pertinent to current and future near-infrared astronomical spectrographs.

  9. Nano-indentation and laser-induced damage testing in optical multilayer-dielectric gratings [Nanomechanics and laser-induced damage in optical multilayer dielectric gratings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehrotra, K.; Corning Research & Development Corp., Coming, NY; Taylor, B. N.

    Here, we demonstrate how a nanomechanical test can be used to generate metrics to complement laser-induced–damage testing (LIDT) measurements and show that differences in optical performance of the gratings (arising from changes in cleaning process and/or fabrication methods) can be related to their mechanical reliability. Data are presented on LIDT measurements in diffractive gratings of silica deposited on optical multilayers. The nano-indentation response of the diffraction gratings is measured in a new mode that allows for the extraction of a measurable metric characterizing the brittleness of the gratings, as well as their ductility. We show that lower LIDT’s are positivelymore » correlated with an increased grating brittleness, and therefore identify a nanomechanical approach to describe LIDT’s. We present extensive numerical simulations of nano-indentation tests and identify different deformation modes including stretching, shear concentration, and bending as precursors to mechanical failure in the nano-indentation test. The effects of geometrical inhomogeneities on enhanced stress generation in these gratings are specifically examined and addressed.« less

  10. Nano-indentation and laser-induced damage testing in optical multilayer-dielectric gratings [Nanomechanics and laser-induced damage in optical multilayer dielectric gratings

    DOE PAGES

    Mehrotra, K.; Corning Research & Development Corp., Coming, NY; Taylor, B. N.; ...

    2017-03-16

    Here, we demonstrate how a nanomechanical test can be used to generate metrics to complement laser-induced–damage testing (LIDT) measurements and show that differences in optical performance of the gratings (arising from changes in cleaning process and/or fabrication methods) can be related to their mechanical reliability. Data are presented on LIDT measurements in diffractive gratings of silica deposited on optical multilayers. The nano-indentation response of the diffraction gratings is measured in a new mode that allows for the extraction of a measurable metric characterizing the brittleness of the gratings, as well as their ductility. We show that lower LIDT’s are positivelymore » correlated with an increased grating brittleness, and therefore identify a nanomechanical approach to describe LIDT’s. We present extensive numerical simulations of nano-indentation tests and identify different deformation modes including stretching, shear concentration, and bending as precursors to mechanical failure in the nano-indentation test. The effects of geometrical inhomogeneities on enhanced stress generation in these gratings are specifically examined and addressed.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Hao; Ashkar, Rana; Steinke, Nina

    A method dubbed grating-based holography was recently used to determine the structure of colloidal fluids in the rectangular grooves of a diffraction grating from X-ray scattering measurements. Similar grating-based measurements have also been recently made with neutrons using a technique called spin-echo small-angle neutron scattering. The analysis of the X-ray diffraction data was done using an approximation that treats the X-ray phase change caused by the colloidal structure as a small perturbation to the overall phase pattern generated by the grating. In this paper, the adequacy of this weak phase approximation is explored for both X-ray and neutron grating holography.more » Additionally, it is found that there are several approximations hidden within the weak phase approximation that can lead to incorrect conclusions from experiments. In particular, the phase contrast for the empty grating is a critical parameter. Finally, while the approximation is found to be perfectly adequate for X-ray grating holography experiments performed to date, it cannot be applied to similar neutron experiments because the latter technique requires much deeper grating channels.« less

  12. Optical and x-ray alignment approaches for off-plane reflection gratings

    NASA Astrophysics Data System (ADS)

    Allured, Ryan; Donovan, Benjamin D.; DeRoo, Casey T.; Marlowe, Hannah R.; McEntaffer, Randall L.; Tutt, James H.; Cheimets, Peter N.; Hertz, Edward; Smith, Randall K.; Burwitz, Vadim; Hartner, Gisela; Menz, Benedikt

    2015-09-01

    Off-plane reflection gratings offer the potential for high-resolution, high-throughput X-ray spectroscopy on future missions. Typically, the gratings are placed in the path of a converging beam from an X-ray telescope. In the off-plane reflection grating case, these gratings must be co-aligned such that their diffracted spectra overlap at the focal plane. Misalignments degrade spectral resolution and effective area. In-situ X-ray alignment of a pair of off-plane reflection gratings in the path of a silicon pore optics module has been performed at the MPE PANTER beamline in Germany. However, in-situ X-ray alignment may not be feasible when assembling all of the gratings required for a satellite mission. In that event, optical methods must be developed to achieve spectral alignment. We have developed an alignment approach utilizing a Shack-Hartmann wavefront sensor and diffraction of an ultraviolet laser. We are fabricating the necessary hardware, and will be taking a prototype grating module to an X-ray beamline for performance testing following assembly and alignment.

  13. Review of rigorous coupled-wave analysis and of homogeneous effective medium approximations for high spatial-frequency surface-relief gratings

    NASA Technical Reports Server (NTRS)

    Glytsis, Elias N.; Brundrett, David L.; Gaylord, Thomas K.

    1993-01-01

    A review of the rigorous coupled-wave analysis as applied to the diffraction of electro-magnetic waves by gratings is presented. The analysis is valid for any polarization, angle of incidence, and conical diffraction. Cascaded and/or multiplexed gratings as well as material anisotropy can be incorporated under the same formalism. Small period rectangular groove gratings can also be modeled using approximately equivalent uniaxial homogeneous layers (effective media). The ordinary and extraordinary refractive indices of these layers depend on the gratings filling factor, the refractive indices of the substrate and superstrate, and the ratio of the freespace wavelength to grating period. Comparisons of the homogeneous effective medium approximations with the rigorous coupled-wave analysis are presented. Antireflection designs (single-layer or multilayer) using the effective medium models are presented and compared. These ultra-short period antireflection gratings can also be used to produce soft x-rays. Comparisons of the rigorous coupled-wave analysis with experimental results on soft x-ray generation by gratings are also included.

  14. Reconfigurable optical assembly of nanostructures

    PubMed Central

    Montelongo, Yunuen; Yetisen, Ali K.; Butt, Haider; Yun, Seok-Hyun

    2016-01-01

    Arrangements of nanostructures in well-defined patterns are the basis of photonic crystals, metamaterials and holograms. Furthermore, rewritable optical materials can be achieved by dynamically manipulating nanoassemblies. Here we demonstrate a mechanism to configure plasmonic nanoparticles (NPs) in polymer media using nanosecond laser pulses. The mechanism relies on optical forces produced by the interference of laser beams, which allow NPs to migrate to lower-energy configurations. The resulting NP arrangements are stable without any external energy source, but erasable and rewritable by additional recording pulses. We demonstrate reconfigurable optical elements including multilayer Bragg diffraction gratings, volumetric photonic crystals and lenses, as well as dynamic holograms of three-dimensional virtual objects. We aim to expand the applications of optical forces, which have been mostly restricted to optical tweezers. Holographic assemblies of nanoparticles will allow a new generation of programmable composites for tunable metamaterials, data storage devices, sensors and displays. PMID:27337216

  15. Random access actuation of nanowire grid metamaterial

    NASA Astrophysics Data System (ADS)

    Cencillo-Abad, Pablo; Ou, Jun-Yu; Plum, Eric; Valente, João; Zheludev, Nikolay I.

    2016-12-01

    While metamaterials offer engineered static optical properties, future artificial media with dynamic random-access control over shape and position of meta-molecules will provide arbitrary control of light propagation. The simplest example of such a reconfigurable metamaterial is a nanowire grid metasurface with subwavelength wire spacing. Recently we demonstrated computationally that such a metadevice with individually controlled wire positions could be used as dynamic diffraction grating, beam steering module and tunable focusing element. Here we report on the nanomembrane realization of such a nanowire grid metasurface constructed from individually addressable plasmonic chevron nanowires with a 230 nm × 100 nm cross-section, which consist of gold and silicon nitride. The active structure of the metadevice consists of 15 nanowires each 18 μm long and is fabricated by a combination of electron beam lithography and ion beam milling. It is packaged as a microchip device where the nanowires can be individually actuated by control currents via differential thermal expansion.

  16. Hyperspectral imaging with deformable gratings fabricated with metal-elastomer nanocomposites

    NASA Astrophysics Data System (ADS)

    Potenza, Marco A. C.; Nazzari, Daniele; Cremonesi, Llorenç; Denti, Ilaria; Milani, Paolo

    2017-11-01

    We report the fabrication and characterization of a simple and compact hyperspectral imaging setup based on a stretchable diffraction grating made with a metal-polymer nanocomposite. The nanocomposite is produced by implanting Ag clusters in a poly(dimethylsiloxane) film by supersonic cluster beam implantation. The deformable grating has curved grooves and is imposed on a concave cylindrical surface, thus obtaining optical power in two orthogonal directions. Both diffractive and optical powers are obtained by reflection, thus realizing a diffractive-catoptric optical device. This makes it easier to minimize aberrations. We prove that, despite the extended spectral range and the simplified optical scheme, it is actually possible to work with a traditional CCD sensor and achieve a good spectral and spatial resolution.

  17. Optical imaging using spatial grating effects in ferrofluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dave, Vishakha; Virpura, Hiral; Patel, Rajesh, E-mail: rjp@mkbhavuni.edu.in

    2015-06-24

    Under the effect of magnetic field the magnetic nanoparticles of the ferrofluid tend to align in the direction of the magnetic field. This alignment of the magnetic nanoparticles behaves as a spatial grating and diffract light, when light is propagating perpendicular to the direction of the applied magnetic field. The chains of the magnetic nanoparticles represents a linear series of fringes like those observed in a grating/wire. Under applied magnetic field the circular beam of light transforms into a prominent diffraction line in the direction perpendicular to the applied magnetic field. This diffracted light illuminates larger area on the screen.more » This behavior can be used as magneto controlled illumination of the object and image analysis.« less

  18. Numerical implementation of the S-matrix algorithm for modeling of relief diffraction gratings

    NASA Astrophysics Data System (ADS)

    Yaremchuk, Iryna; Tamulevičius, Tomas; Fitio, Volodymyr; Gražulevičiūte, Ieva; Bobitski, Yaroslav; Tamulevičius, Sigitas

    2013-11-01

    A new numerical implementation is developed to calculate the diffraction efficiency of relief diffraction gratings. In the new formulation, vectors containing the expansion coefficients of electric and magnetic fields on boundaries of the grating layer are expressed by additional constants. An S-matrix algorithm has been systematically described in detail and adapted to a simple matrix form. This implementation is suitable for the study of optical characteristics of periodic structures by using modern object-oriented programming languages and different standard mathematical software. The modeling program has been developed on the basis of this numerical implementation and tested by comparison with other commercially available programs and experimental data. Numerical examples are given to show the usefulness of the new implementation.

  19. Grating angle magnification enhanced angular sensor and scanner

    NASA Technical Reports Server (NTRS)

    Sun, Ke-Xun (Inventor); Byer, Robert L. (Inventor)

    2009-01-01

    An angular magnification effect of diffraction is exploited to provide improved sensing and scanning. This effect is most pronounced for a normal or near-normal incidence angle in combination with a grazing diffraction angle, so such configurations are preferred. Angular sensitivity can be further enhanced because the width of the diffracted beam can be substantially less than the width of the incident beam. Normal incidence configurations with two symmetric diffracted beams are preferred, since rotation and vertical displacement can be readily distinguished. Increased sensitivity to vertical displacement can be provided by incorporating an interferometer into the measurement system. Quad cell detectors can be employed to provide sensitivity to rotation about the grating surface normal. A 2-D grating can be employed to provide sensitivity to angular displacements in two different planes (e.g., pitch and yaw). Combined systems can provide sensitivity to vertical displacement and to all three angular degrees of freedom.

  20. The possibility of using platinum foils with a rippled surface as diffraction gratings

    NASA Astrophysics Data System (ADS)

    Korsukov, V. E.; Ankudinov, A. V.; Butenko, P. N.; Knyazev, S. A.; Korsukova, M. M.; Obidov, B. A.; Shcherbakov, I. P.

    2014-09-01

    The atomic structure and surface relief of thin cold-rolled platinum foils upon recrystallization annealing and loading under ultrahigh vacuum conditions have been studied by low energy electron diffraction (LEED), atomic force microscopy (AFM), and scanning tunneling microscopy (STM). The surface of samples upon high-temperature annealing and subsequent uniaxial extension of recrystallized Pt foils represents a fractal structure of unidirectional ripples on various spatial scales. The total fractal dimension of this surface is D GW = 2.3, while the fractal dimensions along and across ripples are D ‖ ≈ 1 and D ⊥ ≈ 1.3, respectively. The optical spectra of a halogen lamp and a PRK-2 mercury lamp were recorded using these rippled Pt foils as reflection diffraction gratings. It is shown that Pt foils with this surface relief can be used as reflection diffraction gratings for electromagnetic radiation in a broad spectral range.

  1. Interaction of waves under diffraction on coupling of two Bragg grating with close characteristics

    NASA Astrophysics Data System (ADS)

    Bodyanchuk, I.; Galushko, Yu.; Galushko, Ye.; Glebov, L.; Mokhun, I.; Mokhun, O.; Turubarova-Leunova, N.; Smirnov, V.; Viktorovskaya, Yu.

    2018-01-01

    The possibility of formation of the beam with edge dislocation, which is similar to the TE01(10) beam is considered. It is shown that such mode may be obtained due to the diffraction of plane wave on the complex Bragg hologram, constructed as composition of two grating recorded on the same place of registration media. These partial holograms are implemented as the gratings with constant period and close characteristics. The conditions of such operation are formulated. The experimental results are presented.

  2. Serial number coding and decoding by laser interference direct patterning on the original product surface for anti-counterfeiting.

    PubMed

    Park, In-Yong; Ahn, Sanghoon; Kim, Youngduk; Bae, Han-Sung; Kang, Hee-Shin; Yoo, Jason; Noh, Jiwhan

    2017-06-26

    Here, we investigate a method to distinguish the counterfeits by patterning multiple reflective type grating directly on the surface of the original product and analyze the serial number from its rotation angles of diffracted fringes. The micro-sized gratings were fabricated on the surface of the material at high speeds by illuminating the interference fringe generated by passing a high-energy pulse laser through the Fresnel biprism. In addition, analysis of the grating's diffraction fringes was performed using a continuous wave laser.

  3. Electrically tunable color filter based on a polarization-tailored nano-photonic dichroic resonator featuring an asymmetric subwavelength grating.

    PubMed

    Park, Chang-Hyun; Yoon, Yeo-Taek; Shrestha, Vivek Raj; Park, Chul-Soon; Lee, Sang-Shin; Kim, Eun-Soo

    2013-11-18

    We have demonstrated a highly efficient electrically tunable color filter, which provides precise control of color output, taking advantage of a nano-photonic polarization-tailored dichroic resonator combined with a liquid-crystal based polarization rotator. The visible dichroic resonator based on the guided mode resonance, which incorporates a planar dielectric waveguide in Si3N4 integrated with an asymmetric two-dimensional subwavelength Al grating with unequal pitches along its principal axes, exhibited polarization specific transmission featuring high efficiency up to 75%. The proposed tunable color filters were constructed by combining three types of dichroic resonators, each of which deals with a mixture of two primary colors (i.e. blue/green, blue/red, and green/red) with a polarization rotator exploiting a twisted nematic liquid crystal cell. The output colors could be dynamically and seamlessly customized across the blend of the two corresponding primary colors, by altering the polarization via the voltage applied to the polarization rotator. For the blue/red filter, the center wavelength was particularly adjusted from 460 to 610 nm with an applied voltage variation of 2 V, leading to a tuning range of up to 150 nm. And the spectral tuning was readily confirmed via color mapping. The proposed devices may permit the tuning span to be readily extended by tailoring the grating pitches.

  4. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter.

    PubMed

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-03-09

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.

  5. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter

    PubMed Central

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-01-01

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics. PMID:28276500

  6. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter

    NASA Astrophysics Data System (ADS)

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-03-01

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.

  7. Green high-power tunable external-cavity GaN diode laser at 515  nm.

    PubMed

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-09-15

    A 480 mW green tunable diode laser system is demonstrated for the first time to our knowledge. The laser system is based on a GaN broad-area diode laser and Littrow external-cavity feedback. The green laser system is operated in two modes by switching the polarization direction of the laser beam incident on the grating. When the laser beam is p-polarized, an output power of 50 mW with a tunable range of 9.2 nm is achieved. When the laser beam is s-polarized, an output power of 480 mW with a tunable range of 2.1 nm is obtained. This constitutes the highest output power from a tunable green diode laser system.

  8. Widely Tunable Mode-Hop-Free External-Cavity Quantum Cascade Laser

    NASA Technical Reports Server (NTRS)

    Wysocki, Gerard; Curl, Robert F.; Tittel, Frank K.

    2010-01-01

    The external-cavity quantum cascade laser (EC-QCL) system is based on an optical configuration of the Littrow type. It is a room-temperature, continuous wave, widely tunable, mode-hop-free, mid-infrared, EC-QCL spectroscopic source. It has a single-mode tuning range of 155 cm(exp -1) (approximately equal to 8% of the center wavelength) with a maximum power of 11.1 mW and 182 cm(exp -1) (approximately equal to 15% of the center wavelength), and a maximum power of 50 mW as demonstrated for 5.3 micron and 8.4 micron EC-QCLs, respectively. This technology is particularly suitable for high-resolution spectroscopic applications, multi-species tracegas detection, and spectroscopic measurements of broadband absorbers. Wavelength tuning of EC-QCL spectroscopic source can be implemented by varying three independent parameters of the laser: (1) the optical length of the gain medium (which, in this case, is equivalent to QCL injection current modulation), (2) the length of the EC (which can be independently varied in the Rice EC-QCL setup), and (3) the angle of beam incidence at the diffraction grating (frequency tuning related directly to angular dispersion of the grating). All three mechanisms of frequency tuning have been demonstrated and are required to obtain a true mode-hop-free laser frequency tuning. The precise frequency tuning characteristics of the EC-QCL output have been characterized using a variety of diagnostic tools available at Rice University (e.g., a monochromator, FTIR spectrometer, and a Fabry-Perot spectrometer). Spectroscopic results were compared with available databases (such as HITRAN, PNNL, EPA, and NIST). These enable precision verification of complete spectral parameters of the EC-QCL, such as wavelength, tuning range, tuning characteristics, and line width. The output power of the EC-QCL is determined by the performance of the QC laser chip, its operating conditions, and parameters of the QC laser cavity such as mirror reflectivity or intracavity losses. In order to maximize the output power, an analysis and optimization of the EC laser parameters has been performed. The parameters of the beam emitted from the gain medium, such as divergence angle, beam profile, and astigmatism, have been investigated. The gain medium has been fully characterized before and after each stage of modification. The main modification steps are coating one facet of the gain chip with a high reflectivity mirror and the other facet with an anti-reflection layer. Then the chip is mounted in the EC-QCL. The optomechanical design has been reviewed and improved to provide for precise collimation of the strongly divergent beam of the QCL and the tuning diffraction grating.

  9. All optical controlled photonic integrated circuits using azo dye functionized sol-gel material

    NASA Astrophysics Data System (ADS)

    Ke, Xianjun

    The main focus of this dissertation is development and characterization of all-optical controllable azo dye functionized sol gel material, demonstrating a PIC fabrication technique on glass substrate using such material, and exploration and feasibility demonstration of three PIC functional devices namely optical variable attenuator, optical switches, and optical tunable filters using the material. The realization of all the devices in this dissertation are based on one material: dye functionalized sol-gel material. A photochromic sol-gel material functionalized with azo dye was synthesized and characterized. It possesses a photochromic characteristic under the control of green laser beam illumination. The material characteristics suggest the possibility of a new promising material platform candidate for the fabrication of alloptical controlled photonic integrated circuits. As the first potential application of the dye functionalized sol-gel material, an alloptical variable attenuator was designed and demonstrated. The optical variable attenuation is achieved in Mach-Zehnder interferometric configuration through all-optical modulation of sol-gel waveguide phase shifters. A 2 x 2 optical switch based on multimode interference (MMI) waveguide structure is proposed in the dissertation. The schematic configuration of the optical switch consists of a cascade of two identical MMIs with two all-optical controlled phase shifters realized by using the photochromic sol-gel material. The cross or bar switch state of the optical switch is determined by the phase difference between the two sol-gel waveguide phase shifters. An all-optical tunable filter is designed and its feasibility demonstrated by using the sol-gel photochromic material. Except for the phase change demonstrated on sol-gel waveguide phase shifters, dynamic gratings were observed on sol-gel film when exposed to two interference beams. This reveals the possibility of realizing Bragg grating-based tunable filters. The schematic configuration of proposed tunable filters consists of a single straight waveguide embedded with a sol-gel waveguide. The wavelength tuning of the tunable filters is accomplished by varying the grating period.

  10. Investigation of the effect of phase nonuniformities and the microwave field distribution on the electronic efficiency of a diffraction-radiation generator

    NASA Astrophysics Data System (ADS)

    Maksimov, P. P.; Tsvyk, A. I.; Shestopalov, V. P.

    1985-10-01

    The effect of local phase nonuniformities of the diffraction gratings and the field distribution of the open cavity on the electronic efficiency of a diffraction-radiation generator (DRG) is analyzed numerically on the basis of a self-consistent system of nonlinear stationary equations for the DRG. It is shown that the interaction power and efficiency of a DRG can be increased by the use of an open cavity with a nonuniform diffraction grating and a complex form of microwave field distribution over the interaction space.

  11. Ultra-fast switching blue phase liquid crystals diffraction grating stabilized by chiral monomer

    NASA Astrophysics Data System (ADS)

    Manda, Ramesh; Pagidi, Srinivas; Sarathi Bhattacharya, Surjya; Yoo, Hyesun; T, Arun Kumar; Lim, Young Jin; Lee, Seung Hee

    2018-05-01

    We have demonstrated an ultra-fast switching and efficient polymer stabilized blue phase liquid crystal (PS-BPLC) diffraction grating utilizing a chiral monomer. We have obtained a 0.5 ms response time by a novel polymer stabilization method which is three times faster than conventional PS-BPLC. In addition, the diffraction efficiency was improved 2% with a much wider phase range and the driving voltage to switch the device is reduced. The polarization properties of the diffracted beam are unaffected by this novel polymer stabilization. This device can be useful for future photonic applications.

  12. Cross talk and diffraction efficiency in angular multiplexed memories using improved polypeptide

    NASA Astrophysics Data System (ADS)

    Ramenah, Harry K.; Bertrand, Paul; Soubari, E. H.; Meyrueis, Patrick

    1996-12-01

    We studied energy coupling between gratings and angularly multiplexed 20 gratings with a uniform diffraction efficiency within 25 micrometer layer thickness of dichromated gelatin. The dependence of diffraction efficiency on beam ratio is given. We recorded a matrix form memory of nxmxp elements, where n and m are the rows and columns and p the number of multiplexes. For indication only, n equals m equals 10, p equals 20, the surface area of the matrix is 1 cm2. Color diffractive images and digital data are illustrated as well as video, cartography and medical applications.

  13. Stretch-tuning optical fiber Bragg gratings using macro-fiber composite (MFC) piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Allison, Sidney G.; Shams, Qamar A.; Geddis, Demetris L.

    2005-11-01

    The demand for high safety and reliability standards for aerospace vehicles has resulted in time-consuming periodic on-ground inspections. These inspections usually call for the disassembling and reassembling of the vehicle, which can lead to damage or degradation of structures or auxiliary systems. In order to increase aerospace vehicle safety and reliability while reducing the cost of inspection, an on-board real-time structural health monitoring sensing system is required. There are a number of systems that can be used to monitor the structures of aerospace vehicles. Fiber optic sensors have been at the forefront of the health monitoring sensing system research. Most of the research has been focused on the development of Bragg grating-based fiber optic sensors. Along with the development of fiber Bragg grating sensors has been the development of a grating measurement technique based on the principle of optical frequency domain reflectometry (OFDR), which enables the interrogation of hundreds of low reflectivity Bragg gratings. One drawback of these measurement systems is the 1 - 3 Hz measurement speed, which is limited by commercially available tunable lasers. The development of high-speed fiber stretching mechanisms to provide high rate tunable Erbium-doped optical fiber lasers can alleviate this drawback. One successful approach used a thin-layer composite unimorph ferroelectric driver and sensor (THUNDER) piezoelectric actuator, and obtained 5.3-nm wavelength shift. To eliminate the mechanical complexity of the THUNDER actuator, the research reported herein uses the NASA Langley Research Center (LaRC) Macro-Fiber Composite (MFC) actuator to tune Bragg grating based optical fibers.

  14. Hidden Gratings in Holographic Liquid Crystal Polymer-Dispersed Liquid Crystal Films.

    PubMed

    De Sio, Luciano; Lloyd, Pamela F; Tabiryan, Nelson V; Bunning, Timothy J

    2018-04-18

    Dynamic diffraction gratings that are hidden in the field-off state are fabricated utilizing a room-temperature photocurable liquid crystal (LC) monomer and nematic LC (NLC) using holographic photopolymerization techniques. These holographic LC polymer-dispersed LCs (HLCPDLCs) are hidden because of the refractive index matching between the LC polymer and the NLC regions in the as-formed state (no E-field applied). Application of a moderate E-field (5 V/μm) generates a refractive index mismatch because of the NLC reorientation (along the E-field) generating high-diffraction efficiency transmission gratings. These dynamic gratings are characterized by morphological, optical, and electrooptical techniques. They exhibit a morphology made of oriented LC polymer regions (containing residual NLC) alternating with a two-phase region of an NLC and LC polymer. Unlike classic holographic polymer-dispersed LC gratings formed with a nonmesogenic monomer, there is index matching between the as-formed alternating regions of the grating. These HLCPDLCs exhibit broad band and high diffraction efficiency (≈90%) at the Bragg angle, are transparent to white light across the visible range because of the refractive index matching, and exhibit fast response times (1 ms). The ability of HLCPDLCs not to consume electrical power in the off state opens new possibilities for the realization of energy-efficient switchable photonic devices.

  15. Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers

    NASA Astrophysics Data System (ADS)

    Noordegraaf, Danny; Scolari, Lara; Lægsgaard, Jesper; Rindorf, Lars; Tanggaard Alkeskjold, Thomas

    2007-06-01

    We demonstrate electrically and mechanically induced long period gratings (LPGs) in a photonic crystal fiber (PCF) filled with a high-index liquid crystal. The presence of the liquid crystal changes the guiding properties of the fiber from an index guiding fiber to a photonic bandgap guiding fiber - a so called liquid crystal photonic bandgap (LCPBG) fiber. Both the strength and resonance wavelength of the gratings are highly tunable. By adjusting the amplitude of the applied electric field, the grating strength can be tuned and by changing the temperature, the resonance wavelength can be tuned as well. Numerical calculations of the higher order modes of the fiber cladding are presented, allowing the resonance wavelengths to be calculated. A high polarization dependent loss of the induced gratings is also observed.

  16. Carrier Dynamics and Application of the Phase Coherent Photorefractive Effect in ZnSe Quantum Wells

    NASA Astrophysics Data System (ADS)

    Dongol, Amit

    The intensity dependent diffraction efficiency of a phase coherent photorefractive (PCP) ZnSe quantum well (QW) is investigated at 80 K in a two-beam four-wave mixing (FWM) configuration using 100 fs laser pulses with a repetition rate of 80 MHz. The observed diffraction efficiencies of the first and second-order diffracted beam are on the order of 10-3 and 10-5, respectively, revealing nearly no intensity dependence. The first-order diffraction is caused by the PCP effect where the probe-pulse is diffracted due to a long-living incoherent electron density grating in the QW. The second-order diffraction is created by a combination of diffraction processes. For negative probe-pulse delay, the exciton polarization is diffracted at the electron grating twice by a cascade effect. For positive delay, the diffracted signal is modified by the destructive interference with a chi(5) generated signal due to a dynamical screening effect. Model calculations of the signal traces based on the optical Bloch equations considering inhomogeneous broadening of exciton energies are in good agreement with the experimental data. To study the carrier dynamics responsible for the occurrence of the PCP effect, threebeam FWM experiments are carried out. The non-collinear wave-vectors k1 , k2 and k3 at central wavelength of 441 nm (~2.81 eV) were resonantly tuned to the heavy-hole exciton transition energy at 20 K. In the FWM experiment the time coincident strong pump pulses k1 and k2 create both an exciton density grating in the QW and an electron-hole pair grating in the GaAs while the delayed weak pulse k3 simultaneously probes the exciton lifetime as well as the electron grating capture time. The model calculations are in good agreement with the experimental results also providing information about the transfer delay of electrons arriving from the substrate to the QW. For negative probe-pulse delay we still observe a diffracted signal due to the long living electron density grating in the QW. The electron grating build-up and decay times are also studied with the modified three-beam FWM set-up. Using an optical shutter for pump pulses k1and k2, the dynamics of the electron grating formation and its decay is continuously probed by a delayed pulse k3. The obtained build-up and decay times are found to depend nearly linearly on the intensity of incident pulses k1 and k2 being on the order of several microseconds at low pump intensities. The PCP effect in ZnSe QW possesses a time-gating capability which can be used for real-time holographic imaging. In this work we demonstrate contrast enhanced real time holographic imaging (CEHI) of floating glass beads and of living unicellular animals (Paramecium and Euglena cells) in aqueous solution. We also demonstrate CEHI of a ~100 im thick wire concealed behind a layer of chicken skin. The results demonstrate the potential of PCP QWs for real-time and depth-resolved imaging of moving micrometer sized biological objects in transparent media or of obscured objects in turbid media.

  17. High-efficiency spectral purity filter for EUV lithography

    DOEpatents

    Chapman, Henry N [Livermore, CA

    2006-05-23

    An asymmetric-cut multilayer diffracts EUV light. A multilayer cut at an angle has the same properties as a blazed grating, and has been demonstrated to have near-perfect performance. Instead of having to nano-fabricate a grating structure with imperfections no greater than several tens of nanometers, a thick multilayer is grown on a substrate and then cut at an inclined angle using coarse and inexpensive methods. Effective grating periods can be produced this way that are 10 to 100 times smaller than those produced today, and the diffraction efficiency of these asymmetric multilayers is higher than conventional gratings. Besides their ease of manufacture, the use of an asymmetric multilayer as a spectral purity filter does not require that the design of an EUV optical system be modified in any way, unlike the proposed use of blazed gratings for such systems.

  18. Fabrication and Characterization of Tilted Fiber Optic Bragg Grating Filters over Various Wavelengths

    NASA Technical Reports Server (NTRS)

    Grant, Joseph; Jackson, Kurt V.; Wang, Y.; Sharma, A.; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    Fiber Optic Bragg Grating taps are fabricated and characterized at various wavelengths using a modified Talbot interferometric technique. Gratings are fabricated by tilting the photosensitive fiber to angles up to 45 degrees w.r.t. the writing angle. Diffraction characteristics of the tilted grating is monitored in first and second orders.

  19. Cognitive fiber Bragg grating sensors system based on fiber Fabry-Perot tunable filter technology

    NASA Astrophysics Data System (ADS)

    Zhang, Hongtao; Wang, Pengfei; Zou, Jilin; Xie, Jing; Cui, Hong-Liang

    2011-05-01

    The wavelength demodulation based on a Fiber Fabry-Pérot Tunable Filter (FFP-TF) is a common method for multiplexing Fiber Bragg Grating (FBG) sensors. But this method cannot be used to detect high frequency signals due to the limitation by the highest scanning rate that the FFP-TF can achieve. To overcome this disadvantage, in this paper we present a scheme of cognitive sensors network based on FFP-TF technology. By perceiving the sensing environment, system can automatically switch into monitoring signals in two modes to obtain better measurement results: multi measurement points, low frequency (<1 KHz) signal, and few measurement points but high frequency (~50 KHz) signals. This cognitive sensors network can be realized in current technology and satisfy current most industrial requirements.

  20. Wavelength-tunable filter utilizing non-cyclic arrayed waveguide grating to create colorless, directionless, contentionless ROADMs

    NASA Astrophysics Data System (ADS)

    Niwa, Masaki; Takashina, Shoichi; Mori, Yojiro; Hasegawa, Hiroshi; Sato, Ken-ichi; Watanabe, Toshio

    2015-01-01

    With the continuous increase in Internet traffic, reconfigurable optical add-drop multiplexers (ROADMs) have been widely adopted in the core and metro core networks. Current ROADMs, however, allow only static operation. To realize future dynamic optical-network services, and to minimize any human intervention in network operation, the optical signal add/drop part should have colorless/directionless/contentionless (C/D/C) capabilities. This is possible with matrix switches or a combination of splitter-switches and optical tunable filters. The scale of the matrix switch increases with the square of the number of supported channels, and hence, the matrix-switch-based architecture is not suitable for creating future large-scale ROADMs. In contrast, the numbers of splitter ports, switches, and tunable filters increase linearly with the number of supported channels, and hence the tunable-filter-based architecture will support all future traffic. So far, we have succeeded in fabricating a compact tunable filter that consists of multi-stage cyclic arrayed-waveguide gratings (AWGs) and switches by using planar-lightwave-circuit (PLC) technologies. However, this multistage configuration suffers from large insertion loss and filter narrowing. Moreover, power-consuming temperature control is necessary since it is difficult to make cyclic AWGs athermal. We propose here novel tunable-filter architecture that sandwiches a single-stage non-cyclic athermal AWG having flatter-topped passbands between small-scale switches. With this configuration, the optical tunable filter attains low insertion loss, large passband bandwidths, low power consumption, compactness, and high cost-effectiveness. A prototype is monolithically fabricated with PLC technologies and its excellent performance is experimentally confirmed utilizing 80-channel 30-GBaud dual-polarization quadrature phase-shift-keying (QPSK) signals.

  1. Chiral fiber sensors

    NASA Astrophysics Data System (ADS)

    Kopp, Victor I.; Churikov, Victor M.; Singer, Jonathan; Neugroschl, Daniel; Genack, Azriel Z.

    2010-04-01

    We have fabricated a variety of chiral fiber sensors by twisting one or more standard or custom optical fibers with noncircular or nonconcentric core as they pass though a miniature oven. The resulting structures are as stable as the glass material and can be produced with helical pitch ranging from microns to hundreds of microns. The polarization selectivity of the chiral gratings is determined by the geometry of the fiber cross section. Single helix structures are polarization insensitive, while double helix gratings interact only with a single optical polarization component. Both single and double helix gratings may function as a fiber long period grating, coupling core and cladding modes or as a diffraction grating scattering light from the fiber core out of the fiber. The resulting dips in the transmission spectrum are sensitive to fiber elongation, twist and temperature, and (in the case of the long period gratings) to the refractive index of the surrounding medium. The suitability of chiral gratings for sensing temperature, elongation, twist and liquid levels will be discussed. Gratings made of radiation sensitive glass can be used to measure the cumulative radiation dose, while gratings made of radiation-hardened glass are suitable for stable sensing of the environment in nuclear power plants. Excellent temperature stability up to 900°C is found in pure silica chiral diffraction grating sensors.

  2. Smart architecture for stable multipoint fiber Bragg grating sensor system

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Tsai, Ning; Zhuang, Yuan-Hong; Huang, Tzu-Jung; Chow, Chi-Wai; Chen, Jing-Heng; Liu, Wen-Fung

    2017-12-01

    In this work, we propose and investigate an intelligent fiber Bragg grating (FBG)-based sensor system in which the proposed stabilized and wavelength-tunable single-longitudinal-mode erbium-doped fiber laser can improve the sensing accuracy of wavelength-division-multiplexing multiple FBG sensors in a longer fiber transmission distance. Moreover, we also demonstrate the proposed sensor architecture to enhance the FBG capacity for sensing strain and temperature, simultaneously.

  3. Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors.

    PubMed

    Mansuripur, Tobias S; Menzel, Stefan; Blanchard, Romain; Diehl, Laurent; Pflügl, Christian; Huang, Yong; Ryou, Jae-Hyun; Dupuis, Russell D; Loncar, Marko; Capasso, Federico

    2012-10-08

    We demonstrate a three-section, electrically pulsed quantum cascade laser which consists of a Fabry-Pérot section placed between two sampled grating distributed Bragg reflectors. The device is current-tuned between ten single modes spanning a range of 0.46 μm (63 cm(-1)), from 8.32 to 8.78 μm. The peak optical output power exceeds 280 mW for nine of the modes.

  4. Influence of 4,4’-azobis (4-cyanopentanoic acid) in Transmission and Reflection Gratings Stored in a PVA/AA Photopolymer

    PubMed Central

    Fernandez, Elena; Fuentes, Rosa; Belendez, Augusto; Pascual, Inmaculada

    2016-01-01

    Holographic transmission gratings with a spatial frequency of 2658 lines/mm and reflection gratings with a spatial frequency of 4553 lines/mm were stored in a polyvinyl alcohol (PVA)/acrylamide (AA) based photopolymer. This material can reach diffraction efficiencies close to 100% for spatial frequencies about 1000 lines/mm. However, for higher spatial frequencies, the diffraction efficiency decreases considerably as the spatial frequency increases. To enhance the material response at high spatial frequencies, a chain transfer agent, the 4,4’-azobis (4-cyanopentanoic acid), ACPA, is added to the composition of the material. Different concentrations of ACPA are incorporated into the main composition of the photopolymer to find the concentration value that provides the highest diffraction efficiency. Moreover, the refractive index modulation and the optical thickness of the transmission and reflection gratings were obtained, evaluated and compared to procure more information about the influence of the ACPA on them. PMID:28773322

  5. X-ray diffraction gratings: Precise control of ultra-low blaze angle via anisotropic wet etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voronov, Dmitriy L.; Naulleau, Patrick; Gullikson, Eric M.

    2016-07-25

    Diffraction gratings are used from micron to nanometer wavelengths as dispersing elements in optical instruments. At shorter wavelengths, crystals can be used as diffracting elements, but due to the 3D nature of the interaction with light are wavelength selective rather than wavelength dispersing. There is an urgent need to extend grating technology into the x-ray domain of wavelengths from 1 to 0.1 nm, but this requires the use of gratings that have a faceted surface in which the facet angles are very small, typically less than 1°. Small facet angles are also required in the extreme ultra-violet and soft x-ray energymore » ranges in free electron laser applications, in order to reduce power density below a critical damage threshold. In this work, we demonstrate a technique based on anisotropic etching of silicon designed to produce very small angle facets with a high degree of perfection.« less

  6. Grism and immersion grating for space telescope

    NASA Astrophysics Data System (ADS)

    Ebizuka, Noboru; Oka, Kiko; Yamada, Akiko; Ishikawa, Mami; Kashiwagi, Masako; Kodate, Kashiko; Hirahara, Yasuhiro; Sato, Shuji; Kawabata, Koji S.; Wakaki, Moriaki; Morita, Shin-ya; Simizu, Tomoyuki; Yin, Shaohui; Omori, Hitoshi; Iye, Masanori

    2017-11-01

    The grism is a versatile dispersion element for an astronomical instrument ranging from ultraviolet to infrared. Major benefit of using a grism in a space application, instead of a reflection grating, is the size reduction of optical system because collimator and following optical elements could locate near by the grism. The surface relief (SR) grism is consisted a transmission grating and a prism, vertex angle of which is adjusted to redirect the diffracted beam straight along the direct vision direction at a specific order and wavelength. The volume phase holographic (VPH) grism consists a thick VPH grating sandwiched between two prisms, as specific order and wavelength is aligned the direct vision direction. The VPH grating inheres ideal diffraction efficiency on a higher dispersion application. On the other hand, the SR grating could achieve high diffraction efficiency on a lower dispersion application. Five grisms among eleven for the Faint Object Camera And Spectrograph (FOCAS) of the 8.2m Subaru Telescope with the resolving power from 250 to 3,000 are SR grisms fabricated by a replication method. Six additional grisms of FOCAS with the resolving power from 3,000 to 7,000 are VPH grisms. We propose "Quasi-Bragg grism" for a high dispersion spectroscopy with wide wavelength range. The germanium immersion grating for instance could reduce 1/64 as the total volume of a spectrograph with a conventional reflection grating since refractive index of germanium is over 4.0 from 1.6 to 20 μm. The prototype immersion gratings for the mid-InfraRed High dispersion Spectrograph (IRHS) are successfully fabricated by a nano-precision machine and grinding cup of cast iron with electrolytic dressing method.

  7. High-efficiency volume holograms recording on acrylamide and N,N‧methylene-bis-acrylamide photopolymer with pulsed laser

    NASA Astrophysics Data System (ADS)

    Gallego, S.; Ortuño, M.; García, C.; Neipp, C.; Beléndez, A.; Pascual, I.

    2005-11-01

    In order to achieve a better understanding of the mechanisms of hologram formation and higher diffraction efficiencies in volume gratings stored in acrylamide based photopolymers, a crosslinker (N,N'methylene-bis-acrylamide) has been incorporated in the photopolymer to record holograms by pulsed laser exposure. The presence of this component increases the polymerization rate and refractive index modulation. The recording was performed using a holographic copying process. The original was a grating of 1000?lines/mm processed using silver halide sensitized gelatin. First, the effect of the pulse fluence was investigated. When the pulse fluence was optimized, the results obtained using the new composition of material were compared with those using the composition without a crosslinker. Using a pulsed laser at 532?nm the photopolymer without crosslinker presented diffraction efficiencies slightly less than 60%. On the other hand, when the crosslinker was introduced in the photopolymer composition, the diffraction efficiencies achieved were higher than 85%. The non-linearity of the material's response was also studied comparing the energetic sensitivity, diffraction efficiencies and index modulation of gratings recorded with pulsed and continuous laser exposure. This study was performed fitting the angular scan of each grating using Kogelnik's theory.

  8. The use of photonic techniques in tunable microwave oscillators

    NASA Astrophysics Data System (ADS)

    Madziar, K.; Szymańska, A.; Galwas, B.

    2013-07-01

    In this paper, we present opportunities to use photonic techniques in tuning process of opto-electronic oscillators. These opportunities involve wavelength controlled delay lines and fiber Bragg gratings.

  9. Pound--Drever--Hall error signals for the length control of three-port grating coupled cavities

    NASA Astrophysics Data System (ADS)

    Britzger, Michael; Friedrich, Daniel; Kroker, Stefanie; Brückner, Frank; Burmeister, Oliver; Kley, Ernst-Bernhard; Tünnermann, Andreas; Danzmann, Karsten; Schnabel, Roman

    2011-08-01

    Gratings enable light coupling into an optical cavity without transmission through any substrate. This concept reduces light absorption and substrate heating and was suggested for light coupling into the arm cavities of future gravitational wave detectors. One particularly interesting approach is based on all-reflective gratings with low diffraction efficiencies and three diffraction orders (three ports). However, it was discovered that, generally, three-port grating coupled cavities show an asymmetric resonance profile that results in asymmetric and low quality Pound--Drever--Hall error signals for cavity length control. We experimentally demonstrate that this problem is solved by the detection of light at both reflection ports of the cavity and the postprocessing of the two demodulated electronic signals.

  10. Electromagnetically induced grating with Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Asghar, Sobia; Ziauddin, Qamar, Shahid; Qamar, Sajid

    2016-09-01

    We present a scheme to realize electromagnetically induced grating in an ensemble of strongly interacting Rydberg atoms, which act as superatoms due to the dipole blockade mechanism. The ensemble of three-level cold Rydberg-dressed (87Rb) atoms follows a cascade configuration where a strong standing-wave control field and a weak probe pulse are employed. The diffraction intensity is influenced by the strength of the probe intensity, the control field strength, and the van der Waals (vdW) interaction. It is noticed that relatively large first-order diffraction can be obtained for low-input intensity with a small vdW shift and a strong control field. The scheme can be considered as an amicable solution to realize the atomic grating at the microscopic level, which can provide background- and dark-current-free diffraction.

  11. Primary Objective Grating Astronomical Telescope

    NASA Technical Reports Server (NTRS)

    Ditto, Thomas D.

    2007-01-01

    It has been 370 years since a seventeenth century French mathematician, Mersenne, presciently sketched out an astronomical telescope based on dual parabolic reflectors. Since that time the concept of the primary objective has been virtually unchanged. Now a new class of astronomical telescope with a primary objective grating (POG) has been studied as an alternative. The POG competes with mirrors, in part, because diffraction gratings provide the very chromatic dispersion that mirrors defeat. The resulting telescope deals effectively with long-standing restrictions on multiple object spectroscopy (MOS). Other potential benefits include unprecedented apertures and collection areas. The new design also favors space deployment as a gossamer membrane. The inventor, Tom Ditto, first discovered that higher-order diffraction images contain hidden depth cues, for which he was granted a seminal range finding patent in 1987. Subsequently, he invented and patented 3D localizers, profilometers and microscopes using POGs. The POG telescope was placed in the public domain to expedite research. The function of a telescopes primary objective is to collect flux and to deliver images. Both functions dictate that size matters, and bigger is better. For that reason, there has been a steady push over the past century to ramp up the size of the primary mirror. However, for every doubling of mirror diameter, the elapsed time between initial effort and first light has also doubled. Meanwhile, costs escalated beyond the mirror alone, because larger instruments required larger enclosures and better pointing mechanisms. One key catalog of observation, spectrographic data, is far more difficult to amass than two-dimensional imagery. While the number of observable objects has increased with mirror size, the capacity to take spectra has not increased proportionately. In the best of circumstances, spectrograms are available for one per cent of the all objects surveyed. Spectroscopy was a historical afterthought introduced in the nineteenth century shortly after the invention of the diffraction grating and over a century after Newtons 1670 telescope. Spectroscopy is generally accomplished using a diffraction grating as the disperser in the secondary. The light being delivered to the spectrograph is first captured by a primary mirror which provides no chromatic magnification by itself. Sizeable spectrographs could not be deployed while diffraction gratings were rare commodities scribed using mechanical ruling engines that produced one grating line at a time. Today diffraction gratings are commonplace. Their recent availability is a product of both the invention of holography and the mass replication of surface microstructures. Holography permits all lines in a grating to be made simultaneously in a single photographic exposure. Holograms can then be reproduced by embossing processes. The improvement in replication is analogous to how Gutenberg changed the availability of books. The masters may be expensive, but the copies are not. Computer science is another technology that emerged in the second half of the twentieth century without which our proposed spectrographic instrument could not function due to the complexity of image processing required in data reduction. The employment of very large diffraction gratings as primary objectives for astronomical telescopes requires a novel

  12. A novel method to fabricate silicon tubular gratings with broadband antireflection and super-hydrophobicity.

    PubMed

    Gao, Yang; Shi, Tielin; Tan, Xianhua; Liao, Guanglan

    2014-06-01

    We have developed a novel method to fabricate micro/nano structure based on the coherent diffraction lithography, and acquired periodic silicon tubular gratings with deep nano-scale tapered profiles at the top part. The optical properties of these tubular gratings were similar to an effective gradient-index antireflective surface, resulting in a broadband antireflective combining super-hydrophobic behavior. The mechanism of the method was simulated by rigorous coupled wave analysis algorithms. Then coherent diffraction lithography by use of suitable mask, in which periodic micro-scale circular opaque patters were distributed, was realized on the traditional aligner. Due to coherent diffraction, we obtained enough light intensity for photoresist exposure under the center of the opaque area in the mask together with transparent areas. The tapered line profiles and hollow photoresist gratings over large areas could be fabricated on the silicon wafer after development. The dry etching process was carried out, and high aspect ratio silicon tubular gratings with deep tapered profiles at the top were fabricated. The optical property and wettability of the structure were verified, proving that the proposed method and obtained micro/nano structure provide application potential in the future.

  13. Hyperbranched-polymer dispersed nanocomposite volume gratings for holography and diffractive optics

    NASA Astrophysics Data System (ADS)

    Tomita, Yasuo; Takeuchi, Shinsuke; Oyaizu, Satoko; Urano, Hiroshi; Fukamizu, Taka-aki; Nishimura, Naoya; Odoi, Keisuke

    2016-10-01

    We review our experimental investigations of photopolymerizable nanoparticle-polymer composites (NPCs) for holography and diffractive optics. Various types of hyperbranched polymer (HBP) were systhesized and used as transporting organic nanoparticles. These HBPs include hyperbranched poly(ethyl methacrylate) (HPEMA), hyperbranched polystyrene (HPS) and hyperbranched triazine/aromatic polymer units (HTA) whose refractive indices are 1.51, 1.61 and 1.82, respectively. Each HBP was dispersed in (meth)acrylate monomer whose refractive index was so chosen that a refractive index difference between HBP and the formed polymer was large. Such monomer-HBP syrup was mixed with a titanocene photoinitiator for volume holographic recording in the green. We used a two-beam interference setup to write an unslanted transmission volume grating at grating spacing of 1 μm and at a wavelength of 532 nm. It is shown that NPC volume gratings with the saturated refractive index modulation amplitudes as large as 0.008, 0.004 and 0.02 can be recorded in NPCs incorporated with HPEMA, HPS and HTA at their optimum concentrations of 34, 34 and 25 vol.%, respectively. We show the usefulness of HBP-dispersed NPC volume gratings for holographic applications such as holographic data storage and diffractive optical devices.

  14. Line spread functions of blazed off-plane gratings operated in the Littrow mounting

    NASA Astrophysics Data System (ADS)

    DeRoo, Casey T.; McEntaffer, Randall L.; Miles, Drew M.; Peterson, Thomas J.; Marlowe, Hannah; Tutt, James H.; Donovan, Benjamin D.; Menz, Benedikt; Burwitz, Vadim; Hartner, Gisela; Allured, Ryan; Smith, Randall K.; Günther, Ramses; Yanson, Alex; Vacanti, Giuseppe; Ackermann, Marcelo

    2016-04-01

    Future soft x-ray (10 to 50 Å) spectroscopy missions require higher effective areas and resolutions to perform critical science that cannot be done by instruments on current missions. An x-ray grating spectrometer employing off-plane reflection gratings would be capable of meeting these performance criteria. Off-plane gratings with blazed groove facets operating in the Littrow mounting can be used to achieve excellent throughput into orders achieving high resolutions. We have fabricated two off-plane gratings with blazed groove profiles via a technique that uses commonly available microfabrication processes, is easily scaled for mass production, and yields gratings customized for a given mission architecture. Both fabricated gratings were tested in the Littrow mounting at the Max Planck Institute for Extraterrestrial Physics (MPE) PANTER x-ray test facility to assess their performance. The line spread functions of diffracted orders were measured, and a maximum resolution of 800±20 is reported. In addition, we also observe evidence of a blaze effect from measurements of relative efficiencies of the diffracted orders.

  15. Nearly amorphous Mo-N gratings for ultimate resolution in extreme ultraviolet interference lithography

    NASA Astrophysics Data System (ADS)

    Wang, L.; Kirk, E.; Wäckerlin, C.; Schneider, C. W.; Hojeij, M.; Gobrecht, J.; Ekinci, Y.

    2014-06-01

    We present fabrication and characterization of high-resolution and nearly amorphous Mo1 - xNx transmission gratings and their use as masks for extreme ultraviolet (EUV) interference lithography. During sputter deposition of Mo, nitrogen is incorporated into the film by addition of N2 to the Ar sputter gas, leading to suppression of Mo grain growth and resulting in smooth and homogeneous thin films with a negligible grain size. The obtained Mo0.8N0.2 thin films, as determined by x-ray photoelectron spectroscopy, are characterized to be nearly amorphous using x-ray diffraction. We demonstrate a greatly reduced Mo0.8N0.2 grating line edge roughness compared with pure Mo grating structures after e-beam lithography and plasma dry etching. The amorphous Mo0.8N0.2 thin films retain, to a large extent, the benefits of Mo as a phase grating material for EUV wavelengths, providing great advantages for fabrication of highly efficient diffraction gratings with extremely low roughness. Using these grating masks, well-resolved dense lines down to 8 nm half-pitch are fabricated with EUV interference lithography.

  16. NASA Astrophysics Data System (ADS)

    Schattenburg, Mark

    Development of a Critical Angle Transmission Grating Spectrometer With APRA and SAT support, MIT has developed a unique blazed soft x-ray diffraction grating called the critical-angle transmission (CAT) grating. This device combines the high diffraction efficiency and resolving power of blazed reflection gratings with the low mass, low power, compact packaging and simple alignment of transmission gratings. We have shown that a spectrometer based on CAT gratings represents a huge leap forward in instrument scientific performance compared to previous missions, leading to much increased collecting area and spectral resolving power, which in turn results in orders-ofmagnitude improvement in figures-of-merit for emission and absorption line spectroscopy. MIT proposes to bring CAT x-ray grating spectrometer (CATXGS) technology to a higher Technology Readiness Level (TRL). We will increase fabrication yield and grating performance, and develop bonding techniques for grating membranes and alignment techniques for grating arrays. We will build and test robust grating arrays for space deployment, and perform thorough environmental testing. We are very close to achieving TRL4 and ready to move on to TRL5, which we can achieve within the period covered by this proposal. Our rapid progress over the last year was made possible by significant prior investments in our infrastructure, but further progress will require further investments. Since 2007 we have - with NASA support - demonstrated the CAT grating principle, and prototypes of increasing quality and size have verified theoretical predictions, putting the technology at a solid TRL3. Recent NASA and MIT investments in fabrication and metrology infrastructure has been justified by our rapid progress during the last year: the fabrication of practically defect-free CAT gratings with record diffraction efficiency, the demonstration of extended bandpass CAT gratings using conformal deposition of thin metal films via atomic layer deposition (ALD), and the demonstration of record-setting resolving power for an XGS on the order of R = 10,000, which exceeds the requirements for all currently proposed mission concepts. Grating fabrication still consumes the lion's share of our efforts and time. In order to maintain momentum and continue progress towards TRL5 in an efficient manner we need to improve our fabrication infrastructure further to accelerate grating fabrication and increase yield, so we can devote more resources to the new work required for reaching TRL5.

  17. Recording polarization gratings with a standing spiral wave

    NASA Astrophysics Data System (ADS)

    Vernon, Jonathan P.; Serak, Svetlana V.; Hakobyan, Rafik S.; Aleksanyan, Artur K.; Tondiglia, Vincent P.; White, Timothy J.; Bunning, Timothy J.; Tabiryan, Nelson V.

    2013-11-01

    A scalable and robust methodology for writing cycloidal modulation patterns of optical axis orientation in photosensitive surface alignment layers is demonstrated. Counterpropagating circularly polarized beams, generated by reflection of the input beam from a cholesteric liquid crystal, direct local surface orientation in a photosensitive surface. Purposely introducing a slight angle between the input beam and the photosensitive surface normal introduces a grating period/orientation that is readily controlled and templated. The resulting cycloidal diffractive waveplates offer utility in technologies requiring diffraction over a broad range of angles/wavelengths. This simple methodology of forming polarization gratings offers advantages over conventional fabrication techniques.

  18. Volume gratings and welding of glass/plastic by femtosecond laser direct writing

    NASA Astrophysics Data System (ADS)

    Watanabe, Wataru

    2018-01-01

    Femtosecond laser direct writing is used to fabricate diffractive optical elements in three dimensions and to weld glass and/or plastic. In this paper, we review volume gratings in plastics and welding of glass/plastic by femtosecond laser direct writing. Volume gratings were embedded inside polymethyl methacrylate (PMMA) by femtosecond laser pulses. The diffraction efficiency of the gratings increased after fabrication and reached the maximum. After an initial slow decrease within first several days after the fabrication, the efficiency increased again. This phenomena was called regeneration of the grating. We also demonstrate welding of PMMA by dendrite pattern using femtosecond laser pulses. Laser pulses are focused at the interface of two PMMA substrates with an air gap and melted materials in laser-irradiated region spread within a gap of the substrates and dendrite morphology of melted PMMA was observed outside the laser irradiated area. Finally, we show welding of glass/plastic and metal.

  19. Fabrication of the polarization independent spectral beam combining grating

    NASA Astrophysics Data System (ADS)

    Liu, Quan; Jin, Yunxia; Wu, Jianhong; Guo, Peiliang

    2016-03-01

    Owing to damage, thermal issues, and nonlinear optical effects, the output power of fiber laser has been proven to be limited. Beam combining techniques are the attractive solutions to achieve high-power high-brightness fiber laser output. The spectral beam combining (SBC) is a promising method to achieve high average power output without influencing the beam quality. A polarization independent spectral beam combining grating is one of the key elements in the SBC. In this paper the diffraction efficiency of the grating is investigated by rigorous coupled-wave analysis (RCWA). The theoretical -1st order diffraction efficiency of the grating is more than 95% from 1010nm to 1080nm for both TE and TM polarizations. The fabrication tolerance is analyzed. The polarization independent spectral beam combining grating with the period of 1.04μm has been fabricated by holographic lithography - ion beam etching, which are within the fabrication tolerance.

  20. Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter.

    PubMed

    Yin, Bin; Feng, Suchun; Liu, Zhibo; Bai, Yunlong; Jian, Shuisheng

    2014-09-22

    A tunable and switchable dual-wavelength single polarization narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser based on polarization-maintaining chirped moiré fiber Bragg grating (PM-CMFBG) filter is proposed and demonstrated. For the first time as we know, the CMFBG inscribed on the PM fiber is applied for the wavelength-tunable and-switchable dual-wavelength laser. The PM-CMFBG filter with ultra-narrow transmission band (0.1 pm) and a uniform polarization-maintaining fiber Bragg grating (PM-FBG) are used to select the laser longitudinal mode. The stable single polarization SLM operation is guaranteed by the PM-CMFBG filter and polarization controller. A tuning range of about 0.25 nm with about 0.075 nm step is achieved by stretching the uniform PM-FBG. Meanwhile, the linewidth of the fiber laser for each wavelength is approximate 6.5 and 7.1 kHz with a 20 dB linewidth, which indicates the laser linewidth is approximate 325 Hz and 355 Hz FWHM.

  1. Freely-tunable broadband polarization rotator for terahertz waves

    NASA Astrophysics Data System (ADS)

    Peng, Ru-Wen; Fan, Ren-Hao; Zhou, Yu; Jiang, Shang-Chi; Xiong, Xiang; Huang, Xian-Rong; Wang, Mu

    It is known that commercially-available terahertz (THz) emitters usually generate linearly polarized waves only along certain directions, but in practice, a polarization rotator that is capable of rotating the polarization of THz waves to any direction is particularly desirable and it will have various important applications. In this work, we demonstrate a freely tunable polarization rotator for broadband THz waves using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized THz wave to any desired direction with nearly perfect conversion efficiency. The device performance has been experimentally demonstrated by both THz transmission spectra and direct imaging. The polarization rotation originates from multi wave interference in the three-layer grating structure based on the scattering-matrix analysis. We can expect that this active broadband polarization rotator has wide applications in analytical chemistry, biology, communication technology, imaging, etc.. Reference: R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and Mu Wang, Advanced Materials 27,1201(2015). Freely-tunable broadband polarization rotator for terahertz waves.

  2. Plasmon resonances, anomalous transparency, and reflectionless absorption in overdense plasmas

    NASA Astrophysics Data System (ADS)

    Smolyakov, A.; Sternberg, N.

    2018-03-01

    The structure of the surface and standing wave resonances and their coupling in the configuration of the overdense plasma slab with a single diffraction grating are studied, using impedance matching techniques. Analytical criteria and exact expressions are obtained for plasma and diffraction grating parameters which define resonance conditions for absolute transparency in the ideal plasma and reflectionless absorption in a plasma with dissipation.

  3. Compact reflective imaging spectrometer utilizing immersed gratings

    DOEpatents

    Chrisp, Michael P [Danville, CA

    2006-05-09

    A compact imaging spectrometer comprising an entrance slit for directing light, a first mirror that receives said light and reflects said light, an immersive diffraction grating that diffracts said light, a second mirror that focuses said light, and a detector array that receives said focused light. The compact imaging spectrometer can be utilized for remote sensing imaging spectrometers where size and weight are of primary importance.

  4. Phase shifts in the Fourier spectra of phase gratings and phase grids: an application for one-shot phase-shifting interferometry.

    PubMed

    Toto-Arellano, Noel-Ivan; Rodriguez-Zurita, Gustavo; Meneses-Fabian, Cruz; Vazquez-Castillo, Jose F

    2008-11-10

    Among several techniques, phase shifting interferometry can be implemented with a grating used as a beam divider to attain several interference patterns around each diffraction order. Because each pattern has to show a different phase-shift, a suitable shifting technique must be employed. Phase gratings are attractive to perform the former task due to their higher diffraction efficiencies. But as is very well known, the Fourier coefficients of only-phase gratings are integer order Bessel functions of the first kind. The values of these real-valued functions oscillate around zero, so they can adopt negative values, thereby introducing phase shifts of pi at certain diffraction orders. Because this almost trivial fact seems to have been overlooked in the literature regarding its practical implications, in this communication such phase shifts are stressed in the description of interference patterns obtained with grating interferometers. These patterns are obtained by placing two windows in the object plane of a 4f system with a sinusoidal grating/grid in the Fourier plane. It is shown that the corresponding experimental observations of the fringe modulation, as well as the corresponding phase measurements, are all in agreement with the proposed description. A one-shot phase shifting interferometer is finally proposed taking into account these properties after proper incorporation of modulation of polarization.

  5. Monitoring technique for a hybrid PS/WDM-PON by using a tunable OTDR and FBGs

    NASA Astrophysics Data System (ADS)

    Hann, Swook; Yoo, Jun-sang; Park, Chang-Soo

    2006-05-01

    A monitoring technique for hybrid passive optical networks (PON) is presented. The technique is based on the remote sensing of fibre Bragg gratings (FBGs) using a tunable optical time domain reflectometer (OTDR). The FBG would help discern an individual event during the monitoring of the hybrid PON in collaboration with the information provided by the Rayleigh backscattered power. The hybrid architecture of passive splitter-PON and WDM-PON can be analysed by the monitoring method by using the tunable OTDR and FBGs at the central office under the in-service state of PON.

  6. Fabricating Blazed Diffraction Gratings by X-Ray Lithography

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; Hartley, Frank; Wilson, Daniel

    2004-01-01

    Gray-scale x-ray lithography is undergoing development as a technique for fabricating blazed diffraction gratings. As such, gray-scale x-ray lithography now complements such other grating-fabrication techniques as mechanical ruling, holography, ion etching, laser ablation, laser writing, and electron-beam lithography. Each of these techniques offers advantages and disadvantages for implementing specific grating designs; no single one of these techniques can satisfy the design requirements for all applications. Gray-scale x-ray lithography is expected to be advantageous for making gratings on steeper substrates than those that can be made by electron-beam lithography. This technique is not limited to sawtooth groove profiles and flat substrates: various groove profiles can be generated on arbitrarily shaped (including highly curved) substrates with the same ease as sawtooth profiles can be generated on flat substrates. Moreover, the gratings fabricated by this technique can be made free of ghosts (spurious diffraction components attributable to small spurious periodicities in the locations of grooves). The first step in gray-scale x-ray lithography is to conformally coat a substrate with a suitable photoresist. An x-ray mask (see Figure 1) is generated, placed between the substrate and a source of collimated x-rays, and scanned over the substrate so as to create a spatial modulation in the exposure of the photoresist. Development of the exposed photoresist results in a surface corrugation that corresponds to the spatial modulation and that defines the grating surface. The grating pattern is generated by scanning an appropriately shaped x-ray area mask along the substrate. The mask example of Figure 1 would generate a blazed grating profile when scanned in the perpendicular direction at constant speed, assuming the photoresist responds linearly to incident radiation. If the resist response is nonlinear, then the mask shape can be modified to account for the nonlinearity and produce a desired groove profile. An example of grating grooves generated by this technique is shown in Figure 2. A maximum relative efficiency of 88 percent has been demonstrated.

  7. Quality of image of grating target placed in vitreous of isolated pig eyes photographed through different implanted multifocal intraocular lenses.

    PubMed

    Inoue, Makoto; Noda, Toru; Ohnuma, Kazuhiko; Bissen-Miyajima, Hiroko; Hirakata, Akito

    2011-11-01

    To determine the quality of the image of a grating target placed in the vitreous of isolated pig eyes and photographed through implanted refractive and diffractive multifocal intraocular lenses (IOL). Refractive multifocal (NXG1, PY60MV), diffractive multifocal (ZM900, SA60D3) and monofocal (SA60AT, ZA9003) IOL were implanted in the capsular bag of isolated pig eyes. A grating target was placed in the vitreous and photographed through a flat or a wide-field viewing contact lens. The contrast of the grating targets of different spatial frequencies was measured. With the flat corneal contact lens, the gratings appeared clear and not distorted when viewed through the optics of the NXG1 and PY60MV for far vision but were distorted with reduced contrast when viewed through the optical zone for near vision. The images through the diffractive zone of the ZM900 and SA60D3 were more defocused than with the monofocal IOL (p < 0.005). Ghost images oriented centrifugally of the original image were seen with the ZM900 resulting in lower contrast at higher spatial frequencies than with the SA60D3 with less defocused images only in the central area. With the wide-field viewing contact lens, the images were less defocused and the contrast was comparable to both refractive and diffractive multifocal IOL. Both refractive and diffractive multifocal IOL reduced the contrast of the retinal image when viewed through a flat corneal contact lens but less defocused when viewed through a wide-field viewing contact lens. © 2011 The Authors. Acta Ophthalmologica © 2011 Acta Ophthalmologica Scandinavica Foundation.

  8. Direct inscription of Bragg gratings into coated fluoride fibers for widely tunable and robust mid-infrared lasers.

    PubMed

    Bharathan, Gayathri; Woodward, Robert I; Ams, Martin; Hudson, Darren D; Jackson, Stuart D; Fuerbach, Alex

    2017-11-27

    We report the development of a widely tunable all-fiber mid-infrared laser system based on a mechanically robust fiber Bragg grating (FBG) which was inscribed through the polymer coating of a Ho 3+ -Pr 3+ co-doped double clad ZBLAN fluoride fiber by focusing femtosecond laser pulses into the core of the fiber without the use of a phase mask. By applying mechanical tension and compression to the FBG while pumping the fiber with an 1150 nm laser diode, a continuous wave (CW) all-fiber laser with a tuning range of 37 nm, centered at 2870 nm, was demonstrated with up to 0.29 W output power. These results pave the way for the realization of compact and robust mid-infrared fiber laser systems for real-world applications in spectroscopy and medicine.

  9. Multi-gas sensing with quantum cascade laser array in the mid-infrared region

    NASA Astrophysics Data System (ADS)

    Bizet, Laurent; Vallon, Raphael; Parvitte, Bertrand; Brun, Mickael; Maisons, Gregory; Carras, Mathieu; Zeninari, Virginie

    2017-05-01

    Wide tunable lasers sources are useful for spectroscopy of complex molecules that have broad absorption spectra and for multiple sensing of smaller molecules. A region of interest is the mid-infrared region, where many species have strong ro-vibrational modes. In this paper a novel broad tunable source composed of a QCL DFB array and an arrayed waveguide grating (also called multiplexer) was used to perform multi-species spectroscopy (CO, C2H2, CO2). The array and the multiplexer are associated in a way to obtain a prototype that is non-sensitive to mechanical vibrations. A 2190-2220 cm^{-1} spectral range is covered by the chip. The arrayed waveguide grating combines beams to have a single output. A multi-pass White cell was used to demonstrate the efficiency of the multiplexer.

  10. Nanofabrication and characterization of a grating-based condenser for uniform illumination with hard X-rays.

    PubMed

    Liu, Jianpeng; Li, Xin; Chen, Shuo; Zhang, Sichao; Xie, Shanshan; Xu, Chen; Chen, Yifang; Deng, Biao; Mao, Chenwen

    2017-05-01

    In the development of full-field transmission X-ray microscopy for basic study in science and technology, a condenser capable of providing intense illumination with high uniformity and stability on tested specimens in order to achieve high-quality images is essential. The latest design of a square-shaped condenser based on diffractive gratings has demonstrated promising uniformity in illumination. This paper describes in more detail the development of such a beam shaper for hard X-rays at 10 keV with regard to its design, manufacture and optical characterization. The effect of the grating profile on the diffracted intensity has been theoretically predicted by numerical simulation using the finite-difference time-domain method. Based on this, the limitations of the grating-based condenser are discussed.

  11. Modeling and simulation of blazed grating based on MEMS scanning micro-mirror for NIR micro-spectrometer

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Wen, Zhiyu; Yang, Tingyan; Lei, Hongjie

    2015-11-01

    Near infrared micro-spectrometer (NIRMS) as a vital detection equipment for various elements has been investigated over the last few years. Traditional MEMS NIRMS employs CCD array detectors for NIR spectrum collection and this leads to higher fabrication cost. In this paper, to ensure the higher diffraction efficiency as well as lower fabrication cost, a novel blazed grating based on MEMS scanning micro-mirror (SMM) is proposed. By our design method, the NIRMS needs only one single InGaAs detector photo diode to collect NIR spectrum and ensure the high diffraction efficiency. Our results show that the diffraction efficiency of the blazed grating is almost 50% and the peak value reaches to 90% in the range of 900-2,100 nm while the optical scanning angle is 14.2°.

  12. Simple design of slanted grating with simplified modal method.

    PubMed

    Li, Shubin; Zhou, Changhe; Cao, Hongchao; Wu, Jun

    2014-02-15

    A simplified modal method (SMM) is presented that offers a clear physical image for subwavelength slanted grating. The diffraction characteristic of the slanted grating under Littrow configuration is revealed by the SMM as an equivalent rectangular grating, which is in good agreement with rigorous coupled-wave analysis. Based on the equivalence, we obtained an effective analytic solution for simplifying the design and optimization of a slanted grating. It offers a new approach for design of the slanted grating, e.g., a 1×2 beam splitter can be easily designed. This method should be helpful for designing various new slanted grating devices.

  13. Diffraction-analysis-based characterization of very fine gratings

    NASA Astrophysics Data System (ADS)

    Bischoff, Joerg; Truckenbrodt, Horst; Bauer, Joachim J.

    1997-09-01

    Fine gratings with spatial periods below one micron, either ruled mechanically or patterned holographically, play a key role as encoders in high precision translational or rotational coordinate or measuring machines. Besides, the fast in-line characterization of submicron patterns is a stringent demand in recent microelectronic technology. Thus, a rapid, destruction free and highly accurate measuring technique is required to ensure the quality during manufacturing and for final testing. We propose an optical method which was already successfully introduced in semiconductor industry. Here, the inverse scatter problem inherent in this diffraction based approach is overcome by sophisticated data analysis such as multivariate regression or neural networks. Shortly sketched, the procedure is as follows: certain diffraction efficiencies are measured with an optical angle resolved scatterometer and assigned to a number of profile parameters via data analysis (prediction). Before, the specific measuring model has to be calibrated. If the wavelength-to-period rate is well below unity, it is quite easy to gather enough diffraction orders. However, for gratings with spatial periods being smaller than the probing wavelength, merely the specular reflex will propagate for perpendicular incidence (zero order grating). Consequently, it is virtually impossible to perform a regression analysis. A proper mean to tackle this bottleneck is to record the zero-order reflex as a function of the incident angle. In this paper, the measurement of submicron gratings is discussed with the examples of 0.8, 1.0 and 1.4 micron period resist gratings on silicon, etched silicon oxide on silicon (same periods) and a 512 nm pitch chromium grating on quartz. Using a He-Ne laser with 633 nm wavelength and measuring the direct reflex in both linear polarizations, it is shown that even submicron patterning processes can be monitored and the resulting profiles with linewidths below a half micron can be characterized reliably with 2(theta) - scatterometry.

  14. Effects of tilted angle of Bragg facets on the performance of successive strips based Bragg concave diffraction grating

    NASA Astrophysics Data System (ADS)

    Du, Bingzheng; Zhu, Jingping; Mao, Yuzheng; Wang, Kai; Chen, Huibing; Hou, Xun

    2018-03-01

    The effects of the tilted angle of facets on the diffraction orders, diffraction spectra, dispersion power, and the neighbor channel crosstalk of successive etching strips based Bragg concave diffraction grating (Bragg-CDG) are studied in this paper. The electric field distribution and diffraction spectra of four Bragg-CDGs with different tilted angles are calculated by numerical simulations. With the reflection condition of Bragg facets constant, the blazing order cannot change with the titled angle. As the tilted angle increases, the number of diffraction orders of Bragg-CDG will decrease, thereby concentrating more energy on the blazing order and improving the uniformity of diffraction spectra. In addition, the dispersion power of Bragg-CDG can be improved and the neighbor channel crosstalk of devices can be reduced by increasing the tilted angle. This work is beneficial to optimize the performance of Bragg-CDG.

  15. Planar techniques for fabricating X-ray diffraction gratings and zone plates

    NASA Technical Reports Server (NTRS)

    Smith, H. I.; Anderson, E. H.; Hawryluk, A. M.; Schattenburg, M. L.

    1984-01-01

    The state of current planar techniques in the fabrication of Fresnel zone plates and diffraction gratings is reviewed. Among the fabrication techniques described are multilayer resist techniques; scanning electron beam lithography; and holographic lithography. Consideration is also given to: X-ray lithography; ion beam lithography; and electroplating. SEM photographs of the undercut profiles obtained in a type AZ 135OB photoresistor by holographic lithography are provided.

  16. 8-beam local oscillator array at 47 THz generated by a phase grating and a quantum cascade laser

    DOE PAGES

    Mirzaei, B.; Silva, J. R. G.; Hayton, D.; ...

    2017-11-13

    We present an 8-beam local oscillator (LO) for the astronomically significant [OI] line at 4.7 THz. The beams are generated using a quantum cascade laser (QCL) in combination with a Fourier phase grating. The grating is fully characterized using a third order distributed feedback (DFB) QCL with a single mode emission at 4.7 THz as the input. The measured diffraction efficiency of 74.3% is in an excellent agreement with the calculated result of 75.4% using a 3D simulation. We show that the power distribution among the diffracted beams is uniform enough for pumping an array receiver. To validate the gratingmore » bandwidth, we apply a far-infrared (FIR) gas laser emission at 5.3 THz as the input and find a very similar performance in terms of efficiency, power distribution, and spatial configuration of the diffracted beams. Both results represent the highest operating frequencies of THz phase gratings reported in the literature. By injecting one of the eight diffracted 4.7 THz beams into a superconducting hot electron bolometer (HEB) mixer, we find that the coupled power, taking the optical loss into account, is in consistency with the QCL power value.« less

  17. Image analysis algorithms for the advanced radiographic capability (ARC) grating tilt sensor at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Roberts, Randy S.; Bliss, Erlan S.; Rushford, Michael C.; Halpin, John M.; Awwal, Abdul A. S.; Leach, Richard R.

    2014-09-01

    The Advance Radiographic Capability (ARC) at the National Ignition Facility (NIF) is a laser system designed to produce a sequence of short pulses used to backlight imploding fuel capsules. Laser pulses from a short-pulse oscillator are dispersed in wavelength into long, low-power pulses, injected in the NIF main laser for amplification, and then compressed into high-power pulses before being directed into the NIF target chamber. In the target chamber, the laser pulses hit targets which produce x-rays used to backlight imploding fuel capsules. Compression of the ARC laser pulses is accomplished with a set of precision-surveyed optical gratings mounted inside of vacuum vessels. The tilt of each grating is monitored by a measurement system consisting of a laser diode, camera and crosshair, all mounted in a pedestal outside of the vacuum vessel, and a mirror mounted on the back of a grating inside the vacuum vessel. The crosshair is mounted in front of the camera, and a diffraction pattern is formed when illuminated with the laser diode beam reflected from the mirror. This diffraction pattern contains information related to relative movements between the grating and the pedestal. Image analysis algorithms have been developed to determine the relative movements between the gratings and pedestal. In the paper we elaborate on features in the diffraction pattern, and describe the image analysis algorithms used to monitor grating tilt changes. Experimental results are provided which indicate the high degree of sensitivity provided by the tilt sensor and image analysis algorithms.

  18. Holographic assembly of semiconductor CdSe quantum dots in polymer for volume Bragg grating structures with diffraction efficiency near 100%

    NASA Astrophysics Data System (ADS)

    Liu, Xiangming; Tomita, Yasuo; Oshima, Juro; Chikama, Katsumi; Matsubara, Koutatsu; Nakashima, Takuya; Kawai, Tsuyoshi

    2009-12-01

    We report on the fabrication of centimeter-size transmission Bragg gratings in semiconductor CdSe quantum dots dispersed 50 μm thick photopolymer films. This was done by holographic assembly of CdSe quantum dots in a photopolymerizable monomer blend. Periodic patterning of CdSe quantum dots in polymer was confirmed by a fluorescence microscope and confocal Raman imaging. The diffraction efficiency from the grating of 1 μm spacing was near 100% in the green with 0.34 vol % CdSe quantum dots, giving the refractive index modulation as large as 5.1×10-3.

  19. Photoelectrochemical fabrication of spectroscopic diffraction gratings, phase 2

    NASA Technical Reports Server (NTRS)

    Rauh, R. David; Carrabba, Michael M.; Li, Jianguo; Cartland, Robert F.; Hachey, John P.; Mathew, Sam

    1990-01-01

    This program was directed toward the production of Echelle diffraction gratings by a light-driven, electrochemical etching technique (photoelectrochemical etching). Etching is carried out in single crystal materials, and the differential rate of etching of the different crystallographic planes used to define the groove profiles. Etching of V-groove profiles was first discovered by us during the first phase of this project, which was initially conceived as a general exploration of photoelectrochemical etching techniques for grating fabrication. This highly controllable V-groove etching process was considered to be of high significance for producing low pitch Echelles, and provided the basis for a more extensive Phase 2 investigation.

  20. Atomic spectroscopy and holography: A combined laboratory experiment at the intermediate undergraduate level

    NASA Astrophysics Data System (ADS)

    Bates, Harry E.

    1984-05-01

    Holography is a new and exciting field that has found many applications in physics and engineering. Atomic spectroscopy has been the experimental cornerstone of modern physics and chemistry. This paper reports on an intermediate undergraduate laboratory experiment that combines fundamental ideas and techniques of both fields. The student utilizes holographic techniques to make a small sinusoidal diffraction grating and then uses this grating to analyze the spectrum of hydrogen. The Rydberg constant can be determined from the wavelength, the angle between the laser beams used to make the grating, and the observed diffractions angles of lines of the Balmer series.

  1. Design and fabrication of a metamaterial gradient index diffraction grating at infrared wavelengths.

    PubMed

    Tsai, Yu-Ju; Larouche, Stéphane; Tyler, Talmage; Lipworth, Guy; Jokerst, Nan M; Smith, David R

    2011-11-21

    We demonstrate the design, fabrication and characterization of an artificially structured, gradient index metamaterial with a linear index variation of Δn ~ 3.0. The linear gradient profile is repeated periodically to form the equivalent of a blazed grating, with the gradient occurring across a spatial distance of 61 μm. The grating, which operates at a wavelength of 10.6 μm, is composed of non-resonant, progressively modified "I-beam" metamaterial elements and approximates a linear phase shift gradient using 61 distinguishable phase levels. The grating structure consists of four layers of lithographically patterned metallic I-beam elements separated by dielectric layers of SiO(2). The index gradient is confirmed by comparing the measured magnitudes of the -1, 0 and +1 diffracted orders to those obtained from full wave simulations incorporating all material properties of the metals and dielectrics of the structures. The large index gradient has the potential to enable compact infrared diffractive and gradient index optics, as well as more exotic transformation optical media. © 2011 Optical Society of America

  2. Real-time sensing of optical alignment

    NASA Technical Reports Server (NTRS)

    Stier, Mark T.; Wissinger, Alan B.

    1988-01-01

    The Large Deployable Reflector and other future segmented optical systems may require autonomous, real-time alignment of their optical surfaces. Researchers have developed gratings located directly on a mirror surface to provide interferometric sensing of the location and figure of the mirror. The grating diffracts a small portion of the incident beam to a diffractive focus where the designed diagnostics can be performed. Mirrors with diffraction gratings were fabricated in two separate ways. The formation of a holographic grating over the entire surface of a mirror, thereby forming a Zone Plate Mirror (ZPM) is described. Researchers have also used computer-generated hologram (CGH) patches for alignment and figure sensing of mirrors. When appropriately illuminated, a grid of patches spread over a mirror segment will yield a grid of point images at a wavefront sensor, with the relative location of the points providing information on the figure and location of the mirror. A particular advantage of using the CGH approach is that the holographic patches can be computed, fabricated, and replicated on a mirror segment in a mass production 1-g clean room environment.

  3. On-chip optical mode conversion based on dynamic grating in photonic-phononic hybrid waveguide

    PubMed Central

    Chen, Guodong; Zhang, Ruiwen; Sun, Junqiang

    2015-01-01

    We present a scheme for reversible and tunable on-chip optical mode conversion based on dynamic grating in a hybrid photonic-phononic waveguide. The dynamic grating is built up through the acousto-optic effect and the theoretical model of the optical mode conversion is developed by considering the geometrical deformation and refractive index change. Three kinds of mode conversions are able to be realized using the same hybrid waveguide structure in a large bandwidth by only changing the launched acoustic frequency. The complete mode conversion can be achieved by choosing a proper acoustic power under a given waveguide length. PMID:25996236

  4. Guided-mode resonance reflection and transmission filters in the optical and microwave spectral ranges

    NASA Astrophysics Data System (ADS)

    Tibuleac, Sorin

    In this dissertation, new reflection and transmission filters are developed and characterized in the optical and microwave spectral regions. These guided-mode resonance (GMR) filters are implemented by integrating diffraction gratings into classical thin-film multilayers to produce high efficiency filter response and low sidebands extended over a large spectral range. Diffraction from phase-shifted gratings and gratings with different periods is analyzed using rigorous coupled-wave theory yielding a new approach to filter linewidth broadening, line-shaping, and multi-line filters at normal incidence. New single-grating transmission filters presented have narrow linewidth, high peak transmittance, and low sideband reflectance. A comparison with classical thin-film filters shows that GMR devices require significantly fewer layers to obtain narrow linewidth and high peak response. All-dielectric microwave frequency- selective surfaces operating in reflection or transmission are shown to be realizable with only a few layers using common microwave materials. Single-layer and multilayer waveguide gratings operating as reflection and transmission filters, respectively, were built and tested in the 4-20 GHz frequency range. The presence of GMR notches and peaks is clearly established by the experimental results, and their spectral location and lineshape found to be in excellent agreement with the theoretical predictions. A new computer program using genetic algorithms and rigorous coupled-wave analysis was developed for optimization of multilayer structures containing homogeneous and diffractive layers. This program was utilized to find GMR filters possessing features not previously known. Thus, numerous examples of transmission filters with peaks approaching 100%, narrow linewidths (~0.03%), and low sidebands have been found in structures containing only 1-3 layers. A new type of GMR device integrating a waveguide grating with subwavelength period on the endface of an optical fiber is developed for high-resolution biomedical or chemical sensors and spectral filtering applications. Diffraction gratings with submicron periods exhibiting high efficiencies have been recorded for the first time on coated and uncoated endfaces of single-mode and multimode fibers. Guided-mode resonance transmittance notches of ~18% were experimentally obtained with structures consisting of photoresist gratings on thin films of Si3N4 deposited on optical fiber endfaces.

  5. Broadband spatial optical filtering with a volume Bragg grating and a blazed grating pair

    NASA Astrophysics Data System (ADS)

    Chen, Guanjin; Sun, Xiaojie; Yuan, Xiao; Zhang, Guiju

    2017-10-01

    A broadband spatial optical filtering system is presented in this paper, which is composed of a Volume Bragg Grating (VBG) and a blazed grating pair. The diffraction efficiency and filtering properties are calculated and simulated by using Fourier diffraction analysis and Coupled Wave Theory. A blazed grating pair and VBG structures are designed and optimized in our simulation. The diffraction efficiency of filtering system shows more than 77.2% during the wavelength period from 953nm to 1153nm, especially 84.1% at the center wavelength. The beam quality is described with near-field modulation (M) and contrast ratio (C). The M of filtering beam are 1.44, 1.49 and 1.55, respectively and the C of filtering beam are 10.1%, 10.2% and 10.5% , respectively and the beam intensity distribution is great improved. The cut-off frequencies of three filtering systems are 1.57mm-1 , 2.06 mm-1 and 2.38 mm-1 , respectively from power spectral density (PSD) curve. It's clear that the cut-off frequency of filtering system is closely related to the angular selectivity of VBG, and the value of cut-off frequency is decided by VBG's Half Width at First Zero (HWFZ) and center wavelength.

  6. Investigation and optimal design of Photonic Crystal Fiber Bragg Grating using the Bat Algorithm and Binary Morse-Thue fractal Sequence, for eye-safe Tunable Fiber and Solid-State Lasers

    NASA Astrophysics Data System (ADS)

    Al-Muraeb, Ahmed Mohammed Maim

    This dissertation presents new approaches to design photonic crystal fiber Bragg grating, which is a main component in wavelength-tunable fiber and solid-state laser (SSL) systems operating in eye-safe wavelength region (1.4 - 2 mum). Although they have their own name, fiber lasers can be categorized as SSL as they are being used in making Ion-doped SSL. Today however, fiber lasers compete with and threaten to replace most of high-power, bulk SSLs and even some gas lasers. Hence, an eye-safe dual-wavelength Tunable Fiber Ring Laser (TFRL) system is considered in this work. This work addresses: 1. Eye-safe region laser areas of applications, TFRL system description, and wavelength tuning mechanisms with focus on (1.8 - 2 mum) range. 2. Optimal design method for Fiber Bragg Grating (FBG) using the Bat Algorithm, with the novel Adaptive Position Update (APU-BA) (our work [1]). The latter enhances the search performance and accuracy of BA for FBG design. Also, APU-BA shows better search performance and higher accuracy against previously reported methods and algorithms. 3. Investigation and design of novel High-Birefringence Photonic Crystal Fiber (JIBPCF) structures based on the Binary Morse-Thue fractal Sequence (BMTS) [2]. The latter offers desirably higher birefringence and lower confinement loss with dispersion-free single-mode operation in the eye-safe region of interest (1.8 - 2 microm). 4. Combining the above results, for final design of the photonic crystal fiber Bragg grating device (serving as wavelength-selective reflector in TFRL). Fiber Bragg grating design and analysis were carried out using MATLAG RTM. Resulting in refractive index modulation over the designed FBG length for a given target FBG reflectance spectrum. Hexagonal standard Silica Glass solid-core 5-ring HB-PCF with circular air holes, is designed based on BMTS. COMSOL MultiphysicsRTM - Wave Optics Module is used in modeling and analysis for the design. Four BMTS formations were proposed, and compared in terms of PCF design parameters (mainly: birefringence). Fabrication in agreement with commercially available PCFs, are concerned in structure geometrical design.

  7. X-ray verification of an optically-aligned off-plane grating module

    NASA Astrophysics Data System (ADS)

    Donovan, Benjamin; McEntaffer, Randall; Tutt, James; DeRoo, Casey; Allured, Ryan; Gaskin, Jessica; Kolodziejczak, Jeffery

    2017-08-01

    The next generation of X-ray spectrometer missions are baselined to have order-of-magnitude improvements in both spectral resolving power and effective area when compared to existing X-ray spectrometer missions. Off-plane X-ray reflection gratings are capable of achieving high resolution and high diffraction efficiencies over the entire X-ray bandpass, making them an ideal technology to implement on these future missions. To achieve the high effective area desired while maintaining high spectral resolution, many off-plane gratings must be precisely aligned such that their diffraction arcs overlap at the focal plane. Methods are under development to align a number of these gratings into a grating module using optical metrology techniques in support of the Off-plane Grating Rocket Experiment (OGRE), a suborbital rocket payload scheduled to launch in late 2018. X-ray testing was performed on an aligned grating module at the Straylight Test Facility (SLTF) at NASA Marshall Space Flight Center (MSFC) to assess the current alignment methodology and its ability to meet the desired performance of OGRE. We report on the results from the test campaign at MSFC, as well as plans for future development.

  8. Nearly amorphous Mo-N gratings for ultimate resolution in extreme ultraviolet interference lithography.

    PubMed

    Wang, L; Kirk, E; Wäckerlin, C; Schneider, C W; Hojeij, M; Gobrecht, J; Ekinci, Y

    2014-06-13

    We present fabrication and characterization of high-resolution and nearly amorphous Mo1 - xNx transmission gratings and their use as masks for extreme ultraviolet (EUV) interference lithography. During sputter deposition of Mo, nitrogen is incorporated into the film by addition of N2 to the Ar sputter gas, leading to suppression of Mo grain growth and resulting in smooth and homogeneous thin films with a negligible grain size. The obtained Mo0.8N0.2 thin films, as determined by x-ray photoelectron spectroscopy, are characterized to be nearly amorphous using x-ray diffraction. We demonstrate a greatly reduced Mo0.8N0.2 grating line edge roughness compared with pure Mo grating structures after e-beam lithography and plasma dry etching. The amorphous Mo0.8N0.2 thin films retain, to a large extent, the benefits of Mo as a phase grating material for EUV wavelengths, providing great advantages for fabrication of highly efficient diffraction gratings with extremely low roughness. Using these grating masks, well-resolved dense lines down to 8 nm half-pitch are fabricated with EUV interference lithography.

  9. Mass production of volume phase holographic gratings for the VIRUS spectrograph array

    NASA Astrophysics Data System (ADS)

    Chonis, Taylor S.; Frantz, Amy; Hill, Gary J.; Clemens, J. Christopher; Lee, Hanshin; Tuttle, Sarah E.; Adams, Joshua J.; Marshall, J. L.; DePoy, D. L.; Prochaska, Travis

    2014-07-01

    The Visible Integral-field Replicable Unit Spectrograph (VIRUS) is a baseline array of 150 copies of a simple, fiber-fed integral field spectrograph that will be deployed on the Hobby-Eberly Telescope (HET). VIRUS is the first optical astronomical instrument to be replicated on an industrial scale, and represents a relatively inexpensive solution for carrying out large-area spectroscopic surveys, such as the HET Dark Energy Experiment (HETDEX). Each spectrograph contains a volume phase holographic (VPH) grating with a 138 mm diameter clear aperture as its dispersing element. The instrument utilizes the grating in first-order for 350 < λ (nm) < 550. Including witness samples, a suite of 170 VPH gratings has been mass produced for VIRUS. Here, we present the design of the VIRUS VPH gratings and a discussion of their mass production. We additionally present the design and functionality of a custom apparatus that has been used to rapidly test the first-order diffraction efficiency of the gratings for various discrete wavelengths within the VIRUS spectral range. This device has been used to perform both in-situ tests to monitor the effects of adjustments to the production prescription as well as to carry out the final acceptance tests of the gratings' diffraction efficiency. Finally, we present the as-built performance results for the entire suite of VPH gratings.

  10. Extended asymmetric-cut multilayer X-ray gratings.

    PubMed

    Prasciolu, Mauro; Haase, Anton; Scholze, Frank; Chapman, Henry N; Bajt, Saša

    2015-06-15

    The fabrication and characterization of a large-area high-dispersion blazed grating for soft X-rays based on an asymmetric-cut multilayer structure is reported. An asymmetric-cut multilayer structure acts as a perfect blazed grating of high efficiency that exhibits a single diffracted order, as described by dynamical diffraction throughout the depth of the layered structure. The maximum number of grating periods created by cutting a multilayer deposited on a flat substrate is equal to the number of layers deposited, which limits the size of the grating. The size limitation was overcome by depositing the multilayer onto a substrate which itself is a coarse blazed grating and then polish it flat to reveal the uniformly spaced layers of the multilayer. The number of deposited layers required is such that the multilayer thickness exceeds the step height of the substrate structure. The method is demonstrated by fabricating a 27,060 line pairs per mm blazed grating (36.95 nm period) that is repeated every 3,200 periods by the 120-μm period substrate structure. This preparation technique also relaxes the requirements on stress control and interface roughness of the multilayer film. The dispersion and efficiency of the grating is demonstrated for soft X-rays of 13.2 nm wavelength.

  11. Design of crossed planar phase grating for metrology

    NASA Astrophysics Data System (ADS)

    Tang, Yu; Chen, Xinrong; Li, Chaoming; Wang, Rui; Xu, Haiyan; Cheng, Yushui

    2018-01-01

    Crossed-grating is widely used as the standard element for metrology in two-dimensional precision positioning system. It has many advantages such as high resolution, compact structure, good environmental adaptability and less Abbe error. In this paper, the design of crossed planar reflecting phase grating used under the Littrow condition with circularly polarized light at 780nm wavelength has been carried out. The aim of the design is to find out the range of structure parameters of crossed-grating that has higher -1st order diffraction efficiency and good efficiency equilibrium for both of TE- and TM-polarized incident lights. By adoption of the Fourier modal method (FMM), the microstructure parameters of the 1200lines/mm crossed grating with the duty cycle range of 10% to 50% and the profile depth of 150nm to 350nm have been searched exactly. The calculation results show that: When the duty cycle range of the grating is 42% to 44% and profile depth is 210nm to 220nm, the -1st diffraction efficiencies of TE- and TM-polarized lights are both above 60% and the efficiency equilibrium is better than 80%.

  12. Wideband two-port beam splitter of a binary fused-silica phase grating.

    PubMed

    Wang, Bo; Zhou, Changhe; Feng, Jijun; Ru, Huayi; Zheng, Jiangjun

    2008-08-01

    The usual beam splitter of multilayer-coated film with a wideband spectrum is not easy to achieve. We describe the realization of a wideband transmission two-port beam splitter based on a binary fused-silica phase grating. To achieve high efficiency and equality in the diffracted 0th and -1st orders, the grating profile parameters are optimized using rigorous coupled-wave analysis at a wavelength of 1550 nm. Holographic recording and the inductively coupled plasma dry etching technique are used to fabricate the fused-silica beam splitter grating. The measured efficiency of (45% x 2) = 90% diffracted into the both orders can be obtained with the fabricated grating under Littrow mounting. The physical mechanism of such a wideband two-port beam splitter grating can be well explained by the modal method based on two-beam interference of the modes excited by the incident wave. With the high damage threshold, low coefficient of thermal expansion, and wideband high efficiency, the presented beam splitter etched in fused silica should be a useful optical element for a variety of practical applications.

  13. Research on the demodulation techniques of long-period fiber gratings strain sensing with low cost

    NASA Astrophysics Data System (ADS)

    Wang, Qingwei; Liu, Yueming; Tian, Weijian; Feng, Guilan

    2012-10-01

    The working principle of LPFG(Long-Period Fiber Grating) is based on coupling effect between propagating core-mode and co-propagating cladding-modes. The effective refractive index of cladding-modes could be obviously influenced by the environmental changes resulting in LPFG more sensitive than FBG (Fiber Bragg Grating) in sensing areas, such as temperature, strain, concentration, bending and etc. LPFG should have more potential in the field of sensors compared with FBG. One of the challenges in using LPFG for environmental sensing is how to interrogate the signal from the LPFG transmission spectrum, due to the large spectral range of the resonant dip. Nowadays the application of LPFG is normally limited in signal interrogation of FBG as optical edge filter. The signal interrogation of LPFG itself needs further research. Presently research on signal interrogation of fiber grating focuses on wavelength interrogation. The aim of wavelength interrogation is to get the wavelength shift caused by environmental change. To solve these problems, a kind of strain sensing interrogation technique for LPFG with low-cost based on tunable FBGs has been developed. Comparing with the method using Fabry-Perot cavity, tunable FBGs can lower the cost with the guarantee of sensing precision. The cost is further lowered without using expensive optical instruments such as optical switch. The problem of temperature cross-sensitivity was solved by using reference gratings. An experiment was performed to demonstrate the interrogation system. And in the experiment, the sensing signal of LPFG applied 0-1300μɛ was successfully interrogated. The results of the interrogation system and OSA are similar.

  14. Immersion Gratings for Infrared High-resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion gratings, including the development of a long-NIR (2-5um) high-resolution (R=80,000) spectrograph with Ge-immersion grating, VINROUGE, which is a prototype for the TMT MIR instrument.

  15. Teaching Fraunhofer diffraction via experimental and simulated images in the laboratory

    NASA Astrophysics Data System (ADS)

    Peinado, Alba; Vidal, Josep; Escalera, Juan Carlos; Lizana, Angel; Campos, Juan; Yzuel, Maria

    2012-10-01

    Diffraction is an important phenomenon introduced to Physics university students in a subject of Fundamentals of Optics. In addition, in the Physics Degree syllabus of the Universitat Autònoma de Barcelona, there is an elective subject in Applied Optics. In this subject, diverse diffraction concepts are discussed in-depth from different points of view: theory, experiments in the laboratory and computing exercises. In this work, we have focused on the process of teaching Fraunhofer diffraction through laboratory training. Our approach involves students working in small groups. They visualize and acquire some important diffraction patterns with a CCD camera, such as those produced by a slit, a circular aperture or a grating. First, each group calibrates the CCD camera, that is to say, they obtain the relation between the distances in the diffraction plane in millimeters and in the computer screen in pixels. Afterwards, they measure the significant distances in the diffraction patterns and using the appropriate diffraction formalism, they calculate the size of the analyzed apertures. Concomitantly, students grasp the convolution theorem in the Fourier domain by analyzing the diffraction of 2-D gratings of elemental apertures. Finally, the learners use a specific software to simulate diffraction patterns of different apertures. They can control several parameters: shape, size and number of apertures, 1-D or 2-D gratings, wavelength, focal lens or pixel size.Therefore, the program allows them to reproduce the images obtained experimentally, and generate others by changingcertain parameters. This software has been created in our research group, and it is freely distributed to the students in order to help their learning of diffraction. We have observed that these hands on experiments help students to consolidate their theoretical knowledge of diffraction in a pedagogical and stimulating learning process.

  16. Investigation of optical information for a single micro grating device combined with MATA by SMart process

    NASA Astrophysics Data System (ADS)

    Tsai, Chien-Chung; Huang, Yi-Chao; Yang, Tsa-Hsien; Chen, Jen-Chieh

    2006-01-01

    The concentric circles type and saw-tooth type of micro grating device based upon the diffraction theory are proposed in this study. The geometry dimension of micro optical device is 200 × 200 μm2, the interval of grating is 4 μm, and the depth is 0.75 μm. The Micro Array Thermal Actuator, MATA, is applied to drive the micro grating device, and the pre-elevating structure is designed to lift the micro grating device by the residual stress of polysilicon combined with metal. The micro grating device is fabricated by Surface Micromachining for applications and research technology platform, SMart, common process. The incident ray of He-Ne laser focused by a lens which focal length is 250 mm is applied to be the light source for the experiment, and then analyzes the optical information of the outgoing ray. From the experimental results, the basic optical features are examined based upon the concentric circles type and saw-tooth type of micro grating device, respectively. The outgoing ray angle of central spot is 60° in theory. The measurements are 59.475° for the concentric circles type and 59.88° for the saw-tooth type. The outgoing ray angle of the first stripe is 46.9° in theory, and 46.81° for the concentric circles type and 46.67° for the saw-tooth type are measured from the experiment. The variation of outgoing ray angle is smaller than 1% compared the measurement results with theory of diffraction on the central spot and first stripe characteristics. The work successfully demonstrates the micro grating device with highly accurate performance by the verification of optical information. All of the efforts will be contributed to Controlled Blazed Diffraction micro grating device, CBDMG, and that will be the main device of Integrate Opto-Electronics applied on display to develop in the future.

  17. Programmable spectrometer using MOEMs devices for space applications

    NASA Astrophysics Data System (ADS)

    Viard, Thierry; Buisset, Christophe; Rejeaunier, Xavier; Zamkotsian, Frédéric; Venancio, Luis M.

    2017-11-01

    A new class of spectrometer can be designed using programmable components such as MOEMS which enable to tune the beam in spectral width and central wavelength. It becomes possible to propose for space applications a spectrometer with programmable resolution and adjustable spectral bandwidth. The proposed way to tune the output beam is to use the diffraction effect with the so-called PMDG (Programmable Micro Diffraction Gratings ) diffractive MEMS. In that case, small moving structures can form programmable gratings, diffracting or not the incoming light. In the proposed concept, the MOEMS is placed in the focal plane of a first diffracting stage (using a grating for instance). With such implementation, the MOEMS component can be used to select some wavelengths (for instance by reflecting them) and to switch-off the others (for instance by diffracting them). A second diffracting stage is used to recombine the beam composed by all the selected wavelengths. It becomes then possible to change and adjust the filter in λ and Δλ. This type of implementation is very interesting for space applications (Astronomy, Earth observation, planetary observation). Firstly because it becomes possible to tune the filtering function quasi instantaneously. And secondly because the focal plane dimension can be reduced to a single detector (for application without field of view) or to a linear detector instead of a 2D matrix detector (for application with field of view) thanks to a sequential acquisition of the signal.

  18. Diffraction grating transmission efficiencies for XUV and soft X rays. [for HEAO-B extrasolar astronomy

    NASA Technical Reports Server (NTRS)

    Schnopper, H. W.; Van Speybroeck, L. P.; Delvaille, J. P.; Epstein, A.; Kaellne, E.; Bachrach, R. Z.; Dijkstra, J.; Lantward, L.

    1977-01-01

    The manufacture and properties of a grating intended for extrasolar X-ray studies are described. The manufacturing process uses a split laser beam exposing an interference pattern on the photoresist-coated glass plated with a nickel parting layer. The grating, supporting structure, and mounting frame are electrodeposited on the nickel parting layer, and the final product is lifted from the glass substrate by selective etching of the nickel. A model was derived which relates the number of counts received in a given order m as a function of photon wavenumber. A 4-deg beam line was used to measure the efficiencies of gold transmission gratings for diffraction of X-rays in the range of 45 to 275 eV. The experimental results are in good agreement with model calculations.

  19. Wide-field-of-view nanoscale Bragg liquid crystal polarization gratings

    NASA Astrophysics Data System (ADS)

    Xiang, Xiao; Kim, Jihwan; Escuti, Michael J.

    2018-02-01

    Here, we demonstrate a liquid crystal (LC) polymer Bragg polarization grating (PG) with large angular band- width and high efficiency in transmission-mode for 532 nm wavelength and 400 nm period. The field-of-view (FOV ) is increased significantly while preserving high diffraction efficiency by realizing a monolithic grating comprising two different slants. Using rigorous coupled-wave analysis simulation, we identified a structure with 48° FOV and 70% average first-order efficiency. We then experimentally fabricated and characterized the grating with a photo-aligned LC polymer network, also known as reactive mesogens. We measured 40° FOV and nearly 80% average diffraction efficiency. With this broadened and fairly uniform angular response, this wide FOV Bragg PG is a compelling option for large deflection-angle applications, including near-eye display in augmented reality systems, waveguide based illumination, and beam steering.

  20. Performance of the diffraction grating on a bank note: the experience with the Australian Commemorative note

    NASA Astrophysics Data System (ADS)

    Hardwick, Bruce A.

    1990-04-01

    In January 1988, we at the Note Printing Branch first released to the Reserve Bank a polymer based banknote containing an Optically Variable Device (OVD), a diffraction grating. This banknote was the culmination of many years of Research and Development effort, and represented a very significant departure from conventional banknote technology in many ways. It was a test bed. We are very pleased with its performance.

  1. The development and test of a deformable diffraction grating for a stigmatic EUV spectroheliometer

    NASA Technical Reports Server (NTRS)

    Timothy, J. Gethyn; Walker, A. B. C., Jr.; Morgan, J. S.; Huber, M. C. E.; Tondello, G.

    1992-01-01

    The objectives were to address currently unanswered fundamental questions concerning the fine scale structure of the chromosphere, transition region, and corona. The unique characteristics of the spectroheliometer was used in combination with plasma diagnostic techniques to study the temperature, density, and velocity structures of specific features in the solar outer atmosphere. A unified understanding was sought of the interplay between the time dependent geometry of the magnetic field structure and the associated flows of mass and energy, the key to which lies in the smallest spatial scales that are unobservable with current EUV instruments. Toroidal diffraction gratings were fabricated and tested by a new technique using an elastically deformable substrate. The toroidal diffraction gratings was procured and tested to be used for the evaluation of the Multi-Anode Microchannel Array (MAMA) detector systems for the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) and UV Coronagraph Spectrometer (UVCS) instruments on the SOHO mission.

  2. Measurement method for roll angular displacement with a high resolution by using diffraction gratings and a heterodyne interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Shanzhi, E-mail: shanzhit@gmail.com; School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049; Wang, Zhao

    The roll angle measurement is difficult to be achieved directly using a typical commercial interferometer due to its low sensitivity in axial direction, where the axial direction is orthogonal to the plane of the roll angular displacement. A roll angle measurement method combined diffraction gratings with a laser heterodyne interferometer is discussed in this paper. The diffraction grating placed in the plane of a roll angular displacement and the interferometer arranged in the plane's orthogonal direction, constitute the measurement pattern for the roll angle with high resolution. The roll angular displacement, considered as the linear, can be tested precisely whenmore » the corresponding angle is very small. Using the proposed method, the angle roll measurement obtains the high resolution of 0.002{sup ″}. Experiment has proved its feasibility and practicability.« less

  3. Rectangular Relief Diffraction Gratings for Coherent Lidar Beam Deflection

    NASA Technical Reports Server (NTRS)

    Cole, H. J.; Dixit, S. N.; Shore, B. W.; Chambers, D. M.; Britten, J. A.; Kavaya, M. J.

    1999-01-01

    LIDAR systems require a light transmitting system for sending a laser light pulse into space and a receiving system for collecting the retro-scattered light, separating it from the outgoing beam and analyzing the received signal for calculating wind velocities. Currently, a shuttle manifested coherent LIDAR experiment called SPARCLE (SPAce Readiness Coherent Lidar Experiment) includes a silicon wedge (or prism) in its design in order to deflect the outgoing beam 30 degrees relative to the incident direction. The intent of this paper is to present two optical design approaches that may enable the replacement of the optical wedge component (in future, larger aperture, post-SPARCLE missions) with a surface relief transmission diffraction grating. Such a grating could be etched into a lightweight, flat, fused quartz substrate. The potential advantages of a diffractive beam deflector include reduced weight, reduced power requirements for the driving scanning motor, reduced optical sensitivity to thermal gradients, and increased dynamic stability.

  4. A novel grating-imaging method to measure carrier diffusion coefficient in graphene

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Wang, Yaguo; Akinwande, Deji; Bank, Seth; Lin, Jung-Fu

    Similar to carrier mobility, carrier diffusion coefficient in graphene determines the response rate of future graphene-based electronics. Here we present a simple, sensitive and non-destructive technique integrated with ultrafast pump-probe spectroscopy to measure carrier diffusion in CVD-grown graphene. In the method, the pump and the probe beams pass through the same area of a photomask with metal strips i.e. a transmission amplitude grating, and get diffracted. The diffracted light is collected by an objective lens and focused onto the sample to generate carrier density grating. Relaxation of this carrier density grating is governed by both carrier recombination and carrier diffusion in the sample. Transient transmission change of the probe beams, which reflects this relaxation process, is recorded. The measured diffusion coefficients of multilayer and monolayer CVD-grown graphene are 2000cm2/s and 10000cm2/s, respectively, comparable with the reported values of epitaxial graphene and reduced graphene. This transmission grating technique can be used to measure carrier dynamics in versatile 2D materials.

  5. Wavefront-aberration measurement and systematic-error analysis of a high numerical-aperture objective

    NASA Astrophysics Data System (ADS)

    Liu, Zhixiang; Xing, Tingwen; Jiang, Yadong; Lv, Baobin

    2018-02-01

    A two-dimensional (2-D) shearing interferometer based on an amplitude chessboard grating was designed to measure the wavefront aberration of a high numerical-aperture (NA) objective. Chessboard gratings offer better diffraction efficiencies and fewer disturbing diffraction orders than traditional cross gratings. The wavefront aberration of the tested objective was retrieved from the shearing interferogram using the Fourier transform and differential Zernike polynomial-fitting methods. Grating manufacturing errors, including the duty-cycle and pattern-deviation errors, were analyzed with the Fourier transform method. Then, according to the relation between the spherical pupil and planar detector coordinates, the influence of the distortion of the pupil coordinates was simulated. Finally, the systematic error attributable to grating alignment errors was deduced through the geometrical ray-tracing method. Experimental results indicate that the measuring repeatability (3σ) of the wavefront aberration of an objective with NA 0.4 was 3.4 mλ. The systematic-error results were consistent with previous analyses. Thus, the correct wavefront aberration can be obtained after calibration.

  6. Direct and Inverse Techniques of Guided-Mode Resonance Filters Designs

    NASA Technical Reports Server (NTRS)

    Tibuleac, Sorin; Magnusson, Robert; Maldonado, Theresa A.; Zuffada, Cinzia

    1997-01-01

    Guided-mode resonances arise in single or multilayer waveguides where one or more homogeneous layers are replaced by diffraction gratings (Fig. 1.) The diffractive element enables an electromagnetic wave incident on a waveguide grating to be coupled to the waveguide modes supportable by the structure in the absence of the modulation (i.e. the difference between the high and low dielectric constants of the grating) at specific values of the wavelength and incident angle. The periodic modulation of the guide makes the structure leaky, preventing sustained propagation of modes in the waveguide and coupling the waves out into the substrate and cover. As the wavelength is varied around resonance a rapid variation in the intensities of the external propagating waves occurs. By selecting a grating period small enough to eliminate the higher-order propagating waves, an increase in the zero-order intensities up to 100% can result. The pronounced frequency selectivity of guided-mode resonances in dielectric waveguide gratings can be applied to design high-efficiency reflection and transmission filters [1-3].

  7. Spatial filter with volume gratings for high-peak-power multistage laser amplifiers

    NASA Astrophysics Data System (ADS)

    Tan, Yi-zhou; Yang, Yi-sheng; Zheng, Guang-wei; Shen, Ben-jian; Pan, Heng-yue; Liu, Li

    2010-08-01

    The regular spatial filters comprised of lens and pinhole are essential component in high power laser systems, such as lasers for inertial confinement fusion, nonlinear optical technology and directed-energy weapon. On the other hand the pinhole is treated as a bottleneck of high power laser due to harmful plasma created by the focusing beam. In this paper we present a spatial filter based on angular selectivity of Bragg diffraction grating to avoid the harmful focusing effect in the traditional pinhole filter. A spatial filter consisted of volume phase gratings in two-pass amplifier cavity were reported. Two-dimensional filter was proposed by using single Pi-phase-shifted Bragg grating, numerical simulation results shown that its angular spectrum bandwidth can be less than 160urad. The angular selectivity of photo-thermorefractive glass and RUGATE film filters, construction stability, thermal stability and the effects of misalignments of gratings on the diffraction efficiencies under high-pulse-energy laser operating condition are discussed.

  8. Soft X-ray holographic grating beam splitter including a double frequency grating for interferometer pre-alignment.

    PubMed

    Liu, Ying; Tan, Xin; Liu, Zhengkun; Xu, Xiangdong; Hong, Yilin; Fu, Shaojun

    2008-09-15

    Grating beam splitters have been fabricated for soft X-ray Mach- Zehnder interferometer using holographic interference lithography. The grating beam splitter consists of two gratings, one works at X-ray laser wavelength of 13.9 nm with the spatial frequency of 1000 lines/mm as the operation grating, the other works at visible wavelength of 632.8 nm for pre-aligning the X-ray interferometer with the spatial frequency of 22 lines/mm as the pre-alignment grating. The two gratings lie vertically on the same substrate. The main feature of the beam splitter is the use of low-spatial- frequency beat grating of a holographic double frequency grating as the pre-alignment grating of the X-ray interferometer. The grating line parallelism between the two gratings can be judged by observing the diffraction patterns of the pre-alignment grating directly.

  9. Bi-directional ROADM with one pair of NxN cyclic-AWGs for over N wavelength channels configuration

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Mu

    2018-01-01

    This paper presents a bidirectional optical add-drop multiplexer (BROADM) with permitting white spectral channels input in bidirectional configuration. The filter routing rule of array waveguide grating (AWG) is applied for the wavelength channels (WCs) that need to be added and dropped by using the corresponding tunable fiber Bragg gratings (FBGs). The other WCs pass through output by tuning FBG filter spectra away from the WCs. The bandwidth between two adjacent WCs of each pair of ports in AWG is wider than one channel spacing so that the filter spectra of FBG is tuned to free spectral range (FSR) region to realize the wavelength routing function without interfering other WCs. The WCs can be flexibly handled by installing the corresponding tunable FBG. Therefore, the proposed BROADM is more flexible and has higher transmission capacity in the optical network.

  10. Design of distributed FBG vibration measuring system based on Fabry-Perot tunable filter

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Miao, Changyun; Li, Hongqiang; Gao, Hua; Gan, Jingmeng

    2011-11-01

    A distributed optical fiber grating wavelength interrogator based on fiber Fabry Perot tunable filter(FFP-TF) was proposed, which could measure dynamic strain or vibration of multi-sensing fiber gratings in one optical fiber by time division way. The wavelength demodulated mathematical model was built, the formulas of system output voltage and sensitivity were deduced and the method of finding static operating point was determined. The wavelength drifting characteristic of FFP-TF was discussed when the center wavelength of FFP-TF was set on the static operating point. A wavelength locking method was proposed by introducing a high-frequency driving voltage signal. A demodulated system was established based on Labview and its demodulated wavelength dynamic range is 290pm in theory. In experiment, by digital filtering applied to the system output data, 100Hz and 250Hz vibration signals were measured. The experiment results proved the feasibility of the demodulated method.

  11. Monolithic single mode interband cascade lasers with wide wavelength tunability

    NASA Astrophysics Data System (ADS)

    von Edlinger, M.; Weih, R.; Scheuermann, J.; Nähle, L.; Fischer, M.; Koeth, J.; Kamp, M.; Höfling, S.

    2016-11-01

    Monolithic two-section interband cascade lasers offering a wide wavelength tunability in the wavelength range around 3.7 μm are presented. Stable single mode emission in several wavelength channels was realized using the concept of binary superimposed gratings and two-segment Vernier-tuning. The wavelength selective elements in the two segments were based on specially designed lateral metal grating structures defined by electron beam lithography. A dual-step dry etch process provided electrical separation between the segments. Individual current control of the segments allowed wavelength channel selection as well as continuous wavelength tuning within channels. A discontinuous tuning range extending over 158 nm in up to six discrete wavelength channels was achieved. Mode hop free wavelength tuning up to 14 nm was observed within one channel. The devices can be operated in continuous wave mode up to 30 °C with the output powers of 3.5 mW around room temperature.

  12. MEMS tunable grating micro-spectrometer

    NASA Astrophysics Data System (ADS)

    Tormen, Maurizio; Lockhart, R.; Niedermann, P.; Overstolz, T.; Hoogerwerf, A.; Mayor, J.-M.; Pierer, J.; Bosshard, C.; Ischer, R.; Voirin, G.; Stanley, R. P.

    2017-11-01

    The interest in MEMS based Micro-Spectrometers is increasing due to their potential in terms of flexibility as well as cost, low mass, small volume and power savings. This interest, especially in the Near-Infrared and Mid- Infrared, ranges from planetary exploration missions to astronomy, e.g. the search for extra solar planets, as well as to many other terrestrial fields of application such as, industrial quality and surface control, chemical analysis of soil and water, detection of chemical pollutants, exhausted gas analysis, food quality control, process control in pharmaceuticals, to name a few. A compact MEMS-based Spectrometer for Near- Infrared and Mid-InfraRed operation have been conceived, designed and demonstrated. The design based on tunable MEMS blazed grating, developed in the past at CSEM [1], achieves state of the art results in terms of spectral resolution, operational wavelength range, light throughput, overall dimensions, and power consumption.

  13. Tunable high-power blue external cavity semiconductor laser

    NASA Astrophysics Data System (ADS)

    Ding, Ding; Lv, Xueqin; Chen, Xinyi; Wang, Fei; Zhang, Jiangyong; Che, Kaijun

    2017-09-01

    A commercially available high-power GaN-based blue laser diode has been operated in a simple Littrow-type external cavity (EC). Two kinds of EC configurations with the grating lines perpendicular (A configuration) and parallel (B configuration) to the p-n junction are evaluated. Good performance has been demonstrated for the EC laser with B configuration due to the better mode selection effect induced by the narrow feedback wavelength range from the grating. Under an injection current of 1100 mA, the spectral linewidth is narrowed significantly down to ∼0.1 nm from ∼1 nm (the free-running width), with a good wavelength-locking behavior and a higher than 35 dB-amplified spontaneous emission suppression ratio. Moreover, a tuning bandwidth of 3.6 nm from 443.9 nm to 447.5 nm is realized with output power of 1.24 W and EC coupling efficiency of 80% at the central wavelength. The grating-coupled blue EC laser with narrow spectral linewidth, flexible wavelength tunability, and high output power shows potential applications in atom cooling and trapping, high-resolution spectroscopy, second harmonic generation, and high-capacity holographic data storage.

  14. Widely tunable chaotic fiber laser for WDM-PON detection

    NASA Astrophysics Data System (ADS)

    Zhang, Juan; Yang, Ling-zhen; Xu, Nai-jun; Wang, Juan-fen; Zhang, Zhao-xia; Liu, Xiang-lian

    2014-05-01

    A widely tunable high precision chaotic fiber laser is proposed and experimentally demonstrated. A tunable fiber Bragg grating (TFBG) filter is used as a tuning element to determine the turning range from 1533 nm to 1558 nm with a linewidth of 0.5 nm at any wavelength. The wide tuning range is capable of supporting 32 wavelength-division multiplexing (WDM) channels with 100 GHz channel spacing. All single wavelengths are found to be chaotic with 10 GHz bandwidth. The full width at half maximum (FWHM) of the chaotic correlation curve of the different wavelengths is on a picosecond time scale, thereby offering millimeter spatial resolution in WDM detection.

  15. Three-port beam splitter of a binary fused-silica grating.

    PubMed

    Feng, Jijun; Zhou, Changhe; Wang, Bo; Zheng, Jiangjun; Jia, Wei; Cao, Hongchao; Lv, Peng

    2008-12-10

    A deep-etched polarization-independent binary fused-silica phase grating as a three-port beam splitter is designed and manufactured. The grating profile is optimized by use of the rigorous coupled-wave analysis around the 785 nm wavelength. The physical explanation of the grating is illustrated by the modal method. Simple analytical expressions of the diffraction efficiencies and modal guidelines for the three-port beam splitter grating design are given. Holographic recording technology and inductively coupled plasma etching are used to manufacture the fused-silica grating. Experimental results are in good agreement with the theoretical values.

  16. Tunable Far Infrared Semiconductor Sources.

    DTIC Science & Technology

    1984-01-01

    plasmons in Si-MOS4 hot electron transport in Si-MOS-devices a , ABSTR ACT (Coathwe st e verse 8641 It ut’.weemY dmd ideti ty by block tnmber) {fhe...After baking at 900C for 20 minutes the photoresist was -17- exposed for 8 seconds on the SUss-MJB3-contact lithography machine. To obtain grating...could fabricate Al gratings with 1.5 am - periods on Si-MOSFETs and GaAs-samples by optical contact lithography and lift-off metallization. Fig. 8 shows

  17. Vectorial strain gauge method using single flexible orthogonal polydimethylsiloxane gratings

    NASA Astrophysics Data System (ADS)

    Guo, Hao; Tang, Jun; Qian, Kun; Tsoukalas, Dimitris; Zhao, Miaomiao; Yang, Jiangtao; Zhang, Binzhen; Chou, Xiujian; Liu, Jun; Xue, Chenyang; Zhang, Wendong

    2016-03-01

    A vectorial strain gauge method using a single sensing element is reported based on the double-sided polydimethylsiloxane (PDMS) Fraunhofer diffraction gratings structures. Using O2 plasma treatment steps, orthogonal wrinkled gratings were fabricated on both sides of a pre-strained PDMS film. Diffracted laser spots from this structure have been used to experimentally demonstrate, that any applied strain can be quantitatively characterized in both the x and y directions with an error of less than 0.6% and with a gauge factor of approximately 10. This simple and low cost technology which is completely different from the traditional vectorial strain gauge method, can be applied to surface vectorial strain measurement and multi-axis integrated mechanical sensors.

  18. Vacuum-ultraviolet lasers and spectroscopy

    NASA Astrophysics Data System (ADS)

    Hollenstein, U.

    2012-01-01

    Single-photon ionisation of most atoms and molecules requires short-wavelength radiation, typically in the vacuum-ultraviolet (VUV, λ < 200 nm) or extreme ultraviolet (XUV, λ < 105 nm) region of the electromagnetic spectrum. The first VUV and XUV radiation sources used to study molecular photoabsorption and photoionisation spectra were light sources emitting a broad continuous spectrum, such as high pressure lamps or synchrotrons. Monochromatic VUV and XUV radiation was obtained using diffraction gratings in evacuated monochromators, which resulted in a resolving power ν/Δv of at best 106 (i. e. 0.1 cm-1 at 100 000 cm-1), but more typically in the range 104-105 . The invention of the laser and the development of nonlinear optical frequency-upconversion techniques enabled the development of table-top narrow-bandwidth, coherent VUV and XUV laser sources with which VUV photoabsorption, photoionisation and photoelectron spectra of molecules can be recorded at much higher resolution, the best sources having bandwidths better than 50 MHz. Such laser sources are ideally suited to study the structure and dynamics of electronically excited states of atoms and molecules and molecular photoionisation using photoabsorption, photoionisation and photoelectron spectroscopy. This chapter presents the general principles that are exploited to generate tunable narrow-band laser radiation below 200 nm and describes spectroscopic methods such as photoabsorption spectroscopy, photoionisation spectroscopy and threshold photoelectron spectroscopy that relay on the broad tunability and narrow-bandwidth of VUV radiation sources.

  19. Thermally and optically tunable lasing properties from dye-doped holographic polymer dispersed liquid crystal in capillaries

    NASA Astrophysics Data System (ADS)

    Chen, Maozhou; Dai, Haitao; Wang, Dongshuo; Yang, Yue; Luo, Dan; Zhang, Xiaodong; Liu, Changlong

    2018-03-01

    In this paper, we investigated tunable lasing properties from the dye-doped holographic polymer dispersed liquid crystal (HPDLC) gratings in capillaries with thermal and optical manners. The thermally tunable range of the lasing from the dye-doped HPDLC reached 8.60 nm with the temperature ranging from 23 °C to 50 °C. The optically tunable laser emission was achieved by doping azo-dye in HPDLC. The transition of azo-dye from trans- to cis-state could induce the reorientation of LC molecules after UV light irradiation, which resulted in the variation of refractive index contrast of LC-rich/polymer-rich layer in HPDLC. Experimentally, the emission wavelength of lasing showed a blueshift (about 2 nm) coupled with decreasing output intensities. The tunable laser based on HPDLC may enable more applications in laser displays, optical communication, biosensors, etc.

  20. Performance characteristics of a suite of volume phase holographic gratings produced for the Subaru prime focus spectrograph

    NASA Astrophysics Data System (ADS)

    Arns, James A.

    2016-08-01

    The Subaru Prime Focus Spectrograph[1] (PFS) requires a suite of volume phase holographic (VPH) gratings that parse the observational spectrum into three sub-spectral regions. In addition, the red region has a second, higher resolution arm that includes a VPH grating that will eventually be incorporated into a grism. This paper describes the specifications of the four grating types, gives the theoretical performances of diffraction efficiency for the production designs and presents the measured performances on the gratings produced to date.

  1. Design of a high-efficiency seven-port beam splitter using a dual duty cycle grating structure.

    PubMed

    Wen, Fung Jacky; Chung, Po Sheun

    2011-07-01

    In this paper, we propose a compact seven-port beam splitter which is constructed using only a single-layer high-density grating with a dual duty cycle structure. The properties of this grating are investigated by a simplified modal method. The diffraction efficiency can be achieved around 10% more than conventional Dammann gratings while the uniformity can still be maintained at less than 1%. The effect of deviations from the design parameters on the performance of the grating is also presented.

  2. Simplified dichromated gelatin hologram recording process

    NASA Technical Reports Server (NTRS)

    Georgekutty, Tharayil G.; Liu, Hua-Kuang

    1987-01-01

    A simplified method for making dichromated gelatin (DCG) holographic optical elements (HOE) has been discovered. The method is much less tedious and it requires a period of processing time comparable with that for processing a silver halide hologram. HOE characteristics including diffraction efficiency (DE), linearity, and spectral sensitivity have been quantitatively investigated. The quality of the holographic grating is very high. Ninety percent or higher diffraction efficiency has been achieved in simple plane gratings made by this process.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahk, Seung-Whan; Dorrer, Christophe; Bromage, Jake

    Two-dimensional chromatic aberrations are characterized by a single-shot scheme based on a simultaneous measurement of chromatically diversified focal spots. The chromatic diversity is introduced by a 2-D grating with holographic defocus terms. The chromatic aberrations in the beam are either subtracted or added by the additional known chromatic aberrations in the grating, depending on the diffraction order. By analyzing the asymmetry in the size of diffracted focal spots, input beam chromatic aberrations can be deduced. Theoretical discussions and experimental results are also presented.

  4. Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications

    NASA Astrophysics Data System (ADS)

    Lee, Taejun; Jang, Jaehyuck; Jeong, Heonyeong; Rho, Junsuk

    2018-01-01

    Structural coloring is production of color by surfaces that have microstructure fine enough to interfere with visible light; this phenomenon provides a novel paradigm for color printing. Plasmonic color is an emergent property of the interaction between light and metallic surfaces. This phenomenon can surpass the diffraction limit and achieve near unlimited lifetime. We categorize plasmonic color filters according to their designs (hole, rod, metal-insulator-metal, grating), and also describe structures supported by Mie resonance. We discuss the principles, and the merits and demerits of each color filter. We also discuss a new concept of color filters with tunability and reconfigurability, which enable printing of structural color to yield dynamic coloring at will. Approaches for dynamic coloring are classified as liquid crystal, chemical transition and mechanical deformation. At the end of review, we highlight a scale-up of fabrication methods, including nanoimprinting, self-assembly and laser-induced process that may enable real-world application of structural coloring.

  5. Experimental demonstration of tunable multiple optical orthogonal codes sequences-based optical label for optical packets switching

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Qiu, Kun; Zhou, Heng; Ling, Yun; Wang, Yawei; Xu, Bo

    2010-03-01

    In this paper, the tunable multiple optical orthogonal codes sequences (MOOCS)-based optical label for optical packet switching (OPS) (MOOCS-OPS) is experimentally demonstrated for the first time. The tunable MOOCS-based optical label is performed by using fiber Bragg grating (FBG)-based optical en/decoders group and optical switches configured by using Field Programmable Gate Array (FPGA), and the optical label is erased by using Semiconductor Optical Amplifier (SOA). Some waveforms of the MOOCS-based optical label, optical packet including the MOOCS-based optical label and the payloads are obtained, the switching control mechanism and the switching matrix are discussed, the bit error rate (BER) performance of this system is also studied. These experimental results show that the tunable MOOCS-OPS scheme is effective.

  6. A general theory of interference fringes in x-ray phase grating imaging.

    PubMed

    Yan, Aimin; Wu, Xizeng; Liu, Hong

    2015-06-01

    The authors note that the concept of the Talbot self-image distance in x-ray phase grating interferometry is indeed not well defined for polychromatic x-rays, because both the grating phase shift and the fractional Talbot distances are all x-ray wavelength-dependent. For x-ray interferometry optimization, there is a need for a quantitative theory that is able to predict if a good intensity modulation is attainable at a given grating-to-detector distance. In this work, the authors set out to meet this need. In order to apply Fourier analysis directly to the intensity fringe patterns of two-dimensional and one-dimensional phase grating interferometers, the authors start their derivation from a general phase space theory of x-ray phase-contrast imaging. Unlike previous Fourier analyses, the authors evolved the Wigner distribution to obtain closed-form expressions of the Fourier coefficients of the intensity fringes for any grating-to-detector distance, even if it is not a fractional Talbot distance. The developed theory determines the visibility of any diffraction order as a function of the grating-to-detector distance, the phase shift of the grating, and the x-ray spectrum. The authors demonstrate that the visibilities of diffraction orders can serve as the indicators of the underlying interference intensity modulation. Applying the theory to the conventional and inverse geometry configurations of single-grating interferometers, the authors demonstrated that the proposed theory provides a quantitative tool for the grating interferometer optimization with or without the Talbot-distance constraints. In this work, the authors developed a novel theory of the interference intensity fringes in phase grating x-ray interferometry. This theory provides a quantitative tool in design optimization of phase grating x-ray interferometers.

  7. High accuracy demodulation for twin-grating based sensor network with hybrid TDM/FDM

    NASA Astrophysics Data System (ADS)

    Ai, Fan; Sun, Qizhen; Cheng, Jianwei; Luo, Yiyang; Yan, Zhijun; Liu, Deming

    2017-04-01

    We demonstrate a high accuracy demodulation platform with a tunable Fabry-Perot filter (TFF) for twin-grating based fiber optic sensing network with hybrid TDM/FDM. The hybrid TDM/FDM scheme can improve the spatial resolution to centimeter but increases the requirement of high spectrum resolution. To realize the demodulation of the complex twin-grating spectrum, we adopt the TFF demodulation method and compensate the environmental temperature change and nonlinear effect through calibration FBGs. The performance of the demodulation module is tested by a temperature experiment. Spectrum resolution of 1pm is realized with precision of 2.5pm while the environmental temperature of TFF changes 9.3°C.

  8. Optimizing Ti:Sapphire laser for quantitative biomedical imaging

    NASA Astrophysics Data System (ADS)

    James, Jeemol; Thomsen, Hanna; Hanstorp, Dag; Alemán Hérnandez, Felipe Ademir; Rothe, Sebastian; Enger, Jonas; Ericson, Marica B.

    2018-02-01

    Ti:Sapphire lasers are powerful tools in the field of scientific research and industry for a wide range of applications such as spectroscopic studies and microscopic imaging where tunable near-infrared light is required. To push the limits of the applicability of Ti:Sapphire lasers, fundamental understanding of the construction and operation is required. This paper presents two projects, (i) dealing with the building and characterization of custom built tunable narrow linewidth Ti:Sapphire laser for fundamental spectroscopy studies; and the second project (ii) the implementation of a fs-pulsed commercial Ti:Sapphire laser in an experimental multiphoton microscopy platform. For the narrow linewidth laser, a gold-plated diffraction grating with a Littrow geometry was implemented for highresolution wavelength selection. We demonstrate that the laser is tunable between 700 to 950 nm, operating in a pulsed mode with a repetition rate of 1 kHz and maximum average output power around 350 mW. The output linewidth was reduced from 6 GHz to 1.5 GHz by inserting an additional 6 mm thick etalon. The bandwidth was measured by means of a scanning Fabry Perot interferometer. Future work will focus on using a fs-pulsed commercial Ti:Sapphire laser (Tsunami, Spectra physics), operating at 80 MHz and maximum average output power around 1 W, for implementation in an experimental multiphoton microscopy set up dedicated for biomedical applications. Special focus will be on controlling pulse duration and dispersion in the optical components and biological tissue using pulse compression. Furthermore, time correlated analysis of the biological samples will be performed with the help of time correlated single photon counting module (SPCM, Becker&Hickl) which will give a novel dimension in quantitative biomedical imaging.

  9. Use of scatterometry for resist process control

    NASA Astrophysics Data System (ADS)

    Bishop, Kenneth P.; Milner, Lisa-Michelle; Naqvi, S. Sohail H.; McNeil, John R.; Draper, B. L.

    1992-06-01

    The formation of resist lines having submicron critical dimensions (CDs) is a complex multistep process, requiring precise control of each processing step. Optimization of parameters for each processing step may be accomplished through theoretical modeling techniques and/or the use of send-ahead wafers followed by scanning electron microscope measurements. Once the optimum parameters for any process having been selected, (e.g., time duration and temperature for post-exposure bake process), no in-situ CD measurements are made. In this paper we describe the use of scatterometry to provide this essential metrology capability. It involves focusing a laser beam on a periodic grating and predicting the shape of the grating lines from a measurement of the scattered power in the diffraction orders. The inverse prediction of lineshape from a measurement of the scatter power is based on a vector diffraction analysis used in conjunction with photolithography simulation tools to provide an accurate scatter model for latent image gratings. This diffraction technique has previously been applied to looking at latent image grating formation, as exposure is taking place. We have broadened the scope of the application and consider the problem of determination of optimal focus.

  10. Layered nano-gratings by electron beam writing to form 3-level diffractive optical elements for 3D phase-offset holographic lithography.

    PubMed

    Yuan, Liang Leon; Herman, Peter R

    2015-12-21

    A multi-level nanophotonic structure is a major goal in providing advanced optical functionalities as found in photonic crystals and metamaterials. A three-level nano-grating phase mask has been fabricated in an electron-beam resist (ma-N) to meet the requirement of holographic generation of a diamond-like 3D nanostructure in photoresist by a single exposure step. A 2D mask with 600 nm periodicity is presented for generating first order diffracted beams with a preferred π/2 phase shift on the X- and Y-axes and with sufficient 1(st) order diffraction efficiency of 3.5% at 800 nm wavelength for creating a 3D periodic nanostructure in SU-8 photoresist. The resulting 3D structure is anticipated to provide an 8% complete photonic band gap (PBG) upon silicon inversion. A thin SiO2 layer was used to isolate the grating layers and multiple spin-coating steps served to planarize the final resist layer. A reversible soft coating (aquaSAVE) was introduced to enable SEM inspection and verification of each insulating grating layer. This e-beam lithographic method is extensible to assembling multiple layers of a nanophotonic structure.

  11. Tunable ultranarrow spectrum selective absorption in a graphene monolayer at terahertz frequency

    NASA Astrophysics Data System (ADS)

    Wu, Jun

    2016-06-01

    Complete absorption in a graphene monolayer at terahertz frequency through the critical coupling effect is investigated. It is achieved by sandwiching the graphene monolayer between a dielectric grating and a Bragg grating. The designed graphene absorber exhibits near-unity absorption at resonance but with an ultranarrow spectrum and antenna-like response, which is attributed to the combined effects of guided mode resonance with dielectric grating and the photonic band gap with Bragg grating. In addition to numerical simulation, the electric field distributions are also illustrated to provide a physical understanding of the perfect absorption effect. Furthermore, the absorption performance can be tuned by only changing the Fermi level of graphene, which is beneficial for real application. It is believed that this study may be useful for designing next-generation graphene-based optoelectronic devices.

  12. Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate.

    PubMed

    Meyn, J P; Fejer, M M

    1997-08-15

    We describe electric-field poling of fine-pitch ferroelectric domain gratings in lithium tantalate and characterization of nonlinear-optical properties by single-pass quasi-phase-matched second-harmonic generation (QPM SHG). With a 7.5-microm-period grating, the observed effective nonlinear coefficient for first-order QPM SHG of 532-nm radiation is 9 pm/V, whereas for a grating with a 2.625-microm period, 2.6 pm/V was observed for second-order QPM SHG of 325-nm radiation. These values are 100% and 55% of the theoretically expected values, respectively. We derive a temperature-dependent Sellmeier equation for lithium tantalate that is valid deeper into the UV than currently available results, based on temperature-tuning experiments at different QPM grating periods combined with refractive-index data in the literature.

  13. Polynomial modal analysis of lamellar diffraction gratings in conical mounting.

    PubMed

    Randriamihaja, Manjakavola Honore; Granet, Gérard; Edee, Kofi; Raniriharinosy, Karyl

    2016-09-01

    An efficient numerical modal method for modeling a lamellar grating in conical mounting is presented. Within each region of the grating, the electromagnetic field is expanded onto Legendre polynomials, which allows us to enforce in an exact manner the boundary conditions that determine the eigensolutions. Our code is successfully validated by comparison with results obtained with the analytical modal method.

  14. 1×2 demultiplexer for a light waveguide communications system based on a holographic grating

    NASA Astrophysics Data System (ADS)

    Ren, Xuechang; Zhang, Xiangsu; Wang, Canhui; Liu, Shou

    2009-05-01

    2-channel multiplexer/demultiplexer (Muxer/Demuxer) is a key component for bidirectional data traffics applied for optical communication. Up to date various types of Muxer/Demuxer have been proposed and demonstrated. A grating coupler diffracts light into substrates or waveguides, along which light beam propagates by total internal reflection. In addition, one can exploit the dispersive and filtering characteristics of gratings, for dropping or separating one or several wavelengths from one another. When a laser beam containing two wavelengths is striking the surface of the grating with an incident angle within certain range, four diffracted beams will be generated. If two diffracted beams, corresponding to different wavelengths, meet the condition of total internal reflection, they will propagate inside the glass substrate (performs as a waveguide). While the third one cannot meet total reflection condition, and the last one should become the evanescent wave. Therefore it can separate two signals and couple signals to different waveguides. These functions are suited for WDM application and directional couplers. For convenience sake, the visible lights at 458nm and 633nm were used as the incident laser beams. To give a simple sample for 1×2 demultiplexing system, a holographic grating was recorded, with the period around 441nm which was chose discretionally within the certain range. The primary experimental results indicate that the two-wavelength signal can be separated and coupled into the respective waveguide as long as the grating is recorded and operated complying with the certain condition. The average insertion loss and crosstalk of the device were presented in this paper.

  15. Performance characteristics of advanced volume phase holographic gratings for operation in the near infrared

    NASA Astrophysics Data System (ADS)

    Arns, James A.

    2016-07-01

    Volume phase holographic (VPH) gratings are proven dispersing elements in astronomical spectrographs over the visible spectrum. VPH gratings have also been successfully deployed for use at cryogenic temperatures. Recent advances in production technology now permit the production of gratings for use in the near infrared up to 2450 nm at cryogenic conditions. This paper describes the requirements of VPH gratings for use in the H (wavelengths from 1500 nm to 1800 nm) and K (wavelengths from 1950 nm to 2450 nm) bands, gives the theoretical performances of diffraction efficiency for the production designs and presents the measured performances on the production gratings

  16. Optical system storage design with diffractive optical elements

    NASA Technical Reports Server (NTRS)

    Kostuk, Raymond K.; Haggans, Charles W.

    1993-01-01

    Optical data storage systems are gaining widespread acceptance due to their high areal density and the ability to remove the high capacity hard disk from the system. In magneto-optical read-write systems, a small rotation of the polarization state in the return signal from the MO media is the signal which must be sensed. A typical arrangement used for detecting these signals and correcting for errors in tracking and focusing on the disk is illustrated. The components required to achieve these functions are listed. The assembly and alignment of this complex system has a direct impact on cost, and also affects the size, weight, and corresponding data access rates. As a result, integrating these optical components and improving packaging techniques is an active area of research and development. Most designs of binary optic elements have been concerned with optimizing grating efficiency. However, rigorous coupled wave models for vector field diffraction from grating surfaces can be extended to determine the phase and polarization state of the diffracted field, and the design of polarization components. A typical grating geometry and the phase and polarization angles associated with the incident and diffracted fields are shown. In our current stage of work, we are examining system configurations which cascade several polarization functions on a single substrate. In this design, the beam returning from the MO disk illuminates a cascaded grating element which first couples light into the substrate, then introduces a quarter wave retardation, then a polarization rotation, and finally separates s- and p-polarized fields through a polarization beam splitter. The input coupler and polarization beam splitter are formed in volume gratings, and the two intermediate elements are zero-order elements.

  17. Quality of image of grating target placed in model of human eye with corneal aberrations as observed through multifocal intraocular lenses.

    PubMed

    Inoue, Makoto; Noda, Toru; Mihashi, Toshifumi; Ohnuma, Kazuhiko; Bissen-Miyajima, Hiroko; Hirakata, Akito

    2011-04-01

    To evaluate the quality of the image of a grating target placed in a model eye viewed through multifocal intraocular lenses (IOLs). Laboratory investigation. Refractive (NXG1 or PY60MV) or diffractive (ZM900 or SA60D3) multifocal IOLs were placed in a fluid-filled model eye with human corneal aberrations. A United States Air Force resolution target was placed on the posterior surface of the model eye. A flat contact lens or a wide-field contact lens was placed on the cornea. The contrasts of the gratings were evaluated under endoillumination and compared to those obtained through a monofocal IOL. The grating images were clear when viewed through the flat contact lens and through the central far-vision zone of the NXG1 and PY60MV, although those through the near-vision zone were blurred and doubled. The images observed through the central area of the ZM900 with flat contact lens were slightly defocused but the images in the periphery were very blurred. The contrast decreased significantly in low frequencies (P<.001). The images observed through the central diffractive zone of the SA60D3 were slightly blurred, although the images in the periphery were clearer than that of the ZM900. The images were less blurred in all of the refractive and diffractive IOLs with the wide-field contact lens. Refractive and diffractive multifocal IOLs blur the grating target but less with the wide-angle viewing system. The peripheral multifocal optical zone may be more influential on the quality of the images with contact lens system. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Compact diffraction grating laser wavemeter with sub-picometer accuracy and picowatt sensitivity using a webcam imaging sensor.

    PubMed

    White, James D; Scholten, Robert E

    2012-11-01

    We describe a compact laser wavelength measuring instrument based on a small diffraction grating and a consumer-grade webcam. With just 1 pW of optical power, the instrument achieves absolute accuracy of 0.7 pm, sufficient to resolve individual hyperfine transitions of the rubidium absorption spectrum. Unlike interferometric wavemeters, the instrument clearly reveals multimode laser operation, making it particularly suitable for use with external cavity diode lasers and atom cooling and trapping experiments.

  19. Investigations into phase effects from diffracted Gaussian beams for high-precision interferometry

    NASA Astrophysics Data System (ADS)

    Lodhia, Deepali

    Gravitational wave detectors are a new class of observatories aiming to detect gravitational waves from cosmic sources. All-reflective interferometer configurations have been proposed for future detectors, replacing transmissive optics with diffractive elements, thereby reducing thermal issues associated with power absorption. However, diffraction gratings introduce additional phase noise, creating more stringent conditions for alignment stability, and further investigations are required into all-reflective interferometers. A suitable mathematical framework using Gaussian modes is required for analysing the alignment stability using diffraction gratings. Such a framework was created, whereby small beam displacements are modelled using a modal technique. It was confirmed that the original modal-based model does not contain the phase changes associated with grating displacements. Experimental tests verified that the phase of a diffracted Gaussian beam is independent of the beam shape. Phase effects were further examined using a rigorous time-domain simulation tool. These findings show that the perceived phase difference is based on an intrinsic change of coordinate system within the modal-based model, and that the extra phase can be added manually to the modal expansion. This thesis provides a well-tested and detailed mathematical framework that can be used to develop simulation codes to model more complex layouts of all-reflective interferometers.

  20. Highly selective surface-wave resonators for terahertz frequency range formed by metallic Bragg gratings

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Malkin, A. M.; Sergeev, A. S.; Fil'chenkov, S. E.; Zaslavsky, V. Yu.

    2018-04-01

    In the frame of the quasi-optical approach we solve the diffraction problem and describe surface modes confined at a metallic plate with a shallow grating of finite length. We prove that such planar grating can form a highly selective surface-wave Bragg resonator. For a given material conductivity and grating length, we find the optimum corrugation depth that provides the maximum value of Q factor. These results are applicable for developing resonators for terahertz frequency bands.

  1. Imaging Spectrometer Designs Utilizing Immersed Gratings With Accessible Entrance Slit

    DOEpatents

    Chrisp, Michael P.; Lerner, Scott A.

    2006-03-21

    A compact imaging spectrometer comprises an entrance slit, a catadioptric lens with a mirrored surface, a grating, and a detector array. The entrance slit directs light to the mirrored surface of the catadioptric lens; the mirrored surface reflects the light back through the lens to the grating. The grating receives the light from the catadioptric lens and diffracts the light to the lens away from the mirrored surface. The lens transmits the light and focuses it onto the detector array.

  2. Diffraction experiments with infrared remote controls

    NASA Astrophysics Data System (ADS)

    Kuhn, Jochen; Vogt, Patrik

    2012-02-01

    In this paper we describe an experiment in which radiation emitted by an infrared remote control is passed through a diffraction grating. An image of the diffraction pattern is captured using a cell phone camera and then used to determine the wavelength of the radiation.

  3. Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode.

    PubMed

    Klinkhammer, Sönke; Liu, Xin; Huska, Klaus; Shen, Yuxin; Vanderheiden, Sylvia; Valouch, Sebastian; Vannahme, Christoph; Bräse, Stefan; Mappes, Timo; Lemmer, Uli

    2012-03-12

    The fabrication and characterization of continuously tunable, solution-processed distributed feedback (DFB) lasers in the visible regime is reported. Continuous thin film thickness gradients were achieved by means of horizontal dipping of several conjugated polymer and blended small molecule solutions on cm-scale surface gratings of different periods. We report optically pumped continuously tunable laser emission of 13 nm in the blue, 16 nm in the green and 19 nm in the red spectral region on a single chip respectively. Tuning behavior can be described with the Bragg-equation and the measured thickness profile. The laser threshold is low enough that inexpensive laser diodes can be used as pump sources.

  4. Thin film solar cell design based on photonic crystal and diffractive grating structures.

    PubMed

    Mutitu, James G; Shi, Shouyuan; Chen, Caihua; Creazzo, Timothy; Barnett, Allen; Honsberg, Christiana; Prather, Dennis W

    2008-09-15

    In this paper we present novel light trapping designs applied to multiple junction thin film solar cells. The new designs incorporate one dimensional photonic crystals as band pass filters that reflect short light wavelengths (400 - 867 nm) and transmit longer wavelengths(867 -1800 nm) at the interface between two adjacent cells. In addition, nano structured diffractive gratings that cut into the photonic crystal layers are incorporated to redirect incoming waves and hence increase the optical path length of light within the solar cells. Two designs based on the nano structured gratings that have been realized using the scattering matrix and particle swarm optimization methods are presented. We also show preliminary fabrication results of the proposed devices.

  5. Design of a 50/50 splitting ratio non-polarizing beam splitter based on the modal method with fused-silica transmission gratings

    NASA Astrophysics Data System (ADS)

    Zhao, Huajun; Yuan, Dairong; Ming, Hai

    2011-04-01

    The optical design of a beam splitter that has a 50/50 splitting ratio regardless of the polarization is presented. The non-polarizing beam splitter (NPBS) is based on the fused-silica rectangular transmission gratings with high intensity tolerance. The modal method has been used to estimate the effective index of the modes excited in the grating region for TE and TM polarizations. If a phase difference equals an odd multiples of π/2 for the first two modes (i.e. modes 0 and 1), the incident light will be diffracted into the 0 and -1 orders with about 50% and 50% diffraction efficiency for TM and TE polarizations, respectively.

  6. Temporal focusing-based multiphoton excitation microscopy via digital micromirror device.

    PubMed

    Yih, Jenq-Nan; Hu, Yvonne Yuling; Sie, Yong Da; Cheng, Li-Chung; Lien, Chi-Hsiang; Chen, Shean-Jen

    2014-06-01

    This Letter presents an enhanced temporal focusing-based multiphoton excitation (MPE) microscope in which the conventional diffraction grating is replaced by a digital micromirror device (DMD). Experimental results from imaging a thin fluorescence film show that the 4.0 μm axial resolution of the microscope is comparable with that of a setup incorporating a 600  lines/mm grating; hence, the optical sectioning ability of the proposed setup is demonstrated. Similar to a grating, the DMD diffracts illuminating light frequencies for temporal focusing; additionally, it generates arbitrary patterns. Since the DMD is placed on the image-conjugate plane of the objective lens' focal plane, the MPE pattern can be projected on the focal plane precisely.

  7. Two-Dimensional Light Diffraction from an EPROM Chip

    ERIC Educational Resources Information Center

    Ekkens, Tom

    2018-01-01

    In introductory physics classes, a laser pointer and a compact disc are all the items required to illustrate diffraction of light in a single dimension. If a two-dimensional diffraction pattern is desired, double axis diffraction grating material is available or a CCD sensor can be extracted from an unused electronics device. This article presents…

  8. Autostereoscopic three-dimensional display by combining a single spatial light modulator and a zero-order nulled grating

    NASA Astrophysics Data System (ADS)

    Su, Yanfeng; Cai, Zhijian; Liu, Quan; Lu, Yifan; Guo, Peiliang; Shi, Lingyan; Wu, Jianhong

    2018-04-01

    In this paper, an autostereoscopic three-dimensional (3D) display system based on synthetic hologram reconstruction is proposed and implemented. The system uses a single phase-only spatial light modulator to load the synthetic hologram of the left and right stereo images, and the parallax angle between two reconstructed stereo images is enlarged by a grating to meet the split angle requirement of normal stereoscopic vision. To realize the crosstalk-free autostereoscopic 3D display with high light utilization efficiency, the groove parameters of the grating are specifically designed by the rigorous coupled-wave theory for suppressing the zero-order diffraction, and then the zero-order nulled grating is fabricated by the holographic lithography and the ion beam etching. Furthermore, the diffraction efficiency of the fabricated grating is measured under the illumination of a laser beam with a wavelength of 532 nm. Finally, the experimental verification system for the proposed autostereoscopic 3D display is presented. The experimental results prove that the proposed system is able to generate stereoscopic 3D images with good performances.

  9. Angle-resolved diffraction grating biosensor based on porous silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Changwu; Li, Peng; Jia, Zhenhong, E-mail: jzhh@xju.edu.cn

    2016-03-07

    In this study, an optical biosensor based on a porous silicon composite structure was fabricated using a simple method. This structure consists of a thin, porous silicon surface diffraction grating and a one-dimensional porous silicon photonic crystal. An angle-resolved diffraction efficiency spectrum was obtained by measuring the diffraction efficiency at a range of incident angles. The angle-resolved diffraction efficiency of the 2nd and 3rd orders was studied experimentally and theoretically. The device was sensitive to the change of refractive index in the presence of a biomolecule indicated by the shift of the diffraction efficiency spectrum. The sensitivity of this sensormore » was investigated through use of an 8 base pair antifreeze protein DNA hybridization. The shifts of the angle-resolved diffraction efficiency spectrum showed a relationship with the change of the refractive index, and the detection limit of the biosensor reached 41.7 nM. This optical device is highly sensitive, inexpensive, and simple to fabricate. Using shifts in diffraction efficiency spectrum to detect biological molecules has not yet been explored, so this study establishes a foundation for future work.« less

  10. Optical diffraction properties of multimicrogratings

    DOE PAGES

    Rothenbach, Christian A.; Kravchenko, Ivan I.; Gupta, Mool C.

    2015-02-27

    This paper shows the results of optical diffraction properties of multimicrograting structures fabricated by e-beam lithography. Multimicrograting consist of arrays of hexagonally shaped cells containing periodic one-dimensional (1D) grating lines in different orientations and arrayed to form large area patterns. We analyzed the optical diffraction properties of multimicrogratings by studying the individual effects of the several periodic elements of multimicrogratings. The observed optical diffraction pattern is shown to be the combined effect of the periodic and non-periodic elements that define the multimicrogratings and the interaction between different elements. We measured the total transverse electric (TE) diffraction efficiency of multimicrogratings andmore » found it to be 32.1%, which is closely related to the diffraction efficiency of 1D periodic grating lines of the same characteristics, measured to be 33.7%. Beam profiles of the optical diffraction patterns from multimicrogratings are captured with a CCD sensor technique. Interference fringes were observed under certain conditions formed by multimicrograting beams interfering with each other. Finally, these diffraction structures may find applications in sensing, nanometrology, and optical interconnects.« less

  11. An update on X-ray reflection gratings developed for future missions

    NASA Astrophysics Data System (ADS)

    Miles, Drew

    2018-01-01

    X-ray reflection gratings are a key technology being studied for future X-ray spectroscopy missions, including the Lynx X-ray mission under consideration for the 2020 Decadal Survey. We present an update on the status of X-ray reflection gratings being developed at Penn State University, including current fabrication techniques and mass-replication processes and the latest diffraction efficiency results and resolving power measurements. Individual off-plane X-ray reflection gratings have exceeded the current Lynx requirements for both effective area and resolving power. Finally, we discuss internal projects that will advance the technology readiness level of these gratings.

  12. Vector Beam Polarization State Spectrum Analyzer.

    PubMed

    Moreno, Ignacio; Davis, Jeffrey A; Badham, Katherine; Sánchez-López, María M; Holland, Joseph E; Cottrell, Don M

    2017-05-22

    We present a proof of concept for a vector beam polarization state spectrum analyzer based on the combination of a polarization diffraction grating (PDG) and an encoded harmonic q-plate grating (QPG). As a result, a two-dimensional polarization diffraction grating is formed that generates six different q-plate channels with topological charges from -3 to +3 in the horizontal direction, and each is split in the vertical direction into the six polarization channels at the cardinal points of the corresponding higher-order Poincaré sphere. Consequently, 36 different channels are generated in parallel. This special polarization diffractive element is experimentally demonstrated using a single phase-only spatial light modulator in a reflective optical architecture. Finally, we show that this system can be used as a vector beam polarization state spectrum analyzer, where both the topological charge and the state of polarization of an input vector beam can be simultaneously determined in a single experiment. We expect that these results would be useful for applications in optical communications.

  13. A fiber-compatible spectrally encoded imaging system using a 45° tilted fiber grating

    NASA Astrophysics Data System (ADS)

    Wang, Guoqing; Wang, Chao; Yan, Zhijun; Zhang, Lin

    2016-04-01

    We propose and demonstrate, for the first time to our best knowledge, the use of a 45° tilted fiber grating (TFG) as an infiber lateral diffraction element in an efficient and fiber-compatible spectrally encoded imaging (SEI) system. Under proper polarization control, the TFG has significantly enhanced diffraction efficiency (93.5%) due to strong tilted reflection. Our conceptually new fiber-topics-based design eliminates the need for bulky and lossy free-space diffraction gratings, significantly reduces the volume and cost of the imaging system, improves energy efficiency, and increases system stability. As a proof-of-principle experiment, we use the proposed system to perform an one dimensional (1D) line scan imaging of a customer-designed three-slot sample and the results show that the constructed image matches well with the actual sample. The angular dispersion of the 45° TFG is measured to be 0.054°/nm and the lateral resolution of the SEI system is measured to be 28 μm in our experiment.

  14. Direct detector for terahertz radiation

    DOEpatents

    Wanke, Michael C [Albuquerque, NM; Lee, Mark [Albuquerque, NM; Shaner, Eric A [Albuquerque, NM; Allen, S James [Santa Barbara, CA

    2008-09-02

    A direct detector for terahertz radiation comprises a grating-gated field-effect transistor with one or more quantum wells that provide a two-dimensional electron gas in the channel region. The grating gate can be a split-grating gate having at least one finger that can be individually biased. Biasing an individual finger of the split-grating gate to near pinch-off greatly increases the detector's resonant response magnitude over prior QW FET detectors while maintaining frequency selectivity. The split-grating-gated QW FET shows a tunable resonant plasmon response to FIR radiation that makes possible an electrically sweepable spectrometer-on-a-chip with no moving mechanical optical parts. Further, the narrow spectral response and signal-to-noise are adequate for use of the split-grating-gated QW FET in a passive, multispectral terahertz imaging system. The detector can be operated in a photoconductive or a photovoltaic mode. Other embodiments include uniform front and back gates to independently vary the carrier densities in the channel region, a thinned substrate to increase bolometric responsivity, and a resistive shunt to connect the fingers of the grating gate in parallel and provide a uniform gate-channel voltage along the length of the channel to increase the responsivity and improve the spectral resolution.

  15. Polarization-independent fiber filter with an all-polarization-maintaining fiber loop for tunable fiber lasers

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Wu, Weiran; Rao, Qi; Zhou, Kejiang

    2018-05-01

    Tunable fiber lasers are a promising light source in all-optical wavelength conversion, fiber grating sensing and optical add-drop multiplexing. In order to achieve a tunable wavelength in the output, optical filters are indispensable for the construction of tunable fiber lasers. Recently, much attention has been given to developing high-performance filters. This paper proposes an environment-insensitive filter based on a Sagnac interferometer which was designed by an all-polarization-maintaining fiber with linear birefringence. According to the Sagnac interferometer, we derived the transfer function of an environment-insensitive filter. Based on this principle, it is shown that the device is able to implement a precision filtering function that can be used in a fiber laser’s optical resonant cavity. The experiment results demonstrated the effectiveness of this structure.

  16. Surface relief and refractive index gratings patterned in chalcogenide glasses and studied by off-axis digital holography.

    PubMed

    Cazac, V; Meshalkin, A; Achimova, E; Abashkin, V; Katkovnik, V; Shevkunov, I; Claus, D; Pedrini, G

    2018-01-20

    Surface relief gratings and refractive index gratings are formed by direct holographic recording in amorphous chalcogenide nanomultilayer structures As 2 S 3 -Se and thin films As 2 S 3 . The evolution of the grating parameters, such as the modulation of refractive index and relief depth in dependence of the holographic exposure, is investigated. Off-axis digital holographic microscopy is applied for the measurement of the photoinduced phase gratings. For the high-accuracy reconstruction of the wavefront (amplitude and phase) transmitted by the fabricated gratings, we used a computational technique based on the sparse modeling of phase and amplitude. Both topography and refractive index maps of recorded gratings are revealed. Their separated contribution in diffraction efficiency is estimated.

  17. Ultrafast transient grating radiation to optical image converter

    DOEpatents

    Stewart, Richard E; Vernon, Stephen P; Steel, Paul T; Lowry, Mark E

    2014-11-04

    A high sensitivity transient grating ultrafast radiation to optical image converter is based on a fixed transmission grating adjacent to a semiconductor substrate. X-rays or optical radiation passing through the fixed transmission grating is thereby modulated and produces a small periodic variation of refractive index or transient grating in the semiconductor through carrier induced refractive index shifts. An optical or infrared probe beam tuned just below the semiconductor band gap is reflected off a high reflectivity mirror on the semiconductor so that it double passes therethrough and interacts with the radiation induced phase grating therein. A small portion of the optical beam is diffracted out of the probe beam by the radiation induced transient grating to become the converted signal that is imaged onto a detector.

  18. Integrated optic head for sensing a two-dimensional displacement of a grating scale

    NASA Astrophysics Data System (ADS)

    Ura, Shogo; Endoh, Toshiaki; Suhara, Toshiaki; Nishihara, Hiroshi

    1996-11-01

    An integrated optic sensor head was proposed for sensing a two-dimensional displacement of a scale consisting of crossed gratings. Two interferometers, crossing each other, are constructed by the integration of two pairs of linearly focusing grating couplers (LFGC's) and two pairs of photodiodes (PD's) on a Si substrate. Four beams radiated by the LFGC's from the sensor head overlap on the grating scale, and the beams are diffracted by the grating scale and interfere on the PD's. The period of the interference signal variation is just half of the scale grating period. The device was designed and fabricated with a grating scale of 3.2- mu m period, and the sensing principle was experimentally confirmed.

  19. X-ray verification of an optically aligned off-plane grating module

    NASA Astrophysics Data System (ADS)

    Donovan, Benjamin D.; McEntaffer, Randall L.; Tutt, James H.; DeRoo, Casey T.; Allured, Ryan; Gaskin, Jessica A.; Kolodziejczak, Jeffery J.

    2018-01-01

    Off-plane x-ray reflection gratings are theoretically capable of achieving high resolution and high diffraction efficiencies over the soft x-ray bandpass, making them an ideal technology to implement on upcoming x-ray spectroscopy missions. To achieve high effective area, these gratings must be aligned into grating modules. X-ray testing was performed on an aligned grating module to assess the current optical alignment methods. Results indicate that the grating module achieved the desired alignment for an upcoming x-ray spectroscopy suborbital rocket payload with modest effective area and resolving power. These tests have also outlined a pathway towards achieving the stricter alignment tolerances of future x-ray spectrometer payloads, which require improvements in alignment metrology, grating fabrication, and testing techniques.

  20. The elliptical Gaussian wave transformation due to diffraction by an elliptical hologram

    NASA Astrophysics Data System (ADS)

    Janicijevic, L.

    1985-03-01

    Realized as an interferogram of a spherical and a cylindrical wave, the elliptical hologram is treated as a plane diffracting grating which produces Fresnel diffraction of a simple astigmatic Gaussian incident wave. It is shown that if the principal axes of the incident beam coincide with the principal axes of the hologram, the diffracted wave field is composed of three different astigmatic Gaussian waves, with their waists situated in parallel but distinct planes. The diffraction pattern, observed on a transverse screen, is the result of the interference of the three diffracted wave components. It consists of three systems of overlapped second-order curves, whose shape depends on the distance of the observation screen from the hologram, as well as on the parameters of the incident wave beam and the hologram. The results are specialized for gratings in the form of circular and linear holograms and for the case of a stigmatic Gaussian incident wave, as well as for the normal plane-wave incidence on the three mentioned types of hologram.

  1. Miniaturized diffraction based interferometric distance measurement sensor

    NASA Astrophysics Data System (ADS)

    Kim, Byungki

    In this thesis, new metrology hardware is designed, fabricated, and tested to provide improvements over current MEMS metrology. The metrology system is a micromachined scanning interferometer (muSI) having a sub-nm resolution in a compact design. The proposed microinterferometer forms a phase sensitive diffraction grating with interferomeric sensitivity, while adding the capability of better lateral resolution by focusing the laser to a smaller spot size. A detailed diffraction model of the microinterferometer was developed to simulate the device performance and to suggest the location of photo detectors for integrated optoelectronics. A particular device is fabricated on a fused silica substrate using aluminum to form the deformable diffraction grating fingers and AZ P4620 photo resist (PR) for the microlens. The details of the fabrication processes are presented. The structure also enables optoelectronics to be integrated so that the interferometer with photo detectors can fit in an area that is 1 mm x 1 mm. The scanning results using a fixed grating muSI demonstrated that it could measure vibration profile as well as static vertical (less than a half wave length) and lateral dimension of MEMS. The muSI, which is integrated with photo diodes, demonstrated its operation by scanning a cMUT. The PID control has been tested and resulted in improvement in scanned images. The integrated muSI demonstrated that the deformable grating could be used to tune the measurement keep the interferometer in quadrature for highest sensitivity.

  2. Improvement of contact grating device for efficient terahertz wave generation using bi-angular filter

    NASA Astrophysics Data System (ADS)

    Nagashima, Keisuke; Tsubouchi, Masaaki; Ochi, Yoshihiro; Maruyama, Momoko

    2018-03-01

    We have proposed an improved contact grating device for generating terahertz waves efficiently and have succeeded in developing the device with a very high diffraction efficiency and a wide spectral width. This device has a bi-angular filter and a Fabry-Perot-type structure, which are composed of dielectric multilayers. The bi-angular filter is designed to reflect the 0th-order wave and transmit the-1st-order diffraction wave. Numerical calculations indicate that the new device has a maximum diffraction efficiency over 99% and a spectral width of approximately 20 nm. We measured a high efficiency of 90% over a broad spectral range using a fabricated device.

  3. High-Average-Power Diffraction Pulse-Compression Gratings Enabling Next-Generation Ultrafast Laser Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alessi, D.

    Pulse compressors for ultrafast lasers have been identified as a technology gap in the push towards high peak power systems with high average powers for industrial and scientific applications. Gratings for ultrashort (sub-150fs) pulse compressors are metallic and can absorb a significant percentage of laser energy resulting in up to 40% loss as well as thermal issues which degrade on-target performance. We have developed a next generation gold grating technology which we have scaled to the petawatt-size. This resulted in improvements in efficiency, uniformity and processing as compared to previous substrate etched gratings for high average power. This new designmore » has a deposited dielectric material for the grating ridge rather than etching directly into the glass substrate. It has been observed that average powers as low as 1W in a compressor can cause distortions in the on-target beam. We have developed and tested a method of actively cooling diffraction gratings which, in the case of gold gratings, can support a petawatt peak power laser with up to 600W average power. We demonstrated thermo-mechanical modeling of a grating in its use environment and benchmarked with experimental measurement. Multilayer dielectric (MLD) gratings are not yet used for these high peak power, ultrashort pulse durations due to their design challenges. We have designed and fabricated broad bandwidth, low dispersion MLD gratings suitable for delivering 30 fs pulses at high average power. This new grating design requires the use of a novel Out Of Plane (OOP) compressor, which we have modeled, designed, built and tested. This prototype compressor yielded a transmission of 90% for a pulse with 45 nm bandwidth, and free of spatial and angular chirp. In order to evaluate gratings and compressors built in this project we have commissioned a joule-class ultrafast Ti:Sapphire laser system. Combining the grating cooling and MLD technologies developed here could enable petawatt laser systems to operate at 50kW average power.« less

  4. Optical apparatus for forming correlation spectrometers and optical processors

    DOEpatents

    Butler, Michael A.; Ricco, Antonio J.; Sinclair, Michael B.; Senturia, Stephen D.

    1999-01-01

    Optical apparatus for forming correlation spectrometers and optical processors. The optical apparatus comprises one or more diffractive optical elements formed on a substrate for receiving light from a source and processing the incident light. The optical apparatus includes an addressing element for alternately addressing each diffractive optical element thereof to produce for one unit of time a first correlation with the incident light, and to produce for a different unit of time a second correlation with the incident light that is different from the first correlation. In preferred embodiments of the invention, the optical apparatus is in the form of a correlation spectrometer; and in other embodiments, the apparatus is in the form of an optical processor. In some embodiments, the optical apparatus comprises a plurality of diffractive optical elements on a common substrate for forming first and second gratings that alternately intercept the incident light for different units of time. In other embodiments, the optical apparatus includes an electrically-programmable diffraction grating that may be alternately switched between a plurality of grating states thereof for processing the incident light. The optical apparatus may be formed, at least in part, by a micromachining process.

  5. Optical apparatus for forming correlation spectrometers and optical processors

    DOEpatents

    Butler, M.A.; Ricco, A.J.; Sinclair, M.B.; Senturia, S.D.

    1999-05-18

    Optical apparatus is disclosed for forming correlation spectrometers and optical processors. The optical apparatus comprises one or more diffractive optical elements formed on a substrate for receiving light from a source and processing the incident light. The optical apparatus includes an addressing element for alternately addressing each diffractive optical element thereof to produce for one unit of time a first correlation with the incident light, and to produce for a different unit of time a second correlation with the incident light that is different from the first correlation. In preferred embodiments of the invention, the optical apparatus is in the form of a correlation spectrometer; and in other embodiments, the apparatus is in the form of an optical processor. In some embodiments, the optical apparatus comprises a plurality of diffractive optical elements on a common substrate for forming first and second gratings that alternately intercept the incident light for different units of time. In other embodiments, the optical apparatus includes an electrically-programmable diffraction grating that may be alternately switched between a plurality of grating states thereof for processing the incident light. The optical apparatus may be formed, at least in part, by a micromachining process. 24 figs.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirzaei, B.; Silva, J. R. G.; Hayton, D.

    We present an 8-beam local oscillator (LO) for the astronomically significant [OI] line at 4.7 THz. The beams are generated using a quantum cascade laser (QCL) in combination with a Fourier phase grating. The grating is fully characterized using a third order distributed feedback (DFB) QCL with a single mode emission at 4.7 THz as the input. The measured diffraction efficiency of 74.3% is in an excellent agreement with the calculated result of 75.4% using a 3D simulation. We show that the power distribution among the diffracted beams is uniform enough for pumping an array receiver. To validate the gratingmore » bandwidth, we apply a far-infrared (FIR) gas laser emission at 5.3 THz as the input and find a very similar performance in terms of efficiency, power distribution, and spatial configuration of the diffracted beams. Both results represent the highest operating frequencies of THz phase gratings reported in the literature. By injecting one of the eight diffracted 4.7 THz beams into a superconducting hot electron bolometer (HEB) mixer, we find that the coupled power, taking the optical loss into account, is in consistency with the QCL power value.« less

  7. Directional enhancement of selected high-order-harmonics from intense laser irradiated blazed grating targets.

    PubMed

    Zhang, Guobo; Chen, Min; Liu, Feng; Yuan, Xiaohui; Weng, Suming; Zheng, Jun; Ma, Yanyun; Shao, Fuqiu; Sheng, Zhengming; Zhang, Jie

    2017-10-02

    Relativistically intense laser solid target interaction has been proved to be a promising way to generate high-order harmonics, which can be used to diagnose ultrafast phenomena. However, their emission direction and spectra still lack tunability. Based upon two-dimensional particle-in-cell simulations, we show that directional enhancement of selected high-order-harmonics can be realized using blazed grating targets. Such targets can select harmonics with frequencies being integer times of the grating frequency. Meanwhile, the radiation intensity and emission area of the harmonics are increased. The emission direction is controlled by tailoring the local blazed structure. Theoretical and electron dynamics analysis for harmonics generation, selection and directional enhancement from the interaction between multi-cycle laser and grating target are carried out. These studies will benefit the generation and application of laser plasma-based high order harmonics.

  8. Plasmon resonance enhanced mid-infrared generation by graphene on gold gratings through difference frequency mixing

    NASA Astrophysics Data System (ADS)

    Cao, Jianjun; Kong, Yan; Gao, Shumei; liu, Cheng

    2018-01-01

    Graphene has been demonstrated to have extraordinary large second order nonlinear susceptibility that can be applied in generating mid-infrared (MIR) and terahertz waves through the difference frequency process. In this study, we exploit the highly localized electric fields caused by plasmon resonances to increase the nonlinear response from graphene. The proposed structure contains a graphene sheet on a gold grating substrate that sustains both surface plasmons at the near-infrared on the gold surface and plasmons at the MIR on the graphene surface. Based on finite difference time domain (FDTD) numerical simulations, more than 3 orders of magnitude improvement of the MIR generation efficiency is obtained by placing graphene sheets on a gold grating substrate under resonance conditions instead of placing them on a flat substrate. With the same gold grating substrate, MIR waves tunable from 30 to 55 THz are generated by tuning the gate voltage of the graphene sheet.

  9. The potential of diffraction grating for spatial applications

    NASA Astrophysics Data System (ADS)

    Jourlin, Y.; Parriaux, O.; Pigeon, F.; Tischenko, A. V.

    2017-11-01

    Diffraction gratings are know, and have been fabricated for more than one century. They are now making a come back for two reasons: first, because they are now better understood which leads to the efficient exploitation of what was then called their "anomalies"; secondly, because they are now fabricable by means of the modern manufacturing potential of planar technologies. Novel grating can now perform better than conventional gratings, and address new application fields which were not expected to be theirs. This is the case of spatial applications where they can offer multiple optical functions, low size, low weight and mechanical robustness. The proposed contribution will briefly discuss the use of gratings for spatial applications. One of the most important applications is in the measurement of displacement. Usual translation and rotation sensors are bulky devices, which impose a system breakdown leading to cumbersome and heavy assemblies. We are proposing a miniaturized version of the traditional moving grating technique using submicron gratings and a specific OptoASIC which enables the measurement function to be non-obtrusively inserted into light and compact electro-mechanical systems. Nanometer resolution is possible with no compromise on the length of the measurement range. Another family of spatial application is in the field of spectrometers where new grating types allow a more flexible processing of the optical spectrum. Another family of applications addresses the question of inter-satellite communications: the introduction of gratings in laser cavities or in the laser mirrors enables the stabilization of the emitted polarization, the stabilization of the frequency as well as wide range frequency sweeping without mobile parts.

  10. On-chip broadband spectral filtering using planar double high-contrast grating reflectors

    NASA Astrophysics Data System (ADS)

    Horie, Yu; Arbabi, Amir; Faraon, Andrei

    2015-02-01

    We propose a broadband free-space on-chip spectrometer based on an array of integrated narrowband filters consisting of Fabry-Perot resonators formed by two high-contrast grating (HCG) based reflectors separated by a low-index thin layer with a fixed cavity thickness. Using numerical simulations, broadband tunability of resonance wavelengths was achieved only by changing the in-plane grating parameters such as period or duty cycle of HCGs while the substrate geometry was kept fixed. Experimentally, the HCG reflectors were fabricated on silicon on insulator (SOI) substrates and high reflectivity was measured, fabrication process for the proposed double HCG-based narrowband filter array was developed. The filtering function that can be spanned over a wide range of wavelengths was measured.

  11. Analysis of higher order harmonics with holographic reflection gratings

    NASA Astrophysics Data System (ADS)

    Mas-Abellan, P.; Madrigal, R.; Fimia, A.

    2017-05-01

    Silver halide emulsions have been considered one of the most energetic sensitive materials for holographic applications. Nonlinear recording effects on holographic reflection gratings recorded on silver halide emulsions have been studied by different authors obtaining excellent experimental results. In this communication specifically we focused our investigation on the effects of refractive index modulation, trying to get high levels of overmodulation that will produce high order harmonics. We studied the influence of the overmodulation and its effects on the transmission spectra for a wide exposure range by use of 9 μm thickness films of ultrafine grain emulsion BB640, exposed to single collimated beams using a red He-Ne laser (wavelength 632.8 nm) with Denisyuk configuration obtaining a spatial frequency of 4990 l/mm recorded on the emulsion. The experimental results show that high overmodulation levels of refractive index produce second order harmonics with high diffraction efficiency (higher than 75%) and a narrow grating bandwidth (12.5 nm). Results also show that overmodulation produce diffraction spectra deformation of the second order harmonic, transforming the spectrum from sinusoidal to approximation of square shape due to very high overmodulation. Increasing the levels of overmodulation of refractive index, we have obtained higher order harmonics, obtaining third order harmonic with diffraction efficiency (up to 23%) and narrowing grating bandwidth (5 nm). This study is the first step to develop a new easy technique to obtain narrow spectral filters based on the use of high index modulation reflection gratings.

  12. A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Shi, Nuannuan; Hao, Tengfei; Li, Wei; Zhu, Ninghua; Li, Ming

    2018-01-01

    We propose a photonic scheme to realize a reconfigurable microwave photonic filter (MPF) with flexible tunability using a multi-wavelength laser (MWL) and a multi-channel phase-shifted fiber Bragg grating (PS-FBG). The proposed MPF is capable of performing reconfigurability including single bandpass filter, two independently bandpass filter and a flat-top bandpass filter. The performance such as the central frequency and the bandwidth of passband is tuned by controlling the wavelengths of the MWL. In the MPF, The light waves from a MWL are sent to a phase modulator (PM) to generate the phase-modulated optical signals. By applying a multi-channel PS-FBG, which has a series of narrow notches in the reflection spectrum with the free spectral range (FSR) of 0.8 nm, the +1st sidebands are removed in the notches and the phased-modulated signals are converted to the intensity-modulated signals without beating signals generation between each two optical carriers. The proposed MPF is also experimentally verified. The 3-dB bandwidth of the MPF is broadened from 35 MHz to 135 MHz and the magnitude deviation of the top from the MPF is less than 0.2 dB within the frequency tunable range from 1 GHz to 5 GHz.

  13. Fiber Bragg grating interrogation using a wavelength modulated 1651-nm tunable distributed feedback laser and a fiber ring resonator for wearable biomedical sensors

    NASA Astrophysics Data System (ADS)

    Roy, Anirban; Chakraborty, Arup Lal; Jha, Chandan Kumar

    2017-04-01

    This paper demonstrates the interrogation of a fiber Bragg grating with a flat-topped reflection spectrum centred on 1649.55 nm using only a single mode tunable 1651.93 nm semiconductor laser and a fiber ring resonator. The Bragg shift is accurately measured with the fiber-optic ring resonator that has a free spectral range (FSR) of 0.1008 GHz and a broadband photo-detector. Laser wavelength modulation and harmonic detection are used to transform the gentle edges of the flat-topped FBG spectrum into prominent leading and trailing peaks, either of which can be used to accurately measure spectral shifts of the FBG reflection spectrum with a resolution of 0.9 pm. A Raspberry Pi-based low-cost embedded processor is used to measure the temperature-induced spectral shifts over the range 30˚C - 80˚C. The shift was linear with a temperature sensitivity of 12.8 pm/˚C. This technique does not use an optical spectrum analyzer at any stage of its design or operation. The laser does not need to be pre-characterized either. This technique can be readily extended to all types of tunable diode lasers and is ideally suited for compact field instruments.

  14. Long-distance fiber Bragg grating sensor system with a high optical signal-to-noise ratio based on a tunable fiber ring laser configuration.

    PubMed

    Rao, Yun-Jiang; Ran, Zeng-Ling; Chen, Rong-Rui

    2006-09-15

    A novel tunable fiber ring laser configuration with a combination of bidirectional Raman amplification and dual erbium-doped fiber (EDF) amplification is proposed for realizing high optical signal-to-noise ratio (SNR), long-distance, quasi-distributed fiber Bragg grating (FBG) sensing systems with large capacities and low cost. The hybrid Raman-EDF amplification configuration arranged in the ring laser can enhance the optical SNR of FBG sensor signals significantly owing to the good combination of the high gain of the erbium-doped fiber amplifier (EDFA) and the low noise of the Raman amplification. Such a sensing system can support a large number of FBG sensors because of the use of a tunable fiber Fabry-Perot filter located within the ring laser and spatial division multiplexing for expansion of sensor channels. Experimental results show that an excellent optical SNR of approximately 60 dB has been achieved for a 50 km transmission distance with a low Raman pump power of approximately 170 mW at a wavelength of 1455 nm and a low EDFA pump power of approximately 40 mW at a wavelength of 980 nm, which is the highest optical SNR achieved so far for a 50 km long FBG sensor system, to our knowledge.

  15. Diffraction grating strain gauge method: error analysis and its application for the residual stress measurement in thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Yin, Yuanjie; Fan, Bozhao; He, Wei; Dai, Xianglu; Guo, Baoqiao; Xie, Huimin

    2018-03-01

    Diffraction grating strain gauge (DGSG) is an optical strain measurement method. Based on this method, a six-spot diffraction grating strain gauge (S-DGSG) system has been developed with the advantages of high and adjustable sensitivity, compact structure, and non-contact measurement. In this study, this system is applied for the residual stress measurement in thermal barrier coatings (TBCs) combining the hole-drilling method. During the experiment, the specimen’s location is supposed to be reset accurately before and after the hole-drilling, however, it is found that the rigid body displacements from the resetting process could seriously influence the measurement accuracy. In order to understand and eliminate the effects from the rigid body displacements, such as the three-dimensional (3D) rotations and the out-of-plane displacement of the grating, the measurement error of this system is systematically analyzed, and an optimized method is proposed. Moreover, a numerical experiment and a verified tensile test are conducted, and the results verify the applicability of this optimized method successfully. Finally, combining this optimized method, a residual stress measurement experiment is conducted, and the results show that this method can be applied to measure the residual stress in TBCs.

  16. Low-Coherence light source design for ESPI in-plane displacement measurements

    NASA Astrophysics Data System (ADS)

    Heikkinen, J. J.; Schajer, G. S.

    2018-01-01

    The ESPI method for surface deformation measurements requires the use of a light source with high coherence length to accommodate the optical path length differences present in the apparatus. Such high-coherence lasers, however, are typically large, delicate and costly. Laser diodes, on the other hand, are compact, mechanically robust and inexpensive, but unfortunately they have short coherence length. The present work aims to enable the use of a laser diode as an illumination source by equalizing the path lengths within an ESPI interferometer. This is done by using a reflection type diffraction grating to compensate for the path length differences. The high optical power efficiency of such diffraction gratings allows the use of much lower optical power than in previous interferometer designs using transmission gratings. The proposed concept was experimentally investigated by doing in-plane ESPI measurements using a high-coherence single longitudinal mode (SLM) laser, a laser diode and then a laser diode with path length optimization. The results demonstrated the limitations of using an uncompensated laser diode. They then showed the effectiveness of adding a reflection type diffraction grating to equalize the interferometer path lengths. This addition enabled the laser diode to produce high measurement quality across the entire field of view, rivaling although not quite equaling the performance of a high-coherence SLM laser source.

  17. Electromagnetic response of the protective pellicle of Euglenoids: influence of the surface profile

    NASA Astrophysics Data System (ADS)

    Inchaussandague, Marina E.; Gigli, Miriam L.; Skigin, Diana C.; Tolivia, Analía.; Conforti, Visitación

    2015-03-01

    In a recent paper we have investigated, from an electromagnetic point of view, the role played by the pellicle of Euglenoids -unicellular aquatic organisms- in the protection of the cell against UV radiation.14 By modelling the pellicle as a diffraction grating, we computed the electromagnetic response of different species that exhibit different behaviors against UV radiation. In this previous study, the pellicle profile was approximated by a sinusoidal grating. However, it has been observed in the transversal cut images that the profiles are not exactly sinusoidal, and also vary from sample to sample. Since the electromagnetic response depends on the geometry of the grating, reflectance calculations that take into account a more accurate representation of the actual profile could provide more insight into this problem. In this paper we investigate the electromagnetic response of the pellicle of Euglenoids for different grating profiles. The diffraction problem is solved by using the Chandezon method, which has demonstrated a successful performance for deep gratings of arbitrary profiles. We analyze the influence of the shape, depth and period of the grating on the UV reflectance. We show that the pellicle characteristics are critical parameters to increase the reflectance, thus reducing the penetration of the UV radiation within the cell and therefore, minimizing the damage and increasing the survival of these organisms.

  18. A nano grating tunable MEMS optical filter for high-speed on-chip multispectral fluorescent detection.

    PubMed

    Truxal, Steven C; Huang, Nien-Tsu; Kurabayashi, Katsuo

    2009-01-01

    We report a microelectromechanical (MEMS) tunable optical filter and its integration in a fluorescence microscope for high speed on-chip spectral measurements. This integration allows for measurements of any fluorescence sample placed onto the microscope stage. We demonstrate the system capabilities by taking spectral measurements of multicolor fluorescent beads and fluorescently labeled cells passing through a microfluidic cytometer. The system has applications in biological studies where the measurement of multiple fluorescent peaks is restricted by the detection method's speed and sensitivity.

  19. Single-frequency tunable laser for pumping cesium frequency standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuravleva, O V; Ivanov, Andrei V; Leonovich, A I

    2006-08-31

    A single-frequency tunable laser for pumping the cesium frequency standard is studied. It is shown experimentally that the laser emits at a single frequency despite the fact that a few longitudinal modes of the external cavity fall within the reflection band of a fibre Bragg grating (FBG) written in the optical fibre. The laser wavelength can be tuned by varying the pump current of the laser, its temperature, and the FBG temperature. The laser linewidth does not exceed 2 MHz for 10 mW of output power. (lasers)

  20. Optical data packet synchronization and multiplexing using a tunable optical delay based on wavelength conversion and inter-channel chromatic dispersion.

    PubMed

    Fazal, Irfan; Yilmaz, Omer; Nuccio, Scott; Zhang, Bo; Willner, Alan E; Langrock, Carsten; Fejer, Martin M

    2007-08-20

    10 Gb/s non-return-to-zero (NRZ) on-off keyed (OOK) optical data packets are synchronized and time-multiplexed using a 26-ns tunable all-optical delay line. The delay element is based on wavelength conversion in periodically poled lithium niobate (PPLN) waveguides, inter-channel chromatic dispersion in dispersion compensating fiber (DCF) and intra-channel dispersion compensation with a chirped fiber Bragg grating (FBG). Delay reconfiguration time is measured to be less than 300 ps.

  1. Numerical method of applying shadow theory to all regions of multilayered dielectric gratings in conical mounting.

    PubMed

    Wakabayashi, Hideaki; Asai, Masamitsu; Matsumoto, Keiji; Yamakita, Jiro

    2016-11-01

    Nakayama's shadow theory first discussed the diffraction by a perfectly conducting grating in a planar mounting. In the theory, a new formulation by use of a scattering factor was proposed. This paper focuses on the middle regions of a multilayered dielectric grating placed in conical mounting. Applying the shadow theory to the matrix eigenvalues method, we compose new transformation and improved propagation matrices of the shadow theory for conical mounting. Using these matrices and scattering factors, being the basic quantity of diffraction amplitudes, we formulate a new description of three-dimensional scattering fields which is available even for cases where the eigenvalues are degenerate in any region. Some numerical examples are given for cases where the eigenvalues are degenerate in the middle regions.

  2. Chromatic diversity: a new approach for characterizing spatiotemporal coupling of ultrashort pulses.

    PubMed

    Bahk, Seung-Whan; Dorrer, Christophe; Bromage, Jake

    2018-04-02

    Two-dimensional chromatic aberrations are characterized by a single-shot scheme based on a simultaneous measurement of chromatically diversified focal spots. The chromatic diversity is introduced by a 2-D grating with holographic defocus terms. The chromatic aberrations in the beam are either subtracted or added by the additional known chromatic aberrations in the grating, depending on the diffraction order. By analyzing the asymmetry in the size of diffracted focal spots, input beam chromatic aberrations can be deduced. Theoretical discussions and experimental results are presented.

  3. Optofluidic two-dimensional grating volume refractive index sensor.

    PubMed

    Sarkar, Anirban; Shivakiran Bhaktha, B N; Khastgir, Sugata Pratik

    2016-09-10

    We present an optofluidic reservoir with a two-dimensional grating for a lab-on-a-chip volume refractive index sensor. The observed diffraction pattern from the device resembles the analytically obtained fringe pattern. The change in the diffraction pattern has been monitored in the far-field for fluids with different refractive indices. Reliable measurements of refractive index variations, with an accuracy of 6×10-3 refractive index units, for different fluids establishes the optofluidic device as a potential on-chip tool for monitoring dynamic refractive index changes.

  4. Fabrication of rippled surfaces for diffraction gratings by plastic deformation of platinum foils and metallic glasses

    NASA Astrophysics Data System (ADS)

    Korsukov, V. E.; Malygin, G. A.; Korsukova, M. M.; Nyapshaev, I. A.; Obidov, B. A.

    2015-12-01

    Thin platinum foils and metallic glass ribbons with a fractal surface consisting of different-scale unidirectionally oriented ripples have been fabricated using special thermoplastic processing. The general fractal dimension of the rippled surface and dimensions along and across the ripples have been measured. The optical spectra of a PRK-4 lamp using rippled Pt(111) foils as reflective diffraction gratings have been determined. A model describing the mechanism of the formation of surface unidirectional fractal structures during deformation has been proposed.

  5. Chromatic diversity: a new approach for characterizing spatiotemporal coupling of ultrashort pulses

    DOE PAGES

    Bahk, Seung-Whan; Dorrer, Christophe; Bromage, Jake

    2018-01-01

    Two-dimensional chromatic aberrations are characterized by a single-shot scheme based on a simultaneous measurement of chromatically diversified focal spots. The chromatic diversity is introduced by a 2-D grating with holographic defocus terms. The chromatic aberrations in the beam are either subtracted or added by the additional known chromatic aberrations in the grating, depending on the diffraction order. By analyzing the asymmetry in the size of diffracted focal spots, input beam chromatic aberrations can be deduced. Theoretical discussions and experimental results are also presented.

  6. Design of a multilayer-based collimated plane-grating monochromator for tender X-ray range.

    PubMed

    Yang, Xiaowei; Wang, Hongchang; Hand, Matthew; Sawhney, Kawal; Kaulich, Burkhard; Kozhevnikov, Igor V; Huang, Qiushi; Wang, Zhanshan

    2017-01-01

    Collimated plane-grating monochromators (cPGMs), consisting of a plane mirror and plane diffraction grating, are essential optics in synchrotron radiation sources for their remarkable flexibility and good optical characteristics in the soft X-ray region. However, the poor energy transport efficiency of a conventional cPGM (single-layer-coated) degrades the source intensity and leaves reduced flux at the sample, especially for the tender X-ray range (1-4 keV) that covers a large number of K- and L-edges of medium-Z elements, and M-edges of high-Z elements. To overcome this limitation, the use of a multilayer-based cPGM is proposed, combining a multilayer-coated plane mirror with blazed multilayer gratings. With this combination, the effective efficiency of cPGMs can be increased by an order of magnitude compared with the conventional single-layer cPGMs. In addition, higher resolving power can be achieved with improved efficiency by increasing the blaze angle and working at higher diffraction order.

  7. Design of a multilayer-based collimated plane-grating monochromator for tender X-ray range

    PubMed Central

    Yang, Xiaowei; Wang, Hongchang; Hand, Matthew; Sawhney, Kawal; Kaulich, Burkhard; Kozhevnikov, Igor V.; Huang, Qiushi; Wang, Zhanshan

    2017-01-01

    Collimated plane-grating monochromators (cPGMs), consisting of a plane mirror and plane diffraction grating, are essential optics in synchrotron radiation sources for their remarkable flexibility and good optical characteristics in the soft X-ray region. However, the poor energy transport efficiency of a conventional cPGM (single-layer-coated) degrades the source intensity and leaves reduced flux at the sample, especially for the tender X-ray range (1–4 keV) that covers a large number of K- and L-edges of medium-Z elements, and M-edges of high-Z elements. To overcome this limitation, the use of a multilayer-based cPGM is proposed, combining a multilayer-coated plane mirror with blazed multilayer gratings. With this combination, the effective efficiency of cPGMs can be increased by an order of magnitude compared with the conventional single-layer cPGMs. In addition, higher resolving power can be achieved with improved efficiency by increasing the blaze angle and working at higher diffraction order. PMID:28009556

  8. Diffraction of electromagnetic waves by a metallic bar grating with a defect in dielectric filling of the slits

    NASA Astrophysics Data System (ADS)

    Kochetova, Lyudmila A.; Prosvirnin, Sergey L.

    2018-04-01

    The problem of electromagnetic wave diffraction by the metallic bar grating with inhomogeneous dielectric filling of each slit between bars has been investigated by using the mode matching technique. The transmission and the inner field distribution have been analyzed for the structure which has a single defect in the periodic filling of slits. Such periodic structures are of particular interest for applications in optics, as they have the ability to concentrate a strong inner electromagnetic field and are characterized by high-Q transmission resonances. We use a simple approach to control the width and location of the stopband of the structure by placing a defect in the periodic filling of the grating slits. As a result, we observe the narrow resonance of transmission in terms of stopband width of the defect-free grating and confinement of strong inner electromagnetic field. By changing the permittivity of the defect layer we can shift the frequency of the resonant transmission.

  9. High resolution EUV monochromator/spectrometer

    DOEpatents

    Koike, Masako

    1996-01-01

    This invention is related to a monochromator which employs a spherical mirror, a traveling plane mirror with simultaneous rotation, and a varied spacing plane grating. The divergent beam from the entrance slit is converged by the spherical mirror located at the various positions in the monochromator depending of the inventive system. To provide the meaningful diffraction efficiencies and to reduce unwanted higher order lights, the deviation angle subtending the incidence and diffraction beams for the plane grating is varied with the position of the traveling plane mirror with simultaneous rotation located in the front or back of the plane grating with wavelength scanning. The outgoing beam from the monochromator goes through the fixed exit slit and has same beam direction regardless of the scanning wavelength. The combination of properly designed motions of the plane mirror and novel varied-spacing parameters of the inventive plane grating corrects the aberrations and focuses the monochromatic spectral image on the exit slit, enabling measurements at high spectral resolution.

  10. High resolution EUV monochromator/spectrometer

    DOEpatents

    Koike, Masako

    1996-06-18

    This invention is related to a monochromator which employs a spherical mirror, a traveling plane mirror with simultaneous rotation, and a varied spacing plane grating. The divergent beam from the entrance slit is converged by the spherical mirror located at the various positions in the monochromator depending of the inventive system. To provide the meaningful diffraction efficiencies and to reduce unwanted higher order lights, the deviation angle subtending the incidence and diffraction beams for the plane grating is varied with the position of the traveling plane mirror with simultaneous rotation located in the front or back of the plane grating with wavelength scanning. The outgoing beam from the monochromator goes through the fixed exit slit and has same beam direction regardless of the scanning wavelength. The combination of properly designed motions of the plane mirror and novel varied-spacing parameters of the inventive plane grating corrects the aberrations and focuses the monochromatic spectral image on the exit slit, enabling measurements at high spectral resolution. 10 figs.

  11. Selectivity analysis of an incoherent grating imaged in a photorefractive crystal

    NASA Astrophysics Data System (ADS)

    Tebaldi, Myrian; Forte, Gustavo; Bolognini, Nestor; Lasprilla A., Maria del Carmen

    2018-04-01

    In this work, the diffraction efficiency of a volume phase grating incoherently stored in a photorefractive BSO crystal is theoretically and experimentally analyzed. The results confirm the theoretical proposal based on the coupled wave theory adopting a new grating depth parameter associated to the write-in incoherent optical system. The selectivity behavior is governed by the exit pupil diameter of the imaging recording system that controls the depth of the tridimensional image distribution along the propagation direction. Two incoherent gratings are multiplexed in a single crystal and reconstructed without cross-talk.

  12. Alignment of chirped-pulse compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakovlev, I V

    2012-11-30

    An original method of alignment of grating compressors for ultrahigh-power CPA laser systems is proposed. The use of this method for adjustment of the grating compressor of a PEARL subpetawatt laser complex made it possible to align the diffraction gratings with a second accuracy in all three angular degrees of freedom, including alignment of the grooves, and to adjust the angles of beam incidence on the grating with a high accuracy. A simple method for measuring the difference in the groove densities of gratings with accuracy better than 0.005 lines mm{sup -1} is proposed and tested. (control of laser radiationmore » parameters)« less

  13. GaSb-based single-mode distributed feedback lasers for sensing (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gupta, James A.; Bezinger, Andrew; Lapointe, Jean; Poitras, Daniel; Aers, Geof C.

    2017-02-01

    GaSb-based tunable single-mode diode lasers can enable rapid, highly-selective and highly-sensitive absorption spectroscopy systems for gas sensing. In this work, single-mode distributed feedback (DFB) laser diodes were developed for the detection of various trace gases in the 2-3.3um range, including CO2, CO, HF, H2S, H2O and CH4. The lasers were fabricated using an index-coupled grating process without epitaxial regrowth, making the process significantly less expensive than conventional DFB fabrication. The devices are based on InGaAsSb/AlGaAsSb separate confinement heterostructures grown on GaSb by molecular beam epitaxy. DFB lasers were produced using a two step etch process. Narrow ridge waveguides were first defined by optical lithography and etched into the semiconductor. Lateral gratings were then defined on both sides of the ridge using electron-beam lithography and etched to produce the index-grating. Effective index modeling was used to optimize the ridge width, etch depths and the grating pitch to ensure single-lateral-mode operation and adequate coupling strength. The effective index method was further used to simulate the DFB laser emission spectrum, based on a transfer matrix model for light transmission through the periodic structure. The fabricated lasers exhibit single-mode operation which is tunable through the absorption features of the various target gases by adjustment of the drive current. In addition to the established open-path sensing applications, these devices have great potential for optoelectronic integrated gas sensors, making use of integrated photodetectors and possibly on-chip Si photonics waveguide structures.

  14. Design of multi-wavelength tunable filter based on Lithium Niobate

    NASA Astrophysics Data System (ADS)

    Zhang, Ailing; Yao, Yuan; Zhang, Yue; Song, Hongyun

    2018-05-01

    A multi-wavelength tunable filter is designed. It consists of multiple waveguides among multiple waveguide gratings. A pair of electrodes were placed on both sides of each waveguide. The tunable filter uses the electro-optic effect of Lithium Niobate to tune the phase caused by each waveguide. Consequently, the wavelength and wavelength spacing of the filter are tuned by changing external voltages added on the electrode pairs. The tunable property of the filter is analyzed by phase matching condition and transfer-matrix method. Numerical results show that not only multiple wavelengths with narrow bandwidth are tuned with nearly equal spacing by synchronously changing the voltages added on all electrode pairs, but also the number of wavelengths is determined by the number of phase shifts caused by electrode pairs. Furthermore, due to the electro-optic effect of Lithium Niobate, the tuning speed of the filter can reach the order of ns.

  15. Phase-shifted Solc-type filter based on thin periodically poled lithium niobate in a reflective geometry.

    PubMed

    Ding, Tingting; Zheng, Yuanlin; Chen, Xianfeng

    2018-04-30

    Configurable narrow bandwidth filters are indispensable components in optical communication networks. Here, we present an easily-integrated compact tunable filtering based on polarization-coupling process in a thin periodically poled lithium niobate (PPLN) in a reflective geometry via the transverse electro-optic (EO) effect. The structure, composed of an in-line polarizer and a thinned PPLN chip, forms a phase-shift Solc-type filter with similar mechanism to defected Bragg gratings. The filtering effect can be dynamically switched on and off by a transverse electric filed. Analogy of electromagnetically induced transparency (EIT) transmission spectrum and electrically controllable group delay is experimentally observed. The mechanism features tunable center wavelength in a wide range with respect to temperature and tunable optical delay to the applied voltage, which may offer another way for optical tunable filters or delay lines.

  16. High performance Si immersion gratings patterned with electron beam lithography

    NASA Astrophysics Data System (ADS)

    Gully-Santiago, Michael A.; Jaffe, Daniel T.; Brooks, Cynthia B.; Wilson, Daniel W.; Muller, Richard E.

    2014-07-01

    Infrared spectrographs employing silicon immersion gratings can be significantly more compact than spectro- graphs using front-surface gratings. The Si gratings can also offer continuous wavelength coverage at high spectral resolution. The grooves in Si gratings are made with semiconductor lithography techniques, to date almost entirely using contact mask photolithography. Planned near-infrared astronomical spectrographs require either finer groove pitches or higher positional accuracy than standard UV contact mask photolithography can reach. A collaboration between the University of Texas at Austin Silicon Diffractive Optics Group and the Jet Propulsion Laboratory Microdevices Laboratory has experimented with direct writing silicon immersion grating grooves with electron beam lithography. The patterning process involves depositing positive e-beam resist on 1 to 30 mm thick, 100 mm diameter monolithic crystalline silicon substrates. We then use the facility JEOL 9300FS e-beam writer at JPL to produce the linear pattern that defines the gratings. There are three key challenges to produce high-performance e-beam written silicon immersion gratings. (1) E- beam field and subfield stitching boundaries cause periodic cross-hatch structures along the grating grooves. The structures manifest themselves as spectral and spatial dimension ghosts in the diffraction limited point spread function (PSF) of the diffraction grating. In this paper, we show that the effects of e-beam field boundaries must be mitigated. We have significantly reduced ghost power with only minor increases in write time by using four or more field sizes of less than 500 μm. (2) The finite e-beam stage drift and run-out error cause large-scale structure in the wavefront error. We deal with this problem by applying a mark detection loop to check for and correct out minuscule stage drifts. We measure the level and direction of stage drift and show that mark detection reduces peak-to-valley wavefront error by a factor of 5. (3) The serial write process for typical gratings yields write times of about 24 hours- this makes prototyping costly. We discuss work with negative e-beam resist to reduce the fill factor of exposure, and therefore limit the exposure time. We also discuss the tradeoffs of long write-time serial write processes like e-beam with UV photomask lithography. We show the results of experiments on small pattern size prototypes on silicon wafers. Current prototypes now exceed 30 dB of suppression on spectral and spatial dimension ghosts compared to monochromatic spectral purity measurements of the backside of Si echelle gratings in reflection at 632 nm. We perform interferometry at 632 nm in reflection with a 25 mm circular beam on a grating with a blaze angle of 71.6°. The measured wavefront error is 0.09 waves peak to valley.

  17. Multi-functional optical signal processing using optical spectrum control circuit

    NASA Astrophysics Data System (ADS)

    Hayashi, Shuhei; Ikeda, Tatsuhiko; Mizuno, Takayuki; Takahashi, Hiroshi; Tsuda, Hiroyuki

    2015-02-01

    Processing ultra-fast optical signals without optical/electronic conversion is in demand and time-to-space conversion has been proposed as an effective solution. We have designed and fabricated an arrayed-waveguide grating (AWG) based optical spectrum control circuit (OSCC) using silica planar lightwave circuit (PLC) technology. This device is composed of an AWG, tunable phase shifters and a mirror. The principle of signal processing is to spatially decompose the signal's frequency components by using the AWG. Then, the phase of each frequency component is controlled by the tunable phase shifters. Finally, the light is reflected back to the AWG by the mirror and synthesized. Amplitude of each frequency component can be controlled by distributing the power to high diffraction order light. The spectral controlling range of the OSCC is 100 GHz and its resolution is 1.67 GHz. This paper describes equipping the OSCC with optical coded division multiplex (OCDM) encoder/decoder functionality. The encoding principle is to apply certain phase patterns to the signal's frequency components and intentionally disperse the signal. The decoding principle is also to apply certain phase patterns to the frequency components at the receiving side. If the applied phase pattern compensates the intentional dispersion, the waveform is regenerated, but if the pattern is not appropriate, the waveform remains dispersed. We also propose an arbitrary filter function by exploiting the OSCC's amplitude and phase control attributes. For example, a filtered optical signal transmitted through multiple optical nodes that use the wavelength multiplexer/demultiplexer can be equalized.

  18. Dual light field and polarization imaging using CMOS diffractive image sensors.

    PubMed

    Jayasuriya, Suren; Sivaramakrishnan, Sriram; Chuang, Ellen; Guruaribam, Debashree; Wang, Albert; Molnar, Alyosha

    2015-05-15

    In this Letter we present, to the best of our knowledge, the first integrated CMOS image sensor that can simultaneously perform light field and polarization imaging without the use of external filters or additional optical elements. Previous work has shown how photodetectors with two stacks of integrated metal gratings above them (called angle sensitive pixels) diffract light in a Talbot pattern to capture four-dimensional light fields. We show, in addition to diffractive imaging, that these gratings polarize incoming light and characterize the response of these sensors to polarization and incidence angle. Finally, we show two applications of polarization imaging: imaging stress-induced birefringence and identifying specular reflections in scenes to improve light field algorithms for these scenes.

  19. Quasi-resonant enhancement of a grazing diffracted wave and deep suppression of specular reflection on shallow metal gratings in terahertz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tymchenko, M., E-mail: mtymchenko@utexas.edu; Gavrikov, V. K.; Spevak, I. S.

    2015-06-29

    We report on a previously unexamined anomaly at diffraction of THz radiation on metal gratings. This anomaly consists in a nearly complete redirection of energy to a non-specular homogeneous diffraction order propagating at a specific grazing angle and deep suppression of the specular reflection. We show that this anomaly is located far enough from the well-known one caused by the resonant excitation of the surface plasmon-polariton. The effect under consideration is of general nature and can exist in all spectrum regions; however, it is especially pronounced in THz region, where it should be taken into account when analyzing relevant experimentalmore » results.« less

  20. Replication of Holograms with Corn Syrup by Rubbing

    PubMed Central

    Mejias-Brizuela, Nildia Y.; Olivares-Pérez, Arturo; Ortiz-Gutiérrez, Mauricio

    2012-01-01

    Corn syrup films are used to replicate holograms in order to fabricate micro-structural patterns without the toxins commonly found in photosensitive salts and dyes. We use amplitude and relief masks with lithographic techniques and rubbing techniques in order to transfer holographic information to corn syrup material. Holographic diffraction patterns from holographic gratings and computer Fourier holograms fabricated with corn syrup are shown. We measured the diffraction efficiency parameter in order to characterize the film. The versatility of this material for storage information is promising. Holographic gratings achieved a diffraction efficiency of around 8.4% with an amplitude mask and 36% for a relief mask technique. Preliminary results using corn syrup as an emulsion for replicating holograms are also shown in this work.

Top